Sample records for right-lateral transform motion

  1. Motion in the north Iceland volcanic rift zone accommodated by bookshelf faulting

    NASA Astrophysics Data System (ADS)

    Green, Robert G.; White, Robert S.; Greenfield, Tim

    2014-01-01

    Along mid-ocean ridges the extending crust is segmented on length scales of 10-1,000km. Where rift segments are offset from one another, motion between segments is accommodated by transform faults that are oriented orthogonally to the main rift axis. Where segments overlap, non-transform offsets with a variety of geometries accommodate shear motions. Here we use micro-seismic data to analyse the geometries of faults at two overlapping rift segments exposed on land in north Iceland. Between the rift segments, we identify a series of faults that are aligned sub-parallel to the orientation of the main rift. These faults slip through left-lateral strike-slip motion. Yet, movement between the overlapping rift segments is through right-lateral motion. Together, these motions induce a clockwise rotation of the faults and intervening crustal blocks in a motion that is consistent with a bookshelf-faulting mechanism, named after its resemblance to a tilting row of books on a shelf. The faults probably reactivated existing crustal weaknesses, such as dyke intrusions, that were originally oriented parallel to the main rift and have since rotated about 15° clockwise. Reactivation of pre-existing, rift-parallel weaknesses contrasts with typical mid-ocean ridge transform faults and is an important illustration of a non-transform offset accommodating shear motion between overlapping rift segments.

  2. Bookshelf faulting and transform motion between rift segments of the Northern Volcanic Zone, Iceland

    NASA Astrophysics Data System (ADS)

    Green, R. G.; White, R. S.; Greenfield, T. S.

    2013-12-01

    Plate spreading is segmented on length scales from 10 - 1,000 kilometres. Where spreading segments are offset, extensional motion has to transfer from one segment to another. In classical plate tectonics, mid-ocean ridge spreading centres are offset by transform faults, but smaller 'non-transform' offsets exist between slightly overlapping spreading centres which accommodate shear by a variety of geometries. In Iceland the mid-Atlantic Ridge is raised above sea level by the Iceland mantle plume, and is divided into a series of segments 20-150 km long. Using microseismicity recorded by a temporary array of 26 three-component seismometers during 2009-2012 we map bookshelf faulting between the offset Askja and Kverkfjöll rift segments in north Iceland. The micro-earthquakes delineate a series of sub-parallel strike-slip faults. Well constrained fault plane solutions show consistent left-lateral motion on fault planes aligned closely with epicentral trends. The shear couple across the transform zone causes left-lateral slip on the series of strike-slip faults sub-parallel to the rift fabric, causing clockwise rotations about a vertical axis of the intervening rigid crustal blocks. This accommodates the overall right-lateral transform motion in the relay zone between the two overlapping volcanic rift segments. The faults probably reactivated crustal weaknesses along the dyke intrusion fabric (parallel to the rift axis) and have since rotated ˜15° clockwise into their present orientation. The reactivation of pre-existing rift-parallel weaknesses is in contrast with mid-ocean ridge transform faults, and is an important illustration of a 'non-transform' offset accommodating shear between overlapping spreading segments.

  3. Earthquakes in the Orozco transform zone: seismicity, source mechanisms, and tectonics

    USGS Publications Warehouse

    Tréhu, Anne M.; Solomon, Sean C.

    1983-01-01

    As part of the Rivera Ocean Seismic Experiment, a network of ocean bottom seismometers and hydrophones was deployed in order to determine the seismic characteristics of the Orozco transform fault in the central eastern Pacific. We present hypocentral locations and source mechanisms for 70 earthquakes recorded by this network. All epicenters are within the transform region of the Orozco Fracture Zone and clearly delineate the active plate boundary. About half of the epicenters define a narrow line of activity parallel to the spreading direction and situated along a deep topographic trough that forms the northern boundary of the transform zone (region 1). Most focal depths for these events are very shallow, within 4 km of the seafloor; several well-determined focal depths, however, are as great as 7 km. No shallowing of seismic activity is observed as the rise-transform intersection is approached; to the contrary, the deepest events are within 10 km of the intersection. First motion polarities for most of the earthquakes in region 1 are compatible with right-lateral strike slip faulting along a nearly vertical plane, striking parallel to the spreading direction. Another zone of activity is observed in the central part of the transform (region 2). The apparent horizontal and vertical distribution of activity in this region is more scattered than in the first, and the first motion radiation patterns of these events do not appear to be compatible with any known fault mechanism. Pronounced lateral variations in crustal velocity structure are indicated for the transform region from refraction data and measurements of wave propagation directions. The effect of this lateral heterogeneity on hypocenters and fault plane solutions is evaluated by tracing rays through a three-dimensional velocity grid. While findings for events in region 1 are not significantly affected, in region 2, epicentral mislocations of up to 10 km and azimuthal deflections of up to 45° may result from assuming a laterally homogeneous velocity structure. When corrected for the effects of lateral heterogeneity, the epicenters and fault plane solutions for earthquakes in region 2 are compatible with predominantly normal faulting along a topographic trough trending NW–SE; the focal depths, however, are poorly constrained. These results suggest an en echelon spreading center or leaky transform regime in the central transform region.

  4. Relating Lateralization of Eye Use to Body Motion in the Avoidance Behavior of the Chameleon (Chamaeleo chameleon)

    PubMed Central

    Lustig, Avichai; Ketter-Katz, Hadas; Katzir, Gadi

    2013-01-01

    Lateralization is mostly analyzed for single traits, but seldom for two or more traits while performing a given task (e.g. object manipulation). We examined lateralization in eye use and in body motion that co-occur during avoidance behaviour of the common chameleon, Chamaeleo chameleon. A chameleon facing a moving threat smoothly repositions its body on the side of its perch distal to the threat, to minimize its visual exposure. We previously demonstrated that during the response (i) eye use and body motion were, each, lateralized at the tested group level (N = 26), (ii) in body motion, we observed two similar-sized sub-groups, one exhibiting a greater reduction in body exposure to threat approaching from the left and one – to threat approaching from the right (left- and right-biased subgroups), (iii) the left-biased sub-group exhibited weak lateralization of body exposure under binocular threat viewing and none under monocular viewing while the right-biased sub-group exhibited strong lateralization under both monocular and binocular threat viewing. In avoidance, how is eye use related to body motion at the entire group and at the sub-group levels? We demonstrate that (i) in the left-biased sub-group, eye use is not lateralized, (ii) in the right-biased sub-group, eye use is lateralized under binocular, but not monocular viewing of the threat, (iii) the dominance of the right-biased sub-group determines the lateralization of the entire group tested. We conclude that in chameleons, patterns of lateralization of visual function and body motion are inter-related at a subtle level. Presently, the patterns cannot be compared with humans' or related to the unique visual system of chameleons, with highly independent eye movements, complete optic nerve decussation and relatively few inter-hemispheric commissures. We present a model to explain the possible inter-hemispheric differences in dominance in chameleons' visual control of body motion during avoidance. PMID:23967099

  5. Relating lateralization of eye use to body motion in the avoidance behavior of the chameleon (Chamaeleo chameleon).

    PubMed

    Lustig, Avichai; Ketter-Katz, Hadas; Katzir, Gadi

    2013-01-01

    Lateralization is mostly analyzed for single traits, but seldom for two or more traits while performing a given task (e.g. object manipulation). We examined lateralization in eye use and in body motion that co-occur during avoidance behaviour of the common chameleon, Chamaeleo chameleon. A chameleon facing a moving threat smoothly repositions its body on the side of its perch distal to the threat, to minimize its visual exposure. We previously demonstrated that during the response (i) eye use and body motion were, each, lateralized at the tested group level (N = 26), (ii) in body motion, we observed two similar-sized sub-groups, one exhibiting a greater reduction in body exposure to threat approaching from the left and one--to threat approaching from the right (left- and right-biased subgroups), (iii) the left-biased sub-group exhibited weak lateralization of body exposure under binocular threat viewing and none under monocular viewing while the right-biased sub-group exhibited strong lateralization under both monocular and binocular threat viewing. In avoidance, how is eye use related to body motion at the entire group and at the sub-group levels? We demonstrate that (i) in the left-biased sub-group, eye use is not lateralized, (ii) in the right-biased sub-group, eye use is lateralized under binocular, but not monocular viewing of the threat, (iii) the dominance of the right-biased sub-group determines the lateralization of the entire group tested. We conclude that in chameleons, patterns of lateralization of visual function and body motion are inter-related at a subtle level. Presently, the patterns cannot be compared with humans' or related to the unique visual system of chameleons, with highly independent eye movements, complete optic nerve decussation and relatively few inter-hemispheric commissures. We present a model to explain the possible inter-hemispheric differences in dominance in chameleons' visual control of body motion during avoidance.

  6. Multi-type Tectonic Responses to Plate Motion Changes of Mega-Offset Transform Faults at the Pacific-Antarctic Ridge

    NASA Astrophysics Data System (ADS)

    Zhang, F.; Lin, J.; Yang, H.; Zhou, Z.

    2017-12-01

    Magmatic and tectonic responses of a mid-ocean ridge system to plate motion changes can provide important constraints on the mechanisms of ridge-transform interaction and lithospheric properties. Here we present new analysis of multi-type responses of the mega-offset transform faults at the Pacific-Antarctic Ridge (PAR) system to plate motion changes in the last 12 Ma. Detailed analysis of the Heezen, Tharp, and Udintsev transform faults showed that the extensional stresses induced by plate motion changes could have been released through a combination of magmatic and tectonic processes: (1) For a number of ridge segments with abundant magma supply, plate motion changes might have caused the lateral transport of magma along the ridge axis and into the abutting transform valley, forming curved "hook" ridges at the ridge-transform intersection. (2) Plate motion changes might also have caused vertical deformation on steeply-dipping transtensional faults that were developed along the Heezen, Tharp, and Udintsev transform faults. (3) Distinct zones of intensive tectonic deformation, resembling belts of "rift zones", were found to be sub-parallel to the investigated transform faults. These rift-like deformation zones were hypothesized to have developed when the stresses required to drive the vertical deformation on the steeply-dipping transtensional faults along the transform faults becomes excessive, and thus deformation on off-transform "rift zones" became favored. (4) However, to explain the observed large offsets on the steeply-dipping transtensional faults, the transform faults must be relatively weak with low apparent friction coefficient comparing to the adjacent lithospheric plates.

  7. Crustal strain near the Big Bend of the San Andreas Fault: analysis of the Los Padres-Tehachapi Trilateration Networks, California

    USGS Publications Warehouse

    Eberhart-Phillips, D.; Lisowski, M.

    1990-01-01

    In the region of the Los Padres-Tehachapi geodetic network, the San Andreas fault (SAF) changes its orientation by over 30?? from N40??W, close to that predicted by plate motion for a transform boundary, to N73??W. The strain orientation near the SAF is consistent with right-lateral shear along the fault, with maximum shear rate of 0.38??0.01??rad/yr at N63??W. In contrast, away from the SAF the strain orientations on both sides of the fault are consistent with the plate motion direction, with maximum shear rate of 0.19??0.01??rad/yr at N44??W. The best fitting Garlock fault model had computed left-lateral slip rate of 11??2mm/yr below 10km. Buried left-lateral slip of 15??6mm/yr on the Big Pine fault, within the Western Transverse Ranges, provides significant reduction in line length residuals; however, deformation there may be more complicated than a single vertical fault. A subhorizontal detachment on the southern side of the SAF cannot be well constrained by these data. -from Authors

  8. Motion analysis study on sensitivity of finite element model of the cervical spine to geometry.

    PubMed

    Zafarparandeh, Iman; Erbulut, Deniz U; Ozer, Ali F

    2016-07-01

    Numerous finite element models of the cervical spine have been proposed, with exact geometry or with symmetric approximation in the geometry. However, few researches have investigated the sensitivity of predicted motion responses to the geometry of the cervical spine. The goal of this study was to evaluate the effect of symmetric assumption on the predicted motion by finite element model of the cervical spine. We developed two finite element models of the cervical spine C2-C7. One model was based on the exact geometry of the cervical spine (asymmetric model), whereas the other was symmetric (symmetric model) about the mid-sagittal plane. The predicted range of motion of both models-main and coupled motions-was compared with published experimental data for all motion planes under a full range of loads. The maximum differences between the asymmetric model and symmetric model predictions for the principal motion were 31%, 78%, and 126% for flexion-extension, right-left lateral bending, and right-left axial rotation, respectively. For flexion-extension and lateral bending, the minimum difference was 0%, whereas it was 2% for axial rotation. The maximum coupled motions predicted by the symmetric model were 1.5° axial rotation and 3.6° lateral bending, under applied lateral bending and axial rotation, respectively. Those coupled motions predicted by the asymmetric model were 1.6° axial rotation and 4° lateral bending, under applied lateral bending and axial rotation, respectively. In general, the predicted motion response of the cervical spine by the symmetric model was in the acceptable range and nonlinearity of the moment-rotation curve for the cervical spine was properly predicted. © IMechE 2016.

  9. The Tonalá fault in southeastern Mexico: Evidence that the Central America forearc sliver is not being detached?

    NASA Astrophysics Data System (ADS)

    Guzman-Speziale, M.; Molina-Garza, R. S.

    2012-12-01

    The Tonalá fault is a NW-SE oriented feature that flanks the Chiapas Massif on its southwestern side. Several authors coincide that the fault originally developed as a right-lateral structure in the Jurassic, but was reactivated as a left-lateral fault in the Miocene. Seismicity along the fault is low: Only one earthquake with magnitude 5.0 or larger is reported along the Tonalá fault in the years 1964 to present. Fault-plane solutions determined by the Mexican Seismological Survey for earthquakes along the fault show left-lateral, strike-slip faulting. The Tonalá fault lies on the northwestern continuation of the Central America volcanic arc. The volcanic arc is the site of medium-sized (magnitudes up to 6.5) shallow, right-lateral, strike-slip earthquakes. This has led several workers to propose that the forearc sliver is being detached from the Caribbean plate along the arc, moving northward. GPS studies have confirmed relative motion between the Chortis block and the forearc sliver. Recent and current motion along the Tonalá fault is in contradiction with motion and detachment of the forearc sliver along the Central America volcanic arc. Left-lateral motion along it cannot accomodate northwest displacement of the forearc sliver. Motion of the Central America forearc would require NW directed compression between the continental shelf of Chiapas and the forearc itself, which is not observed. Therefore, either another fault (or faults) accomodates right-lateral motion and detachment of the forearc sliver, or the sliver is not being detached and relative motion between the forearc sliver and the Chortis block corresponds to displacement of the latter. We suggest that, as proposed by previous authors, the Tonalá fault is instead part of a fault system that runs from the state of Oaxaca (the Valle Nacional fault), forming an arc concave to the northeast, and running perpendicular to the maximum slope of subduction in the area.

  10. Evidence of spatial and temporal slip partitioning in the northern Central Nevada Seismic Belt from ground-based imaging of offset landforms

    NASA Astrophysics Data System (ADS)

    Gold, P. O.; Cowgill, E.; Kreylos, O.

    2010-12-01

    Measurements derived from high-resolution terrestrial LiDAR (t-Lidar) surveys of landforms displaced during the 16 December 1954 Mw 6.8 Dixie Valley earthquake in central Nevada confirm the absence of historical strike slip north of latitude 39.5°N. This conclusion has implications for the effect of stress changes on the spatial and temporal evolution of the central Nevada seismic belt. The Dixie Valley fault is a low-angle, east-dipping, range-bounding normal fault located in the central-northern reach of the central Nevada seismic belt (CNSB), a ~N-S trending group of historical ruptures that may represent a migration of northwest trending right-lateral Pacific-North American plate motion into central Nevada. Migration of a component of right slip eastward from the eastern California shear zone/Walker lane to the CNSB is supported by the presence of pronounced right-lateral motion observed in most of the CNSB earthquakes south of the Dixie Valley fault and by GPS data spanning the CNSB. Such eastward migration and northward propagation of right-slip into the CNSB predicts a component of lateral slip on the Dixie Valley fault. However, landforms offsets have previously been reported to indicate only purely normal slip in the 1954 Dixie Valley event. To check the direction of motion during the Dixie Valley earthquake using higher precision methods than previously employed, we collected t-LiDAR data to quantify displacements of two well-preserved debris flow chutes separated along strike by ~10 km and at locations where the local fault strike diverges by >10° from the regional strike. Our highest confidence measurements yield a horizontal slip vector azimuth of ~107° at both sites, orthogonal to the average regional fault strike of ~17°. Thus, we find no compelling evidence for regional lateral motion in our other measurements. This result indicates that continued northward propagation of right lateral slip from its diffuse termination at the northern end of the 1954 Fairview Peak event, 4 minutes before the Dixie Valley event, and the Rainbow Mountain-Stillwater events six months earlier, must be accommodated by some other mechanism. We see several options for the spatial and temporal evolution of right slip propagation into the northern CNSB. 1) Lateral motion may be accommodated to the east by faults opposite the Dixie Valley fault along the base of Clan Alpine range, or to the west by faults at the western base of the Stillwater range-diffuse faults to the SW and SE of the Dixie Valley fault that also ruptured in 1954 accommodated right slip and could represent a west and/or east migration of lateral motion; 2) right lateral motion may activate an as yet unrecognized fault within the Dixie Valley; or 3) the Dixie Valley fault may be reactivated with a greater component of lateral slip in response to changes in stress, a phenomena that has been recognized on the Borrego Fault in northern Mexico between the penultimate event and the recent 4 April 2010 El Mayor-Cucapah earthquake.

  11. Detection of radial motion depends on spatial displacement.

    PubMed

    de la Malla, Cristina; López-Moliner, Joan

    2010-06-01

    Nakayama and Tyler (1981) disentangled the use of pure motion (speed) information from spatial displacement information for the detection of lateral motion. They showed that when positional cues were removed the contribution of motion or spatial information was dependent on the temporal frequency: for temporal frequencies lower than 1Hz the mechanism used to detect motion relied on speed information while for higher temporal frequencies a mechanism based on displacement information was used. Here we test whether the same dependency is also revealed in radial motion. In order to do so, we adapted the paradigm previously used by Nakayama and Tyler to obtain detection thresholds for lateral and radial motion by using a 2-IFC procedure. Subjects had to report which of the intervals contained the signal stimulus (33% coherent motion). We replicated the temporal frequency dependency for lateral motion but results indicate, however, that the detection of radial is always consistent with detecting a spatial displacement amplitude. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  12. Magnetic Resonance-based Motion Correction for Quantitative PET in Simultaneous PET-MR Imaging.

    PubMed

    Rakvongthai, Yothin; El Fakhri, Georges

    2017-07-01

    Motion degrades image quality and quantitation of PET images, and is an obstacle to quantitative PET imaging. Simultaneous PET-MR offers a tool that can be used for correcting the motion in PET images by using anatomic information from MR imaging acquired concurrently. Motion correction can be performed by transforming a set of reconstructed PET images into the same frame or by incorporating the transformation into the system model and reconstructing the motion-corrected image. Several phantom and patient studies have validated that MR-based motion correction strategies have great promise for quantitative PET imaging in simultaneous PET-MR. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Some effects of nonlinear variation in the directional-stability and damping-in-yawing derivatives on the lateral stability of an airplane

    NASA Technical Reports Server (NTRS)

    Sternfield, Leonard

    1951-01-01

    A theoretical investigation has been made to determine the effect of nonlinear stability derivatives on the lateral stability of an airplane. Motions were calculated on the assumption that the directional-stability and the damping-in-yawing derivatives are functions of the angle of sideslip. The application of the Laplace transform to the calculation of an airplane motion when certain types of nonlinear derivatives are present is described in detail. The types of nonlinearities assumed correspond to the condition in which the values of the directional-stability and damping-in-yawing derivatives are zero for small angle of sideslip.

  14. Kaltag fault, northern Yukon, Canada: Constraints on evolution of Arctic Alaska

    NASA Astrophysics Data System (ADS)

    Lane, Larry S.

    1992-07-01

    The Kaltag fault has been linked to several strike-slip models of evolution of the western Arctic Ocean. Hundreds of kilometres of Cretaceous-Tertiary displacement have been hypothesized in models that emplace Arctic Alaska into its present position by either left- or right-lateral strike slip. However, regional-scale displacement is precluded by new potential-field data. Postulated transform emplacement of Arctic Alaska cannot be accommodated by motion on the Kaltag fault or adjacent structures. The Kaltag fault of the northern Yukon is an eastward extrapolation of its namesake in west-central Alaska; however, a connection cannot be demonstrated. Cretaceous-Tertiary displacement on the Alaskan Kaltag fault is probably accommodated elsewhere.

  15. Form and motion make independent contributions to the response to biological motion in occipitotemporal cortex.

    PubMed

    Thompson, James C; Baccus, Wendy

    2012-01-02

    Psychophysical and computational studies have provided evidence that both form and motion cues are used in the perception of biological motion. However, neuroimaging and neurophysiological studies have suggested that the neural processing of actions in temporal cortex might rely on form cues alone. Here we examined the contribution of form and motion to the spatial pattern of response to biological motion in ventral and lateral occipitotemporal cortex, using functional magnetic resonance imaging (fMRI) and multivoxel pattern analysis (MVPA). We found that selectivity to intact versus scrambled biological motion in lateral occipitotemporal cortex was correlated with selectivity for bodies and not for motion. However, this appeared to be due to the fact that subtracting scrambled from intact biological motion removes any contribution of local motion cues. Instead, we found that form and motion made independent contributions to the spatial pattern of responses to biological motion in lateral occipitotemporal regions MT, MST, and the extrastriate body area. The motion contribution was position-dependent, and consistent with the representation of contra- and ipsilateral visual fields in MT and MST. In contrast, only form contributed to the response to biological motion in the fusiform body area, with a bias towards central versus peripheral presentation. These results indicate that the pattern of response to biological motion in ventral and lateral occipitotemporal cortex reflects the linear combination of responses to form and motion. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Enhancement of the national strong-motion network in Turkey

    USGS Publications Warehouse

    Gulkan, Polat; Ceken, U.; Colakoglu, Z.; Ugras, T.; Kuru, T.; Apak, A.; Anderson, J.G.; Sucuoglu, H.; Celebi, M.; Akkar, D.S.; Yazgan, U.; Denizlioglu, A.Z.

    2007-01-01

    Two arrays comprising 20 strong-motion sensors were established in western Turkey. The 14 stations of BYTNet follow a N-S trending line about 65 km in length, normal to strands of the North Anatolian fault that runs between the cities of Bursa and Yalova. Here the dominant character of the potential fault movement is a right-lateral transform slip. The DATNet array, comprising a total of eight stations, is arranged along a 110-km-long E-W trending direction along the Menderes River valley between Denizli and Aydin. (Two stations in this array were incorporated from the existing Turkish national strong-motion network.) This is an extensional tectonic environment, and the network mornitors potential large normal-faulting earthquakes on the faults in the valley. The installation of the arrays was supported by the North Atlantic Treaty Organization (NATO) under its Science for Peace Program. Maintenance and calibration is performed by the General Directorate of Disaster Affairs (GDDA) according to a protocol between Middle East Technical University (METU) and GDDA. Many young engineers and scientists have been trained in network operation and evaluation during the course of the project, and an international workshop dealing with strong-motion instrumentation has been organized as part of the project activities.

  17. Active Deformation along the Southern End of the Tosco-Abreojos Fault System: New Insights from Multibeam Swath Bathymetry

    NASA Astrophysics Data System (ADS)

    Michaud, François; Calmus, Thierry; Ratzov, Gueorgui; Royer, Jean-Yves; Sosson, Marc; Bigot-Cormier, Florence; Bandy, William; Mortera Gutiérrez, Carlos

    2011-08-01

    The relative motion of the Pacific plate with respect to the North America plate is partitioned between transcurrent faults located along the western margin of Baja California and transform faults and spreading ridges in the Gulf of California. However, the amount of right lateral offset along the Baja California western margin is still debated. We revisited multibeam swath bathymetry data along the southern end of the Tosco-Abreojos fault system. In this area the depths are less than 1,000 m and allow a finer gridding at 60 m cell spacing. This improved resolution unveils several transcurrent right lateral faults offsetting the seafloor and canyons, which can be used as markers to quantify local offsets. The seafloor of the southern end of the Tosco-Abreojos fault system (south of 24°N) displays NW-SE elongated bathymetric highs and lows, suggesting a transtensional tectonic regime associated with the formation of pull-apart basins. In such an active tectonic context, submarine canyon networks are unstable. Using the deformation rate inferred from kinematic predictions and pull-apart geometry, we suggest a minimum age for the reorganization of the canyon network.

  18. Influence of galvanic vestibular stimulation on egocentric and object-based mental transformations.

    PubMed

    Lenggenhager, Bigna; Lopez, Christophe; Blanke, Olaf

    2008-01-01

    The vestibular system analyses angular and linear accelerations of the head that are important information for perceiving the location of one's own body in space. Vestibular stimulation and in particular galvanic vestibular stimulation (GVS) that allow a systematic modification of vestibular signals has so far mainly been used to investigate vestibular influence on sensori-motor integration in eye movements and postural control. Comparatively, only a few behavioural and imaging studies have investigated how cognition of space and body may depend on vestibular processing. This study was designed to differentiate the influence of left versus right anodal GVS compared to sham stimulation on object-based versus egocentric mental transformations. While GVS was applied, subjects made left-right judgments about pictures of a plant or a human body presented at different orientations in the roll plane. All subjects reported illusory sensations of body self-motion and/or visual field motion during GVS. Response times in the mental transformation task were increased during right but not left anodal GVS for the more difficult stimuli and the larger angles of rotation. Post-hoc analyses suggested that the interfering effect of right anodal GVS was only present in subjects who reported having imagined turning themselves to solve the mental transformation task (egocentric transformation) as compared to those subjects having imagined turning the picture in space (object-based mental transformation). We suggest that this effect relies on shared functional and cortical mechanisms in the posterior parietal cortex associated with both right anodal GVS and mental imagery.

  19. Does the novel lateral trauma position cause more motion in an unstable cervical spine injury than the logroll maneuver?

    PubMed

    Hyldmo, Per Kristian; Horodyski, MaryBeth; Conrad, Bryan P; Aslaksen, Sindre; Røislien, Jo; Prasarn, Mark; Rechtine, Glenn R; Søreide, Eldar

    2017-11-01

    Prehospital personnel who lack advanced airway management training must rely on basic techniques when transporting unconscious trauma patients. The supine position is associated with a loss of airway patency when compared to lateral recumbent positions. Thus, an inherent conflict exists between securing an open airway using the recovery position and maintaining spinal immobilization in the supine position. The lateral trauma position is a novel technique that aims to combine airway management with spinal precautions. The objective of this study was to compare the spinal motion allowed by the novel lateral trauma position and the well-established log-roll maneuver. Using a full-body cadaver model with an induced globally unstable cervical spine (C5-C6) lesion, we investigated the mean range of motion (ROM) produced at the site of the injury in six dimensions by performing the two maneuvers using an electromagnetic tracking device. Compared to the log-roll maneuver, the lateral trauma position caused similar mean ROM in five of the six dimensions. Only medial/lateral linear motion was significantly greater in the lateral trauma position (1.4mm (95% confidence interval [CI] 0.4, 2.4mm)). In this cadaver study, the novel lateral trauma position and the well-established log-roll maneuver resulted in comparable amounts of motion in an unstable cervical spine injury model. We suggest that the lateral trauma position may be considered for unconscious non-intubated trauma patients. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Biomechanical Analysis of Lateral Lumbar Interbody Fusion Constructs with Various Fixation Options: Based on a Validated Finite Element Model.

    PubMed

    Zhang, Zhenjun; Fogel, Guy R; Liao, Zhenhua; Sun, Yitao; Liu, Weiqiang

    2018-06-01

    Lateral lumbar interbody fusion using cage supplemented with fixation has been used widely in the treatment of lumbar disease. A combined fixation (CF) of lateral plate and spinous process plate may provide multiplanar stability similar to that of bilateral pedicle screws (BPS) and may reduce morbidity. The biomechanical influence of the CF on cage subsidence and facet joint stress has not been well described. The aim of this study was to compare biomechanics of various fixation options and to verify biomechanical effects of the CF. The surgical finite element models with various fixation options were constructed based on computed tomography images. The lateral plate and posterior spinous process plate were applied (CF). The 6 motion modes were simulated. Range of motion (ROM), cage stress, endplate stress, and facet joint stress were compared. For the CF model, ROM, cage stress, and endplate stress were the minimum in almost all motion modes. Compared with BPS, the CF reduced ROM, cage stress, and endplate stress in all motion modes. The ROM was reduced by more than 10% in all motion modes except for flexion; cage stress and endplate stress were reduced more than 10% in all motion modes except for rotation-left. After interbody fusion, facet joint stress was reduced substantially compared with the intact conditions in all motion modes except for flexion. The combined plate fixation may offer an alternative to BPS fixation in lateral lumbar interbody fusion. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. ON the interaction of the north andes plate with the caribbean and south american plates in northwestern south america from gps geodesy and seismic data

    NASA Astrophysics Data System (ADS)

    Pérez, Omar J.; Wesnousky, Steven G.; De La Rosa, Roberto; Márquez, Julio; Uzcátegui, Redescal; Quintero, Christian; Liberal, Luis; Mora-Páez, Héctor; Szeliga, Walter

    2018-06-01

    We examine the hypocentral distribution of seismicity and a series of geodetic velocity vectors obtained from Global Positioning System (GPS) observations between 1994 and 2015 both off-shore and mainland northwestern South America [66° W - 77° W; 8° N - 14° N]. Our analysis, that includes a kinematic block modeling, shows that east of the Caribbean-South American-North Andes plates triple junction at ˜68° W; 10.7° N, right-lateral easterly oriented shear motion (˜19.6 ± 2.0 mm/yr) between the Caribbean and South-America plates is split along two easterly striking, right-lateral strike slip subparallel fault zones: the San Sebastián fault that runs offshore the Venezuelan coast and slips about 17.0 ± 0.5 mm/yr, and the La Victoria fault, located onshore to the south, which is accumulating strain equivalent to 2.6 ± 0.4 mm/yr. West of the triple junction, relative right-lateral motion between the Caribbean and South American plates is mostly divided between the Morrocoy and Boconó fault systems which strike northwest and southwest from the triple junction, respectively, and bound the intervening North Andes plate that shows an easterly oriented geodetic slip of 15.0 ± 1.0 mm/yr relative to the South American plate. Slip on the Morrocoy fault is right-lateral and transtensional. Motion across the Boconó fault is also right-lateral but instead transpressional, divided between ˜9 to 11 mm/yr of right-slip on the Boconó fault and 2 to 5 mm/yr of convergence across adjacent and subparallel thrust faults. Farther west of the triple junction, ˜800 km away in northern Colombia, the Caribbean plate subducts to the southeast beneath the North Andes plate at a geodetically estimated rate of ˜5-7 mm/yr.

  2. Clinically acceptable agreement between the ViMove wireless motion sensor system and the Vicon motion capture system when measuring lumbar region inclination motion in the sagittal and coronal planes.

    PubMed

    Mjøsund, Hanne Leirbekk; Boyle, Eleanor; Kjaer, Per; Mieritz, Rune Mygind; Skallgård, Tue; Kent, Peter

    2017-03-21

    Wireless, wearable, inertial motion sensor technology introduces new possibilities for monitoring spinal motion and pain in people during their daily activities of work, rest and play. There are many types of these wireless devices currently available but the precision in measurement and the magnitude of measurement error from such devices is often unknown. This study investigated the concurrent validity of one inertial motion sensor system (ViMove) for its ability to measure lumbar inclination motion, compared with the Vicon motion capture system. To mimic the variability of movement patterns in a clinical population, a sample of 34 people were included - 18 with low back pain and 16 without low back pain. ViMove sensors were attached to each participant's skin at spinal levels T12 and S2, and Vicon surface markers were attached to the ViMove sensors. Three repetitions of end-range flexion inclination, extension inclination and lateral flexion inclination to both sides while standing were measured by both systems concurrently with short rest periods in between. Measurement agreement through the whole movement range was analysed using a multilevel mixed-effects regression model to calculate the root mean squared errors and the limits of agreement were calculated using the Bland Altman method. We calculated root mean squared errors (standard deviation) of 1.82° (±1.00°) in flexion inclination, 0.71° (±0.34°) in extension inclination, 0.77° (±0.24°) in right lateral flexion inclination and 0.98° (±0.69°) in left lateral flexion inclination. 95% limits of agreement ranged between -3.86° and 4.69° in flexion inclination, -2.15° and 1.91° in extension inclination, -2.37° and 2.05° in right lateral flexion inclination and -3.11° and 2.96° in left lateral flexion inclination. We found a clinically acceptable level of agreement between these two methods for measuring standing lumbar inclination motion in these two cardinal movement planes. Further research should investigate the ViMove system's ability to measure lumbar motion in more complex 3D functional movements and to measure changes of movement patterns related to treatment effects.

  3. Lateralization of visually guided detour behaviour in the common chameleon, Chamaeleo chameleon, a reptile with highly independent eye movements.

    PubMed

    Lustig, Avichai; Ketter-Katz, Hadas; Katzir, Gadi

    2013-11-01

    Chameleons (Chamaeleonidae, reptilia), in common with most ectotherms, show full optic nerve decussation and sparse inter-hemispheric commissures. Chameleons are unique in their capacity for highly independent, large-amplitude eye movements. We address the question: Do common chameleons, Chamaeleo chameleon, during detour, show patterns of lateralization of motion and of eye use that differ from those shown by other ectotherms? To reach a target (prey) in passing an obstacle in a Y-maze, chameleons were required to make a left or a right detour. We analyzed the direction of detours and eye use and found that: (i) individuals differed in their preferred detour direction, (ii) eye use was lateralized at the group level, with significantly longer durations of viewing the target with the right eye, compared with the left eye, (iii) during left side, but not during right side, detours the durations of viewing the target with the right eye were significantly longer than the durations with the left eye. Thus, despite the uniqueness of chameleons' visual system, they display patterns of lateralization of motion and of eye use, typical of other ectotherms. These findings are discussed in relation to hemispheric functions. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Development of a vision non-contact sensing system for telerobotic applications

    NASA Astrophysics Data System (ADS)

    Karkoub, M.; Her, M.-G.; Ho, M.-I.; Huang, C.-C.

    2013-08-01

    The study presented here describes a novel vision-based motion detection system for telerobotic operations such as distant surgical procedures. The system uses a CCD camera and image processing to detect the motion of a master robot or operator. Colour tags are placed on the arm and head of a human operator to detect the up/down, right/left motion of the head as well as the right/left motion of the arm. The motion of the colour tags are used to actuate a slave robot or a remote system. The determination of the colour tags' motion is achieved through image processing using eigenvectors and colour system morphology and the relative head, shoulder and wrist rotation angles through inverse dynamics and coordinate transformation. A program is used to transform this motion data into motor control commands and transmit them to a slave robot or remote system through wireless internet. The system performed well even in complex environments with errors that did not exceed 2 pixels with a response time of about 0.1 s. The results of the experiments are available at: http://www.youtube.com/watch?v=yFxLaVWE3f8 and http://www.youtube.com/watch?v=_nvRcOzlWHw

  5. Effects of attention and laterality on motion and orientation discrimination in deaf signers.

    PubMed

    Bosworth, Rain G; Petrich, Jennifer A F; Dobkins, Karen R

    2013-06-01

    Previous studies have asked whether visual sensitivity and attentional processing in deaf signers are enhanced or altered as a result of their different sensory experiences during development, i.e., auditory deprivation and exposure to a visual language. In particular, deaf and hearing signers have been shown to exhibit a right visual field/left hemisphere advantage for motion processing, while hearing nonsigners do not. To examine whether this finding extends to other aspects of visual processing, we compared deaf signers and hearing nonsigners on motion, form, and brightness discrimination tasks. Secondly, to examine whether hemispheric lateralities are affected by attention, we employed a dual-task paradigm to measure form and motion thresholds under "full" vs. "poor" attention conditions. Deaf signers, but not hearing nonsigners, exhibited a right visual field advantage for motion processing. This effect was also seen for form processing and not for the brightness task. Moreover, no group differences were observed in attentional effects, and the motion and form visual field asymmetries were not modulated by attention, suggesting they occur at early levels of sensory processing. In sum, the results show that processing of motion and form, believed to be mediated by dorsal and ventral visual pathways, respectively, are left-hemisphere dominant in deaf signers. Published by Elsevier Inc.

  6. Helmet and shoulder pad removal in football players with unstable cervical spine injuries.

    PubMed

    Dahl, Michael C; Ananthakrishnan, Dheera; Nicandri, Gregg; Chapman, Jens R; Ching, Randal P

    2009-05-01

    Football, one of the country's most popular team sports, is associated with the largest overall number of sports-related, catastrophic, cervical spine injuries in the United States (Mueller, 2007). Patient handling can be hindered by the protective sports equipment worn by the athlete. Improper stabilization of these patients can exacerbate neurologic injury. Because of the lack of consensus on the best method for equipment removal, a study was performed comparing three techniques: full body levitation, upper torso tilt, and log roll. These techniques were performed on an intact and lesioned cervical spine cadaveric model simulating conditions in the emergency department. The levitation technique was found to produce motion in the anterior and right lateral directions. The tilt technique resulted in motions in the posterior left lateral directions, and the log roll technique generated motions in the right lateral direction and had the largest amount of increased instability when comparing the intact and lesioned specimen. These findings suggest that each method of equipment removal displays unique weaknesses that the practitioner should take into account, possibly on a patient-by-patient basis.

  7. Transformation priming helps to disambiguate sudden changes of sensory inputs.

    PubMed

    Pastukhov, Alexander; Vivian-Griffiths, Solveiga; Braun, Jochen

    2015-11-01

    Retinal input is riddled with abrupt transients due to self-motion, changes in illumination, object-motion, etc. Our visual system must correctly interpret each of these changes to keep visual perception consistent and sensitive. This poses an enormous challenge, as many transients are highly ambiguous in that they are consistent with many alternative physical transformations. Here we investigated inter-trial effects in three situations with sudden and ambiguous transients, each presenting two alternative appearances (rotation-reversing structure-from-motion, polarity-reversing shape-from-shading, and streaming-bouncing object collisions). In every situation, we observed priming of transformations as the outcome perceived in earlier trials tended to repeat in subsequent trials and this repetition was contingent on perceptual experience. The observed priming was specific to transformations and did not originate in priming of perceptual states preceding a transient. Moreover, transformation priming was independent of attention and specific to low level stimulus attributes. In summary, we show how "transformation priors" and experience-driven updating of such priors helps to disambiguate sudden changes of sensory inputs. We discuss how dynamic transformation priors can be instantiated as "transition energies" in an "energy landscape" model of the visual perception. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Rhythmic ictal nonclonic hand (RINCH) motions in temporal lobe epilepsy: invasive EEG findings, incidence, and lateralizing value.

    PubMed

    Kuba, Robert; Musilová, Klára; Vojvodič, Nikola; Tyrlíková, Ivana; Rektor, Ivan; Brázdil, Milan

    2013-10-01

    The main purpose of this retrospective analysis was to evaluate the incidence and lateralization value of rhythmic ictal nonclonic hand (RINCH) motions in patients with temporal lobe epilepsy (TLE), who were classified as Engel I at least 2 years after epilepsy surgery. We analyzed the distribution of ictal activity at the time of RINCH appearance in patients in whom RINCH motions were present during invasive EEG monitoring. A group of 120 patients was included in this study. In total, we reviewed 491 seizures: 277 seizures in patients with temporal lobe epilepsy (TLE) associated with hippocampal sclerosis (TLE-HS group) and 214 in TLE caused by other lesions (TLE-OTH group). We analyzed 29 patients (79 of the seizures) during invasive EEG monitoring. Fisher's exact test and binomial test were used for the statistical analysis. RINCH motions were observed in 24 out of 120 patients (20%) and in 48 out of 491 seizures (9.8%). There was no significant difference between the occurrence of RINCH motions in patients with TLE-HS and in patients with TLE-OTH, or between gender, right/left-sided TLE, and language dominant/nondominant TLE. RINCH motions were contralateral to the seizure onset in 83.3% of patients and 91.7% of seizures (p=0.0015; p<0.001, respectively). There were no differences in the lateralizing value of RINCH motions in patients with TLE-HS or TLE-OTH. We analyzed RINCH motions in 5 patients/7 seizures during invasive EEG. In all 7 seizures with RINCH motions, we observed the widespread activation of the temporal lobe (mesial and lateral, opercular and polar regions) contralateral to the side of RINCH motions. In all 7 seizures, we observed that at the time of RINCH motion onset, at least 1 explored region of the frontal lobe was affected by the ictal activity. In 3 seizures, we observed time-locked epileptic activation associated with the appearance of RINCH motions, i.e., in the orbitofrontal cortex in 2 seizures and in both the orbitofrontal cortex and anterior cingulate gyrus in 1 seizure. RINCH motions are a relatively frequent ictal sign in patients with TLE. They have a high lateralizing value in these patients, occurring contralateral to the ictal onset. RINCH motions usually occur after the spread of ictal activity beyond the temporal lobe, and their appearance is usually associated with the presence of ictal activity in various regions of the contralateral frontal lobe, mainly the orbitofrontal cortex and anterior cingulate gyrus. This is the first study analysing this phenomenon during invasive EEG recording. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Strain Variation in Accretionary Prisms Across Space and Time: Insights from the Makran Subduction Zone

    NASA Astrophysics Data System (ADS)

    Penney, C.; Tavakoli, F.; Saadat, A.; Nankali, H. R.; Sedighi, M.; Khorrami, F.; Sobouti, F.; Rafi, Z.; Copley, A.; Jackson, J. A.; Priestley, K. F.

    2017-12-01

    The Makran is one of the world's least-studied subduction zones. In particular, little is known about the accumulation and accommodation of strain in the onshore part of the subduction zone, which parallels the coasts of southern Iran and Pakistan. The deformation of the Makran accretionary prism results from both its subduction zone setting and N-S right-lateral shear between central Iran and Afghanistan. North of the Makran, this shear is accommodated by a series of right-lateral faults which offset the rocks of the Sistan Suture Zone, an abandoned accretionary prism. However, these right-lateral faults are not observed south of 27°N, and no major N-S faults cut the E-W trending structures of the Makran. How this right-lateral motion is accommodated at the southern end of the Sistan Suture Zone is a long-standing tectonic question. By combining results from geomorphology, GPS, seismology and modelling we conclude that right-lateral motion is transferred across the depression north of the accretionary prism to the region of right-lateral shear at the western end of the accretionary prism. This requires the Jaz Murian depression to be bounded by normal faults, consistent with the basin geomorphology. However, GPS data show compression across the margins of the basin, and no shallow normal-faulting earthquakes have been observed in the region. We therefore suggest that the behaviour of these faults may be time-dependent and controlled by the megathrust seismic cycle, as has been suggested elsewhere (e.g. Chile). Recent strike-slip earthquakes, including the 2013 Balochistan earthquake, have clustered at the prism's lateral edges, showing the importance of spatial, as well as temporal, variations in strain. These earthquakes have reactivated thrust faults in the Makran accretionary prism, showing that the style of strain within accretionary prisms can vary on multiple timescales and allowing us to calculate the coefficient of friction on the underlying megathrust.

  10. Wing motion transformation to evaluate aerodynamic coupling in flapping wing flight.

    PubMed

    Faruque, Imraan A; Humbert, J Sean

    2014-12-21

    Whether the remarkable flight performance of insects is because the animals leverage inherent physics at this scale or because they employ specialized neural feedback mechanisms is an active research question. In this study, an empirically derived aerodynamics model is used with a transformation involving a delay and a rotation to identify a class of kinematics that provide favorable roll-yaw coupling. The transformation is also used to transform both synthetic and experimentally measured wing motions onto the manifold representing proverse yaw and to quantify the degree to which freely flying insects make use of passive aerodynamic mechanisms to provide proverse roll-yaw turn coordination. The transformation indicates that recorded insect kinematics do act to provide proverse yaw for a variety of maneuvers. This finding suggests that passive aerodynamic mechanisms can act to reduce the neural feedback demands of an insect׳s flight control strategy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Current Plate Motion Across the Southwest Indian Ridge: Implications for the Diffuse Oceanic Plate Boundary Between Nubia and Somalia

    NASA Astrophysics Data System (ADS)

    Horner-Johnson, B. C.; Cowles, S. M.; Gordon, R. G.; Argus, D. F.

    2001-12-01

    Prior studies of plate motion data along the Southwest Indian Ridge (SWIR) have produced results that conflict in detail. Chu & Gordon [1999], from an analysis of 59 spreading rates averaged over 3 Myr and of the azimuths of active transform faults, found that the data are most consistent with a diffuse Nubia-Somalia plate boundary where it intersects the SWIR. When they solve for the best-fitting hypothetical narrow boundary, they find that it lies near 37° E, east of the Prince Edward fracture zone. They find a Nubia-Somalia pole of rotation near the east coast of South Africa. In contrast, Lemaux, Gordon, and Royer [2001], from an analysis of 237 crossings of marine magnetic anomaly 5 (11 Ma), find that most of the motion is accommodated in a narrow zone, most likely along the ``inactive'' trace of the Andrew Bain fracture zone complex (ABFZC), which intersects the SWIR near 32° E. They find a pole well to the west of, and probably to the southwest of, the pole of rotation found by Chu & Gordon. Their pole indicates mainly strike-slip motion along the ``inactive'' ABFZC. To resolve these conflicting results, we determined a new greatly expanded and spatially much denser set of 243 spreading rates and analyzed available bathymetric data of active transform faults along the SWIR. The data show that the African oceanic lithosphere spreading away from the SWIR cannot simply be two plates divided by a single narrow boundary. Our interpretation of the data is as follows. Near the SWIR, there is a diffuse boundary with a western limit near the ABFZC and an eastern limit near 63.5° E. Slip is partitioned in this wide boundary. Somewhere near the ABFZC (most likely the ABFZC itself) is a concentrated locus of right-lateral shearing parallel to the ABFZC whereas contraction perpendicular to the ABFZC is accommodated east of the ABFZC, perhaps over a very broad zone.

  12. Strain accumulation and rotation in the Eastern California Shear Zone

    USGS Publications Warehouse

    Savage, J.C.; Gan, Weijun; Svarc, J.L.

    2001-01-01

    Although the Eastern California Shear Zone (ECSZ) (strike ???N25??W) does not quite coincide with a small circle drawn about the Pacific-North America pole of rotation, trilateration and GPS measurements demonstrate that the motion within the zone corresponds to right-lateral simple shear across a vertical plane (strike N33??W??5??) roughly parallel to the tangent to that local small circle (strike ???N40??W). If the simple shear is released by slip on faults subparallel to the shear zone, the accumulated rotation is also released, leaving no secular rotation. South of the Garlock fault the principal faults (e.g., Calico-Blackwater fault) strike ???N40??W, close enough to the strike of the vertical plane across which maximum right-lateral shear accumulates to almost wholly accommodate that accumulation of both strain and rotation by right-lateral slip. North of the Garlock fault dip slip as well as strike slip on the principal faults (strike ???N20??W) is required to accommodate the simple shear accumulation. In both cases the accumulated rotation is released with the shear strain. The Garlock fault, which transects the ECSZ, is not offset by north-northwest striking faults nor, despite geological evidence for long-term left-lateral slip, does it appear at the present time to be accumulating left-lateral simple shear strain across the fault due to slip at depth. Rather the motion is explained by right-lateral simple shear across the orthogonal ECSZ. Left-lateral slip on the Garlock fault will release the shear strain accumulating there but would augment the accumulating rotation, resulting in a secular clockwise rotation rate ???80 nrad yr-1 (4.6?? Myr-1).

  13. WE-AB-BRA-08: Correction of Patient Motion in C-Arm Cone-Beam CT Using 3D-2D Registration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ouadah, S; Jacobson, M; Stayman, JW

    2016-06-15

    Purpose: Intraoperative C-arm cone-beam CT (CBCT) is subject to artifacts arising from patient motion during the fairly long (∼5–20 s) scan times. We present a fiducial free method to mitigate motion artifacts using 3D-2D image registration that simultaneously corrects residual errors in geometric calibration. Methods: A 3D-2D registration process was used to register each projection to DRRs computed from the 3D image by maximizing gradient orientation (GO) using the CMA-ES optimizer. The resulting rigid 6 DOF transforms were applied to the system projection matrices, and a 3D image was reconstructed via model-based image reconstruction (MBIR, which accommodates the resulting noncircularmore » orbit). Experiments were conducted using a Zeego robotic C-arm (20 s, 200°, 496 projections) to image a head phantom undergoing various types of motion: 1) 5° lateral motion; 2) 15° lateral motion; and 3) 5° lateral motion with 10 mm periodic inferior-superior motion. Images were reconstructed using a penalized likelihood (PL) objective function, and structural similarity (SSIM) was measured for axial slices of the reconstructed images. A motion-free image was acquired using the same protocol for comparison. Results: There was significant improvement (p < 0.001) in the SSIM of the motion-corrected (MC) images compared to uncorrected images. The SSIM in MC-PL images was >0.99, indicating near identity to the motion-free reference. The point spread function (PSF) measured from a wire in the phantom was restored to that of the reference in each case. Conclusion: The 3D-2D registration method provides a robust framework for mitigation of motion artifacts and is expected to hold for applications in the head, pelvis, and extremities with reasonably constrained operative setup. Further improvement can be achieved by incorporating multiple rigid components and non-rigid deformation within the framework. The method is highly parallelizable and could in principle be run with every acquisition. Research supported by National Institutes of Health Grant No. R01-EB-017226 and academic-industry partnership with Siemens Healthcare (AX Division, Forcheim, Germany).« less

  14. The Queen Charlotte-Fairweather Fault Zone - The Knife-Edged Pacific-North American Plate Boundary

    NASA Astrophysics Data System (ADS)

    Greene, H. G.; Barrie, J. V. J.; Brothers, D. S.; Nishenko, S. P.; Conway, K.; Enkin, R.; Conrad, J. E.; Maier, K. L.; Stacy, C.

    2016-12-01

    Recent investigations of the Queen Charlotte-Fairweather (QC-FW) Fault zone using multibeam echosounder bathymetric and 3.5-kHz sub-bottom profile data show that the fault zone is primarily represented by a single linear structure with small, localized pull-apart basins suggestive of transtension. Water column acoustical data imaged gas plumes concentrated along the fault zone with plume columns extending as much as 700 m above the crest of mud volcanoes. Piston cores indicate that the fault zone cuts hard-packed dense sands that have been dated as Pleistocene in age. The newly discovered fluids associated with the southern half of the fault zone and volcanic edifices with oceanic and continental plate petrologic affinities suggest that the QC-FW is a leaky transform system. Two independent investigations, one in the north part and one in the central part of the fault zone, using two different types of piercing points, found that the slip rate along at least a 200 km length was consistent at between 40-55 mm/yr. since about 14 ka, equivalent to the relative plate motion between the Pacific and North American plates in the NE Pacific region. We surmise that the QC-FW is accommodating most, if not all, of relative motion along a single primary strand without any detectable partitioning of motion onto other faults. This right-lateral strike-slip fault zone is expressed on the seafloor as a very straight feature that probably represents nearly pure strike-slip motion.

  15. [Biomechanics changes of lumbar spine caused by foraminotomy via percutaneous transforaminal endoscopic lumbar discectomy].

    PubMed

    Qian, J; Yu, S S; Liu, J J; Chen, L; Jing, J H

    2018-04-03

    Objective: To analyze the biomechanics changes of lumbar spine caused by foraminotomy via percutaneous transforaminal endoscopic lumbar discectomy using the finite element method. Methods: Three healthy adult males (aged 35.6 to 42.3 years) without spinal diseases were enrolled in this study and 3D-CT scans were carried out to obtain the parameters of lumbar spine. Mimics software was applied to build a 3D finite element model of lumbar spine. Graded resections (1/4, 2/4, 3/4 and 4/4) of the left superior articular process of L(5) were done via percutaneous transforaminal endoscopic lumbar discectomy. Then, the pressure of the L(4/5) right facets, the pressure of the L(4/5) intervertebral disc and the motion of lumbar spine were recorded after simulating the normal flexion and extension, lateral flexion and rotation of the lumbar spine model during different resections. The data were compared among groups with analysis of variance. Results: Comparing with the normal group, after 1/4 resection of the left superior articular process of L(5), the pressure of the L(4/5) right facets showed significant differences during left lateral flexion and rotation of lumbar spine ( q =8.823, 8.248, both P <0.05); and the pressure of L(4/5) intervertebral disc also changed significantly during extension and right rotation of lumbar spine ( q =6.918, 6.438, both P <0.05); the motion of lumbar spine showed obvious differences during right lateral flexion and rotation ( q =6.845, 7.772, 13.58, all P <0.05). Comparing with the normal group, after 2/4 resection of the left superior articular process of L(5), the pressure of the L(4/5) right facets presented significant differences during all conditions ( q =5.670-17.830, all P <0.05); the pressure of L(4/5) intervertebral disc changed significantly during flexion, extension, lateral flexion and right rotation ( q =5.260, 17.150, 5.727, 8.890, 15.660, all P <0.05); the motion of lumbar spine also existed differences during extension, lateral flexion and rotation ( q =9.106, 5.431, 12.060, 11.160, 17.260, all P <0.05). However, after 3/4 resections, the pressure of the L(4/5) right facets, the pressure of the L(4/5) intervertebral disc and the motion of lumbar spine presented differences during all conditions when compared with those in normal group ( q =6.303-25.48, all P <0.05). After 4/4 resections, the pressure of the L(4/5) right facets and the pressure of the L(4/5) intervertebral disc and the motion of lumbar spine showed significant differences during all conditions when compared with those in normal group ( q =8.065-45.70, all P <0.05). Conclusions: The biomechanics and the stability of lumbar spine changed partly after 1/4 resection of the superior articular process and obviously after more than 2/4 is resected. The superior articular process should be paid more attention during foraminotomy via percutaneous transforaminal endoscopic lumbar discectomy.

  16. Difference in kick motion of adolescent soccer players in presence and absence of low back pain.

    PubMed

    Tojima, Michio; Torii, Suguru

    2018-01-01

    Many adolescent soccer players experience low back pain (LBP). However, there are no reports studying the kick motion of adolescent soccer players experiencing LBP. This study aimed to clarify the kick motion of adolescent soccer players in the presence and absence of LBP. We recruited 42 adolescent soccer players and divided them into two groups according to the presence of LBP (LBP group, n=22) and absence of LBP (NBP group, n=20). We measured real-time kick motion using a three-dimensional motion analysis system. We placed 65 spherical markers on each anatomical landmark and calculated the angle of the lumbar spine, center of mass (COM) of the whole body, and displacement of the support foot. We used an unpaired t-test to compare the data between the groups. Compared with the NBP group, the LBP group showed a lateral shift in COM, which increased the duration of kick motion. The presence of LBP affected the posterior positioning of the support foot and restricted the player's lumbar spine from bending laterally. A lateral shift in COM and larger rotation of the lumbar spine could stress the lumbar spine during kick motion. Therefore, coaches and athletic trainers should pay attention to soccer players' lumbar spine rotation and the COM shift during kick motion. This would be important for preventing LBP in adolescent soccer players. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Cinerama sickness and postural instability.

    PubMed

    Bos, Jelte E; Ledegang, Wietse D; Lubeck, Astrid J A; Stins, John F

    2013-01-01

    Motion sickness symptoms and increased postural instability induced by motion pictures have been reported in a laboratory, but not in a real cinema. We, therefore, carried out an observational study recording sickness severity and postural instability in 19 subjects before, immediately and 45 min after watching a 1 h 3D aviation documentary in a cinema. Sickness was significantly larger right after the movie than before, and in a lesser extent still so after 45 min. The average standard deviation of the lateral centre of pressure excursions was significantly larger only right afterwards. When low-pass filtered at 0.1 Hz, lateral and for-aft excursions were both significantly larger right after the movie, while for-aft excursions then remained larger even after 45 min. Speculating on previous findings, we predict more sickness and postural instability in 3D than in 2D movies, also suggesting a possible, but yet unknown risk for work-related activities and vehicle operation. Watching motion pictures may be sickening and posturally destabilising, but effects in a cinema are unknown. We, therefore, carried out an observational study showing that sickness then is mainly an issue during the exposure while postural instability is an issue afterwards.

  18. The May 29 2008 earthquake aftershock sequence within the South Iceland Seismic Zone: Fault locations and source parameters of aftershocks

    NASA Astrophysics Data System (ADS)

    Brandsdottir, B.; Parsons, M.; White, R. S.; Gudmundsson, O.; Drew, J.

    2010-12-01

    The mid-Atlantic plate boundary breaks up into a series of segments across Iceland. The South Iceland Seismic Zone (SISZ) is a complex transform zone where left-lateral E-W shear between the Reykjanes Peninsula Rift Zone and the Eastern Volcanic Zone is accommodated by bookshelf faulting along N-S lateral strike-slip faults. The SISZ is also a transient feature, migrating sideways in response to the southward propagation of the Eastern Volcanic Zone. Sequences of large earthquakes (M > 6) lasting from days to years and affecting most of the seismic zone have occurred repeatedly in historical time (last 1100 years), separated by intervals of relative quiescence lasting decades to more than a century. On May 29 2008, a Mw 6.1 earthquake struck the western part of the South Iceland Seismic Zone, followed within seconds by a slightly smaller event on a second fault ~5 km further west. Aftershocks, detected by a temporal array of 11 seismometers and three permanent Icelandic Meteorological Office stations were located using an automated Coalescence Microseismic Mapping technique. The epicenters delineate two major and several smaller N-S faults as well as an E-W zone of activity stretching further west into the Reykjanes Peninsula Rift Zone. Fault plane solutions show both right lateral and oblique strike slip mechanisms along the two major N-S faults. The aftershocks deepen from 3-5 km in the north to 8-9 km in the south, suggesting that the main faults dip southwards. The faulting is interpreted to be driven by the local stress due to transform motion between two parallel segments of the divergent plate boundary crossing Iceland.

  19. Effect of post-thaw incubation on sperm kinematics and acrosomal integrity of ram spermatozoa cryopreserved in medium-sized French straws.

    PubMed

    Bag, Sadhan; Joshi, Anil; Naqvi, S M K; Mittal, J P

    2004-08-01

    The objectives were to assess the effect of post-thaw in vitro incubation on motion characteristics and acrosomal integrity of ram spermatozoa of native Malpura and Bharat Merino breeds maintained under a semi-arid tropical environment. Good quality semen samples of both breeds were diluted, packaged in medium-sized straws, and frozen under controlled conditions. Straws were thawed at 60 degrees C for 10s and thawed samples were incubated at 37 degrees C for 4h. Post-thaw motion characteristics and acrosomal integrity of incubated spermatozoa were assessed (by computer-aided semen analysis and Giemsa staining, respectively) just prior to incubation and at hourly intervals thereafter. There was a significant effect of incubation time on motility characteristics and the proportion of spermatozoa with normal acrosomes; 81.4% (arcsin transformed value, 65.2) of spermatozoa were motile at the start of incubation, with 47.9% (arcsin transformed value, 44.4) motile after 4h. At the corresponding times, there were normal acrosomes in 65.8 (arcsin transformed value, 54.8) and 55.7% (arcsin transformed value, 48.9) of spermatozoa, respectively. The percentage straightness of spermatozoa varied during incubation (P < 0.01). However, there was no significant change in percentage linearity, curvilinear velocity, average path velocity, straight line velocity, lateral head displacement, and beat cross frequency of spermatozoa during incubation. There were no breed variations in any motility parameters during incubation, except percentage straightness (P < 0.05), lateral head displacement (P < 0.05) and beat cross frequency (P < 0.01). That sperm motility and acrosomal morphology were very acceptable immediately post-thaw and after 4h of incubation indicated the efficacy of cryopreserving ram spermatozoa under controlled conditions in medium-sized straws.

  20. Transform push, oblique subduction resistance, and intraplate stress of the Juan de Fuca plate

    USGS Publications Warehouse

    Wang, K.; He, J.; Davis, E.E.

    1997-01-01

    The Juan de Fuca plate is a small oceanic plate between the Pacific and North America plates. In the southernmost region, referred to as the Gorda deformation zone, the maximum compressive stress a, constrained by earthquake focal mechanisms is N-S. Off Oregon, and possibly off Washington, NW trending left-lateral faults cutting the Juan de Fuca plate indicate a a, in a NE-SW to E-W direction. The magnitude of differential stress increases from north to south; this is inferred from the plastic yielding and distribution of earthquakes throughout the Gorda deformation zone. To understand how tectonic forces determine the stress field of the Juan de Fuca plate, we have modeled the intraplate stress using both elastic and elastic-perfectly plastic plane-stress finite element models. We conclude that the right-lateral shear motion of the Pacific and North America plates is primarily responsible for the stress pattern of the Juan de Fuca plate. The most important roles are played by a compressional force normal to the Mendocino transform fault, a result of the northward push by the Pacific plate and a horizontal resistance operating against the northward, or margin-parallel, component of oblique subduction. Margin-parallel subduction resistance results in large N-S compression in the Gorda deformation zone because the force is integrated over the full length of the Cascadia subduction zone. The Mendocino transform fault serves as a strong buttress that is very weak in shear but capable of transmitting large strike-normal compressive stresses. Internal failure of the Gorda deformation zone potentially places limits on the magnitude of the fault-normal stresses being transmitted and correspondingly on the magnitude of strike-parallel subduction resistance. Transform faults and oblique subduction zones in other parts of the world can be expected to transmit and create stresses in the same manner. Copyright 1997 by the American Geophysical Union.

  1. The Ailao Shan-Red River shear zone (Yunnan, China), Tertiary transform boundary of Indochina

    NASA Astrophysics Data System (ADS)

    Leloup, Philippe Hervé; Lacassin, Robin; Tapponnier, Paul; Schärer, Urs; Zhong, Dalai; Liu, Xiaohan; Zhang, Liangshang; Ji, Shaocheng; Trinh, Phan Trong

    1995-12-01

    The Red River Fault zone (RRF) is the major geological discontinuity that separates South China from Indochina. Today it corresponds to a great right-lateral fault, following for over 900 km the edges of four narrow (< 20 km wide) high-grade gneiss ranges that together form the Ailao Shan-Red River (ASRR) metamorphic belt: the Day Nui Con Voi in Vietnam, and the Ailao, Diancang and Xuelong Shan in Yunnan. The Ailao Shan, the longest of those ranges, is fringed to the south by a strip of low-grade schists that contain ultramafic bodies. The ASRR belt has thus commonly been viewed as a suture. A detailed study of the Ailao and Diancang Shan shows that the gneiss cores of the ranges are composed of strongly foliated and lineated mylonitic gneisses. The foliation is usually steep and the lineation nearly horizontal, both being almost parallel to the local trend of the gneissic cores. Numerous shear criteria, including asymmetric tails on porphyroclasts, C-S or C'-S structures, rolling structures, asymmetric foliation boudinage and asymmetric quartz axis fabrics, indicate that the gneisses have undergone intense, progressive left-lateral shear. P-T studies show that left-lateral strain occurred under amphibolite-facies conditions (3-7 kb and 550-780°C). In both ranges high-temperature shear was coeval with emplacement of leucocratic melts. Such deformed melts yield {U}/{Pb} ages between 22.4 and 26.3 Ma in the Ailao Shan and between 22.4 and 24.2 Ma in the Diancang Shan, implying shear in the Lower Miocene. The mylonites in either range rapidly cooled to ≈ 300°C between 22 and 17 Ma, before the end of left-lateral motion. The similarity of deformation kinematics, P-T conditions, and crystallization ages in the aligned Ailao and Diancang Shan metamorphic cores, indicate that they represent two segments of the same Tertiary shear zone, the Ailao Shan-Red River (ASRR) shear zone. Our results thus confirm the idea that the ASRR belt was the site of major left-lateral motion, as Indochina was extruded toward the SE as a result of the India-Asia collision. The absence of metamorphic rocks within the 80 km long "Midu gap" between the gneissic cores of the two ranges results from sinistral dismemberment of the shear zone by large-scale boudinage followed by uplift and dextral offset of parts of that zone along the Quaternary Red River Fault. Additional field evidence suggests that the Xuelong Shan in northern Yunnan and the Day Nui Con Voi in Vietnam are the northward and southward extensions, respectively, of the ASRR shear zone, which therefore reaches a length of nearly 1000 km. Surface balance restoration of amphibolite boudins trails indicates layer parallel extension of more than 800% at places where strain can be measured, suggesting shear strains on the order of 30, compatible with a minimum offset of 300 km along the ASRR zone. Various geological markers have been sinistrally offset 500-1150 km by the shear zone. The seafloor-spreading kinematics in the South China Sea are consistent with that sea having formed as a pull apart basin at the southeast end of the ASRR zone, which yields a minimum left-lateral offset of 540 km on that zone. Comparison of Cretaceous magnetic poles for Indochina and South China suggests up to 1200 ± 500 km of left-lateral motion between them. Such concurrent evidence implies a Tertiary finite offset on the order of 700 ± 200 km on the ASRR zone, to which several tens of kilometers of post-Miocene right-lateral offset should probably be added. These results significantly improve our quantitative understanding of the finite deformation of Asia under the thrust of the Indian collision. While being consistent with a two-stage extrusion model, they demonstrate that the great geological discontinuity that separates Indochina from China results from Cenozoic strike-slip strain rather than more ancient suturing. Furthermore, they suggest that this narrow zone acted like a continental transform plate boundary in the Oligo-Miocene, governing much of the motion and tectonics of adjacent regions. 700 and 200 km of left-lateral offset on the ASRR shear zone and Wang Chao fault zone, respectively, would imply that the extrusion of Indochina alone accounted for 10-25% of the total shortening of the Asian continent. The geological youth and degree of exhumation of the ASRR zone make it a worldwide reference model for large-scale, high-temperature, strike-slip shear in the middle and lower crust. It is fair to say that this zone is to continental strike-slip faults what the Himalayas are to mountain ranges.

  2. Development of a Mandibular Motion Simulator for Total Joint Replacement

    PubMed Central

    Celebi, Nukhet; Rohner, E. Carlos; Gateno, Jaime; Noble, Philip C.; Ismaily, Sabir K.; Teichgraeber, John F.; Xia, James J.

    2015-01-01

    Purpose The purpose of this study was to develop a motion simulator capable of recreating and recording the full range of mandibular motions in a cadaveric preparation for an intact temporomandibular joint (TMJ) and after total joint replacement. Material and Methods A human cadaver head was used. Two sets of tracking balls were attached to the forehead and mandible, respectively. Computed tomographic (CT) scan was performed and 3-dimensional CT models of the skull were generated. The cadaver head was then dissected to attach the muscle activation cables and mounted onto the TMJ simulator. Realistic jaw motions were generated through the application of the following muscle forces: lateral pterygoid muscle, suprahyoid depressors (geniohyoid, mylohyoid, and digastric muscles), and elevator muscles. To simulate muscle contraction, cables were inserted into the mandible at the center area of each muscle's attachment. To provide a minimum mouth closing force at the initial position, the elevator muscles were combined at the anterior mandible. During mandibular movement, each motion was recorded using a high-resolution laser scanner. The right TMJ of the same head was reconstructed with a total TMJ prosthesis. The same forces were applied and the jaw motions were recorded again. CT scan was performed and 3-dimensional CT models of the skull with TMJ prosthesis were generated. Results Mandibular motions, before and after TMJ replacement, with and without lateral pterygoid muscle reattachment, were re-created in a cadaveric preparation. The laser-scanned data during the mandibular motion were used to drive 3-dimensional CT models. A movie for each mandibular motion was subsequently created for motion path analysis. Compared with mandibular motion before TMJ replacement, mandibular lateral and protrusive motions after TMJ replacement, with and without lateral pterygoid muscle reattachment, were greatly limited. The jaw motion recorded before total joint replacement was applied to the mandibular and prostheses models after total TMJ replacement. The condylar component was observed sinking into the fossa during jaw motion. Conclusion A motion simulator capable of re-creating and recording full range of mandibular motions in a cadaveric preparation has been developed. It can be used to simulate mandibular motions for the intact TMJ and total joint prosthesis, and to re-create and record their full range of mandibular motions. In addition, the full range of the recorded motion can be re-created as motion images in a computer. These images can be used for motion path analysis and to study the causation of limited range of motion after total joint replacement and strategies for improvement. PMID:21050636

  3. Criterion validity study of the cervical range of motion (CROM) device for rotational range of motion on healthy adults.

    PubMed

    Tousignant, Michel; Smeesters, Cécil; Breton, Anne-Marie; Breton, Emilie; Corriveau, Hélène

    2006-04-01

    This study compared range of motion (ROM) measurements using a cervical range of motion device (CROM) and an optoelectronic system (OPTOTRAK). To examine the criterion validity of the CROM for the measurement of cervical ROM on healthy adults. Whereas measurements of cervical ROM are recognized as part of the assessment of patients with neck pain, few devices are available in clinical settings. Two papers published previously showed excellent criterion validity for measurements of cervical flexion/extension and lateral flexion using the CROM. Subjects performed neck rotation, flexion/extension, and lateral flexion while sitting on a wooden chair. The ROM values were measured by the CROM as well as the OPTOTRAK. The cervical rotational ROM values using the CROM demonstrated a good to excellent linear relationship with those using the OPTOTRAK: right rotation, r = 0.89 (95% confidence interval, 0.81-0.94), and left rotation, r = 0.94 (95% confidence interval, 0.90-0.97). Similar results were also obtained for flexion/extension and lateral flexion ROM values. The CROM showed excellent criterion validity for measurements of cervical rotation. We propose using ROM values measured by the CROM as outcome measures for patients with neck pain.

  4. Self-ordering of a Ge island single layer induced by Si overgrowth.

    PubMed

    Capellini, G; De Seta, M; Evangelisti, F; Zinovyev, V A; Vastola, G; Montalenti, F; Miglio, Leo

    2006-03-17

    We provide a direct experimental proof and the related modeling of the role played by Si overgrowth in promoting the lateral ordering of Ge islands grown by chemical vapor deposition on Si(001). The deposition of silicon induces a shape transformation, from domes to truncated pyramids with a larger base, generating an array of closely spaced interacting islands. By modeling, we show that the resulting gradient in the chemical potential across the island should be the driving force for a selective flow of both Ge and Si atoms at the surface and, in turn, to a real motion of the dots, favoring the lateral order.

  5. Determination of lateral-stability derivatives and transfer-function coefficients from frequency-response data for lateral motions

    NASA Technical Reports Server (NTRS)

    Donegan, James J; Robinson, Samuel W , Jr; Gates, Ordway, B , jr

    1955-01-01

    A method is presented for determining the lateral-stability derivatives, transfer-function coefficients, and the modes for lateral motion from frequency-response data for a rigid aircraft. The method is based on the application of the vector technique to the equations of lateral motion, so that the three equations of lateral motion can be separated into six equations. The method of least squares is then applied to the data for each of these equations to yield the coefficients of the equations of lateral motion from which the lateral-stability derivatives and lateral transfer-function coefficients are computed. Two numerical examples are given to demonstrate the use of the method.

  6. Moment-rotation responses of the human lumbosacral spinal column.

    PubMed

    Guan, Yabo; Yoganandan, Narayan; Moore, Jason; Pintar, Frank A; Zhang, Jiangyue; Maiman, Dennis J; Laud, Purushottam

    2007-01-01

    The objective of this study was to test the hypothesis that the human lumbosacral joint behaves differently from L1-L5 joints and provides primary moment-rotation responses under pure moment flexion and extension and left and right lateral bending on a level-by-level basis. In addition, range of motion (ROM) and stiffness data were extracted from the moment-rotation responses. Ten T12-S1 column specimens with ages ranging from 27 to 68 years (mean: 50.6+/-13.2) were tested at a load level of 4.0 N m. Nonlinear flexion and extension and left and right lateral bending moment-rotation responses at each spinal level are reported in the form of a logarithmic function. The mean ROM was the greatest at the L5-S1 level under flexion (7.37+/-3.69 degrees) and extension (4.62+/-2.56 degrees) and at the L3-L4 level under lateral bending (4.04+/-1.11 degrees). The mean ROM was the least at the L1-L2 level under flexion (2.42+/-0.90 degrees), L2-L3 level under extension (1.58+/-0.63 degrees), and L1-L2 level under lateral bending (2.50+/-0.75 degrees). The present study proved the hypothesis that L5-S1 motions are significantly greater than L1-L5 motions under flexion and extension loadings, but the hypothesis was found to be untrue under the lateral bending mode. These experimental data are useful in the improved validation of FE models, which will increase the confidence of stress analysis and other modeling applications.

  7. The swimming of a perfect deforming helix

    NASA Astrophysics Data System (ADS)

    Koens, Lyndon; Zhang, Hang; Mourran, Ahmed; Lauga, Eric

    2017-11-01

    Many bacteria rotate helical flagellar filaments in order to swim. When at rest or rotated counter-clockwise these flagella are left handed helices but they undergo polymorphic transformations to right-handed helices when the motor is reversed. These helical deformations themselves can generate motion, with for example Rhodobacter sphaeroides using the polymorphic transformation of the flagellum to generate rotation, or Spiroplasma propagating a change of helix handedness across its body's length to generate forward motion. Recent experiments reported on an artificial helical microswimmer generating motion without a propagating change in handedness. Made of a temperature sensitive gel, these swimmers moved by changing the dimensions of the helix in a non-reciprocal way. Inspired by these results and helix's ubiquitous presence in the bacterial world, we investigate how a deforming helix moves within a viscous fluid. Maintaining a single handedness along its entire length, we discuss how a perfect deforming helix can create a non-reciprocal swimming stroke, identify its principle directions of motion, and calculate the swimming kinematics asymptotically.

  8. A new tectonic model for southern Alaska

    NASA Astrophysics Data System (ADS)

    Reeder, J. W.

    2013-12-01

    S Alaska consists of a complex tectonic boundary that is gradational from subduction of Pacific Plate (PAC) beneath N American Plate (NA) in the W to a transform fault between these two plates in the SE. Adding complexity, the Yakutat Plate (YAK) is in between. The YAK is exposed in NE Gulf of Alaska and has been well mapped (Plafker, 1987). It is bound by the NA to the E at the Fairweather fault and by the PAC to the S. Relative to NA, YAK is moving 47 mm/yr N30°W and PAC is moving 51 mm/yr N20°W (Fletcher & Freymueller, 2003). The YAK and deeper PAC extend NW beneath the NA as flat slabs (Brocher et al., 1994). They subduct to the W and NW in Cook Inlet region (Ratchkovsky et al., 1997), resulting in the Cook Inlet volcanic arc. They also subduct farther NNW toward the Denali volcanic gap and fault. The subducted part of the YAK is split by a transform fault exposed at Montana Creek (MC) at 62°06'N to 62°10'N at 150°W. It extends S60°W toward the most N Cook Inlet volcano, Hayes, and extends N60°E beyond Talkeetna Mts. Right-lateral WSW motion and thick fault gauge have been documented by McGee (1978) on MC and a S60°W fault scarp cutting Quaternary deposits has been mapped (Reed & Nelson, 1980). Fuis et al. (2008) seismically recognized 110 km of missing YAP NW of Talkeetna Mts, which he thought was due to a 'tear' in the YAK to the far S. Nikoli Greenstone has been found in the Talkeetna Mts just S of this transform (Schmidt, 2003) that is 70 km SW of any other mapped Nikoli. This fault offset is also shown by 7.8 km/sec Vp depth contours, which represent the YAK (Eberhart-Phillips et al., 2006), as 110 km at N60°W. Based on magnetic data (Csejtey & Griscom, 1978; Saltus et al., 2007), the fault is regionally recognized as a 10× km zone on the WSW margin of the large S Alaska magnetic high. The fault zone has narrow WSW magnetic highs and depressions. This fault is also recognized on digital relief (Riehle et al., 1996); but, another pronounced N60°E linear feature also exists 20× km S, which trends into Mt. Spurr volcano. It could be another transform. If the MC transform is taking all the discrepancy between PAC and YAK, the S part of the fault would be moving relatively 9 mm/yr to S60°W. This transform has possibly been active for 12 million years. The Wrangell volcanoes with respect to YAK are associated with a spreading ridge. Yet, with respect to PAC, they are associated with a subduction zone (Stevens et al., 1984). The Totschunda and Fairweather faults are the new westward developing Denali transform. The Castle Mountain fault, located about 65 km to the SE of the MC transform, is oriented N65°E. It has had significant right-lateral offset of at least 30 km based on 7.8 km/sec Vp depth contours and of 26 km by magnetic offsets (Haeussler & Saltus, 2004). This older transform probably corresponds to Tertiary volcanics SW of the Mt Spurr/Hayes volcanic complex. Two active megathrust faults exist in south central Alaska; a 1964 type megathrust between PAC and YAK (Plafker, 1969), and a more continental megathrust between YAK and NA (Reeder, 2012). Based on Knik Arm subsidence events, these two types alternate and the next megathrust should occur in 350× years. This more continental megathrust would result in uplift of the N side of the Castle Mountain fault. It might even correspond to significant right-lateral movement on the seismically quiet MC transform.

  9. Concurrent prediction of muscle and tibiofemoral contact forces during treadmill gait.

    PubMed

    Guess, Trent M; Stylianou, Antonis P; Kia, Mohammad

    2014-02-01

    Detailed knowledge of knee kinematics and dynamic loading is essential for improving the design and outcomes of surgical procedures, tissue engineering applications, prosthetics design, and rehabilitation. This study used publicly available data provided by the "Grand Challenge Competition to Predict in-vivo Knee Loads" for the 2013 American Society of Mechanical Engineers Summer Bioengineering Conference (Fregly et al., 2012, "Grand Challenge Competition to Predict in vivo Knee Loads," J. Orthop. Res., 30, pp. 503-513) to develop a full body, musculoskeletal model with subject specific right leg geometries that can concurrently predict muscle forces, ligament forces, and knee and ground contact forces. The model includes representation of foot/floor interactions and predicted tibiofemoral joint loads were compared to measured tibial loads for two different cycles of treadmill gait. The model used anthropometric data (height and weight) to scale the joint center locations and mass properties of a generic model and then used subject bone geometries to more accurately position the hip and ankle. The musculoskeletal model included 44 muscles on the right leg, and subject specific geometries were used to create a 12 degrees-of-freedom anatomical right knee that included both patellofemoral and tibiofemoral articulations. Tibiofemoral motion was constrained by deformable contacts defined between the tibial insert and femoral component geometries and by ligaments. Patellofemoral motion was constrained by contact between the patellar button and femoral component geometries and the patellar tendon. Shoe geometries were added to the feet, and shoe motion was constrained by contact between three shoe segments per foot and the treadmill surface. Six-axis springs constrained motion between the feet and shoe segments. Experimental motion capture data provided input to an inverse kinematics stage, and the final forward dynamics simulations tracked joint angle errors for the left leg and upper body and tracked muscle length errors for the right leg. The one cycle RMS errors between the predicted and measured tibia contact were 178 N and 168 N for the medial and lateral sides for the first gait cycle and 209 N and 228 N for the medial and lateral sides for the faster second gait cycle. One cycle RMS errors between predicted and measured ground reaction forces were 12 N, 13 N, and 65 N in the anterior-posterior, medial-lateral, and vertical directions for the first gait cycle and 43 N, 15 N, and 96 N in the anterior-posterior, medial-lateral, and vertical directions for the second gait cycle.

  10. Geophysics and Tectonic Development of the Caroline Basin.

    DTIC Science & Technology

    1983-05-01

    three diverse (shallow and intermediate depth ) epicenters scattered along the eastern margin of the Caroline Basin, one mech- anism determination has been...between the plates could conceivably change to a relative left-lateral motion of the Pacific Plate along a transform boundary. Again there is no...Sea Drilling Project, southwest Pacific structures : Geotimes, v. 18, P. 18-21. Scientific Staff, 1978, Leg 60 ends in Guam: Geotimes, v. 23, p. 19-23

  11. Auditory motion processing after early blindness

    PubMed Central

    Jiang, Fang; Stecker, G. Christopher; Fine, Ione

    2014-01-01

    Studies showing that occipital cortex responds to auditory and tactile stimuli after early blindness are often interpreted as demonstrating that early blind subjects “see” auditory and tactile stimuli. However, it is not clear whether these occipital responses directly mediate the perception of auditory/tactile stimuli, or simply modulate or augment responses within other sensory areas. We used fMRI pattern classification to categorize the perceived direction of motion for both coherent and ambiguous auditory motion stimuli. In sighted individuals, perceived motion direction was accurately categorized based on neural responses within the planum temporale (PT) and right lateral occipital cortex (LOC). Within early blind individuals, auditory motion decisions for both stimuli were successfully categorized from responses within the human middle temporal complex (hMT+), but not the PT or right LOC. These findings suggest that early blind responses within hMT+ are associated with the perception of auditory motion, and that these responses in hMT+ may usurp some of the functions of nondeprived PT. Thus, our results provide further evidence that blind individuals do indeed “see” auditory motion. PMID:25378368

  12. Structure of the Melajo clay near Arima, Trinidad and strike-slip motion in the El Pilar fault zone

    NASA Technical Reports Server (NTRS)

    Robertson, P.; Burke, K.; Wadge, G.

    1985-01-01

    No consensus has yet emerged on the sense, timing and amount of motion in the El Pilar fault zone. As a contribution to the study of this problem, a critical area within the zone in North Central Trinidad has been mapped. On the basis of the mapping, it is concluded that the El Pilar zone has been active in right-lateral strike-slip motion during the Pleistocene. Recognition of structural styles akin to those of the mapped area leads to the suggestion that the El Pilar zone is part of a 300 km wide plate boundary zone extending from the Orinoco delta northward to Grenada. Lateral motion of the Caribbean plate with respect to South America has been suggested to amount to 1900 km in the last 38 Ma. Part of this displacement since the Miocene can be readily accommodated within the broad zone identified here. No one fault system need account for more than a fraction of the total motion and all faults need not be active simultaneously.

  13. Atwood and Poggendorff: an insightful analogy

    NASA Astrophysics Data System (ADS)

    Coelho, R. L.; Borges, P. F.; Karam, R.

    2016-11-01

    Atwood’s treatise, in which the Atwood machine appears, was published in 1784. About 70 years later, Poggendorff showed experimentally that the weight of an Atwood machine is reduced when it is brought to motion. In the present paper, a twofold connection between this experiment and the Atwood machine is established. Firstly, if the Poggendorff apparatus is taken as an ideal one, the equations of motion of the apparatus coincide with the equations of motion of the compound Atwood machine. Secondly, if the Poggendorff apparatus, which works as a lever, is rebalanced, the equations of this equilibrium provide us with the solution for a compound Atwood machine with the same bodies. This analogy is pedagogically useful because it illustrates a common strategy to transform a dynamic in a static situation improving students’ comprehension of Newton’s laws and equilibrium.

  14. Alpha oscillations correlate with the successful inhibition of unattended stimuli.

    PubMed

    Händel, Barbara F; Haarmeier, Thomas; Jensen, Ole

    2011-09-01

    Because the human visual system is continually being bombarded with inputs, it is necessary to have effective mechanisms for filtering out irrelevant information. This is partly achieved by the allocation of attention, allowing the visual system to process relevant input while blocking out irrelevant input. What is the physiological substrate of attentional allocation? It has been proposed that alpha activity reflects functional inhibition. Here we asked if inhibition by alpha oscillations has behavioral consequences for suppressing the perception of unattended input. To this end, we investigated the influence of alpha activity on motion processing in two attentional conditions using magneto-encephalography. The visual stimuli used consisted of two random-dot kinematograms presented simultaneously to the left and right visual hemifields. Subjects were cued to covertly attend the left or right kinematogram. After 1.5 sec, a second cue tested whether subjects could report the direction of coherent motion in the attended (80%) or unattended hemifield (20%). Occipital alpha power was higher contralateral to the unattended side than to the attended side, thus suggesting inhibition of the unattended hemifield. Our key finding is that this alpha lateralization in the 20% invalidly cued trials did correlate with the perception of motion direction: Subjects with pronounced alpha lateralization were worse at detecting motion direction in the unattended hemifield. In contrast, lateralization did not correlate with visual discrimination in the attended visual hemifield. Our findings emphasize the suppressive nature of alpha oscillations and suggest that processing of inputs outside the field of attention is weakened by means of increased alpha activity.

  15. Patterns of intrafractional motion and uncertainties of treatment setup reference systems in accelerated partial breast irradiation for right- and left-sided breast cancer.

    PubMed

    Yue, Ning J; Goyal, Sharad; Kim, Leonard H; Khan, Atif; Haffty, Bruce G

    2014-01-01

    This study investigated the patterns of intrafractional motion and accuracy of treatment setup strategies in 3-dimensional conformal radiation therapy of accelerated partial breast irradiation (APBI) for right- and left-sided breast cancers. Sixteen right-sided and 17 left-sided breast cancer patients were enrolled in an institutional APBI trial in which gold fiducial markers were strategically sutured to the surgical cavity walls. Daily pre- and postradiation therapy kV imaging were performed and were matched to digitally reconstructed radiographs based on bony anatomy and fiducial markers, respectively, to determine the intrafractional motion. The positioning differences of the laser-tattoo and the bony anatomy-based setups with respect to the marker-based setup (benchmark) were determined to evaluate their accuracy. Statistical differences were found between the right- and left-sided APBI treatments in vector directions of intrafractional motion and treatment setup errors in the reference systems, but less in their overall magnitudes. The directional difference was more pronounced in the lateral direction. It was found that the intrafractional motion and setup reference systems tended to deviate in the right direction for the right-sided breast treatments and in the left direction for the left-sided breast treatments. It appears that the fiducial markers placed in the seroma cavity exhibit side dependent directional intrafractional motion, although additional data may be needed to further validate the conclusion. The bony anatomy-based treatment setup improves the accuracy over laser-tattoo. But it is inadequate to rely on bony anatomy to assess intrafractional target motion in both magnitude and direction. Copyright © 2014 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.

  16. Oblique-wing research airplane motion simulation with decoupling control laws

    NASA Technical Reports Server (NTRS)

    Kempel, Robert W.; Mc Neill, Walter E.; Maine, Trindel A.

    1988-01-01

    A large piloted vertical motion simulator was used to assess the performance of a preliminary decoupling control law for an early version of the F-8 oblique wing research demonstrator airplane. Evaluations were performed for five discrete flight conditions, ranging from low-altitude subsonic Mach numbers to moderate-altitude supersonic Mach numbers. Asymmetric sideforce as a function of angle of attack was found to be the primary cause of both the lateral acceleration noted in pitch and the tendency to roll into left turns and out of right turns. The flight control system was shown to be effective in generally decoupling the airplane and reducing the lateral acceleration in pitch maneuvers.

  17. Seismicity of the Earth 1900–2010 Middle East and vicinity

    USGS Publications Warehouse

    Jenkins, Jennifer; Turner, Bethan; Turner, Rebecca; Hayes, Gavin P.; Davies, Sian; Dart, Richard L.; Tarr, Arthur C.; Villaseñor, Antonio; Benz, Harley M.

    2013-01-01

    No fewer than four major tectonic plates (Arabia, Eurasia, India, and Africa) and one smaller tectonic block (Anatolia) are responsible for seismicity and tectonics in the Middle East and surrounding region. Geologic development of the region is a consequence of a number of first-order plate tectonic processes that include subduction, large-scale transform faulting, compressional mountain building, and crustal extension. In the east, tectonics are dominated by the collision of the India plate with Eurasia, driving the uplift of the Himalaya, Karakorum, Pamir and Hindu Kush mountain ranges. Beneath the Pamir‒Hindu Kush Mountains of northern Afghanistan, earthquakes occur to depths as great as 200 km as a result of remnant lithospheric subduction. Along the western margin of the India plate, relative motions between India and Eurasia are accommodated by strike-slip, reverse, and oblique-slip faulting, resulting in the complex Sulaiman Range fold and thrust belt, and the major translational Chaman Fault in Afghanistan. Off the south coasts of Pakistan and Iran, the Makran trench is the surface expression of active subduction of the Arabia plate beneath Eurasia. Northwest of this subduction zone, collision between the two plates forms the approximately 1,500-km-long fold and thrust belts of the Zagros Mountains, which cross the whole of western Iran and extend into northeastern Iraq. Tectonics in the eastern Mediterranean region are dominated by complex interactions between the Africa, Arabia, and Eurasia plates, and the Anatolia block. Dominant structures in this region include: the Red Sea Rift, the spreading center between the Africa and Arabia plates; the Dead Sea Transform, a major strike-slip fault, also accommodating Africa-Arabia relative motions; the North Anatolia Fault, a right-lateral strike-slip structure in northern Turkey accommodating much of the translational motion of the Anatolia block westwards with respect to Eurasia and Africa; and the Cyprian Arc, a convergent boundary between the Africa plate to the south, and Anatolia Block to the north.

  18. A piloted evaluation of an oblique-wing research aircraft motion simulation with decoupling control laws

    NASA Technical Reports Server (NTRS)

    Kempel, Robert W.; Mcneill, Walter E.; Gilyard, Glenn B.; Maine, Trindel A.

    1988-01-01

    The NASA Ames Research Center developed an oblique-wing research plane from NASA's digital fly-by-wire airplane. Oblique-wing airplanes show large cross-coupling in control and dynamic behavior which is not present on conventional symmetric airplanes and must be compensated for to obtain acceptable handling qualities. The large vertical motion simulator at NASA Ames-Moffett was used in the piloted evaluation of a proposed flight control system designed to provide decoupled handling qualities. Five discrete flight conditions were evaluated ranging from low altitude subsonic Mach numbers to moderate altitude supersonic Mach numbers. The flight control system was effective in generally decoupling the airplane. However, all participating pilots objected to the high levels of lateral acceleration encountered in pitch maneuvers. In addition, the pilots were more critical of left turns (in the direction of the trailing wingtip when skewed) than they were of right turns due to the tendency to be rolled into the left turns and out of the right turns. Asymmetric side force as a function of angle of attack was the primary cause of lateral acceleration in pitch. Along with the lateral acceleration in pitch, variation of rolling and yawing moments as functions of angle of attack caused the tendency to roll into left turns and out of right turns.

  19. Automatic segmentation of right ventricle on ultrasound images using sparse matrix transform and level set

    NASA Astrophysics Data System (ADS)

    Qin, Xulei; Cong, Zhibin; Halig, Luma V.; Fei, Baowei

    2013-03-01

    An automatic framework is proposed to segment right ventricle on ultrasound images. This method can automatically segment both epicardial and endocardial boundaries from a continuous echocardiography series by combining sparse matrix transform (SMT), a training model, and a localized region based level set. First, the sparse matrix transform extracts main motion regions of myocardium as eigenimages by analyzing statistical information of these images. Second, a training model of right ventricle is registered to the extracted eigenimages in order to automatically detect the main location of the right ventricle and the corresponding transform relationship between the training model and the SMT-extracted results in the series. Third, the training model is then adjusted as an adapted initialization for the segmentation of each image in the series. Finally, based on the adapted initializations, a localized region based level set algorithm is applied to segment both epicardial and endocardial boundaries of the right ventricle from the whole series. Experimental results from real subject data validated the performance of the proposed framework in segmenting right ventricle from echocardiography. The mean Dice scores for both epicardial and endocardial boundaries are 89.1%+/-2.3% and 83.6+/-7.3%, respectively. The automatic segmentation method based on sparse matrix transform and level set can provide a useful tool for quantitative cardiac imaging.

  20. New marine data from Vietnam Margin limit the amount of extrusion of Indochina during the opening of the South China Sea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huchon, P.; Le Pichon, X.; Rangin, C.

    1994-07-01

    A total of 9300 km of high resolution, wide coverage multibeam (Simrad EM12) bathymetric data have been acquired offshore Vietnam during the Ponaga cruise of the R/V L'Atalante in May 1993. Gravity and magnetic measurements, 6-channel seismic data, as well as 6 dredges also have been obtained. East of central Vietnam, the margin displays northeast-southwest tectonic structures typical of a passive margin. The depth of the basement of the Nha Trang basin suggests that it could be of oceanic nature, with a 20 to 30 Ma age compatible with the age of the South China Sea oceanic crust located furthermore » east. Southeast of South Vietnam, the authors identified the western tip of the fossil axis of the South China Sea. It constitutes a propagating ridge into a highly stretched continental crust, partly intruded by volcanics. East of 110[degrees]30[prime]E, tilted blocks are symmetric with respect to the oceanic axis, whereas west of 110[degrees]30[prime]E they are mostly tilted toward the south, which suggests the occurrence a large listric normal fault associated with a large amount of extension. The normal faults bend progressively to a more northerly direction when approaching the north-south scarp that bounds the Conson basin. This geometry is compatible with a right-lateral motion, and the normal faults associated with the oceanic propagator suggest that the dextral motion is synchronous with at least the last phase of spreading in the South China Sea (23-16 Ma). Since recent offshore oil data have established that the prolongation of the Red River fault within the Gulf of Tonkin was affected by left-lateral motion from the Oligocene to the upper Miocene, the results suggest that the change from left-lateral motion in the Gulf of Tonkin to right-lateral motion along the Vietnam margin occurs because the South China Sea basin opens more rapidly than the extrusion of Indochina. Thus, the total amount of extrusion of Indochina probably does not exceed 100 or 200 km.« less

  1. Speckle interferometry with temporal phase evaluation for measuring large-object deformation.

    PubMed

    Joenathan, C; Franze, B; Haible, P; Tiziani, H J

    1998-05-01

    We propose a new method for measuring large-object deformations byusing temporal evolution of the speckles in speckleinterferometry. The principle of the method is that by deformingthe object continuously, one obtains fluctuations in the intensity ofthe speckle. A large number of frames of the object motion arecollected to be analyzed later. The phase data for whole-objectdeformation are then retrieved by inverse Fourier transformation of afiltered spectrum obtained by Fourier transformation of thesignal. With this method one is capable of measuring deformationsof more than 100 mum, which is not possible using conventionalelectronic speckle pattern interferometry. We discuss theunderlying principle of the method and the results of theexperiments. Some nondestructive testing results are alsopresented.

  2. PubMed Central

    BOLZONI, A.; MAPELLI, A.; BAJ, A.; SIDEQUERSKY, F.V; GIANNÌ, A.B.

    2015-01-01

    SUMMARY Seven patients who underwent mandibular reconstruction with a fibula free flap (one on the midline, six on either right or left side) and were rehabilitated with implant supported prostheses, performed free mandibular border movements (maximal mouth opening and closing, right and left lateral excursions, protrusion) that were recorded by a non-invasive motion analyser. Temporomandibular joint (TMJ) kinematic parameters were compared to those calculated in healthy control subjects using z-scores. Maximum mouth opening was reduced in all patients, with z-scores ranging from -2.742 to -0.106, and performed with a reduced sagittal plane mandibular rotation. Interincisal point forward movement during protrusion was reduced in all but one patient. Lateral mandibular movements (displacement of the interincisal point) and bilateral condylar movements during mouth opening were very variable and sometimes asymmetrical. Mandibular rotation was also variable, with z-scores ranging from -1.265 to 1.388. Together with mandibular range of motion, we investigated biomechanical characteristics of TMJ motion that can provide further information about the joint without submitting the patient to harmful procedures, and that can be followed-up during healing. The investigation indicates those areas that need to be given special attention in preoperative planning, patient information and rehabilitation. PMID:26900241

  3. Free-to-Roll Investigation of Uncommanded Lateral Motions for an Aircraft With Vented Strakes

    NASA Technical Reports Server (NTRS)

    Bryan, Elaine M.; Owens, D. Bruce; Barlow, Jewel B.

    2004-01-01

    A free-to-roll study of the low-speed lateral characteristics of the pre-production F/A-18E was conducted in the NASA Langley 12-Foot Low-Speed Tunnel. In developmental flight tests the F/A-18E unexpectedly experienced uncommanded lateral motions in the power approach configuration. The objective of this study was to determine the feasibility of using the free-to-roll technique for the detection of uncommanded lateral motions for the preproduction F/A-18E in the power approach configuration. The data revealed that this technique in conjunction with static data revealed insight into the cause of the lateral motions. The free-to-roll technique identified uncommanded lateral motions at the same angle-of-attack range as experienced in flight tests. The cause of the uncommanded lateral motions was unsteady asymmetric wing stall. The paper also shows that free-to-roll data or static force and moment data alone are not enough to accurately capture the potential for an aircraft to experience uncommanded lateral motion.

  4. Free-to-Roll Investigation of Uncommanded Lateral Motions for an Aircraft with Vented Strakes

    NASA Technical Reports Server (NTRS)

    Owens, Elaine M.; Bryant, Elaine M.; Barlow, Jewel B.

    2005-01-01

    A free-to-roll study of the low-speed lateral characteristics of the pre-production F/A-l8E was conducted in the NASA Langley 12-Foot Low-Speed Tunnel. In developmental flight tests the F/A-18E unexpectedly experienced uncommanded lateral motions in the power approach configuration. The objective of this study was to determine the feasibility of using the free-to-roll technique for the detection of uncommanded lateral motions for the pre-production F/A-l8E in the power approach configuration. The data revealed that this technique in conjunction with static data revealed insight into the cause of the lateral motions. The free-to-roll technique identified uncommanded lateral motions at the same angle-of-attack range as experienced in flight tests. The cause of the uncommanded lateral motions was unsteady asymmetric wing stall. The paper also shows that free-to-roll data or static force and moment data alone are not enough to accurately capture the potential for an aircraft to experience uncommanded lateral motion.

  5. Visual motion transforms visual space representations similarly throughout the human visual hierarchy.

    PubMed

    Harvey, Ben M; Dumoulin, Serge O

    2016-02-15

    Several studies demonstrate that visual stimulus motion affects neural receptive fields and fMRI response amplitudes. Here we unite results of these two approaches and extend them by examining the effects of visual motion on neural position preferences throughout the hierarchy of human visual field maps. We measured population receptive field (pRF) properties using high-field fMRI (7T), characterizing position preferences simultaneously over large regions of the visual cortex. We measured pRFs properties using sine wave gratings in stationary apertures, moving at various speeds in either the direction of pRF measurement or the orthogonal direction. We find direction- and speed-dependent changes in pRF preferred position and size in all visual field maps examined, including V1, V3A, and the MT+ map TO1. These effects on pRF properties increase up the hierarchy of visual field maps. However, both within and between visual field maps the extent of pRF changes was approximately proportional to pRF size. This suggests that visual motion transforms the representation of visual space similarly throughout the visual hierarchy. Visual motion can also produce an illusory displacement of perceived stimulus position. We demonstrate perceptual displacements using the same stimulus configuration. In contrast to effects on pRF properties, perceptual displacements show only weak effects of motion speed, with far larger speed-independent effects. We describe a model where low-level mechanisms could underlie the observed effects on neural position preferences. We conclude that visual motion induces similar transformations of visuo-spatial representations throughout the visual hierarchy, which may arise through low-level mechanisms. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Hemispheric asymmetry of ERPs and MMNs evoked by slow, fast and abrupt auditory motion.

    PubMed

    Shestopalova, L B; Petropavlovskaia, E A; Vaitulevich, S Ph; Nikitin, N I

    2016-10-01

    The current MMN study investigates whether brain lateralization during automatic discrimination of sound stimuli moving at different velocities is consistent with one of the three models of asymmetry: the right-hemispheric dominance model, the contralateral dominance model, or the neglect model. Auditory event-related potentials (ERPs) were recorded for three patterns of sound motion produced by linear or abrupt changes of interaural time differences. The slow motion (450deg/s) was used as standard, and the fast motion (620deg/s) and the abrupt sound shift served as deviants in the oddball blocks. All stimuli had the same onset/offset spatial positions. We compared the effects of the recording side (left, right) and of the direction of sound displacement (ipsi- or contralateral with reference to the side of recording) on the ERPs and mismatch negativity (MMN). Our results indicated different patterns of asymmetry for the ERPs and MMN responses. The ERPs showed a velocity-independent right-hemispheric dominance that emerged at the descending limb of N1 wave (at around 120-160ms) and could be related to overall context of the preattentive spatial perception. The MMNs elicited in the left hemisphere (at around 230-270ms) exhibited a contralateral dominance, whereas the right-hemispheric MMNs were insensitive to the direction of sound displacement. These differences in contralaterality between MMN responses produced by the left and the right hemisphere favour the neglect model of the preattentive motion processing indexed by MMN. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. A hybrid spatiotemporal and Hough-based motion estimation approach applied to magnetic resonance cardiac images

    NASA Astrophysics Data System (ADS)

    Carranza, N.; Cristóbal, G.; Sroubek, F.; Ledesma-Carbayo, M. J.; Santos, A.

    2006-08-01

    Myocardial motion analysis and quantification is of utmost importance for analyzing contractile heart abnormalities and it can be a symptom of a coronary artery disease. A fundamental problem in processing sequences of images is the computation of the optical flow, which is an approximation to the real image motion. This paper presents a new algorithm for optical flow estimation based on a spatiotemporal-frequency (STF) approach, more specifically on the computation of the Wigner-Ville distribution (WVD) and the Hough Transform (HT) of the motion sequences. The later is a well-known line and shape detection method very robust against incomplete data and noise. The rationale of using the HT in this context is because it provides a value of the displacement field from the STF representation. In addition, a probabilistic approach based on Gaussian mixtures has been implemented in order to improve the accuracy of the motion detection. Experimental results with synthetic sequences are compared against an implementation of the variational technique for local and global motion estimation, where it is shown that the results obtained here are accurate and robust to noise degradations. Real cardiac magnetic resonance images have been tested and evaluated with the current method.

  8. Non-verbal IQ is correlated with visual field advantages for short duration coherent motion detection in deaf signers with varied ASL exposure and etiologies of deafness.

    PubMed

    Samar, Vincent J; Parasnis, Ila

    2007-12-01

    Studies have reported a right visual field (RVF) advantage for coherent motion detection by deaf and hearing signers but not non-signers. Yet two studies [Bosworth R. G., & Dobkins, K. R. (2002). Visual field asymmetries for motion processing in deaf and hearing signers. Brain and Cognition, 49, 170-181; Samar, V. J., & Parasnis, I. (2005). Dorsal stream deficits suggest hidden dyslexia among deaf poor readers: Correlated evidence from reduced perceptual speed and elevated coherent motion detection thresholds. Brain and Cognition, 58, 300-311.] reported a small, non-significant RVF advantage for deaf signers when short duration motion stimuli were used (200-250 ms). Samar and Parasnis (2005) reported that this small RVF advantage became significant when non-verbal IQ was statistically controlled. This paper presents extended analyses of the correlation between non-verbal IQ and visual field asymmetries in the data set of Samar and Parasnis (2005). We speculate that this correlation might plausibly be driven by individual differences either in age of acquisition of American Sign Language (ASL) or in the degree of neurodevelopmental insult associated with various etiologies of deafness. Limited additional analyses are presented that indicate a need for further research on the cause of this apparent IQ-laterality relationship. Some potential implications of this relationship for lateralization studies of deaf signers are discussed. Controlling non-verbal IQ may improve the reliability of short duration coherent motion tasks to detect adaptive dorsal stream lateralization due to exposure to ASL in deaf research participants.

  9. Short-latency primate vestibuloocular responses during translation

    NASA Technical Reports Server (NTRS)

    Angelaki, D. E.; McHenry, M. Q.

    1999-01-01

    Short-lasting, transient head displacements and near target fixation were used to measure the latency and early response gain of vestibularly evoked eye movements during lateral and fore-aft translations in rhesus monkeys. The latency of the horizontal eye movements elicited during lateral motion was 11.9 +/- 5.4 ms. Viewing distance-dependent behavior was seen as early as the beginning of the response profile. For fore-aft motion, latencies were different for forward and backward displacements. Latency averaged 7.1 +/- 9.3 ms during forward motion (same for both eyes) and 12.5 +/- 6.3 ms for the adducting eye (e.g., left eye during right fixation) during backward motion. Latencies during backward motion were significantly longer for the abducting eye (18.9 +/- 9.8 ms). Initial acceleration gains of the two eyes were generally larger than unity but asymmetric. Specifically, gains were consistently larger for abducting than adducting eye movements. The large initial acceleration gains tended to compensate for the response latencies such that the early eye movement response approached, albeit consistently incompletely, that required for maintaining visual acuity during the movement. These short-latency vestibuloocular responses could complement the visually generated optic flow responses that have been shown to exhibit much longer latencies.

  10. Transformational leadership, initiating structure, and substitutes for leadership: a longitudinal study of research and development project team performance.

    PubMed

    Keller, Robert T

    2006-01-01

    Transformational leadership, initiating structure, and selected substitutes for leadership were studied as longitudinal predictors of performance in 118 research and development (R&D) project teams from 5 firms. As hypothesized, transformational leadership predicted 1-year-later technical quality, schedule performance, and cost performance and 5-year-later profitability and speed to market. Initiating structure predicted all the performance measures. The substitutes of subordinate ability and an intrinsically satisfying task each predicted technical quality and profitability, and ability predicted speed to market. Moderator effects for type of R&D work were hypothesized and found whereby transformational leadership was a stronger predictor of technical quality in research projects, whereas initiating structure was a stronger predictor of technical quality in development projects. Implications for leadership theory and research are discussed. (c) 2006 APA, all rights reserved.

  11. Composite body movements modulate numerical cognition: evidence from the motion-numerical compatibility effect

    PubMed Central

    Cheng, Xiaorong; Ge, Hui; Andoni, Deljfina; Ding, Xianfeng; Fan, Zhao

    2015-01-01

    A recent hierarchical model of numerical processing, initiated by Fischer and Brugger (2011) and Fischer (2012), suggested that situated factors, such as different body postures and body movements, can influence the magnitude representation and bias numerical processing. Indeed, Loetscher et al. (2008) found that participants’ behavior in a random number generation task was biased by head rotations. More small numbers were reported after leftward than rightward head turns, i.e., a motion-numerical compatibility effect. Here, by carrying out two experiments, we explored whether similar motion-numerical compatibility effects exist for movements of other important body components, e.g., arms, and for composite body movements as well, which are basis for complex human activities in many ecologically meaningful situations. In Experiment 1, a motion-numerical compatibility effect was observed for lateral rotations of two body components, i.e., the head and arms. Relatively large numbers were reported after making rightward compared to leftward movements for both lateral head and arm turns. The motion-numerical compatibility effect was observed again in Experiment 2 when participants were asked to perform composite body movements of congruent movement directions, e.g., simultaneous head left turns and arm left turns. However, it disappeared when the movement directions were incongruent, e.g., simultaneous head left turns and arm right turns. Taken together, our results extended Loetscher et al.’s (2008) finding by demonstrating that their effect is effector-general and exists for arm movements. Moreover, our study reveals for the first time that the impact of spatial information on numerical processing induced by each of the two sensorimotor-based situated factors, e.g., a lateral head turn and a lateral arm turn, can cancel each other out. PMID:26594188

  12. Horizontal Slide Creates Less Cervical Motion When Centering an Injured Patient on a Spine Board.

    PubMed

    DuBose, Dewayne N; Zdziarski, Laura Ann; Scott, Nicole; Conrad, Bryan; Long, Allyson; Rechtine, Glenn R; Prasarn, Mark L; Horodyski, MaryBeth

    2016-05-01

    A patient with a suspected cervical spine injury may be at risk for secondary neurologic injury when initially placed and repositioned to the center of the spine board. We sought to determine which centering adjustment best limits cervical spine movement and minimizes the chance for secondary injury. Using five lightly embalmed cadaveric specimens with a created global instability at C5-C6, motion sensors were anchored to the anterior surface of the vertebral bodies. Three repositioning methods were used to center the cadavers on the spine board: horizontal slide, diagonal slide, and V-adjustment. An electromagnetic tracking device measured angular (degrees) and translation (millimeters) motions at the C5-C6 level during each of the three centering adjustments. The dependent variables were angular motion (flexion-extension, axial rotation, lateral flexion) and translational displacement (anteroposterior, axial, and medial-lateral). The nonuniform condition produced significantly less flexion-extension than the uniform condition (p = 0.048). The horizontal slide adjustment produced less cervical flexion-extension (p = 0.015), lateral bending (p = 0.003), and axial rotation (p = 0.034) than the V-adjustment. Similarly, translation was significantly less with the horizontal adjustment than with the V-adjustment; medial-lateral (p = 0.017), axial (p < 0.001), and anteroposterior (p = 0.006). Of the three adjustments, our team found that horizontal slide was also easier to complete than the other methods. The horizontal slide best limited cervical spine motion and may be the most helpful for minimizing secondary injury based on the study findings. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Three-dimensional shoulder kinematics normalize after rotator cuff repair.

    PubMed

    Kolk, Arjen; de Witte, Pieter Bas; Henseler, Jan Ferdinand; van Zwet, Erik W; van Arkel, Ewoud R A; van der Zwaal, Peer; Nelissen, Rob G H H; de Groot, Jurriaan H

    2016-06-01

    Patients with a rotator cuff (RC) tear often exhibit scapular dyskinesia with increased scapular lateral rotation and decreased glenohumeral elevation with arm abduction. We hypothesized that in patients with an RC tear, scapular lateral rotation, and thus glenohumeral elevation, will be restored to normal after RC repair. Shoulder kinematics were quantitatively analyzed in 26 patients with an electromagnetic tracking device (Flock of Birds) before and 1 year after RC repair in this observational case series. We focused on humeral range of motion and scapular kinematics during abduction. The asymptomatic contralateral shoulder was used as the control. Changes in scapular kinematics were associated with the gain in range of motion. Shoulder kinematics were analyzed using a linear mixed model. Mean arm abduction and forward flexion improved after surgery by 20° (95% confidence interval [CI], 2.7°-36.5°; P = .025) and 13° (95% CI, 1.2°-36.5°; P = .044), respectively. Kinematic analyses showed decreases in mean scapular protraction (ie, internal rotation) and lateral rotation (ie, upward rotation) during abduction by 3° (95% CI, 0.0°-5.2°; P = .046) and 4° (95% CI, 1.6°-8.4°; P = .042), respectively. Glenohumeral elevation increased by 5° (95% CI, 0.6°-9.7°; P = .028) at 80°. Humeral range of motion increased when scapular lateral rotation decreased and posterior tilt increased. Scapular kinematics normalize after RC repair toward a symmetrical scapular motion pattern as observed in the asymptomatic contralateral shoulder. The observed changes in scapular kinematics are associated with an increased overall range of motion and suggest restored function of shoulder muscles. Copyright © 2016 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  14. Neural mechanisms underlying sound-induced visual motion perception: An fMRI study.

    PubMed

    Hidaka, Souta; Higuchi, Satomi; Teramoto, Wataru; Sugita, Yoichi

    2017-07-01

    Studies of crossmodal interactions in motion perception have reported activation in several brain areas, including those related to motion processing and/or sensory association, in response to multimodal (e.g., visual and auditory) stimuli that were both in motion. Recent studies have demonstrated that sounds can trigger illusory visual apparent motion to static visual stimuli (sound-induced visual motion: SIVM): A visual stimulus blinking at a fixed location is perceived to be moving laterally when an alternating left-right sound is also present. Here, we investigated brain activity related to the perception of SIVM using a 7T functional magnetic resonance imaging technique. Specifically, we focused on the patterns of neural activities in SIVM and visually induced visual apparent motion (VIVM). We observed shared activations in the middle occipital area (V5/hMT), which is thought to be involved in visual motion processing, for SIVM and VIVM. Moreover, as compared to VIVM, SIVM resulted in greater activation in the superior temporal area and dominant functional connectivity between the V5/hMT area and the areas related to auditory and crossmodal motion processing. These findings indicate that similar but partially different neural mechanisms could be involved in auditory-induced and visually-induced motion perception, and neural signals in auditory, visual, and, crossmodal motion processing areas closely and directly interact in the perception of SIVM. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Object-based attentional modulation of biological motion processing: spatiotemporal dynamics using functional magnetic resonance imaging and electroencephalography.

    PubMed

    Safford, Ashley S; Hussey, Elizabeth A; Parasuraman, Raja; Thompson, James C

    2010-07-07

    Although it is well documented that the ability to perceive biological motion is mediated by the lateral temporal cortex, whether and when neural activity in this brain region is modulated by attention is unknown. In particular, it is unclear whether the processing of biological motion requires attention or whether such stimuli are processed preattentively. Here, we used functional magnetic resonance imaging, high-density electroencephalography, and cortically constrained source estimation methods to investigate the spatiotemporal effects of attention on the processing of biological motion. Directing attention to tool motion in overlapping movies of biological motion and tool motion suppressed the blood oxygenation level-dependent (BOLD) response of the right superior temporal sulcus (STS)/middle temporal gyrus (MTG), while directing attention to biological motion suppressed the BOLD response of the left inferior temporal sulcus (ITS)/MTG. Similarly, category-based modulation of the cortical current source density estimates from the right STS/MTG and left ITS was observed beginning at approximately 450 ms following stimulus onset. Our results indicate that the cortical processing of biological motion is strongly modulated by attention. These findings argue against preattentive processing of biological motion in the presence of stimuli that compete for attention. Our findings also suggest that the attention-based segregation of motion category-specific responses only emerges relatively late (several hundred milliseconds) in processing.

  16. Biomechanical Comparison of Locking Compression Plate versus Positive Profile Pins and Polymethylmethacrylate for Stabilization of the Canine Lumbar Vertebrae.

    PubMed

    Sturges, Beverly K; Kapatkin, Amy S; Garcia, Tanya C; Anwer, Cona; Fukuda, Shimpei; Hitchens, Peta L; Wisner, Tristan; Hayashi, Kei; Stover, Susan M

    2016-04-01

    To compare the stiffness, angular deformation, and mode of failure of lumbar vertebral column constructs stabilized with bilateral pins and polymethylmethacrylate (Pin-PMMA) or with a unilateral (left) locking compression plate (LCP) with monocortical screws. Ex vivo biomechanical, non-randomized. Cadaveric canine thoracolumbar specimens (n=16). Thoracolumbar (T13-L3) vertebral specimens had the L1-L2 vertebral motion unit stabilized with either Pin-PMMA or LCP. Stiffness in flexion, extension, and right and left lateral bending after nondestructive testing were compared between intact (pretreated) specimens and Pin-PMMA, and LCP constructs. The Pin-PMMA and LCP constructs were then tested to failure in flexion and left lateral bending. Both the Pin-PMMA and LCP constructs had reduced range of motion at the stabilized L1-L2 vertebral motion unit compared to intact specimens. The Pin-PMMA constructs had less range of motion for the flexion elastic zone than LCP constructs. The Pin-PMMA constructs were stiffer than intact specimens in flexion, extension, and lateral bending, and stiffer than LCP constructs in flexion and left lateral bending. The Pin-PMMA constructs had less angular deformation at construct yield and lower residual deformation at L1-L2 than LCP constructs after destructive testing to failure in flexion. The Pin-PMMA constructs were stiffer, stronger, and had less deformation at yield than LCP constructs after destructive testing to failure in lateral bending. Most constructs failed distant to the implant and fixation site. Pin-PMMA constructs had greater lumbar vertebral stiffness and reduced ROM than LCP constructs; however, both Pin-PMMA and LCP constructs were stronger than intact specimens. © Copyright 2016 by The American College of Veterinary Surgeons.

  17. Primate translational vestibuloocular reflexes. IV. Changes after unilateral labyrinthectomy

    NASA Technical Reports Server (NTRS)

    Angelaki, D. E.; Newlands, S. D.; Dickman, J. D.

    2000-01-01

    The effects of unilateral labyrinthectomy on the properties of the translational vestibuloocular reflexes (trVORs) were investigated in rhesus monkeys trained to fixate near targets. Translational motion stimuli consisted of either steady-state lateral and fore-aft sinusoidal oscillations or short-lasting transient displacements. During small-amplitude, steady-state sinusoidal lateral oscillations, a small decrease in the horizontal trVOR sensitivity and its dependence on viewing distance was observed during the first week after labyrinthectomy. These deficits gradually recovered over time. In addition, the vertical response component increased, causing a tilt of the eye velocity vector toward the lesioned side. During large, transient lateral displacements, the deficits were larger and longer lasting. Responses after labyrinthectomy were asymmetric, with eye velocity during movements toward the side of the lesion being more compromised. The most profound effect of the lesions was observed during fore-aft motion. Whereas responses were kinematically appropriate for fixation away from the side of the lesion (e.g., to the left after right labyrinthectomy), horizontal responses were anticompensatory during fixation at targets located ipsilateral to the side of the lesion (e.g., for targets to the right after right labyrinthectomy). This deficit showed little recovery during the 3-mo post-labyrinthectomy testing period. These results suggest that inputs from both labyrinths are important for the proper function of the trVORs, although the details of how bilateral signals are processed and integrated remain unknown.

  18. New insights into the active deformation of accretionary prisms: examples from the Western Makran, Iran

    NASA Astrophysics Data System (ADS)

    Penney, Camilla; Copley, Alex; Oveisi, Benham

    2016-04-01

    The Makran subduction zone, along the southern coasts of Iran and Pakistan, hosts one of the largest exposed accretionary wedges in the world. The western Makran has been characterised by a lack of shallow and thrust seismicity in both the instrumental and historical periods. The Mw 6.1 2013 Minab earthquake thus provides a rare opportunity to study the deformation of the accretionary wedge in the transition region between continent-continent collision, in the Zagros, and oceanic subduction, in the Makran. We study the source parameters and slip distribution of this earthquake using seismology, geodesy and field observations. We observe left-lateral strike-slip motion on a fault striking ENE-WSW; approximately perpendicular to the faults of the Minab-Zendan-Palami fault zone, the main structure previously thought to accommodate the right-lateral shear between the Zagros and the Makran. The fault that ruptured in 2013 is one of a series of approximately E-W striking left-lateral faults visible in the geology and geomorphology. These accommodate a velocity field equivalent to right-lateral shear on N-S striking planes by clockwise rotations about vertical axes. The longitudinal range of shear in the western Makran is likely to be controlled by the distance over which the underthrusting Arabian lithosphere deepens in the transition from continent-continent collision to oceanic subduction. The lack of observed megathrust seismicity in the western Makran has led to assertions that the convergence in this region may be aseismic, in contrast to the eastern Makran, which experienced an Mw8.1 earthquake in 1945. The right-lateral Sistan Suture Zone, which runs ~N-S along the Iran-Afghanistan border to the north of the Makran, appears to separate these regimes. However, right-lateral faulting is not observed south of ~27°N, within the wedge. The Minab earthquake and the 2013 Balochistan earthquake show that the Makran accretionary wedge is dominated by strike-slip faulting. By combining GPS, seismology and satellite imagery we assess possible kinematic scenarios for the accommodation of right-lateral motion in the Makran accretionary wedge, and their implications for earthquake hazard in the western Makran, and the dynamics of accretionary wedge deformation in general.

  19. Simulative design in macroscale for prospective application to micro-catheters.

    PubMed

    Ha, Cheol Woo

    2018-02-09

    In this paper, a motion-transforming element is applied to the development of a new catheter device. The motion-transforming element structure allows a reduction of linear movement and converts linear movement to rotational movement. The simulative design of micro-catheters is based on a proposed structure called the Operating Mini Station (OMS). OMS is operated by movement of a motion-transforming element. A new motion-transforming element is designed using multiple links that are connected by hinged joints based on an elastic design. The design of the links and the hinges are optimized for precise and reliable movement of the motion-transforming element. Because of the elastic design, it is possible to realize a catheter that allows various movements in small spaces like capillaries.

  20. Discrete model of gas-free spin combustion of a powder mixture

    NASA Astrophysics Data System (ADS)

    Klimenok, Kirill L.; Rashkovskiy, Sergey A.

    2015-01-01

    We propose a discrete model of gas-free combustion of a cylindrical sample which reproduces in detail a spin combustion mode. It is shown that a spin combustion, in its classical sense as a continuous spiral motion of heat release zones on the surface of the sample, does not exist. Such a concept has arisen due to the misinterpretation of the experimental data. This study shows that in fact a spinlike combustion is realized, at which two energy release zones appear on the lateral surface of the sample and propagate circumferentially in the opposite directions. After some time two new heat release zones are formed on the next layer of the cylinder surface and make the same counter-circular motion. This process continues periodically and from a certain angle it looks like a spiral movement of the luminous zone along the lateral surface of the sample. The model shows that on approaching the combustion limit the process becomes more complicated and the spinlike combustion mode shifts to a more complex mode with multiple zones of heat release moving in different directions along the lateral surface. It is shown that the spin combustion mode appears due to asymmetry of initial conditions and always transforms into a layer-by-layer combustion mode with time.

  1. Discrete model of gas-free spin combustion of a powder mixture.

    PubMed

    Klimenok, Kirill L; Rashkovskiy, Sergey A

    2015-01-01

    We propose a discrete model of gas-free combustion of a cylindrical sample which reproduces in detail a spin combustion mode. It is shown that a spin combustion, in its classical sense as a continuous spiral motion of heat release zones on the surface of the sample, does not exist. Such a concept has arisen due to the misinterpretation of the experimental data. This study shows that in fact a spinlike combustion is realized, at which two energy release zones appear on the lateral surface of the sample and propagate circumferentially in the opposite directions. After some time two new heat release zones are formed on the next layer of the cylinder surface and make the same counter-circular motion. This process continues periodically and from a certain angle it looks like a spiral movement of the luminous zone along the lateral surface of the sample. The model shows that on approaching the combustion limit the process becomes more complicated and the spinlike combustion mode shifts to a more complex mode with multiple zones of heat release moving in different directions along the lateral surface. It is shown that the spin combustion mode appears due to asymmetry of initial conditions and always transforms into a layer-by-layer combustion mode with time.

  2. Evolution of the Rodgers Creek–Maacama right-lateral fault system and associated basins east of the northward-migrating Mendocino Triple Junction, northern California

    USGS Publications Warehouse

    McLaughlin, Robert J.; Sarna-Wojcicki, Andrei M.; Wagner, David L.; Fleck, Robert J.; Langenheim, V.E.; Jachens, Robert C.; Clahan, Kevin; Allen, James R.

    2012-01-01

    The Rodgers Creek–Maacama fault system in the northern California Coast Ranges (United States) takes up substantial right-lateral motion within the wide transform boundary between the Pacific and North American plates, over a slab window that has opened northward beneath the Coast Ranges. The fault system evolved in several right steps and splays preceded and accompanied by extension, volcanism, and strike-slip basin development. Fault and basin geometries have changed with time, in places with younger basins and faults overprinting older structures. Along-strike and successional changes in fault and basin geometry at the southern end of the fault system probably are adjustments to frequent fault zone reorganizations in response to Mendocino Triple Junction migration and northward transit of a major releasing bend in the northern San Andreas fault. The earliest Rodgers Creek fault zone displacement is interpreted to have occurred ca. 7 Ma along extensional basin-forming faults that splayed northwest from a west-northwest proto-Hayward fault zone, opening a transtensional basin west of Santa Rosa. After ca. 5 Ma, the early transtensional basin was compressed and extensional faults were reactivated as thrusts that uplifted the northeast side of the basin. After ca. 2.78 Ma, the Rodgers Creek fault zone again splayed from the earlier extensional and thrust faults to steeper dipping faults with more north-northwest orientations. In conjunction with the changes in orientation and slip mode, the Rodgers Creek fault zone dextral slip rate increased from ∼2–4 mm/yr 7–3 Ma, to 5–8 mm/yr after 3 Ma. The Maacama fault zone is shown from several data sets to have initiated ca. 3.2 Ma and has slipped right-laterally at ∼5–8 mm/yr since its initiation. The initial Maacama fault zone splayed northeastward from the south end of the Rodgers Creek fault zone, accompanied by the opening of several strike-slip basins, some of which were later uplifted and compressed during late-stage fault zone reorganization. The Santa Rosa pull-apart basin formed ca. 1 Ma, during the reorganization of the right stepover geometry of the Rodgers Creek–Maacama fault system, when the maturely evolved overlapping geometry of the northern Rodgers Creek and Maacama fault zones was overprinted by a less evolved, non-overlapping stepover geometry. The Rodgers Creek–Maacama fault system has contributed at least 44–53 km of right-lateral displacement to the East Bay fault system south of San Pablo Bay since 7 Ma, at a minimum rate of 6.1–7.8 mm/yr.

  3. Geodetic measurement of deformation in the central Mojave Desert, California

    NASA Technical Reports Server (NTRS)

    Sauber, Jeanne; Solomon, Sean C.; Thatcher, Wayne

    1986-01-01

    Data from triangulation and trilateration surveys made during 1934-1982 are used to calculate shear strain rates in the central Mojave Desert of California. For the region between the Helendale and Camp Rock faults the shear strain rate was determined to be 0.16 + or - 0.03 microstrain/yr, with maximum right-lateral shear strain occurring on a plane oriented N41 deg W + or - 5 deg. If this deformation is due to right-lateral motion across the northwest trending local faults, the average shear straining corresponds to a relative displacement of 6.7 + or - 1.3 mm/yr across this portion of the network, accounting for about 12 percent of the predicted 56 mm/yr of relative motion between the North Atlantic and Pacific plates. From the Camp Rock fault eastward across the network there is a transition from significant to very low strain rates. Examination of nine focal mechanisms and their relation to the local geology and the strain data suggests that most of the long-term displacement occurs on the major northwest trending faults oriented nearly along the direction of relative motion between the North American and Pacific plates. Secondary faulting, controlled by a Coulomb-Anderson failure mechanism or by slip on preexisting faults can account for the occurrence of earthquakes on faults of other orientations.

  4. Contributions of the 12 neuron classes in the fly lamina to motion vision.

    PubMed

    Tuthill, John C; Nern, Aljoscha; Holtz, Stephen L; Rubin, Gerald M; Reiser, Michael B

    2013-07-10

    Motion detection is a fundamental neural computation performed by many sensory systems. In the fly, local motion computation is thought to occur within the first two layers of the visual system, the lamina and medulla. We constructed specific genetic driver lines for each of the 12 neuron classes in the lamina. We then depolarized and hyperpolarized each neuron type and quantified fly behavioral responses to a diverse set of motion stimuli. We found that only a small number of lamina output neurons are essential for motion detection, while most neurons serve to sculpt and enhance these feedforward pathways. Two classes of feedback neurons (C2 and C3), and lamina output neurons (L2 and L4), are required for normal detection of directional motion stimuli. Our results reveal a prominent role for feedback and lateral interactions in motion processing and demonstrate that motion-dependent behaviors rely on contributions from nearly all lamina neuron classes. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Cervix regression and motion during the course of external beam chemoradiation for cervical cancer.

    PubMed

    Beadle, Beth M; Jhingran, Anuja; Salehpour, Mohammad; Sam, Marianne; Iyer, Revathy B; Eifel, Patricia J

    2009-01-01

    To evaluate the magnitude of cervix regression and motion during external beam chemoradiation for cervical cancer. Sixteen patients with cervical cancer underwent computed tomography scanning before, weekly during, and after conventional chemoradiation. Cervix volumes were calculated to determine the extent of cervix regression. Changes in the center of mass and perimeter of the cervix between scans were used to determine the magnitude of cervix motion. Maximum cervix position changes were calculated for each patient, and mean maximum changes were calculated for the group. Mean cervical volumes before and after 45 Gy of external beam irradiation were 97.0 and 31.9 cc, respectively; mean volume reduction was 62.3%. Mean maximum changes in the center of mass of the cervix were 2.1, 1.6, and 0.82 cm in the superior-inferior, anterior-posterior, and right-left lateral dimensions, respectively. Mean maximum changes in the perimeter of the cervix were 2.3 and 1.3 cm in the superior and inferior, 1.7 and 1.8 cm in the anterior and posterior, and 0.76 and 0.94 cm in the right and left lateral directions, respectively. Cervix regression and internal organ motion contribute to marked interfraction variations in the intrapelvic position of the cervical target in patients receiving chemoradiation for cervical cancer. Failure to take these variations into account during the application of highly conformal external beam radiation techniques poses a theoretical risk of underdosing the target or overdosing adjacent critical structures.

  6. Three-dimensional organization of vestibular-related eye movements to off-vertical axis rotation and linear translation in pigeons

    NASA Technical Reports Server (NTRS)

    Dickman, J. D.; Angelaki, D. E.

    1999-01-01

    During linear accelerations, compensatory reflexes should continually occur in order to maintain objects of visual interest as stable images on the retina. In the present study, the three-dimensional organization of the vestibulo-ocular reflex in pigeons was quantitatively examined during linear accelerations produced by constant velocity off-vertical axis yaw rotations and translational motion in darkness. With off-vertical axis rotations, sinusoidally modulated eye-position and velocity responses were observed in all three components, with the vertical and torsional eye movements predominating the response. Peak torsional and vertical eye positions occurred when the head was oriented with the lateral visual axis of the right eye directed orthogonal to or aligned with the gravity vector, respectively. No steady-state horizontal nystagmus was obtained with any of the rotational velocities (8-58 degrees /s) tested. During translational motion, delivered along or perpendicular to the lateral visual axis, vertical and torsional eye movements were elicited. No significant horizontal eye movements were observed during lateral translation at frequencies up to 3 Hz. These responses suggest that, in pigeons, all linear accelerations generate eye movements that are compensatory to the direction of actual or perceived tilt of the head relative to gravity. In contrast, no translational horizontal eye movements, which are known to be compensatory to lateral translational motion in primates, were observed under the present experimental conditions.

  7. Free-to-Roll Investigation of the Pre-Production F/A-18E Powered Approach Wing Drop

    NASA Technical Reports Server (NTRS)

    Owens, D. Bruce; Bryant, Elaine M.; Barlow, Jewel B.

    2005-01-01

    A free-to-roll study of the low-speed lateral characteristics of the pre-production F/A-18E was conducted in the NASA Langley 12-Foot Low-Speed Tunnel. In developmental flight tests the F/A-18E unexpectedly experienced uncommanded lateral motions in the power approach configuration. The objective of this study was to determine the feasibility of using the free-to-roll technique for the detection of uncommanded lateral motions for the pre-production F/A-18E in the power approach configuration. The data revealed that this technique in conjunction with static data revealed insight into the cause of the lateral motions. The free-to-roll technique identified uncommanded lateral motions at the same angle-of-attack range as experienced in flight tests. The cause of the uncommanded lateral motions was unsteady asymmetric wing stall. The paper also shows that free-to-roll data or static force and moment data alone are not enough to accurately capture the potential for an aircraft to experience uncommanded lateral motion.

  8. Motion Cueing Algorithm Development: Human-Centered Linear and Nonlinear Approaches

    NASA Technical Reports Server (NTRS)

    Houck, Jacob A. (Technical Monitor); Telban, Robert J.; Cardullo, Frank M.

    2005-01-01

    While the performance of flight simulator motion system hardware has advanced substantially, the development of the motion cueing algorithm, the software that transforms simulated aircraft dynamics into realizable motion commands, has not kept pace. Prior research identified viable features from two algorithms: the nonlinear "adaptive algorithm", and the "optimal algorithm" that incorporates human vestibular models. A novel approach to motion cueing, the "nonlinear algorithm" is introduced that combines features from both approaches. This algorithm is formulated by optimal control, and incorporates a new integrated perception model that includes both visual and vestibular sensation and the interaction between the stimuli. Using a time-varying control law, the matrix Riccati equation is updated in real time by a neurocomputing approach. Preliminary pilot testing resulted in the optimal algorithm incorporating a new otolith model, producing improved motion cues. The nonlinear algorithm vertical mode produced a motion cue with a time-varying washout, sustaining small cues for longer durations and washing out large cues more quickly compared to the optimal algorithm. The inclusion of the integrated perception model improved the responses to longitudinal and lateral cues. False cues observed with the NASA adaptive algorithm were absent. The neurocomputing approach was crucial in that the number of presentations of an input vector could be reduced to meet the real time requirement without degrading the quality of the motion cues.

  9. Right-sided dominance of the bilateral vestibular system in the upper brainstem and thalamus.

    PubMed

    Dieterich, Marianne; Kirsch, V; Brandt, T

    2017-10-01

    MRI diffusion tensor imaging tractography was performed on the bilateral vestibular brainstem pathways, which run from the vestibular nuclei via the paramedian and posterolateral thalamic subnuclei to the parieto-insular vestibular cortex. Twenty-one right-handed healthy subjects participated. Quantitative analysis revealed a rope-ladder-like system of vestibular pathways in the brainstem with crossings at pontine and mesencephalic levels. Three structural types of right-left fiber distributions could be delineated: (1) evenly distributed pathways at the lower pontine level from the vestibular nuclei to the pontine crossing, (2) a moderate, pontomesencephalic right-sided lateralization between the pontine and mesencephalic crossings, and (3) a further increase of the right-sided lateralization above the mesencephalic crossing leading to the thalamic vestibular subnuclei. The increasing lateralization along the brainstem was the result of an asymmetric number of pontine and mesencephalic crossing fibers which was higher for left-to-right crossings. The dominance of the right vestibular meso-diencephalic circuitry in right-handers corresponds to the right-hemispheric dominance of the vestibular cortical network. The structural asymmetry apparent in the upper brainstem might be interpreted in relation to the different functions of the vestibular system depending on their anatomical level: a symmetrical sensorimotor reflex control of eye, head, and body mediated by the lower brainstem; a lateralized right-sided upper brainstem-thalamic function as part of the dominant right-sided cortical/subcortical vestibular system that enables a global percept of body motion and orientation in space.

  10. Control for small-speed lateral flight in a model insect.

    PubMed

    Zhang, Yan Lai; Sun, Mao

    2011-09-01

    Controls required for small-speed lateral flight of a model insect were studied using techniques based on the linear theories of stability and control (the stability and control derivatives were computed by the method of computational fluid dynamics). The main results are as follows. (1) Two steady-state lateral motions can exist: one is a horizontal side translation with the body rolling to the same side of the translation by a small angle, and the other is a constant-rate yaw rotation (rotation about the vertical axis). (2) The side translation requires an anti-symmetrical change in the stroke amplitudes of the contralateral wings, and/or an anti-symmetrical change in the angles of attack of the contralateral wings, with the down- and upstroke angles of attack of a wing having equal change. The constant-rate yaw rotation requires an anti-symmetrical change in the angles of attack of the contralateral wings, with the down- and upstroke angles of attack of a wing having differential change. (3) For the control of the horizontal side translation, control input required for the steady-state motion has an opposite sign to that needed for initiating the motion. For example, to have a steady-state left side-translation, the insect needs to increase the stroke amplitude of the left wing and decrease that of the right wing to maintain the steady-state flight, but it needs an opposite change in stroke amplitude (decreasing the stroke amplitude of the left wing and increasing that of the right wing) to enter the flight.

  11. Probabilistic atlases for face and biological motion perception: an analysis of their reliability and overlap.

    PubMed

    Engell, Andrew D; McCarthy, Gregory

    2013-07-01

    Neuroimaging research has identified several category-selective regions in visual cortex that respond most strongly when viewing an exemplar image from a preferred category, such as faces. Recent studies, however, have suggested a more complex pattern of activation that has been heretofore unrecognized, e.g., the presence of additional patches of activation to faces beyond the well-studied fusiform face area, and the activation of ostensible face selective regions by animate motion of non-biological forms. Here, we characterize the spatial pattern of brain activity evoked by viewing faces or biological motion in large fMRI samples (N>120). We create probabilistic atlases for both face and biological motion activation, and directly compare their spatial patterns of activation. Our findings support the suggestion that the fusiform face area is composed of at least two separable foci of activation. The face-evoked response in the fusiform and nearby ventral temporal cortex has good reliability across runs; however, we found surprisingly high variability in lateral brain regions by faces, and for all brain regions by biological motion, which had an overall much lower effect size. We found that faces and biological motion evoke substantially overlapping activation distributions in both ventral and lateral occipitotemporal cortices. The peaks of activation for these different categories within these overlapping regions were close but distinct. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Three-dimensional intrafractional internal target motions in accelerated partial breast irradiation using three-dimensional conformal external beam radiotherapy.

    PubMed

    Hirata, Kimiko; Yoshimura, Michio; Mukumoto, Nobutaka; Nakamura, Mitsuhiro; Inoue, Minoru; Sasaki, Makoto; Fujimoto, Takahiro; Yano, Shinsuke; Nakata, Manabu; Mizowaki, Takashi; Hiraoka, Masahiro

    2017-07-01

    We evaluated three-dimensional intrafractional target motion, divided into respiratory-induced motion and baseline drift, in accelerated partial breast irradiation (APBI). Paired fluoroscopic images were acquired simultaneously using orthogonal kV X-ray imaging systems at pre- and post-treatment for 23 patients who underwent APBI with external beam radiotherapy. The internal target motion was calculated from the surgical clips placed around the tumour cavity. The peak-to-peak respiratory-induced motions ranged from 0.6 to 1.5mm in all directions. A systematic baseline drift of 1.5mm towards the posterior direction and a random baseline drift of 0.3mm in the lateral-medial and cranial-caudal directions were observed. The baseline for an outer tumour cavity drifted towards the lateral and posterior directions, and that for an upper tumour cavity drifted towards the cranial direction. Moderate correlations were observed between the posterior baseline drift and the patients' physical characteristics. The posterior margin for intrafractional uncertainties was larger than 5mm in patients with greater fat thickness due to the baseline drift. The magnitude of the intrafractional motion was not uniform according to the direction, patients' physical characteristics, or tumour cavity location due to the baseline drift. Therefore, the intrafractional systematic movement should be properly managed. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. What is the price for the Duchenne gait pattern in patients with cerebral palsy?

    PubMed

    Salami, Firooz; Niklasch, Mirjam; Krautwurst, Britta K; Dreher, Thomas; Wolf, Sebastian I

    2017-10-01

    Duchenne gait is characterized by trunk lean towards the affected stance limb with the pelvis stable or elevated on the swinging limb side during single limb stance phase. We assessed the relationship between hip abduction moments and trunk kinetics in patients with cerebral palsy showing excessive lateral trunk motion. Data of 18 subjects with bilateral spastic cerebral palsy (CP) and 20 aged matched typically developing subjects (TD) were collected retrospectively. Criteria for patient selection were barefoot walking without aid presenting with excessive lateral trunk motion. Subjects had been monitored by conventional 3D gait analysis of the lower extremity including four markers for monitoring trunk motion. Post-hoc, a generic musculoskeletal full body model (OpenSim 3.3) assuming a rigid trunk articulated to the pelvis by a single ball joint was applied for analyzing joint kinematics and kinetics of the lower limb joints including this spine joint. Joint angle ranges of motion, maximum joint moments and powers in the frontal plane as well as mechanical work were calculated and averaged within groups showing prominent differences between groups in all parameters. To the best of our knowledge, this is the first work explicitly looking into the kinetics of Duchenne gait in patients with CP, clinically known as compensation for unloading hip abductor muscles. The results show that excessive lateral trunk motion may indeed be an extremely effective compensation mechanism to unload the hip abductors in single limb stance but for the price of a drastic increase in demand on trunk muscle effort and work. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Geological interpretation of combined Seabeam, Gloria and seismic data from Anegada Passage (Virgin Islands, north Caribbean)

    USGS Publications Warehouse

    Jany, I.; Scanlon, Kathryn M.; Mauffret, A.

    1990-01-01

    The Anegada Passage (sensu lato) includes several basins and ridges from Southeast of Puerto Rico to the corner of the Virgin Islands Platform. Seabeam (Seacarib I) and Gloria long-range sidescan sonar surveys were carried out in this area. These new data allow us to propose an interpretation of the Anegada Passage. Most of the features described are related to wrench faulting: (a) St Croix and Virgin Islands Basins are pull-apart basins created in a right-lateral strike-slip environment based on their rhomboidal shape and seismic data (e.g. the flower structure). These two pull-aparts are divided into two sub-basins by a curvilinear normal fault in the Virgin Islands Basin and a right-lateral strike-slip fault in the St Croix Basin. (b) Tortola Ridge and a 'dog's leg' shaped structure are inferred to be restraining bends between two right-lateral strike-slip faults. (c) We identified two ENE-WSW volcanic lineaments in the eastern area and one volcano lying between Virgin Islands and St Croix Basins. (d) As shown by the seismic activity main wrench motion occurs along the north slope of Virgin Islands Basin and through Anegada Passage. A branching of this main fault transmits the transtensional motion to St Croix Basin. A two-stage story is proposed for the creation of the basins. A first extensional event during Eocene(?)-Oligocene-lower Miocene time created Virgin Islands, St Croix Basins and the tilted blocks of St Croix Ridge. A second transtensional event from Pliocene to Recent gave the present day pattern to this area. However, the displacement along the strike-slip faults is no more than 15 km long. The proposed geodynamic model is based on the separation of the northeastern Caribbean boundary into two blocks. In the West, the indenter of Beata Ridge gives a northeastern motion to Hispaniola Block. In the East, as a result of Hispaniola Block's motion, the Puerto Rico-Virgin Islands Block could escape in an east-northeast direction. 

  15. Attainment rate as a surrogate indicator of the intervertebral neutral zone length in lateral bending: an in vitro proof of concept study.

    PubMed

    Breen, Alexander C; Dupac, Mihai; Osborne, Neil

    2015-01-01

    Lumbar segmental instability is often considered to be a cause of chronic low back pain. However, defining its measurement has been largely limited to laboratory studies. These have characterised segmental stability as the intrinsic resistance of spine specimens to initial bending moments by quantifying the dynamic neutral zone. However these measurements have been impossible to obtain in vivo without invasive procedures, preventing the assessment of intervertebral stability in patients. Quantitative fluoroscopy (QF), measures the initial velocity of the attainment of intervertebral rotational motion in patients, which may to some extent be representative of the dynamic neutral zone. This study sought to explore the possible relationship between the dynamic neutral zone and intervertebral rotational attainment rate as measured with (QF) in an in vitro preparation. The purpose was to find out if further work into this concept is worth pursuing. This study used passive recumbent QF in a multi-segmental porcine model. This assessed the intrinsic intervertebral responses to a minimal coronal plane bending moment as measured with a digital force guage. Bending moments about each intervertebral joint were calculated and correlated with the rate at which global motion was attained at each intervertebral segment in the first 10° of global motion where the intervertebral joint was rotating. Unlike previous studies of single segment specimens, a neutral zone was found to exist during lateral bending. The initial attainment rates for left and right lateral flexion were comparable to previously published in vivo values for healthy controls. Substantial and highly significant levels of correlation between initial attainment rate and neutral zone were found for left (Rho = 0.75, P = 0.0002) and combined left-right bending (Rho = 0.72, P = 0.0001) and moderate ones for right alone (Rho = 0.55, P = 0.0012). This study found good correlation between the initial intervertebral attainment rate and the dynamic neutral zone, thereby opening the possibility to detect segmental instability from clinical studies. However the results must be treated with caution. Further studies with multiple specimens and adding sagittal plane motion are warranted.

  16. Active Tectonics of the Iran Plateau and South Caspian Basin

    NASA Astrophysics Data System (ADS)

    Priestely, K.; Jackson, J.; Maggi, A.; Talebian, M.; Walker, R.

    2002-12-01

    We use observations of surface faulting, well-constrained earthquake focal mechanisms and centroid depths, and velocity structure to investigate the present-day deformation and kinematics of the region. Current deformation is primarily concentrated in three seismically active belts: the Zagros Mountains of southwest Iran,the Talesh-Alborz-Kopeh Dag Mountains of northern Iran, and the Apsheron-Balkhan Sill in the central Caspian Sea. These belts are separated by seismically inactive regions that act as semi-rigid blocks. The extent to which the active shortening is divided between the three belts is still uncertain. Earthquake locations in the region, particularly their focal depths which are determined from teleseismic arrival times, are poor, and reported subcrustal earthquakes have been cited as evidence for present-day subduction beneath the Zagros. A detailed analysis of earthquake focal depths in the Zagros and elsewhere in the region confirms that no substantial subcrustal earthquakes occur in this part of the Middle East except beneath the Makran subduction zone in the south and the Apsheron-Balkhan Sill in the north. The present-day N-S deformation across the Zagros is partitioned with right-lateral, strike-slip motion on the NW-SE striking Main Recent Fault, and NE-SW shortening across the Zagros. Shortening in the Zagros is accommodated by folding in the sediments (0-10 km depth), moderate earthquakes on high-angle reverse faults striking parallel to the surface folds (~10-20 km depth), and aseismic thickening of the lower crust (~20-45 km depth). The south Caspian basin is essentially free of earthquakes and acts as a rigid block which strongly influences the nature of the deformation in the surrounding active belts. No significant subcrustal earthquakes occur in the Talesh, Alborz, or Kopeh Dag Mountains which bound the northeast, south and west sides of the south Caspian basin, but substantial subcrustal seismicity occurs beneath the Apsheron-Balkhan Sill on the north side of the basin. Earthquakes in the Kopeh Dag occur primarily on reverse or right-lateral strike-slip, NW trending faults. The Kopeh Dag structures continue to the NW towards the Apsheron-Balkhan Sill but become increasingly buried by sediment. Focal mechanisms of earthquakes in the Alborz show either reverse motion or left-lateral strike-slip motion on faults parallel to the regional strike of the belt. Earthquakes in the Talesh indicate thrusting on almost flat faults at depths of 15-26 km with slip vectors directed towards the Caspian. We believe that the subcrustal earthquakes occurring beneath the Apsheron-Balkhan Sill indicate the onset of subduction of the high velocity (high density) south Caspian crust beneath the continental crust of the central Caspian. The conjugate right-lateral and left-lateral components in the Kopeh Dag and eastern Alborz suggest that the South Caspian Basin has a westward component of motion relative to both Eurasia and Iran. This motion enhances westward underthrusting of the basin beneath the Talesh Mountains of Iran and Azerbaijan.

  17. Global motion perception in children with amblyopia as a function of spatial and temporal stimulus parameters.

    PubMed

    Meier, Kimberly; Sum, Brian; Giaschi, Deborah

    2016-10-01

    Global motion sensitivity in typically developing children depends on the spatial (Δx) and temporal (Δt) displacement parameters of the motion stimulus. Specifically, sensitivity for small Δx values matures at a later age, suggesting it may be the most vulnerable to damage by amblyopia. To explore this possibility, we compared motion coherence thresholds of children with amblyopia (7-14years old) to age-matched controls. Three Δx values were used with two Δt values, yielding six conditions covering a range of speeds (0.3-30deg/s). We predicted children with amblyopia would show normal coherence thresholds for the same parameters on which 5-year-olds previously demonstrated mature performance, and elevated coherence thresholds for parameters on which 5-year-olds demonstrated immaturities. Consistent with this, we found that children with amblyopia showed deficits with amblyopic eye viewing compared to controls for small and medium Δx values, regardless of Δt value. The fellow eye showed similar results at the smaller Δt. These results confirm that global motion perception in children with amblyopia is particularly deficient at the finer spatial scales that typically mature later in development. An additional implication is that carefully designed stimuli that are adequately sensitive must be used to assess global motion function in developmental disorders. Stimulus parameters for which performance matures early in life may not reveal global motion perception deficits. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Location of deeply buried, offshore Mesozoic transform fault along the western margin of the Gulf of Mexico inferred from gravity and magnetic data

    NASA Astrophysics Data System (ADS)

    Nguyen, L. C.; Mann, P.; Bird, D. E.

    2013-12-01

    Several workers have proposed that a Jurassic age, 500-km-long, right-lateral transform fault along the western margin of the Gulf of Mexico, possibly extending southward and onshore for another 500 km onto the isthmus area of southern Mexico, was formed as the ocean basin opened. This proposed transform fault plays a critical role in the most widely accepted tectonic model for the Mesozoic opening of the Gulf of Mexico by a ~40 degree, CCW rotation of the Yucatan block about a pole near southern Florida. Previously proposed names for the fault include the Tamaulipas-Chiapas transform fault and the Western Main transform fault for the offshore fault and the Orizaba transform fault for the southern, onland continuation of the fault into southern Mexico. There are few direct geologic or geophysical observations on the location or characteristics of the proposed offshore transform because it is buried beneath an over 10-km-thick sedimentary wedge along the continental margin of eastern Mexico. To better define this offshore fault, we identify a 500-km-long, 40-km-wide gravity anomaly, concentric with, and located about 60-70 km off the eastern coast of Mexico. Two east-west 200/1200-km-long gravity models constructed to cross the anomaly at right angles are parallel to existing multi-channel seismic lines with age-correlated stratigraphy. Both gravity models reveal an abrupt crustal thickness change beneath the gravity anomaly: from 27 km to 12 km over a distance of 65 km in the southern profile, and from 23 km to 16 km over a distance of 30 km in northern profile. The linearity of the anomaly in map view combined with the abrupt change in thickness inferred from gravity modeling is consistent with the tectonic origin of a right-lateral transform fault separating continental rocks of Mexico from Mesozoic seafloor produced by the opening of the Gulf of Mexico. Magnetic profiles were analyzed using a Werner depth-to-magnetic source technique, coincident with the gravity models, estimate the depth to top of crystalline basement for the northern (9 km) and southern (11 km) transects. Subsidence analysis along both transects shows that sedimentation rates sharply peaked during the Laramide orogeny in the latest Cretaceous-Eocene, but otherwise conform to steady thermal subsidence of oceanic crust in the deep Gulf of Mexico that formed during the Jurassic CCW rotation of the Yucatan block. The more precisely defined offshore fault aligns well with the onland right-lateral Orizaba transform fault of southern Mexico that is thought to have been active in Mesozoic time.

  19. Intrafractional gastric motion and interfractional stomach deformity during radiation therapy.

    PubMed

    Watanabe, Miho; Isobe, Koichi; Takisima, Haduki; Uno, Takashi; Ueno, Naoyuki; Kawakami, Hiroyuki; Shigematsu, Naoyuki; Yamashita, Miki; Ito, Hisao

    2008-06-01

    To evaluate intrafractional gastric motion and interfractional variability of the stomach shape during radiation therapy (RT) for gastric lymphoma. For 11 patients with gastric lymphomas, we undertook fluoroscopic examinations at the time of the simulation, and once a week during RT to evaluate inter- and intrafractional gastric variations. We recorded anteroposterior and left to right X-ray images at inhale and exhale in each examination. We gave coordinates based on the bony landmarks in each patient, and identified the most superior, inferior, lateral, ventral, and dorsal points of the stomach on each film. The interfractional motion was assessed as the distance between a point at inhale and the corresponding point at exhale. We also analyzed interfractional variation based on each point measured. The intrafractional gastric motion was 11.7+/-8.3, 11.0+/-7.1, 6.5+/-6.5, 3.4+/-2.3, 7.1+/-8.2, 6.6+/-5.8mm (mean+/-SD) for the superior, inferior, right, left, ventral and dorsal points, respectively, which was significantly different between each point. The interfractional variability of stomach filling was -2.9+/-14.4, -6.0+/-13.4, 9.3+/-22.0mm for the superior-inferior (SI), lateral (LAT), and ventro-dorsal (VD) directions, respectively, and the differences of variabilities were also statistically significant. Thus, the appropriate treatment margins calculated from both systematic and random errors are 30.3, 41.0, and 50.8mm for the SI, LAT, and ventro-dorsal directions, respectively. Both intrafractional gastric motion and interfractional variability of the stomach shape were considerable during RT. We recommend regular verification of gastric movement and shape before and during RT to individualize treatment volume.

  20. Changes in sitting posture induce multiplanar changes in chest wall shape and motion with breathing.

    PubMed

    Lee, Linda-Joy; Chang, Angela T; Coppieters, Michel W; Hodges, Paul W

    2010-03-31

    This study examined the effect of sitting posture on regional chest wall shape in three dimensions, chest wall motion (measured with electromagnetic motion analysis system), and relative contributions of the ribcage and abdomen to tidal volume (%RC/V(t)) (measured with inductance plethysmography) in 7 healthy volunteers. In seven seated postures, increased dead space breathing automatically increased V(t) (to 1.5 V(t)) to match volume between conditions and study the effects of posture independent of volume changes. %RC/V(t) (p<0.05), chest wall shape (p<0.05) and motion during breathing differed between postures. Compared to a reference posture, movement at the 9th rib lateral diameter increased in the thoracolumbar extension posture (p<0.008). In slumped posture movement at the AP diameters at T1 and axilla increased (p<0.00001). Rotation postures decreased movement in the lateral diameter at the axilla (p<0.0007). The data show that single plane changes in sitting posture alter three-dimensional ribcage configuration and chest wall kinematics during breathing, while maintaining constant respiratory function. Copyright 2010 Elsevier B.V. All rights reserved.

  1. Validity and intra-rater reliability of an android phone application to measure cervical range-of-motion.

    PubMed

    Quek, June; Brauer, Sandra G; Treleaven, Julia; Pua, Yong-Hao; Mentiplay, Benjamin; Clark, Ross Allan

    2014-04-17

    Concurrent validity and intra-rater reliability using a customized Android phone application to measure cervical-spine range-of-motion (ROM) has not been previously validated against a gold-standard three-dimensional motion analysis (3DMA) system. Twenty-one healthy individuals (age:31 ± 9.1 years, male:11) participated, with 16 re-examined for intra-rater reliability 1-7 days later. An Android phone was fixed on a helmet, which was then securely fastened on the participant's head. Cervical-spine ROM in flexion, extension, lateral flexion and rotation were performed in sitting with concurrent measurements obtained from both a 3DMA system and the phone.The phone demonstrated moderate to excellent (ICC = 0.53-0.98, Spearman ρ = 0.52-0.98) concurrent validity for ROM measurements in cervical flexion, extension, lateral-flexion and rotation. However, cervical rotation demonstrated both proportional and fixed bias. Excellent intra-rater reliability was demonstrated for cervical flexion, extension and lateral flexion (ICC = 0.82-0.90), but poor for right- and left-rotation (ICC = 0.05-0.33) using the phone. Possible reasons for the outcome are that flexion, extension and lateral-flexion measurements are detected by gravity-dependent accelerometers while rotation measurements are detected by the magnetometer which can be adversely affected by surrounding magnetic fields. The results of this study demonstrate that the tested Android phone application is valid and reliable to measure ROM of the cervical-spine in flexion, extension and lateral-flexion but not in rotation likely due to magnetic interference. The clinical implication of this study is that therapists should be mindful of the plane of measurement when using the Android phone to measure ROM of the cervical-spine.

  2. Validity and intra-rater reliability of an Android phone application to measure cervical range-of-motion

    PubMed Central

    2014-01-01

    Background Concurrent validity and intra-rater reliability using a customized Android phone application to measure cervical-spine range-of-motion (ROM) has not been previously validated against a gold-standard three-dimensional motion analysis (3DMA) system. Findings Twenty-one healthy individuals (age:31 ± 9.1 years, male:11) participated, with 16 re-examined for intra-rater reliability 1–7 days later. An Android phone was fixed on a helmet, which was then securely fastened on the participant’s head. Cervical-spine ROM in flexion, extension, lateral flexion and rotation were performed in sitting with concurrent measurements obtained from both a 3DMA system and the phone. The phone demonstrated moderate to excellent (ICC = 0.53-0.98, Spearman ρ = 0.52-0.98) concurrent validity for ROM measurements in cervical flexion, extension, lateral-flexion and rotation. However, cervical rotation demonstrated both proportional and fixed bias. Excellent intra-rater reliability was demonstrated for cervical flexion, extension and lateral flexion (ICC = 0.82-0.90), but poor for right- and left-rotation (ICC = 0.05-0.33) using the phone. Possible reasons for the outcome are that flexion, extension and lateral-flexion measurements are detected by gravity-dependent accelerometers while rotation measurements are detected by the magnetometer which can be adversely affected by surrounding magnetic fields. Conclusion The results of this study demonstrate that the tested Android phone application is valid and reliable to measure ROM of the cervical-spine in flexion, extension and lateral-flexion but not in rotation likely due to magnetic interference. The clinical implication of this study is that therapists should be mindful of the plane of measurement when using the Android phone to measure ROM of the cervical-spine. PMID:24742001

  3. Visual processing in the central bee brain.

    PubMed

    Paulk, Angelique C; Dacks, Andrew M; Phillips-Portillo, James; Fellous, Jean-Marc; Gronenberg, Wulfila

    2009-08-12

    Visual scenes comprise enormous amounts of information from which nervous systems extract behaviorally relevant cues. In most model systems, little is known about the transformation of visual information as it occurs along visual pathways. We examined how visual information is transformed physiologically as it is communicated from the eye to higher-order brain centers using bumblebees, which are known for their visual capabilities. We recorded intracellularly in vivo from 30 neurons in the central bumblebee brain (the lateral protocerebrum) and compared these neurons to 132 neurons from more distal areas along the visual pathway, namely the medulla and the lobula. In these three brain regions (medulla, lobula, and central brain), we examined correlations between the neurons' branching patterns and their responses primarily to color, but also to motion stimuli. Visual neurons projecting to the anterior central brain were generally color sensitive, while neurons projecting to the posterior central brain were predominantly motion sensitive. The temporal response properties differed significantly between these areas, with an increase in spike time precision across trials and a decrease in average reliable spiking as visual information processing progressed from the periphery to the central brain. These data suggest that neurons along the visual pathway to the central brain not only are segregated with regard to the physical features of the stimuli (e.g., color and motion), but also differ in the way they encode stimuli, possibly to allow for efficient parallel processing to occur.

  4. Emotional and movement-related body postures modulate visual processing

    PubMed Central

    Borhani, Khatereh; Làdavas, Elisabetta; Maier, Martin E.; Avenanti, Alessio

    2015-01-01

    Human body postures convey useful information for understanding others’ emotions and intentions. To investigate at which stage of visual processing emotional and movement-related information conveyed by bodies is discriminated, we examined event-related potentials elicited by laterally presented images of bodies with static postures and implied-motion body images with neutral, fearful or happy expressions. At the early stage of visual structural encoding (N190), we found a difference in the sensitivity of the two hemispheres to observed body postures. Specifically, the right hemisphere showed a N190 modulation both for the motion content (i.e. all the observed postures implying body movements elicited greater N190 amplitudes compared with static postures) and for the emotional content (i.e. fearful postures elicited the largest N190 amplitude), while the left hemisphere showed a modulation only for the motion content. In contrast, at a later stage of perceptual representation, reflecting selective attention to salient stimuli, an increased early posterior negativity was observed for fearful stimuli in both hemispheres, suggesting an enhanced processing of motivationally relevant stimuli. The observed modulations, both at the early stage of structural encoding and at the later processing stage, suggest the existence of a specialized perceptual mechanism tuned to emotion- and action-related information conveyed by human body postures. PMID:25556213

  5. Total knee replacement with natural rollback.

    PubMed

    Wachowski, Martin Michael; Walde, Tim Alexander; Balcarek, Peter; Schüttrumpf, Jan Philipp; Frosch, Stephan; Stauffenberg, Caspar; Frosch, Karl-Heinz; Fiedler, Christoph; Fanghänel, Jochen; Kubein-Meesenburg, Dietmar; Nägerl, Hans

    2012-03-20

    A novel class of total knee replacement (AEQUOS G1) is introduced which features a unique design of the articular surfaces. Based on the anatomy of the human knee and differing from all other prostheses, the lateral tibial "plateau" is convexly curved and the lateral femoral condyle is posteriorly shifted in relation to the medial femoral condyle. Under compressive forces the configuration of the articular surfaces of human knees constrains the relative motion of femur and tibia in flexion/extension. This constrained motion is equivalent to that of a four-bar linkage, the virtual 4 pivots of which are given by the centres of curvature of the articulating surfaces. The dimensions of the four-bar linkage were optimized to the effect that constrained motion of the total knee replacement (TKR) follows the flexional motion of the human knee in close approximation, particularly during gait. In pilot studies lateral X-ray pictures have demonstrated that AEQUOS G1 can feature the natural rollback in vivo. Rollback relieves the load of the patello-femoral joint and minimizes retropatellar pressure. This mechanism should reduce the prevalence of anterior knee pain. The articulating surfaces roll predominantly in the stance phase. Consequently sliding friction is replaced by the lesser rolling friction under load. Producing rollback should minimize material wear due to friction and maximize the lifetime of the prosthesis. To definitely confirm these theses one has to wait for the long term results. Copyright © 2011 Elsevier GmbH. All rights reserved.

  6. An appraisal of the Functional Movement Screen™ grading criteria--Is the composite score sensitive to risky movement behavior?

    PubMed

    Frost, David M; Beach, Tyson A C; Campbell, Troy L; Callaghan, Jack P; McGill, Stuart M

    2015-11-01

    To examine the relationship between the composite Functional Movement Screen (FMS) score and performers' spine and frontal plane knee motion. Examined the spine and frontal plane knee motion exhibited by performers who received high (>14) and low (<14) composite FMS scores. Participants' body motions were quantified while they performed the FMS. Biomechanics laboratory. Twelve men who received composite FMS scores greater than 14 were assigned to a high-scoring group. Twelve age-, height- and weight-matched men with FMS scores below 14 were assigned to a low-scoring group. Composite FMS scores and peak lumbar spine flexion/extension, lateral bend and axial twist, and left and right frontal plane knee motion. Significant differences (p < 0.05) and large effect sizes (>0.8) were noted between the high- and low-scoring groups when performing the FMS tasks; high-scorers employed less spine and frontal plane knee motion. Substantial variation was also observed amongst participants. Participants with high composite FMS scores exhibited less spine and frontal plane knee motion while performing the FMS in comparison to their low-scoring counterparts. However, because substantial variation was observed amongst performers, the FMS may not provide the specificity needed for individualized injury risk assessment and exercise prescription. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Right Ventricular Strain, Torsion, and Dyssynchrony in Healthy Subjects using 3D Spiral Cine DENSE Magnetic Resonance Imaging

    PubMed Central

    Suever, Jonathan D; Wehner, Gregory J; Jing, Linyuan; Powell, David K; Hamlet, Sean M; Grabau, Jonathan D; Mojsejenko, Dimitri; Andres, Kristin N; Haggerty, Christopher M; Fornwalt, Brandon K

    2017-01-01

    Mechanics of the left ventricle (LV) are important indicators of cardiac function. The role of right ventricular (RV) mechanics is largely unknown due to the technical limitations of imaging its thin wall and complex geometry and motion. By combining 3D Displacement Encoding with Stimulated Echoes (DENSE) with a post-processing pipeline that includes a local coordinate system, it is possible to quantify RV strain, torsion, and synchrony. In this study, we sought to characterize RV mechanics in 50 healthy individuals and compare these values to their LV counterparts. For each cardiac frame, 3D displacements were fit to continuous and differentiable radial basis functions, allowing for the computation of the 3D Cartesian Lagrangian strain tensor at any myocardial point. The geometry of the RV was extracted via a surface fit to manually delineated endocardial contours. Throughout the RV, a local coordinate system was used to transform from a Cartesian strain tensor to a polar strain tensor. It was then possible to compute peak RV torsion as well as peak longitudinal and circumferential strain. A comparable analysis was performed for the LV. Dyssynchrony was computed from the standard deviation of regional activation times. Global circumferential strain was comparable between the RV and LV (−18.0% for both) while longitudinal strain was greater in the RV (−18.1% vs. −15.7%). RV torsion was comparable to LV torsion (6.2 vs. 7.1 degrees, respectively). Regional activation times indicated that the RV contracted later but more synchronously than the LV. 3D spiral cine DENSE combined with a post–processing pipeline that includes a local coordinate system can resolve both the complex geometry and 3D motion of the RV. PMID:28055859

  8. Episodic Rifting Events Within the Tjörnes Fracture Zone, an Onshore-Offshore Ridge-Transform in N-Iceland

    NASA Astrophysics Data System (ADS)

    Brandsdottir, B.; Magnusdottir, S.; Karson, J. A.; Detrick, R. S.; Driscoll, N. W.

    2015-12-01

    The multi-branched plate boundary across Iceland is made up of divergent and oblique rifts, and transform zones, characterized by entwined extensional and transform tectonics. The Tjörnes Fracture Zone (TFZ), located on the coast and offshore Northern Iceland, is a complex transform linking the northern rift zone (NVZ) on land with the Kolbeinsey Ridge offshore. Extension across TFZ is partitioned across three N-S trending rift basins; Eyjafjarðaráll, Skjálfandadjúp (SB) and Öxarfjörður and three WNW-NW oriented seismic lineaments; the Grímsey Oblique Rift, Húsavík-Flatey Faults (HFFs) and Dalvík Lineament. We compile the tectonic framework of the TFZ ridge-transform from aerial photos, satellite images, multibeam bathymetry and high-resolution seismic reflection data (Chirp). The rift basins are made up of normal faults with vertical displacements of up to 50-60 m, and post-glacial sediments of variable thickness. The SB comprises N5°W obliquely trending, eastward dipping normal faults as well as N10°E striking, westward dipping faults oriented roughly perpendicular to the N104°E spreading direction, indicative of early stages of rifting. Correlation of Chirp reflection data and tephrachronology from a sediment core within SB reveal major rifting episodes between 10-12.1 kyrs BP activating the whole basin, followed by smaller-scale fault movements throughout Holocene. Onshore faults have the same orientations as those mapped offshore and provide a basis for the interpretation of the kinematics of the faults throughout the region. These include transform parallel right-lateral, strike-slip faults separating domains dominated by spreading parallel left-lateral bookshelf faults. Shearing is most prominent along the HFFs, a system of right-lateral strike-slip faults with vertical displacement up to 15 m. Vertical fault movements reflect increased tectonic activity during early postglacial time coinciding with isostatic rebound enhancing volcanism within Iceland.

  9. Common Neural Mechanisms Underlying Reversal Learning by Reward and Punishment

    PubMed Central

    Xue, Gui; Xue, Feng; Droutman, Vita; Lu, Zhong-Lin; Bechara, Antoine; Read, Stephen

    2013-01-01

    Impairments in flexible goal-directed decisions, often examined by reversal learning, are associated with behavioral abnormalities characterized by impulsiveness and disinhibition. Although the lateral orbital frontal cortex (OFC) has been consistently implicated in reversal learning, it is still unclear whether this region is involved in negative feedback processing, behavioral control, or both, and whether reward and punishment might have different effects on lateral OFC involvement. Using a relatively large sample (N = 47), and a categorical learning task with either monetary reward or moderate electric shock as feedback, we found overlapping activations in the right lateral OFC (and adjacent insula) for reward and punishment reversal learning when comparing correct reversal trials with correct acquisition trials, whereas we found overlapping activations in the right dorsolateral prefrontal cortex (DLPFC) when negative feedback signaled contingency change. The right lateral OFC and DLPFC also showed greater sensitivity to punishment than did their left homologues, indicating an asymmetry in how punishment is processed. We propose that the right lateral OFC and anterior insula are important for transforming affective feedback to behavioral adjustment, whereas the right DLPFC is involved in higher level attention control. These results provide insight into the neural mechanisms of reversal learning and behavioral flexibility, which can be leveraged to understand risky behaviors among vulnerable populations. PMID:24349211

  10. Common neural mechanisms underlying reversal learning by reward and punishment.

    PubMed

    Xue, Gui; Xue, Feng; Droutman, Vita; Lu, Zhong-Lin; Bechara, Antoine; Read, Stephen

    2013-01-01

    Impairments in flexible goal-directed decisions, often examined by reversal learning, are associated with behavioral abnormalities characterized by impulsiveness and disinhibition. Although the lateral orbital frontal cortex (OFC) has been consistently implicated in reversal learning, it is still unclear whether this region is involved in negative feedback processing, behavioral control, or both, and whether reward and punishment might have different effects on lateral OFC involvement. Using a relatively large sample (N = 47), and a categorical learning task with either monetary reward or moderate electric shock as feedback, we found overlapping activations in the right lateral OFC (and adjacent insula) for reward and punishment reversal learning when comparing correct reversal trials with correct acquisition trials, whereas we found overlapping activations in the right dorsolateral prefrontal cortex (DLPFC) when negative feedback signaled contingency change. The right lateral OFC and DLPFC also showed greater sensitivity to punishment than did their left homologues, indicating an asymmetry in how punishment is processed. We propose that the right lateral OFC and anterior insula are important for transforming affective feedback to behavioral adjustment, whereas the right DLPFC is involved in higher level attention control. These results provide insight into the neural mechanisms of reversal learning and behavioral flexibility, which can be leveraged to understand risky behaviors among vulnerable populations.

  11. Pleomorphic adenoma of a deep orbital ectopic lacrimal gland.

    PubMed

    Misra, Somen; Bhandari, Akshay; Misra, Neeta; Gogri, Pratik; Mahajan, Shruti

    2016-10-01

    Ectopic lacrimal gland, being one of the choristomas, is comprised of lacrimal gland tissue outside the lacrimal gland fossa in the fronto-lateral part of the orbital roof. Ectopic lacrimal gland is a rare condition where the gland may be found in the orbit, eyelids, ocular adnexa or within the globe. Neoplastic transformation of such tissue may occur. A sixty-two-year old male patient presented with right eye proptosis and slight nasal displacement of the globe. Computerized tomography scan revealed a well-defined hypodense lesion of size 19 x 18 x 20 mm supero-lateral to lateral rectus muscle, with mild proptosis and thinning of the right lateral orbital wall. Excisional biopsy was performed through a lateral orbitotomy approach. A well circumscribed globular mass was removed from the right orbit, well behind the fossa for the lacrimal gland in the retrobulbar space. Histopathology was suggestive of pleomorphic adenoma of lacrimal gland. Pleomorphic adenoma is an epithelial tumor of the lacrimal gland which is extremely rare from an ectopic lacrimal gland and only few cases have been reported in literature till date.

  12. Influence of ultrasound speckle tracking strategies for motion and strain estimation.

    PubMed

    Curiale, Ariel H; Vegas-Sánchez-Ferrero, Gonzalo; Aja-Fernández, Santiago

    2016-08-01

    Speckle Tracking is one of the most prominent techniques used to estimate the regional movement of the heart based on ultrasound acquisitions. Many different approaches have been proposed, proving their suitability to obtain quantitative and qualitative information regarding myocardial deformation, motion and function assessment. New proposals to improve the basic algorithm usually focus on one of these three steps: (1) the similarity measure between images and the speckle model; (2) the transformation model, i.e. the type of motion considered between images; (3) the optimization strategies, such as the use of different optimization techniques in the transformation step or the inclusion of structural information. While many contributions have shown their good performance independently, it is not always clear how they perform when integrated in a whole pipeline. Every step will have a degree of influence over the following and hence over the final result. Thus, a Speckle Tracking pipeline must be analyzed as a whole when developing novel methods, since improvements in a particular step might be undermined by the choices taken in further steps. This work presents two main contributions: (1) We provide a complete analysis of the influence of the different steps in a Speckle Tracking pipeline over the motion and strain estimation accuracy. (2) The study proposes a methodology for the analysis of Speckle Tracking systems specifically designed to provide an easy and systematic way to include other strategies. We close the analysis with some conclusions and recommendations that can be used as an orientation of the degree of influence of the models for speckle, the transformation models, interpolation schemes and optimization strategies over the estimation of motion features. They can be further use to evaluate and design new strategy into a Speckle Tracking system. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Airplane stability calculations with a card programmable pocket calculator

    NASA Technical Reports Server (NTRS)

    Sherman, W. L.

    1978-01-01

    Programs are presented for calculating airplane stability characteristics with a card programmable pocket calculator. These calculations include eigenvalues of the characteristic equations of lateral and longitudinal motion as well as stability parameters such as the time to damp to one-half amplitude or the damping ratio. The effects of wind shear are included. Background information and the equations programmed are given. The programs are written for the International System of Units, the dimensional form of the stability derivatives, and stability axes. In addition to programs for stability calculations, an unusual and short program is included for the Euler transformation of coordinates used in airplane motions. The programs have been written for a Hewlett Packard HP-67 calculator. However, the use of this calculator does not constitute an endorsement of the product by the National Aeronautics and Space Administration.

  14. The Evolution of the Tethysides during the Medial to Late Triassic

    NASA Astrophysics Data System (ADS)

    Saǧdıç, Nurbike G.; Celâl Şengör, A. M.

    2016-04-01

    The Triassic is a time of widespread rifting within the future Alpides of the circum-Mediterranean countries. However, this rifting had little to do with the later, Sinemurian-Hettangian rifting that penetrated the Tethyan realm from the Atlantic Ocean. The eastern part of the rifting occurred south of the Palaeo-Tethys and seems to have been related to stretching above its extensional arc. Evidence for his stretching is seen in the Karakaya-Pelagonian-Pindos- Meliata-Hallstatt zones and the Eastern Mediterranean. The Eastern Mediterranean is separated from the other extensional zones by a Mikrasian continental fragment that had begun separating from Gondwana-Land already during the Permian. The rifting propagated eastward along the Carpathians (Transylvanian Nappes) and the Eastern and the Southern Alps from where it entered the future Provençal chains and finally the Pyrenees where evaporites were laid down in extensional basins. In the south, an area of rifting went from the Eastern Mediterranean into the High Atlas thus delimiting an Iberapulian continental fragment. The Iberapulian fragment became divided into an Iberian and an Apulian parts later during the Hettangian-Sinemurian rifting that also invaded the earlier extensional areas in the Atlas. The extension directions during the medial and late Triassic are controlled by the tectonics of the eastern end of the Palaeo-Tethys. Along its northern margin, i.e., along the Scythides, right-lateral motion dominated. Along the northern margin of the Mikrasian fragment subduction was nearly head-on (slightly oblique so as to impose a slight right-lateral motion along the arc), but the stretching along the Karakaya rift zones was probably orthogonal because of the similarly orthogonal stretching in the Eastern Mediterrarean. The kinematics is dependent on what sort of motion is imposed onto the Palaeo-Tethyan plate (s) along its (their) northern margin and the direction of stretching in the Eastern Mediterranean. The rifting in areas farther west may have been a consequence of the origin of secondary shear structures along the Mikrasian and Iberapulian fragments. The Italian rifts, such as the Lagonegro and the Sclafani seem to have resulted from a similar process. Plate kinematics, as reconstructed, imposes a slight right-lateral motion onto the East Alpine/Southern Alpine areas. It is remarkable how independent the later Jurassic rifting seems to have been. It avoided in many places the former regions of stretching and opened new avenues of rifting for itself. One wonders whether the lithosphere in the older areas of rifting had recovered sufficiently to pose a hindernis to fracturing or whether the newer rifting followed older, Hercynian zones of deformation. For the time being we favour the second alternative as the time between the Triassic rifting and the Jurassic rifting seems insufficient to allow the lithosphere to recover to build sufficient strength.

  15. Spine lateral flexion strength development differences between exercises with pelvic stabilization and without pelvic stabilization

    NASA Astrophysics Data System (ADS)

    Straton, Alexandru; Gidu, Diana Victoria; Micu, Alexandru

    2015-02-01

    Poor lateral flexor muscle strength can be an important source of lumbar/thoracic back pain in women. The purpose of this study was to evaluate pelvic stabilization (PS) and no pelvic stabilization (NoPS) lateral flexion strength exercise training on the development of isolated right and left lateral flexion strength. Isometric torque of the isolated right and left lateral flexion muscles was measured at two positions (0° and 30° opposed angle range of motion) on 42 healthy women before and after 8 weeks of PS and NoPS lateral flexion strength exercise training. Subjects were assigned in three groups, the first (n=14) trained 3 times/week with PS lateral flexion strength exercise, the second (n=14) trained 3 times/week with NoPS lateral flexion strength exercise and the third (control, n=14) did not train. Post training isometric strength values describing PS and NoPS lateral flexion strength improved in greater extent for the PS lateral flexion strength exercise group and in lesser extent for the NoPS lateral flexion strength exercise group, in both angles (p<0.05) relative to controls. These data indicate that the most effective way of training the spine lateral flexion muscles is PS lateral flexion strength exercises; NoPS lateral flexion strength exercises can be an effective way of training for the spine lateral flexion muscles, if there is no access to PS lateral flexion strength training machines.

  16. Summary of transformation equations and equations of motion used in free flight and wind tunnel data reduction and analysis

    NASA Technical Reports Server (NTRS)

    Gainer, T. G.; Hoffman, S.

    1972-01-01

    Basic formulations for developing coordinate transformations and motion equations used with free-flight and wind-tunnel data reduction are presented. The general forms presented include axes transformations that enable transfer back and forth between any of the five axes systems that are encountered in aerodynamic analysis. Equations of motion are presented that enable calculation of motions anywhere in the vicinity of the earth. A bibliography of publications on methods of analyzing flight data is included.

  17. Crustal strain near the Big Bend of the San Andreas Fault: Analysis of the Los Padres-Tehachapi Trilateration Networks, California

    NASA Astrophysics Data System (ADS)

    Eberhart-Phillips, Donna; Lisowski, Michael; Zoback, Mark D.

    1990-02-01

    In the region of the Los Padres-Tehachapi geodetic network, the San Andreas fault (SAF) changes its orientation by over 30° from N40°W, close to that predicted by plate motion for a transform boundary, to N73°W. The strain orientation near the SAF is consistent with right-lateral shear along the fault, with maximum shear rate of 0.38±0.01 μrad/yr at N63°W. In contrast, away from the SAF the strain orientations on both sides of the fault are consistent with the plate motion direction, with maximum shear rate of 0.19±0.01 μrad/yr at N44°W. The strain rate does not drop off rapidly away from the fault, and thus the area is fit by either a broad shear zone below the SAF or a single fault with a relatively deep locking depth. The fit to the line length data is poor for locking depth d less than 25 km. For d of 25 km a buried slip rate of 30 ± 6 mm/yr is estimated. We also estimated buried slip for models that included the Garlock and Big Pine faults, in addition to the SAF. Slip rates on other faults are poorly constrained by the Los Padres-Tehachapi network. The best fitting Garlock fault model had computed left-lateral slip rate of 11±2 mm/yr below 10 km. Buried left-lateral slip of 15±6 mm/yr on the Big Pine fault, within the Western Transverse Ranges, provides significant reduction in line length residuals; however, deformation there may be more complicated than a single vertical fault. A subhorizontal detachment on the southern side of the SAF cannot be well constrained by these data. We investigated the location of the SAF and found that a vertical fault below the surface trace fits the data much better than either a dipping fault or a fault zone located south of the surface trace.

  18. The effect of glenosphere diameter in reverse shoulder arthroplasty on muscle force, joint load, and range of motion.

    PubMed

    Langohr, G Daniel G; Giles, Joshua W; Athwal, George S; Johnson, James A

    2015-06-01

    Little is known about the effects of glenosphere diameter on shoulder joint loads. The purpose of this biomechanical study was to investigate the effects of glenosphere diameter on joint load, load angle, and total deltoid force required for active abduction and range of motion in internal/external rotation and abduction. A custom, instrumented reverse shoulder arthroplasty implant system capable of measuring joint load and varying glenosphere diameter (38 and 42 mm) and glenoid offset (neutral and lateral) was implanted in 6 cadaveric shoulders to provide at least 80% power for all variables. A shoulder motion simulator was used to produce active glenohumeral and scapulothoracic motion. All implant configurations were tested with active and passive motion with joint kinematics, loads, and moments recorded. At neutral and lateralized glenosphere positions, increasing diameter significantly increased joint load (+12 ± 21 N and +6 ± 9 N; P < .01) and deltoid load required for active abduction (+9 ± 22 N and +11 ± 15 N; P < .02), whereas joint load angle was unaffected (P > .8). Passive internal rotation was reduced with increased diameter at both neutral and lateralized glenosphere positions (-6° ± 6° and -12° ± 6°; P < .002); however, external rotation was not affected (P > .05). At neutral glenosphere position, increasing diameter increased the maximum angles of both adduction (+1° ± 1°; P = .03) and abduction (+8° ± 9°; P < .05). Lateralization also increased abduction range of motion compared with neutral (P < .01). Although increasing glenosphere diameter significantly increased joint load and deltoid force, the clinical impact of these changes is presently unclear. Internal rotation, however, was reduced, which contradicts previous bone modeling studies, which we postulate is due to increased posterior capsular tension as it is forced to wrap around a larger 42 mm implant assembly. Copyright © 2015 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  19. Parametric imaging of experimentally simulated Wolff-Parkinson-White syndrome conduction abnormalities in dogs: a concise communication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weismueller, P.H.; Henze, E.; Adam, W.E.

    1986-01-01

    In order to test the diagnostic potential of phase analysis of radionuclide ventriculography (RNV) for localizing accessory bundles in Wolff-Parkinson-White (WPW) syndrome, 24 experimental runs were performed in three open chest instrumented dogs. After a baseline study, WPW syndrome was simulated by stimulation at seven different sites around the base of the ventricles, and RNV's were obtained. Subsequent data processing including Fourier transformation allowed the localization of the site of the first inward motion of the ventricles by an isophasic wave display. In sinus rhythm, the septum contracted first. During ectopic premature ventricular stimulation by triggering the atrial signal, themore » phase scan was altered only when the stimulus was applied earlier than 20 ms before the expected QRS complex during sinus rhythm. During stimulation with fixed frequency, only the left lateral positions of the premature stimulation were detected by phase analysis with a sensitivity of 86%. Neither the antero- or posteroseptal nor the right ventricular premature contraction pattern could be exactly localized.« less

  20. Secondary Fracturing of Europa's Crust in Response to Combined Slip and Dilation Along Strike-Slip Faults

    NASA Technical Reports Server (NTRS)

    Kattenhorn, S. A.

    2003-01-01

    A commonly observed feature in faulted terrestrial rocks is the occurrence of secondary fractures alongside faults. Depending on exact morphology, such fractures have been termed tail cracks, wing cracks, kinks, or horsetail fractures, and typically form at the tip of a slipping fault or around small jogs or steps along a fault surface. The location and orientation of secondary fracturing with respect to the fault plane or the fault tip can be used to determine if fault motion is left-lateral or right-lateral.

  1. Biomechanical analysis of anterior versus posterior instrumentation following a thoracolumbar corpectomy: Laboratory investigation.

    PubMed

    Viljoen, Stephanus V; DeVries Watson, Nicole A; Grosland, Nicole M; Torner, James; Dalm, Brian; Hitchon, Patrick W

    2014-10-01

    The objective of this study was to evaluate the biomechanical properties of lateral instrumentation compared with short- and long-segment pedicle screw constructs following an L-1 corpectomy and reconstruction with an expandable cage. Eight human cadaveric T10-L4 spines underwent an L-1 corpectomy followed by placement of an expandable cage. The spines then underwent placement of lateral instrumentation consisting of 4 monoaxial screws and 2 rods with 2 cross-connectors, short-segment pedicle screw fixation involving 1 level above and below the corpectomy, and long-segment pedicle screw fixation (2 levels above and below). The order of instrumentation was randomized in the 8 specimens. Testing was conducted for each fixation technique. The spines were tested with a pure moment of 6 Nm in all 6 degrees of freedom (flexion, extension, right and left lateral bending, and right and left axial rotation). In flexion, extension, and left/right lateral bending, posterior long-segment instrumentation had significantly less motion compared with the intact state. Additionally, posterior long-segment instrumentation was significantly more rigid than short-segment and lateral instrumentation in flexion, extension, and left/right lateral bending. In axial rotation, the posterior long-segment construct as well as lateral instrumentation were not significantly more rigid than the intact state. The posterior long-segment construct was the most rigid in all 6 degrees of freedom. In the setting of highly unstable fractures requiring anterior reconstruction, and involving all 3 columns, long-segment posterior pedicle screw constructs are the most rigid.

  2. Three-dimensional analysis of cervical spine segmental motion in rotation.

    PubMed

    Zhao, Xiong; Wu, Zi-Xiang; Han, Bao-Jun; Yan, Ya-Bo; Zhang, Yang; Lei, Wei

    2013-06-20

    The movements of the cervical spine during head rotation are too complicated to measure using conventional radiography or computed tomography (CT) techniques. In this study, we measure three-dimensional segmental motion of cervical spine rotation in vivo using a non-invasive measurement technique. Sixteen healthy volunteers underwent three-dimensional CT of the cervical spine during head rotation. Occiput (Oc) - T1 reconstructions were created of volunteers in each of 3 positions: supine and maximum left and right rotations of the head with respect to the bosom. Segmental motions were calculated using Euler angles and volume merge methods in three major planes. Mean maximum axial rotation of the cervical spine to one side was 1.6° to 38.5° at each level. Coupled lateral bending opposite to lateral bending was observed in the upper cervical levels, while in the subaxial cervical levels, it was observed in the same direction as axial rotation. Coupled extension was observed in the cervical levels of C5-T1, while coupled flexion was observed in the cervical levels of Oc-C5. The three-dimensional cervical segmental motions in rotation were accurately measured with the non-invasive measure. These findings will be helpful as the basis for understanding cervical spine movement in rotation and abnormal conditions. The presented data also provide baseline segmental motions for the design of prostheses for the cervical spine.

  3. Effects of Attention and Laterality on Motion and Orientation Discrimination in Deaf Signers

    ERIC Educational Resources Information Center

    Bosworth, Rain G.; Petrich, Jennifer A. F.; Dobkins, Karen R.

    2013-01-01

    Previous studies have asked whether visual sensitivity and attentional processing in deaf signers are enhanced or altered as a result of their different sensory experiences during development, i.e., auditory deprivation and exposure to a visual language. In particular, deaf and hearing signers have been shown to exhibit a right visual field/left…

  4. Cervical range of motion discriminates between asymptomatic persons and those with whiplash.

    PubMed

    Dall'Alba, P T; Sterling, M M; Treleaven, J M; Edwards, S L; Jull, G A

    2001-10-01

    A comparative study of cervical range of motion in asymptomatic persons and those with whiplash. To compare the primary and conjunct ranges of motion of the cervical spine in asymptomatic persons and those with persistent whiplash-associated disorders, and to investigate the ability of these measures of range of motion to discriminate between the groups. Evidence that range of motion is an effective indicator of physical impairment in the cervical spine is not conclusive. Few studies have evaluated the ability to discriminate between asymptomatic persons and those with whiplash on the basis of range of motion or compared three-dimensional in vivo measures of range of motion in asymptomatic persons and those with whiplash-associated disorders. The study participants were 89 asymptomatic volunteers (41 men, 48 women; mean age 39.2 years) and 114 patients with persistent whiplash-associated disorders (22 men, 93 women; mean age 37.2 years) referred to a whiplash research unit for assessment of their cervical region. Range of cervical motion was measured in three dimensions with a computerized, electromagnetic, motion-tracking device. The movements assessed were flexion, extension, left and right lateral flexion, and left and right rotation. Range of motion was reduced in all primary movements in patients with persistent whiplash-associated disorder. Sagittal plane movements were proportionally the most affected. On the basis of primary and conjunct range of motion, age, and gender, 90.3% of study participants could be correctly categorized as asymptomatic or as having whiplash (sensitivity 86.2%, specificity 95.3%). Range of motion was capable of discriminating between asymptomatic persons and those with persistent whiplash-associated disorders.

  5. Revised Pacific-Antarctic plate motions and geophysics of the Menard Fracture Zone

    NASA Astrophysics Data System (ADS)

    Croon, Marcel B.; Cande, Steven C.; Stock, Joann M.

    2008-07-01

    A reconnaissance survey of multibeam bathymetry and magnetic anomaly data of the Menard Fracture Zone allows for significant refinement of plate motion history of the South Pacific over the last 44 million years. The right-stepping Menard Fracture Zone developed at the northern end of the Pacific-Antarctic Ridge within a propagating rift system that generated the Hudson microplate and formed the conjugate Henry and Hudson Troughs as a response to a major plate reorganization ˜45 million years ago. Two splays, originally about 30 to 35 km apart, narrowed gradually to a corridor of 5 to 10 km width, while lineation azimuths experienced an 8° counterclockwise reorientation owing to changes in spreading direction between chrons C13o and C6C (33 to 24 million years ago). We use the improved Pacific-Antarctic plate motions to analyze the development of the southwest end of the Pacific-Antarctic Ridge. Owing to a 45° counterclockwise reorientation between chrons C27 and C20 (61 to 44 million years ago) this section of the ridge became a long transform fault connected to the Macquarie Triple Junction. Following a clockwise change starting around chron C13o (33 million years ago), the transform fault opened. A counterclockwise change starting around chron C10y (28 millions years ago) again led to a long transform fault between chrons C6C and C5y (24 to 10 million years ago). A second period of clockwise reorientation starting around chron C5y (10 million years ago) put the transform fault into extension, forming an array of 15 en echelon transform faults and short linking spreading centers.

  6. Andrei Sakharov Prize

    NASA Astrophysics Data System (ADS)

    Xu, Liangying

    2008-04-01

    Ever since my youth, the writings of Einstein had always enlightened my life. However, I later began to follow Marxism and threw myself into the Chinese revolution. Yet, ironically, after the victory of the revolution I myself became a target of the revolutionary dictatorship. Started from 1962 I collected, edited and translated ``Collected Works of Einstein'' in the countryside. Fourteen years later the three-volume collected works were published in China, which created immense impacts to Chinese intellectuals. It was Einstein's thoughts on human rights and democracy that awakened me. Since then I have devoted myself to the fight for human rights and to the cause of democratic enlightenment in China. My goal is to transform an autocratic China that tramples human rights into a democratic and free modern China that respects human rights.

  7. Transformation of a Spatial Map across the Hippocampal-Lateral Septal Circuit.

    PubMed

    Tingley, David; Buzsáki, György

    2018-05-15

    The hippocampus constructs a map of the environment. How this "cognitive map" is utilized by other brain regions to guide behavior remains unexplored. To examine how neuronal firing patterns in the hippocampus are transmitted and transformed, we recorded neurons in its principal subcortical target, the lateral septum (LS). We observed that LS neurons carry reliable spatial information in the phase of action potentials, relative to hippocampal theta oscillations, while the firing rates of LS neurons remained uninformative. Furthermore, this spatial phase code had an anatomical microstructure within the LS and was bound to the hippocampal spatial code by synchronous gamma frequency cell assemblies. Using a data-driven model, we show that rate-independent spatial tuning arises through the dynamic weighting of CA1 and CA3 cell assemblies. Our findings demonstrate that transformation of the hippocampal spatial map depends on higher-order theta-dependent neuronal sequences. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Self-designed posterior atlas polyaxial lateral mass screw-plate fixation for unstable atlas fracture.

    PubMed

    He, Baorong; Yan, Liang; Zhao, Qinpeng; Chang, Zhen; Hao, Dingjun

    2014-12-01

    Most atlas fractures can be effectively treated nonoperatively with external immobilization unless there is an injury to the transverse atlantal ligament. Surgical stabilization is most commonly achieved using a posterior approach with fixation of C1-C2 or C0-C2, but these treatments usually result in loss of the normal motion of the C1-C2 and C0-C1 joints. To clinically validate feasibility, safety, and value of open reduction and fixation using an atlas polyaxial lateral mass screw-plate construct in unstable atlas fractures. Retrospective review of patients who sustained unstable atlas fractures treated with polyaxial lateral mass screw-plate construct. Twenty-two patients with unstable atlas fractures who underwent posterior atlas polyaxial lateral mass screw-plate fixation were analyzed. Visual analog scale, neurologic status, and radiographs for fusion. From January 2011 to September 2012, 22 patients with unstable atlas fractures were treated with this technique. Patients' charts and radiographs were reviewed. Bone fusion, internal fixation placement, and integrity of spinal cord and vertebral arteries were assessed via intraoperative and follow-up imaging. Neurologic function, range of motion, and pain levels were assessed clinically on follow-up. All patients were followed up from 12 to 32 months, with an average of 22.5±18.0 months. A total of 22 plates were placed, and all 44 screws were inserted into the atlas lateral masses. The mean duration of the procedure was 86 minutes, and the average estimated blood loss was 120 mL. Computed tomography scans 9 months after surgery confirmed that fusion was achieved in all cases. There was no screw or plate loosening or breakage in any patient. All patients had well-preserved range of motion. No vascular or neurologic complication was noted, and all patients had a good clinical outcome. An open reduction and posterior internal fixation with atlas polyaxial lateral mass screw-plate is a safe and effective surgical option in the treatment of unstable atlas fractures. This technique can provide immediate reduction and preserve C1-C2 motion. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Comparison of method using phase-sensitive motion estimator with speckle tracking method and application to measurement of arterial wall motion

    NASA Astrophysics Data System (ADS)

    Miyajo, Akira; Hasegawa, Hideyuki

    2018-07-01

    At present, the speckle tracking method is widely used as a two- or three-dimensional (2D or 3D) motion estimator for the measurement of cardiovascular dynamics. However, this method requires high-level interpolation of a function, which evaluates the similarity between ultrasonic echo signals in two frames, to estimate a subsample small displacement in high-frame-rate ultrasound, which results in a high computational cost. To overcome this problem, a 2D motion estimator using the 2D Fourier transform, which does not require any interpolation process, was proposed by our group. In this study, we compared the accuracies of the speckle tracking method and our method using a 2D motion estimator, and applied the proposed method to the measurement of motion of a human carotid arterial wall. The bias error and standard deviation in the lateral velocity estimates obtained by the proposed method were 0.048 and 0.282 mm/s, respectively, which were significantly better than those (‑0.366 and 1.169 mm/s) obtained by the speckle tracking method. The calculation time of the proposed phase-sensitive method was 97% shorter than the speckle tracking method. Furthermore, the in vivo experimental results showed that a characteristic change in velocity around the carotid bifurcation could be detected by the proposed method.

  10. Tectonic evolution of Gorda Ridge inferred from sidescan sonar images

    USGS Publications Warehouse

    Masson, D.G.; Cacchione, D.A.; Drake, D.E.

    1988-01-01

    Gorda Ridge is the southern segment of the Juan de Fuca Ridge complex, in the north-east Pacific. Along-strike spreading-rate variation on Gorda Ridge and deformation of Gorda Plate are evidence for compression between the Pacific and Gorda Plates. GLORIA sidescan sonographs allow the spreading fabric associated with Gorda Ridge to be mapped in detail. Between 5 and 2 Ma, a pair of propagating rifts re-orientated the northern segment of Gorda Ridge by about 10?? clockwise, accommodating a clockwise shift in Pacific-Juan de Fuca plate motion that occurred around 5 Ma. Deformation of Gorda Plate, associated with southward decreasing spreading rates along southern Gorda Ridge, is accommodated by a combination of clockwise rotation of Gorda Plate crust, coupled with left-lateral motion on the original normal faults of the ocean crust. Segments of Gorda Plate which have rotated by different amounts are separated by narrow deformation zones across which sharp changes in ocean fabric trend are seen. Although minor lateral movement may occur on these NW to WNW structures, no major right-lateral movement, as predicted by previous models, is observed. ?? 1988 Kluwer Academic Publishers.

  11. Lateral control system design for VTOL landing on a DD963 in high sea states. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Bodson, M.

    1982-01-01

    The problem of designing lateral control systems for the safe landing of VTOL aircraft on small ships is addressed. A ship model is derived. The issues of estimation and prediction of ship motions are discussed, using optimal linear linear estimation techniques. The roll motion is the most important of the lateral motions, and it is found that it can be predicted for up to 10 seconds in perfect conditions. The automatic landing of the VTOL aircraft is considered, and a lateral controller, defined as a ship motion tracker, is designed, using optimal control techniqes. The tradeoffs between the tracking errors and the control authority are obtained. The important couplings between the lateral motions and controls are demonstrated, and it is shown that the adverse couplings between the sway and the roll motion at the landing pad are significant constraints in the tracking of the lateral ship motions. The robustness of the control system, including the optimal estimator, is studied, using the singular values analysis. Through a robustification procedure, a robust control system is obtained, and the usefulness of the singular values to define stability margins that take into account general types of unstructured modelling errors is demonstrated. The minimal destabilizing perturbations indicated by the singular values analysis are interpreted and related to the multivariable Nyquist diagrams.

  12. 3-D scapular kinematics during arm elevation: effect of motion velocity.

    PubMed

    Fayad, F; Hoffmann, G; Hanneton, S; Yazbeck, C; Lefevre-Colau, M M; Poiraudeau, S; Revel, M; Roby-Brami, A

    2006-11-01

    No three-dimensional (3-D) data exist on the influence of motion velocity on scapular kinematics. The effect of arm elevation velocity has been studied only in a two-dimensional setting. Thirty healthy subjects performed dominant (right) arm elevation in two planes, sagittal and frontal, and at slow and fast self-selected arm speed. Scapular orientation and humeral elevation were measured at 30 Hz recording frequency with use of a 6-degree-of-freedom electromagnetic system (Polhemus Fastraka). Motion was computed according to the International Society of Biomechanics standards. Scapular orientation was also determined with the arm held in different static positions. We obtained a full 3-D kinematic description of scapula achieving a reliable, complex 3-D motion during humeral elevation and lowering. The maximal sagittal arm elevation showed a characteristic "M"-shape pattern of protraction/retraction curve. Scapular rotations did not differ significantly between slow and fast movements. Moreover, protraction/retraction and tilt angular values did not differ significantly between static and dynamic tasks. However, scapular lateral rotation values differed between static and dynamic measurements during sagittal and frontal arm elevation. Lateral scapular rotation appears to be less in static than in dynamic measurement, particularly in the sagittal plane. Interpolation of statically recorded positions of the bones cannot reflect the kinematics of the scapula.

  13. Creative brains: designing in the real world†

    PubMed Central

    Goel, Vinod

    2014-01-01

    The process of designing artifacts is a creative activity. It is proposed that, at the cognitive level, one key to understanding design creativity is to understand the array of symbol systems designers utilize. These symbol systems range from being vague, imprecise, abstract, ambiguous, and indeterminate (like conceptual sketches), to being very precise, concrete, unambiguous, and determinate (like contract documents). The former types of symbol systems support associative processes that facilitate lateral (or divergent) transformations that broaden the problem space, while the latter types of symbol systems support inference processes facilitating vertical (or convergent) transformations that deepen of the problem space. The process of artifact design requires the judicious application of both lateral and vertical transformations. This leads to a dual mechanism model of design problem-solving comprising of an associative engine and an inference engine. It is further claimed that this dual mechanism model is supported by an interesting hemispheric dissociation in human prefrontal cortex. The associative engine and neural structures that support imprecise, ambiguous, abstract, indeterminate representations are lateralized in the right prefrontal cortex, while the inference engine and neural structures that support precise, unambiguous, determinant representations are lateralized in the left prefrontal cortex. At the brain level, successful design of artifacts requires a delicate balance between the two hemispheres of prefrontal cortex. PMID:24817846

  14. An Analytical Comparison of the Fidelity of "Large Motion" Versus "Small Motion" Flight Simulators in a Rotorcraft Side-Step Task

    NASA Technical Reports Server (NTRS)

    Hess, Ronald A.

    1999-01-01

    This paper presents an analytical and experimental methodology for studying flight simulator fidelity. The task was a rotorcraft bob-up/down maneuver in which vertical acceleration constituted the motion cue. The task considered here is aside-step maneuver that differs from the bob-up one important way: both roll and lateral acceleration cues are available to the pilot. It has been communicated to the author that in some Verticle Motion Simulator (VMS) studies, the lateral acceleration cue has been found to be the most important. It is of some interest to hypothesize how this motion cue associated with "outer-loop" lateral translation fits into the modeling procedure where only "inner-loop " motion cues were considered. This Note is an attempt at formulating such an hypothesis and analytically comparing a large-motion simulator, e.g., the VMS, with a small-motion simulator, e.g., a hexapod.

  15. Correlation of shoulder range of motion limitations at discharge with limitations in activities and participation one year later in persons with spinal cord injury.

    PubMed

    Eriks-Hoogland, Inge E; de Groot, Sonja; Post, Marcel W M; van der Woude, Lucas H V

    2011-02-01

    To study the correlation between limited shoulder range of motion in persons with spinal cord injury at discharge and the performance of activities, wheeling performance, transfers and participation one year later. Multicentre prospective cohort study. A total of 146 newly injured subjects with spinal cord injury. Shoulder range of motion was measured at discharge. One year later, Functional Independence Measure (FIM), transfer ability, wheelchair circuit and Physical Activity Scale for Individuals with Physical Disabilities (PASIPD) were assessed. Corrections were made for possible confounding factors (age, gender, level and completeness of injury, time since injury and shoulder pain). All subjects with limited shoulder range of motion at discharge had a lower FIM motor score and were less likely (total group 5 times, and subjects with tetraplegia 10 times less likely) to be able to perform an independent transfer one year later. Subjects with limited shoulder range of motion in the total group needed more time to complete the wheelchair circuit. No significant associations with the PASIPD were found in either group. Persons with spinal cord injury and limited shoulder range of motion at discharge are more limited in their activities one year later than those without limited shoulder range of motion.

  16. Handedness and situs inversus in primary ciliary dyskinesia.

    PubMed Central

    McManus, I. C.; Martin, N.; Stubbings, G. F.; Chung, E. M. K.; Mitchison, H. M.

    2004-01-01

    ...The limbs on the right side are stronger. [The] cause may be ... [that] ... motion, and abilities of moving, are somewhat holpen from the liver, which lieth on the right side. (Sir Francis Bacon, Sylva sylvarum (1627).)Fifty per cent of people with primary ciliary dyskinesia (PCD) (also known as immotile cilia syndrome or Siewert-Kartagener syndrome) have situs inversus, which is thought to result from absent nodal ciliary rotation and failure of normal symmetry breaking. In a study of 88 people with PCD, only 15.2% of 46 individuals with situs inversus, and 14.3% of 42 individuals with situs solitus, were left handed. Because cerebral lateralization is therefore still present, the nodal cilia cannot be the primary mechanism responsible for symmetry breaking in the vertebrate body. Intriguingly, one behavioural lateralization, wearing a wrist-watch on the right wrist, did correlate with situs inversus. PMID:15615683

  17. Handedness and situs inversus in primary ciliary dyskinesia.

    PubMed

    McManus, I C; Martin, N; Stubbings, G F; Chung, E M K; Mitchison, H M

    2004-12-22

    ... The limbs on the right side are stronger. [The] cause may be ... [that] ... motion, and abilities of moving, are somewhat holpen from the liver, which lieth on the right side. (Sir Francis Bacon, Sylva sylvarum (1627).)Fifty per cent of people with primary ciliary dyskinesia (PCD) (also known as immotile cilia syndrome or Siewert-Kartagener syndrome) have situs inversus, which is thought to result from absent nodal ciliary rotation and failure of normal symmetry breaking. In a study of 88 people with PCD, only 15.2% of 46 individuals with situs inversus, and 14.3% of 42 individuals with situs solitus, were left handed. Because cerebral lateralization is therefore still present, the nodal cilia cannot be the primary mechanism responsible for symmetry breaking in the vertebrate body. Intriguingly, one behavioural lateralization, wearing a wrist-watch on the right wrist, did correlate with situs inversus.

  18. A Plate Tectonic Model for the Neoproterozoic with Evolving Plate Boundaries

    NASA Astrophysics Data System (ADS)

    Merdith, Andrew; Collins, Alan; Williams, Simon; Pisarevsky, Sergei; Müller, Dietmar

    2017-04-01

    The Neoproterozoic was dominated by the formation of the supercontinent Rodinia, its break-up and the subsequent amalgamation of Gondwana, during which, the planet experienced large climatic variations and the emergence of complex life. Here we present a topological plate model of the Neoproterozoic based on a synthesis of available geological and palaeomagnetic data. Subduction zones, which are well preserved in the geological record, are used as a proxy for convergent margins; evidence for mid-ocean ridges and transform motion is less clearly preserved, though passive margins are used as a proxy for spreading centres, and evidence for strike-slip motions are used to model transform boundaries. We find that the model presented here only predicts 70% of the total length of subduction active today, though it models similar lengths of both transform and divergent boundaries, suggesting that we have produced a conservative model and are probably underestimating the amount of subduction. Where evidence for convergent, divergent or transform motion is not preserved, we interpret the locations of plate boundaries based on the relative motions of cratonic crust as suggested through either palaeomagnetic data or the geological record. Using GPlates, we tie these boundaries together to generate a plate model that depicts the motion of tectonic plates through the Neoproterozoic. We omit India and South China from Rodinia completely, due to long-lived subduction preserved on margins of India and conflicting palaeomagnetic data for the Cryogenian, but tie them together due to similar Tonian aged accretionary patterns along their respective (present-day) north-western and northern margins, such that these two cratons act as a "lonely wanderer" for much of the Neoproterozoic, and form their own tectonic plate. We also introduce a Tonian-Cryogenian aged rotation of the Congo-São Francisco Craton relative to Rodinia to better fit palaeomagnetic data and account for thick passive margin sediments along its southern margin during the Tonian. The model depicts a sequential breakup of Rodinia, with Australia-Antarctica rifting first ( 800 Ma), Congo-São Francisco (and the Sahara Metacraton) second ( 750 Ma) and Kalahari third (700 Ma). Amazonia and West Africa rift later with the opening of the Iapetus Ocean from 600 Ma. We expect that this global model will assist in the development of future regional models for the Neoproterozoic, and that the production of this full-plate topological reconstruction will facilitate the investigation of controls on other earth systems, such as the possible role of volcanism on initiation of the Cryogenian, or the nature of mantle convection in the Neoproterozoic.

  19. Slicing up the San Francisco Bay Area: Block kinematics and fault slip rates from GPS-derived surface velocities

    USGS Publications Warehouse

    d'Alessio, M. A.; Johanson, I.A.; Burgmann, R.; Schmidt, D.A.; Murray, M.H.

    2005-01-01

    Observations of surface deformation allow us to determine the kinematics of faults in the San Francisco Bay Area. We present the Bay Area velocity unification (BA??VU??, "bay view"), a compilation of over 200 horizontal surface velocities computed from campaign-style and continuous Global Positioning System (GPS) observations from 1993 to 2003. We interpret this interseismic velocity field using a three-dimensional block model to determine the relative contributions of block motion, elastic strain accumulation, and shallow aseismic creep. The total relative motion between the Pacific plate and the rigid Sierra Nevada/Great Valley (SNGV) microplate is 37.9 ?? 0.6 mm yr-1 directed toward N30.4??W ?? 0.8?? at San Francisco (??2??). Fault slip rates from our preferred model are typically within the error bounds of geologic estimates but provide a better fit to geodetic data (notable right-lateral slip rates in mm yr-1: San Gregorio fault, 2.4 ?? 1.0; West Napa fault, 4.0 ?? 3.0; zone of faulting along the eastern margin of the Coast Range, 5.4 ?? 1.0; and Mount Diablo thrust, 3.9 ?? 1.0 of reverse slip and 4.0 ?? 0.2 of right-lateral strike slip). Slip on the northern Calaveras is partitioned between both the West Napa and Concord/ Green Valley fault systems. The total convergence across the Bay Area is negligible. Poles of rotation for Bay Area blocks progress systematically from the North America-Pacific to North America-SNGV poles. The resulting present-day relative motion cannot explain the strike of most Bay Area faults, but fault strike does loosely correlate with inferred plate motions at the time each fault initiated. Copyright 2005 by the American Geophysical Union.

  20. Detailed ground surface displacement and fault ruptures of the 2016 Kumamoto Earthquake revealed by SAR and GNSS data

    NASA Astrophysics Data System (ADS)

    Kobayashi, T.; Yarai, H.; Morishita, Y.; Kawamoto, S.; Fujiwara, S.; Nakano, T.

    2016-12-01

    We report ground displacement associated with the 2016 Kumamoto Earthquake obtained by ALOS-2 SAR and GNSS data. For the SAR analyses, we applied InSAR, MAI, and pixel offset methods, which has successfully provided a 3D displacement field showing the widely- and locally-distributed deformation. The obtained displacement field shows clear displacement boundaries linearly along the Futagawa, the Hinagu, and the Denokuchi faults across which the sign of displacement component turns to be opposite, suggesting that the fault ruptures occurred there. Our fault model for the main shock suggests that the main rupture occurred on the Futagawa fault with a right-lateral motion including a slight normal fault motion. Due to the normal faulting movement, the northern side of the active fault subsides with approximately 2 m. The rupture on the Futagawa fault extends into the Aso caldera with slightly shifting the position northward. Of note, the fault plane oppositely dips toward southeast. It may be a conjugate fault against the main fault. In the western side of the Futagawa fault, the slip on the Hinagu fault, in which the Mj6.5 and Mj6.4 foreshocks occurred with a pure right-lateral motion, is also deeply involved with the main shock. This fault rupture released the amount of approximately 30 percent of the total seismic moment. The hypocenter is determined near the fault and its focal mechanism is consistent with the estimated slip motion of this fault plane, maybe suggesting that the rupture started at this fault and proceeded toward the Futagawa fault eastward. Acknowledgements: ALOS-2 data were provided from the Earthquake Working Group under a cooperative research contract with JAXA (Japan Aerospace Exploration Agency). The ownership of ALOS-2 data belongs to JAXA.

  1. Arm position influences the activation patterns of trunk muscles during trunk range-of-motion movements.

    PubMed

    Siu, Aaron; Schinkel-Ivy, Alison; Drake, Janessa Dm

    2016-10-01

    To understand the activation patterns of the trunk musculature, it is also important to consider the implications of adjacent structures such as the upper limbs, and the muscles that act to move the arms. This study investigated the effects of arm positions on the activation patterns and co-activation of the trunk musculature and muscles that move the arm during trunk range-of-motion movements (maximum trunk axial twist, flexion, and lateral bend). Fifteen males and fifteen females, asymptomatic for low back pain, performed maximum trunk range-of-motion movements, with three arm positions for axial twist (loose, crossed, abducted) and two positions for flexion and lateral bend (loose, crossed). Electromyographical data were collected for eight muscles bilaterally, and activation signals were cross-correlated between trunk muscles and the muscles that move the arms (upper trapezius, latissimus dorsi). Results revealed consistently greater muscle co-activation (higher cross-correlation coefficients) between the trunk muscles and upper trapezius for the abducted arm position during maximum trunk axial twist, while results for the latissimus dorsi-trunk pairings were more dependent on the specific trunk muscles (either abdominal or back) and latissimus dorsi muscle (either right or left side), as well as the range-of-motion movement. The findings of this study contribute to the understanding of interactions between the upper limbs and trunk, and highlight the influence of arm positions on the trunk musculature. In addition, the comparison of the present results to those of individuals with back or shoulder conditions may ultimately aid in elucidating underlying mechanisms or contributing factors to those conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Comments on ``seismic properties of the Eltanin transform system, south Pacific'' by Emile A. Okal and Amy R. Langenhorst

    NASA Astrophysics Data System (ADS)

    Wessel, Paul; Kroenke, Loren W.

    2001-03-01

    Seismicity in the Eltanin transform system region reflects the current relative motion between the Pacific and Antarctica plates. As such, the seismicity provides little or no constraints on models for late Neogene Pacific absolute plate motion changes that in turn forced a synchronous change in relative plate motions resulting in the current relative plate motion.

  3. Phase analysis in the Wolff-Parkinson-White syndrome with surgically proven accessory conduction pathways: concise communication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakajima, K.; Bunko, H.; Tada, A.

    1984-01-01

    Twenty-one patients with the Wolff-Parkinson-White (WPW) syndrome who underwent surgical division of the accessory conduction pathway (ACP) were studied by gated blood-pool scintigraphy. In each case, a functional image of the phase was generated, based on the fundamental frequency of the Fourier transform. The location of the ACP was confirmed by electrophysiologic study, epicardial mapping, and surgery. Phase analysis identified the side of preexcitation correctly in 16 out of 20 patients with WPW syndrome with a delta wave. All patients with right-cardiac type (N=9) had initial contraction in the right ventricle (RV). In patients with left-cardiac type (N=10), six hadmore » initial movement in the left ventricle (LV); but in the other four the ACPs in the anterior or lateral wall of the left ventricle (LV) could not be detected. In patients with multiple ACPs (N=2), one right-cardiac type had initial contraction in the RV, while in the other (with an intermittent WPW syndrome) the ACP was not detected. These observations indicate that abnormal wall motion is associated with the conduction anomalies of the WPW syndrome. We conclude that phase analysis can correctly identify the side of initial contraction in the WPW syndrome before and after surgery. However, as a method of preoperative study, it seems difficult to determine the precise site of the ACP by phase analysis alone.« less

  4. The effects of dorso-lumbar motion restriction on the ground reaction force components during running.

    PubMed

    Morley, Joseph J; Traum, Edward

    2016-04-01

    The effects of restricting dorso-lumbar spine mobility on ground reaction forces in runners was measured and assessed. A semi-rigid cast was used to restrict spinal motion during running. Subjects ran across a force platform at 3.6 m/s, planting the right foot on the platform. Data was collected from ten running trials with the cast and ten without the cast and analysed. Casted running showed that the initial vertical heel strike maximum was increased (p < .02) and that the anterior-posterior deceleration impulse was increased (p < .01). The maximum vertical ground reaction force was decreased in casted running (p < .01), as was the anterior-posterior acceleration impulse (p < .02). There was a trend for increased medial-lateral impulse in the uncasted state, but this was not statistically significant. Spinal mobility and fascia contribute to load transfer between joints and body segments. Experimentally restricting spinal motion during running results in measurable and repeatable alterations in ground reaction force components. Alterations in load transfer due to decreased spinal motion may be a factor contributing to selected injuries in runners. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Comparison of the different kinematic patterns during lateral bending between subjects with and without recurrent low back pain.

    PubMed

    Sung, Paul S; Danial, Pamela; Lee, Dongchul C

    2016-10-01

    Lateral bending is a prerequisite for various functional activities of daily life, which require combined three-dimensional motion. Even though a number of studies have evaluated spinal kinematic changes during lateral bending, the literature reveals a lack of data based on limb dominance. The purpose of this study was to compare kinematic angular displacement of the spinal regions for dominant and non-dominant lateral bending in subjects with and without recurrent low back pain. Forty-four right hand dominant individuals with recurrent low back pain (43.1 [17.4] years) and without low back pain (39.7 [18.7] years) participated in this study. All participants were asked to perform trunk lateral bending to the dominant and non-dominant sides with a bar, three times repeatedly. The outcome measures included three-dimensional angular displacements for the three regions of the spine (upper thorax, lower thorax, and lumbar spine). Lumbar rotation (degrees) increased to the dominant side in the low back pain group (9.29 [1.06]) compared to the control group (6.20 [1.02]) with increased rotation in the upper thorax as well (t=-2.09, p=0.04). However, the upper thorax rotation increased in the low back pain group to the non-dominant side (t=2.08, p=0.03) and to the dominant side (t=-2.35, p=0.02). There was a group interaction with planes (F=5.82, p=0.02) during lateral bending. Although lower thorax motion was not different between groups, increased lumbar spine and upper thorax rotations to the dominant side in the low back pain group were evident during lateral bending. This directional asymmetry should be carefully monitored to understand increased lumbar rotation to the dominant side in subjects with recurrent low back pain. The interactions between group and plane explain compensation strategies through increased lumbar rotation to the dominant side with decreased lateral bending of the upper thorax in subjects with recurrent low back pain. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beadle, Beth M.; Jhingran, Anuja; Salehpour, Mohammad

    Purpose: To evaluate the magnitude of cervix regression and motion during external beam chemoradiation for cervical cancer. Methods and Materials: Sixteen patients with cervical cancer underwent computed tomography scanning before, weekly during, and after conventional chemoradiation. Cervix volumes were calculated to determine the extent of cervix regression. Changes in the center of mass and perimeter of the cervix between scans were used to determine the magnitude of cervix motion. Maximum cervix position changes were calculated for each patient, and mean maximum changes were calculated for the group. Results: Mean cervical volumes before and after 45 Gy of external beam irradiationmore » were 97.0 and 31.9 cc, respectively; mean volume reduction was 62.3%. Mean maximum changes in the center of mass of the cervix were 2.1, 1.6, and 0.82 cm in the superior-inferior, anterior-posterior, and right-left lateral dimensions, respectively. Mean maximum changes in the perimeter of the cervix were 2.3 and 1.3 cm in the superior and inferior, 1.7 and 1.8 cm in the anterior and posterior, and 0.76 and 0.94 cm in the right and left lateral directions, respectively. Conclusions: Cervix regression and internal organ motion contribute to marked interfraction variations in the intrapelvic position of the cervical target in patients receiving chemoradiation for cervical cancer. Failure to take these variations into account during the application of highly conformal external beam radiation techniques poses a theoretical risk of underdosing the target or overdosing adjacent critical structures.« less

  7. Trochanteric fracture-implant motion during healing - A radiostereometry (RSA) study.

    PubMed

    Bojan, Alicja J; Jönsson, Anders; Granhed, Hans; Ekholm, Carl; Kärrholm, Johan

    2018-03-01

    Cut-out complication remains a major unsolved problem in the treatment of trochanteric hip fractures. A better understanding of the three-dimensional fracture-implant motions is needed to enable further development of clinical strategies and countermeasures. The aim of this clinical study was to characterise and quantify three-dimensional motions between the implant and the bone and between the lag screw and nail of the Gamma nail. Radiostereometry Analysis (RSA) analysis was applied in 20 patients with trochanteric hip fractures treated with an intramedullary nail. The following three-dimensional motions were measured postoperatively, at 1 week, 3, 6 and 12 months: translations of the tip of the lag screw in the femoral head, motions of the lag screw in the nail, femoral head motions relative to the nail and nail movements in the femoral shaft. Cranial migration of the tip of the lag screw dominated over the other two translation components in the femoral head. In all fractures the lag screw slid laterally in the nail and the femoral head moved both laterally and inferiorly towards the nail. All femoral heads translated posteriorly relative to the nail, and rotations occurred in both directions with median values close to zero. The nail tended to retrovert in the femoral shaft. Adverse fracture-implant motions were detected in stable trochanteric hip fractures treated with intramedullary nails with high resolution. Therefore, RSA method can be used to evaluate new implant designs and clinical strategies, which aim to reduce cut-out complications. Future RSA studies should aim at more unstable fractures as these are more likely to fail with cut-out. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Earthquake rupture properties of the 2016 Kumamoto earthquake foreshocks ( M j 6.5 and M j 6.4) revealed by conventional and multiple-aperture InSAR

    NASA Astrophysics Data System (ADS)

    Kobayashi, Tomokazu

    2017-01-01

    By applying conventional cross-track InSAR and multiple-aperture InSAR (MAI) techniques with ALOS-2 SAR data to foreshocks of the 2016 Kumamoto earthquake, ground displacement fields in range (line-of-sight) and azimuth components have been successfully mapped. The most concentrated crustal deformation with ground displacement exceeding 15 cm is located on the western side of the Hinagu fault zone. A locally distributed displacement which appears along the strike of the Futagawa fault can be identified in and around Mashiki town, suggesting that a different local fault slip also contributed toward foreshocks. Inverting InSAR, MAI, and GNSS data, distributed slip models are obtained that show almost pure right-lateral fault motion on a plane dipping west by 80° for the Hinagu fault and almost pure normal fault motion on a plane dipping south by 70° for the local fault beneath Mashiki town. The slip on the Hinagu fault reaches around the junction of the Hinagu and Futagawa faults. The slip in the north significantly extends down to around 10 km depth, while in the south the slip is concentrated near the ground surface, perhaps corresponding to the M j 6.5 and the M j 6.4 events, respectively. The focal mechanism of the distributed slip model for the Hinagu fault alone shows pure right-lateral motion, which is inconsistent with the seismically estimated mechanism that includes a significant non-double couple component. On the other hand, when taking the contribution of normal fault motion into account, the focal mechanism appears similar to that of the seismic analysis. This result may suggest that local fault motion occurred just beneath Mashiki town, simultaneously with the M j 6.5 event, thereby increasing the degree of damage to the town.[Figure not available: see fulltext.

  9. Chaos-assisted broadband momentum transformation in optical microresonators.

    PubMed

    Jiang, Xuefeng; Shao, Linbo; Zhang, Shu-Xin; Yi, Xu; Wiersig, Jan; Wang, Li; Gong, Qihuang; Lončar, Marko; Yang, Lan; Xiao, Yun-Feng

    2017-10-20

    The law of momentum conservation rules out many desired processes in optical microresonators. We report broadband momentum transformations of light in asymmetric whispering gallery microresonators. Assisted by chaotic motions, broadband light can travel between optical modes with different angular momenta within a few picoseconds. Efficient coupling from visible to near-infrared bands is demonstrated between a nanowaveguide and whispering gallery modes with quality factors exceeding 10 million. The broadband momentum transformation enhances the device conversion efficiency of the third-harmonic generation by greater than three orders of magnitude over the conventional evanescent-wave coupling. The observed broadband and fast momentum transformation could promote applications such as multicolor lasers, broadband memories, and multiwavelength optical networks. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  10. Parallel Computations in Insect and Mammalian Visual Motion Processing.

    PubMed

    Clark, Damon A; Demb, Jonathan B

    2016-10-24

    Sensory systems use receptors to extract information from the environment and neural circuits to perform subsequent computations. These computations may be described as algorithms composed of sequential mathematical operations. Comparing these operations across taxa reveals how different neural circuits have evolved to solve the same problem, even when using different mechanisms to implement the underlying math. In this review, we compare how insect and mammalian neural circuits have solved the problem of motion estimation, focusing on the fruit fly Drosophila and the mouse retina. Although the two systems implement computations with grossly different anatomy and molecular mechanisms, the underlying circuits transform light into motion signals with strikingly similar processing steps. These similarities run from photoreceptor gain control and spatiotemporal tuning to ON and OFF pathway structures, motion detection, and computed motion signals. The parallels between the two systems suggest that a limited set of algorithms for estimating motion satisfies both the needs of sighted creatures and the constraints imposed on them by metabolism, anatomy, and the structure and regularities of the visual world. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Control of an Omni-directional Power-assisted Cart

    NASA Astrophysics Data System (ADS)

    Maeda, Hiroshi; Fujiwara, Shigeki; Kitano, Hitoshi; Yamashita, Hideki; Fukunaga, Hideo

    This paper describes an easy-to-operate, omni-directional cart. This cart includes power assist technology that acts for both the longitudinal and rotational motions of the cart. Two objectives are set for this development. The first objective is to overcome the difficulty of shifting the cart laterally. Therefore, the equation for calculating the cart turning speed is modified so that the moment, which is driven by the operating force in the right/left direction, is offset. As a result, it becomes possible to stabilize the balance between the operating force in the right/left direction and the operating moment, and improve the operating performance. The second objective is to overcome the other difficulty whereby, during the one-hand pull-operation, the cart tended to run off course to the right/left. To solve this problem, we add a positional control in the right/left direction. As a result, we reduce the lateral deviation of the cart, and improve the operating performance.

  12. Does the anthropometric model influence whole-body center of mass calculations in gait?

    PubMed

    Catena, Robert D; Chen, Szu-Hua; Chou, Li-Shan

    2017-07-05

    Examining whole-body center of mass (COM) motion is one of method being used to quantify dynamic balance and energy during gait. One common method for estimating the COM position is to apply an anthropometric model to a marker set and calculate the weighted sum from known segmental COM positions. Several anthropometric models are available to perform such a calculation. However, to date there has been no study of how the anthropometric model affects whole-body COM calculations during gait. This information is pertinent to researchers because the choice of anthropometric model may influence gait research findings and currently the trend is to consistently use a single model. In this study we analyzed a single stride of gait data from 103 young adult participants. We compared the whole-body COM motion calculated from 4 different anthropometric models (Plagenhoef et al., 1983; Winter, 1990; de Leva, 1996; Pavol et al., 2002). We found that anterior-posterior motion calculations are relatively unaffected by the anthropometric model. However, medial-lateral and vertical motions are significantly affected by the use of different anthropometric models. Our findings suggest that the researcher carefully choose an anthropometric model to fit their study populations when interested in medial-lateral or vertical motions of the COM. Our data can provide researchers a priori information on the model determination depending on the particular variable and how conservative they may want to be with COM comparisons between groups. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. A Direct Method for Mapping the Center of Pressure Measured by an Insole Pressure Sensor System to the Shoe's Local Coordinate System.

    PubMed

    Weaver, Brian T; Braman, Jerrod E; Haut, Roger C

    2016-06-01

    A direct method to express the center of pressure (CoP) measured by an insole pressure sensor system (IPSS) into a known coordinate system measured by motion tracking equipment is presented. A custom probe was constructed with reflective markers to allow its tip to be precisely tracked with motion tracking equipment. This probe was utilized to activate individual sensors on an IPSS that was placed in a shoe fitted with reflective markers used to establish a local shoe coordinate system. When pressed onto the IPSS the location of the probe's tip was coincident with the CoP measured by the IPSS (IPSS-CoP). Two separate pushes (i.e., data points) were used to develop vectors in each respective coordinate system. Simple vector mathematics determined the rotational and translational components of the transformation matrix needed to express the IPSS-CoP into the local shoe coordinate system. Validation was performed by comparing IPSS-CoP with an embedded force plate measured CoP (FP-CoP) from data gathered during kinematic trials. Six male subjects stood on an embedded FP and performed anterior/posterior (AP) sway, internal rotation, and external rotation of the body relative to a firmly planted foot. The IPSS-CoP was highly correlated with the FP-CoP for all motions, root mean square errors (RMSRRs) were comparable to other research, and there were no statistical differences between the displacement of the IPSS-CoP and FP-CoP for both the AP and medial/lateral (ML) axes, respectively. The results demonstrated that this methodology could be utilized to determine the transformation variables need to express IPSS-CoP into a known coordinate system measured by motion tracking equipment and that these variables can be determined outside the laboratory anywhere motion tracking equipment is available.

  14. Perception of Invariance Over Perspective Transformations in Five Month Old Infants.

    ERIC Educational Resources Information Center

    Gibson, Eleanor; And Others

    This experiment asked whether infants at 5 months perceived an invariant over four types of rigid motion (perspective transformations), and thereby differentiated rigid motion from deformation. Four perspective transformations of a sponge rubber object (rotation around the vertical axis, rotation around the horizontal axis, rotation in the frontal…

  15. Topological Analyses of Symmetric Eruptive Prominences

    NASA Astrophysics Data System (ADS)

    Panasenco, O.; Martin, S. F.

    Erupting prominences (filaments) that we have analyzed from Hα Doppler data at Helio Research and from SOHO/EIT 304 Å, show strong coherency between their chirality, the direction of the vertical and lateral motions of the top of the prominences, and the directions of twisting of their legs. These coherent properties in erupting prominences occur in two patterns of opposite helicity; they constitute a form of dynamic chirality called the ``roll effect." Viewed from the positive network side as they erupt, many symmetrically-erupting dextral prominences develop rolling motion toward the observer along with right-hand helicity in the left leg and left-hand helicity in the right leg. Many symmetricaly-erupting sinistral prominences, also viewed from the positive network field side, have the opposite pattern: rolling motion at the top away from the observer, left-hand helical twist in the left leg, and right-hand twist in the right leg. We have analysed the motions seen in the famous movie of the ``Grand Daddy" erupting prominence and found that it has all the motions that define the roll effect. From our analyses of this and other symmetric erupting prominences, we show that the roll effect is an alternative to the popular hypothetical configuration of an eruptive prominence as a twisted flux rope or flux tube. Instead we find that a simple flat ribbon can be bent such that it reproduces nearly all of the observed forms. The flat ribbon is the most logical beginning topology because observed prominence spines already have this topology prior to eruption and an initial long magnetic ribbon with parallel, non-twisted threads, as a basic form, can be bent into many more and different geometrical forms than a flux rope.

  16. Optimal Predictive Control for Path Following of a Full Drive-by-Wire Vehicle at Varying Speeds

    NASA Astrophysics Data System (ADS)

    SONG, Pan; GAO, Bolin; XIE, Shugang; FANG, Rui

    2017-05-01

    The current research of the global chassis control problem for the full drive-by-wire vehicle focuses on the control allocation (CA) of the four-wheel-distributed traction/braking/steering systems. However, the path following performance and the handling stability of the vehicle can be enhanced a step further by automatically adjusting the vehicle speed to the optimal value. The optimal solution for the combined longitudinal and lateral motion control (MC) problem is given. First, a new variable step-size spatial transformation method is proposed and utilized in the prediction model to derive the dynamics of the vehicle with respect to the road, such that the tracking errors can be explicitly obtained over the prediction horizon at varying speeds. Second, a nonlinear model predictive control (NMPC) algorithm is introduced to handle the nonlinear coupling between any two directions of the vehicular planar motion and computes the sequence of the optimal motion states for following the desired path. Third, a hierarchical control structure is proposed to separate the motion controller into a NMPC based path planner and a terminal sliding mode control (TSMC) based path follower. As revealed through off-line simulations, the hierarchical methodology brings nearly 1700% improvement in computational efficiency without loss of control performance. Finally, the control algorithm is verified through a hardware in-the-loop simulation system. Double-lane-change (DLC) test results show that by using the optimal predictive controller, the root-mean-square (RMS) values of the lateral deviations and the orientation errors can be reduced by 41% and 30%, respectively, comparing to those by the optimal preview acceleration (OPA) driver model with the non-preview speed-tracking method. Additionally, the average vehicle speed is increased by 0.26 km/h with the peak sideslip angle suppressed to 1.9°. This research proposes a novel motion controller, which provides the full drive-by-wire vehicle with better lane-keeping and collision-avoidance capabilities during autonomous driving.

  17. Deblurring for spatial and temporal varying motion with optical computing

    NASA Astrophysics Data System (ADS)

    Xiao, Xiao; Xue, Dongfeng; Hui, Zhao

    2016-05-01

    A way to estimate and remove spatially and temporally varying motion blur is proposed, which is based on an optical computing system. The translation and rotation motion can be independently estimated from the joint transform correlator (JTC) system without iterative optimization. The inspiration comes from the fact that the JTC system is immune to rotation motion in a Cartesian coordinate system. The work scheme of the JTC system is designed to keep switching between the Cartesian coordinate system and polar coordinate system in different time intervals with the ping-pang handover. In the ping interval, the JTC system works in the Cartesian coordinate system to obtain a translation motion vector with optical computing speed. In the pang interval, the JTC system works in the polar coordinate system. The rotation motion is transformed to the translation motion through coordinate transformation. Then the rotation motion vector can also be obtained from JTC instantaneously. To deal with continuous spatially variant motion blur, submotion vectors based on the projective motion path blur model are proposed. The submotion vectors model is more effective and accurate at modeling spatially variant motion blur than conventional methods. The simulation and real experiment results demonstrate its overall effectiveness.

  18. Crust-mantle mechanical coupling in Eastern Mediterranean and Eastern Turkey

    PubMed Central

    Sinan Özeren, M.

    2012-01-01

    Present-day crust-mantle coupling in the Eastern Mediterranean and eastern Turkey is studied using the Global Positioning System (GPS) and seismic anisotropy data. The general trend of the shear wave fast-splitting directions in NE Turkey and Lesser Caucaus align well with the geodetic velocities in an absolute plate motion frame of reference pointing to an effective coupling in this part of the region of weak surface deformation. Farther south, underneath the Bitlis Suture, however, there are significant Pn delays with E-W anisotropy axes indicating significant lateral escape. Meanwhile, the GPS reveals very little surface deformation. This mismatch possibly suggests a decoupling along the suture. In the Aegean, the shear wave anisotropy and the Pn anisotropy directions agree with the extensional component of the right-lateral shear strains except under the Crete Basin and other parts of the southern Aegean Sea. This extensional direction matches perfectly also with the southward pulling force vectors across the Hellenic trench; however, the maximum right-lateral shear directions obtained from the GPS data in the Aegean do not match either of these anisotropies. Seismic anisotropy from Rayleigh waves sampled at 15 s, corresponding to the lower crust, match the maximum right-lateral maximum shear directions from the GPS indicating decoupling between the crust and the mantle. This decoupling most likely results from the lateral variations of the gravitational potential energies and the slab-pull forces. PMID:22592788

  19. Crust-mantle mechanical coupling in Eastern Mediterranean and eastern Turkey.

    PubMed

    Özeren, M Sinan

    2012-05-29

    Present-day crust-mantle coupling in the Eastern Mediterranean and eastern Turkey is studied using the Global Positioning System (GPS) and seismic anisotropy data. The general trend of the shear wave fast-splitting directions in NE Turkey and Lesser Caucaus align well with the geodetic velocities in an absolute plate motion frame of reference pointing to an effective coupling in this part of the region of weak surface deformation. Farther south, underneath the Bitlis Suture, however, there are significant Pn delays with E-W anisotropy axes indicating significant lateral escape. Meanwhile, the GPS reveals very little surface deformation. This mismatch possibly suggests a decoupling along the suture. In the Aegean, the shear wave anisotropy and the Pn anisotropy directions agree with the extensional component of the right-lateral shear strains except under the Crete Basin and other parts of the southern Aegean Sea. This extensional direction matches perfectly also with the southward pulling force vectors across the Hellenic trench; however, the maximum right-lateral shear directions obtained from the GPS data in the Aegean do not match either of these anisotropies. Seismic anisotropy from Rayleigh waves sampled at 15 s, corresponding to the lower crust, match the maximum right-lateral maximum shear directions from the GPS indicating decoupling between the crust and the mantle. This decoupling most likely results from the lateral variations of the gravitational potential energies and the slab-pull forces.

  20. Right ventricular strain analysis from three-dimensional echocardiography by using temporally diffeomorphic motion estimation.

    PubMed

    Zhang, Zhijun; Zhu, Meihua; Ashraf, Muhammad; Broberg, Craig S; Sahn, David J; Song, Xubo

    2014-12-01

    Quantitative analysis of right ventricle (RV) motion is important for study of the mechanism of congenital and acquired diseases. Unlike left ventricle (LV), motion estimation of RV is more difficult because of its complex shape and thin myocardium. Although attempts of finite element models on MR images and speckle tracking on echocardiography have shown promising results on RV strain analysis, these methods can be improved since the temporal smoothness of the motion is not considered. The authors have proposed a temporally diffeomorphic motion estimation method in which a spatiotemporal transformation is estimated by optimization of a registration energy functional of the velocity field in their earlier work. The proposed motion estimation method is a fully automatic process for general image sequences. The authors apply the method by combining with a semiautomatic myocardium segmentation method to the RV strain analysis of three-dimensional (3D) echocardiographic sequences of five open-chest pigs under different steady states. The authors compare the peak two-point strains derived by their method with those estimated from the sonomicrometry, the results show that they have high correlation. The motion of the right ventricular free wall is studied by using segmental strains. The baseline sequence results show that the segmental strains in their methods are consistent with results obtained by other image modalities such as MRI. The image sequences of pacing steady states show that segments with the largest strain variation coincide with the pacing sites. The high correlation of the peak two-point strains of their method and sonomicrometry under different steady states demonstrates that their RV motion estimation has high accuracy. The closeness of the segmental strain of their method to those from MRI shows the feasibility of their method in the study of RV function by using 3D echocardiography. The strain analysis of the pacing steady states shows the potential utility of their method in study on RV diseases.

  1. Fundamental science behind today's important medicines.

    PubMed

    Spector, Jonathan M; Harrison, Rosemary S; Fishman, Mark C

    2018-04-25

    Today's most transformative medicines exist because of fundamental discoveries that were made without regard to practical outcome and with their relevance to therapeutics only appearing decades later. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  2. Improved target detection algorithm using Fukunaga-Koontz transform and distance classifier correlation filter

    NASA Astrophysics Data System (ADS)

    Bal, A.; Alam, M. S.; Aslan, M. S.

    2006-05-01

    Often sensor ego-motion or fast target movement causes the target to temporarily go out of the field-of-view leading to reappearing target detection problem in target tracking applications. Since the target goes out of the current frame and reenters at a later frame, the reentering location and variations in rotation, scale, and other 3D orientations of the target are not known thus complicating the detection algorithm has been developed using Fukunaga-Koontz Transform (FKT) and distance classifier correlation filter (DCCF). The detection algorithm uses target and background information, extracted from training samples, to detect possible candidate target images. The detected candidate target images are then introduced into the second algorithm, DCCF, called clutter rejection module, to determine the target coordinates are detected and tracking algorithm is initiated. The performance of the proposed FKT-DCCF based target detection algorithm has been tested using real-world forward looking infrared (FLIR) video sequences.

  3. Trotting, pacing and bounding by a quadruped robot.

    PubMed

    Raibert, M H

    1990-01-01

    This paper explores the quadruped running gaits that use the legs in pairs: the trot (diagonal pairs), the pace (lateral pairs), and the bound (front and rear pairs). Rather than study these gaits in quadruped animals, we studied them in a quadruped robot. We found that each of the gaits that use the legs in pairs can be transformed into a common underlying gait, a virtual biped gait. Once transformed, a single set of control algorithms produce all three gaits, with modest parameter variations between them. The control algorithms manipulated rebound height, running speed, and body attitude, while a low-level mechanism coordinated the behavior of the legs in each pair. The approach was tested with laboratory experiments on a four-legged robot. Data are presented that show the details of the running motion for the three gaits and for transitions from one gait to another.

  4. Effects of motion base and g-seat cueing of simulator pilot performance

    NASA Technical Reports Server (NTRS)

    Ashworth, B. R.; Mckissick, B. T.; Parrish, R. V.

    1984-01-01

    In order to measure and analyze the effects of a motion plus g-seat cueing system, a manned-flight-simulation experiment was conducted utilizing a pursuit tracking task and an F-16 simulation model in the NASA Langley visual/motion simulator. This experiment provided the information necessary to determine whether motion and g-seat cues have an additive effect on the performance of this task. With respect to the lateral tracking error and roll-control stick force, the answer is affirmative. It is shown that presenting the two cues simultaneously caused significant reductions in lateral tracking error and that using the g-seat and motion base separately provided essentially equal reductions in the pilot's lateral tracking error.

  5. Post seismic deformation associated with the 1992 Mω=7.3 Landers earthquake, southern California

    USGS Publications Warehouse

    Savage, J.C.; Svarc, J.L.

    1997-01-01

    Following the 1992 Mω=7.3 Landers earthquake, a linear array of 10 geodetic monuments at roughly 5-km spacing was established across the Emerson fault segment of the Landers rupture. The array trends perpendicular to the local strike of the fault segment and extends about 30 km on either side of it. The array was surveyed by Global Positioning System 0.034, 0.048, 0.381, 1.27, 1.88, 2.60, and 3.42 years after the Landers earthquake to measure both the spatial and temporal character of the postearthquake relaxation. The temporal behavior is described roughly by a short-term (decay time 84±23 days) exponential relaxation superimposed upon an apparently linear trend. Because the linear trend represents motions much more rapid than the observed preseismic motions, we attribute that trend to a slower (decay time greater than 5 years) postseismic relaxation, the curvature of which cannot be resolved in the short run (3.4 years) of postseismic data. About 100 mm of right-lateral displacement and 50 mm of fault-normal displacement accumulated across the geodetic array in the 3.4-year interval covered by the postseismic surveys. Those displacements are attributed to postseismic, right-lateral slip in the depth interval 10 to 30 km on the downward extension of the rupture trace. The right-lateral slip amounted to about 1 m directly beneath the geodetic array, and the fault-normal displacement is apparently primarily a consequence of the curvature of the rupture. These conclusions are based upon dislocation models fit to the observed deformation. However, no dislocation model was found with rms residuals as small as the expected observational error.

  6. Concurrent validity and interrater reliability of a new smartphone application to assess 3D active cervical range of motion in patients with neck pain.

    PubMed

    Stenneberg, Martijn S; Busstra, Harm; Eskes, Michel; van Trijffel, Emiel; Cattrysse, Erik; Scholten-Peeters, Gwendolijne G M; de Bie, Rob A

    2018-04-01

    There is a lack of valid, reliable, and feasible instruments for measuring planar active cervical range of motion (aCROM) and associated 3D coupling motions in patients with neck pain. Smartphones have advanced sensors and appear to be suitable for these measurements. To estimate the concurrent validity and interrater reliability of a new iPhone application for assessing planar aCROM and associated 3D coupling motions in patients with neck pain, using an electromagnetic tracking device as a reference test. Cross-sectional study. Two samples of neck pain patients were recruited; 30 patients for the validity study and 26 patients for the reliability study. Validity was estimated using intraclass correlation coefficients (ICCs), and by calculating 95% limits of agreement (LoA). To estimate interrater reliability, ICCs were calculated. Cervical 3D coupling motions were analyzed by calculating the cross-correlation coefficients and ratio between the main motions and coupled motions for both instruments. ICCs for concurrent validity and interrater reliability ranged from 0.90 to 0.99. The width of the 95% LoA ranged from about 5° for right lateral bending to 11° for total rotation. No significant differences were found between both devices for associated coupling motion analysis. The iPhone application appears to be a useful discriminative tool for the measurement of planar aCROM and associated coupling motions in patients with neck pain. It fulfills the need for a valid, reliable, and feasible instrument in clinical practice and research. Therapists and researchers should consider measurement error when interpreting scores. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. On-track test of tilt control strategies for less motion sickness on tilting trains

    NASA Astrophysics Data System (ADS)

    Persson, Rickard; Kufver, Björn; Berg, Mats

    2012-07-01

    Carbody tilting is today a mature and inexpensive technology that permits higher train speeds in horizontal curves, thus shortening travel time. However, tilting trains run a greater risk of causing motion sickness than non-tilting ones. It is likely that the difference in motions between the two train types contributes to the observed difference in risk of motion sickness. Decreasing the risk of motion sickness has until now been equal to increasing the discomfort related to quasi-static lateral acceleration. But, there is a difference in time perception between discomfort caused by quasi-static quantities and motion sickness, which opens up for new solutions. One proposed strategy is to let the local track conditions influence the tilt and give each curve its own optimised tilt angle. This is made possible by new tilt algorithms, storing track data and using a positioning system to select the appropriate data. The present paper reports from on-track tests involving more than 100 test subjects onboard a tilting train. A technical approach is taken evaluating the effectiveness of the new tilt algorithms and the different requirements on quasi-static lateral acceleration and lateral jerk in relative terms. The evaluation verifies that the rms values important for motion sickness can be influenced without changing the requirements on quasi-static lateral acceleration and lateral jerk. The evaluation shows that reduced quantities of motions assumed to have a relation to motion sickness also lead to a reduction in experienced motion sickness. However, a limitation of applicability is found as the lowest risk of motion sickness was not recorded for the test case with motions closest to those of a non-tilting train. An optimal level of tilt, different from no tilt at all, is obtained. This non-linear relation has been observed by other researchers in laboratory tests.

  8. Stochastic Orbit Prediction Using KAM Tori

    DTIC Science & Technology

    2011-03-24

    the plane . The debris was later identified as a reentering Russian Progress 23P cargo freighter for the ISS...elements. The eccentricity and angular momentum scalar quantities define the orbit in the plane [25:208]. The inclination, right ascension of the ascending...Since ⃑ is a constant vector perpendicular to ⃑ and ⃑ , the satellite’s motion is fixed in the plane containing ⃑ and ⃑ called the

  9. Structure of Kilauea's southwest rift zone and western south flank defined by relocated earthquakes

    NASA Astrophysics Data System (ADS)

    Rinard, Bethany D.

    This study is the first detailed seismic investigation of the southwest rift and western south flank of Kilauea Volcano. Earthquakes outline the tectonic and magmatic systems of the volcano. In this study, more than 4800 earthquakes from the years 1981--2001 were relocated with a double-difference method, and almost 500 were relocated with cross-correlation. The result is a much-improved image of Kilauea's south flank structure. The shallowest of the earthquakes on Kilauea (<5km) are usually related to magma movement, and occur almost exclusively in the actively intruded rift. The few tectonic earthquakes that occur at this depth are along the Koae and Hilina Fault systems. Focal mechanisms indicate that the shallow events on the Hilina system have [normal, right-lateral] oblique-slip motion. Beneath the entire south flank are earthquakes that occur on a decollement, located at a depth of 7--10km. The inland-dipping decollement structure is clearly imaged with this new data set. Earthquakes on the volcano's south flank normal faults appear to extend downward to the decollement. Earthquakes at intermediate depths image the decollement, a plane that dips inland. This is the boundary between the volcano and the old oceanic crust beneath it. Movement on faults at decollement depths of 7--10km have [right-lateral thrust] oblique-slip motion. When intrusions occur in the rift zones, the flank is forced seaward along the decollement. Since the decollement dips inland, the south flank must move up an incline as it slides seaward. Hawaii also experiences deep (>25km) earthquakes, which are the most intriguing events in this study. These earthquakes are significant because the Moho is located at a depth of 13--15km, so they are clearly occurring in the mantle. The deep events examined in this study are tectonic earthquakes, not attributable to melt migration. A high strain rate in the mantle, largely due to the geologically rapid formation of the island that has quickly increased the load on the underlying mantle, may account for the occurrence of these deep earthquakes. Focal mechanisms indicate [normal, right-lateral] oblique-slip motion on faults below 25km depth.

  10. Quantifying the competing relationship between adduction range of motion and baseplate micromotion with lateralization of reverse total shoulder arthroplasty.

    PubMed

    Elwell, Josie; Choi, Joseph; Willing, Ryan

    2017-02-08

    Lateralizing the center of rotation (COR) of reverse total shoulder arthroplasty (rTSA) could improve functional outcomes and mitigate scapular notching, a commonly occurring complication of the procedure. However, resulting increases in torque at the bone-implant interface may negatively affect initial fixation of the glenoid-side component, especially if only two fixation screws can be placed. Shoulder-specific finite element (FE) models of four fresh-frozen cadaveric shoulders were constructed. Scapular geometry and material property distributions were derived from CT data. Generic baseplates with two and four fixation screws were virtually implanted, after which superiorly-oriented shear loads, accompanied by a compressive load, were applied incrementally further from the glenoid surface to simulate lateralization of the COR. Relationships between lateralization, adduction range of motion (ROM), the number of fixation screws and micromotion of the baseplate (initial implant fixation) were characterized. Lateralization significantly increases micromotion (p=0.015) and adduction ROM (p=0.001). Using two, versus four, baseplate fixation screws significantly increases micromotion (p=0.008). The effect of lateralization and the number of screws on adduction ROM and baseplate fixation is variable on a shoulder-specific basis. Trade-offs exist between functional outcomes, namely adduction ROM, and initial implant fixation and the negative effect of lateralization on implant fixation is amplified when only two fixation screws are used. The possibility of lateralizing the COR in order to improve functional outcomes of the procedure should be considered on a patient-specific basis accounting for factors such as availability and quality of bone stock. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Two-dimensional simulation of red blood cell motion near a wall under a lateral force

    NASA Astrophysics Data System (ADS)

    Hariprasad, Daniel S.; Secomb, Timothy W.

    2014-11-01

    The motion of a red blood cell suspended in a linear shear flow adjacent to a fixed boundary subject to an applied lateral force directed toward the boundary is simulated. A two-dimensional model is used that represents the viscous and elastic properties of normal red blood cells. Shear rates in the range of 100 to 600 s-1 are considered, and the suspending medium viscosity is 1 cP. In the absence of a lateral force, the cell executes a tumbling motion. With increasing lateral force, a transition from tumbling to tank-treading is predicted. The minimum force required to ensure tank-treading increases nonlinearly with the shear rate. Transient swinging motions occur when the force is slightly larger than the transition value. The applied lateral force is balanced by a hydrodynamic lift force resulting from the positive orientation of the long axis of the cell with respect to the wall. In the case of cyclic tumbling motions, the orientation angle takes positive values through most of the cycle, resulting in lift generation. These results are used to predict the motion of a cell close to the outer edge of the cell-rich core region that is generated when blood flows in a narrow tube. In this case, the lateral force is generated by shear-induced dispersion, resulting from cell-cell interactions in a region with a concentration gradient. This force is estimated using previous data on shear-induced dispersion. The cell is predicted to execute tank-treading motions at normal physiological hematocrit levels, with the possibility of tumbling at lower hematocrit levels.

  12. Enchondromas of the hand: factors affecting recurrence, healing, motion, and malignant transformation.

    PubMed

    Sassoon, Adam A; Fitz-Gibbon, Patrick D; Harmsen, William S; Moran, Steven L

    2012-06-01

    Enchondromas represent the most common primary bone tumor in the hand. Despite their frequency, a standardized treatment protocol is lacking. This study examines the outcome of surgically treated enchondromas of the hand with regard to tumor location, graft choice, and presence or absence of fracture. We retrospectively reviewed 102 enchondromas in 80 patients, identified between 1991 and 2008, with a mean clinical follow-up of 38 months. We assessed the effects of age, tumor location, and graft choice on outcomes for all lesions. Patients presenting with Ollier disease, Maffucci syndrome, pathologic fractures, or recurrent disease were separated for additional analysis. Of the 102 lesions, 62 (61%) achieved complete radiographic healing in a median time of 6 months. Full range of motion was achieved following treatment of 68 lesions (67%) in a median time of 3 months. A total of 95 lesions (93%) remained recurrence free following surgery. One case of malignant transformation occurred in a patient with Maffucci syndrome. Tumor location and graft choice did not affect healing grade, time to healing, range of motion, or recurrence rate. Age at presentation greater than 30 was associated with more rapid healing. Monocentric, nonexpanding lesions were associated with improved postoperative range of motion. Patients with a diagnosis of multiple enchondromas had a higher rate of recurrence following surgery, and patients presenting with a recurrent lesion had a higher rate of complications. Following pathologic fracture, no differences in outcomes were observed when enchondromas were treated primarily or following fracture healing. Following surgical treatment of enchondromas in the hand, the majority of patients achieve complete bony healing and full range of motion, regardless of the graft material used. Malignant transformation is rare, and aggressive follow-up measures should be reserved for patients with a diagnosis of multiple enchondromas. Therapeutic IV. Copyright © 2012 American Society for Surgery of the Hand. All rights reserved.

  13. Theoretical Comparison of Motional and Transformer EMF Device Damping Efficiency

    NASA Astrophysics Data System (ADS)

    GRAVES, K. E.; TONCICH, D.; IOVENITTI, P. G.

    2000-06-01

    In this paper, theoretical comparison between electromagnetic dampers based on a “motional emf” and “transformer emf” design is presented. Transformer emf devices are based on the generation of emf in a stationary circuit, in which the emf is generated by a time-varying magnetic field linking the circuit. Motional emf devices are based on the generation of emf due to a moving conductor within a stationary magnetic field. Both of these designs can be used as damping elements for applications such as semi-active and regenerative vehicle suspension systems. The findings herein are provided so as to evaluate the most efficient device for such applications. The analysis consists of comparing the damping coefficient of the electromagnetic devices for a given magnetic field and given volume of conducting material. It has been found that for a limited range of dimensions, the transformer emf devices can be more then 1·2 times as efficient as the motional emf devices. However, for most realistic situations, motional emf devices will have the highest efficiency.

  14. Effect of deltoid tension and humeral version in reverse total shoulder arthroplasty: a biomechanical study.

    PubMed

    Henninger, Heath B; Barg, Alexej; Anderson, Andrew E; Bachus, Kent N; Tashjian, Robert Z; Burks, Robert T

    2012-04-01

    No clear recommendations exist regarding optimal humeral component version and deltoid tension in reverse total shoulder arthroplasty (TSA). A biomechanical shoulder simulator tested humeral versions (0°, 10°, 20° retroversion) and implant thicknesses (-3, 0, +3 mm from baseline) after reverse TSA in human cadavers. Abduction and external rotation ranges of motion as well as abduction and dislocation forces were quantified for native arms and arms implanted with 9 combinations of humeral version and implant thickness. Resting abduction angles increased significantly (up to 30°) after reverse TSA compared with native shoulders. With constant posterior cuff loads, native arms externally rotated 20°, whereas no external rotation occurred in implanted arms (20° net internal rotation). Humeral version did not affect rotational range of motion but did alter resting abduction. Abduction forces decreased 30% vs native shoulders but did not change when version or implant thickness was altered. Humeral center of rotation was shifted 17 mm medially and 12 mm inferiorly after implantation. The force required for lateral dislocation was 60% less than anterior and was not affected by implant thickness or version. Reverse TSA reduced abduction forces compared with native shoulders and resulted in limited external rotation and abduction ranges of motion. Because abduction force was reduced for all implants, the choice of humeral version and implant thickness should focus on range of motion. Lateral dislocation forces were less than anterior forces; thus, levering and inferior/posterior impingement may be a more probable basis for dislocation (laterally) than anteriorly directed forces. Copyright © 2012 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Mosby, Inc. All rights reserved.

  15. Is latero-medial patellar mobility related to the range of motion of the knee joint after total knee arthroplasty?

    PubMed

    Ota, Susumu; Nakashima, Takeshi; Morisaka, Ayako; Omachi, Takaaki; Ida, Kunio; Kawamura, Morio

    2010-12-01

    Diminished range of motion (ROM) of the knee joint after total knee arthroplasty (TKA) is thought to be related to reduced patellar mobility. This has not been confirmed clinically due to a lack of quantitative methods adequate for measuring patellar mobility. We investigated the relationship between patellar mobility by a reported quantitative method and knee joint ROM after TKA. Forty-nine patients [osteoarthritis--OA: 29 knees; rheumatoid arthritis--RA: 20 knees] were examined after TKA. Respective medial and lateral patellar mobility was measured 1 and 6 months postoperatively using a patellofemoral arthrometer (PFA). Knee joint ROM was also measured in each of those 2 sessions. Although the flexion and extension of the knee joints improved significantly from 1 to 6 months after TKA, the medial and lateral patellar displacements (LPDs) failed to improve during that same period. Moreover, only the changes in knee flexion and medial patellar displacement (MPD) between the two sessions were positively correlated (r = 0.31, p < 0.05). However, our findings demonstrated that medial and lateral patellar mobility had no sufficient longitudinal relationship with knee ROM after TKA. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. Principal component analysis-based imaging angle determination for 3D motion monitoring using single-slice on-board imaging.

    PubMed

    Chen, Ting; Zhang, Miao; Jabbour, Salma; Wang, Hesheng; Barbee, David; Das, Indra J; Yue, Ning

    2018-04-10

    Through-plane motion introduces uncertainty in three-dimensional (3D) motion monitoring when using single-slice on-board imaging (OBI) modalities such as cine MRI. We propose a principal component analysis (PCA)-based framework to determine the optimal imaging plane to minimize the through-plane motion for single-slice imaging-based motion monitoring. Four-dimensional computed tomography (4DCT) images of eight thoracic cancer patients were retrospectively analyzed. The target volumes were manually delineated at different respiratory phases of 4DCT. We performed automated image registration to establish the 4D respiratory target motion trajectories for all patients. PCA was conducted using the motion information to define the three principal components of the respiratory motion trajectories. Two imaging planes were determined perpendicular to the second and third principal component, respectively, to avoid imaging with the primary principal component of the through-plane motion. Single-slice images were reconstructed from 4DCT in the PCA-derived orthogonal imaging planes and were compared against the traditional AP/Lateral image pairs on through-plane motion, residual error in motion monitoring, absolute motion amplitude error and the similarity between target segmentations at different phases. We evaluated the significance of the proposed motion monitoring improvement using paired t test analysis. The PCA-determined imaging planes had overall less through-plane motion compared against the AP/Lateral image pairs. For all patients, the average through-plane motion was 3.6 mm (range: 1.6-5.6 mm) for the AP view and 1.7 mm (range: 0.6-2.7 mm) for the Lateral view. With PCA optimization, the average through-plane motion was 2.5 mm (range: 1.3-3.9 mm) and 0.6 mm (range: 0.2-1.5 mm) for the two imaging planes, respectively. The absolute residual error of the reconstructed max-exhale-to-inhale motion averaged 0.7 mm (range: 0.4-1.3 mm, 95% CI: 0.4-1.1 mm) using optimized imaging planes, averaged 0.5 mm (range: 0.3-1.0 mm, 95% CI: 0.2-0.8 mm) using an imaging plane perpendicular to the minimal motion component only and averaged 1.3 mm (range: 0.4-2.8 mm, 95% CI: 0.4-2.3 mm) in AP/Lateral orthogonal image pairs. The root-mean-square error of reconstructed displacement was 0.8 mm for optimized imaging planes, 0.6 mm for imaging plane perpendicular to the minimal motion component only, and 1.6 mm for AP/Lateral orthogonal image pairs. When using the optimized imaging planes for motion monitoring, there was no significant absolute amplitude error of the reconstructed motion (P = 0.0988), while AP/Lateral images had significant error (P = 0.0097) with a paired t test. The average surface distance (ASD) between overlaid two-dimensional (2D) tumor segmentation at end-of-inhale and end-of-exhale for all eight patients was 0.6 ± 0.2 mm in optimized imaging planes and 1.4 ± 0.8 mm in AP/Lateral images. The Dice similarity coefficient (DSC) between overlaid 2D tumor segmentation at end-of-inhale and end-of-exhale for all eight patients was 0.96 ± 0.03 in optimized imaging planes and 0.89 ± 0.05 in AP/Lateral images. Both ASD (P = 0.034) and DSC (P = 0.022) were significantly improved in the optimized imaging planes. Motion monitoring using imaging planes determined by the proposed PCA-based framework had significantly improved performance. Single-slice image-based motion tracking can be used for clinical implementations such as MR image-guided radiation therapy (MR-IGRT). © 2018 American Association of Physicists in Medicine.

  17. Wearable Inertial Sensors Allow for Quantitative Assessment of Shoulder and Elbow Kinematics in a Cadaveric Knee Arthroscopy Model.

    PubMed

    Rose, Michael; Curtze, Carolin; O'Sullivan, Joseph; El-Gohary, Mahmoud; Crawford, Dennis; Friess, Darin; Brady, Jacqueline M

    2017-12-01

    To develop a model using wearable inertial sensors to assess the performance of orthopaedic residents while performing a diagnostic knee arthroscopy. Fourteen subjects performed a diagnostic arthroscopy on a cadaveric right knee. Participants were divided into novices (5 postgraduate year 3 residents), intermediates (5 postgraduate year 4 residents), and experts (4 faculty) based on experience. Arm movement data were collected by inertial measurement units (Opal sensors) by securing 2 sensors to each upper extremity (dorsal forearm and lateral arm) and 2 sensors to the trunk (sternum and lumbar spine). Kinematics of the elbow and shoulder joints were calculated from the inertial data by biomechanical modeling based on a sequence of links connected by joints. Range of motion required to complete the procedure was calculated for each group. Histograms were used to compare the distribution of joint positions for an expert, intermediate, and novice. For both the right and left upper extremities, skill level corresponded well with shoulder abduction-adduction and elbow prono-supination. Novices required on average 17.2° more motion in the right shoulder abduction-adduction plane than experts to complete the diagnostic arthroscopy (P = .03). For right elbow prono-supination (probe hand), novices required on average 23.7° more motion than experts to complete the procedure (P = .03). Histogram data showed novices had markedly more variability in shoulder abduction-adduction and elbow prono-supination compared with the other groups. Our data show wearable inertial sensors can measure joint kinematics during diagnostic knee arthroscopy. Range-of-motion data in the shoulder and elbow correlated inversely with arthroscopic experience. Motion pattern-based analysis shows promise as a metric of resident skill acquisition and development in arthroscopy. Wearable inertial sensors show promise as metrics of arthroscopic skill acquisition among residents. Copyright © 2017 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  18. How do long-offset oceanic transforms adapt to plate motion changes? The example of the Western Pacific-Antarctic plate boundary

    NASA Astrophysics Data System (ADS)

    Lodolo, Emanuele; Coren, Franco; Ben-Avraham, Zvi

    2013-03-01

    Oceanic transform faults respond to changes in the direction of relative plate motion. Studies have shown that short-offset transforms generally adjust with slight bends near the ridge axis, while long-offset ones have a remarkably different behavior. The western Pacific-Antarctic plate boundary highlights these differences. A set of previously unpublished seismic profiles, in combination with magnetic anomaly identifications, shows how across a former, ~1250 km long transform (the Emerald Fracture Zone), plate motion changes have produced a complex geometric readjustment. Three distinct sections are recognized along this plate boundary: an eastern section, characterized by parallel, multiple fault strand lineaments; a central section, shallower than the rest of the ridge system, overprinted by a mantle plume track; and a western section, organized in a cascade of short spreading axes/transform lineaments. This configuration was produced by changes that occurred since 30 Ma in the Australia-Pacific relative plate motion, combined with a gradual clockwise change in Pacific-Antarctic plate motion. These events caused extension along the former Emerald Fracture Zone, originally linking the Pacific-Antarctic spreading ridge system with the Southeast Indian ridge. Then an intra-transform propagating ridge started to develop in response to a ~6 Ma change in the Pacific-Antarctic spreading direction. The close proximity of the Euler poles of rotation amplified the effects of the geometric readjustments that occurred along the transform system. This analysis shows that when a long-offset transform older than 20 Ma is pulled apart by changes in spreading velocity vectors, it responds with the development of multiple discrete, parallel fault strands, whereas in younger lithosphere, locally modified by thermal anisotropies, tensional stresses generate an array of spreading axes offset by closely spaced transforms.

  19. Visual Motion Processing Subserves Faster Visuomotor Reaction in Badminton Players.

    PubMed

    Hülsdünker, Thorben; Strüder, Heiko K; Mierau, Andreas

    2017-06-01

    Athletes participating in ball or racquet sports have to respond to visual stimuli under critical time pressure. Previous studies used visual contrast stimuli to determine visual perception and visuomotor reaction in athletes and nonathletes; however, ball and racquet sports are characterized by motion rather than contrast visual cues. Because visual contrast and motion signals are processed in different cortical regions, this study aimed to determine differences in perception and processing of visual motion between athletes and nonathletes. Twenty-five skilled badminton players and 28 age-matched nonathletic controls participated in this study. Using a 64-channel EEG system, we investigated visual motion perception/processing in the motion-sensitive middle temporal (MT) cortical area in response to radial motion of different velocities. In a simple visuomotor reaction task, visuomotor transformation in Brodmann area 6 (BA6) and BA4 as well as muscular activation (EMG onset) and visuomotor reaction time (VMRT) were investigated. Stimulus- and response-locked potentials were determined to differentiate between perceptual and motor-related processes. As compared with nonathletes, athletes showed earlier EMG onset times (217 vs 178 ms, P < 0.001), accompanied by a faster VMRT (274 vs 243 ms, P < 0.001). Furthermore, athletes showed an earlier stimulus-locked peak activation of MT (200 vs 182 ms, P = 0.002) and BA6 (161 vs 137 ms, P = 0.009). Response-locked peak activation in MT was later in athletes (-7 vs 26 ms, P < 0.001), whereas no group differences were observed in BA6 and BA4. Multiple regression analyses with stimulus- and response-locked cortical potentials predicted EMG onset (r = 0.83) and VMRT (r = 0.77). The athletes' superior visuomotor performance in response to visual motion is primarily related to visual perception and, to a minor degree, to motor-related processes.

  20. Nonlinear surge motions of a ship in bi-chromatic following waves

    NASA Astrophysics Data System (ADS)

    Spyrou, Kostas J.; Themelis, Nikos; Kontolefas, Ioannis

    2018-03-01

    Unintended motions of a ship operating in steep and long following waves are investigated. A well-known such case is ;surf-riding; where a ship is carried forward by a single wave, an event invoking sometimes lateral instability and even capsize. The dynamics underlying this behavior has been clarified earlier for monochromatic waves. However, the unsteadiness of the phase space associated with ship behavior in a multichromatic sea, combined with the intrinsically strong system nonlinearity, pose new challenges. Here, current theory is extended to cover surging and surf-riding behavior in unidirectional bi-chromatic waves encountering a ship from the stern. Excitation is provided by two unidirectional harmonic wave components having their lengths comparable to the ship length and their frequencies in rational ratio. The techniques applied include (a) continuation analysis; (b) tracking of Lagrangian coherent structures in phase space, approximated through a finite-time Lyapunov exponents' calculation; and (c) large scale simulation. A profound feature of surf-riding in bi-chromatic waves is that it is turned oscillatory. Initially it appears as a frequency-locked motion, ruled by the harmonic wave component dominating the excitation. Transformations of oscillatory surf-riding are realized as the waves become steeper. In particular, heteroclinic tanglings are identified, governing abrupt transitions between qualitatively different motions. Chaotic transients, as well as long-term chaotic motions, exist near to these events. Some extraordinary patterns of ship motion are discovered. These include a counterintuitive low speed motion at very high wave excitation level; and a hybrid motion characterized by a wildly fluctuating velocity. Due to the quite generic nature of the core mathematical model of our investigation, the current results are believed to offer clues about the behavior of a class of nonlinear dynamical systems having in their modeling some analogy with a perturbed pendulum with bias.

  1. fMRI evidence for sensorimotor transformations in human cortex during smooth pursuit eye movements.

    PubMed

    Kimmig, H; Ohlendorf, S; Speck, O; Sprenger, A; Rutschmann, R M; Haller, S; Greenlee, M W

    2008-01-01

    Smooth pursuit eye movements (SP) are driven by moving objects. The pursuit system processes the visual input signals and transforms this information into an oculomotor output signal. Despite the object's movement on the retina and the eyes' movement in the head, we are able to locate the object in space implying coordinate transformations from retinal to head and space coordinates. To test for the visual and oculomotor components of SP and the possible transformation sites, we investigated three experimental conditions: (I) fixation of a stationary target with a second target moving across the retina (visual), (II) pursuit of the moving target with the second target moving in phase (oculomotor), (III) pursuit of the moving target with the second target remaining stationary (visuo-oculomotor). Precise eye movement data were simultaneously measured with the fMRI data. Visual components of activation during SP were located in the motion-sensitive, temporo-parieto-occipital region MT+ and the right posterior parietal cortex (PPC). Motor components comprised more widespread activation in these regions and additional activations in the frontal and supplementary eye fields (FEF, SEF), the cingulate gyrus and precuneus. The combined visuo-oculomotor stimulus revealed additional activation in the putamen. Possible transformation sites were found in MT+ and PPC. The MT+ activation evoked by the motion of a single visual dot was very localized, while the activation of the same single dot motion driving the eye was rather extended across MT+. The eye movement information appeared to be dispersed across the visual map of MT+. This could be interpreted as a transfer of the one-dimensional eye movement information into the two-dimensional visual map. Potentially, the dispersed information could be used to remap MT+ to space coordinates rather than retinal coordinates and to provide the basis for a motor output control. A similar interpretation holds for our results in the PPC region.

  2. Motion magnification using the Hermite transform

    NASA Astrophysics Data System (ADS)

    Brieva, Jorge; Moya-Albor, Ernesto; Gomez-Coronel, Sandra L.; Escalante-Ramírez, Boris; Ponce, Hiram; Mora Esquivel, Juan I.

    2015-12-01

    We present an Eulerian motion magnification technique with a spatial decomposition based on the Hermite Transform (HT). We compare our results to the approach presented in.1 We test our method in one sequence of the breathing of a newborn baby and on an MRI left ventricle sequence. Methods are compared using quantitative and qualitative metrics after the application of the motion magnification algorithm.

  3. Abnormal sympathetic innervation of the heart in a patient with Emery-Dreifuss muscular dystrophy.

    PubMed

    Fujiita, Takashi; Shimizu, Masami; Kaku, Bunji; Kanaya, Hounin; Horita, Yuki; Uno, Yoshihide; Yamazaki, Tsukasa; Ohka, Takio; Sakata, Kenji; Mabuchi, Hiroshi

    2005-07-01

    A 33-year-old man was admitted for general malaise and vomiting. An electrocardiogram showed a complete atrioventricular block and an echocardiogram showed right atrial dilatation and normal wall motion of left ventricle (LV). Gene analysis showed nonsense mutation in the STA gene, which codes for emerin, and Emery-Dreifuss muscular dystrophy was diagnosed. An endomyocardial biopsy of right ventricle showed mild hypertrophy of myocytes. Myocardial scintigraphic studies with Tc-99m methoxyisobutylisonitrile (MIBI) and I-123-betamethyl-p-iodophenylpentadecanoic acid (BMIPP) scintigrams showed no abnormalities. In contrast, I-123 metaiodobenzylguanidine (MIBG) scintigrams showed a diffuse and severe decrease in accumulation of MIBG in the heart. Six months later, his LV wall motion on echocardiograms developed diffuse hypokinesis. These results suggest that the abnormality on I-123 MIBG myocardial scintigrams may predict LV dysfunction in Emery-Dreifuss muscular dystrophy.

  4. Motion compensation via redundant-wavelet multihypothesis.

    PubMed

    Fowler, James E; Cui, Suxia; Wang, Yonghui

    2006-10-01

    Multihypothesis motion compensation has been widely used in video coding with previous attention focused on techniques employing predictions that are diverse spatially or temporally. In this paper, the multihypothesis concept is extended into the transform domain by using a redundant wavelet transform to produce multiple predictions that are diverse in transform phase. The corresponding multiple-phase inverse transform implicitly combines the phase-diverse predictions into a single spatial-domain prediction for motion compensation. The performance advantage of this redundant-wavelet-multihypothesis approach is investigated analytically, invoking the fact that the multiple-phase inverse involves a projection that significantly reduces the power of a dense-motion residual modeled as additive noise. The analysis shows that redundant-wavelet multihypothesis is capable of up to a 7-dB reduction in prediction-residual variance over an equivalent single-phase, single-hypothesis approach. Experimental results substantiate the performance advantage for a block-based implementation.

  5. Walking modulates speed sensitivity in Drosophila motion vision.

    PubMed

    Chiappe, M Eugenia; Seelig, Johannes D; Reiser, Michael B; Jayaraman, Vivek

    2010-08-24

    Changes in behavioral state modify neural activity in many systems. In some vertebrates such modulation has been observed and interpreted in the context of attention and sensorimotor coordinate transformations. Here we report state-dependent activity modulations during walking in a visual-motor pathway of Drosophila. We used two-photon imaging to monitor intracellular calcium activity in motion-sensitive lobula plate tangential cells (LPTCs) in head-fixed Drosophila walking on an air-supported ball. Cells of the horizontal system (HS)--a subgroup of LPTCs--showed stronger calcium transients in response to visual motion when flies were walking rather than resting. The amplified responses were also correlated with walking speed. Moreover, HS neurons showed a relatively higher gain in response strength at higher temporal frequencies, and their optimum temporal frequency was shifted toward higher motion speeds. Walking-dependent modulation of HS neurons in the Drosophila visual system may constitute a mechanism to facilitate processing of higher image speeds in behavioral contexts where these speeds of visual motion are relevant for course stabilization. Copyright 2010 Elsevier Ltd. All rights reserved.

  6. Construction of Finite Element Model for an Artificial Atlanto-Odontoid Joint Replacement and Analysis of Its Biomechanical Properties.

    PubMed

    Hu, Yong; Dong, Wei-Xin; Hann, Shannon; Yuan, Zhen-Shan; Sun, Xiao-Yang; Xie, Hui; Zhang, Meichao

    To investigate the stress distribution on artificial atlantoaxial-odontoid joint (AAOJ) components during flexion, extension, lateral bending and rotation of AAOJ model constructed with the finite element (FE) method. Human cadaver specimens of normal AAOJ were CT scanned with 1 mm -thickness and transferred into Mimics software to reconstruct the three-dimensional models of AAOJ. These data were imported into Freeform software to place a AAOJ into a atlantoaxial model. With Ansys software, a geometric model of AAOJ was built. Perpendicular downward pressure of 40 N was applied to simulate gravity of a skull, then 1.53 N• m torque was exerted separately to simulate the range of motion of the model. An FE model of atlantoaxial joint after AAOJ replacement was constructed with a total of 103 053 units and 26 324 nodes. In flexion, extension, right lateral bending and right rotation, the AAOJ displacement was 1.109 mm, 3.31 mm, 0.528 mm, and 9.678 mm, respectively, and the range of motion was 1.6°, 5.1°, 4.6° and 22°. During all ROM, stress distribution of atlas-axis changed after AAOJ replacement indicating that AAOJ can offload stress. The stress distribution in the AAOJ can be successfully analyzed with the FE method.

  7. Strain accumulation across the Eastern California Shear Zone at latitude 36°30'N

    USGS Publications Warehouse

    Gan, Weijun; Svarc, Jerry L.; Savage, J.C.; Prescott, W.H.

    2000-01-01

    The motion of a linear array of monuments extending across the Eastern California Shear Zone (ECSZ) has been measured from 1994 to 1999 with the Global Positioning System. The linear array is oriented N54°E, perpendicular to the tangent to the local small circle drawn about the Pacific-North America pole of rotation, and the observed motion across the ECSZ is approximated by differential rotation about that pole. The observations suggest uniform deformation within the ECSZ (strike N23°W) (26 nstrain yr−1 extension normal to the zone and 39 nstrain yr−1 simple right-lateral shear across it) with no significant deformation in the two blocks (the Sierra Nevada mountains and southern Nevada) on either side. The deformation may be imposed by right-lateral slip at depth on the individual major fault systems within the zone if the slip rates are: Death Valley-Furnace Creek fault 3.2±0.9 mm yr−1, Hunter Mountain-Panamint Valley fault 3.3±1.6 mm yr−1, and Owens Valley fault 6.9±1.6 mm yr−1. However, this estimate of the slip rate on the Owens Valley fault is 3 times greater than the geologic estimate.

  8. Paleomagnetic Analysis of Block Rotations in the Wake of the Migrating Tjörnes Transform Zone in Northern Iceland

    NASA Astrophysics Data System (ADS)

    Horst, A. J.; Varga, R. J.; Gee, J. S.; Karson, J.

    2011-12-01

    Oceanic propagating rifts create migrating transform fault zones on the seafloor that leave a wake of deformed and rotated crustal blocks between abandoned transform fault stands. Faulting and rotation kinematics in these areas are inferred from bathymetric lineaments and earthquake focal mechanisms, but the details of crustal deformation associated with migrating oceanic transforms is inhibited by limited seafloor exposures and access. A similar propagating rift and migrating transform system occurs in thick oceanic-like crust of Northern Iceland, providing an additional perspective on kinematics of these systems. The Tjörnes Fracture Zone (TFZ) in Northern Iceland is a broad region of deformation thought to have formed ~7 Ma. Right-lateral motion is accommodated mostly on two WNW-trending seismically active fault zones, the Grímsey Seismic Zone and the Húsavík-Flatey Fault (HFF), spaced ~40 km apart. Both are primarily offshore; however, deformation south of the HFF is partly exposed on land over an area of >10 km (N/S) and >25 km (E/W) on the peninsula of Flateyjarskagi. Previous work has shown that average lava flow orientations progressively change from 160°/12° SW (~20 km south from HFF), to 183°/25° NW (~12 km S of HFF), and 212°/33° NW (~6 km S of HFF). Dike orientations also progressively change from 010°/85° SE (parallel to the Northern Rift Zone), clockwise to 110°/75° SW (nearly parallel to the HFF) near the HFF. Pervasive strike-slip faulting is evident along the HFF as well as on isolated faults to the south. Between these, NNE-striking left-lateral, oblique-slip faults occur near the HFF but appear to decrease in occurrence to the south. These relationships have been interpreted as either the result of transform shear deformation (secondary features) or construction in a stress field that varies as the transform is approached (primary features). Paleomagnetic data from across the area can test these hypotheses. Mean paleomagnetic remanence directions of normal polarity lavas from two areas ~6 and ~12 km south of the HFF both have easterly declinations and moderate positive inclinations, with nearly antipodal reverse directions. Dikes sampled in the area ~6 km south of HFF reveal remanence directions indistinguishable from those of the lavas at the 95% confidence level. After tilt correction, the mean remanence directions for the area ~6km south of the HFF are statistically distinct from the expected Geocentric Axial Dipole (GAD) direction suggesting an additional ~40° or more of vertical-axis rotation. Tilt-corrected remanence directions of lavas ~12 km south of the HFF are nearly coincident with the GAD suggesting little additional rotation. Geological field relations and fault-slip data imply a two-stage reconstruction involving tilting followed by approximately vertical-axis rotations. The deformation within the TFZ may be analogous to that of migrating oceanic transform faults, transform faults associated with propagating rifts, and microplates.

  9. In Situ Observational Constraints on GIA in Antarctica

    NASA Astrophysics Data System (ADS)

    Wilson, T. J.; Bevis, M. G.; Kendrick, E. C.; Konfal, S.; Dalziel, I. W.; Smalley, R.; Willis, M. J.; Wiens, D. A.; Heeszel, D. S.

    2012-12-01

    Geodetic and seismologic data sets have been acquired across a significant portion of Antarctica through deployment of autonomous, remote instrumentation by the Antarctic Network (ANET) project of the Polar Earth Observing Network (POLENET). Continuous GPS measurements of bedrock crustal motions are yielding a synoptic picture of vertical and horizontal crustal motion patterns from the Transantarctic Mountains to the Ellsworth-Whitmore Mountains and Marie Byrd Land regions. Vertical motion patterns are broadly compatible with predictions from current GIA models, but the magnitudes of the vertical motions are substantially lower than predicted. Slower rates of uplift due to GIA can be attributed to factors including errors in ice history, a superposed solid earth response to modern ice mass change, and/or the influence of laterally varying earth properties on the GIA response. Patterns of horizontal motions measured by ANET show that the role of laterally varying earth rheology is extremely important in Antarctica. Crustal motion vectors are closely aligned and document motion from East toward West Antarctica, in contradiction to ice sheet reconstructions placing maximum LGM ice mass loss in West Antarctica and GIA models that predict motions in the opposite direction. When compared to earth structure mapped by seismology, the horizontal crustal motions are consistently near-perpendicular to the very strong gradient in crust and mantle properties, perhaps the first confirmation of predictions from modeling studies that horizontal motions can be deflected or even reversed where such a lateral earth property exists. Accurate GIA models for Antarctica clearly require a laterally-varying earth model and tuning based on these new GPS and seismological constraints.

  10. Correlation between hip function and knee kinematics evaluated by three-dimensional motion analysis during lateral and medial side-hopping.

    PubMed

    Itoh, Hiromitsu; Takiguchi, Kohei; Shibata, Yohei; Okubo, Satoshi; Yoshiya, Shinichi; Kuroda, Ryosuke

    2016-09-01

    [Purpose] Kinematic and kinetic characteristics of the limb during side-hopping and hip/knee interaction during this motion have not been clarified. The purposes of this study were to examine the biomechanical parameters of the knee during side hop and analyze its relationship with clinical measurements of hip function. [Subjects and Methods] Eleven male college rugby players were included. A three-dimensional motion analysis system was used to assess motion characteristics of the knee during side hop. In addition, hip range of motion and muscle strength were evaluated. Subsequently, the relationship between knee motion and the clinical parameters of the hip was analyzed. [Results] In the lateral touchdown phase, the knee was positioned in an abducted and externally rotated position, and increasing abduction moment was applied to the knee. An analysis of the interaction between knee motion and hip function showed that range of motion for hip internal rotation was significantly correlated with external rotation angle and external rotation/abduction moments of the knee during the lateral touchdown phase. [Conclusion] Range of motion for hip internal rotation should be taken into consideration for identifying the biomechanical characteristics in the side hop test results.

  11. Correlation between hip function and knee kinematics evaluated by three-dimensional motion analysis during lateral and medial side-hopping

    PubMed Central

    Itoh, Hiromitsu; Takiguchi, Kohei; Shibata, Yohei; Okubo, Satoshi; Yoshiya, Shinichi; Kuroda, Ryosuke

    2016-01-01

    [Purpose] Kinematic and kinetic characteristics of the limb during side-hopping and hip/knee interaction during this motion have not been clarified. The purposes of this study were to examine the biomechanical parameters of the knee during side hop and analyze its relationship with clinical measurements of hip function. [Subjects and Methods] Eleven male college rugby players were included. A three-dimensional motion analysis system was used to assess motion characteristics of the knee during side hop. In addition, hip range of motion and muscle strength were evaluated. Subsequently, the relationship between knee motion and the clinical parameters of the hip was analyzed. [Results] In the lateral touchdown phase, the knee was positioned in an abducted and externally rotated position, and increasing abduction moment was applied to the knee. An analysis of the interaction between knee motion and hip function showed that range of motion for hip internal rotation was significantly correlated with external rotation angle and external rotation/abduction moments of the knee during the lateral touchdown phase. [Conclusion] Range of motion for hip internal rotation should be taken into consideration for identifying the biomechanical characteristics in the side hop test results. PMID:27799670

  12. Multiresolution motion planning for autonomous agents via wavelet-based cell decompositions.

    PubMed

    Cowlagi, Raghvendra V; Tsiotras, Panagiotis

    2012-10-01

    We present a path- and motion-planning scheme that is "multiresolution" both in the sense of representing the environment with high accuracy only locally and in the sense of addressing the vehicle kinematic and dynamic constraints only locally. The proposed scheme uses rectangular multiresolution cell decompositions, efficiently generated using the wavelet transform. The wavelet transform is widely used in signal and image processing, with emerging applications in autonomous sensing and perception systems. The proposed motion planner enables the simultaneous use of the wavelet transform in both the perception and in the motion-planning layers of vehicle autonomy, thus potentially reducing online computations. We rigorously prove the completeness of the proposed path-planning scheme, and we provide numerical simulation results to illustrate its efficacy.

  13. Crosswind stability of FSAE race car considering the location of the pressure center

    NASA Astrophysics Data System (ADS)

    Zhao, Lijun; He, Huimin; Wang, Jianfeng; Li, Yaou; Yang, Na; Liu, Yiqun

    2017-09-01

    An 8-DOF vehicle dynamic model of FSAE race car was established, including the lateral motion, pitch motion, roll motion, yaw motion and four tires rotation. The model of aerodynamic lateral force and pressure center model were set up based on the vehicle speed and crosswind parameters. The simulation model was built by Simulink, to analyse the crosswind stability for straight-line condition. Results showed that crosswind influences the yawing velocity and sideslip angle seriously.

  14. From phase drift to synchronisation - pedestrian stepping behaviour on laterally oscillating structures and consequences for dynamic stability

    NASA Astrophysics Data System (ADS)

    Bocian, Mateusz; Burn, Jeremy F.; Macdonald, John H. G.; Brownjohn, James M. W.

    2017-03-01

    The subject of this paper pertains to the contentious issue of synchronisation of walking pedestrians to lateral structural motion, which is the mechanism most commonly purported to cause lateral dynamic instability. Tests have been conducted on a custom-built experimental setup consisting of an instrumented treadmill laterally driven by a hydraulic shaking table. The experimental setup can accommodate adaptive pedestrian behaviour via a bespoke speed feedback control mechanism that allows automatic adjustment of the treadmill belt speed to that of the walker. 15 people participated in a total of 137 walking tests during which the treadmill underwent lateral sinusoidal motion. The amplitude of this motion was set from 5 to 15 mm and the frequency was set from 0.54 to 1.1 Hz. A variety of stepping behaviours are identified in the kinematic data obtained using a motion capture system. The most common behaviour is for the timing of footsteps to be essentially unaffected by the structural motion, but a few instances of synchronisation are found. A plausible mechanism comprising an intermediate state between unsynchronised and synchronised pedestrian and structural motion is observed. This mechanism, characterised by a weak form of modulation of the timing of footsteps, could possibly explain the under-estimation of negative damping coefficients in models and laboratory trials compared with previously reported site measurements. The results from tests conducted on the setup for which synchronisation is identified are evaluated in the context of structural stability and related to the predictions of the inverted pendulum model, providing insight into fundamental relations governing pedestrian behaviour on laterally oscillating structures.

  15. Dynamic analysis of flexible rotor-bearing systems using a modal approach

    NASA Technical Reports Server (NTRS)

    Choy, K. C.; Gunter, E. J.; Barrett, L. E.

    1978-01-01

    The generalized dynamic equations of motion were obtained by the direct stiffness method for multimass flexible rotor-bearing systems. The direct solution of the equations of motion is illustrated on a simple 3-mass system. For complex rotor-bearing systems, the direct solution of the equations becomes very difficult. The transformation of the equations of motion into modal coordinates can greatly simplify the computation for the solution. The use of undamped and damped system mode shapes in the transformation are discussed. A set of undamped critical speed modes is used to transform the equations of motion into a set of coupled modal equations of motion. A rapid procedure for computing stability, steady state unbalance response, and transient response of the rotor-bearing system is presented. Examples of the application of this modal approach are presented. The dynamics of the system is further investigated with frequency spectrum analysis of the transient response.

  16. Evaluating Stiffness of Fibreglass and Thermoplastic Splint Materials and Inter-fragmentary Motion in a Canine Tibial Fracture Model.

    PubMed

    Wagoner, Amanda L; Allen, Matthew J; Zindl, Claudia; Litsky, Alan; Orsher, Robert; Ben-Amotz, Ron

    2018-04-16

     Various materials are used to construct splints for mid-diaphyseal tibial fracture stabilization. The objective of this study was to compare construct stiffness and inter-fragmentary bone motion when fibreglass (FG) or thermoplastic (TP) splints are applied to either the lateral or cranial aspect of the tibia in a mid-diaphyseal fracture model.  A coaptation bandage was applied to eight cadaveric canine pelvic limbs, with a custom-formed splint made of either FG or TP material applied to either the lateral or cranial aspect of the osteotomized tibia. Four-point bending tests were performed to evaluate construct stiffness and inter-fragmentary motion in both frontal and sagittal planes.  For a given material, FG or TP, construct stiffness was not affected by splint location. Construct stiffness was significantly greater with cranial FG splints than with cranial TP splints ( p  < 0.05), but this difference was not significant when comparing splints applied laterally ( p  = 0.15). Inter-fragmentary motions in the sagittal and frontal planes were similar across splint types for cranial splints, but for lateral splints there was a 64% reduction in frontal plane motion when FG was used as the splint material ( p  = 0.03).  FG produces a stiffer construct, but the difference is not reflected in a reduction in inter-fragmentary motion. For lateral splints, FG splints are associated with reduced inter-fragmentary motion as compared with TP and may therefore have slight superiority for this application. Schattauer GmbH Stuttgart.

  17. In vivo kinematics of healthy male knees during squat and golf swing using image-matching techniques.

    PubMed

    Murakami, Koji; Hamai, Satoshi; Okazaki, Ken; Ikebe, Satoru; Shimoto, Takeshi; Hara, Daisuke; Mizu-uchi, Hideki; Higaki, Hidehiko; Iwamoto, Yukihide

    2016-03-01

    Participation in specific activities requires complex ranges of knee movements and activity-dependent kinematics. The purpose of this study was to investigate dynamic knee kinematics during squat and golf swing using image-matching techniques. Five healthy males performed squats and golf swings under periodic X-ray images at 10 frames per second. We analyzed the in vivo three-dimensional kinematic parameters of subjects' knees, namely the tibiofemoral flexion angle, anteroposterior (AP) translation, and internal-external rotation, using serial X-ray images and computed tomography-derived, digitally reconstructed radiographs. During squat from 0° to 140° of flexion, the femur moved about 25 mm posteriorly and rotated 19° externally relative to the tibia. Screw-home movement near extension, bicondylar rollback between 20° and 120° of flexion, and medial pivot motion at further flexion were observed. During golf swing, the leading and trailing knees (the left and right knees respectively in the right-handed golfer) showed approximately five millimeters and four millimeters of AP translation with 18° and 26° of axial rotation, respectively. A central pivot motion from set-up to top of the backswing, lateral pivot motion from top to ball impact, and medial pivot motion from impact to the end of follow-through were observed. The medial pivot motion was not always recognized during both activities, but a large range of axial rotation with bilateral condylar AP translations occurs during golf swing. This finding has important implications regarding the amount of acceptable AP translation and axial rotation at low flexion in replaced knees. IV. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Principle and analysis of a rotational motion Fourier transform infrared spectrometer

    NASA Astrophysics Data System (ADS)

    Cai, Qisheng; Min, Huang; Han, Wei; Liu, Yixuan; Qian, Lulu; Lu, Xiangning

    2017-09-01

    Fourier transform infrared spectroscopy is an important technique in studying molecular energy levels, analyzing material compositions, and environmental pollutants detection. A novel rotational motion Fourier transform infrared spectrometer with high stability and ultra-rapid scanning characteristics is proposed in this paper. The basic principle, the optical path difference (OPD) calculations, and some tolerance analysis are elaborated. The OPD of this spectrometer is obtained by the continuously rotational motion of a pair of parallel mirrors instead of the translational motion in traditional Michelson interferometer. Because of the rotational motion, it avoids the tilt problems occurred in the translational motion Michelson interferometer. There is a cosine function relationship between the OPD and the rotating angle of the parallel mirrors. An optical model is setup in non-sequential mode of the ZEMAX software, and the interferogram of a monochromatic light is simulated using ray tracing method. The simulated interferogram is consistent with the theoretically calculated interferogram. As the rotating mirrors are the only moving elements in this spectrometer, the parallelism of the rotating mirrors and the vibration during the scan are analyzed. The vibration of the parallel mirrors is the main error during the rotation. This high stability and ultra-rapid scanning Fourier transform infrared spectrometer is a suitable candidate for airborne and space-borne remote sensing spectrometer.

  19. Hypoalgesic effect of a passive accessory mobilisation technique in patients with lateral ankle pain.

    PubMed

    Yeo, Hwee Koon; Wright, Anthony

    2011-08-01

    A randomised, double blind, repeated measures study was conducted to investigate the initial effects of an accessory mobilisation technique applied to the ankle joint in 13 patients with a unilateral sub-acute ankle supination injury. Ankle dorsiflexion range of motion, pressure pain threshold, visual analogue scale rating of pain during functional activity and ankle functional scores were assessed before and after application of treatment, manual contact control and no contact control conditions. There were significant improvements in ankle dorsiflexion range of motion (p = 0.000) and pressure pain threshold (p = 0.000) during the treatment condition. However no significant effects were observed for the other measures. These findings demonstrate that mobilisation of the ankle joint can produce an initial hypoalgesic effect and an improvement in ankle dorsiflexion range of motion. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  20. Probabilistic choice between symmetric disparities in motion stereo matching for a lateral navigation system

    NASA Astrophysics Data System (ADS)

    Ershov, Egor; Karnaukhov, Victor; Mozerov, Mikhail

    2016-02-01

    Two consecutive frames of a lateral navigation camera video sequence can be considered as an appropriate approximation to epipolar stereo. To overcome edge-aware inaccuracy caused by occlusion, we propose a model that matches the current frame to the next and to the previous ones. The positive disparity of matching to the previous frame has its symmetric negative disparity to the next frame. The proposed algorithm performs probabilistic choice for each matched pixel between the positive disparity and its symmetric disparity cost. A disparity map obtained by optimization over the cost volume composed of the proposed probabilistic choice is more accurate than the traditional left-to-right and right-to-left disparity maps cross-check. Also, our algorithm needs two times less computational operations per pixel than the cross-check technique. The effectiveness of our approach is demonstrated on synthetic data and real video sequences, with ground-truth value.

  1. Effects of Structural Flexibility on Motorcycle Straight Running Stability by using Energy Flow Method

    NASA Astrophysics Data System (ADS)

    Marumo, Yoshitaka; Katayama, Tsuyoshi

    This study uses the energy flow method to analyze how structural flexibility affects the motorcycle wobble and weave modes. Lateral bending of the front fork and torsion of the main frame affect the wobble mode stability. These are based on the gyroscopic effect of the front wheel in the steering motion by considering structural flexibility. At high speeds, lateral bending of the front fork and torsion of the rear swing arm more significantly affect the weave mode stability. These are primarily due to the phase changes of the external force generated by the yaw rate in the lateral motion. The phase change of the yaw rate force in the lateral motion originates from the phase change of the tire side forces.

  2. Tracking the India-Arabia Transform Plate Boundary during Paleogene Times.

    NASA Astrophysics Data System (ADS)

    Rodriguez, M.; Huchon, P.; Chamot-Rooke, N. R. A.; Fournier, M.; Delescluse, M.

    2014-12-01

    The Zagros and Himalaya mountain belts are the most prominent reliefs built by continental collision. They respectively result from Arabia and India collision with Eurasia. Convergence motions at mountain belts induced most of plate reorganization events in the Indian Ocean during the Cenozoic. Although critical for paleogeographic reconstructions, the way relative motion between Arabia and India was accommodated prior to the formation of the Sheba ridge in the Gulf of Aden remains poorly understood. The India-Arabia plate-boundary belongs to the category of long-lived (~90-Ma) oceanic transform faults, thus providing a good case study to investigate the role of major kinematic events over the structural evolution of a long-lived transform system. A seismic dataset crossing the Owen Fracture Zone, the Owen Basin, and the Oman Margin was acquired to track the past locations of the India-Arabia plate boundary. We highlight the composite age of the Owen Basin basement, made of Paleocene oceanic crust drilled on its eastern part, and composed of pre-Maastrichtian continental crust overlaid by Early Paleocene ophiolites on its western side. A major transform fault system crossing the Owen Basin juxtaposed these two slivers of lithosphere of different ages, and controlled the uplift of marginal ridges along the Oman Margin. This transform system deactivated ~40 Ma ago, coeval with the onset of ultra-slow spreading at the Carlsberg Ridge. The transform boundary then jumped to the edge of the present-day Owen Ridge during the Late Eocene-Oligocene period, before seafloor spreading began at the Sheba Ridge. This migration of the plate boundary involved the transfer of a part of the Indian oceanic lithosphere accreted at the Carlsberg Ridge to the Arabian plate. The episode of plate transfer at the India-Arabia plate boundary during the Late Eocene-Oligocene interval is synchronous with a global plate reorganization event corresponding to geological events at the Zagros and Himalaya belts. The Owen Ridge uplifted later, in Late Miocene times, and is unrelated to any major migration of the India-Arabia boundary.

  3. Fast restoration approach for motion blurred image based on deconvolution under the blurring paths

    NASA Astrophysics Data System (ADS)

    Shi, Yu; Song, Jie; Hua, Xia

    2015-12-01

    For the real-time motion deblurring, it is of utmost importance to get a higher processing speed with about the same image quality. This paper presents a fast Richardson-Lucy motion deblurring approach to remove motion blur which rotates blurred image under blurring paths. Hence, the computational time is reduced sharply by using one-dimensional Fast Fourier Transform in one-dimensional Richardson-Lucy method. In order to obtain accurate transformational results, interpolation method is incorporated to fetch the gray values. Experiment results demonstrate that the proposed approach is efficient and effective to reduce motion blur under the blur paths.

  4. Strain accumulation across the central Nevada seismic zone, 1973-1994

    NASA Astrophysics Data System (ADS)

    Savage, J. C.; Lisowski, M.; Svarc, J. L.; Gross, W. K.

    1995-10-01

    Five trilateration networks extending for 280 km along the central Nevada seismic zone (1915 Pleasant Valley, M = 7.3; 1954 Dixie Valley, M = 6.8; 1954 Stillwater, M = 6.8; 1954 Rainbow Mountain, M = 6.6; 1954 Fairview Peak, M = 7.1; and 1932 Cedar Mountain, M = 7.2) have been surveyed 6 times since 1973 to determine deformation along the zone. Within the precision of measurement the deformation appears uniform along the zone and is described by the principal strain rates 0.036±0.008 μstrain/yr N60°W±3° and -0.031±0.008 μstrain/yr N30°E±3°, extension reckoned positive. The observed strain rates are consistent with simple, right-lateral, tensor shear at the rate of 0.033 μstrain/yr across a shear zone striking N15°W. This central Nevada shear zone appears to be the northward continuation of the eastern California shear zone. The orientation of the strike-slip and normal-slip ruptures within the central Nevada seismic zone are consistent with principal stress axes parallel to the measured principal strain rate axes. Space-based geodetic measurements (very long baseline interferometry) indicate that the relative motion accommodated across the Basin and Range province west of Ely, Nevada, is about 9.1±1.5 mm/yr N16°W±8° (Dixon et al., 1995.) Notice that the right-lateral shear zone postulated to explain deformation in the central Nevada seismic zone is properly oriented to accommodate that relative motion. However, a 135-km effective width of the shear zone would be required to accommodate all of the 9.1 mm/yr relative motion at the strain rates observed in the Nevada seismic zone; only about 3 mm/yr of that relative motion is accommodated within the span of the trilateration networks.

  5. Estimation of multiple accelerated motions using chirp-Fourier transform and clustering.

    PubMed

    Alexiadis, Dimitrios S; Sergiadis, George D

    2007-01-01

    Motion estimation in the spatiotemporal domain has been extensively studied and many methodologies have been proposed, which, however, cannot handle both time-varying and multiple motions. Extending previously published ideas, we present an efficient method for estimating multiple, linearly time-varying motions. It is shown that the estimation of accelerated motions is equivalent to the parameter estimation of superpositioned chirp signals. From this viewpoint, one can exploit established signal processing tools such as the chirp-Fourier transform. It is shown that accelerated motion results in energy concentration along planes in the 4-D space: spatial frequencies-temporal frequency-chirp rate. Using fuzzy c-planes clustering, we estimate the plane/motion parameters. The effectiveness of our method is verified on both synthetic as well as real sequences and its advantages are highlighted.

  6. Lower trunk kinematics and muscle activity during different types of tennis serves

    PubMed Central

    Chow, John W; Park, Soo-An; Tillman, Mark D

    2009-01-01

    Background To better understand the underlying mechanisms involved in trunk motion during a tennis serve, this study aimed to examine the (1) relative motion of the middle and lower trunk and (2) lower trunk muscle activity during three different types of tennis serves - flat, topspin, and slice. Methods Tennis serves performed by 11 advanced (AV) and 8 advanced intermediate (AI) male tennis players were videorecorded with markers placed on the back of the subject used to estimate the anatomical joint (AJ) angles between the middle and lower trunk for four trunk motions (extension, left lateral flexion, and left and right twisting). Surface electromyographic (EMG) techniques were used to monitor the left and right rectus abdominis (LRA and RRA), external oblique (LEO and REO), internal oblique (LIO and RIO), and erector spinae (LES and RES). The maximal AJ angles for different trunk motions during a serve and the average EMG levels for different muscles during different phases (ascending and descending windup, acceleration, and follow-through) of a tennis serve were evaluated. Results The repeated measures Skill × Serve Type × Trunk Motion ANOVA for maximal AJ angle indicated no significant main effects for serve type or skill level. However, the AV group had significantly smaller extension (p = 0.018) and greater left lateral flexion (p = 0.038) angles than the AI group. The repeated measures Skill × Serve Type × Phase MANOVA revealed significant phase main effects in all muscles (p < 0.001) and the average EMG of the AV group for LRA was significantly higher than that of the AI group (p = 0.008). All muscles showed their highest EMG values during the acceleration phase. LRA and LEO muscles also exhibited high activations during the descending windup phase, and RES muscle was very active during the follow-through phase. Conclusion Subjects in the AI group may be more susceptible to back injury than the AV group because of the significantly greater trunk hyperextension, and relatively large lumbar spinal loads are expected during the acceleration phase because of the hyperextension posture and profound front-back and bilateral co-activations in lower trunk muscles. PMID:19825184

  7. Second-order processing of four-stroke apparent motion.

    PubMed

    Mather, G; Murdoch, L

    1999-05-01

    In four-stroke apparent motion displays, pattern elements oscillate between two adjacent positions and synchronously reverse in contrast, but appear to move unidirectionally. For example, if rightward shifts preserve contrast but leftward shifts reverse contrast, consistent rightward motion is seen. In conventional first-order displays, elements reverse in luminance contrast (e.g. light elements become dark, and vice-versa). The resulting perception can be explained by responses in elementary motion detectors turned to spatio-temporal orientation. Second-order motion displays contain texture-defined elements, and there is some evidence that they excite second-order motion detectors that extract spatio-temporal orientation following the application of a non-linear 'texture-grabbing' transform by the visual system. We generated a variety of second-order four-stroke displays, containing texture-contrast reversals instead of luminance contrast reversals, and used their effectiveness as a diagnostic test for the presence of various forms of non-linear transform in the second-order motion system. Displays containing only forward or only reversed phi motion sequences were also tested. Displays defined by variation in luminance, contrast, orientation, and size were effective. Displays defined by variation in motion, dynamism, and stereo were partially or wholly ineffective. Results obtained with contrast-reversing and four-stroke displays indicate that only relatively simple non-linear transforms (involving spatial filtering and rectification) are available during second-order energy-based motion analysis.

  8. Accurate means of detecting and characterizing abnormal patterns of ventricular activation by phase image analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Botvinick, E.H.; Frais, M.A.; Shosa, D.W.

    1982-08-01

    The ability of scintigraphic phase image analysis to characterize patterns of abnormal ventricular activation was investigated. The pattern of phase distribution and sequential phase changes over both right and left ventricular regions of interest were evaluated in 16 patients with normal electrical activation and wall motion and compared with those in 8 patients with an artificial pacemaker and 4 patients with sinus rhythm with the Wolff-Parkinson-White syndrome and delta waves. Normally, the site of earliest phase angle was seen at the base of the interventricular septum, with sequential change affecting the body of the septum and the cardiac apex andmore » then spreading laterally to involve the body of both ventricles. The site of earliest phase angle was located at the apex of the right ventricle in seven patients with a right ventricular endocardial pacemaker and on the lateral left ventricular wall in one patient with a left ventricular epicardial pacemaker. In each case the site corresponded exactly to the position of the pacing electrode as seen on posteroanterior and left lateral chest X-ray films, and sequential phase changes spread from the initial focus to affect both ventricles. In each of the patients with the Wolff-Parkinson-White syndrome, the site of earliest ventricular phase angle was located, and it corresponded exactly to the site of the bypass tract as determined by endocardial mapping. In this way, four bypass pathways, two posterior left paraseptal, one left lateral and one right lateral, were correctly localized scintigraphically. On the basis of the sequence of mechanical contraction, phase image analysis provides an accurate noninvasive method of detecting abnormal foci of ventricular activation.« less

  9. ALS-causing profilin-1-mutant forms a non-native helical structure in membrane environments.

    PubMed

    Lim, Liangzhong; Kang, Jian; Song, Jianxing

    2017-11-01

    Despite having physiological functions completely different from superoxide dismutase 1 (SOD1), profilin 1 (PFN1) also carries mutations causing amyotrophic lateral sclerosis (ALS) with a striking similarity to that triggered by SOD1 mutants. Very recently, the C71G-PFN1 has been demonstrated to cause ALS by a gain of toxicity and the acceleration of motor neuron degeneration preceded the accumulation of its aggregates. Here by atomic-resolution NMR determination of conformations and dynamics of WT-PFN1 and C71G-PFN1 in aqueous buffers and in membrane mimetics DMPC/DHPC bicelle and DPC micelle, we deciphered that: 1) the thermodynamic destabilization by C71G transforms PFN1 into coexistence with the unfolded state, which is lacking of any stable tertiary/secondary structures as well as restricted ps-ns backbone motions, thus fundamentally indistinguishable from ALS-causing SOD1 mutants. 2) Most strikingly, while WT-PFN1 only weakly interacts with DMPC/DHPC bicelle without altering the native structure, C71G-PFN1 acquires abnormal capacity in strongly interacting with DMPC/DHPC bicelle and DPC micelle, energetically driven by transforming the highly disordered unfolded state into a non-native helical structure, similar to what has been previously observed on ALS-causing SOD1 mutants. Our results imply that one potential mechanism for C71G-PFN1 to initiate ALS might be the abnormal interaction with membranes as recently established for SOD1 mutants. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Integrative cortical dysfunction and pervasive motion perception deficit in fragile X syndrome.

    PubMed

    Kogan, C S; Bertone, A; Cornish, K; Boutet, I; Der Kaloustian, V M; Andermann, E; Faubert, J; Chaudhuri, A

    2004-11-09

    Fragile X syndrome (FXS) is associated with neurologic deficits recently attributed to the magnocellular pathway of the lateral geniculate nucleus. To test the hypotheses that FXS individuals 1) have a pervasive visual motion perception impairment affecting neocortical circuits in the parietal lobe and 2) have deficits in integrative neocortical mechanisms necessary for perception of complex stimuli. Psychophysical tests of visual motion and form perception defined by either first-order (luminance) or second-order (texture) attributes were used to probe early and later occipito-temporal and occipito-parietal functioning. When compared to developmental- and age-matched controls, FXS individuals displayed severe impairments in first- and second-order motion perception. This deficit was accompanied by near normal perception for first-order form stimuli but not second-order form stimuli. Impaired visual motion processing for first- and second-order stimuli suggests that both early- and later-level neurologic function of the parietal lobe are affected in Fragile X syndrome (FXS). Furthermore, this deficit likely stems from abnormal input from the magnocellular compartment of the lateral geniculate nucleus. Impaired visual form and motion processing for complex visual stimuli with normal processing for simple (i.e., first-order) form stimuli suggests that FXS individuals have normal early form processing accompanied by a generalized impairment in neurologic mechanisms necessary for integrating all early visual input.

  11. Dynamics of Transformation from Platinum Icosahedral Nanoparticles to Larger FCC Crystal at Millisecond Time Resolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Wenpei; Wu, Jianbo; Yoon, Aram

    Atomic motion at grain boundaries is essential to microstructure development, growth and stability of catalysts and other nanostructured materials. However, boundary atomic motion is often too fast to observe in a conventional transmission electron microscope (TEM) and too slow for ultrafast electron microscopy. We report on the entire transformation process of strained Pt icosahedral nanoparticles (ICNPs) into larger FCC crystals, captured at 2.5 ms time resolution using a fast electron camera. Results show slow diffusive dislocation motion at nm/s inside ICNPs and fast surface transformation at μm/s. By characterizing nanoparticle strain, we show that the fast transformation is driven bymore » inhomogeneous surface stress. And interaction with pre-existing defects led to the slowdown of the transformation front inside the nanoparticles. Particle coalescence, assisted by oxygen-induced surface migration at T ≥ 300°C, also played a critical role. Thus by studying transformation in the Pt ICNPs at high time and spatial resolution, we obtain critical insights into the transformation mechanisms in strained Pt nanoparticles.« less

  12. Structural transformation of crystallized debranched cassava starch during dual hydrothermal treatment in relation to enzyme digestibility.

    PubMed

    Boonna, Sureeporn; Tongta, Sunanta

    2018-07-01

    Structural transformation of crystallized debranched cassava starch prepared by temperature cycling (TC) treatment and then subjected to annealing (ANN), heat-moisture treatment (HMT) and dual hydrothermal treatments of ANN and HMT was investigated. The relative crystallinity, lateral crystal size, melting temperature and resistant starch (RS) content increased for all hydrothermally treated samples, but the slowly digestible starch (SDS) content decreased. The RS content followed the order: HMT → ANN > HMT > ANN → HMT > ANN > TC, respectively. The HMT → ANN sample showed a larger lateral crystal size with more homogeneity, whereas the ANN → HMT sample had a smaller lateral crystal size with a higher melting temperature. After cooking at 50% moisture, the increased RS content of samples was observed, particularly for the ANN → HMT sample. These results suggest that structural changes of crystallized debranched starch during hydrothermal treatments depend on initial crystalline characteristics and treatment sequences, influencing thermal stability, enzyme digestibility, and cooking stability. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Binocular Perception of 2D Lateral Motion and Guidance of Coordinated Motor Behavior.

    PubMed

    Fath, Aaron J; Snapp-Childs, Winona; Kountouriotis, Georgios K; Bingham, Geoffrey P

    2016-04-01

    Zannoli, Cass, Alais, and Mamassian (2012) found greater audiovisual lag between a tone and disparity-defined stimuli moving laterally (90-170 ms) than for disparity-defined stimuli moving in depth or luminance-defined stimuli moving laterally or in depth (50-60 ms). We tested if this increased lag presents an impediment to visually guided coordination with laterally moving objects. Participants used a joystick to move a virtual object in several constant relative phases with a laterally oscillating stimulus. Both the participant-controlled object and the target object were presented using a disparity-defined display that yielded information through changes in disparity over time (CDOT) or using a luminance-defined display that additionally provided information through monocular motion and interocular velocity differences (IOVD). Performance was comparable for both disparity-defined and luminance-defined displays in all relative phases. This suggests that, despite lag, perception of lateral motion through CDOT is generally sufficient to guide coordinated motor behavior.

  14. Knee joint motion and muscle activation patterns are altered during gait in individuals with moderate hip osteoarthritis compared to asymptomatic cohort.

    PubMed

    Rutherford, Derek; Moreside, Janice; Wong, Ivan

    2015-07-01

    Knee replacements are common after hip replacement for end stage osteoarthritis. Whether abnormal knee mechanics exist in moderate hip osteoarthritis remains undetermined and has implications for understanding early osteoarthritis joint mechanics. The purpose of this study was to determine whether three-dimensional (3D) knee motion and muscle activation patterns in individuals with moderate hip osteoarthritis differ from an asymptomatic cohort and whether these features differ between contra- and ipsilateral knees. 3D motions and medial and lateral quadriceps and hamstring surface electromyography were recorded on 20 asymptomatic individuals and 20 individuals with moderate hip osteoarthritis during treadmill walking, using standardized collection and processing procedures. Principal component analysis was used to derive electromyographic amplitude and temporal waveform features. 3D stance-phase range of motion was calculated. A 2-factor repeated analysis of variance determined significant within-group leg and muscle differences. Student's t-tests identified between group differences, with Bonferroni corrections where applicable (α=0.05). Lower sagittal plane motion between early and mid/late stance (5°, P=0.004, effect size: 0.96) and greater mid-stance quadriceps activity was found in the osteoarthritis group (P=0.01). Compared to the ipsilateral knee, a borderline significant increase in mid-stance hamstring activity was found in the contra-lateral knee of the hip osteoarthritis group (P=0.018). Bilateral knee mechanics were altered, suggesting potentially increased loads and knee muscle fatigue. There was no indication that one knee is more susceptible to osteoarthritis than the other, thus clinicians should include bilateral knee analysis when treating patients with hip osteoarthritis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. A tectonic model for the Tertiary evolution of strike slip faults and rift basins in SE Asia

    NASA Astrophysics Data System (ADS)

    Morley, C. K.

    2002-04-01

    Models for the Tertiary evolution of SE Asia fall into two main types: a pure escape tectonics model with no proto-South China Sea, and subduction of proto-South China Sea oceanic crust beneath Borneo. A related problem is which, if any, of the main strike-slip faults (Mae Ping, Three Pagodas and Aliao Shan-Red River (ASRR)) cross Sundaland to the NW Borneo margin to facilitate continental extrusion? Recent results investigating strike-slip faults, rift basins, and metamorphic core complexes are reviewed and a revised tectonic model for SE Asia proposed. Key points of the new model include: (1) The ASRR shear zone was mainly active in the Eocene-Oligocene in order to link with extension in the South China Sea. The ASRR was less active during the Miocene (tens of kilometres of sinistral displacement), with minor amounts of South China Sea spreading centre extension transferred to the ASRR shear zone. (2) At least three important regions of metamorphic core complex development affected Indochina from the Oligocene-Miocene (Mogok gneiss belt; Doi Inthanon and Doi Suthep; around the ASRR shear zone). Hence, Paleogene crustal thickening, buoyancy-driven crustal collapse, and lower crustal flow are important elements of the Tertiary evolution of Indochina. (3) Subduction of a proto-South China Sea oceanic crust during the Eocene-Early Miocene is necessary to explain the geological evolution of NW Borneo and must be built into any model for the region. (4) The Eocene-Oligocene collision of NE India with Burma activated extrusion tectonics along the Three Pagodas, Mae Ping, Ranong and Klong Marui faults and right lateral motion along the Sumatran subduction zone. (5) The only strike-slip fault link to the NW Borneo margin occurred along the trend of the ASRR fault system, which passes along strike into a right lateral transform system including the Baram line.

  16. The dynamic-response characteristics of a 35 degree swept-wing airplane as determined from flight measurements

    NASA Technical Reports Server (NTRS)

    Triplett, William C; Brown, Stuart C; Smith, G Allan

    1955-01-01

    The longitudinal and lateral-directional dynamic-response characteristics of a 35 degree swept-wing fighter-type airplane determined from flight measurements are presented and compared with predictions based on theoretical studies and wind-tunnel data. Flights were made at an altitude of 35,000 feet covering the Mach number range of 0.50 to 1.04. A limited amount of lateral-directional data were also obtained at 10,000 feet. The flight consisted essentially of recording transient responses to pilot-applied pulsed motions of each of the three primary control surfaces. These transient data were converted into frequency-response form by means of the Fourier transformation and compared with predicted responses calculated from the basic equations. Experimentally determined transfer functions were used for the evaluation of the stability derivatives that have the greatest effect on the dynamic response of the airplane. The values of these derivatives, in most cases, agreed favorably with predictions over the Mach number range of the test.

  17. Different roles of the medial and lateral hamstrings in unloading the anterior cruciate ligament.

    PubMed

    Guelich, David R; Xu, Dali; Koh, Jason L; Nuber, Gordon W; Zhang, Li-Qun

    2016-01-01

    Anterior cruciate ligament injuries are closely associated with excessive loading and motion about the off axes of the knee, i.e. tibial rotation and knee varus/valgus. However, it is not clear about the 3-D mechanical actions of the lateral and medial hamstring muscles and their differences in loading the ACL. The purpose of this study was to investigate the change in anterior cruciate ligament strain induced by loading the lateral and medial hamstrings individually. Seven cadaveric knees were investigated using a custom testing apparatus allowing for six degree-of-freedom tibiofemoral motion induced by individual muscle loading. With major muscles crossing the knee loaded moderately, the medial and lateral hamstrings were loaded independently to 200N along their lines of actions at 0°, 30°, 60° and 90° of knee flexion. The induced strain of the anterior cruciate ligament was measured using a differential variable reluctance transducer. Tibiofemoral kinematics was monitored using a six degrees-of-freedom knee goniometer. Loading the lateral hamstrings induced significantly more anterior cruciate ligament strain reduction (mean 0.764 [SD 0.63] %) than loading the medial hamstrings (mean 0.007 [0.2] %), (P=0.001 and effect size=0.837) across the knee flexion angles. The lateral and medial hamstrings have significantly different effects on anterior cruciate ligament loadings. More effective rehabilitation and training strategies may be developed to strengthen the lateral and medial hamstrings selectively and differentially to reduce anterior cruciate ligament injury and improve post-injury rehabilitation. The lateral and medial hamstrings can potentially be strengthened selectively and differentially as a more focused rehabilitation approach to reduce ACL injury and improve post-injury rehabilitation. Different ACL reconstruction procedures with some of them involving the medial hamstrings can be compared to each other for their effect on ACL loading. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Kinematics of the Snake River Plain and Centennial Shear Zone, Idaho, from GPS and earthquatte data

    NASA Astrophysics Data System (ADS)

    Payne, Suzette J.

    New horizontal Global Positioning System (GPS) velocities at 405 sites using GPS phase data collected from 1994 to 2010 along with earthquakes, faults, and volcanic features reveal how contemporary strain is accommodated in the Northern Basin and Range Province. The 1994-2010 velocity field has observable gradients arising from both rotation and strain. Kinematic interpretations are guided by using a block-model approach and inverting velocities, earthquake slip vector azimuths, and dike-opening rates to simultaneously solve for angular velocities of the blocks and uniform horizontal strain rate tensors within selected blocks. The Northern Basin and Range block model has thirteen blocks representing tectonic provinces based on knowledge of geology, seismicity, volcanism, active tectonic faults, and regions with differences in observed velocities. Ten variations of the thirteen blocks are tested to assess the statistical significance of boundaries for tectonic provinces, motions along those boundaries, and estimates of long-term deformation within the provinces. From these tests, a preferred model with seven tectonic provinces is determined by applying a maximum confidence level of ≥99% probability to F-distribution tests between two models to indicate one model with added boundaries has a better fit to the data over a second model. The preferred model is varied to test hypotheses of post-seismic viscoelastic relaxation, significance of dikes in accommodating extension, and bookshelf faulting in accommodating shear. Six variations of the preferred model indicate time-varying components due to viscoelastic relaxation from the 1959 Hebgen Lake, Montana and 1983 Borah Peak, Idaho earthquakes have either ceased as of 2002 or are too small to be evident in the observed velocities. Inversions with dike-opening models indicate that the previously hypothesized rapid extension by dike intrusion in volcanic rift zones to keep pace with normal faulting is not currently occurring in the Snake River Plain. Alternatively, the preferred model reveals a low deforming region (-0.1 +/- 0.4 x 10-9 yr -1, which is not discernable from zero) covering 125 km x 650 km within the Snake River Plain and Owyhee-Oregon Plateau that is separated from the actively extending adjacent Basin and Range regions by narrow belts of localized shear. Velocities reveal rapid extension occurs to the north of the Snake River Plain in the Centennial Tectonic Belt (5.6 +/- 0.7 x 10 -9 yr-1) and to the south in the Intermountain Seismic Belt and Great Basin (3.5 +/- 0.2 x 10-9 yr-1). The "Centennial Shear Zone" is a NE-trending zone of up to 1.5 mm yr -1 of right-lateral shear and is the result of rapid extension in the Centennial Tectonic Belt adjacent to the low deforming region of the Snake River Plain. Variations of the preferred model that test the hypothesis of bookshelf faulting demonstrate shear does not drive Basin and Range extension in the Centennial Tectonic Belt. Instead, the velocity gradient across the Centennial Shear Zone indicates that shear is distributed and deformation is due to strike-slip faulting, distributed simple shear, regional-scale rotation, or any combination of these. Near the fastest rates of right-lateral slip, focal mechanisms are observed with strike-slip components of motion consistent with right-lateral shear. Here also, the segment boundary between two E-trending Basin and Range faults, which are oriented subparallel to the NE-trending shear zone, provides supporting Holocene to mid-Pleistocene geologic evidence for accommodation of right-lateral shear in the Centennial Shear Zone. The southernmost ends of NW-trending Basin and Range faults in the Centennial Tectonic Belt at their juncture with the eastern Snake River Plain could accommodate right-lateral shear through components of left-lateral oblique slip. Right-lateral shear may be accommodated by components of strike-slip motion on multiple NE-trending faults since geologic evidence does not support slip along one continuous NE-trending fault along the boundary between the eastern Snake River Plain and Centennial Tectonic Belt. Regional velocity gradients are best fit by nearby poles of rotation for the Centennial Tectonic Belt, Snake River Plain, Owyhee-Oregon Plateau, and eastern Oregon, indicating that clockwise rotation is driven by extension to the south in the Great Basin and not by Yellowstone hotspot volcanism or from localized extension in the Centennial Tectonic Belt. The velocity field may reveal long-term motions of the Northern Basin and Range Province. GPS-derived clockwise rotation rates are consistent with paleomagnetic rotation rates in 15--12 Ma basalts in eastern Oregon and in Eocene volcanic rocks (˜48 Ma) within the Centennial Tectonic Belt.

  19. Quantitative analysis of a transpressional system, El Biod Arch, Ghadames Basin, Algeria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, S.R.; Krantz, R.W.; Akkache, K.

    1996-12-31

    Trap definition within the northern extension of the Hassi Touareg - Rhourde El Baguel fault zone in the western Ghadames Basin of Algeria is difficult due to complex structural geometries. The fault zone consists of a narrow system of discontinuous. locally en echelon faults. Although north-trending to the south, the zone curves to a northeast trend to the north. Reserves associated with the southern portion of the system total 1500 MMBOR and 2 TCFG. Several lines of evidence support a strike-slip component of motion for the northern segment. Horizontal slickensides have been described in cores taken from wells within themore » fault trend. Fracture patterns measured from logs taken within the NE-SW fault trend show clusters expected for right-lateral Reidel shears. Although complicated by all evaporate sequence at mid-level in the stratigraphic section, we interpret downward converging faults imaged on recent 2D seismic as positive flower profiles. Map patterns are also interpreted as right-lateral, recognizing that the 2D grid cannot resolve all of the structural complexity. To confirm the component of strike-slip fault displacement, we applied a new quantitative method relating map view structural orientations to the shear magnitude, the degree of convergence or divergence, and the magnitudes of horizontal and vertical strains. Strike-slip to convergence ratios ranging from 2:1 to 3:1 were measured in the study area. Higher ratios (10:1) measured above the salt may indicate a detachment. These ratios also fit the regional tectonic pattern: to the south, where the fault zone trends due north, structural geometries support dip-slip inversion indicative of east-west shortening. Applying the same shortening vector to the northeast-trending part of the zone suggests oblique right-lateral motion, with a strike-slip to convergence ratio of 2:1.« less

  20. Quantitative analysis of a transpressional system, El Biod Arch, Ghadames Basin, Algeria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, S.R.; Krantz, R.W.; Akkache, K.

    1996-01-01

    Trap definition within the northern extension of the Hassi Touareg - Rhourde El Baguel fault zone in the western Ghadames Basin of Algeria is difficult due to complex structural geometries. The fault zone consists of a narrow system of discontinuous. locally en echelon faults. Although north-trending to the south, the zone curves to a northeast trend to the north. Reserves associated with the southern portion of the system total 1500 MMBOR and 2 TCFG. Several lines of evidence support a strike-slip component of motion for the northern segment. Horizontal slickensides have been described in cores taken from wells within themore » fault trend. Fracture patterns measured from logs taken within the NE-SW fault trend show clusters expected for right-lateral Reidel shears. Although complicated by all evaporate sequence at mid-level in the stratigraphic section, we interpret downward converging faults imaged on recent 2D seismic as positive flower profiles. Map patterns are also interpreted as right-lateral, recognizing that the 2D grid cannot resolve all of the structural complexity. To confirm the component of strike-slip fault displacement, we applied a new quantitative method relating map view structural orientations to the shear magnitude, the degree of convergence or divergence, and the magnitudes of horizontal and vertical strains. Strike-slip to convergence ratios ranging from 2:1 to 3:1 were measured in the study area. Higher ratios (10:1) measured above the salt may indicate a detachment. These ratios also fit the regional tectonic pattern: to the south, where the fault zone trends due north, structural geometries support dip-slip inversion indicative of east-west shortening. Applying the same shortening vector to the northeast-trending part of the zone suggests oblique right-lateral motion, with a strike-slip to convergence ratio of 2:1.« less

  1. Transformation-aware perceptual image metric

    NASA Astrophysics Data System (ADS)

    Kellnhofer, Petr; Ritschel, Tobias; Myszkowski, Karol; Seidel, Hans-Peter

    2016-09-01

    Predicting human visual perception has several applications such as compression, rendering, editing, and retargeting. Current approaches, however, ignore the fact that the human visual system compensates for geometric transformations, e.g., we see that an image and a rotated copy are identical. Instead, they will report a large, false-positive difference. At the same time, if the transformations become too strong or too spatially incoherent, comparing two images gets increasingly difficult. Between these two extrema, we propose a system to quantify the effect of transformations, not only on the perception of image differences but also on saliency and motion parallax. To this end, we first fit local homographies to a given optical flow field, and then convert this field into a field of elementary transformations, such as translation, rotation, scaling, and perspective. We conduct a perceptual experiment quantifying the increase of difficulty when compensating for elementary transformations. Transformation entropy is proposed as a measure of complexity in a flow field. This representation is then used for applications, such as comparison of nonaligned images, where transformations cause threshold elevation, detection of salient transformations, and a model of perceived motion parallax. Applications of our approach are a perceptual level-of-detail for real-time rendering and viewpoint selection based on perceived motion parallax.

  2. Hybrid dynamic stabilization: a biomechanical assessment of adjacent and supraadjacent levels of the lumbar spine.

    PubMed

    Mageswaran, Prasath; Techy, Fernando; Colbrunn, Robb W; Bonner, Tara F; McLain, Robert F

    2012-09-01

    The object of this study was to evaluate the effect of hybrid dynamic stabilization on adjacent levels of the lumbar spine. Seven human spine specimens from T-12 to the sacrum were used. The following conditions were implemented: 1) intact spine; 2) fusion of L4-5 with bilateral pedicle screws and titanium rods; and 3) supplementation of the L4-5 fusion with pedicle screw dynamic stabilization constructs at L3-4, with the purpose of protecting the L3-4 level from excessive range of motion (ROM) and to create a smoother motion transition to the rest of the lumbar spine. An industrial robot was used to apply continuous pure moment (± 2 Nm) in flexion-extension with and without a follower load, lateral bending, and axial rotation. Intersegmental rotations of the fused, dynamically stabilized, and adjacent levels were measured and compared. In flexion-extension only, the rigid instrumentation at L4-5 caused a 78% decrease in the segment's ROM when compared with the intact specimen. To compensate, it caused an increase in motion at adjacent levels L1-2 (45.6%) and L2-3 (23.2%) only. The placement of the dynamic construct at L3-4 decreased the operated level's ROM by 80.4% (similar stability as the fusion at L4-5), when compared with the intact specimen, and caused a significant increase in motion at all tested adjacent levels. In flexion-extension with a follower load, instrumentation at L4-5 affected only a subadjacent level, L5-sacrum (52.0%), while causing a reduction in motion at the operated level (L4-5, -76.4%). The dynamic construct caused a significant increase in motion at the adjacent levels T12-L1 (44.9%), L1-2 (57.3%), and L5-sacrum (83.9%), while motion at the operated level (L3-4) was reduced by 76.7%. In lateral bending, instrumentation at L4-5 increased motion at only T12-L1 (22.8%). The dynamic construct at L3-4 caused an increase in motion at T12-L1 (69.9%), L1-2 (59.4%), L2-3 (44.7%), and L5-sacrum (43.7%). In axial rotation, only the placement of the dynamic construct at L3-4 caused a significant increase in motion of the adjacent levels L2-3 (25.1%) and L5-sacrum (31.4%). The dynamic stabilization system displayed stability characteristics similar to a solid, all-metal construct. Its addition of the supraadjacent level (L3-4) to the fusion (L4-5) did protect the adjacent level from excessive motion. However, it essentially transformed a 1-level lumbar fusion into a 2-level lumbar fusion, with exponential transfer of motion to the fewer remaining discs.

  3. Shoulder injuries from attacking motion

    NASA Astrophysics Data System (ADS)

    Yanagi, Shigeru; Nishimura, Tetsu; Itoh, Masaru; Wada, Yuhei; Watanabe, Naoki

    1997-03-01

    Sports injuries have bothered professional players. Although many medical doctors try to treat injured players, to prevent sports injuries is more important. Hence, it is required to clear a kinematic mechanism of the sport injuries. A shoulder of volleyball attacker or baseball pitcher is often inured by playing motion. The injuries are mainly caused at the end of long head tendon, which is located in the upper side of scapula. Generally, a muscle and tendon have enough strength against tensile force, however, it seems that they are sometimes defeated by the lateral force. It is imagined that the effect of the lateral force has a possibility of injuring the tendon. If we find the influence of the lateral force on the injured portion, the mechanism of injuries must be cleared. In our research, volleyball attacking motion is taken by high speed video cameras. We analyze the motion as links system and obtain an acceleration of an arm and a shoulder from video image data. The generated force at a shoulder joint is calculated and resolved into the lateral and longitudinal forces. Our final goal is to discuss a possibility that the lateral force causes the injuries.

  4. An appraisal of the value of vitamin B12 in the prevention of motion sickness

    NASA Technical Reports Server (NTRS)

    Kohl, R. L.; Lacey, C. L.; Homick, J. L.

    1983-01-01

    It has been suggested that vitamin B12 given by intramuscular injection can significantly reduce the occurrence of motion sickness in susceptible individuals (Banks, 1980). Since it is known that B12 influences the metabolism of histidine and choline, dietary precursors to neurotransmitters with established roles in motion sickness, an experimental evaluation has been undertaken of the efficacy of B12 in the prevention of motion sickness induced by controlled coriolis simulation. Subjects executed standardized head movements at successively higher rpm until a malaise III endpoint was reached. Following two baseline tests with this motion stressor, subjects received a B12 injection, a second injection two weeks later, and a final motion sickness test three weeks later. No significant differences in the susceptibility to motion sickness were noted after B12.

  5. Strain transformation between tectonic extrusion and crustal thickening in the growth of the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Liu, M.; Li, Y.; Sun, Y.; Shen, X.

    2017-12-01

    The Indo-Eurasian continental collision since 50 Ma has thickened the crust to raise the Himalayan-Tibetan Plateau and driven lateral extrusion of Asian lithospheric blocks to affect Cenozoic tectonics in central and east Asia. The relative roles of crustal thickening and tectonic extrusion, and the strain partitioning between them over time and space, remain controversial. We have analyzed the strain rates using GPS velocities, and correlated the results with vertical motion derived from precise leveling. We found that tectonic extrusion largely transforms to crustal thickening near the margins of the Tibetan Plateau. Near the NW margin of the Tibetan Plateau, the shear stain transforms to compressive strain, consistent with neotectonic studies that indicate crustal shortening and uplift. Around the SE margin, shear stain largely terminates in the southern Yunnan province of China. The present-day crustal motion in SE Tibetan Plateau can be well explained by gravitational spreading without invoking plate-edge push as envisioned in the tectonic extrusion model. Using data collected from local seismic arrays, we derived receiver functions to image the lithospheric structures across the Tibetan Plateau and the Alashan block to its north and the Ordos block to its east. Our results indicate that the mantle lithosphere of these bounding Asian blocks has not been reworked by Tibetan tectonics; instead they have acted as restrictive walls to the growing Tibetan Plateau. Our finite element modeling shows that crustal deformation along the margins of the Tibetan Plateau are consistent with the notion that the east- and southeastward extrusion of the Tibetan lithosphere is largely confined to the Tibetan Plateau because of the restrictive bounding blocks of the Asian lithosphere. Thus the tectonic impact of the Indo-Eurasian collision on the Cenozoic Asian tectonics may not be as extensive as previously thought.

  6. Active Brownian motion models and applications to ratchets

    NASA Astrophysics Data System (ADS)

    Fiasconaro, A.; Ebeling, W.; Gudowska-Nowak, E.

    2008-10-01

    We give an overview over recent studies on the model of Active Brownian Motion (ABM) coupled to reservoirs providing free energy which may be converted into kinetic energy of motion. First, we present an introduction to a general concept of active Brownian particles which are capable to take up energy from the source and transform part of it in order to perform various activities. In the second part of our presentation we consider applications of ABM to ratchet systems with different forms of differentiable potentials. Both analytical and numerical evaluations are discussed for three cases of sinusoidal, staircaselike and Mateos ratchet potentials, also with the additional loads modelled by tilted potential structure. In addition, stochastic character of the kinetics is investigated by considering perturbation by Gaussian white noise which is shown to be responsible for driving the directionality of the asymptotic flux in the ratchet. This stochastically driven directionality effect is visualized as a strong nonmonotonic dependence of the statistics of the right versus left trajectories of motion leading to a net current of particles. Possible applications of the ratchet systems to molecular motors are also briefly discussed.

  7. Early Blindness Results in Developmental Plasticity for Auditory Motion Processing within Auditory and Occipital Cortex

    PubMed Central

    Jiang, Fang; Stecker, G. Christopher; Boynton, Geoffrey M.; Fine, Ione

    2016-01-01

    Early blind subjects exhibit superior abilities for processing auditory motion, which are accompanied by enhanced BOLD responses to auditory motion within hMT+ and reduced responses within right planum temporale (rPT). Here, by comparing BOLD responses to auditory motion in hMT+ and rPT within sighted controls, early blind, late blind, and sight-recovery individuals, we were able to separately examine the effects of developmental and adult visual deprivation on cortical plasticity within these two areas. We find that both the enhanced auditory motion responses in hMT+ and the reduced functionality in rPT are driven by the absence of visual experience early in life; neither loss nor recovery of vision later in life had a discernable influence on plasticity within these areas. Cortical plasticity as a result of blindness has generally be presumed to be mediated by competition across modalities within a given cortical region. The reduced functionality within rPT as a result of early visual loss implicates an additional mechanism for cross modal plasticity as a result of early blindness—competition across different cortical areas for functional role. PMID:27458357

  8. Motion compensation and noise tolerance in phase-shifting digital in-line holography.

    PubMed

    Stenner, Michael D; Neifeld, Mark A

    2006-05-15

    We present a technique for phase-shifting digital in-line holography which compensates for lateral object motion. By collecting two frames of interference between object and reference fields with identical reference phase, one can estimate the lateral motion that occurred between frames using the cross-correlation. We also describe a very general linear framework for phase-shifting holographic reconstruction which minimizes additive white Gaussian noise (AWGN) for an arbitrary set of reference field amplitudes and phases. We analyze the technique's sensitivity to noise (AWGN, quantization, and shot), errors in the reference fields, errors in motion estimation, resolution, and depth of field. We also present experimental motion-compensated images achieving the expected resolution.

  9. Phase-based motion magnification video for monitoring of vital signals using the Hermite transform

    NASA Astrophysics Data System (ADS)

    Brieva, Jorge; Moya-Albor, Ernesto

    2017-11-01

    In this paper we present a new Eulerian phase-based motion magnification technique using the Hermite Transform (HT) decomposition that is inspired in the Human Vision System (HVS). We test our method in one sequence of the breathing of a newborn baby and on a video sequence that shows the heartbeat on the wrist. We detect and magnify the heart pulse applying our technique. Our motion magnification approach is compared to the Laplacian phase based approach by means of quantitative metrics (based on the RMS error and the Fourier transform) to measure the quality of both reconstruction and magnification. In addition a noise robustness analysis is performed for the two methods.

  10. Essay on Gyroscopic Motions.

    ERIC Educational Resources Information Center

    Tea, Peter L., Jr.

    1988-01-01

    Explains gyroscopic motions to college freshman or high school seniors who have learned about centripetal acceleration and the transformations of a couple. Contains several figures showing the direction of forces and motion. (YP)

  11. Evidence for right-hand feeding biases in a left-handed population.

    PubMed

    Flindall, Jason W; Stone, Kayla D; Gonzalez, Claudia L R

    2015-05-01

    We have recently shown that actions with similar kinematic requirements, but different end-state goals may be supported by distinct neural networks. Specifically, we demonstrated that when right-handed individuals reach-to-grasp food items with intent to eat, they produce smaller maximum grip apertures (MGAs) than when they grasp the same item with intent to place it in a location near the mouth. This effect was restricted to right-handed movements; left-handed movements showed no difference between tasks. The current study investigates whether (and to which side) the effect may be lateralized in left-handed individuals. Twenty-one self-identified left-handed participants grasped food items of three different sizes while grasp kinematics were captured via an Optotrak Certus motion capture array. A main effect of task was identified wherein the grasp-to-eat action generated significantly smaller MGAs than did the grasp-to-place action. Further analysis revealed that similar to the findings in right-handed individuals, this effect was significant only during right-handed movements. Upon further inspection however, we found individual differences in the magnitude and direction of the observed lateralization. These results underscore the evolutionary significance of the grasp-to-eat movement in producing population-level right-handedness in humans as well as highlighting the heterogeneity of the left-handed population.

  12. First implementation of burrowing motions in dual-reciprocating drilling using an integrated actuation mechanism

    NASA Astrophysics Data System (ADS)

    Pitcher, Craig; Gao, Yang

    2017-03-01

    The dual-reciprocating drill (DRD) is a biologically-inspired low-mass alternative to traditional drilling techniques, using backwards-facing teethed halves to grip the surrounding substrate, generating a traction force that reduces the required overhead penetration force. Previous experiments using a proof-of-concept test bench have provided evidence as to the significant role of sideways movements and lateral forces in improving drilling performance. The system is also progressing to a first system prototype concept, in which an actuation mechanism is integrated within the drill heads. To experimentally determine the effect of lateral motions, a new internal actuation mechanism was developed to allow the inclusion of controlled sideways movements, resulting in the creation of the circular and diagonal burrowing motions. This paper presents an investigation into the performance of the reciprocation and burrowing motions by testing them in a planetary regolith simulant. Analysis of force sensor measurements has shown a relationship between the penetration and traction forces and the internal friction of the mechanism and depth achieved. These tests have also experimentally demonstrated the benefit of lateral motions in drilling performance, with both the burrowing mechanisms and drilling tests performed at an angle able to penetrate further than traditional vertical reciprocation, leading to the proposition of new burrowing and diagonal drilling mechanics. From this, a new fully integrated system prototype can be developed which incorporates lateral motions that can optimise the drilling performance.

  13. The invariance of classical electromagnetism under Charge-conjugation, Parity and Time-reversal (CPT) transformations

    NASA Technical Reports Server (NTRS)

    Norbury, John W.

    1989-01-01

    The invariance of classical electromagnetism under charge-conjugation, parity, and time-reversal (CPT) is studied by considering the motion of a charged particle in electric and magnetic fields. Upon applying CPT transformations to various physical quantities and noting that the motion still behaves physically demonstrates invariance.

  14. The Malpelo Plate Hypothesis and implications for nonclosure of the Cocos-Nazca-Pacific plate motion circuit

    NASA Astrophysics Data System (ADS)

    Zhang, Tuo; Gordon, Richard G.; Mishra, Jay K.; Wang, Chengzu

    2017-08-01

    Using global multiresolution topography, we estimate new transform-fault azimuths along the Cocos-Nazca plate boundary and show that the direction of relative plate motion is 3.3° ± 1.8° (95% confidence limits) clockwise of prior estimates. The new direction of Cocos-Nazca plate motion is, moreover, 4.9° ± 2.7° (95% confidence limits) clockwise of the azimuth of the Panama transform fault. We infer that the plate east of the Panama transform fault is not the Nazca plate but instead is a microplate that we term the Malpelo plate. With the improved transform-fault data, the nonclosure of the Nazca-Cocos-Pacific plate motion circuit is reduced from 15.0 mm a-1 ± 3.8 mm a-1 to 11.6 mm a-1 ± 3.8 mm a-1 (95% confidence limits). The nonclosure seems too large to be due entirely to horizontal thermal contraction of oceanic lithosphere and suggests that one or more additional plate boundaries remain to be discovered.

  15. The lateral/directional stability characteristics of a four-propeller tilt-wing V/STOL model in low-speed steep descent. M.S. Thesis - Princeton Univ., N.J.

    NASA Technical Reports Server (NTRS)

    Dicarlo, D. J.

    1971-01-01

    Lateral-directional dynamic stability derivatives are presented for a O.1-scale model of the XC-142A tilt-wing transport. The tests involved various descending flight conditions achieved at constant speed and wing incidence by varying the vehicle angle of attack. The propeller blade angle and the speed were also changed in the steepest descent case. The experimental data were analyzed assuming that the dynamic motions of the vehicle may be described by linearized equations, with the lateral-directional characteristics of the full-scale aircraft also presented and discussed. Results from this experimental investigation indicated that the full-scale aircraft would have a stable lateral-directional motion in level flight, with the dynamic motion becoming less stable as the descent angle was increased.

  16. Timing of metamorphism of the Lansang gneiss and implications for left-lateral motion along the Mae Ping (Wang Chao) strike-slip fault, Thailand

    NASA Astrophysics Data System (ADS)

    Palin, R. M.; Searle, M. P.; Morley, C. K.; Charusiri, P.; Horstwood, M. S. A.; Roberts, N. M. W.

    2013-10-01

    The Mae Ping fault (MPF), western Thailand, exhibits dominantly left-lateral strike-slip motion and stretches for >600 km, reportedly branching off the right-lateral Sagaing fault in Myanmar and extending southeast towards Cambodia. Previous studies have suggested that the fault assisted the large-scale extrusion of Sundaland that occurred during the Late Eocene-Early Oligocene, with a geological offset of ˜120-150 km estimated from displaced high-grade gneisses and granites of the Chiang Mai-Lincang belt. Exposures of high-grade orthogneiss in the Lansang National Park, part of this belt, locally contain strong mylonitic textures and are bounded by strike-slip ductile shear zones and brittle faults. Geochronological analysis of monazite from a sample of sheared biotite-K-feldspar orthogneiss suggests two episodes of crystallization, with core regions documenting Th-Pb ages between c. 123 and c. 114 Ma and rim regions documenting a significantly younger age range between c. 45-37 Ma. These data are interpreted to represent possible magmatic protolith emplacement for the Lansang orthogneiss during the Early Cretaceous, with a later episode of metamorphism occurring during the Eocene. Textural relationships provided by in situ analysis suggest that ductile shearing along the MPF occurred during the latter stages of, or after, this metamorphic event. In addition, monazite analyzed from an undeformed garnet-two-mica granite dyke intruding metamorphic units at Bhumipol Lake outside of the Mae Ping shear zone produced a Th-Pb age of 66.2 ± 1.6 Ma. This age is interpreted to date the timing of dyke emplacement, implying that the MPF cuts through earlier formed magmatic and high-grade metamorphic rocks. These new data, when combined with regional mapping and earlier geochronological work, show that neither metamorphism, nor regional cooling, was directly related to strike-slip motion.

  17. Superintegrability of geodesic motion on the sausage model

    NASA Astrophysics Data System (ADS)

    Arutyunov, Gleb; Heinze, Martin; Medina-Rincon, Daniel

    2017-06-01

    Reduction of the η-deformed sigma model on AdS_5× S5 to the two-dimensional squashed sphere (S^2)η can be viewed as a special case of the Fateev sausage model where the coupling constant ν is imaginary. We show that geodesic motion in this model is described by a certain superintegrable mechanical system with four-dimensional phase space. This is done by means of explicitly constructing three integrals of motion which satisfy the sl(2) Poisson algebra relations, albeit being non-polynomial in momenta. Further, we find a canonical transformation which transforms the Hamiltonian of this mechanical system to the one describing the geodesic motion on the usual two-sphere. By inverting this transformation we map geodesics on this auxiliary two-sphere back to the sausage model. This paper is a tribute to the memory of Prof Petr Kulish.

  18. An appraisal of the value of vitamin B 12 in the prevention of motion sickness

    NASA Astrophysics Data System (ADS)

    Kohl, Randall L.; Lacey, Carol L.; Homick, Jerry L.

    Unpublished reports have suggested that hydroxycobalamin (B 12, i.m.) prevents motion sickness. Some biomedical evidence supports this contention in that B 12 influences the metabolism of histidine and choline; dietary precursors to neurotransmitters with established roles in motion sickness. Susceptibility to motion sickness was evaluated after B 12 (1000 μg, i.m.). Subjects initially completed vestibular function and motion sickness susceptibility tests to establish normal vestibular function. The experimental motion stressor was a modified coriolis sickness susceptibility test. Subjects executed standardized head movements at successively higher RPM until a malaise III endpoint was reached. Following two baseline tests with this motion stressor, subjects received a B 12 injection, a second injection two weeks later, and a final motion sickness test three weeks later. No significant differences in susceptibility were noted after B 12. Hematological parameters revealed no B 12 deficiency before injection. The possibility that patients with B 12 deficiencies are more susceptible to motion sickness cannot be ruled out.

  19. Sacroiliac Joint Fusion Minimally Affects Adjacent Lumbar Segment Motion: A Finite Element Study

    PubMed Central

    Kiapour, Ali; Yerby, Scott A.; Goel, Vijay K.

    2015-01-01

    Background Adjacent segment disease is a recognized consequence of fusion in the spinal column. Fusion of the sacroiliac joint is an effective method of pain reduction. Although effective, the consequences of sacroiliac joint fusion and the potential for adjacent segment disease for the adjacent lumbar spinal levels is unknown. The objective of this study was to quantify the change in range of motion of the sacroiliac joint and the adjacent lumbar spinal motion segments due to sacroiliac joint fusion and compare these changes to previous literature to assess the potential for adjacent segment disease in the lumbar spine. Methods An experimentally validated finite element model of the lumbar spine and pelvis was used to simulate a fusion of the sacroiliac joint using three laterally placed triangular implants (iFuse Implant System, SI-BONE, Inc., San Jose, CA). The range of motion of the sacroiliac joint and the adjacent lumbar spinal motion segments were calculated using a hybrid loading protocol and compared with the intact range of motion in flexion, extension, lateral bending, and axial rotation. Results The range of motions of the treated sacroiliac joints were reduced in flexion, extension, lateral bending, and axial rotation, by 56.6%, 59.5%, 27.8%, and 53.3%, respectively when compared with the intact condition. The stiffening of the sacroiliac joint resulted in increases at the adjacent lumbar motion segment (L5-S1) for flexion, extension, lateral bending, and axial rotation, of 3.0%, 3.7%, 1.1%, and 4.6%, respectively. Conclusions Fusion of the sacroiliac joint resulted in substantial (> 50%) reductions in flexion, extension, and axial rotation of the sacroiliac joint with minimal (< 5%) increases in range of motion in the lumbar spine. Although the predicted increases in lumbar range of motion are minimal after sacroiliac joint fusion, the long-term clinical results remain to be investigated. PMID:26767156

  20. Sacroiliac Joint Fusion Minimally Affects Adjacent Lumbar Segment Motion: A Finite Element Study.

    PubMed

    Lindsey, Derek P; Kiapour, Ali; Yerby, Scott A; Goel, Vijay K

    2015-01-01

    Adjacent segment disease is a recognized consequence of fusion in the spinal column. Fusion of the sacroiliac joint is an effective method of pain reduction. Although effective, the consequences of sacroiliac joint fusion and the potential for adjacent segment disease for the adjacent lumbar spinal levels is unknown. The objective of this study was to quantify the change in range of motion of the sacroiliac joint and the adjacent lumbar spinal motion segments due to sacroiliac joint fusion and compare these changes to previous literature to assess the potential for adjacent segment disease in the lumbar spine. An experimentally validated finite element model of the lumbar spine and pelvis was used to simulate a fusion of the sacroiliac joint using three laterally placed triangular implants (iFuse Implant System, SI-BONE, Inc., San Jose, CA). The range of motion of the sacroiliac joint and the adjacent lumbar spinal motion segments were calculated using a hybrid loading protocol and compared with the intact range of motion in flexion, extension, lateral bending, and axial rotation. The range of motions of the treated sacroiliac joints were reduced in flexion, extension, lateral bending, and axial rotation, by 56.6%, 59.5%, 27.8%, and 53.3%, respectively when compared with the intact condition. The stiffening of the sacroiliac joint resulted in increases at the adjacent lumbar motion segment (L5-S1) for flexion, extension, lateral bending, and axial rotation, of 3.0%, 3.7%, 1.1%, and 4.6%, respectively. Fusion of the sacroiliac joint resulted in substantial (> 50%) reductions in flexion, extension, and axial rotation of the sacroiliac joint with minimal (< 5%) increases in range of motion in the lumbar spine. Although the predicted increases in lumbar range of motion are minimal after sacroiliac joint fusion, the long-term clinical results remain to be investigated.

  1. Biomechanical Analysis of Porous Additive Manufactured Cages for Lateral Lumbar Interbody Fusion: A Finite Element Analysis.

    PubMed

    Zhang, Zhenjun; Li, Hui; Fogel, Guy R; Liao, Zhenhua; Li, Yang; Liu, Weiqiang

    2018-03-01

    A porous additive manufactured (AM) cage may provide stability similar to that of traditional solid cages and may be beneficial to bone ingrowth. The biomechanical influence of various porous cages on stability, subsidence, stresses in cage, and facet contact force has not been fully described. The purpose of this study was to verify biomechanical effects of porous AM cages. The surgical finite element models with various cages were constructed. The partially porous titanium (PPT) cages and fully porous titanium (FPT) cages were applied. The mechanical parameters of porous materials were obtained by mechanical test. Then the porous AM cages were compared with solid titanium (TI) cage and solid polyetheretherketone (PEEK) cage. The 4 motion modes were simulated. Range of motion (ROM), cage stress, end plate stress, and facet joint force (FJF) were compared. For all the surgical models, ROM decreased by >90%. Compared with TI and PPT cages, PEEK and FPT cages substantially reduced the maximum stresses in cage and end plate in all motion modes. Compared with PEEK cages, the stresses in cage and end plate for FPT cages decreased, whereas the ROM increased. Comparing FPT cages, the stresses in cage and end plate decreased with increasing porosity, whereas ROM increased with increasing porosity. After interbody fusion, FJF was substantially reduced in all motion modes except for flexion. Fully porous cages may offer an alternative to solid PEEK cages in lateral lumbar interbody fusion. However, it may be prudent to further increase the porosity of the cage. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Nonlocal Sediment Transport on Steep Lateral Moraines, Eastern Sierra Nevada, California, USA

    NASA Astrophysics Data System (ADS)

    Doane, Tyler H.; Furbish, David Jon; Roering, Joshua J.; Schumer, Rina; Morgan, Daniel J.

    2018-01-01

    Recent work has highlighted the significance of long-distance particle motions in hillslope sediment transport. Such motions imply that the flux at a given hillslope position is appropriately described as a weighted function of surrounding conditions that influence motions reaching the given position. Although the idea of nonlocal sediment transport is well grounded in theory, limited field evidence has been provided. We test local and nonlocal formulations of the flux and compare their ability to reproduce land surface profiles of steep moraines in California. We show that nonlocal and nonlinear models better reproduce evolved land surface profiles, notably the amount of lowering and concavity near the moraine crest and the lengthening and straightening of the depositional apron. The analysis provides the first estimates of key parameters that set sediment entrainment rates and travel distances in nonlocal formulations and highlights the importance of correctly specifying the entrainment rate when modeling land surface evolution. Moraine evolution associated with nonlocal and nonlinear transport formulations, when described in terms of the evolution of the Fourier transform of the moraine surface, displays a distinct behavior involving growth of certain wave numbers, in contrast to the decay of all wave numbers associated with linear transport. Nonlinear and nonlocal formulations share key mathematical elements yielding a nonlinear relation between the flux and the land surface slope.

  3. Subaqueous tectonic geomorphology along a 400 km stretch of the Queen Charlotte-Fairweather Fault System, southeastern Alaska

    NASA Astrophysics Data System (ADS)

    Brothers, D. S.; Ten Brink, U. S.; Andrews, B. D.; Kluesner, J.; Haeussler, P. J.; Watt, J. T.; Dartnell, P.; Miller, N. C.; Conrad, J. E.; East, A. E.; Maier, K. L.; Balster-Gee, A.; Ebuna, D. R.

    2016-12-01

    Seismic and geodetic monitoring of active fault systems does not typically extend beyond one seismic cycle, hence it is challenging to link the characteristics of individual earthquakes with long-term fault behavior. A compelling place to examine such linkages is the right-lateral Queen Charlotte-Fairweather Fault (QCFF), a 1200 km dextral strike-slip fault offshore southeastern Alaska and western British Columbia. The QCFF defines the North America-Pacific transform plate boundary and has experienced at least eight M>7 earthquakes in the last 130 years. During 2015-2016, the USGS conducted four high-resolution marine geophysical surveys (multibeam bathymetry, sparker multichannel seismic and Chirp) along a 400-km-long section of the QCFF from Icy Point to Noyes Canyon. The QCFF displays a nearly linear and continuous fault trace from Icy Point to the southern tip of Baranof Island, a distance of 315 km. Subtle changes in fault strike, particularly the 200 km section fault south of Sitka Sound, are associated with pull-apart basins and compressional pop-up structures. Bathymetric imagery provides stunning views of strike-slip fault morphology along the continental shelf-edge and slope, including linear fault valleys and knife-edge lateral offset of submarine canyons, gullies, and ridges. We also observe pervasive evidence for small-scale (<1 km^2) submarine landslides along the margin and propose that they were seismically triggered. The glacially scoured southern wall of the Yakobi Sea Valley, formed 17 ka, is offset 925±25 m by the QCFF, providing a late Pleistocene-present slip-rate estimate of approximately 54 mm/yr. This suggests nearly the entire plate boundary motion is localized to a single, relatively narrow fault zone. We also constructed and analyzed a catalog of lateral piercing points along the fault to better understand long-term fault behavior, particularly along segments that have generated large historical earthquakes.

  4. Theory and simulations of adhesion receptor dimerization on membrane surfaces.

    PubMed

    Wu, Yinghao; Honig, Barry; Ben-Shaul, Avinoam

    2013-03-19

    The equilibrium constants of trans and cis dimerization of membrane bound (2D) and freely moving (3D) adhesion receptors are expressed and compared using elementary statistical-thermodynamics. Both processes are mediated by the binding of extracellular subdomains whose range of motion in the 2D environment is reduced upon dimerization, defining a thin reaction shell where dimer formation and dissociation take place. We show that the ratio between the 2D and 3D equilibrium constants can be expressed as a product of individual factors describing, respectively, the spatial ranges of motions of the adhesive domains, and their rotational freedom within the reaction shell. The results predicted by the theory are compared to those obtained from a novel, to our knowledge, dynamical simulations methodology, whereby pairs of receptors perform realistic translational, internal, and rotational motions in 2D and 3D. We use cadherins as our model system. The theory and simulations explain how the strength of cis and trans interactions of adhesive receptors are affected both by their presence in the constrained intermembrane space and by the 2D environment of membrane surfaces. Our work provides fundamental insights as to the mechanism of lateral clustering of adhesion receptors after cell-cell contact and, more generally, to the formation of lateral microclusters of proteins on cell surfaces. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  5. Geodetic evidence for continuing tectonic activity of the Carboneras fault (SE Spain)

    NASA Astrophysics Data System (ADS)

    Echeverria, Anna; Khazaradze, Giorgi; Asensio, Eva; Masana, Eulalia

    2015-11-01

    The Carboneras fault zone (CFZ) is a prominent onshore-offshore strike-slip fault that forms part of the Eastern Betic Shear Zone (EBSZ), located in SE Spain. In this work, we show for the first time, the continuing tectonic activity of the CFZ and quantify its geodetic slip-rates using continuous and campaign GPS observations conducted during the last decade. We find that the left-lateral motion dominates the kinematics of the CFZ, with a strike-slip rate of 1.3 ± 0.2 mm/yr along the N48° direction. The shortening component is significantly lower and poorly constrained. Recent onshore and offshore paleoseismic and geomorphic results across the CFZ suggest a minimum Late Pleistocene to present-day strike-slip rate of 1.1 mm/yr. Considering the similarity of the geologic and geodetic slip rates measured at different points along the fault, the northern segment of the CFZ must have been slipping approximately at a constant rate during the Quaternary. Regarding the eastern Alpujarras fault zone corridor (AFZ), located to the north of the CFZ, our GPS measurements corroborate that this zone is active and exhibits a right-lateral motion. These opposite type strike-slip motion across the AFZ and CFZ is a result of a push-type force due to Nubia and Eurasia plate convergence, which, in turn, causes the westward escape of the block bounded by these two fault zones.

  6. Stereomotion speed perception is contrast dependent

    NASA Technical Reports Server (NTRS)

    Brooks, K.

    2001-01-01

    The effect of contrast on the perception of stimulus speed for stereomotion and monocular lateral motion was investigated for successive matches in random-dot stimuli. The familiar 'Thompson effect'--that a reduction in contrast leads to a reduction in perceived speed--was found in similar proportions for both binocular images moving in depth, and for monocular images translating laterally. This result is consistent with the idea that the monocular motion system has a significant input to the stereomotion system, and dominates the speed percept for approaching motion.

  7. Lateral ramps in the folded Appalachians and in overthrust belts worldwide; a fundamental element of thrust-belt architecture

    USGS Publications Warehouse

    Pohn, Howard A.

    2000-01-01

    Lateral ramps are zones where decollements change stratigraphic level along strike; they differ from frontal ramps, which are zones where decollements change stratigraphic level perpendicular to strike. In the Appalachian Mountains, the surface criteria for recognizing the subsurface presence of lateral ramps include (1) an abrupt change in wavelength or a termination of folds along strike, (2) a conspicuous change in the frequency of mapped faults or disturbed zones (extremely disrupted duplexes) at the surface, (3) long, straight river trends emerging onto the coastal plain or into the Appalachian Plateaus province, (4) major geomorphic discontinuities in the trend of the Blue Ridge province, (5) interruption of Mesozoic basins by cross-strike border faults, and (6) zones of modern and probable ancient seismic activity. Additional features related to lateral ramps include tectonic windows, cross-strike igneous intrusions, areas of giant landslides, and abrupt changes in Paleozoic sedimentation along strike. Proprietary strike-line seismic-reflection profiles cross three of the lateral ramps that were identified by using the surface criteria. The profiles confirm their presence and show their detailed nature in the subsurface. Like frontal ramps, lateral ramps are one of two possible consequences of fold-and-thrust-belt tectonics and are common elements in the Appalachian fold-and-thrust belt. A survey of other thrust belts in the United States and elsewhere strongly suggests that lateral ramps at depth can be identified by their surface effects. Lateral ramps probably are the result of thrust sheet motion caused by continued activation of ancient cratonic fracture systems. Such fractures localized the transform faults along which the continental segments adjusted during episodes of sea-floor spreading.

  8. The politics of birth control, 1920-1940: the impact of professionals.

    PubMed

    Gordon, L

    1975-01-01

    Before the 1920s, a birth control movement arose in the United States out of socialist, feminist, and other radical groups concerned with women's rights and sexual freedom. After 1920 the birth control movement became gradually transformed into a respectable, nonradical reform cause, the recipient of large grants from big business, with women's rights secondary to an overriding concern with medical health and population control. This transformation was achieved through the professionalization of the birth control movement-that is, its takeover by professional experts, almost all male, in place of the radical amateur women, fighting for their own interests, who initiated it. The article examines two groups of professionals who were particularly influential in this transformation: doctors and academic eugenists. The former made birth control a medical issue, held back the development of popular sex education, and stifled a previously developing feminist approach to women's birth control needs. The later contributed racism to the birth control movement, helping to transform it into a population control movement with racist and anti-feminist overtones. Both groups, while they made contributions to the technology of contraception, simultaneously held back the spread of birth control by transforming the campaign for it from a popular, participatory cause to a professional staff lobbying operation.

  9. Changes in spinal mobility with increasing age in women.

    PubMed

    Einkauf, D K; Gohdes, M L; Jensen, G M; Jewell, M J

    1987-03-01

    The purpose of our study was to determine changes in spinal mobility for women aged 20 to 84 years. Anterior flexion, right and left lateral flexion, and extension were measured on 109 healthy women. The modified Schober method was used to measure anterior flexion. Standard goniometry was used to measure lateral flexion and extension. The results of the study indicated that spinal mobility decreases with advancing age. The most significant (p less than .05) differences occurred between the two youngest and the two oldest age categories. Data gathered in this study indicate that physical therapists should consider the effects of age on spinal mobility when assessing spinal range of motion. A simple, objective method for measuring spinal mobility is presented. Suggestions for future research are given.

  10. Loss of regularity in the {K(m, n)} equations

    NASA Astrophysics Data System (ADS)

    Zilburg, Alon; Rosenau, Philip

    2018-06-01

    Using a priori estimates we prove that initially nonnegative, smooth and compactly supported solutions of the equations must lose their smoothness within a finite time. Formation of a singularity is a prerequisite for the subsequent emergence of compactons. Numerical studies are presented that demonstrate two manifestations of the emerging singularity: either propagation of the right front downstream or the formation of an oscillatory tail upstream. Formation of one type of motion does not preclude the possible formation of the other at a later time.

  11. Wind-Tunnel Experiments for Gas Dispersion in an Atmospheric Boundary Layer with Large-Scale Turbulent Motion

    NASA Astrophysics Data System (ADS)

    Michioka, Takenobu; Sato, Ayumu; Sada, Koichi

    2011-10-01

    Large-scale turbulent motions enhancing horizontal gas spread in an atmospheric boundary layer are simulated in a wind-tunnel experiment. The large-scale turbulent motions can be generated using an active grid installed at the front of the test section in the wind tunnel, when appropriate parameters for the angular deflection and the rotation speed are chosen. The power spectra of vertical velocity fluctuations are unchanged with and without the active grid because they are strongly affected by the surface. The power spectra of both streamwise and lateral velocity fluctuations with the active grid increase in the low frequency region, and are closer to the empirical relations inferred from field observations. The large-scale turbulent motions do not affect the Reynolds shear stress, but change the balance of the processes involved. The relative contributions of ejections to sweeps are suppressed by large-scale turbulent motions, indicating that the motions behave as sweep events. The lateral gas spread is enhanced by the lateral large-scale turbulent motions generated by the active grid. The large-scale motions, however, do not affect the vertical velocity fluctuations near the surface, resulting in their having a minimal effect on the vertical gas spread. The peak concentration normalized using the root-mean-squared value of concentration fluctuation is remarkably constant over most regions of the plume irrespective of the operation of the active grid.

  12. Grammont humeral design versus onlay curved-stem reverse shoulder arthroplasty: comparison of clinical and radiographic outcomes with minimum 2-year follow-up.

    PubMed

    Merolla, Giovanni; Walch, Gilles; Ascione, Francesco; Paladini, Paolo; Fabbri, Elisabetta; Padolino, Antonio; Porcellini, Giuseppe

    2018-04-01

    There are few investigations comparing lateralized and medialized reverse total shoulder arthroplasty (RTSA) in patients with cuff tear arthropathy. This study assessed the outcomes of 2 RTSA designs. Sixty-eight consecutive cuff tear arthropathy patients (74 shoulders) with a follow-up of at least 24 months received a Grammont or an onlay curved short-stem humeral component, with or without glenoid lateralization; a cementless humeral stem was implanted in >90%. Clinical outcome measures included active range of motion (anterior and lateral elevation, external and internal rotation), pain, and the Constant-Murley score. Radiologic outcomes included radiolucency, condensation lines, cortical thinning, spot weld, loosening and subsidence, and tuberosity resorption for the humeral component and radiolucency, scapular notching, formation of scapular bone spurs, ossifications, and loosening for the glenoid component. Both prostheses provided significant differences between preoperative and postoperative scores and showed a similar complication rate. Scapular fractures were found only in the patients who received the curved short-stem implant. Glenoid bone grafting did not significantly affect clinical scores. Both implants provided similar postoperative shoulder mobility, even though the lateralized curved stem was associated with higher delta scores for external rotation (P = .002) and lower rates of scapular notching (P = .0003), glenoid radiolucency (P = .016), and humeral bone remodeling (P = .004 and P = .030 for cortical thinning and spot weld, respectively). Medialized and short-stem lateralized RTSA implants provided similar midterm clinical outcomes and range of motion. The curved short stem was associated with higher delta scores for external rotation and a lower rate of radiographic risk factors. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  13. Level-dependent coronal and axial moment-rotation corridors of degeneration-free cervical spines in lateral flexion.

    PubMed

    Yoganandan, Narayan; Pintar, Frank A; Stemper, Brian D; Wolfla, Christopher E; Shender, Barry S; Paskoff, Glenn

    2007-05-01

    Aging, trauma, or degeneration can affect intervertebral kinematics. While in vivo studies can determine motions, moments are not easily quantified. Previous in vitro studies on the cervical spine have largely used specimens from older individuals with varying levels of degeneration and have shown that moment-rotation responses under lateral bending do not vary significantly by spinal level. The objective of the present in vitro biomechanical study was, therefore, to determine the coronal and axial moment-rotation responses of degeneration-free, normal, intact human cadaveric cervicothoracic spinal columns under the lateral bending mode. Nine human cadaveric cervical columns from C2 to T1 were fixed at both ends. The donors had ranged from twenty-three to forty-four years old (mean, thirty-four years) at the time of death. Retroreflective targets were inserted into each vertebra to obtain rotational kinematics in the coronal and axial planes. The specimens were subjected to pure lateral bending moment with use of established techniques. The range-of-motion and neutral zone metrics for the coronal and axial rotation components were determined at each level of the spinal column and were evaluated statistically. Statistical analysis indicated that the two metrics were level-dependent (p < 0.05). Coronal motions were significantly greater (p < 0.05) than axial motions. Moment-rotation responses were nonlinear for both coronal and axial rotation components under lateral bending moments. Each segmental curve for both rotation components was well represented by a logarithmic function (R(2) > 0.95). Range-of-motion metrics compared favorably with those of in vivo investigations. Coronal and axial motions of degeneration-free cervical spinal columns under lateral bending showed substantially different level-dependent responses. The presentation of moment-rotation corridors for both metrics forms a normative dataset for the degeneration-free cervical spines.

  14. Transformation of γ-alumina to θ-alumina

    NASA Astrophysics Data System (ADS)

    Cai, Shuhui; Sohlberg, Karl; Rashkeev, Sergey; Pantelides, Sokrates T.

    2002-03-01

    γ- and θ-alumina are two metastable phases of aluminum oxide observed along the dehydration sequence of boehmite upon thermal treatment before conversion to the final product α-alumina. The transformation from the γ to the θ phase can best be studied by using Al_16O_24 cells. Motion of eight Al atoms from their γ-alumina positions to new positions and no O motions result in an approximate structure that, upon relaxation by first-principles calculations, becomes the known θ-alumina structure. Total-energy calculations along the paths of atomic motions have been used to map out possible synergistic transformation pathways. This work was supported in part by the USDoE and a NSF GOALI Grant with Alcoa, Inc.

  15. Nanoscopic dynamics of bicontinous microemulsions: effect of membrane associated protein

    DOE PAGES

    Sharma, V. K.; Hayes, Douglas G.; Urban, Volker S.; ...

    2017-06-12

    Bicontinous microemulsions (BμE) generally consist of nanodomains formed by surfactant in a mixture of water and oil at nearly equal proportions and are potential candidates for the solubilization and purification of membrane proteins. In this paper, we present the first time report of nanoscopic dynamics of surfactant monolayers within BμEs formed by the anionic surfactant sodium dodecyl sulfate (SDS) measured on the nanosecond to picosecond time scale using quasielastic neutron scattering (QENS). BμEs investigated herein consisted of middle phases isolated from Winsor-III microemulsion systems that were formed by mixing aqueous and oil solutions under optimal conditions. QENS data indicates thatmore » surfactants undergo two distinct motions, namely (i) lateral motion along the surface of the oil nanodomains and (ii) localized internal motion. Lateral motion can be described using a continuous diffusion model, from which the lateral diffusion coefficient is obtained. Internal motion of surfactant is described using a model which assumes that a fraction of the surfactants’ hydrogens undergoes localized translational diffusion that could be considered confined within a spherical volume. The effect of cytochrome c, an archetypal membrane-associated protein known to strongly partition near the surfactant head groups in BμEs (a trend supported by small-angle X-ray scattering [SAXS] analysis), on the dynamics of BμE has also been investigated. QENS results demonstrated that cytochrome c significantly hindered both the lateral and the internal motions of surfactant. The lateral motion was more strongly affected: a reduction of the lateral diffusion coefficient by 33% was measured. This change is mainly attributable to the strong association of cytochrome c with oppositely charged SDS. In contrast, analysis of SAXS data suggested that thermal fluctuations (for a longer length and slower time scale compared to QENS) were increased upon incorporation of cytochrome c. Finally, this study demonstrates the utility of QENS for evaluating dynamics of BμEs in nanoscopic region, and that proteins directly affect the microscopic dynamics, which is of relevance for evaluating release kinetics of encapsulated drugs from BμE delivery systems and the use of BμEs as biomembrane mimetic systems for investigating membrane protein–biomembrane interactions.« less

  16. Effect of vision and stance width on human body motion when standing: implications for afferent control of lateral sway.

    PubMed

    Day, B L; Steiger, M J; Thompson, P D; Marsden, C D

    1993-09-01

    1. Measurements of human upright body movements in three dimensions have been made on thirty-five male subjects attempting to stand still with various stance widths and with eyes closed or open. Body motion was inferred from movements of eight markers fixed to specific sites on the body from the shoulders to the ankles. Motion of these markers was recorded together with motion of the point of application of the resultant of the ground reaction forces (centre of pressure). 2. The speed of the body (average from eight sites) was increased by closing the eyes or narrowing the stance width and there was an interaction between these two factors such that vision reduced body speed more effectively when the feet were closer together. Similar relationships were found for components of velocity both in the frontal and sagittal planes although stance width exerted a much greater influence on the lateral velocity component. 3. Fluctuations in position of the body were also increased by eye closure or narrowing of stance width. Again, the effect of stance width was more potent for lateral than for anteroposterior movements. In contrast to the velocity measurements, there was no interaction between vision and stance width. 4. There was a progressive increase in the amplitude of position and velocity fluctuations from markers placed higher on the body. The fluctuations in the position of the centre of pressure were similar in magnitude to those of the markers placed near the hip. The fluctuations in velocity of centre of pressure, however, were greater than of any site on the body. 5. Analysis of the amplitude of angular motion between adjacent straight line segments joining the markers suggests that the inverted pendulum model of body sway is incomplete. Motion about the ankle joint was dominant only for lateral movement in the frontal plane with narrow stance widths (< 8 cm). For all other conditions most angular motion occurred between the trunk and leg. 6. The large reduction in lateral body motion with increasing stance width was mainly due to a disproportionate reduction in the angular motion about the ankles and feet. A mathematical model of the skeletal structure has been constructed which offers some explanation for this specific reduction in joint motion.(ABSTRACT TRUNCATED AT 400 WORDS)

  17. Estimation of two-dimensional motion velocity using ultrasonic signals beamformed in Cartesian coordinate for measurement of cardiac dynamics

    NASA Astrophysics Data System (ADS)

    Kaburaki, Kaori; Mozumi, Michiya; Hasegawa, Hideyuki

    2018-07-01

    Methods for the estimation of two-dimensional (2D) velocity and displacement of physiological tissues are necessary for quantitative diagnosis. In echocardiography with a phased array probe, the accuracy in the estimation of the lateral motion is lower than that of the axial motion. To improve the accuracy in the estimation of the lateral motion, in the present study, the coordinate system for ultrasonic beamforming was changed from the conventional polar coordinate to the Cartesian coordinate. In a basic experiment, the motion velocity of a phantom, which was moved at a constant speed, was estimated by the conventional and proposed methods. The proposed method reduced the bias error and standard deviation in the estimated motion velocities. In an in vivo measurement, intracardiac blood flow was analyzed by the proposed method.

  18. Capturing Motion and Depth Before Cinematography.

    PubMed

    Wade, Nicholas J

    2016-01-01

    Visual representations of biological states have traditionally faced two problems: they lacked motion and depth. Attempts were made to supply these wants over many centuries, but the major advances were made in the early-nineteenth century. Motion was synthesized by sequences of slightly different images presented in rapid succession and depth was added by presenting slightly different images to each eye. Apparent motion and depth were combined some years later, but they tended to be applied separately. The major figures in this early period were Wheatstone, Plateau, Horner, Duboscq, Claudet, and Purkinje. Others later in the century, like Marey and Muybridge, were stimulated to extend the uses to which apparent motion and photography could be applied to examining body movements. These developments occurred before the birth of cinematography, and significant insights were derived from attempts to combine motion and depth.

  19. Onboard guidance system design for reusable launch vehicles in the terminal area energy management phase

    NASA Astrophysics Data System (ADS)

    Mu, Lingxia; Yu, Xiang; Zhang, Y. M.; Li, Ping; Wang, Xinmin

    2018-02-01

    A terminal area energy management (TAEM) guidance system for an unpowered reusable launch vehicle (RLV) is proposed in this paper. The mathematical model representing the RLV gliding motion is provided, followed by a transformation of extracting the required dynamics for reference profile generation. Reference longitudinal profiles are conceived based on the capability of maximum dive and maximum glide that a RLV can perform. The trajectory is obtained by iterating the motion equations at each node of altitude, where the angle of attack and the flight-path angle are regarded as regulating variables. An onboard ground-track predictor is constructed to generate the current range-to-go and lateral commands online. Although the longitudinal profile generation requires pre-processing using the RLV aerodynamics, the ground-track prediction can be executed online. This makes the guidance scheme adaptable to abnormal conditions. Finally, the guidance law is designed to track the reference commands. Numerical simulations demonstrate that the proposed guidance scheme is capable of guiding the RLV to the desired touchdown conditions.

  20. Nonlinear dynamics of a support-excited flexible rotor with hydrodynamic journal bearings

    NASA Astrophysics Data System (ADS)

    Dakel, Mzaki; Baguet, Sébastien; Dufour, Régis

    2014-05-01

    The major purpose of this study is to predict the dynamic behavior of an on-board rotor mounted on hydrodynamic journal bearings in the presence of rigid support movements, the target application being turbochargers of vehicles or rotating machines subject to seismic excitation. The proposed on-board rotor model is based on Timoshenko beam finite elements. The dynamic modeling takes into account the geometric asymmetry of shaft and/or rigid disk as well as the six deterministic translations and rotations of the rotor rigid support. Depending on the type of analysis used for the bearing, the fluid film forces computed with the Reynolds equation are linear/nonlinear. Thus the application of Lagrange's equations yields the linear/nonlinear equations of motion of the rotating rotor in bending with respect to the moving rigid support which represents a non-inertial frame of reference. These equations are solved using the implicit Newmark time-step integration scheme. Due to the geometric asymmetry of the rotor and to the rotational motions of the support, the equations of motion include time-varying parametric terms which can lead to lateral dynamic instability. The influence of sinusoidal rotational or translational motions of the support, the accuracy of the linear 8-coefficient bearing model and the interest of the nonlinear model for a hydrodynamic journal bearing are examined and discussed by means of stability charts, orbits of the rotor, time history responses, fast Fourier transforms, bifurcation diagrams as well as Poincaré maps.

  1. Strategies of Healthy Adults Walking on a Laterally Oscillating Treadmill

    NASA Technical Reports Server (NTRS)

    Brady, Rachel A.; Peters, Brian T.; Bloomberg, Jacob J.

    2008-01-01

    We mounted a treadmill on top of a six degree-of-freedom motion base platform to investigate locomotor responses produced by healthy adults introduced to a dynamic walking surface. The experiment examined self-selected strategies employed by participants when exposed to continuous, sinusoidal lateral motion of the support surface while walking. Torso translation and step width were used to classify responses used to stabilize gait in a novel, dynamic environment. Two response categories emerged. Participants tended to either fix themselves in space (FIS), allowing the treadbelt to move laterally beneath them, or they fixed themselves to the base (FTB), moving laterally as the motion base oscillated. The degree of fixation in both extremes varied across participants. This finding suggests that normal adults have innate and varied preferences for reacquiring gait stability, some depending more heavily on vision (FIS group) and others on proprioception (FTB group). Keywords: Human locomotion, Unstable surface, Treadmill, Adaptation, Stability

  2. Lateral thinking: 2-D interpretation of thermochronology in convergent orogenic settings

    NASA Astrophysics Data System (ADS)

    Batt, Geoffrey E.; Brandon, Mark T.

    2002-05-01

    Lateral motion of material relative to the regional thermal and kinematic frameworks is important in the interpretation of thermochronology in convergent orogens. Although cooling ages in denuded settings are commonly linked to exhumation, such data are not related to instantaneous behavior but rather to an integration of the exhumation rates experienced between the thermochronological 'closure' at depth and subsequent exposure at the surface. The short spatial wavelength variation of thermal structure and denudation rate typical of orogenic regions thus renders thermochronometers sensitive to lateral motion during exhumation. The significance of this lateral motion varies in proportion with closure temperature, which controls the depth at which isotopic closure occurs, and hence, the range of time and length scales over which such data integrate sample histories. Different chronometers thus vary in the fundamental aspects of the orogenic character to which they are sensitive. Isotopic systems with high closure temperature are more sensitive to exhumation paths and the variation in denudation and thermal structure across a region, while those of lower closure temperature constrain shorter-term behaviour and more local conditions. Discounting lateral motion through an orogenic region and interpreting cooling ages purely in terms of vertical exhumation can produce ambiguous results because variation in the cooling rate can result from either change in kinematics over time or the translation of samples through spatially varying conditions. Resolving this ambiguity requires explicit consideration of the physical and thermal framework experienced by samples during their exhumation. This can be best achieved through numerical simulations coupling kinematic deformation to thermal evolution. Such an approach allows the thermochronological implications of different kinematic scenarios to be tested, and thus provides an important means of assessing the contribution of lateral motion to orogenic evolution.

  3. SU-C-17A-05: Quantification of Intra-Fraction Motion of Breast Tumors Using Cine-MRI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heijst, T van; Philippens, M; Bongard, D van den

    2014-06-01

    Purpose: Magnetic resonance imaging (MRI) enables direct characterization of intra-fraction motion ofbreast tumors, due to high softtissue contrast and geometric accuracy. The purpose is to analyzethis motion in early-stage breast-cancer patients using pre-operative supine cine-MRI. Methods: MRI was performed in 12 female early-stage breast-cancer patients on a 1.5-T Ingenia (Philips)wide-bore scanner in supine radiotherapy (RT) position, prior to breast-conserving surgery. Twotwodimensional (2D) T2-weighted balanced fast-field echo (cine-MRI) sequences were added tothe RT protocol, oriented through the tumor. They were alternately acquired in the transverse andsagittal planes, every 0.3 s during 1 min. A radiation oncologist delineated gross target volumes(GTVs) onmore » 3D contrast-enhanced MRI. Clinical target volumes (CTV = GTV + 15 mm isotropic)were generated and transferred onto the fifth time-slice of the time-series, to which subsequents lices were registered using a non-rigid Bspline algorithm; delineations were transformed accordingly. To evaluate intra-fraction CTV motion, deformation fields between the transformed delineations were derived to acquire the distance ensuring 95% surface coverage during scanning(P95%), for all in-plane directions: anteriorposterior (AP), left-right (LR), and caudal-cranial(CC). Information on LR was derived from transverse scans, CC from sagittal scans, AP fromboth sets. Results: Time-series with registration errors - induced by motion artifacts - were excluded by visual inspection. For our analysis, 11 transverse, and 8 sagittal time-series were taken into account. Themedian P95% calculated in AP (19 series), CC (8), and LR (11) was 1.8 mm (range: 0.9–4.8), 1.7mm (0.8–3.6), and 1.0 mm (0.6–3.5), respectively. Conclusion: Intra-fraction motion analysis of breast tumors was achieved using cine-MRI. These first results show that in supine RT position, motion amplitudes are limited. This information can be used for adaptive RT planning, and to develop preoperative partial-breast RT strategies, such asablative RT for early-stage breast-cancer patients.« less

  4. Multi-planar bending properties of lumbar intervertebral joints following cyclic bending.

    PubMed

    Chow, Daniel H K; Luk, Keith D K; Holmes, Andrew D; Li, Xing-Fei; Tam, Steven C W

    2004-02-01

    To assess the changes in the multi-planar bending properties of intervertebral joints following cyclic bending along different directions. An in vitro biomechanical study using porcine lumbar motion segments. Repeated bending has been suggested as part of the etiology of gradual prolapse of the intervertebral disc, but the multi-planar changes in bending properties following cyclic loading have not been examined in detail. Porcine lumbar motion segments were subject to 1500 cycles of bending along directions of 0 degrees (flexion), 30 degrees, 60 degrees, or 90 degrees (right lateral bending). The multi-planar bending moments and hysteresis energies were recorded before loading and after various cycle numbers. Repeated bending at 30 degrees and 60 degrees resulted in greater decreases in mean bending moment and hysteresis energy than bending at 0 degrees or 90 degrees. No significant differences were seen between loading groups for the change in bending moment along the anterior testing directions, but significant differences were observed in the posterior and lateral testing directions, with bending at 30 degrees causing a significantly greater decrease in bending moment in the postero-lateral directions. The change in mechanical properties of porcine intervertebral joints due to cyclic bending depend on the direction of loading and the direction in which the properties are measured. Loading at 30 degrees provokes the most marked changes in bending moment and hysteresis energy.

  5. Use of an all-suture anchor for re-creation of the anterior talofibular ligament: a case report.

    PubMed

    Piraino, Jason A; Busch, Elliot L; Sansosti, Laura E; Pettineo, Steven J; Creech, Corine

    2015-01-01

    The lateral ankle ligament complex is typically injured during athletic activity caused by an inversion force on a plantar flexed foot. Numerous open surgical procedures to reconstruct the lateral ankle complex have been described. In contrast, we present a case report in which an all-suture anchor was used arthroscopically to re-create the anterior talofibular ligament in conjunction with ankle arthroscopy. A retrospective analysis of a 55-year-old male with a work-related inversion ankle sprain was performed with 14 months of follow-up. Objective and subjective assessments were obtained using range of motion measures, a strength assessment, and the Foot Function Index. An all-suture anchor was deployed through the anterolateral portal and secured in both the fibula and talus, re-creating the anterior talofibular ligament at its origin and insertion. Active range of motion physical therapy began at 2 weeks postoperatively. The patient started a neuromuscular re-education program at 5 weeks with minimal pain or discomfort. A return to full duty was achieved at 3 months postoperatively. To our knowledge, the use of an all-suture anchor has not been previously reported for lateral ankle complex re-creation. It is hoped that this approach to anterior talofibular ligament repair will decrease the incidence of complications and improve outcomes. Copyright © 2015 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  6. Back from the future: Volitional postdiction of perceived apparent motion direction.

    PubMed

    Sun, Liwei; Frank, Sebastian M; Hartstein, Kevin C; Hassan, Wassim; Tse, Peter U

    2017-11-01

    Among physical events, it is impossible that an event could alter its own past for the simple reason that past events precede future events, and not vice versa. Moreover, to do so would invoke impossible self-causation. However, mental events are constructed by physical neuronal processes that take a finite duration to execute. Given this fact, it is conceivable that later brain events could alter the ongoing interpretation of previous brain events if they arrive within this finite duration of interpretive processing, before a commitment is made to what happened. In the current study, we show that humans can volitionally influence how they perceive an ambiguous apparent motion sequence, as long as the top-down command occurs up to 300ms after the occurrence of the actual motion event in the world. This finding supports the view that there is a temporal integration period over which perception is constructed on the basis of both bottom-up and top-down inputs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Dynamics analysis of microsphere in a dual-beam fiber-optic trap with transverse offset.

    PubMed

    Chen, Xinlin; Xiao, Guangzong; Luo, Hui; Xiong, Wei; Yang, Kaiyong

    2016-04-04

    A comprehensive dynamics analysis of microsphere has been presented in a dual-beam fiber-optic trap with transverse offset. As the offset distance between two counterpropagating beams increases, the motion type of the microsphere starts with capture, then spiral motion, then orbital rotation, and ends with escape. We analyze the transformation process and mechanism of the four motion types based on ray optics approximation. Dynamic simulations show that the existence of critical offset distances at which different motion types transform. The result is an important step toward explaining physical phenomena in a dual-beam fiber-optic trap with transverse offset, and is generally applicable to achieving controllable motions of microspheres in integrated systems, such as microfluidic systems and lab-on-a-chip systems.

  8. Lateralized effects of categorical and coordinate spatial processing of component parts on the recognition of 3D non-nameable objects.

    PubMed

    Saneyoshi, Ayako; Michimata, Chikashi

    2009-12-01

    Participants performed two object-matching tasks for novel, non-nameable objects consisting of geons. For each original stimulus, two transformations were applied to create comparison stimuli. In the categorical transformation, a geon connected to geon A was moved to geon B. In the coordinate transformation, a geon connected to geon A was moved to a different position on geon A. The Categorical task consisted of the original and the categorically transformed objects. The Coordinate task consisted of the original and the coordinately transformed objects. The original object was presented to the central visual field, followed by a comparison object presented to the right or left visual half-fields (RVF and LVF). The results showed an RVF advantage for the Categorical task and an LVF advantage for the Coordinate task. The possibility that categorical and coordinate spatial processing subsystems would be basic computational elements for between- and within-category object recognition was discussed.

  9. Test-retest reliability of cardinal plane isokinetic hip torque and EMG.

    PubMed

    Claiborne, Tina L; Timmons, Mark K; Pincivero, Danny M

    2009-10-01

    The objective of the present study was to establish test-retest reliability of isokinetic hip torque and prime mover electromyogram (EMG) through the three cardinal planes of motion. Thirteen healthy young adults participated in two experimental sessions, separated by approximately one week. During each session, isokinetic hip torque was evaluated on the Biodex Isokinetic Dynamometer at a velocity of 60 deg/s. Subjects performed three maximal-effort concentric and eccentric contractions, separately, for right and left hip abduction/adduction, flexion/extension, and internal/external rotation. Surface EMGs were sampled from the gluteus maximus, gluteus medius, adductor, medial and lateral hamstring, and rectus femoris muscles during all contractions. Intraclass correlation coefficients (ICC - 2,1) and standard errors of measurement (SEM) were calculated for peak torque for each movement direction and contraction mode, while ICCs were only computed for the EMG data. Motions that demonstrated high torque reliability included concentric hip abduction (right and left), flexion (right and left), extension (right) and internal rotation (right and left), and eccentric hip abduction (left), adduction (left), flexion (right), and extension (right and left) (ICC range=0.81-0.91). Motions with moderate torque reliability included concentric hip adduction (right), extension (left), internal rotation (left), and external rotation (right), and eccentric hip abduction and adduction (right), flexion (left), internal rotation (right and left), and external rotation (right and left) (ICC range=0.49-0.79). The majority of the EMG sampled muscles (n=12 and n=11 for concentric and eccentric contractions, respectively) demonstrated high reliability (ICC=0.81-0.95). Instances of low, or unacceptable, EMG reliability values occurred for the medial hamstring muscle of the left leg (both contraction modes) and the adductor muscle of the right leg during eccentric internal rotation. The major finding revealed high and moderate levels of between-day reliability of isokinetic hip peak torque and prime mover EMG. It is recommended that the day-to-day variability estimates concomitant with acceptable levels of reliability be considered when attempting to objectify intervention effects on hip muscle performance.

  10. Closure of the Africa-Eurasia-North America plate motion circuit and tectonics of the Gloria fault

    NASA Technical Reports Server (NTRS)

    Argus, Donald F.; Gordon, Richard G.; Demets, Charles; Stein, Seth

    1989-01-01

    The current motions of the African, Eurasian, and North American plates are examined. The problems addressed include whether there is resolvable motion of a Spitsbergen microplate, the direction of motion between the African and North American plates, whether the Gloria fault is an active transform fault, and the implications of plate circuit closures for rates of intraplate deformation. Marine geophysical data and magnetic profiles are used to construct a model which predicts about 4 mm/yr slip across the Azores-Gibraltar Ridge, and west-northwest convergence near Gibraltar. The analyzed data are consistent with a rigid plate model with the Gloria fault being a transform fault.

  11. The direct, not V1-mediated, functional influence between the thalamus and middle temporal complex in the human brain is modulated by the speed of visual motion.

    PubMed

    Gaglianese, A; Costagli, M; Ueno, K; Ricciardi, E; Bernardi, G; Pietrini, P; Cheng, K

    2015-01-22

    The main visual pathway that conveys motion information to the middle temporal complex (hMT+) originates from the primary visual cortex (V1), which, in turn, receives spatial and temporal features of the perceived stimuli from the lateral geniculate nucleus (LGN). In addition, visual motion information reaches hMT+ directly from the thalamus, bypassing the V1, through a direct pathway. We aimed at elucidating whether this direct route between LGN and hMT+ represents a 'fast lane' reserved to high-speed motion, as proposed previously, or it is merely involved in processing motion information irrespective of speeds. We evaluated functional magnetic resonance imaging (fMRI) responses elicited by moving visual stimuli and applied connectivity analyses to investigate the effect of motion speed on the causal influence between LGN and hMT+, independent of V1, using the Conditional Granger Causality (CGC) in the presence of slow and fast visual stimuli. Our results showed that at least part of the visual motion information from LGN reaches hMT+, bypassing V1, in response to both slow and fast motion speeds of the perceived stimuli. We also investigated whether motion speeds have different effects on the connections between LGN and functional subdivisions within hMT+: direct connections between LGN and MT-proper carry mainly slow motion information, while connections between LGN and MST carry mainly fast motion information. The existence of a parallel pathway that connects the LGN directly to hMT+ in response to both slow and fast speeds may explain why MT and MST can still respond in the presence of V1 lesions. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  12. Rigid-body transformation of list-mode projection data for respiratory motion correction in cardiac PET.

    PubMed

    Livieratos, L; Stegger, L; Bloomfield, P M; Schafers, K; Bailey, D L; Camici, P G

    2005-07-21

    High-resolution cardiac PET imaging with emphasis on quantification would benefit from eliminating the problem of respiratory movement during data acquisition. Respiratory gating on the basis of list-mode data has been employed previously as one approach to reduce motion effects. However, it results in poor count statistics with degradation of image quality. This work reports on the implementation of a technique to correct for respiratory motion in the area of the heart at no extra cost for count statistics and with the potential to maintain ECG gating, based on rigid-body transformations on list-mode data event-by-event. A motion-corrected data set is obtained by assigning, after pre-correction for detector efficiency and photon attenuation, individual lines-of-response to new detector pairs with consideration of respiratory motion. Parameters of respiratory motion are obtained from a series of gated image sets by means of image registration. Respiration is recorded simultaneously with the list-mode data using an inductive respiration monitor with an elasticized belt at chest level. The accuracy of the technique was assessed with point-source data showing a good correlation between measured and true transformations. The technique was applied on phantom data with simulated respiratory motion, showing successful recovery of tracer distribution and contrast on the motion-corrected images, and on patient data with C15O and 18FDG. Quantitative assessment of preliminary C15O patient data showed improvement in the recovery coefficient at the centre of the left ventricle.

  13. Triboelectrification based motion sensor for human-machine interfacing.

    PubMed

    Yang, Weiqing; Chen, Jun; Wen, Xiaonan; Jing, Qingshen; Yang, Jin; Su, Yuanjie; Zhu, Guang; Wu, Wenzuo; Wang, Zhong Lin

    2014-05-28

    We present triboelectrification based, flexible, reusable, and skin-friendly dry biopotential electrode arrays as motion sensors for tracking muscle motion and human-machine interfacing (HMI). The independently addressable, self-powered sensor arrays have been utilized to record the electric output signals as a mapping figure to accurately identify the degrees of freedom as well as directions and magnitude of muscle motions. A fast Fourier transform (FFT) technique was employed to analyse the frequency spectra of the obtained electric signals and thus to determine the motion angular velocities. Moreover, the motion sensor arrays produced a short-circuit current density up to 10.71 mA/m(2), and an open-circuit voltage as high as 42.6 V with a remarkable signal-to-noise ratio up to 1000, which enables the devices as sensors to accurately record and transform the motions of the human joints, such as elbow, knee, heel, and even fingers, and thus renders it a superior and unique invention in the field of HMI.

  14. Binocular Interactions Underlying the Classic Optomotor Responses of Flying Flies

    PubMed Central

    Duistermars, Brian J.; Care, Rachel A.; Frye, Mark A.

    2012-01-01

    In response to imposed course deviations, the optomotor reactions of animals reduce motion blur and facilitate the maintenance of stable body posture. In flies, many anatomical and electrophysiological studies suggest that disparate motion cues stimulating the left and right eyes are not processed in isolation but rather are integrated in the brain to produce a cohesive panoramic percept. To investigate the strength of such inter-ocular interactions and their role in compensatory sensory–motor transformations, we utilize a virtual reality flight simulator to record wing and head optomotor reactions by tethered flying flies in response to imposed binocular rotation and monocular front-to-back and back-to-front motion. Within a narrow range of stimulus parameters that generates large contrast insensitive optomotor responses to binocular rotation, we find that responses to monocular front-to-back motion are larger than those to panoramic rotation, but are contrast sensitive. Conversely, responses to monocular back-to-front motion are slower than those to rotation and peak at the lowest tested contrast. Together our results suggest that optomotor responses to binocular rotation result from the influence of non-additive contralateral inhibitory as well as excitatory circuit interactions that serve to confer contrast insensitivity to flight behaviors influenced by rotatory optic flow. PMID:22375108

  15. Effect of Auditory Motion Velocity on Reaction Time and Cortical Processes

    ERIC Educational Resources Information Center

    Getzmann, Stephan

    2009-01-01

    The study investigated the processing of sound motion, employing a psychophysical motion discrimination task in combination with electroencephalography. Following stationary auditory stimulation from a central space position, the onset of left- and rightward motion elicited a specific cortical response that was lateralized to the hemisphere…

  16. Video compression of coronary angiograms based on discrete wavelet transform with block classification.

    PubMed

    Ho, B T; Tsai, M J; Wei, J; Ma, M; Saipetch, P

    1996-01-01

    A new method of video compression for angiographic images has been developed to achieve high compression ratio (~20:1) while eliminating block artifacts which leads to loss of diagnostic accuracy. This method adopts motion picture experts group's (MPEGs) motion compensated prediction to takes advantage of frame to frame correlation. However, in contrast to MPEG, the error images arising from mismatches in the motion estimation are encoded by discrete wavelet transform (DWT) rather than block discrete cosine transform (DCT). Furthermore, the authors developed a classification scheme which label each block in an image as intra, error, or background type and encode it accordingly. This hybrid coding can significantly improve the compression efficiency in certain eases. This method can be generalized for any dynamic image sequences applications sensitive to block artifacts.

  17. Lateral motion stability of high-temperature superconducting maglev systems derived from a nonlinear guidance force hysteretic model

    NASA Astrophysics Data System (ADS)

    Li, Haitao; Deng, Zigang; Jin, Li’an; Li, Jipeng; Li, Yanxing; Zheng, Jun

    2018-07-01

    High-temperature superconducting (HTS) maglev, owning to the capability of passive stabilization, is potentially promising for high-speed transportation. The guidance force of bulk HTS materials above a permanent magnetic guideway has a nonlinear response due to the hysteresis effect. As a kind of rail transit, when the vehicle runs along the track, the curve and other disturbances will cause vibrations to the vehicle system. These physical factors will pose dynamic loads on the components, reducing structural reliability as well as affecting the ride comfort. The lateral motion, as an important part of the vehicle system dynamics, needs to be studied in the pursuit of HTS maglev realization. In this paper, we first measured the guidance forces of HTS bulks under different motion conditions, and analyzed the relationship between the lateral displacement, the movement velocity and the guidance force. Then, a mathematical model was built based on these experimental data. The key feature of this mathematical model is that it can describe the hysteresis characteristic of the guidance force. Based on this model, we investigated the lateral motion stability of the HTS levitation system, and found three singular points, one stable focus point, and two unstable saddle points. Lastly, a phase portrait was proposed to indicate the safe working region of the HTS maglev vehicle where the vehicle can automatically return to its equilibrium position. These experimental and simulation results are important to clarify the lateral motion stability under external disturbance or shock, and provide a reference basis for the design of levitation systems.

  18. Seismicity of the Earth 1900–2010 Himalaya and vicinity

    USGS Publications Warehouse

    Turner, Bethan; Jenkins, Jennifer; Turner, Rebecca; Parker, Amy; Sinclair, Alison; Davies, Sian; Hayes, Gavin P.; Villaseñor, Antonio; Dart, Rirchard L.; Tarr, Arthur C.; Furlong, Kevin P.; Benz, Harley M.

    2013-01-01

    Seismicity in the Himalaya region predominantly results from the collision of the India and Eurasia continental plates, which are converging at a relative rate of 40–50 mm/yr. Northward underthrusting of India beneath Eurasia generates numerous earthquakes and consequently makes this area one of the most seismically hazardous regions on Earth. The surface expression of the plate boundary is marked by the foothills of the north-south trending Sulaiman Range in the west, the Indo-Burmese Arc in the east, and the east-west trending Himalaya Front in the north of India. Along the western margin of the India plate, relative motions between India and Eurasia are accommodated by strike-slip, reverse, and oblique-slip faulting resulting in the complex Sulaiman Range fold and thrust belt, and the major translational Chaman Fault in Afghanistan. Beneath the Pamir‒Hindu Kush Mountains of northern Afghanistan, earthquakes occur to depths as great as 200 km as a result of remnant lithospheric subduction. Further north again, the Tian Shan is a seismically active intra-continental mountain belt defined by a series of east-west trending thrust faults thought to be related to the broad footprint of the India-Eurasia collision. Tectonics in northern India are dominated by motion along the Main Frontal Thrust and associated thrust faults of the India-Eurasia plate boundary, which have resulted in a series of large and devastating earthquakes in (and prior to) the 20th century. The Tibetan Plateau to the north of the main plate boundary is a broad region of uplift associated with the India-Eurasia collision, and is cut by a series of generally east-west trending strike-slip faults. These include the Kunlun, Haiyuan, and the Altyn Tagh faults, all of which are left-lateral structures, and the Kara-Koram right-lateral fault. Throughout the plateau, thrust faults accommodate the north-south compressional component of crustal shortening associated with the ongoing collision of India and Eurasia, while strike-slip and normal faults accommodate east-west extension. To the east, The Longmen Shan thrust belt marks the eastern margin of the Tibetan Plateau separating the complex tectonics of the plateau region from the relatively undeformed Sichuan Basin. Further south, the left-lateral Xiangshuihe-Xiaojiiang, right-lateral Red River and right-lateral Sagaing strike-slip fault systems accommodate deformation along the eastern margin of the India plate. Deep earthquakes have also occurred in the Indo-Burmese Arc region, thought to be an expression of eastward-directed subduction of the India plate, though whether subduction is ongoing is still debated.

  19. When does tool use become distinctively human?: Hammering in young children

    PubMed Central

    Kahrs, Björn; Lockman, Jeffrey J.; Jung, Wendy

    2013-01-01

    This study examines the development of hammering within an ontogenetic and evolutionary framework using motion-capture technology. Twenty-four right-handed toddlers (19–35 months) wore reflective markers while hammering a peg into a peg-board. The study focuses on the motor characteristics that make tool use uniquely human: wrist involvement, lateralization, and handle use. Older children showed more distally controlled movements, characterized by relatively more reliance on the wrist, but only when hammering with their right hand. Greater age, use of the right hand, and more wrist involvement were associated with higher accuracy; handle use did not systematically change with age. Collectively, the results provide new insights about the emergence of hammering in young children and when hammering begins to manifest distinctively human characteristics. PMID:24128178

  20. Role of arm motion in feet-in-place balance recovery.

    PubMed

    Cheng, Kuangyou B; Wang, Kuan-Mao; Kuo, Shih-Yu

    2015-09-18

    Although considerable arm movements have been observed at loss of balance, research on standing balance focused primarily on the ankle and hip strategies. This study aimed to investigate the effect of arm motion on feet-in-place balance recovery. Participants stood on a single force plate and leaned forward with a straight body posture. They were then released from three forward-lean angles and regained balance without moving their forefeet under arm-swing (AS) and arm-constrained (AC) conditions. Higher success rates and shorter recovery times were found with arm motion under moderate balance perturbations. Recovery time was significantly correlated with peak linear momentum of the arms. Circumduction arm motion caused initial shoulder extension (backward arm movement) to generate reaction forces to pull the body forward, but later forward linear momentum of the arms helped move the whole body backward to avoid forward falling. However, greater lean angles increased difficulty in balance recovery, making the influences of the arms less significant. Since arm motions were observed in all participants with significantly enhanced performance under moderate balance perturbation, it was concluded that moving the arms should also be considered (together with the ankles and hips) as an effective strategy for balance recovery. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Triggered surface slips in the Salton Trough associated with the 1999 Hector Mine, California, earthquake

    USGS Publications Warehouse

    Rymer, M.J.; Boatwright, J.; Seekins, L.C.; Yule, J.D.; Liu, J.

    2002-01-01

    Surface fracturing occurred along the southern San Andreas, Superstition Hills, and Imperial faults in association with the 16 October 1999 (Mw 7.1) Hector Mine earthquake, making this at least the eighth time in the past 31 years that a regional earthquake has triggered slip along faults in the Salton Trough. Fractures associated with the event formed discontinuous breaks over a 39-km-long stretch of the San Andreas fault, from the Mecca Hills southeastward to Salt Creek and Durmid Hill, a distance from the epicenter of 107 to 139 km. Sense of slip was right lateral; only locally was there a minor (~1 mm) vertical component of slip. Dextral slip ranged from 1 to 13 mm. Maximum slip values in 1999 and earlier triggered slips are most common in the central Mecca Hills. Field evidence indicates a transient opening as the Hector Mine seismic waves passed the southern San Andreas fault. Comparison of nearby strong-motion records indicates several periods of relative opening with passage of the Hector Mine seismic wave-a similar process may have contributed to the field evidence of a transient opening. Slip on the Superstition Hills fault extended at least 9 km, at a distance from the Hector Mine epicenter of about 188 to 196 km. This length of slip is a minimum value, because we saw fresh surface breakage extending farther northwest than our measurement sites. Sense of slip was right lateral; locally there was a minor (~1 mm) vertical component of slip. Dextral slip ranged from 1 to 18 mm, with the largest amounts found distributed (or skewed) away from the Hector Mine earthquake source. Slip triggered on the Superstition Hills fault commonly is skewed away from the earthquake source, most notably in 1968, 1979, and 1999. Surface slip on the Imperial fault and within the Imperial Valley extended about 22 km, representing a distance from the Hector Mine epicenter of about 204 to 226 km. Sense of slip dominantly was right lateral; the right-lateral component of slip ranged from 1 to 19 mm. Locally there was a minor (~1-2 mm) vertical component of slip; larger proportions of vertical slip (up to 10 mm) occurred in Mesquite basin, where scarps indicate long-term oblique-slip motion for this part of the Imperial fault. Slip triggered on the Imperial fault appears randomly distributed relative to location along the fault and source direction. Multiple surface slips, both primary and triggered slip, indicate that slip repeatedly is small at locations of structural complexity.

  2. Conjectures and reputations: The composition and reception of James Bradley's paper on the aberration of light with some reference to a third unpublished version.

    PubMed

    Fisher, John

    2010-03-01

    In January 1729 a paper written by James Bradley was read at two meetings of the Royal Society. On a newly discovered motion of the fixed stars, later described as the theory of the aberration of light, it was to transform the science of astrometry. The paper appeared as a narrative of a programme of observation first begun at Kew and finalized at Wanstead, but it was, in reality, a careful reconstruction devised to enhance his reputation in response to a recognition that the programme was initially conducted in terms that were inimical to what he conceived to be his interest. The planned attempt to repeat Robert Hooke's celebrated experiment by James Pound, Samuel Molyneux and George Graham was set up at Molyneux's residence in Kew with James Bradley replacing Pound after his untimely and sudden demise. The unexpected and counterintuitive behaviour of the object star γ Draconis and the eradication of any suspicion of instrumental or systemic error led to the abandonment of the attempt to measure annual parallax and the initiation of new conjectures. An annual nutation was proposed but after the observation of a control star, 35 Camelopardalis, this conjecture was abandoned. Unknown to Bradley and Graham a premature approach was made by Molyneux to Newton claiming that the 'nutation' negated the whole of Newton's system. In the abandonment of the nutation yet another conjecture opposed to Newtonian theory was proposed and abandoned. Bradley determined to use his own instrument designed on different principles by Graham to observe the phenomenon in Wanstead. At Wanstead Bradley observed many stars to determine the parameters of the phenomenon. With the law of the motion described, Bradley proposed a hypothesis to explain it. Drawn from his earlier work on the ephemerides of Jupiter's satellites his hypothesis of the 'new-discovered motion' was quickly presented to the Royal Society as Bradley was working on a later and more definitive version of his paper. It is this later, third, unpublished version that is commonly referred to throughout this essay. It issued a challenge to 'anti-Copernicans' to offer an explanation of the observed phenomenon in geostatic terms. One such astronomer, Eustachio Manfredi, had examined the phenomenon of 'aberrations' in detail, the term being his. It was Bradley who first applied the term to the 'new-discovered motion' and within a short time 'aberration' was being applied by astronomers in the reduction of their observations. Annual aberration was widely accepted as evidence of the motion of the Earth. The paper enhanced Bradley's reputation and projected him into the forefront of European astronomers.

  3. Complete hazard ranking to analyze right-censored data: An ALS survival study.

    PubMed

    Huang, Zhengnan; Zhang, Hongjiu; Boss, Jonathan; Goutman, Stephen A; Mukherjee, Bhramar; Dinov, Ivo D; Guan, Yuanfang

    2017-12-01

    Survival analysis represents an important outcome measure in clinical research and clinical trials; further, survival ranking may offer additional advantages in clinical trials. In this study, we developed GuanRank, a non-parametric ranking-based technique to transform patients' survival data into a linear space of hazard ranks. The transformation enables the utilization of machine learning base-learners including Gaussian process regression, Lasso, and random forest on survival data. The method was submitted to the DREAM Amyotrophic Lateral Sclerosis (ALS) Stratification Challenge. Ranked first place, the model gave more accurate ranking predictions on the PRO-ACT ALS dataset in comparison to Cox proportional hazard model. By utilizing right-censored data in its training process, the method demonstrated its state-of-the-art predictive power in ALS survival ranking. Its feature selection identified multiple important factors, some of which conflicts with previous studies.

  4. Dynamical evolution of motion perception.

    PubMed

    Kanai, Ryota; Sheth, Bhavin R; Shimojo, Shinsuke

    2007-03-01

    Motion is defined as a sequence of positional changes over time. However, in perception, spatial position and motion dynamically interact with each other. This reciprocal interaction suggests that the perception of a moving object itself may dynamically evolve following the onset of motion. Here, we show evidence that the percept of a moving object systematically changes over time. In experiments, we introduced a transient gap in the motion sequence or a brief change in some feature (e.g., color or shape) of an otherwise smoothly moving target stimulus. Observers were highly sensitive to the gap or transient change if it occurred soon after motion onset (< or =200 ms), but significantly less so if it occurred later (> or = 300 ms). Our findings suggest that the moving stimulus is initially perceived as a time series of discrete potentially isolatable frames; later failures to perceive change suggests that over time, the stimulus begins to be perceived as a single, indivisible gestalt integrated over space as well as time, which could well be the signature of an emergent stable motion percept.

  5. Dancing your moves away: How memory retrieval shapes complex motor action.

    PubMed

    Tempel, Tobias; Loran, Igor; Frings, Christian

    2015-09-01

    Human memory is subject to continuous change. Besides the accumulation of contents as a consequence of encoding new information, the accessing of memory influences later accessibility. The authors investigated how retrieval-related memory-shaping processes affect intentionally acquired complex motion patterns. Dance figures served as the material to be learned. The authors found that selectively retrieving a subset of dance moves facilitated later recall of the retrieved dance figures, whereas figures that were related to these but that did not receive selective practice suffered from forgetting. These opposing effects were shown in experiments with different designs involving either the learning of only 1 set of body movements or 2 sets of movements categorized into 2 dances. A 3rd experiment showed that selective restudy also entailed a recall benefit for restudied dance figures but did not induce forgetting for related nonrestudied dance figures. The results suggest that motor programs representing the motion patterns in a format closely corresponding to parameters of movement execution were affected. The reported experiments demonstrate how retrieval determines motor memory plasticity and emphasize the importance of separating restudy and retrieval practice when teaching people new movements. (c) 2015 APA, all rights reserved).

  6. Motion processing with two eyes in three dimensions.

    PubMed

    Rokers, Bas; Czuba, Thaddeus B; Cormack, Lawrence K; Huk, Alexander C

    2011-02-11

    The movement of an object toward or away from the head is perhaps the most critical piece of information an organism can extract from its environment. Such 3D motion produces horizontally opposite motions on the two retinae. Little is known about how or where the visual system combines these two retinal motion signals, relative to the wealth of knowledge about the neural hierarchies involved in 2D motion processing and binocular vision. Canonical conceptions of primate visual processing assert that neurons early in the visual system combine monocular inputs into a single cyclopean stream (lacking eye-of-origin information) and extract 1D ("component") motions; later stages then extract 2D pattern motion from the cyclopean output of the earlier stage. Here, however, we show that 3D motion perception is in fact affected by the comparison of opposite 2D pattern motions between the two eyes. Three-dimensional motion sensitivity depends systematically on pattern motion direction when dichoptically viewing gratings and plaids-and a novel "dichoptic pseudoplaid" stimulus provides strong support for use of interocular pattern motion differences by precluding potential contributions from conventional disparity-based mechanisms. These results imply the existence of eye-of-origin information in later stages of motion processing and therefore motivate the incorporation of such eye-specific pattern-motion signals in models of motion processing and binocular integration.

  7. Active crustal deformation across the Basin and Range province, western United States, measured with the Global Positioning System, 1992-2002

    NASA Astrophysics Data System (ADS)

    Hammond, W.; Thatcher, W.

    2003-04-01

    The Basin and Range province of the western United States is a region of active tectonic extension and dextral shear, accommodating roughly 25% of the motion between non-deforming North America (NA) and the Pacific Plate (PA). The orientation of dextral shear is consistent with that of NA/PA relative plate motion, suggesting that this high elevation interior province is an important part of the plate boundary system. We present an analysis of Global Positioning System (GPS) data collected from 1992 to 2002. An 800 km long network of campaign-style geodetic benchmarks extends from east of the Wasatch fault zone (WFZ) in central Utah to west of the Genoa fault zone and Lake Tahoe in the northern Sierra Nevada mountains. From the new data collected in September 2002 and from data collected in 1992, 1996, and 1998, velocities have been estimated at 92 GPS sites, nearly double the number previously presented by Thatcher et al. [1999]. This new data reduces the uncertainty in site velocities and increases the spatial detail compared to earlier results, and now allows resolution of distinct domains in the tensor strain rate field. To process the data we use the GIPSY/OASIS and Quasi-Observation Combination Analysis (Dong et al. [1998]) software packages and incorporate data from continuously recording GPS stations in California and Nevada. The results show that most of the approximately 12 mm/yr of Sierra Nevada block motion is accommodated by right lateral shear and extensional deformation concentrated in the westernmost 200 km of Nevada, in the vicinity of the Walker Lane (WL). A lesser amount of velocity variation (roughly 3 mm/yr) is localized at the easternmost edge of the network, in the vicinity of the Wasatch Fault Zone (WFZ). Estimates of tensor strain rates show transitions in the style of deformation. Near the WFZ only uniaxial, roughly east-west extension can be resolved. Between longitude -112 and -117.5 no deformation is resolvable. Near longitude -118, in the vicinity of the historic ruptures of the Fairview Peak, Dixie Valley, and Rainbow Mountain earthquakes in the Central Nevada Seismic Zone, the deformation is mostly uniaxial extension oriented roughly NW/SE, in agreement with the roughly NE/SW strike of the normal faults. At the WL between longitude -118.5 and -119.5, deformation is best characterized by right lateral simple shear, which transitions westward to a blend of right lateral shear and uniaxial extension at the westernmost end of our network.

  8. The effect of arch height on kinematic coupling during walking.

    PubMed

    Wilken, Jason; Rao, Smita; Saltzman, Charles; Yack, H John

    2011-03-01

    The purpose of the current study was to assess kinematic coupling within the foot in individuals across a range of arch heights. Seventeen subjects participated in this study. Weight-bearing lateral radiographs were used to measure the arch height, defined as angle between the 1st metatarsal and the calcaneus. A kinematic model including the 1st metatarsal, lateral forefoot, calcaneus and tibia was used to assess foot kinematics during walking. Four coupling ratios were calculated: calcaneus frontal to forefoot transverse plane motion (Calcaneal EV/Forefoot AB), calcaneus frontal to transverse plane motion (Calcaneus EV/AB), forefoot sagittal to transverse plane motion (Forefoot DF/AB), and 1st metatarsal sagittal to transverse plane motion (1st Metatarsal DF/AB). Pearson product moment correlations were used to assess the relationship between arch height and coupling ratios. Mean (SD) radiographic arch angles of 129.8 (12.1) degrees with a range from 114 to 153 were noted, underscoring the range of arch heights in this cohort. Arch height explained approximately 3%, 38%, 12% and 1% of the variance in Calcaneal EV/Forefoot AB, Calcaneus EV/AB, Forefoot DF/AB and 1st Metatarsal DF/AB respectively. Calcaneal EV/Forefoot AB, Calcaneus EV/AB, Forefoot DF/AB and 1st Metatarsal DF/AB coupling ratios of 1.84 ± 0.80, 0.56 ± 0.35, 0.96 ± 0.27 and 0.43 ± 0.21 were noted, consistent with the twisted foot plate model, windlass mechanism and midtarsal locking mechanisms. Arch height had a small and modest relationship with kinematic coupling ratios during walking. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. A new method to approximate load-displacement relationships of spinal motion segments for patient-specific multi-body models of scoliotic spine.

    PubMed

    Jalalian, Athena; Tay, Francis E H; Arastehfar, Soheil; Liu, Gabriel

    2017-06-01

    Load-displacement relationships of spinal motion segments are crucial factors in characterizing the stiffness of scoliotic spine models to mimic the spine responses to loads. Although nonlinear approach to approximation of the relationships can be superior to linear ones, little mention has been made to deriving personalized nonlinear load-displacement relationships in previous studies. A method is developed for nonlinear approximation of load-displacement relationships of spinal motion segments to assist characterizing in vivo the stiffness of spine models. We propose approximation by tangent functions and focus on rotational displacements in lateral direction. The tangent functions are characterized using lateral bending test. A multi-body model was characterized to 18 patients and utilized to simulate four spine positions; right bending, left bending, neutral, and traction. The same was done using linear functions to assess the performance of the proposed tangent function in comparison with the linear function. Root-mean-square error (RMSE) of the displacements estimated by the tangent functions was 44 % smaller than the linear functions. This shows the ability of our tangent function in approximation of the relationships for a range of infinitesimal to large displacements involved in the spine movement to the four positions. In addition, the models based on the tangent functions yielded 67, 55, and 39 % smaller RMSEs of Ferguson angles, locations of vertebrae, and orientations of vertebrae, respectively, implying better estimates of spine responses to loads. Overall, it can be concluded that our method for approximating load-displacement relationships of spinal motion segments can offer good estimates of scoliotic spine stiffness.

  10. Interocular velocity difference contributes to stereomotion speed perception

    NASA Technical Reports Server (NTRS)

    Brooks, Kevin R.

    2002-01-01

    Two experiments are presented assessing the contributions of the rate of change of disparity (CD) and interocular velocity difference (IOVD) cues to stereomotion speed perception. Using a two-interval forced-choice paradigm, the perceived speed of directly approaching and receding stereomotion and of monocular lateral motion in random dot stereogram (RDS) targets was measured. Prior adaptation using dysjunctively moving random dot stimuli induced a velocity aftereffect (VAE). The degree of interocular correlation in the adapting images was manipulated to assess the effectiveness of each cue. While correlated adaptation involved a conventional RDS stimulus, containing both IOVD and CD cues, uncorrelated adaptation featured an independent dot array in each monocular half-image, and hence lacked a coherent disparity signal. Adaptation produced a larger VAE for stereomotion than for monocular lateral motion, implying effects at neural sites beyond that of binocular combination. For motion passing through the horopter, correlated and uncorrelated adaptation stimuli produced equivalent stereomotion VAEs. The possibility that these results were due to the adaptation of a CD mechanism through random matches in the uncorrelated stimulus was discounted in a control experiment. Here both simultaneous and sequential adaptation of left and right eyes produced similar stereomotion VAEs. Motion at uncrossed disparities was also affected by both correlated and uncorrelated adaptation stimuli, but showed a significantly greater VAE in response to the former. These results show that (1) there are two separate, specialised mechanisms for encoding stereomotion: one through IOVD, the other through CD; (2) the IOVD cue dominates the perception of stereomotion speed for stimuli passing through the horopter; and (3) at a disparity pedestal both the IOVD and the CD cues have a significant influence.

  11. The value of maximum jaw motion measurements for distinguishing between common temporomandibular disorder subgroups.

    PubMed

    Masumi, S; Kim, Y J; Clark, G T

    2002-05-01

    The purpose of this study was to determine if mandibular motion measurements could be used to distinguish between common temporomandibular disorder (TMD) subgroups that were established on the basis of only clinical signs and symptoms. Patients were 41 consecutive TMD clinic patients (31 women and 10 men). These patients were divided into 6 typical TMD subgroups. The subgroups were patients with (1) arthromyalgia, (2) arthromyalgia with disk condyle incoordination, (3) disk condyle incoordination only, (4) osteoarthritis, (5) suspected disk displacement without reduction, or (6) other diagnoses. There were no subjects in the other-diagnosis subgroup and only 1 subject with suspected disk displacement without reduction who was dropped without further consideration. The data for mean age showed that the osteoarthritis subgroup (n = 12) was statistically older (17 years) than the disk-condyle-incoordination-only subgroup (n = 11). The mean age of the other 2 groups, arthromyalgia (n = 11) and arthromyalgia with disk condyle incoordination (n = 6), was between the osteoarthritis and the disk-condyle-incoordination-only subgroups. For the 4 TMD subgroups whose data were analyzed, the mean differences between similar jaw opening measurements ranged from 6 to 8 mm with a standard deviation of approximately 8 to 10 mm. The mean left lateral motions were 0.5 to 1.3 mm larger than observed on the right. The widest mean jaw opening (56 mm) occurred in the disk-condyle-incoordination-only group. These differences were not found to be statistically significant. Analysis of opening, lateral and protrusive jaw motion data showed these measurements could not reliably differentiate between patients with osteoarthritis, arthromyalgia, arthromyalgia with disk condyle incoordination and disk condyle incoordination only.

  12. Tectonic implications of the 2017 Ayvacık (Çanakkale) earthquakes, Biga Peninsula, NW Turkey

    NASA Astrophysics Data System (ADS)

    Özden, Süha; Över, Semir; Poyraz, Selda Altuncu; Güneş, Yavuz; Pınar, Ali

    2018-04-01

    The west to southwestward motion of the Anatolian block results from the relative motions between the Eurasian, Arabian and African plates along the right-lateral North Anatolian Fault Zone in the north and left-lateral East Anatolian Fault Zone in the east. The Biga Peninsula is tectonically influenced by the Anatolian motion originating along the North Anatolian Fault Zone which splits into two main (northern and southern) branches in the east of Marmara region: the southern branch extends towards the Biga Peninsula which is characterized by strike-slip to oblique normal faulting stress regime in the central to northern part. The southernmost part of peninsula is characterized by a normal to oblique faulting stress regime. The analysis of both seismological and structural field data confirms the change of stress regime from strike-slip character in the center and north to normal faulting character in the south of peninsula where the earthquake swarm recently occurred. The earthquakes began on 14 January 2017 (Mw: 4.4) on Tuzla Fault and migrated southward along the Kocaköy and Babakale's stepped-normal faults of over three months. The inversion of focal mechanisms yields a normal faulting stress regime with an approximately N-S (N4°E) σ3 axis. The inversion of earthquakes occurring in central and northern Biga Peninsula and the north Aegean region gives a strike-slip stress regime with approximately WNW-ESE (N85°W) σ1 and NNE-SSW (N17°E) σ3 axis. The strike-slip stress regime is attributed to westward Anatolian motion, while the normal faulting stress regime is attributed to both the extrusion of Anatolian block and the slab-pull force of the subducting African plate along the Hellenic arc.

  13. Inter-fraction variations in respiratory motion models

    NASA Astrophysics Data System (ADS)

    McClelland, J. R.; Hughes, S.; Modat, M.; Qureshi, A.; Ahmad, S.; Landau, D. B.; Ourselin, S.; Hawkes, D. J.

    2011-01-01

    Respiratory motion can vary dramatically between the planning stage and the different fractions of radiotherapy treatment. Motion predictions used when constructing the radiotherapy plan may be unsuitable for later fractions of treatment. This paper presents a methodology for constructing patient-specific respiratory motion models and uses these models to evaluate and analyse the inter-fraction variations in the respiratory motion. The internal respiratory motion is determined from the deformable registration of Cine CT data and related to a respiratory surrogate signal derived from 3D skin surface data. Three different models for relating the internal motion to the surrogate signal have been investigated in this work. Data were acquired from six lung cancer patients. Two full datasets were acquired for each patient, one before the course of radiotherapy treatment and one at the end (approximately 6 weeks later). Separate models were built for each dataset. All models could accurately predict the respiratory motion in the same dataset, but had large errors when predicting the motion in the other dataset. Analysis of the inter-fraction variations revealed that most variations were spatially varying base-line shifts, but changes to the anatomy and the motion trajectories were also observed.

  14. Mechanical properties of conjugate faults in the Makran accretionary prism estimated from InSAR observations of coseismic deformation due to the 2013 Baluchistan (Mw 7.7) earthquake

    NASA Astrophysics Data System (ADS)

    Dutta, R.; Harrington, J.; Wang, T.; Feng, G.; Vasyura-Bathke, H.; Jonsson, S.

    2017-12-01

    Interferometric Synthetic Aperture Radar (InSAR) measurements allow us to study various mechanical and rheological properties around faults. For example, strain localizations along faults induced by nearby earthquakes observed by InSAR have been explained by the elastic response of compliant fault zones (CFZ) where the elastic moduli is reduced with respect to that of the surrounding rock. We observed similar strain localizations (up to 1-3 cm displacements in the line-of-sight direction of InSAR) along several conjugate faults near the rupture of the 2013 Mw7.7 Baluchistan (Pakistan) earthquake in the accretionary prism of the Makran subduction zone. These conjugate compliant faults, which have strikes of N30°E and N45°W, are located 15-30 km from the mainshock fault rupture in a N-S compressional stress regime. The long-term geologic slip direction of these faults is left-lateral for the N30°E striking faults and right-lateral for the N45°W striking faults. The 2013 Baluchistan earthquake caused WSW-ENE extensional coseismic stress changes across the conjugate fault system and the observed strain localizations shows opposite sense of motion to that of the geologic long-term slip. We use 3D Finite Element modeling (FEM) to study the effects extensional coseismic stresses have on the conjugate CFZs that is otherwise loaded in a compressional regional stress. We use coseismic static displacements due to the earthquake along the FEM domain boundaries to simulate the extensional coseismic stress change acting across the fault system. Around 0.5-2 km wide CFZs with reduction in shear modulus by a factor of 3 to 4 can explain the observed InSAR strain localizations and the opposite sense of motion. The InSAR measurements were also used to constrain the ranges of the length, width and rigidity variations of the CFZs. The FEM solution shows that the N45°W striking faults localize mostly extensional strain and a small amount of left-lateral shear (opposite sense to the geologic motion), whereas the N30°E striking faults localize mostly right-lateral shear (opposite sense) and a small amount of extensional strain. Similar results were found for CFZs near the 1992 Landers and the 1999 Hector Mine earthquakes in California, although here the strain localizations occur on a more complex conjugate sets of faults.

  15. The effect of lateral controls in producing motion of an airplane as computed from wind-tunnel data

    NASA Technical Reports Server (NTRS)

    Weick, F. E.; Jones, R. T.

    1976-01-01

    An analytical study of the lateral controllability of an airplane has been made in which both the static rolling and yawing moments supplied by the controls and the reactions due to the inherent stability of the airplane have been taken into account. A hypothetical average airplane, embodying the essential characteristics of both the wind tunnel models and the full size test airplanes, was assumed for the study. Computations made of forced rolling and yawing motions of an F-22 airplane caused by a sudden deflection of the ailerons were found to agree well with actual measurements of these motions. The conditions following instantaneous full deflections of the lateral control have been studied, and some attention has been devoted to the controlling of complete turn maneuvers.

  16. Hamiltonian theory of guiding-center motion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Littlejohn, R.G.

    1980-05-01

    A Hamiltonian treatment of the guiding center problem is given which employs noncanonical coordinates in phase space. Separation of the unperturbed system from the perturbation is achieved by using a coordinate transformation suggested by a theorem of Darboux. As a model to illustrate the method, motion in the magnetic field B=B(x,y)z is studied. Lie transforms are used to carry out the perturbation expansion.

  17. M.I.T./Canadian vestibular experiments on the Spacelab-1 mission: 6. Vestibular reactions to lateral acceleration following ten days of weightlessness

    NASA Technical Reports Server (NTRS)

    Arrott, A. P.; Young, L. R.

    1986-01-01

    Tests of otolith function were performed pre-flight and post-flight on the science crew of the first Spacelab Mission with a rail-mounted linear acceleration sled. Four tests were performed using horizontal lateral (y-axis) acceleration: perception of linear motion, a closed loop nulling task, dynamic ocular torsion, and lateral eye deviations. The motion perception test measured the time to detect the onset and direction of near threshold accelerations. Post-flight measures of threshold and velocity constant obtained during the days immediately following the mission showed no consistent pattern of change among the four crewmen compared to their pre-flight baseline other than an increased variability of response. In the closed loop nulling task, crewmen controlled the motion of the sled and attempted to null a computer-generated random disturbance motion. When performed in the light, no difference in ability was noted between pre-flight and post-flight. In the dark, however, two of the four crewmen exhibited somewhat enhanced performance post-flight. Dynamic ocular torsion was measured in response to sinusoidal lateral acceleration which produces a gravitionertial stimulus equivalent to lateral head tilt without rotational movement of the head. Results available for two crewmen suggest a decreased amplitude of sinusoidal ocular torsion when measured on the day of landing (R+0) and an increasing amplitude when measured during the week following the mission.

  18. New human-centered linear and nonlinear motion cueing algorithms for control of simulator motion systems

    NASA Astrophysics Data System (ADS)

    Telban, Robert J.

    While the performance of flight simulator motion system hardware has advanced substantially, the development of the motion cueing algorithm, the software that transforms simulated aircraft dynamics into realizable motion commands, has not kept pace. To address this, new human-centered motion cueing algorithms were developed. A revised "optimal algorithm" uses time-invariant filters developed by optimal control, incorporating human vestibular system models. The "nonlinear algorithm" is a novel approach that is also formulated by optimal control, but can also be updated in real time. It incorporates a new integrated visual-vestibular perception model that includes both visual and vestibular sensation and the interaction between the stimuli. A time-varying control law requires the matrix Riccati equation to be solved in real time by a neurocomputing approach. Preliminary pilot testing resulted in the optimal algorithm incorporating a new otolith model, producing improved motion cues. The nonlinear algorithm vertical mode produced a motion cue with a time-varying washout, sustaining small cues for longer durations and washing out large cues more quickly compared to the optimal algorithm. The inclusion of the integrated perception model improved the responses to longitudinal and lateral cues. False cues observed with the NASA adaptive algorithm were absent. As a result of unsatisfactory sensation, an augmented turbulence cue was added to the vertical mode for both the optimal and nonlinear algorithms. The relative effectiveness of the algorithms, in simulating aircraft maneuvers, was assessed with an eleven-subject piloted performance test conducted on the NASA Langley Visual Motion Simulator (VMS). Two methods, the quasi-objective NASA Task Load Index (TLX), and power spectral density analysis of pilot control, were used to assess pilot workload. TLX analysis reveals, in most cases, less workload and variation among pilots with the nonlinear algorithm. Control input analysis shows pilot-induced oscillations on a straight-in approach are less prevalent compared to the optimal algorithm. The augmented turbulence cues increased workload on an offset approach that the pilots deemed more realistic compared to the NASA adaptive algorithm. The takeoff with engine failure showed the least roll activity for the nonlinear algorithm, with the least rudder pedal activity for the optimal algorithm.

  19. Source complexity of the 1987 Whittier Narrows, California, earthquake from the inversion of strong motion records

    USGS Publications Warehouse

    Hartzell, S.; Iida, M.

    1990-01-01

    Strong motion records for the Whittier Narrows earthquake are inverted to obtain the history of slip. Both constant rupture velocity models and variable rupture velocity models are considered. The results show a complex rupture process within a relatively small source volume, with at least four separate concentrations of slip. Two sources are associated with the hypocenter, the larger having a slip of 55-90 cm, depending on the rupture model. These sources have a radius of approximately 2-3 km and are ringed by a region of reduced slip. The aftershocks fall within this low slip annulus. Other sources with slips from 40 to 70 cm each ring the central source region and the aftershock pattern. All the sources are predominantly thrust, although some minor right-lateral strike-slip motion is seen. The overall dimensions of the Whittier earthquake from the strong motion inversions is 10 km long (along the strike) and 6 km wide (down the dip). The preferred dip is 30?? and the preferred average rupture velocity is 2.5 km/s. Moment estimates range from 7.4 to 10.0 ?? 1024 dyn cm, depending on the rupture model. -Authors

  20. Changes in neck pain and active range of motion after a single thoracic spine manipulation in subjects presenting with mechanical neck pain: a case series.

    PubMed

    Fernández-de-las-Peñas, César; Palomeque-del-Cerro, Luis; Rodríguez-Blanco, Cleofás; Gómez-Conesa, Antonia; Miangolarra-Page, Juan C

    2007-05-01

    Our aim was to report changes in neck pain at rest, active cervical range of motion, and neck pain at end-range of cervical motion after a single thoracic spine manipulation in a case series of patients with mechanical neck pain. Seven patients with mechanical neck pain (2 men, 5 women), 20 to 33 years old, were included. All patients received a single thoracic manipulation by an experienced manipulative therapist. The outcome measures of these cases series were neck pain at rest, as measured by a numerical pain rating scale; active cervical range of motion; and neck pain at the end of each neck motion (eg, flexion or extension). These outcomes were assessed pre treatment, 5 minutes post manipulation, and 48 hours after the intervention. A repeated-measures analysis was made with parametric tests. Within-group effect sizes were calculated using Cohen d coefficients. A significant (P < .001) decrease, with large within-group effect sizes (d > 1), in neck pain at rest were found after the thoracic spinal manipulation. A trend toward an increase in all cervical motions (flexion, extension, right or left lateral flexion, and right or left rotation) and a trend toward a decrease in neck pain at the end of each cervical motion were also found, although differences did not reach the significance (P > .05). Nevertheless, medium to large within-group effect sizes (0.5 < d < 1) were found between preintervention data and both postintervention assessments in both active range of motion and neck pain at the end of each neck motion. The present results demonstrated a clinically significant reduction in pain at rest in subjects with mechanical neck pain immediately and 48 hours following a thoracic manipulation. Although increases in all tested ranges of motion were obtained, none of them reached statistical significance at either posttreatment point. The same was found for pain at the end of range of motion for all tested ranges, with the exception of pain at the end of forward flexion at 48 hours. More than one mechanism likely explains the effects of thoracic spinal manipulation. Future controlled studies comparing spinal manipulation vs spinal mobilization of the thoracic spine are required.

  1. Variable mass pendulum behaviour processed by wavelet analysis

    NASA Astrophysics Data System (ADS)

    Caccamo, M. T.; Magazù, S.

    2017-01-01

    The present work highlights how, in order to characterize the motion of a variable mass pendulum, wavelet analysis can be an effective tool in furnishing information on the time evolution of the oscillation spectral content. In particular, the wavelet transform is applied to process the motion of a hung funnel that loses fine sand at an exponential rate; it is shown how, in contrast to the Fourier transform which furnishes only an average frequency value for the motion, the wavelet approach makes it possible to perform a joint time-frequency analysis. The work is addressed at undergraduate and graduate students.

  2. [Research on the range of motion measurement system for spine based on LabVIEW image processing technology].

    PubMed

    Li, Xiaofang; Deng, Linhong; Lu, Hu; He, Bin

    2014-08-01

    A measurement system based on the image processing technology and developed by LabVIEW was designed to quickly obtain the range of motion (ROM) of spine. NI-Vision module was used to pre-process the original images and calculate the angles of marked needles in order to get ROM data. Six human cadaveric thoracic spine segments T7-T10 were selected to carry out 6 kinds of loads, including left/right lateral bending, flexion, extension, cis/counterclockwise torsion. The system was used to measure the ROM of segment T8-T9 under the loads from 1 Nm to 5 Nm. The experimental results showed that the system is able to measure the ROM of the spine accurately and quickly, which provides a simple and reliable tool for spine biomechanics investigators.

  3. Eye and head motion during head turns in spaceflight

    NASA Technical Reports Server (NTRS)

    Thornton, William E.; Uri, John J.; Moore, Thomas P.; Pool, Sam L.

    1988-01-01

    Eye-head motion was studied pre-, in- and postflight during single voluntary head turns. A transient increase in vestibulo-ocular reflex (VOR) gain occurred early in the flight, but later trended toward normal. This increased gain was produced by a relative increase in eye counterrotation velocity. Asymmetries in gain with right and left turns also occurred, caused by asymmetries in eye counterrotation velocities. These findings were remarkably similar to those from Soviet primate studies using gaze fixation targets, except the human study trended more rapidly toward normal. These findings differ substantially from those measuring VOR gain by head oscillation, in which no significant changes were found inflight. No visual disturbances were noted in either test condition or in normal activities. These head turn studies are the only ones to date documenting any functional change in VOR in weightlessness.

  4. Examination of and intervention for a patient with chronic lateral elbow pain with signs of nerve entrapment.

    PubMed

    Ekstrom, Richard A; Holden, Kari

    2002-11-01

    Lateral elbow pain has several causes, which can make diagnosis difficult. The purpose of this case report is to describe the examination of and the intervention for a patient with chronic lateral elbow pain who had signs of nerve entrapment. The patient was a 43-year-old woman who had right lateral elbow pain for about 4 months, which she attributed to extensive keyboard work on a computer. She had a reduction in joint passive range of motion during "neural tension testing," an examination procedure to detect nerve entrapment. This sign, in combination with other findings, suggested that the patient had a mild entrapment of the deep radial nerve (radial tunnel syndrome). The patient was treated 14 times over a 10-week period with "neural mobilization techniques," which are designed to free nerves for movement; ultrasound; strengthening exercises; and stretching. The patient had minimal symptoms at discharge, was pain-free, and had resumed all activities at a 4-month follow-up visit. Neural tension testing may be a useful examination procedure and mobilization may be useful for intervention for patients who have lateral elbow pain.

  5. Customizing Extensor Reconstruction in Vascularized Toe Joint Transfers to Finger Proximal Interphalangeal Joints: A Strategic Approach for Correcting Extensor Lag.

    PubMed

    Loh, Charles Yuen Yung; Hsu, Chung-Chen; Lin, Cheng-Hung; Chen, Shih-Heng; Lien, Shwu-Huei; Lin, Chih-Hung; Wei, Fu-Chan; Lin, Yu-Te

    2017-04-01

    Vascularized toe proximal interphalangeal joint transfer allows the restoration of damaged joints. However, extensor lag and poor arc of motion have been reported. The authors present their outcomes of treatment according to a novel reconstructive algorithm that addresses extensor lag and allows for consistent results postoperatively. Vascularized toe joint transfers were performed in a consecutive series of 26 digits in 25 patients. The average age was 30.5 years, with 14 right and 12 left hands. Reconstructed digits included eight index, 10 middle, and eight ring fingers. Simultaneous extensor reconstructions were performed and eight were centralization of lateral bands, five were direct extensor digitorum longus-to-extensor digitorum communis repairs, and 13 were central slip reconstructions. The average length of follow-up was 16.7 months. The average extension lag was 17.9 degrees. The arc of motion was 57.7 degrees (81.7 percent functional use of pretransfer toe proximal interphalangeal joint arc of motion). There was no significant difference in the reconstructed proximal interphalangeal joint arc of motion for the handedness (p = 0.23), recipient digits (p = 0.37), or surgical experience in vascularized toe joint transfer (p = 0.25). The outcomes of different techniques of extensor mechanism reconstruction were similar in terms of extensor lag, arc of motion, and reconstructed finger arc of motion compared with the pretransfer toe proximal interphalangeal joint arc of motion. With this treatment algorithm, consistent outcomes can be produced with minimal extensor lag and maximum use of potential toe proximal interphalangeal joint arc of motion. Therapeutic, IV.

  6. Translational Vestibulo-Ocular Reflex and Motion Perception During Interaural Linear Acceleration: Comparison of Different Motion Paradigms

    NASA Technical Reports Server (NTRS)

    Beaton, K. H.; Holly, J. E.; Clement, G. R.; Wood, S. J.

    2011-01-01

    The neural mechanisms to resolve ambiguous tilt-translation motion have been hypothesized to be different for motion perception and eye movements. Previous studies have demonstrated differences in ocular and perceptual responses using a variety of motion paradigms, including Off-Vertical Axis Rotation (OVAR), Variable Radius Centrifugation (VRC), translation along a linear track, and tilt about an Earth-horizontal axis. While the linear acceleration across these motion paradigms is presumably equivalent, there are important differences in semicircular canal cues. The purpose of this study was to compare translation motion perception and horizontal slow phase velocity to quantify consistencies, or lack thereof, across four different motion paradigms. Twelve healthy subjects were exposed to sinusoidal interaural linear acceleration between 0.01 and 0.6 Hz at 1.7 m/s/s (equivalent to 10 tilt) using OVAR, VRC, roll tilt, and lateral translation. During each trial, subjects verbally reported the amount of perceived peak-to-peak lateral translation and indicated the direction of motion with a joystick. Binocular eye movements were recorded using video-oculography. In general, the gain of translation perception (ratio of reported linear displacement to equivalent linear stimulus displacement) increased with stimulus frequency, while the phase did not significantly vary. However, translation perception was more pronounced during both VRC and lateral translation involving actual translation, whereas perceptions were less consistent and more variable during OVAR and roll tilt which did not involve actual translation. For each motion paradigm, horizontal eye movements were negligible at low frequencies and showed phase lead relative to the linear stimulus. At higher frequencies, the gain of the eye movements increased and became more inphase with the acceleration stimulus. While these results are consistent with the hypothesis that the neural computational strategies for motion perception and eye movements differ, they also indicate that the specific motion platform employed can have a significant effect on both the amplitude and phase of each.

  7. Lateral Migration and Rotational Motion of Elliptic Particles in Planar Poiseuille Flow

    NASA Technical Reports Server (NTRS)

    Qi, Dewei; Luo, Li-Shi; Aravamuthan, Raja; Strieder, William; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    Simulations of elliptic particulate suspensions in the planar Poiseuille flow are performed by using the lattice Boltzmann equation. Effects of the multi-particle on the lateral migration and rotational motion of both neutrally and non-neutrally buoyant elliptic particles are investigated. Low and intermediate total particle volume fraction f(sub a) = 13%, 15%, and 40% are considered in this work.

  8. Children's Understanding of Large-Scale Mapping Tasks: An Analysis of Talk, Drawings, and Gesture

    ERIC Educational Resources Information Center

    Kotsopoulos, Donna; Cordy, Michelle; Langemeyer, Melanie

    2015-01-01

    This research examined how children represent motion in large-scale mapping tasks that we referred to as "motion maps". The underlying mathematical content was transformational geometry. In total, 19 children, 8- to 10-year-old, created motion maps and captured their motion maps with accompanying verbal description digitally. Analysis of…

  9. Sociability modifies dogs' sensitivity to biological motion of different social relevance.

    PubMed

    Ishikawa, Yuko; Mills, Daniel; Willmott, Alexander; Mullineaux, David; Guo, Kun

    2018-03-01

    Preferential attention to living creatures is believed to be an intrinsic capacity of the visual system of several species, with perception of biological motion often studied and, in humans, it correlates with social cognitive performance. Although domestic dogs are exceptionally attentive to human social cues, it is unknown whether their sociability is associated with sensitivity to conspecific and heterospecific biological motion cues of different social relevance. We recorded video clips of point-light displays depicting a human or dog walking in either frontal or lateral view. In a preferential looking paradigm, dogs spontaneously viewed 16 paired point-light displays showing combinations of normal/inverted (control condition), human/dog and frontal/lateral views. Overall, dogs looked significantly longer at frontal human point-light display versus the inverted control, probably due to its clearer social/biological relevance. Dogs' sociability, assessed through owner-completed questionnaires, further revealed that low-sociability dogs preferred the lateral point-light display view, whereas high-sociability dogs preferred the frontal view. Clearly, dogs can recognize biological motion, but their preference is influenced by their sociability and the stimulus salience, implying biological motion perception may reflect aspects of dogs' social cognition.

  10. Three-dimensional ultrasound strain imaging of skeletal muscles

    NASA Astrophysics Data System (ADS)

    Gijsbertse, K.; Sprengers, A. M. J.; Nillesen, M. M.; Hansen, H. H. G.; Lopata, R. G. P.; Verdonschot, N.; de Korte, C. L.

    2017-01-01

    In this study, a multi-dimensional strain estimation method is presented to assess local relative deformation in three orthogonal directions in 3D space of skeletal muscles during voluntary contractions. A rigid translation and compressive deformation of a block phantom, that mimics muscle contraction, is used as experimental validation of the 3D technique and to compare its performance with respect to a 2D based technique. Axial, lateral and (in case of 3D) elevational displacements are estimated using a cross-correlation based displacement estimation algorithm. After transformation of the displacements to a Cartesian coordinate system, strain is derived using a least-squares strain estimator. The performance of both methods is compared by calculating the root-mean-squared error of the estimated displacements with the calculated theoretical displacements of the phantom experiments. We observe that the 3D technique delivers more accurate displacement estimations compared to the 2D technique, especially in the translation experiment where out-of-plane motion hampers the 2D technique. In vivo application of the 3D technique in the musculus vastus intermedius shows good resemblance between measured strain and the force pattern. Similarity of the strain curves of repetitive measurements indicates the reproducibility of voluntary contractions. These results indicate that 3D ultrasound is a valuable imaging tool to quantify complex tissue motion, especially when there is motion in three directions, which results in out-of-plane errors for 2D techniques.

  11. Automated multiple target detection and tracking in UAV videos

    NASA Astrophysics Data System (ADS)

    Mao, Hongwei; Yang, Chenhui; Abousleman, Glen P.; Si, Jennie

    2010-04-01

    In this paper, a novel system is presented to detect and track multiple targets in Unmanned Air Vehicles (UAV) video sequences. Since the output of the system is based on target motion, we first segment foreground moving areas from the background in each video frame using background subtraction. To stabilize the video, a multi-point-descriptor-based image registration method is performed where a projective model is employed to describe the global transformation between frames. For each detected foreground blob, an object model is used to describe its appearance and motion information. Rather than immediately classifying the detected objects as targets, we track them for a certain period of time and only those with qualified motion patterns are labeled as targets. In the subsequent tracking process, a Kalman filter is assigned to each tracked target to dynamically estimate its position in each frame. Blobs detected at a later time are used as observations to update the state of the tracked targets to which they are associated. The proposed overlap-rate-based data association method considers the splitting and merging of the observations, and therefore is able to maintain tracks more consistently. Experimental results demonstrate that the system performs well on real-world UAV video sequences. Moreover, careful consideration given to each component in the system has made the proposed system feasible for real-time applications.

  12. Dislocation of the proximal tibiofibular joint, do not miss it

    PubMed Central

    van Wulfften Palthe, Alexander FY; Musters, Linda; Sonnega, Remko JA; van der Sluijs, Hans A

    2015-01-01

    We present a case of a 45-year-old woman with a right proximal tibiofibular dislocation she sustained after a fall during roller skating. Anteroposterior and lateral radiographs confirmed the diagnosis; there were no other injuries. The dislocation was reduced by direct manipulation after intra-articular infiltration, in our emergency department. The patient was treated with a long, non-weight bearing leg cast for 1 week. After 4 weeks, she had no pain and a full range of motion of the knee. PMID:26628303

  13. Cloud motion in relation to the ambient wind field

    NASA Technical Reports Server (NTRS)

    Fuelberg, H. E.; Scoggins, J. R.

    1975-01-01

    Trajectories of convective clouds were computed from a mathematical model and compared with trajectories observed by radar. The ambient wind field was determined from the AVE IIP data. The model includes gradient, coriolis, drag, lift, and lateral forces. The results show that rotational effects may account for large differences between the computed and observed trajectories and that convective clouds may move 10 to 20 degrees to the right or left of the average wind vector and at speeds 5 to 10 m/sec faster or slower than the average ambient wind speed.

  14. Spin Stabilized Impulsively Controlled Missile (SSICM)

    NASA Astrophysics Data System (ADS)

    Crawford, J. I.; Howell, W. M.

    1985-12-01

    This patent is for the Spin Stabilized Impulsively Controlled Missile (SSICM). SSICM is a missile configuration which employs spin stabilization, nutational motion, and impulsive thrusting, and a body mounted passive or semiactive sensor to achieve very small miss distances against a high speed moving target. SSICM does not contain an autopilot, control surfaces, a control actuation system, nor sensor stabilization gimbals. SSICM spins at a rate sufficient to provide frequency separation between body motions and inertial target motion. Its impulsive thrusters provide near instantaneous changes in lateral velocity, whereas conventional missiles require a significant time delay to achieve lateral acceleration.

  15. Modeling of Driver Steering Operations in Lateral Wind Disturbances toward Driver Assistance System

    NASA Astrophysics Data System (ADS)

    Kurata, Yoshinori; Wada, Takahiro; Kamiji, Norimasa; Doi, Shun'ichi

    Disturbances decrease vehicle stability and increase driver's mental and physical workload. Especially unexpected disturbances such as lateral winds have severe effect on vehicle stability and driver's workload. This study aims at building a driver model of steering operations in lateral wind toward developing effective driver assistance system. First, the relationship between the driver's lateral motion and its reactive quick steering behavior is investigated using driving simulator with lateral 1dof motion. In the experiments, four different wind patterns are displayed by the simulator. As the results, strong correlation was found between the driver's head lateral jerk by the lateral disturbance and the angular acceleration of the steering wheel. Then, we build a mathematical model of driver's steering model from lateral disturbance input to steering torque of the reactive quick feed-forward steering based on the experimental results. Finally, validity of the proposed model is shown by comparing the steering torque of experimental results and that of simulation results.

  16. Summary of methods for calculating dynamic lateral stability and response and for estimating aerodynamic stability derivatives

    NASA Technical Reports Server (NTRS)

    Campbell, John P; Mckinney, Marion O

    1952-01-01

    A summary of methods for making dynamic lateral stability and response calculations and for estimating the aerodynamic stability derivatives required for use in these calculations is presented. The processes of performing calculations of the time histories of lateral motions, of the period and damping of these motions, and of the lateral stability boundaries are presented as a series of simple straightforward steps. Existing methods for estimating the stability derivatives are summarized and, in some cases, simple new empirical formulas are presented. Detailed estimation methods are presented for low-subsonic-speed conditions but only a brief discussion and a list of references are given for transonic and supersonic speed conditions.

  17. Use of a Multivector Mandibular Distractor for Treatment of Pediatric Proximal Interphalangeal Joint Pilon Fractures: A Case-Based Review.

    PubMed

    Pedreira, Rachel; Cho, Brian H; Geer, Angela; DeJesus, Ramon A

    2018-04-01

    The difficulties in surgical treatment of pilon fractures of the finger include fragment reconstitution and posthealing stiffness. In adults, external fixation with traction and early active range of motion (AROM)/passive range of motion (PROM) during healing is considered necessary for avoiding joint stiffness and attaining realignment. The authors present a unique approach to pediatric pilon fractures that uses open reduction and multivector external fixation with delayed AROM/PROM. Initial immobilization and significant traction allowed for joint realignment and prevented noncompliance with staged distraction. The authors believe this immobilization leads to a superior outcome because, unlike adults, children tend to avoid stiffness and a larger distraction force allowed for sufficient joint realignment to regain range of motion (ROM). A right-handed 13-year-old boy sustained a right ring finger fracture and presented 12 days later. Radiographs revealed a comminuted Salter-Harris 4 fracture of the middle phalanx. The patient underwent open reduction and placement of multivector external fixation using a pediatric mandibular distractor/fixator. Significant traction was applied to distract the finger to length. Hardware was removed 6 weeks postoperatively and AROM was initiated after splinting. The patient started PROM 8 weeks postoperatively. Strengthening was initiated 2 weeks later. ROM improved and rehabilitation was continued. The patient exhibited nearly equal grip strength 12 weeks postoperatively. At 14 months follow-up, radiographs showed complete healing and joint realignment. There was no deformity or pain and finger length was restored. Management of pediatric pilon fractures is rarely described and presents unique considerations. Early-stage traction and immobilization using a multivector mandibular fixator/distractor is suitable in a child because noncompliance is avoided and there is a decreased risk for stiffness. Combining early immobilization with subsequent-staged AROM, PROM, and strengthening resulted in no loss of ROM and maintained articular symmetry.

  18. A simple method for calculating the characteristics of the Dutch roll motion of an airplane

    NASA Technical Reports Server (NTRS)

    Klawans, Bernard B

    1956-01-01

    A simple method for calculating the characteristics of the Dutch roll motion of an airplane is obtained by arranging the lateral equations of motion in such form and order that an iterative process is quickly convergent.

  19. The rotational motion of an earth orbiting gyroscope according to the Einstein theory of general relativity

    NASA Technical Reports Server (NTRS)

    Hoots, F. R.; Fitzpatrick, P. M.

    1979-01-01

    The classical Poisson equations of rotational motion are used to study the attitude motions of an earth orbiting, rapidly spinning gyroscope perturbed by the effects of general relativity (Einstein theory). The center of mass of the gyroscope is assumed to move about a rotating oblate earth in an evolving elliptic orbit which includes all first-order oblateness effects produced by the earth. A method of averaging is used to obtain a transformation of variables, for the nonresonance case, which significantly simplifies the Poisson differential equations of motion of the gyroscope. Long-term solutions are obtained by an exact analytical integration of the simplified transformed equations. These solutions may be used to predict both the orientation of the gyroscope and the motion of its rotational angular momentum vector as viewed from its center of mass. The results are valid for all eccentricities and all inclinations not near the critical inclination.

  20. The Tympanic Membrane Motion in Forward and Reverse Middle-Ear Sound Transmission

    NASA Astrophysics Data System (ADS)

    Cheng, Jeffrey Tao; Harrington, Ellery; Horwitz, Rachelle; Furlong, Cosme; Rosowski, John J.

    2011-11-01

    Sound-induced displacement of the tympanic membrane (TM) is the first stage in the forward transformation of environmental sound to sound within the inner ear, while displacement of the TM induced by mechanical motions of the ossicular chain is the last stage in the reverse transformation of sound generated within the inner ear to clinically valuable otoacoustic emissions (OAEs). In this study, we use stroboscopic holographic interferometry to study motions of the human cadaveric TM evoked by both forward and reverse stimuli. During forward acoustic stimulation, pure tones from 500 to 10000 Hz are used to stimulate the TM, while reverse stimulation is produced by direct mechanical stimulation of the ossicular chain. The TM surface motions in response to both forward and reverse stimuli show differences and similarities, including the modal motion patterns at specific frequencies as well as the presence and directions of traveling waves on the TM surface.

  1. A new method for computing the gyrocenter orbit in the tokamak configuration

    NASA Astrophysics Data System (ADS)

    Xu, Yingfeng

    2013-10-01

    Gyrokinetic theory is an important tool for studying the long-time behavior of magnetized plasmas in Tokamaks. The gyrocenter trajectory determined by the gyrocenter equations of motion can be computed by using a special kind of the Lie-transform perturbation method. The corresponding Lie-transform called I-transform makes that the transformed equations of motion have the same form as the unperturbed ones. The gyrocenter trajectory in short time is divided into two parts. One is along the unperturbed orbit. The other one, which is related to perturbation, is determined by the I-transform generating vector. The numerical gyrocenter orbit code based on this new method has been developed in the tokamak configuration and benchmarked with the other orbit code in some simple cases. Furthermore, it is clearly demonstrated that this new method for computing gyrocenter orbit is equivalent to the gyrocenter Hamilton equations of motion up to the second order in timestep. The new method can be applied to the gyrokinetic simulation. The gyrocenter orbit of the unperturbed part determined by the equilibrium fields can be computed previously in the gyrokinetic simulation, and the corresponding time consumption is neglectable.

  2. WE-G-213CD-06: Implementation of Real-Time Tumor Tracking Using Robotic Couch.

    PubMed

    Buzurovic, I; Yu, Y; Podder, T

    2012-06-01

    The purpose of this study was to present a novel method for real- time tumor tracking using a commercially available robotic treatment couch, and to evaluate tumor tracking accuracy. Commercially available robotic couches are capable of positioning patients with high level of accuracy; however, currently there is no provision for compensating tumor motion using these systems. Elekta's existing commercial couch (PreciseTM Table) was used without changing its design. To establish the real-time couch motion for tracking, a novel control system was developed and implemented. The tabletop could be moved in horizontal plane (laterally and longitudinally) using two Maxon-24V motors with gearbox combination. Vertical motion was obtained using robust 70V-Rockwell Automation motor. For vertical motor position sensing, we used Model 755A-Accu- Coder encoder. Two Baumer-ITD_01_4mm shaft encoders were used for the lateral and longitudinal motions of the couch. Motors were connected to the Advance Motion Controls (AMC) amplifiers: for the vertical motion, motor AMC-20A20-INV amplifier was used, and two AMC-Z6A8 amplifiers were applied for the lateral and longitudinal couch motions. The Galil DMC-4133 controller was connected to standard PC computer using USB port. The system had two independent power supplies: Galil PSR-12- 24-12A, 24vdc power supply with diodes for controller and 24vdc motors and amplifiers, and Galil-PS300W72 72vdc power supply for vertical motion. Control algorithms were developed for position and velocity adjustment. The system was tested for real-time tracking in the range of 50mm in all 3 directions (superior-inferior, lateral, anterior- posterior). Accuracies were 0.15, 0.20, and 0.18mm, respectively. Repeatability of the desired motion was within ± 0.2mm. Experimental results of couch tracking show feasibility of real-time tumor tracking with high level of accuracy (within sub-millimeter range). This tracking technique potentially offers a simple and effective method to minimize healthy tissues irradiation.Acknowledgement: Study supported by Elekta,Ltd. Study supported by Elekta, Ltd. © 2012 American Association of Physicists in Medicine.

  3. Induced transducer orientation during ultrasound imaging: effects on abdominal muscle thickness and bladder position.

    PubMed

    Whittaker, Jackie L; Warner, Martin B; Stokes, Maria J

    2009-11-01

    The use of ultrasound imaging (USI) by physiotherapists to assess muscle behavior in clinical settings is increasing. However, there is relatively little evidence of whether the clinical environment is conducive to valid and reliable measurements. Accurate USI measurements depend on maintaining a relatively stationary transducer position, because motion may distort the image and lead to erroneous conclusions. This would seem particularly important during dynamic studies typical of a physiotherapy assessment. What is not known is how much transducer motion can occur before error is introduced. The aim of this study is to shed some light on this question. Eight healthy volunteers (19 to 52 y) participated. USI images were taken of the lateral abdominal wall (LAW) and bladder base (midline suprapubic) at various manually induced transducer orientations (approximately -10 to 10 degrees about 3 axes of rotation), which were quantified by a digital optical motion capture system. Measurements of transversus abdominis (TrA) thickness and bladder base position (cranial /caudal and anterior/posterior) were calculated. Repeated measures analysis of variance was performed to determine if the measurements obtained at the induced transducer orientations were statistically different (p<0.05) from an image corresponding to a reference or starting transducer orientation. Motion analysis data corresponding to measurements that did not differ from reference image measurements were summarized to provide a range of acceptable transducer motion (relative to the pelvis) for clockwise (CW)/counter-clockwise (CCW) rotation, cranial/caudal tilting, medial/lateral tilting and inward/outward displacement. There were no significant changes in TrA thickness measurements if CW/CCW transducer motion was <9 degrees and cranial/caudal or medial/lateral transducer tilting was <5 degrees . Further, there were no significant changes in measurements of bladder base position if CW/CCW transducer motion was <10 degrees , cranial/caudal or medial/lateral transducer tilting was <10 degrees and 8 degrees , respectively and inward/outward motion was <8 mm. These findings provide guidance on acceptable amounts of transducer motion relative to the pelvis when generating measurements of TrA thickness and bladder base position. Future sonographic studies and clinical assessment investigating these parameters could take these findings into account to improve imaging technique reliability.

  4. Canonical Transformations of Kepler Trajectories

    ERIC Educational Resources Information Center

    Mostowski, Jan

    2010-01-01

    In this paper, canonical transformations generated by constants of motion in the case of the Kepler problem are discussed. It is shown that canonical transformations generated by angular momentum are rotations of the trajectory. Particular attention is paid to canonical transformations generated by the Runge-Lenz vector. It is shown that these…

  5. Utility of temporally distinct baculovirus promoters for constitutive and baculovirus-inducible transgene expression in transformed insect cells.

    PubMed

    Lin, Chi-Hung; Jarvis, Donald L

    2013-05-10

    Genetically transformed lepidopteran insect cell lines have biotechnological applications as constitutive recombinant protein production platforms and improved hosts for baculovirus-mediated recombinant protein production. Insect cell transformation is often accomplished with a DNA construct(s) encoding a foreign protein(s) under the transcriptional control of a baculovirus immediate early promoter, such as the ie1 promoter. However, the potential utility of increasingly stronger promoters from later baculovirus gene classes, such as delayed early (39K), late (p6.9), and very late (polh), has not been systematically assessed. Hence, we produced DNA constructs encoding secreted alkaline phosphatase (SEAP) under the transcriptional control of each of the four temporally distinct classes of baculovirus promoters, used them to transform insect cells, and compared the levels of SEAP RNA and protein production obtained before and after baculovirus infection. The ie1 construct was the only one that supported SEAP protein production by transformed insect cells prior to baculovirus infection, confirming that only immediate early promoters can be used to isolate transformed insect cells for constitutive recombinant protein production. However, baculovirus infection activated transgene expression by all four classes of baculovirus promoters. After infection, cells transformed with the very late (polh) and late (p6.9) promoter constructs produced the highest levels of SEAP RNA, but only low levels of SEAP protein. Conversely, cells transformed with the immediate early (ie1) and delayed early (39K) promoter constructs produced lower levels of RNA, but equal or higher levels of SEAP protein. Unexpectedly, the 39K promoter construct provided tightly regulated, baculovirus-inducible protein production at higher levels than the later promoter constructs. Thus, this study demonstrated the utility of the 39K promoter for insect cell engineering, particularly when one requires higher levels of effector protein production than obtained with ie1 and/or when constitutive transgene expression adversely impacts host cell fitness and/or genetic stability. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Sparing of Sensitivity to Biological Motion but Not of Global Motion after Early Visual Deprivation

    ERIC Educational Resources Information Center

    Hadad, Bat-Sheva; Maurer, Daphne; Lewis, Terri L.

    2012-01-01

    Patients deprived of visual experience during infancy by dense bilateral congenital cataracts later show marked deficits in the perception of global motion (dorsal visual stream) and global form (ventral visual stream). We expected that they would also show marked deficits in sensitivity to biological motion, which is normally processed in the…

  7. Detecting Lateral Motion using Light's Orbital Angular Momentum.

    PubMed

    Cvijetic, Neda; Milione, Giovanni; Ip, Ezra; Wang, Ting

    2015-10-23

    Interrogating an object with a light beam and analyzing the scattered light can reveal kinematic information about the object, which is vital for applications ranging from autonomous vehicles to gesture recognition and virtual reality. We show that by analyzing the change in the orbital angular momentum (OAM) of a tilted light beam eclipsed by a moving object, lateral motion of the object can be detected in an arbitrary direction using a single light beam and without object image reconstruction. We observe OAM spectral asymmetry that corresponds to the lateral motion direction along an arbitrary axis perpendicular to the plane containing the light beam and OAM measurement axes. These findings extend OAM-based remote sensing to detection of non-rotational qualities of objects and may also have extensions to other electromagnetic wave regimes, including radio and sound.

  8. Detecting Lateral Motion using Light’s Orbital Angular Momentum

    PubMed Central

    Cvijetic, Neda; Milione, Giovanni; Ip, Ezra; Wang, Ting

    2015-01-01

    Interrogating an object with a light beam and analyzing the scattered light can reveal kinematic information about the object, which is vital for applications ranging from autonomous vehicles to gesture recognition and virtual reality. We show that by analyzing the change in the orbital angular momentum (OAM) of a tilted light beam eclipsed by a moving object, lateral motion of the object can be detected in an arbitrary direction using a single light beam and without object image reconstruction. We observe OAM spectral asymmetry that corresponds to the lateral motion direction along an arbitrary axis perpendicular to the plane containing the light beam and OAM measurement axes. These findings extend OAM-based remote sensing to detection of non-rotational qualities of objects and may also have extensions to other electromagnetic wave regimes, including radio and sound. PMID:26493681

  9. Biomechanical analysis comparing three C1-C2 transarticular screw salvaging fixation techniques.

    PubMed

    Elgafy, Hossein; Potluri, Tejaswy; Goel, Vijay K; Foster, Scott; Faizan, Ahmad; Kulkarni, Nikhil

    2010-02-15

    This is an in vitro biomechanical study. To compare the biomechanical stability of the 3 C1-C2 transarticular screw salvaging fixation techniques. Stabilization of the atlantoaxial complex is a challenging procedure because of its complicated anatomy. Many posterior stabilization techniques of the atlantoaxial complex have been developed with C1-C2 transarticular screw fixation been the current gold standard. The drawback of using the transarticular screws is that it has a potential risk of vertebral artery injury due to a high riding transverse foramen of C2 vertebra, and screw malposition. In such cases, it is not recommended to proceed with inserting the contralateral transarticular screw and the surgeon should find an alternative to fix the contralateral side. Many studies are available comparing different atlantoaxial stabilization techniques, but none of them compared the techniques to fix the contralateral side while using the transarticular screw on one side. The current options are C1 lateral mass screw and short C2 pedicle screw or C1 lateral mass screw and C2 intralaminar screw, or C1-C2 sublaminar wire. Nine fresh human cervical spines with intact ligaments (C0-C4) were subjected to pure moments in the 6 loading directions. The resulting spatial orientations of the vertebrae were recorded using an Optotrak 3-dimensional Motion Measurement System. Measurements were made sequentially for the intact spine after creating type II odontoid fracture and after stabilization with unilateral transarticular screw placement across C1-C2 (TS) supplemented with 1 of the 3 transarticular salvaging techniques on the contralateral side; C1 lateral mass screw and C2 pedicle screw (TS+C1LMS+C2PS), C1 lateral mass and C2 intralaminar screw (TS+C1LMS+C2ILS), or sublaminar wire (TS + wire). The data indicated that all the 3 stabilization techniques significantly decreased motion when compared to intact in all the loading cases (left/right lateral bending, left/right axial rotation, flexion) except extension. All the 3 instrumented specimens were equally stable in extension/flexion and lateral bending modes. TS+C1LMS+C2PS was equivalent to TS+C1LMS+C2ILS (P > 0.05) and superior to TS + wire in axial rotation (P < 0.05). Also, TS+C1LMS+C2ILS was superior to TS + wire in axial rotation (P < 0.05). Fixation of atlantoaxial complex using unilateral transarticular screw supplemented with contralateral C1 lateral mass and C2 intralaminar screws is biomechanically equivalent to C1 lateral mass and C2 pedicle screws and both are biomechanically superior to C1-C2 sublaminar wire in axial rotation.

  10. Class III malocclusion with complex problems of lateral open bite and severe crowding successfully treated with miniscrew anchorage and lingual orthodontic brackets.

    PubMed

    Yanagita, Takeshi; Kuroda, Shingo; Takano-Yamamoto, Teruko; Yamashiro, Takashi

    2011-05-01

    In this article, we report the successful use of miniscrews in a patient with an Angle Class III malocclusion, lateral open bite, midline deviation, and severe crowding. Simultaneously resolving such problems with conventional Class III treatment is difficult. In this case, the treatment procedure was even more challenging because the patient preferred to have lingual brackets on the maxillary teeth. As a result, miniscrews were used to facilitate significant asymmetric tooth movement in the posterior and downward directions; this contributed to the camouflage of the skeletal mandibular protrusion together with complete resolution of the severe crowding and lateral open bite. Analysis of the jaw motion showed that irregularities in chewing movement were also resolved, and a stable occlusion was achieved. Improvements in the facial profile and dental arches remained stable at the 18-month follow-up. Copyright © 2011 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  11. Involuntary eye motion correction in retinal optical coherence tomography: Hardware or software solution?

    PubMed

    Baghaie, Ahmadreza; Yu, Zeyun; D'Souza, Roshan M

    2017-04-01

    In this paper, we review state-of-the-art techniques to correct eye motion artifacts in Optical Coherence Tomography (OCT) imaging. The methods for eye motion artifact reduction can be categorized into two major classes: (1) hardware-based techniques and (2) software-based techniques. In the first class, additional hardware is mounted onto the OCT scanner to gather information about the eye motion patterns during OCT data acquisition. This information is later processed and applied to the OCT data for creating an anatomically correct representation of the retina, either in an offline or online manner. In software based techniques, the motion patterns are approximated either by comparing the acquired data to a reference image, or by considering some prior assumptions about the nature of the eye motion. Careful investigations done on the most common methods in the field provides invaluable insight regarding future directions of the research in this area. The challenge in hardware-based techniques lies in the implementation aspects of particular devices. However, the results of these techniques are superior to those obtained from software-based techniques because they are capable of capturing secondary data related to eye motion during OCT acquisition. Software-based techniques on the other hand, achieve moderate success and their performance is highly dependent on the quality of the OCT data in terms of the amount of motion artifacts contained in them. However, they are still relevant to the field since they are the sole class of techniques with the ability to be applied to legacy data acquired using systems that do not have extra hardware to track eye motion. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Jaw motion during gum-chewing in children with primary dentition.

    PubMed

    Kubota, Naoko; Hayasaki, Haruaki; Saitoh, Issei; Iwase, Yoko; Maruyama, Tomoaki; Inada, Emi; Hasegawa, Hiroko; Yamada, Chiaki; Takemoto, Yoshihiko; Matsumoto, Yuko; Yamasaki, Youichi

    2010-01-01

    This study was undertaken to characterize jaw motion during mastication in children with primary dentition and to compare jaw motion with that in adults. The means and the variances of the traditional parameters for the chewing cycle, i.e., duration, excursive ranges and 3-D distances of travel at the lower incisor, molars and condyles were analyzed and compared in 23 children and 25 female adults. The duration of opening in children was significantly shorter than that of adults. Significant differences between children and adults were observed in lateral and vertical excursion of the incisor, lateral excursion at the molars, and vertical excursion at the condyles. Many of these measurements had larger between-subject and between-cycle variances in children than adults, suggesting that chewing motion in children has not yet matured. The results of this study indicate that chewing motion in children is different from that of adults.

  13. The Effect of Modified Brostrom-Gould Repair for Lateral Ankle Instability on In Vivo Tibiotalar Kinematics

    PubMed Central

    Wainright, William B; Spritzer, Charles E.; Lee, Jun Young; Easley, Mark E.; DeOrio, James K.; Nunley, James A.; DeFrate, Louis E.

    2012-01-01

    Background Lateral ankle instability leads to an increased risk of tibiotalar joint osteoarthritis. Previous studies have found abnormal tibiotalar joint motions with lateral ankle instability that may contribute to this increased incidence of osteoarthritis, including increased anterior translation and internal rotation of the talus under weight-bearing loading. Surgical repairs for lateral ankle instability have shown good clinical results, but the effects of repair on in vivo ankle motion are not well understood. Hypothesis The modified Broström-Gould lateral ligament reconstruction decreases anterior translation and internal rotation of the talus under in vivo weight-bearing loading conditions. Study Design Controlled laboratory study. Methods Seven patients underwent modified Brostöm-Gould repair for unilateral lateral ankle instability. Ankle joint kinematics as a function of increasing body weight were studied with magnetic resonance imaging and biplanar fluoroscopy. Tibiotalar kinematics were measured in unstable ankles preoperatively and postoperatively at a mean follow-up of 12 months, as well as in the uninjured contralateral ankles of the same individuals. Results Surgical repair resulted in statistically significant decreases in anterior translation of the talus (0.9±0.3mm, p=0.018) at 100% bodyweight and internal rotation of the talus at 75% (2.6±0.8°, p=0.019) and 100% (2.7±0.8°, p=0.013) bodyweight compared to ankle kinematics measured before repair. No statistically significant differences were detected between repaired ankles and contralateral normal ankles. Conclusion The modified Broström-Gould repair improved the abnormal joint motion observed in patients with lateral ankle instability, decreasing anterior translation and internal rotation of the talus. Clinical Relevance Altered kinematics may contribute to the tibiotalar joint degeneration that occurs with chronic lateral ankle instability. The findings of the current study support the efficacy of this repair in improving the abnormal ankle motion observed in these patients. PMID:22886690

  14. The cortical basis of true memory and false memory for motion.

    PubMed

    Karanian, Jessica M; Slotnick, Scott D

    2014-02-01

    Behavioral evidence indicates that false memory, like true memory, can be rich in sensory detail. By contrast, there is fMRI evidence that true memory for visual information produces greater activity in earlier visual regions than false memory, which suggests true memory is associated with greater sensory detail. However, false memory in previous fMRI paradigms may have lacked sufficient sensory detail to recruit earlier visual processing regions. To investigate this possibility in the present fMRI study, we employed a paradigm that produced feature-specific false memory with a high degree of visual detail. During the encoding phase, moving or stationary abstract shapes were presented to the left or right of fixation. During the retrieval phase, shapes from encoding were presented at fixation and participants classified each item as previously "moving" or "stationary" within each visual field. Consistent with previous fMRI findings, true memory but not false memory for motion activated motion processing region MT+, while both true memory and false memory activated later cortical processing regions. In addition, false memory but not true memory for motion activated language processing regions. The present findings indicate that true memory activates earlier visual regions to a greater degree than false memory, even under conditions of detailed retrieval. Thus, the dissociation between previous behavioral findings and fMRI findings do not appear to be task dependent. Future work will be needed to assess whether the same pattern of true memory and false memory activity is observed for different sensory modalities. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Trunk Motion System (TMS) Using Printed Body Worn Sensor (BWS) via Data Fusion Approach

    PubMed Central

    Mokhlespour Esfahani, Mohammad Iman; Zobeiri, Omid; Moshiri, Behzad; Narimani, Roya; Mehravar, Mohammad; Rashedi, Ehsan; Parnianpour, Mohamad

    2017-01-01

    Human movement analysis is an important part of biomechanics and rehabilitation, for which many measurement systems are introduced. Among these, wearable devices have substantial biomedical applications, primarily since they can be implemented both in indoor and outdoor applications. In this study, a Trunk Motion System (TMS) using printed Body-Worn Sensors (BWS) is designed and developed. TMS can measure three-dimensional (3D) trunk motions, is lightweight, and is a portable and non-invasive system. After the recognition of sensor locations, twelve BWSs were printed on stretchable clothing with the purpose of measuring the 3D trunk movements. To integrate BWSs data, a neural network data fusion algorithm was used. The outcome of this algorithm along with the actual 3D anatomical movements (obtained by Qualisys system) were used to calibrate the TMS. Three healthy participants with different physical characteristics participated in the calibration tests. Seven different tasks (each repeated three times) were performed, involving five planar, and two multiplanar movements. Results showed that the accuracy of TMS system was less than 1.0°, 0.8°, 0.6°, 0.8°, 0.9°, and 1.3° for flexion/extension, left/right lateral bending, left/right axial rotation, and multi-planar motions, respectively. In addition, the accuracy of TMS for the identified movement was less than 2.7°. TMS, developed to monitor and measure the trunk orientations, can have diverse applications in clinical, biomechanical, and ergonomic studies to prevent musculoskeletal injuries, and to determine the impact of interventions. PMID:28075342

  16. Walking on a moving surface: energy-optimal walking motions on a shaky bridge and a shaking treadmill can reduce energy costs below normal.

    PubMed

    Joshi, Varun; Srinivasan, Manoj

    2015-02-08

    Understanding how humans walk on a surface that can move might provide insights into, for instance, whether walking humans prioritize energy use or stability. Here, motivated by the famous human-driven oscillations observed in the London Millennium Bridge, we introduce a minimal mathematical model of a biped, walking on a platform (bridge or treadmill) capable of lateral movement. This biped model consists of a point-mass upper body with legs that can exert force and perform mechanical work on the upper body. Using numerical optimization, we obtain energy-optimal walking motions for this biped, deriving the periodic body and platform motions that minimize a simple metabolic energy cost. When the platform has an externally imposed sinusoidal displacement of appropriate frequency and amplitude, we predict that body motion entrained to platform motion consumes less energy than walking on a fixed surface. When the platform has finite inertia, a mass- spring-damper with similar parameters to the Millennium Bridge, we show that the optimal biped walking motion sustains a large lateral platform oscillation when sufficiently many people walk on the bridge. Here, the biped model reduces walking metabolic cost by storing and recovering energy from the platform, demonstrating energy benefits for two features observed for walking on the Millennium Bridge: crowd synchrony and large lateral oscillations.

  17. Walking on a moving surface: energy-optimal walking motions on a shaky bridge and a shaking treadmill can reduce energy costs below normal

    PubMed Central

    Joshi, Varun; Srinivasan, Manoj

    2015-01-01

    Understanding how humans walk on a surface that can move might provide insights into, for instance, whether walking humans prioritize energy use or stability. Here, motivated by the famous human-driven oscillations observed in the London Millennium Bridge, we introduce a minimal mathematical model of a biped, walking on a platform (bridge or treadmill) capable of lateral movement. This biped model consists of a point-mass upper body with legs that can exert force and perform mechanical work on the upper body. Using numerical optimization, we obtain energy-optimal walking motions for this biped, deriving the periodic body and platform motions that minimize a simple metabolic energy cost. When the platform has an externally imposed sinusoidal displacement of appropriate frequency and amplitude, we predict that body motion entrained to platform motion consumes less energy than walking on a fixed surface. When the platform has finite inertia, a mass- spring-damper with similar parameters to the Millennium Bridge, we show that the optimal biped walking motion sustains a large lateral platform oscillation when sufficiently many people walk on the bridge. Here, the biped model reduces walking metabolic cost by storing and recovering energy from the platform, demonstrating energy benefits for two features observed for walking on the Millennium Bridge: crowd synchrony and large lateral oscillations. PMID:25663810

  18. Effect of Facetectomy on the Three-Dimensional Biomechanical Properties of the Fourth Canine Cervical Functional Spinal Unit: A Cadaveric Study.

    PubMed

    Bösch, Nadja; Hofstetter, Martin; Bürki, Alexander; Vidondo, Beatriz; Davies, Fenella; Forterre, Franck

    2017-11-01

    Objective  To study the biomechanical effect of facetectomy in 10 large breed dogs (>24 kg body weight) on the fourth canine cervical functional spinal unit. Methods  Canine cervical spines were freed from all muscles. Spines were mounted on a six-degrees-of-freedom spine testing machine for three-dimensional motion analysis. Data were recorded with an optoelectronic motion analysis system. The range of motion was determined in all three primary motions as well as range of motion of coupled motions on the intact specimen, after unilateral and after bilateral facetectomy. Repeated-measures analysis of variance models were used to assess the changes of the biomechanical properties in the three treatment groups considered. Results  Facetectomy increased range of motion of primary motions in all directions. Axial rotation was significantly influenced by facetectomy. Coupled motion was not influenced by facetectomy except for lateral bending with coupled motion axial rotation. The coupling factor (coupled motion/primary motion) decreased after facetectomy. Symmetry of motion was influenced by facetectomy in flexion-extension and axial rotation, but not in lateral bending. Clinical Significance  Facet joints play a significant role in the stability of the cervical spine and act to maintain spatial integrity. Therefore, cervical spinal treatments requiring a facetectomy should be carefully planned and if an excessive increase in range of motion is expected, complications should be anticipated and reduced via spinal stabilization. Schattauer GmbH Stuttgart.

  19. Apparatus and methods for continuous beam fourier transform mass spectrometry

    DOEpatents

    McLuckey, Scott A.; Goeringer, Douglas E.

    2002-01-01

    A continuous beam Fourier transform mass spectrometer in which a sample of ions to be analyzed is trapped in a trapping field, and the ions in the range of the mass-to-charge ratios to be analyzed are excited at their characteristic frequencies of motion by a continuous excitation signal. The excited ions in resonant motions generate real or image currents continuously which can be detected and processed to provide a mass spectrum.

  20. Spatial Transformation of the Vestibulo-Ocular Reflex during Spaceflight

    NASA Technical Reports Server (NTRS)

    Clement, Gilles; Wood, Scott J.; Reschke, Millard F.

    1996-01-01

    It was hypothesized that the absence of the gravitational reference cues may be responsible for adaptive changes in the vestibulo-ocular reflex (VOR). These changes result in the alteration of the direction of the compensatory slow phase (SP) eye movements in microgravity. In order to test this hypothesis, the direction of the VOR SP relative to head motion was investigated in three astronauts during and after an eight-day orbital flight by passive sinusoidal pitch or yaw angular motion at two frequencies. The results of the inflight and postflight testing are considered. The observed deviation between VOR SP and head motion suggests that spatial transformation in the VOR occurred during adaptation to microgravity. It is considered that, although this spatial transformation might be due to a sensory bias, it may reflect central changes in the reference system used for spatial orientation in microgravity.

  1. A 4D-optimization concept for scanned ion beam therapy.

    PubMed

    Graeff, Christian; Lüchtenborg, Robert; Eley, John Gordon; Durante, Marco; Bert, Christoph

    2013-12-01

    Scanned carbon beam therapy offers advantageous dose distributions and an increased biological effect. Treating moving targets is complex due to sensitivity to range changes and interplay. We propose a 4D treatment planning concept that considers motion during particle number optimization. The target was subdivided into sectors, one for each motion phase of a 4D-CT. Each sector was non-rigidly transformed to its motion phase and there targeted by a dedicated raster field (RST). Therefore, the resulting 4D-RST compensated target motion and range changes. A 4D treatment control system (TCS) was needed for synchronized delivery to the measured patient motion. 4D-optimized plans were simulated for 9 NSCLC lung cancer patients and compared to static irradiation at end-exhale. A prototype TCS was implemented and successfully tested in a film experiment. The 4D-optimized treatment plan resulted in only slightly lower dose coverage of the target compared to static optimization, with V 95% of 97.9% (median, range 96.5-99.4%) vs. 99.3% (98.5-99.8%), with negligible overdose. The conformity number was comparable at 88.2% (85.1-92.5%) vs. 85.2% (79.9-91.2%) for 4D and static, respectively. We implemented and tested a 4D treatment plan optimization method resulting in highly conformal dose delivery. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  2. Case report: paradoxical ventricular septal motion in the setting of primary right ventricular myocardial failure.

    PubMed

    Maslow, Andrew; Schwartz, Carl; Mahmood, Feroze; Singh, Arun; Heerdt, Paul M

    2009-07-01

    In this report, a case of right ventricular (RV) failure, hemodynamic instability, and systemic organ failure is described to highlight how paradoxical ventricular systolic septal motion (PVSM), or a rightward systolic displacement of the interventricular septum, may contribute to RV ejection. Multiple inotropic medications and vasopressors were administered to treat right heart failure and systemic hypotension in a patient following combined aortic and mitral valve replacement. In the early postoperative period, echocardiographic evaluation revealed adequate left ventricular systolic function, akinesis of the RV myocardial tissues, and PVSM. In the presence of PVSM, RV fractional area of contraction was > or =35% despite akinesis of the primary RV myocardial walls. The PVSM appeared to contribute toward RV ejection. As a result, the need for multiple inotropes was re-evaluated, in considering that end-organ dysfunction was the result of systemic hypotension and prolonged vasopressor administration. After discontinuation of phosphodiesterase inhibitors, native vascular tone returned and the need for vasopressors declined. This was followed by recovery of systemic organ function. Echocardiographic re-evaluation two years later, revealed persistent akinesis of the RV myocardial tissues and PVSM, the latter appearing to contribute toward RV ejection. This case highlights the importance of left to RV interactions, and how PVSM may mediate these hemodynamic interactions.

  3. The right inhibition? Callosal correlates of hand performance in healthy children and adolescents callosal correlates of hand performance.

    PubMed

    Kurth, Florian; Mayer, Emeran A; Toga, Arthur W; Thompson, Paul M; Luders, Eileen

    2013-09-01

    Numerous studies suggest that interhemispheric inhibition-relayed via the corpus callosum-plays an important role in unilateral hand motions. Interestingly, transcallosal inhibition appears to be indicative of a strong laterality effect, where generally the dominant hemisphere exerts inhibition on the nondominant one. These effects have been largely identified through functional studies in adult populations, but links between motor performance and callosal structure (especially during sensitive periods of neurodevelopment) remain largely unknown. We therefore investigated correlations between Purdue Pegboard performance (a test of motor function) and local callosal thickness in 170 right-handed children and adolescents (mean age: 11.5 ± 3.4 years; range, 6-17 years). Better task performance with the right (dominant) hand was associated with greater callosal thickness in isthmus and posterior midbody. Task performance using both hands yielded smaller and less significant correlations in the same regions, while task performance using the left (nondominant) hand showed no significant correlations with callosal thickness. There were no significant interactions with age and sex. These links between motor performance and callosal structure may constitute the neural correlate of interhemispheric inhibition, which is thought to be necessary for fast and complex unilateral motions and to be biased towards the dominant hand. Copyright © 2012 Wiley Periodicals, Inc., a Wiley company.

  4. Helicopter Flight Simulation Motion Platform Requirements

    NASA Technical Reports Server (NTRS)

    Schroeder, Jeffery Allyn

    1999-01-01

    To determine motion fidelity requirements, a series of piloted simulations was performed. Several key results were found. First, lateral and vertical translational platform cues had significant effects on fidelity. Their presence improved performance and reduced pilot workload. Second, yaw and roll rotational platform cues were not as important as the translational platform cues. In particular, the yaw rotational motion platform cue did not appear at all useful in improving performance or reducing workload. Third, when the lateral translational platform cue was combined with visual yaw rotational cues, pilots believed the platform was rotating when it was not. Thus, simulator systems can be made more efficient by proper combination of platform and visual cues. Fourth, motion fidelity specifications were revised that now provide simulator users with a better prediction of motion fidelity based upon the frequency responses of their motion control laws. Fifth, vertical platform motion affected pilot estimates of steady-state altitude during altitude repositioning. Finally, the combined results led to a general method for configuring helicopter motion systems and for developing simulator tasks that more likely represent actual flight. The overall results can serve as a guide to future simulator designers and to today's operators.

  5. Strong ground motion from the November 12, 2017, M 7.3 Kermanshah earthquake in western Iran

    NASA Astrophysics Data System (ADS)

    Babaie Mahani, Alireza; Kazemian, Javad

    2018-05-01

    In this paper, we analyzed the strong ground motion from the November 12, 2017, Kermanshah earthquake in western Iran with moment magnitude (M) of 7.3. Nonlinear and linear amplification of ground motion amplitudes were observed at stations with soft soil condition at hypocentral distances below and above 100 km, respectively. Observation of large ground motion amplitudes dominated with long-period pulses on the strike-normal component of the velocity time series suggests a right-lateral component of movement and propagation of rupture towards southeast. Comparison of the horizontal peak ground acceleration (PGA) from the M 7.3 earthquake with global PGA values showed a similar decay in ground motion amplitudes, although it seems that PGA from the M 7.3 Kermanshah earthquake is higher than global values for NEHRP site class B. We also found that the bracketed duration (D b) was higher in the velocity domain than in the acceleration domain for the same modified Mercalli intensity (MMI) threshold. For example, D b reached 30 s at the maximum PGA while it was 50 s at the maximum peak ground velocity above the threshold of MMI = 5. Although the standard design spectrum from Iranian Code of Practice for Seismic Resistant Design of Buildings (standard No. 2800) seems to include appropriate values for the design of structures with fundamental period of 1 s and higher, it is underestimated for near-field ground motions at lower periods.

  6. Strike-slip faulting at Thebes Gap, Missouri and Illinois; implications for New Madrid tectonism

    USGS Publications Warehouse

    Harrison, Richard W.; Schultz, Art

    1994-01-01

    Numerous NNE and NE striking strike-slip faults and associated normal faults, folds, and transtensional grabens occur in the Thebes Gap area of Missouri and Illinois. These structures developed along the northwestern margin of the buried Reelfoot rift of Precambrian-Cambrian age at the northern edge of the Mississippi embayment. They have had a long-lived and complex structural history. This is an area of recent moderate seismicity, approximately 45 km north of the New Madrid seismic zone. Stratigraphic evidence suggests that these faults were active during the Middle Ordovician. They were subsequently reactivated between the Early Devonian and Late Cretaceous, probably in response to both the Acadian and Ouachita orogenies. Deformation during this period was characterized by strongly faulted and folded Ordovician through Devonian rocks. In places, these deformed rocks are overlain with angular unconformity by undeformed Cretaceous strata. Fault motion is interpreted as dominantly strike slip. A still younger period of reactivation involved Late Cretaceous and Cenozoic formations as young as the Miocene or Pliocene Mounds Gravel. These formations have experienced both minor high-angle normal faulting and subsequent major, right-lateral strike-slip faulting. En echelon north-south folds, ENE striking normal faults, regional fracture patterns, and drag folds indicate the right-lateral motion for this major episode of faulting which predates deposition of Quaternary loess. Several nondefinitive lines of evidence suggest Quaternary faulting. Similar fault orientations and kinematics, as well as recent seismicity and proximity, clearly suggest a structural relationship between deformation at Thebes Gap and tectonism associated with the New Madrid area.

  7. 75 FR 41760 - Safety Zone; Transformers 3 Movie Filming, Chicago River, Chicago, IL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-19

    ...-AA00 Safety Zone; Transformers 3 Movie Filming, Chicago River, Chicago, IL AGENCY: Coast Guard, DHS... vessels from the hazards associated with the filming of the major motion picture, Transformers 3. The... Safety Zone; Transformers 3 Movie Filming, Chicago River, Chicago, IL (a) Location. The safety zone will...

  8. The effects of progressive lateralization of the joint center of rotation of reverse total shoulder implants.

    PubMed

    Costantini, Oren; Choi, Daniel S; Kontaxis, Andreas; Gulotta, Lawrence V

    2015-07-01

    There has been a renewed interest in lateralizing the center of rotation (CoR) in implants used in reverse shoulder arthroplasty. The aim of this study was to determine the sensitivity of lateralization of the CoR on the glenohumeral joint contact forces, muscle moment arms, torque across the bone-implant interface, and the stability of the implant. A 3-dimensional virtual model was used to investigate how lateralization affects deltoid muscle moment arm and glenohumeral joint contact forces. This model was virtually implanted with 5 progressively lateralized reverse shoulder prostheses. The joint contact loads and deltoid moment arms were calculated for each lateralization over the course of 3 simulated standard humerothoracic motions. Lateralization of the CoR leads to an increase in the overall joint contact forces across the glenosphere. Most of this increased loading occurred through compression, although increases in anterior/posterior and superior/inferior shear were also observed. Moment arms of the deltoid consistently decreased with lateralization. Bending moments at the implant interface increased with lateralization. Progressive lateralization resulted in improved stability ratios. Lateralization results in increased joint loading. Most of that loading occurs through compression, although there were also increases in shear forces. Anterior/posterior shear is currently not accounted for in implant fixation studies, leaving its effect on implant fixation unknown. Future studies should incorporate shear forces into their models to more accurately assess fixation methods. Copyright © 2015 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  9. Telescoping magnetic ball bar test gage

    DOEpatents

    Bryan, J.B.

    1982-03-15

    A telescoping magnetic ball bar test gage for determining the accuracy of machine tools, including robots, and those measuring machines having non-disengagable servo drives which cannot be clutched out. Two gage balls are held and separated from one another by a telescoping fixture which allows them relative radial motional freedom but not relative lateral motional freedom. The telescoping fixture comprises a parallel reed flexure unit and a rigid member. One gage ball is secured by a magnetic socket knuckle assembly which fixes its center with respect to the machine being tested. The other gage ball is secured by another magnetic socket knuckle assembly which is engaged or held by the machine in such manner that the center of that ball is directed to execute a prescribed trajectory, all points of which are equidistant from the center of the fixed gage ball. As the moving ball executes its trajectory, changes in the radial distance between the centers of the two balls caused by inaccuracies in the machine are determined or measured by a linear variable differential transformer (LVDT) assembly actuated by the parallel reed flexure unit. Measurements can be quickly and easily taken for multiple trajectories about several different fixed ball locations, thereby determining the accuracy of the machine.

  10. Fault evolution in the Potiguar rift termination, equatorial margin of Brazil

    NASA Astrophysics Data System (ADS)

    de Castro, D. L.; Bezerra, F. H. R.

    2015-02-01

    The transform shearing between South American and African plates in the Cretaceous generated a series of sedimentary basins on both plate margins. In this study, we use gravity, aeromagnetic, and resistivity surveys to identify architecture of fault systems and to analyze the evolution of the eastern equatorial margin of Brazil. Our study area is the southern onshore termination of the Potiguar rift, which is an aborted NE-trending rift arm developed during the breakup of Pangea. The basin is located along the NNE margin of South America that faces the main transform zone that separates the North and the South Atlantic. The Potiguar rift is a Neocomian structure located at the intersection of the equatorial and western South Atlantic and is composed of a series of NE-trending horsts and grabens. This study reveals new grabens in the Potiguar rift and indicates that stretching in the southern rift termination created a WNW-trending, 10 km wide, and ~ 40 km long right-lateral strike-slip fault zone. This zone encompasses at least eight depocenters, which are bounded by a left-stepping, en echelon system of NW-SE- to NS-striking normal faults. These depocenters form grabens up to 1200 m deep with a rhomb-shaped geometry, which are filled with rift sedimentary units and capped by postrift sedimentary sequences. The evolution of the rift termination is consistent with the right-lateral shearing of the equatorial margin in the Cretaceous and occurs not only at the rift termination but also as isolated structures away from the main rift. This study indicates that the strike-slip shearing between two plates propagated to the interior of one of these plates, where faults with similar orientation, kinematics, geometry, and timing of the major transform are observed. These faults also influence rift geometry.

  11. Vehicle lateral motion regulation under unreliable communication links based on robust H∞ output-feedback control schema

    NASA Astrophysics Data System (ADS)

    Li, Cong; Jing, Hui; Wang, Rongrong; Chen, Nan

    2018-05-01

    This paper presents a robust control schema for vehicle lateral motion regulation under unreliable communication links via controller area network (CAN). The communication links between the system plant and the controller are assumed to be imperfect and therefore the data packet dropouts occur frequently. The paper takes the form of parallel distributed compensation and treats the dropouts as random binary numbers that form Bernoulli distribution. Both of the tire cornering stiffness uncertainty and external disturbances are considered to enhance the robustness of the controller. In addition, a robust H∞ static output-feedback control approach is proposed to realize the lateral motion control with relative low cost sensors. The stochastic stability of the closed-loop system and conservation of the guaranteed H∞ performance are investigated. Simulation results based on CarSim platform using a high-fidelity and full-car model verify the effectiveness of the proposed control approach.

  12. Ipsilateral and contralateral foot pronation affect lower limb and trunk biomechanics of individuals with knee osteoarthritis during gait.

    PubMed

    Resende, Renan A; Kirkwood, Renata N; Deluzio, Kevin J; Hassan, Elizabeth A; Fonseca, Sérgio T

    2016-05-01

    Lateral wedges have been suggested for the treatment of individuals with knee osteoarthritis, but it may have undesirable effects on the biomechanics of gait through increased foot pronation. This study investigated the effects of increased unilateral foot pronation on the biomechanics of individuals with knee osteoarthritis during gait. Biomechanical data of twenty individuals with knee osteoarthritis were collected while they walked in three conditions: i) flat sandals; ii) wedged sandal on the knee osteoarthritis limb and flat sandal on the healthy limb; and iii) flat sandal on the osteoarthritis and wedged sandal on the healthy limb. Knee pain and comfort were evaluated. Principal Component Analysis followed by ANOVA was implemented to identify differences between conditions. The wedged sandal on the osteoarthritis limb increased rearfoot eversion (P<0.001; ES=0.79); increased shank rotation range of motion (P<0.001; ES=0.70); reduced knee internal rotation moment (P<0.001; ES=0.83); reduced hip internal rotation moment (P=0.001; ES=0.66); increased ipsilateral trunk lean (P=0.031; ES=0.47); and increased trunk rotation range of motion (P=0.001; ES=0.69). Walking with the wedged sandal on the healthy limb increased hip (P=0.003; ES=0.61) and knee (P=0.002; ES=0.63) adduction moments. Individuals reported greater comfort walking with the flat sandals (P=0.004; ES=0.55). Increased unilateral foot pronation of the knee osteoarthritis and healthy limbs causes lower limb and trunk mechanical changes that may overload the knee and the lower back, such as increased knee adduction moment, shank rotation and trunk lateral lean. Foot motion of both lower limbs should be evaluated and care must be taken when suggesting lateral wedges for individuals with knee osteoarthritis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. An actuator extension transformation for a motion simulator and an inverse transformation applying Newton-Raphson's method

    NASA Technical Reports Server (NTRS)

    Dieudonne, J. E.

    1972-01-01

    A set of equations which transform position and angular orientation of the centroid of the payload platform of a six-degree-of-freedom motion simulator into extensions of the simulator's actuators has been derived and is based on a geometrical representation of the system. An iterative scheme, Newton-Raphson's method, has been successfully used in a real time environment in the calculation of the position and angular orientation of the centroid of the payload platform when the magnitude of the actuator extensions is known. Sufficient accuracy is obtained by using only one Newton-Raphson iteration per integration step of the real time environment.

  14. Biomechanics of the incudo-malleolar-joint - Experimental investigations for quasi-static loads.

    PubMed

    Ihrle, S; Gerig, R; Dobrev, I; Röösli, C; Sim, J H; Huber, A M; Eiber, A

    2016-10-01

    Under large quasi-static loads, the incudo-malleolar joint (IMJ), connecting the malleus and the incus, is highly mobile. It can be classified as a mechanical filter decoupling large quasi-static motions while transferring small dynamic excitations. This is presumed to be due to the complex geometry of the joint inducing a spatial decoupling between the malleus and incus under large quasi-static loads. Spatial Laser Doppler Vibrometer (LDV) displacement measurements on isolated malleus-incus-complexes (MICs) were performed. With the malleus firmly attached to a probe holder, the incus was excited by applying quasi-static forces at different points. For each force application point the resulting displacement was measured subsequently at different points on the incus. The location of the force application point and the LDV measurement points were calculated in a post-processing step combining the position of the LDV points with geometric data of the MIC. The rigid body motion of the incus was then calculated from the multiple displacement measurements for each force application point. The contact regions of the articular surfaces for different load configurations were calculated by applying the reconstructed motion to the geometry model of the MIC and calculate the minimal distance of the articular surfaces. The reconstructed motion has a complex spatial characteristic and varies for different force application points. The motion changed with increasing load caused by the kinematic guidance of the articular surfaces of the joint. The IMJ permits a relative large rotation around the anterior-posterior axis through the joint when a force is applied at the lenticularis in lateral direction before impeding the motion. This is part of the decoupling of the malleus motion from the incus motion in case of large quasi-static loads. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Integration of visual and non-visual self-motion cues during voluntary head movements in the human brain.

    PubMed

    Schindler, Andreas; Bartels, Andreas

    2018-05-15

    Our phenomenological experience of the stable world is maintained by continuous integration of visual self-motion with extra-retinal signals. However, due to conventional constraints of fMRI acquisition in humans, neural responses to visuo-vestibular integration have only been studied using artificial stimuli, in the absence of voluntary head-motion. We here circumvented these limitations and let participants to move their heads during scanning. The slow dynamics of the BOLD signal allowed us to acquire neural signal related to head motion after the observer's head was stabilized by inflatable aircushions. Visual stimuli were presented on head-fixed display goggles and updated in real time as a function of head-motion that was tracked using an external camera. Two conditions simulated forward translation of the participant. During physical head rotation, the congruent condition simulated a stable world, whereas the incongruent condition added arbitrary lateral motion. Importantly, both conditions were precisely matched in visual properties and head-rotation. By comparing congruent with incongruent conditions we found evidence consistent with the multi-modal integration of visual cues with head motion into a coherent "stable world" percept in the parietal operculum and in an anterior part of parieto-insular cortex (aPIC). In the visual motion network, human regions MST, a dorsal part of VIP, the cingulate sulcus visual area (CSv) and a region in precuneus (Pc) showed differential responses to the same contrast. The results demonstrate for the first time neural multimodal interactions between precisely matched congruent versus incongruent visual and non-visual cues during physical head-movement in the human brain. The methodological approach opens the path to a new class of fMRI studies with unprecedented temporal and spatial control over visuo-vestibular stimulation. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. A comparison of subtalar joint motion during anticipated medial cutting turns and level walking using a multi-segment foot model.

    PubMed

    Jenkyn, T R; Shultz, R; Giffin, J R; Birmingham, T B

    2010-02-01

    The weight-bearing in-vivo kinematics and kinetics of the talocrural joint, subtalar joint and joints of the foot were quantified using optical motion analysis. Twelve healthy subjects were studied during level walking and anticipated medial turns at self-selected pace. A multi-segment model of the foot using skin-mounted marker triads tracked four foot segments: the hindfoot, midfoot, lateral and medial forefoot. The lower leg and thigh were also tracked. Motion between each of the segments could occur in three degrees of rotational freedom, but only six inter-segmental motions were reported in this study: (1) talocrural dorsi-plantar-flexion, (2) subtalar inversion-eversion, (3) frontal plane hindfoot motion, (4) transverse plane hindfoot motion, (5) forefoot supination-pronation twisting and (6) the height-to-length ratio of the medial longitudinal arch. The motion at the subtalar joint during stance phase of walking (eversion then inversion) was reversed during a turning task (inversion then eversion). The external subtalar joint moment was also changed from a moderate eversion moment during walking to a larger inversion moment during the turn. The kinematics of the talocrural joint and the joints of the foot were similar between these two tasks. During a medial turn, the subtalar joint may act to maintain the motions in the foot and talocrural joint that occur during level walking. This is occurring despite the conspicuously different trajectory of the centre of mass of the body. This may allow the foot complex to maintain its function of energy absorption followed by energy return during stance phase that is best suited to level walking. Copyright 2009 Elsevier B.V. All rights reserved.

  17. Automatic assessment of average diaphragm motion trajectory from 4DCT images through machine learning.

    PubMed

    Li, Guang; Wei, Jie; Huang, Hailiang; Gaebler, Carl Philipp; Yuan, Amy; Deasy, Joseph O

    2015-12-01

    To automatically estimate average diaphragm motion trajectory (ADMT) based on four-dimensional computed tomography (4DCT), facilitating clinical assessment of respiratory motion and motion variation and retrospective motion study. We have developed an effective motion extraction approach and a machine-learning-based algorithm to estimate the ADMT. Eleven patients with 22 sets of 4DCT images (4DCT1 at simulation and 4DCT2 at treatment) were studied. After automatically segmenting the lungs, the differential volume-per-slice (dVPS) curves of the left and right lungs were calculated as a function of slice number for each phase with respective to the full-exhalation. After 5-slice moving average was performed, the discrete cosine transform (DCT) was applied to analyze the dVPS curves in frequency domain. The dimensionality of the spectrum data was reduced by using several lowest frequency coefficients ( f v ) to account for most of the spectrum energy (Σ f v 2 ). Multiple linear regression (MLR) method was then applied to determine the weights of these frequencies by fitting the ground truth-the measured ADMT, which are represented by three pivot points of the diaphragm on each side. The 'leave-one-out' cross validation method was employed to analyze the statistical performance of the prediction results in three image sets: 4DCT1, 4DCT2, and 4DCT1 + 4DCT2. Seven lowest frequencies in DCT domain were found to be sufficient to approximate the patient dVPS curves ( R = 91%-96% in MLR fitting). The mean error in the predicted ADMT using leave-one-out method was 0.3 ± 1.9 mm for the left-side diaphragm and 0.0 ± 1.4 mm for the right-side diaphragm. The prediction error is lower in 4DCT2 than 4DCT1, and is the lowest in 4DCT1 and 4DCT2 combined. This frequency-analysis-based machine learning technique was employed to predict the ADMT automatically with an acceptable error (0.2 ± 1.6 mm). This volumetric approach is not affected by the presence of the lung tumors, providing an automatic robust tool to evaluate diaphragm motion.

  18. Modal simulation of gearbox vibration with experimental correlation

    NASA Technical Reports Server (NTRS)

    Choy, Fred K.; Ruan, Yeefeng F.; Zakrajsek, James J.; Oswald, Fred B.

    1992-01-01

    A newly developed global dynamic model was used to simulate the dynamics of a gear noise rig at NASA Lewis Research Center. Experimental results from the test rig were used to verify the analytical model. In this global dynamic model, the number of degrees of freedom of the system are reduced by transforming the system equations of motion into modal coordinates. The vibration of the individual gear-shaft system are coupled through the gear mesh forces. A three-dimensional, axial-lateral coupled, bearing model was used to couple the casing structural vibration to the gear-rotor dynamics. The coupled system of modal equations is solved to predict the resulting vibration at several locations on the test rig. Experimental vibration data was compared to the predictions of the global dynamic model. There is excellent agreement between the vibration results from analysis and experiment.

  19. Newton's Principia: Myth and Reality

    NASA Astrophysics Data System (ADS)

    Smith, George

    2016-03-01

    Myths about Newton's Principia abound. Some of them, such as the myth that the whole book was initially developed using the calculus and then transformed into a geometric mathematics, stem from remarks he made during the priority controversy with Leibniz over the calculus. Some of the most persistent, and misleading, arose from failures to read the book with care. Among the latter are the myth that he devised his theory of gravity in order to explain the already established ``laws'' of Kepler, and that in doing so he took himself to be establishing that Keplerian motion is ``absolute,'' if not with respect to ``absolute space,'' then at least with respect to the fixed stars taken as what came later to be known as an inertial frame. The talk will replace these two myths with the reality of what Newton took himself to have established.

  20. Localization of toroidal motion and shear heating in 3-D high Rayleigh number convection with temperature-dependent viscosity

    NASA Technical Reports Server (NTRS)

    Balachandar, S.; Yuen, D. A.; Reuteler, D. M.

    1995-01-01

    We have applied spectral-transform methods to study three-dimensional thermal convection with temperature-dependent viscosity. The viscosity varies exponentially with the form exp(-BT), where B controls the viscosity contrast and T is temperature. Solutions for high Rayleigh numbers, up to an effective Ra of 6.25 x 10(exp 6), have been obtained for an aspect-ratio of 5x5x1 and a viscosity contrast of 25. Solutions show the localization of toroidal velocity fields with increasing vigor of convection to a coherent network of shear-zones. Viscous dissipation increases with Rayleigh number and is particularly strong in regions of convergent flows and shear deformation. A time-varying depth-dependent mean-flow is generated because of the correlation between laterally varying viscosity and velocity gradients.

  1. [Tumor thrombus arising from the superior vena cava and extending into the right atrium in a patient with advanced testicular germ cell tumor].

    PubMed

    Miyake, Makito; Fujimoto, Kiyohide; Matsushita, Chie; Chihara, Yoshitomo; Tanaka, Masahiro; Hirayama, Akihide; Hirao, Yoshihiko; Uemura, Hirotsugu

    2009-06-01

    A 24-year-old man was referred to our hospital with a painless mass on the left side of his neck. Ultrasonography detected right testicular tumor and computerized tomography scanning revealed a left supraclavicular lymph node mass and bulky retroperitoneal lymph node mass. He initially underwent right high orchiectomy, combination chemotherapy and retroperitoneal lymph node dissection for advanced testicular non-seminomatous germ cell tumor. Six years later, late relapse was detected in the lung. After complete remission of the lung metastasis with chemotherapy, the serum alpha-fetoprotein began to increase because of superior vena caval thrombus extending into the right atrium. Emergency surgical excision was performed successfully using extracorporeal circulation to prevent pulmonary embolism and the resected specimen pathologically revealed adenocarcinoma interpreted as teratoma malignant transformation. Adjuvant chemotherapy consisting of paclitaxel, ifosfamide and nedaplatin were administered for subsequent slight elevation of serum F-human chorionic gonadotropin beta, resulting in successful normalization again. Later, he suddenly died of cerebral infarction without any evidence of recurrence 138 months after his initial presentation. We report herein an extremely uncommon case of advanced testicular germ cell tumor with development of superior vena caval thrombus extending into the right atrium.

  2. Tectonic interpretation of the Andrew Bain transform fault: Southwest Indian Ocean

    NASA Astrophysics Data System (ADS)

    Sclater, John G.; Grindlay, Nancy R.; Madsen, John A.; Rommevaux-Jestin, Celine

    2005-09-01

    Between 25°E and 35°E, a suite of four transform faults, Du Toit, Andrew Bain, Marion, and Prince Edward, offsets the Southwest Indian Ridge (SWIR) left laterally 1230 km. The Andrew Bain, the largest, has a length of 750 km and a maximum transform domain width of 120 km. We show that, currently, the Nubia/Somalia plate boundary intersects the SWIR east of the Prince Edward, placing the Andrew Bain on the Nubia/Antarctica plate boundary. However, the overall trend of its transform domain lies 10° clockwise of the predicted direction of motion for this boundary. We use four transform-parallel multibeam and magnetic anomaly profiles, together with relocated earthquakes and focal mechanism solutions, to characterize the morphology and tectonics of the Andrew Bain. Starting at the southwestern ridge-transform intersection, the relocated epicenters follow a 450-km-long, 20-km-wide, 6-km-deep western valley. They cross the transform domain within a series of deep overlapping basins bounded by steep inward dipping arcuate scarps. Eight strike-slip and three dip-slip focal mechanism solutions lie within these basins. The earthquakes can be traced to the northeastern ridge-transform intersection via a straight, 100-km-long, 10-km-wide, 4.5-km-deep eastern valley. A striking set of seismically inactive NE-SW trending en echelon ridges and valleys, lying to the south of the overlapping basins, dominates the eastern central section of the transform domain. We interpret the deep overlapping basins as two pull-apart features connected by a strike-slip basin that have created a relay zone similar to those observed on continental transforms. This transform relay zone connects three closely spaced overlapping transform faults in the southwest to a single transform fault in the northeast. The existence of the transform relay zone accounts for the difference between the observed and predicted trend of the Andrew Bain transform domain. We speculate that between 20 and 3.2 Ma, an oblique accretionary zone jumping successively northward created the en echelon ridges and valleys in the eastern central portion of the domain. The style of accretion changed to that of a transform relay zone, during a final northward jump, at 3.2 Ma.

  3. CT measurement of range of motion of ankle and subtalar joints following two lateral column lengthening procedures.

    PubMed

    Beimers, Lijkele; Louwerens, Jan W K; Tuijthof, Gabrielle Josephine Maria; Jonges, Remmet; van Dijk, C N Niek; Blankevoort, Leendert

    2012-05-01

    Lateral column lengthening (LCL) has become an accepted procedure for the operative treatment of the flexible flatfoot deformity. Hindfoot arthrodesis via a calcaneocuboid distraction arthrodesis (CCDA) has been considered a less favourable surgical option than the anterior open wedge calcaneal distraction osteotomy (ACDO), as CCDA has been associated with reduced hindfoot joint motion postoperatively. The ankle and subtalar joint ranges of motion were measured in patients who underwent an ACDO or CCDA procedure for flatfoot deformity. CT scanning was performed with the foot in extreme positions in five ACDO and five CCDA patients. A bone segmentation and registration technique for the tibia, talus and calcaneus was applied to the CT images. Finite helical axis (FHA) rotations representing the range of motion of the joints were calculated for the motion between opposite extreme foot positions of the tibia and the calcaneus relative to the talus. The maximum mean FHA rotation of the ankle joint (for extreme dorsiflexion to extreme plantarflexion) after ACDO was 52.2 degrees ± 12.4 degrees and after CCDA 49.0 degrees ± 12.0 degrees. Subtalar joint maximum mean FHA rotation (for extreme eversion to extreme inversion) following ACDO was 22.8 degrees ± 8.6 degrees, and following CCDA 24.4 degrees ± 7.6 degrees. An accurate CT-based technique was used to assess the range of motion of the ankle and subtalar joints following two lateral column lengthening procedures for flatfoot deformity. Comparable results with a considerable amount of variance were found for the range of motion following the ACDO and CCDA procedures.

  4. EEG-based learning system for online motion sickness level estimation in a dynamic vehicle environment.

    PubMed

    Lin, Chin-Teng; Tsai, Shu-Fang; Ko, Li-Wei

    2013-10-01

    Motion sickness is a common experience for many people. Several previous researches indicated that motion sickness has a negative effect on driving performance and sometimes leads to serious traffic accidents because of a decline in a person's ability to maintain self-control. This safety issue has motivated us to find a way to prevent vehicle accidents. Our target was to determine a set of valid motion sickness indicators that would predict the occurrence of a person's motion sickness as soon as possible. A successful method for the early detection of motion sickness will help us to construct a cognitive monitoring system. Such a monitoring system can alert people before they become sick and prevent them from being distracted by various motion sickness symptoms while driving or riding in a car. In our past researches, we investigated the physiological changes that occur during the transition of a passenger's cognitive state using electroencephalography (EEG) power spectrum analysis, and we found that the EEG power responses in the left and right motors, parietal, lateral occipital, and occipital midline brain areas were more highly correlated to subjective sickness levels than other brain areas. In this paper, we propose the use of a self-organizing neural fuzzy inference network (SONFIN) to estimate a driver's/passenger's sickness level based on EEG features that have been extracted online from five motion sickness-related brain areas, while either in real or virtual vehicle environments. The results show that our proposed learning system is capable of extracting a set of valid motion sickness indicators that originated from EEG dynamics, and through SONFIN, a neuro-fuzzy prediction model, we successfully translated the set of motion sickness indicators into motion sickness levels. The overall performance of this proposed EEG-based learning system can achieve an average prediction accuracy of ~82%.

  5. Effect of lateral offset center of rotation in reverse total shoulder arthroplasty: a biomechanical study.

    PubMed

    Henninger, Heath B; Barg, Alexej; Anderson, Andrew E; Bachus, Kent N; Burks, Robert T; Tashjian, Robert Z

    2012-09-01

    Lateral offset center of rotation (COR) reduces the incidence of scapular notching and potentially increases external rotation range of motion (ROM) after reverse total shoulder arthroplasty (rTSA). The purpose of this study was to determine the biomechanical effects of changing COR on abduction and external rotation ROM, deltoid abduction force, and joint stability. A biomechanical shoulder simulator tested cadaveric shoulders before and after rTSA. Spacers shifted the COR laterally from baseline rTSA by 5, 10, and 15 mm. Outcome measures of resting abduction and external rotation ROM, and abduction and dislocation (lateral and anterior) forces were recorded. Resting abduction increased 20° vs native shoulders and was unaffected by COR lateralization. External rotation decreased after rTSA and was unaffected by COR lateralization. The deltoid force required for abduction significantly decreased 25% from native to baseline rTSA. COR lateralization progressively eliminated this mechanical advantage. Lateral dislocation required significantly less force than anterior dislocation after rTSA, and both dislocation forces increased with lateralization of the COR. COR lateralization had no influence on ROM (adduction or external rotation) but significantly increased abduction and dislocation forces. This suggests the lower incidence of scapular notching may not be related to the amount of adduction deficit after lateral offset rTSA but may arise from limited impingement of the humeral component on the lateral scapula due to a change in joint geometry. Lateralization provides the benefit of increased joint stability, but at the cost of increasing deltoid abduction forces. Copyright © 2012 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Mosby, Inc. All rights reserved.

  6. Fuzzy chaos control for vehicle lateral dynamics based on active suspension system

    NASA Astrophysics Data System (ADS)

    Huang, Chen; Chen, Long; Jiang, Haobin; Yuan, Chaochun; Xia, Tian

    2014-07-01

    The existing research of the active suspension system (ASS) mainly focuses on the different evaluation indexes and control strategies. Among the different components, the nonlinear characteristics of practical systems and control are usually not considered for vehicle lateral dynamics. But the vehicle model has some shortages on tyre model with side-slip angle, road adhesion coefficient, vertical load and velocity. In this paper, the nonlinear dynamic model of lateral system is considered and also the adaptive neural network of tire is introduced. By nonlinear analysis methods, such as the bifurcation diagram and Lyapunov exponent, it has shown that the lateral dynamics exhibits complicated motions with the forward speed. Then, a fuzzy control method is applied to the lateral system aiming to convert chaos into periodic motion using the linear-state feedback of an available lateral force with changing tire load. Finally, the rapid control prototyping is built to conduct the real vehicle test. By comparison of time response diagram, phase portraits and Lyapunov exponents at different work conditions, the results on step input and S-shaped road indicate that the slip angle and yaw velocity of lateral dynamics enter into stable domain and the results of test are consistent to the simulation and verified the correctness of simulation. And the Lyapunov exponents of the closed-loop system are becoming from positive to negative. This research proposes a fuzzy control method which has sufficient suppress chaotic motions as an effective active suspension system.

  7. Automated ultrasound scanning on a dual-modality breast imaging system: coverage and motion issues and solutions.

    PubMed

    Sinha, Sumedha P; Goodsitt, Mitchell M; Roubidoux, Marilyn A; Booi, Rebecca C; LeCarpentier, Gerald L; Lashbrook, Christine R; Thomenius, Kai E; Chalek, Carl L; Carson, Paul L

    2007-05-01

    We are developing an automated ultrasound imaging-mammography system wherein a digital mammography unit has been augmented with a motorized ultrasound transducer carriage above a special compression paddle. Challenges of this system are acquiring complete coverage of the breast and minimizing motion. We assessed these problems and investigated methods to increase coverage and stabilize the compressed breast. Visual tracings of the breast-to-paddle contact area and breast periphery were made for 10 patients to estimate coverage area. Various motion artifacts were evaluated in 6 patients. Nine materials were tested for coupling the paddle to the breast. Fourteen substances were tested for coupling the transducer to the paddle in lateral-to-medial and medial-to-lateral views and filling the gap between the peripheral breast and paddle. In-house image registration software was used to register adjacent ultrasound sweeps. The average breast contact area was 56%. The average percentage of the peripheral air gap filled with ultrasound gel was 61%. Shallow patient breathing proved equivalent to breath holding, whereas speech and sudden breathing caused unacceptable artifacts. An adhesive spray that preserves image quality was found to be best for coupling the breast to the paddle and minimizing motion. A highly viscous ultrasound gel proved most effective for coupling the transducer to the paddle for lateral-to-medial and medial-to-lateral views and for edge fill-in. The challenges of automated ultrasound scanning in a multimodality breast imaging system have been addressed by developing methods to fill in peripheral gaps, minimize patient motion, and register and reconstruct multisweep ultrasound image volumes.

  8. Three-dimensional knee motion before and after high tibial osteotomy for medial knee osteoarthritis.

    PubMed

    Takemae, Takashi; Omori, Go; Nishino, Katsutoshi; Terajima, Kazuhiro; Koga, Yoshio; Endo, Naoto

    2006-11-01

    High tibial osteotomy (HTO) is an established surgical option for treating medial knee osteoarthritis. HTO moves the mechanical load on the knee joint from the medial compartment to the lateral compartment by changing the leg alignment, but the effects of the operation remain unclear. The purpose of this study was to evaluate the change in three-dimensional knee motion before and after HTO, focusing on lateral thrust and screw home movement, and to investigate the relationship between the change in knee motion and the clinical results. A series of 19 patients with medial knee osteoarthritis who had undergone HTO were evaluated. We performed a clinical assessment, radiological evaluation, and motion analysis at 2.4 years postoperatively. The clinical assessment was performed using the Japanese Orthopaedic Association knee score. The score was significantly improved in all patients after operation. Motion analysis revealed that lateral thrust, which was observed in 18 of the 20 knees before operation, was reduced to 7 knees after operation. Regarding active terminal extension of the knee, three patterns of rotational movement were observed before operation: screw home movement (external rotation), reverse screw home movement (internal rotation), and no rotation. By contrast, after operation, only reverse screw home movement and no rotation were observed; the screw home movement disappeared in all patients. In the knees with reverse screw home movement after operation, the preoperative score was significantly lower than those in the knees with no rotation after operation. Kinetically, HTO was useful for suppressing lateral thrust in medial knee osteoarthritis, although the rotational movement of the knee joint was unchanged.

  9. Contemporary horizontal crustal movement estimation for northwestern Vietnam inferred from repeated GPS measurements

    NASA Astrophysics Data System (ADS)

    Duong, Nguyen Anh; Sagiya, Takeshi; Kimata, Fumiaki; To, Tran Dinh; Hai, Vy Quoc; Cong, Duong Chi; Binh, Nguyen Xuan; Xuyen, Nguyen Dinh

    2013-12-01

    We present a horizontal velocity field determined from a GPS network with 22 sites surveyed from 2001 to 2012 in northwestern Vietnam. The velocity is accurately estimated at each site by fitting a linear trend to each coordinate time series, after accounting for coseismic displacements caused by the 2004 Sumatra and the 2011 Tohoku earthquakes using static fault models. Considering the coseismic effects of the earthquakes, the motion of northwestern Vietnam is 34.3 ± 0.7 mm/yr at an azimuth of N108° ± 0.7°E in ITRF2008. This motion is close to, but slightly different from, that of the South China block. The area is in a transition zone between this block, the Sundaland block, and the Baoshan sub-block. At the local scale, a detailed estimation of the crustal deformation across major fault zones is geodetically revealed for the first time. We identify a locking depth of 15.3 ± 9.8 km with an accumulating left-lateral slip rate of 1.8 ± 0.3 mm/yr for the Dien Bien Phu fault, and a shallow locking depth with a right-lateral slip rate of 1.0 ± 0.6 mm/yr for the Son La and Da River faults.

  10. Assessment of neck pain and cervical mobility among female computer workers at Hail University.

    PubMed

    Mohammad, Walaa S; Hamza, Hayat H; ElSais, Walaa M

    2015-01-01

    The aims of this study were to investigate the prevalence of neck pain among computer workers at Hail University, Saudi Arabia and to compare the cervical range of motion (ROM) of female computer workers suffering from neck pain to the cervical ROM of healthy female computer workers. One hundred and seventy-six female volunteers between 20 and 46 years of age were investigated. Fifty-six of these volunteers were staff members, 22 were administrators and 98 were students. The Cervical Range of Motion (CROM) instrument was used to measure the ROM of the cervical spine. A questionnaire was used to assess participants for the presence of neck pain. The data were analyzed using the Statistical Package for Social Sciences (SPSS) software, and the level of significant was set at p < .05 for all statistical tests. There was a high prevalence of neck pain (75%) among computer workers at Hail University, particularly among students. There were significant differences in cervical lateral flexion, rotation to the right side and protraction range between the pain and pain-free groups. Our results demonstrated that cervical ROM measurements, particularly cervical lateral flexion, rotation and protraction, could be useful for predicting changes in head and neck posture after long-term computer work.

  11. Effects of frontal and sagittal thorax attitudes in gait on trunk and pelvis three-dimensional kinematics.

    PubMed

    Begon, Mickaël; Leardini, Alberto; Belvedere, Claudio; Farahpour, Nader; Allard, Paul

    2015-10-01

    While sagittal trunk inclinations alter upper body biomechanics, little is known about the extent of frontal trunk bending on upper body and pelvis kinematics in adults during gait and its relation to sagittal trunk inclinations. The objective was to determine the effect of the mean lateral trunk attitude on upper body and pelvis three-dimensional kinematics during gait in asymptomatic subjects. Three gait cycles were collected in 30 subjects using a motion analysis system (Vicon 612) and an established protocol. Sub-groups were formed based on the mean thorax lateral bending angle, bending side, and also sagittal tilt. These were compared based on 38 peak angles identified on pelvis, thorax and shoulder kinematics using MANOVAs. A main effect for bending side (p = 0.038) was found, especially for thorax peak angles. Statistics revealed also a significant interaction (p = 0.04993) between bending side and tilt for the thorax sagittal inclination during body-weight transfer. These results reinforce the existence of different gait patterns, which correlate upper body and pelvis motion measures. The results also suggest that frontal and sagittal trunk attitude should be considered carefully when treating a patient with impaired gait. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  12. Deformation in the Yakataga seismic gap, Southern Alaska, 1980- 1986 ( USA).

    USGS Publications Warehouse

    Savage, J.C.; Lisowski, M.

    1988-01-01

    A 60-by-40-km trilateration network in the Yakataga seismic gap was surveyed in 1980, 1982, 1984, and 1986 with precise electro-optical distance-measuring equipment to measure strain accumulation. The overall deformation is roughly approximated by a 0.24+ or -0.03 mu strain/yr N32oW+ or -2.4o uniaxial contraction that is uniform in time. However, the spatial distribution of deformation shows some concentration of convergence in the neighbourhood of the Chugach-St. Elias fault and of right-lateral shear across the Contact fault. A simple dislocation model of the plate interaction in the Yakataga gap fits the observed deformation reasonably well but seems to require that the motion of the Pacific plate relative to the North American plate be directed more nearly N36oW than N15oW, the generally accepted direction of relative motion for this location. However, the direction of plate motion inferred from the dislocation model depends upon details of the interaction at the plate boundary that may not have been modeled accurately. A nearby but smaller trilateration network at Icy Bay was surveyed in 1982, 1984, and 1986. This network spans the SW corner of the rupture zone of the 1979 St. Elias earthquake. The deformation at Icy Bay consists of left-lateral shear across a NE trending zone. The relation of this deformation to strain accumulation in the Yakataga gap, postseismic relaxation associated with the 1979 earthquake, or rebound from the unloading associated with the rapid recession of the Guyot glacier is not understood.-Authors

  13. Astypalaea Linea: A Large-Scale Strike-Slip Fault on Europa

    NASA Astrophysics Data System (ADS)

    Tufts, B. Randall; Greenberg, Richard; Hoppa, Gregory; Geissler, Paul

    1999-09-01

    Astypalaea Linea is an 810-km strike-slip fault, located near the south pole of Europa. In length, it rivals the San Andreas Fault in California, and it is the largest strike-slip fault yet known on Europa. The fault was discovered using Voyager 2 images, based upon the presence of familiar strike-slip features including linearity, pull-aparts, and possible braids, and upon the offset of multiple piercing points. Fault displacement is 42 km, right-lateral, in the southern and central parts and probably throughout. Pull-aparts present along the fault trace probably are gaps in the lithosphere bounded by vertical cracks, and which opened due to fault motion and filled with material from below. Crosscutting relationships suggest the fault to be of intermediate relative age. The fault may have initiated as a crack due to tension from combined diurnal tides and nonsynchronous rotation, according to the tectonic model of R. Greenberg et al. (1998a, Icarus135, 64-78). Under the influence of varying diurnal tides, strike-slip offset may have occurred through a process called “walking,” which depends upon an inelastic lithospheric response to displacement. Alternatively, fault displacement may have been driven by currents in the theorized Europan ocean, which may have created simple shear structures such as braids. The discovery of Astypalaea Linea extends the geographical range of lateral motion on Europa. Such motion requires the presence of a decoupling zone of ductile ice or liquid water, a sufficiently rigid lithosphere, and a mechanism to consume surface area.

  14. Stress distribution along the Fairweather-Queen Charlotte transform fault system

    USGS Publications Warehouse

    Bufe, C.G.

    2005-01-01

    Tectonic loading and Coulomb stress transfer are modeled along the right-lateral Fairweather-Queen Charlotte transform fault system using a threedimensional boundary element program. The loading model includes slip below 12 km along the transform as well as motion of the Pacific plate, and it is consistent with most available Global Positioning System (GPS) displacement rate data. Coulomb stress transfer is shown to have been a weak contributing factor in the failure of the southeastern (Sitka) segment of the Fairweather fault in 1972, hastening the occurrence of the earthquake by only about 8 months. Failure of the Sitka segment was enhanced by a combination of cumulative loading from below (95%) by slip of about 5 cm/yr since 1848, by stress transfer (about 1%) from major earthquakes on straddling segments of the Queen Charlotte fault (M 8.1 in 1949) and the Fairweather fault (M 7.8 in 1958), and by viscoelastic relaxation (about 4%) following the great 1964 Alaska earthquake, modeled by Pollitz et al. (1998). Cumulative stress increases in excess of 7 MPa at a depth of 8 km are projected prior to the M 7.6 earthquake. Coulomb stress transferred by the rupture of the great M 9.2 Alaska earthquake in 1964 (Bufe, 2004a) also hastened the occurrence of the 1972 event, but only by a month or two. Continued tectonic loading over the last half century and stress transfer from the M 7.6 Sitka event has resulted in restressing of the adjacent segments by about 3 MPa at 8 km depth. The occurrence of a M 6.8 earthquake on the northwestern part of the Queen Charlotte fault on 28 June 2004, the largest since 1949, also suggests increased stress. The Cape St. James segment of the fault immediately southeast of the 1949 Queen Charlotte rupture has accumulated about 6 MPa at 8 km through loading since 1900 and stress transfer in 1949. A continued rise in earthquake hazard is indicated for the Alaska panhandle and Queen Charlotte Islands region in the decades ahead as the potential for damaging earthquakes increases.

  15. Ground motion attenuation during M 7.1 Darfield and M 6.2 Christchurch, New Zealand, earthquakes and performance of global Ppedictive models

    USGS Publications Warehouse

    Segou, Margaret; Kalkan, Erol

    2011-01-01

    The M 7.1 Darfield earthquake occurred 40 km west of Christchurch (New Zealand) on 4 September 2010. Six months after, the city was struck again with an M 6.2 event on 22 February local time (21 February UTC). These events resulted in significant damage to infrastructure in the city and its suburbs. The purpose of this study is to evaluate the performance of global predictive models (GMPEs) using the strong motion data obtained from these two events to improve future seismic hazard assessment and building code provisions for the Canterbury region.The Canterbury region is located on the boundary between the Pacific and Australian plates; its surface expression is the active right lateral Alpine fault (Berryman et al. 1993). Beneath the North Island and the north South Island, the Pacific plate subducts obliquely under the Australian plate, while at the southwestern part of the South Island, a reverse process takes place. Although New Zealand has experienced several major earthquakes in the past as a result of its complex seismotectonic environment (e.g., M 7.1 1888 North Canterbury, M 7.0 1929 Arthur's Pass, and M 6.2 1995 Cass), there was no evidence of prior seismic activity in Christchurch and its surroundings before the September event. The Darfield and Christchurch earthquakes occurred along the previously unmapped Greendale fault in the Canterbury basin, which is covered by Quaternary alluvial deposits (Forsyth et al. 2008). In Figure 1, site conditions of the Canterbury epicentral area are depicted on a VS30 map. This map was determined on the basis of topographic slope calculated from a 1-km grid using the method of Allen and Wald (2007). Also shown are the locations of strong motion stations.The Darfield event was generated as a result of a complex rupture mechanism; the recordings and geodetic data reveal that earthquake consists of three sub-events (Barnhart et al. 2011, page 815 of this issue). The first event was due to rupturing of a blind reverse fault with M 6.2, followed by a second event (M 6.9), releasing the largest portion of the energy on the right-lateral Greendale fault. The third sub-event (M 5.7) is due to a reverse fault with a right-lateral component (Holden et al. 2011). The Christchurch earthquake occurred on an oblique thrust fault. The comparison of spectral acceleration values at stations near Christchurch reveals that the second event produced much larger amplitudes of shaking than the Darfield event due to its proximity to the epicenter. Both events resulted in noticeably large amplitudes of the vertical motion, often exceeding horizontal motion in the near-fault area. The vertical motions, showing asymmetric acceleration traces and pulses, reached 1.26 g during the Darfield earthquake and 2.2 g during the Christchurch event. These events were recorded by more than 100 strong motion stations operated by the Institute of Geological and Nuclear Sciences (http://www.geonet.org.nz/). Using the processed data from these stations, peak ground acceleration (PGA) and 5%-damped spectral acceleration values at 0.3, 1, and 3 s are used for performance evaluation of the global ground motion predictive equations (GMPEs). The selected GMPEs are the Next Generation Attenuation (NGA) models of Abrahamson and Silva (2008), Boore and Atkinson (2008), Campbell and Bozorgnia (2008), and Chiou and Youngs (2008). The Graizer and Kalkan (2007, 2009) model, which is based on the NGA project database, is also included. These GMPEs are abbreviated respectively as AS08, BA08, CB08, CY08, and GK07. Because they have been used widely for seismic hazard analysis for crustal earthquakes, their performance assessment becomes a critical issue especially for immediate response and recovery planning after major events. The occurrence of aftershocks similar to the Christchurch event will most probably control seismic hazard in the broader area, as confirmed by the recent M 6.0 event on June 13, 2011.

  16. 75 FR 45478 - Safety Zone; Transformers 3 Movie Filming, Chicago River, Chicago, IL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-03

    ...-AA00 Safety Zone; Transformers 3 Movie Filming, Chicago River, Chicago, IL AGENCY: Coast Guard, DHS... portion of the Chicago River due to the filming of a major motion picture, Transformers 3. These temporary..., Transformers 3. The Captain of the Port, Sector Lake Michigan, has determined that the stunts associated with...

  17. Comparison of erector spinae and hamstring muscle activities and lumbar motion during standing knee flexion in subjects with and without lumbar extension rotation syndrome.

    PubMed

    Kim, Si-hyun; Kwon, Oh-yun; Park, Kyue-nam; Kim, Moon-Hwan

    2013-12-01

    The aim of this study was to compare the activity of the erector spinae (ES) and hamstring muscles and the amount and onset of lumbar motion during standing knee flexion between individuals with and without lumbar extension rotation syndrome. Sixteen subjects with lumbar extension rotation syndrome (10 males, 6 females) and 14 healthy subjects (8 males, 6 females) participated in this study. During the standing knee flexion, surface electromyography (EMG) was used to measure muscle activity, and surface EMG electrodes were attached to both the ES and hamstring (medial and lateral) muscles. A three-dimensional motion analysis system was used to measure kinematic data of the lumbar spine. An independent-t test was conducted for the statistical analysis. The group suffering from lumbar extension rotation syndrome exhibited asymmetric muscle activation of the ES and decreased hamstring activity. Additionally, the group with lumbar extension rotation syndrome showed greater and earlier lumbar extension and rotation during standing knee flexion compared to the control group. These data suggest that asymmetric ES muscle activation and a greater amount of and earlier lumbar motion in the sagittal and transverse plane during standing knee flexion may be an important factor contributing to low back pain. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Frontal plane multi-segment foot kinematics in high- and low-arched females during dynamic loading tasks.

    PubMed

    Powell, Douglas W; Long, Benjamin; Milner, Clare E; Zhang, Songning

    2011-02-01

    The functions of the medial longitudinal arch have been the focus of much research in recent years. Several studies have shown kinematic differences between high- and low-arched runners. No literature currently compares the inter-segmental foot motion of high- and low-arched recreational athletes. The purpose of this study was to examine inter-segmental foot motion in the frontal plane during dynamic loading activities in high- and low-arched female athletes. Inter-segmental foot motions were examined in 10 high- and 10 low-arched female recreational athletes. Subjects performed five barefooted trials in each of the following randomized movements: walking, running, downward stepping and landing. Three-dimensional kinematic data were recorded. High-arched athletes had smaller peak ankle eversion angles in walking, running and downward stepping than low-arched athletes. At the rear-midfoot joint high-arched athletes reached peak eversion later in walking and downward stepping than the low-arched athletes. The high-arched athletes had smaller peak mid-forefoot eversion angles in walking, running and downward stepping than the low-arched athletes. The current findings show that differences in foot kinematics between the high- and low-arched athletes were in position and not range of motion within the foot. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. Motion detection using extended fractional Fourier transform and digital speckle photography.

    PubMed

    Bhaduri, Basanta; Tay, C J; Quan, C; Sheppard, Colin J R

    2010-05-24

    Digital speckle photography is a useful tool for measuring the motion of optically rough surfaces from the speckle shift that takes place at the recording plane. A simple correlation based digital speckle photographic system has been proposed that implements two simultaneous optical extended fractional Fourier transforms (EFRTs) of different orders using only a single lens and detector to simultaneously detect both the magnitude and direction of translation and tilt by capturing only two frames: one before and another after the object motion. The dynamic range and sensitivity of the measurement can be varied readily by altering the position of the mirror/s used in the optical setup. Theoretical analysis and experiment results are presented.

  20. Optical head tracking for functional magnetic resonance imaging using structured light.

    PubMed

    Zaremba, Andrei A; MacFarlane, Duncan L; Tseng, Wei-Che; Stark, Andrew J; Briggs, Richard W; Gopinath, Kaundinya S; Cheshkov, Sergey; White, Keith D

    2008-07-01

    An accurate motion-tracking technique is needed to compensate for subject motion during functional magnetic resonance imaging (fMRI) procedures. Here, a novel approach to motion metrology is discussed. A structured light pattern specifically coded for digital signal processing is positioned onto a fiduciary of the patient. As the patient undergoes spatial transformations in 6 DoF (degrees of freedom), a high-resolution CCD camera captures successive images for analysis on a computing platform. A high-speed image processing algorithm is used to calculate spatial transformations in a time frame commensurate with patient movements (10-100 ms) and with a precision of at least 0.5 microm for translations and 0.1 deg for rotations.

  1. A Rotational Motion Perception Neural Network Based on Asymmetric Spatiotemporal Visual Information Processing.

    PubMed

    Hu, Bin; Yue, Shigang; Zhang, Zhuhong

    All complex motion patterns can be decomposed into several elements, including translation, expansion/contraction, and rotational motion. In biological vision systems, scientists have found that specific types of visual neurons have specific preferences to each of the three motion elements. There are computational models on translation and expansion/contraction perceptions; however, little has been done in the past to create computational models for rotational motion perception. To fill this gap, we proposed a neural network that utilizes a specific spatiotemporal arrangement of asymmetric lateral inhibited direction selective neural networks (DSNNs) for rotational motion perception. The proposed neural network consists of two parts-presynaptic and postsynaptic parts. In the presynaptic part, there are a number of lateral inhibited DSNNs to extract directional visual cues. In the postsynaptic part, similar to the arrangement of the directional columns in the cerebral cortex, these direction selective neurons are arranged in a cyclic order to perceive rotational motion cues. In the postsynaptic network, the delayed excitation from each direction selective neuron is multiplied by the gathered excitation from this neuron and its unilateral counterparts depending on which rotation, clockwise (cw) or counter-cw (ccw), to perceive. Systematic experiments under various conditions and settings have been carried out and validated the robustness and reliability of the proposed neural network in detecting cw or ccw rotational motion. This research is a critical step further toward dynamic visual information processing.All complex motion patterns can be decomposed into several elements, including translation, expansion/contraction, and rotational motion. In biological vision systems, scientists have found that specific types of visual neurons have specific preferences to each of the three motion elements. There are computational models on translation and expansion/contraction perceptions; however, little has been done in the past to create computational models for rotational motion perception. To fill this gap, we proposed a neural network that utilizes a specific spatiotemporal arrangement of asymmetric lateral inhibited direction selective neural networks (DSNNs) for rotational motion perception. The proposed neural network consists of two parts-presynaptic and postsynaptic parts. In the presynaptic part, there are a number of lateral inhibited DSNNs to extract directional visual cues. In the postsynaptic part, similar to the arrangement of the directional columns in the cerebral cortex, these direction selective neurons are arranged in a cyclic order to perceive rotational motion cues. In the postsynaptic network, the delayed excitation from each direction selective neuron is multiplied by the gathered excitation from this neuron and its unilateral counterparts depending on which rotation, clockwise (cw) or counter-cw (ccw), to perceive. Systematic experiments under various conditions and settings have been carried out and validated the robustness and reliability of the proposed neural network in detecting cw or ccw rotational motion. This research is a critical step further toward dynamic visual information processing.

  2. Exact Fan-Beam Reconstruction With Arbitrary Object Translations and Truncated Projections

    NASA Astrophysics Data System (ADS)

    Hoskovec, Jan; Clackdoyle, Rolf; Desbat, Laurent; Rit, Simon

    2016-06-01

    This article proposes a new method for reconstructing two-dimensional (2D) computed tomography (CT) images from truncated and motion contaminated sinograms. The type of motion considered here is a sequence of rigid translations which are assumed to be known. The algorithm first identifies the sufficiency of angular coverage in each 2D point of the CT image to calculate the Hilbert transform from the local “virtual” trajectory which accounts for the motion and the truncation. By taking advantage of data redundancy in the full circular scan, our method expands the reconstructible region beyond the one obtained with chord-based methods. The proposed direct reconstruction algorithm is based on the Differentiated Back-Projection with Hilbert filtering (DBP-H). The motion is taken into account during backprojection which is the first step of our direct reconstruction, before taking the derivatives and inverting the finite Hilbert transform. The algorithm has been tested in a proof-of-concept study on Shepp-Logan phantom simulations with several motion cases and detector sizes.

  3. Real-time motion compensated patient positioning and non-rigid deformation estimation using 4-D shape priors.

    PubMed

    Wasza, Jakob; Bauer, Sebastian; Hornegger, Joachim

    2012-01-01

    Over the last years, range imaging (RI) techniques have been proposed for patient positioning and respiration analysis in motion compensation. Yet, current RI based approaches for patient positioning employ rigid-body transformations, thus neglecting free-form deformations induced by respiratory motion. Furthermore, RI based respiration analysis relies on non-rigid registration techniques with run-times of several seconds. In this paper we propose a real-time framework based on RI to perform respiratory motion compensated positioning and non-rigid surface deformation estimation in a joint manner. The core of our method are pre-procedurally obtained 4-D shape priors that drive the intra-procedural alignment of the patient to the reference state, simultaneously yielding a rigid-body table transformation and a free-form deformation accounting for respiratory motion. We show that our method outperforms conventional alignment strategies by a factor of 3.0 and 2.3 in the rotation and translation accuracy, respectively. Using a GPU based implementation, we achieve run-times of 40 ms.

  4. Representation of virtual arm movements in precuneus.

    PubMed

    Dohle, Christian; Stephan, Klaus Martin; Valvoda, Jakob T; Hosseiny, Omid; Tellmann, Lutz; Kuhlen, Torsten; Seitz, Rüdiger J; Freund, Hans-Joachim

    2011-02-01

    Arm movements can easily be adapted to different biomechanical constraints. However, the cortical representation of the processing of visual input and its transformation into motor commands remains poorly understood. In a visuo-motor dissociation paradigm, subjects were presented with a 3-D computer-graphical representation of a human arm, presenting movements of the subjects' right arm either as right or left arm. In order to isolate possible effects of coordinate transformations, coordinate mirroring at the body midline was implemented independently. In each of the resulting four conditions, 10 normal, right-handed subjects performed three runs of circular movements, while being scanned with O(15)-Butanol-PET. Kinematic analysis included orientation and accuracy of a fitted ellipsoid trajectory. Imaging analysis was performed with SPM 99 with activations threshold at P < 0.0001 (not corrected). The shape of the trajectory was dependent on the laterality of the arm, irrespective of movement mirroring, and accompanied by a robust activation difference in the contralateral precuneus. Movement mirroring decreased movement accuracy, which was related to increased activation in the left insula. Those two movement conditions that cannot be observed in reality were related to an activation focus at the left middle temporal gyrus, but showed no influence on movement kinematics. These findings demonstrate the prominent role of the precuneus for mediating visuo-motor transformations and have implications for the use of mirror therapy and virtual reality techniques, especially avatars, such as Nintendo Wii in neurorehabilitation.

  5. The rigid-plate and shrinking-plate hypotheses: Implications for the azimuths of transform faults

    NASA Astrophysics Data System (ADS)

    Mishra, Jay Kumar; Gordon, Richard G.

    2016-08-01

    The rigid-plate hypothesis implies that oceanic lithosphere does not contract horizontally as it cools (hereinafter "rigid plate"). An alternative hypothesis, that vertically averaged tensional thermal stress in the competent lithosphere is fully relieved by horizontal thermal contraction (hereinafter "shrinking plate"), predicts subtly different azimuths for transform faults. The size of the predicted difference is as large as 2.44° with a mean and median of 0.46° and 0.31°, respectively, and changes sign between right-lateral (RL)-slipping and left-lateral (LL)-slipping faults. For the MORVEL transform-fault data set, all six plate pairs with both RL- and LL-slipping faults differ in the predicted sense, with the observed difference averaging 1.4° ± 0.9° (95% confidence limits), which is consistent with the predicted difference of 0.9°. The sum-squared normalized misfit, r, to global transform-fault azimuths is minimized for γ = 0.8 ± 0.4 (95% confidence limits), where γ is the fractional multiple of the predicted difference in azimuth between the shrinking-plate (γ = 1) and rigid-plate (γ = 0) hypotheses. Thus, observed transform azimuths differ significantly between RL-slipping and LL-slipping faults, which is inconsistent with the rigid-plate hypothesis but consistent with the shrinking-plate hypothesis, which indicates horizontal shrinking rates of 2% Ma-1 for newly created lithosphere, 1% Ma-1 for 0.1 Ma old lithosphere, 0.2% Ma-1 for 1 Ma old lithosphere, and 0.02% Ma-1 for 10 Ma old lithosphere, which are orders of magnitude higher than the mean intraplate seismic strain rate of 10-6 Ma-1 (5 × 10-19 s-1).

  6. Understanding Rigid Geometric Transformations: Jeff's Learning Path for Translation

    ERIC Educational Resources Information Center

    Yanik, Huseyin Bahadir; Flores, Alfinio

    2009-01-01

    This article describes the development of knowledge and understanding of translations of Jeff, a prospective elementary teacher, during a teaching experiment that also included other rigid transformations. His initial conceptions of translations and other rigid transformations were characterized as undefined motions of a single object. He…

  7. Asymptomatic non-union of capitate 14 years postfracture

    PubMed Central

    Hamed, Yosef; Ashwood, Neil; Fogg, Quentin; Galanopoulos, Ilias

    2013-01-01

    We report the unusual complication of non-union 14 years following a capitate fracture in a right-hand dominant man. Our patient fell and sustained an injury to his left wrist 14 years ago. At that time he had a swollen painful left wrist. His symptoms subsequently settled and he went back to his normal activities. He lost some power for bench-pressing and had slightly restricted range of motion but remained essentially pain-free. He presented 14 years later with another wrist injury when the original non-union was revealed. PMID:23761606

  8. Rapid intraplate strain accumulation in the New Madrid seismic zone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, L.; Zoback, M.D.; Segall, P.

    1992-09-01

    Remeasurement of a triangulation network in the southern part of the New Madrid seismic zone with the Global Positioning System has revealed rapid crustal strain accumulation since the 1950s. This area experienced three large (moment magnitudes greater than 8) earthquakes in 1811 to 1812. The orientation and sense of shear is consistent with right-lateral strike slip motion along a northeast-trending fault zone (as indicated by current seismicity). Detection of crustal strain accumulation may be a useful discriminant for identifying areas where potentially damaging intraplate earthquakes may occur despite the absence of large earthquakes during historic time. 34 refs.

  9. Management of Osseous and Soft-Tissue Ankle Equinus During Total Ankle Replacement.

    PubMed

    Roukis, Thomas S; Simonson, Devin C

    2015-10-01

    Obtaining functional alignment of a total ankle replacement, including physiologic sagittal plane range of motion, is paramount for a successful outcome. This article reviews the literature on techniques available for correction of osseous and soft-tissue equinus at the time of index total ankle replacement. These techniques include anterior tibiotalar joint cheilectomy, posterior superficial muscle compartment lengthening, posterior ankle capsule release, and release of the posterior portions of the medial and lateral collateral ligament complexes. The rationale for these procedures and the operative sequence of events for these procedures are presented. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Ridge-transform interaction and seismic behavior within the Tjörnes Fracture Zone, N-Iceland

    NASA Astrophysics Data System (ADS)

    Brandsdottir, B.; Magnusdottir, S.; Einarsson, P.; Gudmundsson, G.; Detrick, R. S.; Driscoll, N. W.

    2013-12-01

    High-resolution multibeam bathymetry and chirp profiling data have provided a new perspective on the structure and neotectonics of the onland-offshore Húsavík-Flatey Fault System (HFF) within the Tjörnes Fracture Zone (TFZ), N-Iceland. The TFZ comprises a broad right lateral transform zone made up of three major N-S striking extensional basins and three WNW-striking seismic lineaments, the dextral HFF, the Grímsey Oblique Rift Zone (GRZ) and the Dalvík Fault System (DF). The HFF connects the North Iceland Rift Zone (NIRZ) with the Eyjafjardaráll extensional basin (EB), the magma starved southern extension of the Kolbeinsey Ridge (KR) whereas the GRZ constitutes the offshore extension of the NIRZ with the KR. The HFF has an overall trend of N65°W and can be traced 75-80 km from its eastern junction with the NIRZ, across the Skjálfandi Bay and into the Eyjafjardaráll basin. Four pull-apart basins characterize the HFF, the largest at its intersection with the EB. En echelon arrays of conjugate strike-slip faults intersect the main HFF at angles of N20°-30°W and N20°E. Some can be traced onto land where they exhibit complicated flower patterns. Within the Skjálfandi Bay, the HFF is divided into two main branches, separated by a 70 m high N-S aligned push-up ridge and several smaller, sub-parallel WNW-trending faults. Individual fault strands have vertical displacement from 0-15 m. Large earthquakes occurred along the HFF in 1755, 1867, 1872 and 1884, the GRZ in 1884-1885 and 1910 and on the DF in 1838, 1934 and 1963. Some were destructive. A dextral transform offshore N-Iceland was initially based on diffuse earthquake epicenters and the M7, 1963 Skagafjördur earthquake. Data from the analog Iceland seismic network, established in the early 1970s, showed the TFZ microseismicity to be too diffuse to be associated with a simple oceanic transform fault. Recent seismicity within the TFZ consists of frequent earthquake swarms, lasting days or weeks with a maximum earthquake magnitude exceeding 5. Fault mechanisms reveal both normal faulting and strike-slip movements. The seismic data indicate that the HFF is flanked by bookshelf faulting both within the DF and the region between the HFF and GRZ, sometimes referred to as the Tjörnes microplate. Lateral dike propagation during the 1974-1989 Krafla rifting episode, within the NIRZ, activated adjacent transform zones, triggering the M 6.2 strike-slip Kópasker earthquake of January 13, 1976, at the junction of the NIRZ with the GRZ at the initiation and largest of the rifting events. During the propagation of the second largest rifting event, January 1978, the northward propagation along the Krafla fissure swarm was temporarily halted at the junction of the NIRZ with the HFF during which earthquakes began to propagate along the HFF, followed by continued northward propagation. Although transform motion within the TFZ is currently taken up by two parallel systems the Tjörnes microplate will merge with the North American plate as continued northward propagation of the divergent plate boundary gradually deactivates the HFF.

  11. [Research, design and application of model NSE-1 neck muscle training machine for pilots].

    PubMed

    Cheng, Haiping; Wang, Zhijie; Liu, Songyang; Yang, Yi; Zhao, Guang; Cong, Hong; Han, Xueping; Liu, Min; Yu, Mengsun

    2011-04-01

    Pain in the cervical region of air force pilots, who are exposed to high G-forces, is a specifically occupational health problem. To minimize neck problems, the cervical muscles need specific strength exercise. It is important that the training for the neck must be carried out with optimal resistance in exercises. The model NSE-1 neck training machine for pilots was designed for neck strengthening exercises under safe and effective conditions. In order to realize the functions of changeable velocity and resistant (CVR) training and neck isometric contractive exercises, the techniques of adaptive hydraulics, sensor, optic and auditory biological feedback, and signal processing were applied to this machine. The training system mainly consists of mechanical parts (including the chair of flexion and extension, the chair of right and left lateral flexion, the components of hydraulics and torque transformer, etc.), and the software of signal processing and biological feedback. Eleven volunteers were selected for the experiments of neck isometric contractive exercises, three times a week for 6 weeks, where CVR training (flexion, extension, right, left lateral flexion) one time a week. The increase in relative strength of the neck (flexion, extension, left and right lateral flexion) was 70.8%, 83.7%, 78.6% and 75.2%, respectively after training. Results show that the strength of the neck can be increased safely, effectively and rapidly with NSE-1 neck training machine to perform neck training.

  12. 75 FR 26798 - Distribution of the 2000-2003 Cable Royalty Funds

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-12

    ... communications law restrictions. Pursuant to its statutory authority and in reaction to the FCC's action, the... for U.S. Commercial Television Broadcaster Claimants, Music Claimants, the Motion Picture Association... 37 CFR 353.4, motions for rehearing were due to be filed no later than March 18, 2010. No motions...

  13. 33 CFR 20.901 - Summary decisions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... decision as a matter of law. The party must file the motion no later than 15 days before the date fixed for the hearing and may include supporting affidavits with the motion. Any other party, 10 days or less after service of a motion for summary decision, may serve opposing affidavits or countermove for summary...

  14. Hydrodynamic impeller stiffness, damping, and inertia in the rotordynamics of centrifugal flow pumps

    NASA Technical Reports Server (NTRS)

    Jery, S.; Acosta, A. J.; Brennen, C. E.; Caughey, T. K.

    1984-01-01

    The lateral hydrodynamic forces experienced by a centrifugal pump impeller performing circular whirl motions within several volute geometries were measured. The lateral forces were decomposed into: (1) time averaged lateral forces and (2) hydrodynamic force matrices representing the variation of the lateral forces with position of the impeller center. It is found that these force matrices essentially consist of equal diagonal terms and skew symmetric off diagonal terms. One consequence of this is that during its whirl motion the impeller experiences forces acting normal and tangential to the locus of whirl. Data on these normal and tangential forces are presented; it is shown that there exists a region of positive reduced whirl frequencies, within which the hydrodynamic forces can be destablizing with respect to whirl.

  15. Analysis of accelerated motion in the theory of relativity

    NASA Technical Reports Server (NTRS)

    Jones, R. T.

    1976-01-01

    Conventional treatments of accelerated motion in the theory of relativity have led to certain difficulties of interpretation. Certain reversals in the apparent gravitational field of an accelerated body may be avoided by simpler analysis based on the use of restricted conformal transformations. In the conformal theory the velocity of light remains constant even for experimenters in accelerated motion. The problem considered is that of rectilinear motion with a variable velocity. The motion takes place along the x or x' axis of two coordinate systems.

  16. Migrating Toward Fully 4-D Geodynamical Models of Asthenospheric Circulation and Melt Production at Mid-Ocean Ridges

    NASA Astrophysics Data System (ADS)

    van Dam, L.; Kincaid, C. R.; Pockalny, R. A.; Sylvia, R. T.; Hall, P. S.

    2017-12-01

    Lateral migration of mid-ocean ridge spreading centers is a well-documented phenomenon leading to asymmetric melt production and the surficial expressions thereof. This form of plate motion has been difficult to incorporate into both numerical and analogue geodynamical models, and consequently, current estimates of time-dependent flow, material transport, and melting in the mantle beneath ridges are lacking. To address this, we have designed and built an innovative research apparatus that allows for precise and repeatable simulations of mid-ocean ridge spreading and migration. Three pairs of counter-rotating belts with adjustable lateral orientations are scaled to simulate spreading at, and flow beneath, three 600km wide ridge segments with up to 300km transform offsets. This apparatus is attached to a drive system that allows us to test a full range of axis-parallel to axis-normal migration directions, and is suspended above a reservoir of viscous glucose syrup, a scaled analogue for the upper mantle, and neutrally buoyant tracers. We image plate-driven flow in the syrup with high-resolution digital cameras and use particle image velocimetry methods to obtain information about transport pathlines and flow-induced anisotropy. Suites of experiments are run with and without ridge migration to determine the overall significance of migration on spatial and temporal characteristics of shallow mantle flow. Our experiments cover an expansive parameter space by including various spreading rates, migration speeds and directions, degrees of spreading asymmetry, transform-offset lengths, and upper mantle viscosity conditions. Preliminary results highlight the importance of modeling migratory plate forces. Mantle material exhibits a significant degree of lateral transport, particularly between ridge segments and towards the melt triangle. Magma supply to the melting region is highly complex; parcels of material do not necessarily move along fixed streamlines, rather, they can be perturbed upwards and left behind as spreading centers continue to move laterally. These results emphasize that observations of seismic anisotropy should be interpreted in light of intricate flow pathlines, and that melt transport models should consider different paths for melt relative to the solid matrix.

  17. Expansion-based passive ranging

    NASA Technical Reports Server (NTRS)

    Barniv, Yair

    1993-01-01

    A new technique of passive ranging which is based on utilizing the image-plane expansion experienced by every object as its distance from the sensor decreases is described. This technique belongs in the feature/object-based family. The motion and shape of a small window, assumed to be fully contained inside the boundaries of some object, is approximated by an affine transformation. The parameters of the transformation matrix are derived by initially comparing successive images, and progressively increasing the image time separation so as to achieve much larger triangulation baseline than currently possible. Depth is directly derived from the expansion part of the transformation. To a first approximation, image-plane expansion is independent of image-plane location with respect to the focus of expansion (FOE) and of platform maneuvers. Thus, an expansion-based method has the potential of providing a reliable range in the difficult image area around the FOE. In areas far from the FOE the shift parameters of the affine transformation can provide more accurate depth information than the expansion alone, and can thus be used similarly to the way they were used in conjunction with the Inertial Navigation Unit (INU) and Kalman filtering. However, the performance of a shift-based algorithm, when the shifts are derived from the affine transformation, would be much improved compared to current algorithms because the shifts - as well as the other parameters - can be obtained between widely separated images. Thus, the main advantage of this new approach is that, allowing the tracked window to expand and rotate, in addition to moving laterally, enables one to correlate images over a very long time span which, in turn, translates into a large spatial baseline - resulting in a proportionately higher depth accuracy.

  18. Expansion-based passive ranging

    NASA Technical Reports Server (NTRS)

    Barniv, Yair

    1993-01-01

    This paper describes a new technique of passive ranging which is based on utilizing the image-plane expansion experienced by every object as its distance from the sensor decreases. This technique belongs in the feature/object-based family. The motion and shape of a small window, assumed to be fully contained inside the boundaries of some object, is approximated by an affine transformation. The parameters of the transformation matrix are derived by initially comparing successive images, and progressively increasing the image time separation so as to achieve much larger triangulation baseline than currently possible. Depth is directly derived from the expansion part of the transformation. To a first approximation, image-plane expansion is independent of image-plane location with respect to the focus of expansion (FOE) and of platform maneuvers. Thus, an expansion-based method has the potential of providing a reliable range in the difficult image area around the FOE. In areas far from the FOE the shift parameters of the affine transformation can provide more accurate depth information than the expansion alone, and can thus be used similarly to the way they have been used in conjunction with the Inertial Navigation Unit (INU) and Kalman filtering. However, the performance of a shift-based algorithm, when the shifts are derived from the affine transformation, would be much improved compared to current algorithms because the shifts--as well as the other parameters--can be obtained between widely separated images. Thus, the main advantage of this new approach is that, allowing the tracked window to expand and rotate, in addition to moving laterally, enables one to correlate images over a very long time span which, in turn, translates into a large spatial baseline resulting in a proportionately higher depth accuracy.

  19. Poly-phase Deformation Recorded in the Core of the Coast Plutonic Complex, Western British Columbia

    NASA Astrophysics Data System (ADS)

    Hamblock, J. M.; Andronicos, C. L.; Hurtado, J. M.

    2006-05-01

    The Coast Plutonic Complex of western British Columbia constitutes the largest batholith within the North American Cordillera. The field area for this study is Mt. Gamsby, an unexplored region above the Kitlope River, east of the Coast Shear Zone and at the southern end of the Central Gneiss Complex. The dominant lithologies on Mt. Gamsby include amphibolite and metasedimentary gneiss, gabbro-diorite, and orthogneiss. The amphibolite gneiss contains alternating amphibolite and felsic layers, with chlorite and epidote pervasive in some regions and garnet rare. This unit is commonly migmatized and contains various folds, boudins, and shear zones. The metasedimentary gneiss contains quartz, k-spar, graphite, chlorite, and perhaps cordierite, but appears to lack muscovite and aluminosilicates. The gabbro-diorite is salt and pepper in color and contains ca. 50% pyroxene and plagioclase. The orthogneiss is light in color and plagioclase-rich, with a texture varying from coarse-grained and undeformed to mylonitic. In some regions, this unit contains abundant mafic enclaves. At least four deformational events (D1-4) are observed. The second generation of folding, F2, is dominant in the area and resulted in the production of a large synform during sinistral shearing. The S1 foliation is observed only in the amphibolite gneiss and is orthogonal to S2, creating mushroom- type fold interference patterns. S2 foliations strike NW-SE and dip steeply to the SW, suggesting SW-NE directed shortening. L2 lineations developed on S2 plunge shallowly to the NW and SE, implying strike-slip motion. Although both dextral and sinistral motions are indicated by shear band data, sinistral motion is dominant. The average right and left lateral shear band orientation is nearly identical to S2, suggesting that right and left lateral shearing were synchronous. Foliations within the orthogneiss are parallel to the axes of S2 folds and boudins in the amphibolite gneiss, suggesting that emplacement of orthogneiss was concurrent with S2 deformation of the amphibolite gneiss. Tectonic strains calculated by the Rf-φ method using mafic enclaves in the orthogneiss vary from 4 to 10 within an area <1 km2, suggesting strong strain gradients during D2. S3 foliations strike WNW-ESE to E-W and dip shallowly to the south, suggesting NNE-SSW to N-S shortening. L3 lineations plunge shallowly to the SW and SE, and are associated low-angle shear bands with greenschist facies mineral assemblages which overprint higher temperature assemblages. Deformation phase D4 is characterized by low temperature, brittle deformation as shown by discrete fault surfaces with abundant chlorite. The following tectonic history can be determined based on structural observations. Amphibolite and immature sedimentary material formed from supracrustal (e.g. basalt flows?) and intrusive protoliths. These units were then intruded by the gabbro- diorite, which was deformed by right and left lateral shear zones sometime after crystallization. Both the amphibolite and gabbro-diorite were intruded by the orthogneiss, which was emplaced as sills during right and left lateral shearing and F2 folding. This geologic history is similar to that preserved in other parts of the Coast Plutonic Complex where dextral transpression and sinistral transtension are documented. The localization of low angle normal shear zones with greenschist facies mineral assemblages suggests extension occurred during cooling of the arc.

  20. Building and using a statistical 3D motion atlas for analyzing myocardial contraction in MRI

    NASA Astrophysics Data System (ADS)

    Rougon, Nicolas F.; Petitjean, Caroline; Preteux, Francoise J.

    2004-05-01

    We address the issue of modeling and quantifying myocardial contraction from 4D MR sequences, and present an unsupervised approach for building and using a statistical 3D motion atlas for the normal heart. This approach relies on a state-of-the-art variational non rigid registration (NRR) technique using generalized information measures, which allows for robust intra-subject motion estimation and inter-subject anatomical alignment. The atlas is built from a collection of jointly acquired tagged and cine MR exams in short- and long-axis views. Subject-specific non parametric motion estimates are first obtained by incremental NRR of tagged images onto the end-diastolic (ED) frame. Individual motion data are then transformed into the coordinate system of a reference subject using subject-to-reference mappings derived by NRR of cine ED images. Finally, principal component analysis of aligned motion data is performed for each cardiac phase, yielding a mean model and a set of eigenfields encoding kinematic ariability. The latter define an organ-dedicated hierarchical motion basis which enables parametric motion measurement from arbitrary tagged MR exams. To this end, the atlas is transformed into subject coordinates by reference-to-subject NRR of ED cine frames. Atlas-based motion estimation is then achieved by parametric NRR of tagged images onto the ED frame, yielding a compact description of myocardial contraction during diastole.

  1. Instant axis of rotation of L4-5 motion segment--a biomechanical study on cadaver lumbar spine.

    PubMed

    Sengupta, Dilip K; Demetropoulos, Constantine K; Herkowitz, Harry N

    2011-06-01

    The instant axis of rotation (IAR) is an important kinematic property to characterise of lumbar spine motion. The goal of this biomechanical study on cadaver lumbar spine was to determine the excursion of the IAR for flexion (FE), lateral bending (LB) and axial rotation (AR) motion at L4-5 segment. Ten cadaver lumbar spine specimens were tested in a 6 degrees-of-freedom spine tester with continuous clyclical loading using pure moment and follower pre-load, to produce physiological motion. The specimens were x-rayed and CT scanned prior to testing to identify marker position. Continuous motion tracking was done by Optotrak motion capture device. A continuous tracking of the IAR excursion was calculated from the continuous motions capturedata using a computer programme. IAR translates forward in flexion and backwards in extension with mean excursion of 26.5 mm (+/- 5.6 SD). During LB motion, IAR translates laterally in the same direction, and the mean excursion was 15.35 mm (+/- 8.75 SD). During axial rotation the IAR translates in the horizontal plane in a semicircular arc, around the centre of the vertebral body, but the IAR translates in the opposite direction of rotation. The IAR excursion was faster and larger during neutral zone motion in FE and LB, but uniform for AR motion. This is the first published data on the continuous excursion of IAR of a lumbar motion segment. The methodology is accurate and precise, but not practicable for in vivo testing.

  2. Effects of pelvic skeletal asymmetry on trunk movement: three-dimensional analysis in healthy individuals versus patients with mechanical low back pain.

    PubMed

    Al-Eisa, Einas; Egan, David; Deluzio, Kevin; Wassersug, Richard

    2006-02-01

    Comparative analysis and correlational research design were used to investigate the association between anthropometry and biomechanical performance among asymptomatic subjects and patients with low back pain (LBP). To examine the association between pelvic asymmetry and patterns of trunk motion in asymptomatic and LBP subjects. Secondary objective was to investigate the association between restricted trunk motion, laterality of referred pain, and pelvic asymmetry. Subtle pelvic asymmetry (exhibited as either lateral pelvic tilt or iliac rotational asymmetry), which is common among normal individuals, has not been convincingly linked to abnormalities in back movements. Given the difficulty in diagnosing most LBP, a classification using pelvic asymmetry and patterns of movement could be helpful in establishing a rational treatment plan. Fifty-nine subjects with no history of LBP and 54 patients with mechanical unilateral LBP were tested. An anthropometric frame was used to measure pelvic asymmetry in standing. Dynamic motion data, comprised of the principal and coupled movements, were collected using the Qualysis Motion Capture System. While the groups did not differ in the total range of lumbar movement, the LBP group exhibited significantly higher asymmetry in the principal motion. The groups differed significantly in the pattern of coupled rotation during lateral flexion. Asymmetry in lumbar lateral flexion was highly related to two types of pelvic asymmetry: lateral pelvic tilt (LPT) and iliac rotation asymmetry (IRA). Asymmetry in lumbar axial rotation was highly related to IRA but weakly related to LPT. This study demonstrates objective differences in patterns of lumbar movement between asymptomatic subjects and patients with LBP. The study also demonstrates that subtle anatomic abnormality in the pelvis is associated with altered mechanics in the lumbar spine. We suggest that asymmetry of lumbar movement may be a better indicator of functional deficit than the absolute range of movement in LBP.

  3. Role of Alpha-Band Oscillations in Spatial Updating across Whole Body Motion

    PubMed Central

    Gutteling, Tjerk P.; Medendorp, W. P.

    2016-01-01

    When moving around in the world, we have to keep track of important locations in our surroundings. In this process, called spatial updating, we must estimate our body motion and correct representations of memorized spatial locations in accordance with this motion. While the behavioral characteristics of spatial updating across whole body motion have been studied in detail, its neural implementation lacks detailed study. Here we use electroencephalography (EEG) to distinguish various spectral components of this process. Subjects gazed at a central body-fixed point in otherwise complete darkness, while a target was briefly flashed, either left or right from this point. Subjects had to remember the location of this target as either moving along with the body or remaining fixed in the world while being translated sideways on a passive motion platform. After the motion, subjects had to indicate the remembered target location in the instructed reference frame using a mouse response. While the body motion, as detected by the vestibular system, should not affect the representation of body-fixed targets, it should interact with the representation of a world-centered target to update its location relative to the body. We show that the initial presentation of the visual target induced a reduction of alpha band power in contralateral parieto-occipital areas, which evolved to a sustained increase during the subsequent memory period. Motion of the body led to a reduction of alpha band power in central parietal areas extending to lateral parieto-temporal areas, irrespective of whether the targets had to be memorized relative to world or body. When updating a world-fixed target, its internal representation shifts hemispheres, only when subjects’ behavioral responses suggested an update across the body midline. Our results suggest that parietal cortex is involved in both self-motion estimation and the selective application of this motion information to maintaining target locations as fixed in the world or fixed to the body. PMID:27199882

  4. Estimation of the axis of a screw motion from noisy data--a new method based on Plücker lines.

    PubMed

    Kiat Teu, Koon; Kim, Wangdo

    2006-01-01

    The problems of estimating the motion and orientation parameters of a body segment from two n point-set patterns are analyzed using the Plücker coordinates of a line (Plücker lines). The aim is to find algorithms less complex than those in conventional use, and thus facilitating more accurate computation of the unknown parameters. All conventional techniques use point transformation to calculate the screw axis. In this paper, we present a novel technique that directly estimates the axis of a screw motion as a Plücker line. The Plücker line can be transformed via the dual-number coordinate transformation matrix. This method is compared with Schwartz and Rozumalski [2005. A new method for estimating joint parameters from motion data. Journal of Biomechanics 38, 107-116] in simulations of random measurement errors and systematic skin movements. Simulation results indicate that the methods based on Plücker lines (Plücker line method) are superior in terms of extremely good results in the determination of the screw axis direction and position as well as a concise derivation of mathematical statements. This investigation yielded practical results, which can be used to locate the axis of a screw motion in a noisy environment. Developing the dual transformation matrix (DTM) from noisy data and determining the screw axis from a given DTM is done in a manner analogous to that for handling simple rotations. A more robust approach to solve for the dual vector associated with DTM is also addressed by using the eigenvector and the singular value decomposition.

  5. SU-G-BRA-03: PCA Based Imaging Angle Optimization for 2D Cine MRI Based Radiotherapy Guidance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, T; Yue, N; Jabbour, S

    2016-06-15

    Purpose: To develop an imaging angle optimization methodology for orthogonal 2D cine MRI based radiotherapy guidance using Principal Component Analysis (PCA) of target motion retrieved from 4DCT. Methods: We retrospectively analyzed 4DCT of 6 patients with lung tumor. A radiation oncologist manually contoured the target volume at the maximal inhalation phase of the respiratory cycle. An object constrained deformable image registration (DIR) method has been developed to track the target motion along the respiration at ten phases. The motion of the center of the target mass has been analyzed using the PCA to find out the principal motion components thatmore » were uncorrelated with each other. Two orthogonal image planes for cineMRI have been determined using this method to minimize the through plane motion during MRI based radiotherapy guidance. Results: 3D target respiratory motion for all 6 patients has been efficiently retrieved from 4DCT. In this process, the object constrained DIR demonstrated satisfactory accuracy and efficiency to enable the automatic motion tracking for clinical application. The average motion amplitude in the AP, lateral, and longitudinal directions were 3.6mm (min: 1.6mm, max: 5.6mm), 1.7mm (min: 0.6mm, max: 2.7mm), and 5.6mm (min: 1.8mm, max: 16.1mm), respectively. Based on PCA, the optimal orthogonal imaging planes were determined for cineMRI. The average angular difference between the PCA determined imaging planes and the traditional AP and lateral imaging planes were 47 and 31 degrees, respectively. After optimization, the average amplitude of through plane motion reduced from 3.6mm in AP images to 2.5mm (min:1.3mm, max:3.9mm); and from 1.7mm in lateral images to 0.6mm (min: 0.2mm, max:1.5mm), while the principal in plane motion amplitude increased from 5.6mm to 6.5mm (min: 2.8mm, max: 17mm). Conclusion: DIR and PCA can be used to optimize the orthogonal image planes of cineMRI to minimize the through plane motion during radiotherapy guidance.« less

  6. Medio-lateral postural instability in subjects with tinnitus.

    PubMed

    Kapoula, Zoi; Yang, Qing; Lê, Thanh-Thuan; Vernet, Marine; Berbey, Nolwenn; Orssaud, Christophe; Londero, Alain; Bonfils, Pierre

    2011-01-01

    Many patients show modulation of tinnitus by gaze, jaw or neck movements, reflecting abnormal sensorimotor integration, and interaction between various inputs. Postural control is based on multi-sensory integration (visual, vestibular, somatosensory, and oculomotor) and indeed there is now evidence that posture can also be influenced by sound. Perhaps tinnitus influences posture similarly to external sound. This study examines the quality of postural performance in quiet stance in patients with modulated tinnitus. Twenty-three patients with highly modulated tinnitus were selected in the ENT service. Twelve reported exclusively or predominately left tinnitus, eight right, and three bilateral. Eighteen control subjects were also tested. Subjects were asked to fixate a target at 40 cm for 51 s; posturography was performed with the platform (Technoconcept, 40 Hz) for both the eyes open and eyes closed conditions. For both conditions, tinnitus subjects showed abnormally high lateral body sway (SDx). This was corroborated by fast Fourrier Transformation (FFTx) and wavelet analysis. For patients with left tinnitus only, medio-lateral sway increased significantly when looking away from the center. Similarly to external sound stimulation, tinnitus could influence lateral sway by activating attention shift, and perhaps vestibular responses. Poor integration of sensorimotor signals is another possibility. Such abnormalities would be accentuated in left tinnitus because of the importance of the right cerebral cortex in processing both auditory-tinnitus eye position and attention.

  7. Psychophysical and neuroimaging responses to moving stimuli in a patient with the Riddoch phenomenon due to bilateral visual cortex lesions.

    PubMed

    Arcaro, Michael J; Thaler, Lore; Quinlan, Derek J; Monaco, Simona; Khan, Sarah; Valyear, Kenneth F; Goebel, Rainer; Dutton, Gordon N; Goodale, Melvyn A; Kastner, Sabine; Culham, Jody C

    2018-05-09

    Patients with injury to early visual cortex or its inputs can display the Riddoch phenomenon: preserved awareness for moving but not stationary stimuli. We provide a detailed case report of a patient with the Riddoch phenomenon, MC. MC has extensive bilateral lesions to occipitotemporal cortex that include most early visual cortex and complete blindness in visual field perimetry testing with static targets. Nevertheless, she shows a remarkably robust preserved ability to perceive motion, enabling her to navigate through cluttered environments and perform actions like catching moving balls. Comparisons of MC's structural magnetic resonance imaging (MRI) data to a probabilistic atlas based on controls reveals that MC's lesions encompass the posterior, lateral, and ventral early visual cortex bilaterally (V1, V2, V3A/B, LO1/2, TO1/2, hV4 and VO1 in both hemispheres) as well as more extensive damage to right parietal (inferior parietal lobule) and left ventral occipitotemporal cortex (VO1, PHC1/2). She shows some sparing of anterior occipital cortex, which may account for her ability to see moving targets beyond ~15 degrees eccentricity during perimetry. Most strikingly, functional and structural MRI revealed robust and reliable spared functionality of the middle temporal motion complex (MT+) bilaterally. Moreover, consistent with her preserved ability to discriminate motion direction in psychophysical testing, MC also shows direction-selective adaptation in MT+. A variety of tests did not enable us to discern whether input to MT+ was driven by her spared anterior occipital cortex or subcortical inputs. Nevertheless, MC shows rich motion perception despite profoundly impaired static and form vision, combined with clear preservation of activation in MT+, thus supporting the role of MT+ in the Riddoch phenomenon. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Enhanced arm swing alters interlimb coordination during overground walking in individuals with traumatic brain injury.

    PubMed

    Ustinova, Ksenia I; Langenderfer, Joseph E; Balendra, Nilanthy

    2017-04-01

    The current study investigated interlimb coordination in individuals with traumatic brain injury (TBI) during overground walking. The study involved 10 participants with coordination, balance, and gait abnormalities post-TBI, as well as 10 sex- and age-matched healthy control individuals. Participants walked 12m under two experimental conditions: 1) at self-selected comfortable walking speeds; and 2) with instructions to increase the amplitude and out-of-phase coordination of arm swinging. The gait was assessed with a set of spatiotemporal and kinematic parameters including the gait velocity, step length and width, double support time, lateral displacement of the center of mass, the amplitude of horizontal trunk rotation, and angular motions at shoulder and hip joints in sagittal plane. Interlimb coordination (coupling) was analyzed as the relative phase angles between the left and right shoulders, hips, and contralateral shoulders and hips, with an ideal out-of-phase coupling of 180° and ideal in-phase coupling of 0°. The TBI group showed much less interlimb coupling of the above pairs of joint motions than the control group. When participants were required to increase and synchronize arm swinging, coupling between shoulder and hip motions was significantly improved in both groups. Enhanced arm swinging was associated with greater hip and shoulder motion amplitudes, and greater step length. No other significant changes in spatiotemporal or kinematic gait characteristics were found in either group. The results suggest that arm swinging may be a gait parameter that, if controlled properly, can improve interlimb coordination during overground walking in patients with TBI. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Conflicting motion perspective simulating sinultaneous clockwise and counterclockwise rotation in depth.

    PubMed

    Hershberger, W A; Stewart, M R; Laughlin, N K

    1976-05-01

    Motion projections (pictures) simulating a horizontal array of vertical lines rotating in depth about its central vertical line were observed by 24 college students who rotated a crank handle in the direction of apparent rotation. All displays incorporated contradictory motion perspective: Whereas the perspective transformation in the vertical (y) dimension stimulated one direction of rotation, the transformation in the horizontal (x) dimension simulated the opposite direction. The amount of perspective in each dimension was varied independently of the other by varying the projection ratio used for each dimension. We used the same five ratios for each dimension, combining them factorially to generate the 25 displays. Analysis of variance of the duration of crank turning which agreed with y-axis information yielded main effects of both x and y projection ratios but no interaction, revealing that x- and y-axis motion perspectives mediate kinetic depth effects which are functionally independent.

  10. Multisensory visual servoing by a neural network.

    PubMed

    Wei, G Q; Hirzinger, G

    1999-01-01

    Conventional computer vision methods for determining a robot's end-effector motion based on sensory data needs sensor calibration (e.g., camera calibration) and sensor-to-hand calibration (e.g., hand-eye calibration). This involves many computations and even some difficulties, especially when different kinds of sensors are involved. In this correspondence, we present a neural network approach to the motion determination problem without any calibration. Two kinds of sensory data, namely, camera images and laser range data, are used as the input to a multilayer feedforward network to associate the direct transformation from the sensory data to the required motions. This provides a practical sensor fusion method. Using a recursive motion strategy and in terms of a network correction, we relax the requirement for the exactness of the learned transformation. Another important feature of our work is that the goal position can be changed without having to do network retraining. Experimental results show the effectiveness of our method.

  11. An efficient motion-resistant method for wearable pulse oximeter.

    PubMed

    Yan, Yong-Sheng; Zhang, Yuan-Ting

    2008-05-01

    Reduction of motion artifact and power saving are crucial in designing a wearable pulse oximeter for long-term telemedicine application. In this paper, a novel algorithm, minimum correlation discrete saturation transform (MCDST) has been developed for the estimation of arterial oxygen saturation (SaO2), based on an optical model derived from photon diffusion analysis. The simulation shows that the new algorithm MCDST is more robust under low SNRs than the clinically verified motion-resistant algorithm discrete saturation transform (DST). Further, the experiment with different severity of motions demonstrates that MCDST has a slightly better performance than DST algorithm. Moreover, MCDST is more computationally efficient than DST because the former uses linear algebra instead of the time-consuming adaptive filter used by latter, which indicates that MCDST can reduce the required power consumption and circuit complexity of the implementation. This is vital for wearable devices, where the physical size and long battery life are crucial.

  12. Fault interaction and stresses along broad oceanic transform zone: Tjörnes Fracture Zone, north Iceland

    NASA Astrophysics Data System (ADS)

    Homberg, C.; Bergerat, F.; Angelier, J.; Garcia, S.

    2010-02-01

    Transform motion along oceanic transforms generally occurs along narrow faults zones. Another class of oceanic transforms exists where the plate boundary is quite large (˜100 km) and includes several subparallel faults. Using a 2-D numerical modeling, we simulate the slip distribution and the crustal stress field geometry within such broad oceanic transforms (BOTs). We examine the possible configurations and evolution of such BOTs, where the plate boundary includes one, two, or three faults. Our experiments show that at any time during the development of the plate boundary, the plate motion is not distributed along each of the plate boundary faults but mainly occurs along a single master fault. The finite width of a BOT results from slip transfer through time with locking of early faults, not from a permanent distribution of deformation over a wide area. Because of fault interaction, the stress field geometry within the BOTs is more complex than that along classical oceanic transforms and includes stress deflections close to but also away from the major faults. Application of this modeling to the 100 km wide Tjörnes Fracture Zone (TFZ) in North Iceland, a major BOT of the Mid-Atlantic Ridge that includes three main faults, suggests that the Dalvik Fault and the Husavik-Flatey Fault developed first, the Grismsey Fault being the latest active structure. Since initiation of the TFZ, the Husavik-Flatey Fault accommodated most of the plate motion and probably persists until now as the main plate structure.

  13. Sound radiation of a railway rail in close proximity to the ground

    NASA Astrophysics Data System (ADS)

    Zhang, Xianying; Squicciarini, Giacomo; Thompson, David J.

    2016-02-01

    The sound radiation of a railway in close to proximity to a ground (both rigid and absorptive) is predicted by the boundary element method (BEM) in two dimensions (2D). Results are given in terms of the radiation ratio for both vertical and lateral motion of the rail, when the effects of the acoustic boundary conditions due to the sleepers and ballast are taken into account in the numerical models. Allowance is made for the effect of wave propagation along the rail by applying a correction in the 2D modelling. It is shown that the 2D correction is necessary at low frequency, for both vertical and lateral motion of an unsupported rail, especially in the vicinity of the corresponding critical frequency. However, this correction is not applicable for a supported rail; for vertical motion no correction is needed to the 2D result while for lateral motion the corresponding correction would depend on the pad stiffness. Finally, the corresponding numerical predictions of the sound radiation from a rail are verified by comparison with experimental results obtained using a 1/5 scale rail model in different configurations.

  14. Multiresolution image registration in digital x-ray angiography with intensity variation modeling.

    PubMed

    Nejati, Mansour; Pourghassem, Hossein

    2014-02-01

    Digital subtraction angiography (DSA) is a widely used technique for visualization of vessel anatomy in diagnosis and treatment. However, due to unavoidable patient motions, both externally and internally, the subtracted angiography images often suffer from motion artifacts that adversely affect the quality of the medical diagnosis. To cope with this problem and improve the quality of DSA images, registration algorithms are often employed before subtraction. In this paper, a novel elastic registration algorithm for registration of digital X-ray angiography images, particularly for the coronary location, is proposed. This algorithm includes a multiresolution search strategy in which a global transformation is calculated iteratively based on local search in coarse and fine sub-image blocks. The local searches are accomplished in a differential multiscale framework which allows us to capture both large and small scale transformations. The local registration transformation also explicitly accounts for local variations in the image intensities which incorporated into our model as a change of local contrast and brightness. These local transformations are then smoothly interpolated using thin-plate spline interpolation function to obtain the global model. Experimental results with several clinical datasets demonstrate the effectiveness of our algorithm in motion artifact reduction.

  15. Perception of artificial conspecifics by bearded dragons (Pogona vitticeps).

    PubMed

    Frohnwieser, Anna; Pike, Thomas W; Murray, John C; Wilkinson, Anna

    2018-01-09

    Artificial animals are increasingly used as conspecific stimuli in animal behavior research. However, researchers often have an incomplete understanding of how the species under study perceives conspecifics, and hence which features needed for a stimulus to be perceived appropriately. To investigate the features to which bearded dragons (Pogona vitticeps) attend, we measured their lateralized eye use when assessing a successive range of stimuli. These ranged through several stages of realism in artificial conspecifics, to see how features such as color, the presence of eyes, body shape and motion influence behavior. We found differences in lateralized eye use depending on the sex of the observing bearded dragon and the artificial conspecific, as well as the artificial conspecific's behavior. Therefore, this approach can inform the design of robotic animals that elicit biologically-meaningful responses in live animals. This article is protected by copyright. All rights reserved.

  16. Radar, an optimum remote-sensing tool for detailed plate tectonic analysis and its application to hydrocarbon exploration (an example in Irian Jaya Indonesia)

    NASA Technical Reports Server (NTRS)

    Froidevaux, C. M.

    1980-01-01

    Geometric, geomorphic, and structural information derived from the examination of radar imagery and combined with geologic and geophysical evidences strongly indicates that Salawati Island was attached to the Irian Jaya mainland during the time of Miocene lower Pliocene reef development, and that it was separated in middle Pliocene to Pleistocene time, opening the Sele Strait rift zone. The island moved 17.5 km southwestward after an initial counterclockwise rotation of 13 deg. The rift zone is subsequent to the creation of the large left lateral Sorong fault zone that is part of the transitional area separating the westward-moving Pacific plate from the relatively stable Australian plate. The motion was triggered during a widespread magmatic intrusion of the Sorong fault zone, when the basalt infiltrated a right lateral fault system in the area of the present Sele Strait.

  17. Safety of the lateral trauma position in cervical spine injuries: a cadaver model study.

    PubMed

    Hyldmo, P K; Horodyski, M B; Conrad, B P; Dubose, D N; Røislien, J; Prasarn, M; Rechtine, G R; Søreide, E

    2016-08-01

    Endotracheal intubation is not always an option for unconscious trauma patients. Prehospital personnel are then faced with the dilemma of maintaining an adequate airway without risking deleterious movement of a potentially unstable cervical spine. To address these two concerns various alternatives to the classical recovery position have been developed. This study aims to determine the amount of motion induced by the recovery position, two versions of the HAINES (High Arm IN Endangered Spine) position, and the novel lateral trauma position (LTP). We surgically created global cervical instability between the C5 and C6 vertebrae in five fresh cadavers. We measured the rotational and translational (linear) range of motion during the different maneuvers using an electromagnetic tracking device and compared the results using a general linear mixed model (GLMM) for regression. In the recovery position, the range of motion for lateral bending was 11.9°. While both HAINES positions caused a similar range of motion, the motion caused by the LTP was 2.6° less (P = 0.037). The linear axial range of motion in the recovery position was 13.0 mm. In comparison, the HAINES 1 and 2 positions showed significantly less motion (-5.8 and -4.6 mm, respectively), while the LTP did not (-4.0 mm, P = 0.067). Our results indicate that in unconscious trauma patients, the LTP or one of the two HAINES techniques is preferable to the standard recovery position in cases of an unstable cervical spine injury. © 2016 The Authors. Acta Anaesthesiologica Scandinavica published by John Wiley & Sons Ltd on behalf of Acta Anaesthesiologica Scandinavica Foundation.

  18. Validation of Attitude and Heading Reference System and Microsoft Kinect for Continuous Measurement of Cervical Range of Motion Compared to the Optical Motion Capture System.

    PubMed

    Song, Young Seop; Yang, Kyung Yong; Youn, Kibum; Yoon, Chiyul; Yeom, Jiwoon; Hwang, Hyeoncheol; Lee, Jehee; Kim, Keewon

    2016-08-01

    To compare optical motion capture system (MoCap), attitude and heading reference system (AHRS) sensor, and Microsoft Kinect for the continuous measurement of cervical range of motion (ROM). Fifteen healthy adult subjects were asked to sit in front of the Kinect camera with optical markers and AHRS sensors attached to the body in a room equipped with optical motion capture camera. Subjects were instructed to independently perform axial rotation followed by flexion/extension and lateral bending. Each movement was repeated 5 times while being measured simultaneously with 3 devices. Using the MoCap system as the gold standard, the validity of AHRS and Kinect for measurement of cervical ROM was assessed by calculating correlation coefficient and Bland-Altman plot with 95% limits of agreement (LoA). MoCap and ARHS showed fair agreement (95% LoA<10°), while MoCap and Kinect showed less favorable agreement (95% LoA>10°) for measuring ROM in all directions. Intraclass correlation coefficient (ICC) values between MoCap and AHRS in -40° to 40° range were excellent for flexion/extension and lateral bending (ICC>0.9). ICC values were also fair for axial rotation (ICC>0.8). ICC values between MoCap and Kinect system in -40° to 40° range were fair for all motions. Our study showed feasibility of using AHRS to measure cervical ROM during continuous motion with an acceptable range of error. AHRS and Kinect system can also be used for continuous monitoring of flexion/extension and lateral bending in ordinary range.

  19. Challenging Cognitive Control by Mirrored Stimuli in Working Memory Matching

    PubMed Central

    Wirth, Maria; Gaschler, Robert

    2017-01-01

    Cognitive conflict has often been investigated by placing automatic processing originating from learned associations in competition with instructed task demands. Here we explore whether mirror generalization as a congenital mechanism can be employed to create cognitive conflict. Past research suggests that the visual system automatically generates an invariant representation of visual objects and their mirrored counterparts (i.e., mirror generalization), and especially so for lateral reversals (e.g., a cup seen from the left side vs. right side). Prior work suggests that mirror generalization can be reduced or even overcome by learning (i.e., for those visual objects for which it is not appropriate, such as letters d and b). We, therefore, minimized prior practice on resolving conflicts involving mirror generalization by using kanji stimuli as non-verbal and unfamiliar material. In a 1-back task, participants had to check a stream of kanji stimuli for identical repetitions and avoid miss-categorizing mirror reversed stimuli as exact repetitions. Consistent with previous work, lateral reversals led to profound slowing of reaction times and lower accuracy in Experiment 1. Yet, different from previous reports suggesting that lateral reversals lead to stronger conflict, similar slowing for vertical and horizontal mirror transformations was observed in Experiment 2. Taken together, the results suggest that transformations of visual stimuli can be employed to challenge cognitive control in the 1-back task. PMID:28503160

  20. Experimental investigation of efficient locomotion of underwater snake robots for lateral undulation and eel-like motion patterns.

    PubMed

    Kelasidi, Eleni; Liljebäck, Pål; Pettersen, Kristin Y; Gravdahl, Jan T

    2015-01-01

    Underwater snake robots offer many interesting capabilities for underwater operations. The long and slender structure of such robots provide superior capabilities for access through narrow openings and within confined areas. This is interesting for inspection and monitoring operations, for instance within the subsea oil and gas industry and within marine archeology. In addition, underwater snake robots can provide both inspection and intervention capabilities and are thus interesting candidates for the next generation inspection and intervention AUVs. Furthermore, bioinspired locomotion through oscillatory gaits, like lateral undulation and eel-like motion, is interesting from an energy efficiency point of view. Increasing the motion efficiency in terms of the achieved forward speed by improving the method of propulsion is a key issue for underwater robots. Moreover, energy efficiency is one of the main challenges for long-term autonomy of these systems. In this study, we will consider both these two aspects of efficiency. This paper considers the energy efficiency of swimming snake robots by presenting and experimentally investigating fundamental properties of the velocity and the power consumption of an underwater snake robot for both lateral undulation and eel-like motion patterns. In particular, we investigate the relationship between the parameters of the gait patterns, the forward velocity and the energy consumption for different motion patterns. The simulation and experimental results are seen to support the theoretical findings.

  1. Tectonic processes during oblique collision: Insights from the St. Elias orogen, northern North American Cordillera

    USGS Publications Warehouse

    Pavlis, T.L.; Picornell, C.; Serpa, L.; Bruhn, R.L.; Plafker, G.

    2004-01-01

    Oblique convergence in the St. Elias orogen of southern Alaska and northwestern Canada has constructed the world's highest coastal mountain range and is the principal driver constructing all of the high topography in northern North America. The orogen originated when the Yakutat terrane was excised from the Cordilleran margin and was transported along margin-parallel strike-slip faults into the subduction-transform transition at the eastern end of the Aleutian trench. We examine the last 3 m.y. of this collision through an analysis of Euler poles for motion of the Yakutat microplate with respect to North America and the Pacific. This analysis indicates a Yakutat-Pacific pole near the present southern triple junction of the microplate and' predicts convergence to dextral-oblique convergence across the offshore Transition fault, onland structures adjacent to the Yakutat foreland, or both, with plate speeds increasing from 10 to 30 mm/yr from southeast to northwest. Reconstructions based on these poles show that NNW transport of the collided block into the NE trending subduction zone forced contraction of EW line elements as the collided block was driven into the subduction-transform transition. This suggests the collided block was constricted as it was driven into the transition. Constriction provides an explanation for observed vertical axis refolding of both earlier formed fold-thrust systems and the collisional suture at the top of the fold-thrust stack. We also suggest that this motion was partially accommodated by lateral extrusion of the western portion of the orogen toward the Aleutian trench. Important questions remain regarding which structures accommodated parts of this motion. The Transition fault may have accommodated much of the Yakutat-Pacific convergence on the basis of our analysis and previous interpretations of GPS-based geodetic data. Nonetheless, it is locally overlapped by up to 800 m of undeformed sediment, yet elsewhere shows evidence of young deformation. This contradiction could be produced if the overlapping sediments are too young to have accumulated significant deformation, or GPS motions may be deflected by transient strains or strains from poorly understood fault interactions. In either case, more data are needed to resolve the paradox. Copyright 2004 by the American Geophysical Union.

  2. Scanned carbon beam irradiation of moving films: comparison of measured and calculated response

    PubMed Central

    2012-01-01

    Background Treatment of moving target volumes with scanned particle beams benefits from treatment planning that includes the time domain (4D). Part of 4D treatment planning is calculation of the expected result. These calculation codes should be verified against suitable measurements. We performed simulations and measurements to validate calculation of the film response in the presence of target motion. Methods All calculations were performed with GSI's treatment planning system TRiP. Interplay patterns between scanned particle beams and moving film detectors are very sensitive to slight deviations of the assumed motion parameters and therefore ideally suited to validate 4D calculations. In total, 14 film motion parameter combinations with lateral motion amplitudes of 8, 15, and 20 mm and 4 combinations for lateral motion including range changes were used. Experimental and calculated film responses were compared by relative difference, mean deviation in two regions-of-interest, as well as line profiles. Results Irradiations of stationary films resulted in a mean relative difference of -1.52% ± 2.06% of measured and calculated responses. In comparison to this reference result, measurements with translational film motion resulted in a mean difference of -0.92% ± 1.30%. In case of irradiations incorporating range changes with a stack of 5 films as detector the deviations increased to -6.4 ± 2.6% (-10.3 ± 9.0% if film in distal fall-off is included) in comparison to -3.6% ± 2.5% (-13.5% ± 19.9% including the distal film) for the stationary irradiation. Furthermore, the comparison of line profiles of 4D calculations and experimental data showed only slight deviations at the borders of the irradiated area. The comparisons of pure lateral motion were used to determine the number of motion states that are required for 4D calculations depending on the motion amplitude. 6 motion states per 10 mm motion amplitude are sufficient to calculate the film response in the presence of motion. Conclusions By comparison to experimental data, the 4D extension of GSI's treatment planning system TRiP has been successfully validated for film response calculations in the presence of target motion within the accuracy limitation given by film-based dosimetry. PMID:22462523

  3. Helicopter flight simulation motion platform requirements

    NASA Astrophysics Data System (ADS)

    Schroeder, Jeffery Allyn

    Flight simulators attempt to reproduce in-flight pilot-vehicle behavior on the ground. This reproduction is challenging for helicopter simulators, as the pilot is often inextricably dependent on external cues for pilot-vehicle stabilization. One important simulator cue is platform motion; however, its required fidelity is unknown. To determine the required motion fidelity, several unique experiments were performed. A large displacement motion platform was used that allowed pilots to fly tasks with matched motion and visual cues. Then, the platform motion was modified to give cues varying from full motion to no motion. Several key results were found. First, lateral and vertical translational platform cues had significant effects on fidelity. Their presence improved performance and reduced pilot workload. Second, yaw and roll rotational platform cues were not as important as the translational platform cues. In particular, the yaw rotational motion platform cue did not appear at all useful in improving performance or reducing workload. Third, when the lateral translational platform cue was combined with visual yaw rotational cues, pilots believed the platform was rotating when it was not. Thus, simulator systems can be made more efficient by proper combination of platform and visual cues. Fourth, motion fidelity specifications were revised that now provide simulator users with a better prediction of motion fidelity based upon the frequency responses of their motion control laws. Fifth, vertical platform motion affected pilot estimates of steady-state altitude during altitude repositionings. This refutes the view that pilots estimate altitude and altitude rate in simulation solely from visual cues. Finally, the combined results led to a general method for configuring helicopter motion systems and for developing simulator tasks that more likely represent actual flight. The overall results can serve as a guide to future simulator designers and to today's operators.

  4. The coordinated movement of the spine and pelvis during running.

    PubMed

    Preece, Stephen J; Mason, Duncan; Bramah, Christopher

    2016-02-01

    Previous research into running has demonstrated consistent patterns in pelvic, lumbar and thoracic motions between different human runners. However, to date, there has been limited attempt to explain why observed coordination patterns emerge and how they may relate to centre of mass (CoM) motion. In this study, kinematic data were collected from the thorax, lumbar spine, pelvis and lower limbs during over ground running in n=28 participants. These data was subsequently used to develop a theoretical understanding of the coordination of the spine and pelvis in all three body planes during the stance phase of running. In the sagittal plane, there appeared to be an antiphase coordinate pattern which may function to increase femoral inclination at toe off whilst minimising anterior-posterior accelerations of the CoM. In the medio-lateral direction, CoM motion appears to facilitate transition to the contralateral foot. However, an antiphase coordination pattern was also observed, most likely to minimise unnecessary accelerations of the CoM. In the transverse plane, motion of the pelvis was observed to lag slightly behind that of the thorax. However, it is possible that the close coupling between these two segments facilitates the thoracic rotation required to passively drive arm motion. This is the first study to provide a full biomechanical rationale for the coordination of the spine and pelvis during human running. This insight should help clinicians develop an improved understanding of how spinal and pelvic motions may contribute to, or result from, common running injuries. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. On a Simple Formulation of the Golf Ball Paradox

    ERIC Educational Resources Information Center

    Pujol, O.; Perez, J. Ph.

    2007-01-01

    The motion of a ball rolling without slipping on the lateral section inside a fixed vertical cylinder is analysed in the Earth referential frame which is assumed to be Galilean. Equations of motion are rapidly obtained and the golf ball paradox is understood: these equations describe a motion consisting of a vertical harmonic oscillation related…

  6. Three-dimensional motion of the uncovertebral joint during head rotation.

    PubMed

    Nagamoto, Yukitaka; Ishii, Takahiro; Iwasaki, Motoki; Sakaura, Hironobu; Moritomo, Hisao; Fujimori, Takahito; Kashii, Masafumi; Murase, Tsuyoshi; Yoshikawa, Hideki; Sugamoto, Kazuomi

    2012-10-01

    The uncovertebral joints are peculiar but clinically important anatomical structures of the cervical vertebrae. In the aged or degenerative cervical spine, osteophytes arising from an uncovertebral joint can cause cervical radiculopathy, often necessitating decompression surgery. Although these joints are believed to bear some relationship to head rotation, how the uncovertebral joints work during head rotation remains unclear. The purpose of this study is to elucidate 3D motion of the uncovertebral joints during head rotation. Study participants were 10 healthy volunteers who underwent 3D MRI of the cervical spine in 11 positions during head rotation: neutral (0°) and 15° increments to maximal head rotation on each side (left and right). Relative motions of the cervical spine were calculated by automatically superimposing a segmented 3D MR image of the vertebra in the neutral position over images of each position using the volume registration method. The 3D intervertebral motions of all 10 volunteers were standardized, and the 3D motion of uncovertebral joints was visualized on animations using data for the standardized motion. Inferred contact areas of uncovertebral joints were also calculated using a proximity mapping technique. The 3D animation of uncovertebral joints during head rotation showed that the joints alternate between contact and separation. Inferred contact areas of uncovertebral joints were situated directly lateral at the middle cervical spine and dorsolateral at the lower cervical spine. With increasing angle of rotation, inferred contact areas increased in the middle cervical spine, whereas areas in the lower cervical spine slightly decreased. In this study, the 3D motions of uncovertebral joints during head rotation were depicted precisely for the first time.

  7. Correlation of primary middle and distal esophageal cancers motion with surrounding tissues using four-dimensional computed tomography.

    PubMed

    Wang, Wei; Li, Jianbin; Zhang, Yingjie; Shao, Qian; Xu, Min; Guo, Bing; Shang, Dongping

    2016-01-01

    To investigate the correlation of gross tumor volume (GTV) motion with the structure of interest (SOI) motion and volume variation for middle and distal esophageal cancers using four-dimensional computed tomography (4DCT). Thirty-three patients with middle or distal esophageal carcinoma underwent 4DCT simulation scan during free breathing. All image sets were registered with 0% phase, and the GTV, apex of diaphragm, lung, and heart were delineated on each phase of the 4DCT data. The position of GTV and SOI was identified in all 4DCT phases, and the volume of lung and heart was also achieved. The phase relationship between the GTV and SOI was estimated through Pearson's correlation test. The mean peak-to-peak displacement of all primary tumors in the lateral (LR), anteroposterior (AP), and superoinferior (SI) directions was 0.13 cm, 0.20 cm, and 0.30 cm, respectively. The SI peak-to-peak motion of the GTV was defined as the greatest magnitude of motion. The displacement of GTV correlated well with heart in three dimensions and significantly associated with bilateral lung in LR and SI directions. A significant correlation was found between the GTV and apex of the diaphragm in SI direction (r left=0.918 and r right=0.928). A significant inverse correlation was found between GTV motion and varying lung volume, but the correlation was not significant with heart (r LR=-0.530, r AP=-0.531, and r SI=-0.588) during respiratory cycle. For middle and distal esophageal cancers, GTV should expand asymmetric internal margins. The primary tumor motion has quite good correlation with diaphragm, heart, and lung.

  8. Neck arthritis pain is reduced and range of motion is increased by massage therapy.

    PubMed

    Field, Tiffany; Diego, Miguel; Gonzalez, Gladys; Funk, C G

    2014-11-01

    The literature on the effects of massage therapy on neck arthritis pain is mixed depending on the dose level, and it is also based on self-report. In the present study an attempt was made to enhance the effects of weekly massage therapy by having the participants massage themselves daily. And in addition to self-reports on pain, range of motion (ROM) and the associated ROM pain were assessed before and after the first massage session and pre-post the last session one month later. Staff and faculty members at a medical school who were eligible for the study if they had neck arthritis pain were randomly assigned to a massage or a waitlist control group (N = 24 per group). The massage group received moderate pressure massages weekly by a massage therapist plus daily self-massages. The waitlist control group received the same schedule massages one month after being control subjects. The massage group showed significant short-term reductions after the first and last day massages in self-reported pain and in ROM-associated pain as well as an increase in ROM. Comparisons between the massage group (N = 23) and the control group (N = 14) on the last versus the first day data suggested significantly different changes including increased ROM and reduced ROM-associated pain for the massage group and reduced ROM and increased ROM-associated pain for the control group. These changes occurred specifically for flexion and right and left lateral flexion motions. These data highlight the importance of designing massage therapy protocols that target the most affected neck muscle groups and then assessing range of motion and related pain before and after the massage therapy. Comparisons with other studies also suggest that moderate pressure may contribute to the massage effects, and the use of daily self-massages between sessions may sustain the effects and serve as a cost-effective therapy for individuals with neck arthritis pain. Copyright © 2014. Published by Elsevier Ltd.

  9. Passive recording of an active transform, an example from the Levant continental margin and the Dead Sea Fault

    NASA Astrophysics Data System (ADS)

    Lang, Guy; Lazar, Michael; Schattner, Uri

    2017-04-01

    Transform faults accommodate lateral motion between two adjacent plates. Records of plate motion and consequent boundary development on land is, at times, scarce and limited to structures along the fault axis. Investigation of a passive continental margin adjacent to the plate boundary might broaden the scope and provide estimates for its structural development. To examine this hypothesis, we analyzed depth and time migrated 3D seismic data together with four boreholes located along the southern Levant continental margin, ca. 100 Km from the continental Dead Sea fault (DSF). The analysis focus on the Plio-Pleistocene sequence, a key period in the development of the DSF. It includes formation of structural maps, stacking pattern investigation and calculation of sedimentation rates based on decompacted 3D depth data. These, in turn, enabled the reconstruction of margin development. This includes Messinian-earliest Zanclean NNE-SSW sinistral strike-slip faulting followed by Zanclean-Late Gelasian syn-depositional folding striking in the same direction. Abrupt change is marked by the Top Gelasian surface that shows indications of regional mass slumping. Successive Mid-Late Pleistocene progradation marks a basinward shift of the depocenter. Progradation controls margin sedimentation rates during the mid-late Pleistocene. These were found to increase throughout the whole Plio-Pleistocene, in contrast to reported sediment discharge from the Nile, which was shown to decrease after the Gelasian. Correlations to onshore findings, suggest that the continental margin records strain localization on the DSF during the Pliocene-Gelasian. This trend peaked at 1.8 Ma when short wavelength strain ceased along the margin, and differential subsidence commenced basinwards. This is attributed to consequent deepening of the DSF plate boundary.

  10. Inner ear contribution to bone conduction hearing in the human.

    PubMed

    Stenfelt, Stefan

    2015-11-01

    Bone conduction (BC) hearing relies on sound vibration transmission in the skull bone. Several clinical findings indicate that in the human, the skull vibration of the inner ear dominates the response for BC sound. Two phenomena transform the vibrations of the skull surrounding the inner ear to an excitation of the basilar membrane, (1) inertia of the inner ear fluid and (2) compression and expansion of the inner ear space. The relative importance of these two contributors were investigated using an impedance lumped element model. By dividing the motion of the inner ear boundary in common and differential motion it was found that the common motion dominated at frequencies below 7 kHz but above this frequency differential motion was greatest. When these motions were used to excite the model it was found that for the normal ear, the fluid inertia response was up to 20 dB greater than the compression response. This changed in the pathological ear where, for example, otosclerosis of the stapes depressed the fluid inertia response and improved the compression response so that inner ear compression dominated BC hearing at frequencies above 400 Hz. The model was also able to predict experimental and clinical findings of BC sensitivity in the literature, for example the so called Carhart notch in otosclerosis, increased BC sensitivity in superior semicircular canal dehiscence, and altered BC sensitivity following a vestibular fenestration and RW atresia. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Crustal Deformation of the Central Walker Lane from GPS velocities: Block Rotations and Slip Rates

    NASA Astrophysics Data System (ADS)

    Bormann, J. M.; Hammond, W. C.; Kreemer, C. W.; Blewitt, G.; Wesnousky, S. G.

    2010-12-01

    The Walker Lane is a complex zone of active intracontinental transtension between the Sierra Nevada/Great Valley (SNGV) microplate and the Basin and Range in the western United States. Collectively, this ~100 km wide zone accommodates ~20% of the Pacific-North American relative plate motion. The Central Walker Lane (CWL) extends from the southern boundary of the Mina Deflection (~38.0°N) to the latitude of Lake Tahoe (~39.5°N) and encompasses the transition from Basin and Range style faulting in the east to the stable block motion of the SNGV microplate in the West. We combine GPS data from the Mobile Array of GPS for Nevada Transtension (MAGNET, http://geodesy.unr.edu/networks) with continuous observations from the EarthScope Plate Boundary Observatory to solve for rates of crustal deformation in the CWL through a block modeling approach. The GPS coordinate time series are derived in this region as part of a 7000-station global network solution using the latest JPL reanalysis of GPS orbits, and the latest antenna models for stations and satellites. The data were processed by precise point positioning using JPL's GIPSY OASIS II software followed by our custom Ambizap3 software, to produce a globally-consistent, ambiguity-resolved network solution. GPS time series in the western United States are rotated into a North America-fixed reference frame and are spatially filtered with respect to the secular motions of reference stations that demonstrate long-term secular stability. In the study region, we use 130 GPS velocities that are corrected for viscoelastic postseismic relaxation following 19th and 20th century earthquakes in the Central Nevada Seismic Belt to constrain rates of long-term fault slip and block rotation. The spatial density and precision of our velocity field (average station spacing of ~20 km with uncertainties well below 1 mm/yr) allow us to compare geodetically estimated slip rates with geologic observations as well as address specific questions about how shear is transferred from the Southern Walker Lane through the Mina Deflection and evaluate along-strike variation of the slip rate on the Sierra Nevada range front fault. Preliminary results confirm a pattern of deformation consistent with geological observations. Deformation zones are characterized by 1) left-lateral slip on east-northeast trending faults and clockwise block rotations in the Mina Deflection, 2) right-lateral slip on northwest trending faults along the eastern margin of the CWL, 3) east-west extension along north trending faults in the western portion of the CWL with right lateral slip increasing toward the SNGV microplate boundary, 4) clockwise rotation of blocks in the Carson Domain, and 5) northwest directed extension in the Basin and Range. Estimates of fault slip rates along the eastern boundary of the SNGV block find that slip is oblique with preliminary rates ranging between 0.4-0.8(±0.1) mm/yr horizontal extension and 0.9-1.5(±0.1) mm/yr right lateral.

  12. 'Bald trochanter' spontaneous rupture of the conjoined tendons of the gluteus medius and minimus presenting as a trochanteric bursitis.

    PubMed

    LaBan, Myron M; Weir, Susan K; Taylor, Ronald S

    2004-10-01

    A 66-yr-old white woman presented with progressive complaints of right lateral hip and thigh pain associated with a disabling limp without an antecedent history of trauma. Physical examination revealed localized pain over the right greater trochanter to palpation. A full pain-free range of motion of the right hip was associated with weakness in the hip abductors. The patient ambulated with a compensated right Trendelenburg gait. Subsequent magnetic resonance imaging demonstrated a trochanteric bursitis and an effusion of the hip and a full-thickness tear of the gluteus medius muscle, with both a disruption and retraction of the tendon of an atretic gluteus minimus muscle. Conjoined tendon pathology of both the gluteus medius and minimus as, revealed by magnetic resonance examination, is probably more frequent than heretofore commonly recognized. In patients presenting with "intractable" complaints of a trochanteric bursitis and an ambulatory limp due to weakness in the hip abductors, imaging studies calling attention to a possible tendon rupture may be diagnostic.

  13. Unsteady aerodynamic modeling and active aeroelastic control

    NASA Technical Reports Server (NTRS)

    Edwards, J. W.

    1977-01-01

    Unsteady aerodynamic modeling techniques are developed and applied to the study of active control of elastic vehicles. The problem of active control of a supercritical flutter mode poses a definite design goal stability, and is treated in detail. The transfer functions relating the arbitrary airfoil motions to the airloads are derived from the Laplace transforms of the linearized airload expressions for incompressible two dimensional flow. The transfer function relating the motions to the circulatory part of these loads is recognized as the Theodorsen function extended to complex values of reduced frequency, and is termed the generalized Theodorsen function. Inversion of the Laplace transforms yields exact transient airloads and airfoil motions. Exact root loci of aeroelastic modes are calculated, providing quantitative information regarding subcritical and supercritical flutter conditions.

  14. Active Deformation of the Northern Cordillera Observed with GPS

    NASA Astrophysics Data System (ADS)

    Elliott, J.; Jiang, Y.; Leonard, L. J.; Hyndman, R. D.; Freymueller, J.; Mazzotti, S.

    2017-12-01

    The Northern Cordillera, which encompasses western Canada and eastern Alaska, is a complex tectonic puzzle. Past terrane accretions, the present collision of the Yakutat block, large-scale plate motions, and past and present glacier change have created a tectonic landscape that includes a major transform system, most of the highest peaks in North America, and far-flung ongoing distributed deformation. We present an updated GPS velocity field as well as a new integrated tectonic block model for the region. The style of deformation varies through the region. Surrounding the Yakutat collision, the model includes a number of small blocks that indicate rotations to the east, north, and west as material moves away from the collisional front. These small blocks also show evidence of internal deformation. Farther from the collisional front, blocks are larger and appear to behave more rigidly. In the south, northwestward motion resulting in a prominent band of coastal shear extends from Vancouver Island to Glacier Bay. In the Arctic, small southeastward motions in Alaska transition to easterly motion in Canada that extends to the Mackenize Mountains near the Cordillera-craton boundary. A number of faults and fault systems accommodate relative Pacific-North America plate motion in the region, although the significant majority is along the Fairweather-Queen Charlotte transform system and the St. Elias fold-and-thrust belt. Along the Fairweather-Queen Charlotte system, the motion is dominantly dextral with increasing oblique transpression to the south corresponding to a change in margin trend. At the northern end of the transform system, motion is distributed onto multiple faults. Roughly 75% of the Fairweather motion is transferred west into the St. Elias fold-and-thrust belt, which accommodates 30 mm/yr of convergence. The remaining 25% is transferred north towards the dextral Denali-Totschunda system. The eastern Denali fault presently plays a minor role in accommodating relative plate motion, with 2-3 mm/yr of transpression. Based on a sequence of earthquakes in May 2017, this motion may be distributed along multiple fault strands.

  15. Quantification of organ motion based on an adaptive image-based scale invariant feature method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paganelli, Chiara; Peroni, Marta; Baroni, Guido

    2013-11-15

    Purpose: The availability of corresponding landmarks in IGRT image series allows quantifying the inter and intrafractional motion of internal organs. In this study, an approach for the automatic localization of anatomical landmarks is presented, with the aim of describing the nonrigid motion of anatomo-pathological structures in radiotherapy treatments according to local image contrast.Methods: An adaptive scale invariant feature transform (SIFT) was developed from the integration of a standard 3D SIFT approach with a local image-based contrast definition. The robustness and invariance of the proposed method to shape-preserving and deformable transforms were analyzed in a CT phantom study. The application ofmore » contrast transforms to the phantom images was also tested, in order to verify the variation of the local adaptive measure in relation to the modification of image contrast. The method was also applied to a lung 4D CT dataset, relying on manual feature identification by an expert user as ground truth. The 3D residual distance between matches obtained in adaptive-SIFT was then computed to verify the internal motion quantification with respect to the expert user. Extracted corresponding features in the lungs were used as regularization landmarks in a multistage deformable image registration (DIR) mapping the inhale vs exhale phase. The residual distances between the warped manual landmarks and their reference position in the inhale phase were evaluated, in order to provide a quantitative indication of the registration performed with the three different point sets.Results: The phantom study confirmed the method invariance and robustness properties to shape-preserving and deformable transforms, showing residual matching errors below the voxel dimension. The adapted SIFT algorithm on the 4D CT dataset provided automated and accurate motion detection of peak to peak breathing motion. The proposed method resulted in reduced residual errors with respect to standard SIFT, providing a motion description comparable to expert manual identification, as confirmed by DIR.Conclusions: The application of the method to a 4D lung CT patient dataset demonstrated adaptive-SIFT potential as an automatic tool to detect landmarks for DIR regularization and internal motion quantification. Future works should include the optimization of the computational cost and the application of the method to other anatomical sites and image modalities.« less

  16. Simulation of a synergistic six-post motion system on the flight simulator for advanced aircraft at NASA-Ames

    NASA Technical Reports Server (NTRS)

    Bose, S. C.; Parris, B. L.

    1977-01-01

    Motion system drive philosophy and corresponding real-time software have been developed for the purpose of simulating the characteristics of a typical synergistic Six-Post Motion System (SPMS) on the Flight Simulator for Advanced Aircraft (FSAA) at NASA-Ames which is a non-synergistic motion system. This paper gives a brief description of these two types of motion systems and the general methods of producing motion cues of the FSAA. An actuator extension transformation which allows the simulation of a typical SPMS by appropriate drive washout and variable position limiting is described.

  17. Study of the photochemical transformation of 2-ethylhexyl 4-(dimethylamino)benzoate (OD-PABA) under conditions relevant to surface waters.

    PubMed

    Calza, P; Vione, D; Galli, F; Fabbri, D; Dal Bello, F; Medana, C

    2016-01-01

    We studied the aquatic environmental fate of 2-ethylhexyl 4-(dimethylamino)benzoate (OD-PABA), a widespread sunscreen, to assess its environmental persistence and photoinduced transformation. Direct photolysis is shown to play a key role in phototransformation, and this fast process is expected to be the main attenuation route of OD-PABA in sunlit surface waters. The generation of transformation products (TPs) was followed via HPLC/HRMS. Five (or four) TPs were detected in the samples exposed to UVB (or UVA) radiation, respectively. The main detected TPs of OD-PABA, at least as far as HPLC-HRMS peak areas are concerned, would involve a dealkylation or hydroxylation/oxidation process in both direct photolysis and indirect phototransformation. The latter was simulated by using TiO2-based heterogeneous photocatalysis, involving the formation of nine additional TPs. Most of them resulted from the further degradation of the primary TPs that can also be formed by direct photolysis. Therefore, these secondary TPs might also occur as later transformation intermediates in natural aquatic systems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Transformation Theory, Accelerating Frames, and Two Simple Problems

    ERIC Educational Resources Information Center

    Schmid, G. Bruno

    1977-01-01

    Presents an operator which transforms quantum functions to solve problems of the stationary state wave functions for a particle and the motion and spreading of a Gaussian wave packet in uniform gravitational fields. (SL)

  19. Lateral temperature variations at the core-mantle boundary deduced from the magnetic field

    NASA Technical Reports Server (NTRS)

    Bloxham, Jeremy; Jackson, Andrew

    1990-01-01

    Recent studies of the secular variation of the earth's magnetic field over periods of a few centuries have suggested that the pattern of fluid motion near the surface of earth's outer core may be strongly influenced by lateral temperature variations in the lowermost mantle. This paper introduces a self-consistent method for finding the temperature variations near the core surface by assuming that the dynamical balance there is geostrophic and that lateral density variations there are thermal in origin. As expected, the lateral temperature variations are very small. Some agreement is found between this pattern and the pattern of topography of the core-mantle boundary, but this does not conclusively answer to what extent core surface motions are controlled by the mantle, rather than being determined by processes in the core.

  20. Segregation and persistence of form in the lateral occipital complex.

    PubMed

    Ferber, Susanne; Humphrey, G Keith; Vilis, Tutis

    2005-01-01

    While the lateral occipital complex (LOC) has been shown to be implicated in object recognition, it is unclear whether this brain area is responsive to low-level stimulus-driven features or high-level representational processes. We used scrambled shape-from-motion displays to disambiguate the presence of contours from figure-ground segregation and to measure the strength of the binding process for shapes without contours. We found persisting brain activation in the LOC for scrambled displays after the motion stopped indicating that this brain area subserves and maintains figure-ground segregation processes, a low-level function in the object processing hierarchy. In our second experiment, we found that the figure-ground segregation process has some form of spatial constancy indicating top-down influences. The persisting activation after the motion stops suggests an intermediate role in object recognition processes for this brain area and might provide further evidence for the idea that the lateral occipital complex subserves mnemonic functions mediating between iconic and short-term memory.

  1. A biomechanical investigation of right-forward lunging step among badminton players.

    PubMed

    Mei, Qichang; Gu, Yaodong; Fu, Fengqin; Fernandez, Justin

    2017-03-01

    This study presents the kinematics and plantar pressure characteristics of eight elite national-level badminton athletes and eight recreational college-level badminton players while performing a right-forward lunge movement in a laboratory-simulated badminton court. The hypothesis was that recreational players would be significantly different from elite players in kinematics and plantar pressure measures. Vicon ® motion capture and Novel ® insole plantar pressure measurement were simultaneously taken to record the lower extremity kinematics and foot loading during stance. Recreational players showed significantly higher peak pressure in the lateral forefoot (P = 0.002) and force time integral in the lateral forefoot (P = 0.013) and other toes (P = 0.005). Elite athletes showed higher peak pressure in the medial forefoot (P = 0.003), hallux (P = 0.037) and force time integral in the medial forefoot (P = 0.009). The difference in landing techniques for the lunge step between elite athletes and recreational players was observed with peak ankle eversion (-38.2°±2.4° for athletes and -11.1°±3.9° for players, P = 0.015); smaller knee range of motion in the coronal and transverse planes, with differences in peak knee adduction (28.9°±6.8° for athletes and 15.7°±6.2° for players, P = 0.031); peak knee internal rotation (20.3°±1.3° for athletes and 11.8°±3.2° for players, P = 0.029) and peak hip flexion (77.3°±4.1° for athletes and 91.3°±9.3° for players, P = 0.037).

  2. Restricted neck mobility in children with chronic tension type headache: a blinded, controlled study.

    PubMed

    Fernández-Mayoralas, Daniel M; Fernández-de-las-Peñas, César; Palacios-Ceña, Domingo; Cantarero-Villanueva, Irene; Fernández-Lao, Carolina; Pareja, Juan A

    2010-10-01

    The main purpose of this study was to analyze the differences in neck mobility between children with chronic tension type headache (CTTH) and healthy children, and to determine the influence of cervical mobility on headache intensity, frequency and duration. Fifty children, 13 boys and 37 girls (mean age 8.5 ± 1.6 years) with CTTH associated to peri-cranial tenderness (IHS 2.3.1) and 50 age- and sex matched children without headache (13 boys, 37 girls, mean age 8.5 ± 1.8 years, P = 0.955) participated. Cervical range of motion (CROM) was objectively assessed with a cervical goniometer by an assessor blinded to the children's condition. Children completed a headache diary for 4 weeks to confirm the diagnosis. Children with CTTH showed decreased CROM as compared to children without headache for flexion (z = -6.170; P < 0.001), extension (z = -4.230; P < 0.001), right (z = -4.505; P < 0.001) and left (z = -4.768; P < 0.001) lateral-flexions, but not for rotation (right z = -0.802; P = 0.425; left z = -1.254; P = 0.213) and also for total range of motion for flexion-extension (z = -4.267; P < 0.001) and lateral-flexion (z = -4.801; P < 0.001), but not for rotation (z = -1.058; P = 0.293). Within CTTH children, CROM was not correlated with headache intensity, frequency or duration. Additionally, age (P > 0.125) or gender (P > 0.250) did not influence CROM in either children with CTTH or without headache. Current results support the hypothesis that the cervical spine should be explored in children with headache. Further research is also needed to clearly define the potential role of the cervical spine in the genesis or maintenance of CTTH.

  3. Hoph Bifurcation in Viscous, Low Speed Flows About an Airfoil with Structural Coupling

    DTIC Science & Technology

    1993-03-01

    8 2.1 Equations of Motion ...... ..................... 8 2.2 Coordinate Transformation ....................... 13 2.3 Aerodynamic...a-frame) f - Apparent body forces applied in noninertial system fL - Explicit fourth-order numerical damping term Ai - Implicit fourth-order...resulting airfoil motion . The equations describing the airfoil motion are integrated in time using a fourth-order Runge-Kutta algorithm. The

  4. Motion estimation of magnetic resonance cardiac images using the Wigner-Ville and hough transforms

    NASA Astrophysics Data System (ADS)

    Carranza, N.; Cristóbal, G.; Bayerl, P.; Neumann, H.

    2007-12-01

    Myocardial motion analysis and quantification is of utmost importance for analyzing contractile heart abnormalities and it can be a symptom of a coronary artery disease. A fundamental problem in processing sequences of images is the computation of the optical flow, which is an approximation of the real image motion. This paper presents a new algorithm for optical flow estimation based on a spatiotemporal-frequency (STF) approach. More specifically it relies on the computation of the Wigner-Ville distribution (WVD) and the Hough Transform (HT) of the motion sequences. The latter is a well-known line and shape detection method that is highly robust against incomplete data and noise. The rationale of using the HT in this context is that it provides a value of the displacement field from the STF representation. In addition, a probabilistic approach based on Gaussian mixtures has been implemented in order to improve the accuracy of the motion detection. Experimental results in the case of synthetic sequences are compared with an implementation of the variational technique for local and global motion estimation, where it is shown that the results are accurate and robust to noise degradations. Results obtained with real cardiac magnetic resonance images are presented.

  5. Total Hip Arthroplasty Using a Polished Tapered Cemented Stem in Hereditary Multiple Exostosis

    PubMed Central

    Kanda, Akio; Kaneko, Kazuo; Obayashi, Osamu; Mogami, Atsuhiko

    2016-01-01

    A 61-year-old Japanese man underwent right total hip arthroplasty for hereditary multiple exostosis. At first presentation, he had suffered from coxalgia for a long time. On radiographic images, there was a gigantic femoral head, increased shaft angle, and large diameter of the femoral neck. He had also developed coxarthrosis and severe pain of the hip joint. The transformation of the proximal femur bone causes difficulty in setting a cementless total hip prosthesis. Therefore, total hip arthroplasty using a cemented polished tapered stem was performed via a direct lateral approach. Using a cemented polished tapered stem allowed us to deal with the femoral bone transformation and bone substance defectiveness due to exostosis and also minimized the invasiveness of the operation. PMID:27127668

  6. Measuring flow velocity and flow direction by spatial and temporal analysis of flow fluctuations.

    PubMed

    Chagnaud, Boris P; Brücker, Christoph; Hofmann, Michael H; Bleckmann, Horst

    2008-04-23

    If exposed to bulk water flow, fish lateral line afferents respond only to flow fluctuations (AC) and not to the steady (DC) component of the flow. Consequently, a single lateral line afferent can encode neither bulk flow direction nor velocity. It is possible, however, for a fish to obtain bulk flow information using multiple afferents that respond only to flow fluctuations. We show by means of particle image velocimetry that, if a flow contains fluctuations, these fluctuations propagate with the flow. A cross-correlation of water motion measured at an upstream point with that at a downstream point can then provide information about flow velocity and flow direction. In this study, we recorded from pairs of primary lateral line afferents while a fish was exposed to either bulk water flow, or to the water motion caused by a moving object. We confirm that lateral line afferents responded to the flow fluctuations and not to the DC component of the flow, and that responses of many fiber pairs were highly correlated, if they were time-shifted to correct for gross flow velocity and gross flow direction. To prove that a cross-correlation mechanism can be used to retrieve the information about gross flow velocity and direction, we measured the flow-induced bending motions of two flexible micropillars separated in a downstream direction. A cross-correlation of the bending motions of these micropillars did indeed produce an accurate estimate of the velocity vector along the direction of the micropillars.

  7. Dynamic motion modes of high temperature superconducting maglev on a 45-m long ring test line

    NASA Astrophysics Data System (ADS)

    Lei, W. Y.; Qian, N.; Zheng, J.; Jin, L. W.; Zhang, Y.; Deng, Z. G.

    2017-10-01

    With the development of high temperature superconducting (HTS) maglev, studies on the running stability have become more and more significant to ensure the operation safety. An experimental HTS maglev vehicle was tested on a 45-m long ring test line under the speed from 4 km/h to 20 km/h. The lateral and vertical acceleration signals of each cryostat were collected by tri-axis accelerometers in real time. By analyzing the phase relationship of acceleration signals on the four cryostats, several typical motion modes of the HTS maglev vehicle, including lateral, yaw, pitch and heave motions were observed. This experimental finding is important for the next improvement of the HTS maglev system.

  8. Traffic-load forecasting using weigh-in-motion data

    DOT National Transportation Integrated Search

    1997-03-01

    Vehicular traffic loading is a crucial consideration for the design and maintenance of pavements. With the help of weigh-in-motion (WIM) systems, the information about date, time, speed, lane of travel, lateral lane position, axle spacing, and wheel ...

  9. Spatial transformation abilities and their relation to later mathematics performance.

    PubMed

    Frick, Andrea

    2018-04-10

    Using a longitudinal approach, this study investigated the relational structure of different spatial transformation skills at kindergarten age, and how these spatial skills relate to children's later mathematics performance. Children were tested at three time points, in kindergarten, first grade, and second grade (N = 119). Exploratory factor analyses revealed two subcomponents of spatial transformation skills: one representing egocentric transformations (mental rotation and spatial scaling), and one representing allocentric transformations (e.g., cross-sectioning, perspective taking). Structural equation modeling suggested that egocentric transformation skills showed their strongest relation to the part of the mathematics test tapping arithmetic operations, whereas allocentric transformations were strongly related to Numeric-Logical and Spatial Functions as well as geometry. The present findings point to a tight connection between early mental transformation skills, particularly the ones requiring a high level of spatial flexibility and a strong sense for spatial magnitudes, and children's mathematics performance at the beginning of their school career.

  10. Analysis of Human's Motions Based on Local Mean Decomposition in Through-wall Radar Detection

    NASA Astrophysics Data System (ADS)

    Lu, Qi; Liu, Cai; Zeng, Zhaofa; Li, Jing; Zhang, Xuebing

    2016-04-01

    Observation of human motions through a wall is an important issue in security applications and search-and rescue. Radar has advantages in looking through walls where other sensors give low performance or cannot be used at all. Ultrawideband (UWB) radar has high spatial resolution as a result of employment of ultranarrow pulses. It has abilities to distinguish the closely positioned targets and provide time-lapse information of targets. Moreover, the UWB radar shows good performance in wall penetration when the inherently short pulses spread their energy over a broad frequency range. Human's motions show periodic features including respiration, swing arms and legs, fluctuations of the torso. Detection of human targets is based on the fact that there is always periodic motion due to breathing or other body movements like walking. The radar can gain the reflections from each human body parts and add the reflections at each time sample. The periodic movements will cause micro-Doppler modulation in the reflected radar signals. Time-frequency analysis methods are consider as the effective tools to analysis and extract micro-Doppler effects caused by the periodic movements in the reflected radar signal, such as short-time Fourier transform (STFT), wavelet transform (WT), and Hilbert-Huang transform (HHT).The local mean decomposition (LMD), initially developed by Smith (2005), is to decomposed amplitude and frequency modulated signals into a small set of product functions (PFs), each of which is the product of an envelope signal and a frequency modulated signal from which a time-vary instantaneous phase and instantaneous frequency can be derived. As bypassing the Hilbert transform, the LMD has no demodulation error coming from window effect and involves no negative frequency without physical sense. Also, the instantaneous attributes obtained by LMD are more stable and precise than those obtained by the empirical mode decomposition (EMD) because LMD uses smoothed local means and local magnitudes that facilitate a more natural decomposition than that using the cubic spline approach of EMD. In this paper, we apply the UWB radar system in through-wall human detections and present a method to characterize human's motions. We start with a walker's motion model and periodic motion features are given the analysis of the experimental data based on the combination of the LMT and fast Fourier Transform (FFT). The characteristics of human's motions including respiration, swing arms and legs, and fluctuations of the torso are extracted. At last, we calculate the actual distance between the human and the wall. This work was supported in part by National Natural Science Foundation of China under Grant 41574109 and 41430322.

  11. Scissoring Fault Rupture Properties along the Median Tectonic Line Fault Zone, Southwest Japan

    NASA Astrophysics Data System (ADS)

    Ikeda, M.; Nishizaka, N.; Onishi, K.; Sakamoto, J.; Takahashi, K.

    2017-12-01

    The Median Tectonic Line fault zone (hereinafter MTLFZ) is the longest and most active fault zone in Japan. The MTLFZ is a 400-km-long trench parallel right-lateral strike-slip fault accommodating lateral slip components of the Philippine Sea plate oblique subduction beneath the Eurasian plate [Fitch, 1972; Yeats, 1996]. Complex fault geometry evolves along the MTLFZ. The geomorphic and geological characteristics show a remarkable change through the MTLFZ. Extensional step-overs and pull-apart basins and a pop-up structure develop in western and eastern parts of the MTLFZ, respectively. It is like a "scissoring fault properties". We can point out two main factors to form scissoring fault properties along the MTLFZ. One is a regional stress condition, and another is a preexisting fault. The direction of σ1 anticlockwise rotate from N170°E [Famin et al., 2014] in the eastern Shikoku to Kinki areas and N100°E [Research Group for Crustral Stress in Western Japan, 1980] in central Shikoku to N85°E [Onishi et al., 2016] in western Shikoku. According to the rotation of principal stress directions, the western and eastern parts of the MTLFZ are to be a transtension and compression regime, respectively. The MTLFZ formed as a terrain boundary at Cretaceous, and has evolved with a long active history. The fault style has changed variously, such as left-lateral, thrust, normal and right-lateral. Under the structural condition of a preexisting fault being, the rupture does not completely conform to Anderson's theory for a newly formed fault, as the theory would require either purely dip-slip motion on the 45° dipping fault or strike-slip motion on a vertical fault. The fault rupture of the 2013 Barochistan earthquake in Pakistan is a rare example of large strike-slip reactivation on a relatively low angle dipping fault (thrust fault), though many strike-slip faults have vertical plane generally [Avouac et al., 2014]. In this presentation, we, firstly, show deep subsurface structures of the MTLFZ based on newly obtained data and previous research results. And then, we discuss how the relationship between the surface fault geometry and the deep subsurface structures changes through the MTLFZ which is under the heterogeneous regional stress condition.

  12. Effects of visual focus and gait speed on walking balance in the frontal plane.

    PubMed

    Goodworth, Adam; Perrone, Kathryn; Pillsbury, Mark; Yargeau, Michelle

    2015-08-01

    We investigated how head position and gait speed influenced frontal plane balance responses to external perturbations during gait. Thirteen healthy participants walked on a treadmill at three different gait speeds. Visual conditions included either focus downward on lower extremities and walking surface only or focus forward on a stationary scene with horizontal and vertical lines. The treadmill was positioned on a platform that was stationary (non-perturbed) or moving in a pattern that appeared random to the subjects (perturbed). In non-perturbed walking, medial-lateral upper body motion was very similar between visual conditions. However, in perturbed walking, there was significantly less body motion when focus was on the stationary visual scene, suggesting visual feedback of stationary vertical and horizontal cues are particularly important when balance is challenged. Sensitivity of body motion to perturbations was significantly decreased by increasing gait speed, suggesting that faster walking was less sensitive to frontal plane perturbations. Finally, our use of external perturbations supported the idea that certain differences in balance control mechanisms can only be detected in more challenging situations, which is an important consideration for approaches to investigating sensory contribution to balance during gait. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Biomechanical mechanism of lateral trunk lean gait for knee osteoarthritis patients.

    PubMed

    Tokuda, Kazuki; Anan, Masaya; Takahashi, Makoto; Sawada, Tomonori; Tanimoto, Kenji; Kito, Nobuhiro; Shinkoda, Koichi

    2018-01-03

    The biomechanical mechanism of lateral trunk lean gait employed to reduce external knee adduction moment (KAM) for knee osteoarthritis (OA) patients is not well known. This mechanism may relate to the center of mass (COM) motion. Moreover, lateral trunk lean gait may affect motor control of the COM displacement. Uncontrolled manifold (UCM) analysis is an evaluation index used to understand motor control and variability of the motor task. Here we aimed to clarify the biomechanical mechanism to reduce KAM during lateral trunk lean gait and how motor variability controls the COM displacement. Twenty knee OA patients walked under two conditions: normal and lateral trunk lean gait conditions. UCM analysis was performed with respect to the COM displacement in the frontal plane. We also determined how the variability is structured with regards to the COM displacement as a performance variable. The peak KAM under lateral trunk lean gait was lower than that under normal gait. The reduced peak KAM observed was accompanied by medially shifted knee joint center, shortened distance of the center of pressure to knee joint center, and shortened distance of the knee-ground reaction force lever arm during the stance phase. Knee OA patients with lateral trunk lean gait could maintain kinematic synergy by utilizing greater segmental configuration variance to the performance variable. However, the COM displacement variability of lateral trunk lean gait was larger than that of normal gait. Our findings may provide clinical insights to effectively evaluate and prescribe gait modification training for knee OA patients. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Previously unrecognized now-inactive strand of the North Anatolian fault in the Thrace basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perincek, D.

    1988-08-01

    The North Anatolian fault is a major 1,200 km-long transform fault bounding the Anatolian plate to the north. It formed in late middle Miocene time as a broad shear zone with a number of strands splaying westward in a horsetail fashion. Later, movement became localized along the stem, and the southerly and northerly splays became inactive. One such right-lateral, now-inactive splay is the west-northwest-striking Thrace strike-slip fault system, consisting of three subparallel strike-slip faults. From north to south these are the Kirklareli, Lueleburgaz, and Babaeski fault zones, extending {plus minus} 130 km along the strike. The Thrace fault zone probablymore » connected with the presently active northern strand of the North Anatolian fault in the Sea of Marmara in the southeast and may have joined the Plovdiv graben zone in Bulgaria in the northwest. The Thrace basin in which the Thrace fault system is located, is Cenozoic with a sedimentary basin fill from middle Eocene to Pliocene. The Thrace fault system formed in pre-Pliocene time and had become inactive by the Pliocene. Strike-slip fault zones with normal and reverse separation are detected by seismic reflection profiles and subsurface data. Releasing bend extensional structures (e.g., near the town of Lueleburgaz) and restraining bend compressional structures (near Vakiflar-1 well) are abundant on the fault zones. Umurca and Hamitabad fields are en echelon structures on the Lueleburgaz fault zone. The Thrace strike-slip fault system has itself a horsetail shape, the various strands of which become younger southward. The entire system died before the Pliocene, and motion on the North Anatolian fault zone began to be accommodated in the Sea of Marmara region. Thus the Thrace fault system represents the oldest strand of the North Anatolian fault in the west.« less

  15. A STEP fault in Central Betics, associated with lateral lithospheric tearing at the northern edge of the Gibraltar arc subduction system

    NASA Astrophysics Data System (ADS)

    Mancilla, Flor de Lis; Heit, Benjamin; Morales, Jose; Yuan, Xiaohui; Stich, Daniel; Molina-Aguilera, Antonio; Azañon, Jose Miguel; Martín, Rosa

    2018-03-01

    We study the crustal and lithospheric mantle structure under central Betics in the westernmost Mediterranean region by migrating P-receiver functions along a dense seismic profile (∼2 km interstation distance). The profile, North-South oriented, probes the crustal structure of different geological units, from the Alboran domain in the south with metamorphic rocks, through the External Zones with sedimentary rocks to the Variscan terrains of the Iberian Massif in the north. From north to south, the Moho depth increases from ∼30 km to ∼46 km underneath the Guadix basin, due to the underthrusting of the Iberian crust below the Alboran crust, and suddenly shallows to ∼30 km underneath the Internal Zones with a step of 17 km. This sharp Moho step correlates well with a lithospheric step of ∼40 km, where the thickness of the lithosphere changes abruptly from ∼100 km in the north to ∼50 km in the south. We interpret this sharp and prominent lithospheric step as the termination of the Iberian lithosphere caused by a near-vertical STEP (Subduction-Transform-Edge-Propagator) fault that continues towards the surface as a positive flower tectonic structure of crustal scale. This STEP fault is located at the northern edge of the narrow Westernmost Mediterranean subduction system facilitating the slab rollback motion towards the west. The sharp termination of the Iberian lithosphere occurs under the contact between the Alpujarride and the Nevado-Filabride complexes of the Alboran domain in an ENE-WSW right-lateral transpressive shear zone. The thickest crust and lithosphere do not correlate with the highest topography along the profile suggesting that this high topography is a combined effect of the positive flower structure, and the push up of the asthenosphere produced by the removal of the Iberian lithosphere.

  16. From standard alpha-stable Lévy motions to horizontal visibility networks: dependence of multifractal and Laplacian spectrum

    NASA Astrophysics Data System (ADS)

    Zou, Hai-Long; Yu, Zu-Guo; Anh, Vo; Ma, Yuan-Lin

    2018-05-01

    In recent years, researchers have proposed several methods to transform time series (such as those of fractional Brownian motion) into complex networks. In this paper, we construct horizontal visibility networks (HVNs) based on the -stable Lévy motion. We aim to study the relations of multifractal and Laplacian spectrum of transformed networks on the parameters and of the -stable Lévy motion. First, we employ the sandbox algorithm to compute the mass exponents and multifractal spectrum to investigate the multifractality of these HVNs. Then we perform least squares fits to find possible relations of the average fractal dimension , the average information dimension and the average correlation dimension against using several methods of model selection. We also investigate possible dependence relations of eigenvalues and energy on , calculated from the Laplacian and normalized Laplacian operators of the constructed HVNs. All of these constructions and estimates will help us to evaluate the validity and usefulness of the mappings between time series and networks, especially between time series of -stable Lévy motions and HVNs.

  17. Biomechanics of lateral lumbar interbody fusion constructs with lateral and posterior plate fixation: laboratory investigation.

    PubMed

    Fogel, Guy R; Parikh, Rachit D; Ryu, Stephen I; Turner, Alexander W L

    2014-03-01

    Lumbar interbody fusion is indicated in the treatment of degenerative conditions. Laterally inserted interbody cages significantly decrease range of motion (ROM) compared with other cages. Supplemental fixation options such as lateral plates or spinous process plates have been shown to provide stability and to reduce morbidity. The authors of the current study investigate the in vitro stability of the interbody cage with a combination of lateral and spinous process plate fixation and compare this method to the established bilateral pedicle screw fixation technique. Ten L1-5 specimens were evaluated using multidirectional nondestructive moments (± 7.5 N · m), with a custom 6 degrees-of-freedom spine simulator. Intervertebral motions (ROM) were measured optoelectronically. Each spine was evaluated under the following conditions at the L3-4 level: intact; interbody cage alone (stand-alone); cage supplemented with lateral plate; cage supplemented with ipsilateral pedicle screws; cage supplemented with bilateral pedicle screws; cage supplemented with spinous process plate; and cage supplemented with a combination of lateral plate and spinous process plate. Intervertebral rotations were calculated, and ROM data were normalized to the intact ROM data. The stand-alone laterally inserted interbody cage significantly reduced ROM with respect to the intact state in flexion-extension (31.6% intact ROM, p < 0.001), lateral bending (32.5%, p < 0.001), and axial rotation (69.4%, p = 0.002). Compared with the stand-alone condition, addition of a lateral plate to the interbody cage did not significantly alter the ROM in flexion-extension (p = 0.904); however, it was significantly decreased in lateral bending and axial rotation (p < 0.001). The cage supplemented with a lateral plate was not statistically different from bilateral pedicle screws in lateral bending (p = 0.579). Supplemental fixation using a spinous process plate was not significantly different from bilateral pedicle screws in flexion-extension (p = 0.476). The combination of lateral plate and spinous process plate was not statistically different from the cage supplemented with bilateral pedicle screws in all the loading modes (p ≥ 0.365). A combination of lateral and spinous process plate fixation to supplement a laterally inserted interbody cage helps achieve rigidity in all motion planes similar to that achieved with bilateral pedicle screws.

  18. Dissociation between Semantic Representations for Motion and Action Verbs: Evidence from Patients with Left Hemisphere Lesions

    PubMed Central

    Taylor, Lawrence J.; Evans, Carys; Greer, Joanna; Senior, Carl; Coventry, Kenny R.; Ietswaart, Magdalena

    2017-01-01

    This multiple single case study contrasted left hemisphere stroke patients (N = 6) to healthy age-matched control participants (N = 15) on their understanding of action (e.g., holding, clenching) and motion verbs (e.g., crumbling, flowing). The tasks required participants to correctly identify the matching verb or associated picture. Dissociations on action and motion verb content depending on lesion site were expected. As predicted for verbs containing an action and/or motion content, modified t-tests confirmed selective deficits in processing motion verbs in patients with lesions involving posterior parietal and lateral occipitotemporal cortex. In contrast, deficits in verbs describing motionless actions were found in patients with more anterior lesions sparing posterior parietal and lateral occipitotemporal cortex. These findings support the hypotheses that semantic representations for action and motion are behaviorally and neuro-anatomically dissociable. The findings clarify the differential and critical role of perceptual and motor regions in processing modality-specific semantic knowledge as opposed to a supportive but not necessary role. We contextualize these results within theories from both cognitive psychology and cognitive neuroscience that make claims over the role of sensory and motor information in semantic representation. PMID:28261070

  19. The coupled nonlinear dynamics of a lift system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crespo, Rafael Sánchez, E-mail: rafael.sanchezcrespo@northampton.ac.uk, E-mail: stefan.kaczmarczyk@northampton.ac.uk, E-mail: phil.picton@northampton.ac.uk, E-mail: huijuan.su@northampton.ac.uk; Kaczmarczyk, Stefan, E-mail: rafael.sanchezcrespo@northampton.ac.uk, E-mail: stefan.kaczmarczyk@northampton.ac.uk, E-mail: phil.picton@northampton.ac.uk, E-mail: huijuan.su@northampton.ac.uk; Picton, Phil, E-mail: rafael.sanchezcrespo@northampton.ac.uk, E-mail: stefan.kaczmarczyk@northampton.ac.uk, E-mail: phil.picton@northampton.ac.uk, E-mail: huijuan.su@northampton.ac.uk

    2014-12-10

    Coupled lateral and longitudinal vibrations of suspension and compensating ropes in a high-rise lift system are often induced by the building motions due to wind or seismic excitations. When the frequencies of the building become near the natural frequencies of the ropes, large resonance motions of the system may result. This leads to adverse coupled dynamic phenomena involving nonplanar motions of the ropes, impact loads between the ropes and the shaft walls, as well as vertical vibrations of the car, counterweight and compensating sheave. Such an adverse dynamic behaviour of the system endangers the safety of the installation. This papermore » presents two mathematical models describing the nonlinear responses of a suspension/ compensating rope system coupled with the elevator car / compensating sheave motions. The models accommodate the nonlinear couplings between the lateral and longitudinal modes, with and without longitudinal inertia of the ropes. The partial differential nonlinear equations of motion are derived using Hamilton Principle. Then, the Galerkin method is used to discretise the equations of motion and to develop a nonlinear ordinary differential equation model. Approximate numerical solutions are determined and the behaviour of the system is analysed.« less

  20. Correction And Use Of Jitter In Television Images

    NASA Technical Reports Server (NTRS)

    Diner, Daniel B.; Fender, Derek H.; Fender, Antony R. H.

    1989-01-01

    Proposed system stabilizes jittering television image and/or measures jitter to extract information on motions of objects in image. Alternative version, system controls lateral motion on camera to generate stereoscopic views to measure distances to objects. In another version, motion of camera controlled to keep object in view. Heart of system is digital image-data processor called "jitter-miser", which includes frame buffer and logic circuits to correct for jitter in image. Signals from motion sensors on camera sent to logic circuits and processed into corrections for motion along and across line of sight.

  1. Effect of cage design, supplemental posterior instrumentation and approach on primary stability of a lumbar interbody fusion - A biomechanical in vitro study.

    PubMed

    Schmoelz, Werner; Sandriesser, Sabrina; Loebl, Oded; Bauer, Marlies; Krappinger, Dietmar

    2017-10-01

    There are various techniques and approaches for lumbar interbody fusion differing in access, cage type and type of supplemental posterior instrumentation. While a transforaminal access usually includes a hemifacetectomy, the facet joint can be preserved with a more lateral extraforaminal access. The supplemental posterior instrumentation required for both fusion techniques is still debated. The purpose of the present study was to compare primary stability of the two accesses for two different cage types with none, unilateral and bilateral supplemental posterior instrumentation. Six monosegmental lumbar functional spinal units (FSUs) were included in each of the two groups, and subjected to a flexibility test. As cages, a newly designed cage was compared to a standard cage in the following states: (a) native, (b) stand-alone cage, (c) bilateral internal fixator, (d) unilateral internal fixator, (e) unilateral facetectomy+bilateral internal fixator, (f) unilateral facetectomy+unilateral internal fixator and (g) unilateral facetectomy with stand-alone cage. For comparison the range of motion was normalized to the native state and the effects of the facetectomy, cage type, and supplemental instrumentation was compared. Within the subject comparison showed a significantly higher flexibility for the unilateral facetectomy in all motion directions (p<0.001). In between subject comparison showed a significant effect of cage type on flexibility in flexion/extension (p=0.002) and lateral bending (p=0.028) but not in axial rotation (p=0.322). The type of supplemental posterior fixation had a significant effect on the flexibility in all motion directions (stand-alone>unilateral fixator>bilateral fixator). Cage design and approach type are affecting the primary stability of lumbar interbody fusion procedures while the type of posterior instrumentation is the most influencing factor. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Cortical network differences in the sighted versus early blind for recognition of human-produced action sounds

    PubMed Central

    Lewis, James W.; Frum, Chris; Brefczynski-Lewis, Julie A.; Talkington, William J.; Walker, Nathan A.; Rapuano, Kristina M.; Kovach, Amanda L.

    2012-01-01

    Both sighted and blind individuals can readily interpret meaning behind everyday real-world sounds. In sighted listeners, we previously reported that regions along the bilateral posterior superior temporal sulci (pSTS) and middle temporal gyri (pMTG) are preferentially activated when presented with recognizable action sounds. These regions have generally been hypothesized to represent primary loci for complex motion processing, including visual biological motion processing and audio-visual integration. However, it remained unclear whether, or to what degree, life-long visual experience might impact functions related to hearing perception or memory of sound-source actions. Using functional magnetic resonance imaging (fMRI), we compared brain regions activated in congenitally blind versus sighted listeners in response to hearing a wide range of recognizable human-produced action sounds (excluding vocalizations) versus unrecognized, backward-played versions of those sounds. Here we show that recognized human action sounds commonly evoked activity in both groups along most of the left pSTS/pMTG complex, though with relatively greater activity in the right pSTS/pMTG by the blind group. These results indicate that portions of the postero-lateral temporal cortices contain domain-specific hubs for biological and/or complex motion processing independent of sensory-modality experience. Contrasting the two groups, the sighted listeners preferentially activated bilateral parietal plus medial and lateral frontal networks, while the blind listeners preferentially activated left anterior insula plus bilateral anterior calcarine and medial occipital regions, including what would otherwise have been visual-related cortex. These global-level network differences suggest that blind and sighted listeners may preferentially use different memory retrieval strategies when attempting to recognize action sounds. PMID:21305666

  3. Higher Improvement in Patient-Reported Outcomes Can Be Achieved After Transforaminal Lumbar Interbody Fusion for Clinical and Radiographic Degenerative Spondylolisthesis Classification Type D Degenerative Lumbar Spondylolisthesis.

    PubMed

    Chen, Xi; Xu, Liang; Qiu, Yong; Chen, Zhong-Hui; Zhou, Qing-Shuang; Li, Song; Sun, Xu

    2018-06-01

    Clinical and radiographic degenerative spondylolisthesis (CARDS) classification defines a distinct subset of patients with kyphotic angulation at the involved segment (type D). Research using CARDS classification to investigate motion characteristics at involved segments or patient-related outcomes (PROs) following surgical intervention is sparse. We investigated the relationship between CARDS type D spondylolisthesis and dynamic instability and PROs in type D versus non-type D spondylolisthesis. We reviewed consecutive patients who received transforaminal lumbar interbody fusion for L4-5 spondylolisthesis between 2009 and 2015. Patients were assigned into type D and non-type D groups. Translational motion was determined by upright lumbar lateral radiography with supine sagittal magnetic resonance imaging or flexion and extension radiography. Demographics, radiographic parameters, and PROs were evaluated. Type D and non-type D groups comprised 34 and 163 patients, respectively. Compared with non-type D, type D group was characterized by lordotic angulation loss and higher degree of olisthesis on upright radiographs and demonstrated higher translational motion on upright lumbar lateral radiography with supine sagittal magnetic resonance imaging analysis. After surgery, mean reduction rate was significantly higher in type D group; type D had less slippage, but differences in slip angle and disc height were not significant. Preoperative Oswestry Disability Index and visual analog scale for back pain scores were higher in type D group. Type D spondylolisthesis and dynamic instability were associated with achieving minimal clinically important differences in PROs. CARDS type D spondylolisthesis is a distinct subset associated with dynamic instability and worse PROs. Higher improvement in PROs can be achieved in CARDS type D spondylolisthesis after surgery. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Role of inter-hemispheric transfer in generating visual evoked potentials in V1-damaged brain hemispheres

    PubMed Central

    Kavcic, Voyko; Triplett, Regina L.; Das, Anasuya; Martin, Tim; Huxlin, Krystel R.

    2015-01-01

    Partial cortical blindness is a visual deficit caused by unilateral damage to the primary visual cortex, a condition previously considered beyond hopes of rehabilitation. However, recent data demonstrate that patients may recover both simple and global motion discrimination following intensive training in their blind field. The present experiments characterized motion-induced neural activity of cortically blind (CB) subjects prior to the onset of visual rehabilitation. This was done to provide information about visual processing capabilities available to mediate training-induced visual improvements. Visual Evoked Potentials (VEPs) were recorded from two experimental groups consisting of 9 CB subjects and 9 age-matched, visually-intact controls. VEPs were collected following lateralized stimulus presentation to each of the 4 visual field quadrants. VEP waveforms were examined for both stimulus-onset (SO) and motion-onset (MO) related components in postero-lateral electrodes. While stimulus presentation to intact regions of the visual field elicited normal SO-P1, SO-N1, SO-P2 and MO-N2 amplitudes and latencies in contralateral brain regions of CB subjects, these components were not observed contralateral to stimulus presentation in blind quadrants of the visual field. In damaged brain hemispheres, SO-VEPs were only recorded following stimulus presentation to intact visual field quadrants, via inter-hemispheric transfer. MO-VEPs were only recorded from damaged left brain hemispheres, possibly reflecting a native left/right asymmetry in inter-hemispheric connections. The present findings suggest that damaged brain hemispheres contain areas capable of responding to visual stimulation. However, in the absence of training or rehabilitation, these areas only generate detectable VEPs in response to stimulation of the intact hemifield of vision. PMID:25575450

  5. Deficits in medio-lateral balance control and the implications for falls in individuals with multiple sclerosis.

    PubMed

    Morrison, S; Rynders, C A; Sosnoff, J J

    2016-09-01

    A major health concern faced by individuals with Multiple Sclerosis (MS) is the heightened risk of falling. Reasons for this increased risk can often be traced back to declines in neurophysiological mechanisms underlying balance control and/or muscular strength. The aim of this study was to assess differences between persons with MS and age-matched healthy adults in regards to their falls risk, strength, reactions and directional control of balance. Twenty-two persons with multiple sclerosis (mean age 56.3±8.9 years) and 22 age-matched healthy adults (mean age 59.1±7.1 years) participated in the study. Assessments of falls risk, balance, fear of falling, lower limb strength, and reaction time were performed. Balance control was assessed under four conditions where the combined effects of vision (eyes open/closed) and standing surface (firm/pliable surface) were evaluated. Results demonstrated that, in comparison to healthy older adults, persons with MS had a significantly higher falls risk, slower reaction times, and weaker lower- limb strength. For balance, persons with MS exhibited greater overall COP motion in both the medio-lateral (ML) and anterior-posterior (AP) directions compared to older adults. Additionally, during more challenging balance conditions, persons from the MS group exhibited greater ML motion compared to sway in the AP direction. Overall, the results confirm that persons with MS are often at a heightened risk of falling, due to the multitude of neuromuscular changes brought about by this disease process. However, the increased ML sway for the MS group could reflect a decreased ability to control side-to-side motion in comparison to controlling AP sway. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Effect of passengers' active head tilt and opening/closure of eyes on motion sickness in lateral acceleration environment of cars.

    PubMed

    Wada, Takahiro; Yoshida, Keigo

    2016-08-01

    This study examined the effect of passengers' active head-tilt and eyes-open/eyes-closed conditions on the severity of motion sickness in the lateral acceleration environment of cars. In the centrifugal head-tilt condition, participants intentionally tilted their heads towards the centrifugal force, whereas in the centripetal head-tilt condition, the participants tilted their heads against the centrifugal acceleration. The eyes-open and eyes-closed cases were investigated for each head-tilt condition. In the experimental runs, the sickness rating in the centripetal head-tilt condition was significantly lower than that in the centrifugal head-tilt condition. Moreover, the sickness rating in the eyes-open condition was significantly lower than that in the eyes-closed condition. The results suggest that an active head-tilt motion against the centrifugal acceleration reduces the severity of motion sickness both in the eyes-open and eyes-closed conditions. They also demonstrate that the eyes-open condition significantly reduces the motion sickness even when the head-tilt strategy is used. Practitioner Summary: Little is known about the effect of head-tilt strategies on motion sickness. This study investigated the effects of head-tilt direction and eyes-open/eyes-closed conditions on motion sickness during slalom automobile driving. Passengers' active head tilt towards the centripetal direction and the eyes-open condition greatly reduce the severity of motion sickness.

  7. [Clinical observation on improvement of motion range of cervical spine of patients with cervical spondylotic radiculopathy treated with rotation-traction manipulation and neck pain particles and cervical neck pain rehabilitation exercises].

    PubMed

    Zhen, Peng-Chao; Zhu, Li-Guo; Gao, Jing-Hua; Yu, Jie; Feng, Min-Shan; Wei, Xu; Wang, Shang-Quan

    2010-10-01

    To observe the effects of two different therapies on patients whose cervical function were restricted due to cervical spondylotic radiculopathy. Form April 2008 to October 2009, 71 cases with cervical spondylotic radiculopathy were divided into group A (36 cases) and group B (35 cases). Among them, 22 cases were male and 49 cases were female, ranging in age form 45 to 65 years with an average of 52.27 years, course of disease was from 3 days to 5 years. The patients in group A were treated with rotation-traction manipulation, neck pain particles and cervical rehabilitation exercises; and the patients in group B were treated with cervical traction, Diclofenac sodium sustained release tablets and wearing neck collar. Theapeutic time was two weeks. The cervical anteflexion, extension, left and right lateral bending, left and right rotative activity were measured by helmet-style activities instrument before and after treatment (at the 1, 3, 5, 7, 9, 11, 13 days and 1 month after treatment respectively). There were no difference between two groups in cervical activity in all directions before treatment (P > 0.05). Compared with the beginning, cervical anteflexion and extension showed significant difference at the 5th day after treatment in group A (P < 0.01). In group B, cervical anteflexion showed significant difference at the 13th day after treatment (P < 0.05), but at the 1 month after treatment, the significant difference disappeared (P > 0.05); cervical extension showed significant difference at the 7th day after treatment compared with the beginning (P < 0.05). Compared with the beginning,left lateral bending showed significant difference at the 1st day after treatment in group A (P < 0.05) and at the 5th day after treatment in group B (P < 0.01). Both in group A or B, right lateral bending, left and right rotative activity showed significant difference at the same time after treatment, either the 3rd day (P < 0.05) or the 5th day (P < 0.05). Compared between groups, cervical anteflexion, left and right lateral bending, left and right rotative activity showed significant difference at the 1 month after treatment (P < 0.05). The rotation-traction manipulation and neck pain particles and cervical rehabilitation exercises in treating cervicalspondylotic radiculopathy have quick effect to improve the activities of cervical anteflexion, extension, left lateral bending, and have durable effect to improve the activities of cervical spine in all directions.

  8. Accounting for direction and speed of eye motion in planning visually guided manual tracking.

    PubMed

    Leclercq, Guillaume; Blohm, Gunnar; Lefèvre, Philippe

    2013-10-01

    Accurate motor planning in a dynamic environment is a critical skill for humans because we are often required to react quickly and adequately to the visual motion of objects. Moreover, we are often in motion ourselves, and this complicates motor planning. Indeed, the retinal and spatial motions of an object are different because of the retinal motion component induced by self-motion. Many studies have investigated motion perception during smooth pursuit and concluded that eye velocity is partially taken into account by the brain. Here we investigate whether the eye velocity during ongoing smooth pursuit is taken into account for the planning of visually guided manual tracking. We had 10 human participants manually track a target while in steady-state smooth pursuit toward another target such that the difference between the retinal and spatial target motion directions could be large, depending on both the direction and the speed of the eye. We used a measure of initial arm movement direction to quantify whether motor planning occurred in retinal coordinates (not accounting for eye motion) or was spatially correct (incorporating eye velocity). Results showed that the eye velocity was nearly fully taken into account by the neuronal areas involved in the visuomotor velocity transformation (between 75% and 102%). In particular, these neuronal pathways accounted for the nonlinear effects due to the relative velocity between the target and the eye. In conclusion, the brain network transforming visual motion into a motor plan for manual tracking adequately uses extraretinal signals about eye velocity.

  9. Telescoping magnetic ball bar test gage

    DOEpatents

    Bryan, J.B.

    1984-03-13

    A telescoping magnetic ball bar test gage for determining the accuracy of machine tools, including robots, and those measuring machines having non-disengageable servo drives which cannot be clutched out is disclosed. Two gage balls are held and separated from one another by a telescoping fixture which allows them relative radial motional freedom but not relative lateral motional freedom. The telescoping fixture comprises a parallel reed flexure unit and a rigid member. One gage ball is secured by a magnetic socket knuckle assembly which fixes its center with respect to the machine being tested. The other gage ball is secured by another magnetic socket knuckle assembly which is engaged or held by the machine in such manner that the center of that ball is directed to execute a prescribed trajectory, all points of which are equidistant from the center of the fixed gage ball. As the moving ball executes its trajectory, changes in the radial distance between the centers of the two balls caused by inaccuracies in the machine are determined or measured by a linear variable differential transformer (LVDT) assembly actuated by the parallel reed flexure unit. Measurements can be quickly and easily taken for multiple trajectories about several different fixed ball locations, thereby determining the accuracy of the machine. 3 figs.

  10. Analogy between Thermodynamics and Mechanics.

    ERIC Educational Resources Information Center

    Peterson, Mark A.

    1979-01-01

    Establishes and illustrates a formal analogy between the motion of a particle and the "motion" of the equilibrium state of a homogeneous system in a quasistatic process. The purpose is to show that there is a much larger set of natural coordinate transformations in thermodynamics. (GA)

  11. Identification of Piecewise Linear Uniform Motion Blur

    NASA Astrophysics Data System (ADS)

    Patanukhom, Karn; Nishihara, Akinori

    A motion blur identification scheme is proposed for nonlinear uniform motion blurs approximated by piecewise linear models which consist of more than one linear motion component. The proposed scheme includes three modules that are a motion direction estimator, a motion length estimator and a motion combination selector. In order to identify the motion directions, the proposed scheme is based on a trial restoration by using directional forward ramp motion blurs along different directions and an analysis of directional information via frequency domain by using a Radon transform. Autocorrelation functions of image derivatives along several directions are employed for estimation of the motion lengths. A proper motion combination is identified by analyzing local autocorrelation functions of non-flat component of trial restored results. Experimental examples of simulated and real world blurred images are given to demonstrate a promising performance of the proposed scheme.

  12. Hydrodynamic interaction of two deformable drops in confined shear flow.

    PubMed

    Chen, Yongping; Wang, Chengyao

    2014-09-01

    We investigate hydrodynamic interaction between two neutrally buoyant circular drops in a confined shear flow based on a computational fluid dynamics simulation using the volume-of-fluid method. The rheological behaviors of interactive drops and the flow regimes are explored with a focus on elucidation of underlying physical mechanisms. We find that two types of drop behaviors during interaction occur, including passing-over motion and reversing motion, which are governed by the competition between the drag of passing flow and the entrainment of reversing flow in matrix fluid. With the increasing confinement, the drop behavior transits from the passing-over motion to reversing motion, because the entrainment of the reversing-flow matrix fluid turns to play the dominant role. The drag of the ambient passing flow is increased by enlarging the initial lateral separation due to the departure of the drop from the reversing flow in matrix fluid, resulting in the emergence of passing-over motion. In particular, a corresponding phase diagram is plotted to quantitatively illustrate the dependence of drop morphologies during interaction on confinement and initial lateral separation.

  13. The KS Method in Light of Generalized Euler Parameters.

    DTIC Science & Technology

    1980-01-01

    motion for the restricted two-body problem is trans- formed via the Kustaanheimo - Stiefel transformation method (KS) into a dynamical equation in the... Kustaanheimo - Stiefel2 transformation method (KS) in the two-body problem. Many papers have appeared in which specific problems or applications have... TRANSFORMATION MATRIX P. Kustaanheimo and E. Stiefel2 proposed a regularization method by intro- ducing a 4 x 4 transformation matrix and four-component

  14. Lateral idiopathic subluxation of the radial head. Case report.

    PubMed

    Lancaster, S; Horowitz, M

    1987-01-01

    Idiopathic subluxation of the radial head (ISRH) is a rare entity that is separate from congenital dislocations of the radial head, both symptomatically and radiographically. ISRH causes pain and restriction of rotation. A dome-shaped radial head, a hypertrophied ulna, and a hypoplastic capitellum are not present in ISRH, as they are in a congenital dislocation of the radial head (CDRH). A true lateral ISRH is used as an example to demonstrate these differences. Remodeling of the radial head may preserve motion in the joint surface deformed by growth along abnormal planes of motion.

  15. Methods of determination of periods in the motion of asteroids

    NASA Astrophysics Data System (ADS)

    Bien, R.; Schubart, J.

    Numerical techniques for the analysis of fundamental periods in asteroidal motion are evaluated. The specific techniques evaluated were: the periodogram analysis procedure of Wundt (1980); Stumpff's (1937) system of algebraic transformations; and Labrouste's procedure. It is shown that the Labrouste procedure permitted sufficient isolation of single oscillations from the quasi-periodic process of asteroidal motion. The procedure was applied to the analysis of resonance in the motion of Trojan-type and Hilda-type asteroids, and some preliminary results are discussed.

  16. Can the Functional Movement Screen™ be used to capture changes in spine and knee motion control following 12 weeks of training?

    PubMed

    Frost, David M; Beach, Tyson A C; Campbell, Troy L; Callaghan, Jack P; McGill, Stuart M

    2017-01-01

    To examine whether objective measures of spine and frontal plane knee motion exhibited during Functional Movement Screen™ (FMS) task performance changed following a movement-guided fitness (MOV) and conventional fitness (FIT) exercise intervention. Secondary analysis of a randomized controlled experiment. Before and after 12 weeks of exercise, participants' kinematics were quantified while performing the FMS and a series of general whole-body movement tasks. Biomechanics laboratory. Fifty-two firefighters were assigned to MOV, FIT, or a control (CON) group. Peak lumbar spine flexion/extension, lateral bend and axial twist, and frontal plane knee motion. The post-training kinematic changes exhibited by trainees while performing the FMS tasks were similar in magnitude (effect size < 0.8) to those exhibited by CON. However, when performing the battery of general whole-body movement tasks, only MOV showed significant improvements in spine and frontal plane knee motion control (effect size > 0.5). Whether graded qualitatively, or quantitatively via kinematic analyses, the FMS may not be a viable tool to detect movement-based exercise adaptations. Amendments to the FMS tasks and/or scoring method are needed before it can be used for reasons beyond appraising the ability to move freely, symmetrically, and without pain. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Tyre induced vibrations of the car-trailer system

    NASA Astrophysics Data System (ADS)

    Beregi, S.; Takács, D.; Stépán, G.

    2016-02-01

    The lateral and yaw dynamics of the car-trailer combination are analysed by means of a single track model. The equations of motion are derived rigorously by means of the Appell-Gibbs equations for constant longitudinal velocity of the vehicle. The tyres are described with the help of the so-called delayed tyre model, which is based on a brush model with pure rolling contact. The lateral forces and aligning torques of the tyre/road interaction are calculated via the instantaneous lateral deformations in the contact patches. The linear stability analysis of the rectilinear motion is performed via the analytically determined characteristic function of the system. Stability charts are constructed with respect to the vehicle longitudinal velocity and the payload position on the trailer. Self-excited lateral vibrations are detected with different vibration modes at low and at high longitudinal speeds of the vehicle. The effects of the tyre parameters are also investigated.

  18. Stability of Kinesthetic Perception in Efferent-Afferent Spaces: The Concept of Iso-perceptual Manifold.

    PubMed

    Latash, Mark L

    2018-02-21

    The main goal of this paper is to introduce the concept of iso-perceptual manifold for perception of body configuration and related variables (kinesthetic perception) and to discuss its relation to the equilibrium-point hypothesis and the concepts of reference coordinate and uncontrolled manifold. Hierarchical control of action is postulated with abundant transformations between sets of spatial reference coordinates for salient effectors at different levels. Iso-perceptual manifold is defined in the combined space of afferent and efferent variables as the subspace corresponding to a stable percept. Examples of motion along an iso-perceptual manifold (perceptually equivalent motion) are considered during various natural actions. Some combinations of afferent and efferent signals, in particular those implying a violation of body's integrity, give rise to variable percepts by artificial projection onto iso-perceptual manifolds. This framework is used to interpret unusual features of vibration-induced kinesthetic illusions and to predict new illusions not yet reported in the literature. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  19. From Whole-Brain Data to Functional Circuit Models: The Zebrafish Optomotor Response.

    PubMed

    Naumann, Eva A; Fitzgerald, James E; Dunn, Timothy W; Rihel, Jason; Sompolinsky, Haim; Engert, Florian

    2016-11-03

    Detailed descriptions of brain-scale sensorimotor circuits underlying vertebrate behavior remain elusive. Recent advances in zebrafish neuroscience offer new opportunities to dissect such circuits via whole-brain imaging, behavioral analysis, functional perturbations, and network modeling. Here, we harness these tools to generate a brain-scale circuit model of the optomotor response, an orienting behavior evoked by visual motion. We show that such motion is processed by diverse neural response types distributed across multiple brain regions. To transform sensory input into action, these regions sequentially integrate eye- and direction-specific sensory streams, refine representations via interhemispheric inhibition, and demix locomotor instructions to independently drive turning and forward swimming. While experiments revealed many neural response types throughout the brain, modeling identified the dimensions of functional connectivity most critical for the behavior. We thus reveal how distributed neurons collaborate to generate behavior and illustrate a paradigm for distilling functional circuit models from whole-brain data. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Comparing non-invasive scapular tracking methods across elevation angles, planes of elevation and humeral axial rotations.

    PubMed

    Grewal, T-J; Cudlip, A C; Dickerson, C R

    2017-12-01

    Altered scapular motions premeditate shoulder impingement and other musculoskeletal disorders. Divergent experimental conditions in previous research precludes rigorous comparisons of non-invasive scapular tracking techniques. This study evaluated scapular orientation measurement methods across an expanded range of humeral postures. Scapular medial/lateral rotation, anterior/posterior tilt and protraction/retraction was measured using an acromion marker cluster (AMC), a scapular locator, and a reference stylus. Motion was captured using reflective markers on the upper body, as well as on the AMC, locator and stylus. A combination of 5 arm elevation angles, 3 arm elevation planes and 3 arm axial rotations was examined. Measurement method interacted with elevation angle and plane of elevation for all three scapular orientation directions (p < 0.01). Method of measurement interacted with axial rotation in anterior/posterior tilt and protraction/retraction (p < 0.01). The AMC had strong agreement with the reference stylus than the locator for the majority of humeral elevations, planes and axial rotations. The AMC underestimated lateral rotation, with the largest difference of ∼2° at 0° elevation. Both the locator and AMC overestimated posterior tilt at high arm elevation by up to 7.4°. Misestimations from using the locator could be enough to potentially obscure meaningful differences in scapular rotations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Lateral vibration control of a precise machine using magneto-rheological mounts featuring multiple directional damping effect

    NASA Astrophysics Data System (ADS)

    Kim, Hyung Tae; Jeong, An Mok; Kim, Hyo Young; An, Jong Wook; Kim, Cheol Ho; Jin, Kyung Chan; Choi, Seung-Bok

    2018-03-01

    In a previous work, magneto-rheological (MR) dampers were originally designed and implemented for reducing the vertical low-frequency vibration occurring in precise semi-conductor manufacturing equipment. To reduce the vibrations, an isolator levitated the manufacturing machine from the floor using pneumatic pressure which cut off the external vibration, while the MR damper was used to decrease the transient response of the isolator. However, it has been found that the MR damper also provides a damping effect on the lateral vibration induced by the high-speed plane motions. Therefore, in this work both vertical and lateral vibrations are controlled using the yield and shear stresses of the lateral directions generated from the MR fluids by applying a magnetic field. After deriving a vibration control model, an overall control logic is formulated considering both vertical and lateral vibrations. In this control strategy, a feedback loop associated with the laser sensor is used for vertical vibration control, while a feed-forward loop with the motion information is used for lateral vibration control. The experimental results show that the proposed concept is highly effective for lateral vibration control using the damping effect on multiple directions.

  2. Galilean invariance and vertex renormalization in turbulence theory.

    PubMed

    McComb, W D

    2005-03-01

    The Navier-Stokes equation is invariant under Galilean transformation of the instantaneous velocity field. However, the total velocity transformation is effected by transformation of the mean velocity alone. For a constant mean velocity, the equation of motion for the fluctuating velocity is automatically Galilean invariant in the comoving frame, and vertex renormalization is not constrained by this symmetry.

  3. Delayed Presentation of Osteochondroma at Superior Angle of Scapula-A Case Report.

    PubMed

    Jindal, Mohit

    2016-01-01

    Osteochondroma or exostosis is most common primary benign bony tumor comprising of more than one third of the total occurrences. Osteochondromas are considered as an aberration in the normal physial growth plate and originate from the metaphysis of long bone with more than third (35-46%) of cases affecting the bone around the knee (lower end femur> upper end tibia), 10% cases involve the small bones of the hand and 5% involve the pelvis and flat bones like scapula (4-6%) are least involved. These tumors usually affect the growing skeleton and cease to increase in size after skeletal maturity. These are usually painless but may become painful due to neurovascular entrapment/compression, fracture at the stalk, bursal inflammation or malignant transformation. This article presents a case of osteochondroma on superior angle of scapula in a 23-year-old male presented with pseudo winging and snapping of scapula, crepitus on scapulothoracic motion and occasional pain since 5 years. However, there was no increase in size of the swelling or local and systemic signs of malignant transformation. X-ray demonstrated a pedunculated exophytic mass on supero medial aspect of the right scapula. The findings were confirmed on CT and excision of the lesion was done. The patient demonstrated full painless range of motion after 1 month and no recurrence was demonstrated during 1 year follow up. Scapular osteochondroma is a relatively rare condition. Usually a patient presents in early to late childhood, however, in some cases it may be presented in adults. Growth after maturity is indicative of a metastatic transformation. So an excision of the same should be accompanied with histopathological examinations.

  4. Close-wedge osteotomy for bony locking stiffness of the elbow in Gorham disease patients: a case report.

    PubMed

    Wang, Hsien-Chung; Lin, Gau-Tyan

    2004-05-01

    Gorham disease is a so-called massive idiopathic osteolysis or vanishing bone disorder. Massive osteolysis remains an enigmatic condition that involves various skeletal locations and is caused by endothelial proliferation. The diagnosis is difficult and is established via the association of clinical, radiologic and histologic pictures. Treatment modalities yield variable results. We report a case of vanishing bone in the elbow joint and carpal bones following trauma. This 13-year-old boy complained of severe restricted motion and deformity of the right elbow. We managed the problem using arthroplasty with close-wedge osteotomy on the lateral condyle of the humerus.

  5. Effect of classification-specific treatment on lumbopelvic motion during hip rotation in people with low back pain

    PubMed Central

    Hoffman, Shannon L; Johnson, Molly B; Zou, Dequan; Harris-Hayes, Marcie; Van Dillen, Linda R

    2010-01-01

    Increased and early lumbopelvic motion during trunk and limb movements is thought to contribute to low back pain (LBP). Therefore, reducing lumbopelvic motion could be an important component of physical therapy treatment. Our purpose was to examine the effects of classification-specific physical therapy treatment (Specific) based on the Movement System Impairment (MSI) model and non-specific treatment (Non-Specific) on lumbopelvic movement patterns during hip rotation in people with chronic LBP. We hypothesized that following treatment people in the Specific group would display decreased lumbopelvic rotation and achieve more hip rotation before lumbopelvic rotation began. We hypothesized that people in the Non-Specific group would display no change in these variables. Kinematic data collected before and after treatment for hip lateral and medial rotation in prone were analyzed. The Specific group (N=16) demonstrated significantly decreased lumbopelvic rotation and achieved greater hip rotation before the onset of lumbopelvic rotation after treatment with both hip lateral and medial rotation. The Non-Specific group (N=16) demonstrated significantly increased lumbopelvic rotation and no change in hip rotation achieved before the onset of lumbopelvic rotation. People who received treatment specific to their MSI LBP classification displayed decreased and later lumbopelvic motion with hip rotation, whereas people who received generalized non-specific treatment did not. PMID:21256073

  6. Beta-Test Data On An Assessment Of Textbook Problem Solving Ability: An Argument For Right/Wrong Grading?

    NASA Astrophysics Data System (ADS)

    Cummings, Karen; Marx, Jeffrey D.

    2010-10-01

    We have developed an assessment of students' ability to solve standard textbook style problems and are currently engaged in the validation and revision process. The assessment covers the topics of force and motion, conservation of momentum and conservation of energy at a level consistent with most calculus-based, introductory physics courses. This tool is discussed in more detail in an accompanying paper by Marx and Cummings. [1] Here we present preliminary beta-test data collected at four schools during the 2009/2010 academic year. Data include both pre- and post-instruction results for introductory physics courses as well as results for physics majors in later years. In addition, we present evidence that right/wrong grading may well be a perfectly acceptable grading procedure for a course-level assessment of this type.

  7. Effects of a home-exercise therapy programme on cervical and lumbar range of motion among nurses with neck and lower back pain: a quasi-experimental study.

    PubMed

    Freimann, Tiina; Merisalu, Eda; Pääsuke, Mati

    2015-01-01

    Cervical and lumbar range of motion limitations are usually associated with musculoskeletal pain in the neck and lower back, and are a major health problem among nurses. Physical exercise has been evaluated as an effective intervention method for improving cervical and lumbar range of motion, and for preventing and reducing musculoskeletal pain. The purpose of this study was to investigate the effects of a home-exercise therapy programme on cervical and lumbar range of motion among intensive care unit nurses who had experienced mild to moderate musculoskeletal pain in the neck and or lower back during the previous six months. A quasi-experimental study was conducted among intensive care unit nurses at Tartu University Hospital (Estonia) between May and July 2011. Thirteen nurses who had suffered musculoskeletal pain episodes in the neck and or lower back during the previous six months underwent an 8-week home-exercise therapy programme. Eleven nurses without musculoskeletal pain formed a control group. Questions from the Nordic Musculoskeletal Questionnaire and the 11-point Visual Analogue Scale were used to select potential participants for the experimental group via an assessment of the prevalence and intensity of musculoskeletal pain. Cervical range of motion and lumbar range of motion in flexion, extension, lateral flexion and (cervical range of motion only) rotation were measured with a digital goniometer. A paired t-test was used to compare the measured parameters before and after the home-exercise therapy programme. A Student's t-test was used to analyse any differences between the experimental and control groups. After the home-exercise therapy, there was a significant increase (p < 0.05) in cervical range of motion in flexion, extension, lateral flexion and rotation, and in lumbar range of motion in lateral flexion. Cervical range of motion in flexion was significantly higher (p < 0.01) in the experimental group compared to the control group after therapy. Our results suggest an 8-week intensive home-exercise therapy programme may improve cervical and lumbar range of motion among intensive care nurses. Further studies are needed to develop this simple but effective home-exercise therapy programme to help motivate nurses to perform such exercises regularly. Current Controlled Trials ISRCTN19278735. Registered 27 November 2015.

  8. Considerations on the mechanisms of alternating skew deviation in patients with cerebellar lesions.

    PubMed

    Zee, D S

    1996-01-01

    Alternating skew deviation, in which the side of the higher eye changes depending upon whether gaze is directed to the left or the right, is a frequent sign in patients with posterior fossa lesions, including those restricted to the cerebellum. Here we propose a mechanism for alternating skews related to the otolith-ocular responses to fore and aft pitch of the head in lateral-eyed animals. In lateral-eyed animals the expected response to a static head pitch is cyclorotation of the eyes. But if the eyes are rotated horizontally in the orbit, away from the primary position, a compensatory skew deviation should also appear. The direction of the skew would depend upon whether the eyes were directed to the right (left eye forward, right eye backward) or to the left (left eye backward, right eye forward). In contrast, for frontal-eyed animals, skew deviations are counterproductive because they create diplopia and interfere with binocular vision. We attribute the emergence of skew deviations in frontal-eyed animals in pathological conditions to 1) an imbalance in otolithocular pathways and 2) a loss of the component of ocular motor innervation that normally corrects for the differences in pulling directions and strengths of the various ocular muscles as the eyes change position in the orbit. Such a compensatory mechanism is necessary to ensure optimal binocular visual function during and after head motion. This compensatory mechanism may depend upon the cerebellum.

  9. Redistribution of knee stress using laterally wedged insole intervention: Finite element analysis of knee-ankle-foot complex.

    PubMed

    Liu, Xuan; Zhang, Ming

    2013-01-01

    Laterally wedged insoles are widely applied in the conservative treatment for medial knee osteoarthritis. Experimental studies have been conducted to understand the effectiveness of such an orthotic intervention. However, the information was limited to the joint external loading such as knee adduction moment. The internal stress distribution is difficult to be obtained from in vivo experiment alone. Thus, a three-dimensional finite element model of the human knee-ankle-foot complex, together with orthosis, was developed in this study and used to investigate the redistribution of knee stress using laterally wedged insole intervention. Laterally wedged insoles with wedge angles of 0, 5, and 10° were fabricated for intervention. The subject-specific geometry of the lower extremity with details was characterized in the reconstruction of MR images. Motion analysis data and muscle forces were input to drive the model. The established finite element model was employed to investigate the loading responses of tibiofemoral articulation in three wedge angle conditions during simulated walking stance phase. With either of the 5° or 10° laterally wedged insole, significant decreases in von Mises stress and contact force at the medial femur cartilage region and the medial meniscus were predicted comparing with the 0° insole. The diminished stress and contact force at the medial compartment of the knee joint demonstrate the immediate effect of the laterally wedged insoles. The intervention may contribute to medial knee osteoarthritis rehabilitation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. The promise of telemedicine.

    PubMed

    Newton, Michael J

    2014-01-01

    We have developed an extraordinary capability to capture and transmit digital ocular imaging, enabling remote interpretation of every aspect of the eye. The issues regarding telemedicine were primarily technical and procedural when this journal first reviewed the topic in 1999. Fourteen years later, telemedicine presents strikingly different challenges-legal, ethical, and professional. Some "tele-ophthalmology" applications have now become a reliable part of daily practice. Although it offers improved health care at lower cost to more people, telemedicine could also radically transform the traditional doctor-patient interaction. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. An instrumented spatial linkage for measuring knee joint kinematics.

    PubMed

    Rosvold, Joshua M; Atarod, Mohammad; Frank, Cyril B; Shrive, Nigel G

    2016-01-01

    In this study, the design and development of a highly accurate instrumented spatial linkage (ISL) for kinematic analysis of the ovine stifle joint is described. The ovine knee is a promising biomechanical model of the human knee joint. The ISL consists of six digital rotational encoders providing six degrees of freedom (6-DOF) to its motion. The ISL makes use of the complete and parametrically continuous (CPC) kinematic modeling method to describe the kinematic relationship between encoder readings and the relative positions and orientation of its two ends. The CPC method is useful when calibrating the ISL, because a small change in parameters corresponds to a small change in calculated positions and orientations and thus a smaller optimization error, compared to other kinematic models. The ISL is attached rigidly to the femur and the tibia for motion capture, and the CPC kinematic model is then employed to transform the angle sensor readings to relative motion of the two ends of the linkage, and thereby, the stifle joint motion. The positional accuracy for ISL after calibration and optimization was 0.3±0.2mm (mean +/- standard deviation). The ISL was also evaluated dynamically to ensure that accurate results were maintained, and achieved an accuracy of 0.1mm. Compared to the traditional motion capture methods, this system provides increased accuracy, reduced processing time, and ease of use. Future work will be on the application of the ISL to the ovine gait and determination of in vivo joint motions and tissue loads. Accurate measurement of knee joint kinematics is essential in understanding injury mechanisms and development of potential preventive or treatment strategies. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. A Kinect based sign language recognition system using spatio-temporal features

    NASA Astrophysics Data System (ADS)

    Memiş, Abbas; Albayrak, Songül

    2013-12-01

    This paper presents a sign language recognition system that uses spatio-temporal features on RGB video images and depth maps for dynamic gestures of Turkish Sign Language. Proposed system uses motion differences and accumulation approach for temporal gesture analysis. Motion accumulation method, which is an effective method for temporal domain analysis of gestures, produces an accumulated motion image by combining differences of successive video frames. Then, 2D Discrete Cosine Transform (DCT) is applied to accumulated motion images and temporal domain features transformed into spatial domain. These processes are performed on both RGB images and depth maps separately. DCT coefficients that represent sign gestures are picked up via zigzag scanning and feature vectors are generated. In order to recognize sign gestures, K-Nearest Neighbor classifier with Manhattan distance is performed. Performance of the proposed sign language recognition system is evaluated on a sign database that contains 1002 isolated dynamic signs belongs to 111 words of Turkish Sign Language (TSL) in three different categories. Proposed sign language recognition system has promising success rates.

  13. Spatial Rack Drives Pitch Configurations: Essence and Content

    NASA Astrophysics Data System (ADS)

    Abadjieva, Emilia; Abadjiev, Valentin; Naganawa, Akihiro

    2018-03-01

    The practical realization of all types of mechanical motions converters is preceded by solving the task of their kinematic synthesis. In this way, the determination of the optimal values of the constant geometrical parameters of the chosen structure of the created mechanical system is achieved. The searched result is a guarantee of the preliminary defined kinematic characteristics of the synthesized transmission and in the first place, to guarantee the law of motions transformation. The kinematic synthesis of mechanical transmissions is based on adequate mathematical modelling of the process of motions transformation and on the object, realizing this transformation. Basic primitives of the mathematical models for synthesis upon a pitch contact point are geometric and kinematic pitch configurations. Their dimensions and mutual position in space are the input parameters for the processes of design and elaboration of the synthesized mechanical device. The study presented here is a brief review of the theory of pitch configurations. It is an independent scientific branch of the spatial gearing theory (theory of hyperboloid gears). On this basis, the essence and content of the corresponding primitives, applicable to the synthesis of spatial rack drives, are defined.

  14. Dynamics of a railway vehicle on a laterally disturbed track

    NASA Astrophysics Data System (ADS)

    Christiansen, Lasse Engbo; True, Hans

    2018-02-01

    In this article a theoretical investigation of the dynamics of a railway bogie running on a tangent track with a periodic disturbance of the lateral track geometry is presented. The dynamics is computed for two values of the speed of the vehicle in combination with different values of the wavelength and amplitude of the disturbance. Depending on the combinations of the speed, the wavelength and the amplitude, straight line forward motion, different modes of symmetric or asymmetric periodic oscillations or aperiodic motions, which are presumably chaotic, are found. Statistical methods are applied for the investigation. In the case of sinusoidal oscillations they provide information about the phase shift between the different variables and the amplitudes of the oscillations. In the case of an aperiodic motion the statistical measures indicate some non-smooth transitions.

  15. Biomechanical testing of a PEEK-based dynamic instrumentation device in a lumbar spine model.

    PubMed

    Herren, Christian; Beckmann, Agnes; Meyer, Sabine; Pishnamaz, Miguel; Mundt, Marion; Sobottke, Rolf; Prescher, Andreas; Stoffel, Marcus; Markert, Bernd; Kobbe, Philipp; Pape, Hans-Christoph; Eysel, Peer; Siewe, Jan

    2017-05-01

    The purpose of this study was to investigate the range-of-motion after posterior polyetheretherketone-based rod stabilisation combined with a dynamic silicone hinge in order to compare it with titanium rigid stabilisation. Five human cadaveric lumbar spines with four vertebra each (L2 to L5) were tested in a temperature adjustable spine-testing set-up in four trials: (1) native measurement; (2) kinematics after rigid monosegmental titanium rod instrumentation with anterior intervertebral bracing of the segment L4/5; (3) kinematics after hybrid posterior polyetheretherketone rod instrumentation combined with a silicone hinge within the adjacent level (L3/4) and (4) kinematics after additional decompression with laminectomy of L4 and bilateral resection of the inferior articular processes (L3). During all steps, the specimens were loaded quasi-statically with 1°/s with pure moment up to 7.5Nm in flexion/extension, lateral bending and axial rotation. In comparison to the native cadaveric spine, both the titanium device and polyetheretherketone-based device reduce the range-of-motion within the level L4/5 significantly (flexion/extension: reduction of 77%, p<0.001; lateral bending: reduction of 62%, p<0.001; axial rotation: reduction of 71%, p<0.001). There was a clear stabilisation effect after hybrid-instrumentation within the level L3/4, especially in flexion/extension (64%, p<0.001) and lateral bending (62%, p<0.001) but without any effect on the axial rotation. Any temperature dependency has not been observed. Surprisingly, the hybrid device compensates for laminectomy L4 and destabilising procedure within the level L3/4 in comparison to other implants. Further studies must be performed to show its effectiveness regarding the adjacent segment instability. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Tele-Assessment of the Berg Balance Scale: Effects of Transmission Characteristics.

    PubMed

    Venkataraman, Kavita; Morgan, Michelle; Amis, Kristopher A; Landerman, Lawrence R; Koh, Gerald C; Caves, Kevin; Hoenig, Helen

    2017-04-01

    To compare Berg Balance Scale (BBS) rating using videos with differing transmission characteristics with direct in-person rating. Repeated-measures study for the assessment of the BBS in 8 configurations: in person, high-definition video with slow motion review, standard-definition videos with varying bandwidths and frame rates (768 kilobytes per second [kbps] videos at 8, 15, and 30 frames per second [fps], 30 fps videos at 128, 384, and 768 kbps). Medical center. Patients with limitations (N=45) in ≥1 of 3 specific aspects of motor function: fine motor coordination, gross motor coordination, and gait and balance. Not applicable. Ability to rate the BBS in person and using videos with differing bandwidths and frame rates in frontal and lateral views. Compared with in-person rating (7%), 18% (P=.29) of high-definition videos and 37% (P=.03) of standard-definition videos could not be rated. Interrater reliability for the high-definition videos was .96 (95% confidence interval, .94-.97). Rating failure proportions increased from 20% in videos with the highest bandwidth to 60% (P<.001) in videos with the lowest bandwidth, with no significant differences in proportions across frame rate categories. Both frontal and lateral views were critical for successful rating using videos, with 60% to 70% (P<.001) of videos unable to be rated on a single view. Although there is some loss of information when using videos to rate the BBS compared to in-person ratings, it is feasible to reliably rate the BBS remotely in standard clinical spaces. However, optimal video rating requires frontal and lateral views for each assessment, high-definition video with high bandwidth, and the ability to carry out slow motion review. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  17. Validity of the Microsoft Kinect for assessment of postural control.

    PubMed

    Clark, Ross A; Pua, Yong-Hao; Fortin, Karine; Ritchie, Callan; Webster, Kate E; Denehy, Linda; Bryant, Adam L

    2012-07-01

    Clinically feasible methods of assessing postural control such as timed standing balance and functional reach tests provide important information, however, they cannot accurately quantify specific postural control mechanisms. The Microsoft Kinect™ system provides real-time anatomical landmark position data in three dimensions (3D), and given that it is inexpensive, portable and simple to setup it may bridge this gap. This study assessed the concurrent validity of the Microsoft Kinect™ against a benchmark reference, a multiple-camera 3D motion analysis system, in 20 healthy subjects during three postural control tests: (i) forward reach, (ii) lateral reach, and (iii) single-leg eyes-closed standing balance. For the reach tests, the outcome measures consisted of distance reached and trunk flexion angle in the sagittal (forward reach) and coronal (lateral reach) planes. For the standing balance test the range and deviation of movement in the anatomical landmark positions for the sternum, pelvis, knee and ankle and the lateral and anterior trunk flexion angle were assessed. The Microsoft Kinect™ and 3D motion analysis systems had comparable inter-trial reliability (ICC difference=0.06±0.05; range, 0.00-0.16) and excellent concurrent validity, with Pearson's r-values >0.90 for the majority of measurements (r=0.96±0.04; range, 0.84-0.99). However, ordinary least products analyses demonstrated proportional biases for some outcome measures associated with the pelvis and sternum. These findings suggest that the Microsoft Kinect™ can validly assess kinematic strategies of postural control. Given the potential benefits it could therefore become a useful tool for assessing postural control in the clinical setting. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Characterization of the Head Stabilization Response to a Lateral Perturbation During Walking in Older Adults

    NASA Technical Reports Server (NTRS)

    Buccello-Stout, Regina R.; Cromwell, Ronita L.; Bloomberg, Jacob J.

    2009-01-01

    A main contributor of fractures in older adults is from a lateral fall. The decline in sensory systems results in difficulty maintaining balance stability. Head stabilization contributes to postural control by serving as a stable platform for the sensory systems. The purpose of this study was to characterize the head stabilization response to a lateral perturbation while walking. A total of 16 healthy older adults, aged 66-81 years, walked across a foam pathway 6 times. One piece of the foam pathway covered a movable platform that translated to the left when the subject stepped on the foam. Three trials were randomized in which the platform shifted. Angular rate sensors placed on the center of mass of the head and trunk collected head and trunk movement in all three planes of motion. The roll plane was analyzed to examine motion in the plane of the perturbation. Subjects stepped onto the platform with the right foot. Recovery step time and distance were recorded. The first trial was analyzed to capture the novelty of the perturbation. Results indicate a significant difference in footfall distance t=0.004, p<0.05, as well as the speed of foot recovery t=0.001, p<0.05, between natural and perturbed walking. Results indicate that the head t=0.005, p<0.05, and trunk t=0.0001, p<0.05, velocities increase during perturbed compared to natural walking. Older adults place their recovery foot down faster when perturbed to re-establish their base of support. Head and trunk segments are less stable and move with greater velocities to reestablish stability when perturbed.

  19. A simple method for MR elastography: a gradient-echo type multi-echo sequence.

    PubMed

    Numano, Tomokazu; Mizuhara, Kazuyuki; Hata, Junichi; Washio, Toshikatsu; Homma, Kazuhiro

    2015-01-01

    To demonstrate the feasibility of a novel MR elastography (MRE) technique based on a conventional gradient-echo type multi-echo MR sequence which does not need additional bipolar magnetic field gradients (motion encoding gradient: MEG), yet is sensitive to vibration. In a gradient-echo type multi-echo MR sequence, several images are produced from each echo of the train with different echo times (TEs). If these echoes are synchronized with the vibration, each readout's gradient lobes achieve a MEG-like effect, and the later generated echo causes a greater MEG-like effect. The sequence was tested for the tissue-mimicking agarose gel phantoms and the psoas major muscles of healthy volunteers. It was confirmed that the readout gradient lobes caused an MEG-like effect and the later TE images had higher sensitivity to vibrations. The magnitude image of later generated echo suffered the T2 decay and the susceptibility artifacts, but the wave image and elastogram of later generated echo were unaffected by these effects. In in vivo experiments, this method was able to measure the mean shear modulus of the psoas major muscle. From the results of phantom experiments and volunteer studies, it was shown that this method has clinical application potential. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Comparison of different spatial transformations applied to EEG data: A case study of error processing.

    PubMed

    Cohen, Michael X

    2015-09-01

    The purpose of this paper is to compare the effects of different spatial transformations applied to the same scalp-recorded EEG data. The spatial transformations applied are two referencing schemes (average and linked earlobes), the surface Laplacian, and beamforming (a distributed source localization procedure). EEG data were collected during a speeded reaction time task that provided a comparison of activity between error vs. correct responses. Analyses focused on time-frequency power, frequency band-specific inter-electrode connectivity, and within-subject cross-trial correlations between EEG activity and reaction time. Time-frequency power analyses showed similar patterns of midfrontal delta-theta power for errors compared to correct responses across all spatial transformations. Beamforming additionally revealed error-related anterior and lateral prefrontal beta-band activity. Within-subject brain-behavior correlations showed similar patterns of results across the spatial transformations, with the correlations being the weakest after beamforming. The most striking difference among the spatial transformations was seen in connectivity analyses: linked earlobe reference produced weak inter-site connectivity that was attributable to volume conduction (zero phase lag), while the average reference and Laplacian produced more interpretable connectivity results. Beamforming did not reveal any significant condition modulations of connectivity. Overall, these analyses show that some findings are robust to spatial transformations, while other findings, particularly those involving cross-trial analyses or connectivity, are more sensitive and may depend on the use of appropriate spatial transformations. Copyright © 2014 Elsevier B.V. All rights reserved.

Top