Science.gov

Sample records for rigid bistable 2rotaxanes

  1. Organogel formation by a cholesterol-stoppered bistable [2]rotaxane and its dumbbell precursor.

    PubMed

    Zhao, Yan-Li; Aprahamian, Ivan; Trabolsi, Ali; Erina, Natalia; Stoddart, J Fraser

    2008-05-21

    The switching properties, gelation behavior, and self-organization of a cholesterol-stoppered bistable [2]rotaxane containing a cyclobis(paraquat-p-phenylene) ring and tetrathiafulvalene/1,5-dioxynaphthalene recognition units situated in the rod portion of the dumbbell component have been investigated by electrochemical, spectroscopic, and microscopic means. The cyclobis(paraquat-p-phenylene) ring in the [2]rotaxane can be switched between the tetrathiafulvalene and 1,5-dioxynaphthalene recognition units by addressing the redox properties of the tetrathiafulvalene unit. The organogels can be prepared by dissolving the [2]rotaxane and its dumbbell precursor in a CH2Cl2/MeOH (3:2) mixed solvent and liquified by adding the oxidant Fe(ClO4)3. Direct evidence for the self-organization was obtained from AFM investigations which have shown that both of the [2]rotaxane and its dumbbell precursor form linear superstructures which we propose are helical in nature.

  2. Free energy barrier for molecular motions in bistable [2]rotaxane molecular electronic devices.

    PubMed

    Kim, Hyungjun; Goddard, William A; Jang, Seung Soon; Dichtel, William R; Heath, James R; Stoddart, J Fraser

    2009-03-12

    Donor-acceptor binding of the pi-electron-poor cyclophane cyclobis(paraquat-p-phenylene) (CBPQT(4+)) with the pi-electron-rich tetrathiafulvalene (TTF) and 1,5-dioxynaphthalene (DNP) stations provides the basis for electrochemically switchable, bistable [2]rotaxanes, which have been incorporated and operated within solid-state devices to form ultradense memory circuits (ChemPhysChem 2002, 3, 519-525; Nature 2007, 445, 414-417) and nanoelectromechanical systems. The rate of CBPQT(4+) shuttling at each oxidation state of the [2]rotaxane dictates critical write-and-retention time parameters within the devices, which can be tuned through chemical synthesis. To validate how well computational chemistry methods can estimate these rates for use in designing new devices, we used molecular dynamics simulations to calculate the free energy barrier for the shuttling of the CBPQT(4+) ring between the TTF and the DNP. The approach used here was to calculate the potential of mean force along the switching pathway, from which we calculated free energy barriers. These calculations find a turn-on time after the rotaxane is doubly oxidized of approximately 10(-7) s (suggesting that the much longer experimental turn-on time is determined by the time scale of oxidization). The return barrier from the DNP to the TTF leads to a predicted lifetime of 2.1 s, which is compatible with experiments.

  3. Dual absorption spectral changes by light-triggered shuttling in bistable [2]rotaxanes with non-destructive readout.

    PubMed

    Zhan, Tian-Guang; Yun, Meng-Yan; Lin, Jia-Le; Yu, Xin-Yao; Zhang, Kang-Da

    2016-12-01

    Light-triggered photoisomerization of the azobenzene (AB) unit in bistable [2]rotaxanes can cause the shuttling of the macrocycle on the dumbbell, resulting in distinctive dual spectral variation characteristics: (1) the spectral change of the photochromic unit and (2) the variation of the charge-transfer band. By employing the CT bond region as an output signal, non-destructive readout of optical information could be achieved.

  4. Large-strain, rigid-to-rigid deformation of bistable electroactive polymers

    NASA Astrophysics Data System (ADS)

    Yu, Zhibin; Yuan, Wei; Brochu, Paul; Chen, Bin; Liu, Zhitian; Pei, Qibing

    2009-11-01

    Thermoplastic poly(tert-butyl acrylate) (PTBA) is reported as an electroactive polymer that is rigid at ambient conditions and turns into a dielectric elastomer above a transition temperature. In the rubbery state, a PTBA thin film can be electrically actuated to strains up to 335% in area expansion. The calculated actuation pressure is 3.2 MPa. The actuation is made bistable by cooling to below glass transition temperature. The PTBA represents the bistable electroactive polymer (BSEP) that can be actuated to various largely strained, rigid shapes. The application of the BSEP for refreshable Braille display, an active tactile display, is also demonstrated.

  5. Bistable electroactive polymers (BSEP): large-strain actuation of rigid polymers

    NASA Astrophysics Data System (ADS)

    Yu, Zhibin; Niu, Xiaofan; Brochu, Paul; Yuan, Wei; Li, Huafeng; Chen, Bin; Pei, Qibing

    2010-04-01

    Reversible, large-strain, bistable actuation has been a lasting puzzle in the pursuit of smart materials and structures. Conducting polymers are bistable, but the achievable strain is small. Large deformations have been achieved in dielectric elastomers at the expense of mechanical strength. The gel or gel-like soft polymers generally have elastic moduli around or less than 10 MPa. The deformed polymer relaxes to its original shape once the applied electric field is removed. We report new, bistable electroactive polymers (BSEP) that are capable of electrically actuated strains as high as 335% area strain. The BSEP could be useful for constructing rigid structures. The structures can support high mechanical loads, and be actuated to large-strain deformations. We will present one unique application of the BSEP for Braille displays that can be quickly refreshed and maintain the displayed contents without a bias voltage.

  6. Modeling rigid magnetically rotated microswimmers: Rotation axes, bistability, and controllability

    NASA Astrophysics Data System (ADS)

    Meshkati, Farshad; Fu, Henry Chien

    2014-12-01

    Magnetically actuated microswimmers have recently attracted attention due to many possible biomedical applications. In this study we investigate the dynamics of rigid magnetically rotated microswimmers with permanent magnetic dipoles. Our approach uses a boundary element method to calculate a mobility matrix, accurate for arbitrary geometries, which is then used to identify the steady periodically rotating orbits in a co-rotating body-fixed frame. We evaluate the stability of each of these orbits. We map the magnetoviscous behavior as a function of dimensionless Mason number and as a function of the angle that the magnetic field makes with its rotation axis. We describe the wobbling motion of these swimmers by investigating how the rotation axis changes as a function of experimental parameters. We show that for a given magnetic field strength and rotation frequency, swimmers can have more than one stable periodic orbit with different rotation axes. Finally, we demonstrate that one can improve the controllability of these types of microswimmers by adjusting the relative angle between the magnetic field and its axis of rotation.

  7. Bistable electroactive polymer with sharp rigid-to-rubbery phase transition

    NASA Astrophysics Data System (ADS)

    Qiu, Yu; Ren, Zhi; Hu, Wei; Liu, Chao; Pei, Qibing

    2016-04-01

    Bistable electroactive polymers (BSEP) usually exhibit glass transition that spans a rather broad temperature range and are normally actuated above 70 °C. High actuation temperature limits the BSEP for wearable and personal assistive applications. A phase-changing polymer is synthesized and employed as BSEP having a narrow rigid-to-rubbery transition temperature range. Shape memory effect with both fixation and recovery rate close to 100% was observed. Diaphragm actuators of the BSEP can be electrically actuated at 50 °C up to 70% strain, and the deformed shape was fixed after cooling the BSEP below the transition temperature. The rigid-to-rigid actuation can be repeated for at least 10,000 cycles.

  8. Nitrite-Templated Synthesis of Lanthanide-Containing [2]Rotaxanes for Anion Sensing**

    PubMed Central

    Langton, Matthew J; Blackburn, Octavia A; Lang, Thomas; Faulkner, Stephen; Beer, Paul D

    2014-01-01

    The first anion-templated synthesis of a lanthanide-containing interlocked molecule is demonstrated by utilizing a nitrite anion to template initial pseudorotaxane formation. Subsequent stoppering of the interpenetrated assembly allows for the preparation of a lanthanide-functionalized [2]rotaxane in high yield. Following removal of the nitrite anion template, the europium [2]rotaxane host is demonstrated to recognize and sense fluoride selectively. PMID:24989322

  9. Design of [2]rotaxane through image threshold segmentation of electrostatic potential image.

    PubMed

    Liu, Pingying; Chen, Qiufeng; Ma, Jing

    2016-09-15

    An electrostatic potential (ESP)-based image segmentation method has been used to estimate the ability of proton donation and acceptance involved in ring-rod recognition. The relative binding strength of [2]rotaxane has also been further estimated from the difference of the characteristic image-segmentation derived ESP between proton donor and proton acceptor. The size and electrostatic compatibility criteria are introduced to guide the design of interlocked [2]rotaxane. A library of 75 thermodynamically stable [2]rotaxane candidates has been generated, including 16 experimentally known systems. The theoretical results for 16 experimentally known [2]rotaxanes are in good agreement with both the experimental association constants and density functional theory-calculated binding energies. Our ESP-based image segmentation model is also applicable to the tristable [2]rotaxane molecular shuttle as well as [1]rotaxane with self-inclusion function, indicating this simple method is generic in the field of constructing other supramolecular architectures formed with donor/acceptor molecular recognition. © 2016 Wiley Periodicals, Inc.

  10. Foldamer-tuned switching kinetics and metastability of [2]rotaxanes.

    PubMed

    Zhang, Kang-Da; Zhao, Xin; Wang, Gui-Tao; Liu, Yi; Zhang, Ying; Lu, Hao-Jie; Jiang, Xi-Kui; Li, Zhan-Ting

    2011-10-10

    Slip sliding away: foldamers can function as modular stoppers to regulate the slippage and de-slippage of pseudorotaxanes and the switching kinetics and metastability of bistable rotaxanes. By simply changing the solvent or the length of the hydrogen-bonded foldamer, the lifetime of the metastable co-conformation state can be increased dramatically, from several minutes to as long as several days. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Molecular dynamics study of 2rotaxanes: influence of solvation and cation on co-conformation.

    PubMed

    Fradera, Xavier; Márquez, Manuel; Smith, Bradley D; Orozco, Modesto; Luque, F Javier

    2003-06-13

    The conformational preference of a [2]rotaxane system has been examined by molecular dynamics simulations. The rotaxane wheel consists of two bridged binding components: a cis-dibenzo-18-crown-6 ether and a 1,3-phenyldicarboxamide, and the penetrating axle consists of a central isophthaloyl unit with phenyltrityl capping groups. The influence of solvation on the co-conformation of the [2]rotaxane was evaluated by comparing the conformational flexibility in two solvents: chloroform and dimethyl sulfoxide. Attention was also paid to the effect of cation binding on the dynamical properties of the [2]rotaxane. The conformational stability of the [2]rotaxane was calculated using a MM/PB-SA strategy, and the occurrence of specific motions was examined by essential dynamics analysis. The changes in the co-conformational properties in the two solvents and upon cation binding are discussed in light of the available NMR data. The results indicate that in chloroform solution the [2]rotaxane system exists as a mixture of co-conformational states including some that have hydrogen bonds between axle C=O and wheel NH groups. Analysis of the simulations allow us to hypothesize that the [2]rotaxane's circumrotation motion can occur as the result of a dynamic process that combines a preliminary axle sliding step that breaks these hydrogen bonds and a conformational change in the ester group more distant from the wheel. In contrast, no hydrogen-bonded co-conformation was found in dimethyl sulfoxide, which appears to be due to the preferential formation of hydrogen bonds between the wheel NH groups with solvent molecules. Moreover, the axle experiences notable changes in anisotropic shielding, which would explain why the NMR signals are broadened in this solvent. Insertion of a sodium cation into the crown ether reduces co-conformational flexibility due to an interaction of the axle with the cation. Overall, the results reveal how both solvent and ionic atmosphere can influence the co

  12. Free Energy Barrier for Molecular Motions in Bistable [2]Rotaxane Molecular Electronic Devices

    DTIC Science & Technology

    2009-04-10

    cyclophane cyclobis(paraquat-p-phenylene) (CBPQT4+) with the π-electron-rich tetrathiafulvalene (TTF) and 1,5-dioxynaphthalene ( DNP ) stations provides...simulations to calculate the free energy barrier for the shuttling of the CBPQT4+ ring between the TTF and the DNP . The approach used here was to...oxidization). The return barrier from the DNP to the TTF leads to a predicted lifetime of 2.1 s, which is compatible with experiments. 1. Introduction The

  13. Remote Photoregulated Ring Gliding in a [2]Rotaxane via a Molecular Effector.

    PubMed

    Tron, Arnaud; Pianet, Isabelle; Martinez-Cuezva, Alberto; Tucker, James H R; Pisciottani, Luca; Alajarin, Mateo; Berna, Jose; McClenaghan, Nathan D

    2017-01-06

    A molecular barbiturate messenger, which is reversibly released/captured by a photoswitchable artificial molecular receptor, is shown to act as an effector to control ring gliding on a distant hydrogen-bonding [2]rotaxane. Thus, light-driven chemical communication governing the operation of a remote molecular machine is demonstrated using an information-rich neutral molecule.

  14. Neutral [2]rotaxane host systems that recognise halide anions in aqueous solvent mixtures.

    PubMed

    Mercurio, James M; Tyrrell, Fergus; Cookson, James; Beer, Paul D

    2013-11-28

    Four pyridine N-oxide axle containing [2]rotaxanes have been synthesised via an anion templated threading-followed-by-stoppering strategy and shown to be the first examples of neutral interlocked host systems capable of recognising halide anions in aqueous solvent mixtures.

  15. Neutral redox-active hydrogen- and halogen-bonding [2]rotaxanes for the electrochemical sensing of chloride.

    PubMed

    Lim, Jason Y C; Cunningham, Matthew J; Davis, Jason J; Beer, Paul D

    2014-12-14

    The first examples of redox-active ferrocene-functionalised neutral [2]rotaxanes have been synthesised via chloride anion templation. (1)H NMR spectroscopic titrations reveal that these [2]rotaxane host systems recognize chloride selectively over other halides and oxoanions in highly-competitive aqueous media. By replacing the hydrogen bonding prototriazole units of the rotaxane axle component with iodotriazole halogen bond-donor groups, the degree of chloride selectivity of the [2]rotaxanes is modulated. Electrochemical voltammetric experiments demonstrate that the rotaxanes can sense chloride via cathodic perturbations of the respective rotaxanes' ferrocene-ferrocenium redox-couple upon anion addition.

  16. A Supramolecular Substance, [2] Rotaxane, Induces Apoptosis in Human Molt-3 Acute Lymphoblastic Leukemia Cells.

    PubMed

    Kimura, M; Makio, K; Hara, K; Hiruma, W; Fujita, Y; Takata, T; Nishio, K; Ono, N

    2015-11-01

    The antitumor effects of a supramolecular substance, the [2] rotaxane (TRO-A0001), and its molecular mechanisms were investigated. TRO-A0001 suppressed the proliferation of cultured human Molt-3 acute lymphoblastic leukemia cells for 12-72 h in a dose-dependent manner. Based on flow cytometry, TRO-A0001 clearly induced apoptosis after 24 h. The mitochondrial membrane potential disappeared after treatment with 1.0 µM of TRO-A0001. Expression of the cleaved forms of capase-9 and caspase-3 was significantly increased in cells exposed to TRO-A0001, whereas the expression of XIAP, a type of inhibitor of apoptosis family, was decreased. These results suggest that [2] rotaxane TRO-A0001 may be a highly promising new antitumor medicine. © Georg Thieme Verlag KG Stuttgart · New York.

  17. Cyclic host liquids for facile and high-yield synthesis of [2]rotaxanes.

    PubMed

    Ogoshi, Tomoki; Aoki, Takamichi; Shiga, Ryohei; Iizuka, Ryo; Ueda, Seita; Demachi, Kazuki; Yamafuji, Daiki; Kayama, Hitoshi; Yamagishi, Tada-aki

    2012-12-19

    We developed "cyclic host liquids (CHLs)" as a new type of solvent. The CHLs are a nonvolatile liquid over a wide temperature range, are biocompatible and recyclable, have high thermal stability, and are miscible with many organic solvents. Compared with typical complexation systems, the CHL system is extremely efficient for maintaining host-guest complexation because an additional solvent is not required. Based on the efficient host-guest complexation in the CHL system, we demonstrated synthesis of [2]rotaxanes in pillar[5]arene-based CHL. High yields were obtained for [2]rotaxanes capped by cationization (yield 91%) and Huisgen reaction (yield 88%) between the axle and the stopper components in the CHL system, while the association constants between the axles and wheels were quite low (10-15 M(-1)) in CDCl(3). The CHL system provides a new powerful approach for synthesis of mechanically interlocked molecules (MIMs) even with unfavorable statistical combinations of host-guest complexes.

  18. Biologically Active Heteroglycoclusters Constructed on a Pillar[5]arene‐Containing [2]Rotaxane Scaffold

    PubMed Central

    Buffet, Kevin; Nierengarten, Iwona

    2015-01-01

    Abstract A synthetic approach combining recent concepts for the preparation of multifunctional nanomolecules (click chemistry on multifunctional scaffolds) with supramolecular chemistry (self‐assembly to prepare rotaxanes) gave easy access to a large variety of sophisticated [2]rotaxane heteroglycoclusters. Specifically, compounds combining galactose and fucose have been prepared to target the two bacterial lectins (LecA and LecB) from the opportunistic pathogen Pseudomonas aeruginosa. PMID:26467313

  19. An unusual nickel-copper-mediated alkyne homocoupling reaction for the active-template synthesis of [2]rotaxanes.

    PubMed

    Crowley, James D; Goldup, Stephen M; Gowans, Nicholas D; Leigh, David A; Ronaldson, Vicki E; Slawin, Alexandra M Z

    2010-05-05

    We report on an unusual Ni-/Cu-mediated alkyne homocoupling reaction, directed through the cavity of a bidentate macrocyclic ligand by chelated metal ions to furnish [2]rotaxanes in excellent (up to 95%) yields. This is the first active metal template reaction to employ an octahedral coordination geometry metal ion, Ni(II), and the study provides some interesting mechanistic insights into the mixed bimetallic reaction mechanism. The mixed-metal catalyst system was discovered serendipitously when Cu(I) was added to a Ni(II)-catalyzed alkyne homocoupling reaction in an attempt to facilitate chloride-acetylide ligand exchange. The role of Cu(I) in the reaction is, in fact, quite different from that originally intended. The effectiveness of having both nickel and copper present can be rationalized by the nature of a pi-activated, sigma-bonded, bimetallic intermediate in which the substitution of Ni(II) for one Cu(I) ion in the classic bimetallic Glaser reaction mechanism apparently aids reductive elimination of the acetylide ligands. The system may prove useful for the development of general mixed-metal protocols for catalytic alkyne coupling reactions as well as being a highly effective route to rotaxanes with bis-acetylene threads, which are potentially useful for materials applications (insulated molecular wires) and in molecular machines (rigid, nonfolding axles).

  20. Anion recognition and cation-induced molecular motion in a heteroditopic [2]rotaxane.

    PubMed

    Leontiev, Alexandre V; Jemmett, Charlotte A; Beer, Paul D

    2011-01-17

    A heteroditopic [2]rotaxane consisting of a calix[4]diquinone-isophthalamide macrocycle and 3,5-bis-amide pyridinium axle components with the capability of switching between two positional isomers in response to barium cation recognition is synthesised. The anion binding properties of the rotaxane's interlocked cavity together with Na(+) , K(+) , NH(4) (+) and Ba(2+) cation recognition capabilities are elucidated by (1) H NMR and UV-visible spectroscopic titration experiments. Upon binding of Ba(2+) , molecular displacement of the axle's positively charged pyridinium group from the rotaxane's macrocyclic cavity occurs, whereas the monovalent cations Na(+) , K(+) and NH(4) (+) are bound without causing significant co-conformational change. The barium cation induced shuttling motion can be reversed on addition of tetrabutylammonium sulfate.

  1. Escape times for rigid Brownian rotators in a bistable potential from the time evolution of the Green function and the characteristic time of the probability evolution

    NASA Astrophysics Data System (ADS)

    Coffey, W. T.; Crothers, D. S. F.; Titov, S. V.

    2001-09-01

    The greatest relaxation time for an assembly of three-dimensional rigid rotators in an axially symmetric bistable potential is obtained exactly in terms of continued fractions as a sum of the zero frequency decay functions (averages of the Legendre polynomials) of the system. This is accomplished by studying the entire time evolution of the Green function (transition probability) by expanding the time dependent distribution as a Fourier series and proceeding to the zero frequency limit of the Laplace transform of that distribution. The procedure is entirely analogous to the calculation of the characteristic time of the probability evolution (the integral of the configuration space probability density function with respect to the position co-ordinate) for a particle undergoing translational diffusion in a potential; a concept originally used by Malakhov and Pankratov (Physica A 229 (1996) 109). This procedure allowed them to obtain exact solutions of the Kramers one-dimensional translational escape rate problem for piecewise parabolic potentials. The solution was accomplished by posing the problem in terms of the appropriate Sturm-Liouville equation which could be solved in terms of the parabolic cylinder functions. The method (as applied to rotational problems and posed in terms of recurrence relations for the decay functions, i.e., the Brinkman approach c.f. Blomberg, Physica A 86 (1977) 49, as opposed to the Sturm-Liouville one) demonstrates clearly that the greatest relaxation time unlike the integral relaxation time which is governed by a single decay function (albeit coupled to all the others in non-linear fashion via the underlying recurrence relation) is governed by a sum of decay functions. The method is easily generalized to multidimensional state spaces by matrix continued fraction methods allowing one to treat non-axially symmetric potentials, where the distribution function is governed by two state variables.

  2. Halotriazolium axle functionalised [2]rotaxanes for anion recognition: investigating the effects of halogen-bond donor and preorganisation.

    PubMed

    Mercurio, James M; Knighton, Richard C; Cookson, James; Beer, Paul D

    2014-09-08

    The anion-templated synthesis of three novel halogen-bonding 5-halo-1,2,3-triazolium axle containing [2]rotaxanes is described, and the effects of altering the nature of the halogen-bond donor atom together with the degree of inter-component preorganisation on the anion-recognition properties of the interlocked host investigated. The ability of the bromotriazolium motif to direct the halide-anion-templated assembly of interpenetrated [2]pseudorotaxanes was studied initially; bromide was found to be the most effective template. As a consequence, bromide anion templation was used to synthesise the first bromotriazolium axle containing [2]rotaxane, the anion-binding properties of which, determined by (1) H NMR spectroscopic titration experiments, revealed enhanced bromide and iodide recognition relative to a hydrogen-bonding protic triazolium rotaxane analogue. Two halogen-bonding [2]rotaxanes with bromo- and iodotriazolium motifs integrated into shortened axles designed to increase inter-component preorganisation were also synthesised. Anion (1) H NMR spectroscopic titration experiments demonstrated that these rotaxanes were able to bind halide anions even more strongly, with the iodotriazolium axle integrated rotaxane capable of recognising halides in aqueous solvent media. Importantly, these observations suggest that a halogen-bonding interlocked host binding domain, in combination with increased inter-component preorganisation, are requisite design features for a potent anion receptor.

  3. Dethreading of Tetraalkylsuccinamide-Based [2]Rotaxanes for Preparing Benzylic Amide Macrocycles.

    PubMed

    Martinez-Cuezva, Alberto; Rodrigues, Leticia V; Navarro, Cristian; Carro-Guillen, Fernando; Buriol, Lilian; Frizzo, Clarissa P; Martins, Marcos A P; Alajarin, Mateo; Berna, Jose

    2015-10-16

    The dethreading of a series of succinamide-based [2]rotaxanes bearing benzylic amide macrocycles is reported herein. These transformations proceeded quantitatively either under flash vacuum pyrolysis, conventional heating, or microwave irradiation. Studying the size complementarity of the stoppers at the ends of the thread and the cavity of the macrocycle allowed us to set up the best substituents for implementing the extrusion of the thread from the interlocked precursors. A variety of (1)H NMR kinetic experiments were carried out in order to evaluate the rate constants of the dethreading process, the half-life times of the rotaxanes, and the influence of temperature and solvents on these processes. The use of dibutylamino groups as stoppers yielded the rotaxane precursor in a reasonable yield and allowed the quantitative deslipping of the rotaxane. The overall process, including the rotaxane formation and its further dethreading, has been exploited for preparing benzylic amide macrocycles enhancing, in most cases, the results of the classical (2 + 2) condensation and other reported stepwise syntheses. The kinetics of the dethreading process is fairly sensitive to the electronic effects of the substituents on the isophthalamide unit or to the electronic nature of the pyridine rings through a conformational equilibrium expanding or contracting the cavity of the interlocked precursor.

  4. Linear pi-Acceptor-Templated Dynamic Clipping to Macrobicycles and[2]Rotaxanes

    SciTech Connect

    Klivansky, Liana M.; Koshkakaryan, Gayane; Cao, Dennis; Liu, Yi

    2009-04-30

    Functional rotaxanes are one of the representative nanoscale molecular machines that have found applications in many areas, including molecular electronics, nanoelectromechanical systems (NEMS), photo controllable smart surfaces, and nanovalves. With the advent of molecular recognition and self-assembly, such molecular compounds can now be obtained efficiently through template-directed synthesis. One of the common strategies of making [2]rotaxanes involves the clipping of a macrocycle around a preformed dumbbell-shaped template in a [1+1] or [2+2] manner. While early examples were based on irreversible kinetic pathway through covalent bond formation, recent advances on reversible dynamic covalent chemistry (DCC) has attracted great attention to this field. By virtue of thermodynamically controlled equilibria, DCC has provided highly efficient and versatile synthetic routes in the selection of specific products from a complex system. Among the several reversible reactions in the category of DCC reactions, the imine formation has proven to be very versatile in macrocyclization to give complex interlocked molecular compounds. Cryptands are three dimensional bicyclic hosts with preorganized cavities capable of inclusion of ions and small molecules. Replacing the nitrogen bridgeheads in common cryptands with aromatic ring systems gives cyclophane-based macrobicycles. The introduction of aromatic ring systems into a preorganized cage-like geometry facilitates ion-{pi} interactions and {pi}-{pi} interactions, resulting in novel metal sandwiches, fluoride receptors, and host-guest complexes. In particular, the seminal work by Gibson, Huang and coworkers on cryptand complexation with paraquat and diquat guests have resulted in the efficient synthesis of mechanically interlocked rotaxanes. The synthesis of cyclophane-based macrobicycles, however, was mostly realized through multiple reaction steps and in high-dilution conditions, which often suffered from low yield and

  5. Performance of some DFT functionals with dispersion on modeling of the translational isomers of a solvent-switchable [2]rotaxane

    NASA Astrophysics Data System (ADS)

    Ivanov, Petko

    2016-03-01

    The balances of interactions were studied by computational methods in the translational isomers of a solvent switchable fullerene-stoppered [2]rotaxane (1) manifesting unexpected behavior, namely that due to favorable dispersion interactions the fullerene stopper becomes the second station upon change of the solvent. For comparison, another system, a pH switchable molecular shuttle (2), was also examined as an example of prevailing electrostatic interactions. Tested for 1 were five global hybrid Generalized Gradient Approximation functionals (B3LYP, B3LYP-D3, B3LYP-D3BJ, PBEh1PBE and APFD), one long-range corrected, range-separated functional with D2 empirical dispersion correction, ωB97XD, the Zhao-Truhlar's hybrid meta-GGA functional M06 with double the amount of nonlocal exchange (2X), and a pure functional, B97, with the Grimme's D3BJ dispersion (B97D3). The molecular mechanics method qualitatively correctly reproduced the behavior of the [2]rotaxanes, whereas the DFT models, except for M06-2X to some extent, failed in the case of significant dispersion interactions with participation of the fulleropyrrolidine stopper (rotaxane 1). Unexpectedly, the benzylic amide macrocycle tends to adopt preferentially 'boat'-like conformation in most of the cases. Four hydrogen bonds interconnect the axle with the wheel for the translational isomer with the macroring at the succinamide station (station II), whereas the number of hydrogen bonds vary for the isomer with the macroring at the fulleropyrrolidine stopper (station I) depending of the computational model used. The B3LYP and the PBEh1PBE results show strong preference of station II in the gas phase and in the model solvent DMSO. After including empirical dispersion correction, the translational isomer with the macroring at station I has the lower energy with B3LYP, both in the gas phase and in DMSO. The same result, but with higher preference of station I, was estimated with APFD, ωB97XD and B97D3. Only M06-2X

  6. Stereocontrolled Synthesis of β-Lactams within [2]Rotaxanes: Showcasing the Chemical Consequences of the Mechanical Bond.

    PubMed

    Martinez-Cuezva, Alberto; Lopez-Leonardo, Carmen; Bautista, Delia; Alajarin, Mateo; Berna, Jose

    2016-07-20

    The intramolecular cyclization of N-benzylfumaramide [2]rotaxanes is described. The mechanical bond of these substrates activates this transformation to proceed in high yields and in a regio- and diastereoselective manner, giving interlocked 3,4-disubstituted trans-azetidin-2-ones. This activation effect markedly differs from the more common shielding protection of threaded functions by the macrocycle, in this case promoting an unusual and disfavored 4-exo-trig ring closure. Kinetic and synthetic studies allowed us to delineate an advantageous approach toward β-lactams based on a two-step, one-pot protocol: an intramolecular ring closure followed by a thermally induced dethreading step. The advantages of carrying out this cyclization in the confined space of a benzylic amide macrocycle are attributed to its anchimeric assistance.

  7. Influence of novel supramolecular substance, [2] rotaxane, on the caspase signaling pathway in melanoma and colon cancer cells in vitro.

    PubMed

    Hara, Kazuki; Beppu, Tatsuya; Kimura, Masahiko; Fujita, Yoshihiko; Takata, Toshikazu; Nishio, Kazuto; Ono, Nobufumi

    2013-01-01

    We studied the influence of novel supramolecular substance, [2] rotaxane (TRO-A0001), on caspase signaling and cell viability in cancer cell lines. TRO-A0001 suppressed concentration-dependently cell proliferation. Expression of the cleaved-form caspase-3 and PARP was significantly increased in cells exposed to TRO-A0001. The expression of Bax was increased by TRO-A0001. Furthermore, the down-regulation of Bax by siRNA resulted in growth activation significantly. The morphological analysis demonstrated that TRO-A0001 increased the levels of apoptotic cells in human cancer cell lines. These results suggest that TRO-A0001 induces apoptosis in cancer cells and holds potential as a new anti-tumor medicine.

  8. Copper(ii)-directed synthesis of neutral heteroditopic [2]rotaxane ion-pair host systems incorporating hydrogen and halogen bonding anion binding cavities.

    PubMed

    Brown, Asha; Mennie, Katrina M; Mason, Owen; White, Nicholas G; Beer, Paul D

    2017-09-27

    Neutral heteroditopic [2]rotaxane ion-pair host systems were synthesised via a Cu(ii) directed passive metal template strategy. Each rotaxane contains discrete, axle-separated interlocked binding sites for a guest anion and a transition metal countercation. The anion binding sites are composed of convergent X-H (X = C, N) hydrogen bond donor groups, or mixed X-H and C-I hydrogen and halogen bond donor groups, whereas an equivalent three-dimensional array of amine, pyridine and carbonyl oxygen donor groups comprise the transition metal binding site. (1)H NMR titrations experiments in CDCl3/CD3OD or CDCl3/CD3OD/D2O solvent mixtures reveal that the heteroditopic [2]rotaxane host systems are capable of cooperative anion recognition in the presence of a co-bound Zn(ii) cation.

  9. Bistable devices for morphing rotor blades

    NASA Astrophysics Data System (ADS)

    Johnson, Terrence

    This dissertation presents two bistable concepts for morphing rotor blades. These concepts are simple and are composed of bistable devices that act as coupling structures between an actuator and the rotor blade. Bistable or "snap-through" mechanisms have two stable equilibrium states and are a novel way to achieve large actuation output stroke at relatively modest effort for gross rotor morphing applications. This is because in addition to the large actuation stroke associated with the snap-through (relative to conventional actuator/ amplification systems) coming at relatively low actuation effort, no locking is required in either equilibrium state (since they are both stable). The first concept that is presented in this dissertation is a that is composed of a bistable twisting device that twists the tip of helicopter rotor blades. This work examines the performance of the presented bistable twisting device for rotor morphing, specifically, blade tip twist under an aerodynamic lift load. The device is analyzed using finite element analysis to predict its load carrying capability and bistable behavior. The second concept that is presented is a concept that is composed of a bistable arch for rotor blade chord extension. The bistable arch is coupled to a thin flat plate that is supported by rollers. Increasing the chord of the rotor blade is expected to generate more lift-load and improve helicopter performance. In this work, a methodology is presented to design the bistable arches for chord morphing using the finite element analysis and pseudo-rigid body model method. This work also examines the effect of different arches, arch hinge size and shape, inertial loads and rigidity on arch performance. Finally, this work shows results from an experiment that was conducted to validate the developed numerical model and demonstrates how the arch can be actuated using a Nitinol Shape Memory Alloy (SMA) wire to extend the chord of a helicopter rotor blade.

  10. Measurement of the ground-state distributions in bistable mechanically interlocked molecules using slow scan rate cyclic voltammetry.

    PubMed

    Fahrenbach, Albert C; Barnes, Jonathan C; Li, Hao; Benítez, Diego; Basuray, Ashish N; Fang, Lei; Sue, Chi-Hau; Barin, Gokhan; Dey, Sanjeev K; Goddard, William A; Stoddart, J Fraser

    2011-12-20

    In donor-acceptor mechanically interlocked molecules that exhibit bistability, the relative populations of the translational isomers--present, for example, in a bistable [2]rotaxane, as well as in a couple of bistable [2]catenanes of the donor-acceptor vintage--can be elucidated by slow scan rate cyclic voltammetry. The practice of transitioning from a fast scan rate regime to a slow one permits the measurement of an intermediate redox couple that is a function of the equilibrium that exists between the two translational isomers in the case of all three mechanically interlocked molecules investigated. These intermediate redox potentials can be used to calculate the ground-state distribution constants, K. Whereas, (i) in the case of the bistable [2]rotaxane, composed of a dumbbell component containing π-electron-rich tetrathiafulvalene and dioxynaphthalene recognition sites for the ring component (namely, a tetracationic cyclophane, containing two π-electron-deficient bipyridinium units), a value for K of 10 ± 2 is calculated, (ii) in the case of the two bistable [2]catenanes--one containing a crown ether with tetrathiafulvalene and dioxynaphthalene recognition sites for the tetracationic cyclophane, and the other, tetrathiafulvalene and butadiyne recognition sites--the values for K are orders (one and three, respectively) of magnitude greater. This observation, which has also been probed by theoretical calculations, supports the hypothesis that the extra stability of one translational isomer over the other is because of the influence of the enforced side-on donor-acceptor interactions brought about by both π-electron-rich recognition sites being part of a macrocyclic polyether.

  11. Ground-state thermodynamics of bistable redox-active donor-acceptor mechanically interlocked molecules.

    PubMed

    Fahrenbach, Albert C; Bruns, Carson J; Cao, Dennis; Stoddart, J Fraser

    2012-09-18

    Fashioned through billions of years of evolution, biological molecular machines, such as ATP synthase, myosin, and kinesin, use the intricate relative motions of their components to drive some of life's most essential processes. Having control over the motions in molecules is imperative for life to function, and many chemists have designed, synthesized, and investigated artificial molecular systems that also express controllable motions within molecules. Using bistable mechanically interlocked molecules (MIMs), based on donor-acceptor recognition motifs, we have sought to imitate the sophisticated nanoscale machines present in living systems. In this Account, we analyze the thermodynamic characteristics of a series of redox-switchable [2]rotaxanes and [2]catenanes. Control and understanding of the relative intramolecular movements of components in MIMs have been vital in the development of a variety of applications of these compounds ranging from molecular electronic devices to drug delivery systems. These bistable donor-acceptor MIMs undergo redox-activated switching between two isomeric states. Under ambient conditions, the dominant translational isomer, the ground-state coconformation (GSCC), is in equilibrium with the less favored translational isomer, the metastable-state coconformation (MSCC). By manipulating the redox state of the recognition site associated with the GSCC, we can stimulate the relative movements of the components in these bistable MIMs. The thermodynamic parameters of model host-guest complexes provide a good starting point to rationalize the ratio of GSCC to MSCC at equilibrium. The bistable [2]rotaxanes show a strong correlation between the relative free energies of model complexes and the ground-state distribution constants (K(GS)). This relationship does not always hold for bistable [2]catenanes, most likely because of the additional steric and electronic constraints present when the two rings are mechanically interlocked with each other

  12. Long-range electron transfer in porphyrin-containing [2]-rotaxanes: tuning the rate by metal cation coordination.

    PubMed

    Andersson, Mikael; Linke, Myriam; Chambron, Jean-Claude; Davidsson, Jan; Heitz, Valérie; Hammarström, Leif; Sauvage, Jean-Pierre

    2002-04-24

    A series of [2]-rotaxanes has been synthesized in which two Zn(II)-porphyrins (ZnP) electron donors were attached as stoppers on the rod. A macrocycle attached to a Au(III)-porphyrin (AuP+) acceptor was threaded on the rod. By selective excitation of either porphyrin, we could induce an electron transfer from the ZnP to the AuP+ unit that generated the same ZnP*+-AuP* charge-transfer state irrespective of which porphyrin was excited. Although the reactants were linked only by mechanical or coordination bonds, electron-transfer rate constants up to 1.2x10(10) x s(-1) were obtained over a 15-17 A edge-to-edge distance between the porphyrins. The resulting charge-transfer state had a relatively long lifetime of 10-40 ns and was formed in high yield (>80%) in most cases. By a simple variation of the link between the reactants, viz. a coordination of the phenanthroline units on the rotaxane rod and ring by either Ag+ or Cu+, we could enhance the electron-transfer rate from the ZnP to the excited 3AuP+. We interpret our data in terms of an enhanced superexchange mechanism with Ag+ and a change to a stepwise hopping mechanism with Cu+, involving the oxidized Cu(phen)22+ unit as a real intermediate. When the ZnP unit was excited instead, electron transfer from the excited 1ZnP to AuP+ was not affected, or even slowed, by Ag+ or Cu+. We discuss this asymmetry in terms of the different orbitals involved in mediating the reaction in an electron- and a hole-transfer mechanism. Our results show the possibility to tune the rates of electron transfer between noncovalently linked reactants by a convenient modification of the link. The different effect of Ag+ and Cu+ on the rate with ZnP and AuP+ excitation shows an additional possibility to control the electron-transfer reactions by selective excitation. We also found that coordination of the Cu+ introduced an energy-transfer reaction from 1ZnP to Cu(phen)2+ (k = 5.1x10(9) x s(-1)) that proceeded in competition with electron

  13. Acid/Base and H2PO4(-) Controllable High-Contrast Optical Molecular Switches with a Novel BODIPY Functionalized [2]Rotaxane.

    PubMed

    Arumugaperumal, Reguram; Srinivasadesikan, Venkatesan; Ramakrishnam Raju, Mandapati V; Lin, Ming-Chang; Shukla, Tarun; Singh, Ravinder; Lin, Hong-Cheu

    2015-12-09

    A novel multifunctional mechanically interlocked switchable [2]rotaxane R4 containing two molecular stations and rotaxane arms terminated with boron-dipyrromethene (BODIPY) fluorophores and its derivatives were synthesized for the first time by CuAAC click reaction. The shuttling motion of macrocycle between the dibenzylammonium and triazolium recognition sites and the distance dependent photoinduced electron transfer process of R4 is demonstrated by utilizing external chemical stimuli (acid/base). Interestingly, the reversible self-assembly process of R4 was recognized by the acid-base molecular switch strategy. Notably, two symmetrical triazolium groups acted as molecular stations, H2PO4(-) receptors, and H-bonded donors. Both [2]rotaxane R4 and thread R2 demonstrated excellent optical responses and high selectivity toward H2PO4(-) ion. The specific motion and guest-host interactions of mechanically interlocked machines (MIMs) were also further explored by quantum mechanical calculations. The thread R2 also demonstrated to enable the detection of H2PO4(-) in RAW 264.7 cells successfully.

  14. Generalized Bistability in Origami Cylinders

    NASA Astrophysics Data System (ADS)

    Reid, Austin; Adda-Bedia, Mokhtar; Lechenault, Frederic

    Origami folded cylinders (origami bellows) have found increasingly sophisticated applications in space flight, medicine, and even experimental nuclear physics. In spite of this interest, a general understanding of the dynamics of an origami folded cylinder has been elusive. By solving the fully constrained behavior of a periodic fundamental origami cell defined by unit vectors, we have found an analytic solution for all possible rigid-face states accessible from a cylindrical Miura-ori pattern. Although an idealized bellows has two rigid-face configurations over a well-defined region, a physical device, limited by nonzero material thickness and forced to balance hinge with plate-bending energy, often cannot stably maintain a stowed configuration. We have identified and measured the parameters which control this emergent bistability, and have demonstrated the ability to fabricate bellows with tunable deployability.

  15. Origami Mechanics: Bistability and Isometries

    NASA Astrophysics Data System (ADS)

    Adda-Bedia, Mokhtar; Lechenault, Frederic; Morphogenesis; multiscale phenomena Team

    2015-03-01

    Origami structures are usually seen as assemblies of rigid faces articulated around creases with hinge-like behaviour. Their deployment and degrees of freedom are purely kinematic, resulting only from the geometry of the crease network. However, in real folded structures, the base material can deform outside the creases. In such situations, face bending competes with crease actuation in a morphogenetic way. In order to rationalise this interplay, we investigate the mechanical behaviour of an infinite sheet on which one or more straight creases meet at a single vertex. We find that these structures generically exhibit bistability, in the sense that they can snap through from one metastable configuration to another. Furthermore, we uncover a new class of isometry of the plane, which corresponds to metastable states of a creased sheet for which the hoop stress vanishes, an instability mechanism that is also responsible for the wrinkling of thin plates.

  16. Ground-state kinetics of bistable redox-active donor-acceptor mechanically interlocked molecules.

    PubMed

    Fahrenbach, Albert C; Bruns, Carson J; Li, Hao; Trabolsi, Ali; Coskun, Ali; Stoddart, J Fraser

    2014-02-18

    The ability to design and confer control over the kinetics of theprocesses involved in the mechanisms of artificial molecular machines is at the heart of the challenge to create ones that can carry out useful work on their environment, just as Nature is wont to do. As one of the more promising forerunners of prototypical artificial molecular machines, chemists have developed bistable redox-active donor-acceptor mechanically interlocked molecules (MIMs) over the past couple of decades. These bistable MIMs generally come in the form of [2]rotaxanes, molecular compounds that constitute a ring mechanically interlocked around a dumbbell-shaped component, or [2]catenanes, which are composed of two mechanically interlocked rings. As a result of their interlocked nature, bistable MIMs possess the inherent propensity to express controllable intramolecular, large-amplitude, and reversible motions in response to redox stimuli. In this Account, we rationalize the kinetic behavior in the ground state for a large assortment of these types of bistable MIMs, including both rotaxanes and catenanes. These structures have proven useful in a variety of applications ranging from drug delivery to molecular electronic devices. These bistable donor-acceptor MIMs can switch between two different isomeric states. The favored isomer, known as the ground-state co-conformation (GSCC) is in equilibrium with the less favored metastable state co-conformation (MSCC). The forward (kf) and backward (kb) rate constants associated with this ground-state equilibrium are intimately connected to each other through the ground-state distribution constant, KGS. Knowing the rate constants that govern the kinetics and bring about the equilibration between the MSCC and GSCC, allows researchers to understand the operation of these bistable MIMs in a device setting and apply them toward the construction of artificial molecular machines. The three biggest influences on the ground-state rate constants arise from

  17. Studies of Bistable Optical Devices.

    DTIC Science & Technology

    1982-05-15

    a concept to simultaneously process over 2500 parallel bits in a nanosecond, in a linear array. 3. Studies of bistability in new materials and new...Bistable Optical Devices. 25 IV. Bistability in New Materials .... ............ .. 34 A. Saturable Absorber Dyes ... ........... .. 34 A-1. Experimental...large number of resolvable spots. We have investigated.both new materials and new geo- metries for use in bistable optical devices with a view toward

  18. Bistable Mechanisms for Space Applications.

    PubMed

    Zirbel, Shannon A; Tolman, Kyler A; Trease, Brian P; Howell, Larry L

    2016-01-01

    Compliant bistable mechanisms are monolithic devices with two stable equilibrium positions separated by an unstable equilibrium position. They show promise in space applications as nonexplosive release mechanisms in deployment systems, thereby eliminating friction and improving the reliability and precision of those mechanical devices. This paper presents both analytical and numerical models that are used to predict bistable behavior and can be used to create bistable mechanisms in materials not previously feasible for compliant mechanisms. Materials compatible with space applications are evaluated for use as bistable mechanisms and prototypes are fabricated in three different materials. Pin-puller and cutter release mechanisms are proposed as potential space applications.

  19. Bistable Mechanisms for Space Applications

    PubMed Central

    Zirbel, Shannon A.; Tolman, Kyler A.; Trease, Brian P.

    2016-01-01

    Compliant bistable mechanisms are monolithic devices with two stable equilibrium positions separated by an unstable equilibrium position. They show promise in space applications as nonexplosive release mechanisms in deployment systems, thereby eliminating friction and improving the reliability and precision of those mechanical devices. This paper presents both analytical and numerical models that are used to predict bistable behavior and can be used to create bistable mechanisms in materials not previously feasible for compliant mechanisms. Materials compatible with space applications are evaluated for use as bistable mechanisms and prototypes are fabricated in three different materials. Pin-puller and cutter release mechanisms are proposed as potential space applications. PMID:28030588

  20. Organic optical bistable switch

    NASA Astrophysics Data System (ADS)

    Xue, Jiangeng; Forrest, Stephen R.

    2003-01-01

    We demonstrate an organic optical bistable switch by integrating an efficient organic photodetector on top of a transparent electrophosphorescent organic light-emitting diode (TOLED). The bistability is achieved with an external field-effect transistor providing positive feedback. In the "LOW" state, the TOLED is off and the current in the photodetector is solely its dark current. In the "HIGH" state, the TOLED emits light that is directly coupled into the integrated photodetector through the transparent cathode. The photocurrent then is fed back to the TOLED, maintaining it in the HIGH state. The green electrophosphorescent material, fac tris(2-phenylpyridine) iridium [Ir(ppy)3] doped into a 4,4'-N,N'-dicarbazole-biphenyl host was used as the luminescent material in the TOLED, while alternating thin layers of copper phthalocyanine and 3,4,9,10-perylenetetracarboxylic bis-benzimidazole were used as the active region of the organic photodetector. The circuit has a 3 dB bandwidth of 25 kHz, and can be switched between HIGH and LOW using pulses as narrow as 60 ns. The bistable switch can be both electrically and optically reset, making it a candidate for image-retaining displays (e.g., electronic paper) and other photonic logic applications. The integrated organic device also has broad use as a linear circuit element in applications such as automatic brightness control.

  1. Bistable microelectromechanical actuator

    DOEpatents

    Fleming, J.G.

    1999-02-02

    A bistable microelectromechanical (MEM) actuator is formed on a substrate and includes a stressed membrane of generally rectangular shape that upon release assumes a curvilinear cross-sectional shape due to attachment at a midpoint to a resilient member and at opposing edges to a pair of elongate supports. The stressed membrane can be electrostatically switched between a pair of mechanical states having mirror-image symmetry, with the MEM actuator remaining in a quiescent state after a programming voltage is removed. The bistable MEM actuator according to various embodiments of the present invention can be used to form a nonvolatile memory element, an optical modulator (with a pair of mirrors supported above the membrane and moving in synchronism as the membrane is switched), a switchable mirror (with a single mirror supported above the membrane at the midpoint thereof) and a latching relay (with a pair of contacts that open and close as the membrane is switched). Arrays of bistable MEM actuators can be formed for applications including nonvolatile memories, optical displays and optical computing. 49 figs.

  2. Bistable microelectromechanical actuator

    DOEpatents

    Fleming, James G.

    1999-01-01

    A bistable microelectromechanical (MEM) actuator is formed on a substrate and includes a stressed membrane of generally rectangular shape that upon release assumes a curvilinear cross-sectional shape due to attachment at a midpoint to a resilient member and at opposing edges to a pair of elongate supports. The stressed membrane can be electrostatically switched between a pair of mechanical states having mirror-image symmetry, with the MEM actuator remaining in a quiescent state after a programming voltage is removed. The bistable MEM actuator according to various embodiments of the present invention can be used to form a nonvolatile memory element, an optical modulator (with a pair of mirrors supported above the membrane and moving in synchronism as the membrane is switched), a switchable mirror (with a single mirror supported above the membrane at the midpoint thereof) and a latching relay (with a pair of contacts that open and close as the membrane is switched). Arrays of bistable MEM actuators can be formed for applications including nonvolatile memories, optical displays and optical computing.

  3. Optical bistability in semiconductor microcavities

    SciTech Connect

    Baas, A.; Karr, J.Ph.; Giacobino, E.; Eleuch, H.

    2004-02-01

    We report the observation of polaritonic bistability in semiconductor microcavities in the strong-coupling regime. The origin of bistability is the polariton-polariton interaction, which gives rise to a Kerr-like nonlinearity. The experimental results are in good agreement with a simple model taking transverse effects into account.

  4. Generic Bistability in Creased Conical Surfaces

    NASA Astrophysics Data System (ADS)

    Lechenault, F.; Adda-Bedia, M.

    2015-12-01

    The emerging field of mechanical metamaterials has sought inspiration in the ancient art of origami as archetypal deployable structures that carry geometric rigidity, exhibit exotic material properties, and are potentially scalable. A promising venue to introduce functionality consists in coupling the elasticity of the sheet and the kinematics of the folds. In this spirit, we introduce a scale-free, analytical description of a very general class of snap-through, bistable patterns of creases naturally occurring at the vertices of real origami that can be used as building blocks to program and actuate the overall shape of the decorated sheet. These switches appear at the simplest possible level of creasing and admit straightforward experimental realizations.

  5. Dynamics of a bistable Miura-origami structure

    NASA Astrophysics Data System (ADS)

    Fang, Hongbin; Li, Suyi; Ji, Huimin; Wang, K. W.

    2017-05-01

    Origami-inspired structures and materials have shown extraordinary properties and performances originating from the intricate geometries of folding. However, current state of the art studies have mostly focused on static and quasistatic characteristics. This research performs a comprehensive experimental and analytical study on the dynamics of origami folding through investigating a stacked Miura-Ori (SMO) structure with intrinsic bistability. We fabricate and experimentally investigated a bistable SMO prototype with rigid facets and flexible crease lines. Under harmonic base excitation, the SMO exhibits both intrawell and interwell oscillations. Spectrum analyses reveal that the dominant nonlinearities of SMO are quadratic and cubic, which generate rich dynamics including subharmonic and chaotic oscillations. The identified nonlinearities indicate that a third-order polynomial can be employed to approximate the measured force-displacement relationship. Such an approximation is validated via numerical study by qualitatively reproducing the phenomena observed in the experiments. The dynamic characteristics of the bistable SMO resemble those of a Helmholtz-Duffing oscillator (HDO); this suggests the possibility of applying the established tools and insights of HDO to predict origami dynamics. We also show that the bistability of SMO can be programmed within a large design space via tailoring the crease stiffness and initial stress-free configurations. The results of this research offer a wealth of fundamental insights into the dynamics of origami folding, and provide a solid foundation for developing foldable and deployable structures and materials with embedded dynamic functionalities.

  6. Dynamics of a bistable Miura-origami structure.

    PubMed

    Fang, Hongbin; Li, Suyi; Ji, Huimin; Wang, K W

    2017-05-01

    Origami-inspired structures and materials have shown extraordinary properties and performances originating from the intricate geometries of folding. However, current state of the art studies have mostly focused on static and quasistatic characteristics. This research performs a comprehensive experimental and analytical study on the dynamics of origami folding through investigating a stacked Miura-Ori (SMO) structure with intrinsic bistability. We fabricate and experimentally investigated a bistable SMO prototype with rigid facets and flexible crease lines. Under harmonic base excitation, the SMO exhibits both intrawell and interwell oscillations. Spectrum analyses reveal that the dominant nonlinearities of SMO are quadratic and cubic, which generate rich dynamics including subharmonic and chaotic oscillations. The identified nonlinearities indicate that a third-order polynomial can be employed to approximate the measured force-displacement relationship. Such an approximation is validated via numerical study by qualitatively reproducing the phenomena observed in the experiments. The dynamic characteristics of the bistable SMO resemble those of a Helmholtz-Duffing oscillator (HDO); this suggests the possibility of applying the established tools and insights of HDO to predict origami dynamics. We also show that the bistability of SMO can be programmed within a large design space via tailoring the crease stiffness and initial stress-free configurations. The results of this research offer a wealth of fundamental insights into the dynamics of origami folding, and provide a solid foundation for developing foldable and deployable structures and materials with embedded dynamic functionalities.

  7. Temporal nonlocality in bistable perception

    NASA Astrophysics Data System (ADS)

    Atmanspacher, Harald; Filk, Thomas

    2012-12-01

    A novel conceptual framework for theoretical psychology is presented and illustrated for the example of bistable perception. A basic formal feature of this framework is the non-commutativity of operations acting on mental states. A corresponding model for the bistable perception of ambiguous stimuli, the Necker-Zeno model, is sketched and some empirical evidence for it so far is described. It is discussed how a temporal nonlocality of mental states, predicted by the model, can be understood and tested.

  8. Optically bistable interference filter

    NASA Astrophysics Data System (ADS)

    Feng, Weiting

    1990-07-01

    In general the temperature dependence of refractive index of coating materials is usually small. The most notable exception being the lead telluride. Thinfilm filters made of PbTe possess anomalously high nortlinearily in refractive index. We have investigated the phenomenon theoretically and experimexitally. 2 . BISTABLE CHARACTERISTICS OF INTERFERENCE FILTERS It can be proved that the transmittance and reflectance of a twin-cavity NLIF which consists of two F-B filters coupled by a single low-index are given by 2 a(1r1 )(1-r0) T --i. -. (1) -d (1r01) (1r12) (1-i-Fsin 4)(1+sin p) where a r01 F . Te phase change of the cavity 0 IS 2r0dnAI0D (2) 2k5dT 1k where the absorbtance A 00 the initial detunning of fresonance and the first term on the right side of the equation(1)-(2) the output characteristics of the NLIF can be calculated. 3 . EXPERIMENTAL CASE The interference filters suggested to be used in my research will be made by vacuum deposition with a thermal source. The filters will be made according to the prescripti The dominant mechanism responsible for d(nhl) must be the change in the refractive index. A low limit on the OB switch-on time is found to be O. 35us and switch-off time is 5. 5us. 4. REFERENCES 1. W. T. Feng " Temperature effects on properties of zinc selenide and lead telluride" to be published in Infrared Physics. 2. H. S. Carslaw Conduction

  9. Bistable microvalve and microcatheter system

    DOEpatents

    Seward, Kirk Patrick

    2003-05-20

    A bistable microvalve of shape memory material is operatively connected to a microcatheter. The bistable microvalve includes a tip that can be closed off until it is in the desired position. Once it is in position it can opened and closed. The system uses heat and pressure to open and close the microvalve. The shape memory material will change stiffness and shape when heated above a transition temperature. The shape memory material is adapted to move from a first shape to a second shape, either open or closed, where it can perform a desired function.

  10. Reentrant Origami-Based Metamaterials with Negative Poisson's Ratio and Bistability

    NASA Astrophysics Data System (ADS)

    Yasuda, H.; Yang, J.

    2015-05-01

    We investigate the unique mechanical properties of reentrant 3D origami structures based on the Tachi-Miura polyhedron (TMP). We explore the potential usage as mechanical metamaterials that exhibit tunable negative Poisson's ratio and structural bistability simultaneously. We show analytically and experimentally that the Poisson's ratio changes from positive to negative and vice versa during its folding motion. In addition, we verify the bistable mechanism of the reentrant 3D TMP under rigid origami configurations without relying on the buckling motions of planar origami surfaces. This study forms a foundation in designing and constructing TMP-based metamaterials in the form of bellowslike structures for engineering applications.

  11. Flexible Bistable Cholesteric Reflective Displays

    NASA Astrophysics Data System (ADS)

    Yang, Deng-Ke

    2006-03-01

    Cholesteric liquid crystals (ChLCs) exhibit two stable states at zero field condition-the reflecting planar state and the nonreflecting focal conic state. ChLCs are an excellent candidate for inexpensive and rugged electronic books and papers. This paper will review the display cell structure,materials and drive schemes for flexible bistable cholesteric (Ch) reflective displays.

  12. Bi-stable optical actuator

    DOEpatents

    Holdener, Fred R.; Boyd, Robert D.

    2000-01-01

    The present invention is a bi-stable optical actuator device that is depowered in both stable positions. A bearing is used to transfer motion and smoothly transition from one state to another. The optical actuator device may be maintained in a stable position either by gravity or a restraining device.

  13. Abdominal rigidity

    MedlinePlus

    Rigidity of the abdomen ... is a sore area inside the belly or abdomen, the pain will get worse when a hand ... Causes can include: Abscess inside the abdomen Appendicitis ... small intestine, large bowel, or gallbladder ( gastrointestinal ...

  14. Bistability in radiative heat exchange

    NASA Astrophysics Data System (ADS)

    Rudakov, V. I.; Ovcharov, V. V.; Prigara, V. P.

    2008-08-01

    The possibility of a bistable regime in systems with radiative heat exchange is theoretically demonstrated for the first time. The transfer characteristics of a radiation-closed stationary system have been calculated, in which the radiator is a blackbody and the absorber is made of a material with the absorptivity sharply increasing in a certain temperature interval. The radiator and absorber are separated by a vacuum gap. The heat exchange between the system and the environment is controlled by varying the flow rate of a heat-transfer agent cooling the absorber. The output parameter of a bistable system is the absorber temperature, while the input parameter can be either the radiator temperature or the heat-transfer agent flow rate. Depending on the choice of the input parameter, the transfer characteristic of the system is either represented by a usual S-like curve or has an inverted shape.

  15. Optical Bistable Arrays: Prospects for Ultimate Performances,

    DTIC Science & Technology

    OPTICAL SWITCHING, *OPTICAL INTERFEROMETERS, CAVITIES, IMPEDANCE, IMPEDANCE MATCHING , INTENSITY, LAYERS, MATERIALS, MIRRORS, OPTIMIZATION, PARAMETERS, REDUCTION, FRANCE, BISTABLE DEVICES, GALLIUM ARSENIDES, ALUMINUM GALLIUM ARSENIDES, HETEROJUNCTIONS.

  16. Brain networks underlying bistable perception.

    PubMed

    Baker, Daniel H; Karapanagiotidis, Theodoros; Coggan, David D; Wailes-Newson, Kirstie; Smallwood, Jonathan

    2015-10-01

    Bistable stimuli, such as the Necker Cube, demonstrate that experience can change in the absence of changes in the environment. Such phenomena can be used to assess stimulus-independent aspects of conscious experience. The current study used resting state functional magnetic resonance imaging (rs-fMRI) to index stimulus-independent changes in neural activity to understand the neural architecture that determines dominance durations during bistable perception (using binocular rivalry and Necker cube stimuli). Anterior regions of the Superior Parietal Lobule (SPL) exhibited robust connectivity with regions of primary sensorimotor cortex. The strength of this region's connectivity with the striatum predicted shorter dominance durations during binocular rivalry, whereas its connectivity to pre-motor cortex predicted longer dominance durations for the Necker Cube. Posterior regions of the SPL, on the other hand, were coupled to associative cortex in the temporal and frontal lobes. The posterior SPL's connectivity to the temporal lobe predicted longer dominance during binocular rivalry. In conjunction with prior work, these data suggest that the anterior SPL contributes to perceptual rivalry through the inhibition of incongruent bottom up information, whereas the posterior SPL influences rivalry by supporting the current interpretation of a bistable stimulus. Our data suggests that the functional connectivity of the SPL with regions of sensory, motor, and associative cortex allows it to regulate the interpretation of the environment that forms the focus of conscious attention at a specific moment in time.

  17. Bistability in biochemical signaling models.

    PubMed

    Sobie, Eric A

    2011-09-20

    This Teaching Resource provides lecture notes, slides, and a student assignment for a two-part lecture on the principles underlying bistability in biochemical signaling networks, which are illustrated with examples from the literature. The lectures cover analog, or graded, versus digital, all-or-none, responses in cells, with examples from different types of biological processes requiring each. Rate-balance plots are introduced as a method for determining whether generic one-variable systems exhibit one or several stable steady states. Bifurcation diagrams are presented as a more general method for detecting the presence of bistability in biochemical signaling networks. The examples include an artificial toggle switch, the lac operon in bacteria, and the mitogen-activated protein kinase cascade in both Xenopus oocytes and mammalian cells. The second part of the lecture links the concepts of bistability more closely to the mathematical tools provided by dynamical systems analysis. The examples from the first part of the lecture are analyzed with phase-plane techniques and bifurcation analysis, using the scientific programming language MATLAB. Using these programs as a template, the assignment requires the students to implement a model from the literature and analyze the stability of this model's steady states.

  18. The smallest chemical reaction system with bistability

    PubMed Central

    Wilhelm, Thomas

    2009-01-01

    Background Bistability underlies basic biological phenomena, such as cell division, differentiation, cancer onset, and apoptosis. So far biologists identified two necessary conditions for bistability: positive feedback and ultrasensitivity. Results Biological systems are based upon elementary mono- and bimolecular chemical reactions. In order to definitely clarify all necessary conditions for bistability we here present the corresponding minimal system. According to our definition, it contains the minimal number of (i) reactants, (ii) reactions, and (iii) terms in the corresponding ordinary differential equations (decreasing importance from i-iii). The minimal bistable system contains two reactants and four irreversible reactions (three bimolecular, one monomolecular). We discuss the roles of the reactions with respect to the necessary conditions for bistability: two reactions comprise the positive feedback loop, a third reaction filters out small stimuli thus enabling a stable 'off' state, and the fourth reaction prevents explosions. We argue that prevention of explosion is a third general necessary condition for bistability, which is so far lacking discussion in the literature. Moreover, in addition to proving that in two-component systems three steady states are necessary for bistability (five for tristability, etc.), we also present a simple general method to design such systems: one just needs one production and three different degradation mechanisms (one production, five degradations for tristability, etc.). This helps modelling multistable systems and it is important for corresponding synthetic biology projects. Conclusion The presented minimal bistable system finally clarifies the often discussed question for the necessary conditions for bistability. The three necessary conditions are: positive feedback, a mechanism to filter out small stimuli and a mechanism to prevent explosions. This is important for modelling bistability with simple systems and for

  19. Diversity and functional properties of bistable pigments.

    PubMed

    Tsukamoto, Hisao; Terakita, Akihisa

    2010-11-01

    Rhodopsin and related opsin-based pigments, which are photosensitive membrane proteins, have been extensively studied using a wide variety of techniques, with rhodopsin being the most understood G protein-coupled receptor (GPCR). Animals use various opsin-based pigments for vision and a wide variety of non-visual functions. Many functionally varied pigments are roughly divided into two kinds, based on their photoreaction: bistable and monostable pigments. Bistable pigments are thermally stable before and after photo-activation, but monostable pigments are stable only before activation. Here, we review the diversity of bistable pigments and their molecular characteristics. We also discuss the mechanisms underlying different molecular characteristics of bistable and monostable pigments. In addition, the potential of bistable pigments as a GPCR model is proposed.

  20. Bistable electroactive polymer for refreshable Braille display with improved actuation stability

    NASA Astrophysics Data System (ADS)

    Niu, Xiaofan; Brochu, Paul; Stoyanov, Hristiyan; Yun, Sung Ryul; Pei, Qibing

    2012-04-01

    Poly(t-butyl acrylate) is a bistable electroactive polymer (BSEP) capable of rigid-to-rigid actuation. The BSEP combines the large-strain actuation of dielectric elastomers with shape memory property. We have introduced a material approach to overcome pull-in instability in poly(t-butyl acrylate) that significantly improves the actuation lifetime at strains greater than 100%. Refreshable Braille display devices with size of a smartphone screen have been fabricated to manifest a potential application of the BSEP. We will report the testing results of the devices by a Braille user.

  1. Topology and bistability in liquid crystal devices.

    PubMed

    Majumdar, A; Newton, C J P; Robbins, J M; Zyskin, M

    2007-05-01

    We study nematic liquid crystal configurations in a prototype bistable device -- the post aligned bistable nematic (PABN) cell. Working within the Oseen-Frank continuum model, we describe the liquid crystal configuration by a unit-vector field n , in a model version of the PABN cell. First, we identify four distinct topologies in this geometry. We explicitly construct trial configurations with these topologies which are used as initial conditions for a numerical solver, based on the finite-element method. The morphologies and energetics of the corresponding numerical solutions qualitatively agree with experimental observations and suggest a topological mechanism for bistability in the PABN cell geometry.

  2. Bistable fluidic valve is electrically switched

    NASA Technical Reports Server (NTRS)

    Fiet, O.; Salvinski, R. J.

    1970-01-01

    Bistable control valve is selectively switched by direct application of an electrical field to divert fluid from one output channel to another. Valve is inexpensive, has no moving parts, and operates on fluids which are relatively poor electrical conductors.

  3. Bistable diverter valve in microfluidics

    NASA Astrophysics Data System (ADS)

    Tesař, V.; Bandalusena, H. C. H.

    2011-05-01

    Bistable diverter valves are useful for a large number of no-moving-part flow control applications, and there is a considerable interest in using them also in microfluidics, especially for handling small pressure-driven flows. However, with decreasing Reynolds number, the Coanda effect—on which the flow diverting effect depends—becomes less effective. Authors performed a study, involving flow visualisation, PIV experiments, measurements of the flow rates, and numerical flowfield computations, aimed at clarifying behaviour of a typical fluidic valve at low Reynolds numbers. A typical fluidic valve originally developed for high Re operation was demonstrated to be useful, though with progressively limited efficiency, down to surprisingly low Re values as small as Re = 800. Also observed was a previously not reported discontinuation in the otherwise monotonic decrease in performance at Re between 1,500 and 2,000.

  4. Nonlinear geometric effects in mechanical bistable morphing structures.

    PubMed

    Chen, Zi; Guo, Qiaohang; Majidi, Carmel; Chen, Wenzhe; Srolovitz, David J; Haataja, Mikko P

    2012-09-14

    Bistable structures associated with nonlinear deformation behavior, exemplified by the Venus flytrap and slap bracelet, can switch between different functional shapes upon actuation. Despite numerous efforts in modeling such large deformation behavior of shells, the roles of mechanical and nonlinear geometric effects on bistability remain elusive. We demonstrate, through both theoretical analysis and tabletop experiments, that two dimensionless parameters control bistability. Our work classifies the conditions for bistability, and extends the large deformation theory of plates and shells.

  5. Reversing invasion in bistable systems.

    PubMed

    Alzahrani, Ebraheem O; Davidson, Fordyce A; Dodds, Niall

    2012-12-01

    In this paper, we discuss a class of bistable reaction-diffusion systems used to model the competitive interaction of two species. The interactions are assumed to be of classic "Lotka-Volterra" type and we will consider a particular problem with relevance to applications in population dynamics: essentially, we study under what conditions the interplay of relative motility (diffusion) and competitive strength can cause waves of invasion to be halted and reversed. By establishing rigorous results concerning related degenerate and near-degenerate systems, we build a picture of the dependence of the wave speed on system parameters. Our results lead us to conjecture that this class of competition model has three "zones of response". In the central zone, varying the motility can slow, halt and reverse invasion. However, in the two outer zones, the direction of invasion is independent of the relative motility and is entirely determined by the relative competitive strengths. Furthermore, we conjecture that for a large class of competition models of the type studied here, the wave speed is an increasing function of the relative motility.

  6. Origin of bistability in the lac Operon.

    PubMed

    Santillán, M; Mackey, M C; Zeron, E S

    2007-06-01

    Multistability is an emergent dynamic property that has been invoked to explain multiple coexisting biological states. In this work, we investigate the origin of bistability in the lac operon. To do this, we develop a mathematical model for the regulatory pathway in this system and compare the model predictions with other experimental results in which a nonmetabolizable inducer was employed. We investigate the effect of lactose metabolism using this model, and show that it greatly modifies the bistable region in the external lactose (Le) versus external glucose (Ge) parameter space. The model also predicts that lactose metabolism can cause bistability to disappear for very low Ge. We have also carried out stochastic numerical simulations of the model for several values of Ge and Le. Our results indicate that bistability can help guarantee that Escherichia coli consumes glucose and lactose in the most efficient possible way. Namely, the lac operon is induced only when there is almost no glucose in the growing medium, but if Le is high, the operon induction level increases abruptly when the levels of glucose in the environment decrease to very low values. We demonstrate that this behavior could not be obtained without bistability if the stability of the induced and uninduced states is to be preserved. Finally, we point out that the present methods and results may be useful to study the emergence of multistability in biological systems other than the lac operon.

  7. Origin of Bistability in the lac Operon

    PubMed Central

    Santillán, M.; Mackey, M. C.; Zeron, E. S.

    2007-01-01

    Multistability is an emergent dynamic property that has been invoked to explain multiple coexisting biological states. In this work, we investigate the origin of bistability in the lac operon. To do this, we develop a mathematical model for the regulatory pathway in this system and compare the model predictions with other experimental results in which a nonmetabolizable inducer was employed. We investigate the effect of lactose metabolism using this model, and show that it greatly modifies the bistable region in the external lactose (Le) versus external glucose (Ge) parameter space. The model also predicts that lactose metabolism can cause bistability to disappear for very low Ge. We have also carried out stochastic numerical simulations of the model for several values of Ge and Le. Our results indicate that bistability can help guarantee that Escherichia coli consumes glucose and lactose in the most efficient possible way. Namely, the lac operon is induced only when there is almost no glucose in the growing medium, but if Le is high, the operon induction level increases abruptly when the levels of glucose in the environment decrease to very low values. We demonstrate that this behavior could not be obtained without bistability if the stability of the induced and uninduced states is to be preserved. Finally, we point out that the present methods and results may be useful to study the emergence of multistability in biological systems other than the lac operon. PMID:17351004

  8. Bistable dielectric elastomer minimum energy structures

    NASA Astrophysics Data System (ADS)

    Zhao, Jianwen; Wang, Shu; McCoul, David; Xing, Zhiguang; Huang, Bo; Liu, Liwu; Leng, Jinsong

    2016-07-01

    Dielectric elastomer minimum energy structures (DEMES) can realize large angular deformations by small voltage-induced strains, which make them an attractive candidate for use as soft actuators. If the task only needs binary action, the bistable structure will be an efficient solution and can save energy because it requires only a very short duration of voltage to switch its state. To obtain bistable DEMES, a method to realize the two stable states of traditional DEMES is provided in this paper. Based on this, a type of symmetrical bistable DEMES is proposed, and the required actuation pulse duration is shorter than 0.1 s. When a suitable mass is attached to end of the DEMES, or two layers of dielectric elastomer are affixed to both sides of the primary frame, the DEMES can realize two stable states and can be switched by a suitable pulse duration. To calculate the required minimum pulse duration, a mathematical model is provided and validated by experiment.

  9. Perceptual Incongruence Influences Bistability and Cortical Activation

    PubMed Central

    Brouwer, Gijs Joost; Tong, Frank; Hagoort, Peter; van Ee, Raymond

    2009-01-01

    We employed a parametric psychophysical design in combination with functional imaging to examine the influence of metric changes in perceptual incongruence on perceptual alternation rates and cortical responses. Subjects viewed a bistable stimulus defined by incongruent depth cues; bistability resulted from incongruence between binocular disparity and monocular perspective cues that specify different slants (slant rivalry). Psychophysical results revealed that perceptual alternation rates were positively correlated with the degree of perceived incongruence. Functional imaging revealed systematic increases in activity that paralleled the psychophysical results within anterior intraparietal sulcus, prior to the onset of perceptual alternations. We suggest that this cortical activity predicts the frequency of subsequent alternations, implying a putative causal role for these areas in initiating bistable perception. In contrast, areas implicated in form and depth processing (LOC and V3A) were sensitive to the degree of slant, but failed to show increases in activity when these cues were in conflict. PMID:19333385

  10. Piezoresistive sensing of bistable micro mechanism state

    NASA Astrophysics Data System (ADS)

    Anderson, Jeffrey K.; Howell, Larry L.; Wittwer, Jonathan W.; McLain, Timothy W.

    2006-05-01

    The objective of this work is to demonstrate the feasibility of on-chip sensing of bistable mechanism state using the piezoresistive properties of polysilicon, thus eliminating the need for electrical contacts. Changes in position are detected by observing changes in resistance across the mechanism. Sensing the state of bistable mechanisms is critical for various applications, including high-acceleration sensing arrays and alternative forms of nonvolatile memory. A fully compliant bistable micro mechanism was designed, fabricated and tested to demonstrate the feasibility of this sensing technique. Testing results from two fabrication processes, SUMMiT IV and MUMPs, are presented. The SUMMiT mechanism was then integrated into various Wheatstone bridge configurations to investigate their potential advantages and to demonstrate various design layouts. Repeatable and detectable results were found with independent mechanisms and with those integrated into Wheatstone bridges.

  11. Unidirectional Transition Waves in Bistable Lattices

    NASA Astrophysics Data System (ADS)

    Nadkarni, Neel; Arrieta, Andres F.; Chong, Christopher; Kochmann, Dennis M.; Daraio, Chiara

    2016-06-01

    We present a model system for strongly nonlinear transition waves generated in a periodic lattice of bistable members connected by magnetic links. The asymmetry of the on-site energy wells created by the bistable members produces a mechanical diode that supports only unidirectional transition wave propagation with constant wave velocity. We theoretically justify the cause of the unidirectionality of the transition wave and confirm these predictions by experiments and simulations. We further identify how the wave velocity and profile are uniquely linked to the double-well energy landscape, which serves as a blueprint for transition wave control.

  12. Unidirectional Transition Waves in Bistable Lattices.

    PubMed

    Nadkarni, Neel; Arrieta, Andres F; Chong, Christopher; Kochmann, Dennis M; Daraio, Chiara

    2016-06-17

    We present a model system for strongly nonlinear transition waves generated in a periodic lattice of bistable members connected by magnetic links. The asymmetry of the on-site energy wells created by the bistable members produces a mechanical diode that supports only unidirectional transition wave propagation with constant wave velocity. We theoretically justify the cause of the unidirectionality of the transition wave and confirm these predictions by experiments and simulations. We further identify how the wave velocity and profile are uniquely linked to the double-well energy landscape, which serves as a blueprint for transition wave control.

  13. Thermal bistability through coupled photonic resonances

    NASA Astrophysics Data System (ADS)

    Khandekar, Chinmay; Rodriguez, Alejandro W.

    2017-08-01

    We present a scheme for achieving thermal bistability based on the selective coupling of three optical resonances. This approach requires one of the resonant frequencies to be temperature dependent, which can occur in materials exhibiting strong thermo-optic effects. For illustration, we explore thermal bistability in two different passive systems, involving either a periodic array of Si ring resonators or parallel GaAs thin films separated by vacuum and exchanging heat in the near field. Such a scheme could prove to be useful for thermal devices operating with transition times on the order of hundreds of milliseconds.

  14. Bistable Microvalve For Use With Microcatheter System

    DOEpatents

    Seward, Kirk Patrick

    2003-12-16

    A bistable microvalve of shape memory material is operatively connected to a microcatheter. The bistable microvalve includes a tip that can be closed off until it is in the desired position. Once it is in position it can be opened and closed. The system uses heat and pressure to open and close the microvalve. The shape memory material will change stiffness and shape when heated above a transition temperature. The shape memory material is adapted to move from a first shape to a second shape, either open or closed, where it can perform a desired function.

  15. Organic bistable light-emitting devices

    NASA Astrophysics Data System (ADS)

    Ma, Liping; Liu, Jie; Pyo, Seungmoon; Yang, Yang

    2002-01-01

    An organic bistable device, with a unique trilayer structure consisting of organic/metal/organic sandwiched between two outmost metal electrodes, has been invented. [Y. Yang, L. P. Ma, and J. Liu, U.S. Patent Pending, U.S. 01/17206 (2001)]. When the device is biased with voltages beyond a critical value (for example 3 V), the device suddenly switches from a high-impedance state to a low-impedance state, with a difference in injection current of more than 6 orders of magnitude. When the device is switched to the low-impedance state, it remains in that state even when the power is off. (This is called "nonvolatile" phenomenon in memory devices.) The high-impedance state can be recovered by applying a reverse bias; therefore, this bistable device is ideal for memory applications. In order to increase the data read-out rate of this type of memory device, a regular polymer light-emitting diode has been integrated with the organic bistable device, such that it can be read out optically. These features make the organic bistable light-emitting device a promising candidate for several applications, such as digital memories, opto-electronic books, and recordable papers.

  16. Critical slowing down with bistable higher harmonics

    NASA Astrophysics Data System (ADS)

    Sharaby, Yasser A.; Hassan, S. S.; Joshi, A.

    2013-01-01

    Switching response in an optical bistable model of two-level atoms in a ring cavity is investigated outside the rotating wave approximation (RWA) in the high- and low-Q cavity cases. Analytical and numerical investigations of the non-autonomous model Bloch equations, up to first Fourier harmonics, show that the switching time in response to linear perturbation of the incident field at the critical points of the bistable curves is significantly affected by the atomic and cavity detuning parameters. The faster oscillatory behavior outside the RWA reflects itself in the additional ultra-low output (first harmonic) field component, which has reversed bistable feature in both the high-Q and low-Q cases. Irregular oscillations with increased atomic detuning are showed only in the lower bistable branch of the first harmonic field. Irregularity of the oscillations is due to the interference of the oscillations of the higher frequency terms with the atomic dispersive polarization in the high-Q case, and the Rabi oscillations in the low-Q case.

  17. A CW Gunn diode bistable switching element.

    NASA Technical Reports Server (NTRS)

    Hurtado, M.; Rosenbaum, F. J.

    1972-01-01

    Experiments with a current-controlled bistable switching element using a CW Gunn diode are reported. Switching rates of the order of 10 MHz have been obtained. Switching is initiated by current pulses of short duration (5-10 ns). Rise times of the order of several nanoseconds could be obtained.

  18. Periodic and chaotic behaviors in optical bistability

    NASA Astrophysics Data System (ADS)

    Chen, Li-xue; Li, Chun-fei; Hong, Jing

    1984-11-01

    The periodic and chaotic behaviors for both long and short delay time are demonstrated successfully using a hybrid OBD. The degree of stability S is introduced into the dynamic equations of optical bistability with a delayed feedback. The instability threshold is S = 2 for long delay time and S = 1 + π/2Q for short delay time.

  19. Triggered Snap-Through of Bistable Shells

    NASA Astrophysics Data System (ADS)

    Cai, Yijie; Huang, Shicheng; Trase, Ian; Hu, Nan; Chen, Zi

    Elastic bistable shells are common structures in nature and engineering, such as the lobes of the Venus flytrap or the surface of a toy jumping poppers. Despite their ubiquity, the parameters that control the bistability of such structures are not well understood. In this study, we explore how the geometrical features of radially symmetric elastic shells affect the shape and potential energy of a shell's stable states, and how to tune certain parameters in order to generate a snap-through transition from a convex semi-stable state to concave stable state. We fabricated a series of elastic shells with varying geometric parameters out of silicone rubber and measured the resulting potential energy in the semi-stable state. Finite element simulations were also conducted in order to determine the deformation and stress in the shells during snap-through. It was found that the energy of the semi-stable state is controlled by only two geometric parameters and a dimensionless ratio. We also noted two distinct transitions during snap-through, one between monostability and semi-bistability (the state a popper toy is in before it snaps-through and jumps), and a second transition between semi-bistability and true bistability. This work shows that it is possible to use a set of simple parameters to tailor the energy landscape of an elastic shell in order to generate complex trigger motions for their potential use in smart applications. Z.C. acknowledge support from Society in Science-Branco Weiss Fellowship, administered by ETH Zurich.

  20. Rigid particulate matter sensor

    SciTech Connect

    Hall, Matthew

    2011-02-22

    A sensor to detect particulate matter. The sensor includes a first rigid tube, a second rigid tube, a detection surface electrode, and a bias surface electrode. The second rigid tube is mounted substantially parallel to the first rigid tube. The detection surface electrode is disposed on an outer surface of the first rigid tube. The detection surface electrode is disposed to face the second rigid tube. The bias surface electrode is disposed on an outer surface of the second rigid tube. The bias surface electrode is disposed to face the detection surface electrode on the first rigid tube. An air gap exists between the detection surface electrode and the bias surface electrode to allow particulate matter within an exhaust stream to flow between the detection and bias surface electrodes.

  1. Identification of optimal parameter combinations for the emergence of bistability.

    PubMed

    Májer, Imre; Hajihosseini, Amirhossein; Becskei, Attila

    2015-11-24

    Bistability underlies cellular memory and maintains alternative differentiation states. Bistability can emerge only if its parameter range is either physically realizable or can be enlarged to become realizable. We derived a general rule and showed that the bistable range of a reaction parameter is maximized by a pair of other parameters in any gene regulatory network provided they satisfy a general condition. The resulting analytical expressions revealed whether or not such reaction pairs are present in prototypical positive feedback loops. They are absent from the feedback loop enclosed by protein dimers but present in both the toggle-switch and the feedback circuit inhibited by sequestration. Sequestration can generate bistability even at narrow feedback expression range at which cooperative binding fails to do so, provided inhibition is set to an optimal value. These results help to design bistable circuits and cellular reprogramming and reveal whether bistability is possible in gene networks in the range of realistic parameter values.

  2. Memory bistable mechanisms of organic memory devices

    NASA Astrophysics Data System (ADS)

    Lee, Ching-Ting; Yu, Li-Zhen; Chen, Hung-Chun

    2010-07-01

    To investigate the memory bistable mechanisms of organic memory devices, the structure of [top Au anode/9,10-di(2-naphthyl)anthracene (ADN) active layer/bottom Au cathode] was deposited using a thermal deposition system. The Au atoms migrated into the ADN active layer was observed from the secondary ion mass spectrometry. The density of 9.6×1016 cm-3 and energy level of 0.553 eV of the induced trapping centers caused by the migrated Au atoms in the ADN active layer were calculated. The induced trapping centers did not influence the carrier injection barrier height between Au and ADN active layer. Therefore, the memory bistable behaviors of the organic memory devices were attributed to the induced trapping centers. The energy diagram was established to verify the mechanisms.

  3. Tubulin bistability and polymorphic dynamics of microtubules.

    PubMed

    Mohrbach, Hervé; Johner, Albert; Kulić, Igor M

    2010-12-31

    Based on the hypothesis that the GDP-tubulin dimer is a conformationally bistable molecule-rapidly fluctuating between a discrete curved and a straight state-we develop a model for polymorphic dynamics of the microtubule lattice. We show that GDP-tubulin bistability consistently explains unusual dynamic fluctuations, the apparent length-stiffness relation of grafted taxol-stabilized microtubules, and the curved-helical appearance of microtubules in general. When clamped by one end the microtubules undergo an unusual zero energy motion-in its effect reminiscent of a limited rotational hinge. We conclude that microtubules exist in highly cooperative energy-degenerate helical states and discuss possible implications in vivo.

  4. Dynamo efficiency controlled by hydrodynamic bistability

    NASA Astrophysics Data System (ADS)

    Miralles, Sophie; Hérault, Johann; Fauve, Stephan; Gissinger, Christophe; Pétrélis, François; Daviaud, François; Dubrulle, Bérengère; Boisson, Jean; Bourgoin, Mickaël; Verhille, Gautier; Odier, Philippe; Pinton, Jean-François; Plihon, Nicolas

    2014-06-01

    Hydrodynamic and magnetic behaviors in a modified experimental setup of the von Kármán sodium flow—where one disk has been replaced by a propeller—are investigated. When the rotation frequencies of the disk and the propeller are different, we show that the fully turbulent hydrodynamic flow undergoes a global bifurcation between two configurations. The bistability of these flow configurations is associated with the dynamics of the central shear layer. The bistable flows are shown to have different dynamo efficiencies; thus for a given rotation rate of the soft-iron disk, two distinct magnetic behaviors are observed depending on the flow configuration. The hydrodynamic transition controls the magnetic field behavior, and bifurcations between high and low magnetic field branches are investigated.

  5. Tubulin Bistability and Polymorphic Dynamics of Microtubules

    NASA Astrophysics Data System (ADS)

    Mohrbach, Hervé; Johner, Albert; Kulić, Igor M.

    2010-12-01

    Based on the hypothesis that the GDP-tubulin dimer is a conformationally bistable molecule—rapidly fluctuating between a discrete curved and a straight state—we develop a model for polymorphic dynamics of the microtubule lattice. We show that GDP-tubulin bistability consistently explains unusual dynamic fluctuations, the apparent length-stiffness relation of grafted taxol-stabilized microtubules, and the curved-helical appearance of microtubules in general. When clamped by one end the microtubules undergo an unusual zero energy motion—in its effect reminiscent of a limited rotational hinge. We conclude that microtubules exist in highly cooperative energy-degenerate helical states and discuss possible implications in vivo.

  6. Catalytic constants enable the emergence of bistability in dual phosphorylation.

    PubMed

    Conradi, Carsten; Mincheva, Maya

    2014-06-06

    Dual phosphorylation of proteins is a principal component of intracellular signalling. Bistability is considered an important property of such systems and its origin is not yet completely understood. Theoretical studies have established parameter values for multistationarity and bistability for many types of proteins. However, up to now no formal criterion linking multistationarity and bistability to the parameter values characterizing dual phosphorylation has been established. Deciding whether an unclassified protein has the capacity for bistability, therefore requires careful numerical studies. Here, we present two general algebraic conditions in the form of inequalities. The first employs the catalytic constants, and if satisfied guarantees multistationarity (and hence the potential for bistability). The second involves the catalytic and Michaelis constants, and if satisfied guarantees uniqueness of steady states (and hence absence of bistability). Our method also allows for the direct computation of the total concentration values such that multistationarity occurs. Applying our results yields insights into the emergence of bistability in the ERK-MEK-MKP system that previously required a delicate numerical effort. Our algebraic conditions present a practical way to determine the capacity for bistability and hence will be a useful tool for examining the origin of bistability in many models containing dual phosphorylation.

  7. Bistable heat transfer in a nanofluid.

    PubMed

    Donzelli, Gea; Cerbino, Roberto; Vailati, Alberto

    2009-03-13

    Heat convection in water can be suppressed by adding a small amount of highly thermophilic nanoparticles. We show that such suppression is not effective when a suspension with uniform concentration of nanoparticles is suddenly heated from below. At Rayleigh numbers smaller than a sample dependent threshold Ra;{*} we observe transient oscillatory convection. Unexpectedly, the duration of convection diverges at Ra;{*}. Above Ra;{*} oscillatory convection becomes permanent and the heat transferred exhibits bistability. Our results are explained only partially and qualitatively by existing theories.

  8. Bistable (latching) solenoid actuated propellant isolation valve

    NASA Technical Reports Server (NTRS)

    Wichmann, H.; Deboi, H. H.

    1979-01-01

    The design, fabrication, assembly and test of a development configuration bistable (latching) solenoid actuated propellant isolation valve suitable for the control hydrazine and liquid fluorine to an 800 pound thrust rocket engine is described. The valve features a balanced poppet, utilizing metal bellows, a hard poppet/seat interface and a flexure support system for the internal moving components. This support system eliminates sliding surfaces, thereby rendering the valve free of self generated particles.

  9. Steady state statistical correlations predict bistability in reaction motifs.

    PubMed

    Chakravarty, Suchana; Barik, Debashis

    2017-03-01

    Various cellular decision making processes are regulated by bistable switches that take graded input signals and convert them to binary all-or-none responses. Traditionally, a bistable switch generated by a positive feedback loop is characterized either by a hysteretic signal response curve with two distinct signaling thresholds or by characterizing the bimodality of the response distribution in the bistable region. To identify the intrinsic bistability of a feedback regulated network, here we propose that bistability can be determined by correlating higher order moments and cumulants (≥2) of the joint steady state distributions of two components connected in a positive feedback loop. We performed stochastic simulations of four feedback regulated models with intrinsic bistability and we show that for a bistable switch with variation of the signal dose, the steady state variance vs. covariance adopts a signatory cusp-shaped curve. Further, we find that the (n + 1)th order cross-cumulant vs. nth order cross-cumulant adopts a closed loop structure for at least n = 3. We also propose that our method is capable of identifying systems without intrinsic bistability even though the system may show bimodality in the marginal response distribution. The proposed method can be used to analyze single cell protein data measured at steady state from experiments such as flow cytometry.

  10. Bistable polarization switching in a continuous wave ruby laser

    NASA Technical Reports Server (NTRS)

    Lawandy, N. M.; Afzal, R. Sohrab

    1988-01-01

    Bistability in the output power, polarization state, and mode volume of an argon-ion laser pumped single mode ruby laser at 6943 A has been observed. The laser operates in a radially confined mode which exhibits hysteresis and bistability only when the pump polarization is parallel to the c-axis.

  11. Magnetic-field-induced bistability in resonant tunneling

    NASA Astrophysics Data System (ADS)

    Brown, S. A.; Macks, L. D.

    1998-07-01

    We report an unusual magnetic-field-induced bistability in the current-voltage characteristic of an asymmetric double-barrier resonant tunneling structure. It is suggested that this bistability is the experimental manifestation of self-sustained current oscillations that have recently been predicted by Orellana, Anda, and Claro [Phys. Rev. Lett. 79, 1118 (1997)].

  12. Bistability: Requirements on Cell-Volume, Protein Diffusion, and Thermodynamics

    PubMed Central

    Endres, Robert G.

    2015-01-01

    Bistability is considered wide-spread among bacteria and eukaryotic cells, useful e.g. for enzyme induction, bet hedging, and epigenetic switching. However, this phenomenon has mostly been described with deterministic dynamic or well-mixed stochastic models. Here, we map known biological bistable systems onto the well-characterized biochemical Schlögl model, using analytical calculations and stochastic spatiotemporal simulations. In addition to network architecture and strong thermodynamic driving away from equilibrium, we show that bistability requires fine-tuning towards small cell volumes (or compartments) and fast protein diffusion (well mixing). Bistability is thus fragile and hence may be restricted to small bacteria and eukaryotic nuclei, with switching triggered by volume changes during the cell cycle. For large volumes, single cells generally loose their ability for bistable switching and instead undergo a first-order phase transition. PMID:25874711

  13. Monomeric Bistability and the Role of Autoloops in Gene Regulation

    PubMed Central

    Solé, Ricard

    2009-01-01

    Genetic toggle switches are widespread in gene regulatory networks (GRN). Bistability, namely the ability to choose among two different stable states, is an essential feature of switching and memory devices. Cells have many regulatory circuits able to provide bistability that endow a cell with efficient and reliable switching between different physiological modes of operation. It is often assumed that negative feedbacks with cooperative binding (i.e. the formation of dimers or multimers) are a prerequisite for bistability. Here we analyze the relation between bistability in GRN under monomeric regulation and the role of autoloops under a deterministic setting. Using a simple geometric argument, we show analytically that bistability can also emerge without multimeric regulation, provided that at least one regulatory autoloop is present. PMID:19404388

  14. Rigidity of lattice domes

    NASA Technical Reports Server (NTRS)

    Savelyev, V. A.

    1979-01-01

    The means of ensuring total rigidity of lattice domes, using comparison with solid shells of 1-3 layers are discussed. Irregularities of manufacture, processing, and other factors are considered, as they relate to diminution of rigidity. The discussion uses the concepts of upper and lower critical loads on the structure in question.

  15. Controlling bistability in a stochastic perception model

    NASA Astrophysics Data System (ADS)

    Pisarchik, A. N.; Bashkirtseva, I. A.; Ryashko, L. B.

    2015-07-01

    Using a simple bistable perception model, we demonstrate how coexisting states can be controlled by periodic modulation applied to a control parameter responsible for the interpretation of ambiguous images. Because of stochastic processes in the brain, any percept is statistically recognized and multistability in perception never occurs. A stable periodic orbit created by the control modulation splits in two limit cycles in an inverse gluing bifurcation, which occurs when the modulation frequency increases. The statistical analysis of transitions between the coexisting states in the presence of noise reveals conditions under which an ambiguous image can be interpreted in a desired way determined by the control.

  16. Bi-stable optical element actuator device

    DOEpatents

    Holdener, Fred R.; Boyd, Robert D.

    2002-01-01

    The present invention is a bistable optical element actuator device utilizing a powered means to move an actuation arm, to which an optical element is attached, between two stable positions. A non-powered means holds the actuation arm in either of the two stable positions. The optical element may be a electromagnetic (EM) radiation or particle source, an instrument, or EM radiation or particle transmissive reflective or absorptive elements. A bearing is used to transfer motion and smoothly transition the actuation arm between the two stable positions.

  17. Bistability in mushroom-type metamaterials

    NASA Astrophysics Data System (ADS)

    Fernandes, David E.; Silveirinha, Mário G.

    2017-07-01

    Here, we study the electromagnetic response of asymmetric mushroom-type metamaterials loaded with nonlinear elements. It is shown that near a Fano resonance, these structures may have a strong tunable, bistable, and switchable response and enable giant nonlinear effects. By using an effective medium theory and full wave simulations, it is proven that the nonlinear elements may allow the reflection and transmission coefficients to follow hysteresis loops, and to switch the metamaterial between "go" and "no-go" states similar to an ideal electromagnetic switch.

  18. On the bistable zone of milling processes

    PubMed Central

    Dombovari, Zoltan; Stepan, Gabor

    2015-01-01

    A modal-based model of milling machine tools subjected to time-periodic nonlinear cutting forces is introduced. The model describes the phenomenon of bistability for certain cutting parameters. In engineering, these parameter domains are referred to as unsafe zones, where steady-state milling may switch to chatter for certain perturbations. In mathematical terms, these are the parameter domains where the periodic solution of the corresponding nonlinear, time-periodic delay differential equation is linearly stable, but its domain of attraction is limited due to the existence of an unstable quasi-periodic solution emerging from a secondary Hopf bifurcation. A semi-numerical method is presented to identify the borders of these bistable zones by tracking the motion of the milling tool edges as they might leave the surface of the workpiece during the cutting operation. This requires the tracking of unstable quasi-periodic solutions and the checking of their grazing to a time-periodic switching surface in the infinite-dimensional phase space. As the parameters of the linear structural behaviour of the tool/machine tool system can be obtained by means of standard modal testing, the developed numerical algorithm provides efficient support for the design of milling processes with quick estimates of those parameter domains where chatter can still appear in spite of setting the parameters into linearly stable domains. PMID:26303918

  19. On the bistable zone of milling processes.

    PubMed

    Dombovari, Zoltan; Stepan, Gabor

    2015-09-28

    A modal-based model of milling machine tools subjected to time-periodic nonlinear cutting forces is introduced. The model describes the phenomenon of bistability for certain cutting parameters. In engineering, these parameter domains are referred to as unsafe zones, where steady-state milling may switch to chatter for certain perturbations. In mathematical terms, these are the parameter domains where the periodic solution of the corresponding nonlinear, time-periodic delay differential equation is linearly stable, but its domain of attraction is limited due to the existence of an unstable quasi-periodic solution emerging from a secondary Hopf bifurcation. A semi-numerical method is presented to identify the borders of these bistable zones by tracking the motion of the milling tool edges as they might leave the surface of the workpiece during the cutting operation. This requires the tracking of unstable quasi-periodic solutions and the checking of their grazing to a time-periodic switching surface in the infinite-dimensional phase space. As the parameters of the linear structural behaviour of the tool/machine tool system can be obtained by means of standard modal testing, the developed numerical algorithm provides efficient support for the design of milling processes with quick estimates of those parameter domains where chatter can still appear in spite of setting the parameters into linearly stable domains. © 2015 The Authors.

  20. Single coil bistable, bidirectional micromechanical actuator

    SciTech Connect

    Tabat, Ned; Guckel, Henry

    1998-09-15

    Micromechanical actuators capable of bidirectional and bistable operation can be formed on substrates using lithographic processing techniques. Bistable operation of the microactuator is obtained using a single coil and a magnetic core with a gap. A plunger having two magnetic heads is supported for back and forth linear movement with respect to the gap in the magnetic core, and is spring biased to a neutral position in which the two heads are on each side of the gap in the core. The single electrical coil is coupled to the core and is provided with electrical current to attract one of the heads toward the core by reluctance action to drive the plunger to a limit of travel in one direction. The current is then cut off and the plunger returns by spring action toward the gap, whereafter the current is reapplied to the coil to attract the other head of the plunger by reluctance action to drive the plunger to its other limit of travel. This process can be repeated at a time when switching of the actuator is required.

  1. Electroencephalograph (EEG) study of brain bistable illusion

    NASA Astrophysics Data System (ADS)

    Meng, Qinglei; Hong, Elliot; Choa, Fow-Sen

    2015-05-01

    Bistable illusion reflects two different kinds of interpretations for a single image, which is currently known as a competition between two groups of antagonism of neurons. Recent research indicates that these two groups of antagonism of neurons express different comprehension, while one group is emitting a pulse, the other group will be restrained. On the other hand, when this inhibition mechanism becomes weaker, the other antagonism neurons group will take over the interpretation. Since attention plays key roles controlling cognition, is highly interesting to find the location and frequency band used by brain (with either top-down or bottom-up control) to reach deterministic visual perceptions. In our study, we used a 16-channel EEG system to record brain signals from subjects while conducting bistable illusion testing. An extra channel of the EEG system was used for temporal marking. The moment when subjects reach a perception switch, they click the channel and mark the time. The recorded data were presented in form of brain electrical activity map (BEAM) with different frequency bands for analysis. It was found that the visual cortex in the on the right side between parietal and occipital areas was controlling the switching of perception. In the periods with stable perception, we can constantly observe all the delta, theta, alpha and beta waves. While the period perception is switching, almost all theta, alpha, and beta waves were suppressed by delta waves. This result suggests that delta wave may control the processing of perception switching.

  2. Theoretical and applied research on bistable dual-piezoelectric-cantilever vibration energy harvesting toward realistic ambience

    NASA Astrophysics Data System (ADS)

    Gao, Y.; Leng, Y.; Javey, A.; Tan, D.; Liu, J.; Fan, S.; Lai, Z.

    2016-11-01

    Pink noise, which is similar to realistic ambient noise, is normally used to simulate ambience where a piezoelectric energy harvesting system (PEHS) is set up. However, pink noise with standard spectral representation can only be used to simulate excitations assumed to possess constant intensity, whereas realistic ambient noise normally appears with a random spectrum and varying intensity in terms of different locations and time. The output performance of conventional bistable magnetic repulsive energy harvesters is significantly affected by the ambience intensity. Considering this fact, a model bistable dual-piezoelectric-cantilever energy harvester (DPEH) is developed in this study to achieve optimal broadband energy harvesting under a varying-intensity realistic circumstance. We utilized various realistic ambient conditions as excitations to obtain the DPEH energy harvesting performance for theoretical and applied study. The elastically supported PEHS has been proven to be more adaptive to realistic ambience with significant or medium intensity variation, but is less qualified for realistic ambience with constant intensity compared with the rigidly supported PEHS (RPEHS). Fortunately, the dual-piezoelectric-cantilever energy harvesting system is superior to the RPEHS under all circumstances because the dual-piezoelectric cantilevers are efficiently utilized for electromechanical energy conversion to realize optimal energy harvesting.

  3. Stability and morphing characteristics of bistable composite laminates

    NASA Astrophysics Data System (ADS)

    Tawfik, Samer A.

    The focus of the current research is to investigate the potential of using bistable unsymmetric cross-ply laminated composites as a means for achieving structures with morphed characteristics. To this end, an investigation of the design space for laminated composites exhibiting bistable behavior is undertaken and the key parameters controlling their behavior are identified. For this purpose a nonlinear Finite Element methodology using ABAQUS(TM) code is developed to predict both the cured shapes and the stability characteristics of unsymmetric cross-ply laminates. In addition, an experimental program is developed to validate the analytically predicted results through comparison with test data. A new method is proposed for attaching piezoelectric actuators to a bistable panel in order to preserve its favorable stability characteristics as well as optimizing the actuators performance. The developed nonlinear FE methodology is extended to predict the actuation requirements of bistable panels. Actuator requirements, predicted using the nonlinear FE analysis, are found to be in agreement with the test results. The current research also explores the potential for implementing bistable panels for Uninhabited Aerial Vehicle (UAV) wing configuration. To this end, a set of bistable panels is manufactured by combining symmetric and unsymmetric balanced and unbalanced stacking sequence and their stability characteristics are predicted. A preliminary analysis of the aerodynamic characteristics of the manufactured panels is carried out and the aerodynamic benefits of manufactured bistable panel are noted.

  4. Reflective optical bi-stability of antiferromagnetic films

    NASA Astrophysics Data System (ADS)

    Bai, J.; Fu, S. F.; Zhou, S.; Wang, X. Z.

    2011-10-01

    We investigate one magnetically nonlinear response of antiferromagnetic (AF) films to incident electromagnetic waves, or the reflective optical bi-stability (ROB). Such geometry is used, where the AF anisotropy axis and external static magnetic field both are parallel to the film surfaces and normal to the incident plane. For TE incident waves with the electric component transverse to the incident plane, the ROB of the AF film with the absorption is calculated, but the case of TM incident waves is neglected since no magnetic nonlinearity is induced in this geometry. The bi-stability is completely different in the two resonant-frequency vicinities. Two kinds of bi-stability are found in the higher vicinity, and their features versus incident power are opposite. We also find that there are critical incident angle and critical film thickness for the existence of bi-stability. The bi-stability disappears when the film thickness or incident angle exceeds its critical value. Because the properties of bi-stable reflection sensitively depend on the external field and the incident angle, this bi-stability can be easily modulated by means of changing these quantities.

  5. Membrane Bistability in Thalamic Reticular Neurons During Spindle Oscillations

    PubMed Central

    Fuentealba, Pablo; Timofeev, Igor; Bazhenov, Maxim; Sejnowski, Terrence J.; Steriade, Mircea

    2010-01-01

    The thalamic reticular (RE) nucleus is a major source of inhibition in the thalamus. It plays a crucial role in regulating the excitability of thalamocortical networks and in generating some sleep rhythms. Current-clamp intracellular recordings of RE neurons in cats under barbiturate anesthesia revealed the presence of membrane bistability in ~20% of neurons. Bistability consisted of two alternate membrane potentials, separated by ~17–20 mV. While non-bistable (common) RE neurons fired rhythmic spike-bursts during spindles, bistable RE neurons fired tonically, with burst modulation, throughout spindle sequences. Bistability was strongly voltage dependent and only expressed under resting conditions (i.e. no current injection). The transition from the silent to the active state was a regenerative event that could be activated by brief depolarization, whereas brief hyperpolarizations could switch the membrane potential from the active to the silent state. These effects outlasted the current pulses. Corticothalamic stimulation could also switch the membrane potential from silent to active states. Addition of QX-314 in the recording micropipette either abolished or disrupted membrane bistability, suggesting INa(p) to be responsible for its generation. Thalamocortical cells presented various patterns of spindling that reflected the membrane bistability in RE neurons. Finally, experimental data and computer simulations predicted a role for RE neurons’ membrane bistability in inducing various patterns of spindling in target thalamocortical cells. We conclude that membrane bistability of RE neurons is an intrinsic property, likely generated by INa(p) and modulated by cortical influences, as well as a factor that determines different patterns of spindle rhythms in thalamocortical neurons. PMID:15331618

  6. Rigid-Rod Polyimides

    NASA Technical Reports Server (NTRS)

    Chuang, Kathy C.; Kinder, James D.; Hull, Diana L.; Youngs, Wiley J.

    1996-01-01

    Experimental polyimides relatively rigid synthesized in effort to exploit some of advantages of rodlike polymers, while alleviating disadvantages. Polymers used to make colorless fibers and transparent films for optical and electronic application.

  7. Optical bistability and multistability in an active interferometer.

    PubMed

    Ohtsubo, J; Liu, Y

    1990-07-01

    Optoelectronic hybrid bistability and multistability in an active interferometer using a laser diode are demonstrated experimentally. The active laser-diode interferometer is composed of a Twyman-Green interferometer with an electronic feedback circuit. By feeding back the interferometer output together with an external light input through a detector to control thelaser-diode injection current, the optical bistable and multistable states of the output power from the laser diode are observed. Bistable operation does not require cutoff or saturation in the amplifier. The theoretical background of the phenomena is discussed.

  8. Resonant tunneling and intrinsic bistability in twisted graphene structures

    NASA Astrophysics Data System (ADS)

    Rodriguez-Nieva, J. F.; Dresselhaus, M. S.; Levitov, L. S.

    2016-08-01

    We predict that vertical transport in heterostructures formed by twisted graphene layers can exhibit a unique bistability mechanism. Intrinsically bistable I -V characteristics arise from resonant tunneling and interlayer charge coupling, enabling multiple stable states in the sequential tunneling regime. We consider a simple trilayer architecture, with the outer layers acting as the source and drain and the middle layer floating. Under bias, the middle layer can be either resonant or nonresonant with the source and drain layers. The bistability is controlled by geometric device parameters easily tunable in experiments. The nanoscale architecture can enable uniquely fast switching times.

  9. A new bistable electroactive polymer for prolonged cycle lifetime of refreshable Braille displays

    NASA Astrophysics Data System (ADS)

    Ren, Zhi; Niu, Xiaofan; Chen, Dustin; Hu, Wei; Pei, Qibing

    2014-03-01

    ABSTRACT: Bistable electroactive polymers (BSEP) amalgamating electrically induced large-strain actuation and shape memory effect present a unique opportunity for refreshable Braille displays. A new BSEP material with long-chain crosslinkers to achieve prolonged cycle lifetime of refreshable Braille displays is reported here. The modulus of the BSEP material decreases by more than three orders of magnitude from a rigid, plastic state to a rubbery state when heated above the polymer's glass transition temperature. In its rubbery state, the polymer film can be electrically actuated to buckle convexly when a high voltage is applied across a circular active area. Modifying the concentration of long-chain crosslinkers in the polymer allows not only for fine-tuning of the polymer's glass transition temperature and elasticity in the rubbery state, but also enhancement of the actuation stability. For a raised height of 0.4 mm by a Braille dot with a 1.3 mm diameter, actuation can be repeated over 2000 cycles at 70°C in the rubbery state. The actuated dome shape can be fixed by cooling the polymer below the glass transition temperature. This refreshable rigid-to-rigid actuation simultaneously provides large-strain actuation and large force support. Devices capable of displaying Braille characters over a page-size area consisting of 324 Braille cells have been fabricated.

  10. Isomerization and optical bistability of DR1 doped organic-inorganic sol-gel thin film

    NASA Astrophysics Data System (ADS)

    Gao, Tianxi; Que, Wenxiu; Shao, Jinyou

    2015-10-01

    To investigate the isomerization process of the disperse red 1 (DR1) doped TiO2/ormosil thin film, both the photo-isomerization and the thermal isomerization of the thin films were observed as a change of the absorption spectrum. Under a real-time heat treatment, the change of the linear refractive index shows a thermal stable working temperature range below Tg. The optical bistability (OB) effect of the DR1 doped thin films based on different matrices was studied and measured at a wavelength of 532 nm. Results indicate that the TiO2/ormosils based thin film presents a better OB-gain than that of the poly (methyl methacrylate) (PMMA) based thin film due to its more rigid network structure. Moreover, it is also noted that higher titanium content is helpful for enhancing the OB-gain of the as-prepared hybrid thin films.

  11. Colonoscope flexural rigidity measurement.

    PubMed

    Wehrmeyer, J A; Barthel, J A; Roth, J P; Saifuddin, T

    1998-07-01

    A testing device is developed that determines the stiffness, or flexural rigidity, of an endoscope at specific locations down its length by subjecting it to a compressive axial force, a situation similar to the actual forces applied to the endoscope during a clinical procedure. The endoscope is made to deform in a similar fashion to a slender buckled column and the force causing this deformation is related to the flexural rigidity using column buckling theory. A direct relationship between the critical load needed to cause buckling and the square of column length L is demonstrated experimentally and is expected theoretically, giving confidence in the application of column buckling theory to endoscope testing. Additional confidence in the validity of the column buckling test results is obtained by their similarity to data obtained by subjecting the endoscope to a transverse load, determining deflection, and modelling the endoscope as a bent elastic beam. Several makes and models of endoscopes were tested, with flexural rigidity values typically ranging between 160 to 240 Ncm2. The effect of a metal stiffener inserted in an endoscope's accessory channel is quantified, as is the change in flexural rigidity down the insertion shaft of a graded-stiffness endoscope. Significant differences in flexural rigidity were obtained between identical endoscopes, each sharing similar usage histories, indicating the need for flexural rigidity measurements for each individual endoscope of a particular model line, though a more extensive study is required to reliably determine scope-to-scope stiffness variations for a particular model line.

  12. Optical bistability; Proceedings of the International Conference, Asheville, NC, June 3-5, 1980

    NASA Astrophysics Data System (ADS)

    Bowden, C. M.; Ciftan, M.; Robl, H. R.

    This conference on optical bistability phenomena and their applications considers the conditions for, and limitations of, intrinsic optical bistability, bistability in nonlinear optics and in irradiated Josephson junctions, optical bistability in a GaAs etalon, in InSb, and in a dye ring laser, transient phenomena in bistable devices, active two-beam optical bistability, the role of phases in the transient dynamics of nonlinear interferometers, and dispersive optical bistability with fluctuations. Also covered are short- and long-time evolution in absorptive optical bistability, the macroscopic extension of the driven Dicke model, order parameters in quantum optics, optical bistability based on atomic correlation in a small volume, and the optical properties of nonlinear interfaces.

  13. FBG sensor interrogation using fiber optical bistability in frequency domain

    NASA Astrophysics Data System (ADS)

    Lv, Guohui; Ou, Jinping; Ye, Hongan; Zhou, Zhi; Shang, Shaohua; Yang, Chao; Wang, Huiying

    2007-01-01

    In this paper, we propose a novel scheme of fiber Bragg grating interrogation by use of hybrid fiber optical bistable device (OBD). The OBD is realized in the fiber Bragg grating (FBG) sensing element. Light source is an electronic tuned widely swept ring fiber laser. In this experiment, FBG's are acting as optical intensity modulator and sensing elements at same time. Combined with feedback control circuit, the OBD can be used as an optic-fiber sensor working in digital type through bistable switching phenomenon. We discuss the mechanism of this bistable sensor. Scanning the bias Voltage on PZT, the bistable pulse signal can be counted by circuit that operates in the manner of a pulse-equivalent. If we use 16 bit Digital Analog Converter (DAC), the resolution will achieve 1pm level. High accuracy, high speed and high ratio of signal to noise are the advantages of this scheme.

  14. Optical bistable device with one sinusoidal amplitude grating

    NASA Astrophysics Data System (ADS)

    Li, Shenping; Orriols, G.

    1994-07-01

    A novel type of optical bistable device (OBD) based the Abble theory is proposed, in which the modulation is realized by moving one sinusoidal amplitude grating. When the parameters of this system are chosen properly this system can be a one-channel or two-channel optical bistable device. The mathematical models which describe the optically bistability are obtained. Numerical simulations on the optical bistabilities and the stability analysis on this system for two cases are given. The two-channel OBD may work as a 1 × 2 optical switch or a stable filter for wavelength division multiplexing, and may be applied in code-division multiple access networks and optical recovery circuit.

  15. On the Selection of Bistability in Genetic Regulatory Circuits

    NASA Astrophysics Data System (ADS)

    Ghim, Cheol-Min; Almaas, Eivind

    2008-03-01

    Bistability is a defining character of switching and memory devices. Many regulatory circuits observed in cellular reaction networks contain ``bistability motifs'' that endow a cell with efficient and reliable switching between different physiological modes of operation. One of the best characterized system, the lac operon in E. coli, has been shown to display a saddle-node bifurcation when induced by nonmetabolizable lactose analogue inducers, such as isopropylthio-β-D-galactoside (IPTG) and thio-methyl-galactoside (TMG). Motivated by the absence of bifurcation in the same system with its natural inducer, lactose, we studied the conditions for bistability and rationalized its fitness effects in the light of evolution. Stochastic simulations as well as mean-field approach confirm that history-dependent behavior as well as nongenetic inheritance, being realized by bistability motifs, may be beneficial in fluctuating environments.

  16. Electronic bistability in linear beryllium chains.

    PubMed

    Helal, Wissam; Monari, Antonio; Evangelisti, Stefano; Leininger, Thierry

    2009-04-30

    A theoretical investigation on the mixed-valence behavior (bistability) of a series of cationic linear chains composed of beryllium atoms, Be(N)(+) (with N = 6,..., 12), is presented. The calculations were performed at CAS-SCF and MR-CI levels by using an ANO basis set containing 6s4p3d2f orbitals for each atom. Our results show a consistent gradual shift between different classes of mixed-valence compounds as the number of beryllium atoms increases, from class III strong coupling toward class II valence trapped. Indeed, in the largest cases (N > 10), the cationic chains were found to be closer to class I, where the coupling vanishes. The intramolecular electron transfer parameters V(ab), E(a), and E(opt) were calculated for each atomic chain. It is shown that the decrease of V(ab) with increasing N follows an exponential pattern.

  17. Bistability properties of magnetic micro-nanowires

    NASA Astrophysics Data System (ADS)

    Baranov, S. A.; Yaltychenko, O. V.; Kanarovskii, E. Yu.

    2016-12-01

    A mathematical model that describes the process of the reversal magnetization of an amorphous microwire with the help of a large Barkhausen jump is proposed. The model has been estimated with regard to the optimization of the signal-tonoise ratio. Using nonlinear model, we studied the physical factors that cause the fluctuations of the start field. Based on the results of numerical experiments, the new data on the behavior of the start field under different conditions of a switching in a bistable ferromagnetic, including the conditions of high-frequency swapping, have been obtained and compared to the existing data. The results obtained do not contradict the existing physical concepts concerning a domain wall motion and are more general and realistic in a comparison with the previous model.

  18. A bistable electromagnetically actuated rotary gate microvalve

    NASA Astrophysics Data System (ADS)

    Luharuka, Rajesh; Hesketh, Peter J.

    2008-03-01

    Two types of rotary gate microvalves are developed for flow modulation in microfluidic systems. These microvalves have been tested for an open flow rate of up to 100 sccm and operate under a differential pressure of 6 psig with flow modulation of up to 100. The microvalve consists of a suspended gate that rotates in the plane of the chip to regulate flow through the orifice. The gate is suspended by a novel fully compliant in-plane rotary bistable micromechanism (IPRBM) that advantageously constrains the gate in all degrees of freedom except for in-plane rotational motion. Multiple inlet/outlet orifices provide flexibility of operating the microvalve in three different flow configurations. The rotary gate microvalve is switched with an external electromagnetic actuator. The suspended gate is made of a soft magnetic material and its electromagnetic actuation is based on the operating principle of a variable-reluctance stepper motor.

  19. Stochastic resonance in bistable atomic switches.

    PubMed

    Yoshida, Kenji; Hirakawa, Kazuhiko

    2017-03-24

    We have investigated the conductance of bistable gold atomic switches as a function of periodic input voltages mixed with a random noise. With increasing noise amplitude, the atomic switches biased below the threshold voltage for conductance switching start exhibiting switching in conductance between two stable states. Clear synchronization between the input and output signals is observed when an optimized noise amplitude is mixed with the periodic input voltage, even when the atomic switches are driven by an input voltage as low as approximately 10% of the threshold voltage. The observed behavior can be explained in terms of the stochastic resonance. The results presented here indicate that utilization of noise can dramatically reduce the operation voltage of metal atomic switches.

  20. Bistability in a Driven-Dissipative Superfluid.

    PubMed

    Labouvie, Ralf; Santra, Bodhaditya; Heun, Simon; Ott, Herwig

    2016-06-10

    We experimentally study a driven-dissipative Josephson junction array, realized with a weakly interacting Bose-Einstein condensate residing in a one-dimensional optical lattice. Engineered losses on one site act as a local dissipative process, while tunneling from the neighboring sites constitutes the driving force. We characterize the emerging steady states of this atomtronic device. With increasing dissipation strength γ the system crosses from a superfluid state, characterized by a coherent Josephson current into the lossy site, to a resistive state, characterized by an incoherent hopping transport. For intermediate values of γ, the system exhibits bistability, where a superfluid and an incoherent branch coexist. We also study the relaxation dynamics towards the steady state, where we find a critical slowing down, indicating the presence of a nonequilibrium phase transition.

  1. Interaction of multiarmed spirals in bistable media.

    PubMed

    He, Ya-feng; Ai, Bao-quan; Liu, Fu-cheng

    2013-05-01

    We study the interaction of both dense and sparse multiarmed spirals in bistable media modeled by equations of the FitzHugh-Nagumo type. A dense one-armed spiral is characterized by its fixed tip. For dense multiarmed spirals, when the initial distance between tips is less than a critical value, the arms collide, connect, and disconnect continuously as the spirals rotate. The continuous reconstruction between the front and the back drives the tips to corotate along a rough circle and to meander zigzaggedly. The rotation frequency of tip, the frequency of zigzagged displacement, the frequency of spiral, the oscillation frequency of media, and the number of arms satisfy certain relations as long as the control parameters of the model are fixed. When the initial distance between tips is larger than the critical value, the behaviors of individual arms within either dense or sparse multiarmed spirals are identical to that of corresponding one-armed spirals.

  2. Stochastic resonance in bistable atomic switches

    NASA Astrophysics Data System (ADS)

    Yoshida, Kenji; Hirakawa, Kazuhiko

    2017-03-01

    We have investigated the conductance of bistable gold atomic switches as a function of periodic input voltages mixed with a random noise. With increasing noise amplitude, the atomic switches biased below the threshold voltage for conductance switching start exhibiting switching in conductance between two stable states. Clear synchronization between the input and output signals is observed when an optimized noise amplitude is mixed with the periodic input voltage, even when the atomic switches are driven by an input voltage as low as approximately 10% of the threshold voltage. The observed behavior can be explained in terms of the stochastic resonance. The results presented here indicate that utilization of noise can dramatically reduce the operation voltage of metal atomic switches.

  3. Bistability in one equation or fewer.

    PubMed

    Anderson, Graham A; Liu, Xuedong; Ferrell, James E

    2012-01-01

    When several genes or proteins modulate one another's activity as part of a network, they sometimes produce behaviors that no protein could accomplish on its own. Intuition for these emergent behaviors often cannot be obtained simply by tracing causality through the network in discreet steps. Specifically, when a network contains a feedback loop, biologists need specialized tools to understand the network's behaviors and their necessary conditions. This analysis is grounded in the mathematics of ordinary differential equations. We, however, will demonstrate the use of purely graphical methods to determine, for experimental data, the plausibility of two network behaviors, bistability and irreversibility. We use the Xenopus laevis oocyte maturation network as our example, and we make special use of iterative stability analysis, a graphical tool for determining stability in two dimensions.

  4. Bistability in a Driven-Dissipative Superfluid

    NASA Astrophysics Data System (ADS)

    Labouvie, Ralf; Santra, Bodhaditya; Heun, Simon; Ott, Herwig

    2016-06-01

    We experimentally study a driven-dissipative Josephson junction array, realized with a weakly interacting Bose-Einstein condensate residing in a one-dimensional optical lattice. Engineered losses on one site act as a local dissipative process, while tunneling from the neighboring sites constitutes the driving force. We characterize the emerging steady states of this atomtronic device. With increasing dissipation strength γ the system crosses from a superfluid state, characterized by a coherent Josephson current into the lossy site, to a resistive state, characterized by an incoherent hopping transport. For intermediate values of γ , the system exhibits bistability, where a superfluid and an incoherent branch coexist. We also study the relaxation dynamics towards the steady state, where we find a critical slowing down, indicating the presence of a nonequilibrium phase transition.

  5. Analytic descriptions of stochastic bistable systems under force ramp

    SciTech Connect

    Friddle, Raymond W.

    2016-05-13

    Solving the two-state master equation with time-dependent rates, the ubiquitous driven bistable system, is a long-standing problem that does not permit a complete solution for all driving rates. We show an accurate approximation to this problem by considering the system in the control parameter regime. Moreover, the results are immediately applicable to a diverse range of bistable systems including single-molecule mechanics.

  6. Analytic descriptions of stochastic bistable systems under force ramp

    DOE PAGES

    Friddle, Raymond W.

    2016-05-13

    Solving the two-state master equation with time-dependent rates, the ubiquitous driven bistable system, is a long-standing problem that does not permit a complete solution for all driving rates. We show an accurate approximation to this problem by considering the system in the control parameter regime. Moreover, the results are immediately applicable to a diverse range of bistable systems including single-molecule mechanics.

  7. Bistability of ferroelectric domain walls: Morphotropic boundary and strain effects

    NASA Astrophysics Data System (ADS)

    Yudin, P. V.; Tagantsev, A. K.; Setter, N.

    2013-07-01

    The internal structure of neutral 180∘ domain walls in perovskite-type ferroelectrics is studied in terms of Landau theory taking into account electromechanical coupling. The study is focused on the wall bistability, a factor of potential interest for information storage. A strong impact of elastic effects on the wall structure is demonstrated. It is shown that the conclusion derived earlier by Houchmandzadeh [J. Phys.: Condens. MatterJCOMEL0953-898410.1088/0953-8984/3/27/009 3, 5163 (1991)], neglecting the electrostictive coupling, that all the domain walls near the boundary between two ordered phases become bistable may not hold due to the elastic effects. Criteria for domain-wall bistability are formulated in terms of the materials thermodynamic properties and the wall orientation. The obtained general results are applied to the analysis of bistability of 180∘ domain walls in Pb(Zrc,Ti1-c)O3 near the tetragonal-rhombohedral morphotropic boundary. It is shown that, on the tetragonal side, the electrostrictive interaction suppresses the wall bistability that was predicted in terms of the theory neglecting the elastic effects. On the rhombohedral side, the domain walls are found bistable or not depending on the anisotropy of the correlation energy, the information on which is not presently available. It is also shown that, in the rhombohedral phase, the anisotropy of the correlation energy results in appearance of additional polarization component in the plane of the wall.

  8. Does visual attention drive the dynamics of bistable perception?

    PubMed

    Dieter, Kevin C; Brascamp, Jan; Tadin, Duje; Blake, Randolph

    2016-10-01

    How does attention interact with incoming sensory information to determine what we perceive? One domain in which this question has received serious consideration is that of bistable perception: a captivating class of phenomena that involves fluctuating visual experience in the face of physically unchanging sensory input. Here, some investigations have yielded support for the idea that attention alone determines what is seen, while others have implicated entirely attention-independent processes in driving alternations during bistable perception. We review the body of literature addressing this divide and conclude that in fact both sides are correct-depending on the form of bistable perception being considered. Converging evidence suggests that visual attention is required for alternations in the type of bistable perception called binocular rivalry, while alternations during other types of bistable perception appear to continue without requiring attention. We discuss some implications of this differential effect of attention for our understanding of the mechanisms underlying bistable perception, and examine how these mechanisms operate during our everyday visual experiences.

  9. Current bistability and carrier transport mechanisms of organic bistable devices based on hybrid Ag nanoparticle-polymethyl methacrylate polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Kim, Won Tae; Jung, Jae Hun; Kim, Tae Whan; Son, Dong Ick

    2010-06-01

    The current bistability and the carrier transport mechanisms of organic bistable devices (OBDs) using Ag nanoparticle-polymethyl methacrylate (PMMA) nanocomposites have been investigated. Current-voltage measurements at 300 K on the Al/Ag nanoparticles embedded in the PMMA layer/indium-tin-oxide devices exhibit a current bistability with an ON/OFF ratio of 103. Write-read-erase-read sequence results demonstrate the switching characteristics of the OBD. The cycling endurance number of the ON/OFF switching for the OBD is above 7×104. The current bistability and carrier transport mechanisms of the OBD fabricated utilizing hybrid Ag nanoparticle-PMMA polymer nanocomposites are described on the basis of the experimental data.

  10. Rigid molecular foams

    SciTech Connect

    Steckle, W.P. Jr.; Mitchell, M.A.; Aspen, P.G.

    1998-12-31

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Organic analogues to inorganic zeolites would be a significant step forward in engineered porous materials and would provide advantages in range, selectivity, tailorability, and processing. Rigid molecular foams or {open_quotes}organic zeolites{close_quotes} would not be crystalline materials and could be tailored over a broader range of pore sizes and volumes. A novel process for preparing hypercrosslinked polymeric foams has been developed via a Friedel-Crafts polycondensation reaction. A series of rigid hypercrosslinked foams have been prepared using simple rigid polyaromatic hydrocarbons including benzene, biphenyl, m-terphenyl, diphenylmethane, and polystyrene, with dichloroxylene (DCX) as the pore size. After drying the foams are robust and rigid. Densities of the resulting foams can range from 0.15 g/cc to 0.75 g/cc. Nitrogen adsorption studies have shown that by judiciously selecting monomers and the crosslinking agent along with the level of crosslinking and the cure time of the resulting gel, the pore size, pore size distribution, and the total surface area of the foam can be tailored. Surface areas range from 160 to 1,200 m{sup 2}/g with pore sizes ranging from 6 {angstrom} to 2,000 {angstrom}.

  11. Rigid lenses: an overview.

    PubMed

    Bayshore, C A

    1979-03-01

    New gas permeable rigid contact lens materials, by allowing direct transmission of oxygen, provide significant advantages over PMMA. Edema resulting from oxygen deprivation with PMMA lenses is eliminated and comfort is increased. Three types of gas permeable materials are described: CAB, silicone, and a combination of CAB and silicone.

  12. Electrostatics of Rigid Polyelectrolytes

    SciTech Connect

    Wong, G.C.L.

    2009-06-04

    The organization of rigid biological polyelectrolytes by multivalent ions and macroions are important for many fundamental problems in biology and biomedicine, such as cytoskeletal regulation and antimicrobial sequestration in cystic fibrosis. These polyelectrolytes have been used as model systems for understanding electrostatics in complex fluids. Here, we review some recent results in theory, simulations, and experiments.

  13. Obituary--rigid contact lenses.

    PubMed

    Efron, Nathan

    2010-10-01

    Scleral and corneal rigid lenses represented 100 per cent of the contact lens market immediately prior to the invention of soft lenses in the mid-1960s. In the United Kingdom today, rigid lenses comprise 2 per cent of all new lens fits. Low rates of rigid lens fitting are also apparent in 27 other countries which have recently been surveyed. Thus, the 1998 prediction of the author that rigid lenses--also referred to as 'rigid gas permeable' (RGP) lenses or 'gas permeable' (GP) lenses--would be obsolete by the year 2010 has essentially turned out to be correct. In this obituary, the author offers 10 reasons for the demise of rigid lens fitting: initial rigid lens discomfort; intractable rigid lens-induced corneal and lid pathology; extensive soft lens advertising; superior soft lens fitting logistics; lack of rigid lens training opportunities; redundancy of the rigid lens 'problem solver' function; improved soft toric and bifocal/varifocal lenses; limited uptake of orthokeratology; lack of investment in rigid lenses; and the emergence of aberration control soft lenses. Rigid lenses are now being fitted by a minority of practitioners with specialist skills/training. Certainly, rigid lenses can no longer be considered as a mainstream form of contact lens correction. May their dear souls (bulk properties) rest in peace.

  14. An analytical study on bistability of Fabry-Perot semiconductor optical amplifiers

    NASA Astrophysics Data System (ADS)

    Wang, Gang; Chen, Shuqiang; Yang, Huajun

    2016-09-01

    Optical bistabilities have been considered to be useful for sensor applications. As a typical nonlinear device, Fabry-Perot semiconductor optical amplifiers (FPSOAs) exhibit bistability under certain conditions. In this paper, the bistable characteristics in FPSOAs are investigated theoretically. Based on Adams's relationship between the incident optical intensity I in and the z-independent average intracavity intensity I av, an analytical expression of the bistable loop width in SOAs is derived. Numerical simulations confirm the accuracy of the analytical result.

  15. Barrier island bistability induced by biophysical interactions

    NASA Astrophysics Data System (ADS)

    Durán Vinent, Orencio; Moore, Laura J.

    2015-02-01

    Barrier islands represent about 10% of the world’s coastline, sustain rich ecosystems, host valuable infrastructure and protect mainland coasts from storms. Future climate-change-induced increases in the intensity and frequency of major hurricanes and accelerations in sea-level rise will have a significant impact on barrier islands--leading to increased coastal hazards and flooding--yet our understanding of island response to external drivers remains limited. Here, we find that island response is intrinsically bistable and controlled by previously unrecognized dynamics: the competing, and quantifiable, effects of storm erosion, sea-level rise, and the aeolian and biological processes that enable and drive dune recovery. When the biophysical processes driving dune recovery dominate, islands tend to be high in elevation and vulnerability to storms is minimized. Alternatively, when the effects of storm erosion dominate, islands may become trapped in a perpetual state of low elevation and maximum vulnerability to storms, even under mild storm conditions. When sea-level rise dominates, islands become unstable and face possible disintegration. This quantification of barrier island dynamics is supported by data from the Virginia Barrier Islands, USA and provides a broader context for considering island response to climate change and the likelihood of potentially abrupt transitions in island state.

  16. Bistability of cell adhesion in shear flow.

    PubMed

    Efremov, Artem; Cao, Jianshu

    2011-09-07

    Cell adhesion plays a central role in multicellular organisms helping to maintain their integrity and homeostasis. This complex process involves many different types of adhesion proteins, and synergetic behavior of these proteins during cell adhesion is frequently observed in experiments. A well-known example is the cooperation of rolling and stationary adhesion proteins during the leukocytes extravasation. Despite the fact that such cooperation is vital for proper functioning of the immune system, its origin is not fully understood. In this study we constructed a simple analytic model of the interaction between a leukocyte and the blood vessel wall in shear flow. The model predicts existence of cell adhesion bistability, which results from a tug-of-war between two kinetic processes taking place in the cell-wall contact area-bond formation and rupture. Based on the model results, we suggest an interpretation of several cytoadhesion experiments and propose a simple explanation of the existing synergy between rolling and stationary adhesion proteins, which is vital for effective cell adherence to the blood vessel walls in living organisms.

  17. Optical bistability with film-coupled metasurfaces.

    PubMed

    Huang, Zhiqin; Baron, Alexandre; Larouche, Stéphane; Argyropoulos, Christos; Smith, David R

    2015-12-01

    Metasurfaces comprising arrays of film-coupled, nanopatch antennas are a promising platform for low-energy, all-optical switches. The large field enhancements that can be achieved in the dielectric spacer region between the nanopatch and the metallic substrate can substantially enhance optical nonlinear processes. Here we consider a dielectric material that exhibits an optical Kerr effect as the spacer layer and numerically calculate the optical bistability of a metasurface using the finite element method (FEM). We expect the proposed method to be highly accurate compared with other numerical approaches, such as those based on graphical post-processing techniques, because it self-consistently solves for both the spatial field distribution and the intensity-dependent refractive index distribution of the spacer layer. This method offers an alternative approach to finite-difference time-domain (FDTD) modeling. We use this numerical tool to design a metasurface optical switch and our optimized design exhibits exceptionally low switching intensity of 33  kW/cm2, corresponding to switching energy on the order of tens of attojoules per resonator, a value much smaller than those found for most devices reported in the literature. We propose our method as a tool for designing all-optical switches and modulators.

  18. Bistability in doped organic thin film transistors.

    PubMed

    Stricker, Jeffery T; Gudmundsdóttir, Anna D; Smith, Adam P; Taylor, Barney E; Durstock, Michael F

    2007-09-06

    Organic thin film transitors (TFTs) with the conducting polymer poly(3,4-ethylenedioxythiophene):poly(styrene sulfonic acid), PEDOT:PSS, as the active layer and cross-linked, layer-by-layer assembled poly(allylamine hydrochloride)/poly(acrylic acid) (PAH/PAA) multilayers as the gate dielectric layer were investigated. A combination of spectroscopic data and device performance characteristics was used to study the behavior of these TFT devices under a variety of controlled environmental test conditions. It was shown that depletion and recovery of the device can be induced to occur by a means that is consistent with the electrochemical oxidation and reduction of water contained in the film. In addition to acting as a reactant, moisture also acts as a plasticizer to control the mobility of other species contained in the film and thereby permits bistable operation of these devices. Raman spectroscopy was used to show that the observed device switching behavior is due to a change in the PEDOT doping level.

  19. Epigenetic chromatin silencing: bistability and front propagation

    NASA Astrophysics Data System (ADS)

    Sedighi, Mohammad; Sengupta, Anirvan M.

    2007-12-01

    The role of post-translational modification of histones in eukaryotic gene regulation is well recognized. Epigenetic silencing of genes via heritable chromatin modifications plays a major role in cell fate specification in higher organisms. We formulate a coarse-grained model of chromatin silencing in yeast and study the conditions under which the system becomes bistable, allowing for different epigenetic states. We also study the dynamics of the boundary between the two locally stable states of chromatin: silenced and unsilenced. The model could be of use in guiding the discussion on chromatin silencing in general. In the context of silencing in budding yeast, it helps us understand the phenotype of various mutants, some of which may be non-trivial to see without the help of a mathematical model. One such example is a mutation that reduces the rate of background acetylation of particular histone side chains that competes with the deacetylation by Sir2p. The resulting negative feedback due to a Sir protein depletion effect gives rise to interesting counter-intuitive consequences. Our mathematical analysis brings forth the different dynamical behaviors possible within the same molecular model and guides the formulation of more refined hypotheses that could be addressed experimentally.

  20. Bistability of mangrove forests and competition with freshwater plants

    USGS Publications Warehouse

    Jiang, Jiang; Fuller, Douglas O; Teh, Su Yean; Zhai, Lu; Koh, Hock Lye; DeAngelis, Donald L.; Sternberg, L.D.S.L.

    2015-01-01

    Halophytic communities such as mangrove forests and buttonwood hammocks tend to border freshwater plant communities as sharp ecotones. Most studies attribute this purely to underlying physical templates, such as groundwater salinity gradients caused by tidal flux and topography. However, a few recent studies hypothesize that self-reinforcing feedback between vegetation and vadose zone salinity are also involved and create a bistable situation in which either halophytic dominated habitat or freshwater plant communities may dominate as alternative stable states. Here, we revisit the bistability hypothesis and demonstrate the mechanisms that result in bistability. We demonstrate with remote sensing imagery the sharp boundaries between freshwater hardwood hammock communities in southern Florida and halophytic communities such as buttonwood hammocks and mangroves. We further document from the literature how transpiration of mangroves and freshwater plants respond differently to vadose zone salinity, thus altering the salinity through feedback. Using mathematical models, we show how the self-reinforcing feedback, together with physical template, controls the ecotones between halophytic and freshwater communities. Regions of bistability along environmental gradients of salinity have the potential for large-scale vegetation shifts following pulse disturbances such as hurricane tidal surges in Florida, or tsunamis in other regions. The size of the region of bistability can be large for low-lying coastal habitat due to the saline water table, which extends inland due to salinity intrusion. We suggest coupling ecological and hydrologic processes as a framework for future studies.

  1. Numerical and experimental study of bistable plates for morphing structures

    NASA Astrophysics Data System (ADS)

    Nicassio, F.; Scarselli, G.; Avanzini, G.; Del Core, G.

    2017-04-01

    This study is concerned with the activation energy threshold of bistable composite plates in order to tailor a bistable system for specific aeronautical applications. The aim is to explore potential configurations of the bistable plates and their dynamic behavior for designing novel morphing structure suitable for aerodynamic surfaces and, as a possible further application, for power harvesters. Bistable laminates have two stable mechanical shapes that can withstand aerodynamic loads without additional constraint forces or locking mechanisms. This kind of structures, when properly loaded, snap-through from one stable configuration to another, causing large strains that can also be used for power harvesting scopes. The transition between the stable states of the composite laminate can be triggered, in principle, simply by aerodynamic loads (pilot, disturbance or passive inputs) without the need of servo-activated control systems. Both numerical simulations based on Finite Element models and experimental testing based on different activating forcing spectra are used to validate this concept. The results show that dynamic activation of bistable plates depend on different parameters that need to be carefully managed for their use as aircraft passive wing flaps.

  2. Oscillations in the bistable regime of neuronal networks.

    PubMed

    Roxin, Alex; Compte, Albert

    2016-07-01

    Bistability between attracting fixed points in neuronal networks has been hypothesized to underlie persistent activity observed in several cortical areas during working memory tasks. In network models this kind of bistability arises due to strong recurrent excitation, sufficient to generate a state of high activity created in a saddle-node (SN) bifurcation. On the other hand, canonical network models of excitatory and inhibitory neurons (E-I networks) robustly produce oscillatory states via a Hopf (H) bifurcation due to the E-I loop. This mechanism for generating oscillations has been invoked to explain the emergence of brain rhythms in the β to γ bands. Although both bistability and oscillatory activity have been intensively studied in network models, there has not been much focus on the coincidence of the two. Here we show that when oscillations emerge in E-I networks in the bistable regime, their phenomenology can be explained to a large extent by considering coincident SN and H bifurcations, known as a codimension two Takens-Bogdanov bifurcation. In particular, we find that such oscillations are not composed of a stable limit cycle, but rather are due to noise-driven oscillatory fluctuations. Furthermore, oscillations in the bistable regime can, in principle, have arbitrarily low frequency.

  3. Fundamental role of bistability in optimal homeostatic control

    NASA Astrophysics Data System (ADS)

    Wang, Guanyu

    2013-03-01

    Bistability is a fundamental phenomenon in nature and has a number of fine properties. However, these properties are consequences of bistability at the physiological level, which do not explain why it had to emerge during evolution. Using optimal homeostasis as the first principle and Pontryagin's Maximum Principle as the optimization approach, I find that bistability emerges as an indispensable control mechanism. Because the mathematical model is general and the result is independent of parameters, it is likely that most biological systems use bistability to control homeostasis. Glucose homeostasis represents a good example. It turns out that bistability is the only solution to a dilemma in glucose homeostasis: high insulin efficiency is required for rapid plasma glucose clearance, whereas an insulin sparing state is required to guarantee the brain's safety during fasting. This new perspective can illuminate studies on the twin epidemics of obesity and diabetes and the corresponding intervening strategies. For example, overnutrition and sedentary lifestyle may represent sudden environmental changes that cause the lose of optimality, which may contribute to the marked rise of obesity and diabetes in our generation.

  4. Oscillations in the bistable regime of neuronal networks

    NASA Astrophysics Data System (ADS)

    Roxin, Alex; Compte, Albert

    2016-07-01

    Bistability between attracting fixed points in neuronal networks has been hypothesized to underlie persistent activity observed in several cortical areas during working memory tasks. In network models this kind of bistability arises due to strong recurrent excitation, sufficient to generate a state of high activity created in a saddle-node (SN) bifurcation. On the other hand, canonical network models of excitatory and inhibitory neurons (E-I networks) robustly produce oscillatory states via a Hopf (H) bifurcation due to the E-I loop. This mechanism for generating oscillations has been invoked to explain the emergence of brain rhythms in the β to γ bands. Although both bistability and oscillatory activity have been intensively studied in network models, there has not been much focus on the coincidence of the two. Here we show that when oscillations emerge in E-I networks in the bistable regime, their phenomenology can be explained to a large extent by considering coincident SN and H bifurcations, known as a codimension two Takens-Bogdanov bifurcation. In particular, we find that such oscillations are not composed of a stable limit cycle, but rather are due to noise-driven oscillatory fluctuations. Furthermore, oscillations in the bistable regime can, in principle, have arbitrarily low frequency.

  5. Non-resonant energy harvesting via an adaptive bistable potential

    NASA Astrophysics Data System (ADS)

    Haji Hosseinloo, Ashkan; Turitsyn, Konstantin

    2016-01-01

    Narrow bandwidth and easy detuning, inefficiency in broadband and non-stationary excitations, and difficulties in matching a linear harvester’s resonance frequency to low-frequency excitations at small scales, have convinced researchers to investigate nonlinear, and in particular bistable, energy harvesters in recent years. However, bistable harvesters suffer from co-existing low and high energy orbits, and sensitivity to initial conditions, and have recently been proven inefficient when subjected to many real-world random and non-stationary excitations. Here, we propose a novel non-resonant buy-low-sell-high strategy that can significantly improve the harvester’s effectiveness at low frequencies in a much more robust fashion. This strategy could be realized by a passive adaptive bistable system. Simulation results confirm the high effectiveness of the adaptive bistable system following a buy-low-sell-high logic when subjected to harmonic and random non-stationary walking excitations compared to its conventional bistable and linear counterparts.

  6. How rigid are viruses

    NASA Astrophysics Data System (ADS)

    Hartschuh, R. D.; Wargacki, S. P.; Xiong, H.; Neiswinger, J.; Kisliuk, A.; Sihn, S.; Ward, V.; Vaia, R. A.; Sokolov, A. P.

    2008-08-01

    Viruses have traditionally been studied as pathogens, but in recent years they have been adapted for applications ranging from drug delivery and gene therapy to nanotechnology, photonics, and electronics. Although the structures of many viruses are known, most of their biophysical properties remain largely unexplored. Using Brillouin light scattering, we analyzed the mechanical rigidity, intervirion coupling, and vibrational eigenmodes of Wiseana iridovirus (WIV). We identified phonon modes propagating through the viral assemblies as well as the localized vibrational eigenmode of individual viruses. The measurements indicate a Young’s modulus of ˜7GPa for single virus particles and their assemblies, surprisingly high for “soft” materials. Mechanical modeling confirms that the DNA core dominates the WIV rigidity. The results also indicate a peculiar mechanical coupling during self-assembly of WIV particles.

  7. Dynamic rigidity transition

    NASA Astrophysics Data System (ADS)

    Åström, J. A.; Latva-Kokko, M.; Timonen, J.

    2003-01-01

    An inflated closed loop (or membrane) is used to demonstrate a dynamic rigidity transition that occurs when impact energy is added to the loop in static equilibrium at zero temperature. The only relevant parameter in this transition is the ratio of the energy needed to collapse the loop and the impact energy. When this ratio is below a threshold value close to unity, the loop collapses into a high-entropy floppy state, and it does not return to the rigid state unless the impact energy can escape. The internal oscillations are in the floppy state dominated by 1/f2 noise. When the ratio is above the threshold, the loop does not collapse, and the internal oscillations resulting from the impact are dominated by the eigenfrequencies of the stretched membrane. In this state, the loop can bounce for a long time. It is still an open question whether bouncing will eventually vanish or whether a stationary bouncing state will be reached. The dynamic transition between the floppy and the rigid state is discontinuous.

  8. Advanced Rigid Ablative TPS

    NASA Technical Reports Server (NTRS)

    Gasch, Matthew J.

    2011-01-01

    NASA Exploration Systems Mission Directorate s (ESMD) Entry, Descent, and Landing (EDL) Technology Development Project (TDP) and the NASA Aeronautics Research Mission Directorate s (ARMD) Hypersonics Project are developing new advanced rigid ablators in an effort to substantially increase reliability, decrease mass, and reduce life cycle cost of rigid aeroshell-based entry systems for multiple missions. Advanced Rigid Ablators combine ablation resistant top layers capable of high heat flux entry and enable high-speed EDL with insulating mass-efficient bottom that, insulate the structure and lower the areal weight. These materials may benefit Commercial Orbital Transportation Services (COTS) vendors and may potentially enable new NASA missions for higher velocity returns (e.g. asteroid, Mars). The materials have been thermally tested to 400-450 W/sq cm at the Laser Hardened Materials Evaluation Lab (LHMEL), Hypersonics Materials Evaluation Test System (HyMETS) and in arcjet facilities. Tested materials exhibit much lower backface temperatures and reduced recession over the baseline materials (PICA). Although the EDL project is ending in FY11, NASA in-house development of advanced ablators will continue with a focus on varying resin systems and fiber/resin interactions.

  9. Spinal osteotomies for rigid deformities.

    PubMed

    Gupta, Munish C; Kebaish, Khalid; Blondel, Benjamin; Klineberg, Eric

    2013-04-01

    Various osteotomies are useful in making a rigid deformity flexible enough for realignment in coronal and sagittal plane. This article defines the osteotomies and their usefulness in treatment of specific rigid deformities. The pedicle subtraction osteotomy and vertebral column resection used in treating rigid deformities are described in detail. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Bistable near field and bistable transmittance in 2D composite slab consisting of nonlocal core-Kerr shell inclusions.

    PubMed

    Huang, Yang; Wu, Ya Min; Gao, Lei

    2017-01-23

    We carry out a theoretical study on optical bistability of near field intensity and transmittance in two-dimensional nonlinear composite slab. This kind of 2D composite is composed of nonlocal metal/Kerr-type dielectric core-shell inclusions randomly embedded in the host medium, and we derivate the nonlinear relation between the field intensity in the shell of inclusions and the incident field intensity with self-consistent mean field approximation. Numerical demonstration has been performed to show the viable parameter space for the bistable near field. We show that nonlocality can provide broader region in geometric parameter space for bistable near field as well as bistable transmittance of the nonlocal composite slab compared to local case. Furthermore, we investigate the bistable transmittance in wavelength spectrum, and find that besides the input intensity, the wavelength operation could as well make the transmittance jump from a high value to a low one. This kind of self-tunable nano-composite slab might have potential application in optical switching devices.

  11. Charge-induced optical bistability in thermal Rydberg vapor

    NASA Astrophysics Data System (ADS)

    Weller, Daniel; Urvoy, Alban; Rico, Andy; Löw, Robert; Kübler, Harald

    2016-12-01

    We investigate the phenomenon of optical bistability in a driven ensemble of Rydberg atoms. By performing two experiments with thermal vapors of rubidium and cesium, we are able to shed light on the underlying interaction mechanisms causing such a nonlinear behavior. Due to the different properties of these two atomic species, we conclude that the large polarizability of Rydberg states in combination with electric fields of spontaneously ionized Rydberg atoms is the relevant interaction mechanism. In the case of rubidium, we directly measure the electric field in a bistable situation via two-species spectroscopy. In cesium, we make use of the different sign of the polarizability for different l states and the possibility of applying electric fields. Both these experiments allow us to rule out dipole-dipole interactions and support our hypothesis of a charge-induced bistability.

  12. Low-threshold bistability in nonlinear microring tower resonator.

    PubMed

    Shafiei, Mehdi; Khanzadeh, Mohammad

    2010-12-06

    Microring tower resonators, which are a chain of microring resonators stacked on top of each other, are of great interest for nonlinear optics due to their unique features such as very high compactness, coupling efficiency and quality factor. In this research, we investigate the optical bistability in microring tower (MRT) with Kerr nonlinearity by using the coupled mode theory, and demonstrate how a proper defect into the structure can lead to low threshold bistability. In particular, we observed optical bistability in nonlinear defect modes with switching power as low as 165 μW through numerical calculations in a structure with a overall loss on the order of 0.01 mm. In addition, we also develop an analytical model that excellently gives the position of defect modes in linear regime.

  13. Amazonian forest-savanna bistability and human impact

    NASA Astrophysics Data System (ADS)

    Wuyts, Bert; Champneys, Alan R.; House, Joanna I.

    2017-05-01

    A bimodal distribution of tropical tree cover at intermediate precipitation levels has been presented as evidence of fire-induced bistability. Here we subdivide satellite vegetation data into those from human-unaffected areas and those from regions close to human-cultivated zones. Bimodality is found to be almost absent in the unaffected regions, whereas it is significantly enhanced close to cultivated zones. Assuming higher logging rates closer to cultivated zones and spatial diffusion of fire, our spatiotemporal mathematical model reproduces these patterns. Given a gradient of climatic and edaphic factors, rather than bistability there is a predictable spatial boundary, a Maxwell point, that separates regions where forest and savanna states are naturally selected. While bimodality can hence be explained by anthropogenic edge effects and natural spatial heterogeneity, a narrow range of bimodality remaining in the human-unaffected data indicates that there is still bistability, although on smaller scales than claimed previously.

  14. Design of a fully compliant bistable micromechanism for switching devices

    NASA Astrophysics Data System (ADS)

    Chang, Hsin-An; Tsay, Jinni; Sung, Cheng-Kuo

    2001-11-01

    This paper proposes a design of a bistable micromechanism for the application of switching devices. The topology of a fully compliant four-bar mechanism is adopted herein. The central mass of the mechanism is employed as a carriage to carry switching components, such as mirror, electrical contact, etc. The equations that predict the existence of bistable states, the extreme positions of the motion range and the maximum stress states of members were derived. MUMPs provided by Cronos Integrated Microsystems fabricated the proposed micromechanisms for the purpose of verifying the theoretical predictions. Finally, an experimental rig was established. The bistable mechanisms were switched either by the probe or actuators to push the central mass. The experimental results demonstrated that the motions observed approximately met the predicted values.

  15. Design of a bistable switch to control cellular uptake.

    PubMed

    Oyarzún, Diego A; Chaves, Madalena

    2015-12-06

    Bistable switches are widely used in synthetic biology to trigger cellular functions in response to environmental signals. All bistable switches developed so far, however, control the expression of target genes without access to other layers of the cellular machinery. Here, we propose a bistable switch to control the rate at which cells take up a metabolite from the environment. An uptake switch provides a new interface to command metabolic activity from the extracellular space and has great potential as a building block in more complex circuits that coordinate pathway activity across cell cultures, allocate metabolic tasks among different strains or require cell-to-cell communication with metabolic signals. Inspired by uptake systems found in nature, we propose to couple metabolite import and utilization with a genetic circuit under feedback regulation. Using mathematical models and analysis, we determined the circuit architectures that produce bistability and obtained their design space for bistability in terms of experimentally tuneable parameters. We found an activation-repression architecture to be the most robust switch because it displays bistability for the largest range of design parameters and requires little fine-tuning of the promoters' response curves. Our analytic results are based on on-off approximations of promoter activity and are in excellent qualitative agreement with simulations of more realistic models. With further analysis and simulation, we established conditions to maximize the parameter design space and to produce bimodal phenotypes via hysteresis and cell-to-cell variability. Our results highlight how mathematical analysis can drive the discovery of new circuits for synthetic biology, as the proposed circuit has all the hallmarks of a toggle switch and stands as a promising design to control metabolic phenotypes across cell cultures. © 2015 The Author(s).

  16. Design of a bistable switch to control cellular uptake

    PubMed Central

    Oyarzún, Diego A.; Chaves, Madalena

    2015-01-01

    Bistable switches are widely used in synthetic biology to trigger cellular functions in response to environmental signals. All bistable switches developed so far, however, control the expression of target genes without access to other layers of the cellular machinery. Here, we propose a bistable switch to control the rate at which cells take up a metabolite from the environment. An uptake switch provides a new interface to command metabolic activity from the extracellular space and has great potential as a building block in more complex circuits that coordinate pathway activity across cell cultures, allocate metabolic tasks among different strains or require cell-to-cell communication with metabolic signals. Inspired by uptake systems found in nature, we propose to couple metabolite import and utilization with a genetic circuit under feedback regulation. Using mathematical models and analysis, we determined the circuit architectures that produce bistability and obtained their design space for bistability in terms of experimentally tuneable parameters. We found an activation–repression architecture to be the most robust switch because it displays bistability for the largest range of design parameters and requires little fine-tuning of the promoters' response curves. Our analytic results are based on on–off approximations of promoter activity and are in excellent qualitative agreement with simulations of more realistic models. With further analysis and simulation, we established conditions to maximize the parameter design space and to produce bimodal phenotypes via hysteresis and cell-to-cell variability. Our results highlight how mathematical analysis can drive the discovery of new circuits for synthetic biology, as the proposed circuit has all the hallmarks of a toggle switch and stands as a promising design to control metabolic phenotypes across cell cultures. PMID:26674196

  17. The geodynamo as a bistable oscillator

    NASA Astrophysics Data System (ADS)

    Hoyng, P.; Ossendrijver, M. A. J. H.; Schmitt, D.

    2001-07-01

    Our intent is to provide a simple and quantitative understanding of the variability of the axial dipole component of the geomagnetic field on both short and long time scales. To this end we study the statistical properties of a prototype nonlinear mean field model. An azimuthal average is employed, so that (1) we address only the axisymmetric component of the field, and (2) the dynamo parameters have a random component that fluctuates on the (fast) eddy turnover time scale. Numerical solutions with a rapidly fluctuating alpha reproduce several features of the geomagnetic field: (1) a variable, dominantly dipolar field with additional fine structure due to excited overtones, and sudden reversals during which the field becomes almost quadrupolar, (2) aborted reversals and excursions, (3) intervals between reversals having a Poisson distribution. These properties are robust, and appear regardless of the type of nonlinearity and the model parameters. A technique is presented for analysing the statistical properties of dynamo models of this type. The Fokker-Planck equation for the amplitude a of the fundamental dipole mode shows that a behaves as the position of a heavily damped particle in a bistable potential ~(1-a^2)^2, subject to random forcing. The dipole amplitude oscillates near the bottom of one well and makes occasional jumps to the other. These reversals are induced solely by the overtones. Theoretical expressions are derived for the statistical distribution of the dipole amplitude, the variance of the dipole amplitude between reversals, and the mean reversal rate. The model explains why the reversal rate increases with increasing secular variation, as observed. Moreover, the present reversal rate of the geodynamo, once per (2-3)x10^5years, is shown to imply a secular variation of the dipole moment of ~15% (about the current value). The theoretical dipole amplitude distribution agrees well with the Sint-800 data.

  18. The Density Distribution in Turbulent Bistable Flows

    NASA Astrophysics Data System (ADS)

    Gazol, Adriana; Kim, Jongsoo

    2013-03-01

    We numerically study the volume density probability distribution function (n-PDF) and the column density probability distribution function (Σ-PDF) resulting from thermally bistable turbulent flows. We analyze three-dimensional hydrodynamic models in periodic boxes of 100 pc by side, where turbulence is driven in the Fourier space at a wavenumber corresponding to 50 pc. At low densities (n <~ 0.6 cm-3), the n-PDF is well described by a lognormal distribution for an average local Mach number ranging from ~0.2 to ~5.5. As a consequence of the nonlinear development of thermal instability (TI), the logarithmic variance of the distribution of the diffuse gas increases with M faster than in the well-known isothermal case. The average local Mach number for the dense gas (n >~ 7.1 cm-3) goes from ~1.1 to ~16.9 and the shape of the high-density zone of the n-PDF changes from a power law at low Mach numbers to a lognormal at high M values. In the latter case, the width of the distribution is smaller than in the isothermal case and grows slower with M. At high column densities, the Σ-PDF is well described by a lognormal for all of the Mach numbers we consider and, due to the presence of TI, the width of the distribution is systematically larger than in the isothermal case but follows a qualitatively similar behavior as M increases. Although a relationship between the width of the distribution and M can be found for each one of the cases mentioned above, these relations are different from those of the isothermal case.

  19. THE DENSITY DISTRIBUTION IN TURBULENT BISTABLE FLOWS

    SciTech Connect

    Gazol, Adriana; Kim, Jongsoo E-mail: jskim@kasi.re.kr

    2013-03-01

    We numerically study the volume density probability distribution function (n-PDF) and the column density probability distribution function ({Sigma}-PDF) resulting from thermally bistable turbulent flows. We analyze three-dimensional hydrodynamic models in periodic boxes of 100 pc by side, where turbulence is driven in the Fourier space at a wavenumber corresponding to 50 pc. At low densities (n {approx}< 0.6 cm{sup -3}), the n-PDF is well described by a lognormal distribution for an average local Mach number ranging from {approx}0.2 to {approx}5.5. As a consequence of the nonlinear development of thermal instability (TI), the logarithmic variance of the distribution of the diffuse gas increases with M faster than in the well-known isothermal case. The average local Mach number for the dense gas (n {approx}> 7.1 cm{sup -3}) goes from {approx}1.1 to {approx}16.9 and the shape of the high-density zone of the n-PDF changes from a power law at low Mach numbers to a lognormal at high M values. In the latter case, the width of the distribution is smaller than in the isothermal case and grows slower with M. At high column densities, the {Sigma}-PDF is well described by a lognormal for all of the Mach numbers we consider and, due to the presence of TI, the width of the distribution is systematically larger than in the isothermal case but follows a qualitatively similar behavior as M increases. Although a relationship between the width of the distribution and M can be found for each one of the cases mentioned above, these relations are different from those of the isothermal case.

  20. Distribution of current fluctuations in a bistable conductor

    NASA Astrophysics Data System (ADS)

    Singh, S.; Peltonen, J. T.; Khaymovich, I. M.; Koski, J. V.; Flindt, C.; Pekola, J. P.

    2016-12-01

    We measure the full distribution of current fluctuations in a single-electron transistor with a controllable bistability. The conductance switches randomly between two levels due to the tunneling of single electrons in a separate single-electron box. The electrical fluctuations are detected over a wide range of time scales and excellent agreement with theoretical predictions is found. For long integration times, the distribution of the time-averaged current obeys the large-deviation principle. We formulate and verify a fluctuation relation for the bistable region of the current distribution.

  1. Bistable moving optical solitons in resonant photonic crystals

    SciTech Connect

    Vlasov, R. A.; Lemeza, A. M.

    2011-08-15

    We consider some new aspects of the formation of moving optical solitons in a medium of Bragg-type resonant grating doped with two-level atoms. For generality, account is taken of the local-field effect assisted by a sufficiently high density of resonant atoms. It is established analytically that there exists a family of soliton solutions to the two-wave Maxwell-Bloch system of equations, with these solitons exhibiting bistable properties. The existence of bistable solitons and their properties are confirmed by numerical simulations.

  2. Bistability Controlled by Convection in a Pattern-Forming System

    NASA Astrophysics Data System (ADS)

    Marsal, Nicolas; Weicker, Lionel; Wolfersberger, Delphine; Sciamanna, Marc

    2017-01-01

    We analyze the transition from convective to absolute dynamical instabilities in a nonlinear optical system forming patterns, i.e., a photorefractive crystal in a single feedback configuration. We demonstrate that the convective regime is directly related to the bistability area in which the homogeneous steady state coexists with a pattern solution. Outside this domain, the system exhibits either a homogeneous steady state or an absolute dynamical regime. We evidence that the bistability area can be greatly increased by adjusting the mirror tilt angle and/or by applying an external background illumination on the photorefractive crystal.

  3. Effects of a squeezed vacuum on absorptive optical bistability

    NASA Astrophysics Data System (ADS)

    Haas, Steven F.; Sargent, Murray

    1990-11-01

    We calculate the effects of a squeezed vacuum on absorptive optical bistability (AOB) using the different relaxation rate approximation for in-quadrature and in-phase components of a two-level system developed by Gardiner. An expression for the complex absorption coefficient is developed and the result applied to the AOB equation for the unidirectional ring cavity. We find a significant degradation of bistability for values of the in-quadrature decay constant less than or equal to approximately 0.5 of the in-phase decay constant. Effects of detuning and relative phase of the pump field to the squeezed vacuum field are also examined.

  4. Bistable fiber-optic Michelson interferometer that uses wavelength control.

    PubMed

    Fürstenau, N

    1991-12-01

    Feedback of the interference signal of an unbalanced Michelson interferometer to the current supply of the semiconductor-laser source yields bistability under input intensity variation owing to wavelength-induced phase modulation. A linear stability analysis of the system's differential equation gives the ratio of the system time constant tau to the feedback delay time T to determine the critical input intensity for the onset of self-oscillations. Input-output characteristics that exhibit bistability and self-oscillations are obtained experimentally through modulation of the input power by using an integrated-optics intensity modulator.

  5. The Necker-Zeno model for bistable perception.

    PubMed

    Atmanspacher, Harald; Filk, Thomas

    2013-10-01

    A novel conceptual framework for theoretical psychology is presented and illustrated for the example of bistable perception. A basic formal feature of this framework is the non-commutativity of operations acting on mental states. A corresponding model for the bistable perception of ambiguous stimuli, the Necker-Zeno model, is sketched and some empirical evidence for it so far is described. It is discussed how a temporal non-locality of mental states, predicted by the model, can be understood and tested. © 2013 Cognitive Science Society, Inc.

  6. Wavelength demodulation of fiber grating sensors using hybrid optical bistability

    NASA Astrophysics Data System (ADS)

    Lv, Guohui; Ou, Jinping; Wang, Huiying; Jiang, Xu; Shang, Shaohua

    2007-07-01

    In this article, a novel approach for demodulation of fiber grating sensors with high resolution is proposed based on a hybrid fiber optical bistablity device (OBD). This OBD is consisted of a FFP ring-cavity laser, fiber Bragg grating (FBG) and a certain optoelectronic feedback circuit. The optical bistability can be realized through alternative the center wavelength of the tunable fiber laser when the output power of the laser is fixed. The Bragg wavelength of sensing grating is determined by the switching on voltage of OBD.

  7. Super-linear spreading in local bistable cane toads equations

    NASA Astrophysics Data System (ADS)

    Bouin, Emeric; Henderson, Christopher

    2017-04-01

    In this paper, we study the influence of an Allee effect on the spreading rate in a local reaction-diffusion-mutation equation modeling the invasion of cane toads in Australia. We are, in particular, concerned with the case when the diffusivity can take unbounded values. We show that the acceleration feature that arises in this model with a Fisher-KPP, or monostable, nonlinearity still occurs when this nonlinearity is instead bistable, despite the fact that this kills the small populations. This is in stark contrast to the work of Alfaro, Gui-Huan, and Mellet-Roquejoffre-Sire in related models, where the change to a bistable nonlinearity prevents acceleration.

  8. A bi-stable neuronal model of Gibbs distribution

    NASA Astrophysics Data System (ADS)

    Gross, Eitan

    2015-07-01

    In this paper we present a bi-stable neuronal model consistent with the Gibbs distribution. Our approach utilizes a formalism used in stochastic (Boltzmann) machines with a bistable-neuron algorithm in which each neuron can exist in either an ON or an OFF state. The transition between the system's states is composed of two random processes, the first one decides which state transition should be attempted and the second one decides if the transition is accepted or not. Our model can be easily extended to systems with asymmetrical weight matrices.

  9. Birationally rigid Fano fibrations

    NASA Astrophysics Data System (ADS)

    Pukhlikov, A. V.

    2000-06-01

    We prove the birational superrigidity of a general Fano fibration \\pi\\colon V\\to\\mathbf P^1 whose fibre is a Fano hypersurface W_M\\subset\\mathbf P^M of index 1. If the fibration is sufficiently twisted over the base \\mathbf P^1, then V has no other structure of a fibration into rationally connected varieties. We also formulate and discuss conjectures on birational rigidity for a large class of Fano varieties and Fano fibrations over a base of arbitrary dimension.

  10. Rigid porous filter

    DOEpatents

    Chiang, Ta-Kuan; Straub, Douglas L.; Dennis, Richard A.

    2000-01-01

    The present invention involves a porous rigid filter including a plurality of concentric filtration elements having internal flow passages and forming external flow passages there between. The present invention also involves a pressure vessel containing the filter for the removal of particulates from high pressure particulate containing gases, and further involves a method for using the filter to remove such particulates. The present filter has the advantage of requiring fewer filter elements due to the high surface area-to-volume ratio provided by the filter, requires a reduced pressure vessel size, and exhibits enhanced mechanical design properties, improved cleaning properties, configuration options, modularity and ease of fabrication.

  11. In silico evolved lac operons exhibit bistability for artificial inducers, but not for lactose.

    PubMed

    van Hoek, M J A; Hogeweg, P

    2006-10-15

    Bistability in the lac operon of Escherichia coli has been widely studied, both experimentally and theoretically. Experimentally, bistability has been observed when E. coli is induced by an artificial, nonmetabolizable, inducer. However, if the lac operon is induced with lactose, the natural inducer, bistability has not been demonstrated. We derive an analytical expression that can predict the occurrence of bistability both for artificial inducers and lactose. We find very different conditions for bistability in the two cases. Indeed, for artificial inducers bistability is predicted, but for lactose the condition for bistability is much more difficult to satisfy. Moreover, we demonstrate that in silico evolution of the lac operon generates an operon that avoids bistability with respect to lactose, but does exhibit bistability with respect to artificial inducers. The activity of this evolved operon strikingly resembles the experimentally observed activity of the operon. Thus our computational experiments suggest that the wild-type lac operon, which regulates lactose metabolism, is not a bistable switch. Nevertheless, for engineering purposes, this operon can be used as a bistable switch with artificial inducers.

  12. Functional integrity of flexible n-channel metal–oxide–semiconductor field-effect transistors on a reversibly bistable platform

    SciTech Connect

    Alfaraj, Nasir; Hussain, Aftab M.; Torres Sevilla, Galo A.; Ghoneim, Mohamed T.; Rojas, Jhonathan P.; Hussain, Muhammad M.; Aljedaani, Abdulrahman B.

    2015-10-26

    Flexibility can bring a new dimension to state-of-the-art electronics, such as rollable displays and integrated circuit systems being transformed into more powerful resources. Flexible electronics are typically hosted on polymeric substrates. Such substrates can be bent and rolled up, but cannot be independently fixed at the rigid perpendicular position necessary to realize rollable display-integrated gadgets and electronics. A reversibly bistable material can assume two stable states in a reversible way: flexibly rolled state and independently unbent state. Such materials are used in cycling and biking safety wristbands and a variety of ankle bracelets for orthopedic healthcare. They are often wrapped around an object with high impulsive force loading. Here, we study the effects of cumulative impulsive force loading on thinned (25 μm) flexible silicon-based n-channel metal–oxide–semiconductor field-effect transistor devices housed on a reversibly bistable flexible platform. We found that the transistors have maintained their high performance level up to an accumulated 180 kN of impact force loading. The gate dielectric layers have maintained their reliability, which is evidenced by the low leakage current densities. Also, we observed low variation in the effective electron mobility values, which manifests that the device channels have maintained their carrier transport properties.

  13. Functional integrity of flexible n-channel metal-oxide-semiconductor field-effect transistors on a reversibly bistable platform

    NASA Astrophysics Data System (ADS)

    Alfaraj, Nasir; Hussain, Aftab M.; Torres Sevilla, Galo A.; Ghoneim, Mohamed T.; Rojas, Jhonathan P.; Aljedaani, Abdulrahman B.; Hussain, Muhammad M.

    2015-10-01

    Flexibility can bring a new dimension to state-of-the-art electronics, such as rollable displays and integrated circuit systems being transformed into more powerful resources. Flexible electronics are typically hosted on polymeric substrates. Such substrates can be bent and rolled up, but cannot be independently fixed at the rigid perpendicular position necessary to realize rollable display-integrated gadgets and electronics. A reversibly bistable material can assume two stable states in a reversible way: flexibly rolled state and independently unbent state. Such materials are used in cycling and biking safety wristbands and a variety of ankle bracelets for orthopedic healthcare. They are often wrapped around an object with high impulsive force loading. Here, we study the effects of cumulative impulsive force loading on thinned (25 μm) flexible silicon-based n-channel metal-oxide-semiconductor field-effect transistor devices housed on a reversibly bistable flexible platform. We found that the transistors have maintained their high performance level up to an accumulated 180 kN of impact force loading. The gate dielectric layers have maintained their reliability, which is evidenced by the low leakage current densities. Also, we observed low variation in the effective electron mobility values, which manifests that the device channels have maintained their carrier transport properties.

  14. Band gap transmission in periodic bistable mechanical systems

    NASA Astrophysics Data System (ADS)

    Frazier, Michael J.; Kochmann, Dennis M.

    2017-02-01

    We theoretically and numerically investigate the supratransmission phenomenon in discrete, nonlinear systems containing bistable elements. While linear waves cannot propagate within the band gaps of periodic structures, supratransmission allows large-amplitude waves to transmit energy through the band gap. For systems lacking bistability, the threshold amplitude for such energy transmission at a given frequency in the linear band gap is fixed. We show that the topological transitions due to bistability provide an avenue for switching the threshold amplitude between two well-separated values. Moreover, this versatility is achieved while leaving the linear dispersion properties of the system essentially unchanged. Interestingly, the behavior changes when an elastic chain is coupled to bistable resonators (in an extension of the well-studied linear locally resonant metamaterials). Here, we show that a fraction of the injected energy is confined near the boundary due to the resonators, providing a means of regulating the otherwise unrestrained energy flow due to supratransmission. Together, the results illustrate new means of controlling nonlinear wave propagation and energy transport in systems having multi-stable elements.

  15. Bistability in a simple fluid network due to viscosity contrast.

    PubMed

    Geddes, John B; Storey, Brian D; Gardner, David; Carr, Russell T

    2010-04-01

    We study the existence of multiple equilibrium states in a simple fluid network using Newtonian fluids and laminar flow. We demonstrate theoretically the presence of hysteresis and bistability, and we confirm these predictions in an experiment using two miscible fluids of different viscosity-sucrose solution and water. Possible applications include blood flow, microfluidics, and other network flows governed by similar principles.

  16. Reversal Negativity and Bistable Stimuli: Attention, Awareness, or Something Else?

    ERIC Educational Resources Information Center

    Intaite, Monika; Koivisto, Mika; Ruksenas, Osvaldas; Revonsuo, Antti

    2010-01-01

    Ambiguous (or bistable) figures are visual stimuli that have two mutually exclusive perceptual interpretations that spontaneously alternate with each other. Perceptual reversals, as compared with non-reversals, typically elicit a negative difference called reversal negativity (RN), peaking around 250 ms from stimulus onset. The cognitive…

  17. Analytical study of optical bistability in silicon-waveguide resonators.

    PubMed

    Rukhlenko, Ivan D; Premaratne, Malin; Agrawal, Govind P

    2009-11-23

    We present a theoretical model that describes accurately the nonlinear phenomenon of optical bistability in silicon-waveguide resonators but remains amenable to analytical results. Using this model, we derive a transcendental equation governing the intensity of a continuous wave transmitted through a Fabry-Perot resonator formed using a silicon-on-insulator waveguide. This equation reveals a dual role of free carriers in the formation of optical bistability in silicon. First, it shows that free-carrier absorption results in a saturation of the transmitted intensity. Second, the free-carrier dispersion and the thermo-optic effect may introduce phase shifts far exceeding those resulting from the Kerr effect alone, thus enabling one to achieve optical bistability in ultrashort resonators that are only a few micrometers long. Bistability can occur even when waveguide facets are not coated because natural reflectivity of the silicon- r interface can provide sufficient feedback. We find that it is possible to control the input-output characteristics of silicon-based resonators by changing the free-carrier lifetime using a reverse-biased p-n junction. We show theoretically that such a technique is suitable for realization of electronically assisted optical switching at a fixed input power and it may lead to silicon-based, nanometer-size, optical memories.

  18. Non-volatile, solid state bistable electrical switch

    NASA Technical Reports Server (NTRS)

    Williams, Roger M. (Inventor)

    1994-01-01

    A bistable switching element is made of a material whose electrical resistance reversibly decreases in response to intercalation by positive ions. Flow of positive ions between the bistable switching element and a positive ion source is controlled by means of an electrical potential applied across a thermal switching element. The material of the thermal switching element generates heat in response to electrical current flow therethrough, which in turn causes the material to undergo a thermal phase transition from a high electrical resistance state to a low electrical resistance state as the temperature increases above a predetermined value. Application of the electrical potential in one direction renders the thermal switching element conductive to pass electron current out of the ion source. This causes positive ions to flow from the source into the bistable switching element and intercalate the same to produce a non-volatile, low resistance logic state. Application of the electrical potential in the opposite direction causes reverse current flow which de-intercalates the bistable logic switching element and produces a high resistance logic state.

  19. Fractal rigidity in migraine

    NASA Astrophysics Data System (ADS)

    Latka, Miroslaw; Glaubic-Latka, Marta; Latka, Dariusz; West, Bruce J.

    2004-04-01

    We study the middle cerebral artery blood flow velocity (MCAfv) in humans using transcranial Doppler ultrasonography (TCD). Scaling properties of time series of the axial flow velocity averaged over a cardiac beat interval may be characterized by two exponents. The short time scaling exponent (STSE) determines the statistical properties of fluctuations of blood flow velocities in short-time intervals while the Hurst exponent describes the long-term fractal properties. In many migraineurs the value of the STSE is significantly reduced and may approach that of the Hurst exponent. This change in dynamical properties reflects the significant loss of short-term adaptability and the overall hyperexcitability of the underlying cerebral blood flow control system. We call this effect fractal rigidity.

  20. Royal Society, Discussion on Optical Bistability, Dynamical Nonlinearity and Photonic Logic, London, England, March 21, 22, 1984, Proceedings

    NASA Astrophysics Data System (ADS)

    Wherrett, B. S.; Smith, S. D.

    1984-12-01

    An introduction to optically bistable devices and photonic logic is presented, and the impact of technological advances and architectural insights on the design of optical computers is considered along with one-electron theory of nonlinear refraction, nonperturbative many-body theory of the optical nonlinearities in semiconductors, optical bistability in CuCl, multiple quantum well optical nonlinearities, semiconductor nonlinear etalons, and InSb devices involving transphasors with high gain, bistable switches and sequential logic gates. Other subjects explored are related to bistability experimentally observed at three milliwatts in indium arsenide and theoretically predicted for a new class on nonlinear dielectrics, giant nonlinearities and low power optical bistability in cadmium sulfide platelets, bistability in CdHgTe, dynamic effects in optical bistability, and all-optical logic in optical waveguides. Attention is also given to solitons in optical bistability, resonant modulation, guided-wave controlled etalons, and intrinsic polarization bistability in nonlinear media.

  1. Bistable dynamics of a levitated nanoparticle (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Ricci, Francesco; Spasenovic, M.; Rica, Raúl A.; Novotny, Lukas; Quidant, Romain

    2015-08-01

    Bistable systems are ubiquitous in nature. Classical examples in chemistry and biology include relaxation kinetics in chemical reactions [1] and stochastic resonance processes such as neuron firing [2,3]. Likewise, bistable systems play a key role in signal processing and information handling at the nanoscale, giving rise to intriguing applications such as optical switches [4], coherent signal amplification [5,6] and weak forces detection [5]. The interest and applicability of bistable systems are intimately connected with the complexity of their dynamics, typically due to the presence of a large number of parameters and nonlinearities. Appropriate modeling is therefore challenging. Alternatively, the possibility to experimentally recreate bistable systems in a clean and controlled way has recently become very appealing, but elusive and complicated. With this aim, we combined optical tweezers with a novel active feedback-cooling scheme to develop a well-defined opto-mechanical platform reaching unprecedented performances in terms of Q-factor, frequency stability and force sensitivity [7,8]. Our experimental system consists of a single nanoparticle levitated in high vacuum with optical tweezers, which behaves as a non-linear (Duffing) oscillator under appropriate conditions. Here, we prove it to be an ideal tool for a deep study of bistability. We demonstrate bistability of the nanoparticle by noise activated switching between two oscillation states, discussing our results in terms of a double-well potential model. We also show the flexibility of our system in shaping the potential at will, in order to meet the conditions prescribed by any bistable system that could therefore then be simulated with our setup. References [1] T. Amemiya, T. Ohmori, M. Nakaiwa, T. Yamamoto, and T. Yamaguchi, "Modeling of Nonlinear Chemical Reaction Systems and Two-Parameter Stochastic Resonance," J. Biol. Phys. 25 (1999) 73 [2] F. Moss, L. M. Ward, and W. G. Sannita, "Stochastic

  2. Electrically conductive rigid polyurethane foam

    DOEpatents

    Neet, T.E.; Spieker, D.A.

    1983-12-08

    A rigid, moldable polyurethane foam comprises about 2 to 10 weight percent, based on the total foam weight, of a carbon black which is CONDUCTEX CC-40-220 or CONDUCTEX SC, whereby the rigid polyurethane foam is electrically conductive and has essentially the same mechanical properties as the same foam without carbon black added.

  3. Electrically conductive rigid polyurethane foam

    DOEpatents

    Neet, Thomas E.; Spieker, David A.

    1985-03-19

    A rigid, polyurethane foam comprises about 2-10 weight percent, based on the total foam weight, of a carbon black which is CONDUCTEX CC-40-220 or CONDUCTEX SC, whereby the rigid polyurethane foam is electrically conductive and has essentially the same mechanical properties as the same foam without carbon black added.

  4. International rigid contact lens prescribing.

    PubMed

    Efron, Nathan; Morgan, Philip B; Helland, Magne; Itoi, Motozumi; Jones, Deborah; Nichols, Jason J; van der Worp, Eef; Woods, Craig A

    2010-06-01

    Rigid lenses have been fitted less since the introduction of soft lenses nearly 40 years ago. Data that we have gathered from annual contact lens fitting surveys conducted in Australia, Canada, Japan, the Netherlands, Norway, the UK and the USA between 2000 and 2008 facilitate an accurate characterization of the pattern of the decline of rigid lens fitting during the first decade of this century. There is a trend for rigid lenses to be utilized primarily for refitting those patients who are already successful rigid lens wearers-most typically older females being refit with higher Dk materials. Rigid lenses are generally fitted on a full-time basis (four or more days of wear per week) without a planned replacement schedule. Orthokeratology is especially popular in the Netherlands, but is seldom prescribed in the other countries surveyed.

  5. An elastic-support model for enhanced bistable piezoelectric energy harvesting from random vibrations

    NASA Astrophysics Data System (ADS)

    Leng, Y. G.; Gao, Y. J.; Tan, D.; Fan, S. B.; Lai, Z. H.

    2015-02-01

    To overcome the defect of conventional nonlinear piezoelectric cantilever vibration energy harvesters, in this paper we conceive an elastic-support model to study the performance of energy converters under two types of variable-intensity excitation conditions: filtered Gaussian noises and pink noises. When excitation intensity is insufficient, thanks to the system's variable potential function, frequent bistable transition oscillations between two wells occur in elastic-support systems, while only weak oscillations in either well could be observed in rigid-support systems. In practical applications, the structural parameters of energy harvesters are not allowed to make real-time changes. If considered remaining the magnet interval and the spring's elastic stiffness unchanged while receiving stable maximum output voltage, elastic-support systems can be made full use toward variable-intensity filtered Gaussian noises. It has been proven that elastic-support systems are capable of adapting to random excitations with variable intensity, through which maximum power output and sufficient electromechanical energy conversion of the system can be accomplished.

  6. Mm-size bistable zipping dielectric elastomer actuators for integrated microfluidics

    NASA Astrophysics Data System (ADS)

    Maffli, Luc; Rosset, Samuel; Shea, Herbert R.

    2013-04-01

    We report on a new structure of Dielectric Elastomer Actuators (DEAs) called zipping DEAs, which have a set of unique characteristics that are a good match for the requirements of electrically-powered integrated microfluidic pumping and/or valving units as well as Braille displays. The zipping DEAs operate by pulling electrostatically an elastomer membrane in contact with the rigid sidewalls of a sloped chamber. In this work, we report on fully functional mm-size zipping DEAs that demonstrate a complete sealing of the chamber sidewalls and a tunable bistable behavior, and compare the measurements with an analytical model. Compared to our first generation of devices, we are able vary the sidewall angle and benefit therefore from more flexibility to study the requirements to make fully functional actuators. In particular, we show that with Nusil CF19 as membrane material (1.2 MPa Young's modulus), it is possible to zip completely 2.3 mm diameter chambers with 15° and 21° sidewalls angle equibiaxially prestretched to λ0=1.12 and 15° chambers with λ0=1.27.

  7. Effects of pacing magnitudes and forms on bistability width in a modeled ventricular tissue

    NASA Astrophysics Data System (ADS)

    Huang, Xiaodong; Liu, Xuemei; Zheng, Lixian; Mi, Yuanyuan; Qian, Yu

    2013-07-01

    Bistability in periodically paced cardiac tissue is relevant to cardiac arrhythmias and its control. In the present paper, one-dimensional tissue of the phase I Luo-Rudy model is numerically investigated. The effects of various parameters of pacing signals on bistability width are studied. The following conclusions are obtained: (i) Pacing can be classified into two types: pulsatile and sinusoidal types. Pulsatile pacing reduces bistability width as its magnitude is increased. Sinusoidal pacing increases the width as its amplitude is increased. (ii) In a pacing period the hyperpolarizing part plays a more important role than the depolarizing part. Variations of the hyperpolarizing ratio in a period evidently change the width of bistability and its variation tendency. (iii) A dynamical mechanism is proposed to qualitatively explain the phenomena, which reveals the reason for the different effects of pulsatile and sinusoidal pacing on bistability. The methods for changing bistability width by external pacing may help control arrhythmias in cardiology.

  8. Optical bistability in plasmonic nanoparticles: Effect of size, shape and embedding medium

    NASA Astrophysics Data System (ADS)

    Daneshfar, Nader; Foroughi, Hamidreza

    2016-09-01

    We theoretically investigate the optical bistability, which one input signal allows two possible outputs, from single spherical/cylindrical nanoparticles and also nanoshells in the frame work of quasi-static formalism. It is shown that the bistability behavior greatly depends on several parameters such as the nanoparticle size, material and the surrounding dielectric environment. We demonstrated the width of the bistability region and also the bistable threshold depends on the geometrical parameters, and can be tuned by adjusting the size of nanoparticle, the shell thickness and the dielectric constant of the embedding medium. It is also shown that the optical bistable behavior depends strongly on the shape of plasmonic nanoparticles and nanoshells. However, these dependences of optical bistability of spherical/cylindrical nanoparticles and nanoshells on changing of their geometrical parameters can be used for realize optical switching and sensing purposes.

  9. Bistability of the naturally induced lactose utilization system of Escherichia coli

    NASA Astrophysics Data System (ADS)

    Stajic, Jelena; Wall, Michael

    2006-03-01

    In the absence of the preferred sugar glucose, lactose utilization machinery in the bacterium E. coli is activated. The genetic circuit responsible for this response, lac operon, has been observed to exhibit bistability when induced by an artificial inducer, TMG. Here we investigate conditions under which bistability might be observed in response to lactose. The aim of our study is to establish whether the natural system exhibits bistability, as is often assumed despite the lack of experimental support.

  10. Optical bistability in photonic crystal microrings with nonlinear dielectric materials.

    PubMed

    Ogusu, Kazuhiko; Takayama, Kosuke

    2008-05-12

    We study the linear resonance properties of several types of microrings in a two-dimensional photonic crystal (PC) consisting of a square lattice with air holes in dielectric using the plane-wave expansion method and the FDTD method. Moreover we investigate the nonlinear responses, especially optical bistability when an intense optical pulse is incident into the microrings. In this paper, Ag-As-Se chalcogenide glass is assumed as nonlinear dielectric, which has a high third-order nonlinearity. Although line-defect waveguides in an air-hole-type PC are usually multimoded, we can obtain interesting unique properties such as counter rotation of intracavity fields, transmission to all output ports, and unstable nonlinear oscillations in the multimoded PC microring. We can improve the resonance characteristics by partly introducing single-mode waveguides into microrings and can obtain stable optical bistability.

  11. Bistable dark solitons of a cubic-quintic Helmholtz equation

    SciTech Connect

    Christian, J. M.; McDonald, G. S.; Chamorro-Posada, P.

    2010-05-15

    We provide a report on exact analytical bistable dark spatial solitons of a nonlinear Helmholtz equation with a cubic-quintic refractive-index model. Our analysis begins with an investigation of the modulational instability characteristics of Helmholtz plane waves. We then derive a dark soliton by mapping the desired asymptotic form onto a uniform background field and obtain a more general solution by deploying rotational invariance laws in the laboratory frame. The geometry of the new soliton is explored in detail, and a range of new physical predictions is uncovered. Particular attention is paid to the unified phenomena of arbitrary-angle off-axis propagation and nondegenerate bistability. Crucially, the corresponding solution of paraxial theory emerges in a simultaneous multiple limit. We conclude with a set of computer simulations that examine the role of Helmholtz dark solitons as robust attractors.

  12. Bistable salt doped cholesteric liquid crystals light shutter

    NASA Astrophysics Data System (ADS)

    Moheghi, Alireza; Nemati, Hossein; Li, Yannian; Li, Quan; Yang, Deng-Ke

    2016-02-01

    Liquid crystals have been used to make electrically switchable light shutters (windows), but most of them are monostable: opaque in the absence of applied voltage and transparent when a voltage is applied. Here we report a bistable switchable light shutter based on cholesteric liquid crystal doped with tetrabutylammonium bromide. The salt makes it possible for the liquid crystal to have different electro-optical responses to applied voltages with different frequencies. The shutter can be either transparent or opaque in the absence of applied voltage. It can be switched from the transparent state to the opaque state by applying a low frequency (60 Hz) voltage pulse and switched back to the transparent state by applying a high frequency (2 kHz) voltage pulse. Because of the bistability, it can be used for energy-saving switchable privacy control and architectural windows.

  13. Inhibitory interactions promote frequent bistability among competing bacteria.

    PubMed

    Wright, Erik S; Vetsigian, Kalin H

    2016-04-21

    It is largely unknown how the process of microbial community assembly is affected by the order of species arrival, initial species abundances and interactions between species. A minimal way of capturing competitive abilities in a frequency-dependent manner is with an invasibility network specifying whether a species at low abundance can increase in frequency in an environment dominated by another species. Here, using a panel of prolific small-molecule producers and a habitat with feast-and-famine cycles, we show that the most abundant strain can often exclude other strains--resulting in bistability between pairs of strains. Instead of a single winner, the empirically determined invasibility network is ruled by multiple strains that cannot invade each other, and does not contain loops of cyclic dominance. Antibiotic inhibition contributes to bistability by helping producers resist invasions while at high abundance and by reducing producers' ability to invade when at low abundance.

  14. Random-order fractional bistable system and its stochastic resonance

    NASA Astrophysics Data System (ADS)

    Gao, Shilong; Zhang, Li; Liu, Hui; Kan, Bixia

    2017-01-01

    In this paper, the diffusion motion of Brownian particles in a viscous liquid suffering from stochastic fluctuations of the external environment is modeled as a random-order fractional bistable equation, and as a typical nonlinear dynamic behavior, the stochastic resonance phenomena in this system are investigated. At first, the derivation process of the random-order fractional bistable system is given. In particular, the random-power-law memory is deeply discussed to obtain the physical interpretation of the random-order fractional derivative. Secondly, the stochastic resonance evoked by random-order and external periodic force is mainly studied by numerical simulation. In particular, the frequency shifting phenomena of the periodical output are observed in SR induced by the excitation of the random order. Finally, the stochastic resonance of the system under the double stochastic excitations of the random order and the internal color noise is also investigated.

  15. Bistability between equatorial and axial dipoles during magnetic field reversals.

    PubMed

    Gissinger, Christophe; Petitdemange, Ludovic; Schrinner, Martin; Dormy, Emmanuel

    2012-06-08

    Numerical simulations of the geodynamo in the presence of heterogeneous heating are presented. We study the dynamics and the structure of the magnetic field when the equatorial symmetry of the flow is broken. If the symmetry breaking is sufficiently strong, the m=0 axial dipolar field is replaced by a hemispherical magnetic field, dominated by an oscillating m=1 magnetic field. Moreover, for moderate symmetry breaking, a bistability between the axial and the equatorial dipole is observed. In this bistable regime, the axial magnetic field exhibits chaotic switches of its polarity, involving the equatorial dipole during the transition period. This new scenario for magnetic field reversals is discussed within the framework of Earth's dynamo.

  16. Intrinsic optical bistability in a strongly driven Rydberg ensemble

    NASA Astrophysics Data System (ADS)

    de Melo, Natalia R.; Wade, Christopher G.; Šibalić, Nikola; Kondo, Jorge M.; Adams, Charles S.; Weatherill, Kevin J.

    2016-06-01

    We observe and characterize intrinsic optical bistability in a dilute Rydberg vapor. The bistability is characterized by sharp jumps between states of low and high Rydberg occupancy with jump-up and -down positions displaying hysteresis depending on the direction in which the control parameter is changed. We find that the shift in frequency of the jump point scales with the fourth power of the principal quantum number. Also, the width of the hysteresis window increases with increasing principal quantum number, before reaching a peak and then closing again. The experimental results are consistent with predictions from a simple theoretical model based on semiclassical Maxwell-Bloch equations including the effects of interaction-induced broadening and level shifts. These results provide insight into the dynamics of driven dissipative systems.

  17. Modeling bistable behaviors in morphing structures through finite element simulations.

    PubMed

    Guo, Qiaohang; Zheng, Huang; Chen, Wenzhe; Chen, Zi

    2014-01-01

    Bistable structures, exemplified by the Venus flytrap and slap bracelets, can transit between different configurations upon certain external stimulation. Here we study, through three-dimensional finite element simulations, the bistable behaviors in elastic plates in the absence of terminate loads, but with pre-strains in one (or both) of the two composite layers. Both the scenarios with and without a given geometric mis-orientation angle are investigated, the results of which are consistent with recent theoretical and experimental studies. This work can open ample venues for programmable designs of plant/shell structures with large deformations, with applications in designing bio-inspired robotics for biomedical research and morphing/deployable structures in aerospace engineering.

  18. Emergent bistability by a growth-modulating positive feedback circuit.

    PubMed

    Tan, Cheemeng; Marguet, Philippe; You, Lingchong

    2009-11-01

    Synthetic gene circuits are often engineered by considering the host cell as an invariable 'chassis'. Circuit activation, however, may modulate host physiology, which in turn can substantially impact circuit behavior. We illustrate this point by a simple circuit consisting of mutant T7 RNA polymerase (T7 RNAP*) that activates its own expression in the bacterium Escherichia coli. Although activation by the T7 RNAP* is noncooperative, the circuit caused bistable gene expression. This counterintuitive observation can be explained by growth retardation caused by circuit activation, which resulted in nonlinear dilution of T7 RNAP* in individual bacteria. Predictions made by models accounting for such effects were verified by further experimental measurements. Our results reveal a new mechanism of generating bistability and underscore the need to account for host physiology modulation when engineering gene circuits.

  19. Phase-bistable Kerr cavity solitons and patterns

    NASA Astrophysics Data System (ADS)

    de Valcárcel, Germán J.; Staliunas, Kestutis

    2013-04-01

    We study pattern formation in a passive nonlinear optical cavity on the basis of the classic Lugiato-Lefever model with a periodically modulated injection. When the injection amplitude sign alternates, e.g., following a sinusoidal modulation in time or in space, a phase-bistable response emerges, which is at the root of the spatial pattern formation in the system. An asymptotic description is given in terms of a damped nonlinear Schrödinger equation with parametric amplification, which allows gaining insight into the basic spatiotemporal dynamics of the system. One- and two-dimensional phase-bistable spatial patterns, such as bright and dark-ring cavity solitons and labyrinths, are demonstrated.

  20. Stochastic sensitivity of a bistable energy model for visual perception

    NASA Astrophysics Data System (ADS)

    Pisarchik, Alexander N.; Bashkirtseva, Irina; Ryashko, Lev

    2017-01-01

    Modern trends in physiology, psychology and cognitive neuroscience suggest that noise is an essential component of brain functionality and self-organization. With adequate noise the brain as a complex dynamical system can easily access different ordered states and improve signal detection for decision-making by preventing deadlocks. Using a stochastic sensitivity function approach, we analyze how sensitive equilibrium points are to Gaussian noise in a bistable energy model often used for qualitative description of visual perception. The probability distribution of noise-induced transitions between two coexisting percepts is calculated at different noise intensity and system stability. Stochastic squeezing of the hysteresis range and its transition from positive (bistable regime) to negative (intermittency regime) are demonstrated as the noise intensity increases. The hysteresis is more sensitive to noise in the system with higher stability.

  1. Controllable optical bistability and multistability in asymmetric double quantum wells via spontaneously generated coherence

    SciTech Connect

    Chen, Yuan; Deng, Li; Chen, Aixi

    2015-02-15

    We investigate the nonlinear optical phenomena of the optical bistability and multistability via spontaneously generated coherence in an asymmetric double quantum well structure coupled by a weak probe field and a controlling field. It is shown that the threshold and hysteresis cycle of the optical bistability can be conveniently controlled only by adjusting the intensity of the SGC or the controlling field. Moreover, switching between optical bistability and multistability can be achieved. These studies may have practical significance for the preparation of optical bistable switching device.

  2. Ultrafast switching based on field optical bistability in nano-film of semiconductor

    NASA Astrophysics Data System (ADS)

    Trofimov, Vyacheslav A.; Egorenkov, Vladimir A.; Loginova, Maria M.

    2016-09-01

    Using computer simulation, we show a possibility of ultrafast switching between stable states of an optical bistable device based on nano-film of semiconductor. Optical bistability occurs because of nonlinear dependence of semiconductor absorption coefficient on electric field potential. Electric field is induced by a laser pulse due to charged particles generation. The main feature of this bistable element is low absorption energy, which is necessary for switching, in comparison with bistable element based on other physical mechanism of laser energy absorption. For computer simulation of a problem under consideration a new finite-difference scheme is proposed using the original iterative process.

  3. Autocatalytic, bistable, oscillatory networks of biologically relevant organic reactions.

    PubMed

    Semenov, Sergey N; Kraft, Lewis J; Ainla, Alar; Zhao, Mengxia; Baghbanzadeh, Mostafa; Campbell, Victoria E; Kang, Kyungtae; Fox, Jerome M; Whitesides, George M

    2016-09-29

    Networks of organic chemical reactions are important in life and probably played a central part in its origin. Network dynamics regulate cell division, circadian rhythms, nerve impulses and chemotaxis, and guide the development of organisms. Although out-of-equilibrium networks of chemical reactions have the potential to display emergent network dynamics such as spontaneous pattern formation, bistability and periodic oscillations, the principles that enable networks of organic reactions to develop complex behaviours are incompletely understood. Here we describe a network of biologically relevant organic reactions (amide formation, thiolate-thioester exchange, thiolate-disulfide interchange and conjugate addition) that displays bistability and oscillations in the concentrations of organic thiols and amides. Oscillations arise from the interaction between three subcomponents of the network: an autocatalytic cycle that generates thiols and amides from thioesters and dialkyl disulfides; a trigger that controls autocatalytic growth; and inhibitory processes that remove activating thiol species that are produced during the autocatalytic cycle. In contrast to previous studies that have demonstrated oscillations and bistability using highly evolved biomolecules (enzymes and DNA) or inorganic molecules of questionable biochemical relevance (for example, those used in Belousov-Zhabotinskii-type reactions), the organic molecules we use are relevant to metabolism and similar to those that might have existed on the early Earth. By using small organic molecules to build a network of organic reactions with autocatalytic, bistable and oscillatory behaviour, we identify principles that explain the ways in which dynamic networks relevant to life could have developed. Modifications of this network will clarify the influence of molecular structure on the dynamics of reaction networks, and may enable the design of biomimetic networks and of synthetic self-regulating and evolving

  4. A Precise Temperature-Responsive Bistable Switch Controlling Yersinia Virulence

    PubMed Central

    Klein, Johannes; Bücker, René; Herbst, Katharina; Heroven, Ann Kathrin; Pisano, Fabio; Wittmann, Christoph; Münch, Richard; Müller, Johannes; Jahn, Dieter

    2016-01-01

    Different biomolecules have been identified in bacterial pathogens that sense changes in temperature and trigger expression of virulence programs upon host entry. However, the dynamics and quantitative outcome of this response in individual cells of a population, and how this influences pathogenicity are unknown. Here, we address these questions using a thermosensing virulence regulator of an intestinal pathogen (RovA of Yersinia pseudotuberculosis) as a model. We reveal that this regulator is part of a novel thermoresponsive bistable switch, which leads to high- and low-invasive subpopulations within a narrow temperature range. The temperature range in which bistability is observed is defined by the degradation and synthesis rate of the regulator, and is further adjustable via a nutrient-responsive regulator. The thermoresponsive switch is also characterized by a hysteretic behavior in which activation and deactivation occurred on vastly different time scales. Mathematical modeling accurately mirrored the experimental behavior and predicted that the thermoresponsiveness of this sophisticated bistable switch is mainly determined by the thermo-triggered increase of RovA proteolysis. We further observed RovA ON and OFF subpopulations of Y. pseudotuberculosis in the Peyer’s patches and caecum of infected mice, and that changes in the RovA ON/OFF cell ratio reduce tissue colonization and overall virulence. This points to a bet-hedging strategy in which the thermoresponsive bistable switch plays a key role in adapting the bacteria to the fluctuating conditions encountered as they pass through the host’s intestinal epithelium and suggests novel strategies for the development of antimicrobial therapies. PMID:28006011

  5. Bistable transmission of antiferromagnetic Fabry-Perot resonator

    NASA Astrophysics Data System (ADS)

    Zhao, Yan; Fu, Shu-Fang; Li, Hua; Wang, Xuan-Zhang

    2011-07-01

    We investigate the magnetically nonlinear optical transmission of the Fabry-Perot resonator filled with an antiferromagnetic medium. In a proper incident power range, we find very large nonlinear phase shifts so that the bistable switches appear even for a very thin medium film, such as of half-wavelength thickness. All results are based on antiferromagnetic MnF2 medium with far-infrared resonant frequencies.

  6. Autocatalytic, bistable, oscillatory networks of biologically relevant organic reactions

    NASA Astrophysics Data System (ADS)

    Semenov, Sergey N.; Kraft, Lewis J.; Ainla, Alar; Zhao, Mengxia; Baghbanzadeh, Mostafa; Campbell, Victoria E.; Kang, Kyungtae; Fox, Jerome M.; Whitesides, George M.

    2016-09-01

    Networks of organic chemical reactions are important in life and probably played a central part in its origin. Network dynamics regulate cell division, circadian rhythms, nerve impulses and chemotaxis, and guide the development of organisms. Although out-of-equilibrium networks of chemical reactions have the potential to display emergent network dynamics such as spontaneous pattern formation, bistability and periodic oscillations, the principles that enable networks of organic reactions to develop complex behaviours are incompletely understood. Here we describe a network of biologically relevant organic reactions (amide formation, thiolate-thioester exchange, thiolate-disulfide interchange and conjugate addition) that displays bistability and oscillations in the concentrations of organic thiols and amides. Oscillations arise from the interaction between three subcomponents of the network: an autocatalytic cycle that generates thiols and amides from thioesters and dialkyl disulfides; a trigger that controls autocatalytic growth; and inhibitory processes that remove activating thiol species that are produced during the autocatalytic cycle. In contrast to previous studies that have demonstrated oscillations and bistability using highly evolved biomolecules (enzymes and DNA) or inorganic molecules of questionable biochemical relevance (for example, those used in Belousov-Zhabotinskii-type reactions), the organic molecules we use are relevant to metabolism and similar to those that might have existed on the early Earth. By using small organic molecules to build a network of organic reactions with autocatalytic, bistable and oscillatory behaviour, we identify principles that explain the ways in which dynamic networks relevant to life could have developed. Modifications of this network will clarify the influence of molecular structure on the dynamics of reaction networks, and may enable the design of biomimetic networks and of synthetic self-regulating and evolving

  7. Bistability in the sine-Gordon equation: The ideal switch

    SciTech Connect

    Khomeriki, R.; Leon, J.

    2005-05-01

    The sine-Gordon equation, used as the representative nonlinear wave equation, presents a bistable behavior resulting from nonlinearity and generating hysteresis properties. We show that the process can be understood in a comprehensive analytical formulation and that it is a generic property of nonlinear systems possessing a natural band gap. The approach allows one to discover that the sine-Gordon equation can work as an ideal switch by reaching a transmissive regime with vanishing driving amplitude.

  8. A Bistable Microelectronic Circuit for Sensing Extremely Low Electric Field

    DTIC Science & Technology

    2010-01-01

    explored unidirectionally coupled overdamped bistable systems that admit self-sustained oscillations when the coupling parameter is swept through...capable of resolving field changes as low as 150 pT by observing the changes in the oscillation characteristics of the coupled sensors. In this paper...established that a well-designed coupling scheme, together with an appropriate choice of initial condi- tions, can induce oscillations i.e., periodic

  9. Bistability, Noise and Information Processing in Sensory Neurons

    DTIC Science & Technology

    1993-11-01

    INFORMATION PROCESSING IN SENSORY PR: MA65 NEURONS . I PE: 0601153N 6. AUTHOR(S) WU: DN300034 A. R. Bulsara 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS...interpretation of time series data from firing events in periodically stimulated sensory neurons . A theoretical model, representing the neurons as bistable...Expert Systems, November 1993, pp. 11-14. DT70 QUALITY INSPECTED B 14 SUBJECT TERMS 15 NUMBER OF PAGES neural models single neurons stochastic

  10. Intrinsic Bistable Photonic Materials by Copper Colloid Formation in Silica

    DTIC Science & Technology

    1992-07-31

    Maximum 200 words) Eon implantation has been used to assemble planar thin films of metallic nanoclusters embedded in a dilectric. Gold and copper were...AND SUBTITLE S. FUNDING NUMBERS Intrinsic Bistable Photonic Materials by Copper Colloid C Formation in Silica DAALO3-9 IG-0028 / c. AUTHOR(S) Robert H...both found to produce nanosize metal clusters in silica. Both the size and size distribution of the metallic nanoclusters were characterized by

  11. Intrinsic Bistable Photonic Materials by Copper Colloid Formation in Silica.

    DTIC Science & Technology

    1992-07-31

    implantation has been used to assemble planar thin films of metallic nanoclusters embedded in a dilectric. Gold and copper were both found to produce nanosize...AND SUBTITLE S. FUNDING NUMBERS Intrinsic Bistable Photonic Materials by Copper Colloid Formation in Silica 6. AUTHOR(S) J Robert H. Magruder, III 7...metal clusters in silica. Both the size and size distribution of the metallic nanoclusters were characterized by transmission electron microscopy. The

  12. Brain mechanisms for simple perception and bistable perception.

    PubMed

    Wang, Megan; Arteaga, Daniel; He, Biyu J

    2013-08-27

    When faced with ambiguous sensory inputs, subjective perception alternates between the different interpretations in a stochastic manner. Such multistable perception phenomena have intrigued scientists and laymen alike for over a century. Despite rigorous investigations, the underlying mechanisms of multistable perception remain elusive. Recent studies using multivariate pattern analysis revealed that activity patterns in posterior visual areas correlate with fluctuating percepts. However, increasing evidence suggests that vision--and perception at large--is an active inferential process involving hierarchical brain systems. We applied searchlight multivariate pattern analysis to functional magnetic resonance imaging signals across the human brain to decode perceptual content during bistable perception and simple unambiguous perception. Although perceptually reflective activity patterns during simple perception localized predominantly to posterior visual regions, bistable perception involved additionally many higher-order frontoparietal and temporal regions. Moreover, compared with simple perception, both top-down and bottom-up influences were dramatically enhanced during bistable perception. We further studied the intermittent presentation of ambiguous images--a condition that is known to elicit perceptual memory. Compared with continuous presentation, intermittent presentation recruited even more higher-order regions and was accompanied by further strengthened top-down influences but relatively weakened bottom-up influences. Taken together, these results strongly support an active top-down inferential process in perception.

  13. Bistable liquid crystal device fabricated via microscale liquid crystal alignment

    NASA Astrophysics Data System (ADS)

    Honma, Michinori; Toyoshima, Wataru; Nose, Toshiaki

    2016-10-01

    Bistable liquid crystal (LC) molecular orientation properties in micropatterned LC cells were investigated experimentally and theoretically. When an LC cell was heated to the phase-transition temperature and then cooled, an LC orientation with ±π/2-twist domains (±π/2-twist mode) was obtained. Furthermore, a different LC orientation with ±π-twist domains (±π-twist mode) was observed when a 10-V potential was applied across a sample LC cell. Both orientation states were stably retained over a long period. Herein, cross-sectional LC orientation models in the ±π/2- and ±π-twist modes are proposed to explain the generation and behavior of two different disclination lines. The total energies within one period in the ±π/2- and ±π-twist modes (F±π/2 and F±π, respectively) were estimated theoretically. These energies were found to depend on the LC layer thickness and to cross over at a certain thickness; this indicates that F±π is equal to F±π/2 at this equilibrium thickness. The best temporal stability is likely attained at this equilibrium thickness. We demonstrated a bistable color-switching device by combining a full-wave plate and crossed polarizers. When these optical components were configured properly, stable bistable switching between two colors was achieved.

  14. Bistability induced by generalist natural enemies can reverse pest invasions.

    PubMed

    Madec, Sten; Casas, Jérôme; Barles, Guy; Suppo, Christelle

    2017-01-17

    Analytical modeling of predator-prey systems has shown that specialist natural enemies can slow, stop and even reverse pest invasions, assuming that the prey population displays a strong Allee effect in its growth. We aimed to formalize the conditions in which spatial biological control can be achieved by generalists, through an analytical approach based on reaction-diffusion equations. Using comparison principles, we obtain sufficient conditions for control and for invasion, based on scalar bistable partial differential equations. The ability of generalist predators to control prey populations with logistic growth lies in the bistable dynamics of the coupled system, rather than in the bistability of prey-only dynamics as observed for specialist predators attacking prey populations displaying Allee effects. As a consequence, prey control is predicted to be possible when space is considered in additional situations other than those identified without considering space. The reverse situation is also possible. None of these considerations apply to spatial predator-prey systems with specialist natural enemies.

  15. Analysis on optical bistability parameters in photonic switching devices

    NASA Astrophysics Data System (ADS)

    Sarafraz, Hossein; Sayeh, Mohammad R.

    2016-06-01

    An investigation has been done on the parameters of a hysteretic bistable optical Schmitt trigger device. From a design point of view, it is important to know the regions where this bistability occurs and is fully functional with respect to its subsystem parameters. Otherwise experimentally reaching such behavior will be very time-consuming and frustrating, especially with multiple devices employed in a single photonic circuit. A photonic Schmitt trigger consisting of two feedbacked inverting amplifiers, each characterized by -m (slope), A (y-intercept), and B (constant base) parameters is considered. This system is investigated dynamically with a varying input to find its stable and unstable states both mathematically and with simulation. In addition to a complete mathematical analysis of the system, we also describe how m, A, and B can be properly chosen in order to satisfy certain system conditions that result in bistability. More restrictions are also imposed to these absolute conditions by the system conditions as will be discussed. Finally, all results are verified in a more realistic photonic simulation.

  16. Bistable flapping of flexible flyers in oscillatory flow

    NASA Astrophysics Data System (ADS)

    Huang, Yangyang; Kanso, Eva

    2016-11-01

    Biological and bio-inspired flyers move by shape actuation. The direct control of shape variables for locomotory purposes is well studied. Less is known about indirect shape actuation via the fluid medium. Here, we consider a flexible Λ-flyer in oscillatory flow that is free to flap and rotate around its fixed apex. We study its motion in the context of the inviscid vortex sheet model. We first analyze symmetric flapping about the vertical axis of gravity. We find that there is a finite value of the flexibility that maximizes both the flapping amplitude and elastic energy storage. Our results show that rather than resonance, the flyer relies on fluidic effects to optimize these two quantities. We then perturb the flyer away from the vertical and analyze its stability. Four distinct types of rolling behavior are identified: mono-stable, bistable, bistable oscillatory rotations and chaotic dynamics. We categorize these types of behavior in terms of the flyer's and flow parameters. In particular, the transition from mono-stable to bistable behavior occurs at a constant value of the product of the flow amplitude and acceleration. This product can be interpreted as the ratio of fluidic drag to gravity, confirming the fluid role in this transition.

  17. Asymmetry bistability for a coupled dielectric elastomer minimum energy structure

    NASA Astrophysics Data System (ADS)

    Li, Wen-Bo; Zhang, Wen-Ming; Zou, Hong-Xiang; Peng, Zhi-Ke; Meng, Guang

    2016-11-01

    In this paper, a novel design of asymmetry bistability for a coupled dielectric elastomer minimum energy structure (DEMES) is presented. The structure can be stable both in the stretched and curved configurations, which are induced by the geometry coupling effect of two DEMESs with perpendicular bending axes. The unique asymmetry bistability and fully flexible compact design of the coupled DEMES can enrich the active morphing modes of the dielectric elastomer actuators. A theoretical model of the system’s strain energy is established to explain the bistability. Furthermore, a prototype is fabricated to verify the conceptual design. The experimental results show that when the applied voltage is below a critical transition one, the structure behaves as a conventional DEMES, once the applied voltage exceeds the critical voltage, the structure could change from the stretched (curved) configuration to the curved (stretched) configuration abruptly and maintain in a new stable configuration when the voltage is removed. A multi-segment structure with the coupled DEMES is also presented and fabricated, and it displays various voltage-actuated morphings. It indicates that the coupled DEMES and the multi-segment structures can be useful for the soft and shape-shifting robots.

  18. Bistability and chaos at low levels of quanta.

    PubMed

    Gevorgyan, T V; Shahinyan, A R; Chew, Lock Yue; Kryuchkyan, G Yu

    2013-08-01

    We study nonlinear phenomena of bistability and chaos at a level of few quanta. For this purpose, we consider a single-mode dissipative oscillator with strong Kerr nonlinearity with respect to the dissipation rate driven by a monochromatic force as well as by a train of Gaussian pulses. The quantum effects and decoherence in the oscillatory mode are investigated in the framework of the purity of states and the Wigner functions calculated from the master equation. We demonstrate the quantum chaotic regime by means of a comparison between the contour plots of the Wigner functions and the strange attractors on the classical Poincaré section. Considering bistability at a low limit of quanta, we analyze the minimal level of excitation numbers at which the bistable regime of the system is displayed. We also discuss the formation of an oscillatory chaotic regime by varying oscillatory excitation numbers at ranges of a few quanta. We demonstrate quantum-interference phenomena that are assisted hysteresis-cycle behavior and quantum chaos for the oscillator driven by a train of Gaussian pulses. We establish the border of quantum-classical correspondence for chaotic regimes in the case of strong nonlinearities.

  19. A bistable microelectronic circuit for sensing extremely low electric field

    NASA Astrophysics Data System (ADS)

    In, Visarath; Longhini, Patrick; Liu, Norman; Kho, Andy; Neff, Joseph D.; Palacios, Antonio; Bulsara, Adi R.

    2010-01-01

    Bistable systems are prevalently found in many sensor systems. Recently, we have explored (unidirectionally) coupled overdamped bistable systems that admit self-sustained oscillations when the coupling parameter is swept through the critical points of bifurcations [V. In et al., Phys. Rev. E 68, 045102-R (2003); A. R. Bulsara et al., Phys. Rev. E 70, 036103 (2004); V. In et al., Phys. Rev. E 72, 045104-R (2005); Phys Rev. Lett. 91, 244101 (2003); A. Palacios et al., Phys. Rev. E 72, 026211 (2005); V. In et al., Phys. Rev. E 73, 066121 (2006)]. Complex behaviors emerge, in addition, from these (relatively simple) coupled systems when an external signal (ac or dc) is applied uniformly to all the elements in the array. In particular, we have demonstrated this emergent behavior for a coupled system comprised of mean-field hysteretic elements describing a "single-domain" ferromagnetic sample. The results are being used to develop extremely sensitive magnetic sensors capable of resolving field changes as low as 150 pT by observing the changes in the oscillation characteristics of the coupled sensors. In this paper, we explore the underlying dynamics of a coupled bistable system realized by coupling microelectronic circuits, which belong to the same class of dynamics as the aforementioned (ferromagnetic) system, with the nonlinear features and coupling terms modeled by hyperbolic tangent nonlinearities; these nonlinearities stem from the operational transconductance amplifiers used in constructing the microcircuits. The emergent behavior is being applied to develop an extremely sensitive electric-field sensor.

  20. Bistability of silence and seizure-like bursting.

    PubMed

    Barnett, William; O'Brien, Gabrielle; Cymbalyuk, Gennady

    2013-11-15

    Neuronal circuits exhibiting seizure episodes have been shown to be prone to multistability. The coexistence of normal and pathological regimes could explain why seizures suddenly start and stop. Methods developed in dynamical systems theory are powerful tools for determining the cellular mechanisms that underlie multistable seizure dynamics. Here, we present two different approaches to assess multistability in a model neuron. In this model, we identified a bursting regime and a silent regime. First, we investigated properties of a square pulse of injected current which produced a switch from seizure-like bursting into silence. By systematically varying the phase and amplitude of the pulse, we found contiguous pulse parameter sets, so-called windows, that satisfied this criterion, and we determined the dependence of these windows on the parameter gleak. As gleak increased, the size of each window scaled according to the same law as the amplitude of the saddle orbit. Second, we examined the role of each current in supporting bistability of bursting and silence. We defined the index of propensity for multistability as the range of gleak for which bursting and silence coexisted. We computed this quantity while iteratively varying the maximal conductance of each voltage-gated current one at a time. Increasing the maximal conductance of the slow potassium current or the hyperpolarization-activated current increased the range of bistability. In contrast, decreasing the maximal conductance of the persistent sodium current increased the range of bistability. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Spatial and Temporal Characteristics of Optical Bistability in Indium Antimonide.

    NASA Astrophysics Data System (ADS)

    Young, James

    1987-12-01

    Available from UMI in association with The British Library. This thesis is concerned with three main aspects related to optical bistability in InSb at 80 K; namely, switching dynamics, transverse effects (carier diffusion) and noise related phenomena. Switching speeds have been shown to be dependent on the amount by which the system is overdriven, i.e. <=q10 ns for a vastly overdriven system or > 1 mus (and theoretically tending to infinity) for a critically driven system. In the latter case, switching speeds have also been shown to vary dramatically depending on the noise content of the whole system, which leads to the phenomenon of bimodality (a double-peaked temporal probability distribution of switching). All-optical computational device applications have also been investigated both theoretically and experimentally where the inherent parallelism of such devices may allow data processing rates of ~ 10^9 bauds per square centimetre of device area used. This processing rate is limited only by the number of optical logic elements one can 'pack' onto the surface of the material which in turn is limited by the degree of cross-talk between them. This is investigated for both bistable and non-bistable devices.

  2. Experimental chaotic quantification in bistable vortex induced vibration systems

    NASA Astrophysics Data System (ADS)

    Huynh, B. H.; Tjahjowidodo, T.

    2017-02-01

    The study of energy harvesting by means of vortex induced vibration systems has been initiated a few years ago and it is considered to be potential as a low water current energy source. The energy harvester is realized by exposing an elastically supported blunt structure under water flow. However, it is realized that the system will only perform at a limited operating range (water flow) that is attributed to the resonance phenomenon that occurs only at a frequency that corresponds to the fluid flow. An introduction of nonlinear elements seems to be a prominent solution to overcome the problem. Among many nonlinear elements, a bistable spring is known to be able to improve the harvested power by a vortex induced vibrations (VIV) based energy converter at the low velocity water flows. However, it is also observed that chaotic vibrations will occur at different operating ranges that will erratically diminish the harvested power and cause a difficulty in controlling the system that is due to the unpredictability in motions of the VIV structure. In order to design a bistable VIV energy converter with improved harvested power and minimum negative effect of chaotic vibrations, the bifurcation map of the system for varying governing parameters is highly on demand. In this study, chaotic vibrations of a VIV energy converter enhanced by a bistable stiffness element are quantified in a wide range of the governing parameters, i.e. damping and bistable gap. Chaotic vibrations of the bistable VIV energy converter are simulated by utilization of a wake oscillator model and quantified based on the calculation of the Lyapunov exponent. Ultimately, a series of experiments of the system in a water tunnel, facilitated by a computer-based force-feedback testing platform, is carried out to validate the existence of chaotic responses. The main challenge in dealing with experimental data is in distinguishing chaotic response from noise-contaminated periodic responses as noise will smear

  3. The structure of rigid functions

    NASA Astrophysics Data System (ADS)

    Balka, Richárd; Elekes, Márton

    2008-09-01

    A function is called vertically rigid if graph(cf) is isometric to graph(f) for all c[not equal to]0. We prove Jankovic's conjecture by showing that a continuous function is vertically rigid if and only if it is of the form a+bx or a+bekx (). We answer the question of Cain, Clark and Rose by showing that there exists a Borel measurable vertically rigid function which is not of the above form. We discuss the Lebesgue and Baire measurable case, consider functions bounded on some interval and functions with at least one point of continuity. We also introduce horizontally rigid functions, and show that a certain structure theorem can be proved without assuming any regularity.

  4. Development of low anchoring strength liquid crystal mixtures for bistable nematic displays

    NASA Astrophysics Data System (ADS)

    Stoenescu, D.; Gallaire, D.; Faget, L.; Lamarque-Forget, S.; Joly, S.; Dubois, J.-C.; Martinot-Lagarde, Ph.; Dozov, I.

    2006-02-01

    The recent Bistable Nematic (BiNem (R)) LCD technology presents long term bistability, high level passive matrix multiplexing and high optical quality. The BiNem device, based on anchoring breaking, needs specific low anchoring strength materials - alignment layers and liquid crystal mixtures. We present here our approach to develop nematic mixtures with wide enough temperature range and low zenithal anchoring energy.

  5. Experimental investigation of broadband energy harvesting of a bi-stable composite piezoelectric plate

    NASA Astrophysics Data System (ADS)

    Pan, Diankun; Ma, Benbiao; Dai, Fuhong

    2017-03-01

    In this work, a bi-stable vibration energy harvester is presented to scavenge energy from ambient vibrations over a wide frequency range. This bi-stable harvester consists of a bi-stable hybrid composite plate as host structure and several pieces of piezoelectric ceramics. Three linear harvesters with the same geometry were employed as the control samples to illustrate the advantages of this bi-stable harvester. The voltage–frequency responses were measured with different g-level excitations, and the output powers across various resistances were measured at different frequencies and accelerations. Unlike the linear harvesters which are effective only near their natural frequencies, the obvious nonlinearities of this bi-stable harvester broaden its working bandwidth. Additionally, the characteristics of this bi-stable host structure contribute to the output power. Under the same condition, when this bi-stable harvester is under cross-well oscillation pattern the maximum output powers are several times higher than those of the linear harvesters. The measured highest output power of this bi-stable harvester is 36.2 mW with 38 Hz frequency and 5g acceleration (g = 9.8 m s‑2).

  6. Optical logic and signal processing using a semiconductor laser diode-based optical bistability device

    NASA Astrophysics Data System (ADS)

    Zhang, Yuancheng; Song, Qian; He, Shaowei

    1995-02-01

    Using an optical fibre-coupled semiconductor laser diode OBD with output feedback pumping operation in 5 modes (differential gain, bistability, zero-bias, inverted differential gain, and inverted bistability) has been realized respectively, and 5 elementary optical logic functions (AND, OR, NOT, NAND, and NOR) and some optical signal processing such as limiting, reshaping, and triggering have been implemented.

  7. Linear Population Allocation by Bistable Switches in Response to Transient Stimulation

    PubMed Central

    Neu, John; Tanouchi, Yu; Lee, Tae Jun; You, Lingchong

    2014-01-01

    Many cellular decision processes, including proliferation, differentiation, and phenotypic switching, are controlled by bistable signaling networks. In response to transient or intermediate input signals, these networks allocate a population fraction to each of two distinct states (e.g. OFF and ON). While extensive studies have been carried out to analyze various bistable networks, they are primarily focused on responses of bistable networks to sustained input signals. In this work, we investigate the response characteristics of bistable networks to transient signals, using both theoretical analysis and numerical simulation. We find that bistable systems exhibit a common property: for input signals with short durations, the fraction of switching cells increases linearly with the signal duration, allowing the population to integrate transient signals to tune its response. We propose that this allocation algorithm can be an optimal response strategy for certain cellular decisions in which excessive switching results in lower population fitness. PMID:25141235

  8. Bistability and Bifurcation in Minimal Self-Replication and Nonenzymatic Catalytic Networks.

    PubMed

    Wagner, Nathaniel; Mukherjee, Rakesh; Maity, Indrajit; Peacock-Lopez, Enrique; Ashkenasy, Gonen

    2017-01-23

    Bistability and bifurcation, found in a wide range of biochemical networks, are central to the proper function of living systems. We investigate herein recent model systems that show bistable behavior based on nonenzymatic self-replication reactions. Such models were used before to investigate catalytic growth, chemical logic operations, and additional processes of self-organization leading to complexification. By solving for their steady-state solutions by using various analytical and numerical methods, we analyze how and when these systems yield bistability and bifurcation and discover specific cases and conditions producing bistability. We demonstrate that the onset of bistability requires at least second-order catalysis and results from a mismatch between the various forward and reverse processes. Our findings may have far-reaching implications in understanding early evolutionary processes of complexification, emergence, and potentially the origin of life.

  9. Determinants of bistability in induction of the Escherichia coli lac operon.

    PubMed

    Dreisigmeyer, D W; Stajic, J; Nemenman, I; Hlavacek, W S; Wall, M E

    2008-09-01

    The authors have developed a mathematical model of regulation of expression of the Escherichia coli lac operon, and have investigated bistability in its steady-state induction behaviour in the absence of external glucose. Numerical analysis of equations describing regulation by artificial inducers revealed two natural bistability parameters that can be used to control the range of inducer concentrations over which the model exhibits bistability. By tuning these bistability parameters, the authors found a family of biophysically reasonable systems that are consistent with an experimentally determined bistable region for induction by thio-methylgalactoside (TMG) (in Ozbudak et al. Nature, 2004, 427; p. 737). To model regulation by lactose, the authors developed similar equations in which allolactose, a metabolic intermediate in lactose metabolism and a natural inducer of lac, is the inducer. For biophysically reasonable parameter values, these equations yield no bistability in response to induction by lactose - only systems with an unphysically small permease-dependent export effect can exhibit small amounts of bistability for limited ranges of parameter values. These results cast doubt on the relevance of bistability in the lac operon within the natural context of E. coli, and help shed light on the controversy among existing theoretical studies that address this issue. The results also motivate a deeper experimental characterisation of permease-independent transport of lac inducers, and suggest an experimental approach to address the relevance of bistability in the lac operon within the natural context of E. coli. The sensitivity of lac bistability to the type of inducer emphasises the importance of metabolism in determining the functions of genetic regulatory networks.

  10. Bistability in a stochastic RNA-mediated gene network

    NASA Astrophysics Data System (ADS)

    Lloyd-Price, Jason; Ribeiro, Andre S.

    2013-09-01

    Small regulatory RNAs (srRNAs) are important regulators of gene expression in eukaryotes and prokaryotes. A common motif containing srRNA is a bistable two-gene motif where one gene codes for a transcription factor (TF) which represses the transcription of the second gene, whose transcript is a srRNA which targets the first gene's transcript. Here, we investigate the properties of this motif in a stochastic model which takes the low copy numbers of the RNA components into account. First, we examine the conditions for stability of the two “noisy attractors.” We find that for realistic low copy numbers, extreme, but within realistic intervals, mutual repression strengths are required to compensate for the variability of the RNA numbers and thus, achieve long-term bistability. Second, the promoter initiation kinetics is found to strongly influence the bistability of the switch. Super-Poissonian RNA production disrupts the ability of the srRNA to silence its target, though sub-Poissonian RNA production does not rule out the need for strong mutual repression. Finally, we show that asymmetry between the two interactions forming the switch allows an external input to induce the transition from “high srRNA” to “‘high TF” more easily (i.e., with a shorter input) than in the opposite direction. We hypothesize that this asymmetric switching property allows these circuits to be more sensitive to one external input, without sacrificing the stability of one of the noisy attractors.

  11. Singular Parameter Prediction Algorithm for Bistable Neural Systems

    PubMed Central

    Durand, Dominique M; Jahangiri, Anila

    2011-01-01

    An algorithm is presented to predict the intensity and timing of a singular single stimulus required to switch the state of a bistable system from repetitive activity to a stable point. The algorithm is first tested on a modified Hodgkin-Huxley model to predict the parameters of a stimulus capable of annihilating the spontaneously occurring repetitive action potentials. Elevation of the potassium equilibrium potential causes oscillations in the V, m, h and n parameters and generates periodic activity. Equations describing the time-varying behavior of these parameters can be used to predict the pulse width, coupling interval and intensity of a single anodic pulse applied between two consecutive action potentials to suppress the activity. The algorithm was then applied to predict the singular parameters of quasi-periodic epileptiform activity generated in the hippocampus slice preparation exposed to high-potassium concentrations. The results indicate that a stimulus with the estimated parameters was able to either completely annihilate the action potentials in the HH model or predict the region of unpredictable latencies. Therefore this algorithm is capable a predicting singular parameters accurately when the model is known. In the case of an experimental system where the equations of the system are not known, the algorithm predicted parameters in the range of those observed experimentally. Therefore, the algorithm could reduce significantly the amount of time required to find the singular parameters of experimental bistable systems normally obtained by a systematic exploration of the parameter space. In particular, this algorithm could be useful to predict the singular parameters of quasi periodic epileptiform activity leading to the suppression of this activity if the system is bistable. PMID:21866209

  12. Localization of Waves without Bistability: Worms in Nematic Electroconvection

    SciTech Connect

    Riecke, H.; Granzow, G.D.

    1998-07-01

    A general localization mechanism for waves in dissipative systems is identified that does not require the bistability of the basic state and the nonlinear plane-wave state. We conjecture that the mechanism explains the two-dimensional localized wave structures ({open_quotes}worms{close_quotes}) that recently have been observed in experiments on electroconvection in nematic liquid crystals where the transition to extended waves is supercritical. The mechanism accounts for the shape of the worms, their propagation direction, and certain aspects of their interaction. The dynamics of the localized waves can be steady or irregular. {copyright} {ital 1998} {ital The American Physical Society}

  13. Bistable Helmholtz solitons in cubic-quintic materials

    SciTech Connect

    Christian, J. M.; McDonald, G. S.; Chamorro-Posada, P.

    2007-09-15

    We propose a nonlinear Helmholtz equation for modeling the evolution of broad optical beams in media with a cubic-quintic intensity-dependent refractive index. This type of nonlinearity is appropriate for some semiconductor materials, glasses, and polymers. Exact analytical soliton solutions are presented that describe self-trapped nonparaxial beams propagating at any angle with respect to the reference direction. These spatially symmetric solutions are, to the best of our knowledge, the first bistable Helmholtz solitons to be derived. Accompanying conservation laws (both integral and particular forms) are also reported. Numerical simulations investigate the stability of the solitons, which appear to be remarkably robust against perturbations.

  14. Toggling bistable atoms via mechanical switching of bond angle.

    PubMed

    Sweetman, Adam; Jarvis, Sam; Danza, Rosanna; Bamidele, Joseph; Gangopadhyay, Subhashis; Shaw, Gordon A; Kantorovich, Lev; Moriarty, Philip

    2011-04-01

    We reversibly switch the state of a bistable atom by direct mechanical manipulation of bond angle using a dynamic force microscope. Individual buckled dimers at the Si(100) surface are flipped via the formation of a single covalent bond, actuating the smallest conceivable in-plane toggle switch (two atoms) via chemical force alone. The response of a given dimer to a flip event depends critically on both the local and nonlocal environment of the target atom-an important consideration for future atomic scale fabrication strategies. © 2011 American Physical Society

  15. Spatial Bistability Generates hunchback Expression Sharpness in the Drosophila Embryo

    PubMed Central

    Lopes, Francisco J. P.; Vieira, Fernando M. C.; Holloway, David M.; Bisch, Paulo M.; Spirov, Alexander V.

    2008-01-01

    During embryonic development, the positional information provided by concentration gradients of maternal factors directs pattern formation by providing spatially dependent cues for gene expression. In the fruit fly, Drosophila melanogaster, a classic example of this is the sharp on–off activation of the hunchback (hb) gene at midembryo, in response to local concentrations of the smooth anterior–posterior Bicoid (Bcd) gradient. The regulatory region for hb contains multiple binding sites for the Bcd protein as well as multiple binding sites for the Hb protein. Some previous studies have suggested that Bcd is sufficient for properly sharpened Hb expression, yet other evidence suggests a need for additional regulation. We experimentally quantified the dynamics of hb gene expression in flies that were wild-type, were mutant for hb self-regulation or Bcd binding, or contained an artificial promoter construct consisting of six Bcd and two Hb sites. In addition to these experiments, we developed a reaction–diffusion model of hb transcription, with Bcd cooperative binding and hb self-regulation, and used Zero Eigenvalue Analysis to look for multiple stationary states in the reaction network. Our model reproduces the hb developmental dynamics and correctly predicts the mutant patterns. Analysis of our model indicates that the Hb sharpness can be produced by spatial bistability, in which hb self-regulation produces two stable levels of expression. In the absence of self-regulation, the bistable behavior vanishes and Hb sharpness is disrupted. Bcd cooperative binding affects the position where bistability occurs but is not itself sufficient for a sharp Hb pattern. Our results show that the control of Hb sharpness and positioning, by hb self-regulation and Bcd cooperativity, respectively, are separate processes that can be altered independently. Our model, which matches the changes in Hb position and sharpness observed in different experiments, provides a theoretical

  16. Self-heating, bistability, and thermal switching in organic semiconductors.

    PubMed

    Fischer, A; Pahner, P; Lüssem, B; Leo, K; Scholz, R; Koprucki, T; Gärtner, K; Glitzky, A

    2013-03-22

    We demonstrate electric bistability induced by the positive feedback of self-heating onto the thermally activated conductivity in a two-terminal device based on the organic semiconductor C(60). The central undoped layer with a thickness of 300 nm is embedded between thinner n-doped layers adjacent to the contacts, minimizing injection barriers. The observed current-voltage characteristics follow the general theory for thermistors described by an Arrhenius-like conductivity law. Our findings include hysteresis phenomena and are of general relevance for the entire material class since most organic semiconductors can be described by a thermally activated conductivity.

  17. Bistability in a complementary metal oxide semiconductor inverter circuit.

    PubMed

    Carroll, Thomas L

    2005-09-01

    Radiofrequency signals can disrupt the operation of low frequency circuits. A digital inverter circuit would seem to be immune to such disruption, because its output state usually jumps abruptly between 0 and 5 V. Nevertheless, when driven with a high frequency signal, the inverter can have two coexisting stable states (which are not at 0 and 5 V). Slow switching between these states (by changing the rf signal) will produce a low frequency signal. I demonstrate the bistability in a circuit experiment and in a simple model of the circuit.

  18. Bistable Nonvolatile Elastic-Membrane Memcapacitor Exhibiting a Chaotic Behavior

    NASA Astrophysics Data System (ADS)

    Martinez-Rincon, Julian; Pershin, Yuriy V.

    2011-06-01

    We suggest a realization of a bistable non-volatile memory capacitor (memcapacitor). Its design utilizes a strained elastic membrane as a plate of a parallel-plate capacitor. The applied stress generates low and high capacitance configurations of the system. We demonstrate that a voltage pulse of an appropriate amplitude can be used to reliably switch the memcapacitor into the desired capacitance state. Moreover, charged-voltage and capacitance-voltage curves of such a system demonstrate hysteresis and transition into a chaotic regime in a certain range of ac voltage amplitudes and frequencies. Membrane memcapacitor connected to a voltage source comprises a single element nonautonomous chaotic circuit.

  19. TWEAKING BIOLOGICAL SWITCHES THROUGH A BETTER UNDERSTANDING OF BISTABILITY BEHAVIOR

    PubMed Central

    Chatterjee, Anushree; Kaznessis, Yiannis; Hu, Wei-Shou

    2009-01-01

    Many biological events are binary. The switch between mutually exclusive OFF to ON state in response to a stimulus is frequently mediated by a control circuit with a positive and/or a negative feedback. Such a system typically exhibits hysteresis with its switching ON and OFF stimulus levels dependent on the current state of the system. The system can be shown to be bistable both experimentally and mathematically. Work to synthesize such switches by combining natural or engineered components has begun to illustrate the potential of such control circuits in many areas of applications. PMID:18804166

  20. Optical bistabilities of higher harmonics: Inhomogeneous and transverse effects

    NASA Astrophysics Data System (ADS)

    Hassan, S. S.; Sharaby, Y. A.; Ali, M. F. M.; Joshi, A.

    2012-10-01

    The steady state behavior of optical bistable system in a ring cavity with transverse field variations and inhomogeneousely broadened two-level atoms is investigated outside the rotating wave approximation (RWA). Analytical and numerical investigation is presented for different cases of transverse field variations with Lorentzian or Gaussian line widths. When both (transverse and inhomogeneous) features taken into account, the first harmonic output field component outside the RWA exhibits a one-way switching down processes (butterfly OB) or reversed (clockwise) OB behavior, depending on the atomic linewidth shape.

  1. GENERAL: Bistability in Coupled Oscillators Exhibiting Synchronized Dynamics

    NASA Astrophysics Data System (ADS)

    Olusola, O. I.; Vincent, U. E.; Njah, A. N.; Olowofela, J. A.

    2010-05-01

    We report some new results associated with the synchronization behavior of two coupled double-well Duffing oscillators (DDOs). Some sufficient algebraic criteria for global chaos synchronization of the drive and response DDOs via linear state error feedback control are obtained by means of Lyapunov stability theory. The synchronization is achieved through a bistable state in which a periodic attractor co-exists with a chaotic attractor. Using the linear perturbation analysis, the prevalence of attractors in parameter space and the associated bifurcations are examined. Subcritical and supercritical Hopf bifurcations and abundance of Arnold tongues — a signature of mode locking phenomenon are found.

  2. Thermalization of a driven bi-stable FPU chain

    NASA Astrophysics Data System (ADS)

    Efendiev, Yalchin R.; Truskinovsky, Lev

    2010-09-01

    We study Hamiltonian dynamics of a Fermi-Pasta-Ulam (FPU) chain with bi-stable elements. We show, that a quasi-static driving of a ‘cold’ chain beyond the spinodal threshold leads to complex dynamical behavior involving equipartition which suggests thermalization. The subsequent quasi-static cycling between the two energy wells produces reversible temperature oscillations which we link to the release (or absorbtion) of the latent heat. By adopting canonical distribution we obtain a thermodynamical description of the chain which agrees well with numerically computed time-averaged behavior of the corresponding dynamical system.

  3. Specifying spacecraft flexible appendage rigidity

    NASA Technical Reports Server (NTRS)

    Seltzer, S. M.; Shelton, H. L.

    1977-01-01

    As a method for specifying the required degree of rigidity of spacecraft flexible appendages, an analytical technique is proposed for establishing values for the frequency, damping ratio, and modal gain (deflection) of the first several bending modes. The shortcomings of the technique result from the limitations associated with the order of the equations that can be handled practically. An iterative method is prescribed for handling a system whose structural flexibility is described by more than one normal mode. The analytical technique is applied to specifying solar panel rigidity constraints for the NASA Space Telescope. The traditional nonanalytic procedure for specifying the required degree of rigidity of spacecraft flexible appendages has been to set a lower limit below which bending mode frequencies may not lie.

  4. Rigidly foldable origami gadgets and tessellations

    PubMed Central

    Evans, Thomas A.; Lang, Robert J.; Magleby, Spencer P.; Howell, Larry L.

    2015-01-01

    Rigidly foldable origami allows for motion where all deflection occurs at the crease lines and facilitates the application of origami in materials other than paper. In this paper, we use a recently discovered method for determining rigid foldability to identify existing flat-foldable rigidly foldable tessellations, which are also categorized. We introduce rigidly foldable origami gadgets which may be used to modify existing tessellations or to create new tessellations. Several modified and new rigidly foldable tessellations are presented. PMID:26473037

  5. Rigidly foldable origami gadgets and tessellations.

    PubMed

    Evans, Thomas A; Lang, Robert J; Magleby, Spencer P; Howell, Larry L

    2015-09-01

    Rigidly foldable origami allows for motion where all deflection occurs at the crease lines and facilitates the application of origami in materials other than paper. In this paper, we use a recently discovered method for determining rigid foldability to identify existing flat-foldable rigidly foldable tessellations, which are also categorized. We introduce rigidly foldable origami gadgets which may be used to modify existing tessellations or to create new tessellations. Several modified and new rigidly foldable tessellations are presented.

  6. Multiple Bistability in Quinonoid-Bridged Diiron(II) Complexes: Influence of Bridge Symmetry on Bistable Properties.

    PubMed

    van der Meer, Margarethe; Rechkemmer, Yvonne; Breitgoff, Frauke D; Marx, Raphael; Neugebauer, Petr; Frank, Uta; van Slageren, Joris; Sarkar, Biprajit

    2016-11-21

    Quinonoid bridges are well-suited for generating dinuclear assemblies that might display various bistable properties. In this contribution we present two diiron(II) complexes where the iron(II) centers are either bridged by the doubly deprotonated form of a symmetrically substituted quinonoid bridge, 2,5-bis[4-(isopropyl)anilino]-1,4-benzoquinone (H2L2') with a [O,N,O,N] donor set, or with the doubly deprotonated form of an unsymmetrically substituted quinonoid bridge, 2-[4-(isopropyl)anilino]-5-hydroxy-1,4-benzoquinone (H2L5') with a [O,O,O,N] donor set. Both complexes display temperature-induced spin crossover (SCO). The nature of the SCO is strongly dependent on the bridging ligand, with only the complex with the [O,O,O,N] donor set displaying a prominent hysteresis loop of about 55 K. Importantly, only the latter complex also shows a pronounced light-induced spin state change. Furthermore, both complexes can be oxidized to the mixed-valent iron(II)-iron(III) form, and the nature of the bridge determines the Robin and Day classification of these forms. Both complexes have been probed by a battery of electrochemical, spectroscopic, and magnetic methods, and this combined approach is used to shed light on the electronic structures of the complexes and on bistability. The results presented here thus show the potential of using the relatively new class of unsymmetrically substituted bridging quinonoid ligands for generating intriguing bistable properties and for performing site-specific magnetic switching.

  7. Designing a stochastic genetic switch by coupling chaos and bistability

    SciTech Connect

    Zhao, Xiang; Ouyang, Qi; Wang, Hongli

    2015-11-15

    In stem cell differentiation, a pluripotent stem cell becomes progressively specialized and generates specific cell types through a series of epigenetic processes. How cells can precisely determine their fate in a fluctuating environment is a currently unsolved problem. In this paper, we suggest an abstract gene regulatory network to describe mathematically the differentiation phenomenon featuring stochasticity, divergent cell fates, and robustness. The network consists of three functional motifs: an upstream chaotic motif, a buffering motif of incoherent feed forward loop capable of generating a pulse, and a downstream motif which is bistable. The dynamic behavior is typically a transient chaos with fractal basin boundaries. The trajectories take transiently chaotic journeys before divergently settling down to the bistable states. The ratio of the probability that the high state is achieved to the probability that the low state is reached can maintain a constant in a population of cells with varied molecular fluctuations. The ratio can be turned up or down when proper parameters are adjusted. The model suggests a possible mechanism for the robustness against fluctuations that is prominently featured in pluripotent cell differentiations and developmental phenomena.

  8. Designing a stochastic genetic switch by coupling chaos and bistability

    NASA Astrophysics Data System (ADS)

    Zhao, Xiang; Ouyang, Qi; Wang, Hongli

    2015-11-01

    In stem cell differentiation, a pluripotent stem cell becomes progressively specialized and generates specific cell types through a series of epigenetic processes. How cells can precisely determine their fate in a fluctuating environment is a currently unsolved problem. In this paper, we suggest an abstract gene regulatory network to describe mathematically the differentiation phenomenon featuring stochasticity, divergent cell fates, and robustness. The network consists of three functional motifs: an upstream chaotic motif, a buffering motif of incoherent feed forward loop capable of generating a pulse, and a downstream motif which is bistable. The dynamic behavior is typically a transient chaos with fractal basin boundaries. The trajectories take transiently chaotic journeys before divergently settling down to the bistable states. The ratio of the probability that the high state is achieved to the probability that the low state is reached can maintain a constant in a population of cells with varied molecular fluctuations. The ratio can be turned up or down when proper parameters are adjusted. The model suggests a possible mechanism for the robustness against fluctuations that is prominently featured in pluripotent cell differentiations and developmental phenomena.

  9. Switching between optical bistability and multistability in plasmonic multilayer nanoparticles

    NASA Astrophysics Data System (ADS)

    Daneshfar, Nader; Naseri, Tayebeh

    2017-01-01

    We study the nonlinear optical response of multilayer metallic nanoparticles driven by an electromagnetic wave, which can show large field enhancement, hence significantly enhancing optical processes. In addition to optical bistability (OB), we find that optical multistability (OM), which plays a more important role in some applications than OB, is achievable and can be obtained in a multilayer plasmonic nanoparticle. Our results demonstrate that owing to strong localized fields created in the core and each layer of multilayer nanoshells, which occurs in the particles at frequencies close to the surface plasmon resonance, multilayer nanoparticles are promising systems with unique optical characteristics to control the light by light at the nanometer scale. It is demonstrated that OB can be converted to OM via adjusting the wavelength of the applied field and the size of the nanoshell, and the system can manifest optical hysteresis. It is found that the optical bistable or multistable threshold and the shape of hysteresis loops are strongly dependent on the thickness of shells, the incident wavelength, the permittivity of the surrounding medium, and the composition of the core and the inner/outer layers. We also give a discussion on the impact of the exciton-plasmon interaction and the intrinsic size effect on the nonlinear optical response of multilayer spherical nanoparticles.

  10. Control and characterization of a bistable laminate generated with piezoelectricity

    NASA Astrophysics Data System (ADS)

    Lee, Andrew J.; Moosavian, Amin; Inman, Daniel J.

    2017-08-01

    Extensive research has been conducted on utilizing smart materials such as piezoelectric and shape memory alloy actuators to induce snap through of bistable structures for morphing applications. However, there has only been limited success in initiating snap through from both stable states due to the lack of actuation authority. A novel solution in the form of a piezoelectrically generated bistable laminate consisting of only macro fiber composites (MFC), allowing complete configuration control without any external assistance, is explored in detail here. Specifically, this paper presents the full analytical, computational, and experimental results of the laminate’s design, geometry, bifurcation behavior, and snap through capability. By bonding two actuated MFCs in a [0MFC/90MFC]T layup and releasing the voltage post cure, piezoelectric strain anisotropy and the resulting in-plane residual stresses yield two statically stable states that are cylindrically shaped. The analytical model uses the Rayleigh-Ritz minimization of total potential energy and finite element analysis is implemented in MSC Nastran. The [0MFC/90MFC]T laminate is then manufactured and experimentally characterized for model validation. This paper demonstrates the adaptive laminate’s unassisted forward and reverse snap through capability enabled by the efficiencies gained from simultaneously being the actuator and the primary structure.

  11. The Fokker-Planck equation for a bistable potential

    NASA Astrophysics Data System (ADS)

    Caldas, Denise; Chahine, Jorge; Filho, Elso Drigo

    2014-10-01

    The Fokker-Planck equation is studied through its relation to a Schrödinger-type equation. The advantage of this combination is that we can construct the probability distribution of the Fokker-Planck equation by using well-known solutions of the Schrödinger equation. By making use of such a combination, we present the solution of the Fokker-Planck equation for a bistable potential related to a double oscillator. Thus, we can observe the temporal evolution of the system describing its dynamic properties such as the time τ to overcome the barrier. By calculating the rates k=1/τ as a function of the inverse scaled temperature 1/D, where D is the diffusion coefficient, we compare the aspect of the curve k×1/D, with the ones obtained from other studies related to four different kinds of activated process. We notice that there are similarities in some ranges of the scaled temperatures, where the different processes follow the Arrhenius behavior. We propose that the type of bistable potential used in this study may be used, qualitatively, as a simple model, whose rates share common features with the rates of some single rate-limited thermally activated processes.

  12. Model of polarization and bistability of cell fragments.

    PubMed

    Kozlov, Michael M; Mogilner, Alex

    2007-12-01

    Directed cell motility is preceded by cell polarization-development of a front-rear asymmetry of the cytoskeleton and the cell shape. Extensive studies implicated complex spatial-temporal feedbacks between multiple signaling pathways in establishing cell polarity, yet physical mechanisms of this phenomenon remain elusive. Based on observations of lamellipodial fragments of fish keratocyte cells, we suggest a purely thermodynamic (not involving signaling) quantitative model of the cell polarization and bistability. The model is based on the interplay between pushing force exerted by F-actin polymerization on the cell edges, contractile force powered by myosin II across the cell, and elastic tension in the cell membrane. We calculate the thermodynamic work produced by these intracellular forces, and show that on the short timescale, the cell mechanics can be characterized by an effective energy profile with two minima that describe two stable states separated by an energy barrier and corresponding to the nonpolarized and polarized cells. Cell dynamics implied by this energy profile is bistable-the cell is either disk-shaped and stationary, or crescent-shaped and motile-with a possible transition between them upon a finite external stimulus able to drive the system over the macroscopic energy barrier. The model accounts for the observations of the keratocyte fragments' behavior and generates quantitative predictions about relations between the intracellular forces' magnitudes and the cell geometry and motility.

  13. Designing light responsive bistable arches for rapid, remotely triggered actuation

    NASA Astrophysics Data System (ADS)

    Smith, Matthew L.; Shankar, M. Ravi; Backman, Ryan; Tondiglia, Vincent P.; Lee, Kyung Min; McConney, Michael E.; Wang, David H.; Tan, Loon-Seng; White, Timothy J.

    2014-03-01

    Light responsive azobenzene functionalized polymer networks enjoy several advantages as actuator candidates including the ability to be remotely triggered and the capacity for highly tunable control via light intensity, polarization, wavelength and material alignments. One signi cant challenge hindering these materials from being employed in applications is their often relatively slow actuation rates and low power densities, especially in the absence of photo-thermal e ects. One well known strategy employed in nature for increasing actuation rate and power output is the storage and quick release of elastic energy (e.g., the Venus ytrap). Using nature as inspiration we have conducted a series of experiments and developed an equilibrium mechanics model for investigating remotely triggered snap-through of bistable light responsive arches made from glassy azobenzene functionalized polymers. After brie y discussing experimental observations we consider in detail a geometrically exact, planar rod model of photomechanical snap-through. Theoretical energy release characteristics and unique strain eld pro les provide insight toward design strategies for improved actuator performance. The bistable light responsive arches presented here are potentially a powerful option for remotely triggered, rapid motion from apparently passive structures in applications such as binary optical switches and positioners, surfaces with morphing topologies, and impulse locomotion in micro or millimeter scale robotics.

  14. Compliant composite electrodes and large strain bistable actuation

    NASA Astrophysics Data System (ADS)

    Yun, Sungryul; Yu, Zhibin; Niu, Xiaofan; Hu, Weili; Li, Lu; Brochu, Paul; Pei, Qibing

    2012-04-01

    Dielectric elastomer actuators (DEA) and bistable electroactive polymers (BSEP) both require compliant electrodes with rubbery elasticity and high conductivity at large strains. Stretchable opto-electronic devices additionally require the compliant electrodes to be optically transparent. Many candidate materials have been investigated. We report a new approach to mechanically robust, stretchable compliant electrodes. A facile in-situ composite synthesis and transfer technique is employed, and the resulting composite electrodes retain the high surface conductivity of the original conductive network formed by nanowires or nanotubes, while exhibiting the mechanical flexibility of the matrix polymer. The composite electrodes have high transparency and low surface roughness useful for the fabrication of polymer thinfilm electronic devices. The new electrodes are suitable for high-strain actuation, as a complaint resistive heating element to administer the temperature of shape memory polymers, and as the charge injection electrodes for flexible/stretchable polymer light emitting diodes. Bistable electroactive polymers employing the composite electrodes can be actuated to large strains via heating-actuation-cooling cycles.

  15. Optical bi-stable shutter development/improvement

    NASA Astrophysics Data System (ADS)

    Lizon, J. L.; Haddad, N.; Castillo, R.

    2012-09-01

    Two of the VLT instruments (Giraffe and VIMOS) are using the large magnetic E/150 from Prontor (with an aperture diameter of 150 mm). As we were facing an unacceptable number of failures with this component some improvement plan was discussed already in 2004. The final decision for starting this program was conditioned by the decision from the constructor to stop the production. The opportunity was taken to improve the design building a fully bi-stable mechanism in order to reduce the thermal dissipation. The project was developed in collaboration between the two main ESO sites doing the best use of the manpower and of the technical capability available at the two centers. The project took advantage of the laser Mask Manufacturing Unit and the invar sheets used to prepare the VIMOS MOS mask to fabricate the shutter petals. Our paper describes the development including the intensive and long optimization period. To conclude this optimization we proceed with a long life test on two units. These units have demonstrate a very high level of reliability (up to 100 000 cycles without failure which can be estimated to an equivalent 6 years of operation of the instrument) A new bi-stable shutter driver and controller have also been developed. Some of the highlights of this unit are the fully configurable coil driving parameters, usage of braking strategy to dump mechanical vibration and reduce mechanical wearing, configurable usage of OPEN and CLOSE sensors, non volatile storage of parameters, user friendly front panel interface.

  16. Organic electrical bistable devices and rewritable memory cells

    NASA Astrophysics Data System (ADS)

    Ma, L. P.; Liu, J.; Yang, Y.

    2002-04-01

    Electrical bistability is a phenomenon in which a device exhibits two states of different conductivities, at the same applied voltage. We report an organic electrical bistable device (OBD) comprising of a thin metal layer embedded within the organic material, as the active medium [L. P. Ma, J. Liu, and Y. Yang, US Patent Pending, (2001)]. The performance of this device makes it attractive for memory-cell type of applications. The two states of the OBD differ in their conductivity by several orders in magnitude and show remarkable stability, i.e., once the device reaches either state, it tends to remain in that state for a prolonged period of time. More importantly, the high and low conductivity states of an OBD can be precisely controlled by the application of a positive voltage pulse (to write) or a negative voltage pulse (to erase), respectively. One million writing-erasing cycles for the OBD have been tested in ambient conditions without significant device degradation. These discoveries pave the way for newer applications, such as low-cost, large-area, flexible, high-density, electrically addressable data storage devices.

  17. Designing a stochastic genetic switch by coupling chaos and bistability.

    PubMed

    Zhao, Xiang; Ouyang, Qi; Wang, Hongli

    2015-11-01

    In stem cell differentiation, a pluripotent stem cell becomes progressively specialized and generates specific cell types through a series of epigenetic processes. How cells can precisely determine their fate in a fluctuating environment is a currently unsolved problem. In this paper, we suggest an abstract gene regulatory network to describe mathematically the differentiation phenomenon featuring stochasticity, divergent cell fates, and robustness. The network consists of three functional motifs: an upstream chaotic motif, a buffering motif of incoherent feed forward loop capable of generating a pulse, and a downstream motif which is bistable. The dynamic behavior is typically a transient chaos with fractal basin boundaries. The trajectories take transiently chaotic journeys before divergently settling down to the bistable states. The ratio of the probability that the high state is achieved to the probability that the low state is reached can maintain a constant in a population of cells with varied molecular fluctuations. The ratio can be turned up or down when proper parameters are adjusted. The model suggests a possible mechanism for the robustness against fluctuations that is prominently featured in pluripotent cell differentiations and developmental phenomena.

  18. Boolean models can explain bistability in the lac operon.

    PubMed

    Veliz-Cuba, Alan; Stigler, Brandilyn

    2011-06-01

    The lac operon in Escherichia coli has been studied extensively and is one of the earliest gene systems found to undergo both positive and negative control. The lac operon is known to exhibit bistability, in the sense that the operon is either induced or uninduced. Many dynamical models have been proposed to capture this phenomenon. While most are based on complex mathematical formulations, it has been suggested that for other gene systems network topology is sufficient to produce the desired dynamical behavior. We present a Boolean network as a discrete model for the lac operon. Our model includes the two main glucose control mechanisms of catabolite repression and inducer exclusion. We show that this Boolean model is capable of predicting the ON and OFF steady states and bistability. Further, we present a reduced model which shows that lac mRNA and lactose form the core of the lac operon, and that this reduced model exhibits the same dynamics. This work suggests that the key to model qualitative dynamics of gene systems is the topology of the network and Boolean models are well suited for this purpose.

  19. Coherent signal amplification in bistable nanomechanical oscillators by stochastic resonance

    NASA Astrophysics Data System (ADS)

    Badzey, Robert L.; Mohanty, Pritiraj

    2005-10-01

    Stochastic resonance is a counterintuitive concept: the addition of noise to a noisy system induces coherent amplification of its response. First suggested as a mechanism for the cyclic recurrence of ice ages, stochastic resonance has been seen in a wide variety of macroscopic physical systems: bistable ring lasers, superconducting quantum interference devices (SQUIDs), magnetoelastic ribbons and neurophysiological systems such as the receptors in crickets and crayfish. Although fundamentally important as a mechanism of coherent signal amplification, stochastic resonance has yet to be observed in nanoscale systems. Here we report the observation of stochastic resonance in bistable nanomechanical silicon oscillators. Our nanomechanical systems consist of beams that are clamped at each end and driven into transverse oscillation with the use of a radiofrequency source. Modulation of the source induces controllable switching of the beams between two stable, distinct states. We observe that the addition of white noise causes a marked amplification of the signal strength. Stochastic resonance in nanomechanical systems could have a function in the realization of controllable high-speed nanomechanical memory cells, and paves the way for exploring macroscopic quantum coherence and tunnelling.

  20. Rigid gas permeable extended wear.

    PubMed

    Maehara, J R; Kastl, P R

    1994-04-01

    We have reviewed the pertinent literature on rigid gas permeable (RGP) extended wear contact lenses, and we discuss the benefits and adverse reactions of this contact lens modality, drawing conclusions from reviewed studies. We suggest parameters for success with these lenses and guidelines for the prevention of adverse reactions.

  1. Rigidity-tuning conductive elastomer

    NASA Astrophysics Data System (ADS)

    Shan, Wanliang; Diller, Stuart; Tutcuoglu, Abbas; Majidi, Carmel

    2015-06-01

    We introduce a conductive propylene-based elastomer (cPBE) that rapidly and reversibly changes its mechanical rigidity when powered with electrical current. The elastomer is rigid in its natural state, with an elastic (Young’s) modulus of 175.5 MPa, and softens when electrically activated. By embedding the cPBE in an electrically insulating sheet of polydimethylsiloxane (PDMS), we create a cPBE-PDMS composite that can reversibly change its tensile modulus between 37 and 1.5 MPa. The rigidity change takes ˜6 s and is initiated when a 100 V voltage drop is applied across the two ends of the cPBE film. This magnitude of change in elastic rigidity is similar to that observed in natural skeletal muscle and catch connective tissue. We characterize the tunable load-bearing capability of the cPBE-PDMS composite with a motorized tensile test and deadweight experiment. Lastly, we demonstrate the ability to control the routing of internal forces by embedding several cPBE-PDMS ‘active tendons’ into a soft robotic pneumatic bending actuator. Selectively activating the artificial tendons controls the neutral axis and direction of bending during inflation.

  2. Evolutionary Dynamics on Protein Bi-stability Landscapes can Potentially Resolve Adaptive Conflicts

    PubMed Central

    Sikosek, Tobias; Bornberg-Bauer, Erich; Chan, Hue Sun

    2012-01-01

    Experimental studies have shown that some proteins exist in two alternative native-state conformations. It has been proposed that such bi-stable proteins can potentially function as evolutionary bridges at the interface between two neutral networks of protein sequences that fold uniquely into the two different native conformations. Under adaptive conflict scenarios, bi-stable proteins may be of particular advantage if they simultaneously provide two beneficial biological functions. However, computational models that simulate protein structure evolution do not yet recognize the importance of bi-stability. Here we use a biophysical model to analyze sequence space to identify bi-stable or multi-stable proteins with two or more equally stable native-state structures. The inclusion of such proteins enhances phenotype connectivity between neutral networks in sequence space. Consideration of the sequence space neighborhood of bridge proteins revealed that bi-stability decreases gradually with each mutation that takes the sequence further away from an exactly bi-stable protein. With relaxed selection pressures, we found that bi-stable proteins in our model are highly successful under simulated adaptive conflict. Inspired by these model predictions, we developed a method to identify real proteins in the PDB with bridge-like properties, and have verified a clear bi-stability gradient for a series of mutants studied by Alexander et al. (Proc Nat Acad Sci USA 2009, 106:21149–21154) that connect two sequences that fold uniquely into two different native structures via a bridge-like intermediate mutant sequence. Based on these findings, new testable predictions for future studies on protein bi-stability and evolution are discussed. PMID:23028272

  3. Application of bistable optical logic gate arrays to all-optical digital parallel processing

    NASA Astrophysics Data System (ADS)

    Walker, A. C.

    1986-05-01

    Arrays of bistable optical gates can form the basis of an all-optical digital parallel processor. Two classes of signal input geometry exist - on- and off-axis - and lead to distinctly different device characteristics. The optical implementation of multisignal fan-in to an array of intrinsically bistable optical gates using the more efficient off-axis option is discussed together with the construction of programmable read/write memories from optically bistable devices. Finally the design of a demonstration all-optical parallel processor incorporating these concepts is presented.

  4. Reduced threshold all-optical bistability in etched quantum well microresonators

    NASA Astrophysics Data System (ADS)

    Rivera, T.; Ladan, F. R.; Izrael, A.; Azoulay, R.; Kuszelewicz, R.; Oudar, J. L.

    1994-02-01

    Etched vertical microresonators made of GaAs/AlGaAs multiple quantum wells produced by reactive ion etching was investigated to study the optical bistability phenomena. Reactive ion etching was preferred because of smooth vertical and minimization of density of surface recombination centers. A high cavity finesse was observed in the microresonators producing an optical bistability with wide hysteresis loops. A low threshold power of 70 microwatts was measured due to carrier confinement and vertical walls. The low bistability threshold power was attributed to self passivation happening during etching process, which produced a small surface recombination rate.

  5. Switching on or off the optical bistability based on the interaction of double dark resonances

    NASA Astrophysics Data System (ADS)

    Yan, Xiang-An; Wang, Li-Qiang; Zhang, Wei-Wei; Liu, Yao-Wu; Liu, Han-Chen

    2017-01-01

    We investigated the optical bistability (OB), which is manipulated by double dark resonances, in a Λ-type four-level atomic system with a unidirectional ring cavity. It is found that, with the interaction of double dark resonances, the bistable threshold intensity becomes weaker and the hysteresis loop becomes narrower by tuning properly the detuning of microwave field. Also, the influence of the intensity and frequency detuning of the microwave field on switching on or off the optical bistable behavior is studied, which is used to provide the theoretical guidance for controlling and optimizing all optical switching process. Our numerical results are explained by using a dressed-state approach.

  6. Optical bistability and nonlinearity of coherently coupled exciton-plasmon systems.

    PubMed

    Li, Jian-Bo; Kim, Nam-Chol; Cheng, Mu-Tian; Zhou, Li; Hao, Zhong-Hua; Wang, Qu-Quan

    2012-01-16

    We theoretically investigated optical third-order nonlinearity of a coherently coupled exciton-plasmon hybrid system under a strong control field with a weak probe field. The analytic formulas of exciton population and effective third-order optical susceptibility of the hybrid of a metal nanoparticle (MNP) and a semiconductor quantum dot (SQD) were deduced. The bistable exciton population and the induced bistable nonlinear absorption and refraction response were revealed. The bistability region can be tuned by adjusting the size of metal nanoparticle, interparticle distance and intensity of control field. Our results have perspective applications in optical information processing based on resonant coupling of exciton-plasmon.

  7. Phase control of optical bistability in an InGaN/GaN quantum dot nanostructure

    NASA Astrophysics Data System (ADS)

    Jafarzadeh, Hossein; Nasehi, Rajab; Sangachin, Elnaz Ahmadi; Asadpour, Seyyed Hossein

    2015-05-01

    In this paper, we propose a model for controlling the optical bistability in four-level InGaN/GaN quantum dot nanostructure which is embedded in a unidirectional ring cavity. InGaN/GaN quantum dot nanostructure is based on our recent paper [S. H. Asadpour, Z. Golsanamlou and H. R. Soleimani, Physica E 54 (2013) 45]. It is found that intensity threshold of optical bistability can be manipulated by signal intensity of applied fields. Moreover, we find that phase variation of terahertz signal field can also affect the behaviors of optical bistability and hysteresis loop.

  8. Noise-Induced Bistable States and Their Mean Switching Time in Foraging Colonies

    NASA Astrophysics Data System (ADS)

    Biancalani, Tommaso; Dyson, Louise; McKane, Alan J.

    2014-01-01

    We investigate a type of bistability occurring in population systems where noise not only causes transitions between stable states, but also constructs the states themselves. We focus on the experimentally well-studied system of ants choosing between two food sources to illustrate the essential points, but the ideas are more general. The mean time for switching between the two bistable states of the system is calculated. This suggests a procedure for estimating, in a real system, the critical population size above which bistability ceases to occur.

  9. Bistable optical devices for the isotopic (C-13)(O-16)2 laser communication

    NASA Astrophysics Data System (ADS)

    Zhu, Dayong; Wan, Zuowen; Yu, Xuecai; Ye, Naiqun

    1992-06-01

    This paper reports observations of a Stark tunable bistable optical device (BOD) (Smith et al., 1977) which uses the interaction between the asQ(6,6) transitions in NH3 gas and the R(18) line of a (C-13)(O-16)2 laser. It is shown that optical bistability can be observed using this laser as the nonlinear element. The effect of Doppler broadening on the Stark bistability is shown via numerical calculations. The observed effect is consistent with results of the theoretical analysis.

  10. Comparison of Bistable Systems and Matched Filters in Non-Gaussian Noise

    NASA Astrophysics Data System (ADS)

    Zhang, Xinming; Yan, Jianfeng; Duan, Fabing

    2016-10-01

    In this paper, we report that for a weak signal buried in the heavy-tailed noise, the bistable system can outperform the matched filter, yielding a higher output signal-to-noise ratio (SNR) or a lower probability of error. Moreover, by adding mutually independent internal noise components to an array of bistable systems, the output SNR or the probability of error can be further improved via the mechanism of stochastic resonance (SR). These comparison results demonstrate the potential capability of bistable systems for detecting weak signals in non-Gaussian noise environments.

  11. Torsional rigidity, isospectrality and quantum graphs

    NASA Astrophysics Data System (ADS)

    Colladay, Don; Kaganovskiy, Leon; McDonald, Patrick

    2017-01-01

    We study torsional rigidity for graph and quantum graph analogs of well-known pairs of isospectral non-isometric planar domains. We prove that such isospectral pairs are distinguished by torsional rigidity.

  12. Rigidity spectrum of Forbush decrease

    NASA Technical Reports Server (NTRS)

    Sakakibara, S.; Munakata, K.; Nagashima, K.

    1985-01-01

    Using data from neutron monitors and muon telescopes at surface and underground stations, the average rigidity spectrum of Forbush decreases (Fds) during the period of 1978-1982 were obtained. Thirty eight Ed-events are classified into two groups Hard Fd and Soft Fd according to size of Fd at Sakashita station. It is found that a spectral form of fractional-power type (P to the-gamma sub 1 (P+P sub c) to the -gamma sub2) is more suitable for the present purpose than that of power-exponential type or of power type with an upper limiting rigidity. The best fitted spectrum of fractional-power type is expressed by gamma sub1 = 0.37, gamma sub2 = 0.89 and P subc = 10 GV for Hard Fd and gamma sub1 = 0.77, gamma sub2 = 1.02 and P sub c - 14GV for Soft Fd.

  13. Associative memory through rigid origami

    NASA Astrophysics Data System (ADS)

    Murugan, Arvind; Brenner, Michael

    2015-03-01

    Mechanisms such as Miura Ori have proven useful in diverse contexts since they have only one degree of freedom that is easily controlled. We combine the theory of rigid origami and associative memory in frustrated neural networks to create structures that can ``learn'' multiple generic folding mechanisms and yet can be robustly controlled. We show that such rigid origami structures can ``recall'' a specific learned mechanism when induced by a physical impulse that only need resemble the desired mechanism (i.e. robust recall through association). Such associative memory in matter, seen before in self-assembly, arises due to a balance between local promiscuity (i.e., many local degrees of freedom) and global frustration which minimizes interference between different learned behaviors. Origami with associative memory can lead to a new class of deployable structures and kinetic architectures with multiple context-dependent behaviors.

  14. Nanoscale molecular-switch devices fabricated by imprint lithography

    NASA Astrophysics Data System (ADS)

    Chen, Yong; Ohlberg, Douglas A. A.; Li, Xuema; Stewart, Duncan R.; Stanley Williams, R.; Jeppesen, Jan O.; Nielsen, Kent A.; Stoddart, J. Fraser; Olynick, Deirdre L.; Anderson, Erik

    2003-03-01

    Nanoscale molecular-electronic devices comprising a single molecular monolayer of bistable [2]rotaxanes sandwiched between two 40-nm metal electrodes were fabricated using imprint lithography. Bistable current-voltage characteristics with high on-off ratios and reversible switching properties were observed. Such devices may function as basic elements for future ultradense electronic circuitry.

  15. A novel optic bistable device with very low threshold intensity using photorefractive films

    NASA Astrophysics Data System (ADS)

    Wang, Sean X.; Sun, Yuankun; Trivedi, Sudhir B.; Li, Guifang

    1994-08-01

    Brimrose Corporation of America reports the successful completion of the SBIR Phase I research in low-threshold intensity optical bistable devices using photorefractive nonlinearity. A thin photorefractive film optical bistable device was proposed in the Phase I proposal. The feasibility of this device was theoretically investigated. The theoretical feasibility study formulates the materials requirements in such a kind of configuration for Phase II research. In addition, we have proposed and investigated another configuration of optical bistable devices that do not require advanced photorefractive materials, namely, the self-pumped phase conjugator. We have successfully demonstrated a low-threshold optical bistable operation in a KNSBN:CU crystal. To the best of our knowledge, the threshold of 650 mW/sq. cm is the lowest of its kind to be achieved so far.

  16. Analytical model for optical bistability in nonlinear metal nano-antennae involving Kerr materials.

    PubMed

    Zhou, Fei; Liu, Ye; Li, Zhi-Yuan; Xia, Younan

    2010-06-21

    Optical bistability at nanoscale is a promising way to realize optical switching, a key component of integrated nanophotonic devices. In this work we present an analytical model for optical bistability in a metal nano-antenna involving Kerr nonlinear medium based on detailed analysis of the correlation between the incident and extinction light intensity under surface plasmon resonance (SPR). The model allows one to construct a clear picture on how the threshold, contrast, and other characteristics of optical bistability are influenced by the nonlinear coefficient, incident light intensity, local field enhancement factor, SPR peak width, and other physical parameters of the nano-antenna. It shows that the key towards low threshold power and high contrast optical bistability in the nanosystem is to reduce the SPR peak width. This can be achieved by reducing the absorption of metal materials or introducing gain media into nanosystems.

  17. Comment on 'Observation of intrinsic bistability in resonant-tunneling structures'

    NASA Technical Reports Server (NTRS)

    Sollner, T. C. L. G.

    1987-01-01

    It is suggested that the intrinsic bistability observed by Goldman et al. (1987) occurred not because of charging of the well, as is claimed, but because of oscillations in the negative-resistance region. A typical I-V curve for a double-barrier resonant-tunneling (DBRT) diode which is known to be oscillating is presented. In a reply to this comment, Goldman et al. show that the series resistance (of about 100 ohms) in Sollner's sample leads to extrinsic, rather than intrinsic, bistability. It is furthermore suggested that the mere presence of an oscillation does not in itself exclude intrinsic bistability in a DBRT structure. It is also noted that the intrinsic bistability and buildup of negative charge-space in a DBRT structure well has been demonstrated experimentally by Payling et al. (1987).

  18. Bistable output from a coupled-resonator vertical-cavity laser diode

    NASA Astrophysics Data System (ADS)

    Fischer, A. J.; Choquette, K. D.; Chow, W. W.; Allerman, A. A.; Geib, K. M.

    2000-11-01

    We report a monolithic coupled-resonator vertical-cavity laser with an ion-implanted top cavity and a selectively oxidized bottom cavity which exhibits bistable behavior in the light output versus injection current. Large bistability regions over current ranges as wide as 18 mA have been observed with on/off contrast ratios of greater than 20 dB. The position and width of the bistability region can be varied by changing the bias to the top cavity. Switching between on and off states can be accomplished with changes as small as 250 μW to the electrical power applied to the top cavity. The bistable behavior is the response of the nonlinear susceptibility in the top cavity to the changes in the bottom intracavity laser intensity as the bottom cavity reaches the thermal rollover point.

  19. Innovative Energy Harvester Design Using Bistable Mechanism With Compensational Springs In Gravity Field

    NASA Astrophysics Data System (ADS)

    Vysotskyi, Bogdan; Parrain, Fabien; Aubry, Denis; Gaucher, Philippe; Lefeuvre, Elie

    2016-11-01

    The purpose of the presented work is to introduce the novel design of electrostatic energy harvester using bistable mechanism with compensational springs in gravity field capable of providing the output of several μW under the excitation of extremely small amplitude (up to 0.2g) and low frequency (10-100Hz). Presented energy harvester uses the bistable hysteresis modification to achieve low-frequency low-amplitude sensibility. It was demonstrated with finite element modelling (FEM) that hysteresis width produced by bistability is changing with a constant linear coefficient as a function of a compensational spring stiffness and thus a device sensitivity could be adjusted to the minimum point for the amplitude of external excitation. Further, highly non-linear bistable double curved beam mechanism assures the high sensitivity in frequencial domain due to the non-defined bandwidth. The equivalent circuit technique is used for simulating the device performance.

  20. Bistable Output from a Coupled-Resonator Vertical-Cavity Laser Diode

    SciTech Connect

    FISCHER,ARTHUR J.; CHOQUETTE,KENT D.; CHOW,WENG W.; ALLERMAN,ANDREW A.; GEIB,KENT M.

    2000-07-20

    The authors report a monolithic coupled-resonator vertical-cavity laser with an ion-implanted top cavity and a selectively oxidized bottom cavity which exhibits bistable behavior in the light output versus injection current. Large bistability regions over current ranges as wide as 18 mA have been observed with on/off contrast ratios of greater than 20 dB. The position and width of the bistability region can be varied by changing the bias to the top cavity. Switching between on and off states can be accomplished with changes as small as 250 {micro}W to the electrical power applied to the top cavity. Theoretical analysis suggests that the bistable behavior is the response of the nonlinear susceptibility in the top cavity to the changes in the bottom intracavity laser intensity as the bottom cavity reaches the thermal rollover point.

  1. Nonvolatile organic bistable devices fabricated utilizing Cu2O nanocrystals embedded in a polyimide layer

    NASA Astrophysics Data System (ADS)

    Jung, Jae Hun; Kim, Jae-Ho; Kim, Tae Whan; Song, Mun Seop; Kim, Young-Ho; Jin, Sungho

    2006-09-01

    The bistable effects of cuprous oxide (Cu2O) nanoparticles embedded in a polyimide (PI) matrix were investigated. Transmission electron microscopy images and selected area electron diffraction patterns showed that Cu2O nanocrystals were formed inside the PI layer. Current-voltage (I-V) measurements on Al/PI/nanocrystalline Cu2O/PI/Al structures at 300K showed a nonvolatile electrical bistability behavior. A bistable behavior for the fabricated organic bistable device (OBD) structures is described on the basis of the I-V results. These results indicate that OBDs fabricated utilizing self-assembled inorganic Cu2O nanocrystals embedded in an organic PI layer hold promise for potential applications in nonvolatile flash memory devices.

  2. A bistable switch in dynamic thiodepsipeptide folding and template-directed ligation.

    PubMed

    Mukherjee, Rakesh; Cohen-Luria, Rivka; Wagner, Nathaniel; Ashkenasy, Gonen

    2015-10-12

    Bistable reaction networks provide living cells with chemically controlled mechanisms for long-term memory storage. Such networks are also often switchable and can be flipped from one state to the other. We target here a major challenge in systems chemistry research, namely developing synthetic, non-enzymatic, networks that mimic such a complex function. Therefore, we describe a dynamic network that depending on initial thiodepsipeptide concentrations leads to one of two distinct steady states. This bistable system is readily switched by applying the appropriate stimuli. The relationship between the reaction network topology and its capacity to invoke bistability is then analyzed by control experiments and theory. We suggest that demonstrating bistable behavior using synthetic networks further highlights their possible role in early evolution, and may shine light on potential utility for novel applications, such as chemical memories.

  3. Experimental dynamic trapping of electrostatically actuated bistable micro-beams.

    PubMed

    Medina, Lior; Gilat, Rivka; Ilic, B Robert; Krylov, Slava

    2016-02-15

    We demonstrate dynamic snap-through from a primary to a secondary statically inaccessible stable configuration in single crystal silicon, curved, doubly clamped micromechanical beam structures. Nanoscale motion of the fabricated bistable micromechanical devices was transduced using a high speed camera. Our experimental and theoretical results collectively show, that the transition between the two stable states was solely achieved by a tailored time dependent electrostatic actuation. Fast imaging of micromechanical motion allowed for direct visualization of dynamic trapping at the statically inaccessible state. These results further suggest that our direct dynamic actuation transcends prevalent limitations in controlling geometrically non-linear microstructures, and may have applications extending to multi-stable, topologically optimized micromechanical logic and non-volatile memory architectures.

  4. Stochastic resonance in a fractal dimensional bistable system

    NASA Astrophysics Data System (ADS)

    Chen, R. Y.; Nie, L. R.

    2017-08-01

    A fractal dimensional bistable system driven by multiplicative and additive noises and a periodic signal is investigated. We have derived analytically the fractal Fokker-Planck equation of the system, and obtained exact expression of its signal-to-noise ratio (SNR). Numerical results indicate that: (1) The curve of the SNR as a function of multiplicative noise intensity D or additive noise intensity Q exhibits a peak in the fractal dimensional system, i.e., a stochastic resonance phenomenon; (2) For the smaller values of D, the SNR first decreases then increases with increment of dimensionality α . At the integer dimension of α =1, response of the system to the weak periodic signal displays a minimum. Yet the SNR increases monotonically for the greater values of D. Our further investigation shows that the height of the potential barrier depends on the dimensionality, and influences on the SNR of the system.

  5. Phenotypic bistability in Escherichia coli's central carbon metabolism.

    PubMed

    Kotte, Oliver; Volkmer, Benjamin; Radzikowski, Jakub L; Heinemann, Matthias

    2014-07-01

    Fluctuations in intracellular molecule abundance can lead to distinct, coexisting phenotypes in isogenic populations. Although metabolism continuously adapts to unpredictable environmental changes, and although bistability was found in certain substrate-uptake pathways, central carbon metabolism is thought to operate deterministically. Here, we combine experiment and theory to demonstrate that a clonal Escherichia coli population splits into two stochastically generated phenotypic subpopulations after glucose-gluconeogenic substrate shifts. Most cells refrain from growth, entering a dormant persister state that manifests as a lag phase in the population growth curve. The subpopulation-generating mechanism resides at the metabolic core, overarches the metabolic and transcriptional networks, and only allows the growth of cells initially achieving sufficiently high gluconeogenic flux. Thus, central metabolism does not ensure the gluconeogenic growth of individual cells, but uses a population-level adaptation resulting in responsive diversification upon nutrient changes. © 2014 The Authors. Published under the terms of the CC BY 4.0 license.

  6. Inducing dynamical bistability by reversible compression of an optical piston.

    PubMed

    Schnoering, Gabriel; Genet, Cyriaque

    2015-04-01

    We study the reversible crossover between stable and bistable phases of an overdamped Brownian bead inside an optical piston. The interaction potentials are solved developing a method based on Kramers's theory that exploits the statistical properties of the stochastic motion of the bead. We evaluate precisely the energy balance of the crossover. We show that the deformation of the optical potentials induced by the compression of the piston is related to a production of heat balanced between potential energy changes and the total amount of work performed by the piston. This reveals how specific thermodynamic processes can be designed and controlled with a high level of precision by tailoring the optical landscapes of the piston.

  7. Cramps: a sign of motoneurone 'bistability' in a human patient.

    PubMed

    Baldissera, F; Cavallari, P; Dworzak, F

    1991-12-09

    In a patient suffering from severe long-lasting cramps, cramps were triggered in the triceps surae by volleys in homonymous Ia afferents (elicited by electrical stimulation or by tendon taps) and were interrupted by antidromic invasion and Renshaw inhibition of triceps surae motoneurones (evoked by a single maximal stimulation of motor axons). This result suggests that the mechanisms which generate the cramps are intrinsic to alpha-motoneurone somata. A similar on-off switching of a self-sustained motor discharge has been observed in the decerebrate cat and recognized to depend on 'bistability' of the motoneuronal membrane. We propose that the same mechanism may be at the origin of the cramp discharge.

  8. Inducing dynamical bistability by reversible compression of an optical piston

    NASA Astrophysics Data System (ADS)

    Schnoering, Gabriel; Genet, Cyriaque

    2015-04-01

    We study the reversible crossover between stable and bistable phases of an overdamped Brownian bead inside an optical piston. The interaction potentials are solved developing a method based on Kramers's theory that exploits the statistical properties of the stochastic motion of the bead. We evaluate precisely the energy balance of the crossover. We show that the deformation of the optical potentials induced by the compression of the piston is related to a production of heat balanced between potential energy changes and the total amount of work performed by the piston. This reveals how specific thermodynamic processes can be designed and controlled with a high level of precision by tailoring the optical landscapes of the piston.

  9. Bistable mode of THG for femtosecond laser pulse

    NASA Astrophysics Data System (ADS)

    Trofimov, Vyacheslav A.; Sidorov, Pavel S.; Kuchik, Igor E.

    2016-09-01

    We develop an analytical solution for the THG problem with taking into account self- and cross- modulation of interacting waves. Consideration is made in the framework of long pulse duration approximation and plane wave approximation. Using the original approach, we obtain the explicit solution of Schrödinger equations describing the THG in the framework under consideration both for zero-value amplitude of a wave with triple frequency and for its non-zero value. It should be stressed that the main feature of our approach consists in conservation laws using, which correspond to wave interaction process. We found various regimes of frequency trebling and showed that the THG process possesses a bistable feature under certain condition. We found out also the THG mode, at which the intensities of interacting waves do not change along their propagation coordinate. This leads to existence of soliton solution for THG of femtosecond laser pulses.

  10. A Bistable Microelectromechanical System Actuated by Spin-Crossover Molecules.

    PubMed

    Manrique-Juarez, Maria D; Mathieu, Fabrice; Shalabaeva, Victoria; Cacheux, Jean; Rat, Sylvain; Nicu, Liviu; Leïchlé, Thierry; Salmon, Lionel; Molnár, Gábor; Bousseksou, Azzedine

    2017-07-03

    We report on a bistable MEMS device actuated by spin-crossover molecules. The device consists of a freestanding silicon microcantilever with an integrated piezoresistive detection system, which was coated with a 140 nm thick film of the [Fe(HB(tz)3 )2 ] (tz=1,2,4-triazol-1-yl) molecular spin-crossover complex. Switching from the low-spin to the high-spin state of the ferrous ions at 338 K led to a reversible upward bending of the cantilever in agreement with the change in the lattice parameters of the complex. The strong mechanical coupling was also evidenced by the decrease of approximately 66 Hz in the resonance frequency in the high-spin state as well as by the drop in the quality factor around the spin transition. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Magnetic bistability and controllable reversal of asymmetric ferromagnetic nanorings.

    PubMed

    Zhu, F Q; Chern, G W; Tchernyshyov, O; Zhu, X C; Zhu, J G; Chien, C L

    2006-01-20

    Magnetization reversals through the formation of a vortex state and the rotation of an onion state are two processes with comparable probabilities for symmetric magnetic nanorings with a radius of about 50 nanometers. This magnetic bistability is the manifestation of the competition between the exchange energy and the magnetostatic energy in nanomagnets. The relative probability of the two processes in symmetric nanorings is dictated by the ring geometry and cannot be altered after fabrication. In this work, we report a novel type of nanorings--asymmetric nanorings. By tuning the asymmetry, we can control the fraction of the vortex formation process from about 40% to nearly 100% by utilizing the direction of the external magnetic field. The observed results have been accounted for by the dependence of the domain-wall energy on the local cross-section area for which we have provided theoretical calculations.

  12. Bistability and thermal coupling in elastic metamaterials with negative compressibility.

    PubMed

    Chen, M L; Karpov, E G

    2014-09-01

    When elastic metamaterials are subjected to tension they may respond by undergoing contraction instead of expansion as an ordinary material would (and vice versa). This negative compressibility behavior can only occur if the system moves from one stable state to a different stable state as the force is applied, i.e., displays bistability. With a simple model potential, we demonstrate that this negative behavior leading to a pinched hysteresis on the stress cycle diagram is a solid-to-solid condensation-type phase transformation. In addition, we show that the negative compressibility may disappear in realistic dynamical systems, unless coupling with an external heat sink is strong enough to stabilize the newly formed phase. Such a material is an open thermodynamical system where the condensation process is accompanied by a fast return of the released heat into the ambient. Molecular dynamics with Verlet integration is used to study the dynamics of this behavior.

  13. Phenotypic bistability in Escherichia coli's central carbon metabolism

    PubMed Central

    Kotte, Oliver; Volkmer, Benjamin; Radzikowski, Jakub L; Heinemann, Matthias

    2014-01-01

    Fluctuations in intracellular molecule abundance can lead to distinct, coexisting phenotypes in isogenic populations. Although metabolism continuously adapts to unpredictable environmental changes, and although bistability was found in certain substrate-uptake pathways, central carbon metabolism is thought to operate deterministically. Here, we combine experiment and theory to demonstrate that a clonal Escherichia coli population splits into two stochastically generated phenotypic subpopulations after glucose-gluconeogenic substrate shifts. Most cells refrain from growth, entering a dormant persister state that manifests as a lag phase in the population growth curve. The subpopulation-generating mechanism resides at the metabolic core, overarches the metabolic and transcriptional networks, and only allows the growth of cells initially achieving sufficiently high gluconeogenic flux. Thus, central metabolism does not ensure the gluconeogenic growth of individual cells, but uses a population-level adaptation resulting in responsive diversification upon nutrient changes. PMID:24987115

  14. Zero-power shock sensors using bistable compliant mechanisms

    NASA Astrophysics Data System (ADS)

    Hansen, Brett J.; Carron, Christopher J.; Hawkins, Aaron R.; Schultz, Stephen M.

    2007-04-01

    This paper demonstrates the design, fabrication, and analysis of a small plastic latching accelerometer, or shock sensor, that is bi-stable and functions without the use of electricity. The sensor has two stable mechanical states. When force above a certain threshold limit is applied, the sensor changes states and remains in the changed state indicating the amount of force that has been applied to the sensor. The devices were laser-cut from ABS and Delrin plastics, and the surface area of the free-moving section was varied to produce sensors with a range of force sensitivities. The switching action of the devices was analyzed with the use of a centrifuge, which supplied the necessary force to switch the accelerometers from one mechanical state to another. The surface area of the sensors varied from 100 mm2 to 500 mm2 and the G-force sensitivity range varied between 10 and 800 g.

  15. Study of spatial signal transduction in bistable switches

    NASA Astrophysics Data System (ADS)

    Zhao, Qi; Yao, Cheng-Gui; Tang, Jun; Liu, Li-Wei

    2016-10-01

    Bistable switch modules are among the most important fundamental motifs in signal-transduction pathways. To better understand their spatial signal transduction, we model the diffusion process in the one-dimensional (1-D) domain. We find that when none of the elements diffuse, the response of the system exhibits a spatial switch-like property. However, when one of the elements is highly diffusible, the response of the system does not show any spatial switching behavior. Furthermore, we observe that the spatial responses of the system are more sensitive to the time constant of the switch when none of the elements are diffusible. Further, a slow loop keeps the system in the high steady state more positions than that in the fast loop. Finally, we consolidate our numerical results analytically by performing a mathematical method.

  16. 46 CFR 131.860 - Rigid liferafts.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... for, as shown on its nameplate. (d) The rigid liferaft must be marked with the words “SOLAS A pack” or... 46 Shipping 4 2011-10-01 2011-10-01 false Rigid liferafts. 131.860 Section 131.860 Shipping COAST... Equipment and Emergency Equipment § 131.860 Rigid liferafts. (a) The following must be plainly marked or...

  17. 46 CFR 131.860 - Rigid liferafts.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... for, as shown on its nameplate. (d) The rigid liferaft must be marked with the words “SOLAS A pack” or... 46 Shipping 4 2012-10-01 2012-10-01 false Rigid liferafts. 131.860 Section 131.860 Shipping COAST... Equipment and Emergency Equipment § 131.860 Rigid liferafts. (a) The following must be plainly marked or...

  18. 46 CFR 131.860 - Rigid liferafts.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... for, as shown on its nameplate. (d) The rigid liferaft must be marked with the words “SOLAS A pack” or... 46 Shipping 4 2014-10-01 2014-10-01 false Rigid liferafts. 131.860 Section 131.860 Shipping COAST... Equipment and Emergency Equipment § 131.860 Rigid liferafts. (a) The following must be plainly marked or...

  19. 46 CFR 131.860 - Rigid liferafts.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... for, as shown on its nameplate. (d) The rigid liferaft must be marked with the words “SOLAS A pack” or... 46 Shipping 4 2013-10-01 2013-10-01 false Rigid liferafts. 131.860 Section 131.860 Shipping COAST... Equipment and Emergency Equipment § 131.860 Rigid liferafts. (a) The following must be plainly marked or...

  20. 46 CFR 131.860 - Rigid liferafts.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... for, as shown on its nameplate. (d) The rigid liferaft must be marked with the words “SOLAS A pack” or... 46 Shipping 4 2010-10-01 2010-10-01 false Rigid liferafts. 131.860 Section 131.860 Shipping COAST... Equipment and Emergency Equipment § 131.860 Rigid liferafts. (a) The following must be plainly marked or...

  1. Rotating rigid motion in general relativity

    SciTech Connect

    Mason, D.P.; Pooe, C.A.

    1987-11-01

    Kinematic and dynamic expressions are derived for the Lie derivative of vorticity along a particle world line in a rigid motion. It is found that the evolution of vorticity in a rigid motion is governed by the electric part of the Weyl tensor. Necessary and sufficient kinematic and dynamic conditions are established for a rotating rigid motion to be isometric.

  2. Bistable flows forced by precession in planetary cores

    NASA Astrophysics Data System (ADS)

    Cebron, D.

    2015-12-01

    The presence of the Moon leads the Earth to precess, which forces a flow in its outer core via the spheroidal Core-Mantle Boundary (CMB). Reciprocally, this is also true for the liquid core core of the Moon, but the CMB is rather a triaxial ellipsoid in this case. In this work, we investigate if the precession can force two different stable flows for the same control parameters, allowing then the core to switch from one state to the other in presence of noise (convection, turbulence, etc.). To do so, we systematically study the parameter ranges where the well-known equations obtained by Busse (1968 J. Fluid Mech. 33 739-51) lead to multiple solutions. Then, using the models recently proposed by Noir and Cébron (2013 J. Fluid Mech. 737 412-39), which are more generic in the inviscid limit than the equations of Busse, we analytically describe these multiple solutions, their conditions of existence, and their stability. We also report for the first time the theoretical possibility that time-dependent multiple flows can coexist in precessing triaxial ellipsoids (such as the liquid core of the Moon). Finally, using the formula we have derived from pre-existent models of the literature, we conclude that the Earth and the Moon do not undergo such a bistable flow forced by precession. However, according to the models of the literature, such a bistable precession forced state exists for geophysically relevant ranges of parameters, and is thus always possible a priori in precessing liquid cores of terrestrial bodies.

  3. Regulation of cytoplasmic polyadenylation can generate a bistable switch

    PubMed Central

    2012-01-01

    Background Translation efficiency of certain mRNAs can be regulated through a cytoplasmic polyadenylation process at the pre-initiation phase. A translational regulator controls the polyadenylation process and this regulation depends on its posttranslational modifications e.g., phosphorylation. The cytoplasmic polyadenylation binding protein (CPEB1) is one such translational regulator, which regulates the translation of some mRNAs by binding to the cytoplasmic polyadenylation element (CPE). The cytoplasmic polyadenylation process can be turned on or off by the phosphorylation or dephosphorylation state of CPEB1. A specific example could be the regulation of Calcium/Calmodulin-dependent protein kinase II (αCaMKII) translation through the phosphorylation/dephosphorylation cycle of CPEB1. Result Here, we show that CPEB1 mediated polyadenylation of αCaMKII mRNA can result in a bistable switching mechanism. The switch for regulating the polyadenylation is based on a two state model of αCaMKII and its interaction with CPEB1. Based on elementary biochemical kinetics a high dimensional system of non-linear ordinary differential equations can describe the dynamic characteristics of the polyadenylation loop. Here, we simplified this high-dimensional system into approximate lower dimension system that can provide the understanding of dynamics and fixed points of original system. These simplified equations can be used to develop analytical bifurcation diagrams without the use of complex numerical tracking algorithm, and can further give us intuition about the parameter dependence of bistability in this system. Conclusion This study provides a systematic method to simplify, approximate and analyze a translation/activation based positive feedback loop. This work shows how to extract low dimensional systems that can be used to obtain analytical solutions for the fixed points of the system and to describe the dynamics of the system. The methods used here have general

  4. Heat dissipation and information flow for delayed bistable Langevin systems near coherence resonance.

    PubMed

    Xiao, Tiejun

    2016-11-01

    In this paper, stochastic thermodynamics of delayed bistable Langevin systems near coherence resonance is discussed. We calculate the heat dissipation rate and the information flow of a delayed bistable Langevin system under various noise intensities. Both the heat dissipation rate and the information flow are found to be bell-shaped functions of the noise intensity, which implies that coherence resonance manifests itself in the thermodynamic properties.

  5. Numerical Study on Fokker-Planck Equation of Bistable System Driven by Colored Noise

    NASA Astrophysics Data System (ADS)

    Lu, Zhiheng; Hu, Gang; L, Schoendorff; H, Risken

    1992-06-01

    A finite difference method is used to solve a Fokker-Planck equation of bistable system with Landau potential. The detailed dynamical relaxation process in the case of large correlation time is manifested via the phenomena including the saddle point appearance, the hole formation and distortion. The method is used to obtain the stationary solutions of Fokker-Planck equation of bistable system driven by rather weak noise.

  6. Bistability in an uncatalyzed bromate oscillator in a continuously fed stirred tank reactor

    NASA Astrophysics Data System (ADS)

    Dutt, Arun K.; Müller, S. C.

    1996-01-01

    Uncatalyzed gallic acid oscillating system has been investigated in a continuously fed stirred tank reactor (CSTR). In the [Bromate]0-[Bromide]0 concentration space, a region has been located where a bistability is observed between an oscillatory branch and a flow branch. To our knowledge this is the first evidence of bistability in an uncatalyzed bromate oscillator. Some observations have been explained in terms of the skeleton mechanism proposed in the past.

  7. Observation of bistable upconversion emission in Tm,Yb codoped yttria nanocrystal

    NASA Astrophysics Data System (ADS)

    Li, L.; Li, H.; Zhang, X. L.; Peng, Y. F.; Nie, M.; Jiang, B.; Zhang, X. W.; Li, R. M.

    2010-11-01

    Nonlinear upconversion emission properties in Tm and Yb codoped yttria nanocrystal have been studied under 973 nm laser excitation. Intrinsic bistability and hysteresis have been observed for the bright blue upconversion luminescence of Tm3+ ions at room temperature. The mechanism of the Tm3+ bistable emission is mainly related to laser-induced local thermal effects which cause the enhancement of sequential multi-photon energy transfer upconversion of Yb3+-Tm3+ pairs.

  8. Bistable laser device with multiple coupled active vertical-cavity resonators

    DOEpatents

    Fischer, Arthur J.; Choquette, Kent D.; Chow, Weng W.

    2003-08-19

    A new class of bistable coupled-resonator vertical-cavity semiconductor laser devices has been developed. These bistable laser devices can be switched, either electrically or optically, between lasing and non-lasing states. A switching signal with a power of a fraction of a milliwatt can change the laser output of such a device by a factor of a hundred, thereby enabling a range of optical switching and data encoding applications.

  9. Bidirectional optical bistability in a dual-pumped erbium doped fiber ring laser.

    PubMed

    Lai, W J; Shum, P; Binh, L

    2004-11-15

    We investigate bidirectional optical wave propagations in a dual-pumped erbium doped fiber ring laser without isolator, and observe optical bistability behaviors. Consequently, we propose and construct a NOLM-NALM fiber ring laser to demonstrate and exploit this bidirectional optical bistability phenomenon in optical switching by introducing two tunable variable ratio couplers in the system. Numerical analyses based on the proposed laser structure have also been demonstrated corroborated with the experimental results.

  10. A predictive coding account of bistable perception - a model-based fMRI study.

    PubMed

    Weilnhammer, Veith; Stuke, Heiner; Hesselmann, Guido; Sterzer, Philipp; Schmack, Katharina

    2017-05-01

    In bistable vision, subjective perception wavers between two interpretations of a constant ambiguous stimulus. This dissociation between conscious perception and sensory stimulation has motivated various empirical studies on the neural correlates of bistable perception, but the neurocomputational mechanism behind endogenous perceptual transitions has remained elusive. Here, we recurred to a generic Bayesian framework of predictive coding and devised a model that casts endogenous perceptual transitions as a consequence of prediction errors emerging from residual evidence for the suppressed percept. Data simulations revealed close similarities between the model's predictions and key temporal characteristics of perceptual bistability, indicating that the model was able to reproduce bistable perception. Fitting the predictive coding model to behavioural data from an fMRI-experiment on bistable perception, we found a correlation across participants between the model parameter encoding perceptual stabilization and the behaviourally measured frequency of perceptual transitions, corroborating that the model successfully accounted for participants' perception. Formal model comparison with established models of bistable perception based on mutual inhibition and adaptation, noise or a combination of adaptation and noise was used for the validation of the predictive coding model against the established models. Most importantly, model-based analyses of the fMRI data revealed that prediction error time-courses derived from the predictive coding model correlated with neural signal time-courses in bilateral inferior frontal gyri and anterior insulae. Voxel-wise model selection indicated a superiority of the predictive coding model over conventional analysis approaches in explaining neural activity in these frontal areas, suggesting that frontal cortex encodes prediction errors that mediate endogenous perceptual transitions in bistable perception. Taken together, our current work

  11. A predictive coding account of bistable perception - a model-based fMRI study

    PubMed Central

    Weilnhammer, Veith; Stuke, Heiner; Hesselmann, Guido

    2017-01-01

    In bistable vision, subjective perception wavers between two interpretations of a constant ambiguous stimulus. This dissociation between conscious perception and sensory stimulation has motivated various empirical studies on the neural correlates of bistable perception, but the neurocomputational mechanism behind endogenous perceptual transitions has remained elusive. Here, we recurred to a generic Bayesian framework of predictive coding and devised a model that casts endogenous perceptual transitions as a consequence of prediction errors emerging from residual evidence for the suppressed percept. Data simulations revealed close similarities between the model’s predictions and key temporal characteristics of perceptual bistability, indicating that the model was able to reproduce bistable perception. Fitting the predictive coding model to behavioural data from an fMRI-experiment on bistable perception, we found a correlation across participants between the model parameter encoding perceptual stabilization and the behaviourally measured frequency of perceptual transitions, corroborating that the model successfully accounted for participants’ perception. Formal model comparison with established models of bistable perception based on mutual inhibition and adaptation, noise or a combination of adaptation and noise was used for the validation of the predictive coding model against the established models. Most importantly, model-based analyses of the fMRI data revealed that prediction error time-courses derived from the predictive coding model correlated with neural signal time-courses in bilateral inferior frontal gyri and anterior insulae. Voxel-wise model selection indicated a superiority of the predictive coding model over conventional analysis approaches in explaining neural activity in these frontal areas, suggesting that frontal cortex encodes prediction errors that mediate endogenous perceptual transitions in bistable perception. Taken together, our current

  12. Vortex-pair dynamics in anisotropic bistable media: a kinematic approach.

    PubMed

    Hagberg, Aric; Meron, Ehud

    2003-11-28

    In isotropic bistable media, a vortex pair typically evolves into rotating spiral waves. In an anisotropic system, instead of spiral waves, the vortices can form wave fragments that propagate with a constant speed in a given direction determined by the system's anisotropy. The fragments may propagate invariably, shrink, or expand. We develop a kinematic approach for the study of vortex-pair dynamics in anisotropic bistable media and use it to capture the wave fragment dynamics.

  13. Evidence for distinct mechanisms underlying attentional priming and sensory memory for bistable perception.

    PubMed

    Brinkhuis, M A B; Kristjánsson, Á; Brascamp, J W

    2015-08-01

    Attentional selection in visual search paradigms and perceptual selection in bistable perception paradigms show functional similarities. For example, both are sensitive to trial history: They are biased toward previously selected targets or interpretations. We investigated whether priming by target selection in visual search and sensory memory for bistable perception are related. We did this by presenting two trial types to observers. We presented either ambiguous spheres that rotated over a central axis and could be perceived as rotating in one of two directions, or search displays in which the unambiguously rotating target and distractor spheres closely resembled the two possible interpretations of the ambiguous stimulus. We interleaved both trial types within experiments, to see whether priming by target selection during search trials would affect the perceptual outcome of bistable perception and, conversely, whether sensory memory during bistable perception would affect target selection times during search. Whereas we found intertrial repetition effects among consecutive search trials and among consecutive bistable trials, we did not find cross-paradigm effects. Thus, even though we could ascertain that our experiments robustly elicited processes of both search priming and sensory memory for bistable perception, these same experiments revealed no interaction between the two.

  14. Low-threshold optical bistability of graphene-wrapped dielectric composite

    PubMed Central

    Huang, Yang; Miroshnichenko, Andrey E.; Gao, Lei

    2016-01-01

    We theoretically study the effective third-order nonlinear response and optical bistability of the 3D graphene based composite consisting of graphene wrapped dielectric nanoparticles embedded in dielectric host at terahertz frequencies. Taking into account the nonlinear conductivity of graphene, we derive the analytical expressions for the effective third-order nonlinear coefficient in weakly nonlinear limit. Moreover, for strong applied fields, the criterion for achieving optical bistability in such a graphene coated sphere, as well as the switching thresholds of optical bistability are discussed. We find that both and optical bistability are strongly dependent on the Fermi energy of graphene and it is possible to achieve very low switching thresholds under the normal graphene dissipation. We further propose a scheme to study the transmittance of this nonlinear composite slab. These results reveal novel regime of the optical bistability of the transmittance of light. We show that this kind of graphene-wrapped composite, which has tunable and low threshold optical bistability, can be the best candidate for unique nonlinear optical materials. PMID:26996451

  15. Low-threshold optical bistability of graphene-wrapped dielectric composite.

    PubMed

    Huang, Yang; Miroshnichenko, Andrey E; Gao, Lei

    2016-03-21

    We theoretically study the effective third-order nonlinear response and optical bistability of the 3D graphene based composite consisting of graphene wrapped dielectric nanoparticles embedded in dielectric host at terahertz frequencies. Taking into account the nonlinear conductivity of graphene, we derive the analytical expressions for the effective third-order nonlinear coefficient χe3 in weakly nonlinear limit. Moreover, for strong applied fields, the criterion for achieving optical bistability in such a graphene coated sphere, as well as the switching thresholds of optical bistability are discussed. We find that both χe3 and optical bistability are strongly dependent on the Fermi energy of graphene and it is possible to achieve very low switching thresholds under the normal graphene dissipation. We further propose a scheme to study the transmittance of this nonlinear composite slab. These results reveal novel regime of the optical bistability of the transmittance of light. We show that this kind of graphene-wrapped composite, which has tunable and low threshold optical bistability, can be the best candidate for unique nonlinear optical materials.

  16. Piezoelectric vibration-driven locomotion systems - Exploiting resonance and bistable dynamics

    NASA Astrophysics Data System (ADS)

    Fang, Hongbin; Wang, K. W.

    2017-03-01

    While a piezoelectric-based vibration-driven system is an excellent candidate for actuating small-size crawling-type locomotion robots, it has the major drawback of limited stroke output that would severely constraint the system's locomotion performance. In this paper, to advance the state of the art, we propose two novel designs of piezoelectric vibration-driven locomotion systems. The first utilizes the resonant amplification concept, and the second explores the design of a bistable device. While these two ideas have been explored for piezoelectric actuation amplification in general, they have never been exploited for crawling-type robotic locomotion. Numerical analyses on both systems reveal that resonance and bistability can substantially increase the systems' average locomotion speed. Moreover, this research shows that with bistability, the system is able to output high average locomotion speed in a wider frequency band, possess multiple locomotion modes, and achieve fast switches among them. Through proof-of-concept prototypes, the predicted locomotion performance improvements brought by resonance and bistability are verified. Finally, the basin stability is evaluated to systematically describe the occurring probability of certain locomotion behavior of the bistable system, which would provide useful guideline to the design and control of bistable vibration-driven locomotion systems.

  17. Rigid separator lead acid batteries

    SciTech Connect

    Cannone, A.G.; Salkind, A.J.; Stempin, J.L.; Wexell, D.R.

    1996-11-01

    Lead acid cells assembled with extruded separators displayed relatively uniform capacity and voltage parameters through 100{sup +} cycles of charge/discharge. This contrasts to failure of control cells with glass mat separators after 60 cycles. The mullite/alumina separators with 50, 60, and 70% porosity separators appear suitable for both flooded and sealed lead acid cell applications. The advantages of the rigid ceramic separators over fiber mat materials are in the uniformity of capacity and voltage, the ease of cell assembly, and the probability that firm stacking pressure on the active material will yield greater cycle life, especially at elevated temperatures.

  18. Rigid zeolite containing polyurethane foams

    DOEpatents

    Frost, Charles B.

    1985-01-01

    A closed cell rigid polyurethane foam has been prepared which contains up to about 60% by weight of molecular sieves capable of sorbing molecules with effective critical diameters of up to about 10 .ANG.. The molecular sieve component of the foam can be preloaded with catalysts or with reactive compounds that can be released upon activation of the foam to control and complete crosslinking after the foam is formed. The foam can also be loaded with water or other flame-retarding agents, after completion. Up to about 50% of the weight of the isocyanate component of the foam can be replaced by polyimide resin precursors for incorporation into the final polymeric network.

  19. Lubrication of rigid ellipsida solids

    NASA Technical Reports Server (NTRS)

    Hamrock, B. J.; Dowson, D.

    1982-01-01

    The influence of geometry on the isothermal hydrodynamic film separating two rigid solids was investigated. The minimum film thickness is derived for fully flooded conjunctions by using the Reynolds boundary conditions. It was found that the minimum film thickness had the same speed, viscosity, and load dependence as Kapitza' classical solution. However, the incorporation of Reynolds boundary conditions resulted in an additional geometry effect. Solutions using the parabolic film approximation are compared by using the exact expression for the film in the analysis. Contour plots are known that indicate in detail the pressure developed between the solids.

  20. Rigid zeolite containing polyurethane foams

    DOEpatents

    Frost, C.B.

    1984-05-18

    A closed cell rigid polyurethane foam has been prepared which contains up to about 60% by weight of molecular sieves capable of sorbing molecules with effective critical diameters of up to about 10 A. The molecular sieve component of the foam can be preloaded with catalysts or with reactive compounds that can be released upon activation of the foam to control and complete crosslinking after the foam is formed. The foam can also be loaded with water or other flame-retarding agents, after completion. Up to about 50% of the weight of the isocyanate component of the foam can be replaced by polyimide resin precursors for incorporation into the final polymeric network.

  1. Rigidity and Smoothness of Motion.

    DTIC Science & Technology

    1987-11-01

    N-AMP 555 RIGIDITY NAM SMOOTNNESS OF NOTION(U) HNSSRCNUJSETTS INST in1 OF TECH CAMRIDE ARTIFICIAL INTELLIGENCE LN S ULA ET AL. NOV 67 RI-M-909 NSSR4...8217.* .% , ./_ %_I MASSACIHUSETTS INSTITUTE OF TECHNOLOGY ARIIl"I(’IAL ITELlIGENCE LABORATOtRY Lr) A.. .Me mo 9,0,9. November, 19S7UI) ;1TI CD.’ ELU...Artificid Intelligenco Labo- ratory of the Massachusotts In.,titute of lchnolo -. 1upport fi r the lab- oratorys artificial intelligence ro.-oarch i

  2. Frequency-shift vibro-acoustic modulation driven by low-frequency broadband excitations in a bistable cantilever oscillator

    NASA Astrophysics Data System (ADS)

    He, Qingbo; Xu, Yanyan; Lu, Siliang; Shao, Yong

    2017-03-01

    This paper reports a frequency-shift vibro-acoustic modulation (VAM) effect in a bistable microcracked cantilever oscillator. Low-frequency broadband excitations induced a VAM effect with a shifted modulation frequency through involving a microcracked metal beam in a bistable oscillator model. We used nonlinear dynamics equations and principles to describe the mechanism of a bistable oscillator whose natural frequency varied as the oscillation amplitude increased. We demonstrated this frequency-shift VAM effect using a prototype bistable oscillator model designed to efficiently detect microcracks in solid materials via the VAM effect using ambient vibration excitations.

  3. Influence of Fano interference and incoherent processes on optical bistability in a four-level quantum dot nanostructure

    NASA Astrophysics Data System (ADS)

    Seyyed, Hossein Asadpour; G, Solookinejad; M, Panahi; E Ahmadi, Sangachin

    2016-03-01

    Role of Fano interference and incoherent pumping field on optical bistability in a four-level designed InGaN/GaN quantum dot nanostructure embedded in a unidirectional ring cavity are analyzed. It is found that intensity threshold of optical bistability can be manipulated by Fano interference. It is shown that incoherent pumping fields make the threshold of optical bistability behave differently by Fano interference. Moreover, in the presence of Fano interference the medium becomes phase-dependent. Therefore, the relative phase of applied fields can affect the behaviors of optical bistability and intensity threshold can be controlled easily.

  4. Bulk chirality effect for symmetric bistable switching of liquid crystals on topologically self-patterned degenerate anchoring surface.

    PubMed

    Park, Min-Kyu; Joo, Kyung-Il; Kim, Hak-Rin

    2017-06-26

    We demonstrate a bistable switching liquid crystal (LC) mode utilizing a topologically self-structured dual-groove surface for degenerated easy axes of LC anchoring. In our study, the effect of the bulk elastic distortion of the LC directors on the bistable anchoring surface is theoretically analyzed for balanced bistable states based on a free energy diagram. By adjusting bulk LC chirality, we developed ideally symmetric and stable bistable anchoring and switching properties, which can be driven by a low in-plane pulsed field of about 0.7 V/µm. The fabricated device has a contrast ratio of 196:1.

  5. Experimental test of induced rigidity

    NASA Astrophysics Data System (ADS)

    Fincher, Curtis R.; Gochanour, Craig R.

    1987-02-01

    Recent theoretical models for the nematic phase of semiflexible polymer chains predict a strong coupling between order and the conformational degrees of freedom of the chain. The presence of order in the nematic phase results in a strong preference for linear or rod-like conformations over flexible, random coil conformations. This conformational selection or induced rigidity is predicted to be general phenomenon associated with semiflexible chains. We have tested these predictions using a soluble polydiacetylene (4BCMU) as a probe. The 4BCMU chain undergoes a conformational transition (rod-coil) as a function of temperature in toluene which is accompanied by a large change in optical properties allowing the conformational transition to be followed spectroscopically in extremely dilute solutions. 4BCMU is miscible with both isotropic and nematic solutions of poly-(n-hexyl isocyanate) in toluene. If current models of induced rigidity are accurate, there should be a large shift in the transition temperature for the 4BCMU transition in nematic poly-(n-hexyl isocyanate) solutions. Experimentally we find no shift in the transition for nematic solutions when compared to dilute isotropic solutions. Possible explanations for the discrepancy between theory and experiment are discussed.

  6. Relative performance of a vibratory energy harvester in mono- and bi-stable potentials

    NASA Astrophysics Data System (ADS)

    Masana, Ravindra; Daqaq, Mohammed F.

    2011-11-01

    Motivated by the need for broadband vibratory energy harvesting, many research studies have recently proposed energy harvesters with nonlinear characteristics. Based on the shape of their potential function, such devices are classified as either mono- or bi-stable energy harvesters. This paper aims to investigate the relative performance of these two classes under similar excitations and electric loading conditions. To achieve this goal, an energy harvester consisting of a clamped-clamped piezoelectric beam bi-morph is considered. The shape of the harvester's potential function is altered by applying a static compressive axial load at one end of the beam. This permits operation in the mono-stable (pre-buckling) and bi-stable (post-buckling) configurations. For the purpose of performance comparison, the axial load is used to tune the harvester's oscillation frequencies around the static equilibria such that they have equal values in the mono- and bi-stable configurations. The harvester is subjected to harmonic base excitations of different magnitudes and a slowly varying frequency spanning a wide band around the tuned oscillation frequency. The output voltage measured across a purely resistive load is compared over the frequency range considered. Two cases are discussed; the first compares the performance when the bi-stable harvester has deep potential wells, while the second treats a bi-stable harvester with shallow wells. Both numerical and experimental results demonstrate the essential role that the potential shape plays in conjunction with the base acceleration to determine whether the bi-stable harvester can outperform the mono-stable one and for what range of frequencies. Results also illustrate that, for a bi-stable harvester with shallow potential wells, super-harmonic resonances can activate the inter-well dynamics even for a small base acceleration, thereby producing large voltages in the low frequency range.

  7. Tuning size and thermal hysteresis in bistable spin crossover nanoparticles.

    PubMed

    Galán-Mascarós, José Ramón; Coronado, Eugenio; Forment-Aliaga, Alicia; Monrabal-Capilla, María; Pinilla-Cienfuegos, Elena; Ceolin, Marcelo

    2010-06-21

    Nanoparticles of iron(II) triazole salts have been prepared from water-organic microemulsions. The mean size of the nanoparticles can be tuned down to 6 nm in diameter, with a narrow size distribution. A sharp spin transition from the low spin (LS) to the high spin (HS) state is observed above room temperature, with a 30-40-K-wide thermal hysteresis. The same preparation can yield second generation nanoparticles containing molecular alloys by mixing triazole with triazole derivatives, or from metallic mixtures of iron(II) and zinc(II). In these nanoparticles of 10-15 nm, the spin transition "moves" towards lower temperatures, reaching a 316 K limit for the cooling down transition and maintaining a thermal hysteresis over 15-20-K-wide. The nanoparticles were characterized by dynamic light scattering, TEM, and AFM, after deposition on gold or silicon surfaces. The spin transition was characterized by magnetic susceptibility measurements and EXAFS (in solid samples after solvent removal) and also by the color change between the LS (violet) and HS (colorless) states in an organic solvent suspension. The discovery of bistable magnetic nanoparticles of 6 nm with a wide thermal hysteresis above room temperature showcases the actual possibilities of spin crossover materials for nanotechnological applications.

  8. Hindrances to bistable front propagation: application to Wolbachia invasion.

    PubMed

    Nadin, Grégoire; Strugarek, Martin; Vauchelet, Nicolas

    2017-09-22

    We study the biological situation when an invading population propagates and replaces an existing population with different characteristics. For instance, this may occur in the presence of a vertically transmitted infection causing a cytoplasmic effect similar to the Allee effect (e.g. Wolbachia in Aedes mosquitoes): the invading dynamics we model is bistable. We aim at quantifying the propagules (what does it take for an invasion to start?) and the invasive power (how far can an invading front go, and what can stop it?). We rigorously show that a heterogeneous environment inducing a strong enough population gradient can stop an invading front, which will converge in this case to a stable front. We characterize the critical population jump, and also prove the existence of unstable fronts above the stable (blocking) fronts. Being above the maximal unstable front enables an invading front to clear the obstacle and propagate further. We are particularly interested in the case of artificial Wolbachia infection, used as a tool to fight arboviruses.

  9. Bistability of rotational modes in a system of coupled pendulums

    NASA Astrophysics Data System (ADS)

    Smirnov, Lev A.; Kryukov, Alexey K.; Osipov, Grigory V.; Kurths, Jürgen

    2016-12-01

    The main goal of this research is to examine any peculiarities and special modes observed in the dynamics of a system of two nonlinearly coupled pendulums. In addition to steady states, an in-phase rotation limit cycle is proved to exist in the system with both damping and constant external force. This rotation mode is numerically shown to become unstable for certain values of the coupling strength. We also present an asymptotic theory developed for an infinitely small dissipation, which explains why the in-phase rotation limit cycle loses its stability. Boundaries of the instability domain mentioned above are found analytically. As a result of numerical studies, a whole range of the coupling parameter values is found for the case where the system has more than one rotation limit cycle. There exist not only a stable in-phase cycle, but also two out-of phase ones: a stable rotation limit cycle and an unstable one. Bistability of the limit periodic mode is, therefore, established for the system of two nonlinearly coupled pendulums. Bifurcations that lead to the appearance and disappearance of the out-ofphase limit regimes are discussed as well.

  10. Bistable gaits and wobbling induced by pedestrian-bridge interactions

    NASA Astrophysics Data System (ADS)

    Belykh, Igor V.; Jeter, Russell; Belykh, Vladimir N.

    2016-11-01

    Several modern footbridges around the world have experienced large lateral vibrations during crowd loading events. The onset of large-amplitude bridge wobbling has generally been attributed to crowd synchrony; although, its role in the initiation of wobbling has been challenged. To study the contribution of a single pedestrian into overall, possibly unsynchronized, crowd dynamics, we use a bio-mechanically inspired inverted pendulum model of human balance and analyze its bi-directional interaction with a lively bridge. We first derive analytical estimates on the frequency of pedestrian's lateral gait in the absence of bridge motion. Then, through theory and numerics, we demonstrate that pedestrian-bridge interactions can induce bistable lateral gaits such that switching between the gaits can initiate large-amplitude wobbling. We also analyze the role of stride frequency and the pedestrian's mass in hysteretic transitions between the two types of wobbling. Our results support a claim that the overall foot force of pedestrians walking out of phase can cause significant bridge vibrations.

  11. Convergent transcription confers a bistable switch in Enterococcus faecalis conjugation.

    PubMed

    Chatterjee, Anushree; Johnson, Christopher M; Shu, Che-Chi; Kaznessis, Yiannis N; Ramkrishna, Doraiswami; Dunny, Gary M; Hu, Wei-Shou

    2011-06-07

    Convergent gene pairs with head-to-head configurations are widespread in both eukaryotic and prokaryotic genomes and are speculated to be involved in gene regulation. Here we present a unique mechanism of gene regulation due to convergent transcription from the antagonistic prgX/prgQ operon in Enterococcus faecalis controlling conjugative transfer of the antibiotic resistance plasmid pCF10 from donor cells to recipient cells. Using mathematical modeling and experimentation, we demonstrate that convergent transcription in the prgX/prgQ operon endows the system with the properties of a robust genetic switch through premature termination of elongating transcripts due to collisions between RNA polymerases (RNAPs) transcribing from opposite directions and antisense regulation between complementary counter-transcripts. Evidence is provided for the presence of truncated RNAs resulting from convergent transcription from both the promoters that are capable of sense-antisense interactions. A mathematical model predicts that both RNAP collision and antisense regulation are essential for a robust bistable switch behavior in the control of conjugation initiation by prgX/prgQ operons. Moreover, given that convergent transcription is conserved across species, the mechanism of coupling RNAP collision and antisense interaction is likely to have a significant regulatory role in gene expression.

  12. Piezoelectrically strained bistable laminates with macro fiber composites

    NASA Astrophysics Data System (ADS)

    Lee, Andrew J.; Moosavian, Amin; Inman, Daniel J.

    2017-04-01

    The bistability and snap through capability of an unsymmetric laminate consisting of only Macro Fiber Composites (MFC) are investigated. The non-linear analysis predicts two cylindrically stable configurations when strain anisotropy is piezoelectrically induced within a [0MFC/90MFC]T laminate. This is achieved by bonding two MFCs in their actuated states and releasing the voltage post cure to create in-plane residual stresses. The minimization of total potential energy with the Rayleigh-Ritz method are used to analytically model the resulting laminate. A finite element analysis is conducted in MSC Nastran using the piezoelectric-thermal analogy approach to verify the analytical results. The effects of adhesive properties, bonding cure cycles, MFC layup, and its geometry on the curvatures, displacements, and bifurcation voltages are characterized. Finally, the snap through and reverse snap through capabilities with piezoelectric actuation are demonstrated. This adaptive laminate functions as both the actuator and the primary structure and allows large deformations under a non-continuous energy input. Its snap through capability allows full configuration control necessary in morphing applications.

  13. The interaction of perceptual biases in bistable perception

    PubMed Central

    Zhang, Xue; Xu, Qian; Jiang, Yi; Wang, Ying

    2017-01-01

    When viewing ambiguous stimuli, people tend to perceive some interpretations more frequently than others. Such perceptual biases impose various types of constraints on visual perception, and accordingly, have been assumed to serve distinct adaptive functions. Here we demonstrated the interaction of two functionally distinct biases in bistable biological motion perception, one regulating perception based on the statistics of the environment – the viewing-from-above (VFA) bias, and the other with the potential to reduce costly errors resulting from perceptual inference – the facing-the-viewer (FTV) bias. When compatible, the two biases reinforced each other to enhance the bias strength and induced less perceptual reversals relative to when they were in conflict. Whereas in the conflicting condition, the biases competed with each other, with the dominant percept varying with visual cues that modulate the two biases separately in opposite directions. Crucially, the way the two biases interact does not depend on the dominant bias at the individual level, and cannot be accounted for by a single bias alone. These findings provide compelling evidence that humans robustly integrate biases with different adaptive functions in visual perception. It may be evolutionarily advantageous to dynamically reweight diverse biases in the sensory context to resolve perceptual ambiguity. PMID:28165061

  14. Nonlinear response and bistability of driven ion acoustic waves

    NASA Astrophysics Data System (ADS)

    Akbari-Moghanjoughi, M.

    2017-08-01

    The hydrodynamic model is used to obtain a generalized pseudoforce equation through which the nonlinear response of periodically driven ion acoustic waves is studied in an electron-ion plasma with isothermal and adiabatic ion fluids. The pseudotime series, corresponding to different driving frequencies, indicates that nonlinearity effects appear more strongly for smaller frequency values. The existence of extra harmonic resonances in the nonlinear amplitude spectrum is a clear indication of the interaction of an external force with harmonic components of the nonlinear ion acoustic waves. It is shown that many plasma parameters significantly and differently affect the nonlinear resonance spectrum of ion acoustic excitations. A heuristic but accurate model for the foldover effect is used which quite satisfactorily predicts the bistability of driven plasma oscillations. It is remarked that the characteristic resonance peak of isothermal ion plasma oscillations appears at lower frequencies but is stronger compared to that of adiabatic ions. Comparison of the exact numerical results for fully nonlinear and approximate (weakly nonlinear) models indicates that a weakly nonlinear model exaggerates the hysteresis and jump phenomenon for higher values of the external force amplitude.

  15. Trim28 Haploinsufficiency Triggers Bi-stable Epigenetic Obesity

    PubMed Central

    Dalgaard, Kevin; Landgraf, Kathrin; Heyne, Steffen; Lempradl, Adelheid; Longinotto, John; Gossens, Klaus; Ruf, Marius; Orthofer, Michael; Strogantsev, Ruslan; Selvaraj, Madhan; Lu, Tess Tsai-Hsiu; Casas, Eduard; Teperino, Raffaele; Surani, M. Azim; Zvetkova, Ilona; Rimmington, Debra; Tung, Y.C. Loraine; Lam, Brian; Larder, Rachel; Yeo, Giles S.H.; O’Rahilly, Stephen; Vavouri, Tanya; Whitelaw, Emma; Penninger, Josef M.; Jenuwein, Thomas; Cheung, Ching-Lung; Ferguson-Smith, Anne C.; Coll, Anthony P.; Körner, Antje; Pospisilik, J. Andrew

    2016-01-01

    Summary More than one-half billion people are obese, and despite progress in genetic research, much of the heritability of obesity remains enigmatic. Here, we identify a Trim28-dependent network capable of triggering obesity in a non-Mendelian, “on/off” manner. Trim28+/D9 mutant mice exhibit a bi-modal body-weight distribution, with isogenic animals randomly emerging as either normal or obese and few intermediates. We find that the obese-“on” state is characterized by reduced expression of an imprinted gene network including Nnat, Peg3, Cdkn1c, and Plagl1 and that independent targeting of these alleles recapitulates the stochastic bi-stable disease phenotype. Adipose tissue transcriptome analyses in children indicate that humans too cluster into distinct sub-populations, stratifying according to Trim28 expression, transcriptome organization, and obesity-associated imprinted gene dysregulation. These data provide evidence of discrete polyphenism in mouse and man and thus carry important implications for complex trait genetics, evolution, and medicine. Video Abstract PMID:26824653

  16. Bistability of atmospheric oxygen and the Great Oxidation.

    PubMed

    Goldblatt, Colin; Lenton, Timothy M; Watson, Andrew J

    2006-10-12

    The history of the Earth has been characterized by a series of major transitions separated by long periods of relative stability. The largest chemical transition was the 'Great Oxidation', approximately 2.4 billion years ago, when atmospheric oxygen concentrations rose from less than 10(-5) of the present atmospheric level (PAL) to more than 0.01 PAL, and possibly to more than 0.1 PAL. This transition took place long after oxygenic photosynthesis is thought to have evolved, but the causes of this delay and of the Great Oxidation itself remain uncertain. Here we show that the origin of oxygenic photosynthesis gave rise to two simultaneously stable steady states for atmospheric oxygen. The existence of a low-oxygen (less than 10(-5) PAL) steady state explains how a reducing atmosphere persisted for at least 300 million years after the onset of oxygenic photosynthesis. The Great Oxidation can be understood as a switch to the high-oxygen (more than 5 x 10(-3) PAL) steady state. The bistability arises because ultraviolet shielding of the troposphere by ozone becomes effective once oxygen levels exceed 10(-5) PAL, causing a nonlinear increase in the lifetime of atmospheric oxygen. Our results indicate that the existence of oxygenic photosynthesis is not a sufficient condition for either an oxygen-rich atmosphere or the presence of an ozone layer, which has implications for detecting life on other planets using atmospheric analysis and for the evolution of multicellular life.

  17. Stochastic transitions in a bistable reaction system on the membrane

    PubMed Central

    Kochańczyk, Marek; Jaruszewicz, Joanna; Lipniacki, Tomasz

    2013-01-01

    Transitions between steady states of a multi-stable stochastic system in the perfectly mixed chemical reactor are possible only because of stochastic switching. In realistic cellular conditions, where diffusion is limited, transitions between steady states can also follow from the propagation of travelling waves. Here, we study the interplay between the two modes of transition for a prototype bistable system of kinase–phosphatase interactions on the plasma membrane. Within microscopic kinetic Monte Carlo simulations on the hexagonal lattice, we observed that for finite diffusion the behaviour of the spatially extended system differs qualitatively from the behaviour of the same system in the well-mixed regime. Even when a small isolated subcompartment remains mostly inactive, the chemical travelling wave may propagate, leading to the activation of a larger compartment. The activating wave can be induced after a small subdomain is activated as a result of a stochastic fluctuation. Such a spontaneous onset of activity is radically more probable in subdomains characterized by slower diffusion. Our results show that a local immobilization of substrates can lead to the global activation of membrane proteins by the mechanism that involves stochastic fluctuations followed by the propagation of a semi-deterministic travelling wave. PMID:23635492

  18. Molecular control of irreversible bistability during trypanosome developmental commitment

    PubMed Central

    Domingo-Sananes, Maria Rosa; Szöőr, Balazs; Ferguson, Michael A.J.

    2015-01-01

    The life cycle of Trypanosoma brucei involves developmental transitions that allow survival, proliferation, and transmission of these parasites. One of these, the differentiation of growth-arrested stumpy forms in the mammalian blood into insect-stage procyclic forms, can be induced synchronously in vitro with cis-aconitate. Here, we show that this transition is an irreversible bistable switch, and we map the point of commitment to differentiation after exposure to cis-aconitate. This irreversibility implies that positive feedback mechanisms operate to allow commitment (i.e., the establishment of “memory” of exposure to the differentiation signal). Using the reversible translational inhibitor cycloheximide, we show that this signal memory requires new protein synthesis. We further performed stable isotope labeling by amino acids in cell culture to analyze synchronized parasite populations, establishing the protein and phosphorylation profile of parasites pre- and postcommitment, thereby defining the “commitment proteome.” Functional interrogation of this data set identified Nek-related kinase as the first-discovered protein kinase controlling the initiation of differentiation to procyclic forms. PMID:26483558

  19. Bistable gaits and wobbling induced by pedestrian-bridge interactions.

    PubMed

    Belykh, Igor V; Jeter, Russell; Belykh, Vladimir N

    2016-11-01

    Several modern footbridges around the world have experienced large lateral vibrations during crowd loading events. The onset of large-amplitude bridge wobbling has generally been attributed to crowd synchrony; although, its role in the initiation of wobbling has been challenged. To study the contribution of a single pedestrian into overall, possibly unsynchronized, crowd dynamics, we use a bio-mechanically inspired inverted pendulum model of human balance and analyze its bi-directional interaction with a lively bridge. We first derive analytical estimates on the frequency of pedestrian's lateral gait in the absence of bridge motion. Then, through theory and numerics, we demonstrate that pedestrian-bridge interactions can induce bistable lateral gaits such that switching between the gaits can initiate large-amplitude wobbling. We also analyze the role of stride frequency and the pedestrian's mass in hysteretic transitions between the two types of wobbling. Our results support a claim that the overall foot force of pedestrians walking out of phase can cause significant bridge vibrations.

  20. Emergent equilibrium in many-body optical bistability

    NASA Astrophysics Data System (ADS)

    Foss-Feig, M.; Niroula, P.; Young, J. T.; Hafezi, M.; Gorshkov, A. V.; Wilson, R. M.; Maghrebi, M. F.

    2017-04-01

    Many-body systems constructed of quantum-optical building blocks can now be realized in experimental platforms ranging from exciton-polariton fluids to ultracold Rydberg gases, establishing a fascinating interface between traditional many-body physics and the driven-dissipative, nonequilibrium setting of cavity QED. At this interface, the standard techniques and intuitions of both fields are called into question, obscuring issues as fundamental as the role of fluctuations, dimensionality, and symmetry on the nature of collective behavior and phase transitions. Here, we study the driven-dissipative Bose-Hubbard model, a minimal description of numerous atomic, optical, and solid-state systems in which particle loss is countered by coherent driving. Despite being a lattice version of optical bistability, a foundational and patently nonequilibrium model of cavity QED, the steady state possesses an emergent equilibrium description in terms of a classical Ising model. We establish this picture by making new connections between traditional techniques from many-body physics (functional integrals) and quantum optics (the system-size expansion). To lowest order in a controlled expansion—organized around the experimentally relevant limit of weak interactions—the full quantum dynamics reduces to nonequilibrium Langevin equations, which support a phase transition described by model A of the Hohenberg-Halperin classification. Numerical simulations of the Langevin equations corroborate this picture, revealing that canonical behavior associated with the Ising model manifests readily in simple experimental observables.

  1. Bistable synchronization of coupled random network of cubic maps

    NASA Astrophysics Data System (ADS)

    Nag, Mayurakshi

    2017-06-01

    The spatiotemporal behavior of coupled cubic maps over a dynamic network having randomness in coupling connections is investigated here. Due to the bistable nature of cubic map the synchronization behavior is dependent on the initial conditions. The network can stabilize to any one of the nonzero unstable fixed point of the map depending on the initial conditions. Linear stability analysis of synchronized fixed point gives the value of coupling at which onset of synchronization occurs. The critical coupling strength depends on the randomness in rewiring, properties of the local map, but it is independent of lattice size. Numerical simulation results match very well with predictions from theoretical analysis. Behaviors of the network for synchronized initial conditions are pointed out. Looking at the case of stability in a network with static rewiring, it is found that, the range of synchronization of fixed point becomes shorter than the dynamical random one. Contribution of delay in the synchronization phenomenon is studied both analytically and numerically and the range of synchronized period-2 orbit is found to be quite similar in both the cases. Multistable nature of the delay coupled network is shown numerically.

  2. Still states of bistable lattices, compatibility, and phase transition

    NASA Astrophysics Data System (ADS)

    Cherkaev, Andrej; Kouznetsov, Andrei; Panchenko, Alexander

    2010-09-01

    We study a two-dimensional triangular lattice made of bistable rods. Each rod has two equilibrium lengths, and thus its energy has two equal minima. A rod undergoes a phase transition when its elongation exceeds a critical value. The lattice is subject to a homogeneous strain and is periodic with a sufficiently large period. The effective strain of a periodic element is defined. After phase transitions, the lattice rods are in two different states and lattice strain is inhomogeneous, the Cauchy-Born rule is not applicable. We show that the lattice has a number of deformed still states that carry no stresses. These states densely cover a neutral region in the space of entries of effective strains. In this region, the minimal energy of the periodic lattice is asymptotically close to zero. When the period goes to infinity, the effective energy of such lattices has the “flat bottom” which we explicitly describe. The compatibility of the partially transited lattice is studied. We derive compatibility conditions for lattices and demonstrate a family of compatible lattices (strips) that densely covers the flat bottom region. Under an additional assumption of the small difference of two equilibrium lengths, we demonstrate that the still structures continuously vary with the effective strain and prove a linear dependence of the average strain on the concentration of transited rods.

  3. Motor neuron 'bistability'. A pathogenetic mechanism for cramps and myokymia.

    PubMed

    Baldissera, F; Cavallari, P; Dworzak, F

    1994-10-01

    In three patients suffering from chronic muscle cramps, spasms and myokymia, these involuntary contractions were triggered in the triceps surae, quadriceps, flexor carpi radialis or flexor digitorum by means of single or short-train stimulation of homonymous Ia afferents, elicited by electrical means or tendon taps. In some cases cramp was induced by the first afferent volleys; more often, however, continued stimulation produced stepwise recruitment of motor units (whose rhythmic firing was visible as myokymia in the muscle) until cramp developed. Cramps and myokymic discharges could usually be terminated by a single maximal stimulus to the motor axons (producing antidromic invasion and Renshaw inhibition of the motor neurons), or by short trains of volleys in inhibitory pathways from the skin. The fact that it was possible to induce myokymia and cramps by brief synaptic excitation and terminate them by antidromic invasion or synaptic inhibition, suggests that the mechanism generating these disturbances is intrinsic to alpha-motor neuron somata. Similar on-off switching of self-sustained motor discharges has been observed in the decerebrate cat and is known to depend on 'bistability' of the motor neuron membrane. We propose that a similar mechanism is responsible for discharges that produce cramp.

  4. Resonant Phenomenon in a Stochastic Delayed Bistable Chemical System

    NASA Astrophysics Data System (ADS)

    Li, Chunxuan; Yang, Tao

    2015-06-01

    In this paper, the resonant phenomenon for a bistable chemical system in the presence of noises and delayed feedback is investigated. The signal-to-noise ratio (SNR) is calculated when periodic signal is introduced additively (or multiplicatively). The impacts of the parameter μ of the reaction, time delay τ, strength K of the feedback loop, multiplicative ( D) and additive ( Q) noise strengths and cross-correlation strength λ between two noises on the SNR are discussed. When the periodic signal is introduced additively, our results show (i) the SNR as a function of the parameter μ exhibits a maximum, the existence of the maximum is a characteristic of the parametric resonance (PR) phenomenon; (ii) the SNR as a function of D exhibits only a maximum, however, for the case of SNR as a function of Q exhibits not only a maximum, but also a minimum. The existence of the maximum and minimum in the SNR is the identifying characteristics of the stochastic resonance (SR) and reverse-resonance (RR); and (iii) the increases of τ, K and λ enhance the SR and weaken the RR. Finally, we compare the resonant phenomenon for the additive periodic signal with that for multiplicative one in the chemical system.

  5. Bistable Network Behavior of Layer I Interneurons in Auditory Cortex

    PubMed Central

    Merriam, Elliott B.; Netoff, Theoden I.; Banks, Matthew I.

    2006-01-01

    GABAergic interneurons in many areas of the neocortex are mutually connected via chemical and electrical synapses. Previous computational studies have explored how these coupling parameters influence the firing patterns of interneuronal networks. These models have predicted that the stable states of such interneuronal networks will be either synchrony (near zero phase lag) or antisynchrony (phase lag near one-half of the interspike interval), depending on network connectivity and firing rates. In certain parameter regimens, the network can be bistable, settling into either stable state depending on the initial conditions. Here, we investigated how connectivity parameters influence spike patterns in paired recordings from layer I interneurons in brain slices from juvenile mice. Observed properties of chemical and electrical synapses were used to simulate connections between uncoupled cells via dynamic clamp. In uncoupled pairs, action potentials induced by constant depolarizing currents had randomly distributed phase differences between the two cells. When coupled with simulated chemical (inhibitory) synapses, however, these pairs exhibited a bimodal firing pattern, tending to fire either in synchrony or in antisynchrony. Combining electrical with chemical synapses, prolonging τDecay of inhibitory connections, or increasing the firing rate of the network all resulted in enhanced stability of the synchronous state. Thus, electrical and inhibitory synaptic coupling constrain the relative timing of spikes in a two-cell network to, at most, two stable states, the stability and precision of which depend on the exact parameters of coupling. PMID:15987947

  6. Mooring and ground handling rigid airships

    NASA Technical Reports Server (NTRS)

    Walker, H., Jr.

    1975-01-01

    The problems of mooring and ground handling rigid airships are discussed. A brief history of Mooring and Ground Handling Rigid Airships from July 2, 1900 through September 1, 1939 is included. Also a brief history of ground handling developments with large U. S. Navy nonrigid airships between September 1, 1939 and August 31, 1962 is included wherein developed equipment and techniques appear applicable to future large rigid airships. Finally recommendations are made pertaining to equipment and procedures which appear desirable and feasible for future rigid airship programs.

  7. Starting and Stopping a Bistable Pacemaker: Stochastic Stimulation Identifies Critical Perturbations

    NASA Astrophysics Data System (ADS)

    Paydarfar, David; Forger, Daniel B.; Clay, John R.

    2005-08-01

    Bistable pacemakers exhibit highly nonlinear properties, such as abrupt transitions between repetitive firing and quiescence in response to small perturbing stimuli. We describe a search method for estimating optimum stimulus shapes and intensities for starting or stopping the repetitive firing of a bistable pacemaker. A large library of randomly generated stimuli is used to perturb the pacemaker, and a library of responses is recorded. From these two libraries, a rank order of desirability of the stimulus is generated to arrive at an estimate of the optimum stimulus shape. The search method was validated by calculus of variations applied to the Bonhoeffer-van der Pol (Fitzhugh-Nagumo) model of a bistable pacemaker. We found that the optimum stimulus for inducing a switch from one stable attractor to the other is a critically timed oscillatory stimulus. While the optimum stimulus shape for stopping the oscillator is similar to that for starting the oscillator, they differ in that stopping the oscillator requires that the stimulus is in antiphase to the natural rhythm, while the optimum stimulus for starting the oscillator is in phase with the natural rhythm. These theoretical predictions can be tested in real biological pacemakers, such as a recently described squid giant axon preparation that exhibits membrane bistability. Elucidation of optimum stimulus shapes may be useful for studying many periodic phenomena in biology and medicine. Our findings also suggest a novel approach to understanding how bistable membranes encode information over long time scales using fast noisy transients.

  8. Bistability in cell signaling: How to make continuous processes discontinuous, and reversible processes irreversible

    NASA Astrophysics Data System (ADS)

    Ferrell, James E.; Xiong, Wen

    2001-03-01

    Xenopus oocyte maturation is an example of an all-or-none, irreversible cell fate induction process. In response to a submaximal concentration of the steroid hormone progesterone, a given oocyte may either mature or not mature, but it can exist in intermediate states only transiently. Moreover, once an oocyte has matured, it will remain arrested in the mature state even after the progesterone is removed. It has been hypothesized that the all-or-none character of oocyte maturation, and some aspects of the irreversibility of maturation, arise out of the bistability of the signal transduction system that triggers maturation. The bistability, in turn, is hypothesized to arise from the way the signal transducers are organized into a signaling circuit that includes positive feedback (which makes it so that the system cannot rest in intermediate states) and ultrasensitivity (which filters small stimuli out of the feedback loop, allowing the system to have a stable off-state). Here we review two simple graphical methods that are commonly used to analyze bistable systems, discuss the experimental evidence for bistability in oocyte maturation, and suggest that bistability may be a common means of producing all-or-none responses and a type of biochemical memory.

  9. Maximizing direct current power delivery from bistable vibration energy harvesting beams subjected to realistic base excitations

    NASA Astrophysics Data System (ADS)

    Dai, Quanqi; Harne, Ryan L.

    2017-04-01

    Effective development of vibration energy harvesters is required to convert ambient kinetic energy into useful electrical energy as power supply for sensors, for example in structural health monitoring applications. Energy harvesting structures exhibiting bistable nonlinearities have previously been shown to generate large alternating current (AC) power when excited so as to undergo snap-through responses between stable equilibria. Yet, most microelectronics in sensors require rectified voltages and hence direct current (DC) power. While researchers have studied DC power generation from bistable energy harvesters subjected to harmonic excitations, there remain important questions as to the promise of such harvester platforms when the excitations are more realistic and include both harmonic and random components. To close this knowledge gap, this research computationally and experimentally studies the DC power delivery from bistable energy harvesters subjected to such realistic excitation combinations as those found in practice. Based on the results, it is found that the ability for bistable energy harvesters to generate peak DC power is significantly reduced by introducing sufficient amount of stochastic excitations into an otherwise harmonic input. On the other hand, the elimination of a low amplitude, coexistent response regime by way of the additive noise promotes power delivery if the device was not originally excited to snap-through. The outcomes of this research indicate the necessity for comprehensive studies about the sensitivities of DC power generation from bistable energy harvester to practical excitation scenarios prior to their optimal deployment in applications.

  10. Revisiting the Lissajous figure as a tool to study bistable perception.

    PubMed

    Weilnhammer, V A; Ludwig, K; Sterzer, P; Hesselmann, G

    2014-05-01

    During bistable vision perception spontaneously "switches" between two mutually exclusive percepts despite constant sensory input. The endogenous nature of these perceptual transitions has motivated extensive research aimed at the underlying mechanisms, since spontaneous perceptual transitions of bistable stimuli should in principle allow for a dissociation of processes related to sensory stimulation from those related to conscious perception. However, transitions from one conscious percept to another are often not instantaneous, and participants usually report a considerable amount of mixed or unclear percepts. This feature of bistable vision makes it difficult to isolate transition-related visual processes. Here, we revisited an ambiguous depth-from-motion stimulus which was first introduced to experimental psychology more than 80 years ago. This rotating Lissajous figure might prove useful in complementing other bistable stimuli, since its perceptual transitions only occur at critical stimulus configurations and are virtually instantaneous, thus facilitating the construction of a perceptually equivalent replay condition. We found that three parameters of the Lissajous figure - complexity, line width, and rotational speed - differentially modulated its perceptual dominance durations and transition probabilities, thus providing experimenters with a versatile tool to study the perceptual dynamics of bistable vision. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Determining the bistability parameter ranges of artificially induced lac operon using the root locus method.

    PubMed

    Avcu, N; Alyürük, H; Demir, G K; Pekergin, F; Cavas, L; Güzeliş, C

    2015-06-01

    This paper employs the root locus method to conduct a detailed investigation of the parameter regions that ensure bistability in a well-studied gene regulatory network namely, lac operon of Escherichia coli (E. coli). In contrast to previous works, the parametric bistability conditions observed in this study constitute a complete set of necessary and sufficient conditions. These conditions were derived by applying the root locus method to the polynomial equilibrium equation of the lac operon model to determine the parameter values yielding the multiple real roots necessary for bistability. The lac operon model used was defined as an ordinary differential equation system in a state equation form with a rational right hand side, and it was compatible with the Hill and Michaelis-Menten approaches of enzyme kinetics used to describe biochemical reactions that govern lactose metabolism. The developed root locus method can be used to study the steady-state behavior of any type of convergent biological system model based on mass action kinetics. This method provides a solution to the problem of analyzing gene regulatory networks under parameter uncertainties because the root locus method considers the model parameters as variable, rather than fixed. The obtained bistability ranges for the lac operon model parameters have the potential to elucidate the appearance of bistability for E. coli cells in in vivo experiments, and they could also be used to design robust hysteretic switches in synthetic biology.

  12. Optical bistability based on nonlinear oblique reflection of light beams from a screen with an aperture on its axis

    SciTech Connect

    Nikitenko, K Yu; Trofimov, V A

    1999-02-28

    It is shown that, in principle, optical bistability can be based on a nonlinear interaction of noncollinearly propagating beams when one of them is reflected from a plane screen with an aperture on its axis. The requirements to be satisfied by the interacting beams are discussed and estimates are obtained of the shortest response time of such an optically bistable system. (nonlinear optical phenomena)

  13. Ammonia quantitative analysis model based on miniaturized Al ionization gas sensor and non-linear bistable dynamic model

    PubMed Central

    Ma, Rongfei

    2015-01-01

    In this paper, ammonia quantitative analysis based on miniaturized Al ionization gas sensor and non-linear bistable dynamic model was proposed. Al plate anodic gas-ionization sensor was used to obtain the current-voltage (I-V) data. Measurement data was processed by non-linear bistable dynamics model. Results showed that the proposed method quantitatively determined ammonia concentrations. PMID:25975362

  14. Ammonia quantitative analysis model based on miniaturized Al ionization gas sensor and non-linear bistable dynamic model.

    PubMed

    Ma, Rongfei

    2015-01-01

    In this paper, ammonia quantitative analysis based on miniaturized Al ionization gas sensor and non-linear bistable dynamic model was proposed. Al plate anodic gas-ionization sensor was used to obtain the current-voltage (I-V) data. Measurement data was processed by non-linear bistable dynamics model. Results showed that the proposed method quantitatively determined ammonia concentrations.

  15. Synthesizing A Phase Changing Bistable Electroactive Polymer And Silver Nanoparticles Coated Fabric As A Resistive Heating Element

    NASA Astrophysics Data System (ADS)

    Ren, Zhi

    Transducer technologies that convert energy from one form to another (e.g. electrical energy to mechanical energy or thermal energy and vise versa) are considered as the basic building blocks of robots and wearable electronics, two of the rapidly emerging technologies that impact our daily life. With an emphasis on developing the essential smart materials, this dissertation focuses on two specific transducer technologies, bistable large-strain electro-mechanical actuation and resistive Joule heating, in pursuit of refreshable Braille electronic displays and wearable thermal management element, respectively. Dielectric elastomers (DEs) have been intensively studied for their promising ability to mimic human muscles in providing efficient electro-mechanical actuation. They exhibit a unique combination of properties, including large strain, fast response, high energy density, mechanical compliancy, lightweight, and low cost. However, the softness of the DE materials, which is a prerequisite for electrically induced large actuation strain, has been hindering their application in adaptive structures. In these applications such as braille displays, a certain amount of mechanical support is necessary in addition to large strains for the device or system to function. Bistable electroactive polymers (BSEP) that leverage the electrically induced large-strain actuation of DE actuators and the bi-stable rigid-to-rigid deformation of shape memory polymers are innovated to provide large electrical actuation strain in their rubbery state and fix the deformation by cooling down to room temperature to incorporate mechanical rigidity. BSEP materials that can suppress electromechanical instability and exhibit stable mechanical properties in the rubbery state are desired. A bimodal BSEP material with a glass transition temperature right above room temperature has been synthesized employing simple UV curing process. The BSEP has a large storage modulus over 1GPa at room temperature

  16. Bistable behavior of the lac operon in E. coli when induced with a mixture of lactose and TMG.

    PubMed

    Díaz-Hernández, Orlando; Santillán, Moisés

    2010-01-01

    In this work we investigate multistability in the lac operon of Escherichia coli when it is induced by a mixture of lactose and the non-metabolizable thiomethyl galactoside (TMG). In accordance with previously published experimental results and computer simulations, our simulations predict that: (1) when the system is induced by TMG, the system shows a discernible bistable behavior while, (2) when the system is induced by lactose, bistability does not disappear but excessively high concentrations of lactose would be required to observe it. Finally, our simulation results predict that when a mixture of lactose and TMG is used, the bistability region in the extracellular glucose concentration vs. extracellular lactose concentration parameter space changes in such a way that the model predictions regarding bistability could be tested experimentally. These experiments could help to solve a recent controversy regarding the existence of bistability in the lac operon under natural conditions.

  17. Bistable Behavior of the Lac Operon in E. Coli When Induced with a Mixture of Lactose and TMG

    PubMed Central

    Díaz-Hernández, Orlando; Santillán, Moisés

    2010-01-01

    In this work we investigate multistability in the lac operon of Escherichia coli when it is induced by a mixture of lactose and the non-metabolizable thiomethyl galactoside (TMG). In accordance with previously published experimental results and computer simulations, our simulations predict that: (1) when the system is induced by TMG, the system shows a discernible bistable behavior while, (2) when the system is induced by lactose, bistability does not disappear but excessively high concentrations of lactose would be required to observe it. Finally, our simulation results predict that when a mixture of lactose and TMG is used, the bistability region in the extracellular glucose concentration vs. extracellular lactose concentration parameter space changes in such a way that the model predictions regarding bistability could be tested experimentally. These experiments could help to solve a recent controversy regarding the existence of bistability in the lac operon under natural conditions. PMID:21423364

  18. Two-Color Coherent Control of Optical Bistability in Asymmetric Semiconductor Quantum Wells

    NASA Astrophysics Data System (ADS)

    Li, Jia-Hua; Hao, Xiang-Ying

    We investigate optical bistability in intersubband transitions of an asymmetric semiconductor quantum well structure that has equidistant transitions between three subbands of the system and is placed in a unidirectional cavity. The system is simultaneously coupled by a fundamental field and its second harmonic. The second harmonic field acts as a control field and significantly influences the optical bistability. In addition, the two-color coherent control of optical bistability by the relative phase of the fundamental and the second harmonic fields is shown. The influence of the electronic cooperation parameter on the OB behavior is also discussed. This investigation may be used for optimizing and controlling the optical switching process in the SQW solid-state system, which is much more practical than that in the atomic system because of its flexible design and the controllable interference strength.

  19. Influence of non perfect impedance boundary on the bistable region in thermoacoustic interactions

    NASA Astrophysics Data System (ADS)

    Mohan, B.; Mariappan, S.

    2017-04-01

    We investigate the influence of non perfect impedance boundary on the bistable zone in thermoacoustic interactions of a horizontal Rijke tube. A wave based approach is used to obtain the nonlinear dispersion relation with frequency dependent impedance boundary condition. The location and the time delay in the response of the heater are considered as bifurcation parameters to obtain the stability boundaries. In the presence of non perfect impedance boundary condition, we find that the extent of globally unstable regime reduces and the bistable zone significantly increases. The quantitative changes in the stability boundaries and the bistable zone are investigated for different time lags. However, the nature of bifurcation remains sub critical and unaltered for the range of time delays considered in the present study.

  20. Bistability induces episodic spike communication by inhibitory neurons in neuronal networks

    NASA Astrophysics Data System (ADS)

    Kazantsev, V. B.; Asatryan, S. Yu.

    2011-09-01

    Bistability is one of the important features of nonlinear dynamical systems. In neurodynamics, bistability has been found in basic Hodgkin-Huxley equations describing the cell membrane dynamics. When the neuron is clamped near its threshold, the stable rest potential may coexist with the stable limit cycle describing periodic spiking. However, this effect is often neglected in network computations where the neurons are typically reduced to threshold firing units (e.g., integrate-and-fire models). We found that the bistability may induce spike communication by inhibitory coupled neurons in the spiking network. The communication is realized in the form of episodic discharges with synchronous (correlated) spikes during the episodes. A spiking phase map is constructed to describe the synchronization and to estimate basic spike phase locking modes.

  1. Extrinsic periodic information interpolates between monostable and bistable states in intracellular calcium dynamics

    NASA Astrophysics Data System (ADS)

    Lin, Ling; Duan, Wei-Long

    2015-06-01

    Extrinsic periodic information including physiological cyclical and circadian replacement would affect inevitably a real cell, in this paper we investigate the effect of extrinsic periodic information on intracellular calcium dynamics by means of second-order algorithm for stochastic simulation colored noises. By simulating time evolutions and stationary probability distribution of intracellular Ca2+ concentrations, the results show: (i) intracellular calcium oscillation between cytosol and calcium store shows synchronous and anti-synchronous oscillation as intensity and frequency of extrinsic periodic information vary; (ii) extrinsic periodic information interpolates stability from bistable state → monostable state → bistable state → monostable state as frequency of extrinsic periodic information increases; (iii) extrinsic periodic information interpolates stability from monostable state → bistable state as intensity of extrinsic periodic information increases.

  2. Molecular Titration Promotes Oscillations and Bistability in Minimal Network Models with Monomeric Regulators.

    PubMed

    Cuba Samaniego, Christian; Giordano, Giulia; Kim, Jongmin; Blanchini, Franco; Franco, Elisa

    2016-04-15

    Molecular titration is emerging as an important biochemical interaction mechanism within synthetic devices built with nucleic acids and the CRISPR/Cas system. We show that molecular titration in the context of feedback circuits is a suitable mechanism to enhance the emergence of oscillations and bistable behaviors. We consider biomolecular modules that can be inhibited or activated by input monomeric regulators; the regulators compete with constitutive titrating species to determine the activity of their target. By tuning the titration rate and the concentration of titrating species, it is possible to modulate the delay and convergence speed of the transient response, and the steepness and dead zone of the stationary response of the modules. These phenomena favor the occurrence of oscillations when modules are interconnected to create a negative feedback loop; bistability is favored in a positive feedback interconnection. Numerical simulations are supported by mathematical analysis showing that the capacity of the closed loop systems to exhibit oscillations or bistability is structural.

  3. Optical bistability and four-wave mixing in a hybrid optomechanical system

    NASA Astrophysics Data System (ADS)

    Jiang, Lei; Yuan, Xiaorong; Cui, Yuanshun; Chen, Guibin; Zuo, Fen; Jiang, Cheng

    2017-10-01

    We explore theoretically the optical bistability and four-wave mixing (FWM) in a hybrid optomechanical system, where the mechanical resonator is simultaneously coupled to a cavity field and a two-level system (qubit). We can use a strong control field driving the cavity to control the bistable behavior of the steady-state photon number, phonon number, and the population inversion. The impact of qubit-resonator coupling strength on the bistable behavior is discussed. Furthermore, the two-level system can significantly modify the output fields of the cavity, leading to double optomechanically induced transparency (OMIT) and the enhancement of the FWM intensity. We find that the distance between the two peaks in the FWM spectrum can be controlled by the qubit-resonator coupling strength, and the peak value of the FWM intensity can be adjusted by the Rabi frequency of the control field.

  4. A tunable bistable device based on a coupled quantum dot-metallic nanoparticle nanosystem

    NASA Astrophysics Data System (ADS)

    Li, Jian-Bo; Liang, Shan; He, Meng-Dong; Chen, Li-Qun; Wang, Xin-Jun; Peng, Xiao-Fang

    2015-07-01

    We theoretically propose a scheme of a tunable bistable device based on a coupled semiconductor quantum dot-metal nanoparticle nanosystem in the simultaneous presence of a strong pump laser and a weak probe laser with different frequencies. The results show that it is easy to turn on or off the optical bistable effect in such system by switching the polarization direction of the pump field, and the bistability thresholds are highly sensitive to the intensity, frequency, polarization direction of the pump field, and the interparticle distance. In addition, the nonlinear absorption in the two stable states exhibits a ratio as high as 104 arising from the three-photon effect, which implies that our nanosystem can also be used as an optical memory cell.

  5. Bistability induces episodic spike communication by inhibitory neurons in neuronal networks.

    PubMed

    Kazantsev, V B; Asatryan, S Yu

    2011-09-01

    Bistability is one of the important features of nonlinear dynamical systems. In neurodynamics, bistability has been found in basic Hodgkin-Huxley equations describing the cell membrane dynamics. When the neuron is clamped near its threshold, the stable rest potential may coexist with the stable limit cycle describing periodic spiking. However, this effect is often neglected in network computations where the neurons are typically reduced to threshold firing units (e.g., integrate-and-fire models). We found that the bistability may induce spike communication by inhibitory coupled neurons in the spiking network. The communication is realized in the form of episodic discharges with synchronous (correlated) spikes during the episodes. A spiking phase map is constructed to describe the synchronization and to estimate basic spike phase locking modes.

  6. Focused Role of an Organic Small-Molecule PBD on Performance of the Bistable Resistive Switching

    NASA Astrophysics Data System (ADS)

    Li, Lei; Sun, Yanmei; Ai, Chunpeng; Lu, Junguo; Wen, Dianzhong; Bai, Xuduo

    2015-11-01

    An undoped organic small-molecule 2-(4-tert-butylphenyl)-5-(4-biphenylyl)-1,3,4-oxadiazole (PBD) and a kind of nanocomposite blending poly(methyl methacrylate) (PMMA) into PBD are employed to implement bistable resistive switching. For the bistable resistive switching indium tin oxide (ITO)/PBD/Al, its ON/OFF current ratio can touch 6. What is more, the ON/OFF current ratio, approaching to 104, is available due to the storage layer PBD:PMMA with the chemical composition 1:1 in the bistable resistive switching ITO/PBD:PMMA/Al. The capacity, data retention of more than 1 year and endurance performance (>104 cycles) of ITO/PBD:PMMA(1:1)/Al, exhibits better stability and reliability of the samples, which underpins the technique and application of organic nonvolatile memory.

  7. Nonlinear time-varying potential bistable energy harvesting from human motion

    NASA Astrophysics Data System (ADS)

    Cao, Junyi; Wang, Wei; Zhou, Shengxi; Inman, Daniel J.; Lin, Jing

    2015-10-01

    A theoretical and experimental investigation into nonlinear bistable energy harvesting with time-varying potential energy is presented. The motivation for examining time-varying potentials comes from the desire to harvest energy from human motion. Time-varying potential energy function of bistable oscillator with respect to the swing angle are established to derive the governing electromechanical model for harvesting vibration energy from the swaying motion during human walking or running. Numerical simulations show good agreement with the experimental potential energy function under different swing angles. Various motion speed treadmill tests are performed to demonstrate the advantage of time-varying bistable harvesters over linear and monostable ones in harvesting energy from human motion.

  8. Large Out-of-Plane Displacement Bistable Electromagnetic Microswitch on a Single Wafer

    PubMed Central

    Miao, Xiaodan; Dai, Xuhan; Huang, Yi; Ding, Guifu; Zhao, Xiaolin

    2016-01-01

    This paper presents a bistable microswitch fully batch-fabricated on a single glass wafer, comprising of a microactuator, a signal transformer, a microspring and a permanent magnet. The bistable mechanism of the microswitch with large displacement of 160 μm depends on the balance of the magnetic force and elastic force. Both the magnetic force and elastic force were optimized by finite-element simulation to predict the reliable of the device. The prototype was fabricated and characterized. By utilizing thick laminated photoresist sacrificial layer, the large displacement was obtained to ensure the insulation of the microswitch. The testing results show that the microswitch realized the bistable mechanism at a 3–5 V input voltage and closed in 0.96 ms, which verified the simulation. PMID:27164107

  9. Orientational transitions in ferromagnetic liquid crystals with bistable coupling between colloidal particles and the matrix

    SciTech Connect

    Zakhlevnykh, A. N. Petrov, D. A.

    2016-10-15

    We study the orientational response of a ferromagnetic liquid crystal that is induced by magnetic and electric fields. A modified form of the energy of the orientational interaction between magnetic impurity particles and the liquid crystal matrix that leads to bistable coupling is considered. It is shown that apart from magnetic impurity segregation, first-order orientational transitions can be due to the bistability of the potential of the orientational coupling between the director and the magnetization. The ranges of material parameters that lead to optical bistability are determined. The possibility of first-order orientational transitions is analyzed for the optical phase difference between the ordinary and extraordinary light rays transmitted through a ferronematic cell. It is shown that an electric field applied in the given geometry considerably enhances the magneto-orientational response of the ferronematic.

  10. Bi-stable energy harvesting based on a simply supported piezoelectric buckled beam

    NASA Astrophysics Data System (ADS)

    Xu, Chundong; Liang, Zhu; Ren, Bo; Di, Wenning; Luo, Haosu; Wang, Dong; Wang, Kailing; Chen, Zhifang

    2013-09-01

    Bi-stable piezoelectric energy harvester has been found as a promising structure for vibration energy harvesting. This paper presents a high performance and simple structure bi-stable piezoelectric energy harvester based on simply supported piezoelectric buckled beam. The potential energy function is established theoretically, and electrical properties of the device under different axial compressive displacements, excitation frequencies, and accelerations are investigated systematically. Experimental results demonstrate that the output properties and bandwidth of the bi-stable nonlinear energy harvester under harmonic mechanical excitation are improved dramatically compared with the traditional linear energy harvester. The device demonstrates the potential in energy harvesting application to low-power portable electronics and wireless sensor nodes.

  11. Theoretical and experimental studies of spatial bistability in the chlorine-dioxide-iodide reaction

    NASA Astrophysics Data System (ADS)

    Blanchedeau, P.; Boissonade, J.; De Kepper, P.

    2000-12-01

    The phenomenon of spatial bistability has recently been proposed to understand a number of paradoxical results obtained in experiments on nonequilibrium chemical patterns performed in open reactors made of a thin film of gel fed from one side. On the basis of a realistic kinetic model, we predict that the chlorine-dioxide-iodide reaction, taken as a prototypic example of a large class of reactions, should exhibit spatial bistability. The theoretical and numerical results are supported by experiments performed in specially designed reactors. This spatial bistability introduces an additional geometric dimension in the system which is generally overlooked. We elaborate on the role that this additional complexity can play in the observation of patterns associated to fronts in such reactors.

  12. Assessing the effects of audiovisual semantic congruency on the perception of a bistable figure.

    PubMed

    Hsiao, Jhih-Yun; Chen, Yi-Chuan; Spence, Charles; Yeh, Su-Ling

    2012-06-01

    Bistable figures provide a fascinating window through which to explore human visual awareness. Here we demonstrate for the first time that the semantic context provided by a background auditory soundtrack (the voice of a young or old female) can modulate an observer's predominant percept while watching the bistable "my wife or my mother-in-law" figure (Experiment 1). The possibility of a response-bias account-that participants simply reported the percept that happened to be congruent with the soundtrack that they were listening to-was excluded in Experiment 2. We further demonstrate that this crossmodal semantic effect was additive with the manipulation of participants' visual fixation (Experiment 3), while it interacted with participants' voluntary attention (Experiment 4). These results indicate that audiovisual semantic congruency constrains the visual processing that gives rise to the conscious perception of bistable visual figures. Crossmodal semantic context therefore provides an important mechanism contributing to the emergence of visual awareness.

  13. Controllable Bistability and Normal Mode Splitting in an Optomechanical System Assisted by an Atomic Ensemble

    NASA Astrophysics Data System (ADS)

    Wu, Qin; Hu, Yao-Hua; Ma, Peng-Cheng

    2017-02-01

    We consider a system consisting of a standard optomechanical cavity and a trapped atomic ensemble. In such a system, we mainly focus on the features of optomechanical bistability and normal mode splitting with the presence of atomic ensemble. The results show that the energy of laser directly coupling the atomic ensemble can be enhanced effectively, and using this laser is more convenient and easier to realize the bistability and normal mode splitting than the traditional means. Besides, we find that atom-cavity field detuning also has a significant impact on optomechanical bistability, which offers us an important method to adjust and control the cavity mean photon number. At last, the numerical results show that atom-cavity field detuning and atom-cavity field coupling strength have an opposite effect on the normal mode splitting because they have different contributions to the effective cavity field decay rate.

  14. Unbiased rigid registration using transfer functions

    NASA Astrophysics Data System (ADS)

    Hahn, Dieter A.; Hornegger, Joachim; Bautz, Werner; Kuwert, Torsten; Roemer, Wolfgang

    2005-04-01

    The evaluation of tumor growth as regression under therapy is an important clinical issue. Rigid registration of sequentially acquired 3D-images has proven its value for this purpose. Existing approaches to rigid image registration use the whole volume for the estimation of the rigid transform. Non-rigid soft tissue deformation, however, will imply a bias to the registration result, because local deformations cannot be modeled by rigid transforms. Anatomical substructures, like bones or teeth, are not affected by these deformations, but follow a rigid transform. This important observation is incorporated in the proposed registration algorithm. The selection of anatomical substructure is done by manual interaction of medical experts adjusting the transfer function of the volume rendering software. The parameters of the transfer function are used to identify the voxels that are considered for registration. A rigid transform is estimated by a quaternion gradient descent algorithm based on the intensity values of the specified tissue classes. Commonly used voxel intensity measures are adjusted to the modified registration algorithm. The contribution describes the mathematical framework of the proposed registration method and its implementation in a commercial software package. The experimental evaluation includes the discussion of different similarity measures, the comparison of the proposed method to established rigid registration techniques and the evaluation of the efficiency of the new method. We conclude with the discussion of potential medical applications of the proposed registration algorithm.

  15. The Personality Characteristics of the Rigid Learner.

    ERIC Educational Resources Information Center

    Dean, Raymond S.; Garabedian, A. Alexander

    1981-01-01

    Investigated personality dimensions concomitant with learner's cognitive rigidity. Results indicated the personality dimensions of tenseness, compulsivity, group dependency, absent-mindedness, sensitivity, and emotional stability explained 36 percent of the variability in subjects' increasing levels of cognitive rigidity. Showed a pervasive use of…

  16. Weak rigidity in the PPN formalism

    SciTech Connect

    del Olmo, V.; Olivert, J.

    1987-04-01

    The influence of the concept of weakly rigid almost-thermodynamic material schemes on the classical deformations is analyzed. The methods of the PPN approximation are considered. In this formalism, the equations that characterize the weak rigidity are expressed. As a consequence of that, an increase of two orders of magnitude in the strain rate tensor is obtained.

  17. Rigid fibrous ceramics for entry systems

    NASA Technical Reports Server (NTRS)

    Banas, Ronald P.

    1993-01-01

    The topics addressed are: (1) high payoff areas with reusable surface insulation; (2) technology opportunities/gap; (3) coatings for rigid fibrous ceramics; (4) challenges for reusable rigid fibrous ceramics - Lunar/Mars aerobraking heatshield; (5) comparison of LI-900 and HTP properties; and (6) comparison of microstructures.

  18. 21 CFR 868.5540 - Rigid laryngoscope.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Rigid laryngoscope. 868.5540 Section 868.5540 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5540 Rigid laryngoscope. (a) Identification....

  19. 21 CFR 868.5540 - Rigid laryngoscope.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Rigid laryngoscope. 868.5540 Section 868.5540 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5540 Rigid laryngoscope. (a) Identification. A...

  20. 21 CFR 882.1020 - Rigidity analyzer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Rigidity analyzer. 882.1020 Section 882.1020 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Diagnostic Devices § 882.1020 Rigidity analyzer....

  1. 21 CFR 882.1020 - Rigidity analyzer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Rigidity analyzer. 882.1020 Section 882.1020 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Diagnostic Devices § 882.1020 Rigidity analyzer....

  2. 21 CFR 882.1020 - Rigidity analyzer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Rigidity analyzer. 882.1020 Section 882.1020 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Diagnostic Devices § 882.1020 Rigidity analyzer....

  3. 21 CFR 882.1020 - Rigidity analyzer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Rigidity analyzer. 882.1020 Section 882.1020 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Diagnostic Devices § 882.1020 Rigidity analyzer....

  4. 21 CFR 882.1020 - Rigidity analyzer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Rigidity analyzer. 882.1020 Section 882.1020 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Diagnostic Devices § 882.1020 Rigidity analyzer....

  5. Bistability dynamics in simulations of neural activity in high-extracellular-potassium conditions.

    PubMed

    Hahn, P J; Durand, D M

    2001-01-01

    Modulation of extracellular potassium concentration ([K](o)) has a profound impact on the excitability of neurons and neuronal networks. In the CA3 region of the rat hippocampus synchronized epileptiform bursts occur in conditions of increased [K](o). The dynamic nature of spontaneous neuronal firing in high [K](o) is therefore of interest. One particular interest is the potential presence of bistable behaviors such as the coexistence of stable repetitive firing and fixed rest potential states generated in individual cells by the elevation of [K](o). The dynamics of repetitive activity generated by increased [K](o) is investigated in a 19-compartment hippocampal pyramidal cell (HPC) model and a related two-compartment reduced HPC model. Results are compared with those for the Hodgkin-Huxley equations in similar conditions. For neural models, [K](o) changes are simulated as a shift in the potassium reversal potential (E(K)). Using phase resetting and bifurcation analysis techniques, all three models are shown to have specific regions of E(K) that result in bistability. For activity in bistable parameter regions, stimulus parameters are identified that switch high-potassium model behavior from repetitive firing to a quiescent state. Bistability in the HPC models is limited to a very small parameter region. Consequently, our results suggest that it is likely some HPCs in networks exposed to high [K](o) continue to burst such that a stable, quiescent network state does not exist. In [K](o) ranges where HPCs are not bistable, the population may still exhibit bistable behaviors where synchronous population events are reversibly annihilated by phase resetting pulses, suggesting the existence of a nonsynchronous network attractor.

  6. Bistabilities in 1,3,2-dithiazolyl radicals.

    PubMed

    Brusso, Jaclyn L; Clements, Owen P; Haddon, Robert C; Itkis, Mikhail E; Leitch, Alicea A; Oakley, Richard T; Reed, Robert W; Richardson, John F

    2004-07-07

    New synthetic methods for heterocyclic 1,3,2-dithiazolyl (DTA) radicals have been developed, and trends in the molecular spin distributions and electrochemical properties of a series of DTA radicals are reported. The crystal structures of [1,2,5]thiadiazolo[3,4-f][1,3,2]benzodithiazol-2-yl (TBDTA) and [1,3,2]pyrazinodithiazol-2-yl (PDTA) have been determined. The structure of TBDTA (at 293 and 95 K) contains two molecules in the asymmetric unit, each of which generates pi-stacked arrays, one consisting of antiparallel chains of centrosymmetrically associated dimers, the other comprising parallel chains of unassociated radicals. The structure of PDTA (at 293 and 95 K) is simpler, consisting of slipped stacks of pi-dimers. Variable-temperature magnetic susceptibility (chi(P)) measurements on TBDTA indicate essentially paramagnetic behavior for the unassociated radical pi-stacks over the range 5-400 K. By contrast PDTA is diamagnetic at all temperatures below 300 K, but between 300 and 350 K the value of chi(P) follows a sharp and well-defined hysteresis loop, with T(C) downward arrow = 297 K and T(C) upward arrow = 343 K. These features are symptomatic of a regime of bistability involving the observed low temperature pi-dimer structure and a putative high-temperature radical pi-stack. A mechanism for the interconversion of the two phases of PDTA and related structures is proposed in which hysteretic behavior arises from cooperative effects associated with the breaking and making of a lattice-wide network of intermolecular S- - -N' and/or S- - -S' interactions.

  7. Bistable Dynamics Underlying Excitability of Ion Homeostasis in Neuron Models

    PubMed Central

    Hübel, Niklas; Schöll, Eckehard; Dahlem, Markus A.

    2014-01-01

    When neurons fire action potentials, dissipation of free energy is usually not directly considered, because the change in free energy is often negligible compared to the immense reservoir stored in neural transmembrane ion gradients and the long–term energy requirements are met through chemical energy, i.e., metabolism. However, these gradients can temporarily nearly vanish in neurological diseases, such as migraine and stroke, and in traumatic brain injury from concussions to severe injuries. We study biophysical neuron models based on the Hodgkin–Huxley (HH) formalism extended to include time–dependent ion concentrations inside and outside the cell and metabolic energy–driven pumps. We reveal the basic mechanism of a state of free energy–starvation (FES) with bifurcation analyses showing that ion dynamics is for a large range of pump rates bistable without contact to an ion bath. This is interpreted as a threshold reduction of a new fundamental mechanism of ionic excitability that causes a long–lasting but transient FES as observed in pathological states. We can in particular conclude that a coupling of extracellular ion concentrations to a large glial–vascular bath can take a role as an inhibitory mechanism crucial in ion homeostasis, while the pumps alone are insufficient to recover from FES. Our results provide the missing link between the HH formalism and activator–inhibitor models that have been successfully used for modeling migraine phenotypes, and therefore will allow us to validate the hypothesis that migraine symptoms are explained by disturbed function in ion channel subunits, pumps, and other proteins that regulate ion homeostasis. PMID:24784149

  8. Bistability in the chemical master equation for dual phosphorylation cycles

    NASA Astrophysics Data System (ADS)

    Bazzani, Armando; Castellani, Gastone C.; Giampieri, Enrico; Remondini, Daniel; Cooper, Leon N.

    2012-06-01

    Dual phospho/dephosphorylation cycles, as well as covalent enzymatic-catalyzed modifications of substrates are widely diffused within cellular systems and are crucial for the control of complex responses such as learning, memory, and cellular fate determination. Despite the large body of deterministic studies and the increasing work aimed at elucidating the effect of noise in such systems, some aspects remain unclear. Here we study the stationary distribution provided by the two-dimensional chemical master equation for a well-known model of a two step phospho/dephosphorylation cycle using the quasi-steady state approximation of enzymatic kinetics. Our aim is to analyze the role of fluctuations and the molecules distribution properties in the transition to a bistable regime. When detailed balance conditions are satisfied it is possible to compute equilibrium distributions in a closed and explicit form. When detailed balance is not satisfied, the stationary non-equilibrium state is strongly influenced by the chemical fluxes. In the last case, we show how the external field derived from the generation and recombination transition rates, can be decomposed by the Helmholtz theorem, into a conservative and a rotational (irreversible) part. Moreover, this decomposition allows to compute the stationary distribution via a perturbative approach. For a finite number of molecules there exists diffusion dynamics in a macroscopic region of the state space where a relevant transition rate between the two critical points is observed. Further, the stationary distribution function can be approximated by the solution of a Fokker-Planck equation. We illustrate the theoretical results using several numerical simulations.

  9. Neural substrates of perceptual integration during bistable object perception

    PubMed Central

    Flevaris, Anastasia V.; Martínez, Antigona; Hillyard, Steven A.

    2013-01-01

    The way we perceive an object depends both on feedforward, bottom-up processing of its physical stimulus properties and on top-down factors such as attention, context, expectation, and task relevance. Here we compared neural activity elicited by varying perceptions of the same physical image—a bistable moving image in which perception spontaneously alternates between dissociated fragments and a single, unified object. A time-frequency analysis of EEG changes associated with the perceptual switch from object to fragment and vice versa revealed a greater decrease in alpha (8–12 Hz) accompanying the switch to object percept than to fragment percept. Recordings of event-related potentials elicited by irrelevant probes superimposed on the moving image revealed an enhanced positivity between 184 and 212 ms when the probes were contained within the boundaries of the perceived unitary object. The topography of the positivity (P2) in this latency range elicited by probes during object perception was distinct from the topography elicited by probes during fragment perception, suggesting that the neural processing of probes differed as a function of perceptual state. Two source localization algorithms estimated the neural generator of this object-related difference to lie in the lateral occipital cortex, a region long associated with object perception. These data suggest that perceived objects attract attention, incorporate visual elements occurring within their boundaries into unified object representations, and enhance the visual processing of elements occurring within their boundaries. Importantly, the perceived object in this case emerged as a function of the fluctuating perceptual state of the viewer. PMID:24246467

  10. Bistability in the chemical master equation for dual phosphorylation cycles.

    PubMed

    Bazzani, Armando; Castellani, Gastone C; Giampieri, Enrico; Remondini, Daniel; Cooper, Leon N

    2012-06-21

    Dual phospho/dephosphorylation cycles, as well as covalent enzymatic-catalyzed modifications of substrates are widely diffused within cellular systems and are crucial for the control of complex responses such as learning, memory, and cellular fate determination. Despite the large body of deterministic studies and the increasing work aimed at elucidating the effect of noise in such systems, some aspects remain unclear. Here we study the stationary distribution provided by the two-dimensional chemical master equation for a well-known model of a two step phospho/dephosphorylation cycle using the quasi-steady state approximation of enzymatic kinetics. Our aim is to analyze the role of fluctuations and the molecules distribution properties in the transition to a bistable regime. When detailed balance conditions are satisfied it is possible to compute equilibrium distributions in a closed and explicit form. When detailed balance is not satisfied, the stationary non-equilibrium state is strongly influenced by the chemical fluxes. In the last case, we show how the external field derived from the generation and recombination transition rates, can be decomposed by the Helmholtz theorem, into a conservative and a rotational (irreversible) part. Moreover, this decomposition allows to compute the stationary distribution via a perturbative approach. For a finite number of molecules there exists diffusion dynamics in a macroscopic region of the state space where a relevant transition rate between the two critical points is observed. Further, the stationary distribution function can be approximated by the solution of a Fokker-Planck equation. We illustrate the theoretical results using several numerical simulations.

  11. Operating mechanism of electrically bistable memory device based on Ag doped CdSe/PVA nanocomposite

    NASA Astrophysics Data System (ADS)

    Kaur, Ramneek; Tripathi, S. K.

    2015-06-01

    This paper reports the fabrication and characterization of electrically bistable memory device with device structure Al/Ag doped CdSe/PVA nanocomposite/Ag. Current-Voltage (I-V) measurements show two conductivity states at the same applied voltage indicating the bistability behavior. The possible operating mechanism for the memory effects has been described. During transition from the low resistance state to high resistance state, the current follows the change from the injection emission to the space charge limited conduction mechanism. The achieved results demonstrate that the device based on Ag doped CdSe/PVA nanocomposite has a potential for future non-volatile memory devices.

  12. Electrically Switching Bistability of a Chiral Quasi-Homeotropic Liquid Crystal Device with Low Driving Voltage

    NASA Astrophysics Data System (ADS)

    Hsieh, Chih-Yung; Chen, Shu-Hsia

    2003-11-01

    We report a new electrically switching bistable chiral quasi-homeotropic liquid crystal device with low driving voltage. This device is operated from the initial twisted-homeotropic state to either +90° or -270° twisted static state showing dark and bright transmittances, respectively, using different switching processes. The critical applied voltage to achieve the switching bistability of our device is only 4.3 V, which is approximately twice its threshold voltage for Freedericksz transition. In addition, the switching characteristics of this device with different driving waveforms are also investigated in this paper.

  13. Topical Meeting on Optical Bistability Held at Rochester, New York on 15-17 June 1983.

    DTIC Science & Technology

    1983-01-01

    ThB16-1 SELF-BEATING INSTABILITIES IN BISTABLE DEVICES J.A. MARTIN-PEREDA .. M.A. MURIEL DEPARTAMENTO DE ELECTRONICA CUANTICA E.T.S. ING...OPTICAL BISTABLL SYSTEMS J.A. MARTIN PEREDA M.A. MURIEL ; DEPARTAMENIO DE ELECTRONICA CUANTICA E.T.S. ING. TELLCOMUNICACION UNIVERSIDAD POLITECNICA DE...Permanent address: The Institute of Scientific and Industrial Research, S University, Yamadakami, Suita, Osaka 565, Japan 0loo ThB40-1 SELFPULSINGS

  14. Bistability and squeezing of the librational mode of an optically trapped nanoparticle

    NASA Astrophysics Data System (ADS)

    Xiao, Ke-Wen; Zhao, Nan; Yin, Zhang-qi

    2017-07-01

    We systematically investigate the bistable behavior and squeezing property of the librational mode of a levitated nonspherical nanoparticle trapped by laser beams. By expanding the librational potential to the fourth order of the librational angle θ , we find that the nonlinear coefficient of this mode is dependent only on the size and material of nanoparticle, but independent of trapping potential shape. The bistability and hysteresis are displayed when the driving frequency is red detuned to the librational mode. In the blue-detuned region, we have studied squeezing of the variance of librational mode in detail, which has potential application for measurement of angle and angular momentum.

  15. A silicon-nanowire memory driven by optical gradient force induced bistability

    SciTech Connect

    Dong, B.; Cai, H. Gu, Y. D.; Kwong, D. L.; Chin, L. K.; Ng, G. I.; Ser, W.; Huang, J. G.; Yang, Z. C.; Liu, A. Q.

    2015-12-28

    In this paper, a bistable optical-driven silicon-nanowire memory is demonstrated, which employs ring resonator to generate optical gradient force over a doubly clamped silicon-nanowire. Two stable deformation positions of a doubly clamped silicon-nanowire represent two memory states (“0” and “1”) and can be set/reset by modulating the light intensity (<3 mW) based on the optical force induced bistability. The time response of the optical-driven memory is less than 250 ns. It has applications in the fields of all optical communication, quantum computing, and optomechanical circuits.

  16. The Availability of Logical Operation Induced by Dichotomous Noise for a Nonlinear Bistable System

    NASA Astrophysics Data System (ADS)

    Xu, Yong; Jin, Xiaoqin; Zhang, Huiqing; Yang, Tingting

    2013-08-01

    Instead of a continuous system driven by Gaussian white noise, logical stochastic resonance will be investigated in a nonlinear bistable system with two thresholds driven by dichotomous noise, which shows a phenomenon different from Gaussian white noise. We can realize two parallel logical operations by simply adjusting the values of these two thresholds. Besides, to quantify the reliability of obtaining the correct logic output, we numerically calculate the success probability, and effects of dichotomous noise on the success probability are observed, these observations show that the reliability of realizing logical operation in the bistable system can be improved through optimizing parameters of dichotomous noise.

  17. Optically levitated nanoparticle as a model system for stochastic bistable dynamics

    NASA Astrophysics Data System (ADS)

    Ricci, F.; Rica, R. A.; Spasenović, M.; Gieseler, J.; Rondin, L.; Novotny, L.; Quidant, R.

    2017-05-01

    Nano-mechanical resonators have gained an increasing importance in nanotechnology owing to their contributions to both fundamental and applied science. Yet, their small dimensions and mass raises some challenges as their dynamics gets dominated by nonlinearities that degrade their performance, for instance in sensing applications. Here, we report on the precise control of the nonlinear and stochastic bistable dynamics of a levitated nanoparticle in high vacuum. We demonstrate how it can lead to efficient signal amplification schemes, including stochastic resonance. This work contributes to showing the use of levitated nanoparticles as a model system for stochastic bistable dynamics, with applications to a wide variety of fields.

  18. Hybrid Optoelectronic Bistability in Frequency-Domain and Its Potential Application in FBG Sensors

    NASA Astrophysics Data System (ADS)

    Ye, Hong-An; Liu, Chun-Yu; Lv, Guo-Hui; Xin, Hai-Ying; Zhu, Xiao-Liang

    2008-12-01

    We propose a novel optical bistable device (OBD) in frequency-domain with which we can perform optical bistable operations in a number of fibre Bragg gratings (FBGs) which are included in the same OBD. Such an OBD may bring more opportunities in applications and, as an example, we show the possibility of using it in an FBG sensor demodulating system. By use of a tunable light source, consisting of a broad band source and a scanning fibre F-P (FFP), we demonstrate the above-mentioned operations experimentally.

  19. Slow light propagation and bistable switching in a graphene under an external magnetic field

    NASA Astrophysics Data System (ADS)

    Asadpour, Seyyed Hossein; Hamedi, Hamid Reza; Rahimpour Soleimani, Hamid

    2015-04-01

    In this letter, we show the possibility of controlling the optical bistability and group index switching in graphene under the action of strong magnetic and infrared laser fields. By using quantum-mechanical density matrix formalism, we obtain the equations of motion that govern the optical response of graphene in strong magnetic and optical fields. We found that by properly choosing the parameters of the system, the bistable behaviors and group velocity can be controlled. These results may have potential applications in telecommunication and optical information processing.

  20. Bistability of self-modulation oscillations in an autonomous solid-state ring laser

    SciTech Connect

    Dudetskii, V Yu

    2013-11-30

    Bistable self-modulation regimes of generation for a ring YAG : Nd chip laser with the counterpropagating waves asymmetrically coupled via backward scattering are simulated numerically. Two branches of bistable self-modulation regimes of generation are found in the domain of the parametric resonance between the selfmodulation and relaxation oscillations. The self-modulation regimes observed in earlier experiments pertain to only one of the branches. Possible reasons for such a discrepancy are considered, related to the influence of technical and natural noise on the dynamics of solid-state ring lasers. (control of laser radiation parameters)

  1. Remnants of semiclassical bistability in the few-photon regime of cavity QED.

    PubMed

    Kerckhoff, Joseph; Armen, Michael A; Mabuchi, Hideo

    2011-11-21

    Broadband homodyne detection of the light transmitted by a Fabry-Perot cavity containing a strongly-coupled (133)Cs atom is used to probe the dynamic optical response in a regime where semiclassical theory predicts bistability but strong quantum corrections should apply. While quantum fluctuations destabilize true equilibrium bistability, our observations confirm the existence of metastable states with finite lifetimes and a hysteretic response is apparent when the optical drive is modulated on comparable timescales. Our experiment elucidates remnant semiclassical behavior in the attojoule (~10 photon) regime of single-atom cavity QED, of potential significance for ultra-low power photonic signal processing.

  2. Are better conductors more rigid?

    NASA Astrophysics Data System (ADS)

    Eom, Young-Ho; Jeong, Hawoong; Orland, Henri; Yi, Juyeon

    2006-10-01

    The variation of the bending stiffness of various materials is studied from the point of view of the electronic band characteristics. As far as the electronically generated bending stiffness κe (which we refer to as electro-stiffness) is concerned, the relevant factors are the orbital overlap t, the gap width u between the valence band and the conduction band, and the electron filling fraction γ. A perturbative calculation leads to the approximate expression κe ~ t2/√u2 + t2. This shows that materials with a large overlap and narrow band gap should be stiffer. The electro-stiffness also depends on the electron filling-fraction. We find that κe(γ) <= κe(1/2). These kinds of behavior are confirmed by numerical calculations. In addition, we study the variation in the projected length of flexible molecules under a voltage bias. The nonlinear variation of the bending rigidity is shown to give rise to a length contraction or dilation, depending on the voltage bias.

  3. Aggregation dynamics of rigid polyelectrolytes

    NASA Astrophysics Data System (ADS)

    Tom, Anvy Moly; Rajesh, R.; Vemparala, Satyavani

    2016-01-01

    Similarly charged polyelectrolytes are known to attract each other and aggregate into bundles when the charge density of the polymers exceeds a critical value that depends on the valency of the counterions. The dynamics of aggregation of such rigid polyelectrolytes are studied using large scale molecular dynamics simulations. We find that the morphology of the aggregates depends on the value of the charge density of the polymers. For values close to the critical value, the shape of the aggregates is cylindrical with height equal to the length of a single polyelectrolyte chain. However, for larger values of charge, the linear extent of the aggregates increases as more and more polymers aggregate. In both the cases, we show that the number of aggregates decrease with time as power laws with exponents that are not numerically distinguishable from each other and are independent of charge density of the polymers, valency of the counterions, density, and length of the polyelectrolyte chain. We model the aggregation dynamics using the Smoluchowski coagulation equation with kernels determined from the molecular dynamics simulations and justify the numerically obtained value of the exponent. Our results suggest that once counterions condense, effective interactions between polyelectrolyte chains short-ranged and the aggregation of polyelectrolytes are diffusion-limited.

  4. Early Top-Down Influences on Bistable Perception Revealed by Event-Related Potentials

    ERIC Educational Resources Information Center

    Pitts, Michael A.; Gavin, William J.; Nerger, Janice L.

    2008-01-01

    A longstanding debate exists in the literature concerning bottom-up vs. top-down influences on bistable perception. Recently, a technique has been developed to measure early changes in brain activity (via ERPs) related to perceptual reversals (Kornmeier & Bach, 2004). An ERP component, the reversal negativity (RN) has been identified, and is…

  5. Energy landscape and dynamics of brain activity during human bistable perception.

    PubMed

    Watanabe, Takamitsu; Masuda, Naoki; Megumi, Fukuda; Kanai, Ryota; Rees, Geraint

    2014-08-28

    Individual differences in the structure of parietal and prefrontal cortex predict the stability of bistable visual perception. However, the mechanisms linking such individual differences in brain structures to behaviour remain elusive. Here we demonstrate a systematic relationship between the dynamics of brain activity, cortical structure and behaviour underpinning bistable perception. Using fMRI in humans, we find that the activity dynamics during bistable perception are well described as fluctuating between three spatially distributed energy minimums: visual-area-dominant, frontal-area-dominant and intermediate states. Transitions between these energy minimums predicted behaviour, with participants whose brain activity tend to reflect the visual-area-dominant state exhibiting more stable perception and those whose activity transits to frontal-area-dominant states reporting more frequent perceptual switches. Critically, these brain activity dynamics are correlated with individual differences in grey matter volume of the corresponding brain areas. Thus, individual differences in the large-scale dynamics of brain activity link focal brain structure with bistable perception.

  6. Brain activity dynamics in human parietal regions during spontaneous switches in bistable perception.

    PubMed

    Megumi, Fukuda; Bahrami, Bahador; Kanai, Ryota; Rees, Geraint

    2015-02-15

    The neural mechanisms underlying conscious visual perception have been extensively investigated using bistable perception paradigms. Previous functional magnetic resonance imaging (fMRI) and transcranial magnetic stimulation (TMS) studies suggest that the right anterior superior parietal (r-aSPL) and the right posterior superior parietal lobule (r-pSPL) have opposite roles in triggering perceptual reversals. It has been proposed that these two areas are part of a hierarchical network whose dynamics determine perceptual switches. However, how these two parietal regions interact with each other and with the rest of the brain during bistable perception is not known. Here, we investigated such a model by recording brain activity using fMRI while participants viewed a bistable structure-from-motion stimulus. Using dynamic causal modeling (DCM), we found that resolving such perceptual ambiguity was specifically associated with reciprocal interactions between these parietal regions and V5/MT. Strikingly, the strength of bottom-up coupling between V5/MT to r-pSPL and from r-pSPL to r-aSPL predicted individual mean dominance duration. Our findings are consistent with a hierarchical predictive coding model of parietal involvement in bistable perception and suggest that visual information processing underlying spontaneous perceptual switches can be described as changes in connectivity strength between parietal and visual cortical regions.

  7. Early Top-Down Influences on Bistable Perception Revealed by Event-Related Potentials

    ERIC Educational Resources Information Center

    Pitts, Michael A.; Gavin, William J.; Nerger, Janice L.

    2008-01-01

    A longstanding debate exists in the literature concerning bottom-up vs. top-down influences on bistable perception. Recently, a technique has been developed to measure early changes in brain activity (via ERPs) related to perceptual reversals (Kornmeier & Bach, 2004). An ERP component, the reversal negativity (RN) has been identified, and is…

  8. Bistable optical response of a nanoparticle heterodimer: Mechanism, phase diagram, and switching time

    NASA Astrophysics Data System (ADS)

    Nugroho, Bintoro S.; Iskandar, Alexander A.; Malyshev, Victor A.; Knoester, Jasper

    2013-07-01

    We conduct a theoretical study of the bistable optical response of a nanoparticle heterodimer comprised of a closely spaced semiconductor quantum dot and a metal nanoparticle. The bistable nature of the response results from the interplay between the quantum dot's optical nonlinearity and its self-action (feedback) originating from the presence of the metal nanoparticle. The feedback is governed by a complex valued coupling parameter G = GR + iGI. We calculate the bistability phase diagram within the system's parameter space: spanned by GR, GI, and Δ, the latter being the detuning between the driving frequency and the transition frequency of the quantum dot. Additionally, switching times from the lower stable branch to the upper one (and vice versa) are calculated as a function of the intensity of the driving field. The conditions for bistability to occur can be realized, for example, for a heterodimer comprised of a closely spaced CdSe (or CdSe/ZnSe) quantum dot and a gold nanosphere.

  9. An analytical approach to bistable biological circuit discrimination using real algebraic geometry.

    PubMed

    Siegal-Gaskins, Dan; Franco, Elisa; Zhou, Tiffany; Murray, Richard M

    2015-07-06

    Biomolecular circuits with two distinct and stable steady states have been identified as essential components in a wide range of biological networks, with a variety of mechanisms and topologies giving rise to their important bistable property. Understanding the differences between circuit implementations is an important question, particularly for the synthetic biologist faced with determining which bistable circuit design out of many is best for their specific application. In this work we explore the applicability of Sturm's theorem--a tool from nineteenth-century real algebraic geometry--to comparing 'functionally equivalent' bistable circuits without the need for numerical simulation. We first consider two genetic toggle variants and two different positive feedback circuits, and show how specific topological properties present in each type of circuit can serve to increase the size of the regions of parameter space in which they function as switches. We then demonstrate that a single competitive monomeric activator added to a purely monomeric (and otherwise monostable) mutual repressor circuit is sufficient for bistability. Finally, we compare our approach with the Routh-Hurwitz method and derive consistent, yet more powerful, parametric conditions. The predictive power and ease of use of Sturm's theorem demonstrated in this work suggest that algebraic geometric techniques may be underused in biomolecular circuit analysis.

  10. Implications of the spatial dynamics of fire spread for the bistability of savanna and forest.

    PubMed

    Schertzer, E; Staver, A C; Levin, S A

    2015-01-01

    The role of fire in expanding the global distribution of savanna is well recognized. Empirical observations and modeling suggest that fire spread has a threshold response to fuel-layer continuity, which sets up a positive feedback that maintains savanna-forest bistability. However, modeling has so far failed to examine fire spread as a spatial process that interacts with vegetation. Here, we use simple, well-supported assumptions about fire spread as an infection process and its effects on trees to ask whether spatial dynamics qualitatively change the potential for savanna-forest bistability. We show that the spatial effects of fire spread are the fundamental reason that bistability is possible: because fire spread is an infection process, it exhibits a threshold response to fuel continuity followed by a rapid increase in fire size. Other ecological processes affecting fire spread may also contribute including temporal variability in demography or fire spread. Finally, including the potential for spatial aggregation increases the potential both for savanna-forest bistability and for savanna and forest to coexist in a landscape mosaic.

  11. Low threshold optical bistability in one-dimensional gratings based on graphene plasmonics.

    PubMed

    Guo, Jun; Jiang, Leyong; Jia, Yue; Dai, Xiaoyu; Xiang, Yuanjiang; Fan, Dianyuan

    2017-03-20

    Optical bistability of graphene surface plasmon is investigated numerically, using grating coupling method at normal light incidence. The linear surface plasmon resonance is strongly dependent on Femi-level of graphene, hence it can be tuned in a large wavelength range. Due to the field enhancement of graphene surface plasmon resonance and large third-order nonlinear response of graphene, a low-threshold optical hysteresis has been observed. The threshold value with 20MW/cm2 and response time with 1.7ps have been verified. Especially, it is found that this optical bistability phenomenon is angular insensitivity for near 15° incident angle. The threshold of optical bistability can be further lowered to 0.5MW/cm2 by using graphene nanoribbons, and the response time is also shorten to 800fs. We believe that our results will find potential applications in bistable devices and all-optical switching from mid-IR to THz range.

  12. Storage of Correlated Patterns in Standard and Bistable Purkinje Cell Models

    PubMed Central

    Clopath, Claudia; Nadal, Jean-Pierre; Brunel, Nicolas

    2012-01-01

    The cerebellum has long been considered to undergo supervised learning, with climbing fibers acting as a ‘teaching’ or ‘error’ signal. Purkinje cells (PCs), the sole output of the cerebellar cortex, have been considered as analogs of perceptrons storing input/output associations. In support of this hypothesis, a recent study found that the distribution of synaptic weights of a perceptron at maximal capacity is in striking agreement with experimental data in adult rats. However, the calculation was performed using random uncorrelated inputs and outputs. This is a clearly unrealistic assumption since sensory inputs and motor outputs carry a substantial degree of temporal correlations. In this paper, we consider a binary output neuron with a large number of inputs, which is required to store associations between temporally correlated sequences of binary inputs and outputs, modelled as Markov chains. Storage capacity is found to increase with both input and output correlations, and diverges in the limit where both go to unity. We also investigate the capacity of a bistable output unit, since PCs have been shown to be bistable in some experimental conditions. Bistability is shown to enhance storage capacity whenever the output correlation is stronger than the input correlation. Distribution of synaptic weights at maximal capacity is shown to be independent on correlations, and is also unaffected by the presence of bistability. PMID:22570592

  13. Deterministic and Stochastic Modeling of an Artificial Bistable Switch in E. coli

    NASA Astrophysics Data System (ADS)

    Finkelstein, Daniel; Buchler, Nicolas; Karapetyan, Sargis

    Networks of mutually interacting genes are common in natural regulatory networks. To better understand these interactions, scientists have recently been constructing artificial genetic networks. Much of the effort is focused on creating genetic oscillators and bistable switches. In this project, we analyzed the possibility to create a bistable switch in E. coli. In this realization of the switch, the Repressor (basic leucine zipper CEBP/alpha) represses the transcription of the Inhibitor (artificial dominant negative 3HF). The Inhibitor, in turn, sequesters the Repressor by binding to it. Using deterministic modeling we identified a range of parameters suitable for bistability. We then analyzed the resulting solutions with the full model taking the reaction rates corresponding to E. coli and the including stochastic nature of gene expression. We have shown that the bistability in not destroyed by stochastic fluctuations if several copies of genes are present. Specifically, taking a realistic number of plasmids (10) we show that the number of proteins in the systems undergoes sizable fluctuations; however, the two states with low and high concentrations of inhibitor stay distinct in the relevant range of parameters.

  14. Energy landscape and dynamics of brain activity during human bistable perception

    PubMed Central

    Watanabe, Takamitsu; Masuda, Naoki; Megumi, Fukuda; Kanai, Ryota; Rees, Geraint

    2014-01-01

    Individual differences in the structure of parietal and prefrontal cortex predict the stability of bistable visual perception. However, the mechanisms linking such individual differences in brain structures to behaviour remain elusive. Here we demonstrate a systematic relationship between the dynamics of brain activity, cortical structure and behaviour underpinning bistable perception. Using fMRI in humans, we find that the activity dynamics during bistable perception are well described as fluctuating between three spatially distributed energy minimums: visual-area-dominant, frontal-area-dominant and intermediate states. Transitions between these energy minimums predicted behaviour, with participants whose brain activity tend to reflect the visual-area-dominant state exhibiting more stable perception and those whose activity transits to frontal-area-dominant states reporting more frequent perceptual switches. Critically, these brain activity dynamics are correlated with individual differences in grey matter volume of the corresponding brain areas. Thus, individual differences in the large-scale dynamics of brain activity link focal brain structure with bistable perception. PMID:25163855

  15. Brain activity dynamics in human parietal regions during spontaneous switches in bistable perception

    PubMed Central

    Megumi, Fukuda; Bahrami, Bahador; Kanai, Ryota; Rees, Geraint

    2015-01-01

    The neural mechanisms underlying conscious visual perception have been extensively investigated using bistable perception paradigms. Previous functional magnetic resonance imaging (fMRI) and transcranial magnetic stimulation (TMS) studies suggest that the right anterior superior parietal (r-aSPL) and the right posterior superior parietal lobule (r-pSPL) have opposite roles in triggering perceptual reversals. It has been proposed that these two areas are part of a hierarchical network whose dynamics determine perceptual switches. However, how these two parietal regions interact with each other and with the rest of the brain during bistable perception is not known. Here, we investigated such a model by recording brain activity using fMRI while participants viewed a bistable structure-from-motion stimulus. Using dynamic causal modeling (DCM), we found that resolving such perceptual ambiguity was specifically associated with reciprocal interactions between these parietal regions and V5/MT. Strikingly, the strength of bottom-up coupling between V5/MT to r-pSPL and from r-pSPL to r-aSPL predicted individual mean dominance duration. Our findings are consistent with a hierarchical predictive coding model of parietal involvement in bistable perception and suggest that visual information processing underlying spontaneous perceptual switches can be described as changes in connectivity strength between parietal and visual cortical regions. PMID:25512040

  16. Tunneling current bistability of correlated 2D electron-hole layers

    NASA Astrophysics Data System (ADS)

    Parlangeli, A.; Christianen, P. C. M.; Geim, A. K.; Maan, J. C.; Eaves, L.; Main, P. C.; Henini, M.

    1998-12-01

    We study the low-temperature vertical tunneling current (TC) of a system of coupled 2D electron and hole gases (2DEG, 2DHG) of equal density realized in a single-barrier GaAs/AlAs/GaAs p-i-n heterostructure under conditions of forward bias. The density can be tuned by external voltage and the in-plane inter-particle distance can be made comparable to the layer separation (25 nm), the GaAs Bohr radius (12 nm), and the magnetic length for a perpendicular magnetic field B=10 T. We observe a discontinuous bistability in the I- V characteristic at T ⩽ 300 mK, which has been never observed in n-type structures, and which is strongly enhanced for B=10 T. Out of the bistability, the current at fixed external voltage is observed to be exactly periodic in the inverse magnetic field for the high current states (HCS), while the 1/ B oscillations of the low current states (LCS) are clearly phase shifted. The transition is found to be discontinuous both in the phase and in the period (i.e. density) in the region of bistability. We interpret the bistability as a phase transition between states of inter-layer correlated exciton-like states (LCS) and the two uncoupled free-carrier 2DEG and 2DHG (HCS) in our bilayer system.

  17. Bistability, Causality, and Complexity in Cortical Networks: An In Vitro Perturbational Study.

    PubMed

    D'Andola, Mattia; Rebollo, Beatriz; Casali, Adenauer G; Weinert, Julia F; Pigorini, Andrea; Villa, Rosa; Massimini, Marcello; Sanchez-Vives, Maria V

    2017-05-19

    Measuring the spatiotemporal complexity of cortical responses to direct perturbations provides a reliable index of the brain's capacity for consciousness in humans under both physiological and pathological conditions. Upon loss of consciousness, the complex pattern of causal interactions observed during wakefulness collapses into a stereotypical slow wave, suggesting that cortical bistability may play a role. Bistability is mainly expressed in the form of slow oscillations, a default pattern of activity that emerges from cortical networks in conditions of functional or anatomical disconnection. Here, we employ an in vitro model to understand the relationship between bistability and complexity in cortical circuits. We adapted the perturbational complexity index applied in humans to electrically stimulated cortical slices under different neuromodulatory conditions. At this microscale level, we demonstrate that perturbational complexity can be effectively modulated by pharmacological reduction of bistability and, albeit to a lesser extent, by enhancement of excitability, providing mechanistic insights into the macroscale measurements performed in humans. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. Robustness of the bistable behavior of a biological signaling feedback loop

    NASA Astrophysics Data System (ADS)

    Bhalla, Upinder S.; Iyengar, Ravi

    2001-03-01

    Biological signaling networks comprised of cellular components including signaling proteins and small molecule messengers control the many cell function in responses to various extracellular and intracellular signals including hormone and neurotransmitter inputs, and genetic events. Many signaling pathways have motifs familiar to electronics and control theory design. Feedback loops are among the most common of these. Using experimentally derived parameters, we modeled a positive feedback loop in signaling pathways used by growth factors to trigger cell proliferation. This feedback loop is bistable under physiological conditions, although the system can move to a monostable state as well. We find that bistability persists under a wide range of regulatory conditions, even when core enzymes in the feedback loop deviate from physiological values. We did not observe any other phenomena in the core feedback loop, but the addition of a delayed inhibitory feedback was able to generate oscillations under rather extreme parameter conditions. Such oscillations may not be of physiological relevance. We propose that the kinetic properties of this feedback loop have evolved to support bistability and flexibility in going between bistable and monostable modes, while simultaneously being very refractory to oscillatory states.

  19. First-passage time in a bistable potential with colored noise

    SciTech Connect

    Ramirez-Piscina, L.; Maria Sancho, J.; Javier de la Rubia, F.; Lindenberg, K.; Tsironis, G. P.

    1989-08-15

    A precise digital simulation of a bistable system under the effect of colored noise is carried out. A set of data for the mean first-passage time is obtained. The results are interpreted and compared with presently available theories, which are revisited following a new insight. Discrepancies that have been discussed in the literature are understood within our framework.

  20. Low threshold optical bistability at terahertz frequencies with graphene surface plasmons

    PubMed Central

    Dai, Xiaoyu; Jiang, Leyong; Xiang, Yuanjiang

    2015-01-01

    We propose a modified Kretschmann-Raether configuration to realize the low threshold optical bistable devices at the terahertz frequencies. The metal layer is replaced by the dielectric sandwich structure with the insertion of graphene, and this configuration can support TM-polarization surface electromagnetic wave. The surface plasmon resonance is strongly dependent on the Fermi-level of graphene and the thickness of the sandwich structure. It is found that the switching-up and switching-down intensities required to observe the optical bistable behavior are lowered markedly due to the excitation of the graphene surface plasmons, thus making this configuration a prime candidate for experimental investigation at the terahertz range. And the switching threshold value can be further reduced by decreasing the Fermi-level or increasing the thickness of sandwich structure, hence providing a new way for realizing tunable optical bistable devices. Finally, the optical bistability at higher terahertz frequency and the influence of relaxation time under the actual experimental condition on Fermi-level are discussed. PMID:26194273

  1. An analytical approach to bistable biological circuit discrimination using real algebraic geometry

    PubMed Central

    Siegal-Gaskins, Dan; Franco, Elisa; Zhou, Tiffany; Murray, Richard M.

    2015-01-01

    Biomolecular circuits with two distinct and stable steady states have been identified as essential components in a wide range of biological networks, with a variety of mechanisms and topologies giving rise to their important bistable property. Understanding the differences between circuit implementations is an important question, particularly for the synthetic biologist faced with determining which bistable circuit design out of many is best for their specific application. In this work we explore the applicability of Sturm's theorem—a tool from nineteenth-century real algebraic geometry—to comparing ‘functionally equivalent’ bistable circuits without the need for numerical simulation. We first consider two genetic toggle variants and two different positive feedback circuits, and show how specific topological properties present in each type of circuit can serve to increase the size of the regions of parameter space in which they function as switches. We then demonstrate that a single competitive monomeric activator added to a purely monomeric (and otherwise monostable) mutual repressor circuit is sufficient for bistability. Finally, we compare our approach with the Routh–Hurwitz method and derive consistent, yet more powerful, parametric conditions. The predictive power and ease of use of Sturm's theorem demonstrated in this work suggest that algebraic geometric techniques may be underused in biomolecular circuit analysis. PMID:26109633

  2. Photoelectric Hybrid Optical Bistable Device Using Fibre Bragg Gratings with Two Feed Signals

    NASA Astrophysics Data System (ADS)

    Ye, Hong-An; Zhang, Xin-Ming; Zhu, Yong

    2004-05-01

    A photoelectric hybrid optical bistable device (OBD) is investigated by using fibre Bragg gratings as a light-intensity modulator. A new operation with two feed signals is proposed, and with this method the output characteristic of the OBD is remarkably improved. The potential application of such a device in optic stabilizer for fibre laser is also briefly discussed.

  3. Novel types of bistability in a model of a bursting pacemaker neuron RPa1 from the snail, Helix pomatia.

    PubMed

    Shirahata, T

    2013-03-01

    The RPa1 neuron identified in the snail, Helix pomatia, produced a variety of electrical activities (e.g. bursting and spiking). A previously developed mathematical model, which described these activities, revealed bistability between bursting and chaotic spiking, where chaotic spiking was transformed into bursting by a short-lasting external stimulus, and vice versa. The present study used this model to detect other types of bistability, i.e. bistability between bursting and period-2 spiking and between bursting and period-4 spiking (period-2 and -4 spiking are generated by period-doubling bifurcation). This contributes to our understanding of the electrophysiological properties of RPa1.

  4. Control of optical bistability and third-order nonlinearity via tunneling induced quantum interference in triangular quantum dot molecules

    SciTech Connect

    Tian, Si-Cong Tong, Cun-Zhu Zhang, Jin-Long; Shan, Xiao-Nan; Fu, Xi-Hong; Zeng, Yu-Gang; Qin, Li; Ning, Yong-Qiang; Wan, Ren-Gang

    2015-06-15

    The optical bistability of a triangular quantum dot molecules embedded inside a unidirectional ring cavity is studied. The type, the threshold and the hysteresis loop of the optical bistability curves can be modified by the tunneling parameters, as well as the probe laser field. The linear and nonlinear susceptibilities of the medium are also studied to interpret the corresponding results. The physical interpretation is that the tunneling can induce the quantum interference, which modifies the linear and the nonlinear response of the medium. As a consequence, the characteristics of the optical bistability are changed. The scheme proposed here can be utilized for optimizing and controlling the optical switching process.

  5. Some pathophysiological aspects of the parkinsonian rigidity.

    PubMed

    Delwaide, P J; Sabbatino, M; Delwaide, C

    1986-01-01

    The neurophysiological mechanisms explaining parkinsonian rigidity are still poorly understood. Its reflex nature is well established but the peripheral afferents causing it are likely multiple and not restricted to IA afferents. Few modifications appear in spinal cord reflex mechanisms and are limited to some interneurones (reciprocal inhibition and flexor reflex). At present, the most plausible explanation of rigidity relies on hyperactivity in long loop reflex pathways relaying in the brain.

  6. Bistable States of Quantum Dot Array Junctions for High-Density Memory

    NASA Astrophysics Data System (ADS)

    Kuo, David M.-T.; Chang, Yia-Chung

    2009-10-01

    We demonstrate that two-dimensional (2D) arrays of coupled quantum dots (QDs) with six-fold degenerate p orbitals (including spin degeneracy) can display bistable states, suitable for application in high-density memory device with low power consumption. Due to the inter-dot overlap of px,y orbitals in these QD arrays, two dimensional conduction bands can be formed in the x-y plane, while the pz orbitals remain localized in the x-y plane such that the coupling between pz orbitals located at different dots can be neglected. We model such systems by taking into account the on-site repulsive Coulomb interactions (U) between electrons in any of the three p orbitals, which also lead to a coupling between the localized pz orbitals with the 2D conduction bands formed by px/py orbitals. The Green's function method within an extended Anderson model is used to calculate the tunneling current through the QDs. We find that bistable tunneling current can exist for such systems due to the interplay of the on-site Coulomb interactions between the pz orbitals and the delocalized nature of conduction band states derived from the hybridization of px/py orbitals. This bistable current depends critically on the strength of U, the band width, and the ratio of the left and right tunneling rates. The behavior of the electrical bistability can be sustained when the 2D QD array reduces to a one-dimensional (1D) QD array, indicating the feasibility for high-density packing of these bistable nanoscale structures.

  7. Rigid shells enhance survival of gekkotan eggs.

    PubMed

    Andrews, Robin M

    2015-11-01

    The majority of lizards and snakes produce permeable parchment-shelled eggs that require high moisture conditions for successful embryonic development. One clade of gekkotan lizards is an exception; females produce relatively impermeable rigid-shelled eggs that normally incubate successfully under low moisture conditions. I tested the hypothesis that the rigid-shell increases egg survival during incubation, but only under low moisture conditions. To test this hypothesis, I incubated rigid-shelled eggs of Chondrodactylus turneri under low and under high moisture conditions. Eggs were incubated with parchment-shelled eggs of Eublepharis macularius to insure that incubation conditions were suitable for parchment-shelled eggs. Chondrodactylus turneri eggs had very high survival (>90%) when they were incubated under low moisture conditions. In contrast, eggs incubated under high moisture conditions had low survival overall, and lower survival than those of the parchment-shelled eggs of E. macularius. Mortality of C. turneri and E. macularius eggs incubated under high moisture conditions was the result of fungal infection, a common source of egg mortality for squamates under laboratory and field conditions. These observations document high survival of rigid-shelled eggs under low moisture conditions because eggs escape from fungal infection. Highly mineralized rigid shells also make egg survival independent of moisture availability and may also provide protection from small invertebrates in nature. Enhanced egg survival could thus compensate for the low reproductive output of gekkotans that produce rigid-shelled eggs. © 2015 Wiley Periodicals, Inc.

  8. Metrology of Non-Rigid Objects

    SciTech Connect

    Blaedel, K L; Smith, D W; Claudet, A A; Kasper, E P; Patterson, S R

    2002-01-01

    Dimensional characterization of non-rigid parts presents many challenges. For example, when a non-rigid part is mounted in an inspection apparatus the effects of fixturing constraints cause significant deformation of the part. If the part is not used in normal service with the same load conditions as during inspection, the dimensional characteristics in service will deviate from the reported values during inspection. Further, the solution of designing specialized fixturing to duplicate ''as-installed'' conditions does not fully resolve the problem because each inspection requires its own methodology. The goal of this project is to formulate the research problem and propose a method of assessing the dimensional characteristics of non-rigid parts. The measured dimension of a rigid component is traceable at some level of confidence to a single source (NIST in the USA). Hence the measurement of one component of an assembly can be related to the measurement of another component of that assembly. There is no generalized analog to this pedigreed process for dimensionally characterizing non-rigid bodies. For example, a measurement made on a sheet-metal automobile fender is heavily influenced by how it is held during the measurement making it difficult to determine how well that fender will assemble to the rest of the (non-rigid) car body. This problem is often overcome for specific manufacturing problems by constructing rigid fixtures that over-constrain the non-rigid parts to be assembled and then performing the dimensional measurement of the contour of each component to check whether each meets specification. Note that such inspection measurements will yield only an approximation to the assembled shape, which is a function of both the geometry and the compliance of the component parts of the assembly. As a result, non-rigid components are more difficult to specify and inspect and therefore are more difficult to purchase from outside vendors compared to rigid components

  9. Metrology of Non-Rigid Objects

    SciTech Connect

    Blaedel, K; Swift, D; Claudet, A; Kasper, E; Patterson, S

    2002-01-01

    Dimensional characterization of non-rigid parts presents many challenges. For example, when a non-rigid part is mounted in an inspection apparatus the effects of fixturing constraints are significant. If the part is not used in normal service with the same load conditions as during inspection, the dimensional characteristics will deviate from reported values. Further, the solution of designing specialized fixturing to duplicate ''as-installed'' conditions does not fully resolve the problem because each inspection requires its own methodology. The goal of this project is to formulate the research problem and propose a method of assessing the dimensional characteristics of non-rigid parts. The measured dimension of a rigid component is traceable at some level of confidence to a single source (NIST in the USA). Hence the measurement of one component of an assembly can be related to the measurement of another component of that assembly. There is no generalized analog to this pedigreed process for dimensionally characterizing non-rigid bodies. For example, a measurement made on a sheet-metal automobile fender is heavily influenced by how it is held during the measurement making it difficult to determine how well that fender will assemble to the rest of the (non-rigid) car body. This problem is often overcome for specific manufacturing problems by constructing rigid fixtures that over-constrain the non-rigid parts to be assembled and then performing the dimensional measurement of the contour of each component to check whether each meets specification. Note that such inspection measurements will yield only an approximation to the assembled shape, which is a function of both the geometry and the compliance of the component parts of the assembly. As a result, non-rigid components are more difficult to specify and inspect and therefore are more difficult to purchase from outside vendors compared to rigid components. The problems are compounded as the requirements come to

  10. Rigidity Dependence of Cosmic Ray Modulation

    NASA Astrophysics Data System (ADS)

    Agarwal Mishra, Rekha; Mishra, Rajesh Kumar

    2012-07-01

    The various observed harmonics of the cosmic ray variation may be understood on a unified basis if the free space cosmic ray anisotropy is non-sinusoidal in form. The major objective of this paper is to study the first three harmonics of cosmic ray intensity on geo-magnetically quiet days over the period 1965-1990 for Deep River, Goose Bay and Tokyo neutron monitoring stations. The amplitude of first harmonic remains high for Deep River having low cutoff rigidity as compared to Tokyo neutron monitor having high cutoff rigidity on quiet days. The diurnal amplitude significantly decreases in 1987 at Deep River and in 1986 at Tokyo during solar activity minimum years. The diurnal time of maximum significantly shifts to an earlier time as compared to the corotational direction at both the stations having different cutoff rigidities. The time of maximum for first harmonic significantly shifts towards later hours and for second harmonic it shifts towards earlier hours at low cutoff rigidity station i.e. Deep River as compared to the high cut off rigidity station i.e. Tokyo on quiet days. The amplitude of second/third harmonics shows a good positive correlation with solar wind velocity, while the others (i.e. amplitude and phase) have no significant correlation on quiet days. The solar wind velocity significantly remains in the range 350 to 425 km/s i.e. being nearly average on quiet days. The amplitude and direction of the anisotropy on quiet days are weakly dependent on high-speed solar wind streams for these neutron monitoring stations of low and high cutoff rigidity threshold. Keywords: cosmic ray, cut off rigidity, quiet days, harmonics.

  11. Patient comfort during flexible and rigid cystourethroscopy

    PubMed Central

    Zdrojowy, Romuald; Wojciechowska, Joanna; Kościelska, Katarzyna; Dembowski, Janusz; Matuszewski, Michał; Tupikowski, Krzysztof; Małkiewicz, Bartosz; Kołodziej, Anna

    2016-01-01

    Introduction Cystourethroscopy (CS) is an endoscopic method used to visualize the urethra and the bladder. Aim In this study, we prospectively evaluated pain in men undergoing cyclic cystoscopic assessment with rigid and flexible instruments after transurethral resection of bladder tumor (TURB). Material and methods One hundred and twenty male patients who were under surveillance after a TURB procedure due to urothelial cell carcinoma and who had undergone at least one rigid cystourethroscopy in the past were enrolled in the trial. Patients were prospectively randomized to age-matched groups for flexible (group F) or rigid (group R) CS. Patient's comfort was evaluated on an 11-grade scale, ranging from 0 (free from pain) to 10 points (unbearable pain). Results The patients described the pain during the previous rigid CS as ranging from 4 to 10 (mean: 6.8) in group F and from 0 to 10 (mean: 5.8) in group R. Group R patients described the pain during the current rigid CS as ranging from 0 to 10 (mean: 5.7). No mean change in the grade was observed between the two pain descriptions (no change 11 patients, weaker pain 25 patients, stronger pain 24 patients, gamma 0.51, p < 0.0001). Group F described the pain as 1 to 5 (mean: 2.1). In the case of flexible CS the pain experience was greatly lowered compared to the previous rigid CS. All flexible CS patients reported lowered pain (by 1 to 9 grades). Patients’ age did not influence the comfort of the flexible CS or the change in pain level. Conclusions Flexible CS is better tolerated than rigid cystoscopy by male patients regardless of patients’ age. PMID:27458489

  12. Patient comfort during flexible and rigid cystourethroscopy.

    PubMed

    Krajewski, Wojciech; Zdrojowy, Romuald; Wojciechowska, Joanna; Kościelska, Katarzyna; Dembowski, Janusz; Matuszewski, Michał; Tupikowski, Krzysztof; Małkiewicz, Bartosz; Kołodziej, Anna

    2016-01-01

    Cystourethroscopy (CS) is an endoscopic method used to visualize the urethra and the bladder. In this study, we prospectively evaluated pain in men undergoing cyclic cystoscopic assessment with rigid and flexible instruments after transurethral resection of bladder tumor (TURB). One hundred and twenty male patients who were under surveillance after a TURB procedure due to urothelial cell carcinoma and who had undergone at least one rigid cystourethroscopy in the past were enrolled in the trial. Patients were prospectively randomized to age-matched groups for flexible (group F) or rigid (group R) CS. Patient's comfort was evaluated on an 11-grade scale, ranging from 0 (free from pain) to 10 points (unbearable pain). The patients described the pain during the previous rigid CS as ranging from 4 to 10 (mean: 6.8) in group F and from 0 to 10 (mean: 5.8) in group R. Group R patients described the pain during the current rigid CS as ranging from 0 to 10 (mean: 5.7). No mean change in the grade was observed between the two pain descriptions (no change 11 patients, weaker pain 25 patients, stronger pain 24 patients, gamma 0.51, p < 0.0001). Group F described the pain as 1 to 5 (mean: 2.1). In the case of flexible CS the pain experience was greatly lowered compared to the previous rigid CS. All flexible CS patients reported lowered pain (by 1 to 9 grades). Patients' age did not influence the comfort of the flexible CS or the change in pain level. Flexible CS is better tolerated than rigid cystoscopy by male patients regardless of patients' age.

  13. Transparent organic bistable memory device with pure organic active material and Al/indium tin oxide electrode

    NASA Astrophysics Data System (ADS)

    Yook, Kyoung Soo; Lee, Jun Yeob; Kim, Sung Hyun; Jang, Jyongsik

    2008-06-01

    Transparent organic bistable memory devices (OBDs) were developed by employing indium tin oxide (ITO) as an anode and a cathode for OBD. A cathode structure of aluminum (Al)/ITO was used and bistability could be realized with pure polyphenylenevilylene based polymer active material without any metal nanoparticle. Transmittance of over 50% could be obtained in Al/ITO based OBD at an Al thickness of 10nm, and an average on/off ratio around 100 was observed.

  14. A novel benzene quantitative analysis method using miniaturized metal ionization gas sensor and non-linear bistable dynamic system

    PubMed Central

    Tang, Xuxiang; Liu, Fuqi

    2015-01-01

    In this paper, a novel benzene quantitative analysis method utilizing miniaturized metal ionization gas sensor and non-linear bistable dynamic system was investigated. Al plate anodic gas-ionization sensor was installed for electrical current-voltage data measurement. Measurement data was analyzed by non-linear bistable dynamics system. Results demonstrated that this method realized benzene concentration quantitative determination. This method is promising in laboratory safety management in benzene leak detection. PMID:26218927

  15. A novel benzene quantitative analysis method using miniaturized metal ionization gas sensor and non-linear bistable dynamic system.

    PubMed

    Tang, Xuxiang; Liu, Fuqi

    2015-01-01

    In this paper, a novel benzene quantitative analysis method utilizing miniaturized metal ionization gas sensor and non-linear bistable dynamic system was investigated. Al plate anodic gas-ionization sensor was installed for electrical current-voltage data measurement. Measurement data was analyzed by non-linear bistable dynamics system. Results demonstrated that this method realized benzene concentration quantitative determination. This method is promising in laboratory safety management in benzene leak detection.

  16. Origin of optical bistability and hysteretic reflectivity on account of nonlinearity at optically induced gallium silica interface

    NASA Astrophysics Data System (ADS)

    Sharma, Arvind; Nagar, A. K.

    2016-05-01

    The origin of optical bistability and hysterectic reflectivity on account of nonlinearity at optically induced Gallium silica interface has been investigated. Assuming the wave to be incident from the gallium nano particle layer side at gallium silica interface. The coupling between incident and reflected waves has shown nonlinear effects on Snell's law and Fresnel law. Effect of these nonlinear processes optical bistability and hysterectic reflectivity theoretically has been investigated. Theoretical results obtained are consistent with the available experimental results.

  17. 49 CFR 178.706 - Standards for rigid plastic IBCs.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Standards for rigid plastic IBCs. 178.706 Section... Performance-Oriented Standards § 178.706 Standards for rigid plastic IBCs. (a) The provisions in this section apply to rigid plastic IBCs intended to contain solids or liquids. Rigid plastic IBC types are...

  18. 49 CFR 178.706 - Standards for rigid plastic IBCs.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Standards for rigid plastic IBCs. 178.706 Section... Performance-Oriented Standards § 178.706 Standards for rigid plastic IBCs. (a) The provisions in this section apply to rigid plastic IBCs intended to contain solids or liquids. Rigid plastic IBC types are...

  19. 49 CFR 178.706 - Standards for rigid plastic IBCs.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Standards for rigid plastic IBCs. 178.706 Section... Performance-Oriented Standards § 178.706 Standards for rigid plastic IBCs. (a) The provisions in this section apply to rigid plastic IBCs intended to contain solids or liquids. Rigid plastic IBC types are...

  20. 21 CFR 876.3630 - Penile rigidity implant.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Penile rigidity implant. 876.3630 Section 876.3630...) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Prosthetic Devices § 876.3630 Penile rigidity implant. (a) Identification. A penile rigidity implant is a device that consists of a pair of semi-rigid rods implanted in the...

  1. 21 CFR 876.3630 - Penile rigidity implant.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Penile rigidity implant. 876.3630 Section 876.3630...) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Prosthetic Devices § 876.3630 Penile rigidity implant. (a) Identification. A penile rigidity implant is a device that consists of a pair of semi-rigid rods implanted in the...

  2. 21 CFR 876.3630 - Penile rigidity implant.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Penile rigidity implant. 876.3630 Section 876.3630...) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Prosthetic Devices § 876.3630 Penile rigidity implant. (a) Identification. A penile rigidity implant is a device that consists of a pair of semi-rigid rods implanted in the...

  3. Crystal structure prediction of rigid molecules.

    PubMed

    Elking, Dennis M; Fusti-Molnar, Laszlo; Nichols, Anthony

    2016-08-01

    A non-polarizable force field based on atomic multipoles fit to reproduce experimental crystal properties and ab initio gas-phase dimers is described. The Ewald method is used to calculate both long-range electrostatic and 1/r(6) dispersion energies of crystals. The dispersion energy of a crystal calculated by a cutoff method is shown to converge slowly to the exact Ewald result. A method for constraining space-group symmetry during unit-cell optimization is derived. Results for locally optimizing 4427 unit cells including volume, cell parameters, unit-cell r.m.s.d. and CPU timings are given for both flexible and rigid molecule optimization. An algorithm for randomly generating rigid molecule crystals is described. Using the correct experimentally determined space group, the average and maximum number of random crystals needed to find the correct experimental structure is given for 2440 rigid single component crystals. The force field energy rank of the correct experimental structure is presented for the same set of 2440 rigid single component crystals assuming the correct space group. A complete crystal prediction is performed for two rigid molecules by searching over the 32 most probable space groups.

  4. Rigidity loss in disordered network materials

    NASA Astrophysics Data System (ADS)

    Ellenbroek, Wouter G.; Hagh, Varda F.; Kumar, Avishek; Thorpe, M. F.; van Hecke, Martin

    Weakly jammed sphere packings show a very peculiar elasticity, with a ratio of compression modulus to shear modulus that diverges as the number of contacts approaches the minimum required for rigidity. Creating artificial isotropic network materials with this property is a challenge: so far, the least elaborate way to generate them is to actually simulate weakly compressed repulsive spheres. The next steps in designing such networks hinge upon a solid understanding of what properties of the sphere-packing derived network are essential for its elasticity. We elucidate the topological aspects of this question by comparing the rigidity transition in these networks to that in other random spring network models, including the common bond-diluted triangular net and a self-stress-free variant of that. We use the pebble game algorithm for identifying rigid clusters in mechanical networks to demonstrate that the marginally rigid state in sphere packings is perfectly isostatic everywhere, and the addition or removal of a single bond creates a globally stressed or globally floppy network, respectively. By contrast, the other classes of random network random networks show a more localized response to addition and removal of bonds, and, correspondingly, a more gradual rigidity transition.

  5. Contribution of disparity to the perception of 3D shape as revealed by bistability of stereoscopic Necker cubes.

    PubMed

    Erkelens, C J

    2012-01-01

    The Necker cube is a famous demonstration of ambiguity in visual perception of 3D shape. Its bistability is attributed to indecisiveness because monocular cues do not allow the observer to infer one particular 3D shape from the 2D image. A remarkable but not appreciated observation is that Necker cubes are bistable during binocular viewing. One would expect disparity information to veto bistability. To investigate the effect of zero and non-zero disparity on perceptual bistability in detail, perceptual dominance durations were measured for luminance- and disparity-defined Necker cubes. Luminance-defined Necker cubes were bistable for all tested disparities between the front and back faces of the cubes. Absence of an effect of disparity on dominance durations suggested the suppression of disparity information. Judgments of depth between the front and back sides of the Necker cubes, however, showed that disparity affected perceived depth. Disparity-defined Necker cubes were also bistable but dominance durations showed different distributions. I propose a framework for 3D shape perception in which 3D shape is inferred from pictorial cues acting on luminance- and disparity-defined 2D shapes.

  6. Generic Rigidity for Circle Diffeomorphisms with Breaks

    NASA Astrophysics Data System (ADS)

    Kocić, Saša

    2016-06-01

    We prove that {C^r}-smooth ({r > 2}) circle diffeomorphisms with a break, i.e., circle diffeomorphisms with a single singular point where the derivative has a jump discontinuity, are generically, i.e., for almost all irrational rotation numbers, not {C^{1+\\varepsilon}}-rigid, for any {\\varepsilon > 0}. This result complements our recent proof, joint with Khanin (Geom Funct Anal 24:2002-2028, 2014), that such maps are generically {C^1}-rigid. It stands in remarkable contrast to the result of Yoccoz (Ann Sci Ec Norm Sup 17:333-361, 1984) that {C^r}-smooth circle diffeomorphisms are generically {C^{r-1-κ}}-rigid, for any {κ > 0}.

  7. Quantum mechanics of a generalised rigid body

    NASA Astrophysics Data System (ADS)

    Gripaios, Ben; Sutherland, Dave

    2016-05-01

    We consider the quantum version of Arnold’s generalisation of a rigid body in classical mechanics. Thus, we quantise the motion on an arbitrary Lie group manifold of a particle whose classical trajectories correspond to the geodesics of any one-sided-invariant metric. We show how the derivation of the spectrum of energy eigenstates can be simplified by making use of automorphisms of the Lie algebra and (for groups of type I) by methods of harmonic analysis. We show how the method can be extended to cosets, generalising the linear rigid rotor. As examples, we consider all connected and simply connected Lie groups up to dimension 3. This includes the universal cover of the archetypical rigid body, along with a number of new exactly solvable models. We also discuss a possible application to the topical problem of quantising a perfect fluid.

  8. Endoscope shaft-rigidity control mechanism: "FORGUIDE".

    PubMed

    Loeve, Arjo J; Plettenburg, Dick H; Breedveld, Paul; Dankelman, Jenny

    2012-02-01

    Recent developments in flexible endoscopy and other fields of medical technology have raised the need for compact slender shafts that can be made rigid and compliant at will. A novel compact mechanism, named FORGUIDE, with this functionality was developed. The FORGUIDE shaft rigidifies due to friction between a ring of cables situated between a spring and an inflated tube. A mathematical model for the FORGUIDE mechanism working principle was made and used to obtain understanding of this mechanism, predict the maximum rigidity of a FORGUIDE shaft design, and tune its design variables. The mathematical model gave suggestions for significant performance improvement by fine-tuning the design. A prototype FORGUIDE shaft was built and put to a series of bench tests. These tests showed that the FORGUIDE mechanism provides a reliable and simple way to control the rigidity of a flexible shaft.

  9. Thin structured rigid body for acoustic absorption

    NASA Astrophysics Data System (ADS)

    Starkey, T. A.; Smith, J. D.; Hibbins, A. P.; Sambles, J. R.; Rance, H. J.

    2017-01-01

    We present a thin acoustic metamaterial absorber, comprised of only rigid metal and air, that gives rise to near unity absorption of airborne sound on resonance. This simple, easily fabricated, robust structure comprising a perforated metal plate separated from a rigid wall by a deeply subwavelength channel of air is an ideal candidate for a sound absorbing panel. The strong absorption in the system is attributed to the thermo-viscous losses arising from a sound wave guided between the plate and the wall, defining the subwavelength channel.

  10. Rigid spine syndrome and fatal cardiomyopathy.

    PubMed Central

    Colver, A F; Steer, C R; Godman, M J; Uttley, W S

    1981-01-01

    A 7 1/2-year-old girl had the clinical features of the rigid spine syndrome of Dubowitz. Muscle biopsy showed a predominance of type 2 fibres with neither myopathic features nor an increase in connective tissue. In addition, she had a hypertrophic cardiomyopathy with which she presented in heart failure and from which she died suddenly one month later. The association of rigid spine syndrome with cardiomyopathy has not been reported previously. Images Fig. 1 Fig. 2 Fig. 3 PMID:7193439

  11. Kinematic problem of rigid body orientation control

    NASA Astrophysics Data System (ADS)

    Plotnikov, P. K.; Sergeev, A. N.; Chelnokov, Iu. N.

    1991-10-01

    The problem of reducing a coordinate system linked with a rigid body to a reference coordinate system rotating with a specified (programmed) angular velocity is analyzed using a kinematic formulation. The mathematic model of motion includes kinematic equations of the angular motion of a rigid body in nonnormalized quaternions; used as the controls are projections of the absolute angular velocity of body rotation to the coordinate axes. Two kinds of correction are proposed which represent quaternion analogs of the positional and integral corrections. Linear error equations for the orientation control system are obtained for the types of correction proposed here.

  12. On Saturnian cosmic ray cutoff rigidities

    NASA Astrophysics Data System (ADS)

    Sauer, H. H.

    1980-03-01

    It has been determined that Saturn possesses a relatively pure dipolar magnetic field through magnetometer measurements made by Ness et al. (1979, private comm.) and Smith et al. (1979). The paper briefly outlines the dipole geomagnetic cutoff theory and demonstrates the scaling required for its applicability to energetic particle measurements in the vicinity of Saturn. Since the cutoff rigidity is a function of viewing direction, the effective cutoff rigidity must be determined as an integration over the finite viewing angle of a physical detector.

  13. Quantitative approaches to the study of bistability in the lac operon of Escherichia coli

    PubMed Central

    Santillán, Moisés; Mackey, Michael C.

    2008-01-01

    In this paper, the history and importance of the lac operon in the development of molecular and systems biology are briefly reviewed. We start by presenting a description of the regulatory mechanisms in this operon, taking into account the most recent discoveries. Then we offer a survey of the history of the lac operon, including the discovery of its main elements and the subsequent influence on the development of molecular and systems biology. Next the bistable behaviour of the operon is discussed, both with respect to its discovery and its molecular origin. A review of the literature in which this bistable phenomenon has been studied from a mathematical modelling viewpoint is then given. We conclude with some brief remarks. PMID:18426771

  14. Gain-assisted optical bistability and multistability in superconducting phase quantum circuits

    NASA Astrophysics Data System (ADS)

    Amini Sabegh, Z.; Maleki, M. A.; Mahmoudi, M.

    2017-02-01

    We study the absorption and optical bistability (OB) behavior of the superconducting phase quantum circuits in the four-level cascade and closed-loop configurations. It is shown that the OB is established in both configurations and it can be controlled by the intensity and frequency of applied fluxes. It is also demonstrated that the gain-assisted OB is generated in both configurations and can switch to the gain-assisted optical multistability (OM) only by changing the relative phase of applied fluxes in closed-loop quantum system. It is worth noting that the several significant output fluxes with negligible inputs can be seen in bistable behavior of the closed-loop configuration due to the nonlinear processing.

  15. Optical bistability in a defect slab with a negative refractive quantum dot nanostructure

    NASA Astrophysics Data System (ADS)

    Jamshidnejad, M.; Asadi Amirabadi, E.; Miraboutalebi, S.; Asadpour, S. H.

    2016-11-01

    We demonstrate optical bistability (OB) in a defect slab doped V-type four-level InGaN/GaN quantum dot nanostructure in the negative refraction frequency band. It has been shown that the OB behavior of such a quantum dot nanostructure system can be controlled by the amplitude of the driving fields and a new parameter for controlling the OB behavior as thickness of the slab medium in the negative refraction band. Meanwhile, we show that the negative refraction frequency band can be controlled by tuning electric permittivity and magnetic permeability by the amplitude of the driving fields and electron concentration in the defect slab doped. Under the numerical simulations, due to the effect of quantum coherence and interference, it is possible to switch bistability by adjusting the optimal conditions in the negative refraction frequency band, which is more practical in all-optical switching or coding elements, and technology based nanoscale devices.

  16. Inter-dot tunneling control of optical bistability in triple quantum dot molecules

    NASA Astrophysics Data System (ADS)

    Reza Hamedi, Hamid

    2014-09-01

    The behavior of optical bistability (OB) and optical multistability (OM) in a triple coupled quantum dot (QD) system is theoretically explored. It is found that the tunneling coupling between electronic levels has major effect on controlling the threshold and the hysteresis cycle shape of the optical bistability. The impact of incoherent pump field on the OB and OM behavior of such medium is then discussed. We realize that the threshold intensity reduces remarkably through increasing the rate of incoherent pumping. It is also demonstrated that the switch between OB and OM can be obtained just through proper adjusting the frequency detuning of probe field. It should be pointed that in this QD system we used tunneling instead of coupling lasers. These presented results may be applicable in real experiments for realizing an all-optical bistate switching or coding element in a solid-state platform.

  17. Optical bistability in a defect slab with negative refractive quantum dot nanostructure

    NASA Astrophysics Data System (ADS)

    Jamshidnejad, M.; Asadi Amirabadi, E.; Miraboutalebi, S.; Asadpour, S. H.

    2016-11-01

    We demonstrate optical bistability (OB) in a defect slab doped V-type four-level InGaN/GaN quantum dot nanostructure in the negative refraction frequency band. In this article, will be shown that the OB behavior of such a quantum dot nanostructure system can be controlled by the amplitude of the driving fields and a new parameter for controlling the OB behavior as thickness of the slab medium in the negative refraction band. Meanwhile, we show that the negative refraction frequency band can be controlled by tuning electric permittivity and magnetic permeability by the amplitude of the driving fields and electron concentration in the defect slab doped. Under the numerical simulations, due to the effect of quantum coherence and interference it is possible to switch bistability by adjusting the optimal conditions in the negative refraction frequency band which is more practical in all-optical switching or coding elements and technology based nanoscale devices.

  18. Pattern formation in the thiourea-iodate-sulfite system: Spatial bistability, waves, and stationary patterns

    NASA Astrophysics Data System (ADS)

    Horváth, Judit; Szalai, István; De Kepper, Patrick

    2010-06-01

    We present a detailed study of the reaction-diffusion patterns observed in the thiourea-iodate-sulfite (TuIS) reaction, operated in open one-side-fed reactors. Besides spatial bistability and spatio-temporal oscillatory dynamics, this proton autoactivated reaction shows stationary patterns, as a result of two back-to-back Turing bifurcations, in the presence of a low-mobility proton binding agent (sodium polyacrylate). This is the third aqueous solution system to produce stationary patterns and the second to do this through a Turing bifurcation. The stationary pattern forming capacities of the reaction are explored through a systematic design method, which is applicable to other bistable and oscillatory reactions. The spatio-temporal dynamics of this reaction is compared with that of the previous ferrocyanide-iodate-sulfite mixed Landolt system.

  19. Homoclinic bifurcation threshold of a bistable system for piezoelectric energy harvesting

    NASA Astrophysics Data System (ADS)

    Li, Haitao; Qin, Weiyang

    2015-02-01

    In this work, we study the homoclinic bifurcation threshold of a bistable energy harvesting system, which can be used to determine the presence of the high energy orbit and improve the harvesting efficiency. The equivalent mathematical model of piezoelectric beam compressed by axial force is proposed, which becomes a bistable energy harvester as axial load goes beyond the critical load. Based on Melnikov theory, a global method is presented to qualitatively analyze the motion of the system when it is excited by harmonic base motion. From the global method, the criteria of homoclinic bifurcation are derived. The analysis results are verified via bifurcation diagram and Lyapunov exponent. Numerical simulations show that cross-well oscillation occurs as critical threshold condition is satisfied, which makes the power ratio between output and input reach the maximum. The agreements between the analytical results and those from numerical simulation validate the effectiveness of the proposed technique.

  20. Optical Bistability with Two Serially Integrated InP-SOAs on a Chip

    NASA Astrophysics Data System (ADS)

    Plascak, Michael Edward

    Optical Bistability with Two Serially Integrated InP-SOAs on a Chip Thesis Advisor: Dr. Azad Siahmakoun A photonic switch using two series-connected, reverse-biased semiconductor optical amplifiers integrated onto a single device has been proposed and switching operation has been verified experimentally. The switching operates on two principles; an electrical bistability arising from the connection of two p-i-n structures in series, and the quantum confined Stark effect in reverse-biased multiple quantum well structures. The result is an electroabsorption modulation of the light through the SOAs due to the alternating voltage states. The system simultaneously produces outputs with both inverted and non-inverted hysteresis behavior, with experimental switching speeds demonstrated up to 400 kHz for a reverse-bias voltage of VRB=2.000V.

  1. Optical wall dynamics induced by coexistence of monostable and bistable spatial regions

    NASA Astrophysics Data System (ADS)

    Odent, V.; Louvergneaux, E.; Clerc, M. G.; Andrade-Silva, I.

    2016-11-01

    When nonequilibrium extended homogeneous systems exhibit multistability, it leads to the presence of domain walls between the existing equilibria. Depending on the stability of the steady states, the dynamics differs. Here, we consider the interface dynamics in the case of a spatially inhomogeneous system, namely, an optical system where the control parameter is spatially Gaussian. Then interfaces connect the monostable and the bistable nonuniform states that are associated with two distinct spatial regions. The coexistence of these two regions of different stability induces relaxation dynamics and the propagation of a wall with a time-dependent speed. We emphasize analytically these two dynamical behaviors using a generic bistable model. Experimentally, an inhomogeneous Gaussian light beam traveling through either a dye-doped liquid crystal cell or a Kerr cavity depicts these behaviors, in agreement with the theoretical predictions.

  2. UP-DOWN cortical dynamics reflect state transitions in a bistable network.

    PubMed

    Jercog, Daniel; Roxin, Alex; Barthó, Peter; Luczak, Artur; Compte, Albert; de la Rocha, Jaime

    2017-08-04

    In the idling brain, neuronal circuits transition between periods of sustained firing (UP state) and quiescence (DOWN state), a pattern the mechanisms of which remain unclear. Here we analyzed spontaneous cortical population activity from anesthetized rats and found that UP and DOWN durations were highly variable and that population rates showed no significant decay during UP periods. We built a network rate model with excitatory (E) and inhibitory (I) populations exhibiting a novel bistable regime between a quiescent and an inhibition-stabilized state of arbitrarily low rate. Fluctuations triggered state transitions, while adaptation in E cells paradoxically caused a marginal decay of E-rate but a marked decay of I-rate in UP periods, a prediction that we validated experimentally. A spiking network implementation further predicted that DOWN-to-UP transitions must be caused by synchronous high-amplitude events. Our findings provide evidence of bistable cortical networks that exhibit non-rhythmic state transitions when the brain rests.

  3. All-optical flip-flop based on hybrid square-rectangular bistable lasers.

    PubMed

    Ma, Xiu-Wen; Huang, Yong-Zhen; Yang, Yue-De; Weng, Hai-Zhong; Wang, Fu-Li; Tang, Min; Xiao, Jin-Long; Du, Yun

    2017-06-15

    A compact, simple, and bistable hybrid square-rectangular laser is experimentally demonstrated as an all-optical flip-flop memory. Controllable bistability is induced by two-mode competition, together with the saturable absorption at the square microcavity section. The all-optical set and reset operations are realized by injecting signal pulses at two-mode wavelengths, with the response times of 165 and 60 ps at the triggering pulse width of 100 ps and switching energies of 2.7 and 14.2 fJ, respectively. The robust hybrid-cavity design has an active area of 660  μm2 and permits efficient unidirectional single-mode lasing, low-power flip-flop operation, and superior fabrication tolerance for monolithic photonic integration.

  4. Modulating resonance behaviors by noise recycling in bistable systems with time delay

    SciTech Connect

    Sun, Zhongkui Xu, Wei; Yang, Xiaoli; Xiao, Yuzhu

    2014-06-01

    In this paper, the impact of noise recycling on resonance behaviors is studied theoretically and numerically in a prototypical bistable system with delayed feedback. According to the interior cooperating and interacting activity of noise recycling, a theory has been proposed by reducing the non-Markovian problem into a two-state model, wherein both the master equation and the transition rates depend on not only the current state but also the earlier two states due to the recycling lag and the feedback delay. By virtue of this theory, the formulae of the power spectrum density and the linear response function have been found analytically. And the theoretical results are well verified by numerical simulations. It has been demonstrated that both the recycling lag and the feedback delay play a crucial role in the resonance behaviors. In addition, the results also suggest an alternative scheme to modulate or control the coherence or stochastic resonance in bistable systems with time delay.

  5. A bi-stable nanoelectromechanical non-volatile memory based on van der Waals force

    NASA Astrophysics Data System (ADS)

    Soon, Bo Woon; Jiaqiang Ng, Eldwin; Qian, You; Singh, Navab; Julius Tsai, Minglin; Lee, Chengkuo

    2013-07-01

    By using complementary-metal-oxide-semiconductor processes, a silicon based bi-stable nanoelectromechanical non-volatile memory is fabricated and characterized. The main feature of this device is an 80 nm wide and 3 μm high silicon nanofin (SiNF) of a high aspect ratio (1:35). The switching mechanism is realized by electrostatic actuation between two lateral electrodes, i.e., terminals. Bi-stable hysteresis behavior is demonstrated when the SiNF maintains its contact to one of the two terminals by leveraging on van der Waals force even after voltage bias is turned off. The compelling results indicate that this design is promising for realization of high density non-volatile memory application due to its nano-scale footprint and zero on-hold power consumption.

  6. Heating-up Synthesis of MoS2 Nanosheets and Their Electrical Bistability Performance

    NASA Astrophysics Data System (ADS)

    Li, Xu; Tang, Aiwei; Li, Jiantao; Guan, Li; Dong, Guoyi; Teng, Feng

    2016-03-01

    Molybdenum disulfide (MoS2) nanosheets were synthesized by using a simple heating-up approach, in which 1-dodecanethiol (DDT) was used not only as a sulfur source but also as the surface ligand. The sheet-like morphology was confirmed by the transmission electron microscopy (TEM) and atomic force microscopy (AFM) results, and the X-ray diffraction (XRD) patterns and Raman spectrum were employed to characterize the structure of the as-synthesized MoS2 nanosheets. The as-obtained MoS2 nanosheets blending with a polymer could be used to fabricate an electrically bistable device through a simple spin-coating method, and the device exhibited an obvious electrical bistability in the I-V curve. The charge transport of the device was discussed based on the organic electronic models.

  7. Eversion of bistable shells under magnetic actuation: a model of nonlinear shapes

    NASA Astrophysics Data System (ADS)

    Seffen, Keith A.; Vidoli, Stefano

    2016-06-01

    We model in closed form a proven bistable shell made from a magnetic rubber composite material. In particular, we incorporate a non-axisymmetrical displacement field, and we capture the nonlinear coupling between the actuated shape and the magnetic flux distribution around the shell. We are able to verify the bistable nature of the shell and we explore its eversion during magnetic actuation. We show that axisymmetrical eversion is natural for a perfect shell but that non-axisymmetrical eversion rapidly emerges under very small initial imperfections, as observed in experiments and in a computational analysis. We confirm the non-uniform shapes of shell and we study the stability of eversion by considering how the landscape of total potential and magnetic energies of the system changes during actuation.

  8. Bistable aggregate of all-trans-astaxanthin in an aqueous solution

    NASA Astrophysics Data System (ADS)

    Mori, Yuso; Yamano, Kuniko; Hashimoto, Hideki

    1996-05-01

    The temperature dependence of the optical absorption spectra for astaxanthin aggregate has been studied between 2 and 32°C. Red-shifted absorption bands as compared to the monomer absorption band are found above 21°C in addition to the blue-shifted band of the aggregate. The spectra suggest that the molecular arrangement in the aggregate is a bistable one consisting of head-to-tail and card-packed arrangements. A diagram describing the bistability together with the monomer state is proposed in the space defined by the free energy and the quantity of Σi = 1 N< θ12 + < σθ12 for the ith molecule in the N-molecule aggregate.

  9. Synaptic depression mediates bistability in neuronal networks with recurrent inhibitory connectivity.

    PubMed

    Manor, Y; Nadim, F

    2001-12-01

    When depressing synapses are embedded in a circuit composed of a pacemaker neuron and a neuron with no autorhythmic properties, the network can show two modes of oscillation. In one mode the synapses are mostly depressed, and the oscillations are dominated by the properties of the oscillating neuron. In the other mode, the synapses recover from depression, and the oscillations are primarily controlled by the synapses. We demonstrate the two modes of oscillation in a hybrid circuit consisting of a biological pacemaker and a model neuron, reciprocally coupled via model depressing synapses. We show that across a wide range of parameter values this network shows robust bistability of the oscillation mode and that it is possible to switch the network from one mode to the other by injection of a brief current pulse in either neuron. The underlying mechanism for bistability may be present in many types of circuits with reciprocal connections and synaptic depression.

  10. Fractionation of parietal function in bistable perception probed with concurrent TMS-EEG.

    PubMed

    Schauer, Georg; Chang, Acer; Schwartzman, David; Rae, Charlotte L; Iriye, Heather; Seth, Anil K; Kanai, Ryota

    2016-08-16

    When visual input has conflicting interpretations, conscious perception can alternate spontaneously between these possible interpretations. This is called bistable perception. Previous neuroimaging studies have indicated the involvement of two right parietal areas in resolving perceptual ambiguity (ant-SPLr and post-SPLr). Transcranial magnetic stimulation (TMS) studies that selectively interfered with the normal function of these regions suggest that they play opposing roles in this type of perceptual switch. In the present study, we investigated this fractionation of parietal function by use of combined TMS with electroencephalography (EEG). Specifically, while participants viewed either a bistable stimulus, a replay stimulus, or resting-state fixation, we applied single pulse TMS to either location independently while simultaneously recording EEG. Combined with participant's individual structural magnetic resonance imaging (MRI) scans, this dataset allows for complex analyses of the effect of TMS on neural time series data, which may further elucidate the causal role of the parietal cortex in ambiguous perception.

  11. Entanglement and bistability in coupled quantum dots inside a driven cavity

    SciTech Connect

    Mitra, Arnab; Vyas, Reeta

    2010-01-15

    Generation and dissipation of entanglement between two coupled quantum dots (QDs) in a cavity driven by a coherent field is studied. We find that it is possible to generate and sustain a large amount of entanglement between the quantum dots in the steady state, even in the presence of strong decay in both the cavity and the dots. We investigate the effect of different parameters (decay rates, coupling strengths, and detunings) on entanglement. We find that the cavity field shows bistability and study the effect of relevant parameters on the existence of this bistable behavior. We also study the correlation between the cavity field and the entanglement between the dots. The experimental viability of the proposed scheme is discussed.

  12. Non-classical effects in photon-statistics of atomic optical bistability

    NASA Astrophysics Data System (ADS)

    Erenso, Daniel; Vyas, Reeta; Singh, Surendra

    2000-10-01

    Homodyne statistics of light generated by an atomic system exhibiting optical bistability are analyzed. The dynamical equations for the homodyne field are derived using the results for a single-atom optical bistability in the good cavity limit [Wang and Vyas, Phys. Rev. A 54, 4453 (1996)]. We use positive-P representation to map operator quantum dynamics onto a set of c-number stochastic equations. It is shown that field radiated by the atomic system can be described in terms of two independent real Gaussian stochastic processes and a coherent component. By making Karhunen-Loeve expansion of the field variables we derive the generating function for the photoelectron statistics. From this generating function photoelectron counting distribution, factorial moments, and waiting time distribution are obtained analytically. These quantities are directly measurable in photon counting experiments. We show that the homodyne field can exhibit many interesting nonclassical features including novel nonclassical effects in higher order factorial moments.

  13. Temporal cross-correlation asymmetry and departure from equilibrium in a bistable chemical system.

    PubMed

    Bianca, C; Lemarchand, A

    2014-06-14

    This paper aims at determining sustained reaction fluxes in a nonlinear chemical system driven in a nonequilibrium steady state. The method relies on the computation of cross-correlation functions for the internal fluctuations of chemical species concentrations. By employing Langevin-type equations, we derive approximate analytical formulas for the cross-correlation functions associated with nonlinear dynamics. Kinetic Monte Carlo simulations of the chemical master equation are performed in order to check the validity of the Langevin equations for a bistable chemical system. The two approaches are found in excellent agreement, except for critical parameter values where the bifurcation between monostability and bistability occurs. From the theoretical point of view, the results imply that the behavior of cross-correlation functions cannot be exploited to measure sustained reaction fluxes in a specific nonlinear system without the prior knowledge of the associated chemical mechanism and the rate constants.

  14. The bistability phenomenon in single and coupled oscillators based on VO2 switches

    NASA Astrophysics Data System (ADS)

    Belyaev, M. A.; Putrolaynen, V. V.; Velichko, A. A.

    2017-01-01

    New operation regimes of single and coupled oscillators in circuits based on planar VO2 switches have been studied. The phenomenon of bistability is discovered, which consists in controlled switching of self-sustained oscillations by external pulses, which is a promising basis for the creation of oscillatory memory cells and implementation of pulse coupling regimes in artificial neural networks (ANNs). The duration of switch-on and switch-off pulses is no less that 20 μs and 30 ms, respectively. It is established that the region of threshold voltages for bistable switching in coupled oscillators is much wider than in a single oscillator and the hysteresis width in the former case can reach 2 V. A regime of initiation of switching packets has been observed that models the ANN packet activity.

  15. Parietal theta burst TMS: Functional fractionation observed during bistable perception not evident in attention tasks.

    PubMed

    Schauer, Georg; Kanai, Ryota; Brascamp, Jan W

    2016-02-01

    When visual input is ambiguous, perception spontaneously alternates between interpretations: bistable perception. Studies have identified two distinct sites near the right intraparietal sulcus where inhibitory transcranial magnetic stimulation (TMS) affects the frequency of occurrence of these alternations, but strikingly with opposite directions of effect for the two sites. Lesion and TMS studies on spatial and sustained attention have also indicated a parcellation of right parietal cortex, into areas serving distinct attentional functions. We used the exact TMS procedure previously employed to affect bistable perception, yet measured its effect on spatial and sustained attention tasks. Although there was a trend for TMS to affect performance, trends were consistently similar for both parietal sites, with no indication of opposite effects. We interpret this as signifying that the previously observed parietal fractionation of function regarding the perception of ambiguous stimuli is not due to TMS-induced modification of spatial or sustained attention. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Fractionation of parietal function in bistable perception probed with concurrent TMS-EEG

    PubMed Central

    Schauer, Georg; Chang, Acer; Schwartzman, David; Rae, Charlotte L.; Iriye, Heather; Seth, Anil K.; Kanai, Ryota

    2016-01-01

    When visual input has conflicting interpretations, conscious perception can alternate spontaneously between these possible interpretations. This is called bistable perception. Previous neuroimaging studies have indicated the involvement of two right parietal areas in resolving perceptual ambiguity (ant-SPLr and post-SPLr). Transcranial magnetic stimulation (TMS) studies that selectively interfered with the normal function of these regions suggest that they play opposing roles in this type of perceptual switch. In the present study, we investigated this fractionation of parietal function by use of combined TMS with electroencephalography (EEG). Specifically, while participants viewed either a bistable stimulus, a replay stimulus, or resting-state fixation, we applied single pulse TMS to either location independently while simultaneously recording EEG. Combined with participant’s individual structural magnetic resonance imaging (MRI) scans, this dataset allows for complex analyses of the effect of TMS on neural time series data, which may further elucidate the causal role of the parietal cortex in ambiguous perception. PMID:27529410

  17. Bistability of Hydrogen in ZnO: Origin of Doping Limit and Persistent Photoconductivity

    PubMed Central

    Nahm, Ho-Hyun; Park, C. H.; Kim, Yong-Sung

    2014-01-01

    Substitutional hydrogen at oxygen site (HO) is well-known to be a robust source of n-type conductivity in ZnO, but a puzzling aspect is that the doping limit by hydrogen is only about 1018 cm−3, even if solubility limit is much higher. Another puzzling aspect of ZnO is persistent photoconductivity, which prevents the wide applications of the ZnO-based thin film transistor. Up to now, there is no satisfactory theory about two puzzles. We report the bistability of HO in ZnO through first-principles electronic structure calculations. We find that as Fermi level is close to conduction bands, the HO can undergo a large lattice relaxation, through which a deep level can be induced, capturing electrons and the deep state can be transformed into shallow donor state by a photon absorption. We suggest that the bistability can give explanations to two puzzling aspects. PMID:24535157

  18. Quantitative approaches to the study of bistability in the lac operon of Escherichia coli.

    PubMed

    Santillán, Moisés; Mackey, Michael C

    2008-08-06

    In this paper, the history and importance of the lac operon in the development of molecular and systems biology are briefly reviewed. We start by presenting a description of the regulatory mechanisms in this operon, taking into account the most recent discoveries. Then we offer a survey of the history of the lac operon, including the discovery of its main elements and the subsequent influence on the development of molecular and systems biology. Next the bistable behaviour of the operon is discussed, both with respect to its discovery and its molecular origin. A review of the literature in which this bistable phenomenon has been studied from a mathematical modelling viewpoint is then given. We conclude with some brief remarks.

  19. Oscillatory pulses and wave trains in a bistable reaction-diffusion system with cross diffusion

    NASA Astrophysics Data System (ADS)

    Zemskov, Evgeny P.; Tsyganov, Mikhail A.; Horsthemke, Werner

    2017-01-01

    We study waves with exponentially decaying oscillatory tails in a reaction-diffusion system with linear cross diffusion. To be specific, we consider a piecewise linear approximation of the FitzHugh-Nagumo model, also known as the Bonhoeffer-van der Pol model. We focus on two types of traveling waves, namely solitary pulses that correspond to a homoclinic solution, and sequences of pulses or wave trains, i.e., a periodic solution. The effect of cross diffusion on wave profiles and speed of propagation is analyzed. We find the intriguing result that both pulses and wave trains occur in the bistable cross-diffusive FitzHugh-Nagumo system, whereas only fronts exist in the standard bistable system without cross diffusion.

  20. Oscillatory pulses and wave trains in a bistable reaction-diffusion system with cross diffusion.

    PubMed

    Zemskov, Evgeny P; Tsyganov, Mikhail A; Horsthemke, Werner

    2017-01-01

    We study waves with exponentially decaying oscillatory tails in a reaction-diffusion system with linear cross diffusion. To be specific, we consider a piecewise linear approximation of the FitzHugh-Nagumo model, also known as the Bonhoeffer-van der Pol model. We focus on two types of traveling waves, namely solitary pulses that correspond to a homoclinic solution, and sequences of pulses or wave trains, i.e., a periodic solution. The effect of cross diffusion on wave profiles and speed of propagation is analyzed. We find the intriguing result that both pulses and wave trains occur in the bistable cross-diffusive FitzHugh-Nagumo system, whereas only fronts exist in the standard bistable system without cross diffusion.

  1. Optical wall dynamics induced by coexistence of monostable and bistable spatial regions.

    PubMed

    Odent, V; Louvergneaux, E; Clerc, M G; Andrade-Silva, I

    2016-11-01

    When nonequilibrium extended homogeneous systems exhibit multistability, it leads to the presence of domain walls between the existing equilibria. Depending on the stability of the steady states, the dynamics differs. Here, we consider the interface dynamics in the case of a spatially inhomogeneous system, namely, an optical system where the control parameter is spatially Gaussian. Then interfaces connect the monostable and the bistable nonuniform states that are associated with two distinct spatial regions. The coexistence of these two regions of different stability induces relaxation dynamics and the propagation of a wall with a time-dependent speed. We emphasize analytically these two dynamical behaviors using a generic bistable model. Experimentally, an inhomogeneous Gaussian light beam traveling through either a dye-doped liquid crystal cell or a Kerr cavity depicts these behaviors, in agreement with the theoretical predictions.

  2. Modulating resonance behaviors by noise recycling in bistable systems with time delay.

    PubMed

    Sun, Zhongkui; Yang, Xiaoli; Xiao, Yuzhu; Xu, Wei

    2014-06-01

    In this paper, the impact of noise recycling on resonance behaviors is studied theoretically and numerically in a prototypical bistable system with delayed feedback. According to the interior cooperating and interacting activity of noise recycling, a theory has been proposed by reducing the non-Markovian problem into a two-state model, wherein both the master equation and the transition rates depend on not only the current state but also the earlier two states due to the recycling lag and the feedback delay. By virtue of this theory, the formulae of the power spectrum density and the linear response function have been found analytically. And the theoretical results are well verified by numerical simulations. It has been demonstrated that both the recycling lag and the feedback delay play a crucial role in the resonance behaviors. In addition, the results also suggest an alternative scheme to modulate or control the coherence or stochastic resonance in bistable systems with time delay.

  3. Rigid and semi rigid polyurethane resins: A structural investigation using DMA, SAXS and Le Bail method

    NASA Astrophysics Data System (ADS)

    Trovati, Graziella; Sanches, Edgar A.; de Souza, Sérgio M.; dos Santos, Amanda L.; Neto, Salvador C.; Mascarenhas, Yvonne P.; Chierice, Gilberto O.

    2014-10-01

    Two different types of polyurethane (PU) resins were synthesized with pre-polymer/polyol (-NCO/-OH) mass proportions of 1:1 (Rigid PU) and 1:1.5 (Semi rigid PU). Based on the results from Dynamic Mechanical Analysis (DMA), rigid PU showed a higher Storage Modulus (E‧) which may be related to the macromolecules crosslinking process. In contrast, the greater Loss Modulus (E″) in semi rigid PU was related to the greater ability to dissipate energy, suggesting that the change in polyol/pre-polymer ratio promotes structural changes in PU resins. Le Bail method was performed with a triclinic crystal structure (for rigid PU, a = 4.9117 (2) Å, b = 8.1103 (2) Å, c = 19.7224 (2) Å, α = 116.2831 (2)°, β = 125.4058 (2)° and γ = 83.6960 (2)°). Average crystallite size was found in the range of 26 (1) Å for rigid PU and somewhat smaller around 20 (1) Å for semi rigid PU. The Guinier radii of gyration (Rg) and the maximum particle sizes (Dmax) were calculated based on Small Angle X-ray Scattering (SAXS) curves. Two different values for Radii of gyration (Rg) were calculated, one obtained from Guinier’s plot using the program Microcal Origin 7.5 (RgORIGIN) and other from the pair-distance distribution function (p(r)) calculation, using the GNOM (RgGNOM) program package The possible highest values of (RgORIGIN) were obtained from Guinier’s curves. For rigid and semi rigid PU resins, the (RgORIGIN) values were, respectively, (320 ± 1) and (260 ± 1) Å. The average radii of gyration (RgGNOM) were obtained from the calculated pair-distance distribution function (p(r)). For rigid and semi rigid PU resins, the RgGNOM values were, respectively, (95 ± 1) Å and (86 ± 1) Å. Dmax values were obtained from the p(r) and ranged from (330 ± 3) Å to (260 ± 3) Å for rigid and semi rigid PU, respectively. Kratky curves showed that less organized systems were produced when the polyol amount was increased.

  4. Demonstration of brain noise on human EEG signals in perception of bistable images

    NASA Astrophysics Data System (ADS)

    Grubov, Vadim V.; Runnova, Anastasiya E.; Kurovskaya, Maria K.; Pavlov, Alexey N.; Koronovskii, Alexey A.; Hramov, Alexander E.

    2016-03-01

    In this report we studied human brain activity in the case of bistable visual perception. We proposed a new approach for quantitative characterization of this activity based on analysis of EEG oscillatory patterns and evoked potentials. Accordingly to theoretical background, obtained experimental EEG data and results of its analysis we studied a characteristics of brain activity during decision-making. Also we have shown that decisionmaking process has the special patterns on the EEG data.

  5. Out-of-phase oscillatory Turing patterns in a bistable reaction-diffusion system

    NASA Astrophysics Data System (ADS)

    Vanag, Vladimir K.; Epstein, Irving R.

    2005-06-01

    A new type of out-of-phase oscillatory Turing pattern is found in simulations of a simple two-variable model of a bistable reaction-diffusion system consisting of an autocatalytic activator reacting with a substrate that is replenished by a flow. This class of models can describe pH oscillators or enzymatic reactions. No Hopf instability is necessary for this type of oscillatory Turing pattern.

  6. Compliant silver nanowire-polymer composite electrodes for bistable large strain actuation.

    PubMed

    Yun, Sungryul; Niu, Xiaofan; Yu, Zhibin; Hu, Weili; Brochu, Paul; Pei, Qibing

    2012-03-08

    A new compliant electrode-based on silver nanowire-polymer composite has been developed. The composite electrode has low sheet resistance (as low as 10 Ω/sq), remains conductive (10(2) -10(3) Ω/sq) at strains as high as 140%, and can support Joule heating. The combination of the composite and a bistable electroactive polymer produces electrically-induced, large-strain actuation and relaxation, reversibly without the need of mechanical programming.

  7. Switching and intrinsic position bistability of soliton beams in chiral nematic liquid crystals

    SciTech Connect

    Beeckman, Jeroen; Madani, Abbas; Vanbrabant, Pieter J. M.; Henneaux, Pierre; Gorza, Simon-Pierre; Haelterman, Marc

    2011-03-15

    We study theoretically and experimentally the propagation of light beams in chiral nematic liquid crystals. Despite the rather complex refractive index distribution of these crystals, their reorientational nonlinearity can compensate for diffraction, leading to robust solitonlike beams propagating along helical trajectories. We demonstrate that, due to a symmetry-breaking instability of the liquid crystal structure, these beams undergo abrupt switching and bistability, features that are of potential interest for applications to all-optical signal processing.

  8. Low Threshold Bistability In TiO2-SiO2 Interference Filters

    NASA Astrophysics Data System (ADS)

    Mitschke, Fedor M.; Ankerhold, George; Lange, Wulfhard K.

    1989-03-01

    We have studied optical bistability in Ti02/Si02 interference filters ("hard coatings"). These systems compare favourably with the more conventional ZnSe filters in important characteristics, particularly in durability, switching contrast and long term stability. Unfortunately, switching is very slow. Our analysis reveals a unique mechanism: water molecu)es in pores of the coating are reversibly desorbed from well below the outside surface as the spot temperature is driven up and down by the irradiated light.

  9. Validation of a model of the GAL regulatory system via robustness analysis of its bistability characteristics

    PubMed Central

    2013-01-01

    Background In Saccharomyces cerevisiæ, structural bistability generates a bimodal expression of the galactose uptake genes (GAL) when exposed to low and high glucose concentrations. This indicates that yeast cells can decide between using either the limited amount of glucose or growing on galactose under changing environmental conditions. A crucial requirement for any plausible mechanistic model of this system is that it reproduces the robustness of the bistable response observed in vivo against inter-individual parametric variability and fluctuating environmental conditions. Results We show how a control-theoretic analysis of the robustness of a model of the GAL regulatory network may be used to establish the model’s plausibility in characterizing the persistent memory of different carbon sources, without the need for extensive simulations. Chemical Reaction Network Theory is used to establish that the proposed network model is compatible with structural bistability. The robustness of each of the two operative conditions against fluctuations of the species concentrations is demonstrated by studying the Domains of Attraction of the corresponding equilibrium points. Finally, we use a global robustness analysis method based on Semi-Definite Programming to evaluate the modification of the bistable steady states induced by multiple parametric variations throughout bounded regions of the parameter space. Conclusions Our analysis provides convincing evidence for the robustness, and hence plausibility, of the GAL regulatory network model. The proposed workflow also demonstrates the power of analytical methods from control theory to provide a direct quantitative characterization of the dynamics of multistable biomolecular regulatory systems without recourse to extensive computer simulations. PMID:23680044

  10. Method of bistable optical information storage using antiferroelectric phase PLZT ceramics

    DOEpatents

    Land, Cecil E.

    1990-01-01

    A method for bistable storage of binary optical information includes an antiferroelectric (AFE) lead lanthanum zirconate titanate (PLZT) layer having a stable antiferroelectric first phase and a ferroelectric (FE) second phase obtained by applying a switching electric field across the surface of the device. Optical information is stored by illuminating selected portions of the layer to photoactivate an FE to AFE transition in those portions. Erasure of the stored information is obtained by reapplying the switching field.

  11. Method of bistable optical information storage using antiferroelectric phase PLZT ceramics

    DOEpatents

    Land, C.E.

    1990-07-31

    A method for bistable storage of binary optical information includes an antiferroelectric (AFE) lead lanthanum zirconate titanate (PLZT) layer having a stable antiferroelectric first phase and a ferroelectric (FE) second phase obtained by applying a switching electric field across the surface of the device. Optical information is stored by illuminating selected portions of the layer to photoactivate an FE to AFE transition in those portions. Erasure of the stored information is obtained by reapplying the switching field. 8 figs.

  12. Basins of attraction of the bistable region of time-delayed cutting dynamics

    NASA Astrophysics Data System (ADS)

    Yan, Yao; Xu, Jian; Wiercigroch, Marian

    2017-09-01

    This paper investigates the effects of bistability in a nonsmooth time-delayed dynamical system, which is often manifested in science and engineering. Previous studies on cutting dynamics have demonstrated persistent coexistence of chatter and chatter-free responses in a bistable region located in the linearly stable zone. As there is no widely accepted definition of basins of attraction for time-delayed systems, bistable regions are coined as unsafe zones (UZs). Hence, we have attempted to define the basins of attraction and stability basins for a typical delayed system to get insight into the bistability in systems with time delays. Special attention was paid to the influences of delayed initial conditions, starting points, and states at time zero on the long-term dynamics of time-delayed systems. By using this concept, it has been confirmed that the chatter is prone to occur when the waviness frequency in the workpiece surface coincides with the effective natural frequency of the cutting process. Further investigations unveil a thin "boundary layer" inside the UZ in the immediate vicinity of the stability boundary, in which we observe an extremely fast growth of the chatter basin stability. The results reveal that the system is more stable when the initial cutting depth is smaller. The physics of the tool deflection at the instant of the tool-workpiece engagement is used to evaluate the cutting safety, and the safe level could be zero when the geometry of tool engagement is unfavorable. Finally, the basins of attraction are used to quench the chatter by a single strike, where the resultant "islands" offer an opportunity to suppress the chatter even when the cutting is very close to the stability boundary.

  13. Thermally induced optical bistability in a new polymeric blend at room temperature

    NASA Astrophysics Data System (ADS)

    Bernini, U.; de Stefano, L.; Mormile, P.; Pierattini, G.; Russo, P.

    1993-09-01

    The transition from the transmission to the reflection regime for an Ar+-laser beam propagating in the new polymeric blend PMMA-EVA at a nonlinear interface has been observed. A comparison between the experimental data and a calculation of the input optical intensity at which this transition should occur (1.45×107 W m-2) is presented using Kaplan's theory. The results suggest the presence of thermally induced optical bistability in PMMA-EVA.

  14. Solution-verified reliability analysis and design of bistable MEMS using error estimation and adaptivity.

    SciTech Connect

    Eldred, Michael Scott; Subia, Samuel Ramirez; Neckels, David; Hopkins, Matthew Morgan; Notz, Patrick K.; Adams, Brian M.; Carnes, Brian; Wittwer, Jonathan W.; Bichon, Barron J.; Copps, Kevin D.

    2006-10-01

    This report documents the results for an FY06 ASC Algorithms Level 2 milestone combining error estimation and adaptivity, uncertainty quantification, and probabilistic design capabilities applied to the analysis and design of bistable MEMS. Through the use of error estimation and adaptive mesh refinement, solution verification can be performed in an automated and parameter-adaptive manner. The resulting uncertainty analysis and probabilistic design studies are shown to be more accurate, efficient, reliable, and convenient.

  15. Noise-Induced Phase Locking and Frequency Mixing in an Optical Bistable System with Delayed Feedback

    NASA Astrophysics Data System (ADS)

    Misono, Masatoshi; Miyakawa, Kenji

    2011-11-01

    The interplay between stochastic resonance (SR) and coherence resonance (CR) is experimentally studied in an optical bistable system with a time-delayed feedback loop. We demonstrate that the phase of the noise-induced motion is locked to that of the periodic input when the ratio of their frequencies is a simple rational number. We also demonstrate that the interplay between SR and CR generates frequency-mixed modes, and that the efficiency of frequency mixing is enhanced by the optimum noise.

  16. Electronic optical bistability in a GaAs/AlGaAs strip-loaded waveguide

    NASA Astrophysics Data System (ADS)

    Warren, M.; Gibbons, W.; Komatsu, K.; Sarid, D.; Hendricks, D.

    1987-10-01

    Optical bistability of electronic origin has been observed in strip-loaded waveguides in a GaAs/AlGaAs multiple quantum well structure. Single-mode waveguides were fabricated by reactive ion etching of an epitaxial AlGaAs layer above the quantum wells. The waveguides were operated as nonlinear Fabry-Perot etalons with 30 percent reflectors provided by the cleaved ends. Phase shifts of 2 pi were observed in some devices.

  17. Evaluation of the Current Biased Integrated Optical Processors Based on Bistable Dode Elements.

    DTIC Science & Technology

    1994-07-01

    to monolithically integrate gates since the diodes no longer share a common ground. (a) OR GATE DETECTORS "I I TIR IMODULATOR MIRROR (b)D NOR GATE...C.L. Tang, "Semiconductor laser logic gate suitable for monolithic integration ", Appl. Phys. Lett., Vol. 51, p. 1780, Nov. 1987 3. P.D. Swanson, M.A...RL-TR-94-97 Final Technical Report July 1994 EVALUATION OF CURRENT BIASED INTEGRATED OPTICAL PROCESSORS 3ASED ON BISTABLE DIODE ELEMENTS Cornell

  18. Transient behavior in absorptive optical bistability by the Hamilton-Jacobi method

    NASA Astrophysics Data System (ADS)

    Sarkar, S.; Satchell, J. S.

    1986-04-01

    One-, two-, and five-dimensional Fokker-Planck equations for absorptive bistability are solved with use of small-noise asymptotic expansions, which are different from Gaussian linearized analysis. The cases studied are the bifurcation point for the start of hysteresis, where there is critical slowing down and the fluctuations are large, and the evolution of a steady-state distribution when the input field has a step change. The time evolution of the probability distribution is calculated.

  19. Experimental evidence, numerics, and theory of vibrational resonance in bistable systems.

    PubMed

    Baltanás, J P; López, L; Blechman, I I; Landa, P S; Zaikin, A; Kurths, J; Sanjuán, M A F

    2003-06-01

    We consider an overdamped bistable oscillator subject to the action of a biharmonic force with very different frequencies, and study the response of the system when the parameters of the high-frequency force are varied. A resonantlike behavior is obtained when the amplitude or the frequency of this force is modified in an experiment performed by means of an analog circuit. This behavior, confirmed by numerical simulations, is explained on the basis of a theoretical approach.

  20. Hysteresis and multistability in networks of bistable stochastic elements with global interaction

    NASA Astrophysics Data System (ADS)

    Pototsky, A.; Janson, N. B.

    2008-11-01

    We demonstrate the existence of the first-order phase transitions and hysteresis in a network of bistable stochastic elements with global interaction subject to additive white noise. Using the Fokker-Planck equation approach, we present a method which allows one to use a continuation technique (AUTO) to follow the stationary one-particle distribution density in the space of system parameters. In addition, the Gaussian approximation is employed to compute the loci of the bifurcation points.