Science.gov

Sample records for rigid nephroscopy sufficient

  1. Laparoscopic - assisted transpyelic rigid nephroscopy - simple alternative when flexible ureteroscopy is not available

    PubMed Central

    Tobias-Machado, Marcos; Hidaka, Alexandre Kiyoshi; Nunes-Silva, Igor; Chagas, Carlos Alberto; Leal, Leandro Correa; Pompeo, Antonio Carlos Lima

    2016-01-01

    ABSTRACT Introduction: In special situations such as malrotated or ectopic kidneys and UPJ stenosis treatment of renal lithiasis can be challenging. In these rare cases laparoscopy can be indicated. Objective: Describe the Laparoscopic-assisted rigid nephroscopy performed via transpyelic approach and report the feasibility. Patients and methods: We present two cases of caliceal lithiasis. The first is a patient that ESWL and previous percutaneous lithotripsy have failed, with pelvic kidney where laparoscopic dissection of renal pelvis was carried out followed by nephroscopy utilizing the 30 Fr rigid nephroscope to remove the calculus. Ideal angle between the major axis of renal pelvis and the rigid nephroscope to allow success with this technique was 60-90 grades. In the second case, the kidney had a dilated infundibulum. Results: The operative time was 180 minutes for both procedures. No significant blood loss or perioperative complications occurred. The bladder catheter was removed in the postoperative day 1 and Penrose drain on day 2 when patients were discharged. The convalescence was completed after 3 weeks. Patients were stone free without symptons in one year of follow-up. Conclusions: Laparoscopic-assisted rigid nephroscopy performed via tranpyelic approach can be done safely with proper patient selection and adherence to standard laparoscopic surgical principles. This approach is an alternative in cases where flexible endoscope is not available and when standard procedure is unlikely to produce a stone-free status. PMID:27564304

  2. Laparoscopic Stone Surgery With the Aid of Flexible Nephroscopy

    PubMed Central

    Jung, Jae Hyun; Cho, Sung Yong; Jeong, Chang Wook; Jeong, Hyeon; Son, Hwancheol; Woo, Seung Hyo; Kim, Dae Kyung; Min, Sun-Ho; Oh, Seung-June; Kim, Hyeon-Hoe

    2014-01-01

    Purpose To report the outcome of laparoscopic pyelo- and ureterolithotomies with the aid of flexible nephroscopy. Materials and Methods A retrospective analysis was performed in 71 patients with complex renal stones or large and impacted proximal ureteral stones. Patients underwent laparoscopic pyelo- or ureterolithotomies with or without the removal of small residual stones by use of flexible nephroscopy between July 2005 and July 2010. Operative success was defined as no residual stones in the intravenous pyelogram at 12 weeks postoperatively. Perioperative results and surgical outcomes were analyzed. Results The patients' mean age was 54.7±13.7 years, and 53 males (74.6%) and 18 females (25.4%) were included. The mean maximal stone size was 19.4±9.4 mm. A total of 47 cases were complex renal stones and 24 cases were impacted ureteral stones. Mean operative time was 139.0±63.7 minutes. Stones were completely removed in 61 cases (85.9%), and no further ancillary treatment was needed for clinically insignificant residual fragments in 7 cases (9.9%). For complex renal stones, the complete stone-free rate and clinically significant stone-free rate were 80.9% and 93.6%, respectively. Multivariate analysis showed that the use of flexible nephroscopy for complex renal stones can reduce the risk of residual stones. A major complication occurred in one case, in which open conversion was performed. Conclusions Laparoscopic stone surgery is a safe and minimally invasive procedure with a high success rate, especially with the aid of flexible nephroscopy, and is not associated with procedure-specific complications. PMID:25045447

  3. Laparoscopic Pyeloplasty and Flexible Nephroscopy: Simultaneous Treatment of Ureteroplevic Junction Obstruction and Nephrolithiasis

    PubMed Central

    Ball, Adam J.; Patel, Vipul R.; Wong, Carson

    2004-01-01

    Background and Objective: Ureteropelvic junction obstruction and concomitant calculus disease may coexist. Therapeutic controversy exists regarding their ideal management. We report our use of flexible nephroscopy during laparoscopic pyeloplasty for caliceal stone removal. Methods: From August 1998 through May 2002, 50 laparoscopic pyeloplasties were performed. Seven patients had documented ureteropelvic junction obstruction and ipsilateral nephrolithiasis. Preoperative stone burden and location were assessed. After pyelotomy, a 16 Fr flexible endoscope was passed through the uppermost trocar under direct laparoscopic guidance into the collecting system. Stone extraction was performed with a 2.4 Fr Nitinol basket. Postoperative imaging was assessed. Results: Complete stone-free status confirmed by postoperative imaging was achieved in 6 of 7 patients. The longest individual stone diameter ranged from 4 mm to 13 mm (mean, 10.3 mm), and an average of 2.5 stones per patient was removed (range, 1 to 4 stones). Neither intraoperative fluoroscopy nor lithotripsy was required. No intraoperative or delayed complications were noted during a mean follow-up of 8.5 months (range, 2 to 17 months). Conclusions: Laparoscopic pyeloplasty and concomitant flexible nephroscopy with basket extraction is a simple, attractive alternative for the simultaneous treatment of ureteropelvic junction obstruction presenting with coexisting nephrolithiasis. It appears more efficacious when the stone number is limited and diameters measure from 5 mm to 20 mm. PMID:15347108

  4. Abdominal rigidity

    MedlinePlus

    Rigidity of the abdomen ... is a sore area inside the belly or abdomen, the pain will get worse when a hand ... Causes can include: Abscess inside the abdomen Appendicitis ... small intestine, large bowel, or gallbladder ( gastrointestinal ...

  5. Rotating rigid motion in general relativity

    SciTech Connect

    Mason, D.P.; Pooe, C.A.

    1987-11-01

    Kinematic and dynamic expressions are derived for the Lie derivative of vorticity along a particle world line in a rigid motion. It is found that the evolution of vorticity in a rigid motion is governed by the electric part of the Weyl tensor. Necessary and sufficient kinematic and dynamic conditions are established for a rotating rigid motion to be isometric.

  6. Birationally rigid Fano fibrations

    NASA Astrophysics Data System (ADS)

    Pukhlikov, A. V.

    2000-06-01

    We prove the birational superrigidity of a general Fano fibration \\pi\\colon V\\to\\mathbf P^1 whose fibre is a Fano hypersurface W_M\\subset\\mathbf P^M of index 1. If the fibration is sufficiently twisted over the base \\mathbf P^1, then V has no other structure of a fibration into rationally connected varieties. We also formulate and discuss conjectures on birational rigidity for a large class of Fano varieties and Fano fibrations over a base of arbitrary dimension.

  7. 21 CFR 876.5020 - External penile rigidity devices.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false External penile rigidity devices. 876.5020 Section 876.5020 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... maintain sufficient penile rigidity for sexual intercourse. External penile rigidity devices include...

  8. 21 CFR 876.5020 - External penile rigidity devices.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false External penile rigidity devices. 876.5020 Section 876.5020 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... maintain sufficient penile rigidity for sexual intercourse. External penile rigidity devices include...

  9. 21 CFR 876.5020 - External penile rigidity devices.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false External penile rigidity devices. 876.5020 Section 876.5020 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... maintain sufficient penile rigidity for sexual intercourse. External penile rigidity devices include...

  10. 21 CFR 876.5020 - External penile rigidity devices.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false External penile rigidity devices. 876.5020 Section 876.5020 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... maintain sufficient penile rigidity for sexual intercourse. External penile rigidity devices include...

  11. Rigid particulate matter sensor

    SciTech Connect

    Hall, Matthew

    2011-02-22

    A sensor to detect particulate matter. The sensor includes a first rigid tube, a second rigid tube, a detection surface electrode, and a bias surface electrode. The second rigid tube is mounted substantially parallel to the first rigid tube. The detection surface electrode is disposed on an outer surface of the first rigid tube. The detection surface electrode is disposed to face the second rigid tube. The bias surface electrode is disposed on an outer surface of the second rigid tube. The bias surface electrode is disposed to face the detection surface electrode on the first rigid tube. An air gap exists between the detection surface electrode and the bias surface electrode to allow particulate matter within an exhaust stream to flow between the detection and bias surface electrodes.

  12. Rigidity of lattice domes

    NASA Technical Reports Server (NTRS)

    Savelyev, V. A.

    1979-01-01

    The means of ensuring total rigidity of lattice domes, using comparison with solid shells of 1-3 layers are discussed. Irregularities of manufacture, processing, and other factors are considered, as they relate to diminution of rigidity. The discussion uses the concepts of upper and lower critical loads on the structure in question.

  13. Rigid-Rod Polyimides

    NASA Technical Reports Server (NTRS)

    Chuang, Kathy C.; Kinder, James D.; Hull, Diana L.; Youngs, Wiley J.

    1996-01-01

    Experimental polyimides relatively rigid synthesized in effort to exploit some of advantages of rodlike polymers, while alleviating disadvantages. Polymers used to make colorless fibers and transparent films for optical and electronic application.

  14. Colonoscope flexural rigidity measurement.

    PubMed

    Wehrmeyer, J A; Barthel, J A; Roth, J P; Saifuddin, T

    1998-07-01

    A testing device is developed that determines the stiffness, or flexural rigidity, of an endoscope at specific locations down its length by subjecting it to a compressive axial force, a situation similar to the actual forces applied to the endoscope during a clinical procedure. The endoscope is made to deform in a similar fashion to a slender buckled column and the force causing this deformation is related to the flexural rigidity using column buckling theory. A direct relationship between the critical load needed to cause buckling and the square of column length L is demonstrated experimentally and is expected theoretically, giving confidence in the application of column buckling theory to endoscope testing. Additional confidence in the validity of the column buckling test results is obtained by their similarity to data obtained by subjecting the endoscope to a transverse load, determining deflection, and modelling the endoscope as a bent elastic beam. Several makes and models of endoscopes were tested, with flexural rigidity values typically ranging between 160 to 240 Ncm2. The effect of a metal stiffener inserted in an endoscope's accessory channel is quantified, as is the change in flexural rigidity down the insertion shaft of a graded-stiffness endoscope. Significant differences in flexural rigidity were obtained between identical endoscopes, each sharing similar usage histories, indicating the need for flexural rigidity measurements for each individual endoscope of a particular model line, though a more extensive study is required to reliably determine scope-to-scope stiffness variations for a particular model line.

  15. Characterizations of linear sufficient statistics

    NASA Technical Reports Server (NTRS)

    Peters, B. C., Jr.; Reoner, R.; Decell, H. P., Jr.

    1977-01-01

    A surjective bounded linear operator T from a Banach space X to a Banach space Y must be a sufficient statistic for a dominated family of probability measures defined on the Borel sets of X. These results were applied, so that they characterize linear sufficient statistics for families of the exponential type, including as special cases the Wishart and multivariate normal distributions. The latter result was used to establish precisely which procedures for sampling from a normal population had the property that the sample mean was a sufficient statistic.

  16. Rigid lenses: an overview.

    PubMed

    Bayshore, C A

    1979-03-01

    New gas permeable rigid contact lens materials, by allowing direct transmission of oxygen, provide significant advantages over PMMA. Edema resulting from oxygen deprivation with PMMA lenses is eliminated and comfort is increased. Three types of gas permeable materials are described: CAB, silicone, and a combination of CAB and silicone.

  17. Electrostatics of Rigid Polyelectrolytes

    SciTech Connect

    Wong, G.C.L.

    2009-06-04

    The organization of rigid biological polyelectrolytes by multivalent ions and macroions are important for many fundamental problems in biology and biomedicine, such as cytoskeletal regulation and antimicrobial sequestration in cystic fibrosis. These polyelectrolytes have been used as model systems for understanding electrostatics in complex fluids. Here, we review some recent results in theory, simulations, and experiments.

  18. Rigid molecular foams

    SciTech Connect

    Steckle, W.P. Jr.; Mitchell, M.A.; Aspen, P.G.

    1998-12-31

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Organic analogues to inorganic zeolites would be a significant step forward in engineered porous materials and would provide advantages in range, selectivity, tailorability, and processing. Rigid molecular foams or {open_quotes}organic zeolites{close_quotes} would not be crystalline materials and could be tailored over a broader range of pore sizes and volumes. A novel process for preparing hypercrosslinked polymeric foams has been developed via a Friedel-Crafts polycondensation reaction. A series of rigid hypercrosslinked foams have been prepared using simple rigid polyaromatic hydrocarbons including benzene, biphenyl, m-terphenyl, diphenylmethane, and polystyrene, with dichloroxylene (DCX) as the pore size. After drying the foams are robust and rigid. Densities of the resulting foams can range from 0.15 g/cc to 0.75 g/cc. Nitrogen adsorption studies have shown that by judiciously selecting monomers and the crosslinking agent along with the level of crosslinking and the cure time of the resulting gel, the pore size, pore size distribution, and the total surface area of the foam can be tailored. Surface areas range from 160 to 1,200 m{sup 2}/g with pore sizes ranging from 6 {angstrom} to 2,000 {angstrom}.

  19. Obituary--rigid contact lenses.

    PubMed

    Efron, Nathan

    2010-10-01

    Scleral and corneal rigid lenses represented 100 per cent of the contact lens market immediately prior to the invention of soft lenses in the mid-1960s. In the United Kingdom today, rigid lenses comprise 2 per cent of all new lens fits. Low rates of rigid lens fitting are also apparent in 27 other countries which have recently been surveyed. Thus, the 1998 prediction of the author that rigid lenses--also referred to as 'rigid gas permeable' (RGP) lenses or 'gas permeable' (GP) lenses--would be obsolete by the year 2010 has essentially turned out to be correct. In this obituary, the author offers 10 reasons for the demise of rigid lens fitting: initial rigid lens discomfort; intractable rigid lens-induced corneal and lid pathology; extensive soft lens advertising; superior soft lens fitting logistics; lack of rigid lens training opportunities; redundancy of the rigid lens 'problem solver' function; improved soft toric and bifocal/varifocal lenses; limited uptake of orthokeratology; lack of investment in rigid lenses; and the emergence of aberration control soft lenses. Rigid lenses are now being fitted by a minority of practitioners with specialist skills/training. Certainly, rigid lenses can no longer be considered as a mainstream form of contact lens correction. May their dear souls (bulk properties) rest in peace.

  20. How rigid are viruses

    NASA Astrophysics Data System (ADS)

    Hartschuh, R. D.; Wargacki, S. P.; Xiong, H.; Neiswinger, J.; Kisliuk, A.; Sihn, S.; Ward, V.; Vaia, R. A.; Sokolov, A. P.

    2008-08-01

    Viruses have traditionally been studied as pathogens, but in recent years they have been adapted for applications ranging from drug delivery and gene therapy to nanotechnology, photonics, and electronics. Although the structures of many viruses are known, most of their biophysical properties remain largely unexplored. Using Brillouin light scattering, we analyzed the mechanical rigidity, intervirion coupling, and vibrational eigenmodes of Wiseana iridovirus (WIV). We identified phonon modes propagating through the viral assemblies as well as the localized vibrational eigenmode of individual viruses. The measurements indicate a Young’s modulus of ˜7GPa for single virus particles and their assemblies, surprisingly high for “soft” materials. Mechanical modeling confirms that the DNA core dominates the WIV rigidity. The results also indicate a peculiar mechanical coupling during self-assembly of WIV particles.

  1. Dynamic rigidity transition

    NASA Astrophysics Data System (ADS)

    Åström, J. A.; Latva-Kokko, M.; Timonen, J.

    2003-01-01

    An inflated closed loop (or membrane) is used to demonstrate a dynamic rigidity transition that occurs when impact energy is added to the loop in static equilibrium at zero temperature. The only relevant parameter in this transition is the ratio of the energy needed to collapse the loop and the impact energy. When this ratio is below a threshold value close to unity, the loop collapses into a high-entropy floppy state, and it does not return to the rigid state unless the impact energy can escape. The internal oscillations are in the floppy state dominated by 1/f2 noise. When the ratio is above the threshold, the loop does not collapse, and the internal oscillations resulting from the impact are dominated by the eigenfrequencies of the stretched membrane. In this state, the loop can bounce for a long time. It is still an open question whether bouncing will eventually vanish or whether a stationary bouncing state will be reached. The dynamic transition between the floppy and the rigid state is discontinuous.

  2. Number Rigidity in Superhomogeneous Random Point Fields

    NASA Astrophysics Data System (ADS)

    Ghosh, Subhro; Lebowitz, Joel

    2017-02-01

    We give sufficient conditions for the number rigidity of a large class of point processes in dimension d=1 and 2, based on the decay of correlations. Number rigidity implies that the probability distribution of the number of particles in a bounded domain Λ subset R^d, conditional on the configuration on Λ ^\\complement , is concentrated on a single integer N_Λ . Our conditions are: (a) ρ _1(x)= - int _{R^d} ρ _tr^{(2)}(x,y) dy for all x, where ρ _1 and ρ _tr^{(2)} are the intensity and the truncated pair correlation function resp., and (b)|ρ _tr^{(2)}(x,y)| is bounded by C_1[|x-y|+1]^{-2} in d=1 and by C_2[|x-y|+1]^{-(4+ɛ)} in d=2. Condition (a) covers a wide class of processes, including translation invariant or periodic point process on R^d, d=1,2, that are superhomogeneous or hyperuniform (that is the variance of the number of particles in a bounded domain Ω subset R^d grows slower than the volume of Ω ). It also covers determinantal point processes having a projection kernel. Our conditions for number rigidity are satisfied by all known processes with number rigidity in d=1,2. We also observe, in the light of the results of [26], that no such criteria exist in d>2.

  3. Working toward Self-Sufficiency.

    ERIC Educational Resources Information Center

    Caplan, Nathan

    1985-01-01

    Upon arrival in the United States, the Southeast Asian "Boat People" faced a multitude of problems that would seem to have hindered their achieving economic self-sufficiency. Nonetheless, by the time of a 1982 research study which interviewed nearly 1,400 refugee households, 25 percent of all the households in the sample had achieved…

  4. Rigid porous filter

    DOEpatents

    Chiang, Ta-Kuan; Straub, Douglas L.; Dennis, Richard A.

    2000-01-01

    The present invention involves a porous rigid filter including a plurality of concentric filtration elements having internal flow passages and forming external flow passages there between. The present invention also involves a pressure vessel containing the filter for the removal of particulates from high pressure particulate containing gases, and further involves a method for using the filter to remove such particulates. The present filter has the advantage of requiring fewer filter elements due to the high surface area-to-volume ratio provided by the filter, requires a reduced pressure vessel size, and exhibits enhanced mechanical design properties, improved cleaning properties, configuration options, modularity and ease of fabrication.

  5. Fractal rigidity in migraine

    NASA Astrophysics Data System (ADS)

    Latka, Miroslaw; Glaubic-Latka, Marta; Latka, Dariusz; West, Bruce J.

    2004-04-01

    We study the middle cerebral artery blood flow velocity (MCAfv) in humans using transcranial Doppler ultrasonography (TCD). Scaling properties of time series of the axial flow velocity averaged over a cardiac beat interval may be characterized by two exponents. The short time scaling exponent (STSE) determines the statistical properties of fluctuations of blood flow velocities in short-time intervals while the Hurst exponent describes the long-term fractal properties. In many migraineurs the value of the STSE is significantly reduced and may approach that of the Hurst exponent. This change in dynamical properties reflects the significant loss of short-term adaptability and the overall hyperexcitability of the underlying cerebral blood flow control system. We call this effect fractal rigidity.

  6. Origin of rigidity in athermal materials

    NASA Astrophysics Data System (ADS)

    Sarkar, Sumantra

    Solids are distinguished from fluids by their ability to resist shear. In traditional solids, the resistance to shear is associated with the emergence of broken translational symmetry as exhibited by a non-uniform density pattern, which results from either minimizing the energy cost or maximizing the entropy or both. In this thesis, we focus on a special class of materials where this paradigm is challenged. We argue that the observation of rigidity in dry granular materials, a representative system, is a collective process controlled solely by few constraints, e.g., the boundary stresses, the constraint of force and torque balance, and the positivity of contact forces. We have shown that these constraints lead to a broken translational symmetry in a dual space of heights (loop forces) which leads to the observed rigidity (jamming) in such a system. We investigate the structure and behavior of the dual space through a geometrical construction as the system evolves towards the rigidity transition, commonly known as jamming. In that context, we explore the role of friction in jamming and establish the equivalence of real space and stress space description. We conclude that the role of real space geometry is negligible, and a stress only description is sufficient to understand the phenomenology of jamming. In the second half of the thesis, we develop a phenomenological model of the shear induced rigidity in athermal materials. Recent studies of athermal systems such as dry grains and dense, non-Brownian suspensions have shown that shear can lead to solidification through the process of shear jamming in grains and discontinuous shear thickening in suspensions. The similarities observed between these two distinct phenomena suggest that the physical processes leading to shear-induced rigidity in athermal materials are universal. We present a non-equilibrium statistical mechanics model, which exhibits the phenomenology of these shear-driven transitions: shear jamming and

  7. Electrically conductive rigid polyurethane foam

    DOEpatents

    Neet, T.E.; Spieker, D.A.

    1983-12-08

    A rigid, moldable polyurethane foam comprises about 2 to 10 weight percent, based on the total foam weight, of a carbon black which is CONDUCTEX CC-40-220 or CONDUCTEX SC, whereby the rigid polyurethane foam is electrically conductive and has essentially the same mechanical properties as the same foam without carbon black added.

  8. Electrically conductive rigid polyurethane foam

    DOEpatents

    Neet, Thomas E.; Spieker, David A.

    1985-03-19

    A rigid, polyurethane foam comprises about 2-10 weight percent, based on the total foam weight, of a carbon black which is CONDUCTEX CC-40-220 or CONDUCTEX SC, whereby the rigid polyurethane foam is electrically conductive and has essentially the same mechanical properties as the same foam without carbon black added.

  9. International rigid contact lens prescribing.

    PubMed

    Efron, Nathan; Morgan, Philip B; Helland, Magne; Itoi, Motozumi; Jones, Deborah; Nichols, Jason J; van der Worp, Eef; Woods, Craig A

    2010-06-01

    Rigid lenses have been fitted less since the introduction of soft lenses nearly 40 years ago. Data that we have gathered from annual contact lens fitting surveys conducted in Australia, Canada, Japan, the Netherlands, Norway, the UK and the USA between 2000 and 2008 facilitate an accurate characterization of the pattern of the decline of rigid lens fitting during the first decade of this century. There is a trend for rigid lenses to be utilized primarily for refitting those patients who are already successful rigid lens wearers-most typically older females being refit with higher Dk materials. Rigid lenses are generally fitted on a full-time basis (four or more days of wear per week) without a planned replacement schedule. Orthokeratology is especially popular in the Netherlands, but is seldom prescribed in the other countries surveyed.

  10. Energy Strategic Planning & Sufficiency Project

    SciTech Connect

    Retziaff, Greg

    2005-03-30

    This report provides information regarding options available, their advantages and disadvantages, and the costs for pursuing activities to advance Smith River Rancheria toward an energy program that reduces their energy costs, allows greater self-sufficiency and stimulates economic development and employment opportunities within and around the reservation. The primary subjects addressed in this report are as follows: (1) Baseline Assessment of Current Energy Costs--An evaluation of the historical energy costs for Smith River was conducted to identify the costs for each component of their energy supply to better assess changes that can be considered for energy cost reductions. (2) Research Viable Energy Options--This includes a general description of many power generation technologies and identification of their relative costs, advantages and disadvantages. Through this research the generation technology options that are most suited for this application were identified. (3) Project Development Considerations--The basic steps and associated challenges of developing a generation project utilizing the selected technologies are identified and discussed. This included items like selling to third parties, wheeling, electrical interconnections, fuel supply, permitting, standby power, and transmission studies. (4) Energy Conservation--The myriad of federal, state and utility programs offered for low-income weatherization and utility bill payment assistance are identified, their qualification requirements discussed, and the subsequent benefits outlined. (5) Establishing an Energy Organization--The report includes a high level discussion of formation of a utility to serve the Tribal membership. The value or advantages of such action is discussed along with some of the challenges. (6) Training--Training opportunities available to the Tribal membership are identified.

  11. Axial penile rigidity: determinants and relation to hemodynamic parameters.

    PubMed

    Goldstein, I; Udelson, D

    1998-05-01

    Erectile dysfunction may be defined in terms of axial penile rigidity, the physical property that enables the erection to be utilized as a penetration tool during sexual activity. Erectile dysfunction occurs when inadequate axial penile rigidity results in buckling of the penile column when subjected to axial compressive loading situations during vaginal intromission. New multi-disciplinary engineering studies of penile hemodynamic and structural dynamic relationships are reviewed concerning the determinants of axial penile rigidity. Axial penile rigidity develops as a continuum during the increases in intracavernosal pressure and volume changes from the flaccid state and is influenced by intracavernosal pressure, penile tissue mechanical properties and penile geometry. Two penile tissue mechanical properties are especially relevant; cavernosal maximum volume at relatively low intracavernosal pressure, and tunical distensibility, the relative volume of the fully erect to completely flaccid pendulous penis. Two penile geometric properties are critical; the penile aspect ratio, defined as the diameter to length ratio of the pendulous penis, and the magnitude of the flaccid penile diameter. Clinically measured values of axial buckling forces in patients undergoing dynamic pharmacocavernosometry strongly correlated to theoretic-based analytic derived magnitudes of axial penile rigidity based on these above pressure, tissue and geometric determinants. Since axial penile rigidity is not exclusively dependent upon intracavernosal pressure, patients with normal erectile hemodynamics may be erroneously labelled as having psychogenic dysfunction where their true pathophysiology may be related to abnormal penile tissue properties and/or penile geometric factors. Similarly, some patients may claim sufficient rigidity for penetration, but have abnormal hemodynamic erectile function studies. They may have uniquely advantageous tissue mechanical and/or geometric properties. More

  12. Specifying spacecraft flexible appendage rigidity

    NASA Technical Reports Server (NTRS)

    Seltzer, S. M.; Shelton, H. L.

    1977-01-01

    As a method for specifying the required degree of rigidity of spacecraft flexible appendages, an analytical technique is proposed for establishing values for the frequency, damping ratio, and modal gain (deflection) of the first several bending modes. The shortcomings of the technique result from the limitations associated with the order of the equations that can be handled practically. An iterative method is prescribed for handling a system whose structural flexibility is described by more than one normal mode. The analytical technique is applied to specifying solar panel rigidity constraints for the NASA Space Telescope. The traditional nonanalytic procedure for specifying the required degree of rigidity of spacecraft flexible appendages has been to set a lower limit below which bending mode frequencies may not lie.

  13. Rigidly foldable origami gadgets and tessellations.

    PubMed

    Evans, Thomas A; Lang, Robert J; Magleby, Spencer P; Howell, Larry L

    2015-09-01

    Rigidly foldable origami allows for motion where all deflection occurs at the crease lines and facilitates the application of origami in materials other than paper. In this paper, we use a recently discovered method for determining rigid foldability to identify existing flat-foldable rigidly foldable tessellations, which are also categorized. We introduce rigidly foldable origami gadgets which may be used to modify existing tessellations or to create new tessellations. Several modified and new rigidly foldable tessellations are presented.

  14. Rigidly foldable origami gadgets and tessellations

    PubMed Central

    Evans, Thomas A.; Lang, Robert J.; Magleby, Spencer P.; Howell, Larry L.

    2015-01-01

    Rigidly foldable origami allows for motion where all deflection occurs at the crease lines and facilitates the application of origami in materials other than paper. In this paper, we use a recently discovered method for determining rigid foldability to identify existing flat-foldable rigidly foldable tessellations, which are also categorized. We introduce rigidly foldable origami gadgets which may be used to modify existing tessellations or to create new tessellations. Several modified and new rigidly foldable tessellations are presented. PMID:26473037

  15. Rigidity-tuning conductive elastomer

    NASA Astrophysics Data System (ADS)

    Shan, Wanliang; Diller, Stuart; Tutcuoglu, Abbas; Majidi, Carmel

    2015-06-01

    We introduce a conductive propylene-based elastomer (cPBE) that rapidly and reversibly changes its mechanical rigidity when powered with electrical current. The elastomer is rigid in its natural state, with an elastic (Young’s) modulus of 175.5 MPa, and softens when electrically activated. By embedding the cPBE in an electrically insulating sheet of polydimethylsiloxane (PDMS), we create a cPBE-PDMS composite that can reversibly change its tensile modulus between 37 and 1.5 MPa. The rigidity change takes ˜6 s and is initiated when a 100 V voltage drop is applied across the two ends of the cPBE film. This magnitude of change in elastic rigidity is similar to that observed in natural skeletal muscle and catch connective tissue. We characterize the tunable load-bearing capability of the cPBE-PDMS composite with a motorized tensile test and deadweight experiment. Lastly, we demonstrate the ability to control the routing of internal forces by embedding several cPBE-PDMS ‘active tendons’ into a soft robotic pneumatic bending actuator. Selectively activating the artificial tendons controls the neutral axis and direction of bending during inflation.

  16. Rigid gas permeable extended wear.

    PubMed

    Maehara, J R; Kastl, P R

    1994-04-01

    We have reviewed the pertinent literature on rigid gas permeable (RGP) extended wear contact lenses, and we discuss the benefits and adverse reactions of this contact lens modality, drawing conclusions from reviewed studies. We suggest parameters for success with these lenses and guidelines for the prevention of adverse reactions.

  17. Some existence and sufficient conditions of optimality

    NASA Technical Reports Server (NTRS)

    Assefi, T.

    1976-01-01

    The role of the existence and sufficiency conditions in the field of optimal control was briefly described. The existence theorems are discussed for general nonlinear systems. However, the sufficiency conditions pertain to "nearly" linear systems with integral convex costs. Moreover, a brief discussion of linear systems with multiple-cost functions is presented.

  18. Torsional rigidity, isospectrality and quantum graphs

    NASA Astrophysics Data System (ADS)

    Colladay, Don; Kaganovskiy, Leon; McDonald, Patrick

    2017-01-01

    We study torsional rigidity for graph and quantum graph analogs of well-known pairs of isospectral non-isometric planar domains. We prove that such isospectral pairs are distinguished by torsional rigidity.

  19. Associative memory through rigid origami

    NASA Astrophysics Data System (ADS)

    Murugan, Arvind; Brenner, Michael

    2015-03-01

    Mechanisms such as Miura Ori have proven useful in diverse contexts since they have only one degree of freedom that is easily controlled. We combine the theory of rigid origami and associative memory in frustrated neural networks to create structures that can ``learn'' multiple generic folding mechanisms and yet can be robustly controlled. We show that such rigid origami structures can ``recall'' a specific learned mechanism when induced by a physical impulse that only need resemble the desired mechanism (i.e. robust recall through association). Such associative memory in matter, seen before in self-assembly, arises due to a balance between local promiscuity (i.e., many local degrees of freedom) and global frustration which minimizes interference between different learned behaviors. Origami with associative memory can lead to a new class of deployable structures and kinetic architectures with multiple context-dependent behaviors.

  20. Redundant causation from a sufficient cause perspective.

    PubMed

    Gatto, Nicolle M; Campbell, Ulka B

    2010-08-02

    Sufficient causes of disease are redundant when an individual acquires the components of two or more sufficient causes. In this circumstance, the individual still would have become diseased even if one of the sufficient causes had not been acquired. In the context of a study, when any individuals acquire components of more than one sufficient cause over the observation period, the etiologic effect of the exposure (defined as the absolute or relative difference between the proportion of the exposed who develop the disease by the end of the study period and the proportion of those individuals who would have developed the disease at the moment they did even in the absence of the exposure) may be underestimated. Even in the absence of confounding and bias, the observed effect estimate represents only a subset of the etiologic effect. This underestimation occurs regardless of the measure of effect used.To some extent, redundancy of sufficient causes is always present, and under some circumstances, it may make a true cause of disease appear to be not causal. This problem is particularly relevant when the researcher's goal is to characterize the universe of sufficient causes of the disease, identify risk factors for targeted interventions, or construct causal diagrams. In this paper, we use the sufficient component cause model and the disease response type framework to show how redundant causation arises and the factors that determine the extent of its impact on epidemiologic effect measures.

  1. Energy self-sufficiency for Hawaii

    SciTech Connect

    Shupe, J.W.

    1982-06-11

    Currently, Hawaii is almost totally dependent for energy on imported oil. The island state has a wide variety of renewable energy resources, however, and for the past decade has supported the development of these resources as substitutes for seaborne petroleum. Sufficient progress has been made to date in commercializing a number of these alternative energy sources to give cause for optimism that Hawaii will be able to achieve energy self-sufficiency with its indigenous renewable resources.

  2. Rigidity of complete noncompact bach-flat n-manifolds

    NASA Astrophysics Data System (ADS)

    Chu, Yawei; Feng, Pinghua

    2012-11-01

    Let (Mn,g) be a complete noncompact Bach-flat n-manifold with the positive Yamabe constant and constant scalar curvature. Assume that the L2-norm of the trace-free Riemannian curvature tensor R∘m is finite. In this paper, we prove that (Mn,g) is a constant curvature space if the L-norm of R∘m is sufficiently small. Moreover, we get a gap theorem for (Mn,g) with positive scalar curvature. This can be viewed as a generalization of our earlier results of 4-dimensional Bach-flat manifolds with constant scalar curvature R≥0 [Y.W. Chu, A rigidity theorem for complete noncompact Bach-flat manifolds, J. Geom. Phys. 61 (2011) 516-521]. Furthermore, when n>9, we derive a rigidity result for R<0.

  3. Rigid zeolite containing polyurethane foams

    DOEpatents

    Frost, C.B.

    1984-05-18

    A closed cell rigid polyurethane foam has been prepared which contains up to about 60% by weight of molecular sieves capable of sorbing molecules with effective critical diameters of up to about 10 A. The molecular sieve component of the foam can be preloaded with catalysts or with reactive compounds that can be released upon activation of the foam to control and complete crosslinking after the foam is formed. The foam can also be loaded with water or other flame-retarding agents, after completion. Up to about 50% of the weight of the isocyanate component of the foam can be replaced by polyimide resin precursors for incorporation into the final polymeric network.

  4. Rigid separator lead acid batteries

    SciTech Connect

    Cannone, A.G.; Salkind, A.J.; Stempin, J.L.; Wexell, D.R.

    1996-11-01

    Lead acid cells assembled with extruded separators displayed relatively uniform capacity and voltage parameters through 100{sup +} cycles of charge/discharge. This contrasts to failure of control cells with glass mat separators after 60 cycles. The mullite/alumina separators with 50, 60, and 70% porosity separators appear suitable for both flooded and sealed lead acid cell applications. The advantages of the rigid ceramic separators over fiber mat materials are in the uniformity of capacity and voltage, the ease of cell assembly, and the probability that firm stacking pressure on the active material will yield greater cycle life, especially at elevated temperatures.

  5. Rigid zeolite containing polyurethane foams

    DOEpatents

    Frost, Charles B.

    1985-01-01

    A closed cell rigid polyurethane foam has been prepared which contains up to about 60% by weight of molecular sieves capable of sorbing molecules with effective critical diameters of up to about 10 .ANG.. The molecular sieve component of the foam can be preloaded with catalysts or with reactive compounds that can be released upon activation of the foam to control and complete crosslinking after the foam is formed. The foam can also be loaded with water or other flame-retarding agents, after completion. Up to about 50% of the weight of the isocyanate component of the foam can be replaced by polyimide resin precursors for incorporation into the final polymeric network.

  6. Lubrication of rigid ellipsida solids

    NASA Technical Reports Server (NTRS)

    Hamrock, B. J.; Dowson, D.

    1982-01-01

    The influence of geometry on the isothermal hydrodynamic film separating two rigid solids was investigated. The minimum film thickness is derived for fully flooded conjunctions by using the Reynolds boundary conditions. It was found that the minimum film thickness had the same speed, viscosity, and load dependence as Kapitza' classical solution. However, the incorporation of Reynolds boundary conditions resulted in an additional geometry effect. Solutions using the parabolic film approximation are compared by using the exact expression for the film in the analysis. Contour plots are known that indicate in detail the pressure developed between the solids.

  7. Small Moving Rigid Body into a Viscous Incompressible Fluid

    NASA Astrophysics Data System (ADS)

    Lacave, Christophe; Takahashi, Takéo

    2017-03-01

    We consider a single disk moving under the influence of a two dimensional viscous fluid and we study the asymptotic as the size of the solid tends to zero. If the density of the solid is independent of ɛ, the energy equality is not sufficient to obtain a uniform estimate for the solid velocity. This will be achieved thanks to the optimal L p - L q decay estimates of the semigroup associated to the fluid-rigid body system and to a fixed point argument. Next, we will deduce the convergence to the solution of the Navier-Stokes equations in R2.

  8. ON A SUFFICIENT CONDITION FOR ABSOLUTE CONTINUITY.

    DTIC Science & Technology

    The formulation of a condition which yields absolute continuity when combined with continuity and bounded variation is the problem considered in the...Briefly, the formulation is achieved through a discussion which develops a proof by contradiction of a sufficiently theorem for absolute continuity which uses in its hypothesis the condition of continuity and bounded variation .

  9. Professional Development for Professionals: Beyond Sufficiency Learning

    ERIC Educational Resources Information Center

    Murphy, Gerald A.; Calway, Bruce A.

    2008-01-01

    We question the current role of professional associations in developing a culture of learning beyond a sufficiency or competency level. This brings into question the underlying philosophy of Professional Standards legislation. This legislation mandates continuing professional development for professionals without stating what should be achieved…

  10. Energy self-sufficiency for the UK

    SciTech Connect

    Cornell, M.; Belgrave, R.

    1985-01-01

    This book calls for more public debate about the criteria against which government and state industries take decisions on energy matters. It argues that there is a case for seeking to maintain levels of between 50% and 80% self sufficiency in energy.

  11. Self-sufficiency, free trade and safety.

    PubMed

    Rautonen, Jukka

    2010-01-01

    The relationship between free trade, self-sufficiency and safety of blood and blood components has been a perennial discussion topic in the blood service community. Traditionally, national self-sufficiency has been perceived as the ultimate goal that would also maximize safety. However, very few countries are, or can be, truly self-sufficient when self-sufficiency is understood correctly to encompass the whole value chain from the blood donor to the finished product. This is most striking when plasma derived medicines are considered. Free trade of blood products, or competition, as such can have a negative or positive effect on blood safety. Further, free trade of equipment and reagents and several plasma medicines is actually necessary to meet the domestic demand for blood and blood derivatives in most countries. Opposing free trade due to dogmatic reasons is not in the best interest of any country and will be especially harmful for the developing world. Competition between blood services in the USA has been present for decades. The more than threefold differences in blood product prices between European blood services indicate that competition is long overdue in Europe, too. This competition should be welcomed but carefully and proactively regulated to avoid putting safe and secure blood supply at risk.

  12. The rigid Horowitz-Myers conjecture

    NASA Astrophysics Data System (ADS)

    Woolgar, Eric

    2017-03-01

    The new positive energy conjecture was first formulated by Horowitz and Myers in the late 1990s to probe for a possible extended, nonsupersymmetric AdS/CFT correspondence. We consider a version formulated for complete, asymptotically Poincaré-Einstein Riemannian metrics ( M, g) with bounded scalar curvature R ≥ - n( n - 1) and with no (inner) boundary except possibly a finite union of compact, totally geodesic hypersurfaces (horizons). This version then asserts that any such ( M, g) must have mass not less than a certain bound which is realized as the mass m 0 of a metric g 0 induced on a time-symmetric slice of a spacetime called an AdS soliton. This conjecture remains unproved, having so far resisted standard techniques. Little is known other than that the conjecture is true for metrics which are sufficiently small perturbations of g 0. We pose another test for the conjecture. We assume its validity and attempt to prove as a corollary the corresponding scalar curvature rigidity statement, which is that g 0 is the unique asymptotically Poincaré-Einstein metric with mass m 0 obeying R ≥ - n( n - 1). Were a second such metric g 1 not isometric to g 0 to exist, it then may well admit perturbations of lower mass, contradicting the assumed validity of the conjecture. We find enough rigidity to show that the minimum mass metric must be static Einstein, so the problem is reduced to that of static uniqueness. When n = 3 the manifold must be isometric to a time-symmetric slice of an AdS soliton spacetime, or must have a non-compact horizon. En route we study the mass aspect, obtaining and generalizing known results: (i) we relate the mass aspect of static metrics to the holographic energy density, (ii) we obtain the conformal invariance of the mass aspect when the bulk dimension is odd, and (iii) we show the vanishing of the mass aspect for negative Einstein manifolds with Einstein conformal boundary.

  13. Mooring and ground handling rigid airships

    NASA Technical Reports Server (NTRS)

    Walker, H., Jr.

    1975-01-01

    The problems of mooring and ground handling rigid airships are discussed. A brief history of Mooring and Ground Handling Rigid Airships from July 2, 1900 through September 1, 1939 is included. Also a brief history of ground handling developments with large U. S. Navy nonrigid airships between September 1, 1939 and August 31, 1962 is included wherein developed equipment and techniques appear applicable to future large rigid airships. Finally recommendations are made pertaining to equipment and procedures which appear desirable and feasible for future rigid airship programs.

  14. 21 CFR 868.5540 - Rigid laryngoscope.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Rigid laryngoscope. 868.5540 Section 868.5540 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5540 Rigid laryngoscope. (a) Identification....

  15. Unbiased rigid registration using transfer functions

    NASA Astrophysics Data System (ADS)

    Hahn, Dieter A.; Hornegger, Joachim; Bautz, Werner; Kuwert, Torsten; Roemer, Wolfgang

    2005-04-01

    The evaluation of tumor growth as regression under therapy is an important clinical issue. Rigid registration of sequentially acquired 3D-images has proven its value for this purpose. Existing approaches to rigid image registration use the whole volume for the estimation of the rigid transform. Non-rigid soft tissue deformation, however, will imply a bias to the registration result, because local deformations cannot be modeled by rigid transforms. Anatomical substructures, like bones or teeth, are not affected by these deformations, but follow a rigid transform. This important observation is incorporated in the proposed registration algorithm. The selection of anatomical substructure is done by manual interaction of medical experts adjusting the transfer function of the volume rendering software. The parameters of the transfer function are used to identify the voxels that are considered for registration. A rigid transform is estimated by a quaternion gradient descent algorithm based on the intensity values of the specified tissue classes. Commonly used voxel intensity measures are adjusted to the modified registration algorithm. The contribution describes the mathematical framework of the proposed registration method and its implementation in a commercial software package. The experimental evaluation includes the discussion of different similarity measures, the comparison of the proposed method to established rigid registration techniques and the evaluation of the efficiency of the new method. We conclude with the discussion of potential medical applications of the proposed registration algorithm.

  16. The Personality Characteristics of the Rigid Learner.

    ERIC Educational Resources Information Center

    Dean, Raymond S.; Garabedian, A. Alexander

    1981-01-01

    Investigated personality dimensions concomitant with learner's cognitive rigidity. Results indicated the personality dimensions of tenseness, compulsivity, group dependency, absent-mindedness, sensitivity, and emotional stability explained 36 percent of the variability in subjects' increasing levels of cognitive rigidity. Showed a pervasive use of…

  17. 21 CFR 882.1020 - Rigidity analyzer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Rigidity analyzer. 882.1020 Section 882.1020 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Diagnostic Devices § 882.1020 Rigidity analyzer....

  18. 21 CFR 882.1020 - Rigidity analyzer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Rigidity analyzer. 882.1020 Section 882.1020 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Diagnostic Devices § 882.1020 Rigidity analyzer....

  19. 21 CFR 882.1020 - Rigidity analyzer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Rigidity analyzer. 882.1020 Section 882.1020 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Diagnostic Devices § 882.1020 Rigidity analyzer....

  20. 21 CFR 882.1020 - Rigidity analyzer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Rigidity analyzer. 882.1020 Section 882.1020 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Diagnostic Devices § 882.1020 Rigidity analyzer....

  1. 21 CFR 882.1020 - Rigidity analyzer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Rigidity analyzer. 882.1020 Section 882.1020 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Diagnostic Devices § 882.1020 Rigidity analyzer....

  2. Aggregation dynamics of rigid polyelectrolytes

    NASA Astrophysics Data System (ADS)

    Tom, Anvy Moly; Rajesh, R.; Vemparala, Satyavani

    2016-01-01

    Similarly charged polyelectrolytes are known to attract each other and aggregate into bundles when the charge density of the polymers exceeds a critical value that depends on the valency of the counterions. The dynamics of aggregation of such rigid polyelectrolytes are studied using large scale molecular dynamics simulations. We find that the morphology of the aggregates depends on the value of the charge density of the polymers. For values close to the critical value, the shape of the aggregates is cylindrical with height equal to the length of a single polyelectrolyte chain. However, for larger values of charge, the linear extent of the aggregates increases as more and more polymers aggregate. In both the cases, we show that the number of aggregates decrease with time as power laws with exponents that are not numerically distinguishable from each other and are independent of charge density of the polymers, valency of the counterions, density, and length of the polyelectrolyte chain. We model the aggregation dynamics using the Smoluchowski coagulation equation with kernels determined from the molecular dynamics simulations and justify the numerically obtained value of the exponent. Our results suggest that once counterions condense, effective interactions between polyelectrolyte chains short-ranged and the aggregation of polyelectrolytes are diffusion-limited.

  3. Pharmacological targeting of membrane rigidity: implications on cancer cell migration and invasion

    NASA Astrophysics Data System (ADS)

    Braig, Simone; Schmidt, B. U. Sebastian; Stoiber, Katharina; Händel, Chris; Möhn, Till; Werz, Oliver; Müller, Rolf; Zahler, Stefan; Koeberle, Andreas; Käs, Josef A.; Vollmar, Angelika M.

    2015-08-01

    The invasive potential of cancer cells strongly depends on cellular stiffness, a physical quantity that is not only regulated by the mechanical impact of the cytoskeleton but also influenced by the membrane rigidity. To analyze the specific role of membrane rigidity in cancer progression, we treated cancer cells with the Acetyl-CoA carboxylase inhibitor Soraphen A and revealed an alteration of the phospholipidome via mass spectrometry. Migration, invasion, and cell death assays were employed to relate this alteration to functional consequences, and a decrease of migration and invasion without significant impact on cell death has been recorded. Fourier fluctuation analysis of giant plasma membrane vesicles showed that Soraphen A increases membrane rigidity of carcinoma cell membranes. Mechanical measurements of the creep deformation response of whole intact cells were performed using the optical stretcher. The increase in membrane rigidity was observed in one cell line without changing the creep deformation response indicating no restructuring of the cytoskeleton. These data indicate that the increase of membrane rigidity alone is sufficient to inhibit invasiveness of cancer cells, thus disclosing the eminent role of membrane rigidity in migratory processes.

  4. Sufficient trial size to inform clinical practice

    PubMed Central

    Manski, Charles F.; Tetenov, Aleksey

    2016-01-01

    Medical research has evolved conventions for choosing sample size in randomized clinical trials that rest on the theory of hypothesis testing. Bayesian statisticians have argued that trials should be designed to maximize subjective expected utility in settings of clinical interest. This perspective is compelling given a credible prior distribution on treatment response, but there is rarely consensus on what the subjective prior beliefs should be. We use Wald’s frequentist statistical decision theory to study design of trials under ambiguity. We show that ε-optimal rules exist when trials have large enough sample size. An ε-optimal rule has expected welfare within ε of the welfare of the best treatment in every state of nature. Equivalently, it has maximum regret no larger than ε. We consider trials that draw predetermined numbers of subjects at random within groups stratified by covariates and treatments. We report exact results for the special case of two treatments and binary outcomes. We give simple sufficient conditions on sample sizes that ensure existence of ε-optimal treatment rules when there are multiple treatments and outcomes are bounded. These conditions are obtained by application of Hoeffding large deviations inequalities to evaluate the performance of empirical success rules. PMID:27601679

  5. Sufficient symmetry conditions for Topological Quantum Order.

    PubMed

    Nussinov, Zohar; Ortiz, Gerardo

    2009-10-06

    We prove sufficient conditions for Topological Quantum Order at zero and finite temperatures. The crux of the proof hinges on the existence of low-dimensional Gauge-Like Symmetries, thus providing a unifying framework based on a symmetry principle. These symmetries may be actual invariances of the system, or may emerge in the low-energy sector. Prominent examples of Topological Quantum Order display Gauge-Like Symmetries. New systems exhibiting such symmetries include Hamiltonians depicting orbital-dependent spin exchange and Jahn-Teller effects in transition metal orbital compounds, short-range frustrated Klein spin models, and p+ip superconducting arrays. We analyze the physical consequences of Gauge-Like Symmetries (including topological terms and charges) and show the insufficiency of the energy spectrum, topological entanglement entropy, maximal string correlators, and fractionalization in establishing Topological Quantum Order. General symmetry considerations illustrate that not withstanding spectral gaps, thermal fluctuations may impose restrictions on suggested quantum computing schemes. Our results allow us to go beyond standard topological field theories and engineer systems with Topological Quantum Order.

  6. Some pathophysiological aspects of the parkinsonian rigidity.

    PubMed

    Delwaide, P J; Sabbatino, M; Delwaide, C

    1986-01-01

    The neurophysiological mechanisms explaining parkinsonian rigidity are still poorly understood. Its reflex nature is well established but the peripheral afferents causing it are likely multiple and not restricted to IA afferents. Few modifications appear in spinal cord reflex mechanisms and are limited to some interneurones (reciprocal inhibition and flexor reflex). At present, the most plausible explanation of rigidity relies on hyperactivity in long loop reflex pathways relaying in the brain.

  7. Langevin thermostat for rigid body dynamics.

    PubMed

    Davidchack, Ruslan L; Handel, Richard; Tretyakov, M V

    2009-06-21

    We present a new method for isothermal rigid body simulations using the quaternion representation and Langevin dynamics. It can be combined with the traditional Langevin or gradient (Brownian) dynamics for the translational degrees of freedom to correctly sample the canonical distribution in a simulation of rigid molecules. We propose simple, quasisymplectic second-order numerical integrators and test their performance on the TIP4P model of water. We also investigate the optimal choice of thermostat parameters.

  8. Rigid shells enhance survival of gekkotan eggs.

    PubMed

    Andrews, Robin M

    2015-11-01

    The majority of lizards and snakes produce permeable parchment-shelled eggs that require high moisture conditions for successful embryonic development. One clade of gekkotan lizards is an exception; females produce relatively impermeable rigid-shelled eggs that normally incubate successfully under low moisture conditions. I tested the hypothesis that the rigid-shell increases egg survival during incubation, but only under low moisture conditions. To test this hypothesis, I incubated rigid-shelled eggs of Chondrodactylus turneri under low and under high moisture conditions. Eggs were incubated with parchment-shelled eggs of Eublepharis macularius to insure that incubation conditions were suitable for parchment-shelled eggs. Chondrodactylus turneri eggs had very high survival (>90%) when they were incubated under low moisture conditions. In contrast, eggs incubated under high moisture conditions had low survival overall, and lower survival than those of the parchment-shelled eggs of E. macularius. Mortality of C. turneri and E. macularius eggs incubated under high moisture conditions was the result of fungal infection, a common source of egg mortality for squamates under laboratory and field conditions. These observations document high survival of rigid-shelled eggs under low moisture conditions because eggs escape from fungal infection. Highly mineralized rigid shells also make egg survival independent of moisture availability and may also provide protection from small invertebrates in nature. Enhanced egg survival could thus compensate for the low reproductive output of gekkotans that produce rigid-shelled eggs.

  9. Energy Strategic Planning & Self-Sufficiency Project

    SciTech Connect

    Greg Retzlaff

    2005-03-30

    This report provides information regarding options available, their advantages and disadvantages, and the costs for pursuing activities to advance Smith River Rancheria toward an energy program that reduces their energy costs, allows greater self-sufficiency and stimulates economic development and employment opportunities within and around the reservation. The primary subjects addressed in this report are as follow: (1) Baseline Assessment of Current Energy Costs--An evaluation of the historical energy costs for Smith River was conducted to identify the costs for each component of their energy supply to better assess changes that can be considered for energy cost reductions. (2) Research Viable Energy Options--This includes a general description of many power generation technologies and identification of their relative costs, advantages and disadvantages. Through this research the generation technology options that are most suited for this application were identified. (3) Project Development Considerations--The basic steps and associated challenges of developing a generation project utilizing the selected technologies are identified and discussed. This included items like selling to third parties, wheeling, electrical interconnections, fuel supply, permitting, standby power, and transmission studies. (4) Energy Conservation--The myriad of federal, state and utility programs offered for low-income weatherization and utility bill payment assistance are identified, their qualification requirements discussed, and the subsequent benefits outlined. (5) Establishing an Energy Organization--The report includes a high level discussion of formation of a utility to serve the Tribal membership. The value or advantages of such action is discussed along with some of the challenges. (6) Training--Training opportunities available to the Tribal membership are identified.

  10. Metrology of Non-Rigid Objects

    SciTech Connect

    Blaedel, K L; Smith, D W; Claudet, A A; Kasper, E P; Patterson, S R

    2002-01-01

    Dimensional characterization of non-rigid parts presents many challenges. For example, when a non-rigid part is mounted in an inspection apparatus the effects of fixturing constraints cause significant deformation of the part. If the part is not used in normal service with the same load conditions as during inspection, the dimensional characteristics in service will deviate from the reported values during inspection. Further, the solution of designing specialized fixturing to duplicate ''as-installed'' conditions does not fully resolve the problem because each inspection requires its own methodology. The goal of this project is to formulate the research problem and propose a method of assessing the dimensional characteristics of non-rigid parts. The measured dimension of a rigid component is traceable at some level of confidence to a single source (NIST in the USA). Hence the measurement of one component of an assembly can be related to the measurement of another component of that assembly. There is no generalized analog to this pedigreed process for dimensionally characterizing non-rigid bodies. For example, a measurement made on a sheet-metal automobile fender is heavily influenced by how it is held during the measurement making it difficult to determine how well that fender will assemble to the rest of the (non-rigid) car body. This problem is often overcome for specific manufacturing problems by constructing rigid fixtures that over-constrain the non-rigid parts to be assembled and then performing the dimensional measurement of the contour of each component to check whether each meets specification. Note that such inspection measurements will yield only an approximation to the assembled shape, which is a function of both the geometry and the compliance of the component parts of the assembly. As a result, non-rigid components are more difficult to specify and inspect and therefore are more difficult to purchase from outside vendors compared to rigid components

  11. Nonmagnetic rigid and flexible outer sheath with pneumatic interlocking mechanism for minimally invasive surgical approach.

    PubMed

    Yamashita, Hiromasa; Zuo, Siyang; Masamune, Ken; Liao, Hongen; Dohi, Takeyoshi

    2009-01-01

    We developed a nonmagnetic rigid and flexible outer sheath with pneumatic interlocking mechanism using flexible toothed links and a wire-driven bending distal end. The outer sheath can be switched between rigid and flexible modes easily depending on surgical scenes, and the angle of its distal end can be controlled by three nylon wires. All components of flexible parts are made of MRI-compatible nonmagnetic plastics. We manufactured the device with 300-mm long, 16-mm outer diameter, 7-mm inner diameter and 90-mm bending distal end. Holding power of the device in rigid mode was maximum 3.6 N, which was sufficient for surgical tasks in body cavity. In vivo experiment using a swine, our device performed smooth insertion of a flexible endoscope and a biopsy forceps into reverse side of the liver, intestines and spleen with a curved path. In conclusion, our device shows availability of secure approach of surgical instruments into deep cavity.

  12. Rigidity Dependence of Cosmic Ray Modulation

    NASA Astrophysics Data System (ADS)

    Agarwal Mishra, Rekha; Mishra, Rajesh Kumar

    2012-07-01

    The various observed harmonics of the cosmic ray variation may be understood on a unified basis if the free space cosmic ray anisotropy is non-sinusoidal in form. The major objective of this paper is to study the first three harmonics of cosmic ray intensity on geo-magnetically quiet days over the period 1965-1990 for Deep River, Goose Bay and Tokyo neutron monitoring stations. The amplitude of first harmonic remains high for Deep River having low cutoff rigidity as compared to Tokyo neutron monitor having high cutoff rigidity on quiet days. The diurnal amplitude significantly decreases in 1987 at Deep River and in 1986 at Tokyo during solar activity minimum years. The diurnal time of maximum significantly shifts to an earlier time as compared to the corotational direction at both the stations having different cutoff rigidities. The time of maximum for first harmonic significantly shifts towards later hours and for second harmonic it shifts towards earlier hours at low cutoff rigidity station i.e. Deep River as compared to the high cut off rigidity station i.e. Tokyo on quiet days. The amplitude of second/third harmonics shows a good positive correlation with solar wind velocity, while the others (i.e. amplitude and phase) have no significant correlation on quiet days. The solar wind velocity significantly remains in the range 350 to 425 km/s i.e. being nearly average on quiet days. The amplitude and direction of the anisotropy on quiet days are weakly dependent on high-speed solar wind streams for these neutron monitoring stations of low and high cutoff rigidity threshold. Keywords: cosmic ray, cut off rigidity, quiet days, harmonics.

  13. Patient comfort during flexible and rigid cystourethroscopy

    PubMed Central

    Zdrojowy, Romuald; Wojciechowska, Joanna; Kościelska, Katarzyna; Dembowski, Janusz; Matuszewski, Michał; Tupikowski, Krzysztof; Małkiewicz, Bartosz; Kołodziej, Anna

    2016-01-01

    Introduction Cystourethroscopy (CS) is an endoscopic method used to visualize the urethra and the bladder. Aim In this study, we prospectively evaluated pain in men undergoing cyclic cystoscopic assessment with rigid and flexible instruments after transurethral resection of bladder tumor (TURB). Material and methods One hundred and twenty male patients who were under surveillance after a TURB procedure due to urothelial cell carcinoma and who had undergone at least one rigid cystourethroscopy in the past were enrolled in the trial. Patients were prospectively randomized to age-matched groups for flexible (group F) or rigid (group R) CS. Patient's comfort was evaluated on an 11-grade scale, ranging from 0 (free from pain) to 10 points (unbearable pain). Results The patients described the pain during the previous rigid CS as ranging from 4 to 10 (mean: 6.8) in group F and from 0 to 10 (mean: 5.8) in group R. Group R patients described the pain during the current rigid CS as ranging from 0 to 10 (mean: 5.7). No mean change in the grade was observed between the two pain descriptions (no change 11 patients, weaker pain 25 patients, stronger pain 24 patients, gamma 0.51, p < 0.0001). Group F described the pain as 1 to 5 (mean: 2.1). In the case of flexible CS the pain experience was greatly lowered compared to the previous rigid CS. All flexible CS patients reported lowered pain (by 1 to 9 grades). Patients’ age did not influence the comfort of the flexible CS or the change in pain level. Conclusions Flexible CS is better tolerated than rigid cystoscopy by male patients regardless of patients’ age. PMID:27458489

  14. Organically Modified Nanoclay-Reinforced Rigid Polyurethane Films

    NASA Astrophysics Data System (ADS)

    Park, Yong Tae; Qian, Yuqiang; Lindsay, Chris; Stein, Andreas; Macosko, Christopher

    2012-02-01

    The nanodispersion of vermiculite in polyurethanes was investigated to produce organoclay-reinforced rigid gas barrier films. Reducing gas transport can improve the insulation performance of closed cell polyurethane foam. In a previous study, the dispersion of vermiculite in polyurethanes without organic modification was not sufficient due to the non-uniform dispersion morphology. When vermiculite was modified by cation exchange with long-chain quaternary ammonium cations, the dispersion in methylene diphenyl diisocyanate (MDI) was significantly improved. Dispersion was improved by combining high intensity dispersive mixing with efficient distributive mixing. Polymerization conditions were also optimized in order to provide a high state of nanodispersion in the polyurethane nanocomposite. The dispersions were characterized using rheological, microscopic and scattering/diffraction techniques. The final nanocomposites showed enhancement of mechanical properties and reduction in permeability to carbon dioxide at low clay concentration (around 2 wt percent).

  15. 21 CFR 876.3630 - Penile rigidity implant.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Penile rigidity implant. 876.3630 Section 876.3630...) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Prosthetic Devices § 876.3630 Penile rigidity implant. (a) Identification. A penile rigidity implant is a device that consists of a pair of semi-rigid rods implanted in...

  16. 49 CFR 178.706 - Standards for rigid plastic IBCs.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Standards for rigid plastic IBCs. 178.706 Section... Performance-Oriented Standards § 178.706 Standards for rigid plastic IBCs. (a) The provisions in this section apply to rigid plastic IBCs intended to contain solids or liquids. Rigid plastic IBC types...

  17. 49 CFR 178.706 - Standards for rigid plastic IBCs.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Standards for rigid plastic IBCs. 178.706 Section... PACKAGINGS IBC Performance-Oriented Standards § 178.706 Standards for rigid plastic IBCs. (a) The provisions in this section apply to rigid plastic IBCs intended to contain solids or liquids. Rigid plastic...

  18. 49 CFR 178.706 - Standards for rigid plastic IBCs.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Standards for rigid plastic IBCs. 178.706 Section... Performance-Oriented Standards § 178.706 Standards for rigid plastic IBCs. (a) The provisions in this section apply to rigid plastic IBCs intended to contain solids or liquids. Rigid plastic IBC types...

  19. 49 CFR 178.706 - Standards for rigid plastic IBCs.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Standards for rigid plastic IBCs. 178.706 Section... Performance-Oriented Standards § 178.706 Standards for rigid plastic IBCs. (a) The provisions in this section apply to rigid plastic IBCs intended to contain solids or liquids. Rigid plastic IBC types...

  20. 49 CFR 178.706 - Standards for rigid plastic IBCs.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Standards for rigid plastic IBCs. 178.706 Section... Performance-Oriented Standards § 178.706 Standards for rigid plastic IBCs. (a) The provisions in this section apply to rigid plastic IBCs intended to contain solids or liquids. Rigid plastic IBC types...

  1. Rigidity loss in disordered network materials

    NASA Astrophysics Data System (ADS)

    Ellenbroek, Wouter G.; Hagh, Varda F.; Kumar, Avishek; Thorpe, M. F.; van Hecke, Martin

    Weakly jammed sphere packings show a very peculiar elasticity, with a ratio of compression modulus to shear modulus that diverges as the number of contacts approaches the minimum required for rigidity. Creating artificial isotropic network materials with this property is a challenge: so far, the least elaborate way to generate them is to actually simulate weakly compressed repulsive spheres. The next steps in designing such networks hinge upon a solid understanding of what properties of the sphere-packing derived network are essential for its elasticity. We elucidate the topological aspects of this question by comparing the rigidity transition in these networks to that in other random spring network models, including the common bond-diluted triangular net and a self-stress-free variant of that. We use the pebble game algorithm for identifying rigid clusters in mechanical networks to demonstrate that the marginally rigid state in sphere packings is perfectly isostatic everywhere, and the addition or removal of a single bond creates a globally stressed or globally floppy network, respectively. By contrast, the other classes of random network random networks show a more localized response to addition and removal of bonds, and, correspondingly, a more gradual rigidity transition.

  2. Crystal structure prediction of rigid molecules.

    PubMed

    Elking, Dennis M; Fusti-Molnar, Laszlo; Nichols, Anthony

    2016-08-01

    A non-polarizable force field based on atomic multipoles fit to reproduce experimental crystal properties and ab initio gas-phase dimers is described. The Ewald method is used to calculate both long-range electrostatic and 1/r(6) dispersion energies of crystals. The dispersion energy of a crystal calculated by a cutoff method is shown to converge slowly to the exact Ewald result. A method for constraining space-group symmetry during unit-cell optimization is derived. Results for locally optimizing 4427 unit cells including volume, cell parameters, unit-cell r.m.s.d. and CPU timings are given for both flexible and rigid molecule optimization. An algorithm for randomly generating rigid molecule crystals is described. Using the correct experimentally determined space group, the average and maximum number of random crystals needed to find the correct experimental structure is given for 2440 rigid single component crystals. The force field energy rank of the correct experimental structure is presented for the same set of 2440 rigid single component crystals assuming the correct space group. A complete crystal prediction is performed for two rigid molecules by searching over the 32 most probable space groups.

  3. Endoscope shaft-rigidity control mechanism: "FORGUIDE".

    PubMed

    Loeve, Arjo J; Plettenburg, Dick H; Breedveld, Paul; Dankelman, Jenny

    2012-02-01

    Recent developments in flexible endoscopy and other fields of medical technology have raised the need for compact slender shafts that can be made rigid and compliant at will. A novel compact mechanism, named FORGUIDE, with this functionality was developed. The FORGUIDE shaft rigidifies due to friction between a ring of cables situated between a spring and an inflated tube. A mathematical model for the FORGUIDE mechanism working principle was made and used to obtain understanding of this mechanism, predict the maximum rigidity of a FORGUIDE shaft design, and tune its design variables. The mathematical model gave suggestions for significant performance improvement by fine-tuning the design. A prototype FORGUIDE shaft was built and put to a series of bench tests. These tests showed that the FORGUIDE mechanism provides a reliable and simple way to control the rigidity of a flexible shaft.

  4. Quantum mechanics of a generalised rigid body

    NASA Astrophysics Data System (ADS)

    Gripaios, Ben; Sutherland, Dave

    2016-05-01

    We consider the quantum version of Arnold’s generalisation of a rigid body in classical mechanics. Thus, we quantise the motion on an arbitrary Lie group manifold of a particle whose classical trajectories correspond to the geodesics of any one-sided-invariant metric. We show how the derivation of the spectrum of energy eigenstates can be simplified by making use of automorphisms of the Lie algebra and (for groups of type I) by methods of harmonic analysis. We show how the method can be extended to cosets, generalising the linear rigid rotor. As examples, we consider all connected and simply connected Lie groups up to dimension 3. This includes the universal cover of the archetypical rigid body, along with a number of new exactly solvable models. We also discuss a possible application to the topical problem of quantising a perfect fluid.

  5. Rigid spine syndrome and fatal cardiomyopathy.

    PubMed Central

    Colver, A F; Steer, C R; Godman, M J; Uttley, W S

    1981-01-01

    A 7 1/2-year-old girl had the clinical features of the rigid spine syndrome of Dubowitz. Muscle biopsy showed a predominance of type 2 fibres with neither myopathic features nor an increase in connective tissue. In addition, she had a hypertrophic cardiomyopathy with which she presented in heart failure and from which she died suddenly one month later. The association of rigid spine syndrome with cardiomyopathy has not been reported previously. Images Fig. 1 Fig. 2 Fig. 3 PMID:7193439

  6. Kinematic problem of rigid body orientation control

    NASA Astrophysics Data System (ADS)

    Plotnikov, P. K.; Sergeev, A. N.; Chelnokov, Iu. N.

    1991-10-01

    The problem of reducing a coordinate system linked with a rigid body to a reference coordinate system rotating with a specified (programmed) angular velocity is analyzed using a kinematic formulation. The mathematic model of motion includes kinematic equations of the angular motion of a rigid body in nonnormalized quaternions; used as the controls are projections of the absolute angular velocity of body rotation to the coordinate axes. Two kinds of correction are proposed which represent quaternion analogs of the positional and integral corrections. Linear error equations for the orientation control system are obtained for the types of correction proposed here.

  7. Thin structured rigid body for acoustic absorption

    NASA Astrophysics Data System (ADS)

    Starkey, T. A.; Smith, J. D.; Hibbins, A. P.; Sambles, J. R.; Rance, H. J.

    2017-01-01

    We present a thin acoustic metamaterial absorber, comprised of only rigid metal and air, that gives rise to near unity absorption of airborne sound on resonance. This simple, easily fabricated, robust structure comprising a perforated metal plate separated from a rigid wall by a deeply subwavelength channel of air is an ideal candidate for a sound absorbing panel. The strong absorption in the system is attributed to the thermo-viscous losses arising from a sound wave guided between the plate and the wall, defining the subwavelength channel.

  8. On Saturnian cosmic ray cutoff rigidities

    NASA Astrophysics Data System (ADS)

    Sauer, H. H.

    1980-03-01

    It has been determined that Saturn possesses a relatively pure dipolar magnetic field through magnetometer measurements made by Ness et al. (1979, private comm.) and Smith et al. (1979). The paper briefly outlines the dipole geomagnetic cutoff theory and demonstrates the scaling required for its applicability to energetic particle measurements in the vicinity of Saturn. Since the cutoff rigidity is a function of viewing direction, the effective cutoff rigidity must be determined as an integration over the finite viewing angle of a physical detector.

  9. Rigid and semi rigid polyurethane resins: A structural investigation using DMA, SAXS and Le Bail method

    NASA Astrophysics Data System (ADS)

    Trovati, Graziella; Sanches, Edgar A.; de Souza, Sérgio M.; dos Santos, Amanda L.; Neto, Salvador C.; Mascarenhas, Yvonne P.; Chierice, Gilberto O.

    2014-10-01

    Two different types of polyurethane (PU) resins were synthesized with pre-polymer/polyol (-NCO/-OH) mass proportions of 1:1 (Rigid PU) and 1:1.5 (Semi rigid PU). Based on the results from Dynamic Mechanical Analysis (DMA), rigid PU showed a higher Storage Modulus (E‧) which may be related to the macromolecules crosslinking process. In contrast, the greater Loss Modulus (E″) in semi rigid PU was related to the greater ability to dissipate energy, suggesting that the change in polyol/pre-polymer ratio promotes structural changes in PU resins. Le Bail method was performed with a triclinic crystal structure (for rigid PU, a = 4.9117 (2) Å, b = 8.1103 (2) Å, c = 19.7224 (2) Å, α = 116.2831 (2)°, β = 125.4058 (2)° and γ = 83.6960 (2)°). Average crystallite size was found in the range of 26 (1) Å for rigid PU and somewhat smaller around 20 (1) Å for semi rigid PU. The Guinier radii of gyration (Rg) and the maximum particle sizes (Dmax) were calculated based on Small Angle X-ray Scattering (SAXS) curves. Two different values for Radii of gyration (Rg) were calculated, one obtained from Guinier’s plot using the program Microcal Origin 7.5 (RgORIGIN) and other from the pair-distance distribution function (p(r)) calculation, using the GNOM (RgGNOM) program package The possible highest values of (RgORIGIN) were obtained from Guinier’s curves. For rigid and semi rigid PU resins, the (RgORIGIN) values were, respectively, (320 ± 1) and (260 ± 1) Å. The average radii of gyration (RgGNOM) were obtained from the calculated pair-distance distribution function (p(r)). For rigid and semi rigid PU resins, the RgGNOM values were, respectively, (95 ± 1) Å and (86 ± 1) Å. Dmax values were obtained from the p(r) and ranged from (330 ± 3) Å to (260 ± 3) Å for rigid and semi rigid PU, respectively. Kratky curves showed that less organized systems were produced when the polyol amount was increased.

  10. Rigid polyurethane and kenaf core composite foams

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rigid polyurethane foams are valuable in many construction applications. Kenaf is a bast fiber plant where the surface stem skin provides bast fibers whose strength-to-weight ratio competes with glass fiber. The higher volume product of the kenaf core is an under-investigated area in composite appli...

  11. Balancing of Rigid and Flexible Rotors

    DTIC Science & Technology

    1986-01-01

    rotor conr- Igjurations that can be "dialed In" are shown at left. (Cour- tesy of’ Schenak Trebel Corporation.) ŕ 1,4 BALANJCING MACHINES ANI...anice, For all rigid rotors in any grado , the specific balance requirement for that grade should provide smooth operation. Tlhe grstde number represents

  12. Plastic flow around rigid spherical inclusions

    NASA Technical Reports Server (NTRS)

    Ruoff, A. L.; Nelson, D. A., Jr.

    1974-01-01

    The extent of plastic flow in a spherical solid (assumed to be homogeneous and elastically and plastically isotropic), surrounding a concentric rigid sphere was calculated as a function of applied external pressure. The applied pressure necessary to cause plastic deformation throughout the solid was obtained.

  13. Rigid rod anchored to infinite membrane.

    PubMed

    Guo, Kunkun; Qiu, Feng; Zhang, Hongdong; Yang, Yuliang

    2005-08-15

    We investigate the shape deformation of an infinite membrane anchored by a rigid rod. The density profile of the rod is calculated by the self-consistent-field theory and the shape of the membrane is predicted by the Helfrich membrane elasticity theory [W. Helfrich, Z. Naturforsch. 28c, 693 (1973)]. It is found that the membrane bends away from the rigid rod when the interaction between the rod and the membrane is repulsive or weakly attractive (adsorption). However, the pulled height of the membrane at first increases and then decreases with the increase of the adsorption strength. Compared to a Gaussian chain with the same length, the rigid rod covers much larger area of the membrane, whereas exerts less local entropic pressure on the membrane. An evident gap is found between the membrane and the rigid rod because the membrane's curvature has to be continuous. These behaviors are compared with that of the flexible-polymer-anchored membranes studied by previous Monte Carlo simulations and theoretical analysis. It is straightforward to extend this method to more complicated and real biological systems, such as infinite membrane/multiple chains, protein inclusion, or systems with phase separation.

  14. Quantification of the UPDRS Rigidity Scale.

    PubMed

    Patrick, S K; Denington, A A; Gauthier, M J; Gillard, D M; Prochazka, A

    2001-03-01

    In the clinical setting, parkinsonian rigidity is assessed using subjective rating scales such as that of the Unified Parkinson's Disease Rating System (UPDRS). However, such scales are susceptible to problems of sensitivity and reliability. Here, we evaluate the reliability and validity of a device designed to quantify parkinsonian rigidity at the elbow and the wrist. The method essentially quantifies the clinical examination and employs small sensors to monitor forces and angular displacements imposed by the clinician onto the limb segment distal to the joint being evaluated. Force and displacement data are used to calculate elastic and viscous stiffnesses and their vectorial sum, mechanical impedance. Interexaminer agreement of measures of mechanical impedance in subjects with Parkinson's disease was comparable to that of clinical UPDRS scores. Examiners tended to overrate rigidity on the UPDRS scale during reinforcement manoeuvres. Mechanical impedance was nonlinearly related to UPDRS ratings of rigidity at the elbow and wrist; characterization of such relationships allows interpretation of impedance measurements in terms of the clinical rating scales.

  15. Analysis and Modeling of Rigid Microswimmers

    NASA Astrophysics Data System (ADS)

    Meshkati, Farshad

    In this thesis, we investigate magnetically actuated rigid microswimmers based on analytical and numerical schemes. These swimming micro-robots have medical applications such as drug delivery and in vivo diagnostics. Our model employs the method of regularized Stokeslets to faithfully incorporate the low-Reynolds-number hydrodynamics of arbitrary rigid geometries. We show how these magnetized swimmers can be actuated and controlled by externally rotating uniform magnetic fields. Our model predicts the swimming characteristics such as speed and direction. We show how to determine the dynamic stability of steadily rotating microswimmers. First, we address what is the simplest geometry capable of swimming. We illustrate that, despite the common belief that rigid microswimmers need to be chiral to be able to cause propulsion, a simple achiral 3-bead geometry can exhibit appreciable propulsion and controllability. We generalize this to explain the minimum geometric requirements for rigid rotating propulsion based on a symmetry analysis. Next, we investigate the implications of the stability analysis on the control of the 3-bead swimmer. We show that by adjusting the angle between the magnetic field and its rotation, one can control the existence of multiple stable rotation modes, leading to control of swimming direction and speed.

  16. Phosphorescence and Energy Transfer in Rigid Solutions.

    ERIC Educational Resources Information Center

    Enciso, E.; Cabello, A.

    1980-01-01

    Describes an experiment which illustrates the general aspects of intermolecular energy transfer between triplet states in rigid solutions of organic compounds solved in an ethanol-ether mixture. Measurements of quenching and energy transfer processes are made using the chemicals of benzophenone and naphthalene. (CS)

  17. Multiple-Purpose Rigid Foam Insulation

    NASA Technical Reports Server (NTRS)

    Liu, Matthew T.

    1989-01-01

    Plastic foam promises to serve as multiple-purpose thermal insulation. Material is rigid, closed-cell, thermally stable foam or urethane-modified isocyanate. Made by reacting polyol mixture with polymeric diphenyl methane disocyanate in presence of catalyst and flurocarbon blowing agent. Properties customized for particular application by adjusting proportions of ingredients in polyol mixture.

  18. Adjustable Optical Mount Is More Rigid

    NASA Technical Reports Server (NTRS)

    Asbury, Bill G.; Coombs, David S.; Jones, Irby W.; Moore, Alvah S., Jr.

    1994-01-01

    Improved mount for lens or mirror in laser offers rigidity similar to that of nonadjustable optical mount. In comparison with older adjustable optical mounts, this one less susceptible to movements and distortions caused by vibrations and by thermal expansions and contractions. Mount contains neither adjustment rods (which grow or shrink as temperature varies) nor springs (which transmit vibrations to mounted optic).

  19. Flexible scaffolding made of rigid BARs.

    PubMed

    Frolov, Vadim A; Zimmerberg, Joshua

    2008-03-07

    Crescent-shaped BAR domains are generic actors in the creation of membrane curvature. In this issue, Frost et al. (2008) reveal how collective twisting of rigid F-BAR domains on a soft membrane surface may lead to different membrane curvatures.

  20. "Sufficient health" as perceived by Thai villagers: A qualitative study.

    PubMed

    Arpanantikul, Manee; Phuphaibul, Rutja; Khuwatsumrit, Kusuma

    2017-01-05

    Globalization has led to the rapid modernization of Thai villagers' traditional lifestyle, with significant consequential changes in health. The integration of the sufficiency economy philosophy with health - a concept known as "sufficient health" - can improve health and wellbeing; however, little is known of the actual meaning of "sufficient health." This qualitative study explored the meaning of sufficient health as perceived by Thai villagers. Data were collected from 122 villagers living in a rural Thai community and analyzed using content analysis. The findings revealed five themes reflecting the meaning of sufficient health: being healthy and not having an illness, having regular health check-ups, performing self-care, living sufficiently, and avoiding risks. Understanding the meaning attributed to sufficient health can help nurses provide appropriate health care for villagers while retaining concern and respect for their cultural backgrounds. Importantly, providing opportunities to villagers to participate in health activities could help them recognize and sustain sufficient health.

  1. Geophysical Consequences of Icy Satellite Rigidity

    NASA Astrophysics Data System (ADS)

    Nimmo, Francis

    2006-09-01

    The interior structures of icy satellites are typically deduced by measuring J2 from flybys, and then using the hydrostatic assumption (i.e. zero rigidity) to deduce the polar moment of inertia. While this technique works well for the Earth, it fails dismally for Mars and the Moon. The recent detection of regional gravity anomalies on Ganymede [1] suggests loads supported by elastic stresses. Thus, the use of the hydrostatic assumption to derive structures for cold, icy bodies like Callisto [2] or Mimas should be treated with great caution [3]. The rigidity of icy satellites is important for at least three other reasons. Firstly, it controls (via the Love number k2) the degree of tidal heating experienced. For equal Love numbers, Enceladus and Europa would experience very similar diurnal tidal amplitudes. However, because Enceladus has a smaller radius it is likely to behave in a more rigid fashion than Europa, resulting in less tidal heating. Conventional (diurnal) tidal generation of the observed heat flux at Enceladus' south pole [4] requires Q/k2 of order 100, implying a relatively soft interior. Secondly, satellite rigidity controls both the magnitude of loads which are potentially capable of causing satellite reorientation, and the size of the opposing fossil bulge [5]. Finally, the near-surface rigidity (elastic thickness) influences, and may be deduced from, observations of the scale and morphology of surface tectonic features [6]. [1] Palguta et al. Icarus 180, 428-441, 2006 [2] Anderson et al. Icarus 153, 157-161, 2001 [3] McKinnon Icarus 130, 540-543, 1997 [4] Spencer et al., Science 311, 1401-1405, 2006 [5] Nimmo and Pappalardo, Nature 441, 614-616, 2006 [6] Nimmo and Schenk, J. Struct. Geol. in press.

  2. Progressive encephalomyelitis with rigidity and myoclonus

    PubMed Central

    Turner, M.R.; Irani, S.R.; Leite, M.I.; Nithi, K.; Vincent, A.

    2011-01-01

    Background: The syndrome of progressive encephalopathy with limb rigidity has been historically termed progressive encephalomyelitis with rigidity and myoclonus (PERM) or stiff-person syndrome plus. Methods: The case is presented of a previously healthy 28-year-old man with a rapidly fatal form of PERM developing over 2 months. Results: Serum antibodies to both NMDA receptors (NMDAR) and glycine receptors (GlyR) were detected postmortem, and examination of the brain confirmed an autoimmune encephalomyelitis, with particular involvement of hippocampal pyramidal and cerebellar Purkinje cells and relative sparing of the neocortex. No evidence for an underlying systemic neoplasm was found. Conclusion: This case displayed not only the clinical features of PERM, previously associated with GlyR antibodies, but also some of the features associated with NMDAR antibodies. This unusual combination of antibodies may be responsible for the particularly progressive course and sudden death. PMID:21775733

  3. The Structure and Rigidity of Network Glasses

    NASA Astrophysics Data System (ADS)

    Thorpe, M. F.; Jacobs, D. J.; DjordjeviĆ, B. R.

    The following sections are included: * Introduction * Continuous Random Networks * Hand-built CRN models * Computer-built CRN models * Guttman model * Wooten-Weaire method * Constraint Counting * Generic Rigidity Percolation * The pebble game * Two dimensional central force networks * Three dimensional bond bending networks * Surface Floppy Modes * Basic counting techniques * Problems with periodic boundary conditions * Experiments * Bulk materials * Correction for dangling bonds * Silicate networks * Summary * Acknowledgments * References

  4. Modular Habitats Comprising Rigid and Inflatable Modules

    NASA Technical Reports Server (NTRS)

    Kennedy, Kriss J.

    2010-01-01

    Modular, lightweight, fully equipped buildings comprising hybrids of rigid and inflatable structures can be assembled on Earth and then transported to and deployed on the Moon for use as habitats. Modified versions of these buildings could also prove useful on Earth as shelters that can be rapidly and easily erected in emergency situations and/or extreme environments: examples include shelters for hurricane relief and for Antarctic exploration.

  5. Optimizing Simulated Trajectories Of Rigid Bodies

    NASA Technical Reports Server (NTRS)

    Brauer, Garry L.; Olson, David W.; Stevenson, Robert

    1989-01-01

    6D POST is general-purpose, six-degree-of-freedom computer program for optimization of simulated trajectories of rigid bodies. Direct extension of three-degree-of-freedom POST program. 6D POST program models trajectory of powered or unpowered vehicle operating at or near rotating planet. Used to solve variety of performance, guidance, and flight-control problems for atmospheric and orbital vehicles. Written in FORTRAN 77 and FORTRAN V.

  6. Rigid gas-permeable lens problem solving.

    PubMed

    Bennett, E S; Egan, D J

    1986-07-01

    The introduction of high oxygen-permeable rigid lenses for daily wear has provided practitioners with an excellent alternative to other available lens materials. However, compromise in material properties may, in fact, result in lens-induced complications. This paper describes eight such "typical" problems including a treatment plan and possible alternative methods of treatment. A comprehensive summary table is provided for reference use by practitioners.

  7. Rigid plastic collars for marking geese

    USGS Publications Warehouse

    Ballou, R.M.; Martin, F.W.

    1964-01-01

    Rigid plastic collars of one to three colors proved useful for recognition of individual Canada geese (Branta canadensis). The collars did not seem to affect the behavior of the geese, and there was little mortality caused by their use. In good light, bright colors are visible through a 20-power spotting scope for more than 1 mile. Retention of collars was about 90 percent for 1 year and more than 80 percent for 2 years.

  8. Design of Overlays for Rigid Airport Pavements

    DTIC Science & Technology

    1988-04-01

    Renture, A., and Mindess , S. 1986. "The Effect of Concrete Strength on Crack Patterns," Cement and Concrete Research,_ Vol 16, Pergamon Press Ltd...34 Miscellaneous Paper S-74-30, US Army Engineer Waterways Experiment Station, Vicksburg, Miss. 22. Harr, M. E. 1977 . Mechanics of Particulate Media...of Civil -. Engineers, New York. 33. Hutchinson, R., and Vedros, P. 1977 . "Performance of Heavy-Load Port- land Cement Concrete (Rigid) Airfield

  9. Infinitesimal rigidity of hyperquadrics in semi-Euclidean space

    NASA Astrophysics Data System (ADS)

    Shin, An Sook; Kim, Hobum; Han, Hyelim

    2016-12-01

    In this paper, we show that hyperquadrics are infinitesimally rigid in a semi-Euclidean space. We also show that hypersurfaces of hyperquadrics cut by hyperplanes not passing through the origin are infinitesimally rigid in the hyperquadrics, whereas those cut by hyperplanes through the origin are not infinitesimally rigid in hyperquadrics. Furthermore, we prove that any hypersurface in a semi-Euclidean space containing some open subset of a hyperplane is not infinitesimally rigid.

  10. Pulling rigid bodies through granular material

    NASA Astrophysics Data System (ADS)

    Kubik, Ryan; Dressaire, Emilie

    2016-11-01

    The need for anchoring systems in granular materials such as sand is present in the marine transportation industry, e.g. to layout moorings, keep vessels and docks fixed in bodies of water, build oil rigs, etc. The holding power of an anchor is associated with the force exerted by the granular media. Empirical evidence indicates that the holding power depends on the size and shape of the anchoring structure. In this model study, we use a two-dimensional geometry in which a rigid body is pulled through a granular media at constant velocity to determine the drag and lift forces exerted by a granular medium on a moving object. The method allows measuring the drag force and recording the trajectory of the rigid object through the sand. We systematically vary the size and geometry of the rigid body, the properties of the granular medium and the extraction speed. For different initial positions of a cylindrical object pulled horizontally through the medium, we record large variations in magnitude of the drag and a significant lift force that pulls the object out of the sand.

  11. Geometric simulation of structures containing rigid units

    NASA Astrophysics Data System (ADS)

    Wells, Stephen

    2005-03-01

    Much insight into the behaviour of the framework silicates can be obtained from the Rigid Unit model. I review results from geometric analyses [1] of framework structures, quantifying the significance of rigid unit motion in thermal disorder and in defect accomodation, and from a method of simulation [2,3] based on a whole-body `geometric potential' rather than on interatomic potentials. I show the application of the geometric potential to the symmetry-constrained generation of hypothetical zeolite frameworks [4], and to the rapid generation of protein conformations using insights from rigid cluster decomposition [5]. 1. Wells, Dove and Tucker, Journal of Applied Crystallography, 37:536--544 (2004). 2. G.D. Gatta and S.A. Wells, Phys. Chem. Min. 31:1--10 (2004). 3. A. Sartbaeva, S. A. Wells, S. A. T. Redfern, J. Phys.: Condens. Matter 16, 8173 (2004) 4. M. M. J. Treacy, I. Rivin, E. Balkovsky, K. H. Randall and M. D. Foster, Micropor. Mesopor. Mater. 74, 121-132 (2004). 5. M.F. Thorpe, Ming Lei, A.J. Rader, Donald J. Jacobs, and Leslie A. Kuhn, Journal of Molecular Graphics and Modelling 19, 1:60 - 69, (2001).

  12. Origin of Rigidity in Dry Granular Solids

    NASA Astrophysics Data System (ADS)

    Sarkar, Sumantra; Bi, Dapeng; Zhang, Jie; Behringer, R. P.; Chakraborty, Bulbul

    2013-08-01

    Solids are distinguished from fluids by their ability to resist shear. In traditional solids, the resistance to shear is associated with the emergence of broken translational symmetry as exhibited by a nonuniform density pattern. In this work, we focus on the emergence of shear rigidity in a class of solids where this paradigm is challenged. Dry granular materials have no energetically or entropically preferred density modulations. We show that, in contrast to traditional solids, the emergence of shear rigidity in these granular solids is a collective process, which is controlled solely by boundary forces, the constraints of force and torque balance, and the positivity of the contact forces. We develop a theoretical framework based on these constraints, which connects rigidity to broken translational symmetry in the space of forces, not positions of grains. We apply our theory to experimentally generated shear-jammed states and show that these states are indeed characterized by a persistent, non-uniform density modulation in force space, which emerges at the shear-jamming transition.

  13. The limitations of using vertical cutoff rigidities determined from the IGRF magnetic field models for computing aircraft radiation dose.

    PubMed

    Smart, D F; Shea, M A

    2003-01-01

    Vertical cutoff rigidities derived from the International Geomagnetic Reference Fields (IGRF) are normally used to compute the radiation dose at a specific location and to organize the radiation dose measurements acquired at aircraft altitudes. This paper presents some of the usually ignored limits on the accuracy of the vertical cutoff rigidity models and describes some of the computational artifacts present in these models. It is noted that recent aircraft surveys of the radiation dose experienced along specific flight paths is sufficiently precise that the secular variation of the geomagnetic field is observable.

  14. A Cognitive Developmental Model of Rigidity in Senescence.

    ERIC Educational Resources Information Center

    Lapsley, Daniel K.; Enright, Robert D.

    1983-01-01

    The rigidity construct is reinterpreted in terms of the cognitive developmental approach. A review reveals both cognitive and developmental themes, with an emphasis on the structural and operational properties of rigidity. Notes weaknesses of previous approaches to rigidity and discusses implications and predictions from the proposed model.…

  15. 21 CFR 886.5916 - Rigid gas permeable contact lens.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Rigid gas permeable contact lens. 886.5916 Section... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Therapeutic Devices § 886.5916 Rigid gas permeable contact lens. (a) Identification. A rigid gas permeable contact lens is a device intended to be worn...

  16. 21 CFR 886.5916 - Rigid gas permeable contact lens.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Rigid gas permeable contact lens. 886.5916 Section... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Therapeutic Devices § 886.5916 Rigid gas permeable contact lens. (a) Identification. A rigid gas permeable contact lens is a device intended to be worn...

  17. 21 CFR 886.5916 - Rigid gas permeable contact lens.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Rigid gas permeable contact lens. 886.5916 Section... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Therapeutic Devices § 886.5916 Rigid gas permeable contact lens. (a) Identification. A rigid gas permeable contact lens is a device intended to be worn...

  18. 21 CFR 886.5916 - Rigid gas permeable contact lens.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Rigid gas permeable contact lens. 886.5916 Section... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Therapeutic Devices § 886.5916 Rigid gas permeable contact lens. (a) Identification. A rigid gas permeable contact lens is a device intended to be worn...

  19. 21 CFR 886.5916 - Rigid gas permeable contact lens.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Rigid gas permeable contact lens. 886.5916 Section... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Therapeutic Devices § 886.5916 Rigid gas permeable contact lens. (a) Identification. A rigid gas permeable contact lens is a device intended to be worn...

  20. Fitting of aspheric high gas-permeable rigid contact lenses to scarred corneas.

    PubMed

    Kok, J H; Smulders, F; van Mil, C

    1991-08-15

    Scarring of the cornea often results in an irregular corneal surface, which causes scattering in light perception. Therefore, the impaired visual acuity cannot be adequately corrected by spectacles in most cases. In this study, high oxygen-transmissible aspheric rigid lenses were fitted, with computer assistance, in 26 scarred eyes of 23 consecutive patients. In 15 of 26 eyes (57.7%), a successful fitting with good vision, no complications, and a sufficiently long wearing time was accomplished. The main lens-related complications included fluorescein-staining epithelial defects in five of 26 eyes (19.2%) and epithelial edema in two of 26 eyes (7.7%). Computer-aided fitting was of limited value because keratometer readings were not measurable in 50% of the cases. The results of this study indicate that the application of high oxygen-transmissible aspheric rigid contact lenses may obviate corneal surgery.

  1. Understanding geological processes: Visualization of rigid and non-rigid transformations

    NASA Astrophysics Data System (ADS)

    Shipley, T. F.; Atit, K.; Manduca, C. A.; Ormand, C. J.; Resnick, I.; Tikoff, B.

    2012-12-01

    Visualizations are used in the geological sciences to support reasoning about structures and events. Research in cognitive sciences offers insights into the range of skills of different users, and ultimately how visualizations might support different users. To understand the range of skills needed to reason about earth processes we have developed a program of research that is grounded in the geosciences' careful description of the spatial and spatiotemporal patterns associated with earth processes. In particular, we are pursuing a research program that identifies specific spatial skills and investigates whether and how they are related to each other. For this study, we focus on a specific question: Is there an important distinction in the geosciences between rigid and non-rigid deformation? To study a general spatial thinking skill we employed displays with non-geological objects that had been altered by rigid change (rotation), and two types of non-rigid change ("brittle" (or discontinuous) and "ductile" (or continuous) deformation). Disciplinary scientists (geosciences and chemistry faculty), and novices (non-science faculty and undergraduate psychology students) answered questions that required them to visualize the appearance of the object before the change. In one study, geologists and chemists were found to be superior to non-science faculty in reasoning about rigid rotations (e.g., what an object would look like from a different perspective). Geologists were superior to chemists in reasoning about brittle deformations (e.g., what an object looked like before it was broken - here the object was a word cut into many fragments displaced in different directions). This finding is consistent with two hypotheses: 1) Experts are good at visualizing the types of changes required for their domain; and 2) Visualization of rigid and non-rigid changes are not the same skill. An additional important finding is that there was a broad range of skill in both rigid and non-rigid

  2. Rigid and non-rigid micro-plates: Philippines and Myanmar-Andaman case studies

    NASA Astrophysics Data System (ADS)

    Rangin, Claude

    2016-01-01

    Generally, tectonic plates are considered as rigid. Oblique plate convergence favors the development of micro-plates along the converging boundaries. The north-south-trending Philippines archipelago (here named Philippine Mobile Belt, PMB), a few hundreds kilometers wide, is one of such complex tectonic zones. We show here that it is composed of rigid rotating crustal blocks (here called platelets). In Myanmar, the northernmost tip of the Sumatra-Andaman subduction system is another complex zone made of various crustal blocks in-between convergent plates. Yet, contrary to PMB, it sustains internal deformation with platelet buckling, altogether indicative of a non-rigid behavior. Therefore, the two case studies, Philippine Mobile Belt and Myanmar-Andaman micro-plate (MAS), illustrate the complexity of micro-plate tectonics and kinematics at convergent plate boundaries.

  3. Improving the Perception of Self-Sufficiency towards Creative Drama

    ERIC Educational Resources Information Center

    Pekdogan, Serpil; Korkmaz, Halil Ibrahim

    2016-01-01

    The purpose of this study is to investigate the effects of a Creative Drama Based Perception of Self-sufficiency Skills Training Program on 2nd grade bachelor degree students' (who are attending a preschool teacher training program) perception of self-sufficiency. This is a quasi-experimental study. Totally 50 students were equally divided into…

  4. 27 CFR 25.174 - Bond not sufficient.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Bond not sufficient. 25.174 Section 25.174 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL BEER Tax on Beer Prepayment of Tax § 25.174 Bond not sufficient. When...

  5. 27 CFR 25.174 - Bond not sufficient.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Bond not sufficient. 25.174 Section 25.174 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS BEER Tax on Beer Prepayment of Tax § 25.174 Bond not sufficient. When...

  6. 27 CFR 25.174 - Bond not sufficient.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Bond not sufficient. 25.174 Section 25.174 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL BEER Tax on Beer Prepayment of Tax § 25.174 Bond not sufficient. When...

  7. 27 CFR 25.174 - Bond not sufficient.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Bond not sufficient. 25.174 Section 25.174 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS BEER Tax on Beer Prepayment of Tax § 25.174 Bond not sufficient. When...

  8. 27 CFR 25.174 - Bond not sufficient.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Bond not sufficient. 25.174 Section 25.174 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS BEER Tax on Beer Prepayment of Tax § 25.174 Bond not sufficient. When...

  9. Large-strain, rigid-to-rigid deformation of bistable electroactive polymers

    NASA Astrophysics Data System (ADS)

    Yu, Zhibin; Yuan, Wei; Brochu, Paul; Chen, Bin; Liu, Zhitian; Pei, Qibing

    2009-11-01

    Thermoplastic poly(tert-butyl acrylate) (PTBA) is reported as an electroactive polymer that is rigid at ambient conditions and turns into a dielectric elastomer above a transition temperature. In the rubbery state, a PTBA thin film can be electrically actuated to strains up to 335% in area expansion. The calculated actuation pressure is 3.2 MPa. The actuation is made bistable by cooling to below glass transition temperature. The PTBA represents the bistable electroactive polymer (BSEP) that can be actuated to various largely strained, rigid shapes. The application of the BSEP for refreshable Braille display, an active tactile display, is also demonstrated.

  10. MASPROP- MASS PROPERTIES OF A RIGID STRUCTURE

    NASA Technical Reports Server (NTRS)

    Hull, R. A.

    1994-01-01

    The computer program MASPROP was developed to rapidly calculate the mass properties of complex rigid structural systems. This program's basic premise is that complex systems can be adequately described by a combination of basic elementary structural shapes. Thirteen widely used basic structural shapes are available in this program. They are as follows: Discrete Mass, Cylinder, Truncated Cone, Torus, Beam (arbitrary cross section), Circular Rod (arbitrary cross section), Spherical Segment, Sphere, Hemisphere, Parallelepiped, Swept Trapezoidal Panel, Symmetric Trapezoidal Panels, and a Curved Rectangular Panel. MASPROP provides a designer with a simple technique that requires minimal input to calculate the mass properties of a complex rigid structure and should be useful in any situation where one needs to calculate the center of gravity and moments of inertia of a complex structure. Rigid body analysis is used to calculate mass properties. Mass properties are calculated about component axes that have been rotated to be parallel to the system coordinate axes. Then the system center of gravity is calculated and the mass properties are transferred to axes through the system center of gravity by using the parallel axis theorem. System weight, moments of inertia about the system origin, and the products of inertia about the system center of mass are calculated and printed. From the information about the system center of mass the principal axes of the system and the moments of inertia about them are calculated and printed. The only input required is simple geometric data describing the size and location of each element and the respective material density or weight of each element. This program is written in FORTRAN for execution on a CDC 6000 series computer with a central memory requirement of approximately 62K (octal) of 60 bit words. The development of this program was completed in 1978.

  11. The High Rigidity Spectrometer for FRIB

    NASA Astrophysics Data System (ADS)

    Baumann, T.

    2016-06-01

    The High Rigidity Spectrometer (HRS) is being developed to make optimum use of the fast rare-isotope beams that will be available at the Facility for Rare-Isotope Beams (FRIB) and will be the key experimental tool to study the most exotic, neutron-rich nuclei. The HRS will accommodate detector systems for charged particles, neutrons, and gamma rays. This will enable coincidence measurements of reaction products that stem from a variety of reactions such as knockout, breakup, charge exchange or Coulomb excitation. First-order ion optical studies are under way and this paper will offer some details on the current design ideas.

  12. Mechanical Characterization of Rigid Polyurethane Foams

    SciTech Connect

    Lu, Wei-Yang

    2014-12-01

    Foam materials are used to protect sensitive components from impact loading. In order to predict and simulate the foam performance under various loading conditions, a validated foam model is needed and the mechanical properties of foams need to be characterized. Uniaxial compression and tension tests were conducted for different densities of foams under various temperatures and loading rates. Crush stress, tensile strength, and elastic modulus were obtained. A newly developed confined compression experiment provided data for investigating the foam flow direction. A biaxial tension experiment was also developed to explore the damage surface of a rigid polyurethane foam.

  13. Diffraction of sound by nearly rigid barriers

    NASA Technical Reports Server (NTRS)

    Hadden, W. J., Jr.; Pierce, A. D.

    1976-01-01

    The diffraction of sound by barriers with surfaces of large, but finite, acoustic impedance was analyzed. Idealized source-barrier-receiver configurations in which the barriers may be considered as semi-infinite wedges are discussed. Particular attention is given to situations in which the source and receiver are at large distances from the tip of the wedge. The expression for the acoustic pressure in this limiting case is compared with the results of Pierce's analysis of diffraction by a rigid wedge. An expression for the insertion loss of a finite impedance barrier is compared with insertion loss formulas which are used extensively in selecting or designing barriers for noise control.

  14. Laminarization of Turbulent Boundary Layer on Flexible and Rigid Surfaces

    NASA Technical Reports Server (NTRS)

    Maestrello, Lucio

    2001-01-01

    An investigation of the control of turbulent boundary layer flow over flexible and rigid surfaces downstream of a concave-convex geometry has been made. The concave-convex curvature induces centrifugal forces and a pressure gradient on the growth of the turbulent boundary layer. The favorable gradient is not sufficient to overcome the unfavorable; thus, the net effect is a destabilizing, of the flow into Gortler instabilities. This study shows that control of the turbulent boundary layer and structural loading can be successfully achieved by using localized surface heating because the subsequent cooling and geometrical shaping downstream over a favorable pressure gradient is effective in laminarization of the turbulence. Wires embedded in a thermally insulated substrate provide surface heating. The laminarized velocity profile adjusts to a lower Reynolds number, and the structure responds to a lower loading. In the laminarization, the turbulent energy is dissipated by molecular transport by both viscous and conductivity mechanisms. Laminarization reduces spanwise vorticity because of the longitudinal cooling gradient of the sublayer profile. The results demonstrate that the curvature-induced mean pressure gradient enhances the receptivity of the flow to localized surface heating, a potentially viable mechanism to laminarize turbulent boundary layer flow; thus, the flow reduces the response of the flexible structure and the resultant sound radiation.

  15. Understanding rigid body motion in arbitrary dimensions

    NASA Astrophysics Data System (ADS)

    Leyvraz, Francois

    2015-05-01

    Why would anyone wish to generalize the already unappetizing subject of rigid body motion to an arbitrary number of dimensions? At first sight, the subject seems to be both repellent and superfluous. The author will try to argue that an approach involving no specific three-dimensional constructs is actually easier to grasp than the traditional approach and might thus be generally useful to understand rigid body motion both in three dimensions and in the general case. Specific differences between the viewpoint suggested here and the usual one include the following: here angular velocities are systematically treated as antisymmetric matrices, a symmetric tensor I quite different from the moment of inertia tensor plays a central role, whereas the latter is shown to be a far more complex object, namely a tensor of rank four. A straightforward way to define it is given. The Euler equation is derived and the use of Noether’s theorem to obtain conserved quantities is illustrated. Finally the equations of motion for a heavy top as well as for two bodies linked by a spherical joint are derived to display the simplicity and the power of the method.

  16. Rigidity of triskelion arms and clathrin nets.

    PubMed Central

    Jin, A J; Nossal, R

    2000-01-01

    Statistical analysis is applied to a set of electron micrographic images (Kocsis, E., B. L. Trus, C. J. Steer, M. E. Bisher, and A. C. Steven. 1991. J. Struct. Biol. 107:6-14), from which quantitative measures are obtained to support the notion that the three arms of a triskelion have statistically identical properties and exhibit independent structural fluctuations. Additionally, a study of local contour fluctuations, which indicates that the elastic properties of a triskelion arm are approximately constant over the entire arm length, is used along with a small deformation statistical mechanics theory to derive an effective, average flexural rigidity for the arms. This result is used to estimate the bending energy necessary to deform a clathrin patch, and comparison is made with the deformation energy of an equivalent area of non-clathrin-coated membrane. We estimate that the rigidity of the clathrin lattice is at least comparable to that of a typical membrane. Hence, the natural curvature of a clathrin cage can stabilize, and perhaps propel, the formation of intracellular coated vesicles. PMID:10692308

  17. Magnetic Control of Rigid Achiral Microswimmers

    NASA Astrophysics Data System (ADS)

    Cheang, U.; Meshkati, Farshad; Fu, Henry; Kim, Minjun

    2013-11-01

    We report control of rigid achiral microswimmers in low Reynolds number environments. A rotating magnetic field was used to actuate the microswimmers wirelessly by rotating the microswimmers, which produces propulsion. Previous magnetically actuated microswimmers in bulk fluids have been designed with either flexibility or chiral geometry; we show that simpler geometries with neither flexibility nor chirality can produce propulsion. The microswimmer consists of three magnetic beads conjugated using avidin-biotin linkages into an arc formation. We designed a magnetic field generator consisting of electromagnetic coils arranged in an approximate Helmholtz configuration. A highspeed camera provided realtime imaging of the microswimmers' motion in a PDMS chamber. The rigidity of the microswimmer was characterized by tracking the position of the individual beads and calculating their relative distances. As a function of field strength and rotation frequency, we observed changes in the rotational axis of the microswimmers and the corresponding effects on their velocities. The achiral microswimmers exhibited active propulsion and were controllable in both speed and direction, which demonstrates the possibility for future biomedical applications such as drug delivery.

  18. Glycerol in micellar confinement with tunable rigidity

    NASA Astrophysics Data System (ADS)

    Lannert, Michael; Müller, Allyn; Gouirand, Emmanuel; Talluto, Vincenzo; Rosenstihl, Markus; Walther, Thomas; Stühn, Bernd; Blochowicz, Thomas; Vogel, Michael

    2016-12-01

    We investigate the glassy dynamics of glycerol in the confinement of a microemulsion system, which is stable on cooling down to the glass transition of its components. By changing the composition, we vary the viscosity of the matrix, while keeping the confining geometry intact, as is demonstrated by small angle X-ray scattering. By means of 2H NMR, differential scanning calorimetry, and triplet solvation dynamics we, thus, probe the dynamics of glycerol in confinements of varying rigidity. 2H NMR results show that, at higher temperatures, the dynamics of confined glycerol is unchanged compared to bulk behavior, while the reorientation of glycerol molecules becomes significantly faster than in the bulk in the deeply supercooled regime. However, comparison of different 2H NMR findings with data from calorimetry and solvation dynamics reveals that this acceleration is not due to the changed structural relaxation of glycerol, but rather due to the rotational motion of essentially rigid glycerol droplets or of aggregates of such droplets in a more fluid matrix. Thus, independent of the matrix mobility, the glycerol dynamics remains unchanged except for the smallest droplets, where an increase of Tg and, thus, a slowdown of the structural relaxation is observed even in a fluid matrix.

  19. Fast Collision Detection for Fracturing Rigid Bodies.

    PubMed

    Glondu, Loeiz; Schvartzman, Sara C; Marchal, Maud; Dumont, Georges; Otaduy, Miguel A

    2013-07-03

    In complex scenes with many objects, collision detection plays a key role in the simulation performance. This is particularly true in fracture simulation for two main reasons. One is that fracture fragments tend to exhibit very intensive contact, and the other is that collision detection data structures for new fragments need to be computed on the fly. In this paper, we present novel collision detection algorithms and data structures for real-time simulation of fracturing rigid bodies. We build on a combination of well-known efficient data structures, namely distance fields and sphere trees, making our algorithm easy to integrate on existing simulation engines. We propose novel methods to construct these data structures, such that they can be efficiently updated upon fracture events and integrated in a simple yet effective self-adapting contact selection algorithm. Altogether, we drastically reduce the cost of both collision detection and collision response. We have evaluated our global solution for collision detection on challenging scenarios, achieving high frame rates suited for hard real-time applications such as video games or haptics. Our solution opens promising perspectives for complex fracture simulations involving many dynamically created rigid objects.

  20. Fast collision detection for fracturing rigid bodies.

    PubMed

    Glondu, Loeiz; Schvartzman, Sara C; Marchal, Maud; Dumont, Georges; Otaduy, Miguel A

    2014-01-01

    In complex scenes with many objects, collision detection plays a key role in the simulation performance. This is particularly true in fracture simulation for two main reasons. One is that fracture fragments tend to exhibit very intensive contact, and the other is that collision detection data structures for new fragments need to be computed on the fly. In this paper, we present novel collision detection algorithms and data structures for real-time simulation of fracturing rigid bodies. We build on a combination of well-known efficient data structures, namely, distance fields and sphere trees, making our algorithm easy to integrate on existing simulation engines. We propose novel methods to construct these data structures, such that they can be efficiently updated upon fracture events and integrated in a simple yet effective self-adapting contact selection algorithm. Altogether, we drastically reduce the cost of both collision detection and collision response. We have evaluated our global solution for collision detection on challenging scenarios, achieving high frame rates suited for hard real-time applications such as video games or haptics. Our solution opens promising perspectives for complex fracture simulations involving many dynamically created rigid objects.

  1. Birationally rigid varieties with a pencil of Fano double covers. II

    NASA Astrophysics Data System (ADS)

    Pukhlikov, A. V.

    2004-12-01

    The study of the birational geometry of Fano fibrations \\pi\\colon V\\to\\mathbb P^1 whose fibres are Fano double hypersurfaces of index 1 is continued. Birational rigidity is proved for the majority of families of this type, which do not satisfy the condition of sufficient twistedness over the base (in particular, this means that there exist no other structures of a fibration into rationally connected varieties) and the groups of birational self-maps are computed. The principal components of the method of maximal singularities are considerably improved, chiefly the techniques of counting multiplicities for fibrations V/\\mathbb P^1 into Fano varieties over the line.

  2. Elastic image registration via rigid object motion induced deformation

    NASA Astrophysics Data System (ADS)

    Zheng, Xiaofen; Udupa, Jayaram K.; Hirsch, Bruce E.

    2011-03-01

    In this paper, we estimate the deformations induced on soft tissues by the rigid independent movements of hard objects and create an admixture of rigid and elastic adaptive image registration transformations. By automatically segmenting and independently estimating the movement of rigid objects in 3D images, we can maintain rigidity in bones and hard tissues while appropriately deforming soft tissues. We tested our algorithms on 20 pairs of 3D MRI datasets pertaining to a kinematic study of the flexibility of the ankle complex of normal feet as well as ankles affected by abnormalities in foot architecture and ligament injuries. The results show that elastic image registration via rigid object-induced deformation outperforms purely rigid and purely nonrigid approaches.

  3. Thermostability in rubredoxin and its relationship to mechanical rigidity

    NASA Astrophysics Data System (ADS)

    Rader, A. J.

    2010-03-01

    The source of increased stability in proteins from organisms that thrive in extreme thermal environments is not well understood. Previous experimental and theoretical studies have suggested many different features possibly responsible for such thermostability. Many of these thermostabilizing mechanisms can be accounted for in terms of structural rigidity. Thus a plausible hypothesis accounting for this remarkable stability in thermophilic enzymes states that these enzymes have enhanced conformational rigidity at temperatures below their native, functioning temperature. Experimental evidence exists to both support and contradict this supposition. We computationally investigate the relationship between thermostability and rigidity using rubredoxin as a case study. The mechanical rigidity is calculated using atomic models of homologous rubredoxin structures from the hyperthermophile Pyrococcus furiosus and mesophile Clostridium pasteurianum using the FIRST software. A global increase in structural rigidity (equivalently a decrease in flexibility) corresponds to an increase in thermostability. Locally, rigidity differences (between mesophilic and thermophilic structures) agree with differences in protection factors.

  4. Fluid-Structure Interactions with Flexible and Rigid Bodies

    NASA Astrophysics Data System (ADS)

    Daily, David Jesse

    Fluid structure interactions occur to some extent in nearly every type of fluid flow. Understanding how structures interact with fluids and visa-versa is of vital importance in many engineering applications. The purpose of this research is to explore how fluids interact with flexible and rigid structures. A computational model was used to model the fluid structure interactions of vibrating synthetic vocal folds. The model simulated the coupling of the fluid and solid domains using a fluid-structure interface boundary condition. The fluid domain used a slightly compressible flow solver to allow for the possibility of acoustic coupling with the subglottal geometry and vibration of the vocal fold model. As the subglottis lengthened, the frequency of vibration decreased until a new acoustic mode could form in the subglottis. Synthetic aperture particle image velocimetry (SAPIV) is a three-dimensional particle tracking technique. SAPIV was used to image the jet of air that emerges from vibrating human vocal folds (glottal jet) during phonation. The three-dimensional reconstruction of the glottal jet found faint evidence of flow characteristics seen in previous research, such as axis-switching, but did not have sufficient resolution to detect small features. SAPIV was further applied to reconstruct the smaller flow characteristics of the glottal jet of vibrating synthetic vocal folds. Two- and four-layer synthetic vocal fold models were used to determine how the glottal jet from the synthetic models compared to the glottal jet from excised human vocal folds. The two- and four-layer models clearly exhibited axis-switching which has been seen in other 3D analyses of the glottal jet. Cavitation in a quiescent fluid can break a rigid structure such as a glass bottle. A new cavitation number was derived to include acceleration and pressure head at cavitation onset. A cavitation stick was used to validate the cavitation number by filling it with different depths and hitting

  5. Rigid body constrained noisy point pattern matching.

    PubMed

    Morgera, S D; Cheong, P C

    1995-01-01

    Noisy pattern matching problems arise in many areas, e.g., computational vision, robotics, guidance and control, stereophotogrammetry, astronomy, genetics, and high-energy physics. Least-squares pattern matching over the Euclidean space E(n) for unordered sets of cardinalities p and q is commonly formulated as a combinatorial optimization problem having complexity p(p-1)...(p-q+1), q=/rigid motion constraints, which often apply. The method reduces the complexity to l(21).n(4)+l(12).p(3), where l(12) and l(21) are the number of iterations required by steepest-ascent and singular value decomposition (SVD)-based procedures, respectively.

  6. Supramolecular Synthons: Will Giant Rigid Superspheres Do?

    PubMed Central

    2016-01-01

    For the first time, the concept of supramolecular synthons was applied to giant rigid superspheres based on pentaphosphaferrocene [CpRFe(η5-P5)] (R = Me, Et) and Cu(I) halides, which reach 2.1–3.0 nm in diameter. Two supramolecular synthons, σ–π and π–π, are discovered based on halogen···CpR and Cp*···Cp* specific interactions, respectively. The geometry of the synthons is reproducible in a series of crystal structures of various supramolecules. The σ–π synthon alone is realized more frequently for Br-containing superspheres. A combination of the σ–π and π–π synthons is more typical for Cl-containing supramolecules. Each supramolecule can bear up to nine synthons to give mostly 2D and 3D architectures. PMID:27081373

  7. Static friction between rigid fractal surfaces.

    PubMed

    Alonso-Marroquin, Fernando; Huang, Pengyu; Hanaor, Dorian A H; Flores-Johnson, E A; Proust, Gwénaëlle; Gan, Yixiang; Shen, Luming

    2015-09-01

    Using spheropolygon-based simulations and contact slope analysis, we investigate the effects of surface topography and atomic scale friction on the macroscopically observed friction between rigid blocks with fractal surface structures. From our mathematical derivation, the angle of macroscopic friction is the result of the sum of the angle of atomic friction and the slope angle between the contact surfaces. The latter is obtained from the determination of all possible contact slopes between the two surface profiles through an alternative signature function. Our theory is validated through numerical simulations of spheropolygons with fractal Koch surfaces and is applied to the description of frictional properties of Weierstrass-Mandelbrot surfaces. The agreement between simulations and theory suggests that for interpreting macroscopic frictional behavior, the descriptors of surface morphology should be defined from the signature function rather than from the slopes of the contacting surfaces.

  8. Discrete Time Crystals: Rigidity, Criticality, and Realizations.

    PubMed

    Yao, N Y; Potter, A C; Potirniche, I-D; Vishwanath, A

    2017-01-20

    Despite being forbidden in equilibrium, spontaneous breaking of time translation symmetry can occur in periodically driven, Floquet systems with discrete time-translation symmetry. The period of the resulting discrete time crystal is quantized to an integer multiple of the drive period, arising from a combination of collective synchronization and many body localization. Here, we consider a simple model for a one-dimensional discrete time crystal which explicitly reveals the rigidity of the emergent oscillations as the drive is varied. We numerically map out its phase diagram and compute the properties of the dynamical phase transition where the time crystal melts into a trivial Floquet insulator. Moreover, we demonstrate that the model can be realized with current experimental technologies and propose a blueprint based upon a one dimensional chain of trapped ions. Using experimental parameters (featuring long-range interactions), we identify the phase boundaries of the ion-time-crystal and propose a measurable signature of the symmetry breaking phase transition.

  9. [Use of rigid gas permeable contact lenses].

    PubMed

    Habela, M

    1992-01-01

    By application of contact lenses destined for a extended wearing, for preservation of a normal structure and metabolism of the cornea a considerable permeability of the contact lens for oxygen is necessary (Dk/L 75-80). The actually most popular in the world soft contact lenses have no such parameters. The application of rigid lenses produced from materials of high permeability for oxygen enables the extended wearing without substantial disturbances of the corneal metabolism. The paper presents a new generation of fluoro-silicone acrylates used for the production of contact lenses permeable for oxygen. Discussed are the problems connected with the adjusting of these lenses, their tolerance and influence on the corneal metabolism.

  10. Foam inflated rigidized structures for space applications

    NASA Astrophysics Data System (ADS)

    Lester, D. M.; Warner, M. J.; Blair, M.

    1993-11-01

    Large lightweight stowable structures that can be deployed in space without astronaut extra vehicular activity are vital to expanding space exploration and utilization. To meet this challenge Foam Inflated Rigidized (FIR) structures have been developed by Thiokol Corporation on the Air Forces's Gossamer Baggie Torus program. In this paper the development, proof of concept demonstration of an eight foot diameter octagonal torus, and design application of this technology for structural elements to stabilize the solar collector of a solar thermal rocket are discussed. A FIR structure uses foam to inflate and pre-stress a resin impregnated fabric skin. The predeployed foam used was a solvent swelled polymer that foams immediately when exposed to vacuum due to rapid solvent loss. This property allows a very simple deployment mechanism to be used in erecting these structures. Once inflated, the skin resin is cured using the available ultraviolet radiation. By using high strength and stiffness fiber materials a stiff, strong lightweight structure was produced.

  11. Acoustic propagation in a rigid torus

    NASA Technical Reports Server (NTRS)

    El-Raheb, M.; Wagner, P.

    1982-01-01

    The acoustic propagation in a rigid torus is analyzed using a Green's function method. Three types of surface elements are developed; a flat quadrilateral element used in modeling polygonal cavities, a curved conical element appropriate for surfaces with one curvature, and a toroidal element developed for such doubly curved surfaces as the torus. Curved elements are necessary since the acoustic pressure is sensitive to slope discontinuities between consecutive surface elements especially near cavity resonances. The acoustic characteristics of the torus are compared to those of a bend of square cross section for a frequency range that includes the transverse acoustic resonance. Two equivalences between the different sections are tested; the first conserves curvature and cross-sectional dimension while the second matches transverse resonance and duct volume. The second equivalence accurately matches the acoustic characteristics of the torus up to the cutoff frequency corresponding to a mode with two circumferential waves.

  12. Hybrid Flexible and Rigid Ceramic Insulation

    NASA Technical Reports Server (NTRS)

    Rasky, Daniel J. (Inventor); Kourtides, Demetrius A. (Inventor)

    1996-01-01

    A method is provided for closing out the edges of a flexible ceramic insulation member including inner and outer mold line covering layers. A rigid, segmented, ceramic frame is placed round the edges of the insulation member and exposed edges of the inner and outer mold line covering layers are affixed to the ceramic frame. In one embodiment wherein the covering layers comprise fabrics, the outer fabric is bonded to the top surface and to grooved portion of the side surface of the frame. In another embodiment wherein the outer cover layer comprises a metallic foil, clips on the edges of the frame are used to engage foil extensions. The ceramic frame is coated with a high emittance densifier coating.

  13. Water dynamics in rigid ionomer networks

    NASA Astrophysics Data System (ADS)

    Osti, N. C.; Etampawala, T. N.; Shrestha, U. M.; Aryal, D.; Tyagi, M.; Diallo, S. O.; Mamontov, E.; Cornelius, C. J.; Perahia, D.

    2016-12-01

    The dynamics of water within ionic polymer networks formed by sulfonated poly(phenylene) (SPP), as revealed by quasi-elastic neutron scattering (QENS), is presented. These polymers are distinguished from other ionic macromolecules by their rigidity and therefore in their network structure. QENS measurements as a function of temperature as the fraction of ionic groups and humidity were varied have shown that the polymer molecules are immobile while absorbed water molecules remain dynamic. The water molecules occupy multiple sites, either bound or loosely constrained, and bounce between the two. With increasing temperature and hydration levels, the system becomes more dynamic. Water molecules remain mobile even at subzero temperatures, illustrating the applicability of the SPP membrane for selective transport over a broad temperature range.

  14. Turbulence closure modeling near rigid boundaries

    NASA Technical Reports Server (NTRS)

    Durbin, Paul A.

    1991-01-01

    The near-wall region plays an essential role in turbulent boundary layers: it is a region of high shear; the peak rate of production and peak intensity of turbulence occurs there; and the peak rate of dissipation occurs right at the wall. Nevertheless, this region has received less attention from modelers than have more nearly homogeneous flows. One reason for this is that when the boundary layer is near equilibrium, experimental data can be used to prescribe the flow in the wall layer. Another reason is that most turbulence models are developed under assumptions of near homogeneity. This is a poor approximation in the wall region. A single-point moment closure model for the strongly non-homogeneous A turbulent flow near a rigid boundary is developed.

  15. Discrete Time Crystals: Rigidity, Criticality, and Realizations

    NASA Astrophysics Data System (ADS)

    Yao, N. Y.; Potter, A. C.; Potirniche, I.-D.; Vishwanath, A.

    2017-01-01

    Despite being forbidden in equilibrium, spontaneous breaking of time translation symmetry can occur in periodically driven, Floquet systems with discrete time-translation symmetry. The period of the resulting discrete time crystal is quantized to an integer multiple of the drive period, arising from a combination of collective synchronization and many body localization. Here, we consider a simple model for a one-dimensional discrete time crystal which explicitly reveals the rigidity of the emergent oscillations as the drive is varied. We numerically map out its phase diagram and compute the properties of the dynamical phase transition where the time crystal melts into a trivial Floquet insulator. Moreover, we demonstrate that the model can be realized with current experimental technologies and propose a blueprint based upon a one dimensional chain of trapped ions. Using experimental parameters (featuring long-range interactions), we identify the phase boundaries of the ion-time-crystal and propose a measurable signature of the symmetry breaking phase transition.

  16. Static friction between rigid fractal surfaces

    NASA Astrophysics Data System (ADS)

    Alonso-Marroquin, Fernando; Huang, Pengyu; Hanaor, Dorian A. H.; Flores-Johnson, E. A.; Proust, Gwénaëlle; Gan, Yixiang; Shen, Luming

    2015-09-01

    Using spheropolygon-based simulations and contact slope analysis, we investigate the effects of surface topography and atomic scale friction on the macroscopically observed friction between rigid blocks with fractal surface structures. From our mathematical derivation, the angle of macroscopic friction is the result of the sum of the angle of atomic friction and the slope angle between the contact surfaces. The latter is obtained from the determination of all possible contact slopes between the two surface profiles through an alternative signature function. Our theory is validated through numerical simulations of spheropolygons with fractal Koch surfaces and is applied to the description of frictional properties of Weierstrass-Mandelbrot surfaces. The agreement between simulations and theory suggests that for interpreting macroscopic frictional behavior, the descriptors of surface morphology should be defined from the signature function rather than from the slopes of the contacting surfaces.

  17. Conformational analysis of tripeptides: a molecular dynamics study of rigid and non-rigid tripeptides

    NASA Astrophysics Data System (ADS)

    Shibata, John; Mochel, Mark

    2006-03-01

    Molecular dynamics simulations have been performed on different tripeptides classified as structurally rigid and non-rigid (1). The simulations were run using the OPLS-AA force field (2) with and without explicit solvent. Two modeling programs, Tinker (3) and Macromodel (4), were used to simulate the dynamics. The accessible conformations were analyzed using Ramachandran plots of the dihedral angles. The results of this study are compared to the rigidity classification scheme (1), and differences in the results using explicit solvent and a continuum solvent model are noted. (1) Anishetty, S., Pennathur, G., Anishetty, R. BMC Structural Biology 2:9 (2002). Available from http://www.biomedcentral.com/1472-6807/2/9. (2) Jorgensen, W. L., Maxwell, D. S., Tirado-Rives, J. J. Am. Chem. Soc. 118, 11225 (1996). (3) Dudek, M. J., Ramnarayan, K., Ponder, J. W. J. Comput. Chem. 19, 548 (1996). Available from http://dasher.wustl.edu/tinker. (4) Mohamadi, F., Richards, N. G. J., Guida, W. C., Liskamp, R., Lipton, M., Caufield, C., Chang, G., Hendrickson, T., Still, W. C. J. Comput. Chem. 11, 440 (1990).

  18. Integrated power and attitude control of a rigid satellite with onboard magnetic bearing suspended rigid flywheels

    NASA Astrophysics Data System (ADS)

    Kim, Yeonkyu

    2003-10-01

    A system of differential equations governing the translational and rotational motion of a system model consisting of a rigid satellite and multiple MB suspended rigid flywheels in general configuration is developed. Flywheel modules are contained in a housing rigidly mounted on the satellite and floated by an active MB suspension system, therefore each flywheel module has six degrees of freedom (DOF) as well as the satellite module. Equations of motion for the satellite and flywheels are naturally coupled and the satellite rotational motion and translational motion are coupled. A nonlinear state feedback tracking control law, which is globally asymptotically stable, is developed following a Lyapunov stability theory for integrated power and attitude control using the MB suspended flywheels. The stability, robustness, and tracking and disturbance rejection performance of the present control law with respect to initial attitude error, system modeling error, an imbalance disturbance, is demonstrated by case studies. The satellite departure motion equation derived from the definition of the angular velocity error and the system dynamics equations is presented. Application study of existing power tracking algorithm with this control law shows perfect power tracking for both power charging from and power delivery to the satellite operations and the power tracking can be performed simultaneously with and independent of the attitude control function.

  19. Quantification is Neither Necessary Nor Sufficient for Measurement

    NASA Astrophysics Data System (ADS)

    Mari, Luca; Maul, Andrew; Torres Irribarra, David; Wilson, Mark

    2013-09-01

    Being an infrastructural, widespread activity, measurement is laden with stereotypes. Some of these concern the role of measurement in the relation between quality and quantity. In particular, it is sometimes argued or assumed that quantification is necessary for measurement; it is also sometimes argued or assumed that quantification is sufficient for or synonymous with measurement. To assess the validity of these positions the concepts of measurement and quantitative evaluation should be independently defined and their relationship analyzed. We contend that the defining characteristic of measurement should be the structure of the process, not a feature of its results. Under this perspective, quantitative evaluation is neither sufficient nor necessary for measurement.

  20. Rigid Body Motion in Stereo 3D Simulation

    ERIC Educational Resources Information Center

    Zabunov, Svetoslav

    2010-01-01

    This paper addresses the difficulties experienced by first-grade students studying rigid body motion at Sofia University. Most quantities describing the rigid body are in relations that the students find hard to visualize and understand. They also lose the notion of cause-result relations between vector quantities, such as the relation between…

  1. Test-Taking Strategies and the Self-Sufficient Learner.

    ERIC Educational Resources Information Center

    Annis, Linda Ferrill

    This paper outlines recommended test-taking strategies for the self-sufficient learner based on research in cognitive psychology. The theoretical model used is the information-processing approach involving the three essential steps of paying attention, encoding, and framing associative linkages for the new material. Preparing for examinations is…

  2. Online Learning in Higher Education: Necessary and Sufficient Conditions

    ERIC Educational Resources Information Center

    Lim, Cher Ping

    2005-01-01

    The spectacular development of information and communication technologies through the Internet has provided opportunities for students to explore the virtual world of information. In this article, the author discusses the necessary and sufficient conditions for successful online learning in educational institutions. The necessary conditions…

  3. Increasing urban water self-sufficiency: new era, new challenges.

    PubMed

    Rygaard, Martin; Binning, Philip J; Albrechtsen, Hans-Jørgen

    2011-01-01

    Urban water supplies are traditionally based on limited freshwater resources located outside the cities. However, a range of concepts and techniques to exploit alternative water resources has gained ground as water demands begin to exceed the freshwater available to cities. Based on 113 cases and 15 in-depth case studies, solutions used to increase water self-sufficiency in urban areas are analyzed. The main drivers for increased self-sufficiency were identified to be direct and indirect lack of water, constrained infrastructure, high quality water demands and commercial and institutional pressures. Case studies demonstrate increases in self-sufficiency ratios to as much as 80% with contributions from recycled water, seawater desalination and rainwater collection. The introduction of alternative water resources raises several challenges: energy requirements vary by more than a factor of ten amongst the alternative techniques, wastewater reclamation can lead to the appearance of trace contaminants in drinking water, and changes to the drinking water system can meet tough resistance from the public. Public water-supply managers aim to achieve a high level of reliability and stability. We conclude that despite the challenges, self-sufficiency concepts in combination with conventional water resources are already helping to reach this goal.

  4. Necessary and sufficient elastic stability conditions in various crystal systems

    NASA Astrophysics Data System (ADS)

    Mouhat, Félix; Coudert, François-Xavier

    2014-12-01

    While the Born elastic stability criteria are well known for cubic crystals, there is some confusion in the literature about the form they should take for lower-symmetry crystal classes. Here we present closed form necessary and sufficient conditions for elastic stability in all crystal classes, as a concise and pedagogical reference to stability criteria in noncubic materials.

  5. Leadership, the Logic of Sufficiency and the Sustainability of Education

    ERIC Educational Resources Information Center

    Bottery, Mike

    2012-01-01

    The notion of sufficiency has not yet entered mainstream educational thinking, and it still has to make its mark upon educational leadership. However, a number of related concepts--particularly those of sustainability and complexity theory--are beginning to be noticed. This article examines these two concepts and uses them to critique the…

  6. 19 CFR 351.203 - Determination of sufficiency of petition.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 3 2011-04-01 2011-04-01 false Determination of sufficiency of petition. 351.203 Section 351.203 Customs Duties INTERNATIONAL TRADE ADMINISTRATION, DEPARTMENT OF COMMERCE ANTIDUMPING AND... the Act, unless such domestic producer demonstrates to the Secretary's satisfaction that its...

  7. Sufficient observables for large-scale structure in galaxy surveys

    NASA Astrophysics Data System (ADS)

    Carron, J.; Szapudi, I.

    2014-03-01

    Beyond the linear regime, the power spectrum and higher order moments of the matter field no longer capture all cosmological information encoded in density fluctuations. While non-linear transforms have been proposed to extract this information lost to traditional methods, up to now, the way to generalize these techniques to discrete processes was unclear; ad hoc extensions had some success. We pointed out in Carron and Szapudi's paper that the logarithmic transform approximates extremely well the optimal `sufficient statistics', observables that extract all information from the (continuous) matter field. Building on these results, we generalize optimal transforms to discrete galaxy fields. We focus our calculations on the Poisson sampling of an underlying lognormal density field. We solve and test the one-point case in detail, and sketch out the sufficient observables for the multipoint case. Moreover, we present an accurate approximation to the sufficient observables in terms of the mean and spectrum of a non-linearly transformed field. We find that the corresponding optimal non-linear transformation is directly related to the maximum a posteriori Bayesian reconstruction of the underlying continuous field with a lognormal prior as put forward in the paper of Kitaura et al.. Thus, simple recipes for realizing the sufficient observables can be built on previously proposed algorithms that have been successfully implemented and tested in simulations.

  8. Intellectual Freedom and Economic Sufficiency as Educational Entitlements.

    ERIC Educational Resources Information Center

    Morse, Jane Fowler

    2001-01-01

    Using the theories of John Stuart Mill and Karl Marx, this article supports the educational entitlements of intellectual freedom and economic sufficiency. Explores these issues in reference to their implications for teaching, the teaching profession and its training. Concludes that ideas cannot be controlled by the interests of the dominant class.…

  9. The Indochinese in America: Progress Towards Self Sufficiency.

    ERIC Educational Resources Information Center

    Finck, John

    Despite suspicion in some quarters that refugee resettlement has been unduly expensive, evidence indicates that the Indochinese have made steady progress toward self-sufficiency. The majority of Hmong refugees in Providence, Rhode Island, for example, which has been "heavily impacted" by the large number of Indochinese who have become…

  10. Rigidity sensing and adaptation through regulation of integrin types

    PubMed Central

    Elosegui-Artola, Alberto; Bazellières, Elsa; Allen, Michael D.; Andreu, Ion; Oria, Roger; Sunyer, Raimon; Gomm, Jennifer J.; Marshall, John F.; Jones, J. Louise; Trepat, Xavier; Roca-Cusachs, Pere

    2014-01-01

    Tissue rigidity regulates processes in development, cancer and wound healing. However, how cells detect rigidity, and thereby modulate their behaviour, remains unknown. Here, we show that sensing and adaptation to matrix rigidity in breast myoepithelial cells is determined by the bond dynamics of different integrin types. Cell binding to fibronectin through either α5β1 integrins (constitutively expressed) or αvβ6 integrins (selectively expressed in cancer and development) adapts force generation, actin flow, and integrin recruitment to rigidities associated with healthy or malignant tissue, respectively. In vitro experiments and theoretical modelling further demonstrate that this behaviour is explained by the different binding and unbinding rates of both integrin types to fibronectin. Moreover, rigidity sensing through differences in integrin bond dynamics applies both when integrins bind separately and when they compete for binding to fibronectin. PMID:24793358

  11. Rigid multipodal platforms for metal surfaces

    PubMed Central

    Valášek, Michal; Lindner, Marcin

    2016-01-01

    Summary In this review the recent progress in molecular platforms that form rigid and well-defined contact to a metal surface are discussed. Most of the presented examples have at least three anchoring units in order to control the spatial arrangement of the protruding molecular subunit. Another interesting feature is the lateral orientation of these foot structures which, depending on the particular application, is equally important as the spatial arrangement of the molecules. The numerous approaches towards assembling and organizing functional molecules into specific architectures on metal substrates are reviewed here. Particular attention is paid to variations of both, the core structures and the anchoring groups. Furthermore, the analytical methods enabling the investigation of individual molecules as well as monomolecular layers of ordered platform structures are summarized. The presented multipodal platforms bearing several anchoring groups form considerably more stable molecule–metal contacts than corresponding monopodal analogues and exhibit an enlarged separation of the functional molecules due to the increased footprint, as well as restrict tilting of the functional termini with respect to the metal surface. These platforms are thus ideally suited to tune important properties of the molecule–metal interface. On a single-molecule level, several of these platforms enable the control over the arrangement of the protruding rod-type molecular structures (e.g., molecular wires, switches, rotors, sensors) with respect to the surface of the substrate. PMID:27335731

  12. Kernel Non-Rigid Structure from Motion

    PubMed Central

    Gotardo, Paulo F. U.; Martinez, Aleix M.

    2013-01-01

    Non-rigid structure from motion (NRSFM) is a difficult, underconstrained problem in computer vision. The standard approach in NRSFM constrains 3D shape deformation using a linear combination of K basis shapes; the solution is then obtained as the low-rank factorization of an input observation matrix. An important but overlooked problem with this approach is that non-linear deformations are often observed; these deformations lead to a weakened low-rank constraint due to the need to use additional basis shapes to linearly model points that move along curves. Here, we demonstrate how the kernel trick can be applied in standard NRSFM. As a result, we model complex, deformable 3D shapes as the outputs of a non-linear mapping whose inputs are points within a low-dimensional shape space. This approach is flexible and can use different kernels to build different non-linear models. Using the kernel trick, our model complements the low-rank constraint by capturing non-linear relationships in the shape coefficients of the linear model. The net effect can be seen as using non-linear dimensionality reduction to further compress the (shape) space of possible solutions. PMID:24002226

  13. Flow past 2-D Hemispherical Rigid Canopies

    NASA Astrophysics Data System (ADS)

    Carnasciali, Maria-Isabel

    2013-11-01

    The flow past a 2-dimensional rigid hemispherical shape is investigated using PIV. Flow field measurements and images were generated with the use of a Thermoflow® apparatus. Results of this study are compared to prior work (APS DFD 2012 Session E9.00003) which employed CFD to investigate the flow in the near wake of hemispherical parachutes. The various sized gaps/open areas were positioned at distinct locations. The work presented here is part of a larger research project to investigate flow fields in deceleration devices and parachutes. Understanding the pitch-stability of parachutes is essential for accurate design and implementation of these deceleration devices but they present a difficult system to analyze. The flexibility of the parachute fabric results in large variations in the parachute geometry leading to complex fluid-structure interactions. Such flow, combined with flow through gaps and open areas, has been postulated to shed alternating vortices causing pitching/oscillations of the canopy. The results presented provide some insight into which geometric features affect vortex shedding and may enable the redesign of the baseline parachute to minimize instabilities.

  14. Heat transfer in suspensions of rigid particles

    NASA Astrophysics Data System (ADS)

    Brandt, Luca; Niazi Ardekani, Mehdi; Abouali, Omid

    2016-11-01

    We study the heat transfer in laminar Couette flow of suspensions of rigid neutrally buoyant particles by means of numerical simulations. An Immersed Boundary Method is coupled with a VOF approach to simulate the heat transfer in the fluid and solid phase, enabling us to fully resolve the heat diffusion. First, we consider spherical particles and show that the proposed algorithm is able to reproduce the correlations between heat flux across the channel, the particle volume fraction and the heat diffusivity obtained in laboratory experiments and recently proposed in the literature, results valid in the limit of vanishing inertia. We then investigate the role of inertia on the heat transfer and show an increase of the suspension diffusivity at finite particle Reynolds numbers. Finally, we vary the relativity diffusivity of the fluid and solid phase and investigate its effect on the effective heat flux across the channel. The data are analyzed by considering the ensemble averaged energy equation and decomposing the heat flux in 4 different contributions, related to diffusion in the solid and fluid phase, and the correlations between wall-normal velocity and temperature fluctuations. Results for non-spherical particles will be examined before the meeting. Supported by the European Research Council Grant No. ERC-2013- CoG-616186, TRITOS. The authors acknowledge computer time provided by SNIC (Swedish National Infrastructure for Computing).

  15. The rigidity of three flavor quark matter

    SciTech Connect

    Sharma, Rishi; Mannarelli, Massimo

    2008-01-01

    Cold three flavor quark matter at large (but not asymptotically large) densities may exist in a crystalline color superconducting phase. These phases are characterized by a gap parameter {Delta} that varies periodieally in space, forming a crystal structure. A Ginzburg-Landau expansion in {Delta} shows that two crystal structures based on cubic symetry are particularly favorable, and may be the ground state of matter at densities present in neutron star cores. We derive the effective action for the phonon fields that describe space-and time-dependent fluctuations of the crystal structure formed by {Delta}, and obtain the shear modulus from the coefficients of the spatial derivative terms. Within a Ginzburg-Landau approximation, we find shear moduli which are 20 to 1000 times larger than those of neutron star crusts. This phase ofmatter is thus more rigid than any known material in the universe, but at the same time the crystalline color superconducting phase is also superftuid. These properties raise the possibility that the presence of this phase within neutron stars may have distinct implications for their phenomenology. For example, (some) pulsar glitches may originate in crystalline superconducting neutron star cores.

  16. Coiling of elastic rods on rigid substrates

    PubMed Central

    Jawed, Mohammad K.; Da, Fang; Joo, Jungseock; Grinspun, Eitan; Reis, Pedro M.

    2014-01-01

    We investigate the deployment of a thin elastic rod onto a rigid substrate and study the resulting coiling patterns. In our approach, we combine precision model experiments, scaling analyses, and computer simulations toward developing predictive understanding of the coiling process. Both cases of deposition onto static and moving substrates are considered. We construct phase diagrams for the possible coiling patterns and characterize them as a function of the geometric and material properties of the rod, as well as the height and relative speeds of deployment. The modes selected and their characteristic length scales are found to arise from a complex interplay between gravitational, bending, and twisting energies of the rod, coupled to the geometric nonlinearities intrinsic to the large deformations. We give particular emphasis to the first sinusoidal mode of instability, which we find to be consistent with a Hopf bifurcation, and analyze the meandering wavelength and amplitude. Throughout, we systematically vary natural curvature of the rod as a control parameter, which has a qualitative and quantitative effect on the pattern formation, above a critical value that we determine. The universality conferred by the prominent role of geometry in the deformation modes of the rod suggests using the gained understanding as design guidelines, in the original applications that motivated the study. PMID:25267649

  17. Inflatable Tubular Structures Rigidized with Foams

    NASA Technical Reports Server (NTRS)

    Tinker, Michael L.; Schnell, Andrew R.

    2010-01-01

    Inflatable tubular structures that have annular cross sections rigidized with foams, and the means of erecting such structures in the field, are undergoing development. Although the development effort has focused on lightweight structural booms to be transported in compact form and deployed in outer space, the principles of design and fabrication are also potentially applicable to terrestrial structures, including components of ultralightweight aircraft, lightweight storage buildings and shelters, lightweight insulation, and sales displays. The use of foams to deploy and harden inflatable structures was first proposed as early as the 1960s, and has been investigated in recent years by NASA, the U.S. Air Force Research Laboratory, industry, and academia. In cases of deployable booms, most of the investigation in recent years has focused on solid cross sections, because they can be constructed relatively easily. However, solid-section foam-filled booms can be much too heavy for some applications. In contrast, booms with annular cross sections according to the present innovation can be tailored to obtain desired combinations of stiffness and weight through choice of diameters, wall thicknesses, and foam densities. By far the most compelling advantage afforded by this innovation is the possibility of drastically reducing weights while retaining or increasing the stiffnesses, relative to comparable booms that have solid foamfilled cross sections. A typical boom according to this innovation includes inner and outer polyimide film sleeves to contain foam that is injected between them during deployment.

  18. Efficiency, sufficiency, and recent change in Newfoundland subsistence horticulture

    SciTech Connect

    Omohundro, J.T.

    1986-09-01

    Traditional Newfoundland horticulture has been a subordinate and compensatory element of the subsistence sphere in a plural economy centered on fishing. Criticized as inefficient and ruinous to the land, this tuber-rootbrassica gardening has in fact been a valuable contribution to diet, is relatively efficient, and compensates for the inadequacies of land and weather. Field data from the Great Northern Peninsula, where some traditional practices persist, demonstrate that the practices conserve time and labor, and substitute massive applications of materials to assure a yield sufficient for household needs. The inefficiency in the tradition may be understood as a response to the constraints upon household labor and follows a kind of Leibig's law of the minimum. Recent changes in gardening practices reveal the dynamics of horticulture in the household's mixed economic strategy. As cash and land have become more common, they have been used to further reduce time while maintaining sufficiency.

  19. Entrepreneurship by any other name: self-sufficiency versus innovation.

    PubMed

    Parker Harris, Sarah; Caldwell, Kate; Renko, Maija

    2014-01-01

    Entrepreneurship has been promoted as an innovative strategy to address the employment of people with disabilities. Research has predominantly focused on the self-sufficiency aspect without fully integrating entrepreneurship literature in the areas of theory, systems change, and demonstration projects. Subsequently there are gaps in services, policies, and research in this field that, in turn, have limited our understanding of the support needs and barriers or facilitators of entrepreneurs with disabilities. A thorough analysis of the literature in these areas led to the development of two core concepts that need to be addressed in integrating entrepreneurship into disability employment research and policy: clarity in operational definitions and better disability statistics and outcome measures. This article interrogates existing research and policy efforts in this regard to argue for a necessary shift in the field from focusing on entrepreneurship as self-sufficiency to understanding entrepreneurship as innovation.

  20. Retinal flow is sufficient for steering during observer rotation

    NASA Technical Reports Server (NTRS)

    Li, Li; Warren, William H Jr

    2002-01-01

    How do people control locomotion while their eyes are simultaneously rotating? A previous study found that during simulated rotation, they can perceive a straight path of self-motion from the retinal flow pattern, despite conflicting extraretinal information, on the basis of dense motion parallax and reference objects. Here we report that the same information is sufficient for active control ofjoystick steering. Participants steered toward a target in displays that simulated a pursuit eye movement. Steering was highly inaccurate with a textured ground plane (motion parallax alone), but quite accurate when an array of posts was added (motion parallax plus reference objects). This result is consistent with the theory that instantaneous heading is determined from motion parallax, and the path of self-motion is determined by updating heading relative to environmental objects. Retinal flow is thus sufficient for both perceiving self-motion and controlling self-motion with a joystick; extraretinal and positional information can also contribute, but are not necessary.

  1. Rigidity of microtubules is increased by stabilizing agents

    PubMed Central

    1995-01-01

    Microtubules are rigid polymers that contribute to the static mechanical properties of cells. Because microtubules are dynamic structures whose polymerization is regulated during changes in cell shape, we have asked whether the mechanical properties of microtubules might also be modulated. We measured the flexural rigidity, or bending stiffness, of individual microtubules under a number of different conditions that affect the stability of microtubules against depolymerization. The flexural rigidity of microtubules polymerized with the slowly hydrolyzable nucleotide analogue guanylyl-(alpha, beta)- methylene-diphosphonate was 62 +/- 9 x 10(-24) Nm2 (weighted mean +/- SEM); that of microtubules stabilized with tau protein was 34 +/- 3 x 10(-24) Nm2; and that of microtubules stabilized with the antimitotic drug taxol was 32 +/- 2 x 10(-24) Nm2. For comparison, microtubules that were capped to prevent depolymerization, but were not otherwise stabilized, had a flexural rigidity of 26 +/- 2 x 10(-24) Nm2. Decreasing the temperature from 37 degrees C to approximately 25 degrees C, a condition that makes microtubules less stable, decreased the stiffness of taxol-stabilized microtubules by one-third. We thus find that the more stable a microtubule, the higher its flexural rigidity. This raises the possibility that microtubule rigidity may be regulated in vivo. In addition, the high rigidity of an unstabilized, GDP-containing microtubule suggests that a large amount of energy could be stored as mechanical strain energy in the protein lattice for subsequent force generation during microtubule depolymerization. PMID:7642706

  2. Acute rigid gas permeable contact lens intolerance.

    PubMed

    Jackson, A J; Wolsley, C; Briggs, J L; Frazer, D G

    2001-01-01

    Rigid gas permeable (RGP) and polymethylmethacrylate (PMMA) lens wearers occasionally report episodes of acute intolerance which is experienced upon lens insertion. In this paper, we report two cases of such intolerance in which the probable cause was contact lens inversion. We also present the results of a study in which a custom-built calibrated strain gauge was used to measure the force in Newtons (N), required to invert RGP lenses [oxygen permeability, or Dk, values between 30 and 90 x 10(-11) (cm2/s) (mlO2/ml x mmHg)] and PMMA lenses of different spherical back vertex powers (+/-3.00 D, 9.00 D). Significantly, less force was required to invert minus powered lenses (17.5 +/- 4.8 N) than plus powered lenses (31.7 +/- 7 .4 N), irrespective of the material. PMMA lenses required more force to induce inversion than that required to invert RGP lenses. Lenses with a Dk of 90 required only two thirds of the force (20.0 +/- 5.8 N) required to cause inversion compared to PMMA lenses (32.9 +/- 11.0 N). High powered PMMA lenses were found to be more likely to fracture on inversion than any other lenses tested. The force required to return negatively powered lenses to their original shape, once inverted, was less than 25% of that initially required to induce inversion. Plus powered lenses either reverted to their original form spontaneously, or required less than 3% of the original inversion force to do so. It was concluded that practitioners should consider inversion as a possible reason for otherwise unexplained, acute RGP contact lens intolerance experienced upon lens insertion. The reason why inversion has eluded so many, as a possible cause of intolerance, is likely to be because minimal force is required to return those lenses, which do not crack or fracture, to their original shape.

  3. Reassessing Rogers' necessary and sufficient conditions of change.

    PubMed

    Watson, Jeanne C

    2007-09-01

    This article reviews the impact of Carl Rogers' postulate about the necessary and sufficient conditions of therapeutic change on the field of psychotherapy. It is proposed that his article (see record 2007-14630-002) made an impact in two ways; first, by acting as a spur to researchers to identify the active ingredients of therapeutic change; and, second, by providing guidelines for therapeutic practice. The role of the necessary and sufficient conditions in process-experiential therapy, an emotion-focused therapy for individuals, and their limitations in terms of research and practice are discussed. It is proposed that although the conditions are necessary and important in promoting clients' affect regulation, they do not take sufficient account of other moderating variables that affect clients' response to treatment and may need to be balanced with more structured interventions. Notwithstanding, Rogers highlighted a way of interacting with clients that is generally acknowledged as essential to effective psychotherapy practice. (PsycINFO Database Record (c) 2010 APA, all rights reserved).

  4. Sufficient dimension reduction via squared-loss mutual information estimation.

    PubMed

    Suzuki, Taiji; Sugiyama, Masashi

    2013-03-01

    The goal of sufficient dimension reduction in supervised learning is to find the low-dimensional subspace of input features that contains all of the information about the output values that the input features possess. In this letter, we propose a novel sufficient dimension-reduction method using a squared-loss variant of mutual information as a dependency measure. We apply a density-ratio estimator for approximating squared-loss mutual information that is formulated as a minimum contrast estimator on parametric or nonparametric models. Since cross-validation is available for choosing an appropriate model, our method does not require any prespecified structure on the underlying distributions. We elucidate the asymptotic bias of our estimator on parametric models and the asymptotic convergence rate on nonparametric models. The convergence analysis utilizes the uniform tail-bound of a U-process, and the convergence rate is characterized by the bracketing entropy of the model. We then develop a natural gradient algorithm on the Grassmann manifold for sufficient subspace search. The analytic formula of our estimator allows us to compute the gradient efficiently. Numerical experiments show that the proposed method compares favorably with existing dimension-reduction approaches on artificial and benchmark data sets.

  5. Predictive sufficiency and the use of stored internal state

    NASA Technical Reports Server (NTRS)

    Musliner, David J.; Durfee, Edmund H.; Shin, Kang G.

    1994-01-01

    In all embedded computing systems, some delay exists between sensing and acting. By choosing an action based on sensed data, a system is essentially predicting that there will be no significant changes in the world during this delay. However, the dynamic and uncertain nature of the real world can make these predictions incorrect, and thus, a system may execute inappropriate actions. Making systems more reactive by decreasing the gap between sensing and action leaves less time for predictions to err, but still provides no principled assurance that they will be correct. Using the concept of predictive sufficiency described in this paper, a system can prove that its predictions are valid, and that it will never execute inappropriate actions. In the context of our CIRCA system, we also show how predictive sufficiency allows a system to guarantee worst-case response times to changes in its environment. Using predictive sufficiency, CIRCA is able to build real-time reactive control plans which provide a sound basis for performance guarantees that are unavailable with other reactive systems.

  6. Persistence of fan-shaped keratocytes is a matrix-rigidity-dependent mechanism that requires α5β1 integrin engagement.

    PubMed

    Riaz, Maryam; Versaevel, Marie; Mohammed, Danahe; Glinel, Karine; Gabriele, Sylvain

    2016-09-28

    Despite the importance of matrix rigidity on cell functions, many aspects of the mechanosensing process in highly migratory cells remain elusive. Here, we studied the migration of highly motile keratocytes on culture substrates with similar biochemical properties and rigidities spanning the range between soft tissues (~kPa) and stiff culture substrates (~GPa). We show that morphology, polarization and persistence of motile keratocytes are regulated by the matrix stiffness over seven orders of magnitude, without changing the cell spreading area. Increasing the matrix rigidity leads to more F-actin in the lamellipodia and to the formation of mature contractile actomyosin fibers that control the cell rear retraction. Keratocytes remain rounded and form nascent adhesions on compliant substrates, whereas large and uniformly distributed focal adhesions are formed on fan-shaped keratocytes migrating on rigid surfaces. By combining poly-L-lysine, fibronectin and vitronectin coatings with selective blocking of αvβ3 or α5β1 integrins, we show that αVβ3 integrins permit the spreading of keratocytes but are not sufficient for polarization and rigidity sensing that require the engagement of α5β1 integrins. Our study demonstrates a matrix rigidity-dependent regulation of the directional persistence in motile keratocytes and refines the role of αvβ3 and α5β1 integrins in the molecular clutch model.

  7. Persistence of fan-shaped keratocytes is a matrix-rigidity-dependent mechanism that requires α5β1 integrin engagement

    PubMed Central

    Riaz, Maryam; Versaevel, Marie; Mohammed, Danahe; Glinel, Karine; Gabriele, Sylvain

    2016-01-01

    Despite the importance of matrix rigidity on cell functions, many aspects of the mechanosensing process in highly migratory cells remain elusive. Here, we studied the migration of highly motile keratocytes on culture substrates with similar biochemical properties and rigidities spanning the range between soft tissues (~kPa) and stiff culture substrates (~GPa). We show that morphology, polarization and persistence of motile keratocytes are regulated by the matrix stiffness over seven orders of magnitude, without changing the cell spreading area. Increasing the matrix rigidity leads to more F-actin in the lamellipodia and to the formation of mature contractile actomyosin fibers that control the cell rear retraction. Keratocytes remain rounded and form nascent adhesions on compliant substrates, whereas large and uniformly distributed focal adhesions are formed on fan-shaped keratocytes migrating on rigid surfaces. By combining poly-L-lysine, fibronectin and vitronectin coatings with selective blocking of αvβ3 or α5β1 integrins, we show that αVβ3 integrins permit the spreading of keratocytes but are not sufficient for polarization and rigidity sensing that require the engagement of α5β1 integrins. Our study demonstrates a matrix rigidity-dependent regulation of the directional persistence in motile keratocytes and refines the role of αvβ3 and α5β1 integrins in the molecular clutch model. PMID:27678055

  8. Stochastic modeling of uncertain mass characteristics in rigid body dynamics

    NASA Astrophysics Data System (ADS)

    Richter, Lanae A.; Mignolet, Marc P.

    2017-03-01

    This paper focuses on the formulation, assessment, and application of a modeling strategy of uncertainty on the mass characteristics of rigid bodies, i.e. mass, position of center of mass, and inertia tensor. These characteristics are regrouped into a 4×4 matrix the elements of which are represented as random variables with joint probability density function derived following the maximum entropy framework. This stochastic model is first shown to satisfy all properties expected of the mass and tensor of inertia of rigid bodies. Its usefulness and computational efficiency are next demonstrated on the behavior of a rigid body in pure rotation exhibiting significant uncertainty in mass distribution.

  9. Comparative costs of flexible package cells and rigid cells for lithium-ionhybrid electric vehicle batteries.

    SciTech Connect

    Nelson, P. A.; Jansen, A. N.

    2006-11-28

    We conducted a design study to compare the manufacturing costs at a level of 100,000 hybrid vehicle batteries per year for flexible package (Flex) cells and for rigid aluminum container (Rigid) cells. Initially, the Rigid cells were considered to have welded closures and to be deep-drawn containers of about the same shape as the Flex cells. As the study progressed, the method of fabricating and sealing the Rigid cells was expanded to include lower cost options including double seaming and other mechanically fastened closures with polymer sealants. Both types of batteries were designed with positive electrodes containing Li(Ni{sub 1/3}Co{sub 1/3}Mn{sub 1/3})O{sub 2} and graphite negative electrodes. The use of a different combination of lithium-ion electrodes would have little effect on the difference in costs for the two types of cells. We found that 20-Ah cells could be designed with excellent performance and heat rejection capabilities for either type of cell. Many parts in the design of the Flex cells are identical or nearly identical to those of the Rigid Cell, so for these features there would be no difference in the cost of manufacturing the two types of batteries. We judged the performance, size and weight of the batteries to be sufficiently similar that the batteries would have the same value for their application. Some of the design features of the Flex cells were markedly different than those of the deep-drawn and welded Rigid cells and would result in significant cost savings. Fabrication and processing steps for which the Flex cells appear to have a cost advantage over these Rigid cells are (1) container fabrication and sealing, (2) terminal fabrication and sealing, and (3) intercell connections. The costs of providing cooling channels adjacent to the cells and for module and battery hardware appear to favor Rigid cell batteries slightly. Overall, Flex cell batteries appear to have an advantage of about $1.20-$3.70 per cell for a 25-kW Battery of 20

  10. Optimisation of grolishing freeform surfaces with rigid and semi-rigid tools

    NASA Astrophysics Data System (ADS)

    Yu, Guoyu; Wu, Hsing-Yu; Walker, David; Zheng, Xiao; Li, Hongyu; Dunn, Christina; Gray, Caroline

    2016-07-01

    After the formal acceptance of our fabrication of E-ELT segments, we aim to further accelerate the mass production by introducing an intermediate grolishing procedure using industrial robots, reducing the total process time by this much faster and parallel link. In this paper, we have presented research outputs on tool design, tool path generation, study of mismatch between rigid, semi-rigid tool and aspheric surface. It is indicated that the generation of mid-spatial frequency is proportional to the grit size and misfit between work piece and tool surfaces. Using a Non-Newtonian material tool with a spindle speed of 30 rpm has successfully reduce the mid-spatial error. The optimization of process parameters involve the study the combination effects of the above factors. These optimized parameters will result in a lookup table for reference of given input surface quality. Future work may include the higher spindle speed for grolishing with non- Newtonian tool looking for potential applications regarding to form correction, higher removal rate and edge control.

  11. Wrinkling of the membrane with square rigid elements

    NASA Astrophysics Data System (ADS)

    Yan, Dong; Huangfu, Dongzhen; Zhang, Kai; Hu, Gengkai

    2016-10-01

    Heterogeneous membrane with rigid elements has been extensively applied in flexible electronic systems and in aerospace structures. Here, we study the surface wrinkling of such heterogeneous membrane. Experiment, theoretical analysis and numerical simulation are performed to quantify the effect of rigid elements on the wrinkle pattern of the membrane. The characteristics of wrinkles related to the positions of rigid elements and stretching strain are investigated and the underlying mechanism is revealed. It is found that wrinkle patterns can be tailored by varying the positions of the rigid elements to achieve desired functions. Our results can provide insightful ideas to understand the wrinkling phenomenon of heterogeneous membranes and create novel wrinkle patterns in a controllable way.

  12. The role of rigidity in controlling material failure

    NASA Astrophysics Data System (ADS)

    Driscoll, Michelle M.; Gin-ge Chen, Bryan; Beuman, Thomas H.; Ulrich, Stephan; Nagel, Sidney R.; Vitelli, Vincenzo

    2016-09-01

    We investigate how material rigidity acts as a key control parameter for the failure of solids under stress. In both experiments and simulations, we demonstrate that material failure can be continuously tuned by varying the underlying rigidity of the material while holding the amount of disorder constant. As the rigidity transition is approached, failure due to the application of uniaxial stress evolves from brittle cracking to system-spanning diffuse breaking. This evolution in failure behavior can be parameterized by the width of the crack. As a system becomes more and more floppy, this crack width increases until it saturates at the system size. Thus, the spatial extent of the failure zone can be used as a direct probe for material rigidity.

  13. 13. VIEW OF CAUSEWAY, LOOKING EAST, PROFILING DETAILS OF RIGID ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. VIEW OF CAUSEWAY, LOOKING EAST, PROFILING DETAILS OF RIGID FRAME SPAN OVER CANAL STREET, AND SHOWING STEEL RIBS AND FLOOR BEANS ENCASED IN CONCRETE - Notre Dame Bridge, Spanning Merrimack River on Bridge Street, Manchester, Hillsborough County, NH

  14. Adaptivity demonstration of inflatable rigidized integrated structures (IRIS)

    NASA Astrophysics Data System (ADS)

    Natori, M. C.; Higuchi, Ken; Sekine, Koji; Okazaki, Kakuma

    1995-10-01

    An inflatable rigidized integrated structure (IRIS), which is composed of membrane elements and cable networks, and whose structural accuracy is decided by mainly cable networks, has various design adaptivity, since it is a high performance deployable structure for future space applications. In order to keep some stiffness after deployment, materials of membrane are assumed to be rigidized in space, and sometimes the cable network is also rigidized. The concept can cover various structural elements and structure systems. The accuracy analysis of reflector surface constrained by inside hard points and the manufacturing of a simple reflector model is introduced. Test results of rigidized cable columns to show many variations of IRIS to be feasible are also reported.

  15. The role of rigidity in controlling material failure

    PubMed Central

    Driscoll, Michelle M.; Chen, Bryan Gin-ge; Beuman, Thomas H.; Ulrich, Stephan; Nagel, Sidney R.; Vitelli, Vincenzo

    2016-01-01

    We investigate how material rigidity acts as a key control parameter for the failure of solids under stress. In both experiments and simulations, we demonstrate that material failure can be continuously tuned by varying the underlying rigidity of the material while holding the amount of disorder constant. As the rigidity transition is approached, failure due to the application of uniaxial stress evolves from brittle cracking to system-spanning diffuse breaking. This evolution in failure behavior can be parameterized by the width of the crack. As a system becomes more and more floppy, this crack width increases until it saturates at the system size. Thus, the spatial extent of the failure zone can be used as a direct probe for material rigidity. PMID:27621463

  16. New design concepts for permeable rigid contact lenses.

    PubMed

    Williams, C E

    1979-03-01

    Gas permeable rigid lens materials offer the opportunity to reevaluate contact lens design. This paper presents the rationale and procedures followed in the development of a design concept for the Polycon lens material.

  17. An Inexpensive Torsional Pendulum Apparatus for Rigidity Modulus Measurement.

    ERIC Educational Resources Information Center

    Tyagi, S.; Lord, A. E., Jr.

    1979-01-01

    Described is an easy to assemble, and inexpensive, torsional pendulum which gives an accuracy of measurement of the modulus of rigidity, G, comparable to the accuracy obtained with the more expensive commercially available student models. (Author/GA)

  18. AOP: An R Package For Sufficient Causal Analysis in Pathway ...

    EPA Pesticide Factsheets

    Summary: How can I quickly find the key events in a pathway that I need to monitor to predict that a/an beneficial/adverse event/outcome will occur? This is a key question when using signaling pathways for drug/chemical screening in pharma-cology, toxicology and risk assessment. By identifying these sufficient causal key events, we have fewer events to monitor for a pathway, thereby decreasing assay costs and time, while maximizing the value of the information. I have developed the “aop” package which uses backdoor analysis of causal net-works to identify these minimal sets of key events that are suf-ficient for making causal predictions. Availability and Implementation: The source and binary are available online through the Bioconductor project (http://www.bioconductor.org/) as an R package titled “aop”. The R/Bioconductor package runs within the R statistical envi-ronment. The package has functions that can take pathways (as directed graphs) formatted as a Cytoscape JSON file as input, or pathways can be represented as directed graphs us-ing the R/Bioconductor “graph” package. The “aop” package has functions that can perform backdoor analysis to identify the minimal set of key events for making causal predictions.Contact: burgoon.lyle@epa.gov This paper describes an R/Bioconductor package that was developed to facilitate the identification of key events within an AOP that are the minimal set of sufficient key events that need to be tested/monit

  19. Rigid polyvinyl chloride/wood-flour composites and their foams

    NASA Astrophysics Data System (ADS)

    Mengeloglu, Fatih

    The effects of impact modifier types (crosslinked vs. uncrosslinked) and addition levels on the mechanical properties of rigid PVC/wood-fiber composites were examined. With the proper choice of modifier type and concentration, the impact strength of rigid PVC/wood-fiber composites can be significantly improved without degrading the tensile properties. Foaming is an effective method for reducing the density and brittleness of polymers. The experimental results indicated that impact modification (crosslinked and uncrosslinked modifiers) accelerated the rate of gas loss during foaming process, which impeded the growth of nucleated cells. Consequently, impact modifiers are an unnecessary ingredient in the formulation of foamed neat rigid PVC and rigid PVC/wood-flour composites. Since the batch foaming process used to generate cellular foamed structures in the composites is not likely to be implemented in the industrial production of foams because it is not cost-effective, the manufacture of PVC/wood-flour composite foams in an extrusion process needs to be investigated. The foamability of rigid PVC/wood-flour composites using moisture present in the wood flour as the foaming agent was investigated using a central composite design (CCD) experiment. It was determined that wood flour moisture could be used effectively as the foaming agent in the production of rigid PVC/wood-flour composite foams. Finally, mechanical property characterizations of extrusion-foamed rigid PVC/wood-flour composites were done. Extrusion foaming reduced the density and the brittleness of the composites, but also caused a reduction in the tensile strength and modulus of the rigid PVC/wood-flour composites. This study suggested that depending on the application, the problems associated with the rigid PVC/wood-flour composite products; high density, brittleness and low impact resistance can be overcome by adopting impact modification and/or extrusion foaming. Since impact modification improves the

  20. Geometric derivations of minimal sets of sufficient multiview constraints

    USGS Publications Warehouse

    Thomas, Orrin H.; Oshel, Edward R.

    2012-01-01

    Geometric interpretations of four of the most common determinant formulations of multiview constraints are given, showing that they all enforce the same geometry and that all of the forms commonly in use in the machine vision community are a subset of a more general form. Generalising the work of Yi Ma yields a new general 2 x 2 determinant trilinear and 3 x 3 determinant quadlinear. Geometric descriptions of degenerate multiview constraints are given, showing that it is necessary, but insufficient, that the determinant equals zero. Understanding the degeneracies leads naturally into proofs for minimum sufficient sets of bilinear, trilinear and quadlinear constraints for arbitrary numbers of conjugate observations.

  1. Sufficient conditions for a memory-kernel master equation

    NASA Astrophysics Data System (ADS)

    Chruściński, Dariusz; Kossakowski, Andrzej

    2016-08-01

    We derive sufficient conditions for the memory-kernel governing nonlocal master equation which guarantee a legitimate (completely positive and trace-preserving) dynamical map. It turns out that these conditions provide natural parametrizations of the dynamical map being a generalization of the Markovian semigroup. This parametrization is defined by the so-called legitimate pair—monotonic quantum operation and completely positive map—and it is shown that such a class of maps covers almost all known examples from the Markovian semigroup, the semi-Markov evolution, up to collision models and their generalization.

  2. Technology for human self-sufficiency in space

    NASA Technical Reports Server (NTRS)

    Anderson, John L.

    1988-01-01

    A proposed Pathfinder program would determine the critical human and technology requirements for human self-sufficiency and productivity on manned and long-duration missions to the moon and Mars. Human health would require countermeasures against weightlessness, protection from space radiation and habitats conducive to psychological well-being. Life support systems would need regeneration of expendable resources, power systems for plant life support and processing; and microbial contaminant control. Operational performance requirements include extravehicular activities suit, interactive systems for shared control between humans and computers, and human-centered semi-autonomous systems.

  3. Design requirements for rigid printed wiring boards and assemblies. NASA Handbook

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The NASA requirements for assuring reliable rigid printed wiring board design are prescribed. Basic considerations necessary to assure reliable rigid printed wiring board design are described and incorporated.

  4. Modeling the Collision with Friction of Rigid Bodies

    NASA Astrophysics Data System (ADS)

    Zabuga, A. G.

    2016-09-01

    Different models of a perfectly inelastic collision of rigid bodies in plane motion are compared. Formulas for the impact impulses are derived for the Kane-Levinson-Whittaker model based on the kinematic restitution factor, the Routh model based on the kinetic restitution factor, and the Stronge model based on the energy restitution factor. It is shown that these formulas coincide if the collision of rough rigid bodies in plane motion is perfectly inelastic

  5. Rigid fire-resistant foams for walls and floors

    NASA Technical Reports Server (NTRS)

    Gagliani, J.; Lee, R.; Sorathia, U. A. K.; Wilcoxson, A. L.

    1981-01-01

    Previous techniques for fabricating rigid fire-resistant polyimide foams by compressing already-foamed precursor have been supplanted by one-step constrained-rise process. Precursor mixed with reinforcing fillers is placed between rigid substrates that constrain expansion of foam as it is heated by microwave energy. Process works for both liquid and powder precursors and can also be adapted to attach woven fiberglass skins at same time prcursor is being foamed.

  6. Synthesis of giant rigid pi-conjugated dendrimers.

    PubMed

    Jiang, Yang; Lu, Yi-Xuan; Cui, Yu-Xin; Zhou, Qi-Feng; Ma, Yuguo; Pei, Jian

    2007-10-25

    A novel family of giant pi-conjugated dendrimers (G0, G1, and G2) solely constructed by 5,5,10,10,15,15-hexahexyltruxene units has been developed in a convergent manner through a Suzuki cross-coupling reaction. The overall yields to such large rigid conjugated dendrimers are quite satisfying. The structures and purity of these nanosize rigid dendrimers are verified by 1H and 13C NMR, MALDI-TOF MS, and elemental analysis.

  7. Regulation of Breast Cancer Stem Cells by Tissue Rigidity

    DTIC Science & Technology

    2015-06-01

    AD ____________ __ Award Number: W81XWH-13-1-0133 TITLE: Regulation of Breast Cancer Stem Cells by Tissue Rigidity PRINCIPAL INVESTIGATOR: Adam J...CONTRACT NUMBER Regulation of Breast Cancer Stem Cell by Tissue Rigidity W81XWH-13-1-0133 Sb. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR...in breast tumors is associated with a 1 0-50-fold increase in tissue stiffness and correlates with distant metastasis and poor outcome. Recent studies

  8. Regulation of Breast Cancer Stem Cell by Tissue Rigidity

    DTIC Science & Technology

    2015-06-01

    AD_________________ Award Number: W81XWH-13-1-0132 TITLE: Regulation of Breast Cancer Stem Cell by Tissue Rigidity PRINCIPAL INVESTIGATOR: Jing...COVERED 4. TITLE AND SUBTITLE Regulation of Breast Cancer Stem Cell by Tissue Rigidity 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM...fibrotic focus in breast tumors is associated with a 10-50-fold increase in tissue stiffness and correlates with distant metastasis and poor outcome. Recent

  9. Non-rigid registration using higher-order mutual information

    NASA Astrophysics Data System (ADS)

    Rueckert, D.; Clarkson, M. J.; Hill, D. L. G.; Hawkes, D. J.

    2000-03-01

    Non-rigid registration of multi-modality images is an important tool for assessing temporal and structural changesbetween images. For rigid registration, voxel similarity measures like mutual information have been shown to alignimages from different modalities accurately and robustly. For non-rigid registration, mutual information can besensitive to local variations of intensity which in MR images may be caused by RF inhomogeneity. The reasonfor the sensitivity of mutual information towards intensity variations stems from the fact that mutual informationignores any spatial information. In this paper we propose an extension of the mutual information framework whichincorporates spatial information about higher-order image structure into the registration process and has the potentialto improve the accuracy and robustness of non-rigid registration in the presence of intensity variations. We haveapplied the non-rigid registration algorithm to a number of simulated MR brain images of a digital phantom whichhave been degraded by a simulated intensity shading and a known deformation. In addition, we have applied thealgorithm for the non-rigid registration of eight pre- and post-operative brain MR images which were acquired withan interventional MR scanner and therefore have substantial intensity shading due to RF field inhomogeneities. Inall cases the second-order estimate of mutual information leads to robust and accurate registration.

  10. Irreversible Enthalpic Relaxation of Rigid Amorphous Fraction in Isotactic Polystyrene

    NASA Astrophysics Data System (ADS)

    Xu, Hui; Cebe, Peggy

    2004-03-01

    The crystalline, rigid amorphous, and mobile amorphous fractions in isotactic polystyrene (iPS) were studied using: 1. quasi-isothermal temperature-modulated differential scanning calorimetry (TMDSC) (i.e., with step-wise increase of temperature), and 2. regular TMDSC (i.e., with constant rate of temperature increase). The crystal fraction was determined from wide angle X-ray scattering and endotherm analysis; mobile amorphous fraction was determined from heat capacity measurements at the glass transition. The validity of a three-phase model for iPS (comprising crystals, mobile and rigid amorphous fractions) is confirmed by heat capacity measurements made during quasi-isothermal cold crystallization. At the same time, we prove the rigid amorphous fraction to be established at the crystallization temperature and not during subsequent cooling. The rigid amorphous fraction is thus stable below the crystallization temperature Tc, and relaxes at a temperature Ta, between Tc and the melting point of the lowest melting crystals. Upon relaxing, the rigid amorphous fraction undergoes a phase transition to mobile amorphous fraction. For cold-crystallized iPS the relaxation of the rigid amorphous fraction is found to be an enthalpy involved, non-reversible relaxation occurring before the melting of the crystals.

  11. Sufficient conditions for thermal rectification in general graded materials.

    PubMed

    Pereira, Emmanuel

    2011-03-01

    We address a fundamental problem for the advance of phononics: the search of a feasible thermal diode. We establish sufficient conditions for the existence of thermal rectification in general graded materials. By starting from simple assumptions satisfied by the usual anharmonic models that describe heat conduction in solids, we derive an expression for the rectification. The analytical formula shows how to increase the rectification, and the conditions to avoid its decay with the system size, a problem present in the recurrent model of diodes given by the sequential coupling of two or three different parts. Moreover, for these graded systems, we show that the regimes of nondecaying rectification and of normal conductivity do not overlap. Our results indicate the graded systems as optimal materials for a thermal diode, the basic component of several devices of phononics.

  12. Hindbrain ghrelin receptor signaling is sufficient to maintain fasting glucose.

    PubMed

    Scott, Michael M; Perello, Mario; Chuang, Jen-Chieh; Sakata, Ichiro; Gautron, Laurent; Lee, Charlotte E; Lauzon, Danielle; Elmquist, Joel K; Zigman, Jeffrey M

    2012-01-01

    The neuronal coordination of metabolic homeostasis requires the integration of hormonal signals with multiple interrelated central neuronal circuits to produce appropriate levels of food intake, energy expenditure and fuel availability. Ghrelin, a peripherally produced peptide hormone, circulates at high concentrations during nutrient scarcity. Ghrelin promotes food intake, an action lost in ghrelin receptor null mice and also helps maintain fasting blood glucose levels, ensuring an adequate supply of nutrients to the central nervous system. To better understand mechanisms of ghrelin action, we have examined the roles of ghrelin receptor (GHSR) expression in the mouse hindbrain. Notably, selective hindbrain ghrelin receptor expression was not sufficient to restore ghrelin-stimulated food intake. In contrast, the lowered fasting blood glucose levels observed in ghrelin receptor-deficient mice were returned to wild-type levels by selective re-expression of the ghrelin receptor in the hindbrain. Our results demonstrate the distributed nature of the neurons mediating ghrelin action.

  13. Variational necessary and sufficient stability conditions for inviscid shear flow

    PubMed Central

    Hirota, M.; Morrison, P. J.; Hattori, Y.

    2014-01-01

    A necessary and sufficient condition for linear stability of inviscid parallel shear flow is formulated by developing a novel variational principle, where the velocity profile is assumed to be monotonic and analytic. It is shown that unstable eigenvalues of Rayleigh's equation (which is a non-self-adjoint eigenvalue problem) can be associated with positive eigenvalues of a certain self-adjoint operator. The stability is therefore determined by maximizing a quadratic form, which is theoretically and numerically more tractable than directly solving Rayleigh's equation. This variational stability criterion is based on the understanding of Kreĭn signature for continuous spectra and is applicable to other stability problems of infinite-dimensional Hamiltonian systems. PMID:25484600

  14. Centrosome Amplification Is Sufficient to Promote Spontaneous Tumorigenesis in Mammals.

    PubMed

    Levine, Michelle S; Bakker, Bjorn; Boeckx, Bram; Moyett, Julia; Lu, James; Vitre, Benjamin; Spierings, Diana C; Lansdorp, Peter M; Cleveland, Don W; Lambrechts, Diether; Foijer, Floris; Holland, Andrew J

    2017-02-06

    Centrosome amplification is a common feature of human tumors, but whether this is a cause or a consequence of cancer remains unclear. Here, we test the consequence of centrosome amplification by creating mice in which centrosome number can be chronically increased in the absence of additional genetic defects. We show that increasing centrosome number elevated tumor initiation in a mouse model of intestinal neoplasia. Most importantly, we demonstrate that supernumerary centrosomes are sufficient to drive aneuploidy and the development of spontaneous tumors in multiple tissues. Tumors arising from centrosome amplification exhibit frequent mitotic errors and possess complex karyotypes, recapitulating a common feature of human cancer. Together, our data support a direct causal relationship among centrosome amplification, genomic instability, and tumor development.

  15. [Vitamin-antioxidant sufficiency of winter sports athletes].

    PubMed

    Beketova, N A; Kosheleva, O V; Pereverzeva, O G; Vrzhesinskaia, O A; Kodentsova, V M; Solntseva, T N; Khanfer'ian, R A

    2013-01-01

    The sufficiency of 169 athletes (six disciplines: bullet shooting, biathlon, bobsleigh, skeleton, freestyle skiing, snowboarding) with vitamins A, E, C, B2, and beta-carotene has been investigated in April-September 2013. All athletes (102 juniors, mean age--18.5 +/- 0.3 years, and 67 adult high-performance athletes, mean age--26.8 +/- 0.7 years) were sufficiently supplied with vitamin A (70.7 +/- 1.7 mcg/dl). Mean blood serum retinol level was 15% higher the upper limit of the norm (80 mcg/dl) in biathletes while median reached 90.9 mcg/dl. Blood serum level of tocopherols (1.22 +/- 0.03 mg/dl), ascorbic acid (1.06 +/- 0.03 mg/dl), riboflavin (7.1 +/- 0.4 ng/ml), and beta-carotene (25.1 +/- 1.7 mcg/dl) was in within normal range, but the incidence of insufficiency of vitamins E, C, B2, and carotenoid among athletes varied in the range of 0-25, 0-17, 15-67 and 42-75%, respectively. 95% of adults and 80% of younger athletes were sufficiently provided with vitamin E. Vitamin E level in blood serum of juniors involved in skeleton and biathlon was lower by 51 and 72% (p < 0.05), than this parameter in adult athletes. Vitamin A, C and B2, and beta-carotene blood serum level did not significantly differ in junior and adult athletes. Women were better supplied with vitamins C, B2, and beta-carotene: a reduced blood serum level of these micronutrients in women was detected 2-3 fold rare (p < 0.10) than among men. Blood serum concentration of vitamin C (1.20 +/- 0.05 mg/dl) and beta-carotene (32.0 +/- 3.9 mcg/dl) in women was greater by 15 and 54% (p < 0.05) than in men. In general, the biathletes were better provided with vitamins compared with other athletes. The vast majority (80%) were optimally provided by all three antioxidants (beta-carotene and vitamins E and C). In other sports, the relative quantity of athletes sufficiently supplied with these essential nutrients did not exceed 56%. The quota of supplied with all antioxidants among bullet shooters (31.1%) and

  16. Sufficient penetration of peracetic acid into drilled human femoral heads.

    PubMed

    Brosig, H; Jacker, H-J; Borchert, H-H; Kalus, U; Dörner, T; von Versen, R; Pruss, A

    2005-01-01

    Chemical sterilisation methods for musculoskeletal transplants have the problem of penetration into all tissue strata. The present study examined if a peracetic acid/ethanol solution penetrated to a sufficient extent into specifically prepared femoral heads. To this effect, 10 femoral heads have been provided with drillings (diameter 2 mm, depth 10 mm) at a distance of 15 mm (series B) and placed in a diffusion chamber with sterilisation solution. From an additional central drilling at the femoral neck junction, the sample drawing was made after 30 min each over a period of 4 h for the iodometric determination of peracetic acid (PAA) concentration. Ten femoral heads, which did contain only the central drilling, served as controls (series A). In 9 of the examined femoral heads of series A the defined minimum concentration of PAA of 0.2% (inactivation of bacteria, spores, fungi) has been clearly exceeded over the complete period of measurement. About 0.8% PAA (inactivation of viruses) was achieved within 4 h only with six femoral heads. Nine out of the 10 examined femoral heads in series B show a clearly improved penetration behaviour which was expressed in smaller standard deviations, a faster increase in concentration, as well as in higher starting and final concentrations (approx. 0.9%) of PAA. Previous drying in air leads to a faster penetration into the centre of the bone. Standardised drilling of de-cartilaged femoral heads creates favourable conditions for the penetration of the PAA sterilisation solution into the whole tissue and guarantees a sufficient inactivation of microorganisms.

  17. Using scientifically and statistically sufficient statistics in comparing image segmentations.

    PubMed

    Chi, Yueh-Yun; Muller, Keith E

    2010-01-01

    Automatic computer segmentation in three dimensions creates opportunity to reduce the cost of three-dimensional treatment planning of radiotherapy for cancer treatment. Comparisons between human and computer accuracy in segmenting kidneys in CT scans generate distance values far larger in number than the number of CT scans. Such high dimension, low sample size (HDLSS) data present a grand challenge to statisticians: how do we find good estimates and make credible inference? We recommend discovering and using scientifically and statistically sufficient statistics as an additional strategy for overcoming the curse of dimensionality. First, we reduced the three-dimensional array of distances for each image comparison to a histogram to be modeled individually. Second, we used non-parametric kernel density estimation to explore distributional patterns and assess multi-modality. Third, a systematic exploratory search for parametric distributions and truncated variations led to choosing a Gaussian form as approximating the distribution of a cube root transformation of distance. Fourth, representing each histogram by an individually estimated distribution eliminated the HDLSS problem by reducing on average 26,000 distances per histogram to just 2 parameter estimates. In the fifth and final step we used classical statistical methods to demonstrate that the two human observers disagreed significantly less with each other than with the computer segmentation. Nevertheless, the size of all disagreements was clinically unimportant relative to the size of a kidney. The hierarchal modeling approach to object-oriented data created response variables deemed sufficient by both the scientists and statisticians. We believe the same strategy provides a useful addition to the imaging toolkit and will succeed with many other high throughput technologies in genetics, metabolomics and chemical analysis.

  18. Applying a potential across a biomembrane: electrostatic contribution to the bending rigidity and membrane instability.

    PubMed

    Ambjörnsson, Tobias; Lomholt, Michael A; Hansen, Per Lyngs

    2007-05-01

    We investigate the effect on biomembrane mechanical properties due to the presence an external potential for a nonconductive incompressible membrane surrounded by different electrolytes. By solving the Debye-Hückel and Laplace equations for the electrostatic potential and using the relevant stress-tensor we find (1) in the small screening length limit, where the Debye screening length is smaller than the distance between the electrodes, the screening certifies that all electrostatic interactions are short range and the major effect of the applied potential is to decrease the membrane tension and increase the bending rigidity; explicit expressions for electrostatic contribution to the tension and bending rigidity are derived as a function of the applied potential, the Debye screening lengths, and the dielectric constants of the membrane and the solvents. For sufficiently large voltages the negative contribution to the tension is expected to cause a membrane stretching instability. (2) For the dielectric limit, i.e., no salt (and small wave vectors compared to the distance between the electrodes), when the dielectric constant on the two sides are different the applied potential induces an effective (unscreened) membrane charge density, whose long-range interaction is expected to lead to a membrane undulation instability.

  19. Molecular Rigidity in Dry and Hydrated Onion Cell Walls.

    PubMed

    Ha, M. A.; Apperley, D. C.; Jarvis, M. C.

    1997-10-01

    Solid-state nuclear magnetic resonance relaxation experiments can provide information on the rigidity of individual molecules within a complex structure such as a cell wall, and thus show how each polymer can potentially contribute to the rigidity of the whole structure. We measured the proton magnetic relaxation parameters T2 (spin-spin) and T1p (spin-lattice) through the 13C-nuclear magnetic resonance spectra of dry and hydrated cell walls from onion (Allium cepa L.) bulbs. Dry cell walls behaved as rigid solids. The form of their T2 decay curves varied on a continuum between Gaussian, as in crystalline solids, and exponential, as in more mobile materials. The degree of molecular mobility that could be inferred from the T2 and T1p decay patterns was consistent with a crystalline state for cellulose and a glassy state for dry pectins. The theory of composite materials may be applied to explain the rigidity of dry onion cell walls in terms of their components. Hydration made little difference to the rigidity of cellulose and most of the xyloglucan shared this rigidity, but the pectic fraction became much more mobile. Therefore, the cellulose/xyloglucan microfibrils behaved as solid rods, and the most significant physical distinction within the hydrated cell wall was between the microfibrils and the predominantly pectic matrix. A minor xyloglucan fraction was much more mobile than the microfibrils and probably corresponded to cross-links between them. Away from the microfibrils, pectins expanded upon hydration into a nonhomogeneous, but much softer, almost-liquid gel. These data are consistent with a model for the stress-bearing hydrated cell wall in which pectins provide limited stiffness across the thickness of the wall, whereas the cross-linked microfibril network provides much greater rigidity in other directions.

  20. A theoretical evaluation of rigid baffles in suppression of combustion instability

    NASA Technical Reports Server (NTRS)

    Baer, M. R.; Mitchell, C. E.

    1976-01-01

    An analytical technique for the prediction of the effects of rigid baffles on the stability of liquid propellant combustors is presented. A three dimensional combustor model characterized by a concentrated combustion source at the chamber injector and a constant Mach number nozzle is used. The linearized partial differential equations describing the unsteady flow field are solved by an eigenfunction matching method. Boundary layer corrections to this unsteady flow are used to evaluate viscous and turbulence effects within the flow. An integral stability relationship is then employed to predict the decay rate of the oscillations. Results show that sufficient dissipation exists to indicate that the proper mechanism of baffle damping is a fluid dynamic loss. The response of the dissipation model to varying baffle blade length, mean flow Mach number and oscillation amplitude is examined.

  1. Theoretical evaluation of rigid baffles in the suppression of combustion instability

    NASA Technical Reports Server (NTRS)

    Baer, M. R.; Mitchell, C. E.

    1976-01-01

    An analytical technique for the prediction of the effects of rigid baffles on the stability of liquid propellant combustors is presented. This analysis employs both two and three dimensional combustor models characterized by concentrated combustion sources at the chamber injector and a constant Mach number nozzle. An eigenfunction-matching method is used to solve the linearized partial differential equations describing the unsteady flow field for both models. Boundary layer corrections to this unsteady flow are in a mechanical energy dissipation model to evaluate viscous and turbulence effects within the flow. An integral instability relationship is then employed to predict the decay rate of the oscillations. Results of this analysis agree qualitatively with experimental observations and show that sufficient dissipation exists to indicate that the proper mechanism of baffle damping is a fluid dynamic loss. The response of the dissipation model to varying baffle blade length, mean flow Mach number, oscillation amplitude, baffle configuration, and oscillation mode is examined.

  2. Method of preparing porous, rigid ceramic separators for an electrochemical cell. [Patent application

    DOEpatents

    Bandyopadhyay, G.; Dusek, J.T.

    Porous, rigid separators for electrochemical cells are prepared by first calcining particles of ceramic material at temperatures above about 1200/sup 0/C for a sufficient period of time to reduce the sinterability of the particles. A ceramic powder that has not been calcined is blended with the original powder to control the porosity of the completed separator. The ceramic blend is then pressed into a sheet of the desired shape and sintered at a temperature somewhat lower than the calcination temperature. Separator sheets of about 1 to 2.5 mm thickness and 30 to 70% porosity can be prepared by this technique. Ceramics such as yttria, magnesium oxide, and magnesium-aluminium oxide have advantageously been used to form separators by this method.

  3. Method of preparing porous, rigid ceramic separators for an electrochemical cell

    DOEpatents

    Bandyopadhyay, Gautam; Dusek, Joseph T.

    1981-01-01

    Porous, rigid separators for electrochemical cells are prepared by first calcining particles of ceramic material at temperatures above about 1200.degree. C. for a sufficient period of time to reduce the sinterability of the particles. A ceramic powder that has not been calcined is blended with the original powder to control the porosity of the completed separator. The ceramic blend is then pressed into a sheet of the desired shape and sintered at a temperature somewhat lower than the calcination temperature. Separator sheets of about 1 to 2.5 mm thickness and 30 to 70% porosity can be prepared by this technique. Ceramics such as yttria, magnesium oxide and magnesium-aluminum oxide have advantageously been used to form separators by this method.

  4. 21 CFR 886.5918 - Rigid gas permeable contact lens care products.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Rigid gas permeable contact lens care products... contact lens care products. (a) Identification. A rigid gas permeable contact lens care product is a... rigid gas permeable contact lens. This includes all solutions and tablets used together with rigid...

  5. 21 CFR 886.5918 - Rigid gas permeable contact lens care products.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Rigid gas permeable contact lens care products... contact lens care products. (a) Identification. A rigid gas permeable contact lens care product is a... rigid gas permeable contact lens. This includes all solutions and tablets used together with rigid...

  6. 21 CFR 886.5918 - Rigid gas permeable contact lens care products.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Rigid gas permeable contact lens care products... contact lens care products. (a) Identification. A rigid gas permeable contact lens care product is a... rigid gas permeable contact lens. This includes all solutions and tablets used together with rigid...

  7. 21 CFR 886.5918 - Rigid gas permeable contact lens care products.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Rigid gas permeable contact lens care products... contact lens care products. (a) Identification. A rigid gas permeable contact lens care product is a... rigid gas permeable contact lens. This includes all solutions and tablets used together with rigid...

  8. 21 CFR 886.5918 - Rigid gas permeable contact lens care products.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Rigid gas permeable contact lens care products... contact lens care products. (a) Identification. A rigid gas permeable contact lens care product is a... rigid gas permeable contact lens. This includes all solutions and tablets used together with rigid...

  9. Unified Creep Plasticity Damage (UCPD) Model for Rigid Polyurethane Foams.

    SciTech Connect

    Neilsen, Michael K.; Lu, Wei-Yang; Scherzinger, William M.; Hinnerichs, Terry D.; Lo, Chi S.

    2015-06-01

    Numerous experiments were performed to characterize the mechanical response of several different rigid polyurethane foams (FR3712, PMDI10, PMDI20, and TufFoam35) to large deformation. In these experiments, the effects of load path, loading rate, and temperature were investigated. Results from these experiments indicated that rigid polyurethane foams exhibit significant volumetric and deviatoric plasticity when they are compressed. Rigid polyurethane foams were also found to be very strain-rate and temperature dependent. These foams are also rather brittle and crack when loaded to small strains in tension or to larger strains in compression. Thus, a new Unified Creep Plasticity Damage (UCPD) model was developed and implemented into SIERRA with the name Foam Damage to describe the mechanical response of these foams to large deformation at a variety of temperatures and strain rates. This report includes a description of recent experiments and experimental findings. Next, development of a UCPD model for rigid, polyurethane foams is described. Selection of material parameters for a variety of rigid polyurethane foams is then discussed and finite element simulations with the new UCPD model are compared with experimental results to show behavior that can be captured with this model.

  10. Barriers to Cooperation Aid Ideological Rigidity and Threaten Societal Collapse

    PubMed Central

    Jusup, Marko; Matsuo, Tadasu; Iwasa, Yoh

    2014-01-01

    Understanding the factors that promote, disrupt, or shape the nature of cooperation is one of the main tasks of evolutionary biology. Here, we focus on attitudes and beliefs supportive of in-group favoritism and strict adherence to moral consensus, collectively known as ideological rigidity, that have been linked with both ends of the political spectrum. The presence among the political right and the left is likely to make ideological rigidity a major determinant of the political discourse with an important social function. To better understand this function, we equip the indirect reciprocity framework – widely used to explain evaluation-mediated social cooperation – with multiple stylized value systems, each corresponding to the different degree of ideological rigidity. By running game theoretical simulations, we observe the competitive evolution of these systems, map conditions that lead to more ideologically rigid societies, and identify potentially disastrous outcomes. In particular, we uncover that barriers to cooperation aid ideological rigidity. The society may even polarize to the extent where social parasites overrun the population and cause the complete collapse of the social structure. These results have implications for lawmakers globally, warning against restrictive or protectionist policies. PMID:24809975

  11. Barriers to cooperation aid ideological rigidity and threaten societal collapse.

    PubMed

    Jusup, Marko; Matsuo, Tadasu; Iwasa, Yoh

    2014-05-01

    Understanding the factors that promote, disrupt, or shape the nature of cooperation is one of the main tasks of evolutionary biology. Here, we focus on attitudes and beliefs supportive of in-group favoritism and strict adherence to moral consensus, collectively known as ideological rigidity, that have been linked with both ends of the political spectrum. The presence among the political right and the left is likely to make ideological rigidity a major determinant of the political discourse with an important social function. To better understand this function, we equip the indirect reciprocity framework--widely used to explain evaluation-mediated social cooperation--with multiple stylized value systems, each corresponding to the different degree of ideological rigidity. By running game theoretical simulations, we observe the competitive evolution of these systems, map conditions that lead to more ideologically rigid societies, and identify potentially disastrous outcomes. In particular, we uncover that barriers to cooperation aid ideological rigidity. The society may even polarize to the extent where social parasites overrun the population and cause the complete collapse of the social structure. These results have implications for lawmakers globally, warning against restrictive or protectionist policies.

  12. Maintain rigid structures in Verlet based cartesian molecular dynamics simulations.

    PubMed

    Tao, Peng; Wu, Xiongwu; Brooks, Bernard R

    2012-10-07

    An algorithm is presented to maintain rigid structures in Verlet based cartesian molecular dynamics (MD) simulations. After each unconstrained MD step, the coordinates of selected particles are corrected to maintain rigid structures through an iterative procedure of rotation matrix computation. This algorithm, named as SHAPE and implemented in CHARMM program suite, avoids the calculations of Lagrange multipliers, so that the complexity of computation does not increase with the number of particles in a rigid structure. The implementation of this algorithm does not require significant modification of propagation integrator, and can be plugged into any cartesian based MD integration scheme. A unique feature of the SHAPE method is that it is interchangeable with SHAKE for any object that can be constrained as a rigid structure using multiple SHAKE constraints. Unlike SHAKE, the SHAPE method can be applied to large linear (with three or more centers) and planar (with four or more centers) rigid bodies. Numerical tests with four model systems including two proteins demonstrate that the accuracy and reliability of the SHAPE method are comparable to the SHAKE method, but with much more applicability and efficiency.

  13. Interaction between a flexible filament and a downstream rigid body

    NASA Astrophysics Data System (ADS)

    Tian, Fang-Bao; Luo, Haoxiang; Zhu, Luoding; Lu, Xi-Yun

    2010-08-01

    A filament flapping in the bow wake of a rigid body is considered in order to study the hydrodynamic interaction between flexible and rigid bodies in tandem arrangement. Both numerical and experimental methods are adopted to analyze the motion of the filament, and the drag force on both bodies is computed. It is shown that the results largely depend on the gap between the two objects and the Reynolds number. The flexible body may have larger vibration amplitude but meanwhile experience a reduced drag force. On the other hand, the trailing rigid body enjoys a drag reduction. The qualitative behavior of the filament is independent of the filament’s length and mass ratio or the shape of the rigid body for the parameter regime considered. The result is in contrast with the interaction between two rigid or two flexible objects in tandem arrangement, and it may provide a physical insight into the understanding of the aquatic animals swimming in the bow wake of ships or staying in the bow wake of stationary structures.

  14. Enhancement of parkinsonian rigidity with contralateral hand activation

    PubMed Central

    Powell, Douglas; Hanson, Nicholas; Threlkeld, A. Joseph; Fang, Xiang; Xia, Ruiping

    2011-01-01

    Objective Quantify the enhancement of parkinsonian rigidity associated with a contralateral activation maneuver. Methods Twelve subjects with PD and eight controls participated in the study protocol. Subjects’ tested hand was displaced by a servo-motor throughout wrist flexion and extension motions of 60° without and with a concurrent gripping activation in the contralateral hand, referred to as passive and active conditions, respectively. Subjects with PD were tested in both OFF-Med and ON-Med states. Rigidity was quantified by integrating torque with position during both flexion and extension (torque resistance). ANOVA was performed to assess the effect of contralateral activation on rigidity. Results PD patients had significantly (0.038) enhanced torque resistance in OFF-Med compared to healthy controls and ON-MED. In the Active condition, differences in torque resistance were magnified (p=0.002). Medication substantially reduced differences in torque resistance between controls and PD patients in the passive and active conditions. Conclusions A contralateral activation maneuver substantially increases rigidity in patients with PD, specifically the OFF-MED state. Rigidity is reduced with the application of dopaminergic medication, even with the presence of a contralateral activation maneuver. Significance These data support the use of a contralateral activation maneuver as a tool in the diagnosis of PD. PMID:21330199

  15. Packing density of rigid aggregates is independent of scale

    PubMed Central

    Zangmeister, Christopher D.; Radney, James G.; Dockery, Lance T.; Young, Jessica T.; Ma, Xiaofei; You, Rian; Zachariah, Michael R.

    2014-01-01

    Large planetary seedlings, comets, microscale pharmaceuticals, and nanoscale soot particles are made from rigid, aggregated subunits that are compacted under low compression into larger structures spanning over 10 orders of magnitude in dimensional space. Here, we demonstrate that the packing density (θf) of compacted rigid aggregates is independent of spatial scale for systems under weak compaction. The θf of rigid aggregated structures across six orders of magnitude were measured using nanoscale spherical soot aerosol composed of aggregates with ∼17-nm monomeric subunits and aggregates made from uniform monomeric 6-mm spherical subunits at the macroscale. We find θf = 0.36 ± 0.02 at both dimensions. These values are remarkably similar to θf observed for comet nuclei and measured values of other rigid aggregated systems across a wide variety of spatial and formative conditions. We present a packing model that incorporates the aggregate morphology and show that θf is independent of both monomer and aggregate size. These observations suggest that the θf of rigid aggregates subject to weak compaction forces is independent of spatial dimension across varied formative conditions. PMID:24927577

  16. Non-rigid alignment in electron tomography in materials science.

    PubMed

    Printemps, Tony; Bernier, Nicolas; Bleuet, Pierre; Mula, Guido; Hervé, Lionel

    2016-09-01

    Electron tomography is a key technique that enables the visualization of an object in three dimensions with a resolution of about a nanometre. High-quality 3D reconstruction is possible thanks to the latest compressed sensing algorithms and/or better alignment and preprocessing of the 2D projections. Rigid alignment of 2D projections is routine in electron tomography. However, it cannot correct misalignments induced by (i) deformations of the sample due to radiation damage or (ii) drifting of the sample during the acquisition of an image in scanning transmission electron microscope mode. In both cases, those misalignments can give rise to artefacts in the reconstruction. We propose a simple-to-implement non-rigid alignment technique to correct those artefacts. This technique is particularly suited for needle-shaped samples in materials science. It is initiated by a rigid alignment of the projections and it is then followed by several rigid alignments of different parts of the projections. Piecewise linear deformations are applied to each projection to force them to simultaneously satisfy the rigid alignments of the different parts. The efficiency of this technique is demonstrated on three samples, an intermetallic sample with deformation misalignments due to a high electron dose typical to spectroscopic electron tomography, a porous silicon sample with an extremely thin end particularly sensitive to electron beam and another porous silicon sample that was drifting during image acquisitions.

  17. Non-rigid, but not rigid, motion interferes with the processing of structural face information in developmental prosopagnosia.

    PubMed

    Maguinness, Corrina; Newell, Fiona N

    2015-04-01

    There is growing evidence to suggest that facial motion is an important cue for face recognition. However, it is poorly understood whether motion is integrated with facial form information or whether it provides an independent cue to identity. To provide further insight into this issue, we compared the effect of motion on face perception in two developmental prosopagnosics and age-matched controls. Participants first learned faces presented dynamically (video), or in a sequence of static images, in which rigid (viewpoint) or non-rigid (expression) changes occurred. Immediately following learning, participants were required to match a static face image to the learned face. Test face images varied by viewpoint (Experiment 1) or expression (Experiment 2) and were learned or novel face images. We found similar performance across prosopagnosics and controls in matching facial identity across changes in viewpoint when the learned face was shown moving in a rigid manner. However, non-rigid motion interfered with face matching across changes in expression in both individuals with prosopagnosia compared to the performance of control participants. In contrast, non-rigid motion did not differentially affect the matching of facial expressions across changes in identity for either prosopagnosics (Experiment 3). Our results suggest that whilst the processing of rigid motion information of a face may be preserved in developmental prosopagnosia, non-rigid motion can specifically interfere with the representation of structural face information. Taken together, these results suggest that both form and motion cues are important in face perception and that these cues are likely integrated in the representation of facial identity.

  18. India's baseline plan for nuclear energy self-sufficiency.

    SciTech Connect

    Bucher, R .G.; Nuclear Engineering Division

    2009-01-01

    India's nuclear energy strategy has traditionally strived for energy self-sufficiency, driven largely by necessity following trade restrictions imposed by the Nuclear Suppliers Group (NSG) following India's 'peaceful nuclear explosion' of 1974. On September 6, 2008, the NSG agreed to create an exception opening nuclear trade with India, which may create opportunities for India to modify its baseline strategy. The purpose of this document is to describe India's 'baseline plan,' which was developed under constrained trade conditions, as a basis for understanding changes in India's path as a result of the opening of nuclear commerce. Note that this treatise is based upon publicly available information. No attempt is made to judge whether India can meet specified goals either in scope or schedule. In fact, the reader is warned a priori that India's delivery of stated goals has often fallen short or taken a significantly longer period to accomplish. It has been evident since the early days of nuclear power that India's natural resources would determine the direction of its civil nuclear power program. It's modest uranium but vast thorium reserves dictated that the country's primary objective would be thorium utilization. Estimates of India's natural deposits vary appreciably, but its uranium reserves are known to be extremely limited, totaling approximately 80,000 tons, on the order of 1% of the world's deposits; and nominally one-third of this ore is of very low uranium concentration. However, India's roughly 300,000 tons of thorium reserves account for approximately 30% of the world's total. Confronted with this reality, the future of India's nuclear power industry is strongly dependent on the development of a thorium-based nuclear fuel cycle as the only way to insure a stable, sustainable, and autonomous program. The path to India's nuclear energy self-sufficiency was first outlined in a seminal paper by Drs. H. J. Bhabha and N. B. Prasad presented at the Second

  19. On necessity and sufficiency in counseling and psychotherapy (revisited).

    PubMed

    Lazarus, Arnold A

    2007-09-01

    It seems to me that Carl Rogers (see record 2007-14639-002) was far too ambitious in trying to specify general conditions of necessity and sufficiency that would be relevant to the entire spectrum of problems and the diverse expectancies and personalities of the people who seek our help. Rogers' position and orientation almost totally overlook the array of problems under the rubric of "response deficits" that stem from misinformation and missing information and call for active correction, training, and retraining. Rogers also paid scant attention to problems with significant biological determinants. Nevertheless, as exemplified by his seminal 1957 article and many other articles and books, Rogers made major contributions within the domain of the therapeutic alliance. Today, the scientific emphasis looks at accountability, the need to establish various treatments of choice, and the need to understand their presumed mechanisms. Treatment efficacy and generalizability across different methodologies are now considered key issues. The efficacy narrowing and clinically self-limiting consequences of adhering to one particular school of thought are now self-evident to most. (PsycINFO Database Record (c) 2010 APA, all rights reserved).

  20. Abundant Inverse Regression using Sufficient Reduction and its Applications

    PubMed Central

    Kim, Hyunwoo J.; Smith, Brandon M.; Adluru, Nagesh; Dyer, Charles R.; Johnson, Sterling C.; Singh, Vikas

    2016-01-01

    Statistical models such as linear regression drive numerous applications in computer vision and machine learning. The landscape of practical deployments of these formulations is dominated by forward regression models that estimate the parameters of a function mapping a set of p covariates, x, to a response variable, y. The less known alternative, Inverse Regression, offers various benefits that are much less explored in vision problems. The goal of this paper is to show how Inverse Regression in the “abundant” feature setting (i.e., many subsets of features are associated with the target label or response, as is the case for images), together with a statistical construction called Sufficient Reduction, yields highly flexible models that are a natural fit for model estimation tasks in vision. Specifically, we obtain formulations that provide relevance of individual covariates used in prediction, at the level of specific examples/samples — in a sense, explaining why a particular prediction was made. With no compromise in performance relative to other methods, an ability to interpret why a learning algorithm is behaving in a specific way for each prediction, adds significant value in numerous applications. We illustrate these properties and the benefits of Abundant Inverse Regression (AIR) on three distinct applications. PMID:27796010

  1. Stochasticity, spikes and decoding: sufficiency and utility of order statistics.

    PubMed

    Richmond, Barry J

    2009-06-01

    For over 75 years it has been clear that the number of spikes in a neural response is an important part of the neuronal code. Starting as early as the 1950's with MacKay and McCullough, there has been speculation over whether each spike and its exact time of occurrence carry information. Although it is obvious that the firing rate carries information it has been less clear as to whether there is information in exactly timed patterns, when they arise from the dynamics of the neurons and networks, as opposed to when they represent some strong external drive that entrains them. One strong null hypothesis that can be applied is that spike trains arise from stochastic sampling of an underlying deterministic temporally modulated rate function, that is, there is a time-varying rate function. In this view, order statistics seem to provide a sufficient theoretical construct to both generate simulated spike trains that are indistinguishable from those observed experimentally, and to evaluate (decode) the data recovered from experiments. It remains to learn whether there are physiologically important signals that are not described by such a null hypothesis.

  2. Mammary hypoplasia: not every breast can produce sufficient milk.

    PubMed

    Arbour, Megan W; Kessler, Julia Lange

    2013-01-01

    Breast milk is considered the optimal form of nutrition for newborn infants. Current recommendations are to breastfeed for 6 months. Not all women are able to breastfeed. Mammary hypoplasia is a primary cause of failed lactogenesis II, whereby the mother is unable to produce an adequate milk volume. Women with mammary hypoplasia often have normal hormone levels and innervation but lack sufficient glandular tissue to produce an adequate milk supply to sustain their infant. The etiology of this rare condition is unclear, although there are theories that refer to genetic predisposition and estrogenic environmental exposures in select agricultural environments. Women with mammary hypoplasia may not exhibit the typical breast changes associated with pregnancy and may fail to lactate postpartum. Breasts of women with mammary hypoplasia may be widely spaced (1.5 inches or greater), asymmetric, or tuberous in nature. Awareness of the history and clinical signs of mammary hypoplasia during the prenatal period and immediate postpartum increases the likelihood that women will receive the needed education and physical and emotional support and encouragement. Several medications and herbs demonstrate some efficacy in increasing breast milk production in women with mammary hypoplasia.

  3. The Generalized Asymptotic Equipartition Property: Necessary and Sufficient Conditions

    PubMed Central

    Harrison, Matthew T.

    2011-01-01

    Suppose a string X1n=(X1,X2,…,Xn) generated by a memoryless source (Xn)n≥1 with distribution P is to be compressed with distortion no greater than D ≥ 0, using a memoryless random codebook with distribution Q. The compression performance is determined by the “generalized asymptotic equipartition property” (AEP), which states that the probability of finding a D-close match between X1n and any given codeword Y1n, is approximately 2−nR(P, Q, D), where the rate function R(P, Q, D) can be expressed as an infimum of relative entropies. The main purpose here is to remove various restrictive assumptions on the validity of this result that have appeared in the recent literature. Necessary and sufficient conditions for the generalized AEP are provided in the general setting of abstract alphabets and unbounded distortion measures. All possible distortion levels D ≥ 0 are considered; the source (Xn)n≥1 can be stationary and ergodic; and the codebook distribution can have memory. Moreover, the behavior of the matching probability is precisely characterized, even when the generalized AEP is not valid. Natural characterizations of the rate function R(P, Q, D) are established under equally general conditions. PMID:21614133

  4. 1/f noise and very high spectral rigidity

    NASA Astrophysics Data System (ADS)

    Relaño, A.; Retamosa, J.; Faleiro, E.; Molina, R. A.; Zuker, A. P.

    2006-02-01

    It was recently pointed out that the spectral fluctuations of quantum systems are formally analogous to discrete time series, and therefore their structure can be characterized by the power spectrum of the signal. Moreover, it is found that the power spectrum of chaotic spectra displays a 1/f behavior, while that of regular systems follows a 1/f2 law. This analogy provides a link between the concepts of spectral rigidity and antipersistence. Trying to get a deeper understanding of this relationship, we have studied the correlation structure of spectra with high spectral rigidity. Using an appropriate family of random Hamiltonians, we increase the spectral rigidity up to hindering completely the spectral fluctuations. Analyzing the long range correlation structure a neat power law 1/f has been found for all the spectra, along the whole process. Therefore, 1/f noise is the characteristic fingerprint of a transition that, preserving the scale-free correlation structure, hinders completely the fluctuations of the spectrum.

  5. Method to estimate center of rigidity using vibration recordings

    USGS Publications Warehouse

    Safak, Erdal; Celebi, Mehmet

    1990-01-01

    A method to estimate the center of rigidity of buildings by using vibration recordings is presented. The method is based on the criterion that the coherence of translational motions with the rotational motion is minimum at the center of rigidity. Since the coherence is a function of frequency, a gross but frequency-independent measure of the coherency is defined as the integral of the coherence function over the frequency. The center of rigidity is determined by minimizing this integral. The formulation is given for two-dimensional motions. Two examples are presented for the method; a rectangular building with ambient-vibration recordings, and a triangular building with earthquake-vibration recordings. Although the examples given are for buildings, the method can be applied to any structure with two-dimensional motions.

  6. Authoritarianism, cognitive rigidity, and the processing of ambiguous visual information.

    PubMed

    Duncan, Lauren E; Peterson, Bill E

    2014-01-01

    Intolerance of ambiguity and cognitive rigidity are unifying aspects of authoritarianism as defined by Adorno, Frenkel-Brunswik, Levinson, and Sanford (1982/1950), who hypothesized that authoritarians view the world in absolute terms (e.g., good or evil). Past studies have documented the relationship between authoritarianism and intolerance of ambiguity and rigidity. Frenkel-Brunswik (1949) hypothesized that this desire for absolutism was rooted in perceptual processes. We present a study with three samples that directly tests the relationship between right wing authoritarianism (RWA) and the processing of ideologically neutral but ambiguous visual stimuli. As hypothesized, in all three samples we found that RWA was related to the slower processing of visual information that required participants to recategorize objects. In a fourth sample, RWA was unrelated to speed of processing visual information that did not require recategorization. Overall, results suggest a relationship between RWA and rigidity in categorization.

  7. Toxicity evaluation and hazard review for Rigid Foam

    SciTech Connect

    Archuleta, M.M.; Stocum, W.E.

    1994-02-01

    Rigid Foam is a chemical delay foam used to completely encapsulate an object or to block access to an area. Prior studies have indicated that the final foam product is essentially non-toxic. The purpose of this study was to evaluate and summarize the current chemical and toxicological data available on the components of Rigid Foam and to update the information available on the toxicity of the final Rigid Foam product. Since the possibility exists for a partial deployment of Rigid Foam where only one of the components is released, this study also examined the toxicity of its chemical constituents. Rigid Foam is composed of an {open_quotes}A{close_quotes} and {open_quotes}B{close_quotes} Component. The {open_quotes}A{close_quotes} component is primarily a polymeric isocyanate and the {open_quotes}B{close_quotes} component is a mixture of polyols. In addition to the primary constituents, dichlorodifluoromethane and trichlorofluoromethane are present as blowing agents along with catalysts and silicone surfactants necessary for foaming. The pre-deployed {open_quotes}A{close_quotes} and {open_quotes}B{close_quotes} components are stored in separate vessels and are brought together in static mixing nozzles for dispersal. The results of this evaluation indicate that a completely deployed Rigid Foam under normal conditions is essentially non-toxic as determined previously. However, in the event of a partial deployment or deployment of an individual component directly at an unprotected individual, the degree of hazard is increased due to the toxic and corrosive nature of the individual constituents. The health hazard would depend on the properties of the material to which the person was exposed.

  8. The Rigid-Flexible System Dynamics Model of Highline Cable

    NASA Astrophysics Data System (ADS)

    Xing, Daoqi; Li, Nan; Zhang, Shiyun

    The paper researches rigid flexible system dynamics model of the rope, and used it to simulate sealift Highline based on the multi-body dynamics theory. Meanwhile the paper simulated to the sea dry cargo replenishment of transverse process, then gain the conclusion that the rigid flexible dynamic model get in the paper is more close to the Caucasus, and the dynamic calculation results closer to the actual situation, through the analysis of simulation results, and combined with the actual situation in the Caucasus the structure of overhead cable.

  9. Buffers affect the bending rigidity of model lipid membranes.

    PubMed

    Bouvrais, Hélène; Duelund, Lars; Ipsen, John H

    2014-01-14

    In biophysical and biochemical studies of lipid bilayers the influence of the used buffer is often ignored or assumed to be negligible on membrane structure, elasticity, or physical properties. However, we here present experimental evidence, through bending rigidity measurements performed on giant vesicles, of a more complex behavior, where the buffering molecules may considerably affect the bending rigidity of phosphatidylcholine bilayers. Furthermore, a synergistic effect on the bending modulus is observed in the presence of both salt and buffer molecules, which serves as a warning to experimentalists in the data interpretation of their studies, since typical lipid bilayer studies contain buffer and ion molecules.

  10. Drag reduction characteristics of small amplitude rigid surface waves

    NASA Technical Reports Server (NTRS)

    Cary, A. M., Jr.; Weinstein, L. M.; Bushnell, D. M.

    1980-01-01

    The possibility of reducing drag by using rigid, wavy surfaces is investigated both analytically and experimentally. Although pressure drag for rigid sine-wave surfaces can be predicted empirically, viscous drag for even shallow waves was poorly predicted by state-of-the-art turbulent boundary layer calculation procedures. Calculations for the effects of geometric and fluid variables on total wave drag are presented under the philosophy that trends will be nearly correct even though levels are probably incorrect. Experiments by the present authors indicate that a total drag reduction with wavy walls is possible.

  11. Shape optimization of rigid inclusions for elastic plates with cracks

    NASA Astrophysics Data System (ADS)

    Shcherbakov, Viktor

    2016-06-01

    In the paper, we consider an optimal control problem of finding the most safe rigid inclusion shapes in elastic plates with cracks from the viewpoint of the Griffith rupture criterion. We make use of a general Kirchhoff-Love plate model with both vertical and horizontal displacements, and nonpenetration conditions are fulfilled on the crack faces. The dependence of the first derivative of the energy functional with respect to the crack length on regular shape perturbations of the rigid inclusion is analyzed. It is shown that there exists a solution of the optimal control problem.

  12. Tracking Non-rigid Structures in Computer Simulations

    SciTech Connect

    Gezahegne, A; Kamath, C

    2008-01-10

    A key challenge in tracking moving objects is the correspondence problem, that is, the correct propagation of object labels from one time step to another. This is especially true when the objects are non-rigid structures, changing shape, and merging and splitting over time. In this work, we describe a general approach to tracking thousands of non-rigid structures in an image sequence. We show how we can minimize memory requirements and generate accurate results while working with only two frames of the sequence at a time. We demonstrate our results using data from computer simulations of a fluimix problem.

  13. Lyapunov instability of rigid diatomic molecules in three dimensions

    NASA Astrophysics Data System (ADS)

    Shin, Young-Han; Ihm, Dong-Chul; Lee, Eok-Kyun

    2001-10-01

    We study the Lyapunov instability of a three-dimensional fluid composed of rigid diatomic molecules by molecular dynamics simulation. We use center-of-mass coordinates and angular variables for the configurational space variables. The spectra of Lyapunov exponents are obtained for 32 rigid diatomic molecules interacting through the Weeks-Chandler-Andersen potential for various bond lengths and densities. We show the general trends and characteristic features of the spectra of the Lyapunov exponents, and discuss the different contributions between translational and rotational degrees of freedom depending on the density and the bond length from the calculation of the projection of a certain subspace of the tangent space vectors.

  14. Enhanced motility of a microswimmer in rigid and elastic confinement.

    PubMed

    Ledesma-Aguilar, Rodrigo; Yeomans, Julia M

    2013-09-27

    We analyze the effect of confining rigid and elastic boundaries on the motility of a model dipolar microswimmer. Flexible boundaries are deformed by the velocity field of the swimmer in such a way that the motility of both extensile and contractile swimmers is enhanced. The magnitude of the increase in swimming velocity is controlled by the ratio of the swimmer-advection and elastic time scales, and the dipole moment of the swimmer. We explain our results by considering swimming between inclined rigid boundaries.

  15. Enhanced Motility of a Microswimmer in Rigid and Elastic Confinement

    NASA Astrophysics Data System (ADS)

    Ledesma-Aguilar, Rodrigo; Yeomans, Julia M.

    2013-09-01

    We analyze the effect of confining rigid and elastic boundaries on the motility of a model dipolar microswimmer. Flexible boundaries are deformed by the velocity field of the swimmer in such a way that the motility of both extensile and contractile swimmers is enhanced. The magnitude of the increase in swimming velocity is controlled by the ratio of the swimmer-advection and elastic time scales, and the dipole moment of the swimmer. We explain our results by considering swimming between inclined rigid boundaries.

  16. Activity-induced collapse and reexpansion of rigid polymers

    NASA Astrophysics Data System (ADS)

    Harder, J.; Valeriani, C.; Cacciuto, A.

    2014-12-01

    We study the elastic properties of a rigid filament in a bath of self-propelled particles. We find that while fully flexible filaments swell monotonically upon increasing the strength of the propelling force, rigid filaments soften for moderate activities, collapse into metastable hairpins for intermediate strengths, and eventually reexpand when the strength of the activity of the surrounding fluid is large. This collapse and reexpansion of the filament with the bath activity is reminiscent of the behavior observed in polyelectrolytes in the presence of different concentrations of multivalent salt.

  17. Bacterial Flagella as a Model Rigid Rod of Tunable Shape

    NASA Astrophysics Data System (ADS)

    Schwenger, Walter; Yardimci, Sevim; Gibaud, Thomas; Snow, Henry; Urbach, Jeff; Dogic, Zvonimir

    In this research, we study the physical properties of suspensions of bacterial flagella from Salmonella typhimurium prepared in a variety of rigid polymorphic shapes. Flagella act as a rigid colloidal particle that can exhibit non-trivial geometry including helices of varying dimensions, straight rods, or a combination of the two in the same filament. By controlling the conditions in which flagella are prepared, the polymorphic shape assumed by the filament can be controlled. Utilizing different polymorphic shapes, we combine results from optical microscopy observations of single filaments with bulk rheological measurements to help understand the role that constituent colloidal geometry plays in complex bulk behavior.

  18. Shear-induced rigidity in spider silk glands

    NASA Astrophysics Data System (ADS)

    Koski, Kristie J.; McKiernan, Keri; Akhenblit, Paul; Yarger, Jeffery L.

    2012-09-01

    We measure the elastic stiffnesses of the concentrated viscous protein solution of the dehydrated Nephila clavipes major ampullate gland with Brillouin light scattering. The glandular material shows no rigidity but possesses a tensile stiffness similar to that of spider silk. We show, however, that with application of a simple static shear, the mechanical properties of the spider gland protein mixture can be altered irreversibly, lowering symmetry and enabling shear waves to be supported, thus, giving rise to rigidity and yielding elastic properties similar to those of the naturally spun (i.e., dynamically sheared) silk.

  19. Superior cell penetration by a rigid and anisotropic synthetic protein.

    PubMed

    Nakayama, Norihisa; Hagiwara, Kyoji; Ito, Yoshihiro; Ijiro, Kuniharu; Osada, Yoshihito; Sano, Ken-Ichi

    2015-03-10

    Molecules with structural anisotropy and rigidity, such as asbestos, demonstrate high cell-penetrating activity but also high toxicity. Here we synthesize a biodegradable, rigid, and fibrous artificial protein, CCPC 140, as a potential vehicle for cellular delivery. CCPC 140 penetrated 100% of cells tested in vitro, even at a concentration of 3.1 nM-superior to previously reported cell-penetrating peptides. The effects of cell-strain-dependency and aspect ratio on the cell-penetrating activity of CCPC 140 were also investigated.

  20. Increasing adult hippocampal neurogenesis is sufficient to improve pattern separation.

    PubMed

    Sahay, Amar; Scobie, Kimberly N; Hill, Alexis S; O'Carroll, Colin M; Kheirbek, Mazen A; Burghardt, Nesha S; Fenton, André A; Dranovsky, Alex; Hen, René

    2011-04-28

    Adult hippocampal neurogenesis is a unique form of neural circuit plasticity that results in the generation of new neurons in the dentate gyrus throughout life. Neurons that arise in adults (adult-born neurons) show heightened synaptic plasticity during their maturation and can account for up to ten per cent of the entire granule cell population. Moreover, levels of adult hippocampal neurogenesis are increased by interventions that are associated with beneficial effects on cognition and mood, such as learning, environmental enrichment, exercise and chronic treatment with antidepressants. Together, these properties of adult neurogenesis indicate that this process could be harnessed to improve hippocampal functions. However, despite a substantial number of studies demonstrating that adult-born neurons are necessary for mediating specific cognitive functions, as well as some of the behavioural effects of antidepressants, it is unknown whether an increase in adult hippocampal neurogenesis is sufficient to improve cognition and mood. Here we show that inducible genetic expansion of the population of adult-born neurons through enhancing their survival improves performance in a specific cognitive task in which two similar contexts need to be distinguished. Mice with increased adult hippocampal neurogenesis show normal object recognition, spatial learning, contextual fear conditioning and extinction learning but are more efficient in differentiating between overlapping contextual representations, which is indicative of enhanced pattern separation. Furthermore, stimulation of adult hippocampal neurogenesis, when combined with an intervention such as voluntary exercise, produces a robust increase in exploratory behaviour. However, increasing adult hippocampal neurogenesis alone does not produce a behavioural response like that induced by anxiolytic agents or antidepressants. Together, our findings suggest that strategies that are designed to increase adult hippocampal

  1. Greater learnability is not sufficient to produce cultural universals.

    PubMed

    Rafferty, Anna N; Griffiths, Thomas L; Ettlinger, Marc

    2013-10-01

    Looking across human societies reveals regularities in the languages that people speak and the concepts that they use. One explanation that has been proposed for these "cultural universals" is differences in the ease with which people learn particular languages and concepts. A difference in learnability means that languages and concepts possessing a particular property are more likely to be accurately transmitted from one generation of learners to the next. Intuitively, this difference could allow languages and concepts that are more learnable to become more prevalent after multiple generations of cultural transmission. If this is the case, the prevalence of languages and concepts with particular properties can be explained simply by demonstrating empirically that they are more learnable. We evaluate this argument using mathematical analysis and behavioral experiments. Specifically, we provide two counter-examples that show how greater learnability need not result in a property becoming prevalent. First, more learnable languages and concepts can nonetheless be less likely to be produced spontaneously as a result of transmission failures. We simulated cultural transmission in the laboratory to show that this can occur for memory of distinctive items: these items are more likely to be remembered, but not generated spontaneously once they have been forgotten. Second, when there are many languages or concepts that lack the more learnable property, sheer numbers can swamp the benefit produced by greater learnability. We demonstrate this using a second series of experiments involving artificial language learning. Both of these counter-examples show that simply finding a learnability bias experimentally is not sufficient to explain why a particular property is prevalent in the languages or concepts used in human societies: explanations for cultural universals based on cultural transmission need to consider the full set of hypotheses a learner could entertain and all of

  2. Statistical estimation of resin composite polymerization sufficiency using microhardness.

    PubMed

    Cohen, Mark E; Leonard, Daniel L; Charlton, David G; Roberts, Howard W; Ragain, James C

    2004-02-01

    With respect to determining sub-surface resin polymerization sufficiency, this study compared a traditional method of applying linear regression to bottom- to top-surface Knoop hardness ratios to an alternative method based on nonlinear regression. Inverse linear regression on ratios was used to estimate the exposure duration required for 80% bottom-surface hardness with respect to the top, in six light-by-material groups. Alternatively, a one-phase, two-parameter, exponential association of the form Y=Y(max)(1-e(-kt)) (where Y(max) is maximum hardness, k is a rate constant, and t is exposure duration), was used to model hardness. Inverse nonlinear regression estimated, for each condition, the exposure duration required for the bottom surface to achieve 80% of corresponding condition (light and material) top-surface Y(max). Mathematically, analysis of ratios was demonstrated to yield potentially less precise and biased estimates. Nonlinear regression yielded better statistical fit and provided easily accessible tests for differences in k across light-system groups. Another recently proposed nonlinear model for polymerization, Y=Y(max)kt(n)/(1+kt(n)), was also considered. While this new model has substantially greater phenomenological and mechanistic justification, we found that the model-fitting process was more sensitive to initial parameter values and sometimes yielded untenable results when applied to our data. However, we believe that these problems would not occur if sample points are well distributed across a wide range of exposure durations, and that the model, Y=Y(max)kt(n)/(1+kt(n)), should be considered for such data sets.

  3. [Effect of vitamin sufficiency on adaptation syndrome in growing rats].

    PubMed

    Sidorova, Iu S; Beketova, N A; Vrzhesinskaia, O A; Kodentsova, V M; Kosheleva, O V; Zorin, S N; Selifanov, A V; Mazo, V K

    2014-01-01

    The influence of vitamin supply of growing male -Wistar rats (n=21) with an initial body weight 53,5±0,9 g on their resistance to a single distress induced by the electric shock has been investigated. Control rats within 21 days received a complete semisynthetic diet,providingadequate amounts of vitamins. Combined vitamin deficiency in experimental rats was caused by 5-fold decrease of vitamin mixture amount in the feed and the total vitamin E exclusion from the mixture. On the 21st day, one day before the end of the experiment, both groups of rats were subjected to stress impact (electrocutaneous irritation on paws, 0,4 mA for 8 sec) and then animals were placed in metabolic cages to collect urine. By the end of the experiment, the animals with the combined vitamin deficiency lag behind in growth. Vitamin B2, A, B1 and E liver content decreased in experimental rats by 1,6, 2,3, 4,4 and 15 fold accordingly. Retinol plasma concentration was significantly reduced by 18%, α-tocopherol level - by 5 fold, urinary excretionof riboflavin and 4-pyridoxic acid (vitamin B6 metabolite) was significantly reduced by 6,5 and 2,46 times accordingly. MDA blood plasma concentration and the urinary ratio of oxidized and not oxidized form of 8-hydroxy-2'-deoxy-guanosine did not differ in both groups of rats. Urinary excretion of stress biomarker corticosterone in rats with combined vitamin deficit was 2,5-fold higher than in control rats. Thus, reducing of vitamins supply resulted in an increase of urine corticosterone in stressed rats, that characterized the intensity of general adaptation syndrome. This fact shows the importance of optimal sufficiency with vitamins in nonspecific (general) resistance to stress.

  4. Working memory maintenance is sufficient to reduce state anxiety.

    PubMed

    Balderston, Nicholas L; Quispe-Escudero, David; Hale, Elizabeth; Davis, Andrew; O'Connell, Katherine; Ernst, Monique; Grillon, Christian

    2016-11-01

    According to the attentional control theory (ACT) proposed by Eysenck and colleagues, anxiety interferes with cognitive processing by prioritizing bottom-up attentional processes over top-down attentional processes, leading to competition for access to limited resources in working memory, particularly the central executive (Eysenck, Derakshan, Santos, & Calvo, ). However, previous research using the n-back working memory task suggests that working memory load also reduces state anxiety. Assuming that similar mechanisms underlie the effect of anxiety on cognition, and the effect of cognition on anxiety, one possible implication of the ACT would suggest that the reduction of state anxiety with increasing working memory load is driven by activation of central executive attentional control processes. We tested this hypothesis using the Sternberg working memory paradigm, where maintenance processes can be isolated from central executive processes (Altamura et al., ; Sternberg, ). Consistent with the n-back results, subjects showed decreased state anxiety during the maintenance period of high-load trials relative to low-load trials, suggesting that maintenance processes alone are sufficient to achieve this state anxiety reduction. Given that the Sternberg task does not require central executive engagement, these results are not consistent with an implication of the ACT where the cognition/anxiety relationship and anxiety/cognition relationship are mediated by similar central executive mechanisms. Instead, we propose an extension of the ACT such that engaging working memory maintenance suppresses state anxiety in a load-dependent manner. Furthermore, we hypothesize that the efficacy of this effect may moderate the effect of trait anxiety on cognition.

  5. High Resolution Quantification of Cellular Forces for Rigidity Sensing

    NASA Astrophysics Data System (ADS)

    Liu, Shuaimin

    This thesis describes a comprehensive study of understanding the mechanism of rigidity sensing by quantitative analysis using submicron pillar array substrates. From mechanobiology perspective, we explore and study molecular pathways involved in rigidity and force sensing at cell-matrix adhesions with regard to cancer, regeneration, and development by quantification methods. In Chapter 2 and 3, we developed fabrication and imaging techniques to enhance the performance of a submicron pillar device in terms of spatial and temporal measurement ability, and we discovered a correlation of rigidity sensing forces and corresponding proteins involved in the early rigidity sensing events. In Chapter 2, we introduced optical effect arising from submicron structure imaging, and we described a technique to identify the correct focal plane of pillar tip by fabricating a substrate with designed-offset pillars. From calibration result, we identified the correct focal plane that was previously overlooked, and verified our findings by other imaging techniques. In Chapter 3, we described several techniques to selectively functionalize elastomeric pillars top and compared these techniques in terms of purposes and fabrication complexity. Techniques introduced in this chapter included direct labeling, such as stamping of fluorescent substances (organic dye, nano-diamond, q-dot) to pillars top, as well as indirect labeling that selectively modify the surface of molds with either metal or fluorescent substances. In Chapter 4, we examined the characteristics of local contractility forces and identified the components formed a sarcomere like contractile unit (CU) that cells use to sense rigidity. CUs were found to be assembled at cell edge, contain myosin II, alpha-actinin, tropomodulin and tropomyosin (Tm), and resemble sarcomeres in size (˜2 mum) and function. Then we performed quantitative analysis of CUs to evaluate rigidity sensing activity over ˜8 hours time course and found that

  6. [Food self-sufficiency and the population problem in Rwanda].

    PubMed

    Tallon, F

    1988-12-01

    Food self-sufficiency is a central element of Rwanda's development policy and planning. The goal of providing each individual with at least 2100 calories per day will require increased agricultural productivity and more moderate population growth. The actions required to achieve a better balance between food production and population growth will be very difficult to achieve in Rwanda. In the past, famines resulting from war, rainfall irregularities, or other natural disasters regularly decimated the population. The last famine, in 1943-44, may have killed 1 million inhabitants of Rwanda-Urundi. Between 1966-83, the population grew from 3.3 to 5.9 million, an increase of 78%, while food production increased from 2.3 to 4.7 million tons, or 104%. The increase was due to a doubling of cultivated land, from 308,000 to 615,000 hectares, achieved by utilizing marginal lands, pastures, and forests, and by shortening fallow periods. By 1983, under pressure of population growth, the average family plot had fallen to .88 hectare. The current nutritional status of the population is in precarious balance, with adequate calorie production overall, but women and children suffer endemic malnutrition in some population sectors, leaving them vulnerable to disease and death. If population increases as projected to over 10 million in the year 2000, the average family plot may decline to scarcely 1/2 hectare. Innovations such as improved seed selection, more productive crops, use of fertilizers, and crop rotation will be required to avoid drastic declines in productivity due to soil exhaustion and erosion. Rwanda's annual population growth rate of 3.7% is the 2nd highest in the world. Fertility reduction will clearly be necessary but difficult to achieve because of the pronatalist attitudes of the population and widespread inability to envision a different future. The 1983 fertility survey indicated that 31% of married women wanted to use contraception, but despite availability of

  7. Cellular contractility changes are sufficient to drive epithelial scattering.

    PubMed

    Hoj, Jacob P; Davis, John A; Fullmer, Kendra E; Morrell, David J; Saguibo, Nicholas E; Schuler, Jeffrey T; Tuttle, Kevin J; Hansen, Marc D H

    2014-08-15

    inhibition of cell scattering following HGF treatment. Interestingly, restoration of myosin-based contractility in blebbistatin-treated cells results in cell scattering, including global actin rearrangements. Scattering is reminiscent of HGF-induced epithelial scattering without a concomitant increase in cell migration or decrease in adhesion strength. This scattering is dependent on RhoA, as blebbistatin-induced scattering is reduced in cells expressing dominant-negative RhoA mutants. This suggests that induction of myosin-based cellular contractility may be sufficient for cell-cell detachment during epithelial scattering.

  8. Nonlinear optical properties of rigid-rod polymers

    NASA Technical Reports Server (NTRS)

    Trimmer, Mark S.; Wang, Ying

    1992-01-01

    The purpose of this research project was to integrate enhanced third order nonlinear optical (NLO) properties, especially high x(exp (3)) (greater than 10(exp -8) esu), into Maxdem's novel conjugated rigid-rod polymers while retaining their desirable processing, mechanical, and thermal properties. This work primarily involved synthetic approaches to optimized materials.

  9. Design of the new rigid endoscope distortion measurement system

    NASA Astrophysics Data System (ADS)

    Zhai, Xiaohao; Liu, Xiaohua; Liu, Ming; Hui, Mei; Dong, Liquan; Zhao, Yuejin; Wang, Yakun; Li, Yonghui; Zhou, Peng

    2015-08-01

    Endoscopic imaging quality affects industrial safety and medical security. Rigid endoscope distortion is of great signification as one of optical parameters to evaluate the imaging quality. This paper introduces a new method of rigid endoscope distortion measurement, which is different from the common methods with low accuracy and fussy operation. It contains a Liquid Crystal Display (LCD) to display the target, a CCD to obtain the images with distortion, and a computer to process the images. The LCD is employed instead of common white screen. The autonomous control system of LCD makes it showing the test target designed for distortion, and its parameter is known. LCD control system can change the test target to satisfy the different demand for accuracy, which avoids replacing target frequently. The test system also contains a CCD to acquire images in the exit pupil position of rigid endoscope. Rigid endoscope distortion is regarded as centrosymmetric, and the MATLAB software automatically measures it by processing the images from CCD. The MATLAB software compares target images with that without distortion on LCD and calculates the results. Relative distortion is obtained at different field of view (FOV) radius. The computer plots the curve of relative distortion, abscissa means radius of FOV, ordinate means relative distortion. The industry standard shows that, the distortion at 70% field of view is pointed on the curve, which can be taken as an evaluation standard. This new measuring method achieves advantages of high precision, high degree of intelligence, excellent repeatability and gets calculation results quickly.

  10. Rigidity versus flexibility: the dilemma of understanding protein thermal stability.

    PubMed

    Karshikoff, Andrey; Nilsson, Lennart; Ladenstein, Rudolf

    2015-10-01

    The role of fluctuations in protein thermostability has recently received considerable attention. In the current literature a dualistic picture can be found: thermostability seems to be associated with enhanced rigidity of the protein scaffold in parallel with the reduction of flexible parts of the structure. In contradiction to such arguments it has been shown by experimental studies and computer simulation that thermal tolerance of a protein is not necessarily correlated with the suppression of internal fluctuations and mobility. Both concepts, rigidity and flexibility, are derived from mechanical engineering and represent temporally insensitive features describing static properties, neglecting that relative motion at certain time scales is possible in structurally stable regions of a protein. This suggests that a strict separation of rigid and flexible parts of a protein molecule does not describe the reality correctly. In this work the concepts of mobility/flexibility versus rigidity will be critically reconsidered by taking into account molecular dynamics calculations of heat capacity and conformational entropy, salt bridge networks, electrostatic interactions in folded and unfolded states, and the emerging picture of protein thermostability in view of recently developed network theories. Last, but not least, the influence of high temperature on the active site and activity of enzymes will be considered.

  11. “Mind the Trap”: Mindfulness Practice Reduces Cognitive Rigidity

    PubMed Central

    Greenberg, Jonathan; Reiner, Keren; Meiran, Nachshon

    2012-01-01

    Two experiments examined the relation between mindfulness practice and cognitive rigidity by using a variation of the Einstellung water jar task. Participants were required to use three hypothetical jars to obtain a specific amount of water. Initial problems were solvable by the same complex formula, but in later problems (“critical” or “trap” problems) solving was possible by an additional much simpler formula. A rigidity score was compiled through perseverance of the complex formula. In Experiment 1, experienced mindfulness meditators received significantly lower rigidity scores than non-meditators who had registered for their first meditation retreat. Similar results were obtained in randomized controlled Experiment 2 comparing non-meditators who underwent an eight meeting mindfulness program with a waiting list group. The authors conclude that mindfulness meditation reduces cognitive rigidity via the tendency to be “blinded” by experience. Results are discussed in light of the benefits of mindfulness practice regarding a reduced tendency to overlook novel and adaptive ways of responding due to past experience, both in and out of the clinical setting. PMID:22615758

  12. Evaluation of Satisfaction and Axial Rigidity with Titan XL Cylinders

    PubMed Central

    Henry, Gerard D.; Jennermann, Caroline; Eid, J. Francois

    2012-01-01

    The inflatable penile prosthesis (IPP) has high patient satisfaction rates and good mechanical reliability rates in multiple studies. The number one patient compliant at six months is penile length. Recently, new technique for aggressive sizing of the cylinders has been published on in the literature. One IPP company has produced a new product that has longer length cylinders (XL) than those available. However, traditionally long cylinders were felt to lack axial rigidity. Therefore, a prospective, multicenter, central IRB-approved, monitored study was performed on the new product to address these concerns. At 2 centers, a total of 17 patients underwent surgical implantation of these new XL cylinders. These patients were questioned for patient satisfaction and tested for axial rigidity using a Fastsize Erectile Quality Monitor. The results showed excellent patient satisfaction rates and great axial rigidity with the Fastsize Erectile Quality Monitor. The XL cylinders appear to give the IPP surgeon the ability to use longer cylinders with good patient satisfaction and great axial rigidity. PMID:22997510

  13. 21 CFR 890.3610 - Rigid pneumatic structure orthosis.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Rigid pneumatic structure orthosis. 890.3610 Section 890.3610 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... for medical purposes to provide whole body support by means of a pressurized suit to help...

  14. 21 CFR 890.3610 - Rigid pneumatic structure orthosis.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Rigid pneumatic structure orthosis. 890.3610 Section 890.3610 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... for medical purposes to provide whole body support by means of a pressurized suit to help...

  15. 21 CFR 890.3610 - Rigid pneumatic structure orthosis.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Rigid pneumatic structure orthosis. 890.3610 Section 890.3610 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... for medical purposes to provide whole body support by means of a pressurized suit to help...

  16. Method for making one-container rigid foam

    DOEpatents

    Aubert, James H.

    2005-04-12

    A method of making a one-container foam by dissolving a polymer in liquified gas at a pressure greater than the vapor pressure of the liquified gas and than rapidly decreasing the pressure within approximately 60 seconds to foam a foam. The foam can be rigid and also have adhesive properties. The liquified gas used is CF₃ l or mixtures thereof.

  17. Geometric and electrostatic modeling using molecular rigidity functions

    DOE PAGES

    Mu, Lin; Xia, Kelin; Wei, Guowei

    2017-03-01

    Geometric and electrostatic modeling is an essential component in computational biophysics and molecular biology. Commonly used geometric representations admit geometric singularities such as cusps, tips and self-intersecting facets that lead to computational instabilities in the molecular modeling. Our present work explores the use of flexibility and rigidity index (FRI), which has a proved superiority in protein B-factor prediction, for biomolecular geometric representation and associated electrostatic analysis. FRI rigidity surfaces are free of geometric singularities. We propose a rigidity based Poisson–Boltzmann equation for biomolecular electrostatic analysis. These approaches to surface and electrostatic modeling are validated by a set of 21 proteins.more » Our results are compared with those of established methods. Finally, being smooth and analytically differentiable, FRI rigidity functions offer excellent curvature analysis, which characterizes concave and convex regions on protein surfaces. Polarized curvatures constructed by using the product of minimum curvature and electrostatic potential is shown to predict potential protein–ligand binding sites.« less

  18. Numerical derivation of forced nutation terms for a rigid earth

    NASA Technical Reports Server (NTRS)

    Schastok, J.; Soffel, M.; Ruder, H.

    1990-01-01

    The results of a numerical integration of the Euler equations for a rigid earth model covering a time span of 250 years are compared with Kinoshita's (1977) theory for the forced nutations and with a new nutation series by Kinoshita and Souchay. Numerical corrections to some of the analytically derived nutation terms are presented.

  19. 21 CFR 890.3610 - Rigid pneumatic structure orthosis.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Rigid pneumatic structure orthosis. 890.3610 Section 890.3610 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3610...

  20. Integrability of two interactingN-dimensional rigid bodies

    NASA Astrophysics Data System (ADS)

    Perelomov, A. M.; Ragnisco, O.; Wojciechowski, S.

    1985-12-01

    A new class of integrable Euler equations on the Lie algebra so(2n) describing twon-dimensional interacting rigid bodies is found. A Lax representation of equations of motion which depends on a spectral parameter is given and complete integrability is proved. The double hamiltonian structure and the Lax representation of the general flow is discussed.

  1. Rigid indented cylindrical cathode for X-ray tube

    DOEpatents

    Hudgens, Claude R.

    1985-01-01

    A cathode assembly for a vacuum tube includes a wire filament, a straight bular anode parallel to and surrounding the wire filament, and insulating spacers for rigidly fastening the filament with respect to the anode, and with one side of the anode indented or flattened such that only one portion of the anode is heated to emitting temperatures by the filament.

  2. 21 CFR 890.3610 - Rigid pneumatic structure orthosis.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Rigid pneumatic structure orthosis. 890.3610 Section 890.3610 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Prosthetic Devices § 890.3610...

  3. Non-rigid Face Tracking with Local Appearance Consistency Constraint

    PubMed Central

    Wang, Yang; Lucey, Simon; Cohn, Jeffrey F.; Saragih, Jason

    2010-01-01

    In this paper we present a new discriminative approach to achieve consistent and efficient tracking of non-rigid object motion, such as facial expressions. By utilizing both spatial and temporal appearance coherence at the patch level, the proposed approach can reduce ambiguity and increase accuracy. Recent research demonstrates that feature based approaches, such as constrained local models (CLMs), can achieve good performance in non-rigid object alignment/tracking using local region descriptors and a non-rigid shape prior. However, the matching performance of the learned generic patch experts is susceptible to local appearance ambiguity. Since there is no motion continuity constraint between neighboring frames of the same sequence, the resultant object alignment might not be consistent from frame to frame and the motion field is not temporally smooth. In this paper, we extend the CLM method into the spatio-temporal domain by enforcing the appearance consistency constraint of each local patch between neighboring frames. More importantly, we show that the global warp update can be optimized jointly in an efficient manner using convex quadratic fitting. Finally, we demonstrate that our approach receives improved performance for the task of non-rigid facial motion tracking on the videos of clinical patients. PMID:25242852

  4. Knowledge-In-Action: An Example with Rigid Body Motion

    ERIC Educational Resources Information Center

    Da Costa, Sayonara Salvador Cabral; Moreira, Marco Antonio

    2005-01-01

    This paper reports the analysis of the resolution of a paper-and-pencil problem, by eight undergraduate students majoring in engineering (six) and physics (two) at the Pontifcia Universidade Catlica do Rio Grande do Sul, in Porto Alegre, Brazil. The problem concerns kinetics of a rigid body, and the analysis was done in the light of Johnson-Lairds…

  5. The rigid-flexible nonlinear robotic manipulator: Modeling and control

    NASA Astrophysics Data System (ADS)

    Fenili, André; Balthazar, José Manoel

    2011-05-01

    The State-Dependent Riccati Equation (SDRE) control of a nonlinear rigid-flexible two link robotic manipulator is investigated. Different cases are considered assuming small deviations and large deviations from the desired final states. The nonlinear governing equations of motion are coupled, providing considerable excitation of all the nonlinear terms. The results present satisfactory final states but also undesirable overshoot.

  6. An Experiment on the Inertial Properties of a Rigid Body.

    ERIC Educational Resources Information Center

    Armstrong, H. L.

    1985-01-01

    Presents an experiment which focuses on the inertial properties of a rigid body as expressed in terms of principal axes and moments of inertia. Background information, a description of the apparatus needed, and a discussion of results obtained are included. (JN)

  7. Accuracy limit of rigid 3-point water models

    NASA Astrophysics Data System (ADS)

    Izadi, Saeed; Onufriev, Alexey V.

    2016-08-01

    Classical 3-point rigid water models are most widely used due to their computational efficiency. Recently, we introduced a new approach to constructing classical rigid water models [S. Izadi et al., J. Phys. Chem. Lett. 5, 3863 (2014)], which permits a virtually exhaustive search for globally optimal model parameters in the sub-space that is most relevant to the electrostatic properties of the water molecule in liquid phase. Here we apply the approach to develop a 3-point Optimal Point Charge (OPC3) water model. OPC3 is significantly more accurate than the commonly used water models of same class (TIP3P and SPCE) in reproducing a comprehensive set of liquid bulk properties, over a wide range of temperatures. Beyond bulk properties, we show that OPC3 predicts the intrinsic charge hydration asymmetry (CHA) of water — a characteristic dependence of hydration free energy on the sign of the solute charge — in very close agreement with experiment. Two other recent 3-point rigid water models, TIP3PFB and H2ODC, each developed by its own, completely different optimization method, approach the global accuracy optimum represented by OPC3 in both the parameter space and accuracy of bulk properties. Thus, we argue that an accuracy limit of practical 3-point rigid non-polarizable models has effectively been reached; remaining accuracy issues are discussed.

  8. Accuracy limit of rigid 3-point water models.

    PubMed

    Izadi, Saeed; Onufriev, Alexey V

    2016-08-21

    Classical 3-point rigid water models are most widely used due to their computational efficiency. Recently, we introduced a new approach to constructing classical rigid water models [S. Izadi et al., J. Phys. Chem. Lett. 5, 3863 (2014)], which permits a virtually exhaustive search for globally optimal model parameters in the sub-space that is most relevant to the electrostatic properties of the water molecule in liquid phase. Here we apply the approach to develop a 3-point Optimal Point Charge (OPC3) water model. OPC3 is significantly more accurate than the commonly used water models of same class (TIP3P and SPCE) in reproducing a comprehensive set of liquid bulk properties, over a wide range of temperatures. Beyond bulk properties, we show that OPC3 predicts the intrinsic charge hydration asymmetry (CHA) of water - a characteristic dependence of hydration free energy on the sign of the solute charge - in very close agreement with experiment. Two other recent 3-point rigid water models, TIP3PFB and H2ODC, each developed by its own, completely different optimization method, approach the global accuracy optimum represented by OPC3 in both the parameter space and accuracy of bulk properties. Thus, we argue that an accuracy limit of practical 3-point rigid non-polarizable models has effectively been reached; remaining accuracy issues are discussed.

  9. Multifocal rigid gas permeable contact lenses with reduced halo

    NASA Astrophysics Data System (ADS)

    ben Yaish, Shai; Zlotnik, Alex; Limon, Ofer; Lahav Yacouel, Karen; Doron, Ravid; Zalevsky, Zeev

    2014-05-01

    In this communication we present the first dispensing medical trial in which we successfully report on testing of novel extended depth of focus rigid gas permeable (RGP) contact lenses having reduced halo and distinct focal peaks for near and far distance vision.

  10. [Lens prescription for rigid contact lenses in keratoconus].

    PubMed

    Manea, Georgiana

    2012-01-01

    Rigid Gas-Permeable contact lenses is a less risky option for improving the quality of vision in corneal ectasias such as keratoconus. They reshape the corneal surface (flattens the cornea) so that in most cases, with a proper lens, the patient can reach a visual acuity of 20/20.

  11. Review of Intrathecal Baclofen Therapy for Spastic and Rigidity Disorders

    ERIC Educational Resources Information Center

    Obringer, S. John; Coffey, Kenneth M.

    2002-01-01

    Intrathecal baclofen therapy, a treatment for cerebral palsy and other spastic and rigidity disorders, is showing promise as an effective intervention. This article synthesizes both the medical and rehabilitation conceptual literature to update educators and related service providers as to the efficacy of this intervention. Implications for…

  12. Deformable registration of multi-modal data including rigid structures

    SciTech Connect

    Huesman, Ronald H.; Klein, Gregory J.; Kimdon, Joey A.; Kuo, Chaincy; Majumdar, Sharmila

    2003-05-02

    Multi-modality imaging studies are becoming more widely utilized in the analysis of medical data. Anatomical data from CT and MRI are useful for analyzing or further processing functional data from techniques such as PET and SPECT. When data are not acquired simultaneously, even when these data are acquired on a dual-imaging device using the same bed, motion can occur that requires registration between the reconstructed image volumes. As the human torso can allow non-rigid motion, this type of motion should be estimated and corrected. We report a deformation registration technique that utilizes rigid registration for bony structures, while allowing elastic transformation of soft tissue to more accurately register the entire image volume. The technique is applied to the registration of CT and MR images of the lumbar spine. First a global rigid registration is performed to approximately align features. Bony structures are then segmented from the CT data using semi-automated process, and bounding boxes for each vertebra are established. Each CT subvolume is then individually registered to the MRI data using a piece-wise rigid registration algorithm and a mutual information image similarity measure. The resulting set of rigid transformations allows for accurate registration of the parts of the CT and MRI data representing the vertebrae, but not the adjacent soft tissue. To align the soft tissue, a smoothly-varying deformation is computed using a thin platespline(TPS) algorithm. The TPS technique requires a sparse set of landmarks that are to be brought into correspondence. These landmarks are automatically obtained from the segmented data using simple edge-detection techniques and random sampling from the edge candidates. A smoothness parameter is also included in the TPS formulation for characterization of the stiffness of the soft tissue. Estimation of an appropriate stiffness factor is obtained iteratively by using the mutual information cost function on the result

  13. How rigid is a rigid plate? Geodetic constraint from the TrigNet CGPS network, South Africa

    NASA Astrophysics Data System (ADS)

    Malservisi, Rocco; Hugentobler, Urs; Wonnacott, Richard; Hackl, Matthias

    2013-03-01

    Rigidity and continuity of the Nubia plate is a fundamental assumption for the kinematic description, the dynamic implications of its interaction with surrounding plates and ultimately an important constraint to the geodynamics processes involved in continental lithospheric rupture. Geophysical, neotectonic and geodynamics considerations suggest the possibility that the Nubia plate is not completely rigid but could be undergoing internal deformation due to the southward propagation of the East African Rift. Here, we utilize the South African TrigNet geodetic network to evaluate the amount of internal deformation within the South African region and the possibility of motion between South Africa and the rest of the African continent. Our results show that the South African region behaves rigidly, with deformation of the order of 1 nanostrain yr-1 or less. The analysis shows some higher strain rates in the eastern region, and the presence of spatially correlated residuals in the Cape Town region and the region east of Johannesburg. Although not statistically significant, the spatial coherence of those residuals could indicate tectonic activity. A comparison of the Euler vector for the South African region with previously published Euler poles for the Nubia plate as well as the analysis of the residuals of Nubia sites with respect to a `rigid' TrigNet are compatible with clockwise rotation of the South African block with respect to the African continent, consistent with a propagation of the East Africa Rift along the Okavango region.

  14. Investigation of the Rigid Amorphous Fraction in Nylon-6

    SciTech Connect

    Chen,H.; Cebe, P.

    2007-01-01

    A three-phase model, comprising crystalline, mobile amorphous, and rigid amorphous fractions (X{sub c}, X{sub MA}, X{sub rA}, respectively) has been applied in the study of semicrystalline Nylon-6. The samples studied were Nylon-6 alpha phase prepared by subsequent annealing of a parent sample slowly cooled from the melt. The treated samples were annealed at 110 C, then briefly heated to 136 C, then re-annealed at 110 C. Temperature-modulated differential scanning calorimetry (TMDSC) measurements allow the devitrification of the rigid amorphous fraction to be examined. We observe a lower endotherm, termed the 'annealing' peak in the non-reversing heat flow after annealing at 110 C. By brief heating above this lower endotherm and immediately quenching in LN{sub 2}-cooled glass beads, the glass transition temperature and X{sub RA} decrease substantially, X{sub MA} increases, and the annealing peak disappears. The annealing peak corresponds to the point at which partial de-vitrification of the rigid amorphous fraction (RAF) occurs. Re-annealing at 110 C causes the glass transition and X{sub RA} to increase, and X{sub MA} to decrease. None of these treatments affected the measured degree of crystallinity, but it cannot be excluded that crystal reorganization or recrystallization may also occur at the annealing peak, contributing to the de-vitrification of the rigid amorphous fraction. Using a combined approach of thermal analysis with wide and small angle X-ray scattering, we analyze the location of the rigid amorphous and mobile amorphous fractions within the context of the Heterogeneous and Homogeneous Stack Models. Results show the homogeneous stack model is the correct one for Nylon-6. The cooperativity length ({var_epsilon}{sub A}) increases with a decrease of rigid amorphous fraction, or, increase of the mobile amorphous fraction. Devitrification of some of the RAF leads to the broadening of the glass transition region and shift of T{sub g}.

  15. Non-Rigid Registration of Liver CT Images for CT-Guided Ablation of Liver Tumors.

    PubMed

    Luu, Ha Manh; Klink, Camiel; Niessen, Wiro; Moelker, Adriaan; Walsum, Theo van

    2016-01-01

    CT-guided percutaneous ablation for liver cancer treatment is a relevant technique for patients not eligible for surgery and with tumors that are inconspicuous on US imaging. The lack of real-time imaging and the use of a limited amount of CT contrast agent make targeting the tumor with the needle challenging. In this study, we evaluate a registration framework that allows the integration of diagnostic pre-operative contrast enhanced CT images and intra-operative non-contrast enhanced CT images to improve image guidance in the intervention. The liver and tumor are segmented in the pre-operative contrast enhanced CT images. Next, the contrast enhanced image is registered to the intra-operative CT images in a two-stage approach. First, the contrast-enhanced diagnostic image is non-rigidly registered to a non-contrast enhanced image that is conventionally acquired at the start of the intervention. In case the initial registration is not sufficiently accurate, a refinement step is applied using non-rigid registration method with a local rigidity term. In the second stage, the intra-operative CT-images that are used to check the needle position, which often consist of only a few slices, are registered rigidly to the intra-operative image that was acquired at the start of the intervention. Subsequently, the diagnostic image is registered to the current intra-operative image, using both transformations, this allows the visualization of the tumor region extracted from pre-operative data in the intra-operative CT images containing needle. The method is evaluated on imaging data of 19 patients at the Erasmus MC. Quantitative evaluation is performed using the Dice metric, mean surface distance of the liver border and corresponding landmarks in the diagnostic and the intra-operative images. The registration of the diagnostic CT image to the initial intra-operative CT image did not require a refinement step in 13 cases. For those cases, the resulting registration had a Dice

  16. Non-Rigid Registration of Liver CT Images for CT-Guided Ablation of Liver Tumors

    PubMed Central

    Luu, Ha Manh; Klink, Camiel; Niessen, Wiro; Moelker, Adriaan; van Walsum, Theo

    2016-01-01

    CT-guided percutaneous ablation for liver cancer treatment is a relevant technique for patients not eligible for surgery and with tumors that are inconspicuous on US imaging. The lack of real-time imaging and the use of a limited amount of CT contrast agent make targeting the tumor with the needle challenging. In this study, we evaluate a registration framework that allows the integration of diagnostic pre-operative contrast enhanced CT images and intra-operative non-contrast enhanced CT images to improve image guidance in the intervention. The liver and tumor are segmented in the pre-operative contrast enhanced CT images. Next, the contrast enhanced image is registered to the intra-operative CT images in a two-stage approach. First, the contrast-enhanced diagnostic image is non-rigidly registered to a non-contrast enhanced image that is conventionally acquired at the start of the intervention. In case the initial registration is not sufficiently accurate, a refinement step is applied using non-rigid registration method with a local rigidity term. In the second stage, the intra-operative CT-images that are used to check the needle position, which often consist of only a few slices, are registered rigidly to the intra-operative image that was acquired at the start of the intervention. Subsequently, the diagnostic image is registered to the current intra-operative image, using both transformations, this allows the visualization of the tumor region extracted from pre-operative data in the intra-operative CT images containing needle. The method is evaluated on imaging data of 19 patients at the Erasmus MC. Quantitative evaluation is performed using the Dice metric, mean surface distance of the liver border and corresponding landmarks in the diagnostic and the intra-operative images. The registration of the diagnostic CT image to the initial intra-operative CT image did not require a refinement step in 13 cases. For those cases, the resulting registration had a Dice

  17. Optical detection of nanometric thermal fluctuations to measure the stiffness of rigid superparamagnetic microrods.

    PubMed

    Gerbal, Fabien; Wang, Yuan

    2017-03-07

    The rigidity of numerous biological filaments and crafted microrods has been conveniently deduced from the analysis of their thermal fluctuations. However, the difficulty of measuring nanometric displacements with an optical microscope has so far limited such studies to sufficiently flexible rods, of which the persistence length ([Formula: see text]) rarely exceeds 1 m at room temperature. Here, we demonstrate the possibility to probe 10-fold stiffer rods by a combination of superresolutive optical methods and a statistical analysis of the data based on a recent theoretical model that predicts the amplitude of the fluctuations at any location of the rod [Benetatos P, Frey E (2003) Phys Rev E Stat Nonlin Soft Matter Phys 67(5):051108]. Using this approach, we report measures of [Formula: see text] up to 0.5 km. We obtained these measurements on recently designed superparamagnetic [Formula: see text]40-[Formula: see text]m-long microrods containing iron-oxide nanoparticles connected by a polymer mesh. Using their magnetic properties, we provide an alternative proof of validity of these thermal measurements: For each individual studied rod, we performed a second measure of its rigidity by deflecting it with a uniform magnetic field. The agreement between the thermal and the magnetoelastic measures was realized with more than a decade of values of [Formula: see text] from 5.1 m to 129 m, corresponding to a bending modulus ranging from 2.2 to 54 (×[Formula: see text] Jm). Despite the apparent homogeneity of the analyzed microrods, their Young modulus follows a broad distribution from 1.9 MPa to 59 MPa and up to 200 MPa, depending on the size of the nanoparticles.

  18. CONDORR--CONstrained Dynamics of Rigid Residues: a molecular dynamics program for constrained molecules.

    PubMed

    York, William S; Yi, Xiaobing

    2004-08-01

    A computer program CONDORR (CONstrained Dynamics of Rigid Residues) was developed for molecular dynamics simulations of large and/or constrained molecular systems, particularly carbohydrates. CONDORR efficiently calculates molecular trajectories on the basis of 2D or 3D potential energy maps, and can generate such maps based on a simple force field. The simulations involve three translational and three rotational degrees of freedom for each rigid, asymmetrical residue in the model. Total energy and angular momentum are conserved when no stochastic or external forces are applied to the model, if the time step is kept sufficiently short. Application of Langevin dynamics allows longer time steps, providing efficient exploration of conformational space. The utility of CONDORR was demonstrated by application to a constrained polysaccharide model and to the calculation of residual dipolar couplings for a disaccharide. [Figure: see text]. Molecular models (bottom) are created by cloning rigid residue archetypes (top) and joining them together. As defined here, the archetypes AX, HM and BG respectively correspond to an alpha-D-Xyl p residue, a hydroxymethyl group, and a beta-D-Glc p residue lacking O6, H6a and H6b. Each archetype contains atoms (indicated by boxes) that can be shared with other archetypes to form a linked structure. For example, the glycosidic link between the two D-Glc p residues is established by specifying that O1 of the nonreducing beta-D-Glc p (BG) residue (2) is identical to O4 of the reducing Glc p (BG) residue (1). The coordinates of the two residues are adjusted so as to superimpose these two (nominally distinct) atoms. Flexible hydroxymethyl (HM) groups (3 and 4) are treated as separate residues, and the torsional angles (normally indicated by the symbol omega) that define their geometric relationships to the pyranosyl rings of the BG residues are specified as psi3 and psi4, respectively. The torsional angles phi3 and phi4, defined solely to

  19. Tunable Thermoresponsiveness of Resilin via Coassembly with Rigid Biopolymers.

    PubMed

    Whittaker, Jasmin L; Dutta, Naba K; Knott, Robert; McPhee, Gordon; Voelcker, Nicolas H; Elvin, Chris; Hill, Anita; Choudhury, Namita Roy

    2015-08-18

    The ability to tune the thermoresponsiveness of recombinant resilin protein, Rec1-resilin, through a facile coassembly system was investigated in this study. The effects of change in conformation and morphology with time and the responsive behavior of Rec1-resilin in solution were studied in response to the addition of a rigid model polypeptide (poly-l-proline) or a hydrophobic rigid protein (Bombyx mori silk fibroin). It was observed that by inducing more ordered conformations and increasing the hydrophobicity the lower critical solution temperature (LCST) of the system was tuned to lower values. Time and temperature were found to be critical parameters in controlling the coassembly behavior of Rec1-resilin in both the model polypeptide and more complex protein systems. Such unique properties are useful for a wide range of applications, including drug delivery and soft tissue engineering applications.

  20. Parkinsonian Rigidity Depends on the Velocity of Passive Joint Movement

    PubMed Central

    Endo, Takuyuki; Yoshikawa, Naoya; Fujimura, Harutoshi; Sakoda, Saburo

    2015-01-01

    Background. It has been long believed that Parkinsonian rigidity is not velocity-dependent based on the neurological examination. However, this has not been verified scientifically. Methods. The elbow joints of 20 Parkinson's disease patients were passively flexed and extended, and two characteristic values, the elastic coefficient (elasticity) and the difference in bias (difference in torque measurements for extension and flexion), were identified from a plot of the angle and torque characteristics. Flexion and extension were done at two different velocities, 60°/s and 120°/s, and a statistical analysis was performed to determine whether the changes in these characteristic values were velocity-dependent. Results. The elastic coefficient was not velocity-dependent, but the difference in bias increased in a velocity-dependent manner (P = 0.0017). Conclusions. The features of rigidity may differ from the conventional definition, which states that they are not dependent on the velocity of joint movement. PMID:26788403

  1. A density-independent rigidity transition in biological tissues

    NASA Astrophysics Data System (ADS)

    Bi, Dapeng; Lopez, J. H.; Schwarz, J. M.; Manning, M. Lisa

    2015-12-01

    Cell migration is important in many biological processes, including embryonic development, cancer metastasis and wound healing. In these tissues, a cell’s motion is often strongly constrained by its neighbours, leading to glassy dynamics. Although self-propelled particle models exhibit a density-driven glass transition, this does not explain liquid-to-solid transitions in confluent tissues, where there are no gaps between cells and therefore the density is constant. Here we demonstrate the existence of a new type of rigidity transition that occurs in the well-studied vertex model for confluent tissue monolayers at constant density. We find that the onset of rigidity is governed by a model parameter that encodes single-cell properties such as cell-cell adhesion and cortical tension, providing an explanation for liquid-to-solid transitions in confluent tissues and making testable predictions about how these transitions differ from those in particulate matter.

  2. Properties of rigid films made of PVC nanocomposites

    NASA Astrophysics Data System (ADS)

    Obloj-Muzaj, Maria; Abramowicz, Agnieszka; Kumosinski, Marcin; Zielecka, Maria; Kozakiewicz, Janusz; Gorska, Agnieszka

    2016-05-01

    PVC nanocomposites containing 0.5 wt. %/VCM of either nanosilica or hybrid core/shell type nanofiller were produced in-situ in suspension polymerisation and rigid films were prepared. The composites obtained were applied in the blends for rigid films. The properties of them were checked and showed advantageous differences in tear resistance and tensile impact properties. It appeared the composites properties let reduce the amount of impact modifiers in the blends at least 40 %. The PVC/SiO2 composite shows the best properties. Even for the blend containing 0.7 part of standard amount of impact modifier (suitable for this formulation) all the properties (except tensile impact strength crosswise) are significantly better than those of PVC blend with full amount of impact modifier.

  3. One-DOF Superimposed Rigid Origami with Multiple States

    NASA Astrophysics Data System (ADS)

    Liu, Xiang; Gattas, Joseph M.; Chen, Yan

    2016-11-01

    Origami-inspired engineering design is increasingly used in the development of self-folding structures. The majority of existing self-folding structures either use a bespoke crease pattern to form a single structure, or a universal crease pattern capable of forming numerous structures with multiple folding steps. This paper presents a new approach whereby multiple distinct, rigid-foldable crease patterns are superimposed in the same sheet such that kinematic independence and 1-DOF mobility of each individual pattern is preserved. This is enabled by the cross-crease vertex, a special configuration consisting of two pairs of collinear crease lines, which is proven here by means of a kinematic analysis to contain two independent 1-DOF rigid-foldable states. This enables many new origami-inspired engineering design possibilities, with two explored in depth: the compact folding of non-flat-foldable structures and sequent folding origami that can transform between multiple states without unfolding.

  4. One-DOF Superimposed Rigid Origami with Multiple States.

    PubMed

    Liu, Xiang; Gattas, Joseph M; Chen, Yan

    2016-11-10

    Origami-inspired engineering design is increasingly used in the development of self-folding structures. The majority of existing self-folding structures either use a bespoke crease pattern to form a single structure, or a universal crease pattern capable of forming numerous structures with multiple folding steps. This paper presents a new approach whereby multiple distinct, rigid-foldable crease patterns are superimposed in the same sheet such that kinematic independence and 1-DOF mobility of each individual pattern is preserved. This is enabled by the cross-crease vertex, a special configuration consisting of two pairs of collinear crease lines, which is proven here by means of a kinematic analysis to contain two independent 1-DOF rigid-foldable states. This enables many new origami-inspired engineering design possibilities, with two explored in depth: the compact folding of non-flat-foldable structures and sequent folding origami that can transform between multiple states without unfolding.

  5. Jet Ventilation during Rigid Bronchoscopy in Adults: A Focused Review.

    PubMed

    Putz, Laurie; Mayné, Alain; Dincq, Anne-Sophie

    2016-01-01

    The indications for rigid bronchoscopy for interventional pulmonology have increased and include stent placements and transbronchial cryobiopsy procedures. The shared airway between anesthesiologist and pulmonologist and the open airway system, requiring specific ventilation techniques such as jet ventilation, need a good understanding of the procedure to reduce potentially harmful complications. Appropriate adjustment of the ventilator settings including pause pressure and peak inspiratory pressure reduces the risk of barotrauma. High frequency jet ventilation allows adequate oxygenation and carbon dioxide removal even in cases of tracheal stenosis up to frequencies of around 150 min(-1); however, in an in vivo animal model, high frequency jet ventilation along with normal frequency jet ventilation (superimposed high frequency jet ventilation) has been shown to improve oxygenation by increasing lung volume and carbon dioxide removal by increasing tidal volume across a large spectrum of frequencies without increasing barotrauma. General anesthesia with a continuous, intravenous, short-acting agent is safe and effective during rigid bronchoscopy procedures.

  6. Microfluidic synthesis of rigid nanovesicles for hydrophilic reagents delivery.

    PubMed

    Zhang, Lu; Feng, Qiang; Wang, Jiuling; Sun, Jiashu; Shi, Xinghua; Jiang, Xingyu

    2015-03-23

    We present a hollow-structured rigid nanovesicle (RNV) fabricated by a multi-stage microfluidic chip in one step, to effectively entrap various hydrophilic reagents inside, without complicated synthesis, extensive use of emulsifiers and stabilizers, and laborious purification procedures. The RNV contains a hollow water core, a rigid poly (lactic-co-glycolic acid) (PLGA) shell, and an outermost lipid layer. The formation mechanism of the RNV is investigated by dissipative particle dynamics (DPD) simulations. The entrapment efficiency of hydrophilic reagents such as calcein, rhodamine B and siRNA inside the hollow water core of RNV is ≈90 %. In comparison with the combination of free Dox and siRNA, RNV that co-encapsulate siRNA and doxorubicin (Dox) reveals a significantly enhanced anti-tumor effect for a multi-drug resistant tumor model.

  7. Giant papillary conjunctivitis associated with rigid gas permeable contact lenses.

    PubMed

    Douglas, J P; Lowder, C Y; Lazorik, R; Meisler, D M

    1988-01-01

    Giant papillary conjunctivitis (GPC) is an external ocular inflammatory disorder associated with contact lens wear. GPC seems to occur less frequently with hard than with soft contact lens wear. The management of soft contact lens related GPC has included refitting with hard lenses, specifically the newer rigid gas permeable (RGP) lenses. We retrospectively studied 14 RGP lens wearers in whom GPC developed. Three patients had had GPC associated with soft contact lens wear and had been fitted with RGP lenses in an effort to restore contact lens tolerance. The interval of time between the initiation of RGP lens wear and the onset of GPC was inversely related to the lens oxygen transmissibility (DK value). Ophthalmologists should be aware of the association between GPC and rigid gas permeable lens wear.

  8. Rigid amorphous fraction of Nylon 11 determined from TMDSC

    NASA Astrophysics Data System (ADS)

    Mao, Bin; Cebe, Peggy

    2012-02-01

    High precision, high accuracy heat capacity measurements were used to study both neat Nylon 11 and Nylon 11 nanocomposites which had been prepared by different processing procedures. The heat capacity step at the glass transition temperature was characterized from the reversing flow using temperature modulated differential scanning calorimetry, and this allows us to determine the mobile amorphous fraction. Heat fusion was obtained from endotherm area of the total heat flow curve, and was correlated with the degree of crystallinity determined from X-ray diffraction. Based on three phase model of the semicrystalline polymer structure, the rigid amorphous fraction (RAF) in Nylon 11 could be calculated. Studied Nylon 11 samples include solution cast, liquid quenched, and isothermally crystallized films, solution cast films containing multi-walled carbon nanotubes, and electrospun fibers. We observed that a rigid amorphous fraction exists in all Nylon 11 samples, and the amount of RAF is strongly dependent upon the crystalline fraction and the nanofiller content.

  9. Relativistic Double Group Spinor Representations of Non-rigid Molecules

    SciTech Connect

    Balasubramanian, K

    2003-12-22

    The character theory of relativistic double group spinor representations is developed in order to represent the total rovibronic states of non-rigid molecules. It is shown that the double groups can be represented in terms of wreath products and powerful matrix cycle type generators that are used to construct their character tables. It is shown that these tables are of use when spin-orbit coupling is included in the hamiltonian even for molecules containing lighter atoms. Applications to non-rigid molecules such as Tl{sub 2}H{sub 4} /Tl{sub 2}H{sub 4}{sup +} are considered. It is shown that the tunneling splittings and the nuclear spin statistical weights can be obtained for such species using the character tables thus constructed. The spinor double groups of several other molecules such as hexamethyl dilead and heavy weakly bound clusters such as (PoH{sub 2}){sub 4} are also considered.

  10. One-DOF Superimposed Rigid Origami with Multiple States

    PubMed Central

    Liu, Xiang; Gattas, Joseph M.; Chen, Yan

    2016-01-01

    Origami-inspired engineering design is increasingly used in the development of self-folding structures. The majority of existing self-folding structures either use a bespoke crease pattern to form a single structure, or a universal crease pattern capable of forming numerous structures with multiple folding steps. This paper presents a new approach whereby multiple distinct, rigid-foldable crease patterns are superimposed in the same sheet such that kinematic independence and 1-DOF mobility of each individual pattern is preserved. This is enabled by the cross-crease vertex, a special configuration consisting of two pairs of collinear crease lines, which is proven here by means of a kinematic analysis to contain two independent 1-DOF rigid-foldable states. This enables many new origami-inspired engineering design possibilities, with two explored in depth: the compact folding of non-flat-foldable structures and sequent folding origami that can transform between multiple states without unfolding. PMID:27830732

  11. The ‘twin paradox’ in relativistic rigid motion

    NASA Astrophysics Data System (ADS)

    Ben-Ya'acov, Uri

    2016-09-01

    Relativistic rigid motion suggests a new version for the so-called ‘twin paradox’, comparing the ages of two astronauts on a very long spaceship. Although there is always an instantaneous inertial frame in which the whole spaceship, being rigid, is simultaneously at rest, the twins’ ages, measured as the proper-times along their individual world lines, are different when they are located at remote parts of the spaceship. The age, or proper-time, difference depends on the distance at rest between the astronauts and the rapidity difference between start to end. The relation of the age difference with the relative Doppler shift of light signals transmitted between the astronauts and implications for the possibility to assign a common age (proper-time) to complex, spatially extended, relativistic systems are also discussed.

  12. Adrenal insufficiency presenting as bilateral rigid auricles: a case report

    PubMed Central

    2014-01-01

    Introduction Stiff ears appear to be a warning sign for adrenal insufficiency. This remarkable and rare sign has not been described to present in adrenal insufficiency in the setting of critical care. Case presentation We present the case of a 68-year-old Caucasian male who underwent a thymoma resection and suffered from preoperative weight loss and lack of strength. The perioperative phase was characterised by hypotension and sputum stasis due to muscle weakness, which caused two readmissions to the intensive care unit. His physical examination showed two fully rigid auricles. In retrospect, our patient suffered from secondary adrenal insufficiency and hypogonadism. Conclusions The bilateral rigid auricles appeared to be a warning sign for adrenal insufficiency. This remarkable sign is easily checked, and should prompt a higher index of suspicion towards adrenal insufficiency and other hormonal deficiencies. PMID:25209544

  13. Electrical conductivity of rigid polyurethane foam at high temperature

    NASA Astrophysics Data System (ADS)

    Johnson, R. T., Jr.

    1982-08-01

    The electrical conductivity of rigid polyurethane foam, used for electronic encapsulation, was measured during thermal decomposition to 3400 C. At higher temperatures the conductance continues to increase. With pressure loaded electrical leads, sample softening results in eventual contact between electrodes which produces electrical shorting. Air and nitrogen environments show no significant dependence of the conductivity on the atmosphere over the temperature range. The insulating characteristics of polyurethane foam below approx. 2700 C are similar to those for silicone based materials used for electronic case housings and are better than those for phenolics. At higher temperatures (greater than or equal to 2700 C) the phenolics appear to be better insulators to approx. 5000 C and the silicones to approx. 6000 C. It is concluded that the Sylgard 184/GMB encapsulant is a significantly better insulator at high temperature than the rigid polyurethane foam.

  14. Geomagnetic Cutoff Rigidity Computer Program: Theory, Software Description and Example

    NASA Technical Reports Server (NTRS)

    Smart, D. F.; Shea, M. A.

    2001-01-01

    The access of charged particles to the earth from space through the geomagnetic field has been of interest since the discovery of the cosmic radiation. The early cosmic ray measurements found that cosmic ray intensity was ordered by the magnetic latitude and the concept of cutoff rigidity was developed. The pioneering work of Stoermer resulted in the theory of particle motion in the geomagnetic field, but the fundamental mathematical equations developed have 'no solution in closed form'. This difficulty has forced researchers to use the 'brute force' technique of numerical integration of individual trajectories to ascertain the behavior of trajectory families or groups. This requires that many of the trajectories must be traced in order to determine what energy (or rigidity) a charged particle must have to penetrate the magnetic field and arrive at a specified position. It turned out the cutoff rigidity was not a simple quantity but had many unanticipated complexities that required many hundreds if not thousands of individual trajectory calculations to solve. The accurate calculation of particle trajectories in the earth's magnetic field is a fundamental problem that limited the efficient utilization of cosmic ray measurements during the early years of cosmic ray research. As the power of computers has improved over the decades, the numerical integration procedure has grown more tractable, and magnetic field models of increasing accuracy and complexity have been utilized. This report is documentation of a general FORTRAN computer program to trace the trajectory of a charged particle of a specified rigidity from a specified position and direction through a model of the geomagnetic field.

  15. Water vapor permeability of the rigid-shelled gecko egg.

    PubMed

    Andrews, Robin M

    2012-07-01

    The vast majority of squamate reptiles (lizards and snakes) produce parchment-shelled eggs that absorb water during incubation, and thus increase in mass, volume, and surface area. In contrast, females from a single monophyletic lineage of gekkotan lizards produce rigid-shelled eggs. These eggs are functionally comparable to those of birds, that is, at oviposition, eggs contain all the water needed for development, and their mass decreases during incubation via the diffusion of water vapor through the shell. I determined patterns of water loss and shell permeability to water vapor from oviposition to hatching for the rigid-shelled eggs of the gekkonid Chrondrodactylus turneri and compared permeability of C. turneri eggs to those of birds and other squamates. Chrondrodactylus turneri eggs incubated at 28.5°C and 40% relative humidity (RH) decreased in mass by 14% over the course of a 68-day incubation period. The rate of water loss varied during incubation; egg mass decreased rapidly during the first 8 days of incubation, declined at a low constant rate during the next 35 days, and then decreased rapidly during the final 25 days of incubation. Overall permeability was 0.17 mg/day/kPa/cm(2) . Percent water loss of rigid-shelled gecko eggs during incubation is similar to that exhibited by birds, but water vapor permeability is about one-third that of bird eggs and several orders of magnitude lower than that of parchment-shelled squamate eggs. In general, the water economy of their eggs may be associated with the adaptive radiation of the rigid-shelled sphaerodactylid, phyllodactylid, and gekkonid geckos.

  16. As-Rigid-As-Possible molecular interpolation paths

    NASA Astrophysics Data System (ADS)

    Nguyen, Minh Khoa; Jaillet, Léonard; Redon, Stéphane

    2017-03-01

    This paper proposes a new method to generate interpolation paths between two given molecular conformations. It relies on the As-Rigid-As-Possible (ARAP) paradigm used in Computer Graphics to manipulate complex meshes while preserving their essential structural characteristics. The adaptation of ARAP approaches to the case of molecular systems is presented in this contribution. Experiments conducted on a large set of benchmarks show how such a strategy can efficiently compute relevant interpolation paths with large conformational rearrangements.

  17. A Three Dimensional Non-Singular Modelling of Rigid Manipulators.

    DTIC Science & Technology

    1987-12-01

    511111 OTC FILE COPY (1) ’ NAVAL POSTGRADUATE SCHOOL 0 ’ Monterey, California IDTIC I{ IELECTE S MAR 08 8 f 0? THESIS A THREE DIMENSIONAL NON-SINGULAR...MODELLING OF RIGID MANIPULATORS by Sadrettin Altinok December 1987 Thesis Advisor D.L. Smith Approved for public release; distribution is unlimited. 88...MASTERS THESIS FROM _ TO 1987 DECEMBER iC 6 16 SUPPLEMENTARY NOTATION 17 COSA T i CODES 18 SUBJECT TERMS (Continue on reverse f necessary and identify by

  18. Theory of the rotation of the rigid earth

    NASA Technical Reports Server (NTRS)

    Kinoshita, H.

    1977-01-01

    Equations of motion for a triaxial rigid earth are derived in Andoyer variables. The reference plane is the ecliptic of date which is moving as a result of planetary perturbations. By using this noninertial system, the development of the disturbing function for the sun and moon is simplified, with an additional term appearing in the Hamiltonian which, however, contributes only to precessional motion. The nutation terms derived are compared with those of Woolard.

  19. Anisotropy of torsional rigidity of sheet polymer composite materials

    NASA Astrophysics Data System (ADS)

    Startsev, O. V.; Kovalenko, A. A.; Nasonov, A. D.

    1999-05-01

    Wide application of polymer composite materials (PCM) in modern technology calls for detailed evaluation of their stress-strain properties in a broad temperature range. To obtain such information, we use the dynamic mechanical analysis and with the help of a reverse torsion pendulum measure the dynamic torsional rigidity of PCM bars of rectangular cross section in the temperature range up to 600 K. It is found that the temperature dependences of the dynamic rigidity of the calculated values of dynamic shear moduli are governed by the percentage and properties of the binder and fibers, the layout of fibers, the phase interaction along interfaces, etc. The principles of dynamic mechanical spectrometry are used to substantiate and analyze the parameters of anisotropy by which the behavior of a composite can be described in the temperature range including the transition of the binder from the glassy into a highly elastic state. For this purpose, the values of dynamic rigidity are measured under low-amplitude vibrations of the PCM specimens with a fiber orientation angle from 0 to 90°. It is shown that for unidirectional composites the dependence between the dynamic rigidity and the fiber orientation angle is of extreme character. The value and position of the peak depend on the type of the binder and fibers and change with temperature. It is found that the anisotropy degree of PCM is dictated by the molecular mobility and significantly changes in the temperature range of transition of the binder and reinforcement from the glassy into a highly elastic state (in the case of SVM fibers). The possibility of evaluating the anisotropy of composites with other reinforcement schemes, in particular, of orthogonally reinforced PCMs, is shown.

  20. Stability characterizations of fixtured rigid bodies with Coulomb friction

    SciTech Connect

    PANG,J.S.; TRINKLE,JEFFREY C.

    2000-02-15

    This paper formally introduces several stability characterizations of fixtured three-dimensional rigid bodies initially at rest and in unilateral contact with Coulomb friction. These characterizations, weak stability and strong stability, arise naturally from the dynamic model of the system, formulated as a complementarity problem. Using the tools of complementarity theory, these characterizations are studied in detail to understand their properties and to develop techniques to identify the stability classifications of general systems subjected to known external loads.

  1. Magnetron sputtering in rigid optical solar reflectors production

    NASA Astrophysics Data System (ADS)

    Asainov, O. Kh; Bainov, D. D.; Krivobokov, V. P.; Sidelev, D. V.

    2016-07-01

    Magnetron sputtering was applied to meet the growing need for glass optical solar reflectors. This plasma method provided more uniform deposition of the silver based coating on glass substrates resulted in decrease of defective reflectors fraction down to 5%. For instance, such parameter of resistive evaporation was of 30%. Silver film adhesion to glass substrate was enhanced with indium tin oxide sublayer. Sunlight absorption coefficient of these rigid reflectors was 0.081-0.083.

  2. Two-beam interferometer for fourier spectroscopy with rigid pendulum

    SciTech Connect

    Burkert, P.

    1983-05-17

    A two-beam interferometer for fourier spectroscopy includes a rigid pendulum structure mounting at least one of the movable retroreflectors in a fully compensated optical system immune to tilt and lateral movement distortions. The swing of the rotatably journaled pendulum accurately confines the retroreflector(s) to movement in a single plane during scanning and, due to the low heat generated in the pendulum bearings, the simple and compact structure is well adapted to be housed in a cryostat aboard a spacecraft.

  3. Non-rigid summing of gated PET via optical flow

    SciTech Connect

    Klein, G.J.; Reutter, B.W.; Huesman, R.H. |

    1996-12-31

    A method for summing together datasets from gated cardiac PET acquisitions is described. Optical flow techniques are used to accurately model non-rigid motion present during the cardiac cycle so that a one-to-one mapping is found between each voxel of two gated volumes. Using this mapping, image summing can take place, producing a composite dataset with improved statistics and reduced motion-induced blur. Results using a data from a gated cardiac study on a dog are presented.

  4. A rigid lamb syndrome in sheep in Rhodesia.

    PubMed

    Rudert, C P; Lawrence, J A; Foggin, C; Barlow, R M

    1978-04-29

    A syndrome characterised by the birth of lambs with varying degrees of rigidity of the limbs and spine has been encountered on several occasions in Rhodesia. Outbreaks have occurred in autumn-born lambs from Dorper ewes grazing heavily fertilised Star grass cv No 2 (Cynodon aethiopicus) pastures. The condition appears to be exacerbated by the application of sulphur to the pasture and is partly prevented by the administration of selenium and vitamin E to the ewes before lambing. The aetiology is unknown.

  5. Direct inversion of rigid-body rotational dynamics

    NASA Technical Reports Server (NTRS)

    Bach, Ralph; Paielli, Russell

    1990-01-01

    The global linearization (inversion) of rigid-body rotational dynamics is reviewed and representations in terms of quaternions and direction cosines are compared. Certain properties common to quaternions and direction cosines that make their use preferable to Euler angles and that simplify the inversion procedure are described. Applications of the inversion procedure for state estimation and attitude control are discussed. To avoid complexities caused by aerodynamics, an example of direct inversion for linear feedback control of spacecraft attitude is given.

  6. Direct inversion of rigid-body rotational dynamics

    NASA Technical Reports Server (NTRS)

    Bach, Ralph; Paielli, Russell

    1990-01-01

    The global linearization (inversion) of rigid-body rotational dynamics is reviewed, and representations in terms of quaternions and direction cosines are compared. Certain properties common to quaternions and direction cosines that make their use preferable to Euler angles and that simplify the inversion procedure are described. Applications of the inversion procedure for state estimation and attitude control are discussed. To avoid complexities caused by aerodynamics, an example of direct inversion for linear feedback control of spacecraft attitude is given.

  7. Field-theoretic simulations of random copolymers with structural rigidity.

    PubMed

    Mao, Shifan; MacPherson, Quinn; Qin, Jian; Spakowitz, Andrew J

    2017-04-12

    Copolymers play an important role in a range of soft-materials applications and biological phenomena. Prevalent works on block copolymer phase behavior use flexible chain models and incorporate interactions using a mean-field approximation. However, when phase separation takes place on length scales comparable to a few monomers, the structural rigidity of the monomers becomes important. In addition, concentration fluctuations become significant at short length scales, rendering the mean-field approximation invalid. In this work, we use simulation to address the role of finite monomer rigidity and concentration fluctuations in microphase segregation of random copolymers. Using a field-theoretic Monte-Carlo simulation of semiflexible polymers with random chemical sequences, we generate phase diagrams for random copolymers. We find that the melt morphology of random copolymers strongly depends on chain flexibility and chemical sequence correlation. Chemically anti-correlated copolymers undergo first-order phase transitions to local lamellar structures. With increasing degree of chemical correlation, this first-order phase transition is softened, and melts form microphases with irregular shaped domains. Our simulations in the homogeneous phase exhibit agreement with the density-density correlation from mean-field theory. However, conditions near a phase transition result in deviations between simulation and mean-field theory for the density-density correlation and the critical wavemode. Chain rigidity and sequence randomness lead to frustration in the segregated phase, introducing heterogeneity in the resulting morphologies.

  8. Service life evaluation of rigid explosive transfer lines

    NASA Technical Reports Server (NTRS)

    Bement, L. J.; Kayser, E. G.; Schimmel, M. L.

    1983-01-01

    This paper describes a joint Army/NASA-sponsored research program on the service life evaluation of rigid explosive transfer lines. These transfer lines are used to initiate emergency crew escape functions on a wide variety of military and NASA aircraft. The purpose of this program was to determine quantitatively the effects of service, age, and degradation on rigid explosive transfer lines to allow responsible, conservative, service life determination. More than 800 transfer lines were removed from the U.S. Army AH-1G and AH-1S, the U.S. Air Force B-1 and F-111, and the U.S. Navy F-14 aircraft for testing. The results indicated that the lines were not adversely affected by age, service, or a repeat of the thermal qualification tests on full-service lines. Extension of the service life of rigid explosive transfer lines should be considered, since considerable cost savings could be realized with no measurable decrease in system reliability.

  9. Fundamental Study of Emulsions Stabilized by Soft and Rigid Particles.

    PubMed

    Li, Zifu; Harbottle, David; Pensini, Erica; Ngai, To; Richtering, Walter; Xu, Zhenghe

    2015-06-16

    Two distinct uniform hybrid particles, with similar hydrodynamic diameters and comparable zeta potentials, were prepared by copolymerizing N-isopropylacrylamide (NIPAM) and styrene. These particles differed in their styrene to NIPAM (S/N) mass ratios of 1 and 8 and are referred to as S/N 1 and S/N 8, respectively. Particle S/N 1 exhibited a typical behavior of soft particles; that is, the particles shrank in bulk aqueous solutions when the temperature was increased. As a result, S/N 1 particles were interfacially active. In contrast, particle S/N 8 appeared to be rigid in response to temperature changes. In this case, the particles showed a negligible interfacial activity. Interfacial shear rheology tests revealed the increased rigidity of the particle-stabilized film formed at the heptane-water interface by S/N 1 than S/N 8 particles. As a result, S/N 1 particles were shown to be better emulsion stabilizers and emulsify a larger amount of heptane, as compared with S/N 8 particles. The current investigation confirmed a better performance of emulsion stabilization by soft particles (S/N 1) than by rigid particles (S/N 8), reinforcing the importance of controlling softness or deformability of particles for the purpose of stabilizing emulsions.

  10. Force Coefficients on Surging Rigid and Flexible Wings

    NASA Astrophysics Data System (ADS)

    Mancini, Peter; Jones, Anya; Granlund, Kenneth; Ol, Michael

    2013-11-01

    This study considers an aspect ratio 4 rigid flat plate and an aspect ratio 4.5 flexible wing, undergoing rectilinear motion in a water tunnel over several chord lengths at a Reynolds number of 20,000. Varying incidence angle, Reynolds number, and acceleration profile led to an extensive parameter study for both wings. Acceleration regions were linear with time and varied with distances of 0.25 to 6.0 chord-lengths. Measurements include lift and drag histories along with flow visualization of leading and trailing edge vortices throughout the entire motion by fluorescent dye injection illuminated by a laser sheet. A non-circulatory bump in lift coefficient at the end of the acceleration region was observed for each rigid wing case. The rigid wing also experienced a significant decrease in lift shortly after the wing reached its terminal velocity. This dip was followed by a second peak in lift around 6 chords traveled for every case, although the magnitudes differed among the acceleration profiles. Conversely, the flexible wing exhibited little to no non-circulatory peak at the end of acceleration and did not experience this dip and rise in lift. This study explores the influence of planform and chordwise flexibility on leading edge vortex formation, retention, and shedding.

  11. Cell movement is guided by the rigidity of the substrate

    NASA Technical Reports Server (NTRS)

    Lo, C. M.; Wang, H. B.; Dembo, M.; Wang, Y. L.

    2000-01-01

    Directional cell locomotion is critical in many physiological processes, including morphogenesis, the immune response, and wound healing. It is well known that in these processes cell movements can be guided by gradients of various chemical signals. In this study, we demonstrate that cell movement can also be guided by purely physical interactions at the cell-substrate interface. We cultured National Institutes of Health 3T3 fibroblasts on flexible polyacrylamide sheets coated with type I collagen. A transition in rigidity was introduced in the central region of the sheet by a discontinuity in the concentration of the bis-acrylamide cross-linker. Cells approaching the transition region from the soft side could easily migrate across the boundary, with a concurrent increase in spreading area and traction forces. In contrast, cells migrating from the stiff side turned around or retracted as they reached the boundary. We call this apparent preference for a stiff substrate "durotaxis." In addition to substrate rigidity, we discovered that cell movement could also be guided by manipulating the flexible substrate to produce mechanical strains in the front or rear of a polarized cell. We conclude that changes in tissue rigidity and strain could play an important controlling role in a number of normal and pathological processes involving cell locomotion.

  12. Peeling flexible beams in viscous fluids: Rigidity and extensional compliance

    NASA Astrophysics Data System (ADS)

    Dhong, Charles; Fréchette, Joëlle

    2017-01-01

    We describe small angle peeling measurements in completely submerged environments to study the coupling between viscous forces and the mechanical properties of the plates being peeled. During the experiments, the plates resist motion because of lubrication forces while van der Waals forces between the plates and the static surface are negligible. In particular, we study the role played by flexural rigidity in the force-displacement curves and in the energy release rate. We show that the coupling between the viscous forces and the flexural rigidity of the plates dictates the shape and magnitude of the force-displacement curves. We develop simple scaling relationships that combine the lubrication forces with an Euler-Bernoulli beam to extract how the peak force and energy release rates depend on the ratio between rigidity and viscosity, and show good agreement between the predictions and experimental results. We also show that increasing the extensional compliance leads to a decrease in both the force-displacement curve and in the energy release rate. We then demonstrate that this reduction can be interpreted in terms of a stress decay length.

  13. Cell movement is guided by the rigidity of the substrate.

    PubMed

    Lo, C M; Wang, H B; Dembo, M; Wang, Y L

    2000-07-01

    Directional cell locomotion is critical in many physiological processes, including morphogenesis, the immune response, and wound healing. It is well known that in these processes cell movements can be guided by gradients of various chemical signals. In this study, we demonstrate that cell movement can also be guided by purely physical interactions at the cell-substrate interface. We cultured National Institutes of Health 3T3 fibroblasts on flexible polyacrylamide sheets coated with type I collagen. A transition in rigidity was introduced in the central region of the sheet by a discontinuity in the concentration of the bis-acrylamide cross-linker. Cells approaching the transition region from the soft side could easily migrate across the boundary, with a concurrent increase in spreading area and traction forces. In contrast, cells migrating from the stiff side turned around or retracted as they reached the boundary. We call this apparent preference for a stiff substrate "durotaxis." In addition to substrate rigidity, we discovered that cell movement could also be guided by manipulating the flexible substrate to produce mechanical strains in the front or rear of a polarized cell. We conclude that changes in tissue rigidity and strain could play an important controlling role in a number of normal and pathological processes involving cell locomotion.

  14. New Langevin and gradient thermostats for rigid body dynamics.

    PubMed

    Davidchack, R L; Ouldridge, T E; Tretyakov, M V

    2015-04-14

    We introduce two new thermostats, one of Langevin type and one of gradient (Brownian) type, for rigid body dynamics. We formulate rotation using the quaternion representation of angular coordinates; both thermostats preserve the unit length of quaternions. The Langevin thermostat also ensures that the conjugate angular momenta stay within the tangent space of the quaternion coordinates, as required by the Hamiltonian dynamics of rigid bodies. We have constructed three geometric numerical integrators for the Langevin thermostat and one for the gradient thermostat. The numerical integrators reflect key properties of the thermostats themselves. Namely, they all preserve the unit length of quaternions, automatically, without the need of a projection onto the unit sphere. The Langevin integrators also ensure that the angular momenta remain within the tangent space of the quaternion coordinates. The Langevin integrators are quasi-symplectic and of weak order two. The numerical method for the gradient thermostat is of weak order one. Its construction exploits ideas of Lie-group type integrators for differential equations on manifolds. We numerically compare the discretization errors of the Langevin integrators, as well as the efficiency of the gradient integrator compared to the Langevin ones when used in the simulation of rigid TIP4P water model with smoothly truncated electrostatic interactions. We observe that the gradient integrator is computationally less efficient than the Langevin integrators. We also compare the relative accuracy of the Langevin integrators in evaluating various static quantities and give recommendations as to the choice of an appropriate integrator.

  15. Predicting Protein Hinge Motions and Allostery Using Rigidity Theory

    NASA Astrophysics Data System (ADS)

    Sljoka, Adnan; Bezginov, Alexandr

    2011-11-01

    Understanding how a 3D structure of a protein functions depends on predicting which regions are rigid, and which are flexible. One recent approach models molecules as a structure of fixed units (atoms with their bond angles as rigid units, bonds as hinges) plus biochemical constraints coming from the local geometry. This generates a `molecular graph' in the theory of combinatorial rigidity. The 6|V|-6 counting condition for 3-dimensional body-hinge structures (modulo molecular theorem), and a fast `pebble game' algorithm which tracks this count in the multigraph, have led to the development of the program FIRST, for rapid predictions of the flexibility of proteins. In this study we develop a novel protein hinge prediction algorithm via our extension of the pebble game algorithm (relevant regions detection algorithm). We have tested our hinge prediction algorithm on several proteins chosen from the dataset of manually annotated hinges available on the MOLMOV server. Many of our predictions are in very good agreement with this data set. Our algorithms can also predict `allosteric' interactions in proteins—where binding on one site of a molecule changes the shape or binding at a distance `active site' of the molecule. We also give some promising results which support the sliding piston-like movement of helices with respect to one another as a plausible mechanism by which GCPR receptors propagate conformational changes across membranes.

  16. Sequential Non-Rigid Structure from Motion Using Physical Priors.

    PubMed

    Agudo, Antonio; Moreno-Noguer, Francesc; Calvo, Begona; Montiel, Jose M Martinez

    2016-05-01

    We propose a new approach to simultaneously recover camera pose and 3D shape of non-rigid and potentially extensible surfaces from a monocular image sequence. For this purpose, we make use of the Extended Kalman Filter based Simultaneous Localization And Mapping (EKF-SLAM) formulation, a Bayesian optimization framework traditionally used in mobile robotics for estimating camera pose and reconstructing rigid scenarios. In order to extend the problem to a deformable domain we represent the object's surface mechanics by means of Navier's equations, which are solved using a Finite Element Method (FEM). With these main ingredients, we can further model the material's stretching, allowing us to go a step further than most of current techniques, typically constrained to surfaces undergoing isometric deformations. We extensively validate our approach in both real and synthetic experiments, and demonstrate its advantages with respect to competing methods. More specifically, we show that besides simultaneously retrieving camera pose and non-rigid shape, our approach is adequate for both isometric and extensible surfaces, does not require neither batch processing all the frames nor tracking points over the whole sequence and runs at several frames per second.

  17. Flex-rigid pleuroscopic biopsy with the SB knife Jr is a novel technique for diagnosis of malignant or benign fibrothorax

    PubMed Central

    Wang, Xiao-Bo; Yin, Yan; Miao, Yuan; Herth, Felix J.; Kang, Jian

    2016-01-01

    Diagnosing pleural effusion is challenging, especially in patients with malignant or benign fibrothorax, which is difficult to sample using standard flexible forceps (SFF) via flex-rigid pleuroscopy. An adequate sample is crucial for the differential diagnosis of malignant fibrothorax (malignant pleural mesothelioma, metastatic lung carcinoma, etc.) from benign fibrothorax (benign asbestos pleural disease, tuberculous pleuritis, etc.). Novel biopsy techniques are required in flex-rigid pleuroscopy to improve the sample size and quality. The SB knife Jr, which is a scissor forceps that uses a mono-pole high frequency, was developed to allow convenient and accurate resection of larger lesions during endoscopic dissection (ESD). Herein, we report two patients with fibrothorax who underwent a pleural biopsy using an SB knife Jr to investigate the potential use of this tool in flex-rigid pleuroscopy when pleural lesions are difficult to biopsy via SFF. The biopsies were successful, with sufficient size and quality for definitive diagnosis. We also successfully performed adhesiolysis with the SB knife Jr in one case, and adequate biopsies were conducted. No complications were observed. Electrosurgical biopsy with the SB knife Jr during flex-rigid pleuroscopy allowed us to obtain adequate samples for the diagnosis of malignant versus benign fibrothorax, which is usually not possible with SFF. The SB knife Jr also demonstrated a potential use for pleuropulmonary adhesions. PMID:28066660

  18. Flex-rigid pleuroscopic biopsy with the SB knife Jr is a novel technique for diagnosis of malignant or benign fibrothorax.

    PubMed

    Wang, Xiao-Bo; Yin, Yan; Miao, Yuan; Eberhardt, Ralf; Hou, Gang; Herth, Felix J; Kang, Jian

    2016-11-01

    Diagnosing pleural effusion is challenging, especially in patients with malignant or benign fibrothorax, which is difficult to sample using standard flexible forceps (SFF) via flex-rigid pleuroscopy. An adequate sample is crucial for the differential diagnosis of malignant fibrothorax (malignant pleural mesothelioma, metastatic lung carcinoma, etc.) from benign fibrothorax (benign asbestos pleural disease, tuberculous pleuritis, etc.). Novel biopsy techniques are required in flex-rigid pleuroscopy to improve the sample size and quality. The SB knife Jr, which is a scissor forceps that uses a mono-pole high frequency, was developed to allow convenient and accurate resection of larger lesions during endoscopic dissection (ESD). Herein, we report two patients with fibrothorax who underwent a pleural biopsy using an SB knife Jr to investigate the potential use of this tool in flex-rigid pleuroscopy when pleural lesions are difficult to biopsy via SFF. The biopsies were successful, with sufficient size and quality for definitive diagnosis. We also successfully performed adhesiolysis with the SB knife Jr in one case, and adequate biopsies were conducted. No complications were observed. Electrosurgical biopsy with the SB knife Jr during flex-rigid pleuroscopy allowed us to obtain adequate samples for the diagnosis of malignant versus benign fibrothorax, which is usually not possible with SFF. The SB knife Jr also demonstrated a potential use for pleuropulmonary adhesions.

  19. 49 CFR 178.925 - Standards for rigid plastic Large Packagings.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Standards for rigid plastic Large Packagings. 178... FOR PACKAGINGS Large Packagings Standards § 178.925 Standards for rigid plastic Large Packagings. (a) The provisions in this section apply to rigid plastic Large Packagings intended to contain liquids...

  20. 49 CFR 178.925 - Standards for rigid plastic Large Packagings.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Standards for rigid plastic Large Packagings. 178... FOR PACKAGINGS Large Packagings Standards § 178.925 Standards for rigid plastic Large Packagings. (a) The provisions in this section apply to rigid plastic Large Packagings intended to contain liquids...

  1. 49 CFR 178.925 - Standards for rigid plastic Large Packagings.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Standards for rigid plastic Large Packagings. 178... FOR PACKAGINGS Large Packagings Standards § 178.925 Standards for rigid plastic Large Packagings. (a) The provisions in this section apply to rigid plastic Large Packagings intended to contain liquids...

  2. 49 CFR 178.925 - Standards for rigid plastic Large Packagings.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Standards for rigid plastic Large Packagings. 178... FOR PACKAGINGS Large Packagings Standards § 178.925 Standards for rigid plastic Large Packagings. (a) The provisions in this section apply to rigid plastic Large Packagings intended to contain liquids...

  3. Multiscale multiphysics and multidomain models—Flexibility and rigidity

    SciTech Connect

    Xia, Kelin; Opron, Kristopher; Wei, Guo-Wei

    2013-11-21

    The emerging complexity of large macromolecules has led to challenges in their full scale theoretical description and computer simulation. Multiscale multiphysics and multidomain models have been introduced to reduce the number of degrees of freedom while maintaining modeling accuracy and achieving computational efficiency. A total energy functional is constructed to put energies for polar and nonpolar solvation, chemical potential, fluid flow, molecular mechanics, and elastic dynamics on an equal footing. The variational principle is utilized to derive coupled governing equations for the above mentioned multiphysical descriptions. Among these governing equations is the Poisson-Boltzmann equation which describes continuum electrostatics with atomic charges. The present work introduces the theory of continuum elasticity with atomic rigidity (CEWAR). The essence of CEWAR is to formulate the shear modulus as a continuous function of atomic rigidity. As a result, the dynamics complexity of a macromolecular system is separated from its static complexity so that the more time-consuming dynamics is handled with continuum elasticity theory, while the less time-consuming static analysis is pursued with atomic approaches. We propose a simple method, flexibility-rigidity index (FRI), to analyze macromolecular flexibility and rigidity in atomic detail. The construction of FRI relies on the fundamental assumption that protein functions, such as flexibility, rigidity, and energy, are entirely determined by the structure of the protein and its environment, although the structure is in turn determined by all the interactions. As such, the FRI measures the topological connectivity of protein atoms or residues and characterizes the geometric compactness of the protein structure. As a consequence, the FRI does not resort to the interaction Hamiltonian and bypasses matrix diagonalization, which underpins most other flexibility analysis methods. FRI's computational complexity is of O

  4. Multiscale multiphysics and multidomain models—Flexibility and rigidity

    PubMed Central

    Xia, Kelin; Opron, Kristopher; Wei, Guo-Wei

    2013-01-01

    The emerging complexity of large macromolecules has led to challenges in their full scale theoretical description and computer simulation. Multiscale multiphysics and multidomain models have been introduced to reduce the number of degrees of freedom while maintaining modeling accuracy and achieving computational efficiency. A total energy functional is constructed to put energies for polar and nonpolar solvation, chemical potential, fluid flow, molecular mechanics, and elastic dynamics on an equal footing. The variational principle is utilized to derive coupled governing equations for the above mentioned multiphysical descriptions. Among these governing equations is the Poisson-Boltzmann equation which describes continuum electrostatics with atomic charges. The present work introduces the theory of continuum elasticity with atomic rigidity (CEWAR). The essence of CEWAR is to formulate the shear modulus as a continuous function of atomic rigidity. As a result, the dynamics complexity of a macromolecular system is separated from its static complexity so that the more time-consuming dynamics is handled with continuum elasticity theory, while the less time-consuming static analysis is pursued with atomic approaches. We propose a simple method, flexibility-rigidity index (FRI), to analyze macromolecular flexibility and rigidity in atomic detail. The construction of FRI relies on the fundamental assumption that protein functions, such as flexibility, rigidity, and energy, are entirely determined by the structure of the protein and its environment, although the structure is in turn determined by all the interactions. As such, the FRI measures the topological connectivity of protein atoms or residues and characterizes the geometric compactness of the protein structure. As a consequence, the FRI does not resort to the interaction Hamiltonian and bypasses matrix diagonalization, which underpins most other flexibility analysis methods. FRI's computational complexity is of

  5. Multiscale multiphysics and multidomain models--flexibility and rigidity.

    PubMed

    Xia, Kelin; Opron, Kristopher; Wei, Guo-Wei

    2013-11-21

    The emerging complexity of large macromolecules has led to challenges in their full scale theoretical description and computer simulation. Multiscale multiphysics and multidomain models have been introduced to reduce the number of degrees of freedom while maintaining modeling accuracy and achieving computational efficiency. A total energy functional is constructed to put energies for polar and nonpolar solvation, chemical potential, fluid flow, molecular mechanics, and elastic dynamics on an equal footing. The variational principle is utilized to derive coupled governing equations for the above mentioned multiphysical descriptions. Among these governing equations is the Poisson-Boltzmann equation which describes continuum electrostatics with atomic charges. The present work introduces the theory of continuum elasticity with atomic rigidity (CEWAR). The essence of CEWAR is to formulate the shear modulus as a continuous function of atomic rigidity. As a result, the dynamics complexity of a macromolecular system is separated from its static complexity so that the more time-consuming dynamics is handled with continuum elasticity theory, while the less time-consuming static analysis is pursued with atomic approaches. We propose a simple method, flexibility-rigidity index (FRI), to analyze macromolecular flexibility and rigidity in atomic detail. The construction of FRI relies on the fundamental assumption that protein functions, such as flexibility, rigidity, and energy, are entirely determined by the structure of the protein and its environment, although the structure is in turn determined by all the interactions. As such, the FRI measures the topological connectivity of protein atoms or residues and characterizes the geometric compactness of the protein structure. As a consequence, the FRI does not resort to the interaction Hamiltonian and bypasses matrix diagonalization, which underpins most other flexibility analysis methods. FRI's computational complexity is of O

  6. Sufficiency of Longitudinal Moment of Inertia for Haptic Cylinder Length Judgments

    ERIC Educational Resources Information Center

    Cabe, Patrick A.

    2010-01-01

    Many studies invoke moment of inertia (I[subscript ii]) as necessary and sufficient information to perceive cylinder length via wielding, yet some assert that I[subscript ii] is neither necessary (weight, "m", or static moment, M, are sufficient) nor sufficient for length judgments ("m" or M is necessary). Mathematical expressions for I[subscript…

  7. Minimal sufficient positive-operator valued measure on a separable Hilbert space

    SciTech Connect

    Kuramochi, Yui

    2015-10-15

    We introduce a concept of a minimal sufficient positive-operator valued measure (POVM), which is the least redundant POVM among the POVMs that have the equivalent information about the measured quantum system. Assuming the system Hilbert space to be separable, we show that for a given POVM, a sufficient statistic called a Lehmann-Scheffé-Bahadur statistic induces a minimal sufficient POVM. We also show that every POVM has an equivalent minimal sufficient POVM and that such a minimal sufficient POVM is unique up to relabeling neglecting null sets. We apply these results to discrete POVMs and information conservation conditions proposed by the author.

  8. Method for identification of rigid domains and hinge residues in proteins based on exhaustive enumeration.

    PubMed

    Sim, Jaehyun; Sim, Jun; Park, Eunsung; Lee, Julian

    2015-06-01

    Many proteins undergo large-scale motions where relatively rigid domains move against each other. The identification of rigid domains, as well as the hinge residues important for their relative movements, is important for various applications including flexible docking simulations. In this work, we develop a method for protein rigid domain identification based on an exhaustive enumeration of maximal rigid domains, the rigid domains not fully contained within other domains. The computation is performed by mapping the problem to that of finding maximal cliques in a graph. A minimal set of rigid domains are then selected, which cover most of the protein with minimal overlap. In contrast to the results of existing methods that partition a protein into non-overlapping domains using approximate algorithms, the rigid domains obtained from exact enumeration naturally contain overlapping regions, which correspond to the hinges of the inter-domain bending motion. The performance of the algorithm is demonstrated on several proteins.

  9. GENERAL THEORY FOR INTERACTIONS IN SUFFICIENT CAUSE MODELS WITH DICHOTOMOUS EXPOSURES

    PubMed Central

    VanderWeele, Tyler J.; Richardson, Thomas S.

    2014-01-01

    The sufficient-component cause framework assumes the existence of sets of sufficient causes that bring about an event. For a binary outcome and an arbitrary number of binary causes any set of potential outcomes can be replicated by positing a set of sufficient causes; typically this representation is not unique. A sufficient cause interaction is said to be present if within all representations there exists a sufficient cause in which two or more particular causes are all present. A singular interaction is said to be present if for some subset of individuals there is a unique minimal sufficient cause. Empirical and counterfactual conditions are given for sufficient cause interactions and singular interactions between an arbitrary number of causes. Conditions are given for cases in which none, some or all of a given set of causes affect the outcome monotonically. The relations between these results, interactions in linear statistical models and Pearl’s probability of causation are discussed. PMID:25552780

  10. NOLB : Non-linear rigid block normal mode analysis method.

    PubMed

    Hoffmann, Alexandre; Grudinin, Sergei

    2017-04-05

    We present a new conceptually simple and computationally efficient method for non-linear normal mode analysis called NOLB. It relies on the rotations-translations of blocks (RTB) theoretical basis developed by Y.-H. Sanejouand and colleagues. We demonstrate how to physically interpret the eigenvalues computed in the RTB basis in terms of angular and linear velocities applied to the rigid blocks and how to construct a non-linear extrapolation of motion out of these velocities. The key observation of our method is that the angular velocity of a rigid block can be interpreted as the result of an implicit force, such that the motion of the rigid block can be considered as a pure rotation about a certain center. We demonstrate the motions produced with the NOLB method on three different molecular systems and show that some of the lowest frequency normal modes correspond to the biologically relevant motions. For example, NOLB detects the spiral sliding motion of the TALE protein, which is capable of rapid diffusion along its target DNA. Overall, our method produces better structures compared to the standard approach, especially at large deformation amplitudes, as we demonstrate by visual inspection, energy and topology analyses, and also by the MolProbity service validation. Finally, our method is scalable and can be applied to very large molecular systems, such as ribosomes. Standalone executables of the NOLB normal mode analysis method are available at https://team.inria.fr/nano-d/software/nolb-normal-modes. A graphical user interfaces created for the SAMSON software platform will be made available at https: //www.samson-connect.net.

  11. Accurate free and forced rotational motions of rigid Venus

    NASA Astrophysics Data System (ADS)

    Cottereau, L.; Souchay, J.; Aljbaae, S.

    2010-06-01

    Context. The precise and accurate modelling of a terrestrial planet like Venus is an exciting and challenging topic, all the more interesting because it can be compared with that of Earth for which such a modelling has already been achieved at the milli-arcsecond level. Aims: We aim to complete a previous study, by determining the polhody at the milli-arcsecond level, i.e. the torque-free motion of the angular momentum axis of a rigid Venus in a body-fixed frame, as well as the nutation of its third axis of figure in space, which is fundamental from an observational point of view. Methods: We use the same theoretical framework as Kinoshita (1977, Celest. Mech., 15, 277) did to determine the precession-nutation motion of a rigid Earth. It is based on a representation of the rotation of a rigid Venus, with the help of Andoyer variables and a set of canonical equations in Hamiltonian formalism. Results: In a first part we computed the polhody, we showed that this motion is highly elliptical, with a very long period of 525 cy compared with 430 d for the Earth. This is due to the very small dynamical flattening of Venus in comparison with our planet. In a second part we precisely computed the Oppolzer terms, which allow us to represent the motion in space of the third Venus figure axis with respect to the Venus angular momentum axis under the influence of the solar gravitational torque. We determined the corresponding tables of the nutation coefficients of the third figure axis both in longitude and in obliquity due to the Sun, which are of the same order of amplitude as for the Earth. We showed that the nutation coefficients for the third figure axis are significantly different from those of the angular momentum axis on the contrary of the Earth. Our analytical results have been validated by a numerical integration, which revealed the indirect planetary effects.

  12. Substrate rigidity regulates human T cell activation and proliferation.

    PubMed

    O'Connor, Roddy S; Hao, Xueli; Shen, Keyue; Bashour, Keenan; Akimova, Tatiana; Hancock, Wayne W; Kam, Lance C; Milone, Michael C

    2012-08-01

    Adoptive immunotherapy using cultured T cells holds promise for the treatment of cancer and infectious disease. Ligands immobilized on surfaces fabricated from hard materials such as polystyrene plastic are commonly employed for T cell culture. The mechanical properties of a culture surface can influence the adhesion, proliferation, and differentiation of stem cells and fibroblasts. We therefore explored the impact of culture substrate stiffness on the ex vivo activation and expansion of human T cells. We describe a simple system for the stimulation of the TCR/CD3 complex and the CD28 receptor using substrates with variable rigidity manufactured from poly(dimethylsiloxane), a biocompatible silicone elastomer. We show that softer (Young's Modulus [E] < 100 kPa) substrates stimulate an average 4-fold greater IL-2 production and ex vivo proliferation of human CD4(+) and CD8(+) T cells compared with stiffer substrates (E > 2 MPa). Mixed peripheral blood T cells cultured on the stiffer substrates also demonstrate a trend (nonsignificant) toward a greater proportion of CD62L(neg), effector-differentiated CD4(+) and CD8(+) T cells. Naive CD4(+) T cells expanded on softer substrates yield an average 3-fold greater proportion of IFN-γ-producing Th1-like cells. These results reveal that the rigidity of the substrate used to immobilize T cell stimulatory ligands is an important and previously unrecognized parameter influencing T cell activation, proliferation, and Th differentiation. Substrate rigidity should therefore be a consideration in the development of T cell culture systems as well as when interpreting results of T cell activation based upon solid-phase immobilization of TCR/CD3 and CD28 ligands.

  13. Substrate rigidity regulates human T cell activation and proliferation1

    PubMed Central

    O’Connor, Roddy S.; Hao, Xueli; Shen, Keyue; Bashour, Keenan; Akimova, Tatiana; Hancock, Wayne W.; Kam, Lance; Milone, Michael C.

    2012-01-01

    Adoptive immunotherapy using cultured T cells holds promise for the treatment of cancer and infectious disease. Ligands immobilized on surfaces fabricated from hard materials such as polystyrene plastic are commonly employed for T cell culture. The mechanical properties of a culture surface can influence the adhesion, proliferation, and differentiation of stem cells and fibroblasts. We therefore explored the impact of culture substrate stiffness on the ex vivo activation and expansion of human T cells. We describe a simple system for the stimulation of the TCR/CD3 complex and the CD28 receptor using substrates with variable rigidity manufactured from poly(dimethylsiloxane) (PDMS), a biocompatible silicone elastomer. We show that softer (Young’s Modulus [E] < 100 kPa) substrates stimulate an average 4-fold greater IL-2 production and ex vivo proliferation of human CD4+ and CD8+ T cells compared with stiffer substrates (E >2 MPa). Mixed peripheral blood T cells cultured on the stiffer substrates also demonstrate a trend (non-significant) towards a greater proportion of CD62Lneg, effector-differentiated CD4+ and CD8+ T cells. Naïve CD4+ T cells expanded on softer substrates yield an average 3-fold greater proportion of IFN-γ producing TH1-like cells. These results reveal that the rigidity of the substrate used to immobilize T cell stimulatory ligands is an important and previously unrecognized parameter influencing T cell activation, proliferation and TH differentiation. Substrate rigidity should therefore be a consideration in the development of T cell culture systems as well as when interpreting results of T cell activation based upon solid-phase immobilization of TCR/CD3 and CD28 ligands. PMID:22732590

  14. Corneal response to rigid and hydrogel lenses during eye closure.

    PubMed

    O'Neal, M R; Polse, K A; Sarver, M D

    1984-07-01

    Corneal changes were monitored in 14 subjects following 3 hr of eye closure while wearing selected oxygen permeable rigid and hydrogel lenses. The mean increase in corneal thickness ranged from 82.5 to 29.5 microns for rigid lenses with oxygen transmissibilities (Dk/L) between 0.2 X 10(-9) and 57.0 X 10(-9) (cm/sec) (ml O2/ml X mmHg), respectively, and ranged from 82.5 to 23.5 microns for hydrogel lenses with Dk/L between 2.5 X 10(-9) and 70.0 X 10(-9) (cm/sec) (ml O2/ml X mmHg), respectively. No differences in the amount of swelling between rigid and hydrogel lenses of the same oxygen transmissibility were observed (t-test, P greater than 0.20). Combining the swelling data for both types of lenses shows that a minimum lens oxygen transmissibility of approximately 75 X 10(-9) (cm/sec) (ml O2/ml X mmHg) is necessary during eye closure to prevent contact lens induced edema. The estimated oxygen tension under a lens with this Dk/L value is 40 mmHg. Recovery of the cornea to baseline thickness follows a nonlinear time course, with the rate of dehydration decreasing as the cornea thins. For initial swelling of 40-54 microns, 55-69 microns, and 70 microns and above, the time to reach baseline thickness was 1.5, 2.0, and 2.5 hr, respectively. Effects on vision, corneal curvature, distortion, and epithelial integrity were not clinically significant during this short period of eye closure.

  15. Cleaning and storage of rigid contact lenses prior to dispensing.

    PubMed

    MacMillan, T F; Benjamin, W J

    1992-05-01

    Most care regimens used with rigid contact lenses are composed of three solutions: 1) a "cleaning" solution; 2) a "combination" solution intended for storage, disinfection, and wetting prior to placement of rigid lenses on the eye; and 3) an in-eye "rewetting" or "lubricating" solution. While solutions (1) and (3) have only single functions, solution (2) must fulfill three fairly disparate functions. A "2-solution" care regimen is offered by Sherman Pharmaceuticals and consists of (a) a solution for cleaning, storage, and disinfection; and (b) a "wetting" solution that doubles as an in-eye lubricant. Through a more compatible and efficient matching of multiple functions within solutions, Sherman Pharmaceuticals claims to more adequately clean and prepare rigid gas-permeable (RGP) lens surfaces for wear. We investigated this strategy in terms of in-eye wettability of initially "ill-prepared" RGP lens surfaces, as measured with the in vivo contact angle technique. For this study, lenses were intentionally not cleaned of residues or solvents by the manufacturer at the end of production so as to create the well-known "first-day non-wetting syndrome." The ability of the 2-solution care regimen to even then provide wettable surfaces was compared to that of a saline control "regimen" and the most popular competing "3-solution" care system. We concluded that use of both care regimens dramatically enhanced in-eye wettability and, therefore, reduced the incidence of the "first-day non-wetting syndrome". However, the 2-solution care regimen provided significantly better wettability overall, lower incidence of functionally non-wetting surfaces, and more consistently wettable RGP lenses.

  16. The parameter stability of a high dk rigid lens material.

    PubMed

    Woods, C; Efron, N

    1999-01-01

    The use of rigid materials with high oxygen permeability (Dk) is on the increase, their major benefit being the reduction of hypoxia. However, there is a reluctance to use these materials possibly due to increased surface scratching, reduced wettability, increased deposition, reduced life expectancy and parameter instability. Considering parameter stability, various studies have demonstrated contradictory results or used high Dk materials based on the silicone acrylate polymer. This study was designed to investigate whether the parameters of a high Dk rigid fluorocarbon contact lens material changed during daily wear and extended wear schedules. Thirty five subjects, divided into group groups, Group I wore the lens on a daily wear basis, whereas those in Group II wore the lens on a monthly extended wear basis. The parameters and integrity of the lenses were monitored in both groups every 3 months. For lens integrity a statistically significant increase in surface scratching was demonstrated for the lenses worn by the subjects of both groups over the time of the study (Group I, F=7.990, P <0.0001 [ANCOVA]; Group II, F=6.241, P=0.003 [ANCOVA]). The only parameter to show a statistically significant variation over the study period was that of centre thickness for the lenses worn by the subjects in Group I (F=3.976, P=0.0063 [ANCOVA]), with a mean reduction in centre thickness of 0.022 mm at the 12 month visit. No change was noted for either group or between groups for the other parameters measured. This study demonstrates that the parameters of rigid contact lenses manufactured from high Dk fluorocarbons are stable with only a non-clinically significant reduction in centre thickness for the contact lenses worn by the subjects in Group I.

  17. Nonlinear dynamic behavior of microscopic bubbles near a rigid wall

    NASA Astrophysics Data System (ADS)

    Suslov, Sergey A.; Ooi, Andrew; Manasseh, Richard

    2012-06-01

    The nonlinear dynamic behavior of microscopic bubbles near a rigid wall is investigated. Oscillations are driven by the ultrasonic pressure field that arises in various biomedical applications such as ultrasound imaging or targeted drug delivery. It is known that, when bubbles approach a blood-vessel wall, their linear dynamic response is modified. This modification may be very useful for real-time detection of bubbles that have found targets; in future therapeutic technologies, it may be useful for controlled release of medical agents encapsulating microbubbles. In this paper, the nonlinear response of microbubbles near a wall is studied. The Keller-Miksis-Parlitz equation is adopted, but modified to account for the presence of a rigid wall. This base model describes the time evolution of the bubble surface, which is assumed to remain spherical, and accounts for the effect of acoustic radiation losses owing to liquid compressibility in the momentum conservation. Two situations are considered: the base case of an isolated bubble in an unbounded medium, and a bubble near a rigid wall. In the latter case, the wall influence is modeled by including a symmetrically oscillating image bubble. The bubble dynamics is traced using a numerical solution of the model equation. Subsequently, Floquet theory is used to accurately detect the bifurcation point where bubble oscillations stop following the driving ultrasound frequency and undergo period-changing bifurcations. Of particular interest is the detection of the subcritical period-tripling and -quadrupling transition. The parametric bifurcation maps are obtained as functions of nondimensional parameters representing the bubble radius, the frequency and pressure amplitude of the driving ultrasound field, and the distance from the wall. It is shown that the presence of the wall generally stabilises the bubble dynamics, so that much larger values of the pressure amplitude are needed to generate nonlinear responses. Thus, a

  18. Nonlinear dynamic behavior of microscopic bubbles near a rigid wall.

    PubMed

    Suslov, Sergey A; Ooi, Andrew; Manasseh, Richard

    2012-06-01

    The nonlinear dynamic behavior of microscopic bubbles near a rigid wall is investigated. Oscillations are driven by the ultrasonic pressure field that arises in various biomedical applications such as ultrasound imaging or targeted drug delivery. It is known that, when bubbles approach a blood-vessel wall, their linear dynamic response is modified. This modification may be very useful for real-time detection of bubbles that have found targets; in future therapeutic technologies, it may be useful for controlled release of medical agents encapsulating microbubbles. In this paper, the nonlinear response of microbubbles near a wall is studied. The Keller-Miksis-Parlitz equation is adopted, but modified to account for the presence of a rigid wall. This base model describes the time evolution of the bubble surface, which is assumed to remain spherical, and accounts for the effect of acoustic radiation losses owing to liquid compressibility in the momentum conservation. Two situations are considered: the base case of an isolated bubble in an unbounded medium, and a bubble near a rigid wall. In the latter case, the wall influence is modeled by including a symmetrically oscillating image bubble. The bubble dynamics is traced using a numerical solution of the model equation. Subsequently, Floquet theory is used to accurately detect the bifurcation point where bubble oscillations stop following the driving ultrasound frequency and undergo period-changing bifurcations. Of particular interest is the detection of the subcritical period-tripling and -quadrupling transition. The parametric bifurcation maps are obtained as functions of nondimensional parameters representing the bubble radius, the frequency and pressure amplitude of the driving ultrasound field, and the distance from the wall. It is shown that the presence of the wall generally stabilises the bubble dynamics, so that much larger values of the pressure amplitude are needed to generate nonlinear responses. Thus, a

  19. Relationship between electromyographic activity and clinically assessed rigidity studied at the wrist joint in Parkinson's disease.

    PubMed

    Meara, R J; Cody, F W

    1992-08-01

    The electromyographic (EMG) patterns recorded from wrist muscles during manually applied, repetitive flexion and extension movements of the wrist joint, used for simultaneous clinical assessment of rigidity, were studied in patients with Parkinson's disease and healthy subjects. Recordings were made whilst patients/subjects attempted voluntarily to relax the muscle of the arm whose wrist joint was manipulated. Individual patients were investigated before and at varying times after their routine daily medication as their clinical rigidity underwent associated modulations. It was often possible to induce additional alterations in clinical rigidity by instructing patients to perform an activation or Jendrassik-like manoeuvre (clenching the contralateral fist). In rigid patients, the approximately sinusoidal wrist displacements (60 deg, 1-1.5 Hz) typically elicited pronounced, cyclic modulations of EMG activities in wrist flexors and extensors; increases in EMG activity were phase-locked to the respective periods of muscle stretch. Stretch-related EMG activity reduced or disappeared as rigidity was abolished by drug therapy. The EMG patterns of patients showing cogwheel rigidity featured discrete, phasic bursts superimposed upon more generalized stretch-related increases in activity. In healthy subjects, showing no clinical rigidity, the pronounced cyclic modulations of EMG activity characteristic of rigid patients were absent during similar manually applied wrist displacements. Quantitative EMG measurements for individual patients, made 'on' and 'off' medication and as their rigidity fluctuated, indicated that mild (grade 1) and moderate (grade 2) rigidity was consistently associated with increased stretch-related activity compared with non-rigid conditions. Pair-wise statistical analysis indicated such increases in EMG to be significant. Similarly, the ratios of EMG activities in the stretched versus released muscles were significantly greater for grades 1 and 2

  20. Dispersion compensation for proximal scanning rigid OCT endoscopes

    NASA Astrophysics Data System (ADS)

    Lankenau, Eva; Schumacher, Matthias; Koch, Peter; Konig, Frank; Daniltchenko, Dmitri; Schnorr, Dietmar; Huettmann, Gereon

    2004-07-01

    Combining endoscopy with optical coherence tomography (OCT) can improve the diagnosis in minimal invasive procedures. Up to now OCT probes were constructed using rotating or moving single-mode fibers or micro scanners at the tip of the probe. We describe an endoscopic OCT system which uses a specially designed rigid endoscope with an extracorporal scanner to create OCT images with 15 μm resolution. The OCT endoscope was constructed using a 270 mm gradient index lens with a diameter of 3 mm. Dispersion of the endoscope was compensated in the OCT interferometer by an all fiber approach. The system is now being tested for detecting malignancies in the urinary bladder.

  1. Ball Semi-Rigid Advanced Mirror System Demonstrator (AMSD)

    NASA Technical Reports Server (NTRS)

    Kendrick, Stephen; Russell, Kevin (Technical Monitor)

    2001-01-01

    The AMSD Program is to design, fabricate, and test a 1.4-m point-to-point hexagon mirror system. The Ball semi-rigid approach will be described and its current status presented, The mirror system includes a lightweighted beryllium mirror that is attached through flexures and actuators to a composite reaction structure enabling optical performance at ambient and cryogenic temperatures and allowing changes of curvature to be imposed via actuation. This program is administered through NASA MSFC and is jointly funded by NASA, the USAF, and the NRO.

  2. The market for large rigid haul trucks in surface mining

    SciTech Connect

    Gilewicz, P.

    2002-04-15

    Originally published in 2001 this updated report provides a definition of the market for large rigid haulers in surface mining. The analysis covers changes to the mining market segments buying these machines including the gains made by coal producers, retrenchment in copper mining, the consolidation taking place among gold mining companies, and the expansion of iron ore producers in Australia and Brazil. It includes a detailed accounting of 2001 truck shipments, and an analysis of trends in the Ultra-truck segment. It concludes with a revised forecast for shipments through 2006. 12 charts, 56 tabs., 2 apps.

  3. Chemical and Photographic Evaluation of Rigid Explosive Transfer Lines.

    DTIC Science & Technology

    1984-05-01

    01 SIAN1ARD 191 NSWC TR 84-66 * 0 CHEMICAL AND PHOTOGRAPHIC EVALUATION OF RIGID EXPLOSIVE TRANSFER LINES 0 0 BY ELEONORE G. KAYSER 0 0 RESEARCH AND... Eleonore G. Kayser j 9. PERFORMING ORGANIZATION NAME AN= ADDRESS 10. PROGRAM E-.EMENT. ’RCJECT, TASK AREA & WORK UNIT NUMBERSNaval Surface Weapons...J. Trom P.O. Box 5400 Dept. 529-165 Albuquerque, NM 87115 Mail Code AB37 6633 Canoga Ave. Space Ordnance Systems, Inc. Canoga Park , CA 91304 Attn

  4. Nonlinear complex dynamics and Keynesian rigidity: A short introduction

    NASA Astrophysics Data System (ADS)

    Jovero, Edgardo

    2005-09-01

    The topic of this paper is to show that the greater acceptance and intense use of complex nonlinear dynamics in macroeconomics makes sense only within the neoKeynesian tradition. An example is presented regarding the behavior of an open-economy two-sector growth model endowed with Keynesian rigidity. The Keynesian view that structural instability globally exists in the aggregate economy is put forward, and therefore the need arises for policy to alleviate this instability in the form of dampened fluctuations is presented as an alternative view for macroeconomic theorizing.

  5. Numerical solution for the rotation of a rigid model Earth

    NASA Astrophysics Data System (ADS)

    Schastok, Joachim; Soffel, Michael; Ruder, Hanns

    Using the ephemerides DE200 of the JET PROPULSION LABORATORY we integrated the Euler equations for a rigid model Earth taking into account torques exerted by the Moon and the Sun over a span of 40 years. Inserting appropriate initial conditions and removing precessional effects we were able to compare our results for the nutational motion directly with Kinoshita's analytical theory. Differences to Kinoshita's theory for the nutations in longitude and latitude are as large as 2 mas and 1 mas, respectively, with main frequencies of 18.6 and 9.3 years.

  6. The two rigid body interaction using angular momentum theory formulae

    NASA Astrophysics Data System (ADS)

    Boué, Gwenaël

    2017-01-01

    This work presents an elegant formalism to model the evolution of the full two rigid body problem. The equations of motion, given in a Cartesian coordinate system, are expressed in terms of spherical harmonics and Wigner D-matrices. The algorithm benefits from the numerous recurrence relations satisfied by these functions allowing a fast evaluation of the mutual potential. Moreover, forces and torques are straightforwardly obtained by application of ladder operators taken from the angular momentum theory and commonly used in quantum mechanics. A numerical implementation of this algorithm is made. Tests show that the present code is significantly faster than those currently available in literature.

  7. The effect of rigid gas permeable lenses on corneal sensitivity.

    PubMed

    Bergenske, P D; Polse, K A

    1987-03-01

    Long term wear of hard (PMMA) contact lenses decreases corneal sensitivity. Clinicians have noted that in some patients who are refitted with rigid gas permeable (RGP) lenses, there is often an increase in lens awareness. To document this symptom, we monitored changes in corneal sensitivity of long term PMMA wearers who were refitted with RGP lenses. Corneal sensitivity measurements were conducted over a 6-month period. During this time, corneal touch threshold decreased to normal levels within a few weeks after refitting with RGP lenses. These results suggest an oxygen dependency factor in the control of corneal sensitivity accompanying contact lens wear.

  8. Rigid connections between natural teeth and implants: a technical note.

    PubMed

    Lindh, T; Gunne, J; Danielsson, S

    1997-01-01

    In the posterior partially edentulous jaw, implants may be used to supplement existing natural dentition. Frequently, the maxillary sinuses and the mandibular nerve preclude the fabrication of freestanding implant-retained prostheses. However, if an implant and a natural abutment are combined, a fixed prosthesis can be fabricated, restoring the arch into the premolar area. The histories of three patients with attachments connecting implant-retained ceramotitanium crowns with crowns on natural abutments are described. A design for a rigid custom-made attachment for the Brånemark system, using standard components with a machine-duplication, spark-erosion technique, is suggested.

  9. Retro iris suture fixation of a rigid intraocular lens.

    PubMed

    Haripriya, Aravind; Sharma, Sankalp S

    2016-11-01

    We present an iris suture fixation technique for a rigid poly(methyl methacrylate) (PMMA) intraocular lens (IOL). A 10-0 polypropylene suture on a long curved needle is used to preplace 2 iris suture bites 180 degrees apart. The suture loops below the iris are retracted through the main scleral tunnel using a Kuglen hook and a McPherson forceps. The 2 suture loops are twirled twice around the corresponding haptics of a standard 3-piece PMMA IOL, and the IOL is placed in the sulcus. After it is confirmed that the loop surrounds the haptic, the suture knot is tied to secure the IOL to the iris.

  10. Study of flexural rigidity of weavable powder-coated towpreg

    NASA Technical Reports Server (NTRS)

    Hirt, Douglas E.; Marchello, Joseph M.; Baucom, Robert M.

    1990-01-01

    An effort has been made to weave powder-impregnated tow into a two-dimensional preform, controlling process variables to obtain high flexural rigidity in the warp direction and greater flexibility in the fill direction. The resulting prepregs have been consolidated into laminates with LaRC-TPI matrices. Complementary SEM and DSC studies have been performed to deepen understanding of the relationship between tow flexibility and heat treatment. Attention is also given to the oven temperature and residence time variables' effects on power/fiber fusion.

  11. Tolman length and rigidity constants of the Lennard-Jones fluid.

    PubMed

    Wilhelmsen, Øivind; Bedeaux, Dick; Reguera, David

    2015-02-14

    It is well-known that the surface tension of small droplets and bubbles deviates significantly from that at the planar interface. In this work, we analyze the leading corrections in the curvature expansion of the surface tension, i.e., the Tolman length and the rigidity constants, using a "hybrid" square gradient theory, where the local Helmholtz energy density is described by an accurate equation of state. We particularize this analysis for the case of the truncated and shifted Lennard-Jones fluid, and are then able to reproduce the surface tensions and Tolman length from recent molecular dynamics simulations within their accuracy. The obtained constants in the curvature expansion depend little on temperature, except in the vicinity of the critical point. When the bubble/droplet radius becomes comparable to the interfacial width at coexistence, the critical bubble/droplet prefers to change its density, rather than to decrease its size, and the curvature expansion is no longer sufficient to describe the change in surface tension. We find that the radius of the bubble/droplet in this region is proportional to the correlation length between fluctuations in the liquid-phase.

  12. A molecular dynamics study of the failure modes of a glassy polymer confined between rigid walls

    NASA Astrophysics Data System (ADS)

    Kulmi, Udit; Basu, Sumit

    2006-09-01

    Adhesion is a complex and multifaceted phenomenon which is controlled by various factors such as the loading rate, interface toughness, temperature and geometric and molecular properties. The mode of failure of adhesive joints (adhesive or cohesive) is decided through a complex interplay between these factors. In this work, we study the failure under tensile loading of a thin layer of a polymeric material confined between two rigid walls using molecular dynamics simulations. The strength of the interface is controlled by the interaction potential between the polymer and wall atoms. The polymer modelled is a simple linear chain of 'united atoms' having a fixed bond length but contributions to the energy arise from bending and torsion of bonds as well as from non-bonded interactions between the 'united atoms'. The results indicate that even when the adhesion between the wall and the polymer is weak, a short chained polymer is more likely to fail by a mixed adhesive cohesive mode. A long chained polymer, with the same interface strength, fails in a pure adhesive manner. However, when the interface is sufficiently strengthened, the long chained polymer fails cohesively and it can bear a much higher load. The failure mode is somewhat modulated by the rate at which deformation occurs. Moreover, when the polymer is confined such that the spacing between the walls is comparable to the end-to-end distance of the polymer chain, strength of the joint increases significantly. In such a situation, even polymers with weak interfacial adhesion might fail cohesively.

  13. Doppler ultrasound compatible plastic material for use in rigid flow models.

    PubMed

    Wong, Emily Y; Thorne, Meghan L; Nikolov, Hristo N; Poepping, Tamie L; Holdsworth, David W

    2008-11-01

    A technique for the rapid but accurate fabrication of multiple flow phantoms with variations in vascular geometry would be desirable in the investigation of carotid atherosclerosis. This study demonstrates the feasibility and efficacy of implementing numerically controlled direct-machining of vascular geometries into Doppler ultrasound (DUS)-compatible plastic for the easy fabrication of DUS flow phantoms. Candidate plastics were tested for longitudinal speed of sound (SoS) and acoustic attenuation at the diagnostic frequency of 5 MHz. Teflon was found to have the most appropriate SoS (1376 +/- 40 m s(-1) compared with 1540 m s(-1) in soft tissue) and thus was selected to construct a carotid bifurcation flow model with moderate eccentric stenosis. The vessel geometry was machined directly into Teflon using a numerically controlled milling technique. Geometric accuracy of the phantom lumen was verified using nondestructive micro-computed tomography. Although Teflon displayed a higher attenuation coefficient than other tested materials, Doppler data acquired in the Teflon flow model indicated that sufficient signal power was delivered throughout the depth of the vessel and provided comparable velocity profiles to that obtained in the tissue-mimicking phantom. Our results indicate that Teflon provides the best combination of machinability and DUS compatibility, making it an appropriate choice for the fabrication of rigid DUS flow models using a direct-machining method.

  14. Inertial Motions of a Rigid Body with a Cavity Filled with a Viscous Liquid

    NASA Astrophysics Data System (ADS)

    Disser, Karoline; Galdi, Giovanni P.; Mazzone, Giusy; Zunino, Paolo

    2016-07-01

    We study inertial motions of the coupled system, {S}, constituted by a rigid body containing a cavity entirely filled with a viscous liquid. We show that for arbitrary initial data having only finite kinetic energy, every corresponding weak solution (à la Leray-Hopf) converges, as time goes to infinity, to a uniform rotation, unless two central moments of inertia of {S} coincide and are strictly greater than the third one. This corroborates a famous "conjecture" of N.Ye. Zhukovskii in several physically relevant cases. Moreover, we show that, in a known range of initial data, this rotation may only occur along the central axis of inertia of {S} with the larger moment of inertia. We also provide necessary and sufficient conditions for the rigorous nonlinear stability of permanent rotations, which improve and/or generalize results previously given by other authors under different types of approximation. Finally, we present results obtained by a targeted numerical simulation that, on the one hand, complement the analytical findings, whereas, on the other hand, point out new features that the analysis is yet not able to catch, and, as such, lay the foundation for interesting and challenging future investigation.

  15. ENERGETIC PARTICLE ANISOTROPIES AT THE HELIOSPHERIC BOUNDARY. II. TRANSIENT FEATURES AND RIGIDITY DEPENDENCE

    SciTech Connect

    Florinski, V.; Roux, J. A. le; Stone, E. C.; Cummings, A. C.

    2015-04-10

    In the preceding paper, we showed that large second-order anisotropies of heliospheric ions measured by the Voyager 1 space probe during the August 2012 boundary crossing event could be explained by a magnetic shear across the heliopause preventing particles streaming along the magnetic field from escaping the inner heliosheath. According to Stone et al., the penetration distance of heliospheric ions into the outer heliosheath had a strong dependence on the particle’s Larmor radius. By comparing hydrogen, helium, and oxygen ions with the same energy per nucleon, these authors argued that this effect must be attributed to larger cyclotron radii of heavier species rather than differences in velocity. We propose that gradient drift in a nonuniform magnetic field was the cause of both the large second-order anisotropies and the spatial differentiation based on the ion’s rigidity. A latitudinal gradient of magnetic field strength of about 10% per AU between 2012.7 and 2012.9 could have provided drift motion sufficient to match both LECP and CRS Voyager 1 observations. We explain the transient intensity dropout observed prior to the heliocliff using flux tube structures embedded in the heliosheath and magnetically connected to interstellar space. Finally, this paper reports a new indirect measurement of the plasma radial velocity at the heliopause on the basis of the time difference between two cosmic-ray telescopes measuring the same intensity dropout.

  16. Rigidity and Flexibility: The Central Basis of Inter-Leg Coordination in the Locust.

    PubMed

    Knebel, Daniel; Ayali, Amir; Pflüger, Hans-Joachim; Rillich, Jan

    2016-01-01

    Many motor behaviors, and specifically locomotion, are the product of an intricate interplay between neuronal oscillators known as central pattern generators (CPGs), descending central commands, and sensory feedback loops. The relative contribution of each of these components to the final behavior determines the trade-off between fixed movements and those that are carefully adapted to the environment. Here we sought to decipher the endogenous, default, motor output of the CPG network controlling the locust legs, in the absence of any sensory or descending influences. We induced rhythmic activity in the leg CPGs in isolated nervous system preparations, using different application procedures of the muscarinic agonist pilocarpine. We found that the three thoracic ganglia, each controlling a pair of legs, have different inherent bilateral coupling. Furthermore, we found that the pharmacological activation of one ganglion is sufficient to induce activity in the other, untreated, ganglia. Each ganglion was thus capable to impart its own bilateral inherent pattern onto the other ganglia via a tight synchrony among the ipsilateral CPGs. By cutting a connective and severing the lateral-longitudinal connections, we were able to uncouple the oscillators' activity. While the bilateral connections demonstrated a high modularity, the ipsilateral CPGs maintained a strict synchronized activity. These findings suggest that the central infrastructure behind locust walking features both rigid elements, which presumably support the generation of stereotypic orchestrated leg movements, and flexible elements, which might provide the central basis for adaptations to the environment and to higher motor commands.

  17. High temperature testing of TRUPACT-I materials: Kevlar, honeycomb, rigid polyurethane foam

    SciTech Connect

    Hudson, M.L.

    1985-12-01

    When the Transuranic Package Transporter Model-I (TRUPACT-I) failed to afford sufficient containment after a 35-minute JP-4 fueled open-pool fire, component tests were conducted, in conjunction with analyses, to guide and assess the redesign of TRUPACT-I. Since materials which change phase or combust are difficult to numerically analyze, the component tests determined the behavior of these materials in TRUPACT-I. The component tests approximated the behavior of Kevlar (registered trademark of DuPont), metal honeycomb, and rigid polyurethane foam, as they appear in TRUPACT-I, in an open-pool fire environment. Six series of tests were performed at Sandia's Radiant Heat Facility and one test at the wind-shielded fire test facility (LAARC Chimney). Each test facility was controlled to yield temperatures or heat fluxes equivalent to those measured in the TRUPACT-I, Unit 0, open-pool fire. This extensive series of component tests (34 runs total) provided information on the high-temperature behavior of unique materials which was not previously available or otherwise attainable. The component tests were a timely and cost-effective means of providing the data for the TRUPACT-I redesign.

  18. Rigidity and Flexibility: The Central Basis of Inter-Leg Coordination in the Locust

    PubMed Central

    Knebel, Daniel; Ayali, Amir; Pflüger, Hans-Joachim; Rillich, Jan

    2017-01-01

    Many motor behaviors, and specifically locomotion, are the product of an intricate interplay between neuronal oscillators known as central pattern generators (CPGs), descending central commands, and sensory feedback loops. The relative contribution of each of these components to the final behavior determines the trade-off between fixed movements and those that are carefully adapted to the environment. Here we sought to decipher the endogenous, default, motor output of the CPG network controlling the locust legs, in the absence of any sensory or descending influences. We induced rhythmic activity in the leg CPGs in isolated nervous system preparations, using different application procedures of the muscarinic agonist pilocarpine. We found that the three thoracic ganglia, each controlling a pair of legs, have different inherent bilateral coupling. Furthermore, we found that the pharmacological activation of one ganglion is sufficient to induce activity in the other, untreated, ganglia. Each ganglion was thus capable to impart its own bilateral inherent pattern onto the other ganglia via a tight synchrony among the ipsilateral CPGs. By cutting a connective and severing the lateral-longitudinal connections, we were able to uncouple the oscillators’ activity. While the bilateral connections demonstrated a high modularity, the ipsilateral CPGs maintained a strict synchronized activity. These findings suggest that the central infrastructure behind locust walking features both rigid elements, which presumably support the generation of stereotypic orchestrated leg movements, and flexible elements, which might provide the central basis for adaptations to the environment and to higher motor commands. PMID:28123358

  19. Hydrodynamic lubrication of rigid nonconformal contacts in combined rolling and normal motion

    NASA Technical Reports Server (NTRS)

    Ghosh, M. K.; Hamrock, B. J.; Brewe, D. E.

    1984-01-01

    A numerical solution to the problem of hydrodynamic lubrication of rigid point contacts with an isoviscous, incompressible lubricant was obtained. The hydrodynamic load-carrying capacity under unsteady (or dynamic) conditions arising from the combined effects of squeeze motion superposed upon the entraining motion was determined for both normal approach and separation. Superposed normal motion considerably increases net load-carrying capacity during normal approach and substantially reduces net load-carrying capacity during separation. Geometry was also found to have a significant influence on the dynamic load-carrying capacity. The ratio of dynamic to steady state load-carrying capacity increases with increasing geometry parameter for normal approach and decreases during separation. The cavitation (film rupture) boundary is also influenced significantly by the normal motion, moving downstream during approach and upstream during separation. For sufficiently high normal separation velocity the rupture boundary may even move upstream of the minimum-film-thickness position. Sixty-three cases were used to derive a functional relationship for the ratio of the dynamic to steady state load-carrying capacity in terms of the dimensionless normal velocity parameter (incorporating normal velocity, entraining velocity, and film thickness) and the geometry parameter.

  20. Taichi-inspired rigid-flexible coupling cellulose-supported solid polymer electrolyte for high-performance lithium batteries

    PubMed Central

    Zhang, Jianjun; Yue, Liping; Hu, Pu; Liu, Zhihong; Qin, Bingsheng; Zhang, Bo; Wang, Qingfu; Ding, Guoliang; Zhang, Chuanjian; Zhou, Xinhong; Yao, Jianhua; Cui, Guanglei; Chen, Liquan

    2014-01-01

    Inspired by Taichi, we proposed rigid-flexible coupling concept and herein developed a highly promising solid polymer electrolyte comprised of poly (ethylene oxide), poly (cyano acrylate), lithium bis(oxalate)borate and robust cellulose nonwoven. Our investigation revealed that this new class solid polymer electrolyte possessed comprehensive properties in high mechanical integrity strength, sufficient ionic conductivity (3 × 10−4 S cm−1) at 60°C and improved dimensional thermostability (up to 160°C). In addition, the lithium iron phosphate (LiFePO4)/lithium (Li) cell using such solid polymer electrolyte displayed superior rate capacity (up to 6 C) and stable cycle performance at 80°C. Furthermore, the LiFePO4/Li battery could also operate very well even at an elevated temperature of 160°C, thus improving enhanced safety performance of lithium batteries. The use of this solid polymer electrolyte mitigates the safety risk and widens the operation temperature range of lithium batteries. Thus, this fascinating study demonstrates a proof of concept of the use of rigid-flexible coupling solid polymer electrolyte toward practical lithium battery applications with improved reliability and safety. PMID:25183416

  1. Taichi-inspired rigid-flexible coupling cellulose-supported solid polymer electrolyte for high-performance lithium batteries.

    PubMed

    Zhang, Jianjun; Yue, Liping; Hu, Pu; Liu, Zhihong; Qin, Bingsheng; Zhang, Bo; Wang, Qingfu; Ding, Guoliang; Zhang, Chuanjian; Zhou, Xinhong; Yao, Jianhua; Cui, Guanglei; Chen, Liquan

    2014-09-03

    Inspired by Taichi, we proposed rigid-flexible coupling concept and herein developed a highly promising solid polymer electrolyte comprised of poly (ethylene oxide), poly (cyano acrylate), lithium bis(oxalate)borate and robust cellulose nonwoven. Our investigation revealed that this new class solid polymer electrolyte possessed comprehensive properties in high mechanical integrity strength, sufficient ionic conductivity (3 × 10(-4) S cm(-1)) at 60°C and improved dimensional thermostability (up to 160°C). In addition, the lithium iron phosphate (LiFePO4)/lithium (Li) cell using such solid polymer electrolyte displayed superior rate capacity (up to 6 C) and stable cycle performance at 80°C. Furthermore, the LiFePO4/Li battery could also operate very well even at an elevated temperature of 160°C, thus improving enhanced safety performance of lithium batteries. The use of this solid polymer electrolyte mitigates the safety risk and widens the operation temperature range of lithium batteries. Thus, this fascinating study demonstrates a proof of concept of the use of rigid-flexible coupling solid polymer electrolyte toward practical lithium battery applications with improved reliability and safety.

  2. Rigid Cooperation of Per1 and Per2 proteins

    PubMed Central

    Tamiya, Hiroyuki; Ogawa, Sumito; Ouchi, Yasuyoshi; Akishita, Masahiro

    2016-01-01

    Period circadian clock (Per) genes Per1 and Per2 have essential roles in circadian oscillation. In this study, we identified a new role of Per1-Per2 cooperation, and its mechanism, using our new experimental methods. Under constant light conditions, the period length of Per1 and Per2 knockout mice depended on the copy number ratio of Per1:Per2. We then established a light-emitting diode-based lighting system that can generate any pattern of light intensity. Under gradually changing light in the absence of phase shift with different periods, both Per1(−/−) and Per2(−/−) mice were entrained to a broader range of period length than wild-type mice. To analyse Per1-Per2 cooperative roles at the cell culture level, we established a Per2 knockout-rescue system, which can detect period shortening in a familial advanced sleep phase syndrome (FASPS) mutant. Upon introduction of the Per1 coding region in this system, we saw period shortening. In conclusion, short period-associated protein Per1 and long period-associated Per2 cooperated to rigidly confine the circadian period to “circa” 24-h. These results suggest that the rigid circadian rhythm maintained through the cooperation of Per1-Per2 could negatively impact modern society, in which the use of artificial lighting is ubiquitous, and result in circadian disorders, including delirium. PMID:27609640

  3. Polynomials for crystal frameworks and the rigid unit mode spectrum

    PubMed Central

    Power, S. C.

    2014-01-01

    To each discrete translationally periodic bar-joint framework in , we associate a matrix-valued function defined on the d-torus. The rigid unit mode (RUM) spectrum of is defined in terms of the multi-phases of phase-periodic infinitesimal flexes and is shown to correspond to the singular points of the function and also to the set of wavevectors of harmonic excitations which have vanishing energy in the long wavelength limit. To a crystal framework in Maxwell counting equilibrium, which corresponds to being square, the determinant of gives rise to a unique multi-variable polynomial . For ideal zeolites, the algebraic variety of zeros of on the d-torus coincides with the RUM spectrum. The matrix function is related to other aspects of idealized framework rigidity and flexibility, and in particular leads to an explicit formula for the number of supercell-periodic floppy modes. In the case of certain zeolite frameworks in dimensions two and three, direct proofs are given to show the maximal floppy mode property (order N). In particular, this is the case for the cubic symmetry sodalite framework and some other idealized zeolites. PMID:24379422

  4. Origami-Inspired Folding of Thick, Rigid Panels

    NASA Technical Reports Server (NTRS)

    Trease, Brian P.; Thomson, Mark W.; Sigel, Deborah A.; Walkemeyer, Phillip E.; Zirbel, Shannon; Howell, Larry; Lang, Robert

    2014-01-01

    To achieve power of 250 kW or greater, a large compression ratio of stowed-to-deployed area is needed. Origami folding patterns were used to inspire the folding of a solar array to achieve synchronous deployment; however, origami models are generally created for near-zero-thickness material. Panel thickness is one of the main challenges of origami-inspired design. Three origami-inspired folding techniques (flasher, square twist, and map fold) were created with rigid panels and hinges. Hinge components are added to the model to enable folding of thick, rigid materials. Origami models are created assuming zero (or near zero) thickness. When a material with finite thickness is used, the panels are required to bend around an increasingly thick fold as they move away from the center of the model. The two approaches for dealing with material thickness are to use membrane hinges to connect the panels, or to add panel hinges, or hinges of the same thickness, at an appropriate width to enable folding.

  5. Extracellular rigidity sensing by talin isoform–specific mechanical linkages

    PubMed Central

    Austen, Katharina; Ringer, Pia; Mehlich, Alexander; Chrostek-Grashoff, Anna; Kluger, Carleen; Klingner, Christoph; Sabass, Benedikt; Zent, Roy; Rief, Matthias; Grashoff, Carsten

    2015-01-01

    The ability of cells to adhere and sense differences in tissue stiffness is crucial for organ development and function. The central mechanisms by which adherent cells detect extracellular matrix compliance, however, are still unknown. Using two single-molecule–calibrated biosensors that allow the analysis of a previously inaccessible but physiologically highly relevant force regime in cells, we demonstrate that the integrin activator talin establishes mechanical linkages upon cell adhesion, which are indispensable for cells to probe tissue stiffness. Talin linkages are exposed to a range of piconewton (pN) forces and bear, on average, 7–10 pN during cell adhesion depending on their association with f-actin and vinculin. Disruption of talin’s mechanical engagement does not impair integrin activation and initial cell adhesion but prevents focal adhesion reinforcement and thus extracellular rigidity sensing. Intriguingly, talin mechanics are isoform-specific so that expression of either talin-1 or talin-2 modulates extracellular rigidity sensing. PMID:26523364

  6. Geometry-induced rigidity in pressurized elastic shells

    NASA Astrophysics Data System (ADS)

    Reis, Pedro; Florijn, Bastiaan; Lazarus, Arnaud

    2012-02-01

    We study the indentation of pressurized thin elastic shells, with positive Gauss curvature. In our precision desktop-scale experiments, the geometry of the shells and their material properties are custom-controlled using rapid prototyping and digital fabrication techniques. The mechanical response is quantified through load-displacement compression tests and the differential pressure is set by a syringe-pump system under feedback control. Focus is given to the linear regime of the response towards quantifying the geometry-induced rigidity of pressurized shells with different shapes. We find that this effective stiffness is proportional to the local mean curvature in the neighborhood of the locus of indentation. Combining classic theory of shells with recent developments by D. Vella et al. (2011), we rationalize the dependence of the geometry-induced rigidity on: i) the mean curvature at the point of indentation, ii) the material properties of the shell and iii) the in-out differential pressure. The proposed predictive framework is in excellent agreement with our experiments, over a wide range of control parameters. The prominence of geometry in this class of problems points to the relevance and applicability of our results over a wide range of lengthscales.

  7. Propulsion of flexible helical flagella near a rigid boundary

    NASA Astrophysics Data System (ADS)

    Jawed, Mohammad; Reis, Pedro

    2015-11-01

    We study the locomotion of uni-flagellar bacteria in a viscous fluid at low Reynolds number near a rigid boundary, through a combination of computer simulations and experiments. In our analogue model experiments, we exploit the prominence of geometry of this class of problems to rescale the original micron-scale system onto the desktop-scale. We manufacture elastomeric filaments with fully customizable geometric and material properties, and rotate them in a glycerin bath at a finite distance away from a rigid boundary. The experimental results are compared against numerical simulations that employ the Discrete Elastic Rods method in conjunction with Lighthill Slender Body Theory. The non-slip boundary condition on the wall is implemented by the method of images. We first show that the filament buckles above a critical rotation frequency due to fluid loading, and then quantify the dependence of this critical threshold on the distance from the boundary, both experimentally and numerically. Excellent agreement is found between the two, with no fitting parameters. We then make use of our numerics to systematically investigate the change in the generated propulsion due to presence of a nearby boundary. We find that the propulsion depends strongly on the location of the boundary.

  8. Non-rigid registration of tomographic images with Fourier transforms

    NASA Astrophysics Data System (ADS)

    Osorio, Ar; Isoardi, Ra; Mato, G.

    2007-11-01

    Spatial image registration of deformable body parts such as thorax and abdomen has important medical applications, but at the same time, it represents an important computational challenge. In this work we propose an automatic algorithm to perform non-rigid registration of tomographic images using a non-rigid model based on Fourier transforms. As a measure of similarity, we use the correlation coefficient, finding that the optimal order of the transformation is n = 3 (36 parameters). We apply this method to a digital phantom and to 7 pairs of patient images corresponding to clinical CT scans. The preliminary results indicate a fairly good agreement according to medical experts, with an average registration error of 2 mm for the case of clinical images. For 2D images (dimensions 512×512), the average running time for the algorithm is 15 seconds using a standard personal computer. Summarizing, we find that intra-modality registration of the abdomen can be achieved with acceptable accuracy for slight deformations and can be extended to 3D with a reasonable execution time.

  9. Measurement of Spindle Rigidity by using a Magnet Loader

    NASA Astrophysics Data System (ADS)

    Yamazaki, Taku; Matsubara, Atsushi; Fujita, Tomoya; Muraki, Toshiyuki; Asano, Kohei; Kawashima, Kazuyuki

    The static rigidity of a rotating spindle in the radial direction is investigated in this research. A magnetic loading device (magnet loader) has been developed for the measurement. The magnet loader, which has coils and iron cores, generates the electromagnetic force and attracts a dummy tool attached to the spindle. However, the eddy current is generated in the dummy tool with the spindle rotation and reduces the attractive force at high spindle speed. In order to understand the magnetic flux and eddy current in the dummy tool, the electromagnetic field analysis by FEM was carried out. Grooves on the attraction surface of the dummy tool were designed to cut the eddy current flow. The dimension of the groove were decided based on the FEM analysis, and the designed tool were manufactured and tested. The test result shows that the designed tool successfully reduces the eddy current and recovers the attractive force. By using the magnet loader and the grooved tool, the spindle rigidity can be measured when the spindle rotates with a speed up to 10,000 min-1.

  10. Heat Transfer Modeling for Rigid High-Temperature Fibrous Insulation

    NASA Technical Reports Server (NTRS)

    Daryabeigi, Kamran; Cunnington, George R.; Knutson, Jeffrey R.

    2012-01-01

    Combined radiation and conduction heat transfer through a high-temperature, high-porosity, rigid multiple-fiber fibrous insulation was modeled using a thermal model previously used to model heat transfer in flexible single-fiber fibrous insulation. The rigid insulation studied was alumina enhanced thermal barrier (AETB) at densities between 130 and 260 kilograms per cubic meter. The model consists of using the diffusion approximation for radiation heat transfer, a semi-empirical solid conduction model, and a standard gas conduction model. The relevant parameters needed for the heat transfer model were estimated from steady-state thermal measurements in nitrogen gas at various temperatures and environmental pressures. The heat transfer modeling methodology was evaluated by comparison with standard thermal conductivity measurements, and steady-state thermal measurements in helium and carbon dioxide gases. The heat transfer model is applicable over the temperature range of 300 to 1360 K, pressure range of 0.133 to 101.3 x 10(exp 3) Pa, and over the insulation density range of 130 to 260 kilograms per cubic meter in various gaseous environments.

  11. Jet Ventilation during Rigid Bronchoscopy in Adults: A Focused Review

    PubMed Central

    Mayné, Alain

    2016-01-01

    The indications for rigid bronchoscopy for interventional pulmonology have increased and include stent placements and transbronchial cryobiopsy procedures. The shared airway between anesthesiologist and pulmonologist and the open airway system, requiring specific ventilation techniques such as jet ventilation, need a good understanding of the procedure to reduce potentially harmful complications. Appropriate adjustment of the ventilator settings including pause pressure and peak inspiratory pressure reduces the risk of barotrauma. High frequency jet ventilation allows adequate oxygenation and carbon dioxide removal even in cases of tracheal stenosis up to frequencies of around 150 min−1; however, in an in vivo animal model, high frequency jet ventilation along with normal frequency jet ventilation (superimposed high frequency jet ventilation) has been shown to improve oxygenation by increasing lung volume and carbon dioxide removal by increasing tidal volume across a large spectrum of frequencies without increasing barotrauma. General anesthesia with a continuous, intravenous, short-acting agent is safe and effective during rigid bronchoscopy procedures. PMID:27847813

  12. Plane stress problems using hysteretic rigid body spring network models

    NASA Astrophysics Data System (ADS)

    Christos, Sofianos D.; Vlasis, Koumousis K.

    2016-08-01

    In this work, a discrete numerical scheme is presented capable of modeling the hysteretic behavior of 2D structures. Rigid Body Spring Network (RBSN) models that were first proposed by Kawai (Nucl Eng Des 48(1):29-207, 1978) are extended to account for hysteretic elastoplastic behavior. Discretization is based on Voronoi tessellation, as proposed specifically for RBSN models to ensure uniformity. As a result, the structure is discretized into convex polygons that form the discrete rigid bodies of the model. These are connected with three zero length, i.e., single-node springs in the middle of their common facets. The springs follow the smooth hysteretic Bouc-Wen model which efficiently incorporates classical plasticity with no direct reference to a yield surface. Numerical results for both static and dynamic loadings are presented, which validate the proposed simplified spring-mass formulation. In addition, they verify the model's applicability on determining primarily the displacement field and plastic zones compared to the standard elastoplastic finite element method.

  13. Thermal, chemical, and mechanical response of rigid polyurethane foam

    SciTech Connect

    Hobbs, M.L.

    1997-12-01

    Rigid polyurethane foams are frequently used as encapsulants to isolate and support thermally sensitive components within weapon systems. When exposed to abnormal thermal environments, such as fire, the polyurethane foam decomposes to form products having a wide distribution of molecular weights and can dominate the overall thermal response of the system. Mechanical response of the decomposing foam, such as thermal expansion under various loading conditions created by gas generation, remains a major unsolved problem. A constitutive model of the reactive foam is needed to describe the coupling between mechanical response and chemical decomposition of foam exposed to environments such as fire. Towards this end, a reactive elastic-plastic constitutive model based on bubble mechanics describing nucleation, decomposition chemistry, and elastic/plastic mechanical behavior of rigid polyurethane foam has been developed. A local force balance, with mass continuity constraints, forms the basis of the constitutive model requiring input of temperature and the fraction of the material converted to gas. This constitutive model provides a stress-strain relationship which is applicable for a broad class of reacting materials such as explosives, propellants, pyrotechnics, and decomposing foams. The model is applied to a block of foam exposed to various thermal fluxes. The model is also applied to a sphere of foam confined in brass. The predicted mechanical deformation of the foam block and sphere are shown to qualitatively agree with experimental observations.

  14. A method for measuring the inertia properties of rigid bodies

    NASA Astrophysics Data System (ADS)

    Gobbi, M.; Mastinu, G.; Previati, G.

    2011-01-01

    A method for the measurement of the inertia properties of rigid bodies is presented. Given a rigid body and its mass, the method allows to measure (identify) the centre of gravity location and the inertia tensor during a single test. The proposed technique is based on the analysis of the free motion of a multi-cable pendulum to which the body under consideration is connected. The motion of the pendulum and the forces acting on the system are recorded and the inertia properties are identified by means of a proper mathematical procedure based on a least square estimation. After the body is positioned on the test rig, the full identification procedure takes less than 10 min. The natural frequencies of the pendulum and the accelerations involved are quite low, making this method suitable for many practical applications. In this paper, the proposed method is described and two test rigs are presented: the first is developed for bodies up to 3500 kg and the second for bodies up to 400 kg. A validation of the measurement method is performed with satisfactory results. The test rig holds a third part quality certificate according to an ISO 9001 standard and could be scaled up to measure the inertia properties of huge bodies, such as trucks, airplanes or even ships.

  15. Rigid Amorphous Fraction and Lamellar Structure in Nylon-6

    NASA Astrophysics Data System (ADS)

    Chen, Huipeng; Cebe, Peggy

    2007-03-01

    A three-phase model, comprising crystalline, mobile amorphous, and rigid amorphous fractions (RAF) has been applied in the study of semicrystalline Nylon-6. The samples were Nylon-6 alpha phase prepared by subsequent annealing of a parent sample. The samples were annealed at 110^oC, then briefly heated to 136^oC, then re-annealed at 110^oC. Temperature-modulated differential scanning calorimetry measurements allow the devitrification of the rigid amorphous fraction to be examined. We observe a lower endotherm, termed the ``annealing peak'' in the non-reversing heat flow after annealing. By brief heating above this endotherm and immediately quenching, the amount of RAF decrease substantially and the annealing peak disappears. The annealing peak corresponds to the point at which partial de-vitrification of the RAF occurs. None of these treatments affected the measured degree of crystallinity. Using a combined approach of thermal analysis with small angle X-ray scattering, we determine that the Homogeneous Stack Model is the correct one for Nylon-6.

  16. A frequency domain based rigid motion artifact reduction algorithm

    NASA Astrophysics Data System (ADS)

    Luo, Hai; Huang, Xiaojie; Pan, Wenyu; Zhou, Heqin; Feng, Huanqing

    2009-10-01

    During a CT scan, patients' conscious or unconscious motions would result in motion artifacts which undermine the image quality and hamper doctors' accurate diagnosis and therapy. It is desirable to develop a precise motion estimation and artifact reduction method in order to produce high-resolution images. Rigid motion can be decomposed into two components: translational motion and rotational motion. Since considering the rotation and translation simultaneously is very difficult, most former studies on motion artifact reduction ignore rotation. The extended HLCC based method considering the rotation and translation simultaneously relies on a searching algorithm which leads to expensive computing cost. Therefore, a novel method which does not rely on searching is desirable. In this paper, we focus on parallel-beam CT. We first propose a frequency domain based method to estimate rotational motion, which is not affected by translational motion. It realizes the separation of rotation estimation and translation estimation. Then we combine this method with the HLCC based method to construct a new method for general rigid motion called separative estimation and collective correction method. Furthermore, we present numerical simulation results to show the accuracy and robustness of our approach.

  17. Computational Fluid Dynamics Demonstration of Rigid Bodies in Motion

    NASA Technical Reports Server (NTRS)

    Camarena, Ernesto; Vu, Bruce T.

    2011-01-01

    The Design Analysis Branch (NE-Ml) at the Kennedy Space Center has not had the ability to accurately couple Rigid Body Dynamics (RBD) and Computational Fluid Dynamics (CFD). OVERFLOW-D is a flow solver that has been developed by NASA to have the capability to analyze and simulate dynamic motions with up to six Degrees of Freedom (6-DOF). Two simulations were prepared over the course of the internship to demonstrate 6DOF motion of rigid bodies under aerodynamic loading. The geometries in the simulations were based on a conceptual Space Launch System (SLS). The first simulation that was prepared and computed was the motion of a Solid Rocket Booster (SRB) as it separates from its core stage. To reduce computational time during the development of the simulation, only half of the physical domain with respect to the symmetry plane was simulated. Then a full solution was prepared and computed. The second simulation was a model of the SLS as it departs from a launch pad under a 20 knot crosswind. This simulation was reduced to Two Dimensions (2D) to reduce both preparation and computation time. By allowing 2-DOF for translations and 1-DOF for rotation, the simulation predicted unrealistic rotation. The simulation was then constrained to only allow translations.

  18. Captides: rigid junctions between beta sheets and small molecules.

    PubMed

    Kier, Brandon L; Andersen, Niels H

    2014-09-01

    An extensive series of covalently linked small molecule-peptide adducts based on a terminally capped-beta hairpin motif is reported. The constructs can be prepared by standard solid-phase Fmoc chemistry with one to four peptide chains linked to small molecule hubs bearing carboxylic acid moieties. The key feature of interest is the precise, buried environment of the small molecule, and its rigid orientation relative to one or more short but fully structured peptide chain(s). Most of this study employs a minimalist nine residue 'captide', a capped β-turn, but we illustrate general applicability to peptides which can terminate in a beta strand. The non-peptide portion of these adducts can include nearly any molecule bearing one or more carboxylic acid groups. Fold-dependent rigidity sets this strategy apart from the currently available bioconjugation methods, which typically engender significant flexibility between peptide and tag. Applications to catalyst enhancement, drug design, higher-order assembly, and FRET calibration rulers are discussed.

  19. Physicochemical characterization of drug-loaded rigid and elastic vesicles.

    PubMed

    Uchino, Tomonobu; Lefeber, Fons; Gooris, Gert; Bouwstra, Joke

    2011-06-30

    Ketorolac loaded rigid and elastic vesicles were prepared by sonication and the physicochemical properties of the drug loaded-vesicle formulations were examined. Rigid and elastic vesicles were prepared from the double chain surfactant sucrose-ester laurate (L-595) and the single chain surfactant octaoxyethylene-laurate ester (PEG-8-L). Sulfosuccinate (TR-70) was used as a negative charge inducer. Evaluation of the prepared vesicle was performed by dynamic light scattering, extrusion and by (1)H NMR (T(2) relaxation studies). The vesicles mean size varied between 90 and 150 nm. The elasticity of the vesicles was enhanced with increasing PEG-8-L/L-595 ratio, while an increase in loading of ketorolac resulted in a reduction in vesicle elasticity. (1)H NMR measurements showed that the molecular mobility of ketorolac was restricted, which indicates that ketorolac molecules were entrapped within the vesicle bilayers. The T(2) values of the aromatic protons of ketorolac increased gradually at higher PEG-8-L levels, indicating that ketorolac mobility increased in the vesicle bilayer. The chemical stability of ketorolac was dramatically improved in the vesicle formulation compared to a buffer solution. The strong interactions of ketorolac with the bilayers of the vesicles might be the explanation for this increased stability of ketorolac.

  20. Rigid spherical particles in highly turbulent Taylor-Couette flow

    NASA Astrophysics Data System (ADS)

    Bakhuis, Dennis; Verschoof, Ruben A.; Mathai, Varghese; Huisman, Sander G.; Lohse, Detlef; Sun, Chao

    2016-11-01

    Many industrial and maritime processes are subject to enormous frictional losses. Reducing these losses even slightly will already lead to large financial and environmental benefits. The understanding of the underlying physical mechanism of frictional drag reduction is still limited, for example, in bubbly drag reduction there is an ongoing debate whether deformability and bubble size are the key parameters. In this experimental study we report high precision torque measurements using rigid non-deformable spherical particles in highly turbulent Taylor-Couette flow with Reynolds numbers up to 2 ×106 . The particles are made of polystyrene with an average density of 1.036 g cm-3 and three different diameters: 8mm, 4mm, and 1.5mm. Particle volume fractions of up to 6% were used. By varying the particle diameter, density ratio of the particles and the working fluid, and volume fraction of the particles, the effect on the torque is compared to the single phase case. These systematic measurements show that adding rigid spherical particles only results in very minor drag reduction. This work is financially supported by Netherlands Organisation for Scientific Research (NWO) by VIDI Grant Number 13477.

  1. Dynamic simulation of articulated rigid bodies with contact and collision.

    PubMed

    Weinstein, Rachel; Teran, Joseph; Fedkiw, Ron

    2006-01-01

    We propose a novel approach for dynamically simulating articulated rigid bodies undergoing frequent and unpredictable contact and collision. In order to leverage existing algorithms for nonconvex bodies, multiple collisions, large contact groups, stacking, etc., we use maximal rather than generalized coordinates and take an impulse-based approach that allows us to treat articulation, contact, and collision in a unified manner. Traditional constraint handling methods are subject to drift, and we propose a novel prestabilization method that does not require tunable potentially stiff parameters as does Baumgarte stabilization. This differs from poststabilization in that we compute allowable trajectories before moving the rigid bodies to their new positions, instead of correcting them after the fact when it can be difficult to incorporate the effects of contact and collision. A poststabilization technique is used for momentum and angular momentum. Our approach works with any black box method for specifying valid joint constraints and no special considerations are required for arbitrary closed loops or branching. Moreover, our implementation is linear both in the number of bodies and in the number of auxiliary contact and collision constraints, unlike many other methods that are linear in the number of bodies, but not in the number of auxiliary constraints.

  2. Stability of Rigidly Rotating Supermassive Stars against Gravitational Collapse

    NASA Astrophysics Data System (ADS)

    Shibata, Masaru; Uchida, Haruki; Sekiguchi, Yu-ichiro

    2016-02-01

    We revisit secular stability against quasi-radial collapse for rigidly rotating supermassive stars (SMSs) in general relativity. We suppose that the SMSs are in a nuclear-burning phase and can be modeled by polytropic equations of state with the polytropic index np slightly smaller than 3. The stability is determined in terms of the turning point method. We find a fitting formula of the stability condition for the plausible range of np (2.95≲ {n}{{p}}≲ 3) for SMSs. This condition reconfirms that while non-rotating SMSs with a mass of ˜ {10}5{M}⊙ -{10}6{M}⊙ may undergo a general relativistically induced quasi-radial collapse, rigidly rotating SMSs with a ratio of rotational to gravitational potential energy (β) of ˜ {10}-2 are likely to be stable against collapse unless they are able to accrete ˜5 times more mass during the (relatively brief) hydrogen-burning phase of their evolution. We discuss the implications of our results.

  3. Some inverse problems arising from elastic scattering by rigid obstacles

    NASA Astrophysics Data System (ADS)

    Hu, Guanghui; Kirsch, Andreas; Sini, Mourad

    2013-01-01

    In the first part of this paper, it is proved that a C2-regular rigid scatterer in { {R}}^3 can be uniquely identified by the shear part (i.e. S-part) of the far-field pattern corresponding to all incident shear waves at any fixed frequency. The proof is short and it is based on a kind of decoupling of the S-part of scattered wave from its pressure part (i.e. P-part) on the boundary of the scatterer. Moreover, uniqueness using the S-part of the far-field pattern corresponding to only one incident plane shear wave holds for a ball or a convex Lipschitz polyhedron. In the second part, we adapt the factorization method to recover the shape of a rigid body from the scattered S-waves (resp. P-waves) corresponding to all incident plane shear (resp. pressure) waves. Numerical examples illustrate the accuracy of our reconstruction in { {R}}^2. In particular, the factorization method also leads to some uniqueness results for all frequencies excluding possibly a discrete set.

  4. Awake craniotomy using electromagnetic navigation technology without rigid pin fixation.

    PubMed

    Morsy, Ahmed A; Ng, Wai Hoe

    2015-11-01

    We report our institutional experience using an electromagnetic navigation system, without rigid head fixation, for awake craniotomy patients. The StealthStation® S7 AxiEM™ navigation system (Medtronic, Inc.) was used for this technique. Detailed preoperative clinical and neuropsychological evaluations, patient education and contrast-enhanced MRI (thickness 1.5mm) were performed for each patient. The AxiEM Mobile Emitter was typically placed in a holder, which was mounted to the operating room table, and a non-invasive patient tracker was used as the patient reference device. A monitored conscious sedation technique was used in all awake craniotomy patients, and the AxiEM Navigation Pointer was used for navigation during the procedure. This offers the same accuracy as optical navigation, but without head pin fixation or interference with intraoperative neurophysiological techniques and surgical instruments. The application of the electromagnetic neuronavigation technology without rigid head fixation during an awake craniotomy is accurate, and offers superior patient comfort. It is recommended as an effective adjunctive technique for the conduct of awake surgery.

  5. Captides: Rigid Junctions between Beta Sheets and Small Molecules

    PubMed Central

    Kier, Brandon L.; Andersen, Niels H.

    2014-01-01

    An extensive series of covalently linked small molecule-peptide adducts based on a terminally capped beta hairpin motif is reported. The constructs can be prepared by standard solid-phase fmoc chemistry with 1 to 4 peptide chains linked to small molecule hubs bearing carboxylic acid moieties. The key feature of interest is the precise, buried environment of the small molecule, and its rigid orientation relative to one or more short, but fully structured peptide chain(s). Most of this study employs a minimalist 9 residue “captide”, a capped β-turn, but we illustrate general applicability to peptides which can terminate in a beta strand. The non-peptide portion of these adducts can include nearly any molecule bearing one or more carboxylic acid groups. Fold-dependent rigidity sets this strategy apart from currently available bioconjugation methods, which typically engender significant flexibility between peptide and tag. Applications to catalyst enhancement, drug design, higher-order assembly, and FRET calibration rulers are discussed. PMID:24909552

  6. Total absorption peak by use of a rigid frame porous layer backed by a rigid multi-irregularities grating.

    PubMed

    Groby, J-P; Lauriks, W; Vigran, T E

    2010-05-01

    The acoustic properties of a low resistivity porous layer backed by a rigid plate containing periodic rectangular irregularities, creating a multicomponent diffraction gratings, are investigated. Numerical and experimental results show that the structure possesses a total absorption peak at the frequency of the modified mode of the layer, when designed as proposed in the article. These results are explained by an analysis of the acoustic response of the whole structure and especially by the modal analysis of the configuration. When more than one irregularity per spatial period is considered, additional higher frequency peaks are observed.

  7. Necessary and Sufficient Conditions of Solution Uniqueness in l(sub 1) Minimization (Preprint)

    DTIC Science & Technology

    2012-08-01

    optimality conditions for problems (1a)–(1d), the following theorems give the necessary and sufficient conditions of unique optimality ...the optimality of x∗, Condition 1 is the necessary and sufficient condition for the uniqueness of x∗. Remark 1 For problems (1b)–(1d), the uniqueness of...Noname manuscript No. (will be inserted by the editor) Necessary and sufficient conditions of solution uniqueness in `1 minimization Hui

  8. Suitability of DCPs with screw locking elements to allow sufficient interfragmentary motion to promote secondary bone healing of osteoporotic fractures.

    PubMed

    Cuadrado, A; Yánez, A; Carta, J A; Garcés, G

    2013-06-01

    This paper analyses the suitability of a system comprising a Dynamic Compression Plate (DCP) and Screw Locking Elements (SLEs) to allow sufficient interfragmentary motion to promote secondary bone healing in osteoporotic fractures. Four fixation systems were mounted on bone-simulating reinforced epoxy bars filled with solid rigid polyurethane foam. Group 1, used for comparison purposes, represents a system comprised of a Locking Compression Plate (LCP) and eight locking screws. Groups 2 and 3 represent a system comprised of a DCP plate with eight cortical screws and two SLEs placed on the screws furthest from (group 2) and nearest to (group 3) the fracture. Group 4 represents the system comprised of a DCP plate with SLEs placed on all eight cortical screws. Cyclic compression tests of up to 10,000 load cycles were performed in order to determine the parameters of interest, namely the stiffnesses and the interfragmentary motion of the various configurations under consideration. Tukey's multiple comparison test was used to analyse the existence or otherwise of significant differences between the means of the groups. At 10,000 cycles, interfragmentary motion at the far cortex for group 2 was 0.60±0.04 mm and for group 3 0.59±0.03 mm (there being no significant differences: p=0.995). The mean interfragmentary motion at the far cortex of the LCP construct was 70% less than that of the two groups with 2SLEs (there being significant differences: p=1.1×10(-8)). In the case of group 4 this figure was 45% less than in groups 2 and 3 (there being significant differences: p=5.6×10(-6)). At 10,000 cycles, interfragmentary motion at the near cortex for group 2 was 0.24±0.06 mm and for group 3 0.24±0.03 mm (there being no significant differences: p=1.000). The mean interfragmentary motion at the near cortex of the LCP construct was 70.8% less than that of the two groups with 2SLEs (there being significant differences: p=0.011). In the case of group 4 this figure was 66

  9. Experimental method for determination of bending and torsional rigidities of advanced composite laminates

    SciTech Connect

    Maeda, Takenori

    1995-11-01

    This paper presents an experimental method for the determination of the bending and torsional rigidities of advanced fiber composite laminates with the aid of laser holographic interferometry. The proposed method consists of a four-point bending test and a resonance test. The bending rigidity ratio (D{sub 12}/D{sub 22}) can be determined from the fringe patterns of the four-point bending test. The bending rigidities (D{sub 11} and D{sub 22}) and the torsional rigidity (D{sub 66}) are calculated from the natural frequencies of cantilever plates of the resonance test. The test specimens are carbon/epoxy cross-ply laminates. The adequacy of the experimental method is confirmed by comparing the measured rigidities with the theoretical values obtained from classical lamination theory (CLT) by using the measured tensile properties. The results show that the present method can be used to evaluate the rigidities of orthotropic laminates with reasonably good accuracy.

  10. Sensing substrate rigidity by mechanosensitive ion channels with stress fibers and focal adhesions.

    PubMed

    Kobayashi, Takeshi; Sokabe, Masahiro

    2010-10-01

    Cell motility, spreading, proliferation and differentiation are critically influenced by substrate rigidity. To sense substrate rigidity, cells apply traction forces to cell-substrate adhesions via actin stress fibers (SFs) and measure mechanical responses of the substrate. Besides mechanosensitive adaptor proteins, mechanosensitive (MS) channels are involved in the substrate rigidity sensing. MS channels located at or near focal adhesions (FAs) convert the rigidity-dependent stress generated in SF/FA system into the level of cytoplasmic Ca(2+) concentration ([Ca(2+)]cyt) by locally altering their Ca(2+) permeability. Besides by external forces, cells spontaneously generate rigidity-dependent localized [Ca(2+)]cyt increases, implicating MS channels as intrinsic force measurement system. This mechanism may contribute to not only substrate rigidity sensing but also regulation of cell migration.

  11. Numerical simulation on the biomechanical interactions of tooth/implant-supported system under various occlusal forces with rigid/non-rigid connections.

    PubMed

    Lin, Chun-Li; Wang, Jen-Chyan; Kuo, Yu-Chan

    2006-01-01

    The aim of this study was to analyze the biomechanics in an implant/tooth-supported system under different occlusal forces with rigid/non-rigid connectors by adopting a 3D non-linear finite element (FE) approach. A 3D FE model containing one Frialit-2 implant splinted to the mandibular second premolar was constructed. Contact elements (frictional surface) were used to simulate the realistic interface condition within the implant system and the sliding keyway stress-breaker function. The stress distributions in the splinting system and dissimilar mobility between natural tooth and implant with rigid and non-rigid connectors were observed for six loading types. The simulated results indicated that the lateral occlusal forces significantly increased the implant (sigma(I, max)), alveolar bone (sigma(AB, max)) and prosthesis (sigma(P, max)) stress values when compared with the axial occlusal forces. The sigma(I, max) and sigma(AB, max) values did not exhibit significant differences regardless of the connector type used. However, the sigma(P, max) values with a non-rigid connection increased more than two times those of the rigid connection. The sigma(I, max), sigma(AB, max) and sigma(P, max) stress values were significantly reduced in centric or lateral contact situations once the occlusal forces on the pontic were decreased. Moreover, the vertical-tooth-to-implant displacement ratios with a non-rigid connection were 23 and 9.9 times that for axial and lateral loads, respectively, applied on the premolar. However, the compensated non-rigid connector capabilities were not significant when occlusal forces acted on the complete prosthesis. The non-rigid connector (keyway device) only significantly exploited its function when the occlusal forces acted on a natural tooth. Minimizing the occlusal loading force on the pontic area through occlusal adjustment procedures to redistribute stress in the maximum intercuspation or lateral working position for an implant

  12. Knowledge of Native Protein-Protein Interfaces Is Sufficient To Construct Predictive Models for the Selection of Binding Candidates.

    PubMed

    Popov, Petr; Grudinin, Sergei

    2015-10-26

    Selection of putative binding poses is a challenging part of virtual screening for protein-protein interactions. Predictive models to filter out binding candidates with the highest binding affinities comprise scoring functions that assign a score to each binding pose. Existing scoring functions are typically deduced by collecting statistical information about interfaces of native conformations of protein complexes along with interfaces of a large generated set of non-native conformations. However, the obtained scoring functions become biased toward the method used to generate the non-native conformations, i.e., they may not recognize near-native interfaces generated with a different method. The present study demonstrates that knowledge of only native protein-protein interfaces is sufficient to construct well-discriminative predictive models for the selection of binding candidates. Here we introduce a new scoring method that comprises a knowledge-based potential called KSENIA deduced from structural information about the native interfaces of 844 crystallographic protein-protein complexes. We derive KSENIA using convex optimization with a training set composed of native protein complexes and their near-native conformations obtained using deformations along the low-frequency normal modes. As a result, our knowledge-based potential has only marginal bias toward a method used to generate putative binding poses. Furthermore, KSENIA is smooth by construction, which allows it to be used along with rigid-body optimization to refine the binding poses. Using several test benchmarks, we demonstrate that our method discriminates well native and near-native conformations of protein complexes from non-native ones. Our methodology can be easily adapted to the recognition of other types of molecular interactions, such as protein-ligand, protein-RNA, etc. KSENIA will be made publicly available as a part of the SAMSON software platform at https://team.inria.fr/nano-d/software .

  13. Mid-Level Vision and Recognition of Non-Rigid Objects.

    DTIC Science & Technology

    1993-01-01

    recover a more complete description, not just three points or pairs of parallel lines. Gestalt principles commonly used in rigid object segmentation...research, such as parallelism, can be used also for non-rigid objects. However, to be useful in non-rigid object segmentation, Gestalt principles have to...incorporating Gestalt notions such as symmetry and convexity [Ullman 1976], [Shashua and Ullman 1988], [Subirana-Vilanova 1990], [Subirana-Vilanova and

  14. Supplemental Summary of Cutoff Rigidities Calculated Using the International Geomagnetic Reference Field for Various Epochs.

    DTIC Science & Technology

    1982-11-01

    Rigidities Calculated Using the International -Geomagnetic Reference Field for Various Epochs M.A. SHEA D.F. SMART 1 NOVEMBER 1982 Approved for publie...SUMMARY OF CUTOFF Scientific. Interim. RIGIDITIES CALCULATED USING THE INTER -_ _________ NATIONAL GEOMAGNETIC REFERENCE FIELD 6 PERFORMING 01G. REPORT...n-b.’I Cosmic rays Cutoff rigidities Geomagnetic field 20 ABSTRACT (ContinuC0 e o, sid. it ---. 0, -,d id- 5,.- 550,5- Tables of cosmic-ray cutoff

  15. "False" migration of rigid fixation appliances in pediatric craniofacial surgery.

    PubMed

    Papay, F A; Hardy, S; Morales, L; Walker, M; Enlow, D

    1995-07-01

    Osseous fixation techniques have been widely used to provide rigid stabilization in the craniofacial skeleton. Reported sequelae of its usage has been limited to palpation of the screw-plate system and radiological imaging artifacts. Over the past 3 years we have identified miniplates, microplates, and wire sutures on the inner cranial table of the growing child. The observation of "false" migration of these appliances has provided the impetus to review these patients in more detail. Twenty patients underwent secondary cranial remodeling within a two-year period; 7 of these patients were seen to have "false" migration. There were no untoward sequelae in removal of these appliances, and no adverse neurological symptoms were seen.

  16. Debris flow impact estimation on a rigid barrier

    NASA Astrophysics Data System (ADS)

    Vagnon, Federico; Segalini, Andrea

    2016-07-01

    The aim of this paper is to analyse debris flow impact against rigid and undrained barrier in order to propose a new formulation for the estimation of acting force after the flow impact to safe design protection structures. For this reason, this work concentrates on the flow impact, by performing a series of small scale tests in a specifically created flume. Flow characteristics (flow height and velocity) and applied loads (dynamic and static) on barrier were measured using four ultrasonic devices, four load cells and a contact surface pressure gauge. The results obtained were compared with main existing models and a new equation is proposed. Furthermore, a brief review of the small scale theory was provided to analyse the scale effects that can affect the results.

  17. Dynamic response of rigid tanks with inhomogeneous liquids

    SciTech Connect

    Shivakumar, P.; Veletsos, A.; Bandyopadhyay, K.

    1994-04-01

    A study of the free vibrational characteristics and of the response to horizontal ground shaking of a rigid cylindrical tank containing an inviscid liquid with a continuous vertical variation in density is presented. The response quantities examined include the vertical sloshing motions of the liquid at its free-surface, and the impulsive and convective components of the hydrodynamic wall pressures and associated tank forces. The equations of motion for the system are formulated for an arbitrary variation in liquid density but the solutions presented are for a density that increases exponentially from top to bottom. Comprehensive numerical data are included which elucidate the underlying response mechanisms and the effects and relative importance of the various parameters involved. The solution for the continuous density variation considered herein is also compared with a previously reported solution in which the liquid was modeled as a multi-layered, discrete system.

  18. Leonhard Euler and the mechanics of rigid bodies

    NASA Astrophysics Data System (ADS)

    Marquina, J. E.; Marquina, M. L.; Marquina, V.; Hernández-Gómez, J. J.

    2017-01-01

    In this work we present the original ideas and the construction of the rigid bodies theory realised by Leonhard Euler between 1738 and 1775. The number of treatises written by Euler on this subject is enormous, including the most notorious Scientia Navalis (1749), Decouverte d’un noveau principe de mecanique (1752), Du mouvement de rotation des corps solides autour d’un axe variable (1765), Theoria motus corporum solidorum seu rigidorum (1765) and Nova methodus motu corporum rigidorum determinandi (1776), in which he developed the ideas of the instantaneous rotation axis, the so-called Euler equations and angles, the components of what is now known as the inertia tensor, the principal axes of inertia, and, finally, the generalisation of the translation and rotation movement equations for any system. Euler, the man who ‘put most of mechanics into its modern form’ (Truesdell 1968 Essays in the History of Mechanics (Berlin: Springer) p 106).

  19. Smooth Rotation Enhanced As-Rigid-As-Possible Mesh Animation.

    PubMed

    Levi, Zohar; Gotsman, Craig

    2015-02-01

    In recent years, the As-Rigid-As-Possible (ARAP) shape deformation and shape interpolation techniques gained popularity, and the ARAP energy was successfully used in other applications as well. We improve the ARAP animation technique in two aspects. First, we introduce a new ARAP-type energy, named SR-ARAP, which has a consistent discretization for surfaces (triangle meshes). The quality of our new surface deformation scheme competes with the quality of the volumetric ARAP deformation (for tetrahedral meshes). Second, we propose a new ARAP shape interpolation method that is superior to prior art also based on the ARAP energy. This method is compatible with our new SR-ARAP energy, as well as with the ARAP volume energy.

  20. Percepts of rigid motion within and across apertures

    NASA Technical Reports Server (NTRS)

    Shiffrar, Maggie; Pavel, M.

    1991-01-01

    Humans consistently err in their percepts of rotational motion viewed through an aperture. Such errors provide insight into the constraints observers use to interpret retinal images. In the first of two experiments, the subjects consistently perceived the fixed center of rotation for an unmarked line viewed through an aperture as located on the line, regardless of its actual location. Accuracy greatly improved with visible line endings. This finding was extended to explain why a square appears nonrigid when it rotates behind a partial occluder. This illusion is theorized to result from observers misperceiving the center of rotation of the unmarked square sides. In this situation, the subjects seemed unable to apply an object rigidity constraint across apertures. These findings support a conceptualization of the visual system in which consistent local information must be clearly present before prior knowledge can be used to interpret retinal stimulation.

  1. Cenozoic Eurasia is not a single rigid plate: Paleomagnetic evidence

    NASA Astrophysics Data System (ADS)

    Cogné, Jean-Pascal

    2013-11-01

    The widely distributed Cenozoic paleomagnetic inclination anomaly in Asia is usually attributed to either a widespread error of magnetic field recording due to an inclination flattening mechanism in sediments, or to the persistence of an anomalous non-dipolar component of the geomagnetic field throughout the Tertiary. Based on an analysis of the Asian paleomagnetic database for Meso-Cenozoic times, we suggest that instead this puzzling anomaly results from an overlooked global plate tectonics cause where the wide so-called Eurasian plate would have suffered from previously undetected transpressive north-south relative movements between its western and eastern ends since the Cretaceous. These relative movements are most probably accommodated by a component of right-lateral shear movement distributed in the Tornquist-Tesseyre zone, and a localized left-lateral shear movement in the Ural Mountain chain during the Tertiary. Therefore, Eurasia was not the single rigid plate that Cenozoic plate reconstructions have accepted.

  2. Nondestructive evaluation of load transfer at rigid airport pavement joints

    NASA Astrophysics Data System (ADS)

    Hammons, Michael I.

    1995-07-01

    Current design criteria for rigid pavements for commercial and military airfields assume that 25% of the load applied to an edge of a slab is transferred through the joint to an adjacent unloaded slab. A nondestructive testing technique using a falling weight deflectometer (FWD) was used to conduct field testing at a number of sites. A transfer function, developed from an analytical study, was used to estimate load transfer from the measured joint efficiency as a function of the loaded area and the radius of relative stiffness of the pavement. This procedure, although analytically sound, lacks actual field verification at an instrumented pavement site. This procedure was used to estimate load transfer at a number of commercial and military airfields for a variety of joint types, climate conditions, and pavement structures. The results of these tests indicate that the assumption of load transfer as a constant value of 25% appears to be unconservative, especially during the winter months.

  3. Glycolysis recycling of rigid waste polyurethane foam from refrigerators.

    PubMed

    Zhu, P; Cao, Z B; Chen, Y; Zhang, X J; Qian, G R; Chu, Y L; Zhou, M

    2014-01-01

    Rapid growth of rigid waste polyurethane (WPUR) foam from refrigerators attracts the attention all over the world. In this study, glycolysis was chosen to treat WPUR from scrapped refrigerators collected in Shanghai, China. Glycolysis reagents and catalysts were selected. The results indicated that the glycolysis efficiency of ethylene glycol (EG) was higher than that of diethylene glycol, and the catalytic efficiency of alkali metal salts (NaOH) was more excellent than that of triethanolamine and organic salts of alkali metal (NaAc). When EG was 100%WPUR as a glycolysis reagent and NaOH was 1%WPUR as a catalyst at a constant temperature of 197.85°C for 2 h, the glycolysis product had the highest glycolysis conversion rate. In order to maximize the recycling of WPUR, regenerative Polyurethane was performed by adding 10% distilled mixed polyol, which conformed to the QB/T 26689-2011 requirements.

  4. Fibrillar Organic Phases And Their Roles In Rigid Biological Composites

    SciTech Connect

    Arey, Bruce W.; Park, John J.; Mayer, George

    2015-06-01

    This study focused on determining the presence of organic phases in the siliceous components of rigid marine composites ("glass" sponge spicules), and thereby to clarify how those composites dissipate significant mechanical energy. Through the use of imaging by helium ion microscopy in the examination of the spicules, the organic phase that is present between the layers of hydrated silica was also detected within the silica cylinders of the composite, indicating the existence therein of a network, scaffolding, or other pattern that has not yet been determined. It was concluded that the presence of an interpenetrating network of some kind, and tenacious fibrillar interfaces are responsible for the large energy dissipation in these siliceous composites by viscoelastic processes. This discovery means that future mechanics analyses of such composites, extending to large deformations must consider such interpenetrating phases.

  5. Investigation of Drag Coefficient for Rigid Ballute-like Shapes

    NASA Astrophysics Data System (ADS)

    Carnasciali, Maria-Isabel; Mastromarino, Anthony

    2014-11-01

    One common method of decelerating an object during atmospheric entry, descent, and landing is the use of parachutes. Another deceleration technology is the ballute - a combination of balloon and parachute. A CFD study was conducted using commercially available software to investigate the flow-field and the coefficient of drag for various rigid ballute-like shapes at varying Reynolds numbers. The impact of size and placement of the burble-fence as well as number, size, and shape of inlets was considered. Recent experimental measurements conducted during NASA's Low-Density Supersonic Decelerator program revealed a much higher coefficient of drag (Cd) for ballutes than previously encountered. Using atmospheric drag to slow down and land reduces the need for heavy fuel and rocket engines and thus, high values of drag are desired. Funding for this work, in part, provided by the CT Space Grant Consortium.

  6. Origin of the Low Rigidity of the Earth's Inner Core

    NASA Astrophysics Data System (ADS)

    Belonoshko, A. B.; Skorodumova, N. V.; Davis, S.; Osiptsov, A. N.; Rosengren, A.; Johansson, B.

    2007-12-01

    The solid iron Earth's inner core has a low rigidity which manifests itself in the anomalously low velocities of shear waves as compared to those in iron alloys. Normally, when estimating elastic properties of a polycrystal one calculates an average over different orientations of a single crystal. This approach does not take into account the grain boundaries and defects likely to be abundant at high temperatures relevant for the inner core conditions. We show, by molecular dynamics simulations that if defects are considered, the calculated shear modulus and shear wave velocity decrease dramatically compared to the averaged single crystal values. Thus, the low shear wave velocity in the inner core receives its explanation (Science 316, 1603 (2007)).

  7. Rigid ultralight primary mirror segments for space telescopes

    NASA Astrophysics Data System (ADS)

    Zito, Richard R.

    2000-10-01

    The development of ultra-light fibrous substrate mirrors allows serious contemplation of large multi-mirror space telescopes using rigid segments. Mirrors made of silica and alumina fibers have a small coefficient of thermal expansion and a density competitive with inflatable structures. Furthermore, they are without the imagery problems caused by non parabolic figures, gaseous expansion and contraction, tidal distortion of large gas filled structures, leaks, and long lived transient mirror perturbations caused by intentional pointing and tracking movements, micrometeor and space debris impacts, and mechanical vibrations. Fibrous substrate primary mirrors also have logistical advantages, since segments can be fabricated in orbit from small amounts of dense raw materials. One space shuttle flight, lifting about half its payload capacity, is adequate to transport all the material necessary to fabricate substrates for a one hundred meter telescope whose primary mirror consists of 12,086 hexagonal segments, each having a diameter of 1 meter and an area of 0.6495 square meters.

  8. Normal mode study of the earth's rigid body motions

    NASA Technical Reports Server (NTRS)

    Chao, B. F.

    1983-01-01

    In this paper it is shown that the earth's rigid body (rb) motions can be represented by an analytical set of eigensolutions to the equation of motion for elastic-gravitational free oscillations. Thus each degree of freedom in the rb motion is associated with a rb normal mode. Cases of both nonrotating and rotating earth models are studied, and it is shown that the rb modes do incorporate neatly into the earth's system of normal modes of free oscillation. The excitation formula for the rb modes are also obtained, based on normal mode theory. Physical implications of the results are summarized and the fundamental differences between rb modes and seismic modes are emphasized. In particular, it is ascertained that the Chandler wobble, being one of the rb modes belonging to the rotating earth, can be studied using the established theory of normal modes.

  9. Impact of dry granular masses on rigid barriers

    NASA Astrophysics Data System (ADS)

    Calvetti, F.; di Prisco, C.; Vairaktaris, E.

    2015-09-01

    This work concerns the impact of dry granular masses on rigid artificial obstacles. The authors approached the problem by performing an extensive campaign of numerical analyses with a commercial code based on the discrete element theory. The standard approaches employed to design sheltering structures are exclusively based on the assessment of the Maximum Impact Force (MIF) exerted by the soil mass on the obstacle, and the sheltering structure is usually designed according to simplified pseudo-static approaches. In a previous paper the authors considered the dependence of MIF on the Froude number and on a large series of both geometrical and mechanical parameters. Indeed, the impulsive nature of the force exerted by the soil onto the structure has to be considered in order to optimize the design of this type of structures. For this reason in this paper the evolution with time of the impact force and the mechanics of the phenomenon are investigated.

  10. Lyapunov instability of fluids composed of rigid diatomic molecules

    NASA Astrophysics Data System (ADS)

    Borzsák, István; Posch, H. A.; Baranyai, András

    1996-04-01

    We study the Lyapunov instability of a two-dimensional fluid composed of rigid diatomic molecules, with two interaction sites each, and interacting with a Weeks-Chandler-Anderson site-site potential. We compute full spectra of Lyapunov exponents for such a molecular system. These exponents characterize the rate at which neighboring trajectories diverge or converge exponentially in phase space. Qualitative different degrees of freedom, such as rotation and translation, affect the Lyapunov spectrum differently. We study this phenomenon by systematically varying the molecular shape and the density. We define and evaluate ``rotation numbers'' measuring the time averaged modulus of the angular velocities for vectors connecting perturbed satellite trajectories with an unperturbed reference trajectory in phase space. For reasons of comparison, various time correlation functions for translation and rotation are computed. The relative dynamics of perturbed trajectories is also studied in certain subspaces of the phase space associated with center-of-mass and orientational molecular motion.

  11. Osseous adaptation to continuous loading of rigid endosseous implants

    NASA Technical Reports Server (NTRS)

    Roberts, W. E.; Smith, R. K.; Mozsary, P. G.; Zilberman, Y.; Smith, R. S.

    1984-01-01

    The effect of loading on etched Ti implants in the femurs of young (3 mo) and adult (6 mo) rabbits is investigated experimentally. The results are presented in photographs, fluorescence and polarization micrographs, radiographs, and drawings and discussed. Implantation is followed by formation of coarse woven bone within 3 d and mature lamellar bone by 6 wks, with nonspecific subperiosteal bony hypertrophy in the young rabbits only. Spring loading at 100 g produces spontaneous spiral-type fractures when applied immediately, but the implants remain rigid when loads are applied after 6-12 wks of healing. The mechanisms of bone formation involved are examined, and the potential of endosseous implants as anchors in orthodontics or dentofacial-orthopedics is confirmed.

  12. Complexity management theory: motivation for ideological rigidity and social conflict.

    PubMed

    Peterson, Jordan B; Flanders, Joseph L

    2002-06-01

    We are doomed to formulate conceptual structures that are much simpler than the complex phenomena they are attempting to account for. These simple conceptual structures shield us, pragmatically, from real-world complexity, but also fail, frequently, as some aspect of what we did not take into consideration makes itself manifest. The failure of our concepts dysregulates our emotions and generates anxiety, necessarily, as the unconstrained world is challenging and dangerous. Such dysregulation can turn us into rigid, totalitarian dogmatists, as we strive to maintain the structure of our no longer valid beliefs. Alternatively, we can face the underlying complexity of experience, voluntarily, gather new information, and recast and reconfigure the structures that underly our habitable worlds.

  13. Comparing turbulence models for flow through a rigid glottal model.

    PubMed

    Suh, Jungsoo; Frankel, Steven H

    2008-03-01

    Flow through a rigid model of the human vocal tract featuring a divergent glottis was numerically modeled using the Reynolds-averaged Navier-Stokes approach. A number of different turbulence models, available in a widely used commercial computational fluid dynamics code, were tested to determine their ability to capture various flow features recently observed in laboratory experiments and large eddy simulation studies. The study reveals that results from unsteady simulations employing the k-omega shear stress transport model were in much better agreement with previous measurements and predictions with regard to the ability to predict glottal jet skewing due to the Coanda effect and the intraglottal pressure distribution or related skin friction coefficient, than either steady or unsteady simulations using the Spalart-Allmaras model or any other two-equation turbulence model investigated in this study.

  14. Inertial and viscoelastic forces on rigid colloids in microfluidic channels.

    PubMed

    Howard, Michael P; Panagiotopoulos, Athanassios Z; Nikoubashman, Arash

    2015-06-14

    We perform hybrid molecular dynamics simulations to study the flow behavior of rigid colloids dispersed in a dilute polymer solution. The underlying Newtonian solvent and the ensuing hydrodynamic interactions are incorporated through multiparticle collision dynamics, while the constituent polymers are modeled as bead-spring chains, maintaining a description consistent with the colloidal nature of our system. We study the cross-stream migration of the solute particles in slit-like channels for various polymer lengths and colloid sizes and find a distinct focusing onto the channel center under specific solvent and flow conditions. To better understand this phenomenon, we systematically measure the effective forces exerted on the colloids. We find that the migration originates from a competition between viscoelastic forces from the polymer solution and hydrodynamically induced inertial forces. Our simulations reveal a significantly stronger fluctuation of the lateral colloid position than expected from thermal motion alone, which originates from the complex interplay between the colloid and polymer chains.

  15. Thermal conductivity of rigid foam insulations for aerospace vehicles

    NASA Astrophysics Data System (ADS)

    Barrios, M.; Van Sciver, S. W.

    2013-05-01

    The present work describes measurements of the effective thermal conductivity of NCFI 24-124 foam, a spray-on foam insulation used formerly on the Space Shuttle external fuel tank. A novel apparatus to measure the effective thermal conductivity of rigid foam at temperatures ranging from 20 K to 300 K was developed and used to study three samples of NCFI 24-124 foam insulation. In preparation for measurement, the foam samples were either treated with a uniquely designed moisture absorption apparatus or different residual gases to study their impact on the effective thermal conductivity of the foam. The resulting data are compared to other measurements and mathematical models reported in the literature.

  16. Underwater sound of rigid-hulled inflatable boats.

    PubMed

    Erbe, Christine; Liong, Syafrin; Koessler, Matthew Walter; Duncan, Alec J; Gourlay, Tim

    2016-06-01

    Underwater sound of rigid-hulled inflatable boats was recorded 142 times in total, over 3 sites: 2 in southern British Columbia, Canada, and 1 off Western Australia. Underwater sound peaked between 70 and 400 Hz, exhibiting strong tones in this frequency range related to engine and propeller rotation. Sound propagation models were applied to compute monopole source levels, with the source assumed 1 m below the sea surface. Broadband source levels (10-48 000 Hz) increased from 134 to 171 dB re 1 μPa @ 1 m with speed from 3 to 16 m/s (10-56 km/h). Source power spectral density percentile levels and 1/3 octave band levels are given for use in predictive modeling of underwater sound of these boats as part of environmental impact assessments.

  17. Persistence-Driven Durotaxis: Generic, Directed Motility in Rigidity Gradients

    NASA Astrophysics Data System (ADS)

    Novikova, Elizaveta A.; Raab, Matthew; Discher, Dennis E.; Storm, Cornelis

    2017-02-01

    Cells move differently on substrates with different rigidities: the persistence time of their motion is higher on stiffer substrates. We show that this behavior—in and of itself—results in a net flux of cells directed up a soft-to-stiff gradient. Using simple random walk models with varying persistence and stochastic simulations, we characterize the propensity to move in terms of the durotactic index also measured in experiments. A one-dimensional model captures the essential features and highlights the competition between diffusive spreading and linear, wavelike propagation. Persistence-driven durokinesis is generic and may be of use in the design of instructive environments for cells and other motile, mechanosensitive objects.

  18. JOINT RIGIDITY ASSESSMENT WITH PIEZOELECTRIC WAFERS AND ACOUSTIC WAVES

    SciTech Connect

    Montoya, Angela C.; Maji, Arup K.

    2010-02-22

    There has been an interest in the development of rapid deployment satellites. In a modular satellite design, different panels of specific functions can be pre-manufactured. The satellite can then be assembled and tested just prior to deployment. Traditional vibration testing is time-consuming and expensive. An alternative test method to evaluate the connection between two plates will be proposed. The method investigated and described employs piezoelectric wafers to induce and sense lamb waves in two aluminum plates, which were joined by steel brackets to form an 'L-Style' joint. Lamb wave behavior and piezoelectric material properties will be discussed; the experimental setup and results will be presented. A set of 4 piezoelectric ceramic wafers were used alternately as source and sensor. The energy transmitted was shown to correlate with a mechanical assessment of the joint, demonstrating that this method of testing is a feasible and reliable way to inspect the rigidity of joints.

  19. Rigid rotor as a toy model for Hodge theory

    NASA Astrophysics Data System (ADS)

    Gupta, Saurabh; Malik, R. P.

    2010-07-01

    We apply the superfield approach to the toy model of a rigid rotor and show the existence of the nilpotent and absolutely anticommuting Becchi-Rouet-Stora-Tyutin (BRST) and anti-BRST symmetry transformations, under which, the kinetic term and the action remain invariant. Furthermore, we also derive the off-shell nilpotent and absolutely anticommuting (anti-) co-BRST symmetry transformations, under which, the gauge-fixing term and the Lagrangian remain invariant. The anticommutator of the above nilpotent symmetry transformations leads to the derivation of a bosonic symmetry transformation, under which, the ghost terms and the action remain invariant. Together, the above transformations (and their corresponding generators) respect an algebra that turns out to be a physical realization of the algebra obeyed by the de Rham cohomological operators of differential geometry. Thus, our present model is a toy model for the Hodge theory.

  20. Interfacial entropy of water on rigid hydrophobic surfaces.

    PubMed

    Taherian, Fereshte; Leroy, Frédéric; van der Vegt, Nico F A

    2013-08-06

    A simple theoretical model is proposed for computing the interfacial entropy of water at rigid hydrophobic surfaces. The interfacial entropy, which is not considered in mean field models of static wettability, is evaluated from the fluctuations of the water-surface dispersion energy at the single particle level and represents the configurational bias imposed on the fluid molecules by the attractive external potential of a solid wall. A comparison with results obtained from molecular dynamics simulations shows that the model quantitatively describes the entropy loss of water when a water-vapor interface turns to water in contact with hydrophobic surfaces such as graphene, graphite, and diamond, while it overestimates this quantity on hydrophilic surfaces.

  1. Large scale rigidity-based flexibility analysis of biomolecules

    PubMed Central

    Streinu, Ileana

    2016-01-01

    KINematics And RIgidity (KINARI) is an on-going project for in silico flexibility analysis of proteins. The new version of the software, Kinari-2, extends the functionality of our free web server KinariWeb, incorporates advanced web technologies, emphasizes the reproducibility of its experiments, and makes substantially improved tools available to the user. It is designed specifically for large scale experiments, in particular, for (a) very large molecules, including bioassemblies with high degree of symmetry such as viruses and crystals, (b) large collections of related biomolecules, such as those obtained through simulated dilutions, mutations, or conformational changes from various types of dynamics simulations, and (c) is intended to work as seemlessly as possible on the large, idiosyncratic, publicly available repository of biomolecules, the Protein Data Bank. We describe the system design, along with the main data processing, computational, mathematical, and validation challenges underlying this phase of the KINARI project. PMID:26958583

  2. Energy extraction from Kerr black holes by rigidly rotating strings

    NASA Astrophysics Data System (ADS)

    Kinoshita, Shunichiro; Igata, Takahisa; Tanabe, Kentaro

    2016-12-01

    In this paper, we show that a rigidly rotating string can extract the rotational energy from a rotating black hole. We consider Nambu-Goto strings stationary with respect to a corotating Killing vector with an uniform angular velocity ω in the Kerr spacetime. We show that a necessary condition of the energy-extraction process is that an effective horizon on the string world sheet, which corresponds to the inner light surface, is inside the ergosphere of the Kerr black hole and the angular velocity ω is less than that of the black hole Ωh . Furthermore, we discuss global configurations of such strings in both of a slow-rotation limit and the extremal Kerr case.

  3. Interlayer commensurability and superlubricity in rigid layered materials

    NASA Astrophysics Data System (ADS)

    Hod, Oded

    2012-08-01

    Superlubricity is a frictionless tribological state sometimes occurring in nanoscale material junctions. It is often associated with incommensurate surface lattice structures appearing at the interface. Here, by using the recently introduced registry-index concept that quantifies the registry mismatch in layered materials and reproduces their interlayer sliding energy landscape, we prove the existence of a direct relation between interlayer commensurability and wearless friction in rigid layered materials. We show that our simple and intuitive model is able to capture, down to fine details, the experimentally measured frictional behavior of a hexagonal graphene flake sliding on top of the surface of graphite. We further predict that superlubricity is expected to occur in hexagonal boron nitride as well with tribological characteristics very similar to those observed for the graphitic system. The success of our method in predicting experimental results along with its high computational efficiency marks the registry index as a promising tool for studying tribological properties of nanoscale material interfaces.

  4. Ensemble Properties of Network Rigidity Reveal Allosteric Mechanisms

    PubMed Central

    Jacobs, Donald J.; Livesay, Dennis R.; Mottonen, James M.; Vorov, Oleg K.; Istomin, Andrei Y.; Verma, Deeptak

    2015-01-01

    The distance constraint model (DCM) is a unique computational modeling paradigm that integrates mechanical and thermodynamic descriptions of macromolecular structure. That is, network rigidity calculations are used to account for nonadditivity within entropy components, thus restoring the utility of free energy decomposition. The DCM outputs a large number of structural characterizations that collectively allow for quantified stability/flexibility relationships (QSFR) to be identified. In this review, we describe the theoretical underpinnings of the DCM and introduce several common QSFR metrics. Application of the DCM across protein families highlights the sensitivity within the set of protein structure residue-to-residue couplings. Further, we have developed a perturbation method to identify putative allosteric sites, where large changes in QSFR upon rigidification (mimicking ligand-binding) detect sites likely to invoke allosteric changes. PMID:22052496

  5. Emergent Behavior in the Macro World: Rigidity of Granular Solids

    NASA Astrophysics Data System (ADS)

    Chakraborty, Bulbul

    2015-03-01

    Diversity in the natural world emerges from the collective behavior of large numbers of interacting objects. The origin of collectively organized structures over the vast range of length scales from the subatomic to colloidal is the competition between energy and entropy. Thermal motion provides the mechanism for organization by allowing particles to explore the space of configurations. This well-established paradigm of emergent behavior breaks down for collections of macroscopic objects ranging from grains of sand to asteroids. In this macro-world of particulate systems, thermal motion is absent, and mechanical forces are all important. We lack understanding of the basic, unifying principles that underlie the emergence of order in this world. In this talk, I will explore the origin of rigidity of granular solids, and present a new paradigm for emergence of order in these athermal systems. This work has been supported by NSF-DMR 1409093 and by the W. M. Keck foundation

  6. 33 CFR 115.30 - Sufficiency of State authority for bridges.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... for bridges. 115.30 Section 115.30 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES BRIDGE LOCATIONS AND CLEARANCES; ADMINISTRATIVE PROCEDURES § 115.30 Sufficiency of State authority for bridges. An opinion of the attorney general of the State as to the sufficiency of...

  7. 33 CFR 115.30 - Sufficiency of State authority for bridges.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... for bridges. 115.30 Section 115.30 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES BRIDGE LOCATIONS AND CLEARANCES; ADMINISTRATIVE PROCEDURES § 115.30 Sufficiency of State authority for bridges. An opinion of the attorney general of the State as to the sufficiency of...

  8. 33 CFR 115.30 - Sufficiency of State authority for bridges.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... for bridges. 115.30 Section 115.30 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES BRIDGE LOCATIONS AND CLEARANCES; ADMINISTRATIVE PROCEDURES § 115.30 Sufficiency of State authority for bridges. An opinion of the attorney general of the State as to the sufficiency of...

  9. 33 CFR 115.30 - Sufficiency of State authority for bridges.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... for bridges. 115.30 Section 115.30 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES BRIDGE LOCATIONS AND CLEARANCES; ADMINISTRATIVE PROCEDURES § 115.30 Sufficiency of State authority for bridges. An opinion of the attorney general of the State as to the sufficiency of...

  10. 33 CFR 115.30 - Sufficiency of State authority for bridges.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... for bridges. 115.30 Section 115.30 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES BRIDGE LOCATIONS AND CLEARANCES; ADMINISTRATIVE PROCEDURES § 115.30 Sufficiency of State authority for bridges. An opinion of the attorney general of the State as to the sufficiency of...

  11. Estimating the proportion of disease due to classes of sufficient causes.

    PubMed

    Hoffmann, Kurt; Heidemann, Christin; Weikert, Cornelia; Schulze, Matthias B; Boeing, Heiner

    2006-01-01

    Disease can be caused by different mechanisms. A possible causal model proposed by Rothman is a complete causal mechanism or a so-called "sufficient cause" consisting of a set of component causes that can be illustrated in a pie chart. However, this model does not allow finding out what sufficient causes produce the majority of cases. The authors' objective was to extend Rothman's work by quantifying the proportion of disease that can be attributed to a class of sufficient causes. The underlying idea was to consider all combinations of a given set of known risk factors and to assign each combination to a class of sufficient causes. This assignment makes it possible to evaluate a class of sufficient causes by the population attributable fraction of the corresponding combination of risk factors. The approach presented was applied to sufficient causes of myocardial infarction by use of data on participants recruited between 1994 and 1998 into the European Prospective Investigation into Cancer and Nutrition-Potsdam Study. As a result, 51.8% of cases were attributed to only four different classes of sufficient causes. In conclusion, the statistical method described in the paper may be beneficial for quantifying the importance of different sufficient causes and for improving the efficiency of public health programs.

  12. 29 CFR 4041.47 - PBGC determination of plan sufficiency/insufficiency.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 9 2010-07-01 2010-07-01 false PBGC determination of plan sufficiency/insufficiency. 4041... CORPORATION PLAN TERMINATIONS TERMINATION OF SINGLE-EMPLOYER PLANS Distress Termination Process § 4041.47 PBGC determination of plan sufficiency/insufficiency. (a) General. Upon receipt of participant and...

  13. 29 CFR 780.513 - What employment in growing and harvesting is sufficient.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... qualifying for this exemption even if in some past season he was employed in growing and harvesting such... 29 Labor 3 2011-07-01 2011-07-01 false What employment in growing and harvesting is sufficient....513 What employment in growing and harvesting is sufficient. To qualify for exemption the...

  14. Dorsal Hippocampal CREB Is Both Necessary and Sufficient for Spatial Memory

    ERIC Educational Resources Information Center

    Sekeres, Melanie J.; Neve, Rachael L.; Frankland, Paul W.; Josselyn, Sheena A.

    2010-01-01

    Although the transcription factor CREB has been widely implicated in memory, whether it is sufficient to produce spatial memory under conditions that do not normally support memory formation in mammals is unknown. We found that locally and acutely increasing CREB levels in the dorsal hippocampus using viral vectors is sufficient to induce robust…

  15. Sufficiency and Conditional Estimation of Person Parameters in the Polytomous Rasch Model

    ERIC Educational Resources Information Center

    Andrich, David

    2010-01-01

    Rasch models are characterised by sufficient statistics for all parameters. In the Rasch unidimensional model for two ordered categories, the parameterisation of the person and item is symmetrical and it is readily established that the total scores of a person and item are sufficient statistics for their respective parameters. In contrast, in the…

  16. Rigidity of silicone substrates controls cell spreading and stem cell differentiation

    NASA Astrophysics Data System (ADS)

    Vertelov, Grigory; Gutierrez, Edgar; Lee, Sin-Ae; Ronan, Edward; Groisman, Alex; Tkachenko, Eugene

    2016-09-01

    The dependences of spreading and differentiation of stem cells plated on hydrogel and silicone gel substrates on the rigidity and porosity of the substrates have recently been a subject of some controversy. In experiments on human mesenchymal stem cells plated on soft, medium rigidity, and hard silicone gels we show that harder gels are more osteogenic, softer gels are more adipogenic, and cell spreading areas increase with the silicone gel substrate rigidity. The results of our study indicate that substrate rigidity induces some universal cellular responses independently of the porosity or topography of the substrate.

  17. A rigid motion correction method for helical computed tomography (CT)

    NASA Astrophysics Data System (ADS)

    Kim, J.-H.; Nuyts, J.; Kyme, A.; Kuncic, Z.; Fulton, R.

    2015-03-01

    We propose a method to compensate for six degree-of-freedom rigid motion in helical CT of the head. The method is demonstrated in simulations and in helical scans performed on a 16-slice CT scanner. Scans of a Hoffman brain phantom were acquired while an optical motion tracking system recorded the motion of the bed and the phantom. Motion correction was performed by restoring projection consistency using data from the motion tracking system, and reconstructing with an iterative fully 3D algorithm. Motion correction accuracy was evaluated by comparing reconstructed images with a stationary reference scan. We also investigated the effects on accuracy of tracker sampling rate, measurement jitter, interpolation of tracker measurements, and the synchronization of motion data and CT projections. After optimization of these aspects, motion corrected images corresponded remarkably closely to images of the stationary phantom with correlation and similarity coefficients both above 0.9. We performed a simulation study using volunteer head motion and found similarly that our method is capable of compensating effectively for realistic human head movements. To the best of our knowledge, this is the first practical demonstration of generalized rigid motion correction in helical CT. Its clinical value, which we have yet to explore, may be significant. For example it could reduce the necessity for repeat scans and resource-intensive anesthetic and sedation procedures in patient groups prone to motion, such as young children. It is not only applicable to dedicated CT imaging, but also to hybrid PET/CT and SPECT/CT, where it could also ensure an accurate CT image for lesion localization and attenuation correction of the functional image data.

  18. Modeling fluid interactions with the rigid mush in alloy solidification

    NASA Astrophysics Data System (ADS)

    Plotkowski, Alexander J.

    Macrosegregation is a casting defect characterized by long range composition differences on the length scale of the ingot. These variations in local composition can lead to the development of unwanted phases that are detrimental to mechanical properties. Unlike microsegregation, in which compositions vary over the length scale of the dendrite arms, macrosegregation cannot be removed by subsequent heat treatment, and so it is critical to understand its development during solidification processing. Due to the complex nature of the governing physical phenomena, many researchers have turned to numerical simulations for these predictions, but properly modeling alloy solidification presents a variety of challenges. Among these is the appropriate treatment of the interface between the bulk fluid and the rigid mushy zone. In this region, the non-linear and coupled behavior of heat transfer, fluid mechanics, solute transport, and alloy thermodynamics has a dramatic effect on macrosegregation predictions. This work investigates the impact of numerical approximations at this interface in the context of a mixture model for alloy solidification. First, the numerical prediction of freckles in columnar solidification is investigated, and the predictive ability of the model is evaluated. The model is then extended to equiaxed solidification, in which the analogous interface is the transition of free-floating solid particles to a rigid dendritic network. Various models for grain attachment are investigated, and found to produce significant artifacts caused by the discrete nature of their implementation on the numerical grid. To reduce the impact of these artifacts, a new continuum grain attachment model is proposed and evaluated. The differences between these models are compared using uncertainty quantification, and recommendations for future research are presented.

  19. Eigenvector synchronization, graph rigidity and the molecule problem.

    PubMed

    Cucuringu, Mihai; Singer, Amit; Cowburn, David

    2012-12-01

    The graph realization problem has received a great deal of attention in recent years, due to its importance in applications such as wireless sensor networks and structural biology. In this paper, we extend the previous work and propose the 3D-As-Synchronized-As-Possible (3D-ASAP) algorithm, for the graph realization problem in ℝ(3), given a sparse and noisy set of distance measurements. 3D-ASAP is a divide and conquer, non-incremental and non-iterative algorithm, which integrates local distance information into a global structure determination. Our approach starts with identifying, for every node, a subgraph of its 1-hop neighborhood graph, which can be accurately embedded in its own coordinate system. In the noise-free case, the computed coordinates of the sensors in each patch must agree with their global positioning up to some unknown rigid motion, that is, up to translation, rotation and possibly reflection. In other words, to every patch, there corresponds an element of the Euclidean group, Euc(3), of rigid transformations in ℝ(3), and the goal was to estimate the group elements that will properly align all the patches in a globally consistent way. Furthermore, 3D-ASAP successfully incorporates information specific to the molecule problem in structural biology, in particular information on known substructures and their orientation. In addition, we also propose 3D-spectral-partitioning (SP)-ASAP, a faster version of 3D-ASAP, which uses a spectral partitioning algorithm as a pre-processing step for dividing the initial graph into smaller subgraphs. Our extensive numerical simulations show that 3D-ASAP and 3D-SP-ASAP are very robust to high levels of noise in the measured distances and to sparse connectivity in the measurement graph, and compare favorably with similar state-of-the-art localization algorithms.

  20. Rigidity and Fluidity in Living and Nonliving Matter

    NASA Astrophysics Data System (ADS)

    Lopez, Jorge H.

    Many of the standard equilibrium statistical mechanics techniques do not readily apply to non-equilibrium phase transitions such as the fluid-to-disordered solid transition found in repulsive particulate systems. Examples of repulsive particulate systems are sand grains and colloids. The first part of this thesis contributes to methods beyond equilibrium statistical mechanics to ultimately understand the nature of the fluid-to-disordered solid transition, or jamming, from a microscopic basis. In Chapter 2 we revisit the concept of minimal rigidity as applied to frictionless, repulsive soft sphere packings in two dimensions with the introduction of the jamming graph. Minimal rigidity is a purely combinatorial property encoded via Laman's theorem in two dimensions. It constrains the global, average coordination number of the graph, for instance. Minimal rigidity, however, does not address the geometry of local mechanical stability. The jamming graph contains both properties of global mechanical stability at the onset of jamming and local mechanical stability. We demonstrate how jamming graphs can be constructed using local rules via the Henneberg construction such that these graphs are of the constraint percolation type, where percolation is the study of connected structures in disordered networks. We then probe how jamming graphs destabilize, or become fluid-like, by deleting an edge/contact in the graph and computing the resulting rigid cluster distribution. We also uncover a new potentially diverging lengthscale associated with the random deletion of contacts. In Chapter 3 we study several constraint percolation models, such as k-core percolation and counter-balance percolation, on hyperbolic lattices to better understand the role of loops in such models. The constraints in these percolation models incorporate aspects of local mechanical rigidity found in jammed systems. The expectation is that since these models are indeed easier to analyze than the more

  1. Development of a sixth-generation down-flow hanging sponge (DHS) reactor using rigid sponge media for post-treatment of UASB treating municipal sewage.

    PubMed

    Onodera, Takashi; Tandukar, Madan; Sugiyana, Doni; Uemura, Shigeki; Ohashi, Akiyoshi; Harada, Hideki

    2014-01-01

    A sixth-generation down-flow hanging sponge reactor (DHS-G6), using rigid sponge media, was developed as a novel aerobic post-treatment unit for upflow anaerobic sludge blanket (UASB) treating municipal sewage. The rigid sponge media were manufactured by copolymerizing polyurethane with epoxy resin. The UASB and DHS system had a hydraulic retention time (HRT) of 10.6 h (8.6 h for UASB and 2 h for DHS) when operated at 10-28 °C. The system gave reasonable organic and nitrogen removal efficiencies. The final effluent had a total biochemical oxygen demand of only 12 mg/L and a total Kjeldahl nitrogen content of 6 mg/L. The DHS reactor gave particularly good nitrification performance, which was attributed to the new rigid sponge media. The sponge media helped to provide a sufficient HRT, and retained a high biomass concentration, extending the solids retention time. The DHS reactor maintained a high dissolved oxygen concentration under natural ventilation.

  2. Rigid and non-rigid geometrical transformations of a marker-cluster and their impact on bone-pose estimation.

    PubMed

    Bonci, T; Camomilla, V; Dumas, R; Chèze, L; Cappozzo, A

    2015-11-26

    When stereophotogrammetry and skin-markers are used, bone-pose estimation is jeopardised by the soft tissue artefact (STA). At marker-cluster level, this can be represented using a modal series of rigid (RT; translation and rotation) and non-rigid (NRT; homothety and scaling) geometrical transformations. The NRT has been found to be smaller than the RT and claimed to have a limited impact on bone-pose estimation. This study aims to investigate this matter and comparatively assessing the propagation of both STA components to bone-pose estimate, using different numbers of markers. Twelve skin-markers distributed over the anterior aspect of a thigh were considered and STA time functions were generated for each of them, as plausibly occurs during walking, using an ad hoc model and represented through the geometrical transformations. Using marker-clusters made of four to 12 markers affected by these STAs, and a Procrustes superimposition approach, bone-pose and the relevant accuracy were estimated. This was done also for a selected four marker-cluster affected by STAs randomly simulated by modifying the original STA NRT component, so that its energy fell in the range 30-90% of total STA energy. The pose error, which slightly decreased while increasing the number of markers in the marker-cluster, was independent from the NRT amplitude, and was always null when the RT component was removed. It was thus demonstrated that only the RT component impacts pose estimation accuracy and should thus be accounted for when designing algorithms aimed at compensating for STA.

  3. Quantifying rigidity of Parkinson's disease in relation to laxative treatment: a service evaluation

    PubMed Central

    Augustin, Aisha D.; Charlett, André; Weller, Clive; Taylor, David; Bjarnason, Ingvar; Dobbs, R. John

    2016-01-01

    Aim To estimate whether laxatives prescribed for constipation in Parkinson's disease (PD) could moderate rigidity. Constipation predates diagnosis of PD by decades. Deposition of misfolded protein may begin in the gut, driven by dysbiosis. Successive antimicrobial exposures are associated with cumulative increase in rigidity, and rigidity has biological gradients on circulating leukocyte‐subset counts. Methods Retrospective service evaluation, in a gut/brain axis clinic, yielded an interrupted time series, relating maintenance laxative and other medication to rigidity, in consecutive outpatients identified by inclusion and exclusion criteria. Objective assessment of rigidity was used to bring greater sensitivity to change, validated against subjective gold standard (UPDRS). Results There were 1493 measurements of torque required to extend (flexor rigidity) and flex (extensor rigidity) the forearm in 79 PD patients over 374 person‐years. Both were strongly associated with UPDRS (P < 0.001 and P = 0.008, respectively). Before exhibition of laxative, flexor rigidity increased by 6% (95% CI 1, 10) per year, plateauing at −2% (−4, 1) per year after, with no shift at initiation. Change in slope was significant (P = 0.002), and manifest in those naïve to antiparkinsonian medication. The change was replicated for individual laxative classes (bulk, osmotic, enterokinetic). There was no temporal change in extensor rigidity. Limited experience with a quanylate cyclase‐C receptor agonist (17 patients, 6 person‐years) indicated a large and significant step down in flexor and extensor rigidity, of 19% (1, 34) and 16% (6, 24) respectively (P = 0.04 and <0.001). Conclusions Maintenance laxative usage was associated with apparent stemming of the temporal increase in rigidity in PD, adding to indicative evidence of a continuing role of gastrointestinal dysbiosis in pathogenesis. PMID:27062674

  4. Role of sufficient phosphorus in biodiesel production from diatom Phaeodactylum tricornutum.

    PubMed

    Yu, Shi-Jin; Shen, Xiao-Fei; Ge, Huo-Qing; Zheng, Hang; Chu, Fei-Fei; Hu, Hao; Zeng, Raymond J

    2016-08-01

    In order to study the role of sufficient phosphorus (P) in biodiesel production by microalgae, Phaeodactylum tricornutum were cultivated in six different media treatments with combination of nitrogen (N) sufficiency/deprivation and phosphorus sufficiency/limitation/deprivation. Profiles of N and P, biomass, and fatty acids (FAs) content and compositions were measured during a 7-day cultivation period. The results showed that the FA content in microalgae biomass was promoted by P deprivation. However, statistical analysis showed that FA productivity had no significant difference (p = 0.63, >0.05) under the treatments of N deprivation with P sufficiency (N-P) and N deprivation with P deprivation (N-P-), indicating P sufficiency in N deprivation medium has little effect on increasing biodiesel productivity from P. triornutum. It was also found that the P absorption in N-P medium was 1.41 times higher than that in N sufficiency and P sufficiency (NP) medium. N deprivation with P limitation (N-P-l) was the optimal treatment for producing biodiesel from P. triornutum because of both the highest FA productivity and good biodiesel quality.

  5. A rigidity theorem for complete noncompact Bach-flat manifolds

    NASA Astrophysics Data System (ADS)

    Chu, Yawei

    2011-02-01

    Let (M4,g) be a four-dimensional complete noncompact Bach-flat Riemannian manifold with positive Yamabe constant. In this paper, we show that (M4,g) has a constant curvature if it has a nonnegative constant scalar curvature and sufficiently small L2-norm of trace-free Riemannian curvature tensor. Moreover, we get a gap theorem for (M4,g) with positive scalar curvature.

  6. Single-cycle coherent terahertz-pulse propagation in rigid-rotor molecular media

    NASA Astrophysics Data System (ADS)

    Marskar, Robert; Ã-sterberg, Ulf L.

    2015-08-01

    We theoretically analyze linear and nonlinear coherent propagation of linearly polarized, plane-wave, resonant single-cycle terahertz pulses through spatially extended rigid-rotor molecular media. Our model incorporates mixed state medium preparation, nonperturbative nonlinearities, saturation, coherence, memory effects, and propagation, but ignores the effects of damping. Explicit solutions are reported in the linear propagation regime. These solutions are the multilevel superposition of linear, single-cycle 0 π pulses, and appear as temporal beats in the time domain. For media initially in thermal equilibrium, the pulse and molecular beats are dispersive and broaden temporally with increased propagation distance. In the simplified limit of equal rotational line strength (an idealized situation), the emitted impulses are exact temporal copies of the input pulse. An efficient, scalable computational method for solving the reduced multilevel Maxwell-Bloch equations for molecular media is reported. This method is based on a standard differential method for the propagation equation together with an operator splitting method for the Bloch equations. It invokes neither the slowly varying envelope (SVEA) or rotating wave approximations (RWA), and incorporates a large number of possible energy eigenstates (we solve for 7744 levels). Case studies of nonlinear single-cycle pulse propagation are then provided by means of computer solutions. In the nonlinear regime, we observe strong molecular orientations and suppression of the pulse and orientational revivals predicted by linear theory. For sufficiently strong pulses, coherent bleaching effects lead to increased transmission of the driving pulse, which also bears signs of self-modulation and carrier-shock formation.

  7. Non-rigid connector: The wand to allay the stresses on abutment

    PubMed Central

    Banerjee, Saurav; Khongshei, Arlingstone; Gupta, Tapas; Banerjee, Ardhendu

    2011-01-01

    The use of rigid connectors in 5-unit fixed dental prosthesis with a pier abutment can result in failure of weaker retainer in the long run as the pier abutment acts as a fulcrum. Non-rigid connector placed on the distal aspect of pier seems to reduce potentially excess stress concentration on the pier abutment. PMID:22346166

  8. Uniqueness of the angular velocity of a rigid body: Correction of two faulty proofs

    NASA Astrophysics Data System (ADS)

    Lemos, Nivaldo A.

    2000-07-01

    The angular velocity is an absolute or intrinsic property of a rigid body; that is, all points of a rotating rigid body have the same angular velocity. This fact is well known, but its proof is often erroneous. Here we correct two faulty proofs of this result, one in Goldstein's famous textbook and the other published nearly 30 years ago in this journal.

  9. 21 CFR 177.1010 - Acrylic and modified acrylic plastics, semirigid and rigid.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Acrylic and modified acrylic plastics, semirigid... Acrylic and modified acrylic plastics, semirigid and rigid. Semirigid and rigid acrylic and modified acrylic plastics may be safely used as articles intended for use in contact with food, in accordance...

  10. 21 CFR 177.1010 - Acrylic and modified acrylic plastics, semirigid and rigid.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Acrylic and modified acrylic plastics, semirigid... Acrylic and modified acrylic plastics, semirigid and rigid. Semirigid and rigid acrylic and modified acrylic plastics may be safely used as articles intended for use in contact with food, in accordance...

  11. 21 CFR 177.1010 - Acrylic and modified acrylic plastics, semirigid and rigid.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Acrylic and modified acrylic plastics, semirigid... Acrylic and modified acrylic plastics, semirigid and rigid. Semirigid and rigid acrylic and modified acrylic plastics may be safely used as articles intended for use in contact with food, in accordance...

  12. 21 CFR 177.1010 - Acrylic and modified acrylic plastics, semirigid and rigid.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Acrylic and modified acrylic plastics, semirigid... Components of Single and Repeated Use Food Contact Surfaces § 177.1010 Acrylic and modified acrylic plastics, semirigid and rigid. Semirigid and rigid acrylic and modified acrylic plastics may be safely used...

  13. 21 CFR 177.1010 - Acrylic and modified acrylic plastics, semirigid and rigid.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Acrylic and modified acrylic plastics, semirigid... Acrylic and modified acrylic plastics, semirigid and rigid. Semirigid and rigid acrylic and modified acrylic plastics may be safely used as articles intended for use in contact with food, in accordance...

  14. 30 CFR 7.28 - Test for flame resistance of rigid ventilation tubing.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Test for flame resistance of rigid ventilation tubing. 7.28 Section 7.28 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... and Ventilation Tubing § 7.28 Test for flame resistance of rigid ventilation tubing. (a)...

  15. 30 CFR 7.28 - Test for flame resistance of rigid ventilation tubing.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Test for flame resistance of rigid ventilation tubing. 7.28 Section 7.28 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... and Ventilation Tubing § 7.28 Test for flame resistance of rigid ventilation tubing. (a)...

  16. 30 CFR 7.28 - Test for flame resistance of rigid ventilation tubing.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Test for flame resistance of rigid ventilation tubing. 7.28 Section 7.28 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... and Ventilation Tubing § 7.28 Test for flame resistance of rigid ventilation tubing. (a)...

  17. 30 CFR 7.28 - Test for flame resistance of rigid ventilation tubing.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Test for flame resistance of rigid ventilation tubing. 7.28 Section 7.28 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... and Ventilation Tubing § 7.28 Test for flame resistance of rigid ventilation tubing. (a)...

  18. 30 CFR 7.28 - Test for flame resistance of rigid ventilation tubing.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Test for flame resistance of rigid ventilation tubing. 7.28 Section 7.28 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... and Ventilation Tubing § 7.28 Test for flame resistance of rigid ventilation tubing. (a)...

  19. 21 CFR 178.3790 - Polymer modifiers in semirigid and rigid vinyl chloride plastics.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Polymer modifiers in semirigid and rigid vinyl... Certain Adjuvants and Production Aids § 178.3790 Polymer modifiers in semirigid and rigid vinyl chloride plastics. The polymers identified in paragraph (a) of this section may be safely admixed, alone or...

  20. 21 CFR 178.3790 - Polymer modifiers in semirigid and rigid vinyl chloride plastics.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Polymer modifiers in semirigid and rigid vinyl...: ADJUVANTS, PRODUCTION AIDS, AND SANITIZERS Certain Adjuvants and Production Aids § 178.3790 Polymer modifiers in semirigid and rigid vinyl chloride plastics. The polymers identified in paragraph (a) of...

  1. 21 CFR 178.3790 - Polymer modifiers in semirigid and rigid vinyl chloride plastics.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Polymer modifiers in semirigid and rigid vinyl...: ADJUVANTS, PRODUCTION AIDS, AND SANITIZERS Certain Adjuvants and Production Aids § 178.3790 Polymer modifiers in semirigid and rigid vinyl chloride plastics. The polymers identified in paragraph (a) of...

  2. 21 CFR 178.3790 - Polymer modifiers in semirigid and rigid vinyl chloride plastics.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Polymer modifiers in semirigid and rigid vinyl...: ADJUVANTS, PRODUCTION AIDS, AND SANITIZERS Certain Adjuvants and Production Aids § 178.3790 Polymer modifiers in semirigid and rigid vinyl chloride plastics. The polymers identified in paragraph (a) of...

  3. 21 CFR 178.3790 - Polymer modifiers in semirigid and rigid vinyl chloride plastics.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Polymer modifiers in semirigid and rigid vinyl...: ADJUVANTS, PRODUCTION AIDS, AND SANITIZERS Certain Adjuvants and Production Aids § 178.3790 Polymer modifiers in semirigid and rigid vinyl chloride plastics. The polymers identified in paragraph (a) of...

  4. A technique for calculating particle systems containing rigid and soft parts

    NASA Astrophysics Data System (ADS)

    Nouri, Nima; Ziaei-Rad, Saeed

    2015-08-01

    In this paper, a method was proposed that can simulate the systems containing both rigid and soft parts with rigid body constraints. The idea was to consider the characteristics of rigid parts in their center of mass with three rotational degrees of freedom. In order to compute the systems containing both flexible and rigid parts, standard techniques in molecular dynamics were utilized for flexible parts. However, special procedures were proposed and formulated for rigid parts. Some details on the implementation of the proposed algorithm on GPU were also presented. Next, two case studies were solved. In the first example, a ball mill with the rigid particle of different shapes was considered and the performance of the proposed algorithm was checked and compared with the results obtained from others. In the second example, different self-assembly phases of a mixed rigid and non-rigid polymer molecule with Lennard-Jones pairwise interaction were studied. It was shown that the obtained self-assembly phases were identical to those reported by other researchers.

  5. Material characterization of rigid foam insulation at low temperature

    NASA Astrophysics Data System (ADS)

    Barrios, Matthew

    There is a continuing need for improved rigid foam insulation, particularly for cryogenic storage aboard aerospace vehicles. The present work is a material characterization of spray-on foam insulation used on the Space Shuttle External Tank. The characterization includes imaging and measurements of thermal conductivity, ultimate tensile strength, and moisture absorption. Thermal conductivity measurements are the main focus of the present work, as it is the most relevant property to insulation performance. A novel apparatus was developed to measure the thermal conductivity of rigid foam at temperatures ranging from 20 K to 300 K with a DeltaT of 10 K between the sides of the foam sample. The effective thermal conductivity of three samples of NCFI 24-124 foam insulation was measured over the full temperature range. Additionally, the effects of different residual gases and moisture absorption on the thermal conductivity of the foam were studied. The data were compared to data from the literature and to mathematical models developed to predict the thermal conductivity. The data show that gas condensation can play a significant role in the thermal conductivity of the foam at low temperature. Moisture absorption can occur in the foam in application when cryogenic fuel is filled into a tank which sits in a warm, humid environment. An apparatus was developed to subject foam samples to these conditions. The moisture content in the samples was then measured. The samples were then imaged using the 900 MHz NMR magnet at the National High Magnetic Field Laboratory to determine the location of the water within the foam. Samples conditioned for 9 hours exhibited a 50% weight increase, and samples conditioned for 69 hours exhibited a 284% weight increase. The NMR images showed that the moisture collects first near the warm side of the foam, and permeates through the foam over time. However, the moisture appears to not collect near the knit lines (areas between sprayed layers of

  6. Impact of Market Behavior, Fleet Composition, and Ancillary Services on Revenue Sufficiency

    SciTech Connect

    Frew, Bethany

    2016-04-26

    This presentation provides an overview of new and ongoing NREL research that aims to improve our understanding of reliability and revenue sufficiency challenges through modeling tools within a markets framework.

  7. Assessing sufficiency of thermal riverscapes for resilient salmon and steelhead populations

    EPA Science Inventory

    Resilient salmon populations require river networks that provide water temperature regimes sufficient to support a diversity of salmonid life histories across space and time. Efforts to protect, enhance and restore watershed thermal regimes for salmon may target specific location...

  8. Some sufficient conditions for the asymptotic stabilizability of three dimensional homogeneous polynomial systems

    NASA Technical Reports Server (NTRS)

    Dayawansa, W. P.; Martin, C. F.

    1989-01-01

    Consideration is given to three-dimensional homogeneous polynomial systems, and some sufficient conditions for their asymptotic stability are derived by using homogeneous feedback. The tests given are geometric in nature.

  9. H infinity controller design to a rigid-flexible satellite with two vibration modes

    NASA Astrophysics Data System (ADS)

    de Souza, A. G.; de Souza, L. C. G.

    2015-10-01

    The satellite attitude control system (ACS) design becomes more complex when the satellite structure has components like, flexible solar panels, antennas and mechanical manipulators. These flexible structures can interact with the satellite rigid parts during translational and/or rotational manoeuvre damaging the ACS pointing accuracy. Although, a well-designed controller can suppress such disturbances quickly, the controller error pointing may be limited by the minimum time necessary to suppress such disturbances thus affecting the satellite attitude acquisition. This paper deals with the rigid-flexible satellite ACS design using the H infinity method. The rigid-flexible satellite is represented by a beam connected to a central rigid hub at one end and free at the other one. The equations of motions are obtained considering small flexible deformations and the Euler-Bernoulli hypothesis. The results of the simulations have shown that the H-infinity controller was able to control the rigid motion and suppress the vibrations.

  10. Necessary and sufficient conditions for self-focusing of short ultraintense laser pulse in underdense plasma

    SciTech Connect

    Chen, X.L.; Sudan, R.N. )

    1993-04-05

    We analyze the propagation of a short intense laser pulse in underdense cold plasma. When no electron cavitation is present, a global invariant [ital H] is obtained, and its relation with self-focusing is studied. For relativistic self-focusing, [ital H][lt]0 is a sufficient and necessary condition. For relativistic and ponderomotive self-focusing, [ital H][lt]0 is sufficient but not necessary. Numerical simulations are performed to confirm the above points.

  11. Necessary and sufficient conditions for the existence of time-dependent global attractor and application

    NASA Astrophysics Data System (ADS)

    Meng, Fengjuan; Liu, Cuncai

    2017-03-01

    In this paper, we are concerned with infinite dimensional dynamical systems in time-dependent space. First, we characterize some necessary and sufficient conditions for the existence of the time-dependent global attractor by using a measure of noncompactness. Then, we give a new method to verify the sufficient condition. As a simple application, we prove the existence of the time-dependent global attractor for the damped equation in strong topological space.

  12. An empirical approach to sufficient similarity: combining exposure data and mixtures toxicology data.

    PubMed

    Marshall, Scott; Gennings, Chris; Teuschler, Linda K; Stork, Leanna G; Tornero-Velez, Rogelio; Crofton, Kevin M; Rice, Glenn E

    2013-09-01

    When assessing risks posed by environmental chemical mixtures, whole mixture approaches are preferred to component approaches. When toxicological data on whole mixtures as they occur in the environment are not available, Environmental Protection Agency guidance states that toxicity data from a mixture considered "sufficiently similar" to the environmental mixture can serve as a surrogate. We propose a novel method to examine whether mixtures are sufficiently similar, when exposure data and mixture toxicity study data from at least one representative mixture are available. We define sufficient similarity using equivalence testing methodology comparing the distance between benchmark dose estimates for mixtures in both data-rich and data-poor cases. We construct a "similar mixtures risk indicator"(SMRI) (analogous to the hazard index) on sufficiently similar mixtures linking exposure data with mixtures toxicology data. The methods are illustrated using pyrethroid mixtures occurrence data collected in child care centers (CCC) and dose-response data examining acute neurobehavioral effects of pyrethroid mixtures in rats. Our method shows that the mixtures from 90% of the CCCs were sufficiently similar to the dose-response study mixture. Using exposure estimates for a hypothetical child, the 95th percentile of the (weighted) SMRI for these sufficiently similar mixtures was 0.20 (i.e., where SMRI <1, less concern; >1, more concern).

  13. Numerical simulation of liquid jet impact on a rigid wall

    NASA Astrophysics Data System (ADS)

    Aganin, A. A.; Guseva, T. S.

    2016-11-01

    Basic points of a numerical technique for computing high-speed liquid jet impact on a rigid wall are presented. In the technique the flows of the liquid and the surrounding gas are governed by the equations of gas dynamics in the density, velocity, and pressure, which are integrated by the CIP-CUP method on dynamically adaptive grids without explicitly tracking the gas-liquid interface. The efficiency of the technique is demonstrated by the results of computing the problems of impact of the liquid cone and the liquid wedge on a wall in the mode with the shockwave touching the wall by its edge. Numerical solutions of these problems are compared with the analytical solution of the problem of impact of the plane liquid flow on a wall. Applicability of the technique to the problems of the high-speed liquid jet impact on a wall is illustrated by the results of computing a problem of impact of a cylindrical liquid jet with the hemispherical end on a wall covered by a layer of the same liquid.

  14. Tear Film Dynamics Around a Rigid Model Blob

    NASA Astrophysics Data System (ADS)

    Ketelaar, Christiaan; Zhong, Lan; Braun, Rj; Driscoll, Ta; King-Smith, Pe; Begley, Cg

    2015-11-01

    Tear film break up (TBU) can occur after imperfections in the lipid layer arise. The imperfections may cause elevated evaporation, which causes TBU for large enough spots and grooves and for fast enough evaporation. TBU also occurs near smaller features in the lipid layer. These are apparently blobs of lipids that do not spread and which are too small for the evaporative mechanism to account for the dynamics. We investigate the tear film dynamics near a model rigid blob with a fixed constant surfactant concentration. We develop the lubrication-type equations that govern the tear film thickness, surfactant concentration, and osmolarity in the tear film beneath and near the blob. We perform numerical simulations for the evolution of the tear film thickness and analyze how the size of the blob, as well as the surfactant properties and transport, affect tear film dynamics. The thinning induced by the blob is of the correct time scale to compare with in vivo observations, and close comparison with the experiments will be made.

  15. Metric rigidity theorems on Hermitian locally symmetric spaces

    PubMed Central

    Mok, Ngaiming

    1986-01-01

    Let X = Ω/Γ be a compact quotient of an irreducible bounded symmetric domain Ω of rank ≥2 by a discrete group ω of automorphisms without fixed points. It is well known that the Kähler-Einstein metric g on X carries seminegative curvature (in the sense of Griffiths). I show that any Hermitian metric h on X carrying seminegative curvature must be a constant multiple of g. This can be applied to prove rigidity theorems of holomorphic maps from X into Hermitian manifolds (Y, k) carrying seminegative curvature. These results are also generalized to the case of quotients of finite volume. On the other hand, let (Xc, gc) be an irreducible compact Hermitian symmetric manifold of rank ≥2. Then gc is Kähler and carries semipositive holomorphic bisectional curvature. I prove that any Kähler h on Xc carrying semipositive holomorphic bisectional curvature must be equal to gc up to a constant multiple and up to a biholomorphic transformation of Xc. PMID:16593680

  16. Collapse of granular-liquid mixtures over rigid, inclined beds.

    PubMed

    Berzi, D; Bossi, F C; Larcan, E

    2012-05-01

    This work deals with the propagation of granular-liquid waves over rigid beds, originated by the sudden removal of a sluice gate in a rectangular, inclined flume. In particular, we experimentally investigate the role of the initial volume ratio of granular material-monodispersed plastic cylinders-to water, the flume width, and the bed roughness on the time evolution of the granular front. Due to the presence of the interstitial liquid, we observed previously unreported types of collapse: (i) discontinuous flows, where the granular material stops after an initial spreading, and then flows again when the liquid, initially slower than the particles, reaches the front and remobilizes it; (ii) flows evolving into uniformly progressive waves at an angle of inclination of the flume well below the angle of repose of the dry granular material. We also noticed an unusual influence of the lateral confinement on the wave propagation. Indeed, the constant front velocity in the uniformly progressive state decreases when the channel width increases. We claim that the latter observation and the presence of discontinuous flows, strongly support the idea that only two-phase, stratified mathematical models can predict the behavior of unsteady, granular-liquid mixtures at high concentration, such as debris flows.

  17. [The development of gender identity beyond rigid dichotomy].

    PubMed

    Quindeau, Ilka

    2014-01-01

    The conflicts individuals with ambiguous sexual characteristics suffer from are not the result of genetic features but of the rigid and dichotomous gender order, which is currently undergoing a renaissance. This also applies to individuals with an uncertain gender identity. In the best interests of the child a concept of gender seems necessary, that goes beyond a binary separation and allows gender-specific intermediary stages in the personal development of identity. Such a gender concept can be developed following psychoanalytic theories. The present discourse contains a scale of connecting factors for a differentiated and less normative conceptualization of gender development. Starting from Freud's concept of constitutional bisexuality, Robert Stoller's theory, which has been firmly rooted in the mainstream of psychoanalysis for more than 40 years, will be critically reviewed. By involving Reimut Reiche's and Jean Laplanche's arguments, a continuative psychological gender theory will be drafted, which does not normatively and reductively claim the demarcation of gender, but rather opens up a space for gender diversity.

  18. Microscopic theory of topologically entangled fluids of rigid macromolecules

    NASA Astrophysics Data System (ADS)

    Sussman, Daniel M.; Schweizer, Kenneth S.

    2011-06-01

    We present a first-principles theory for the slow dynamics of a fluid of entangling rigid crosses of zero excluded volume based on a generalization of the dynamic mean-field approach of Szamel for infinitely thin nonrotating rods. The latter theory exactly includes topological constraints at the two-body collision level and self-consistently renormalizes an effective diffusion tensor to account for many-body effects. Remarkably, it predicts scaling laws consistent with the phenomenological reptation-tube predictions of Doi and Edwards for the long-time diffusion and the localization length in the heavily entangled limit. We generalize this approach to a different macromolecular architecture, infinitely thin three-dimensional crosses, and also extend the range of densities over which a dynamic localization length can be calculated for rods. Ideal gases of nonrotating crosses have recently received attention in computer simulations and are relevant as a simple model of both a strong-glass former and entangling star-branched polymers. Comparisons of our theory with these simulations reveal reasonable agreement for the magnitude and reduced density dependence of the localization length and also the self-diffusion constant if the consequences of local density fluctuations are taken into account.

  19. Enzyme surface rigidity tunes the temperature dependence of catalytic rates.

    PubMed

    Isaksen, Geir Villy; Åqvist, Johan; Brandsdal, Bjørn Olav

    2016-07-12

    The structural origin of enzyme adaptation to low temperature, allowing efficient catalysis of chemical reactions even near the freezing point of water, remains a fundamental puzzle in biocatalysis. A remarkable universal fingerprint shared by all cold-active enzymes is a reduction of the activation enthalpy accompanied by a more negative entropy, which alleviates the exponential decrease in chemical reaction rates caused by lowering of the temperature. Herein, we explore the role of protein surface mobility in determining this enthalpy-entropy balance. The effects of modifying surface rigidity in cold- and warm-active trypsins are demonstrated here by calculation of high-precision Arrhenius plots and thermodynamic activation parameters for the peptide hydrolysis reaction, using extensive computer simulations. The protein surface flexibility is systematically varied by applying positional restraints, causing the remarkable effect of turning the cold-active trypsin into a variant with mesophilic characteristics without changing the amino acid sequence. Furthermore, we show that just restraining a key surface loop causes the same effect as a point mutation in that loop between the cold- and warm-active trypsin. Importantly, changes in the activation enthalpy-entropy balance of up to 10 kcal/mol are almost perfectly balanced at room temperature, whereas they yield significantly higher rates at low temperatures for the cold-adapted enzyme.

  20. Enzyme surface rigidity tunes the temperature dependence of catalytic rates

    PubMed Central

    Isaksen, Geir Villy; Åqvist, Johan; Brandsdal, Bjørn Olav

    2016-01-01

    The structural origin of enzyme adaptation to low temperature, allowing efficient catalysis of chemical reactions even near the freezing point of water, remains a fundamental puzzle in biocatalysis. A remarkable universal fingerprint shared by all cold-active enzymes is a reduction of the activation enthalpy accompanied by a more negative entropy, which alleviates the exponential decrease in chemical reaction rates caused by lowering of the temperature. Herein, we explore the role of protein surface mobility in determining this enthalpy–entropy balance. The effects of modifying surface rigidity in cold- and warm-active trypsins are demonstrated here by calculation of high-precision Arrhenius plots and thermodynamic activation parameters for the peptide hydrolysis reaction, using extensive computer simulations. The protein surface flexibility is systematically varied by applying positional restraints, causing the remarkable effect of turning the cold-active trypsin into a variant with mesophilic characteristics without changing the amino acid sequence. Furthermore, we show that just restraining a key surface loop causes the same effect as a point mutation in that loop between the cold- and warm-active trypsin. Importantly, changes in the activation enthalpy–entropy balance of up to 10 kcal/mol are almost perfectly balanced at room temperature, whereas they yield significantly higher rates at low temperatures for the cold-adapted enzyme. PMID:27354533