Automatic Estimation of Verified Floating-Point Round-Off Errors via Static Analysis
NASA Technical Reports Server (NTRS)
Moscato, Mariano; Titolo, Laura; Dutle, Aaron; Munoz, Cesar A.
2017-01-01
This paper introduces a static analysis technique for computing formally verified round-off error bounds of floating-point functional expressions. The technique is based on a denotational semantics that computes a symbolic estimation of floating-point round-o errors along with a proof certificate that ensures its correctness. The symbolic estimation can be evaluated on concrete inputs using rigorous enclosure methods to produce formally verified numerical error bounds. The proposed technique is implemented in the prototype research tool PRECiSA (Program Round-o Error Certifier via Static Analysis) and used in the verification of floating-point programs of interest to NASA.
Identification of dynamic systems, theory and formulation
NASA Technical Reports Server (NTRS)
Maine, R. E.; Iliff, K. W.
1985-01-01
The problem of estimating parameters of dynamic systems is addressed in order to present the theoretical basis of system identification and parameter estimation in a manner that is complete and rigorous, yet understandable with minimal prerequisites. Maximum likelihood and related estimators are highlighted. The approach used requires familiarity with calculus, linear algebra, and probability, but does not require knowledge of stochastic processes or functional analysis. The treatment emphasizes unification of the various areas in estimation in dynamic systems is treated as a direct outgrowth of the static system theory. Topics covered include basic concepts and definitions; numerical optimization methods; probability; statistical estimators; estimation in static systems; stochastic processes; state estimation in dynamic systems; output error, filter error, and equation error methods of parameter estimation in dynamic systems, and the accuracy of the estimates.
Optimal post-experiment estimation of poorly modeled dynamic systems
NASA Technical Reports Server (NTRS)
Mook, D. Joseph
1988-01-01
Recently, a novel strategy for post-experiment state estimation of discretely-measured dynamic systems has been developed. The method accounts for errors in the system dynamic model equations in a more general and rigorous manner than do filter-smoother algorithms. The dynamic model error terms do not require the usual process noise assumptions of zero-mean, symmetrically distributed random disturbances. Instead, the model error terms require no prior assumptions other than piecewise continuity. The resulting state estimates are more accurate than filters for applications in which the dynamic model error clearly violates the typical process noise assumptions, and the available measurements are sparse and/or noisy. Estimates of the dynamic model error, in addition to the states, are obtained as part of the solution of a two-point boundary value problem, and may be exploited for numerous reasons. In this paper, the basic technique is explained, and several example applications are given. Included among the examples are both state estimation and exploitation of the model error estimates.
Error Estimates for Approximate Solutions of the Riccati Equation with Real or Complex Potentials
NASA Astrophysics Data System (ADS)
Finster, Felix; Smoller, Joel
2010-09-01
A method is presented for obtaining rigorous error estimates for approximate solutions of the Riccati equation, with real or complex potentials. Our main tool is to derive invariant region estimates for complex solutions of the Riccati equation. We explain the general strategy for applying these estimates and illustrate the method in typical examples, where the approximate solutions are obtained by gluing together WKB and Airy solutions of corresponding one-dimensional Schrödinger equations. Our method is motivated by, and has applications to, the analysis of linear wave equations in the geometry of a rotating black hole.
NASA Astrophysics Data System (ADS)
Katsoulakis, Markos A.; Vlachos, Dionisios G.
2003-11-01
We derive a hierarchy of successively coarse-grained stochastic processes and associated coarse-grained Monte Carlo (CGMC) algorithms directly from the microscopic processes as approximations in larger length scales for the case of diffusion of interacting particles on a lattice. This hierarchy of models spans length scales between microscopic and mesoscopic, satisfies a detailed balance, and gives self-consistent fluctuation mechanisms whose noise is asymptotically identical to the microscopic MC. Rigorous, detailed asymptotics justify and clarify these connections. Gradient continuous time microscopic MC and CGMC simulations are compared under far from equilibrium conditions to illustrate the validity of our theory and delineate the errors obtained by rigorous asymptotics. Information theory estimates are employed for the first time to provide rigorous error estimates between the solutions of microscopic MC and CGMC, describing the loss of information during the coarse-graining process. Simulations under periodic boundary conditions are used to verify the information theory error estimates. It is shown that coarse-graining in space leads also to coarse-graining in time by q2, where q is the level of coarse-graining, and overcomes in part the hydrodynamic slowdown. Operation counting and CGMC simulations demonstrate significant CPU savings in continuous time MC simulations that vary from q3 for short potentials to q4 for long potentials. Finally, connections of the new coarse-grained stochastic processes to stochastic mesoscopic and Cahn-Hilliard-Cook models are made.
High-order computer-assisted estimates of topological entropy
NASA Astrophysics Data System (ADS)
Grote, Johannes
The concept of Taylor Models is introduced, which offers highly accurate C0-estimates for the enclosures of functional dependencies, combining high-order Taylor polynomial approximation of functions and rigorous estimates of the truncation error, performed using verified interval arithmetic. The focus of this work is on the application of Taylor Models in algorithms for strongly nonlinear dynamical systems. A method to obtain sharp rigorous enclosures of Poincare maps for certain types of flows and surfaces is developed and numerical examples are presented. Differential algebraic techniques allow the efficient and accurate computation of polynomial approximations for invariant curves of certain planar maps around hyperbolic fixed points. Subsequently we introduce a procedure to extend these polynomial curves to verified Taylor Model enclosures of local invariant manifolds with C0-errors of size 10-10--10 -14, and proceed to generate the global invariant manifold tangle up to comparable accuracy through iteration in Taylor Model arithmetic. Knowledge of the global manifold structure up to finite iterations of the local manifold pieces enables us to find all homoclinic and heteroclinic intersections in the generated manifold tangle. Combined with the mapping properties of the homoclinic points and their ordering we are able to construct a subshift of finite type as a topological factor of the original planar system to obtain rigorous lower bounds for its topological entropy. This construction is fully automatic and yields homoclinic tangles with several hundred homoclinic points. As an example rigorous lower bounds for the topological entropy of the Henon map are computed, which to the best knowledge of the authors yield the largest such estimates published so far.
Asteroid orbital error analysis: Theory and application
NASA Technical Reports Server (NTRS)
Muinonen, K.; Bowell, Edward
1992-01-01
We present a rigorous Bayesian theory for asteroid orbital error estimation in which the probability density of the orbital elements is derived from the noise statistics of the observations. For Gaussian noise in a linearized approximation the probability density is also Gaussian, and the errors of the orbital elements at a given epoch are fully described by the covariance matrix. The law of error propagation can then be applied to calculate past and future positional uncertainty ellipsoids (Cappellari et al. 1976, Yeomans et al. 1987, Whipple et al. 1991). To our knowledge, this is the first time a Bayesian approach has been formulated for orbital element estimation. In contrast to the classical Fisherian school of statistics, the Bayesian school allows a priori information to be formally present in the final estimation. However, Bayesian estimation does give the same results as Fisherian estimation when no priori information is assumed (Lehtinen 1988, and reference therein).
Fellner, Klemens; Kovtunenko, Victor A
2016-01-01
A nonlinear Poisson-Boltzmann equation with inhomogeneous Robin type boundary conditions at the interface between two materials is investigated. The model describes the electrostatic potential generated by a vector of ion concentrations in a periodic multiphase medium with dilute solid particles. The key issue stems from interfacial jumps, which necessitate discontinuous solutions to the problem. Based on variational techniques, we derive the homogenisation of the discontinuous problem and establish a rigorous residual error estimate up to the first-order correction.
Complete Systematic Error Model of SSR for Sensor Registration in ATC Surveillance Networks
Besada, Juan A.
2017-01-01
In this paper, a complete and rigorous mathematical model for secondary surveillance radar systematic errors (biases) is developed. The model takes into account the physical effects systematically affecting the measurement processes. The azimuth biases are calculated from the physical error of the antenna calibration and the errors of the angle determination dispositive. Distance bias is calculated from the delay of the signal produced by the refractivity index of the atmosphere, and from clock errors, while the altitude bias is calculated taking into account the atmosphere conditions (pressure and temperature). It will be shown, using simulated and real data, that adapting a classical bias estimation process to use the complete parametrized model results in improved accuracy in the bias estimation. PMID:28934157
Reliable estimation of orbit errors in spaceborne SAR interferometry. The network approach
NASA Astrophysics Data System (ADS)
Bähr, Hermann; Hanssen, Ramon F.
2012-12-01
An approach to improve orbital state vectors by orbit error estimates derived from residual phase patterns in synthetic aperture radar interferograms is presented. For individual interferograms, an error representation by two parameters is motivated: the baseline error in cross-range and the rate of change of the baseline error in range. For their estimation, two alternatives are proposed: a least squares approach that requires prior unwrapping and a less reliable gridsearch method handling the wrapped phase. In both cases, reliability is enhanced by mutual control of error estimates in an overdetermined network of linearly dependent interferometric combinations of images. Thus, systematic biases, e.g., due to unwrapping errors, can be detected and iteratively eliminated. Regularising the solution by a minimum-norm condition results in quasi-absolute orbit errors that refer to particular images. For the 31 images of a sample ENVISAT dataset, orbit corrections with a mutual consistency on the millimetre level have been inferred from 163 interferograms. The method itself qualifies by reliability and rigorous geometric modelling of the orbital error signal but does not consider interfering large scale deformation effects. However, a separation may be feasible in a combined processing with persistent scatterer approaches or by temporal filtering of the estimates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Falsaperla, P.; Fonte, G.
1993-05-01
Applying a method based on some results due to Kato [Proc. Phys. Soc. Jpn. 4, 334 (1949)], we show that series of Rydberg eigenvalues and Rydberg eigenfunctions of hydrogen in a uniform magnetic field can be calculated with a rigorous error estimate. The efficiency of the method decreases as the eigenvalue density increases and as [gamma][ital n][sup 3][r arrow]1, where [gamma] is the magnetic-field strength in units of 2.35[times]10[sup 9] G and [ital n] is the principal quantum number of the unperturbed hydrogenic manifold from which the diamagnetic Rydberg states evolve. Fixing [gamma] at the laboratory value 2[times]10[sup [minus]5] andmore » confining our calculations to the region [gamma][ital n][sup 3][lt]1 (weak-field regime), we obtain extremely accurate results up to states corresponding to the [ital n]=32 manifold.« less
Generalized Ordinary Differential Equation Models 1
Miao, Hongyu; Wu, Hulin; Xue, Hongqi
2014-01-01
Existing estimation methods for ordinary differential equation (ODE) models are not applicable to discrete data. The generalized ODE (GODE) model is therefore proposed and investigated for the first time. We develop the likelihood-based parameter estimation and inference methods for GODE models. We propose robust computing algorithms and rigorously investigate the asymptotic properties of the proposed estimator by considering both measurement errors and numerical errors in solving ODEs. The simulation study and application of our methods to an influenza viral dynamics study suggest that the proposed methods have a superior performance in terms of accuracy over the existing ODE model estimation approach and the extended smoothing-based (ESB) method. PMID:25544787
Generalized Ordinary Differential Equation Models.
Miao, Hongyu; Wu, Hulin; Xue, Hongqi
2014-10-01
Existing estimation methods for ordinary differential equation (ODE) models are not applicable to discrete data. The generalized ODE (GODE) model is therefore proposed and investigated for the first time. We develop the likelihood-based parameter estimation and inference methods for GODE models. We propose robust computing algorithms and rigorously investigate the asymptotic properties of the proposed estimator by considering both measurement errors and numerical errors in solving ODEs. The simulation study and application of our methods to an influenza viral dynamics study suggest that the proposed methods have a superior performance in terms of accuracy over the existing ODE model estimation approach and the extended smoothing-based (ESB) method.
Estimate of higher order ionospheric errors in GNSS positioning
NASA Astrophysics Data System (ADS)
Hoque, M. Mainul; Jakowski, N.
2008-10-01
Precise navigation and positioning using GPS/GLONASS/Galileo require the ionospheric propagation errors to be accurately determined and corrected for. Current dual-frequency method of ionospheric correction ignores higher order ionospheric errors such as the second and third order ionospheric terms in the refractive index formula and errors due to bending of the signal. The total electron content (TEC) is assumed to be same at two GPS frequencies. All these assumptions lead to erroneous estimations and corrections of the ionospheric errors. In this paper a rigorous treatment of these problems is presented. Different approximation formulas have been proposed to correct errors due to excess path length in addition to the free space path length, TEC difference at two GNSS frequencies, and third-order ionospheric term. The GPS dual-frequency residual range errors can be corrected within millimeter level accuracy using the proposed correction formulas.
Interpolation Error Estimates for Mean Value Coordinates over Convex Polygons
Rand, Alexander; Gillette, Andrew; Bajaj, Chandrajit
2012-01-01
In a similar fashion to estimates shown for Harmonic, Wachspress, and Sibson coordinates in [Gillette et al., AiCM, to appear], we prove interpolation error estimates for the mean value coordinates on convex polygons suitable for standard finite element analysis. Our analysis is based on providing a uniform bound on the gradient of the mean value functions for all convex polygons of diameter one satisfying certain simple geometric restrictions. This work makes rigorous an observed practical advantage of the mean value coordinates: unlike Wachspress coordinates, the gradient of the mean value coordinates does not become large as interior angles of the polygon approach π. PMID:24027379
Interpolation Error Estimates for Mean Value Coordinates over Convex Polygons.
Rand, Alexander; Gillette, Andrew; Bajaj, Chandrajit
2013-08-01
In a similar fashion to estimates shown for Harmonic, Wachspress, and Sibson coordinates in [Gillette et al., AiCM, to appear], we prove interpolation error estimates for the mean value coordinates on convex polygons suitable for standard finite element analysis. Our analysis is based on providing a uniform bound on the gradient of the mean value functions for all convex polygons of diameter one satisfying certain simple geometric restrictions. This work makes rigorous an observed practical advantage of the mean value coordinates: unlike Wachspress coordinates, the gradient of the mean value coordinates does not become large as interior angles of the polygon approach π.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Falsaperla, P.; Fonte, G.
1994-10-01
A variational method, based on some results due to T. Kato [Proc. Phys. Soc. Jpn. 4, 334 (1949)], and previously discussed is here applied to the hydrogen atom in uniform magnetic fields of tesla in order to calculate, with a rigorous error estimate, energy eigenvalues, energy eigenfunctions, and oscillator strengths relative to Rydberg states up to just below the field-free ionization threshold. Making use of a basis (parabolic Sturmian basis) with a size varying from 990 up to 5050, we obtain, over the energy range of [minus]190 to [minus]24 cm[sup [minus]1], all of the eigenvalues and a good part ofmore » the oscillator strengths with a remarkable accuracy. This, however, decreases with increasing excitation energy and, thus, above [similar to][minus]24 cm[sup [minus]1], we obtain results of good accuracy only for eigenvalues ranging up to [similar to][minus]12 cm[sup [minus]1].« less
An analysis of estimation of pulmonary blood flow by the single-breath method
NASA Technical Reports Server (NTRS)
Srinivasan, R.
1986-01-01
The single-breath method represents a simple noninvasive technique for the assessment of capillary blood flow across the lung. However, this method has not gained widespread acceptance, because its accuracy is still being questioned. A rigorous procedure is described for estimating pulmonary blood flow (PBF) using data obtained with the aid of the single-breath method. Attention is given to the minimization of data-processing errors in the presence of measurement errors and to questions regarding a correction for possible loss of CO2 in the lung tissue. It is pointed out that the estimations are based on the exact solution of the underlying differential equations which describe the dynamics of gas exchange in the lung. The reported study demonstrates the feasibility of obtaining highly reliable estimates of PBF from expiratory data in the presence of random measurement errors.
A mass-energy preserving Galerkin FEM for the coupled nonlinear fractional Schrödinger equations
NASA Astrophysics Data System (ADS)
Zhang, Guoyu; Huang, Chengming; Li, Meng
2018-04-01
We consider the numerical simulation of the coupled nonlinear space fractional Schrödinger equations. Based on the Galerkin finite element method in space and the Crank-Nicolson (CN) difference method in time, a fully discrete scheme is constructed. Firstly, we focus on a rigorous analysis of conservation laws for the discrete system. The definitions of discrete mass and energy here correspond with the original ones in physics. Then, we prove that the fully discrete system is uniquely solvable. Moreover, we consider the unconditionally convergent properties (that is to say, we complete the error estimates without any mesh ratio restriction). We derive L2-norm error estimates for the nonlinear equations and L^{∞}-norm error estimates for the linear equations. Finally, some numerical experiments are included showing results in agreement with the theoretical predictions.
Economic measurement of medical errors using a hospital claims database.
David, Guy; Gunnarsson, Candace L; Waters, Heidi C; Horblyuk, Ruslan; Kaplan, Harold S
2013-01-01
The primary objective of this study was to estimate the occurrence and costs of medical errors from the hospital perspective. Methods from a recent actuarial study of medical errors were used to identify medical injuries. A visit qualified as an injury visit if at least 1 of 97 injury groupings occurred at that visit, and the percentage of injuries caused by medical error was estimated. Visits with more than four injuries were removed from the population to avoid overestimation of cost. Population estimates were extrapolated from the Premier hospital database to all US acute care hospitals. There were an estimated 161,655 medical errors in 2008 and 170,201 medical errors in 2009. Extrapolated to the entire US population, there were more than 4 million unique injury visits containing more than 1 million unique medical errors each year. This analysis estimated that the total annual cost of measurable medical errors in the United States was $985 million in 2008 and just over $1 billion in 2009. The median cost per error to hospitals was $892 for 2008 and rose to $939 in 2009. Nearly one third of all medical injuries were due to error in each year. Medical errors directly impact patient outcomes and hospitals' profitability, especially since 2008 when Medicare stopped reimbursing hospitals for care related to certain preventable medical errors. Hospitals must rigorously analyze causes of medical errors and implement comprehensive preventative programs to reduce their occurrence as the financial burden of medical errors shifts to hospitals. Copyright © 2013 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.
Adjoint-Based Algorithms for Adaptation and Design Optimizations on Unstructured Grids
NASA Technical Reports Server (NTRS)
Nielsen, Eric J.
2006-01-01
Schemes based on discrete adjoint algorithms present several exciting opportunities for significantly advancing the current state of the art in computational fluid dynamics. Such methods provide an extremely efficient means for obtaining discretely consistent sensitivity information for hundreds of design variables, opening the door to rigorous, automated design optimization of complex aerospace configuration using the Navier-Stokes equation. Moreover, the discrete adjoint formulation provides a mathematically rigorous foundation for mesh adaptation and systematic reduction of spatial discretization error. Error estimates are also an inherent by-product of an adjoint-based approach, valuable information that is virtually non-existent in today's large-scale CFD simulations. An overview of the adjoint-based algorithm work at NASA Langley Research Center is presented, with examples demonstrating the potential impact on complex computational problems related to design optimization as well as mesh adaptation.
Uncertainty Analysis of Instrument Calibration and Application
NASA Technical Reports Server (NTRS)
Tripp, John S.; Tcheng, Ping
1999-01-01
Experimental aerodynamic researchers require estimated precision and bias uncertainties of measured physical quantities, typically at 95 percent confidence levels. Uncertainties of final computed aerodynamic parameters are obtained by propagation of individual measurement uncertainties through the defining functional expressions. In this paper, rigorous mathematical techniques are extended to determine precision and bias uncertainties of any instrument-sensor system. Through this analysis, instrument uncertainties determined through calibration are now expressed as functions of the corresponding measurement for linear and nonlinear univariate and multivariate processes. Treatment of correlated measurement precision error is developed. During laboratory calibration, calibration standard uncertainties are assumed to be an order of magnitude less than those of the instrument being calibrated. Often calibration standards do not satisfy this assumption. This paper applies rigorous statistical methods for inclusion of calibration standard uncertainty and covariance due to the order of their application. The effects of mathematical modeling error on calibration bias uncertainty are quantified. The effects of experimental design on uncertainty are analyzed. The importance of replication is emphasized, techniques for estimation of both bias and precision uncertainties using replication are developed. Statistical tests for stationarity of calibration parameters over time are obtained.
Rigorous covariance propagation of geoid errors to geodetic MDT estimates
NASA Astrophysics Data System (ADS)
Pail, R.; Albertella, A.; Fecher, T.; Savcenko, R.
2012-04-01
The mean dynamic topography (MDT) is defined as the difference between the mean sea surface (MSS) derived from satellite altimetry, averaged over several years, and the static geoid. Assuming geostrophic conditions, from the MDT the ocean surface velocities as important component of global ocean circulation can be derived from it. Due to the availability of GOCE gravity field models, for the very first time MDT can now be derived solely from satellite observations (altimetry and gravity) down to spatial length-scales of 100 km and even below. Global gravity field models, parameterized in terms of spherical harmonic coefficients, are complemented by the full variance-covariance matrix (VCM). Therefore, for the geoid component a realistic statistical error estimate is available, while the error description of the altimetric component is still an open issue and is, if at all, attacked empirically. In this study we make the attempt to perform, based on the full gravity VCM, rigorous error propagation to derived geostrophic surface velocities, thus also considering all correlations. For the definition of the static geoid we use the third release of the time-wise GOCE model, as well as the satellite-only combination model GOCO03S. In detail, we will investigate the velocity errors resulting from the geoid component in dependence of the harmonic degree, and the impact of using/no using covariances on the MDT errors and its correlations. When deriving an MDT, it is spectrally filtered to a certain maximum degree, which is usually driven by the signal content of the geoid model, by applying isotropic or non-isotropic filters. Since this filtering is acting also on the geoid component, the consistent integration of this filter process into the covariance propagation shall be performed, and its impact shall be quantified. The study will be performed for MDT estimates in specific test areas of particular oceanographic interest.
Error analysis in inverse scatterometry. I. Modeling.
Al-Assaad, Rayan M; Byrne, Dale M
2007-02-01
Scatterometry is an optical technique that has been studied and tested in recent years in semiconductor fabrication metrology for critical dimensions. Previous work presented an iterative linearized method to retrieve surface-relief profile parameters from reflectance measurements upon diffraction. With the iterative linear solution model in this work, rigorous models are developed to represent the random and deterministic or offset errors in scatterometric measurements. The propagation of different types of error from the measurement data to the profile parameter estimates is then presented. The improvement in solution accuracies is then demonstrated with theoretical and experimental data by adjusting for the offset errors. In a companion paper (in process) an improved optimization method is presented to account for unknown offset errors in the measurements based on the offset error model.
Quadratic Zeeman effect for hydrogen: A method for rigorous bound-state error estimates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fonte, G.; Falsaperla, P.; Schiffrer, G.
1990-06-01
We present a variational method, based on direct minimization of energy, for the calculation of eigenvalues and eigenfunctions of a hydrogen atom in a strong uniform magnetic field in the framework of the nonrelativistic theory (quadratic Zeeman effect). Using semiparabolic coordinates and a harmonic-oscillator basis, we show that it is possible to give rigorous error estimates for both eigenvalues and eigenfunctions by applying some results of Kato (Proc. Phys. Soc. Jpn. 4, 334 (1949)). The method can be applied in this simple form only to the lowest level of given angular momentum and parity, but it is also possible tomore » apply it to any excited state by using the standard Rayleigh-Ritz diagonalization method. However, due to the particular basis, the method is expected to be more effective, the weaker the field and the smaller the excitation energy, while the results of Kato we have employed lead to good estimates only when the level spacing is not too small. We present a numerical application to the {ital m}{sup {ital p}}=0{sup +} ground state and the lowest {ital m}{sup {ital p}}=1{sup {minus}} excited state, giving results that are among the most accurate in the literature for magnetic fields up to about 10{sup 10} G.« less
Doss, Hani; Tan, Aixin
2017-01-01
In the classical biased sampling problem, we have k densities π1(·), …, πk(·), each known up to a normalizing constant, i.e. for l = 1, …, k, πl(·) = νl(·)/ml, where νl(·) is a known function and ml is an unknown constant. For each l, we have an iid sample from πl,·and the problem is to estimate the ratios ml/ms for all l and all s. This problem arises frequently in several situations in both frequentist and Bayesian inference. An estimate of the ratios was developed and studied by Vardi and his co-workers over two decades ago, and there has been much subsequent work on this problem from many different perspectives. In spite of this, there are no rigorous results in the literature on how to estimate the standard error of the estimate. We present a class of estimates of the ratios of normalizing constants that are appropriate for the case where the samples from the πl’s are not necessarily iid sequences, but are Markov chains. We also develop an approach based on regenerative simulation for obtaining standard errors for the estimates of ratios of normalizing constants. These standard error estimates are valid for both the iid case and the Markov chain case. PMID:28706463
Doss, Hani; Tan, Aixin
2014-09-01
In the classical biased sampling problem, we have k densities π 1 (·), …, π k (·), each known up to a normalizing constant, i.e. for l = 1, …, k , π l (·) = ν l (·)/ m l , where ν l (·) is a known function and m l is an unknown constant. For each l , we have an iid sample from π l , · and the problem is to estimate the ratios m l /m s for all l and all s . This problem arises frequently in several situations in both frequentist and Bayesian inference. An estimate of the ratios was developed and studied by Vardi and his co-workers over two decades ago, and there has been much subsequent work on this problem from many different perspectives. In spite of this, there are no rigorous results in the literature on how to estimate the standard error of the estimate. We present a class of estimates of the ratios of normalizing constants that are appropriate for the case where the samples from the π l 's are not necessarily iid sequences, but are Markov chains. We also develop an approach based on regenerative simulation for obtaining standard errors for the estimates of ratios of normalizing constants. These standard error estimates are valid for both the iid case and the Markov chain case.
NASA Astrophysics Data System (ADS)
Kim, Seongryong; Tkalčić, Hrvoje; Mustać, Marija; Rhie, Junkee; Ford, Sean
2016-04-01
A framework is presented within which we provide rigorous estimations for seismic sources and structures in the Northeast Asia. We use Bayesian inversion methods, which enable statistical estimations of models and their uncertainties based on data information. Ambiguities in error statistics and model parameterizations are addressed by hierarchical and trans-dimensional (trans-D) techniques, which can be inherently implemented in the Bayesian inversions. Hence reliable estimation of model parameters and their uncertainties is possible, thus avoiding arbitrary regularizations and parameterizations. Hierarchical and trans-D inversions are performed to develop a three-dimensional velocity model using ambient noise data. To further improve the model, we perform joint inversions with receiver function data using a newly developed Bayesian method. For the source estimation, a novel moment tensor inversion method is presented and applied to regional waveform data of the North Korean nuclear explosion tests. By the combination of new Bayesian techniques and the structural model, coupled with meaningful uncertainties related to each of the processes, more quantitative monitoring and discrimination of seismic events is possible.
A two-factor error model for quantitative steganalysis
NASA Astrophysics Data System (ADS)
Böhme, Rainer; Ker, Andrew D.
2006-02-01
Quantitative steganalysis refers to the exercise not only of detecting the presence of hidden stego messages in carrier objects, but also of estimating the secret message length. This problem is well studied, with many detectors proposed but only a sparse analysis of errors in the estimators. A deep understanding of the error model, however, is a fundamental requirement for the assessment and comparison of different detection methods. This paper presents a rationale for a two-factor model for sources of error in quantitative steganalysis, and shows evidence from a dedicated large-scale nested experimental set-up with a total of more than 200 million attacks. Apart from general findings about the distribution functions found in both classes of errors, their respective weight is determined, and implications for statistical hypothesis tests in benchmarking scenarios or regression analyses are demonstrated. The results are based on a rigorous comparison of five different detection methods under many different external conditions, such as size of the carrier, previous JPEG compression, and colour channel selection. We include analyses demonstrating the effects of local variance and cover saturation on the different sources of error, as well as presenting the case for a relative bias model for between-image error.
Sliding mode control for Mars entry based on extended state observer
NASA Astrophysics Data System (ADS)
Lu, Kunfeng; Xia, Yuanqing; Shen, Ganghui; Yu, Chunmei; Zhou, Liuyu; Zhang, Lijun
2017-11-01
This paper addresses high-precision Mars entry guidance and control approach via sliding mode control (SMC) and Extended State Observer (ESO). First, differential flatness (DF) approach is applied to the dynamic equations of the entry vehicle to represent the state variables more conveniently. Then, the presented SMC law can guarantee the property of finite-time convergence of tracking error, which requires no information on high uncertainties that are estimated by ESO, and the rigorous proof of tracking error convergence is given. Finally, Monte Carlo simulation results are presented to demonstrate the effectiveness of the suggested approach.
Explicit error bounds for the α-quasi-periodic Helmholtz problem.
Lord, Natacha H; Mulholland, Anthony J
2013-10-01
This paper considers a finite element approach to modeling electromagnetic waves in a periodic diffraction grating. In particular, an a priori error estimate associated with the α-quasi-periodic transformation is derived. This involves the solution of the associated Helmholtz problem being written as a product of e(iαx) and an unknown function called the α-quasi-periodic solution. To begin with, the well-posedness of the continuous problem is examined using a variational formulation. The problem is then discretized, and a rigorous a priori error estimate, which guarantees the uniqueness of this approximate solution, is derived. In previous studies, the continuity of the Dirichlet-to-Neumann map has simply been assumed and the dependency of the regularity constant on the system parameters, such as the wavenumber, has not been shown. To address this deficiency, in this paper an explicit dependence on the wavenumber and the degree of the polynomial basis in the a priori error estimate is obtained. Since the finite element method is well known for dealing with any geometries, comparison of numerical results obtained using the α-quasi-periodic transformation with a lattice sum technique is then presented.
Rigorous derivation of porous-media phase-field equations
NASA Astrophysics Data System (ADS)
Schmuck, Markus; Kalliadasis, Serafim
2017-11-01
The evolution of interfaces in Complex heterogeneous Multiphase Systems (CheMSs) plays a fundamental role in a wide range of scientific fields such as thermodynamic modelling of phase transitions, materials science, or as a computational tool for interfacial flow studies or material design. Here, we focus on phase-field equations in CheMSs such as porous media. To the best of our knowledge, we present the first rigorous derivation of error estimates for fourth order, upscaled, and nonlinear evolution equations. For CheMs with heterogeneity ɛ, we obtain the convergence rate ɛ 1 / 4 , which governs the error between the solution of the new upscaled formulation and the solution of the microscopic phase-field problem. This error behaviour has recently been validated computationally in. Due to the wide range of application of phase-field equations, we expect this upscaled formulation to allow for new modelling, analytic, and computational perspectives for interfacial transport and phase transformations in CheMSs. This work was supported by EPSRC, UK, through Grant Nos. EP/H034587/1, EP/L027186/1, EP/L025159/1, EP/L020564/1, EP/K008595/1, and EP/P011713/1 and from ERC via Advanced Grant No. 247031.
Jones, Reese E; Mandadapu, Kranthi K
2012-04-21
We present a rigorous Green-Kubo methodology for calculating transport coefficients based on on-the-fly estimates of: (a) statistical stationarity of the relevant process, and (b) error in the resulting coefficient. The methodology uses time samples efficiently across an ensemble of parallel replicas to yield accurate estimates, which is particularly useful for estimating the thermal conductivity of semi-conductors near their Debye temperatures where the characteristic decay times of the heat flux correlation functions are large. Employing and extending the error analysis of Zwanzig and Ailawadi [Phys. Rev. 182, 280 (1969)] and Frenkel [in Proceedings of the International School of Physics "Enrico Fermi", Course LXXV (North-Holland Publishing Company, Amsterdam, 1980)] to the integral of correlation, we are able to provide tight theoretical bounds for the error in the estimate of the transport coefficient. To demonstrate the performance of the method, four test cases of increasing computational cost and complexity are presented: the viscosity of Ar and water, and the thermal conductivity of Si and GaN. In addition to producing accurate estimates of the transport coefficients for these materials, this work demonstrates precise agreement of the computed variances in the estimates of the correlation and the transport coefficient with the extended theory based on the assumption that fluctuations follow a Gaussian process. The proposed algorithm in conjunction with the extended theory enables the calculation of transport coefficients with the Green-Kubo method accurately and efficiently.
NASA Astrophysics Data System (ADS)
Jones, Reese E.; Mandadapu, Kranthi K.
2012-04-01
We present a rigorous Green-Kubo methodology for calculating transport coefficients based on on-the-fly estimates of: (a) statistical stationarity of the relevant process, and (b) error in the resulting coefficient. The methodology uses time samples efficiently across an ensemble of parallel replicas to yield accurate estimates, which is particularly useful for estimating the thermal conductivity of semi-conductors near their Debye temperatures where the characteristic decay times of the heat flux correlation functions are large. Employing and extending the error analysis of Zwanzig and Ailawadi [Phys. Rev. 182, 280 (1969)], 10.1103/PhysRev.182.280 and Frenkel [in Proceedings of the International School of Physics "Enrico Fermi", Course LXXV (North-Holland Publishing Company, Amsterdam, 1980)] to the integral of correlation, we are able to provide tight theoretical bounds for the error in the estimate of the transport coefficient. To demonstrate the performance of the method, four test cases of increasing computational cost and complexity are presented: the viscosity of Ar and water, and the thermal conductivity of Si and GaN. In addition to producing accurate estimates of the transport coefficients for these materials, this work demonstrates precise agreement of the computed variances in the estimates of the correlation and the transport coefficient with the extended theory based on the assumption that fluctuations follow a Gaussian process. The proposed algorithm in conjunction with the extended theory enables the calculation of transport coefficients with the Green-Kubo method accurately and efficiently.
Allen, Vivian; Paxton, Heather; Hutchinson, John R
2009-09-01
Inertial properties of animal bodies and segments are critical input parameters for biomechanical analysis of standing and moving, and thus are important for paleobiological inquiries into the broader behaviors, ecology and evolution of extinct taxa such as dinosaurs. But how accurately can these be estimated? Computational modeling was used to estimate the inertial properties including mass, density, and center of mass (COM) for extant crocodiles (adult and juvenile Crocodylus johnstoni) and birds (Gallus gallus; junglefowl and broiler chickens), to identify the chief sources of variation and methodological errors, and their significance. High-resolution computed tomography scans were segmented into 3D objects and imported into inertial property estimation software that allowed for the examination of variable body segment densities (e.g., air spaces such as lungs, and deformable body outlines). Considerable biological variation of inertial properties was found within groups due to ontogenetic changes as well as evolutionary changes between chicken groups. COM positions shift in variable directions during ontogeny in different groups. Our method was repeatable and the resolution was sufficient for accurate estimations of mass and density in particular. However, we also found considerable potential methodological errors for COM related to (1) assumed body segment orientation, (2) what frames of reference are used to normalize COM for size-independent comparisons among animals, and (3) assumptions about tail shape. Methods and assumptions are suggested to minimize these errors in the future and thereby improve estimation of inertial properties for extant and extinct animals. In the best cases, 10%-15% errors in these estimates are unavoidable, but particularly for extinct taxa errors closer to 50% should be expected, and therefore, cautiously investigated. Nonetheless in the best cases these methods allow rigorous estimation of inertial properties. (c) 2009 Wiley-Liss, Inc.
NASA Technical Reports Server (NTRS)
Prudhomme, C.; Rovas, D. V.; Veroy, K.; Machiels, L.; Maday, Y.; Patera, A. T.; Turinici, G.; Zang, Thomas A., Jr. (Technical Monitor)
2002-01-01
We present a technique for the rapid and reliable prediction of linear-functional outputs of elliptic (and parabolic) partial differential equations with affine parameter dependence. The essential components are (i) (provably) rapidly convergent global reduced basis approximations, Galerkin projection onto a space W(sub N) spanned by solutions of the governing partial differential equation at N selected points in parameter space; (ii) a posteriori error estimation, relaxations of the error-residual equation that provide inexpensive yet sharp and rigorous bounds for the error in the outputs of interest; and (iii) off-line/on-line computational procedures, methods which decouple the generation and projection stages of the approximation process. The operation count for the on-line stage, in which, given a new parameter value, we calculate the output of interest and associated error bound, depends only on N (typically very small) and the parametric complexity of the problem; the method is thus ideally suited for the repeated and rapid evaluations required in the context of parameter estimation, design, optimization, and real-time control.
Simultaneous orbit determination
NASA Technical Reports Server (NTRS)
Wright, J. R.
1988-01-01
Simultaneous orbit determination is demonstrated using live range and Doppler data for the NASA/Goddard tracking configuration defined by the White Sands Ground Terminal (WSGT), the Tracking and Data Relay Satellite (TDRS), and the Earth Radiation Budget Satellite (ERBS). A physically connected sequential filter-smoother was developed for this demonstration. Rigorous necessary conditions are used to show that the state error covariance functions are realistic; and this enables the assessment of orbit estimation accuracies for both TDRS and ERBS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nicholson, Andrew D.; Croft, Stephen; McElroy, Robert Dennis
2017-08-01
The various methods of nondestructive assay (NDA) of special nuclear material (SNM) have applications in nuclear nonproliferation, including detection and identification of illicit SNM at border crossings and quantifying SNM at nuclear facilities for safeguards. No assay method is complete without “error bars,” which provide one way of expressing confidence in the assay result. Consequently, NDA specialists typically provide error bars and also partition total uncertainty into “random” and “systematic” components so that, for example, an error bar can be developed for the total mass estimate in multiple items. Uncertainty Quantification (UQ) for NDA has always been important, but itmore » is recognized that greater rigor is needed and achievable using modern statistical methods.« less
Comparison of Optimal Design Methods in Inverse Problems
Banks, H. T.; Holm, Kathleen; Kappel, Franz
2011-01-01
Typical optimal design methods for inverse or parameter estimation problems are designed to choose optimal sampling distributions through minimization of a specific cost function related to the resulting error in parameter estimates. It is hoped that the inverse problem will produce parameter estimates with increased accuracy using data collected according to the optimal sampling distribution. Here we formulate the classical optimal design problem in the context of general optimization problems over distributions of sampling times. We present a new Prohorov metric based theoretical framework that permits one to treat succinctly and rigorously any optimal design criteria based on the Fisher Information Matrix (FIM). A fundamental approximation theory is also included in this framework. A new optimal design, SE-optimal design (standard error optimal design), is then introduced in the context of this framework. We compare this new design criteria with the more traditional D-optimal and E-optimal designs. The optimal sampling distributions from each design are used to compute and compare standard errors; the standard errors for parameters are computed using asymptotic theory or bootstrapping and the optimal mesh. We use three examples to illustrate ideas: the Verhulst-Pearl logistic population model [13], the standard harmonic oscillator model [13] and a popular glucose regulation model [16, 19, 29]. PMID:21857762
Advancing the research agenda for diagnostic error reduction.
Zwaan, Laura; Schiff, Gordon D; Singh, Hardeep
2013-10-01
Diagnostic errors remain an underemphasised and understudied area of patient safety research. We briefly summarise the methods that have been used to conduct research on epidemiology, contributing factors and interventions related to diagnostic error and outline directions for future research. Research methods that have studied epidemiology of diagnostic error provide some estimate on diagnostic error rates. However, there appears to be a large variability in the reported rates due to the heterogeneity of definitions and study methods used. Thus, future methods should focus on obtaining more precise estimates in different settings of care. This would lay the foundation for measuring error rates over time to evaluate improvements. Research methods have studied contributing factors for diagnostic error in both naturalistic and experimental settings. Both approaches have revealed important and complementary information. Newer conceptual models from outside healthcare are needed to advance the depth and rigour of analysis of systems and cognitive insights of causes of error. While the literature has suggested many potentially fruitful interventions for reducing diagnostic errors, most have not been systematically evaluated and/or widely implemented in practice. Research is needed to study promising intervention areas such as enhanced patient involvement in diagnosis, improving diagnosis through the use of electronic tools and identification and reduction of specific diagnostic process 'pitfalls' (eg, failure to conduct appropriate diagnostic evaluation of a breast lump after a 'normal' mammogram). The last decade of research on diagnostic error has made promising steps and laid a foundation for more rigorous methods to advance the field.
NASA Astrophysics Data System (ADS)
Mustac, M.; Kim, S.; Tkalcic, H.; Rhie, J.; Chen, Y.; Ford, S. R.; Sebastian, N.
2015-12-01
Conventional approaches to inverse problems suffer from non-linearity and non-uniqueness in estimations of seismic structures and source properties. Estimated results and associated uncertainties are often biased by applied regularizations and additional constraints, which are commonly introduced to solve such problems. Bayesian methods, however, provide statistically meaningful estimations of models and their uncertainties constrained by data information. In addition, hierarchical and trans-dimensional (trans-D) techniques are inherently implemented in the Bayesian framework to account for involved error statistics and model parameterizations, and, in turn, allow more rigorous estimations of the same. Here, we apply Bayesian methods throughout the entire inference process to estimate seismic structures and source properties in Northeast Asia including east China, the Korean peninsula, and the Japanese islands. Ambient noise analysis is first performed to obtain a base three-dimensional (3-D) heterogeneity model using continuous broadband waveforms from more than 300 stations. As for the tomography of surface wave group and phase velocities in the 5-70 s band, we adopt a hierarchical and trans-D Bayesian inversion method using Voronoi partition. The 3-D heterogeneity model is further improved by joint inversions of teleseismic receiver functions and dispersion data using a newly developed high-efficiency Bayesian technique. The obtained model is subsequently used to prepare 3-D structural Green's functions for the source characterization. A hierarchical Bayesian method for point source inversion using regional complete waveform data is applied to selected events from the region. The seismic structure and source characteristics with rigorously estimated uncertainties from the novel Bayesian methods provide enhanced monitoring and discrimination of seismic events in northeast Asia.
Enumerating Sparse Organisms in Ships’ Ballast Water: Why Counting to 10 Is Not So Easy
2011-01-01
To reduce ballast water-borne aquatic invasions worldwide, the International Maritime Organization and United States Coast Guard have each proposed discharge standards specifying maximum concentrations of living biota that may be released in ships’ ballast water (BW), but these regulations still lack guidance for standardized type approval and compliance testing of treatment systems. Verifying whether BW meets a discharge standard poses significant challenges. Properly treated BW will contain extremely sparse numbers of live organisms, and robust estimates of rare events require extensive sampling efforts. A balance of analytical rigor and practicality is essential to determine the volume of BW that can be reasonably sampled and processed, yet yield accurate live counts. We applied statistical modeling to a range of sample volumes, plankton concentrations, and regulatory scenarios (i.e., levels of type I and type II errors), and calculated the statistical power of each combination to detect noncompliant discharge concentrations. The model expressly addresses the roles of sampling error, BW volume, and burden of proof on the detection of noncompliant discharges in order to establish a rigorous lower limit of sampling volume. The potential effects of recovery errors (i.e., incomplete recovery and detection of live biota) in relation to sample volume are also discussed. PMID:21434685
Enumerating sparse organisms in ships' ballast water: why counting to 10 is not so easy.
Miller, A Whitman; Frazier, Melanie; Smith, George E; Perry, Elgin S; Ruiz, Gregory M; Tamburri, Mario N
2011-04-15
To reduce ballast water-borne aquatic invasions worldwide, the International Maritime Organization and United States Coast Guard have each proposed discharge standards specifying maximum concentrations of living biota that may be released in ships' ballast water (BW), but these regulations still lack guidance for standardized type approval and compliance testing of treatment systems. Verifying whether BW meets a discharge standard poses significant challenges. Properly treated BW will contain extremely sparse numbers of live organisms, and robust estimates of rare events require extensive sampling efforts. A balance of analytical rigor and practicality is essential to determine the volume of BW that can be reasonably sampled and processed, yet yield accurate live counts. We applied statistical modeling to a range of sample volumes, plankton concentrations, and regulatory scenarios (i.e., levels of type I and type II errors), and calculated the statistical power of each combination to detect noncompliant discharge concentrations. The model expressly addresses the roles of sampling error, BW volume, and burden of proof on the detection of noncompliant discharges in order to establish a rigorous lower limit of sampling volume. The potential effects of recovery errors (i.e., incomplete recovery and detection of live biota) in relation to sample volume are also discussed.
Mathematical models and photogrammetric exploitation of image sensing
NASA Astrophysics Data System (ADS)
Puatanachokchai, Chokchai
Mathematical models of image sensing are generally categorized into physical/geometrical sensor models and replacement sensor models. While the former is determined from image sensing geometry, the latter is based on knowledge of the physical/geometric sensor models and on using such models for its implementation. The main thrust of this research is in replacement sensor models which have three important characteristics: (1) Highly accurate ground-to-image functions; (2) Rigorous error propagation that is essentially of the same accuracy as the physical model; and, (3) Adjustability, or the ability to upgrade the replacement sensor model parameters when additional control information becomes available after the replacement sensor model has replaced the physical model. In this research, such replacement sensor models are considered as True Replacement Models or TRMs. TRMs provide a significant advantage of universality, particularly for image exploitation functions. There have been several writings about replacement sensor models, and except for the so called RSM (Replacement Sensor Model as a product described in the Manual of Photogrammetry), almost all of them pay very little or no attention to errors and their propagation. This is because, it is suspected, the few physical sensor parameters are usually replaced by many more parameters, thus presenting a potential error estimation difficulty. The third characteristic, adjustability, is perhaps the most demanding. It provides an equivalent flexibility to that of triangulation using the physical model. Primary contributions of this thesis include not only "the eigen-approach", a novel means of replacing the original sensor parameter covariance matrices at the time of estimating the TRM, but also the implementation of the hybrid approach that combines the eigen-approach with the added parameters approach used in the RSM. Using either the eigen-approach or the hybrid approach, rigorous error propagation can be performed during image exploitation. Further, adjustability can be performed when additional control information becomes available after the TRM has been implemented. The TRM is shown to apply to imagery from sensors having different geometries, including an aerial frame camera, a spaceborne linear array sensor, an airborne pushbroom sensor, and an airborne whiskbroom sensor. TRM results show essentially negligible differences as compared to those from rigorous physical sensor models, both for geopositioning from single and overlapping images. Simulated as well as real image data are used to address all three characteristics of the TRM.
Optimized two-frequency phase-measuring-profilometry light-sensor temporal-noise sensitivity.
Li, Jielin; Hassebrook, Laurence G; Guan, Chun
2003-01-01
Temporal frame-to-frame noise in multipattern structured light projection can significantly corrupt depth measurement repeatability. We present a rigorous stochastic analysis of phase-measuring-profilometry temporal noise as a function of the pattern parameters and the reconstruction coefficients. The analysis is used to optimize the two-frequency phase measurement technique. In phase-measuring profilometry, a sequence of phase-shifted sine-wave patterns is projected onto a surface. In two-frequency phase measurement, two sets of pattern sequences are used. The first, low-frequency set establishes a nonambiguous depth estimate, and the second, high-frequency set is unwrapped, based on the low-frequency estimate, to obtain an accurate depth estimate. If the second frequency is too low, then depth error is caused directly by temporal noise in the phase measurement. If the second frequency is too high, temporal noise triggers ambiguous unwrapping, resulting in depth measurement error. We present a solution for finding the second frequency, where intensity noise variance is at its minimum.
Fitting a function to time-dependent ensemble averaged data.
Fogelmark, Karl; Lomholt, Michael A; Irbäck, Anders; Ambjörnsson, Tobias
2018-05-03
Time-dependent ensemble averages, i.e., trajectory-based averages of some observable, are of importance in many fields of science. A crucial objective when interpreting such data is to fit these averages (for instance, squared displacements) with a function and extract parameters (such as diffusion constants). A commonly overlooked challenge in such function fitting procedures is that fluctuations around mean values, by construction, exhibit temporal correlations. We show that the only available general purpose function fitting methods, correlated chi-square method and the weighted least squares method (which neglects correlation), fail at either robust parameter estimation or accurate error estimation. We remedy this by deriving a new closed-form error estimation formula for weighted least square fitting. The new formula uses the full covariance matrix, i.e., rigorously includes temporal correlations, but is free of the robustness issues, inherent to the correlated chi-square method. We demonstrate its accuracy in four examples of importance in many fields: Brownian motion, damped harmonic oscillation, fractional Brownian motion and continuous time random walks. We also successfully apply our method, weighted least squares including correlation in error estimation (WLS-ICE), to particle tracking data. The WLS-ICE method is applicable to arbitrary fit functions, and we provide a publically available WLS-ICE software.
Uncertainty information in climate data records from Earth observation
NASA Astrophysics Data System (ADS)
Merchant, Christopher J.; Paul, Frank; Popp, Thomas; Ablain, Michael; Bontemps, Sophie; Defourny, Pierre; Hollmann, Rainer; Lavergne, Thomas; Laeng, Alexandra; de Leeuw, Gerrit; Mittaz, Jonathan; Poulsen, Caroline; Povey, Adam C.; Reuter, Max; Sathyendranath, Shubha; Sandven, Stein; Sofieva, Viktoria F.; Wagner, Wolfgang
2017-07-01
The question of how to derive and present uncertainty information in climate data records (CDRs) has received sustained attention within the European Space Agency Climate Change Initiative (CCI), a programme to generate CDRs addressing a range of essential climate variables (ECVs) from satellite data. Here, we review the nature, mathematics, practicalities, and communication of uncertainty information in CDRs from Earth observations. This review paper argues that CDRs derived from satellite-based Earth observation (EO) should include rigorous uncertainty information to support the application of the data in contexts such as policy, climate modelling, and numerical weather prediction reanalysis. Uncertainty, error, and quality are distinct concepts, and the case is made that CDR products should follow international metrological norms for presenting quantified uncertainty. As a baseline for good practice, total standard uncertainty should be quantified per datum in a CDR, meaning that uncertainty estimates should clearly discriminate more and less certain data. In this case, flags for data quality should not duplicate uncertainty information, but instead describe complementary information (such as the confidence in the uncertainty estimate provided or indicators of conditions violating the retrieval assumptions). The paper discusses the many sources of error in CDRs, noting that different errors may be correlated across a wide range of timescales and space scales. Error effects that contribute negligibly to the total uncertainty in a single-satellite measurement can be the dominant sources of uncertainty in a CDR on the large space scales and long timescales that are highly relevant for some climate applications. For this reason, identifying and characterizing the relevant sources of uncertainty for CDRs is particularly challenging. The characterization of uncertainty caused by a given error effect involves assessing the magnitude of the effect, the shape of the error distribution, and the propagation of the uncertainty to the geophysical variable in the CDR accounting for its error correlation properties. Uncertainty estimates can and should be validated as part of CDR validation when possible. These principles are quite general, but the approach to providing uncertainty information appropriate to different ECVs is varied, as confirmed by a brief review across different ECVs in the CCI. User requirements for uncertainty information can conflict with each other, and a variety of solutions and compromises are possible. The concept of an ensemble CDR as a simple means of communicating rigorous uncertainty information to users is discussed. Our review concludes by providing eight concrete recommendations for good practice in providing and communicating uncertainty in EO-based climate data records.
Optimizing Hybrid Metrology: Rigorous Implementation of Bayesian and Combined Regression.
Henn, Mark-Alexander; Silver, Richard M; Villarrubia, John S; Zhang, Nien Fan; Zhou, Hui; Barnes, Bryan M; Ming, Bin; Vladár, András E
2015-01-01
Hybrid metrology, e.g., the combination of several measurement techniques to determine critical dimensions, is an increasingly important approach to meet the needs of the semiconductor industry. A proper use of hybrid metrology may yield not only more reliable estimates for the quantitative characterization of 3-D structures but also a more realistic estimation of the corresponding uncertainties. Recent developments at the National Institute of Standards and Technology (NIST) feature the combination of optical critical dimension (OCD) measurements and scanning electron microscope (SEM) results. The hybrid methodology offers the potential to make measurements of essential 3-D attributes that may not be otherwise feasible. However, combining techniques gives rise to essential challenges in error analysis and comparing results from different instrument models, especially the effect of systematic and highly correlated errors in the measurement on the χ 2 function that is minimized. Both hypothetical examples and measurement data are used to illustrate solutions to these challenges.
Invariant Tori in the Secular Motions of the Three-body Planetary Systems
NASA Astrophysics Data System (ADS)
Locatelli, Ugo; Giorgilli, Antonio
We consider the problem of the applicability of KAM theorem to a realistic problem of three bodies. In the framework of the averaged dynamics over the fast angles for the Sun-Jupiter-Saturn system we can prove the perpetual stability of the orbit. The proof is based on semi-numerical algorithms requiring both explicit algebraic manipulations of series and analytical estimates. The proof is made rigorous by using interval arithmetics in order to control the numerical errors.
Rigorous Science: a How-To Guide.
Casadevall, Arturo; Fang, Ferric C
2016-11-08
Proposals to improve the reproducibility of biomedical research have emphasized scientific rigor. Although the word "rigor" is widely used, there has been little specific discussion as to what it means and how it can be achieved. We suggest that scientific rigor combines elements of mathematics, logic, philosophy, and ethics. We propose a framework for rigor that includes redundant experimental design, sound statistical analysis, recognition of error, avoidance of logical fallacies, and intellectual honesty. These elements lead to five actionable recommendations for research education. Copyright © 2016 Casadevall and Fang.
Audit of the global carbon budget: estimate errors and their impact on uptake uncertainty
NASA Astrophysics Data System (ADS)
Ballantyne, A. P.; Andres, R.; Houghton, R.; Stocker, B. D.; Wanninkhof, R.; Anderegg, W.; Cooper, L. A.; DeGrandpre, M.; Tans, P. P.; Miller, J. B.; Alden, C.; White, J. W. C.
2015-04-01
Over the last 5 decades monitoring systems have been developed to detect changes in the accumulation of carbon (C) in the atmosphere and ocean; however, our ability to detect changes in the behavior of the global C cycle is still hindered by measurement and estimate errors. Here we present a rigorous and flexible framework for assessing the temporal and spatial components of estimate errors and their impact on uncertainty in net C uptake by the biosphere. We present a novel approach for incorporating temporally correlated random error into the error structure of emission estimates. Based on this approach, we conclude that the 2σ uncertainties of the atmospheric growth rate have decreased from 1.2 Pg C yr-1 in the 1960s to 0.3 Pg C yr-1 in the 2000s due to an expansion of the atmospheric observation network. The 2σ uncertainties in fossil fuel emissions have increased from 0.3 Pg C yr-1 in the 1960s to almost 1.0 Pg C yr-1 during the 2000s due to differences in national reporting errors and differences in energy inventories. Lastly, while land use emissions have remained fairly constant, their errors still remain high and thus their global C uptake uncertainty is not trivial. Currently, the absolute errors in fossil fuel emissions rival the total emissions from land use, highlighting the extent to which fossil fuels dominate the global C budget. Because errors in the atmospheric growth rate have decreased faster than errors in total emissions have increased, a ~20% reduction in the overall uncertainty of net C global uptake has occurred. Given all the major sources of error in the global C budget that we could identify, we are 93% confident that terrestrial C uptake has increased and 97% confident that ocean C uptake has increased over the last 5 decades. Thus, it is clear that arguably one of the most vital ecosystem services currently provided by the biosphere is the continued removal of approximately half of atmospheric CO2 emissions from the atmosphere, although there are certain environmental costs associated with this service, such as the acidification of ocean waters.
Blume-Kohout, Robin; Gamble, John King; Nielsen, Erik; ...
2017-02-15
Quantum information processors promise fast algorithms for problems inaccessible to classical computers. But since qubits are noisy and error-prone, they will depend on fault-tolerant quantum error correction (FTQEC) to compute reliably. Quantum error correction can protect against general noise if—and only if—the error in each physical qubit operation is smaller than a certain threshold. The threshold for general errors is quantified by their diamond norm. Until now, qubits have been assessed primarily by randomized benchmarking, which reports a different error rate that is not sensitive to all errors, and cannot be compared directly to diamond norm thresholds. Finally, we usemore » gate set tomography to completely characterize operations on a trapped-Yb +-ion qubit and demonstrate with greater than 95% confidence that they satisfy a rigorous threshold for FTQEC (diamond norm ≤6.7 × 10 -4).« less
Blume-Kohout, Robin; Gamble, John King; Nielsen, Erik; Rudinger, Kenneth; Mizrahi, Jonathan; Fortier, Kevin; Maunz, Peter
2017-01-01
Quantum information processors promise fast algorithms for problems inaccessible to classical computers. But since qubits are noisy and error-prone, they will depend on fault-tolerant quantum error correction (FTQEC) to compute reliably. Quantum error correction can protect against general noise if—and only if—the error in each physical qubit operation is smaller than a certain threshold. The threshold for general errors is quantified by their diamond norm. Until now, qubits have been assessed primarily by randomized benchmarking, which reports a different error rate that is not sensitive to all errors, and cannot be compared directly to diamond norm thresholds. Here we use gate set tomography to completely characterize operations on a trapped-Yb+-ion qubit and demonstrate with greater than 95% confidence that they satisfy a rigorous threshold for FTQEC (diamond norm ≤6.7 × 10−4). PMID:28198466
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blume-Kohout, Robin; Gamble, John King; Nielsen, Erik
Quantum information processors promise fast algorithms for problems inaccessible to classical computers. But since qubits are noisy and error-prone, they will depend on fault-tolerant quantum error correction (FTQEC) to compute reliably. Quantum error correction can protect against general noise if—and only if—the error in each physical qubit operation is smaller than a certain threshold. The threshold for general errors is quantified by their diamond norm. Until now, qubits have been assessed primarily by randomized benchmarking, which reports a different error rate that is not sensitive to all errors, and cannot be compared directly to diamond norm thresholds. Finally, we usemore » gate set tomography to completely characterize operations on a trapped-Yb +-ion qubit and demonstrate with greater than 95% confidence that they satisfy a rigorous threshold for FTQEC (diamond norm ≤6.7 × 10 -4).« less
Ye, Xin; Garikapati, Venu M.; You, Daehyun; ...
2017-11-08
Most multinomial choice models (e.g., the multinomial logit model) adopted in practice assume an extreme-value Gumbel distribution for the random components (error terms) of utility functions. This distributional assumption offers a closed-form likelihood expression when the utility maximization principle is applied to model choice behaviors. As a result, model coefficients can be easily estimated using the standard maximum likelihood estimation method. However, maximum likelihood estimators are consistent and efficient only if distributional assumptions on the random error terms are valid. It is therefore critical to test the validity of underlying distributional assumptions on the error terms that form the basismore » of parameter estimation and policy evaluation. In this paper, a practical yet statistically rigorous method is proposed to test the validity of the distributional assumption on the random components of utility functions in both the multinomial logit (MNL) model and multiple discrete-continuous extreme value (MDCEV) model. Based on a semi-nonparametric approach, a closed-form likelihood function that nests the MNL or MDCEV model being tested is derived. The proposed method allows traditional likelihood ratio tests to be used to test violations of the standard Gumbel distribution assumption. Simulation experiments are conducted to demonstrate that the proposed test yields acceptable Type-I and Type-II error probabilities at commonly available sample sizes. The test is then applied to three real-world discrete and discrete-continuous choice models. For all three models, the proposed test rejects the validity of the standard Gumbel distribution in most utility functions, calling for the development of robust choice models that overcome adverse effects of violations of distributional assumptions on the error terms in random utility functions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ye, Xin; Garikapati, Venu M.; You, Daehyun
Most multinomial choice models (e.g., the multinomial logit model) adopted in practice assume an extreme-value Gumbel distribution for the random components (error terms) of utility functions. This distributional assumption offers a closed-form likelihood expression when the utility maximization principle is applied to model choice behaviors. As a result, model coefficients can be easily estimated using the standard maximum likelihood estimation method. However, maximum likelihood estimators are consistent and efficient only if distributional assumptions on the random error terms are valid. It is therefore critical to test the validity of underlying distributional assumptions on the error terms that form the basismore » of parameter estimation and policy evaluation. In this paper, a practical yet statistically rigorous method is proposed to test the validity of the distributional assumption on the random components of utility functions in both the multinomial logit (MNL) model and multiple discrete-continuous extreme value (MDCEV) model. Based on a semi-nonparametric approach, a closed-form likelihood function that nests the MNL or MDCEV model being tested is derived. The proposed method allows traditional likelihood ratio tests to be used to test violations of the standard Gumbel distribution assumption. Simulation experiments are conducted to demonstrate that the proposed test yields acceptable Type-I and Type-II error probabilities at commonly available sample sizes. The test is then applied to three real-world discrete and discrete-continuous choice models. For all three models, the proposed test rejects the validity of the standard Gumbel distribution in most utility functions, calling for the development of robust choice models that overcome adverse effects of violations of distributional assumptions on the error terms in random utility functions.« less
A climate trend analysis of Kenya-August 2010
Funk, Christopher C.
2010-01-01
Introduction This brief report draws from a multi-year effort by the United States Agency for International Development's Famine Early Warning System Network (FEWS NET) to monitor and map rainfall and temperature trends over the last 50 years (1960-2009) in Kenya. Observations from seventy rainfall gauges and seventeen air temperature stations were analyzed for the long rains period, corresponding to March through June (MAMJ). The data were quality controlled, converted into 1960-2009 trend estimates, and interpolated using a rigorous geo-statistical technique (kriging). Kriging produces standard error estimates, and these can be used to assess the relative spatial accuracy of the identified trends. Dividing the trends by the associated errors allows us to identify the relative certainty of our estimates (Funk and others, 2005; Verdin and others, 2005; Brown and Funk, 2008; Funk and Verdin, 2009). Assuming that the same observed trends persist, regardless of whether or not these changes are due to anthropogenic or natural cyclical causes, these results can be extended to 2025, providing critical, and heretofore missing information about the types and locations of adaptation efforts that may be required to improve food security.
Accurate Heart Rate Monitoring During Physical Exercises Using PPG.
Temko, Andriy
2017-09-01
The challenging task of heart rate (HR) estimation from the photoplethysmographic (PPG) signal, during intensive physical exercises, is tackled in this paper. The study presents a detailed analysis of a novel algorithm (WFPV) that exploits a Wiener filter to attenuate the motion artifacts, a phase vocoder to refine the HR estimate and user-adaptive post-processing to track the subject physiology. Additionally, an offline version of the HR estimation algorithm that uses Viterbi decoding is designed for scenarios that do not require online HR monitoring (WFPV+VD). The performance of the HR estimation systems is rigorously compared with existing algorithms on the publically available database of 23 PPG recordings. On the whole dataset of 23 PPG recordings, the algorithms result in average absolute errors of 1.97 and 1.37 BPM in the online and offline modes, respectively. On the test dataset of 10 PPG recordings which were most corrupted with motion artifacts, WFPV has an error of 2.95 BPM on its own and 2.32 BPM in an ensemble with two existing algorithms. The error rate is significantly reduced when compared with the state-of-the art PPG-based HR estimation methods. The proposed system is shown to be accurate in the presence of strong motion artifacts and in contrast to existing alternatives has very few free parameters to tune. The algorithm has a low computational cost and can be used for fitness tracking and health monitoring in wearable devices. The MATLAB implementation of the algorithm is provided online.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burr, Tom; Croft, Stephen; Jarman, Kenneth D.
The various methods of nondestructive assay (NDA) of special nuclear material (SNM) have applications in nuclear nonproliferation, including detection and identification of illicit SNM at border crossings, and quantifying SNM at nuclear facilities for safeguards. No assay method is complete without “error bars,” which provide one way of expressing confidence in the assay result. Consequently, NDA specialists typically quantify total uncertainty in terms of “random” and “systematic” components, and then specify error bars for the total mass estimate in multiple items. Uncertainty quantification (UQ) for NDA has always been important, but it is recognized that greater rigor is needed andmore » achievable using modern statistical methods. To this end, we describe the extent to which the guideline for expressing uncertainty in measurements (GUM) can be used for NDA. Also, we propose improvements over GUM for NDA by illustrating UQ challenges that it does not address, including calibration with errors in predictors, model error, and item-specific biases. A case study is presented using low-resolution NaI spectra and applying the enrichment meter principle to estimate the U-235 mass in an item. The case study illustrates how to update the current American Society for Testing and Materials guide for application of the enrichment meter principle using gamma spectra from a NaI detector.« less
Audit of the global carbon budget: estimate errors and their impact on uptake uncertainty
NASA Astrophysics Data System (ADS)
Ballantyne, A. P.; Andres, R.; Houghton, R.; Stocker, B. D.; Wanninkhof, R.; Anderegg, W.; Cooper, L. A.; DeGrandpre, M.; Tans, P. P.; Miller, J. C.; Alden, C.; White, J. W. C.
2014-10-01
Over the last 5 decades monitoring systems have been developed to detect changes in the accumulation of C in the atmosphere, ocean, and land; however, our ability to detect changes in the behavior of the global C cycle is still hindered by measurement and estimate errors. Here we present a rigorous and flexible framework for assessing the temporal and spatial components of estimate error and their impact on uncertainty in net C uptake by the biosphere. We present a novel approach for incorporating temporally correlated random error into the error structure of emission estimates. Based on this approach, we conclude that the 2 σ error of the atmospheric growth rate has decreased from 1.2 Pg C yr-1 in the 1960s to 0.3 Pg C yr-1 in the 2000s, leading to a ~20% reduction in the over-all uncertainty of net global C uptake by the biosphere. While fossil fuel emissions have increased by a factor of 4 over the last 5 decades, 2 σ errors in fossil fuel emissions due to national reporting errors and differences in energy reporting practices have increased from 0.3 Pg C yr-1 in the 1960s to almost 1.0 Pg C yr-1 during the 2000s. At the same time land use emissions have declined slightly over the last 5 decades, but their relative errors remain high. Notably, errors associated with fossil fuel emissions have come to dominate uncertainty in the global C budget and are now comparable to the total emissions from land use, thus efforts to reduce errors in fossil fuel emissions are necessary. Given all the major sources of error in the global C budget that we could identify, we are 93% confident that C uptake has increased and 97% confident that C uptake by the terrestrial biosphere has increased over the last 5 decades. Although the persistence of future C sinks remains unknown and some ecosystem services may be compromised by this continued C uptake (e.g. ocean acidification), it is clear that arguably the greatest ecosystem service currently provided by the biosphere is the continued removal of approximately half of atmospheric CO2 emissions from the atmosphere.
CORS BAADE-WESSELINK DISTANCE TO THE LMC NGC 1866 BLUE POPULOUS CLUSTER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Molinaro, R.; Ripepi, V.; Marconi, M.
2012-03-20
We used optical, near-infrared photometry, and radial velocity data for a sample of 11 Cepheids belonging to the young LMC blue populous cluster NGC 1866 to estimate their radii and distances on the basis of the CORS Baade-Wesselink method. This technique, based on an accurate calibration of surface brightness as a function of (U - B), (V - K) colors, allows us to estimate, simultaneously, the linear radius and the angular diameter of Cepheid variables, and consequently to derive their distance. A rigorous error estimate on radii and distances was derived by using Monte Carlo simulations. Our analysis gives amore » distance modulus for NGC 1866 of 18.51 {+-} 0.03 mag, which is in agreement with several independent results.« less
Optimizing Hybrid Metrology: Rigorous Implementation of Bayesian and Combined Regression
Henn, Mark-Alexander; Silver, Richard M.; Villarrubia, John S.; Zhang, Nien Fan; Zhou, Hui; Barnes, Bryan M.; Ming, Bin; Vladár, András E.
2015-01-01
Hybrid metrology, e.g., the combination of several measurement techniques to determine critical dimensions, is an increasingly important approach to meet the needs of the semiconductor industry. A proper use of hybrid metrology may yield not only more reliable estimates for the quantitative characterization of 3-D structures but also a more realistic estimation of the corresponding uncertainties. Recent developments at the National Institute of Standards and Technology (NIST) feature the combination of optical critical dimension (OCD) measurements and scanning electron microscope (SEM) results. The hybrid methodology offers the potential to make measurements of essential 3-D attributes that may not be otherwise feasible. However, combining techniques gives rise to essential challenges in error analysis and comparing results from different instrument models, especially the effect of systematic and highly correlated errors in the measurement on the χ2 function that is minimized. Both hypothetical examples and measurement data are used to illustrate solutions to these challenges. PMID:26681991
Optimal full motion video registration with rigorous error propagation
NASA Astrophysics Data System (ADS)
Dolloff, John; Hottel, Bryant; Doucette, Peter; Theiss, Henry; Jocher, Glenn
2014-06-01
Optimal full motion video (FMV) registration is a crucial need for the Geospatial community. It is required for subsequent and optimal geopositioning with simultaneous and reliable accuracy prediction. An overall approach being developed for such registration is presented that models relevant error sources in terms of the expected magnitude and correlation of sensor errors. The corresponding estimator is selected based on the level of accuracy of the a priori information of the sensor's trajectory and attitude (pointing) information, in order to best deal with non-linearity effects. Estimator choices include near real-time Kalman Filters and batch Weighted Least Squares. Registration solves for corrections to the sensor a priori information for each frame. It also computes and makes available a posteriori accuracy information, i.e., the expected magnitude and correlation of sensor registration errors. Both the registered sensor data and its a posteriori accuracy information are then made available to "down-stream" Multi-Image Geopositioning (MIG) processes. An object of interest is then measured on the registered frames and a multi-image optimal solution, including reliable predicted solution accuracy, is then performed for the object's 3D coordinates. This paper also describes a robust approach to registration when a priori information of sensor attitude is unavailable. It makes use of structure-from-motion principles, but does not use standard Computer Vision techniques, such as estimation of the Essential Matrix which can be very sensitive to noise. The approach used instead is a novel, robust, direct search-based technique.
Rigorous Science: a How-To Guide
Fang, Ferric C.
2016-01-01
ABSTRACT Proposals to improve the reproducibility of biomedical research have emphasized scientific rigor. Although the word “rigor” is widely used, there has been little specific discussion as to what it means and how it can be achieved. We suggest that scientific rigor combines elements of mathematics, logic, philosophy, and ethics. We propose a framework for rigor that includes redundant experimental design, sound statistical analysis, recognition of error, avoidance of logical fallacies, and intellectual honesty. These elements lead to five actionable recommendations for research education. PMID:27834205
The Aharonov-Bohm effect and Tonomura et al. experiments: Rigorous results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ballesteros, Miguel; Weder, Ricardo
The Aharonov-Bohm effect is a fundamental issue in physics. It describes the physically important electromagnetic quantities in quantum mechanics. Its experimental verification constitutes a test of the theory of quantum mechanics itself. The remarkable experiments of Tonomura et al. ['Observation of Aharonov-Bohm effect by electron holography', Phys. Rev. Lett 48, 1443 (1982) and 'Evidence for Aharonov-Bohm effect with magnetic field completely shielded from electron wave', Phys. Rev. Lett 56, 792 (1986)] are widely considered as the only experimental evidence of the physical existence of the Aharonov-Bohm effect. Here we give the first rigorous proof that the classical ansatz of Aharonovmore » and Bohm of 1959 ['Significance of electromagnetic potentials in the quantum theory', Phys. Rev. 115, 485 (1959)], that was tested by Tonomura et al., is a good approximation to the exact solution to the Schroedinger equation. This also proves that the electron, that is, represented by the exact solution, is not accelerated, in agreement with the recent experiment of Caprez et al. in 2007 ['Macroscopic test of the Aharonov-Bohm effect', Phys. Rev. Lett. 99, 210401 (2007)], that shows that the results of the Tonomura et al. experiments can not be explained by the action of a force. Under the assumption that the incoming free electron is a Gaussian wave packet, we estimate the exact solution to the Schroedinger equation for all times. We provide a rigorous, quantitative error bound for the difference in norm between the exact solution and the Aharonov-Bohm Ansatz. Our bound is uniform in time. We also prove that on the Gaussian asymptotic state the scattering operator is given by a constant phase shift, up to a quantitative error bound that we provide. Our results show that for intermediate size electron wave packets, smaller than the ones used in the Tonomura et al. experiments, quantum mechanics predicts the results observed by Tonomura et al. with an error bound smaller than 10{sup -99}. It would be quite interesting to perform experiments with electron wave packets of intermediate size. Furthermore, we provide a physical interpretation of our error bound.« less
Jones, J.W.; Jarnagin, T.
2009-01-01
Given the relatively high cost of mapping impervious surfaces at regional scales, substantial effort is being expended in the development of moderate-resolution, satellite-based methods for estimating impervious surface area (ISA). To rigorously assess the accuracy of these data products high quality, independently derived validation data are needed. High-resolution data were collected across a gradient of development within the Mid-Atlantic region to assess the accuracy of National Land Cover Data (NLCD) Landsat-based ISA estimates. Absolute error (satellite predicted area - "reference area") and relative error [satellite (predicted area - "reference area")/ "reference area"] were calculated for each of 240 sample regions that are each more than 15 Landsat pixels on a side. The ability to compile and examine ancillary data in a geographic information system environment provided for evaluation of both validation and NLCD data and afforded efficient exploration of observed errors. In a minority of cases, errors could be explained by temporal discontinuities between the date of satellite image capture and validation source data in rapidly changing places. In others, errors were created by vegetation cover over impervious surfaces and by other factors that bias the satellite processing algorithms. On average in the Mid-Atlantic region, the NLCD product underestimates ISA by approximately 5%. While the error range varies between 2 and 8%, this underestimation occurs regardless of development intensity. Through such analyses the errors, strengths, and weaknesses of particular satellite products can be explored to suggest appropriate uses for regional, satellite-based data in rapidly developing areas of environmental significance. ?? 2009 ASCE.
NASA Astrophysics Data System (ADS)
Hincks, Ian; Granade, Christopher; Cory, David G.
2018-01-01
The analysis of photon count data from the standard nitrogen vacancy (NV) measurement process is treated as a statistical inference problem. This has applications toward gaining better and more rigorous error bars for tasks such as parameter estimation (e.g. magnetometry), tomography, and randomized benchmarking. We start by providing a summary of the standard phenomenological model of the NV optical process in terms of Lindblad jump operators. This model is used to derive random variables describing emitted photons during measurement, to which finite visibility, dark counts, and imperfect state preparation are added. NV spin-state measurement is then stated as an abstract statistical inference problem consisting of an underlying biased coin obstructed by three Poisson rates. Relevant frequentist and Bayesian estimators are provided, discussed, and quantitatively compared. We show numerically that the risk of the maximum likelihood estimator is well approximated by the Cramér-Rao bound, for which we provide a simple formula. Of the estimators, we in particular promote the Bayes estimator, owing to its slightly better risk performance, and straightforward error propagation into more complex experiments. This is illustrated on experimental data, where quantum Hamiltonian learning is performed and cross-validated in a fully Bayesian setting, and compared to a more traditional weighted least squares fit.
Akita, Yasuyuki; Chen, Jiu-Chiuan; Serre, Marc L
2012-09-01
Geostatistical methods are widely used in estimating long-term exposures for epidemiological studies on air pollution, despite their limited capabilities to handle spatial non-stationarity over large geographic domains and the uncertainty associated with missing monitoring data. We developed a moving-window (MW) Bayesian maximum entropy (BME) method and applied this framework to estimate fine particulate matter (PM(2.5)) yearly average concentrations over the contiguous US. The MW approach accounts for the spatial non-stationarity, while the BME method rigorously processes the uncertainty associated with data missingness in the air-monitoring system. In the cross-validation analyses conducted on a set of randomly selected complete PM(2.5) data in 2003 and on simulated data with different degrees of missing data, we demonstrate that the MW approach alone leads to at least 17.8% reduction in mean square error (MSE) in estimating the yearly PM(2.5). Moreover, the MWBME method further reduces the MSE by 8.4-43.7%, with the proportion of incomplete data increased from 18.3% to 82.0%. The MWBME approach leads to significant reductions in estimation error and thus is recommended for epidemiological studies investigating the effect of long-term exposure to PM(2.5) across large geographical domains with expected spatial non-stationarity.
Audit of the global carbon budget: estimate errors and their impact on uptake uncertainty
Ballantyne, A. P.; Andres, R.; Houghton, R.; ...
2015-04-30
Over the last 5 decades monitoring systems have been developed to detect changes in the accumulation of carbon (C) in the atmosphere and ocean; however, our ability to detect changes in the behavior of the global C cycle is still hindered by measurement and estimate errors. Here we present a rigorous and flexible framework for assessing the temporal and spatial components of estimate errors and their impact on uncertainty in net C uptake by the biosphere. We present a novel approach for incorporating temporally correlated random error into the error structure of emission estimates. Based on this approach, we concludemore » that the 2σ uncertainties of the atmospheric growth rate have decreased from 1.2 Pg C yr ₋1 in the 1960s to 0.3 Pg C yr ₋1 in the 2000s due to an expansion of the atmospheric observation network. The 2σ uncertainties in fossil fuel emissions have increased from 0.3 Pg C yr ₋1 in the 1960s to almost 1.0 Pg C yr ₋1 during the 2000s due to differences in national reporting errors and differences in energy inventories. Lastly, while land use emissions have remained fairly constant, their errors still remain high and thus their global C uptake uncertainty is not trivial. Currently, the absolute errors in fossil fuel emissions rival the total emissions from land use, highlighting the extent to which fossil fuels dominate the global C budget. Because errors in the atmospheric growth rate have decreased faster than errors in total emissions have increased, a ~20% reduction in the overall uncertainty of net C global uptake has occurred. Given all the major sources of error in the global C budget that we could identify, we are 93% confident that terrestrial C uptake has increased and 97% confident that ocean C uptake has increased over the last 5 decades. Thus, it is clear that arguably one of the most vital ecosystem services currently provided by the biosphere is the continued removal of approximately half of atmospheric CO 2 emissions from the atmosphere, although there are certain environmental costs associated with this service, such as the acidification of ocean waters.« less
Methods for determining time of death.
Madea, Burkhard
2016-12-01
Medicolegal death time estimation must estimate the time since death reliably. Reliability can only be provided empirically by statistical analysis of errors in field studies. Determining the time since death requires the calculation of measurable data along a time-dependent curve back to the starting point. Various methods are used to estimate the time since death. The current gold standard for death time estimation is a previously established nomogram method based on the two-exponential model of body cooling. Great experimental and practical achievements have been realized using this nomogram method. To reduce the margin of error of the nomogram method, a compound method was developed based on electrical and mechanical excitability of skeletal muscle, pharmacological excitability of the iris, rigor mortis, and postmortem lividity. Further increasing the accuracy of death time estimation involves the development of conditional probability distributions for death time estimation based on the compound method. Although many studies have evaluated chemical methods of death time estimation, such methods play a marginal role in daily forensic practice. However, increased precision of death time estimation has recently been achieved by considering various influencing factors (i.e., preexisting diseases, duration of terminal episode, and ambient temperature). Putrefactive changes may be used for death time estimation in water-immersed bodies. Furthermore, recently developed technologies, such as H magnetic resonance spectroscopy, can be used to quantitatively study decompositional changes. This review addresses the gold standard method of death time estimation in forensic practice and promising technological and scientific developments in the field.
Incorporating harvest rates into the sex-age-kill model for white-tailed deer
Norton, Andrew S.; Diefenbach, Duane R.; Rosenberry, Christopher S.; Wallingford, Bret D.
2013-01-01
Although monitoring population trends is an essential component of game species management, wildlife managers rarely have complete counts of abundance. Often, they rely on population models to monitor population trends. As imperfect representations of real-world populations, models must be rigorously evaluated to be applied appropriately. Previous research has evaluated population models for white-tailed deer (Odocoileus virginianus); however, the precision and reliability of these models when tested against empirical measures of variability and bias largely is untested. We were able to statistically evaluate the Pennsylvania sex-age-kill (PASAK) population model using realistic error measured using data from 1,131 radiocollared white-tailed deer in Pennsylvania from 2002 to 2008. We used these data and harvest data (number killed, age-sex structure, etc.) to estimate precision of abundance estimates, identify the most efficient harvest data collection with respect to precision of parameter estimates, and evaluate PASAK model robustness to violation of assumptions. Median coefficient of variation (CV) estimates by Wildlife Management Unit, 13.2% in the most recent year, were slightly above benchmarks recommended for managing game species populations. Doubling reporting rates by hunters or doubling the number of deer checked by personnel in the field reduced median CVs to recommended levels. The PASAK model was robust to errors in estimates for adult male harvest rates but was sensitive to errors in subadult male harvest rates, especially in populations with lower harvest rates. In particular, an error in subadult (1.5-yr-old) male harvest rates resulted in the opposite error in subadult male, adult female, and juvenile population estimates. Also, evidence of a greater harvest probability for subadult female deer when compared with adult (≥2.5-yr-old) female deer resulted in a 9.5% underestimate of the population using the PASAK model. Because obtaining appropriate sample sizes, by management unit, to estimate harvest rate parameters each year may be too expensive, assumptions of constant annual harvest rates may be necessary. However, if changes in harvest regulations or hunter behavior influence subadult male harvest rates, the PASAK model could provide an unreliable index to population changes.
A theoretical framework to predict the most likely ion path in particle imaging.
Collins-Fekete, Charles-Antoine; Volz, Lennart; Portillo, Stephen K N; Beaulieu, Luc; Seco, Joao
2017-03-07
In this work, a generic rigorous Bayesian formalism is introduced to predict the most likely path of any ion crossing a medium between two detection points. The path is predicted based on a combination of the particle scattering in the material and measurements of its initial and final position, direction and energy. The path estimate's precision is compared to the Monte Carlo simulated path. Every ion from hydrogen to carbon is simulated in two scenarios, (1) where the range is fixed and (2) where the initial velocity is fixed. In the scenario where the range is kept constant, the maximal root-mean-square error between the estimated path and the Monte Carlo path drops significantly between the proton path estimate (0.50 mm) and the helium path estimate (0.18 mm), but less so up to the carbon path estimate (0.09 mm). However, this scenario is identified as the configuration that maximizes the dose while minimizing the path resolution. In the scenario where the initial velocity is fixed, the maximal root-mean-square error between the estimated path and the Monte Carlo path drops significantly between the proton path estimate (0.29 mm) and the helium path estimate (0.09 mm) but increases for heavier ions up to carbon (0.12 mm). As a result, helium is found to be the particle with the most accurate path estimate for the lowest dose, potentially leading to tomographic images of higher spatial resolution.
Sequential reconstruction of driving-forces from nonlinear nonstationary dynamics
NASA Astrophysics Data System (ADS)
Güntürkün, Ulaş
2010-07-01
This paper describes a functional analysis-based method for the estimation of driving-forces from nonlinear dynamic systems. The driving-forces account for the perturbation inputs induced by the external environment or the secular variations in the internal variables of the system. The proposed algorithm is applicable to the problems for which there is too little or no prior knowledge to build a rigorous mathematical model of the unknown dynamics. We derive the estimator conditioned on the differentiability of the unknown system’s mapping, and smoothness of the driving-force. The proposed algorithm is an adaptive sequential realization of the blind prediction error method, where the basic idea is to predict the observables, and retrieve the driving-force from the prediction error. Our realization of this idea is embodied by predicting the observables one-step into the future using a bank of echo state networks (ESN) in an online fashion, and then extracting the raw estimates from the prediction error and smoothing these estimates in two adaptive filtering stages. The adaptive nature of the algorithm enables to retrieve both slowly and rapidly varying driving-forces accurately, which are illustrated by simulations. Logistic and Moran-Ricker maps are studied in controlled experiments, exemplifying chaotic state and stochastic measurement models. The algorithm is also applied to the estimation of a driving-force from another nonlinear dynamic system that is stochastic in both state and measurement equations. The results are judged by the posterior Cramer-Rao lower bounds. The method is finally put into test on a real-world application; extracting sun’s magnetic flux from the sunspot time series.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barna, B.A.; Ginn, R.F.
1985-05-01
In computer programs which perform shortcut calculations for multicomponent distillation, the Gilliland correlation continues to be used even though errors of up to 60% (compared with rigorous plate-to-plate calculations) were shown by Erbar and Maddox. Average absolute differences were approximately 30% for Gilliland's correlation versus 4% for the Erbar-Maddox method. The reason the Gilliland correlation continues to be used appears to be due to the availability of an equation by Eduljee which facilitates the correlation's use in computer program. A new equation is presented in this paper that represents the Erbar-Maddox correlation of trays with reflux for multicomponent distillation. Atmore » low reflux ratios, results show more trays are needed than would be estimated by Gilliland's method.« less
Sucila, Antanas
2002-01-01
The aim of study is to recall surgeons deontological principles and errors. The article demonstrates some specific deontological errors, performed by surgeon on patients and his colleagues; points out painful sequela of these errors as well. CONCLUSION. The surgeon should take in account deontological principles rigorously in routine daily practice.
The Evolution of a More Rigorous Approach to Benefit Transfer: Benefit Function Transfer
NASA Astrophysics Data System (ADS)
Loomis, John B.
1992-03-01
The desire for economic values of recreation for unstudied recreation resources dates back to the water resource development benefit-cost analyses of the early 1960s. Rather than simply applying existing estimates of benefits per trip to the study site, a fairly rigorous approach was developed by a number of economists. This approach involves application of travel cost demand equations and contingent valuation benefit functions from existing sites to the new site. In this way the spatial market of the new site (i.e., its differing own price, substitute prices and population distribution) is accounted for in the new estimate of total recreation benefits. The assumptions of benefit transfer from recreation sites in one state to another state for the same recreation activity is empirically tested. The equality of demand coefficients for ocean sport salmon fishing in Oregon versus Washington and for freshwater steelhead fishing in Oregon versus Idaho is rejected. Thus transfer of either demand equations or average benefits per trip are likely to be in error. Using the Oregon steelhead equation, benefit transfers to rivers within the state are shown to be accurate to within 5-15%.
Burr, Tom; Croft, Stephen; Jarman, Kenneth D.
2015-09-05
The various methods of nondestructive assay (NDA) of special nuclear material (SNM) have applications in nuclear nonproliferation, including detection and identification of illicit SNM at border crossings, and quantifying SNM at nuclear facilities for safeguards. No assay method is complete without “error bars,” which provide one way of expressing confidence in the assay result. Consequently, NDA specialists typically quantify total uncertainty in terms of “random” and “systematic” components, and then specify error bars for the total mass estimate in multiple items. Uncertainty quantification (UQ) for NDA has always been important, but it is recognized that greater rigor is needed andmore » achievable using modern statistical methods. To this end, we describe the extent to which the guideline for expressing uncertainty in measurements (GUM) can be used for NDA. Also, we propose improvements over GUM for NDA by illustrating UQ challenges that it does not address, including calibration with errors in predictors, model error, and item-specific biases. A case study is presented using low-resolution NaI spectra and applying the enrichment meter principle to estimate the U-235 mass in an item. The case study illustrates how to update the current American Society for Testing and Materials guide for application of the enrichment meter principle using gamma spectra from a NaI detector.« less
Fully implicit moving mesh adaptive algorithm
NASA Astrophysics Data System (ADS)
Serazio, C.; Chacon, L.; Lapenta, G.
2006-10-01
In many problems of interest, the numerical modeler is faced with the challenge of dealing with multiple time and length scales. The former is best dealt with with fully implicit methods, which are able to step over fast frequencies to resolve the dynamical time scale of interest. The latter requires grid adaptivity for efficiency. Moving-mesh grid adaptive methods are attractive because they can be designed to minimize the numerical error for a given resolution. However, the required grid governing equations are typically very nonlinear and stiff, and of considerably difficult numerical treatment. Not surprisingly, fully coupled, implicit approaches where the grid and the physics equations are solved simultaneously are rare in the literature, and circumscribed to 1D geometries. In this study, we present a fully implicit algorithm for moving mesh methods that is feasible for multidimensional geometries. Crucial elements are the development of an effective multilevel treatment of the grid equation, and a robust, rigorous error estimator. For the latter, we explore the effectiveness of a coarse grid correction error estimator, which faithfully reproduces spatial truncation errors for conservative equations. We will show that the moving mesh approach is competitive vs. uniform grids both in accuracy (due to adaptivity) and efficiency. Results for a variety of models 1D and 2D geometries will be presented. L. Chac'on, G. Lapenta, J. Comput. Phys., 212 (2), 703 (2006) G. Lapenta, L. Chac'on, J. Comput. Phys., accepted (2006)
Proof of Heisenberg's error-disturbance relation.
Busch, Paul; Lahti, Pekka; Werner, Reinhard F
2013-10-18
While the slogan "no measurement without disturbance" has established itself under the name of the Heisenberg effect in the consciousness of the scientifically interested public, a precise statement of this fundamental feature of the quantum world has remained elusive, and serious attempts at rigorous formulations of it as a consequence of quantum theory have led to seemingly conflicting preliminary results. Here we show that despite recent claims to the contrary [L. Rozema et al, Phys. Rev. Lett. 109, 100404 (2012)], Heisenberg-type inequalities can be proven that describe a tradeoff between the precision of a position measurement and the necessary resulting disturbance of momentum (and vice versa). More generally, these inequalities are instances of an uncertainty relation for the imprecisions of any joint measurement of position and momentum. Measures of error and disturbance are here defined as figures of merit characteristic of measuring devices. As such they are state independent, each giving worst-case estimates across all states, in contrast to previous work that is concerned with the relationship between error and disturbance in an individual state.
Fish-Eye Observing with Phased Array Radio Telescopes
NASA Astrophysics Data System (ADS)
Wijnholds, S. J.
The radio astronomical community is currently developing and building several new radio telescopes based on phased array technology. These telescopes provide a large field-of-view, that may in principle span a full hemisphere. This makes calibration and imaging very challenging tasks due to the complex source structures and direction dependent radio wave propagation effects. In this thesis, calibration and imaging methods are developed based on least squares estimation of instrument and source parameters. Monte Carlo simulations and actual observations with several prototype show that this model based approach provides statistically and computationally efficient solutions. The error analysis provides a rigorous mathematical framework to assess the imaging performance of current and future radio telescopes in terms of the effective noise, which is the combined effect of propagated calibration errors, noise in the data and source confusion.
Bouda, Martin; Caplan, Joshua S.; Saiers, James E.
2016-01-01
Fractal dimension (FD), estimated by box-counting, is a metric used to characterize plant anatomical complexity or space-filling characteristic for a variety of purposes. The vast majority of published studies fail to evaluate the assumption of statistical self-similarity, which underpins the validity of the procedure. The box-counting procedure is also subject to error arising from arbitrary grid placement, known as quantization error (QE), which is strictly positive and varies as a function of scale, making it problematic for the procedure's slope estimation step. Previous studies either ignore QE or employ inefficient brute-force grid translations to reduce it. The goals of this study were to characterize the effect of QE due to translation and rotation on FD estimates, to provide an efficient method of reducing QE, and to evaluate the assumption of statistical self-similarity of coarse root datasets typical of those used in recent trait studies. Coarse root systems of 36 shrubs were digitized in 3D and subjected to box-counts. A pattern search algorithm was used to minimize QE by optimizing grid placement and its efficiency was compared to the brute force method. The degree of statistical self-similarity was evaluated using linear regression residuals and local slope estimates. QE, due to both grid position and orientation, was a significant source of error in FD estimates, but pattern search provided an efficient means of minimizing it. Pattern search had higher initial computational cost but converged on lower error values more efficiently than the commonly employed brute force method. Our representations of coarse root system digitizations did not exhibit details over a sufficient range of scales to be considered statistically self-similar and informatively approximated as fractals, suggesting a lack of sufficient ramification of the coarse root systems for reiteration to be thought of as a dominant force in their development. FD estimates did not characterize the scaling of our digitizations well: the scaling exponent was a function of scale. Our findings serve as a caution against applying FD under the assumption of statistical self-similarity without rigorously evaluating it first. PMID:26925073
Rigorous high-precision enclosures of fixed points and their invariant manifolds
NASA Astrophysics Data System (ADS)
Wittig, Alexander N.
The well established concept of Taylor Models is introduced, which offer highly accurate C0 enclosures of functional dependencies, combining high-order polynomial approximation of functions and rigorous estimates of the truncation error, performed using verified arithmetic. The focus of this work is on the application of Taylor Models in algorithms for strongly non-linear dynamical systems. A method is proposed to extend the existing implementation of Taylor Models in COSY INFINITY from double precision coefficients to arbitrary precision coefficients. Great care is taken to maintain the highest efficiency possible by adaptively adjusting the precision of higher order coefficients in the polynomial expansion. High precision operations are based on clever combinations of elementary floating point operations yielding exact values for round-off errors. An experimental high precision interval data type is developed and implemented. Algorithms for the verified computation of intrinsic functions based on the High Precision Interval datatype are developed and described in detail. The application of these operations in the implementation of High Precision Taylor Models is discussed. An application of Taylor Model methods to the verification of fixed points is presented by verifying the existence of a period 15 fixed point in a near standard Henon map. Verification is performed using different verified methods such as double precision Taylor Models, High Precision intervals and High Precision Taylor Models. Results and performance of each method are compared. An automated rigorous fixed point finder is implemented, allowing the fully automated search for all fixed points of a function within a given domain. It returns a list of verified enclosures of each fixed point, optionally verifying uniqueness within these enclosures. An application of the fixed point finder to the rigorous analysis of beam transfer maps in accelerator physics is presented. Previous work done by Johannes Grote is extended to compute very accurate polynomial approximations to invariant manifolds of discrete maps of arbitrary dimension around hyperbolic fixed points. The algorithm presented allows for automatic removal of resonances occurring during construction. A method for the rigorous enclosure of invariant manifolds of continuous systems is introduced. Using methods developed for discrete maps, polynomial approximations of invariant manifolds of hyperbolic fixed points of ODEs are obtained. These approximations are outfit with a sharp error bound which is verified to rigorously contain the manifolds. While we focus on the three dimensional case, verification in higher dimensions is possible using similar techniques. Integrating the resulting enclosures using the verified COSY VI integrator, the initial manifold enclosures are expanded to yield sharp enclosures of large parts of the stable and unstable manifolds. To demonstrate the effectiveness of this method, we construct enclosures of the invariant manifolds of the Lorenz system and show pictures of the resulting manifold enclosures. To the best of our knowledge, these enclosures are the largest verified enclosures of manifolds in the Lorenz system in existence.
Estimation of the barrier layer thickness in the Indian Ocean using Aquarius Salinity
NASA Astrophysics Data System (ADS)
Felton, Clifford S.; Subrahmanyam, Bulusu; Murty, V. S. N.; Shriver, Jay F.
2014-07-01
Monthly barrier layer thickness (BLT) estimates are derived from satellite measurements using a multilinear regression model (MRM) within the Indian Ocean. Sea surface salinity (SSS) from the recently launched Soil Moisture and Ocean Salinity (SMOS) and Aquarius SAC-D salinity missions are utilized to estimate the BLT. The MRM relates BLT to sea surface salinity (SSS), sea surface temperature (SST), and sea surface height anomalies (SSHA). Three regions where the BLT variability is most rigorous are selected to evaluate the performance of the MRM for 2012; the Southeast Arabian Sea (SEAS), Bay of Bengal (BoB), and Eastern Equatorial Indian Ocean (EEIO). The MRM derived BLT estimates are compared to gridded Argo and Hybrid Coordinate Ocean Model (HYCOM) BLTs. It is shown that different mechanisms are important for sustaining the BLT variability in each of the selected regions. Sensitivity tests show that SSS is the primary driver of the BLT within the MRM. Results suggest that salinity measurements obtained from Aquarius and SMOS can be useful for tracking and predicting the BLT in the Indian Ocean. Largest MRM errors occur along coastlines and near islands where land contamination skews the satellite SSS retrievals. The BLT evolution during 2012, as well as the advantages and disadvantages of the current model are discussed. BLT estimations using HYCOM simulations display large errors that are related to model layer structure and the selected BLT methodology.
Akita, Yasuyuki; Chen, Jiu-Chiuan; Serre, Marc L.
2013-01-01
Geostatistical methods are widely used in estimating long-term exposures for air pollution epidemiological studies, despite their limited capabilities to handle spatial non-stationarity over large geographic domains and uncertainty associated with missing monitoring data. We developed a moving-window (MW) Bayesian Maximum Entropy (BME) method and applied this framework to estimate fine particulate matter (PM2.5) yearly average concentrations over the contiguous U.S. The MW approach accounts for the spatial non-stationarity, while the BME method rigorously processes the uncertainty associated with data missingnees in the air monitoring system. In the cross-validation analyses conducted on a set of randomly selected complete PM2.5 data in 2003 and on simulated data with different degrees of missing data, we demonstrate that the MW approach alone leads to at least 17.8% reduction in mean square error (MSE) in estimating the yearly PM2.5. Moreover, the MWBME method further reduces the MSE by 8.4% to 43.7% with the proportion of incomplete data increased from 18.3% to 82.0%. The MWBME approach leads to significant reductions in estimation error and thus is recommended for epidemiological studies investigating the effect of long-term exposure to PM2.5 across large geographical domains with expected spatial non-stationarity. PMID:22739679
A numerical identifiability test for state-space models--application to optimal experimental design.
Hidalgo, M E; Ayesa, E
2001-01-01
This paper describes a mathematical tool for identifiability analysis, easily applicable to high order non-linear systems modelled in state-space and implementable in simulators with a time-discrete approach. This procedure also permits a rigorous analysis of the expected estimation errors (average and maximum) in calibration experiments. The methodology is based on the recursive numerical evaluation of the information matrix during the simulation of a calibration experiment and in the setting-up of a group of information parameters based on geometric interpretations of this matrix. As an example of the utility of the proposed test, the paper presents its application to an optimal experimental design of ASM Model No. 1 calibration, in order to estimate the maximum specific growth rate microH and the concentration of heterotrophic biomass XBH.
A complete representation of uncertainties in layer-counted paleoclimatic archives
NASA Astrophysics Data System (ADS)
Boers, Niklas; Goswami, Bedartha; Ghil, Michael
2017-09-01
Accurate time series representation of paleoclimatic proxy records is challenging because such records involve dating errors in addition to proxy measurement errors. Rigorous attention is rarely given to age uncertainties in paleoclimatic research, although the latter can severely bias the results of proxy record analysis. Here, we introduce a Bayesian approach to represent layer-counted proxy records - such as ice cores, sediments, corals, or tree rings - as sequences of probability distributions on absolute, error-free time axes. The method accounts for both proxy measurement errors and uncertainties arising from layer-counting-based dating of the records. An application to oxygen isotope ratios from the North Greenland Ice Core Project (NGRIP) record reveals that the counting errors, although seemingly small, lead to substantial uncertainties in the final representation of the oxygen isotope ratios. In particular, for the older parts of the NGRIP record, our results show that the total uncertainty originating from dating errors has been seriously underestimated. Our method is next applied to deriving the overall uncertainties of the Suigetsu radiocarbon comparison curve, which was recently obtained from varved sediment cores at Lake Suigetsu, Japan. This curve provides the only terrestrial radiocarbon comparison for the time interval 12.5-52.8 kyr BP. The uncertainties derived here can be readily employed to obtain complete error estimates for arbitrary radiometrically dated proxy records of this recent part of the last glacial interval.
The Accuracy of Aggregate Student Growth Percentiles as Indicators of Educator Performance
ERIC Educational Resources Information Center
Castellano, Katherine E.; McCaffrey, Daniel F.
2017-01-01
Mean or median student growth percentiles (MGPs) are a popular measure of educator performance, but they lack rigorous evaluation. This study investigates the error in MGP due to test score measurement error (ME). Using analytic derivations, we find that errors in the commonly used MGP are correlated with average prior latent achievement: Teachers…
Comparison of optimal design methods in inverse problems
NASA Astrophysics Data System (ADS)
Banks, H. T.; Holm, K.; Kappel, F.
2011-07-01
Typical optimal design methods for inverse or parameter estimation problems are designed to choose optimal sampling distributions through minimization of a specific cost function related to the resulting error in parameter estimates. It is hoped that the inverse problem will produce parameter estimates with increased accuracy using data collected according to the optimal sampling distribution. Here we formulate the classical optimal design problem in the context of general optimization problems over distributions of sampling times. We present a new Prohorov metric-based theoretical framework that permits one to treat succinctly and rigorously any optimal design criteria based on the Fisher information matrix. A fundamental approximation theory is also included in this framework. A new optimal design, SE-optimal design (standard error optimal design), is then introduced in the context of this framework. We compare this new design criterion with the more traditional D-optimal and E-optimal designs. The optimal sampling distributions from each design are used to compute and compare standard errors; the standard errors for parameters are computed using asymptotic theory or bootstrapping and the optimal mesh. We use three examples to illustrate ideas: the Verhulst-Pearl logistic population model (Banks H T and Tran H T 2009 Mathematical and Experimental Modeling of Physical and Biological Processes (Boca Raton, FL: Chapman and Hall/CRC)), the standard harmonic oscillator model (Banks H T and Tran H T 2009) and a popular glucose regulation model (Bergman R N, Ider Y Z, Bowden C R and Cobelli C 1979 Am. J. Physiol. 236 E667-77 De Gaetano A and Arino O 2000 J. Math. Biol. 40 136-68 Toffolo G, Bergman R N, Finegood D T, Bowden C R and Cobelli C 1980 Diabetes 29 979-90).
Intrinsic measurement errors for the speed of light in vacuum
NASA Astrophysics Data System (ADS)
Braun, Daniel; Schneiter, Fabienne; Fischer, Uwe R.
2017-09-01
The speed of light in vacuum, one of the most important and precisely measured natural constants, is fixed by convention to c=299 792 458 m s-1 . Advanced theories predict possible deviations from this universal value, or even quantum fluctuations of c. Combining arguments from quantum parameter estimation theory and classical general relativity, we here establish rigorously the existence of lower bounds on the uncertainty to which the speed of light in vacuum can be determined in a given region of space-time, subject to several reasonable restrictions. They provide a novel perspective on the experimental falsifiability of predictions for the quantum fluctuations of space-time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laboure, Vincent M., E-mail: vincent.laboure@tamu.edu; McClarren, Ryan G., E-mail: rgm@tamu.edu; Hauck, Cory D., E-mail: hauckc@ornl.gov
2016-09-15
In this work, we provide a fully-implicit implementation of the time-dependent, filtered spherical harmonics (FP{sub N}) equations for non-linear, thermal radiative transfer. We investigate local filtering strategies and analyze the effect of the filter on the conditioning of the system, showing in particular that the filter improves the convergence properties of the iterative solver. We also investigate numerically the rigorous error estimates derived in the linear setting, to determine whether they hold also for the non-linear case. Finally, we simulate a standard test problem on an unstructured mesh and make comparisons with implicit Monte Carlo (IMC) calculations.
NASA Astrophysics Data System (ADS)
Khaki, M.; Schumacher, M.; Forootan, E.; Kuhn, M.; Awange, J. L.; van Dijk, A. I. J. M.
2017-10-01
Assimilation of terrestrial water storage (TWS) information from the Gravity Recovery And Climate Experiment (GRACE) satellite mission can provide significant improvements in hydrological modelling. However, the rather coarse spatial resolution of GRACE TWS and its spatially correlated errors pose considerable challenges for achieving realistic assimilation results. Consequently, successful data assimilation depends on rigorous modelling of the full error covariance matrix of the GRACE TWS estimates, as well as realistic error behavior for hydrological model simulations. In this study, we assess the application of local analysis (LA) to maximize the contribution of GRACE TWS in hydrological data assimilation. For this, we assimilate GRACE TWS into the World-Wide Water Resources Assessment system (W3RA) over the Australian continent while applying LA and accounting for existing spatial correlations using the full error covariance matrix. GRACE TWS data is applied with different spatial resolutions including 1° to 5° grids, as well as basin averages. The ensemble-based sequential filtering technique of the Square Root Analysis (SQRA) is applied to assimilate TWS data into W3RA. For each spatial scale, the performance of the data assimilation is assessed through comparison with independent in-situ ground water and soil moisture observations. Overall, the results demonstrate that LA is able to stabilize the inversion process (within the implementation of the SQRA filter) leading to less errors for all spatial scales considered with an average RMSE improvement of 54% (e.g., 52.23 mm down to 26.80 mm) for all the cases with respect to groundwater in-situ measurements. Validating the assimilated results with groundwater observations indicates that LA leads to 13% better (in terms of RMSE) assimilation results compared to the cases with Gaussian errors assumptions. This highlights the great potential of LA and the use of the full error covariance matrix of GRACE TWS estimates for improved data assimilation results.
Benefit of Complete State Monitoring For GPS Realtime Applications With Geo++ Gnsmart
NASA Astrophysics Data System (ADS)
Wübbena, G.; Schmitz, M.; Bagge, A.
Today, the demand for precise positioning at the cm-level in realtime is worldwide growing. An indication for this is the number of operational RTK network installa- tions, which use permanent reference station networks to derive corrections for dis- tance dependent GPS errors and to supply corrections to RTK users in realtime. Gen- erally, the inter-station distances in RTK networks are selected at several tens of km in range and operational installations cover areas of up to 50000 km x km. However, the separation of the permanent reference stations can be increased to sev- eral hundred km, while a correct modeling of all error components is applied. Such networks can be termed as sparse RTK networks, which cover larger areas with a reduced number of stations. The undifferenced GPS observable is best suited for this task estimating the complete state of a permanent GPS network in a dynamic recursive Kalman filter. A rigorous adjustment of all simultaneous reference station data is re- quired. The sparse network design essentially supports the state estimation through its large spatial extension. The benefit of the approach and its state modeling of all GPS error components is a successful ambiguity resolution in realtime over long distances. The above concepts are implemented in the operational GNSMART (GNSS State Monitoring and Representation Technique) software of Geo++. It performs a state monitoring of all error components at the mm-level, because for RTK networks this accuracy is required to sufficiently represent the distance dependent errors for kine- matic applications. One key issue of the modeling is the estimation of clocks and hard- ware delays in the undifferenced approach. This pre-requisite subsequently allows for the precise separation and modeling of all other error components. Generally most of the estimated parameters are considered as nuisance parameters with respect to pure positioning tasks. As the complete state vector of GPS errors is available in a GPS realtime network, additional information besides position can be derived e.g. regional precise satellite clocks, orbits, total ionospheric electron content, tropospheric water vapor distribution, and also dynamic reference station movements. The models of GNSMART are designed to work with regional, continental or even global data. Results from GNSMART realtime networks with inter-station distances of several hundred km are presented to demonstrate the benefits of the operational implemented concepts.
Only marginal alignment of disc galaxies
NASA Astrophysics Data System (ADS)
Andrae, René; Jahnke, Knud
2011-12-01
Testing theories of angular-momentum acquisition of rotationally supported disc galaxies is the key to understanding the formation of this type of galaxies. The tidal-torque theory aims to explain this acquisition process in a cosmological framework and predicts positive autocorrelations of angular-momentum orientation and spiral-arm handedness, i.e. alignment of disc galaxies, on short distance scales of 1 Mpc h-1. This disc alignment can also cause systematic effects in weak-lensing measurements. Previous observations claimed discovering these correlations but are overly optimistic in the reported level of statistical significance of the detections. Errors in redshift, ellipticity and morphological classifications were not taken into account, although they have a significant impact. We explain how to rigorously propagate all the important errors through the estimation process. Analysing disc galaxies in the Sloan Digital Sky Survey (SDSS) data base, we find that positive autocorrelations of spiral-arm handedness and angular-momentum orientations on distance scales of 1 Mpc h-1 are plausible but not statistically significant. Current data appear not good enough to constrain parameters of theory. This result agrees with a simple hypothesis test in the Local Group, where we also find no evidence for disc alignment. Moreover, we demonstrate that ellipticity estimates based on second moments are strongly biased by galactic bulges even for Scd galaxies, thereby corrupting correlation estimates and overestimating the impact of disc alignment on weak-lensing studies. Finally, we discuss the potential of future sky surveys. We argue that photometric redshifts have too large errors, i.e. PanSTARRS and LSST cannot be used. Conversely, the EUCLID project will not cover the relevant redshift regime. We also discuss the potentials and problems of front-edge classifications of galaxy discs in order to improve the autocorrelation estimates of angular-momentum orientation.
Clayson, Peter E; Miller, Gregory A
2017-01-01
Generalizability theory (G theory) provides a flexible, multifaceted approach to estimating score reliability. G theory's approach to estimating score reliability has important advantages over classical test theory that are relevant for research using event-related brain potentials (ERPs). For example, G theory does not require parallel forms (i.e., equal means, variances, and covariances), can handle unbalanced designs, and provides a single reliability estimate for designs with multiple sources of error. This monograph provides a detailed description of the conceptual framework of G theory using examples relevant to ERP researchers, presents the algorithms needed to estimate ERP score reliability, and provides a detailed walkthrough of newly-developed software, the ERP Reliability Analysis (ERA) Toolbox, that calculates score reliability using G theory. The ERA Toolbox is open-source, Matlab software that uses G theory to estimate the contribution of the number of trials retained for averaging, group, and/or event types on ERP score reliability. The toolbox facilitates the rigorous evaluation of psychometric properties of ERP scores recommended elsewhere in this special issue. Copyright © 2016 Elsevier B.V. All rights reserved.
Estimating Thruster Impulses From IMU and Doppler Data
NASA Technical Reports Server (NTRS)
Lisano, Michael E.; Kruizinga, Gerhard L.
2009-01-01
A computer program implements a thrust impulse measurement (TIM) filter, which processes data on changes in velocity and attitude of a spacecraft to estimate the small impulsive forces and torques exerted by the thrusters of the spacecraft reaction control system (RCS). The velocity-change data are obtained from line-of-sight-velocity data from Doppler measurements made from the Earth. The attitude-change data are the telemetered from an inertial measurement unit (IMU) aboard the spacecraft. The TIM filter estimates the threeaxis thrust vector for each RCS thruster, thereby enabling reduction of cumulative navigation error attributable to inaccurate prediction of thrust vectors. The filter has been augmented with a simple mathematical model to compensate for large temperature fluctuations in the spacecraft thruster catalyst bed in order to estimate thrust more accurately at deadbanding cold-firing levels. Also, rigorous consider-covariance estimation is applied in the TIM to account for the expected uncertainty in the moment of inertia and the location of the center of gravity of the spacecraft. The TIM filter was built with, and depends upon, a sigma-point consider-filter algorithm implemented in a Python-language computer program.
Testing Intelligently Includes Double-Checking Wechsler IQ Scores
ERIC Educational Resources Information Center
Kuentzel, Jeffrey G.; Hetterscheidt, Lesley A.; Barnett, Douglas
2011-01-01
The rigors of standardized testing make for numerous opportunities for examiner error, including simple computational mistakes in scoring. Although experts recommend that test scoring be double-checked, the extent to which independent double-checking would reduce scoring errors is not known. A double-checking procedure was established at a…
Space-Borne Laser Altimeter Geolocation Error Analysis
NASA Astrophysics Data System (ADS)
Wang, Y.; Fang, J.; Ai, Y.
2018-05-01
This paper reviews the development of space-borne laser altimetry technology over the past 40 years. Taking the ICESAT satellite as an example, a rigorous space-borne laser altimeter geolocation model is studied, and an error propagation equation is derived. The influence of the main error sources, such as the platform positioning error, attitude measurement error, pointing angle measurement error and range measurement error, on the geolocation accuracy of the laser spot are analysed by simulated experiments. The reasons for the different influences on geolocation accuracy in different directions are discussed, and to satisfy the accuracy of the laser control point, a design index for each error source is put forward.
Cameras and settings for optimal image capture from UAVs
NASA Astrophysics Data System (ADS)
Smith, Mike; O'Connor, James; James, Mike R.
2017-04-01
Aerial image capture has become very common within the geosciences due to the increasing affordability of low payload (<20 kg) Unmanned Aerial Vehicles (UAVs) for consumer markets. Their application to surveying has led to many studies being undertaken using UAV imagery captured from consumer grade cameras as primary data sources. However, image quality and the principles of image capture are seldom given rigorous discussion which can lead to experiments being difficult to accurately reproduce. In this contribution we revisit the underpinning concepts behind image capture, from which the requirements for acquiring sharp, well exposed and suitable imagery are derived. This then leads to discussion of how to optimise the platform, camera, lens and imaging settings relevant to image quality planning, presenting some worked examples as a guide. Finally, we challenge the community to make their image data open for review in order to ensure confidence in the outputs/error estimates, allow reproducibility of the results and have these comparable with future studies. We recommend providing open access imagery where possible, a range of example images, and detailed metadata to rigorously describe the image capture process.
Studies on the estimation of the postmortem interval. 3. Rigor mortis (author's transl).
Suzutani, T; Ishibashi, H; Takatori, T
1978-11-01
The authors have devised a method for classifying rigor mortis into 10 types based on its appearance and strength in various parts of a cadaver. By applying the method to the findings of 436 cadavers which were subjected to medico-legal autopsies in our laboratory during the last 10 years, it has been demonstrated that the classifying method is effective for analyzing the phenomenon of onset, persistence and disappearance of rigor mortis statistically. The investigation of the relationship between each type of rigor mortis and the postmortem interval has demonstrated that rigor mortis may be utilized as a basis for estimating the postmortem interval but the values have greater deviation than those described in current textbooks.
NASA Astrophysics Data System (ADS)
Hemmings, J. C. P.; Challenor, P. G.
2012-04-01
A wide variety of different plankton system models have been coupled with ocean circulation models, with the aim of understanding and predicting aspects of environmental change. However, an ability to make reliable inferences about real-world processes from the model behaviour demands a quantitative understanding of model error that remains elusive. Assessment of coupled model output is inhibited by relatively limited observing system coverage of biogeochemical components. Any direct assessment of the plankton model is further inhibited by uncertainty in the physical state. Furthermore, comparative evaluation of plankton models on the basis of their design is inhibited by the sensitivity of their dynamics to many adjustable parameters. Parameter uncertainty has been widely addressed by calibrating models at data-rich ocean sites. However, relatively little attention has been given to quantifying uncertainty in the physical fields required by the plankton models at these sites, and tendencies in the biogeochemical properties due to the effects of horizontal processes are often neglected. Here we use model twin experiments, in which synthetic data are assimilated to estimate a system's known "true" parameters, to investigate the impact of error in a plankton model's environmental input data. The experiments are supported by a new software tool, the Marine Model Optimization Testbed, designed for rigorous analysis of plankton models in a multi-site 1-D framework. Simulated errors are derived from statistical characterizations of the mixed layer depth, the horizontal flux divergence tendencies of the biogeochemical tracers and the initial state. Plausible patterns of uncertainty in these data are shown to produce strong temporal and spatial variability in the expected simulation error variance over an annual cycle, indicating variation in the significance attributable to individual model-data differences. An inverse scheme using ensemble-based estimates of the simulation error variance to allow for this environment error performs well compared with weighting schemes used in previous calibration studies, giving improved estimates of the known parameters. The efficacy of the new scheme in real-world applications will depend on the quality of statistical characterizations of the input data. Practical approaches towards developing reliable characterizations are discussed.
[Relations between health information systems and patient safety].
Nøhr, Christian
2012-11-05
Health information systems have the potential to reduce medical errors, and indeed many studies have shown a significant reduction. However, if the systems are not designed and implemented properly, there is evidence that suggest that new types of errors will arise--i.e., technology-induced errors. Health information systems will need to undergo a more rigorous evaluation. Usability evaluation and simulation test with humans in the loop can help to detect and prevent technology-induced errors before they are deployed in real health-care settings.
NASA Astrophysics Data System (ADS)
D'Ambrosio, Raffaele; Moccaldi, Martina; Paternoster, Beatrice
2018-05-01
In this paper, an adapted numerical scheme for reaction-diffusion problems generating periodic wavefronts is introduced. Adapted numerical methods for such evolutionary problems are specially tuned to follow prescribed qualitative behaviors of the solutions, making the numerical scheme more accurate and efficient as compared with traditional schemes already known in the literature. Adaptation through the so-called exponential fitting technique leads to methods whose coefficients depend on unknown parameters related to the dynamics and aimed to be numerically computed. Here we propose a strategy for a cheap and accurate estimation of such parameters, which consists essentially in minimizing the leading term of the local truncation error whose expression is provided in a rigorous accuracy analysis. In particular, the presented estimation technique has been applied to a numerical scheme based on combining an adapted finite difference discretization in space with an implicit-explicit time discretization. Numerical experiments confirming the effectiveness of the approach are also provided.
Bayesian inference for dynamic transcriptional regulation; the Hes1 system as a case study.
Heron, Elizabeth A; Finkenstädt, Bärbel; Rand, David A
2007-10-01
In this study, we address the problem of estimating the parameters of regulatory networks and provide the first application of Markov chain Monte Carlo (MCMC) methods to experimental data. As a case study, we consider a stochastic model of the Hes1 system expressed in terms of stochastic differential equations (SDEs) to which rigorous likelihood methods of inference can be applied. When fitting continuous-time stochastic models to discretely observed time series the lengths of the sampling intervals are important, and much of our study addresses the problem when the data are sparse. We estimate the parameters of an autoregulatory network providing results both for simulated and real experimental data from the Hes1 system. We develop an estimation algorithm using MCMC techniques which are flexible enough to allow for the imputation of latent data on a finer time scale and the presence of prior information about parameters which may be informed from other experiments as well as additional measurement error.
Campbell, J Elliott; Moen, Jeremie C; Ney, Richard A; Schnoor, Jerald L
2008-03-01
Estimates of forest soil organic carbon (SOC) have applications in carbon science, soil quality studies, carbon sequestration technologies, and carbon trading. Forest SOC has been modeled using a regression coefficient methodology that applies mean SOC densities (mass/area) to broad forest regions. A higher resolution model is based on an approach that employs a geographic information system (GIS) with soil databases and satellite-derived landcover images. Despite this advancement, the regression approach remains the basis of current state and federal level greenhouse gas inventories. Both approaches are analyzed in detail for Wisconsin forest soils from 1983 to 2001, applying rigorous error-fixing algorithms to soil databases. Resulting SOC stock estimates are 20% larger when determined using the GIS method rather than the regression approach. Average annual rates of increase in SOC stocks are 3.6 and 1.0 million metric tons of carbon per year for the GIS and regression approaches respectively.
A Population Study of Wide-Separation Brown Dwarf Companions to Main Sequence Stars
NASA Technical Reports Server (NTRS)
Smith, Jeffrey J.
2005-01-01
Increased interest in infrared astronomy has opened the frontier to study cooler objects that shed significant light on the formation of planetary systems. Brown dwarf research provides a wealth of information useful for sorting through a myriad of proposed formation theories. Our study combines observational data from 2MASS with rigorous computer simulations to estimate the true population of long-range (greater than 1000 AU) brown dwarf companions in the solar neighborhood (less than 25 pc from Earth). Expanding on Gizis et al. (2001), we have found the margin of error in previous estimates to be significantly underestimated after we included orbit eccentricity, longitude of pericenter, angle of inclination, field star density, and primary and secondary luminosities as parameters influencing the companion systems in observational studies. We apply our simulation results to current L- and T-dwarf catalogs to provide updated estimates on the frequency of wide-separation brown dwarf companions to main sequence stars.
qF-SSOP: real-time optical property corrected fluorescence imaging
Valdes, Pablo A.; Angelo, Joseph P.; Choi, Hak Soo; Gioux, Sylvain
2017-01-01
Fluorescence imaging is well suited to provide image guidance during resections in oncologic and vascular surgery. However, the distorting effects of tissue optical properties on the emitted fluorescence are poorly compensated for on even the most advanced fluorescence image guidance systems, leading to subjective and inaccurate estimates of tissue fluorophore concentrations. Here we present a novel fluorescence imaging technique that performs real-time (i.e., video rate) optical property corrected fluorescence imaging. We perform full field of view simultaneous imaging of tissue optical properties using Single Snapshot of Optical Properties (SSOP) and fluorescence detection. The estimated optical properties are used to correct the emitted fluorescence with a quantitative fluorescence model to provide quantitative fluorescence-Single Snapshot of Optical Properties (qF-SSOP) images with less than 5% error. The technique is rigorous, fast, and quantitative, enabling ease of integration into the surgical workflow with the potential to improve molecular guidance intraoperatively. PMID:28856038
NASA Astrophysics Data System (ADS)
Nora, R.; Field, J. E.; Peterson, J. Luc; Spears, B.; Kruse, M.; Humbird, K.; Gaffney, J.; Springer, P. T.; Brandon, S.; Langer, S.
2017-10-01
We present an experimentally corroborated hydrodynamic extrapolation of several recent BigFoot implosions on the National Ignition Facility. An estimate on the value and error of the hydrodynamic scale necessary for ignition (for each individual BigFoot implosion) is found by hydrodynamically scaling a distribution of multi-dimensional HYDRA simulations whose outputs correspond to their experimental observables. The 11-parameter database of simulations, which include arbitrary drive asymmetries, dopant fractions, hydrodynamic scaling parameters, and surface perturbations due to surrogate tent and fill-tube engineering features, was computed on the TRINITY supercomputer at Los Alamos National Laboratory. This simple extrapolation is the first step in providing a rigorous calibration of our workflow to provide an accurate estimate of the efficacy of achieving ignition on the National Ignition Facility. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Predictability Experiments With the Navy Operational Global Atmospheric Prediction System
NASA Astrophysics Data System (ADS)
Reynolds, C. A.; Gelaro, R.; Rosmond, T. E.
2003-12-01
There are several areas of research in numerical weather prediction and atmospheric predictability, such as targeted observations and ensemble perturbation generation, where it is desirable to combine information about the uncertainty of the initial state with information about potential rapid perturbation growth. Singular vectors (SVs) provide a framework to accomplish this task in a mathematically rigorous and computationally feasible manner. In this study, SVs are calculated using the tangent and adjoint models of the Navy Operational Global Atmospheric Prediction System (NOGAPS). The analysis error variance information produced by the NRL Atmospheric Variational Data Assimilation System is used as the initial-time SV norm. These VAR SVs are compared to SVs for which total energy is both the initial and final time norms (TE SVs). The incorporation of analysis error variance information has a significant impact on the structure and location of the SVs. This in turn has a significant impact on targeted observing applications. The utility and implications of such experiments in assessing the analysis error variance estimates will be explored. Computing support has been provided by the Department of Defense High Performance Computing Center at the Naval Oceanographic Office Major Shared Resource Center at Stennis, Mississippi.
NASA Astrophysics Data System (ADS)
Pandey, Manoj Kumar; Ramachandran, Ramesh
2010-03-01
The application of solid-state NMR methodology for bio-molecular structure determination requires the measurement of constraints in the form of 13C-13C and 13C-15N distances, torsion angles and, in some cases, correlation of the anisotropic interactions. Since the availability of structurally important constraints in the solid state is limited due to lack of sufficient spectral resolution, the accuracy of the measured constraints become vital in studies relating the three-dimensional structure of proteins to its biological functions. Consequently, the theoretical methods employed to quantify the experimental data become important. To accentuate this aspect, we re-examine analytical two-spin models currently employed in the estimation of 13C-13C distances based on the rotational resonance (R 2) phenomenon. Although the error bars for the estimated distances tend to be in the range 0.5-1.0 Å, R 2 experiments are routinely employed in a variety of systems ranging from simple peptides to more complex amyloidogenic proteins. In this article we address this aspect by highlighting the systematic errors introduced by analytical models employing phenomenological damping terms to describe multi-spin effects. Specifically, the spin dynamics in R 2 experiments is described using Floquet theory employing two different operator formalisms. The systematic errors introduced by the phenomenological damping terms and their limitations are elucidated in two analytical models and analysed by comparing the results with rigorous numerical simulations.
Re-use of pilot data and interim analysis of pivotal data in MRMC studies: a simulation study
NASA Astrophysics Data System (ADS)
Chen, Weijie; Samuelson, Frank; Sahiner, Berkman; Petrick, Nicholas
2017-03-01
Novel medical imaging devices are often evaluated with multi-reader multi-case (MRMC) studies in which radiologists read images of patient cases for a specified clinical task (e.g., cancer detection). A pilot study is often used to measure the effect size and variance parameters that are necessary for sizing a pivotal study (including sizing readers, non-diseased and diseased cases). Due to the practical difficulty of collecting patient cases or recruiting clinical readers, some investigators attempt to include the pilot data as part of their pivotal study. In other situations, some investigators attempt to perform an interim analysis of their pivotal study data based upon which the sample sizes may be re-estimated. Re-use of the pilot data or interim analyses of the pivotal data may inflate the type I error of the pivotal study. In this work, we use the Roe and Metz model to simulate MRMC data under the null hypothesis (i.e., two devices have equal diagnostic performance) and investigate the type I error rate for several practical designs involving re-use of pilot data or interim analysis of pivotal data. Our preliminary simulation results indicate that, under the simulation conditions we investigated, the inflation of type I error is none or only marginal for some design strategies (e.g., re-use of patient data without re-using readers, and size re-estimation without using the effect-size estimated in the interim analysis). Upon further verifications, these are potentially useful design methods in that they may help make a study less burdensome and have a better chance to succeed without substantial loss of the statistical rigor.
Optimal and robust control of transition
NASA Technical Reports Server (NTRS)
Bewley, T. R.; Agarwal, R.
1996-01-01
Optimal and robust control theories are used to determine feedback control rules that effectively stabilize a linearly unstable flow in a plane channel. Wall transpiration (unsteady blowing/suction) with zero net mass flux is used as the control. Control algorithms are considered that depend both on full flowfield information and on estimates of that flowfield based on wall skin-friction measurements only. The development of these control algorithms accounts for modeling errors and measurement noise in a rigorous fashion; these disturbances are considered in both a structured (Gaussian) and unstructured ('worst case') sense. The performance of these algorithms is analyzed in terms of the eigenmodes of the resulting controlled systems, and the sensitivity of individual eigenmodes to both control and observation is quantified.
Fast simulation of the NICER instrument
NASA Astrophysics Data System (ADS)
Doty, John P.; Wampler-Doty, Matthew P.; Prigozhin, Gregory Y.; Okajima, Takashi; Arzoumanian, Zaven; Gendreau, Keith
2016-07-01
The NICER1 mission uses a complicated physical system to collect information from objects that are, by x-ray timing science standards, rather faint. To get the most out of the data we will need a rigorous understanding of all instrumental effects. We are in the process of constructing a very fast, high fidelity simulator that will help us to assess instrument performance, support simulation-based data reduction, and improve our estimates of measurement error. We will combine and extend existing optics, detector, and electronics simulations. We will employ the Compute Unified Device Architecture (CUDA2) to parallelize these calculations. The price of suitable CUDA-compatible multi-giga op cores is about $0.20/core, so this approach will be very cost-effective.
Near Identifiability of Dynamical Systems
NASA Technical Reports Server (NTRS)
Hadaegh, F. Y.; Bekey, G. A.
1987-01-01
Concepts regarding approximate mathematical models treated rigorously. Paper presents new results in analysis of structural identifiability, equivalence, and near equivalence between mathematical models and physical processes they represent. Helps establish rigorous mathematical basis for concepts related to structural identifiability and equivalence revealing fundamental requirements, tacit assumptions, and sources of error. "Structural identifiability," as used by workers in this field, loosely translates as meaning ability to specify unique mathematical model and set of model parameters that accurately predict behavior of corresponding physical system.
Underwater passive acoustic localization of Pacific walruses in the northeastern Chukchi Sea.
Rideout, Brendan P; Dosso, Stan E; Hannay, David E
2013-09-01
This paper develops and applies a linearized Bayesian localization algorithm based on acoustic arrival times of marine mammal vocalizations at spatially-separated receivers which provides three-dimensional (3D) location estimates with rigorous uncertainty analysis. To properly account for uncertainty in receiver parameters (3D hydrophone locations and synchronization times) and environmental parameters (water depth and sound-speed correction), these quantities are treated as unknowns constrained by prior estimates and prior uncertainties. Unknown scaling factors on both the prior and arrival-time uncertainties are estimated by minimizing Akaike's Bayesian information criterion (a maximum entropy condition). Maximum a posteriori estimates for sound source locations and times, receiver parameters, and environmental parameters are calculated simultaneously using measurements of arrival times for direct and interface-reflected acoustic paths. Posterior uncertainties for all unknowns incorporate both arrival time and prior uncertainties. Monte Carlo simulation results demonstrate that, for the cases considered here, linearization errors are small and the lack of an accurate sound-speed profile does not cause significant biases in the estimated locations. A sequence of Pacific walrus vocalizations, recorded in the Chukchi Sea northwest of Alaska, is localized using this technique, yielding a track estimate and uncertainties with an estimated speed comparable to normal walrus swim speeds.
NASA Astrophysics Data System (ADS)
Chen, Youlin; Xie, Jiakang
2017-07-01
We address two fundamental issues that pertain to Q tomography using high-frequency regional waves, particularly the Lg wave. The first issue is that Q tomography uses complex 'reduced amplitude data' as input. These data are generated by taking the logarithm of the product of (1) the observed amplitudes and (2) the simplified 1D geometrical spreading correction. They are thereby subject to 'modeling errors' that are dominated by uncompensated 3D structural effects; however, no knowledge of the statistical behaviour of these errors exists to justify the widely used least-squares methods for solving Q tomography. The second issue is that Q tomography has been solved using various iterative methods such as LSQR (Least-Squares QR, where QR refers to a QR factorization of a matrix into the product of an orthogonal matrix Q and an upper triangular matrix R) and SIRT (Simultaneous Iterative Reconstruction Technique) that do not allow for the quantitative estimation of model resolution and error. In this study, we conduct the first rigorous analysis of the statistics of the reduced amplitude data and find that the data error distribution is predominantly normal, but with long-tailed outliers. This distribution is similar to that of teleseismic traveltime residuals. We develop a screening procedure to remove outliers so that data closely follow a normal distribution. Next, we develop an efficient tomographic method based on the PROPACK software package to perform singular value decomposition on a data kernel matrix, which enables us to solve for the inverse, model resolution and covariance matrices along with the optimal Q model. These matrices permit for various quantitative model appraisals, including the evaluation of the formal resolution and error. Further, they allow formal uncertainty estimates of predicted data (Q) along future paths to be made at any specified confidence level. This new capability significantly benefits the practical missions of source identification and source size estimation, for which reliable uncertainty estimates are especially important. We apply the new methodologies to data from southeastern China to obtain a 1 Hz Lg Q model, which exhibits patterns consistent with what is known about the geology and tectonics of the region. We also solve for the site response model.
Photomask CD and LER characterization using Mueller matrix spectroscopic ellipsometry
NASA Astrophysics Data System (ADS)
Heinrich, A.; Dirnstorfer, I.; Bischoff, J.; Meiner, K.; Ketelsen, H.; Richter, U.; Mikolajick, T.
2014-10-01
Critical dimension and line edge roughness on photomask arrays are determined with Mueller matrix spectroscopic ellipsometry. Arrays with large sinusoidal perturbations are measured for different azimuth angels and compared with simulations based on rigorous coupled wave analysis. Experiment and simulation show that line edge roughness leads to characteristic changes in the different Mueller matrix elements. The influence of line edge roughness is interpreted as an increase of isotropic character of the sample. The changes in the Mueller matrix elements are very similar when the arrays are statistically perturbed with rms roughness values in the nanometer range suggesting that the results on the sinusoidal test structures are also relevant for "real" mask errors. Critical dimension errors and line edge roughness have similar impact on the SE MM measurement. To distinguish between both deviations, a strategy based on the calculation of sensitivities and correlation coefficients for all Mueller matrix elements is shown. The Mueller matrix elements M13/M31 and M34/M43 are the most suitable elements due to their high sensitivities to critical dimension errors and line edge roughness and, at the same time, to a low correlation coefficient between both influences. From the simulated sensitivities, it is estimated that the measurement accuracy has to be in the order of 0.01 and 0.001 for the detection of 1 nm critical dimension error and 1 nm line edge roughness, respectively.
Trattner, Sigal; Prinsen, Peter; Wiegert, Jens; Gerland, Elazar-Lars; Shefer, Efrat; Morton, Tom; Thompson, Carla M; Yagil, Yoad; Cheng, Bin; Jambawalikar, Sachin; Al-Senan, Rani; Amurao, Maxwell; Halliburton, Sandra S; Einstein, Andrew J
2017-12-01
Metal-oxide-semiconductor field-effect transistors (MOSFETs) serve as a helpful tool for organ radiation dosimetry and their use has grown in computed tomography (CT). While different approaches have been used for MOSFET calibration, those using the commonly available 100 mm pencil ionization chamber have not incorporated measurements performed throughout its length, and moreover, no previous work has rigorously evaluated the multiple sources of error involved in MOSFET calibration. In this paper, we propose a new MOSFET calibration approach to translate MOSFET voltage measurements into absorbed dose from CT, based on serial measurements performed throughout the length of a 100-mm ionization chamber, and perform an analysis of the errors of MOSFET voltage measurements and four sources of error in calibration. MOSFET calibration was performed at two sites, to determine single calibration factors for tube potentials of 80, 100, and 120 kVp, using a 100-mm-long pencil ion chamber and a cylindrical computed tomography dose index (CTDI) phantom of 32 cm diameter. The dose profile along the 100-mm ion chamber axis was sampled in 5 mm intervals by nine MOSFETs in the nine holes of the CTDI phantom. Variance of the absorbed dose was modeled as a sum of the MOSFET voltage measurement variance and the calibration factor variance, the latter being comprised of three main subcomponents: ionization chamber reading variance, MOSFET-to-MOSFET variation and a contribution related to the fact that the average calibration factor of a few MOSFETs was used as an estimate for the average value of all MOSFETs. MOSFET voltage measurement error was estimated based on sets of repeated measurements. The calibration factor overall voltage measurement error was calculated from the above analysis. Calibration factors determined were close to those reported in the literature and by the manufacturer (~3 mV/mGy), ranging from 2.87 to 3.13 mV/mGy. The error σ V of a MOSFET voltage measurement was shown to be proportional to the square root of the voltage V: σV=cV where c = 0.11 mV. A main contributor to the error in the calibration factor was the ionization chamber reading error with 5% error. The usage of a single calibration factor for all MOSFETs introduced an additional error of about 5-7%, depending on the number of MOSFETs that were used to determine the single calibration factor. The expected overall error in a high-dose region (~30 mGy) was estimated to be about 8%, compared to 6% when an individual MOSFET calibration was performed. For a low-dose region (~3 mGy), these values were 13% and 12%. A MOSFET calibration method was developed using a 100-mm pencil ion chamber and a CTDI phantom, accompanied by an absorbed dose error analysis reflecting multiple sources of measurement error. When using a single calibration factor, per tube potential, for different MOSFETs, only a small error was introduced into absorbed dose determinations, thus supporting the use of a single calibration factor for experiments involving many MOSFETs, such as those required to accurately estimate radiation effective dose. © 2017 American Association of Physicists in Medicine.
Estimating cosmic velocity fields from density fields and tidal tensors
NASA Astrophysics Data System (ADS)
Kitaura, Francisco-Shu; Angulo, Raul E.; Hoffman, Yehuda; Gottlöber, Stefan
2012-10-01
In this work we investigate the non-linear and non-local relation between cosmological density and peculiar velocity fields. Our goal is to provide an algorithm for the reconstruction of the non-linear velocity field from the fully non-linear density. We find that including the gravitational tidal field tensor using second-order Lagrangian perturbation theory based upon an estimate of the linear component of the non-linear density field significantly improves the estimate of the cosmic flow in comparison to linear theory not only in the low density, but also and more dramatically in the high-density regions. In particular we test two estimates of the linear component: the lognormal model and the iterative Lagrangian linearization. The present approach relies on a rigorous higher order Lagrangian perturbation theory analysis which incorporates a non-local relation. It does not require additional fitting from simulations being in this sense parameter free, it is independent of statistical-geometrical optimization and it is straightforward and efficient to compute. The method is demonstrated to yield an unbiased estimator of the velocity field on scales ≳5 h-1 Mpc with closely Gaussian distributed errors. Moreover, the statistics of the divergence of the peculiar velocity field is extremely well recovered showing a good agreement with the true one from N-body simulations. The typical errors of about 10 km s-1 (1σ confidence intervals) are reduced by more than 80 per cent with respect to linear theory in the scale range between 5 and 10 h-1 Mpc in high-density regions (δ > 2). We also find that iterative Lagrangian linearization is significantly superior in the low-density regime with respect to the lognormal model.
Stability of recursive out-of-sequence measurement filters: an open problem
NASA Astrophysics Data System (ADS)
Chen, Lingji; Moshtagh, Nima; Mehra, Raman K.
2011-06-01
In many applications where communication delays are present, measurements with earlier time stamps can arrive out-of-sequence, i.e., after state estimates have been obtained for the current time instant. To incorporate such an Out-Of-Sequence Measurement (OOSM), many algorithms have been proposed in the literature to obtain or approximate the optimal estimate that would have been obtained if the OOSM had arrived in-sequence. When OOSM occurs repeatedly, approximate estimations as a result of incorporating one OOSM have to serve as the basis for incorporating yet another OOSM. The question of whether the "approximation of approximation" is well behaved, i.e., whether approximation errors accumulate in a recursive setting, has not been adequately addressed in the literature. This paper draws attention to the stability question of recursive OOSM processing filters, formulates the problem in a specific setting, and presents some simulation results that suggest that such filters are indeed well-behaved. Our hope is that more research will be conducted in the future to rigorously establish stability properties of these filters.
Loheide, Steven P.; Butler, James J.; Gorelick, Steven M.
2005-01-01
Groundwater consumption by phreatophytes is a difficult‐to‐measure but important component of the water budget in many arid and semiarid environments. Over the past 70 years the consumptive use of groundwater by phreatophytes has been estimated using a method that analyzes diurnal trends in hydrographs from wells that are screened across the water table (White, 1932). The reliability of estimates obtained with this approach has never been rigorously evaluated using saturated‐unsaturated flow simulation. We present such an evaluation for common flow geometries and a range of hydraulic properties. Results indicate that the major source of error in the White method is the uncertainty in the estimate of specific yield. Evapotranspirative consumption of groundwater will often be significantly overpredicted with the White method if the effects of drainage time and the depth to the water table on specific yield are ignored. We utilize the concept of readily available specific yield as the basis for estimation of the specific yield value appropriate for use with the White method. Guidelines are defined for estimating readily available specific yield based on sediment texture. Use of these guidelines with the White method should enable the evapotranspirative consumption of groundwater to be more accurately quantified.
2016-01-01
Reliably estimating wildlife abundance is fundamental to effective management. Aerial surveys are one of the only spatially robust tools for estimating large mammal populations, but statistical sampling methods are required to address detection biases that affect accuracy and precision of the estimates. Although various methods for correcting aerial survey bias are employed on large mammal species around the world, these have rarely been rigorously validated. Several populations of feral horses (Equus caballus) in the western United States have been intensively studied, resulting in identification of all unique individuals. This provided a rare opportunity to test aerial survey bias correction on populations of known abundance. We hypothesized that a hybrid method combining simultaneous double-observer and sightability bias correction techniques would accurately estimate abundance. We validated this integrated technique on populations of known size and also on a pair of surveys before and after a known number was removed. Our analysis identified several covariates across the surveys that explained and corrected biases in the estimates. All six tests on known populations produced estimates with deviations from the known value ranging from -8.5% to +13.7% and <0.7 standard errors. Precision varied widely, from 6.1% CV to 25.0% CV. In contrast, the pair of surveys conducted around a known management removal produced an estimated change in population between the surveys that was significantly larger than the known reduction. Although the deviation between was only 9.1%, the precision estimate (CV = 1.6%) may have been artificially low. It was apparent that use of a helicopter in those surveys perturbed the horses, introducing detection error and heterogeneity in a manner that could not be corrected by our statistical models. Our results validate the hybrid method, highlight its potentially broad applicability, identify some limitations, and provide insight and guidance for improving survey designs. PMID:27139732
Lubow, Bruce C; Ransom, Jason I
2016-01-01
Reliably estimating wildlife abundance is fundamental to effective management. Aerial surveys are one of the only spatially robust tools for estimating large mammal populations, but statistical sampling methods are required to address detection biases that affect accuracy and precision of the estimates. Although various methods for correcting aerial survey bias are employed on large mammal species around the world, these have rarely been rigorously validated. Several populations of feral horses (Equus caballus) in the western United States have been intensively studied, resulting in identification of all unique individuals. This provided a rare opportunity to test aerial survey bias correction on populations of known abundance. We hypothesized that a hybrid method combining simultaneous double-observer and sightability bias correction techniques would accurately estimate abundance. We validated this integrated technique on populations of known size and also on a pair of surveys before and after a known number was removed. Our analysis identified several covariates across the surveys that explained and corrected biases in the estimates. All six tests on known populations produced estimates with deviations from the known value ranging from -8.5% to +13.7% and <0.7 standard errors. Precision varied widely, from 6.1% CV to 25.0% CV. In contrast, the pair of surveys conducted around a known management removal produced an estimated change in population between the surveys that was significantly larger than the known reduction. Although the deviation between was only 9.1%, the precision estimate (CV = 1.6%) may have been artificially low. It was apparent that use of a helicopter in those surveys perturbed the horses, introducing detection error and heterogeneity in a manner that could not be corrected by our statistical models. Our results validate the hybrid method, highlight its potentially broad applicability, identify some limitations, and provide insight and guidance for improving survey designs.
The effect of temperature on the mechanical aspects of rigor mortis in a liquid paraffin model.
Ozawa, Masayoshi; Iwadate, Kimiharu; Matsumoto, Sari; Asakura, Kumiko; Ochiai, Eriko; Maebashi, Kyoko
2013-11-01
Rigor mortis is an important phenomenon to estimate the postmortem interval in forensic medicine. Rigor mortis is affected by temperature. We measured stiffness of rat muscles using a liquid paraffin model to monitor the mechanical aspects of rigor mortis at five temperatures (37, 25, 10, 5 and 0°C). At 37, 25 and 10°C, the progression of stiffness was slower in cooler conditions. At 5 and 0°C, the muscle stiffness increased immediately after the muscles were soaked in cooled liquid paraffin and then muscles gradually became rigid without going through a relaxed state. This phenomenon suggests that it is important to be careful when estimating the postmortem interval in cold seasons. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Gupta, Puneet; Bhowmick, Brojeshwar; Pal, Arpan
2017-07-01
Camera-equipped devices are ubiquitous and proliferating in the day-to-day life. Accurate heart rate (HR) estimation from the face videos acquired from the low cost cameras in a non-contact manner, can be used in many real-world scenarios and hence, require rigorous exploration. This paper has presented an accurate and near real-time HR estimation system using these face videos. It is based on the phenomenon that the color and motion variations in the face video are closely related to the heart beat. The variations also contain the noise due to facial expressions, respiration, eye blinking and environmental factors which are handled by the proposed system. Neither Eulerian nor Lagrangian temporal signals can provide accurate HR in all the cases. The cases where Eulerian temporal signals perform spuriously are determined using a novel poorness measure and then both the Eulerian and Lagrangian temporal signals are employed for better HR estimation. Such a fusion is referred as serial fusion. Experimental results reveal that the error introduced in the proposed algorithm is 1.8±3.6 which is significantly lower than the existing well known systems.
Multivariate localization methods for ensemble Kalman filtering
NASA Astrophysics Data System (ADS)
Roh, S.; Jun, M.; Szunyogh, I.; Genton, M. G.
2015-05-01
In ensemble Kalman filtering (EnKF), the small number of ensemble members that is feasible to use in a practical data assimilation application leads to sampling variability of the estimates of the background error covariances. The standard approach to reducing the effects of this sampling variability, which has also been found to be highly efficient in improving the performance of EnKF, is the localization of the estimates of the covariances. One family of localization techniques is based on taking the Schur (entry-wise) product of the ensemble-based sample covariance matrix and a correlation matrix whose entries are obtained by the discretization of a distance-dependent correlation function. While the proper definition of the localization function for a single state variable has been extensively investigated, a rigorous definition of the localization function for multiple state variables has been seldom considered. This paper introduces two strategies for the construction of localization functions for multiple state variables. The proposed localization functions are tested by assimilating simulated observations experiments into the bivariate Lorenz 95 model with their help.
A hyper-spherical adaptive sparse-grid method for high-dimensional discontinuity detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Guannan; Webster, Clayton G.; Gunzburger, Max D.
This work proposes and analyzes a hyper-spherical adaptive hierarchical sparse-grid method for detecting jump discontinuities of functions in high-dimensional spaces is proposed. The method is motivated by the theoretical and computational inefficiencies of well-known adaptive sparse-grid methods for discontinuity detection. Our novel approach constructs a function representation of the discontinuity hyper-surface of an N-dimensional dis- continuous quantity of interest, by virtue of a hyper-spherical transformation. Then, a sparse-grid approximation of the transformed function is built in the hyper-spherical coordinate system, whose value at each point is estimated by solving a one-dimensional discontinuity detection problem. Due to the smoothness of themore » hyper-surface, the new technique can identify jump discontinuities with significantly reduced computational cost, compared to existing methods. Moreover, hierarchical acceleration techniques are also incorporated to further reduce the overall complexity. Rigorous error estimates and complexity analyses of the new method are provided as are several numerical examples that illustrate the effectiveness of the approach.« less
Rocklin, Gabriel J.; Mobley, David L.; Dill, Ken A.
2013-01-01
Binding free energy calculations offer a thermodynamically rigorous method to compute protein-ligand binding, and they depend on empirical force fields with hundreds of parameters. We examined the sensitivity of computed binding free energies to the ligand’s electrostatic and van der Waals parameters. Dielectric screening and cancellation of effects between ligand-protein and ligand-solvent interactions reduce the parameter sensitivity of binding affinity by 65%, compared with interaction strengths computed in the gas-phase. However, multiple changes to parameters combine additively on average, which can lead to large changes in overall affinity from many small changes to parameters. Using these results, we estimate that random, uncorrelated errors in force field nonbonded parameters must be smaller than 0.02 e per charge, 0.06 Å per radius, and 0.01 kcal/mol per well depth in order to obtain 68% (one standard deviation) confidence that a computed affinity for a moderately-sized lead compound will fall within 1 kcal/mol of the true affinity, if these are the only sources of error considered. PMID:24015114
... A.D.A.M. follows rigorous standards of quality and accountability. A.D.A.M. is among the first to achieve this important distinction for online health information and services. Learn more about A.D.A.M.'s editorial ...
Minimax confidence intervals in geomagnetism
NASA Technical Reports Server (NTRS)
Stark, Philip B.
1992-01-01
The present paper uses theory of Donoho (1989) to find lower bounds on the lengths of optimally short fixed-length confidence intervals (minimax confidence intervals) for Gauss coefficients of the field of degree 1-12 using the heat flow constraint. The bounds on optimal minimax intervals are about 40 percent shorter than Backus' intervals: no procedure for producing fixed-length confidence intervals, linear or nonlinear, can give intervals shorter than about 60 percent the length of Backus' in this problem. While both methods rigorously account for the fact that core field models are infinite-dimensional, the application of the techniques to the geomagnetic problem involves approximations and counterfactual assumptions about the data errors, and so these results are likely to be extremely optimistic estimates of the actual uncertainty in Gauss coefficients.
[Experimental study of restiffening of the rigor mortis].
Wang, X; Li, M; Liao, Z G; Yi, X F; Peng, X M
2001-11-01
To observe changes of the length of sarcomere of rat when restiffening. We measured the length of sarcomere of quadriceps in 40 rats in different condition by scanning electron microscope. The length of sarcomere of rigor mortis without destroy is obviously shorter than that of restiffening. The length of sarcomere is negatively correlative to the intensity of rigor mortis. Measuring the length of sarcomere can determine the intensity of rigor mortis and provide evidence for estimation of time since death.
Krompecher, T; Bergerioux, C; Brandt-Casadevall, C; Gujer, H R
1983-07-01
The evolution of rigor mortis was studied in cases of nitrogen asphyxia, drowning and strangulation, as well as in fatal intoxications due to strychnine, carbon monoxide and curariform drugs, using a modified method of measurement. Our experiments demonstrated that: (1) Strychnine intoxication hastens the onset and passing of rigor mortis. (2) CO intoxication delays the resolution of rigor mortis. (3) The intensity of rigor may vary depending upon the cause of death. (4) If the stage of rigidity is to be used to estimate the time of death, it is necessary: (a) to perform a succession of objective measurements of rigor mortis intensity; and (b) to verify the eventual presence of factors that could play a role in the modification of its development.
Satellite SAR geocoding with refined RPC model
NASA Astrophysics Data System (ADS)
Zhang, Lu; Balz, Timo; Liao, Mingsheng
2012-04-01
Recent studies have proved that the Rational Polynomial Camera (RPC) model is able to act as a reliable replacement of the rigorous Range-Doppler (RD) model for the geometric processing of satellite SAR datasets. But its capability in absolute geolocation of SAR images has not been evaluated quantitatively. Therefore, in this article the problems of error analysis and refinement of SAR RPC model are primarily investigated to improve the absolute accuracy of SAR geolocation. Range propagation delay and azimuth timing error are identified as two major error sources for SAR geolocation. An approach based on SAR image simulation and real-to-simulated image matching is developed to estimate and correct these two errors. Afterwards a refined RPC model can be built from the error-corrected RD model and then used in satellite SAR geocoding. Three experiments with different settings are designed and conducted to comprehensively evaluate the accuracies of SAR geolocation with both ordinary and refined RPC models. All the experimental results demonstrate that with RPC model refinement the absolute location accuracies of geocoded SAR images can be improved significantly, particularly in Easting direction. In another experiment the computation efficiencies of SAR geocoding with both RD and RPC models are compared quantitatively. The results show that by using the RPC model such efficiency can be remarkably improved by at least 16 times. In addition the problem of DEM data selection for SAR image simulation in RPC model refinement is studied by a comparative experiment. The results reveal that the best choice should be using the proper DEM datasets of spatial resolution comparable to that of the SAR images.
NASA Technical Reports Server (NTRS)
Mishchenko, M. I.; Lacis, A. A.; Travis, L. D.
1994-01-01
Although neglecting polarization and replacing the rigorous vector radiative transfer equation by its approximate scalar counterpart has no physical background, it is a widely used simplification when the incident light is unpolarized and only the intensity of the reflected light is to be computed. We employ accurate vector and scalar multiple-scattering calculations to perform a systematic study of the errors induced by the neglect of polarization in radiance calculations for a homogeneous, plane-parallel Rayleigh-scattering atmosphere (with and without depolarization) above a Lambertian surface. Specifically, we calculate percent errors in the reflected intensity for various directions of light incidence and reflection, optical thicknesses of the atmosphere, single-scattering albedos, depolarization factors, and surface albedos. The numerical data displayed can be used to decide whether or not the scalar approximation may be employed depending on the parameters of the problem. We show that the errors decrease with increasing depolarization factor and/or increasing surface albedo. For conservative or nearly conservative scattering and small surface albedos, the errors are maximum at optical thicknesses of about 1. The calculated errors may be too large for some practical applications, and, therefore, rigorous vector calculations should be employed whenever possible. However, if approximate scalar calculations are used, we recommend to avoid geometries involving phase angles equal or close to 0 deg and 90 deg, where the errors are especially significant. We propose a theoretical explanation of the large vector/scalar differences in the case of Rayleigh scattering. According to this explanation, the differences are caused by the particular structure of the Rayleigh scattering matrix and come from lower-order (except first-order) light scattering paths involving right scattering angles and right-angle rotations of the scattering plane.
Kilborn, Joshua P; Jones, David L; Peebles, Ernst B; Naar, David F
2017-04-01
Clustering data continues to be a highly active area of data analysis, and resemblance profiles are being incorporated into ecological methodologies as a hypothesis testing-based approach to clustering multivariate data. However, these new clustering techniques have not been rigorously tested to determine the performance variability based on the algorithm's assumptions or any underlying data structures. Here, we use simulation studies to estimate the statistical error rates for the hypothesis test for multivariate structure based on dissimilarity profiles (DISPROF). We concurrently tested a widely used algorithm that employs the unweighted pair group method with arithmetic mean (UPGMA) to estimate the proficiency of clustering with DISPROF as a decision criterion. We simulated unstructured multivariate data from different probability distributions with increasing numbers of objects and descriptors, and grouped data with increasing overlap, overdispersion for ecological data, and correlation among descriptors within groups. Using simulated data, we measured the resolution and correspondence of clustering solutions achieved by DISPROF with UPGMA against the reference grouping partitions used to simulate the structured test datasets. Our results highlight the dynamic interactions between dataset dimensionality, group overlap, and the properties of the descriptors within a group (i.e., overdispersion or correlation structure) that are relevant to resemblance profiles as a clustering criterion for multivariate data. These methods are particularly useful for multivariate ecological datasets that benefit from distance-based statistical analyses. We propose guidelines for using DISPROF as a clustering decision tool that will help future users avoid potential pitfalls during the application of methods and the interpretation of results.
Empirically constrained estimates of Alaskan regional Net Ecosystem Exchange of CO2, 2012-2014
NASA Astrophysics Data System (ADS)
Commane, R.; Lindaas, J.; Benmergui, J. S.; Luus, K. A.; Chang, R. Y. W.; Miller, S. M.; Henderson, J.; Karion, A.; Miller, J. B.; Sweeney, C.; Miller, C. E.; Lin, J. C.; Oechel, W. C.; Zona, D.; Euskirchen, E. S.; Iwata, H.; Ueyama, M.; Harazono, Y.; Veraverbeke, S.; Randerson, J. T.; Daube, B. C.; Pittman, J. V.; Wofsy, S. C.
2015-12-01
We present data-driven estimates of the regional net ecosystem exchange of CO2 across Alaska for three years (2012-2014) derived from CARVE (Carbon in the Arctic Reservoirs Vulnerability Experiment) aircraft measurements. Integrating optimized estimates of annual NEE, we find that the Alaskan region was a small sink of CO2 during 2012 and 2014, but a significant source of CO2 in 2013, even before including emissions from the large forest fire season during 2013. We investigate the drivers of this interannual variability, and the larger spring and fall emissions of CO2 in 2013. To determine the optimized fluxes, we couple the Polar Weather Research and Forecasting (PWRF) model with the Stochastic Time-Inverted Lagrangian Transport (STILT) model, to produce footprints of surface influence that we convolve with a remote-sensing driven model of NEE across Alaska, the Polar Vegetation Photosynthesis and Respiration Model (Polar-VPRM). For each month we calculate a spatially explicit additive flux (ΔF) by minimizing the difference between the measured profiles of the aircraft CO2 data and the modeled profiles, using a framework that combines a uniform correction at regional scales and a Bayesian inversion of residuals at smaller scales. A rigorous estimate of total uncertainty (including atmospheric transport, measurement error, etc.) was made with a combination of maximum likelihood estimation and Monte Carlo error propagation. Our optimized fluxes are consistent with other measurements on multiple spatial scales, including CO2 mixing ratios from the CARVE Tower near Fairbanks and eddy covariance flux towers in both boreal and tundra ecosystems across Alaska. For times outside the aircraft observations (Dec-April) we use the un-optimized polar-VPRM, which has shown good agreement with both tall towers and eddy flux data outside the growing season. This approach allows us to robustly estimate the annual CO2 budget for Alaska and investigate the drivers of both the seasonal cycle and the interannual variability of CO2 for the region.
NASA Astrophysics Data System (ADS)
Claure, Yuri Navarro; Matsubara, Edson Takashi; Padovani, Carlos; Prati, Ronaldo Cristiano
2018-03-01
Traditional methods for estimating timing parameters in hydrological science require a rigorous study of the relations of flow resistance, slope, flow regime, watershed size, water velocity, and other local variables. These studies are mostly based on empirical observations, where the timing parameter is estimated using empirically derived formulas. The application of these studies to other locations is not always direct. The locations in which equations are used should have comparable characteristics to the locations from which such equations have been derived. To overcome this barrier, in this work, we developed a data-driven approach to estimate timing parameters such as travel time. Our proposal estimates timing parameters using historical data of the location without the need of adapting or using empirical formulas from other locations. The proposal only uses one variable measured at two different locations on the same river (for instance, two river-level measurements, one upstream and the other downstream on the same river). The recorded data from each location generates two time series. Our method aligns these two time series using derivative dynamic time warping (DDTW) and perceptually important points (PIP). Using data from timing parameters, a polynomial function generalizes the data by inducing a polynomial water travel time estimator, called PolyWaTT. To evaluate the potential of our proposal, we applied PolyWaTT to three different watersheds: a floodplain ecosystem located in the part of Brazil known as Pantanal, the world's largest tropical wetland area; and the Missouri River and the Pearl River, in United States of America. We compared our proposal with empirical formulas and a data-driven state-of-the-art method. The experimental results demonstrate that PolyWaTT showed a lower mean absolute error than all other methods tested in this study, and for longer distances the mean absolute error achieved by PolyWaTT is three times smaller than empirical formulas.
Krompecher, T
1994-10-21
The development of the intensity of rigor mortis was monitored in nine groups of rats. The measurements were initiated after 2, 4, 5, 6, 8, 12, 15, 24, and 48 h post mortem (p.m.) and lasted 5-9 h, which ideally should correspond to the usual procedure after the discovery of a corpse. The experiments were carried out at an ambient temperature of 24 degrees C. Measurements initiated early after death resulted in curves with a rising portion, a plateau, and a descending slope. Delaying the initial measurement translated into shorter rising portions, and curves initiated 8 h p.m. or later are comprised of a plateau and/or a downward slope only. Three different phases were observed suggesting simple rules that can help estimate the time since death: (1) if an increase in intensity was found, the initial measurements were conducted not later than 5 h p.m.; (2) if only a decrease in intensity was observed, the initial measurements were conducted not earlier than 7 h p.m.; and (3) at 24 h p.m., the resolution is complete, and no further changes in intensity should occur. Our results clearly demonstrate that repeated measurements of the intensity of rigor mortis allow a more accurate estimation of the time since death of the experimental animals than the single measurement method used earlier. A critical review of the literature on the estimation of time since death on the basis of objective measurements of the intensity of rigor mortis is also presented.
Hilton, B.; Miller, M.W.
2003-01-01
We estimated annual apparent survival, recruitment, and rate of population growth of breeding Ruby-throated Hummingbirds (Archilochus colubris), while controlling for transients, by using 18 years of capture-mark-recapture data collected during 1984-2001 at Hilton Pond Center for Piedmont Natural History near York, South Carolina. Resident males had lower apparent survival (0.30 +/- 0.05 SE) than females (0.43 +/- 0.04). Estimates of apparent survival did not differ by age. Point estimates suggested that newly banded males were less likely than females to be residents, but standard errors of these estimates overlapped (males: 0.60 +/- 0.14 SE; females: 0.67 +/- 0.09). Estimated female recruitment was 0.60 +/- 0.06 SE, meaning that 60% of adult females present in any given year had entered the population during the previous year. Our estimate for rate of change indicated the population of female hummingbirds was stable during the study period (1.04 +/- 0.04 SE). We suggest an annual goal of greater than or equal to 64 adult females and greater than or equal to 64 immature females released per banding area to enable rigorous future tests for effects of covariates on population dynamics. Development of a broader cooperating network of hummingbird banders in eastern North America could allow tests for regional or metapopulation dynamics in this species.
Karanth, K.Ullas; Chundawat, Raghunandan S.; Nichols, James D.; Kumar, N. Samba
2004-01-01
Tropical dry-deciduous forests comprise more than 45% of the tiger (Panthera tigris) habitat in India. However, in the absence of rigorously derived estimates of ecological densities of tigers in dry forests, critical baseline data for managing tiger populations are lacking. In this study tiger densities were estimated using photographic capture–recapture sampling in the dry forests of Panna Tiger Reserve in Central India. Over a 45-day survey period, 60 camera trap sites were sampled in a well-protected part of the 542-km2 reserve during 2002. A total sampling effort of 914 camera-trap-days yielded photo-captures of 11 individual tigers over 15 sampling occasions that effectively covered a 418-km2 area. The closed capture–recapture model Mh, which incorporates individual heterogeneity in capture probabilities, fitted these photographic capture history data well. The estimated capture probability/sample, p̂= 0.04, resulted in an estimated tiger population size and standard error (N̂(SÊN̂)) of 29 (9.65), and a density (D̂(SÊD̂)) of 6.94 (3.23) tigers/100 km2. The estimated tiger density matched predictions based on prey abundance. Our results suggest that, if managed appropriately, the available dry forest habitat in India has the potential to support a population size of about 9000 wild tigers.
Hennig, Cheryl; Cooper, David
2011-08-01
Histomorphometric aging methods report varying degrees of precision, measured through Standard Error of the Estimate (SEE). These techniques have been developed from variable samples sizes (n) and the impact of n on reported aging precision has not been rigorously examined in the anthropological literature. This brief communication explores the relation between n and SEE through a review of the literature (abstracts, articles, book chapters, theses, and dissertations), predictions based upon sampling theory and a simulation. Published SEE values for age prediction, derived from 40 studies, range from 1.51 to 16.48 years (mean 8.63; sd: 3.81 years). In general, these values are widely distributed for smaller samples and the distribution narrows as n increases--a pattern expected from sampling theory. For the two studies that have samples in excess of 200 individuals, the SEE values are very similar (10.08 and 11.10 years) with a mean of 10.59 years. Assuming this mean value is a 'true' characterization of the error at the population level, the 95% confidence intervals for SEE values from samples of 10, 50, and 150 individuals are on the order of ± 4.2, 1.7, and 1.0 years, respectively. While numerous sources of variation potentially affect the precision of different methods, the impact of sample size cannot be overlooked. The uncertainty associated with SEE values derived from smaller samples complicates the comparison of approaches based upon different methodology and/or skeletal elements. Meaningful comparisons require larger samples than have frequently been used and should ideally be based upon standardized samples. Copyright © 2011 Wiley-Liss, Inc.
Luman, Elizabeth T; Sablan, Mariana; Stokley, Shannon; McCauley, Mary M; Shaw, Kate M
2008-01-01
Background Lack of methodological rigor can cause survey error, leading to biased results and suboptimal public health response. This study focused on the potential impact of 3 methodological "shortcuts" pertaining to field surveys: relying on a single source for critical data, failing to repeatedly visit households to improve response rates, and excluding remote areas. Methods In a vaccination coverage survey of young children conducted in the Commonwealth of the Northern Mariana Islands in July 2005, 3 sources of vaccination information were used, multiple follow-up visits were made, and all inhabited areas were included in the sampling frame. Results are calculated with and without these strategies. Results Most children had at least 2 sources of data; vaccination coverage estimated from any single source was substantially lower than from all sources combined. Eligibility was ascertained for 79% of households after the initial visit and for 94% of households after follow-up visits; vaccination coverage rates were similar with and without follow-up. Coverage among children on remote islands differed substantially from that of their counterparts on the main island indicating a programmatic need for locality-specific information; excluding remote islands from the survey would have had little effect on overall estimates due to small populations and divergent results. Conclusion Strategies to reduce sources of survey error should be maximized in public health surveys. The impact of the 3 strategies illustrated here will vary depending on the primary outcomes of interest and local situations. Survey limitations such as potential for error should be well-documented, and the likely direction and magnitude of bias should be considered. PMID:18371195
Cloud retrievals from satellite data using optimal estimation: evaluation and application to ATSR
NASA Astrophysics Data System (ADS)
Poulsen, C. A.; Siddans, R.; Thomas, G. E.; Sayer, A. M.; Grainger, R. G.; Campmany, E.; Dean, S. M.; Arnold, C.; Watts, P. D.
2012-08-01
Clouds play an important role in balancing the Earth's radiation budget. Hence, it is vital that cloud climatologies are produced that quantify cloud macro and micro physical parameters and the associated uncertainty. In this paper, we present an algorithm ORAC (Oxford-RAL retrieval of Aerosol and Cloud) which is based on fitting a physically consistent cloud model to satellite observations simultaneously from the visible to the mid-infrared, thereby ensuring that the resulting cloud properties provide both a good representation of the short-wave and long-wave radiative effects of the observed cloud. The advantages of the optimal estimation method are that it enables rigorous error propagation and the inclusion of all measurements and any a priori information and associated errors in a rigorous mathematical framework. The algorithm provides a measure of the consistency between retrieval representation of cloud and satellite radiances. The cloud parameters retrieved are the cloud top pressure, cloud optical depth, cloud effective radius, cloud fraction and cloud phase. The algorithm can be applied to most visible/infrared satellite instruments. In this paper, we demonstrate the applicability to the Along-Track Scanning Radiometers ATSR-2 and AATSR. Examples of applying the algorithm to ATSR-2 flight data are presented and the sensitivity of the retrievals assessed, in particular the algorithm is evaluated for a number of simulated single-layer and multi-layer conditions. The algorithm was found to perform well for single-layer cloud except when the cloud was very thin; i.e., less than 1 optical depths. For the multi-layer cloud, the algorithm was robust except when the upper ice cloud layer is less than five optical depths. In these cases the retrieved cloud top pressure and cloud effective radius become a weighted average of the 2 layers. The sum of optical depth of multi-layer cloud is retrieved well until the cloud becomes thick, greater than 50 optical depths, where the cloud begins to saturate. The cost proved a good indicator of multi-layer scenarios. Both the retrieval cost and the error need to be considered together in order to evaluate the quality of the retrieval. This algorithm in the configuration described here has been applied to both ATSR-2 and AATSR visible and infrared measurements in the context of the GRAPE (Global Retrieval and cloud Product Evaluation) project to produce a 14 yr consistent record for climate research.
Chen, Zheng; Liu, Liu; Mu, Lin
2017-05-03
In this paper, we consider the linear transport equation under diffusive scaling and with random inputs. The method is based on the generalized polynomial chaos approach in the stochastic Galerkin framework. Several theoretical aspects will be addressed. Additionally, a uniform numerical stability with respect to the Knudsen number ϵ, and a uniform in ϵ error estimate is given. For temporal and spatial discretizations, we apply the implicit–explicit scheme under the micro–macro decomposition framework and the discontinuous Galerkin method, as proposed in Jang et al. (SIAM J Numer Anal 52:2048–2072, 2014) for deterministic problem. Lastly, we provide a rigorous proof ofmore » the stochastic asymptotic-preserving (sAP) property. Extensive numerical experiments that validate the accuracy and sAP of the method are conducted.« less
Estimating maize production in Kenya using NDVI: Some statistical considerations
Lewis, J.E.; Rowland, James; Nadeau , A.
1998-01-01
A regression model approach using a normalized difference vegetation index (NDVI) has the potential for estimating crop production in East Africa. However, before production estimation can become a reality, the underlying model assumptions and statistical nature of the sample data (NDVI and crop production) must be examined rigorously. Annual maize production statistics from 1982-90 for 36 agricultural districts within Kenya were used as the dependent variable; median area NDVI (independent variable) values from each agricultural district and year were extracted from the annual maximum NDVI data set. The input data and the statistical association of NDVI with maize production for Kenya were tested systematically for the following items: (1) homogeneity of the data when pooling the sample, (2) gross data errors and influence points, (3) serial (time) correlation, (4) spatial autocorrelation and (5) stability of the regression coefficients. The results of using a simple regression model with NDVI as the only independent variable are encouraging (r 0.75, p 0.05) and illustrate that NDVI can be a responsive indicator of maize production, especially in areas of high NDVI spatial variability, which coincide with areas of production variability in Kenya.
Automated inference procedure for the determination of cell growth parameters
NASA Astrophysics Data System (ADS)
Harris, Edouard A.; Koh, Eun Jee; Moffat, Jason; McMillen, David R.
2016-01-01
The growth rate and carrying capacity of a cell population are key to the characterization of the population's viability and to the quantification of its responses to perturbations such as drug treatments. Accurate estimation of these parameters necessitates careful analysis. Here, we present a rigorous mathematical approach for the robust analysis of cell count data, in which all the experimental stages of the cell counting process are investigated in detail with the machinery of Bayesian probability theory. We advance a flexible theoretical framework that permits accurate estimates of the growth parameters of cell populations and of the logical correlations between them. Moreover, our approach naturally produces an objective metric of avoidable experimental error, which may be tracked over time in a laboratory to detect instrumentation failures or lapses in protocol. We apply our method to the analysis of cell count data in the context of a logistic growth model by means of a user-friendly computer program that automates this analysis, and present some samples of its output. Finally, we note that a traditional least squares fit can provide misleading estimates of parameter values, because it ignores available information with regard to the way in which the data have actually been collected.
NASA Technical Reports Server (NTRS)
Glover, R. M.; Weinhold, F.
1977-01-01
Variational functionals of Braunn and Rebane (1972) for the imagery-frequency polarizability (IFP) have been generalized by the method of Gramian inequalities to give rigorous upper and lower bounds, valid even when the true (but unknown) unperturbed wavefunction must be represented by a variational approximation. Using these formulas in conjunction with flexible variational trial functions, tight error bounds are computed for the IFP and the associated two- and three-body van der Waals interaction constants of the ground 1(1S) and metastable 2(1,3S) states of He and Li(+). These bounds generally establish the ground-state properties to within a fraction of a per cent and metastable properties to within a few per cent, permitting a comparative assessment of competing theoretical methods at this level of accuracy. Unlike previous 'error bounds' for these properties, the present results have a completely a priori theoretical character, with no empirical input data.
Attitude output feedback control for rigid spacecraft with finite-time convergence.
Hu, Qinglei; Niu, Guanglin
2017-09-01
The main problem addressed is the quaternion-based attitude stabilization control of rigid spacecraft without angular velocity measurements in the presence of external disturbances and reaction wheel friction as well. As a stepping stone, an angular velocity observer is proposed for the attitude control of a rigid body in the absence of angular velocity measurements. The observer design ensures finite-time convergence of angular velocity state estimation errors irrespective of the control torque or the initial attitude state of the spacecraft. Then, a novel finite-time control law is employed as the controller in which the estimate of the angular velocity is used directly. It is then shown that the observer and the controlled system form a cascaded structure, which allows the application of the finite-time stability theory of cascaded systems to prove the finite-time stability of the closed-loop system. A rigorous analysis of the proposed formulation is provided and numerical simulation studies are presented to help illustrate the effectiveness of the angular-velocity observer for rigid spacecraft attitude control. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Multivariate localization methods for ensemble Kalman filtering
NASA Astrophysics Data System (ADS)
Roh, S.; Jun, M.; Szunyogh, I.; Genton, M. G.
2015-12-01
In ensemble Kalman filtering (EnKF), the small number of ensemble members that is feasible to use in a practical data assimilation application leads to sampling variability of the estimates of the background error covariances. The standard approach to reducing the effects of this sampling variability, which has also been found to be highly efficient in improving the performance of EnKF, is the localization of the estimates of the covariances. One family of localization techniques is based on taking the Schur (element-wise) product of the ensemble-based sample covariance matrix and a correlation matrix whose entries are obtained by the discretization of a distance-dependent correlation function. While the proper definition of the localization function for a single state variable has been extensively investigated, a rigorous definition of the localization function for multiple state variables that exist at the same locations has been seldom considered. This paper introduces two strategies for the construction of localization functions for multiple state variables. The proposed localization functions are tested by assimilating simulated observations experiments into the bivariate Lorenz 95 model with their help.
Can you trust the parametric standard errors in nonlinear least squares? Yes, with provisos.
Tellinghuisen, Joel
2018-04-01
Questions about the reliability of parametric standard errors (SEs) from nonlinear least squares (LS) algorithms have led to a general mistrust of these precision estimators that is often unwarranted. The importance of non-Gaussian parameter distributions is illustrated by converting linear models to nonlinear by substituting e A , ln A, and 1/A for a linear parameter a. Monte Carlo (MC) simulations characterize parameter distributions in more complex cases, including when data have varying uncertainty and should be weighted, but weights are neglected. This situation leads to loss of precision and erroneous parametric SEs, as is illustrated for the Lineweaver-Burk analysis of enzyme kinetics data and the analysis of isothermal titration calorimetry data. Non-Gaussian parameter distributions are generally asymmetric and biased. However, when the parametric SE is <10% of the magnitude of the parameter, both the bias and the asymmetry can usually be ignored. Sometimes nonlinear estimators can be redefined to give more normal distributions and better convergence properties. Variable data uncertainty, or heteroscedasticity, can sometimes be handled by data transforms but more generally requires weighted LS, which in turn require knowledge of the data variance. Parametric SEs are rigorously correct in linear LS under the usual assumptions, and are a trustworthy approximation in nonlinear LS provided they are sufficiently small - a condition favored by the abundant, precise data routinely collected in many modern instrumental methods. Copyright © 2018 Elsevier B.V. All rights reserved.
Long persistence of rigor mortis at constant low temperature.
Varetto, Lorenzo; Curto, Ombretta
2005-01-06
We studied the persistence of rigor mortis by using physical manipulation. We tested the mobility of the knee on 146 corpses kept under refrigeration at Torino's city mortuary at a constant temperature of +4 degrees C. We found a persistence of complete rigor lasting for 10 days in all the cadavers we kept under observation; and in one case, rigor lasted for 16 days. Between the 11th and the 17th days, a progressively increasing number of corpses showed a change from complete into partial rigor (characterized by partial bending of the articulation). After the 17th day, all the remaining corpses showed partial rigor and in the two cadavers that were kept under observation "à outrance" we found the absolute resolution of rigor mortis occurred on the 28th day. Our results prove that it is possible to find a persistence of rigor mortis that is much longer than the expected when environmental conditions resemble average outdoor winter temperatures in temperate zones. Therefore, this datum must be considered when a corpse is found in those environmental conditions so that when estimating the time of death, we are not misled by the long persistence of rigor mortis.
Self-calibration method without joint iteration for distributed small satellite SAR systems
NASA Astrophysics Data System (ADS)
Xu, Qing; Liao, Guisheng; Liu, Aifei; Zhang, Juan
2013-12-01
The performance of distributed small satellite synthetic aperture radar systems degrades significantly due to the unavoidable array errors, including gain, phase, and position errors, in real operating scenarios. In the conventional method proposed in (IEEE T Aero. Elec. Sys. 42:436-451, 2006), the spectrum components within one Doppler bin are considered as calibration sources. However, it is found in this article that the gain error estimation and the position error estimation in the conventional method can interact with each other. The conventional method may converge to suboptimal solutions in large position errors since it requires the joint iteration between gain-phase error estimation and position error estimation. In addition, it is also found that phase errors can be estimated well regardless of position errors when the zero Doppler bin is chosen. In this article, we propose a method obtained by modifying the conventional one, based on these two observations. In this modified method, gain errors are firstly estimated and compensated, which eliminates the interaction between gain error estimation and position error estimation. Then, by using the zero Doppler bin data, the phase error estimation can be performed well independent of position errors. Finally, position errors are estimated based on the Taylor-series expansion. Meanwhile, the joint iteration between gain-phase error estimation and position error estimation is not required. Therefore, the problem of suboptimal convergence, which occurs in the conventional method, can be avoided with low computational method. The modified method has merits of faster convergence and lower estimation error compared to the conventional one. Theoretical analysis and computer simulation results verified the effectiveness of the modified method.
NASA Astrophysics Data System (ADS)
Kirstetter, P. E.; Petersen, W. A.; Gourley, J. J.; Kummerow, C.; Huffman, G. J.; Turk, J.; Tanelli, S.; Maggioni, V.; Anagnostou, E. N.; Hong, Y.; Schwaller, M.
2017-12-01
Accurate characterization of uncertainties in space-borne precipitation estimates is critical for many applications including water budget studies or prediction of natural hazards at the global scale. The GPM precipitation Level II (active and passive) and Level III (IMERG) estimates are compared to the high quality and high resolution NEXRAD-based precipitation estimates derived from the NOAA/NSSL's Multi-Radar, Multi-Sensor (MRMS) platform. A surface reference is derived from the MRMS suite of products to be accurate with known uncertainty bounds and measured at a resolution below the pixel sizes of any GPM estimate, providing great flexibility in matching to grid scales or footprints. It provides an independent and consistent reference research framework for directly evaluating GPM precipitation products across a large number of meteorological regimes as a function of resolution, accuracy and sample size. The consistency of the ground and space-based sensors in term of precipitation detection, typology and quantification are systematically evaluated. Satellite precipitation retrievals are further investigated in terms of precipitation distributions, systematic biases and random errors, influence of precipitation sub-pixel variability and comparison between satellite products. Prognostic analysis directly provides feedback to algorithm developers on how to improve the satellite estimates. Specific factors for passive (e.g. surface conditions for GMI) and active (e.g. non uniform beam filling for DPR) sensors are investigated. This cross products characterization acts as a bridge to intercalibrate microwave measurements from the GPM constellation satellites and propagate to the combined and global precipitation estimates. Precipitation features previously used to analyze Level II satellite estimates under various precipitation processes are now intoduced for Level III to test several assumptions in the IMERG algorithm. Specifically, the contribution of Level II is explicitly characterized and a rigorous characterization is performed to migrate across scales fully understanding the propagation of errors from Level II to Level III. Perpectives are presented to advance the use of uncertainty as an integral part of QPE for ground-based and space-borne sensors
Composite outcomes in randomized clinical trials: arguments for and against.
Ross, Sue
2007-02-01
Composite outcomes that combine a number of individual outcomes (such as types of morbidity) are frequently used as primary outcomes in obstetrical trials. The main argument for their use is to ensure that trials can answer important clinical questions in a timely fashion, without needing huge sample sizes. Arguments against their use are that composite outcomes may be difficult to use and interpret, leading to errors in sample size estimation, possible contradictory trial results, and difficulty in interpreting findings. Such problems may reduce the credibility of the research, and may impact on the implementation of findings. Composite outcomes are an attractive solution to help to overcome the problem of limited available resources for clinical trials. However, future studies should carefully consider both the advantages and disadvantages before using composite outcomes. Rigorous development and reporting of composite outcomes is essential if the research is to be useful.
The log-periodic-AR(1)-GARCH(1,1) model for financial crashes
NASA Astrophysics Data System (ADS)
Gazola, L.; Fernandes, C.; Pizzinga, A.; Riera, R.
2008-02-01
This paper intends to meet recent claims for the attainment of more rigorous statistical methodology within the econophysics literature. To this end, we consider an econometric approach to investigate the outcomes of the log-periodic model of price movements, which has been largely used to forecast financial crashes. In order to accomplish reliable statistical inference for unknown parameters, we incorporate an autoregressive dynamic and a conditional heteroskedasticity structure in the error term of the original model, yielding the log-periodic-AR(1)-GARCH(1,1) model. Both the original and the extended models are fitted to financial indices of U. S. market, namely S&P500 and NASDAQ. Our analysis reveal two main points: (i) the log-periodic-AR(1)-GARCH(1,1) model has residuals with better statistical properties and (ii) the estimation of the parameter concerning the time of the financial crash has been improved.
NASA Astrophysics Data System (ADS)
Wang, Fan; Liang, Jinling; Dobaie, Abdullah M.
2018-07-01
The resilient filtering problem is considered for a class of time-varying networks with stochastic coupling strengths. An event-triggered strategy is adopted to save the network resources by scheduling the signal transmission from the sensors to the filters based on certain prescribed rules. Moreover, the filter parameters to be designed are subject to gain perturbations. The primary aim of the addressed problem is to determine a resilient filter that ensures an acceptable filtering performance for the considered network with event-triggering scheduling. To handle such an issue, an upper bound on the estimation error variance is established for each node according to the stochastic analysis. Subsequently, the resilient filter is designed by locally minimizing the derived upper bound at each iteration. Moreover, rigorous analysis shows the monotonicity of the minimal upper bound regarding the triggering threshold. Finally, a simulation example is presented to show effectiveness of the established filter scheme.
Space Satellite Dynamics with Applications to Sunlight Pressure Attitude Control. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Stuck, B. W.
1972-01-01
A research program into three aspects of space satellite dynamics was carried out. First, a four-dimensional space-time formulation of Newtonian mechanics is developed. This theory allows a new physical interpretation of the conservation theorems of mechanics first derived rigorously by Noether. Second, a new concept for estimating the three angles which specify the orientation in space of a rigid body is presented. Two separate methods for implementing this concept are discussed, one based on direction cosines, the other on quaternions. Two examples are discussed: constant orientation in space, and constant rate of change of the three angles with time. Third, two synchronous equatorial orbit communication satellite designs which use sunlight pressure to control their attitude are analyzed. Each design is equipped with large reflecting surfaces, called solar sails, which can be canted in different directions to generate torques to correct pointing errors.
El-Diasty, Mohammed; Pagiatakis, Spiros
2009-01-01
In this paper, we examine the effect of changing the temperature points on MEMS-based inertial sensor random error. We collect static data under different temperature points using a MEMS-based inertial sensor mounted inside a thermal chamber. Rigorous stochastic models, namely Autoregressive-based Gauss-Markov (AR-based GM) models are developed to describe the random error behaviour. The proposed AR-based GM model is initially applied to short stationary inertial data to develop the stochastic model parameters (correlation times). It is shown that the stochastic model parameters of a MEMS-based inertial unit, namely the ADIS16364, are temperature dependent. In addition, field kinematic test data collected at about 17 °C are used to test the performance of the stochastic models at different temperature points in the filtering stage using Unscented Kalman Filter (UKF). It is shown that the stochastic model developed at 20 °C provides a more accurate inertial navigation solution than the ones obtained from the stochastic models developed at -40 °C, -20 °C, 0 °C, +40 °C, and +60 °C. The temperature dependence of the stochastic model is significant and should be considered at all times to obtain optimal navigation solution for MEMS-based INS/GPS integration.
Field evaluation of distance-estimation error during wetland-dependent bird surveys
Nadeau, Christopher P.; Conway, Courtney J.
2012-01-01
Context: The most common methods to estimate detection probability during avian point-count surveys involve recording a distance between the survey point and individual birds detected during the survey period. Accurately measuring or estimating distance is an important assumption of these methods; however, this assumption is rarely tested in the context of aural avian point-count surveys. Aims: We expand on recent bird-simulation studies to document the error associated with estimating distance to calling birds in a wetland ecosystem. Methods: We used two approaches to estimate the error associated with five surveyor's distance estimates between the survey point and calling birds, and to determine the factors that affect a surveyor's ability to estimate distance. Key results: We observed biased and imprecise distance estimates when estimating distance to simulated birds in a point-count scenario (x̄error = -9 m, s.d.error = 47 m) and when estimating distances to real birds during field trials (x̄error = 39 m, s.d.error = 79 m). The amount of bias and precision in distance estimates differed among surveyors; surveyors with more training and experience were less biased and more precise when estimating distance to both real and simulated birds. Three environmental factors were important in explaining the error associated with distance estimates, including the measured distance from the bird to the surveyor, the volume of the call and the species of bird. Surveyors tended to make large overestimations to birds close to the survey point, which is an especially serious error in distance sampling. Conclusions: Our results suggest that distance-estimation error is prevalent, but surveyor training may be the easiest way to reduce distance-estimation error. Implications: The present study has demonstrated how relatively simple field trials can be used to estimate the error associated with distance estimates used to estimate detection probability during avian point-count surveys. Evaluating distance-estimation errors will allow investigators to better evaluate the accuracy of avian density and trend estimates. Moreover, investigators who evaluate distance-estimation errors could employ recently developed models to incorporate distance-estimation error into analyses. We encourage further development of such models, including the inclusion of such models into distance-analysis software.
Added-value joint source modelling of seismic and geodetic data
NASA Astrophysics Data System (ADS)
Sudhaus, Henriette; Heimann, Sebastian; Walter, Thomas R.; Krueger, Frank
2013-04-01
In tectonically active regions earthquake source studies strongly support the analysis of the current faulting processes as they reveal the location and geometry of active faults, the average slip released or more. For source modelling of shallow, moderate to large earthquakes often a combination of geodetic (GPS, InSAR) and seismic data is used. A truly joint use of these data, however, usually takes place only on a higher modelling level, where some of the first-order characteristics (time, centroid location, fault orientation, moment) have been fixed already. These required basis model parameters have to be given, assumed or inferred in a previous, separate and highly non-linear modelling step using one of the these data sets alone. We present a new earthquake rupture model implementation that realizes a fully combined data integration of surface displacement measurements and seismic data in a non-linear optimization of simple but extended planar ruptures. The model implementation allows for fast forward calculations of full seismograms and surface deformation and therefore enables us to use Monte Carlo global search algorithms. Furthermore, we benefit from the complementary character of seismic and geodetic data, e. g. the high definition of the source location from geodetic data and the sensitivity of the resolution of the seismic data on moment releases at larger depth. These increased constraints from the combined dataset make optimizations efficient, even for larger model parameter spaces and with a very limited amount of a priori assumption on the source. A vital part of our approach is rigorous data weighting based on the empirically estimated data errors. We construct full data error variance-covariance matrices for geodetic data to account for correlated data noise and also weight the seismic data based on their signal-to-noise ratio. The estimation of the data errors and the fast forward modelling opens the door for Bayesian inferences of the source model parameters. The source model product then features parameter uncertainty estimates and reveals parameter trade-offs that arise from imperfect data coverage and data errors. We applied our new source modelling approach to the 2010 Haiti earthquake for which a number of apparently different seismic, geodetic and joint source models has been reported already - mostly without any model parameter estimations. We here show that the variability of all these source models seems to arise from inherent model parameter trade-offs and mostly has little statistical significance, e.g. even using a large dataset comprising seismic and geodetic data the confidence interval of the fault dip remains as wide as about 20 degrees.
Analyzing thematic maps and mapping for accuracy
Rosenfield, G.H.
1982-01-01
Two problems which exist while attempting to test the accuracy of thematic maps and mapping are: (1) evaluating the accuracy of thematic content, and (2) evaluating the effects of the variables on thematic mapping. Statistical analysis techniques are applicable to both these problems and include techniques for sampling the data and determining their accuracy. In addition, techniques for hypothesis testing, or inferential statistics, are used when comparing the effects of variables. A comprehensive and valid accuracy test of a classification project, such as thematic mapping from remotely sensed data, includes the following components of statistical analysis: (1) sample design, including the sample distribution, sample size, size of the sample unit, and sampling procedure; and (2) accuracy estimation, including estimation of the variance and confidence limits. Careful consideration must be given to the minimum sample size necessary to validate the accuracy of a given. classification category. The results of an accuracy test are presented in a contingency table sometimes called a classification error matrix. Usually the rows represent the interpretation, and the columns represent the verification. The diagonal elements represent the correct classifications. The remaining elements of the rows represent errors by commission, and the remaining elements of the columns represent the errors of omission. For tests of hypothesis that compare variables, the general practice has been to use only the diagonal elements from several related classification error matrices. These data are arranged in the form of another contingency table. The columns of the table represent the different variables being compared, such as different scales of mapping. The rows represent the blocking characteristics, such as the various categories of classification. The values in the cells of the tables might be the counts of correct classification or the binomial proportions of these counts divided by either the row totals or the column totals from the original classification error matrices. In hypothesis testing, when the results of tests of multiple sample cases prove to be significant, some form of statistical test must be used to separate any results that differ significantly from the others. In the past, many analyses of the data in this error matrix were made by comparing the relative magnitudes of the percentage of correct classifications, for either individual categories, the entire map or both. More rigorous analyses have used data transformations and (or) two-way classification analysis of variance. A more sophisticated step of data analysis techniques would be to use the entire classification error matrices using the methods of discrete multivariate analysis or of multiviariate analysis of variance.
Bias in the Wagner-Nelson estimate of the fraction of drug absorbed.
Wang, Yibin; Nedelman, Jerry
2002-04-01
To examine and quantify bias in the Wagner-Nelson estimate of the fraction of drug absorbed resulting from the estimation error of the elimination rate constant (k), measurement error of the drug concentration, and the truncation error in the area under the curve. Bias in the Wagner-Nelson estimate was derived as a function of post-dosing time (t), k, ratio of absorption rate constant to k (r), and the coefficient of variation for estimates of k (CVk), or CV% for the observed concentration, by assuming a one-compartment model and using an independent estimate of k. The derived functions were used for evaluating the bias with r = 0.5, 3, or 6; k = 0.1 or 0.2; CV, = 0.2 or 0.4; and CV, =0.2 or 0.4; for t = 0 to 30 or 60. Estimation error of k resulted in an upward bias in the Wagner-Nelson estimate that could lead to the estimate of the fraction absorbed being greater than unity. The bias resulting from the estimation error of k inflates the fraction of absorption vs. time profiles mainly in the early post-dosing period. The magnitude of the bias in the Wagner-Nelson estimate resulting from estimation error of k was mainly determined by CV,. The bias in the Wagner-Nelson estimate resulting from to estimation error in k can be dramatically reduced by use of the mean of several independent estimates of k, as in studies for development of an in vivo-in vitro correlation. The truncation error in the area under the curve can introduce a negative bias in the Wagner-Nelson estimate. This can partially offset the bias resulting from estimation error of k in the early post-dosing period. Measurement error of concentration does not introduce bias in the Wagner-Nelson estimate. Estimation error of k results in an upward bias in the Wagner-Nelson estimate, mainly in the early drug absorption phase. The truncation error in AUC can result in a downward bias, which may partially offset the upward bias due to estimation error of k in the early absorption phase. Measurement error of concentration does not introduce bias. The joint effect of estimation error of k and truncation error in AUC can result in a non-monotonic fraction-of-drug-absorbed-vs-time profile. However, only estimation error of k can lead to the Wagner-Nelson estimate of fraction of drug absorbed greater than unity.
Quality and rigor of the concept mapping methodology: a pooled study analysis.
Rosas, Scott R; Kane, Mary
2012-05-01
The use of concept mapping in research and evaluation has expanded dramatically over the past 20 years. Researchers in academic, organizational, and community-based settings have applied concept mapping successfully without the benefit of systematic analyses across studies to identify the features of a methodologically sound study. Quantitative characteristics and estimates of quality and rigor that may guide for future studies are lacking. To address this gap, we conducted a pooled analysis of 69 concept mapping studies to describe characteristics across study phases, generate specific indicators of validity and reliability, and examine the relationship between select study characteristics and quality indicators. Individual study characteristics and estimates were pooled and quantitatively summarized, describing the distribution, variation and parameters for each. In addition, variation in the concept mapping data collection in relation to characteristics and estimates was examined. Overall, results suggest concept mapping yields strong internal representational validity and very strong sorting and rating reliability estimates. Validity and reliability were consistently high despite variation in participation and task completion percentages across data collection modes. The implications of these findings as a practical reference to assess the quality and rigor for future concept mapping studies are discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.
A rigorous approach to self-checking programming
NASA Technical Reports Server (NTRS)
Hua, Kien A.; Abraham, Jacob A.
1986-01-01
Self-checking programming is shown to be an effective concurrent error detection technique. The reliability of a self-checking program however relies on the quality of its assertion statements. A self-checking program written without formal guidelines could provide a poor coverage of the errors. A constructive technique for self-checking programming is presented. A Structured Program Design Language (SPDL) suitable for self-checking software development is defined. A set of formal rules, was also developed, that allows the transfromation of SPDL designs into self-checking designs to be done in a systematic manner.
Linard, Joshua I.
2013-01-01
Mitigating the effects of salt and selenium on water quality in the Grand Valley and lower Gunnison River Basin in western Colorado is a major concern for land managers. Previous modeling indicated means to improve the models by including more detailed geospatial data and a more rigorous method for developing the models. After evaluating all possible combinations of geospatial variables, four multiple linear regression models resulted that could estimate irrigation-season salt yield, nonirrigation-season salt yield, irrigation-season selenium yield, and nonirrigation-season selenium yield. The adjusted r-squared and the residual standard error (in units of log-transformed yield) of the models were, respectively, 0.87 and 2.03 for the irrigation-season salt model, 0.90 and 1.25 for the nonirrigation-season salt model, 0.85 and 2.94 for the irrigation-season selenium model, and 0.93 and 1.75 for the nonirrigation-season selenium model. The four models were used to estimate yields and loads from contributing areas corresponding to 12-digit hydrologic unit codes in the lower Gunnison River Basin study area. Each of the 175 contributing areas was ranked according to its estimated mean seasonal yield of salt and selenium.
Ezoe, Satoshi; Morooka, Takeo; Noda, Tatsuya; Sabin, Miriam Lewis; Koike, Soichi
2012-01-01
Men who have sex with men (MSM) are one of the groups most at risk for HIV infection in Japan. However, size estimates of MSM populations have not been conducted with sufficient frequency and rigor because of the difficulty, high cost and stigma associated with reaching such populations. This study examined an innovative and simple method for estimating the size of the MSM population in Japan. We combined an internet survey with the network scale-up method, a social network method for estimating the size of hard-to-reach populations, for the first time in Japan. An internet survey was conducted among 1,500 internet users who registered with a nationwide internet-research agency. The survey participants were asked how many members of particular groups with known population sizes (firepersons, police officers, and military personnel) they knew as acquaintances. The participants were also asked to identify the number of their acquaintances whom they understood to be MSM. Using these survey results with the network scale-up method, the personal network size and MSM population size were estimated. The personal network size was estimated to be 363.5 regardless of the sex of the acquaintances and 174.0 for only male acquaintances. The estimated MSM prevalence among the total male population in Japan was 0.0402% without adjustment, and 2.87% after adjusting for the transmission error of MSM. The estimated personal network size and MSM prevalence seen in this study were comparable to those from previous survey results based on the direct-estimation method. Estimating population sizes through combining an internet survey with the network scale-up method appeared to be an effective method from the perspectives of rapidity, simplicity, and low cost as compared with more-conventional methods.
Estimating Climatological Bias Errors for the Global Precipitation Climatology Project (GPCP)
NASA Technical Reports Server (NTRS)
Adler, Robert; Gu, Guojun; Huffman, George
2012-01-01
A procedure is described to estimate bias errors for mean precipitation by using multiple estimates from different algorithms, satellite sources, and merged products. The Global Precipitation Climatology Project (GPCP) monthly product is used as a base precipitation estimate, with other input products included when they are within +/- 50% of the GPCP estimates on a zonal-mean basis (ocean and land separately). The standard deviation s of the included products is then taken to be the estimated systematic, or bias, error. The results allow one to examine monthly climatologies and the annual climatology, producing maps of estimated bias errors, zonal-mean errors, and estimated errors over large areas such as ocean and land for both the tropics and the globe. For ocean areas, where there is the largest question as to absolute magnitude of precipitation, the analysis shows spatial variations in the estimated bias errors, indicating areas where one should have more or less confidence in the mean precipitation estimates. In the tropics, relative bias error estimates (s/m, where m is the mean precipitation) over the eastern Pacific Ocean are as large as 20%, as compared with 10%-15% in the western Pacific part of the ITCZ. An examination of latitudinal differences over ocean clearly shows an increase in estimated bias error at higher latitudes, reaching up to 50%. Over land, the error estimates also locate regions of potential problems in the tropics and larger cold-season errors at high latitudes that are due to snow. An empirical technique to area average the gridded errors (s) is described that allows one to make error estimates for arbitrary areas and for the tropics and the globe (land and ocean separately, and combined). Over the tropics this calculation leads to a relative error estimate for tropical land and ocean combined of 7%, which is considered to be an upper bound because of the lack of sign-of-the-error canceling when integrating over different areas with a different number of input products. For the globe the calculated relative error estimate from this study is about 9%, which is also probably a slight overestimate. These tropical and global estimated bias errors provide one estimate of the current state of knowledge of the planet's mean precipitation.
Online Psychology: Trial and Error in Course Development
ERIC Educational Resources Information Center
Harman, Marsha J.
2009-01-01
Online courses appear to be the future if colleges and universities choose to increase enrollments with students who need more flexibility in scheduling. The challenge has been to create a course that is rigorous with the limitations to physical presence of the instructor and the parameters inherent in technological delivery. This article relates…
On the use of log-transformation vs. nonlinear regression for analyzing biological power laws.
Xiao, Xiao; White, Ethan P; Hooten, Mevin B; Durham, Susan L
2011-10-01
Power-law relationships are among the most well-studied functional relationships in biology. Recently the common practice of fitting power laws using linear regression (LR) on log-transformed data has been criticized, calling into question the conclusions of hundreds of studies. It has been suggested that nonlinear regression (NLR) is preferable, but no rigorous comparison of these two methods has been conducted. Using Monte Carlo simulations, we demonstrate that the error distribution determines which method performs better, with NLR better characterizing data with additive, homoscedastic, normal error and LR better characterizing data with multiplicative, heteroscedastic, lognormal error. Analysis of 471 biological power laws shows that both forms of error occur in nature. While previous analyses based on log-transformation appear to be generally valid, future analyses should choose methods based on a combination of biological plausibility and analysis of the error distribution. We provide detailed guidelines and associated computer code for doing so, including a model averaging approach for cases where the error structure is uncertain.
Palmer, Tom M; Holmes, Michael V; Keating, Brendan J; Sheehan, Nuala A
2017-01-01
Abstract Mendelian randomization studies use genotypes as instrumental variables to test for and estimate the causal effects of modifiable risk factors on outcomes. Two-stage residual inclusion (TSRI) estimators have been used when researchers are willing to make parametric assumptions. However, researchers are currently reporting uncorrected or heteroscedasticity-robust standard errors for these estimates. We compared several different forms of the standard error for linear and logistic TSRI estimates in simulations and in real-data examples. Among others, we consider standard errors modified from the approach of Newey (1987), Terza (2016), and bootstrapping. In our simulations Newey, Terza, bootstrap, and corrected 2-stage least squares (in the linear case) standard errors gave the best results in terms of coverage and type I error. In the real-data examples, the Newey standard errors were 0.5% and 2% larger than the unadjusted standard errors for the linear and logistic TSRI estimators, respectively. We show that TSRI estimators with modified standard errors have correct type I error under the null. Researchers should report TSRI estimates with modified standard errors instead of reporting unadjusted or heteroscedasticity-robust standard errors. PMID:29106476
Estimation of the time since death--reconsidering the re-establishment of rigor mortis.
Anders, Sven; Kunz, Michaela; Gehl, Axel; Sehner, Susanne; Raupach, Tobias; Beck-Bornholdt, Hans-Peter
2013-01-01
In forensic medicine, there is an undefined data background for the phenomenon of re-establishment of rigor mortis after mechanical loosening, a method used in establishing time since death in forensic casework that is thought to occur up to 8 h post-mortem. Nevertheless, the method is widely described in textbooks on forensic medicine. We examined 314 joints (elbow and knee) of 79 deceased at defined time points up to 21 h post-mortem (hpm). Data were analysed using a random intercept model. Here, we show that re-establishment occurred in 38.5% of joints at 7.5 to 19 hpm. Therefore, the maximum time span for the re-establishment of rigor mortis appears to be 2.5-fold longer than thought so far. These findings have major impact on the estimation of time since death in forensic casework.
NASA Technical Reports Server (NTRS)
Rodriguez, G.
1981-01-01
A function space approach to smoothing is used to obtain a set of model error estimates inherent in a reduced-order model. By establishing knowledge of inevitable deficiencies in the truncated model, the error estimates provide a foundation for updating the model and thereby improving system performance. The function space smoothing solution leads to a specification of a method for computation of the model error estimates and development of model error analysis techniques for comparison between actual and estimated errors. The paper summarizes the model error estimation approach as well as an application arising in the area of modeling for spacecraft attitude control.
Model error estimation for distributed systems described by elliptic equations
NASA Technical Reports Server (NTRS)
Rodriguez, G.
1983-01-01
A function space approach is used to develop a theory for estimation of the errors inherent in an elliptic partial differential equation model for a distributed parameter system. By establishing knowledge of the inevitable deficiencies in the model, the error estimates provide a foundation for updating the model. The function space solution leads to a specification of a method for computation of the model error estimates and development of model error analysis techniques for comparison between actual and estimated errors. The paper summarizes the model error estimation approach as well as an application arising in the area of modeling for static shape determination of large flexible systems.
NASA Astrophysics Data System (ADS)
Dolloff, John; Hottel, Bryant; Edwards, David; Theiss, Henry; Braun, Aaron
2017-05-01
This paper presents an overview of the Full Motion Video-Geopositioning Test Bed (FMV-GTB) developed to investigate algorithm performance and issues related to the registration of motion imagery and subsequent extraction of feature locations along with predicted accuracy. A case study is included corresponding to a video taken from a quadcopter. Registration of the corresponding video frames is performed without the benefit of a priori sensor attitude (pointing) information. In particular, tie points are automatically measured between adjacent frames using standard optical flow matching techniques from computer vision, an a priori estimate of sensor attitude is then computed based on supplied GPS sensor positions contained in the video metadata and a photogrammetric/search-based structure from motion algorithm, and then a Weighted Least Squares adjustment of all a priori metadata across the frames is performed. Extraction of absolute 3D feature locations, including their predicted accuracy based on the principles of rigorous error propagation, is then performed using a subset of the registered frames. Results are compared to known locations (check points) over a test site. Throughout this entire process, no external control information (e.g. surveyed points) is used other than for evaluation of solution errors and corresponding accuracy.
Estimation of the breaking of rigor mortis by myotonometry.
Vain, A; Kauppila, R; Vuori, E
1996-05-31
Myotonometry was used to detect breaking of rigor mortis. The myotonometer is a new instrument which measures the decaying oscillations of a muscle after a brief mechanical impact. The method gives two numerical parameters for rigor mortis, namely the period and decrement of the oscillations, both of which depend on the time period elapsed after death. In the case of breaking the rigor mortis by muscle lengthening, both the oscillation period and decrement decreased, whereas, shortening the muscle caused the opposite changes. Fourteen h after breaking the stiffness characteristics of the right and left m. biceps brachii, or oscillation periods, were assimilated. However, the values for decrement of the muscle, reflecting the dissipation of mechanical energy, maintained their differences.
NASA Astrophysics Data System (ADS)
Andrews, A. E.; Hu, L.; Thoning, K. W.; Nehrkorn, T.; Mountain, M. E.; Jacobson, A. R.; Michalak, A.; Dlugokencky, E. J.; Sweeney, C.; Worthy, D. E. J.; Miller, J. B.; Fischer, M. L.; Biraud, S.; van der Velde, I. R.; Basu, S.; Tans, P. P.
2017-12-01
CarbonTracker-Lagrange (CT-L) is a new high-resolution regional inverse modeling system for improved estimation of North American CO2 fluxes. CT-L uses footprints from the Stochastic Time-Inverted Lagrangian Transport (STILT) model driven by high-resolution (10 to 30 km) meteorological fields from the Weather Research and Forecasting (WRF) model. We performed a suite of synthetic-data experiments to evaluate a variety of inversion configurations, including (1) solving for scaling factors to an a priori flux versus additive corrections, (2) solving for fluxes at 3-hrly resolution versus at coarser temporal resolution, (3) solving for fluxes at 1o × 1o resolution versus at large eco-regional scales. Our framework explicitly and objectively solves for the optimal solution with a full error covariance matrix with maximum likelihood estimation, thereby enabling rigorous uncertainty estimates for the derived fluxes. In the synthetic-data inversions, we find that solving for weekly scaling factors of a priori Net Ecosystem Exchange (NEE) at 1o × 1o resolution with optimization of diurnal cycles of CO2 fluxes yields faithful retrieval of the specified "true" fluxes as those solved at 3-hrly resolution. In contrast, a scheme that does not allow for optimization of diurnal cycles of CO2 fluxes suffered from larger aggregation errors. We then applied the optimal inversion setup to estimate North American fluxes for 2007-2015 using real atmospheric CO2 observations, multiple prior estimates of NEE, and multiple boundary values estimated from the NOAA's global Eulerian CarbonTracker (CarbonTracker) and from an empirical approach. Our derived North American land CO2 fluxes show larger seasonal amplitude than those estimated from the CarbonTracker, removing seasonal biases in the CarbonTracker's simulated CO2 mole fractions. Independent evaluations using in-situ CO2 eddy covariance flux measurements and independent aircraft profiles also suggest an improved estimation on North American CO2 fluxes from CT-L. Furthermore, our derived CO2 flux anomalies over North America corresponding to the 2012 North American drought and the 2015 El Niño are larger than derived by the CarbonTracker. They also indicate different responses of ecosystems to those anomalous climatic events.
Bias in error estimation when using cross-validation for model selection.
Varma, Sudhir; Simon, Richard
2006-02-23
Cross-validation (CV) is an effective method for estimating the prediction error of a classifier. Some recent articles have proposed methods for optimizing classifiers by choosing classifier parameter values that minimize the CV error estimate. We have evaluated the validity of using the CV error estimate of the optimized classifier as an estimate of the true error expected on independent data. We used CV to optimize the classification parameters for two kinds of classifiers; Shrunken Centroids and Support Vector Machines (SVM). Random training datasets were created, with no difference in the distribution of the features between the two classes. Using these "null" datasets, we selected classifier parameter values that minimized the CV error estimate. 10-fold CV was used for Shrunken Centroids while Leave-One-Out-CV (LOOCV) was used for the SVM. Independent test data was created to estimate the true error. With "null" and "non null" (with differential expression between the classes) data, we also tested a nested CV procedure, where an inner CV loop is used to perform the tuning of the parameters while an outer CV is used to compute an estimate of the error. The CV error estimate for the classifier with the optimal parameters was found to be a substantially biased estimate of the true error that the classifier would incur on independent data. Even though there is no real difference between the two classes for the "null" datasets, the CV error estimate for the Shrunken Centroid with the optimal parameters was less than 30% on 18.5% of simulated training data-sets. For SVM with optimal parameters the estimated error rate was less than 30% on 38% of "null" data-sets. Performance of the optimized classifiers on the independent test set was no better than chance. The nested CV procedure reduces the bias considerably and gives an estimate of the error that is very close to that obtained on the independent testing set for both Shrunken Centroids and SVM classifiers for "null" and "non-null" data distributions. We show that using CV to compute an error estimate for a classifier that has itself been tuned using CV gives a significantly biased estimate of the true error. Proper use of CV for estimating true error of a classifier developed using a well defined algorithm requires that all steps of the algorithm, including classifier parameter tuning, be repeated in each CV loop. A nested CV procedure provides an almost unbiased estimate of the true error.
Parallel computers - Estimate errors caused by imprecise data
NASA Technical Reports Server (NTRS)
Kreinovich, Vladik; Bernat, Andrew; Villa, Elsa; Mariscal, Yvonne
1991-01-01
A new approach to the problem of estimating errors caused by imprecise data is proposed in the context of software engineering. A software device is used to produce an ideal solution to the problem, when the computer is capable of computing errors of arbitrary programs. The software engineering aspect of this problem is to describe a device for computing the error estimates in software terms and then to provide precise numbers with error estimates to the user. The feasibility of the program capable of computing both some quantity and its error estimate in the range of possible measurement errors is demonstrated.
NASA Astrophysics Data System (ADS)
Dimitrakopoulos, Panagiotis
2018-03-01
The calculation of polytropic efficiencies is a very important task, especially during the development of new compression units, like compressor impellers, stages and stage groups. Such calculations are also crucial for the determination of the performance of a whole compressor. As processors and computational capacities have substantially been improved in the last years, the need for a new, rigorous, robust, accurate and at the same time standardized method merged, regarding the computation of the polytropic efficiencies, especially based on thermodynamics of real gases. The proposed method is based on the rigorous definition of the polytropic efficiency. The input consists of pressure and temperature values at the end points of the compression path (suction and discharge), for a given working fluid. The average relative error for the studied cases was 0.536 %. Thus, this high-accuracy method is proposed for efficiency calculations related with turbocompressors and their compression units, especially when they are operating at high power levels, for example in jet engines and high-power plants.
NASA Astrophysics Data System (ADS)
Zhou, X.; Albertson, J. D.
2016-12-01
Natural gas is considered as a bridge fuel towards clean energy due to its potential lower greenhouse gas emission comparing with other fossil fuels. Despite numerous efforts, an efficient and cost-effective approach to monitor fugitive methane emissions along the natural gas production-supply chain has not been developed yet. Recently, mobile methane measurement has been introduced which applies a Bayesian approach to probabilistically infer methane emission rates and update estimates recursively when new measurements become available. However, the likelihood function, especially the error term which determines the shape of the estimate uncertainty, is not rigorously defined and evaluated with field data. To address this issue, we performed a series of near-source (< 30 m) controlled methane release experiments using a specialized vehicle mounted with fast response methane analyzers and a GPS unit. Methane concentrations were measured at two different heights along mobile traversals downwind of the sources, and concurrent wind and temperature data are recorded by nearby 3-D sonic anemometers. With known methane release rates, the measurements were used to determine the functional form and the parameterization of the likelihood function in the Bayesian inference scheme under different meteorological conditions.
Filtering Meteoroid Flights Using Multiple Unscented Kalman Filters
NASA Astrophysics Data System (ADS)
Sansom, E. K.; Bland, P. A.; Rutten, M. G.; Paxman, J.; Towner, M. C.
2016-11-01
Estimator algorithms are immensely versatile and powerful tools that can be applied to any problem where a dynamic system can be modeled by a set of equations and where observations are available. A well designed estimator enables system states to be optimally predicted and errors to be rigorously quantified. Unscented Kalman filters (UKFs) and interactive multiple models can be found in methods from satellite tracking to self-driving cars. The luminous trajectory of the Bunburra Rockhole fireball was observed by the Desert Fireball Network in mid-2007. The recorded data set is used in this paper to examine the application of these two techniques as a viable approach to characterizing fireball dynamics. The nonlinear, single-body system of equations, used to model meteoroid entry through the atmosphere, is challenged by gross fragmentation events that may occur. The incorporation of the UKF within an interactive multiple model smoother provides a likely solution for when fragmentation events may occur as well as providing a statistical analysis of the state uncertainties. In addition to these benefits, another advantage of this approach is its automatability for use within an image processing pipeline to facilitate large fireball data analyses and meteorite recoveries.
Palmer, Tom M; Holmes, Michael V; Keating, Brendan J; Sheehan, Nuala A
2017-11-01
Mendelian randomization studies use genotypes as instrumental variables to test for and estimate the causal effects of modifiable risk factors on outcomes. Two-stage residual inclusion (TSRI) estimators have been used when researchers are willing to make parametric assumptions. However, researchers are currently reporting uncorrected or heteroscedasticity-robust standard errors for these estimates. We compared several different forms of the standard error for linear and logistic TSRI estimates in simulations and in real-data examples. Among others, we consider standard errors modified from the approach of Newey (1987), Terza (2016), and bootstrapping. In our simulations Newey, Terza, bootstrap, and corrected 2-stage least squares (in the linear case) standard errors gave the best results in terms of coverage and type I error. In the real-data examples, the Newey standard errors were 0.5% and 2% larger than the unadjusted standard errors for the linear and logistic TSRI estimators, respectively. We show that TSRI estimators with modified standard errors have correct type I error under the null. Researchers should report TSRI estimates with modified standard errors instead of reporting unadjusted or heteroscedasticity-robust standard errors. © The Author(s) 2017. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health.
Robust Fault Detection Using Robust Z1 Estimation and Fuzzy Logic
NASA Technical Reports Server (NTRS)
Curry, Tramone; Collins, Emmanuel G., Jr.; Selekwa, Majura; Guo, Ten-Huei (Technical Monitor)
2001-01-01
This research considers the application of robust Z(sub 1), estimation in conjunction with fuzzy logic to robust fault detection for an aircraft fight control system. It begins with the development of robust Z(sub 1) estimators based on multiplier theory and then develops a fixed threshold approach to fault detection (FD). It then considers the use of fuzzy logic for robust residual evaluation and FD. Due to modeling errors and unmeasurable disturbances, it is difficult to distinguish between the effects of an actual fault and those caused by uncertainty and disturbance. Hence, it is the aim of a robust FD system to be sensitive to faults while remaining insensitive to uncertainty and disturbances. While fixed thresholds only allow a decision on whether a fault has or has not occurred, it is more valuable to have the residual evaluation lead to a conclusion related to the degree of, or probability of, a fault. Fuzzy logic is a viable means of determining the degree of a fault and allows the introduction of human observations that may not be incorporated in the rigorous threshold theory. Hence, fuzzy logic can provide a more reliable and informative fault detection process. Using an aircraft flight control system, the results of FD using robust Z(sub 1) estimation with a fixed threshold are demonstrated. FD that combines robust Z(sub 1) estimation and fuzzy logic is also demonstrated. It is seen that combining the robust estimator with fuzzy logic proves to be advantageous in increasing the sensitivity to smaller faults while remaining insensitive to uncertainty and disturbances.
Zollanvari, Amin; Dougherty, Edward R
2014-06-01
The most important aspect of any classifier is its error rate, because this quantifies its predictive capacity. Thus, the accuracy of error estimation is critical. Error estimation is problematic in small-sample classifier design because the error must be estimated using the same data from which the classifier has been designed. Use of prior knowledge, in the form of a prior distribution on an uncertainty class of feature-label distributions to which the true, but unknown, feature-distribution belongs, can facilitate accurate error estimation (in the mean-square sense) in circumstances where accurate completely model-free error estimation is impossible. This paper provides analytic asymptotically exact finite-sample approximations for various performance metrics of the resulting Bayesian Minimum Mean-Square-Error (MMSE) error estimator in the case of linear discriminant analysis (LDA) in the multivariate Gaussian model. These performance metrics include the first, second, and cross moments of the Bayesian MMSE error estimator with the true error of LDA, and therefore, the Root-Mean-Square (RMS) error of the estimator. We lay down the theoretical groundwork for Kolmogorov double-asymptotics in a Bayesian setting, which enables us to derive asymptotic expressions of the desired performance metrics. From these we produce analytic finite-sample approximations and demonstrate their accuracy via numerical examples. Various examples illustrate the behavior of these approximations and their use in determining the necessary sample size to achieve a desired RMS. The Supplementary Material contains derivations for some equations and added figures.
Willem W.S. van Hees
2002-01-01
Comparisons of estimated standard error for a ratio-of-means (ROM) estimator are presented for forest resource inventories conducted in southeast Alaska between 1995 and 2000. Estimated standard errors for the ROM were generated by using a traditional variance estimator and also approximated by bootstrap methods. Estimates of standard error generated by both...
ERIC Educational Resources Information Center
Johnson, Donald M.; Shoulders, Catherine W.
2017-01-01
As members of a profession committed to the dissemination of rigorous research pertaining to agricultural education, authors publishing in the Journal of Agricultural Education (JAE) must seek methods to evaluate and, when necessary, improve their research methods. The purpose of this study was to describe how authors of manuscripts published in…
A-posteriori error estimation for second order mechanical systems
NASA Astrophysics Data System (ADS)
Ruiner, Thomas; Fehr, Jörg; Haasdonk, Bernard; Eberhard, Peter
2012-06-01
One important issue for the simulation of flexible multibody systems is the reduction of the flexible bodies degrees of freedom. As far as safety questions are concerned knowledge about the error introduced by the reduction of the flexible degrees of freedom is helpful and very important. In this work, an a-posteriori error estimator for linear first order systems is extended for error estimation of mechanical second order systems. Due to the special second order structure of mechanical systems, an improvement of the a-posteriori error estimator is achieved. A major advantage of the a-posteriori error estimator is that the estimator is independent of the used reduction technique. Therefore, it can be used for moment-matching based, Gramian matrices based or modal based model reduction techniques. The capability of the proposed technique is demonstrated by the a-posteriori error estimation of a mechanical system, and a sensitivity analysis of the parameters involved in the error estimation process is conducted.
Optimal estimation of large structure model errors. [in Space Shuttle controller design
NASA Technical Reports Server (NTRS)
Rodriguez, G.
1979-01-01
In-flight estimation of large structure model errors is usually required as a means of detecting inevitable deficiencies in large structure controller/estimator models. The present paper deals with a least-squares formulation which seeks to minimize a quadratic functional of the model errors. The properties of these error estimates are analyzed. It is shown that an arbitrary model error can be decomposed as the sum of two components that are orthogonal in a suitably defined function space. Relations between true and estimated errors are defined. The estimates are found to be approximations that retain many of the significant dynamics of the true model errors. Current efforts are directed toward application of the analytical results to a reference large structure model.
Eppenhof, Koen A J; Pluim, Josien P W
2018-04-01
Error estimation in nonlinear medical image registration is a nontrivial problem that is important for validation of registration methods. We propose a supervised method for estimation of registration errors in nonlinear registration of three-dimensional (3-D) images. The method is based on a 3-D convolutional neural network that learns to estimate registration errors from a pair of image patches. By applying the network to patches centered around every voxel, we construct registration error maps. The network is trained using a set of representative images that have been synthetically transformed to construct a set of image pairs with known deformations. The method is evaluated on deformable registrations of inhale-exhale pairs of thoracic CT scans. Using ground truth target registration errors on manually annotated landmarks, we evaluate the method's ability to estimate local registration errors. Estimation of full domain error maps is evaluated using a gold standard approach. The two evaluation approaches show that we can train the network to robustly estimate registration errors in a predetermined range, with subvoxel accuracy. We achieved a root-mean-square deviation of 0.51 mm from gold standard registration errors and of 0.66 mm from ground truth landmark registration errors.
Effects of monetary reward and punishment on information checking behaviour.
Li, Simon Y W; Cox, Anna L; Or, Calvin; Blandford, Ann
2016-03-01
Two experiments were conducted to examine whether checking one's own work can be motivated by monetary reward and punishment. Participants were randomly assigned to one of three conditions: a flat-rate payment for completing the task (Control); payment increased for error-free performance (Reward); payment decreased for error performance (Punishment). Experiment 1 (N = 90) was conducted with liberal arts students, using a general data-entry task. Experiment 2 (N = 90) replicated Experiment 1 with clinical students and a safety-critical 'cover story' for the task. In both studies, Reward and Punishment resulted in significantly fewer errors, more frequent and longer checking, than Control. No such differences were obtained between the Reward and Punishment conditions. It is concluded that error consequences in terms of monetary reward and punishment can result in more accurate task performance and more rigorous checking behaviour than errors without consequences. However, whether punishment is more effective than reward, or vice versa, remains inconclusive. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Comparison of rigorous and simple vibrational models for the CO2 gasdynamic laser
NASA Technical Reports Server (NTRS)
Monson, D. J.
1977-01-01
The accuracy of a simple vibrational model for computing the gain in a CO2 gasdynamic laser is assessed by comparing results computed from it with results computed from a rigorous vibrational model. The simple model is that of Anderson et al. (1971), in which the vibrational kinetics are modeled by grouping the nonequilibrium vibrational degrees of freedom into two modes, to each of which there corresponds an equation describing vibrational relaxation. The two models agree fairly well in the computed gain at low temperatures, but the simple model predicts too high a gain at the higher temperatures of current interest. The sources of error contributing to the overestimation given by the simple model are determined by examining the simplified relaxation equations.
Statistical models for estimating daily streamflow in Michigan
Holtschlag, D.J.; Salehi, Habib
1992-01-01
Statistical models for estimating daily streamflow were analyzed for 25 pairs of streamflow-gaging stations in Michigan. Stations were paired by randomly choosing a station operated in 1989 at which 10 or more years of continuous flow data had been collected and at which flow is virtually unregulated; a nearby station was chosen where flow characteristics are similar. Streamflow data from the 25 randomly selected stations were used as the response variables; streamflow data at the nearby stations were used to generate a set of explanatory variables. Ordinary-least squares regression (OLSR) equations, autoregressive integrated moving-average (ARIMA) equations, and transfer function-noise (TFN) equations were developed to estimate the log transform of flow for the 25 randomly selected stations. The precision of each type of equation was evaluated on the basis of the standard deviation of the estimation errors. OLSR equations produce one set of estimation errors; ARIMA and TFN models each produce l sets of estimation errors corresponding to the forecast lead. The lead-l forecast is the estimate of flow l days ahead of the most recent streamflow used as a response variable in the estimation. In this analysis, the standard deviation of lead l ARIMA and TFN forecast errors were generally lower than the standard deviation of OLSR errors for l < 2 days and l < 9 days, respectively. Composite estimates were computed as a weighted average of forecasts based on TFN equations and backcasts (forecasts of the reverse-ordered series) based on ARIMA equations. The standard deviation of composite errors varied throughout the length of the estimation interval and generally was at maximum near the center of the interval. For comparison with OLSR errors, the mean standard deviation of composite errors were computed for intervals of length 1 to 40 days. The mean standard deviation of length-l composite errors were generally less than the standard deviation of the OLSR errors for l < 32 days. In addition, the composite estimates ensure a gradual transition between periods of estimated and measured flows. Model performance among stations of differing model error magnitudes were compared by computing ratios of the mean standard deviation of the length l composite errors to the standard deviation of OLSR errors. The mean error ratio for the set of 25 selected stations was less than 1 for intervals l < 32 days. Considering the frequency characteristics of the length of intervals of estimated record in Michigan, the effective mean error ratio for intervals < 30 days was 0.52. Thus, for intervals of estimation of 1 month or less, the error of the composite estimate is substantially lower than error of the OLSR estimate.
NASA Technical Reports Server (NTRS)
Morris, A. Terry
1999-01-01
This paper examines various sources of error in MIT's improved top oil temperature rise over ambient temperature model and estimation process. The sources of error are the current parameter estimation technique, quantization noise, and post-processing of the transformer data. Results from this paper will show that an output error parameter estimation technique should be selected to replace the current least squares estimation technique. The output error technique obtained accurate predictions of transformer behavior, revealed the best error covariance, obtained consistent parameter estimates, and provided for valid and sensible parameters. This paper will also show that the output error technique should be used to minimize errors attributed to post-processing (decimation) of the transformer data. Models used in this paper are validated using data from a large transformer in service.
Stochastic goal-oriented error estimation with memory
NASA Astrophysics Data System (ADS)
Ackmann, Jan; Marotzke, Jochem; Korn, Peter
2017-11-01
We propose a stochastic dual-weighted error estimator for the viscous shallow-water equation with boundaries. For this purpose, previous work on memory-less stochastic dual-weighted error estimation is extended by incorporating memory effects. The memory is introduced by describing the local truncation error as a sum of time-correlated random variables. The random variables itself represent the temporal fluctuations in local truncation errors and are estimated from high-resolution information at near-initial times. The resulting error estimator is evaluated experimentally in two classical ocean-type experiments, the Munk gyre and the flow around an island. In these experiments, the stochastic process is adapted locally to the respective dynamical flow regime. Our stochastic dual-weighted error estimator is shown to provide meaningful error bounds for a range of physically relevant goals. We prove, as well as show numerically, that our approach can be interpreted as a linearized stochastic-physics ensemble.
Population size and trend of Yellow-billed Loons in northern Alaska
Earnst, Susan L.; Stehn, R.A.; Platte, Robert; Larned, W.W.; Mallek, E.J.
2005-01-01
The Yellow-billed Loon (Gavia adamsii) is of conservation concern due to its restricted range, small population size, specific habitat requirements, and perceived threats to its breeding and wintering habitat. Within the U.S., this species breeds almost entirely within the National Petroleum Reserve-Alaska, nearly all of which is open, or proposed to be opened, for oil development. Rigorous estimates of Yellow-billed Loon population size and trend are lacking but essential for informed conservation. We used two annual aerial waterfowl surveys, conducted 1986a??2003 and 1992a??2003, to estimate population size and trend on northern Alaskan breeding grounds. In estimating population trend, we used mixed-effects regression models to reduce bias and sampling error associated with improvement in observer skill and annual effects of spring phenology. The estimated population trend on Alaskan breeding grounds since 1986 was near 0 with an estimated annual change of a??0.9% (95% CI of a??3.6% to +1.8%). The estimated population size, averaged over the past 12 years and adjusted by a correction factor based on an intensive, lake-circling, aerial survey method, was 2221 individuals (95% CI of 1206a??3235) in early June and 3369 individuals (95% CI of 1910a??4828) in late June. Based on estimates from other studies of the proportion of loons nesting in a given year, it is likely that <1000 nesting pairs inhabit northern Alaska in most years. The highest concentration of Yellow-billed Loons occurred between the Meade and Ikpikpuk Rivers; and across all of northern Alaska, 53% of recorded sightings occurred within 12% of the area.
ASYMPTOTIC DISTRIBUTION OF ΔAUC, NRIs, AND IDI BASED ON THEORY OF U-STATISTICS
Demler, Olga V.; Pencina, Michael J.; Cook, Nancy R.; D’Agostino, Ralph B.
2017-01-01
The change in AUC (ΔAUC), the IDI, and NRI are commonly used measures of risk prediction model performance. Some authors have reported good validity of associated methods of estimating their standard errors (SE) and construction of confidence intervals, whereas others have questioned their performance. To address these issues we unite the ΔAUC, IDI, and three versions of the NRI under the umbrella of the U-statistics family. We rigorously show that the asymptotic behavior of ΔAUC, NRIs, and IDI fits the asymptotic distribution theory developed for U-statistics. We prove that the ΔAUC, NRIs, and IDI are asymptotically normal, unless they compare nested models under the null hypothesis. In the latter case, asymptotic normality and existing SE estimates cannot be applied to ΔAUC, NRIs, or IDI. In the former case SE formulas proposed in the literature are equivalent to SE formulas obtained from U-statistics theory if we ignore adjustment for estimated parameters. We use Sukhatme-Randles-deWet condition to determine when adjustment for estimated parameters is necessary. We show that adjustment is not necessary for SEs of the ΔAUC and two versions of the NRI when added predictor variables are significant and normally distributed. The SEs of the IDI and three-category NRI should always be adjusted for estimated parameters. These results allow us to define when existing formulas for SE estimates can be used and when resampling methods such as the bootstrap should be used instead when comparing nested models. We also use the U-statistic theory to develop a new SE estimate of ΔAUC. PMID:28627112
Asymptotic distribution of ∆AUC, NRIs, and IDI based on theory of U-statistics.
Demler, Olga V; Pencina, Michael J; Cook, Nancy R; D'Agostino, Ralph B
2017-09-20
The change in area under the curve (∆AUC), the integrated discrimination improvement (IDI), and net reclassification index (NRI) are commonly used measures of risk prediction model performance. Some authors have reported good validity of associated methods of estimating their standard errors (SE) and construction of confidence intervals, whereas others have questioned their performance. To address these issues, we unite the ∆AUC, IDI, and three versions of the NRI under the umbrella of the U-statistics family. We rigorously show that the asymptotic behavior of ∆AUC, NRIs, and IDI fits the asymptotic distribution theory developed for U-statistics. We prove that the ∆AUC, NRIs, and IDI are asymptotically normal, unless they compare nested models under the null hypothesis. In the latter case, asymptotic normality and existing SE estimates cannot be applied to ∆AUC, NRIs, or IDI. In the former case, SE formulas proposed in the literature are equivalent to SE formulas obtained from U-statistics theory if we ignore adjustment for estimated parameters. We use Sukhatme-Randles-deWet condition to determine when adjustment for estimated parameters is necessary. We show that adjustment is not necessary for SEs of the ∆AUC and two versions of the NRI when added predictor variables are significant and normally distributed. The SEs of the IDI and three-category NRI should always be adjusted for estimated parameters. These results allow us to define when existing formulas for SE estimates can be used and when resampling methods such as the bootstrap should be used instead when comparing nested models. We also use the U-statistic theory to develop a new SE estimate of ∆AUC. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Wind power error estimation in resource assessments.
Rodríguez, Osvaldo; Del Río, Jesús A; Jaramillo, Oscar A; Martínez, Manuel
2015-01-01
Estimating the power output is one of the elements that determine the techno-economic feasibility of a renewable project. At present, there is a need to develop reliable methods that achieve this goal, thereby contributing to wind power penetration. In this study, we propose a method for wind power error estimation based on the wind speed measurement error, probability density function, and wind turbine power curves. This method uses the actual wind speed data without prior statistical treatment based on 28 wind turbine power curves, which were fitted by Lagrange's method, to calculate the estimate wind power output and the corresponding error propagation. We found that wind speed percentage errors of 10% were propagated into the power output estimates, thereby yielding an error of 5%. The proposed error propagation complements the traditional power resource assessments. The wind power estimation error also allows us to estimate intervals for the power production leveled cost or the investment time return. The implementation of this method increases the reliability of techno-economic resource assessment studies.
Wind Power Error Estimation in Resource Assessments
Rodríguez, Osvaldo; del Río, Jesús A.; Jaramillo, Oscar A.; Martínez, Manuel
2015-01-01
Estimating the power output is one of the elements that determine the techno-economic feasibility of a renewable project. At present, there is a need to develop reliable methods that achieve this goal, thereby contributing to wind power penetration. In this study, we propose a method for wind power error estimation based on the wind speed measurement error, probability density function, and wind turbine power curves. This method uses the actual wind speed data without prior statistical treatment based on 28 wind turbine power curves, which were fitted by Lagrange's method, to calculate the estimate wind power output and the corresponding error propagation. We found that wind speed percentage errors of 10% were propagated into the power output estimates, thereby yielding an error of 5%. The proposed error propagation complements the traditional power resource assessments. The wind power estimation error also allows us to estimate intervals for the power production leveled cost or the investment time return. The implementation of this method increases the reliability of techno-economic resource assessment studies. PMID:26000444
NASA Astrophysics Data System (ADS)
James, Mike R.; Robson, Stuart; d'Oleire-Oltmanns, Sebastian; Niethammer, Uwe
2016-04-01
Structure-from-motion (SfM) algorithms are greatly facilitating the production of detailed topographic models based on images collected by unmanned aerial vehicles (UAVs). However, SfM-based software does not generally provide the rigorous photogrammetric analysis required to fully understand survey quality. Consequently, error related to problems in control point data or the distribution of control points can remain undiscovered. Even if these errors are not large in magnitude, they can be systematic, and thus have strong implications for the use of products such as digital elevation models (DEMs) and orthophotos. Here, we develop a Monte Carlo approach to (1) improve the accuracy of products when SfM-based processing is used and (2) reduce the associated field effort by identifying suitable lower density deployments of ground control points. The method highlights over-parameterisation during camera self-calibration and provides enhanced insight into control point performance when rigorous error metrics are not available. Processing was implemented using commonly-used SfM-based software (Agisoft PhotoScan), which we augment with semi-automated and automated GCPs image measurement. We apply the Monte Carlo method to two contrasting case studies - an erosion gully survey (Taurodont, Morocco) carried out with an fixed-wing UAV, and an active landslide survey (Super-Sauze, France), acquired using a manually controlled quadcopter. The results highlight the differences in the control requirements for the two sites, and we explore the implications for future surveys. We illustrate DEM sensitivity to critical processing parameters and show how the use of appropriate parameter values increases DEM repeatability and reduces the spatial variability of error due to processing artefacts.
Decorrelation of the true and estimated classifier errors in high-dimensional settings.
Hanczar, Blaise; Hua, Jianping; Dougherty, Edward R
2007-01-01
The aim of many microarray experiments is to build discriminatory diagnosis and prognosis models. Given the huge number of features and the small number of examples, model validity which refers to the precision of error estimation is a critical issue. Previous studies have addressed this issue via the deviation distribution (estimated error minus true error), in particular, the deterioration of cross-validation precision in high-dimensional settings where feature selection is used to mitigate the peaking phenomenon (overfitting). Because classifier design is based upon random samples, both the true and estimated errors are sample-dependent random variables, and one would expect a loss of precision if the estimated and true errors are not well correlated, so that natural questions arise as to the degree of correlation and the manner in which lack of correlation impacts error estimation. We demonstrate the effect of correlation on error precision via a decomposition of the variance of the deviation distribution, observe that the correlation is often severely decreased in high-dimensional settings, and show that the effect of high dimensionality on error estimation tends to result more from its decorrelating effects than from its impact on the variance of the estimated error. We consider the correlation between the true and estimated errors under different experimental conditions using both synthetic and real data, several feature-selection methods, different classification rules, and three error estimators commonly used (leave-one-out cross-validation, k-fold cross-validation, and .632 bootstrap). Moreover, three scenarios are considered: (1) feature selection, (2) known-feature set, and (3) all features. Only the first is of practical interest; however, the other two are needed for comparison purposes. We will observe that the true and estimated errors tend to be much more correlated in the case of a known feature set than with either feature selection or using all features, with the better correlation between the latter two showing no general trend, but differing for different models.
Error estimates for ice discharge calculated using the flux gate approach
NASA Astrophysics Data System (ADS)
Navarro, F. J.; Sánchez Gámez, P.
2017-12-01
Ice discharge to the ocean is usually estimated using the flux gate approach, in which ice flux is calculated through predefined flux gates close to the marine glacier front. However, published results usually lack a proper error estimate. In the flux calculation, both errors in cross-sectional area and errors in velocity are relevant. While for estimating the errors in velocity there are well-established procedures, the calculation of the error in the cross-sectional area requires the availability of ground penetrating radar (GPR) profiles transverse to the ice-flow direction. In this contribution, we use IceBridge operation GPR profiles collected in Ellesmere and Devon Islands, Nunavut, Canada, to compare the cross-sectional areas estimated using various approaches with the cross-sections estimated from GPR ice-thickness data. These error estimates are combined with those for ice-velocities calculated from Sentinel-1 SAR data, to get the error in ice discharge. Our preliminary results suggest, regarding area, that the parabolic cross-section approaches perform better than the quartic ones, which tend to overestimate the cross-sectional area for flight lines close to the central flowline. Furthermore, the results show that regional ice-discharge estimates made using parabolic approaches provide reasonable results, but estimates for individual glaciers can have large errors, up to 20% in cross-sectional area.
Monsen, Karen A; Finn, Robert S; Fleming, Thea E; Garner, Erin J; LaValla, Amy J; Riemer, Judith G
2016-01-01
Rigor in clinical knowledge representation is necessary foundation for meaningful interoperability, exchange and reuse of electronic health record (EHR) data. It is critical for clinicians to understand principles and implications of using clinical standards for knowledge representation within EHRs. To educate clinicians and students about knowledge representation and to evaluate their success of applying the manual lookups method for assigning Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT) concept identifiers using formally mapped concepts from the Omaha System interface terminology. Clinicians who were students in a doctoral nursing program conducted 21 lookups for Omaha System terms in publicly available SNOMED CT browsers. Lookups were deemed successful if results matched exactly with the corresponding code from the January 2013 SNOMED CT-Omaha System terminology cross-map. Of the 21 manual lookups attempted, 12 (57.1%) were successful. Errors were due to semantic gaps differences in granularity and synonymy or partial term matching. Achieving rigor in clinical knowledge representation across settings, vendors and health systems is a globally recognized challenge. Cross-maps have potential to improve rigor in SNOMED CT encoding of clinical data. Further research is needed to evaluate outcomes of using of terminology cross-maps to encode clinical terms with SNOMED CT concept identifiers based on interface terminologies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldsmith, John
High Spectral Resolution Lidar (HSRL) systems provide vertical profiles of optical depth, backscatter cross-section, depolarization, and backscatter phase function. All HSRL measurements are absolutely calibrated by reference to molecular scattering, which is measured at each point in the lidar profile. Like the Raman lidar but unlike simple backscatter lidars such as the micropulse lidar, the HSRL can measure backscatter cross-sections and optical depths without prior assumptions about the scattering properties of the atmosphere. The depolarization observations also allow robust discrimination between ice and water clouds. In addition, rigorous error estimates can be computed for all measurements. A very narrow, angularmore » field of view reduces multiple scattering contributions. The small field of view, coupled with a narrow optical bandwidth, nearly eliminates noise due to scattered sunlight. There are two operational U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility HSRL systems, one at the Barrow North Slope of Alaska (NSA) site and the other in the second ARM Mobile Facility (AMF2) collection of instrumentation.« less
Accuracy Analysis and Validation of the Mars Science Laboratory (MSL) Robotic Arm
NASA Technical Reports Server (NTRS)
Collins, Curtis L.; Robinson, Matthew L.
2013-01-01
The Mars Science Laboratory (MSL) Curiosity Rover is currently exploring the surface of Mars with a suite of tools and instruments mounted to the end of a five degree-of-freedom robotic arm. To verify and meet a set of end-to-end system level accuracy requirements, a detailed positioning uncertainty model of the arm was developed and exercised over the arm operational workspace. Error sources at each link in the arm kinematic chain were estimated and their effects propagated to the tool frames.A rigorous test and measurement program was developed and implemented to collect data to characterize and calibrate the kinematic and stiffness parameters of the arm. Numerous absolute and relative accuracy and repeatability requirements were validated with a combination of analysis and test data extrapolated to the Mars gravity and thermal environment. Initial results of arm accuracy and repeatability on Mars demonstrate the effectiveness of the modeling and test program as the rover continues to explore the foothills of Mount Sharp.
Light-scattering flow cytometry for identification and characterization of blood microparticles
NASA Astrophysics Data System (ADS)
Konokhova, Anastasiya I.; Yurkin, Maxim A.; Moskalensky, Alexander E.; Chernyshev, Andrei V.; Tsvetovskaya, Galina A.; Chikova, Elena D.; Maltsev, Valeri P.
2012-05-01
We describe a novel approach to study blood microparticles using the scanning flow cytometer, which measures light scattering patterns (LSPs) of individual particles. Starting from platelet-rich plasma, we separated spherical microparticles from non-spherical plasma constituents, such as platelets and cell debris, based on similarity of their LSP to that of sphere. This provides a label-free method for identification (detection) of microparticles, including those larger than 1 μm. Next, we rigorously characterized each measured particle, determining its size and refractive index including errors of these estimates. Finally, we employed a deconvolution algorithm to determine size and refractive index distributions of the whole population of microparticles, accounting for largely different reliability of individual measurements. Developed methods were tested on a blood sample of a healthy donor, resulting in good agreement with literature data. The only limitation of this approach is size detection limit, which is currently about 0.5 μm due to used laser wavelength of 0.66 μm.
NASA Technical Reports Server (NTRS)
Lang, Christapher G.; Bey, Kim S. (Technical Monitor)
2002-01-01
This research investigates residual-based a posteriori error estimates for finite element approximations of heat conduction in single-layer and multi-layered materials. The finite element approximation, based upon hierarchical modelling combined with p-version finite elements, is described with specific application to a two-dimensional, steady state, heat-conduction problem. Element error indicators are determined by solving an element equation for the error with the element residual as a source, and a global error estimate in the energy norm is computed by collecting the element contributions. Numerical results of the performance of the error estimate are presented by comparisons to the actual error. Two methods are discussed and compared for approximating the element boundary flux. The equilibrated flux method provides more accurate results for estimating the error than the average flux method. The error estimation is applied to multi-layered materials with a modification to the equilibrated flux method to approximate the discontinuous flux along a boundary at the material interfaces. A directional error indicator is developed which distinguishes between the hierarchical modeling error and the finite element error. Numerical results are presented for single-layered materials which show that the directional indicators accurately determine which contribution to the total error dominates.
On the use of log-transformation vs. nonlinear regression for analyzing biological power laws
Xiao, X.; White, E.P.; Hooten, M.B.; Durham, S.L.
2011-01-01
Power-law relationships are among the most well-studied functional relationships in biology. Recently the common practice of fitting power laws using linear regression (LR) on log-transformed data has been criticized, calling into question the conclusions of hundreds of studies. It has been suggested that nonlinear regression (NLR) is preferable, but no rigorous comparison of these two methods has been conducted. Using Monte Carlo simulations, we demonstrate that the error distribution determines which method performs better, with NLR better characterizing data with additive, homoscedastic, normal error and LR better characterizing data with multiplicative, heteroscedastic, lognormal error. Analysis of 471 biological power laws shows that both forms of error occur in nature. While previous analyses based on log-transformation appear to be generally valid, future analyses should choose methods based on a combination of biological plausibility and analysis of the error distribution. We provide detailed guidelines and associated computer code for doing so, including a model averaging approach for cases where the error structure is uncertain. ?? 2011 by the Ecological Society of America.
Reduction of uncertainty in global black carbon direct radiative forcing constrained by observations
NASA Astrophysics Data System (ADS)
Wang, R.; Balkanski, Y.; Boucher, O.; Ciais, P.; Schuster, G. L.; Chevallier, F.; Samset, B. H.; Valari, M.; Liu, J.; Tao, S.
2017-12-01
Black carbon (BC) absorbs sunlight and contributes to global warming. However, the size of this effect, namely the direct radiative forcing (DRF), ranges from +0.1 to +1.0 W m-2, largely due to discrepancies between modeled and observed BC radiation absorption. Studies that adjusted emissions to correct biases of models resulted in a revised upward estimate of the BC DRF. However, the observation-based BC RF was not optimized against observations in a rigorous mathematical manner, because uncertainties in emissions and the representativeness errors due to use of coarse-resolution models were not fully assessed. Here we simulated the absorption of solar radiation by BC from all sources at the 10-km resolution by combining a nested aerosol model with a downscaling method. The normalized mean bias in BC radiation absorption was reduced from -51% to -24% in Asia and from -57% to -50% elsewhere. We applied a Bayesian method that account for model, representativeness and observational uncertainties to estimate the BC RF and its uncertainty. Using the high-resolution model reduces uncertainty in BC DRF from -101%/+152% to -70%/+71% over Asia and from -83%/+108% to -64%/+68% over other continental regions. We derived an observation-based BC DRF of 0.61 Wm-2 (0.16 to 1.40 as 90% confidence) as our best estimate.
NASA Technical Reports Server (NTRS)
Jackson, T.; Hsu, A. Y.; ONeill, P. E.
1999-01-01
This study extends a previous investigation on estimating surface soil moisture using the Special Sensor Microwave/Imager (SSM/I) over a grassland region. Although SSM/I is not optimal for soil moisture retrieval, it can under some conditions provide information. Rigorous analyses over land have been difficult due to the lack of good validation data sets. A scientific objective of the Southern Great Plains 1997 (SGP97) Hydrology Experiment was to investigate whether the retrieval algorithms for surface soil moisture developed at higher spatial resolution using truck-and aircraft-based passive microwave sensors can be extended to the coarser resolutions expected from satellite platform. With the data collected for the SGP97, the objective of this study is to compare the surface soil moisture estimated from the SSM/I data with those retrieved from the L-band Electronically Scanned Thinned Array Radiometer (ESTAR) data, the core sensor for the experiment, using the same retrieval algorithm. The results indicated that an error of estimate of 7.81% could be achieved with SSM/I data as contrasted to 2.82% with ESTAR data over three intensive sampling areas of different vegetation regimes. It confirms the results of previous study that SSM/I data can be used to retrieve surface soil moisture information at a regional scale under certain conditions.
Uninformative Prior Multiple Target Tracking Using Evidential Particle Filters
NASA Astrophysics Data System (ADS)
Worthy, J. L., III; Holzinger, M. J.
Space situational awareness requires the ability to initialize state estimation from short measurements and the reliable association of observations to support the characterization of the space environment. The electro-optical systems used to observe space objects cannot fully characterize the state of an object given a short, unobservable sequence of measurements. Further, it is difficult to associate these short-arc measurements if many such measurements are generated through the observation of a cluster of satellites, debris from a satellite break-up, or from spurious detections of an object. An optimization based, probabilistic short-arc observation association approach coupled with a Dempster-Shafer based evidential particle filter in a multiple target tracking framework is developed and proposed to address these problems. The optimization based approach is shown in literature to be computationally efficient and can produce probabilities of association, state estimates, and covariances while accounting for systemic errors. Rigorous application of Dempster-Shafer theory is shown to be effective at enabling ignorance to be properly accounted for in estimation by augmenting probability with belief and plausibility. The proposed multiple hypothesis framework will use a non-exclusive hypothesis formulation of Dempster-Shafer theory to assign belief mass to candidate association pairs and generate tracks based on the belief to plausibility ratio. The proposed algorithm is demonstrated using simulated observations of a GEO satellite breakup scenario.
Investigation of error sources in regional inverse estimates of greenhouse gas emissions in Canada
NASA Astrophysics Data System (ADS)
Chan, E.; Chan, D.; Ishizawa, M.; Vogel, F.; Brioude, J.; Delcloo, A.; Wu, Y.; Jin, B.
2015-08-01
Inversion models can use atmospheric concentration measurements to estimate surface fluxes. This study is an evaluation of the errors in a regional flux inversion model for different provinces of Canada, Alberta (AB), Saskatchewan (SK) and Ontario (ON). Using CarbonTracker model results as the target, the synthetic data experiment analyses examined the impacts of the errors from the Bayesian optimisation method, prior flux distribution and the atmospheric transport model, as well as their interactions. The scaling factors for different sub-regions were estimated by the Markov chain Monte Carlo (MCMC) simulation and cost function minimization (CFM) methods. The CFM method results are sensitive to the relative size of the assumed model-observation mismatch and prior flux error variances. Experiment results show that the estimation error increases with the number of sub-regions using the CFM method. For the region definitions that lead to realistic flux estimates, the numbers of sub-regions for the western region of AB/SK combined and the eastern region of ON are 11 and 4 respectively. The corresponding annual flux estimation errors for the western and eastern regions using the MCMC (CFM) method are -7 and -3 % (0 and 8 %) respectively, when there is only prior flux error. The estimation errors increase to 36 and 94 % (40 and 232 %) resulting from transport model error alone. When prior and transport model errors co-exist in the inversions, the estimation errors become 5 and 85 % (29 and 201 %). This result indicates that estimation errors are dominated by the transport model error and can in fact cancel each other and propagate to the flux estimates non-linearly. In addition, it is possible for the posterior flux estimates having larger differences than the prior compared to the target fluxes, and the posterior uncertainty estimates could be unrealistically small that do not cover the target. The systematic evaluation of the different components of the inversion model can help in the understanding of the posterior estimates and percentage errors. Stable and realistic sub-regional and monthly flux estimates for western region of AB/SK can be obtained, but not for the eastern region of ON. This indicates that it is likely a real observation-based inversion for the annual provincial emissions will work for the western region whereas; improvements are needed with the current inversion setup before real inversion is performed for the eastern region.
Tutorial on Reed-Solomon error correction coding
NASA Technical Reports Server (NTRS)
Geisel, William A.
1990-01-01
This tutorial attempts to provide a frank, step-by-step approach to Reed-Solomon (RS) error correction coding. RS encoding and RS decoding both with and without erasing code symbols are emphasized. There is no need to present rigorous proofs and extreme mathematical detail. Rather, the simple concepts of groups and fields, specifically Galois fields, are presented with a minimum of complexity. Before RS codes are presented, other block codes are presented as a technical introduction into coding. A primitive (15, 9) RS coding example is then completely developed from start to finish, demonstrating the encoding and decoding calculations and a derivation of the famous error-locator polynomial. The objective is to present practical information about Reed-Solomon coding in a manner such that it can be easily understood.
Observations of fallibility in applications of modern programming methodologies
NASA Technical Reports Server (NTRS)
Gerhart, S. L.; Yelowitz, L.
1976-01-01
Errors, inconsistencies, or confusing points are noted in a variety of published algorithms, many of which are being used as examples in formulating or teaching principles of such modern programming methodologies as formal specification, systematic construction, and correctness proving. Common properties of these points of contention are abstracted. These properties are then used to pinpoint possible causes of the errors and to formulate general guidelines which might help to avoid further errors. The common characteristic of mathematical rigor and reasoning in these examples is noted, leading to some discussion about fallibility in mathematics, and its relationship to fallibility in these programming methodologies. The overriding goal is to cast a more realistic perspective on the methodologies, particularly with respect to older methodologies, such as testing, and to provide constructive recommendations for their improvement.
NASA Astrophysics Data System (ADS)
Wang, L.; Davis, J. L.; Tamisiea, M. E.
2017-12-01
The Antarctic ice sheet (AIS) holds about 60% of all fresh water on the Earth, an amount equivalent to about 58 m of sea-level rise. Observation of AIS mass change is thus essential in determining and predicting its contribution to sea level. While the ice mass loss estimates for West Antarctica (WA) and the Antarctic Peninsula (AP) are in good agreement, what the mass balance over East Antarctica (EA) is, and whether or not it compensates for the mass loss is under debate. Besides the different error sources and sensitivities of different measurement types, complex spatial and temporal variabilities would be another factor complicating the accurate estimation of the AIS mass balance. Therefore, a model that allows for variabilities in both melting rate and seasonal signals would seem appropriate in the estimation of present-day AIS melting. We present a stochastic filter technique, which enables the Bayesian separation of the systematic stripe noise and mass signal in decade-length GRACE monthly gravity series, and allows the estimation of time-variable seasonal and inter-annual components in the signals. One of the primary advantages of this Bayesian method is that it yields statistically rigorous uncertainty estimates reflecting the inherent spatial resolution of the data. By applying the stochastic filter to the decade-long GRACE observations, we present the temporal variabilities of the AIS mass balance at basin scale, particularly over East Antarctica, and decipher the EA mass variations in the past decade, and their role in affecting overall AIS mass balance and sea level.
Performance Analysis of Local Ensemble Kalman Filter
NASA Astrophysics Data System (ADS)
Tong, Xin T.
2018-03-01
Ensemble Kalman filter (EnKF) is an important data assimilation method for high-dimensional geophysical systems. Efficient implementation of EnKF in practice often involves the localization technique, which updates each component using only information within a local radius. This paper rigorously analyzes the local EnKF (LEnKF) for linear systems and shows that the filter error can be dominated by the ensemble covariance, as long as (1) the sample size exceeds the logarithmic of state dimension and a constant that depends only on the local radius; (2) the forecast covariance matrix admits a stable localized structure. In particular, this indicates that with small system and observation noises, the filter error will be accurate in long time even if the initialization is not. The analysis also reveals an intrinsic inconsistency caused by the localization technique, and a stable localized structure is necessary to control this inconsistency. While this structure is usually taken for granted for the operation of LEnKF, it can also be rigorously proved for linear systems with sparse local observations and weak local interactions. These theoretical results are also validated by numerical implementation of LEnKF on a simple stochastic turbulence in two dynamical regimes.
Accurate force field for molybdenum by machine learning large materials data
NASA Astrophysics Data System (ADS)
Chen, Chi; Deng, Zhi; Tran, Richard; Tang, Hanmei; Chu, Iek-Heng; Ong, Shyue Ping
2017-09-01
In this work, we present a highly accurate spectral neighbor analysis potential (SNAP) model for molybdenum (Mo) developed through the rigorous application of machine learning techniques on large materials data sets. Despite Mo's importance as a structural metal, existing force fields for Mo based on the embedded atom and modified embedded atom methods do not provide satisfactory accuracy on many properties. We will show that by fitting to the energies, forces, and stress tensors of a large density functional theory (DFT)-computed dataset on a diverse set of Mo structures, a Mo SNAP model can be developed that achieves close to DFT accuracy in the prediction of a broad range of properties, including elastic constants, melting point, phonon spectra, surface energies, grain boundary energies, etc. We will outline a systematic model development process, which includes a rigorous approach to structural selection based on principal component analysis, as well as a differential evolution algorithm for optimizing the hyperparameters in the model fitting so that both the model error and the property prediction error can be simultaneously lowered. We expect that this newly developed Mo SNAP model will find broad applications in large and long-time scale simulations.
NASA Astrophysics Data System (ADS)
Bao, Zhenkun; Li, Xiaolong; Luo, Xiangyang
2017-01-01
Extracting informative statistic features is the most essential technical issue of steganalysis. Among various steganalysis methods, probability density function (PDF) and characteristic function (CF) moments are two important types of features due to the excellent ability for distinguishing the cover images from the stego ones. The two types of features are quite similar in definition. The only difference is that the PDF moments are computed in the spatial domain, while the CF moments are computed in the Fourier-transformed domain. Then, the comparison between PDF and CF moments is an interesting question of steganalysis. Several theoretical results have been derived, and CF moments are proved better than PDF moments in some cases. However, in the log prediction error wavelet subband of wavelet decomposition, some experiments show that the result is opposite and lacks a rigorous explanation. To solve this problem, a comparison result based on the rigorous proof is presented: the first-order PDF moment is proved better than the CF moment, while the second-order CF moment is better than the PDF moment. It tries to open the theoretical discussion on steganalysis and the question of finding suitable statistical features.
NASA Astrophysics Data System (ADS)
Raeder, K.; Anderson, J. L.; Lauritzen, P. H.; Hoar, T. J.; Collins, N.
2010-12-01
DART (www.image.ucar.edu/DAReS/DART) is a general purpose, freely available, ensemble Kalman filter, data assimilation system, which is being used to generate state-of-the-art, partially coupled, ocean-atmosphere re-analyses in support of the decadal predictions planned for the next IPCC report. The resulting gridded product is directly comparable to the state variables output by POP and CAM (oceanic and atmospheric components of NCAR's Community Earth System Model climate model) because those are the assimilating models. Other models could also benefit from comparison against these reanalyses, since the ocean analyses are at the leading edge of ocean state estimation, and the atmospheric analyses are competitive with operational centers'. Such comparisons can reveal model biases and predictability characteristics, and do so in a quantitative way, since the ensemble nature of the analyses provides an objective estimate of the analysis error. The analyses will also be used as initial conditions for the decadal forecasts because they are the most realistic available. The generation of such analyses has revealed errors in model formulation for several versions of the finite volume core CAM, which has led to model improvements in each case. New models can be incorporated into DART in a matter of weeks, allowing them to be compared directly against available observations. The observations currently used in the assimilations include, for the ocean; temperature and salinity from the World Ocean Database (floats, drifters, moorings, autonomous pinipeds, and others), and for the atmosphere; temperature and winds from radiosondes, satellite drift winds, ACARS and aircraft. Observations of ocean currents and atmospheric moisture and pressure are also available. Global Positioning System profiles of atmospheric temperature and moisture are available for recent years. All that is required to add new observations to the suite is the forward operator, which generates an estimate of the observation from the model state. In summary, DART provides a flexible, convenient, rigorous environment for evaluating models in the context of real observations.
NASA Astrophysics Data System (ADS)
Gehrmann, R. A. S.; Schwalenberg, K.; Hölz, S.; Zander, T.; Dettmer, J.; Bialas, J.
2016-12-01
In 2014 an interdisciplinary survey was conducted as part of the German SUGAR project in the Western Black Sea targeting gas hydrate occurrences in the Danube Delta. Marine controlled source electromagnetic (CSEM) data were acquired with an inline seafloor-towed array (BGR), and a two-polarization horizontal ocean-bottom source and receiver configuration (GEOMAR). The CSEM data are co-located with high-resolution 2-D and 3-D seismic reflection data (GEOMAR). We present results from 2-D regularized inversion (MARE2DEM by Kerry Key), which provides a smooth model of the electrical resistivity distribution beneath the source and multiple receivers. The 2-D approach includes seafloor topography and structural constraints from seismic data. We estimate uncertainties from the regularized inversion and compare them to 1-D Bayesian inversion results. The probabilistic inversion for a layered subsurface treats the parameter values and the number of layers as unknown by applying reversible-jump Markov-chain Monte Carlo sampling. A non-diagonal data covariance matrix obtained from residual error analysis accounts for correlated errors. The resulting resistivity models show generally high resistivity values between 3 and 10 Ωm on average which can be partly attributed to depleted pore water salinities due to sea-level low stands in the past, and locally up to 30 Ωm which is likely caused by gas hydrates. At the base of the gas hydrate stability zone resistivities rise up to more than 100 Ωm which could be due to gas hydrate as well as a layer of free gas underneath. However, the deeper parts also show the largest model parameter uncertainties. Archie's Law is used to derive estimates of the gas hydrate saturation, which vary between 30 and 80% within the anomalous layers considering salinity and porosity profiles from a distant DSDP bore hole.
The NIEHS Predictive-Toxicology Evaluation Project.
Bristol, D W; Wachsman, J T; Greenwell, A
1996-01-01
The Predictive-Toxicology Evaluation (PTE) project conducts collaborative experiments that subject the performance of predictive-toxicology (PT) methods to rigorous, objective evaluation in a uniquely informative manner. Sponsored by the National Institute of Environmental Health Sciences, it takes advantage of the ongoing testing conducted by the U.S. National Toxicology Program (NTP) to estimate the true error of models that have been applied to make prospective predictions on previously untested, noncongeneric-chemical substances. The PTE project first identifies a group of standardized NTP chemical bioassays either scheduled to be conducted or are ongoing, but not yet complete. The project then announces and advertises the evaluation experiment, disseminates information about the chemical bioassays, and encourages researchers from a wide variety of disciplines to publish their predictions in peer-reviewed journals, using whatever approaches and methods they feel are best. A collection of such papers is published in this Environmental Health Perspectives Supplement, providing readers the opportunity to compare and contrast PT approaches and models, within the context of their prospective application to an actual-use situation. This introduction to this collection of papers on predictive toxicology summarizes the predictions made and the final results obtained for the 44 chemical carcinogenesis bioassays of the first PTE experiment (PTE-1) and presents information that identifies the 30 chemical carcinogenesis bioassays of PTE-2, along with a table of prediction sets that have been published to date. It also provides background about the origin and goals of the PTE project, outlines the special challenge associated with estimating the true error of models that aspire to predict open-system behavior, and summarizes what has been learned to date. PMID:8933048
NASA Technical Reports Server (NTRS)
Backus, George E.
1999-01-01
The purpose of the grant was to study how prior information about the geomagnetic field can be used to interpret surface and satellite magnetic measurements, to generate quantitative descriptions of prior information that might be so used, and to use this prior information to obtain from satellite data a model of the core field with statistically justifiable error estimates. The need for prior information in geophysical inversion has long been recognized. Data sets are finite, and faithful descriptions of aspects of the earth almost always require infinite-dimensional model spaces. By themselves, the data can confine the correct earth model only to an infinite-dimensional subset of the model space. Earth properties other than direct functions of the observed data cannot be estimated from those data without prior information about the earth. Prior information is based on what the observer already knows before the data become available. Such information can be "hard" or "soft". Hard information is a belief that the real earth must lie in some known region of model space. For example, the total ohmic dissipation in the core is probably less that the total observed geothermal heat flow out of the earth's surface. (In principle, ohmic heat in the core can be recaptured to help drive the dynamo, but this effect is probably small.) "Soft" information is a probability distribution on the model space, a distribution that the observer accepts as a quantitative description of her/his beliefs about the earth. The probability distribution can be a subjective prior in the sense of Bayes or the objective result of a statistical study of previous data or relevant theories.
Garcia, Tanya P; Ma, Yanyuan
2017-10-01
We develop consistent and efficient estimation of parameters in general regression models with mismeasured covariates. We assume the model error and covariate distributions are unspecified, and the measurement error distribution is a general parametric distribution with unknown variance-covariance. We construct root- n consistent, asymptotically normal and locally efficient estimators using the semiparametric efficient score. We do not estimate any unknown distribution or model error heteroskedasticity. Instead, we form the estimator under possibly incorrect working distribution models for the model error, error-prone covariate, or both. Empirical results demonstrate robustness to different incorrect working models in homoscedastic and heteroskedastic models with error-prone covariates.
An Enhanced Non-Coherent Pre-Filter Design for Tracking Error Estimation in GNSS Receivers.
Luo, Zhibin; Ding, Jicheng; Zhao, Lin; Wu, Mouyan
2017-11-18
Tracking error estimation is of great importance in global navigation satellite system (GNSS) receivers. Any inaccurate estimation for tracking error will decrease the signal tracking ability of signal tracking loops and the accuracies of position fixing, velocity determination, and timing. Tracking error estimation can be done by traditional discriminator, or Kalman filter-based pre-filter. The pre-filter can be divided into two categories: coherent and non-coherent. This paper focuses on the performance improvements of non-coherent pre-filter. Firstly, the signal characteristics of coherent and non-coherent integration-which are the basis of tracking error estimation-are analyzed in detail. After that, the probability distribution of estimation noise of four-quadrant arctangent (ATAN2) discriminator is derived according to the mathematical model of coherent integration. Secondly, the statistical property of observation noise of non-coherent pre-filter is studied through Monte Carlo simulation to set the observation noise variance matrix correctly. Thirdly, a simple fault detection and exclusion (FDE) structure is introduced to the non-coherent pre-filter design, and thus its effective working range for carrier phase error estimation extends from (-0.25 cycle, 0.25 cycle) to (-0.5 cycle, 0.5 cycle). Finally, the estimation accuracies of discriminator, coherent pre-filter, and the enhanced non-coherent pre-filter are evaluated comprehensively through the carefully designed experiment scenario. The pre-filter outperforms traditional discriminator in estimation accuracy. In a highly dynamic scenario, the enhanced non-coherent pre-filter provides accuracy improvements of 41.6%, 46.4%, and 50.36% for carrier phase error, carrier frequency error, and code phase error estimation, respectively, when compared with coherent pre-filter. The enhanced non-coherent pre-filter outperforms the coherent pre-filter in code phase error estimation when carrier-to-noise density ratio is less than 28.8 dB-Hz, in carrier frequency error estimation when carrier-to-noise density ratio is less than 20 dB-Hz, and in carrier phase error estimation when carrier-to-noise density belongs to (15, 23) dB-Hz ∪ (26, 50) dB-Hz.
High Astrometric Precision in the Calculation of the Coordinates of Orbiters in the GEO Ring
NASA Astrophysics Data System (ADS)
Lacruz, E.; Abad, C.; Downes, J. J.; Hernández-Pérez, F.; Casanova, D.; Tresaco, E.
2018-04-01
We present an astrometric method for the calculation of the positions of orbiters in the GEO ring with a high precision, through a rigorous astrometric treatment of observations with a 1-m class telescope, which are part of the CIDA survey of the GEO ring. We compute the distortion pattern to correct for the systematic errors introduced by the optics and electronics of the telescope, resulting in absolute mean errors of 0.16″ and 0.12″ in right ascension and declination, respectively. These correspond to ≍25 m at the mean distance of the GEO ring, and are thus good quality results.
Minimum constitutive relation error based static identification of beams using force method
NASA Astrophysics Data System (ADS)
Guo, Jia; Takewaki, Izuru
2017-05-01
A new static identification approach based on the minimum constitutive relation error (CRE) principle for beam structures is introduced. The exact stiffness and the exact bending moment are shown to make the CRE minimal for given displacements to beam damages. A two-step substitution algorithm—a force-method step for the bending moment and a constitutive-relation step for the stiffness—is developed and its convergence is rigorously derived. Identifiability is further discussed and the stiffness in the undeformed region is found to be unidentifiable. An extra set of static measurements is complemented to remedy the drawback. Convergence and robustness are finally verified through numerical examples.
Enhanced Pedestrian Navigation Based on Course Angle Error Estimation Using Cascaded Kalman Filters
Park, Chan Gook
2018-01-01
An enhanced pedestrian dead reckoning (PDR) based navigation algorithm, which uses two cascaded Kalman filters (TCKF) for the estimation of course angle and navigation errors, is proposed. The proposed algorithm uses a foot-mounted inertial measurement unit (IMU), waist-mounted magnetic sensors, and a zero velocity update (ZUPT) based inertial navigation technique with TCKF. The first stage filter estimates the course angle error of a human, which is closely related to the heading error of the IMU. In order to obtain the course measurements, the filter uses magnetic sensors and a position-trace based course angle. For preventing magnetic disturbance from contaminating the estimation, the magnetic sensors are attached to the waistband. Because the course angle error is mainly due to the heading error of the IMU, and the characteristic error of the heading angle is highly dependent on that of the course angle, the estimated course angle error is used as a measurement for estimating the heading error in the second stage filter. At the second stage, an inertial navigation system-extended Kalman filter-ZUPT (INS-EKF-ZUPT) method is adopted. As the heading error is estimated directly by using course-angle error measurements, the estimation accuracy for the heading and yaw gyro bias can be enhanced, compared with the ZUPT-only case, which eventually enhances the position accuracy more efficiently. The performance enhancements are verified via experiments, and the way-point position error for the proposed method is compared with those for the ZUPT-only case and with other cases that use ZUPT and various types of magnetic heading measurements. The results show that the position errors are reduced by a maximum of 90% compared with the conventional ZUPT based PDR algorithms. PMID:29690539
Physical Validation of TRMM TMI and PR Monthly Rain Products Over Oklahoma
NASA Technical Reports Server (NTRS)
Fisher, Brad L.
2004-01-01
The Tropical Rainfall Measuring Mission (TRMM) provides monthly rainfall estimates using data collected by the TRMM satellite. These estimates cover a substantial fraction of the earth's surface. The physical validation of TRMM estimates involves corroborating the accuracy of spaceborne estimates of areal rainfall by inferring errors and biases from ground-based rain estimates. The TRMM error budget consists of two major sources of error: retrieval and sampling. Sampling errors are intrinsic to the process of estimating monthly rainfall and occur because the satellite extrapolates monthly rainfall from a small subset of measurements collected only during satellite overpasses. Retrieval errors, on the other hand, are related to the process of collecting measurements while the satellite is overhead. One of the big challenges confronting the TRMM validation effort is how to best estimate these two main components of the TRMM error budget, which are not easily decoupled. This four-year study computed bulk sampling and retrieval errors for the TRMM microwave imager (TMI) and the precipitation radar (PR) by applying a technique that sub-samples gauge data at TRMM overpass times. Gridded monthly rain estimates are then computed from the monthly bulk statistics of the collected samples, providing a sensor-dependent gauge rain estimate that is assumed to include a TRMM equivalent sampling error. The sub-sampled gauge rain estimates are then used in conjunction with the monthly satellite and gauge (without sub- sampling) estimates to decouple retrieval and sampling errors. The computed mean sampling errors for the TMI and PR were 5.9% and 7.796, respectively, in good agreement with theoretical predictions. The PR year-to-year retrieval biases exceeded corresponding TMI biases, but it was found that these differences were partially due to negative TMI biases during cold months and positive TMI biases during warm months.
Smooth empirical Bayes estimation of observation error variances in linear systems
NASA Technical Reports Server (NTRS)
Martz, H. F., Jr.; Lian, M. W.
1972-01-01
A smooth empirical Bayes estimator was developed for estimating the unknown random scale component of each of a set of observation error variances. It is shown that the estimator possesses a smaller average squared error loss than other estimators for a discrete time linear system.
Elimination of Emergency Department Medication Errors Due To Estimated Weights.
Greenwalt, Mary; Griffen, David; Wilkerson, Jim
2017-01-01
From 7/2014 through 6/2015, 10 emergency department (ED) medication dosing errors were reported through the electronic incident reporting system of an urban academic medical center. Analysis of these medication errors identified inaccurate estimated weight on patients as the root cause. The goal of this project was to reduce weight-based dosing medication errors due to inaccurate estimated weights on patients presenting to the ED. Chart review revealed that 13.8% of estimated weights documented on admitted ED patients varied more than 10% from subsequent actual admission weights recorded. A random sample of 100 charts containing estimated weights revealed 2 previously unreported significant medication dosage errors (.02 significant error rate). Key improvements included removing barriers to weighing ED patients, storytelling to engage staff and change culture, and removal of the estimated weight documentation field from the ED electronic health record (EHR) forms. With these improvements estimated weights on ED patients, and the resulting medication errors, were eliminated.
An error-based micro-sensor capture system for real-time motion estimation
NASA Astrophysics Data System (ADS)
Yang, Lin; Ye, Shiwei; Wang, Zhibo; Huang, Zhipei; Wu, Jiankang; Kong, Yongmei; Zhang, Li
2017-10-01
A wearable micro-sensor motion capture system with 16 IMUs and an error-compensatory complementary filter algorithm for real-time motion estimation has been developed to acquire accurate 3D orientation and displacement in real life activities. In the proposed filter algorithm, the gyroscope bias error, orientation error and magnetic disturbance error are estimated and compensated, significantly reducing the orientation estimation error due to sensor noise and drift. Displacement estimation, especially for activities such as jumping, has been the challenge in micro-sensor motion capture. An adaptive gait phase detection algorithm has been developed to accommodate accurate displacement estimation in different types of activities. The performance of this system is benchmarked with respect to the results of VICON optical capture system. The experimental results have demonstrated effectiveness of the system in daily activities tracking, with estimation error 0.16 ± 0.06 m for normal walking and 0.13 ± 0.11 m for jumping motions. Research supported by the National Natural Science Foundation of China (Nos. 61431017, 81272166).
An Empirical State Error Covariance Matrix Orbit Determination Example
NASA Technical Reports Server (NTRS)
Frisbee, Joseph H., Jr.
2015-01-01
State estimation techniques serve effectively to provide mean state estimates. However, the state error covariance matrices provided as part of these techniques suffer from some degree of lack of confidence in their ability to adequately describe the uncertainty in the estimated states. A specific problem with the traditional form of state error covariance matrices is that they represent only a mapping of the assumed observation error characteristics into the state space. Any errors that arise from other sources (environment modeling, precision, etc.) are not directly represented in a traditional, theoretical state error covariance matrix. First, consider that an actual observation contains only measurement error and that an estimated observation contains all other errors, known and unknown. Then it follows that a measurement residual (the difference between expected and observed measurements) contains all errors for that measurement. Therefore, a direct and appropriate inclusion of the actual measurement residuals in the state error covariance matrix of the estimate will result in an empirical state error covariance matrix. This empirical state error covariance matrix will fully include all of the errors in the state estimate. The empirical error covariance matrix is determined from a literal reinterpretation of the equations involved in the weighted least squares estimation algorithm. It is a formally correct, empirical state error covariance matrix obtained through use of the average form of the weighted measurement residual variance performance index rather than the usual total weighted residual form. Based on its formulation, this matrix will contain the total uncertainty in the state estimate, regardless as to the source of the uncertainty and whether the source is anticipated or not. It is expected that the empirical error covariance matrix will give a better, statistical representation of the state error in poorly modeled systems or when sensor performance is suspect. In its most straight forward form, the technique only requires supplemental calculations to be added to existing batch estimation algorithms. In the current problem being studied a truth model making use of gravity with spherical, J2 and J4 terms plus a standard exponential type atmosphere with simple diurnal and random walk components is used. The ability of the empirical state error covariance matrix to account for errors is investigated under four scenarios during orbit estimation. These scenarios are: exact modeling under known measurement errors, exact modeling under corrupted measurement errors, inexact modeling under known measurement errors, and inexact modeling under corrupted measurement errors. For this problem a simple analog of a distributed space surveillance network is used. The sensors in this network make only range measurements and with simple normally distributed measurement errors. The sensors are assumed to have full horizon to horizon viewing at any azimuth. For definiteness, an orbit at the approximate altitude and inclination of the International Space Station is used for the study. The comparison analyses of the data involve only total vectors. No investigation of specific orbital elements is undertaken. The total vector analyses will look at the chisquare values of the error in the difference between the estimated state and the true modeled state using both the empirical and theoretical error covariance matrices for each of scenario.
Error analysis of finite element method for Poisson–Nernst–Planck equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Yuzhou; Sun, Pengtao; Zheng, Bin
A priori error estimates of finite element method for time-dependent Poisson-Nernst-Planck equations are studied in this work. We obtain the optimal error estimates in L∞(H1) and L2(H1) norms, and suboptimal error estimates in L∞(L2) norm, with linear element, and optimal error estimates in L∞(L2) norm with quadratic or higher-order element, for both semi- and fully discrete finite element approximations. Numerical experiments are also given to validate the theoretical results.
NASA Astrophysics Data System (ADS)
Huo, Ming-Xia; Li, Ying
2017-12-01
Quantum error correction is important to quantum information processing, which allows us to reliably process information encoded in quantum error correction codes. Efficient quantum error correction benefits from the knowledge of error rates. We propose a protocol for monitoring error rates in real time without interrupting the quantum error correction. Any adaptation of the quantum error correction code or its implementation circuit is not required. The protocol can be directly applied to the most advanced quantum error correction techniques, e.g. surface code. A Gaussian processes algorithm is used to estimate and predict error rates based on error correction data in the past. We find that using these estimated error rates, the probability of error correction failures can be significantly reduced by a factor increasing with the code distance.
Improvement in error propagation in the Shack-Hartmann-type zonal wavefront sensors.
Pathak, Biswajit; Boruah, Bosanta R
2017-12-01
Estimation of the wavefront from measured slope values is an essential step in a Shack-Hartmann-type wavefront sensor. Using an appropriate estimation algorithm, these measured slopes are converted into wavefront phase values. Hence, accuracy in wavefront estimation lies in proper interpretation of these measured slope values using the chosen estimation algorithm. There are two important sources of errors associated with the wavefront estimation process, namely, the slope measurement error and the algorithm discretization error. The former type is due to the noise in the slope measurements or to the detector centroiding error, and the latter is a consequence of solving equations of a basic estimation algorithm adopted onto a discrete geometry. These errors deserve particular attention, because they decide the preference of a specific estimation algorithm for wavefront estimation. In this paper, we investigate these two important sources of errors associated with the wavefront estimation algorithms of Shack-Hartmann-type wavefront sensors. We consider the widely used Southwell algorithm and the recently proposed Pathak-Boruah algorithm [J. Opt.16, 055403 (2014)JOOPDB0150-536X10.1088/2040-8978/16/5/055403] and perform a comparative study between the two. We find that the latter algorithm is inherently superior to the Southwell algorithm in terms of the error propagation performance. We also conduct experiments that further establish the correctness of the comparative study between the said two estimation algorithms.
NASA Technical Reports Server (NTRS)
Chatterji, Gano
2011-01-01
Conclusions: Validated the fuel estimation procedure using flight test data. A good fuel model can be created if weight and fuel data are available. Error in assumed takeoff weight results in similar amount of error in the fuel estimate. Fuel estimation error bounds can be determined.
An Enhanced Non-Coherent Pre-Filter Design for Tracking Error Estimation in GNSS Receivers
Luo, Zhibin; Ding, Jicheng; Zhao, Lin; Wu, Mouyan
2017-01-01
Tracking error estimation is of great importance in global navigation satellite system (GNSS) receivers. Any inaccurate estimation for tracking error will decrease the signal tracking ability of signal tracking loops and the accuracies of position fixing, velocity determination, and timing. Tracking error estimation can be done by traditional discriminator, or Kalman filter-based pre-filter. The pre-filter can be divided into two categories: coherent and non-coherent. This paper focuses on the performance improvements of non-coherent pre-filter. Firstly, the signal characteristics of coherent and non-coherent integration—which are the basis of tracking error estimation—are analyzed in detail. After that, the probability distribution of estimation noise of four-quadrant arctangent (ATAN2) discriminator is derived according to the mathematical model of coherent integration. Secondly, the statistical property of observation noise of non-coherent pre-filter is studied through Monte Carlo simulation to set the observation noise variance matrix correctly. Thirdly, a simple fault detection and exclusion (FDE) structure is introduced to the non-coherent pre-filter design, and thus its effective working range for carrier phase error estimation extends from (−0.25 cycle, 0.25 cycle) to (−0.5 cycle, 0.5 cycle). Finally, the estimation accuracies of discriminator, coherent pre-filter, and the enhanced non-coherent pre-filter are evaluated comprehensively through the carefully designed experiment scenario. The pre-filter outperforms traditional discriminator in estimation accuracy. In a highly dynamic scenario, the enhanced non-coherent pre-filter provides accuracy improvements of 41.6%, 46.4%, and 50.36% for carrier phase error, carrier frequency error, and code phase error estimation, respectively, when compared with coherent pre-filter. The enhanced non-coherent pre-filter outperforms the coherent pre-filter in code phase error estimation when carrier-to-noise density ratio is less than 28.8 dB-Hz, in carrier frequency error estimation when carrier-to-noise density ratio is less than 20 dB-Hz, and in carrier phase error estimation when carrier-to-noise density belongs to (15, 23) dB-Hz ∪ (26, 50) dB-Hz. PMID:29156581
Improved mathematical and computational tools for modeling photon propagation in tissue
NASA Astrophysics Data System (ADS)
Calabro, Katherine Weaver
Light interacts with biological tissue through two predominant mechanisms: scattering and absorption, which are sensitive to the size and density of cellular organelles, and to biochemical composition (ex. hemoglobin), respectively. During the progression of disease, tissues undergo a predictable set of changes in cell morphology and vascularization, which directly affect their scattering and absorption properties. Hence, quantification of these optical property differences can be used to identify the physiological biomarkers of disease with interest often focused on cancer. Diffuse reflectance spectroscopy is a diagnostic tool, wherein broadband visible light is transmitted through a fiber optic probe into a turbid medium, and after propagating through the sample, a fraction of the light is collected at the surface as reflectance. The measured reflectance spectrum can be analyzed with appropriate mathematical models to extract the optical properties of the tissue, and from these, a set of physiological properties. A number of models have been developed for this purpose using a variety of approaches -- from diffusion theory, to computational simulations, and empirical observations. However, these models are generally limited to narrow ranges of tissue and probe geometries. In this thesis, reflectance models were developed for a much wider range of measurement parameters, and influences such as the scattering phase function and probe design were investigated rigorously for the first time. The results provide a comprehensive understanding of the factors that influence reflectance, with novel insights that, in some cases, challenge current assumptions in the field. An improved Monte Carlo simulation program, designed to run on a graphics processing unit (GPU), was built to simulate the data used in the development of the reflectance models. Rigorous error analysis was performed to identify how inaccuracies in modeling assumptions can be expected to affect the accuracy of extracted optical property values from experimentally-acquired reflectance spectra. From this analysis, probe geometries that offer the best robustness against error in estimation of physiological properties from tissue, are presented. Finally, several in vivo studies demonstrating the use of reflectance spectroscopy for both research and clinical applications are presented.
Roon, David A.; Waits, L.P.; Kendall, K.C.
2005-01-01
Non-invasive genetic sampling (NGS) is becoming a popular tool for population estimation. However, multiple NGS studies have demonstrated that polymerase chain reaction (PCR) genotyping errors can bias demographic estimates. These errors can be detected by comprehensive data filters such as the multiple-tubes approach, but this approach is expensive and time consuming as it requires three to eight PCR replicates per locus. Thus, researchers have attempted to correct PCR errors in NGS datasets using non-comprehensive error checking methods, but these approaches have not been evaluated for reliability. We simulated NGS studies with and without PCR error and 'filtered' datasets using non-comprehensive approaches derived from published studies and calculated mark-recapture estimates using CAPTURE. In the absence of data-filtering, simulated error resulted in serious inflations in CAPTURE estimates; some estimates exceeded N by ??? 200%. When data filters were used, CAPTURE estimate reliability varied with per-locus error (E??). At E?? = 0.01, CAPTURE estimates from filtered data displayed < 5% deviance from error-free estimates. When E?? was 0.05 or 0.09, some CAPTURE estimates from filtered data displayed biases in excess of 10%. Biases were positive at high sampling intensities; negative biases were observed at low sampling intensities. We caution researchers against using non-comprehensive data filters in NGS studies, unless they can achieve baseline per-locus error rates below 0.05 and, ideally, near 0.01. However, we suggest that data filters can be combined with careful technique and thoughtful NGS study design to yield accurate demographic information. ?? 2005 The Zoological Society of London.
Population Size Estimation of Men Who Have Sex with Men through the Network Scale-Up Method in Japan
Ezoe, Satoshi; Morooka, Takeo; Noda, Tatsuya; Sabin, Miriam Lewis; Koike, Soichi
2012-01-01
Background Men who have sex with men (MSM) are one of the groups most at risk for HIV infection in Japan. However, size estimates of MSM populations have not been conducted with sufficient frequency and rigor because of the difficulty, high cost and stigma associated with reaching such populations. This study examined an innovative and simple method for estimating the size of the MSM population in Japan. We combined an internet survey with the network scale-up method, a social network method for estimating the size of hard-to-reach populations, for the first time in Japan. Methods and Findings An internet survey was conducted among 1,500 internet users who registered with a nationwide internet-research agency. The survey participants were asked how many members of particular groups with known population sizes (firepersons, police officers, and military personnel) they knew as acquaintances. The participants were also asked to identify the number of their acquaintances whom they understood to be MSM. Using these survey results with the network scale-up method, the personal network size and MSM population size were estimated. The personal network size was estimated to be 363.5 regardless of the sex of the acquaintances and 174.0 for only male acquaintances. The estimated MSM prevalence among the total male population in Japan was 0.0402% without adjustment, and 2.87% after adjusting for the transmission error of MSM. Conclusions The estimated personal network size and MSM prevalence seen in this study were comparable to those from previous survey results based on the direct-estimation method. Estimating population sizes through combining an internet survey with the network scale-up method appeared to be an effective method from the perspectives of rapidity, simplicity, and low cost as compared with more-conventional methods. PMID:22563366
NASA Astrophysics Data System (ADS)
Chen, Y.; Xu, X.
2017-12-01
The broad band Lg 1/Q tomographic models in eastern Eurasia are inverted from source- and site-corrected path 1/Q data. The path 1/Q are measured between stations (or events) by the two-station (TS), reverse two-station (RTS) and reverse two-event (RTE) methods, respectively. Because path 1/Q are computed using logarithm of the product of observed spectral ratios and simplified 1D geometrical spreading correction, they are subject to "modeling errors" dominated by uncompensated 3D structural effects. We have found in Chen and Xie [2017] that these errors closely follow normal distribution after the long-tailed outliers are screened out (similar to teleseismic travel time residuals). We thus rigorously analyze the statistics of these errors collected from repeated samplings of station (and event) pairs from 1.0 to 10.0Hz and reject about 15% outliers at each frequency band. The resultant variance of Δ/Q decreases with frequency as 1/f2. The 1/Q tomography using screened data is now a stochastic inverse problem with solutions approximate the means of Gaussian random variables and the model covariance matrix is that of Gaussian variables with well-known statistical behavior. We adopt a new SVD based tomographic method to solve for 2D Q image together with its resolution and covariance matrices. The RTS and RTE yield the most reliable 1/Q data free of source and site effects, but the path coverage is rather sparse due to very strict recording geometry. The TS absorbs the effects of non-unit site response ratios into 1/Q data. The RTS also yields site responses, which can then be corrected from the path 1/Q of TS to make them also free of site effect. The site corrected TS data substantially improve path coverage, allowing able to solve for 1/Q tomography up to 6.0Hz. The model resolution and uncertainty are first quantitively accessed by spread functions (fulfilled by resolution matrix) and covariance matrix. The reliably retrieved Q models correlate well with the distinct tectonic blocks featured by the most recent major deformations and vary with frequencies. With the 1/Q tomographic model and its covariance matrix, we can formally estimate the uncertainty of any path-specific Lg 1/Q prediction. This new capability significantly benefits source estimation for which reliable uncertainty estimate is especially important.
Rotation and anisotropy of galaxies revisited
NASA Astrophysics Data System (ADS)
Binney, James
2005-11-01
The use of the tensor virial theorem (TVT) as a diagnostic of anisotropic velocity distributions in galaxies is revisited. The TVT provides a rigorous global link between velocity anisotropy, rotation and shape, but the quantities appearing in it are not easily estimated observationally. Traditionally, use has been made of a centrally averaged velocity dispersion and the peak rotation velocity. Although this procedure cannot be rigorously justified, tests on model galaxies show that it works surprisingly well. With the advent of integral-field spectroscopy it is now possible to establish a rigorous connection between the TVT and observations. The TVT is reformulated in terms of sky-averages, and the new formulation is tested on model galaxies.
NASA Astrophysics Data System (ADS)
Gao, Qian
For both the conventional radio frequency and the comparably recent optical wireless communication systems, extensive effort from the academia had been made in improving the network spectrum efficiency and/or reducing the error rate. To achieve these goals, many fundamental challenges such as power efficient constellation design, nonlinear distortion mitigation, channel training design, network scheduling and etc. need to be properly addressed. In this dissertation, novel schemes are proposed accordingly to deal with specific problems falling in category of these challenges. Rigorous proofs and analyses are provided for each of our work to make a fair comparison with the corresponding peer works to clearly demonstrate the advantages. The first part of this dissertation considers a multi-carrier optical wireless system employing intensity modulation (IM) and direct detection (DD). A block-wise constellation design is presented, which treats the DC-bias that conventionally used solely for biasing purpose as an information basis. Our scheme, we term it MSM-JDCM, takes advantage of the compactness of sphere packing in a higher dimensional space, and in turn power efficient constellations are obtained by solving an advanced convex optimization problem. Besides the significant power gains, the MSM-JDCM has many other merits such as being capable of mitigating nonlinear distortion by including a peak-to-power ratio (PAPR) constraint, minimizing inter-symbol-interference (ISI) caused by frequency-selective fading with a novel precoder designed and embedded, and further reducing the bit-error-rate (BER) by combining with an optimized labeling scheme. The second part addresses several optimization problems in a multi-color visible light communication system, including power efficient constellation design, joint pre-equalizer and constellation design, and modeling of different structured channels with cross-talks. Our novel constellation design scheme, termed CSK-Advanced, is compared with the conventional decoupled system with the same spectrum efficiency to demonstrate the power efficiency. Crucial lighting requirements are included as optimization constraints. To control non-linear distortion, the optical peak-to-average-power ratio (PAPR) of LEDs can be individually constrained. With a SVD-based pre-equalizer designed and employed, our scheme can achieve lower BER than counterparts applying zero-forcing (ZF) or linear minimum-mean-squared-error (LMMSE) based post-equalizers. Besides, a binary switching algorithm (BSA) is applied to improve BER performance. The third part looks into a problem of two-phase channel estimation in a relayed wireless network. The channel estimates in every phase are obtained by the linear minimum mean squared error (LMMSE) method. Inaccurate estimate of the relay to destination (RtD) channel in phase 1 could affect estimate of the source to relay (StR) channel in phase 2, which is made erroneous. We first derive a close-form expression for the averaged Bayesian mean-square estimation error (ABMSE) for both phase estimates in terms of the length of source and relay training slots, based on which an iterative searching algorithm is then proposed that optimally allocates training slots to the two phases such that estimation errors are balanced. Analysis shows how the ABMSE of the StD channel estimation varies with the lengths of relay training and source training slots, the relay amplification gain, and the channel prior information respectively. The last part deals with a transmission scheduling problem in a uplink multiple-input-multiple-output (MIMO) wireless network. Code division multiple access (CDMA) is assumed as a multiple access scheme and pseudo-random codes are employed for different users. We consider a heavy traffic scenario, in which each user always has packets to transmit in the scheduled time slots. If the relay is scheduled for transmission together with users, then it operates in a full-duplex mode, where the packets previously collected from users are transmitted to the destination while new packets are being collected from users. A novel expression of throughput is first derived and then used to develop a scheduling algorithm to maximize the throughput. Our full-duplex scheduling is compared with a half-duplex scheduling, random access, and time division multiple access (TDMA), and simulation results illustrate its superiority. Throughput gains due to employment of both MIMO and CDMA are observed.
Educational agenda for diagnostic error reduction
Trowbridge, Robert L; Dhaliwal, Gurpreet; Cosby, Karen S
2013-01-01
Diagnostic errors are a major patient safety concern. Although the majority of diagnostic errors are partially attributable to cognitive mistakes, the most effective means of improving clinician cognition in order to achieve gains in diagnostic reliability are unclear. We propose a tripartite educational agenda for improving diagnostic performance among students, residents and practising physicians. This agenda includes strengthening the metacognitive abilities of clinicians, fostering intuitive reasoning and increasing awareness of the role of systems in the diagnostic process. The evidence supporting initiatives in each of these realms is reviewed and a course of future implementation and study is proposed. The barriers to designing and implementing this agenda are substantial and include limited evidence supporting these initiatives and the challenges of changing the practice patterns of practising physicians. Implementation will need to be accompanied by rigorous evaluation. PMID:23764435
Using MODIS and GLAS Data to Develop Timber Volume Estimates in Central Siberia
NASA Technical Reports Server (NTRS)
Ranson, K. Jon; Kimes, Daniel; Sun, Guoqing; Kharuk, Viatcheslav; Hyde, Peter; Nelson, Ross
2007-01-01
The boreal forest is the Earth's largest terrestrial biome, covering some 12 million km2 and accounting for about one third of this planet's total forest area. Mapping of boreal forest's type, structure parameters and biomass are critical for understanding the boreal forest's significance in the carbon cycle, its response to and impact on global climate change. Ground based forest inventories, have much uncertainty in the inventory data, particularly in remote areas of Siberia where sampling is sparse and/or lacking. In addition, many of the forest inventories that do exist for Siberia are now a decade or more old. Thus, available forest inventories fail to capture the current conditions. Changes in forest structure in a particular forest-type and region can change significantly due to changing environment conditions, and natural and anthropogenic disturbance. Remote sensing methods can potentially overcome these problems. Multispectral sensors can be used to provide vegetation cover maps that show a timely and accurate geographic distribution of vegetation types rather than decade old ground based maps. Lidar sensors can be used to directly obtain measurements that can be used to derive critical forest structure information (e.g., height, density, and volume). These in turn can used to estimate biomass components using allometric equations without having to use out dated forest inventory. Finally, remote sensing data is ideally suited to provide a sampling basis for a rigorous statistical estimate of the variance and error bound on forest structure measures. In this study, new remote sensing methods were applied to develop estimates timber volume using NASA's MODerate resolution Imaging Spectroradiometer (MODIS) and unique waveform data of the geoscience laser altimeter system (GLAS) for a 10 deg x 10 deg area in central Siberia. Using MODIS and GLAS data, maps were produced for cover type and timber volume for 2003, and a realistic variance (error bound) for timber volume was calculated for the study area. In this 'study we used only GLAS footprints that had a slope value of less than 10 deg. This was done to avoid large errors due to the effect of slope on the GLAS models. The method requires the integration of new remote sensing methods with available ground studies of forest timber volume conducted in Russian forests. The results were compared to traditional ground forest inventory methods reported in the literature and to ground truth collected in the study area.
Adjusting for radiotelemetry error to improve estimates of habitat use.
Scott L. Findholt; Bruce K. Johnson; Lyman L. McDonald; John W. Kern; Alan Ager; Rosemary J. Stussy; Larry D. Bryant
2002-01-01
Animal locations estimated from radiotelemetry have traditionally been treated as error-free when analyzed in relation to habitat variables. Location error lowers the power of statistical tests of habitat selection. We describe a method that incorporates the error surrounding point estimates into measures of environmental variables determined from a geographic...
An Empirical State Error Covariance Matrix for the Weighted Least Squares Estimation Method
NASA Technical Reports Server (NTRS)
Frisbee, Joseph H., Jr.
2011-01-01
State estimation techniques effectively provide mean state estimates. However, the theoretical state error covariance matrices provided as part of these techniques often suffer from a lack of confidence in their ability to describe the un-certainty in the estimated states. By a reinterpretation of the equations involved in the weighted least squares algorithm, it is possible to directly arrive at an empirical state error covariance matrix. This proposed empirical state error covariance matrix will contain the effect of all error sources, known or not. Results based on the proposed technique will be presented for a simple, two observer, measurement error only problem.
Maelstrom Research guidelines for rigorous retrospective data harmonization
Fortier, Isabel; Raina, Parminder; Van den Heuvel, Edwin R; Griffith, Lauren E; Craig, Camille; Saliba, Matilda; Doiron, Dany; Stolk, Ronald P; Knoppers, Bartha M; Ferretti, Vincent; Granda, Peter; Burton, Paul
2017-01-01
Abstract Background: It is widely accepted and acknowledged that data harmonization is crucial: in its absence, the co-analysis of major tranches of high quality extant data is liable to inefficiency or error. However, despite its widespread practice, no formalized/systematic guidelines exist to ensure high quality retrospective data harmonization. Methods: To better understand real-world harmonization practices and facilitate development of formal guidelines, three interrelated initiatives were undertaken between 2006 and 2015. They included a phone survey with 34 major international research initiatives, a series of workshops with experts, and case studies applying the proposed guidelines. Results: A wide range of projects use retrospective harmonization to support their research activities but even when appropriate approaches are used, the terminologies, procedures, technologies and methods adopted vary markedly. The generic guidelines outlined in this article delineate the essentials required and describe an interdependent step-by-step approach to harmonization: 0) define the research question, objectives and protocol; 1) assemble pre-existing knowledge and select studies; 2) define targeted variables and evaluate harmonization potential; 3) process data; 4) estimate quality of the harmonized dataset(s) generated; and 5) disseminate and preserve final harmonization products. Conclusions: This manuscript provides guidelines aiming to encourage rigorous and effective approaches to harmonization which are comprehensively and transparently documented and straightforward to interpret and implement. This can be seen as a key step towards implementing guiding principles analogous to those that are well recognised as being essential in securing the foundational underpinning of systematic reviews and the meta-analysis of clinical trials. PMID:27272186
Kreienkamp, Amelia B.; Liu, Lucy Y.; Minkara, Mona S.; Knepley, Matthew G.; Bardhan, Jaydeep P.; Radhakrishnan, Mala L.
2013-01-01
We analyze and suggest improvements to a recently developed approximate continuum-electrostatic model for proteins. The model, called BIBEE/I (boundary-integral based electrostatics estimation with interpolation), was able to estimate electrostatic solvation free energies to within a mean unsigned error of 4% on a test set of more than 600 proteins—a significant improvement over previous BIBEE models. In this work, we tested the BIBEE/I model for its capability to predict residue-by-residue interactions in protein–protein binding, using the widely studied model system of trypsin and bovine pancreatic trypsin inhibitor (BPTI). Finding that the BIBEE/I model performs surprisingly less well in this task than simpler BIBEE models, we seek to explain this behavior in terms of the models’ differing spectral approximations of the exact boundary-integral operator. Calculations of analytically solvable systems (spheres and tri-axial ellipsoids) suggest two possibilities for improvement. The first is a modified BIBEE/I approach that captures the asymptotic eigenvalue limit correctly, and the second involves the dipole and quadrupole modes for ellipsoidal approximations of protein geometries. Our analysis suggests that fast, rigorous approximate models derived from reduced-basis approximation of boundary-integral equations might reach unprecedented accuracy, if the dipole and quadrupole modes can be captured quickly for general shapes. PMID:24466561
Empirical State Error Covariance Matrix for Batch Estimation
NASA Technical Reports Server (NTRS)
Frisbee, Joe
2015-01-01
State estimation techniques effectively provide mean state estimates. However, the theoretical state error covariance matrices provided as part of these techniques often suffer from a lack of confidence in their ability to describe the uncertainty in the estimated states. By a reinterpretation of the equations involved in the weighted batch least squares algorithm, it is possible to directly arrive at an empirical state error covariance matrix. The proposed empirical state error covariance matrix will contain the effect of all error sources, known or not. This empirical error covariance matrix may be calculated as a side computation for each unique batch solution. Results based on the proposed technique will be presented for a simple, two observer and measurement error only problem.
Accurate Biomass Estimation via Bayesian Adaptive Sampling
NASA Technical Reports Server (NTRS)
Wheeler, Kevin R.; Knuth, Kevin H.; Castle, Joseph P.; Lvov, Nikolay
2005-01-01
The following concepts were introduced: a) Bayesian adaptive sampling for solving biomass estimation; b) Characterization of MISR Rahman model parameters conditioned upon MODIS landcover. c) Rigorous non-parametric Bayesian approach to analytic mixture model determination. d) Unique U.S. asset for science product validation and verification.
Mass-balance measurements in Alaska and suggestions for simplified observation programs
Trabant, D.C.; March, R.S.
1999-01-01
US Geological Survey glacier fieldwork in Alaska includes repetitious measurements, corrections for leaning or bending stakes, an ability to reliably measure seasonal snow as deep as 10 m, absolute identification of summer surfaces in the accumulation area, and annual evaluation of internal accumulation, internal ablation, and glacier-thickness changes. Prescribed field measurement and note-taking techniques help eliminate field errors and expedite the interpretative process. In the office, field notes are transferred to computerized spread-sheets for analysis, release on the World Wide Web, and archival storage. The spreadsheets have error traps to help eliminate note-taking and transcription errors. Rigorous error analysis ends when mass-balance measurements are extrapolated and integrated with area to determine glacier and basin mass balances. Unassessable errors in the glacier and basin mass-balance data reduce the value of the data set for correlations with climate change indices. The minimum glacier mass-balance program has at least three measurement sites on a glacier and the measurements must include the seasonal components of mass balance as well as the annual balance.
Software for Quantifying and Simulating Microsatellite Genotyping Error
Johnson, Paul C.D.; Haydon, Daniel T.
2007-01-01
Microsatellite genetic marker data are exploited in a variety of fields, including forensics, gene mapping, kinship inference and population genetics. In all of these fields, inference can be thwarted by failure to quantify and account for data errors, and kinship inference in particular can benefit from separating errors into two distinct classes: allelic dropout and false alleles. Pedant is MS Windows software for estimating locus-specific maximum likelihood rates of these two classes of error. Estimation is based on comparison of duplicate error-prone genotypes: neither reference genotypes nor pedigree data are required. Other functions include: plotting of error rate estimates and confidence intervals; simulations for performing power analysis and for testing the robustness of error rate estimates to violation of the underlying assumptions; and estimation of expected heterozygosity, which is a required input. The program, documentation and source code are available from http://www.stats.gla.ac.uk/~paulj/pedant.html. PMID:20066126
Adjoint-Based, Three-Dimensional Error Prediction and Grid Adaptation
NASA Technical Reports Server (NTRS)
Park, Michael A.
2002-01-01
Engineering computational fluid dynamics (CFD) analysis and design applications focus on output functions (e.g., lift, drag). Errors in these output functions are generally unknown and conservatively accurate solutions may be computed. Computable error estimates can offer the possibility to minimize computational work for a prescribed error tolerance. Such an estimate can be computed by solving the flow equations and the linear adjoint problem for the functional of interest. The computational mesh can be modified to minimize the uncertainty of a computed error estimate. This robust mesh-adaptation procedure automatically terminates when the simulation is within a user specified error tolerance. This procedure for estimating and adapting to error in a functional is demonstrated for three-dimensional Euler problems. An adaptive mesh procedure that links to a Computer Aided Design (CAD) surface representation is demonstrated for wing, wing-body, and extruded high lift airfoil configurations. The error estimation and adaptation procedure yielded corrected functions that are as accurate as functions calculated on uniformly refined grids with ten times as many grid points.
An hp-adaptivity and error estimation for hyperbolic conservation laws
NASA Technical Reports Server (NTRS)
Bey, Kim S.
1995-01-01
This paper presents an hp-adaptive discontinuous Galerkin method for linear hyperbolic conservation laws. A priori and a posteriori error estimates are derived in mesh-dependent norms which reflect the dependence of the approximate solution on the element size (h) and the degree (p) of the local polynomial approximation. The a posteriori error estimate, based on the element residual method, provides bounds on the actual global error in the approximate solution. The adaptive strategy is designed to deliver an approximate solution with the specified level of error in three steps. The a posteriori estimate is used to assess the accuracy of a given approximate solution and the a priori estimate is used to predict the mesh refinements and polynomial enrichment needed to deliver the desired solution. Numerical examples demonstrate the reliability of the a posteriori error estimates and the effectiveness of the hp-adaptive strategy.
NASA Astrophysics Data System (ADS)
Zhao, Fei; Zhang, Chi; Yang, Guilin; Chen, Chinyin
2016-12-01
This paper presents an online estimation method of cutting error by analyzing of internal sensor readings. The internal sensors of numerical control (NC) machine tool are selected to avoid installation problem. The estimation mathematic model of cutting error was proposed to compute the relative position of cutting point and tool center point (TCP) from internal sensor readings based on cutting theory of gear. In order to verify the effectiveness of the proposed model, it was simulated and experimented in gear generating grinding process. The cutting error of gear was estimated and the factors which induce cutting error were analyzed. The simulation and experiments verify that the proposed approach is an efficient way to estimate the cutting error of work-piece during machining process.
Quantum uncertainty switches on or off the error-disturbance tradeoff
NASA Astrophysics Data System (ADS)
Zhang, Yu-Xiang; Su, Zu-En; Zhu, Xuanmin; Wu, Shengjun; Chen, Zeng-Bing
2016-06-01
The indeterminacy of quantum mechanics was originally presented by Heisenberg through the tradeoff between the measuring error of the observable A and the consequential disturbance to the value of another observable B. This tradeoff now has become a popular interpretation of the uncertainty principle. However, the historic idea has never been exactly formulated previously and is recently called into question. A theory built upon operational and state-relevant definitions of error and disturbance is called for to rigorously reexamine the relationship. Here by putting forward such natural definitions, we demonstrate both theoretically and experimentally that there is no tradeoff if the outcome of measuring B is more uncertain than that of A. Otherwise, the tradeoff will be switched on and well characterized by the Jensen-Shannon divergence. Our results reveal the hidden effect of the uncertain nature possessed by the measured state, and conclude that the state-relevant relation between error and disturbance is not almosteverywhere a tradeoff as people usually believe.
NASA Astrophysics Data System (ADS)
Pan, X. G.; Wang, J. Q.; Zhou, H. Y.
2013-05-01
The variance component estimation (VCE) based on semi-parametric estimator with weighted matrix of data depth has been proposed, because the coupling system model error and gross error exist in the multi-source heterogeneous measurement data of space and ground combined TT&C (Telemetry, Tracking and Command) technology. The uncertain model error has been estimated with the semi-parametric estimator model, and the outlier has been restrained with the weighted matrix of data depth. On the basis of the restriction of the model error and outlier, the VCE can be improved and used to estimate weighted matrix for the observation data with uncertain model error or outlier. Simulation experiment has been carried out under the circumstance of space and ground combined TT&C. The results show that the new VCE based on the model error compensation can determine the rational weight of the multi-source heterogeneous data, and restrain the outlier data.
Bootstrap Standard Errors for Maximum Likelihood Ability Estimates When Item Parameters Are Unknown
ERIC Educational Resources Information Center
Patton, Jeffrey M.; Cheng, Ying; Yuan, Ke-Hai; Diao, Qi
2014-01-01
When item parameter estimates are used to estimate the ability parameter in item response models, the standard error (SE) of the ability estimate must be corrected to reflect the error carried over from item calibration. For maximum likelihood (ML) ability estimates, a corrected asymptotic SE is available, but it requires a long test and the…
NASA Astrophysics Data System (ADS)
Zhang, Yunpeng; Li, En; Zhang, Jing; Yu, Chengyong; Zheng, Hu; Guo, Gaofeng
2018-02-01
A microwave test system to measure the complex permittivity of solid and powder materials as a function of temperature has been developed. The system is based on a TM0n0 multi-mode cylindrical cavity with a slotting structure, which provides purer test modes compared to a traditional cavity. To ensure the safety, effectiveness, and longevity, heating and testing are carried out separately and the sample can move between two functional areas through an Alundum tube. Induction heating and a pneumatic platform are employed to, respectively, shorten the heating and cooling time of the sample. The single trigger function of the vector network analyzer is added to test software to suppress the drift of the resonance peak during testing. Complex permittivity is calculated by the rigorous field theoretical solution considering multilayer media loading. The variation of the cavity equivalent radius caused by the sample insertion holes is discussed in detail, and its influence to the test result is analyzed. The calibration method for the complex permittivity of the Alundum tube and quartz vial (for loading powder sample), which vary with the temperature, is given. The feasibility of the system has been verified by measuring different samples in a wide range of relative permittivity and loss tangent, and variable-temperature test results of fused quartz and SiO2 powder up to 1500 °C are compared with published data. The results indicate that the presented system is reliable and accurate. The stability of the system is verified by repeated and long-term tests, and error analysis is presented to estimate the error incurred due to the uncertainties in different error sources.
Goo, Yeung-Ja James; Chi, Der-Jang; Shen, Zong-De
2016-01-01
The purpose of this study is to establish rigorous and reliable going concern doubt (GCD) prediction models. This study first uses the least absolute shrinkage and selection operator (LASSO) to select variables and then applies data mining techniques to establish prediction models, such as neural network (NN), classification and regression tree (CART), and support vector machine (SVM). The samples of this study include 48 GCD listed companies and 124 NGCD (non-GCD) listed companies from 2002 to 2013 in the TEJ database. We conduct fivefold cross validation in order to identify the prediction accuracy. According to the empirical results, the prediction accuracy of the LASSO-NN model is 88.96 % (Type I error rate is 12.22 %; Type II error rate is 7.50 %), the prediction accuracy of the LASSO-CART model is 88.75 % (Type I error rate is 13.61 %; Type II error rate is 14.17 %), and the prediction accuracy of the LASSO-SVM model is 89.79 % (Type I error rate is 10.00 %; Type II error rate is 15.83 %).
NASA Astrophysics Data System (ADS)
Gillam, Thomas P. S.; Lester, Christopher G.
2014-11-01
We consider current and alternative approaches to setting limits on new physics signals having backgrounds from misidentified objects; for example jets misidentified as leptons, b-jets or photons. Many ATLAS and CMS analyses have used a heuristic "matrix method" for estimating the background contribution from such sources. We demonstrate that the matrix method suffers from statistical shortcomings that can adversely affect its ability to set robust limits. A rigorous alternative method is discussed, and is seen to produce fake rate estimates and limits with better qualities, but is found to be too costly to use. Having investigated the nature of the approximations used to derive the matrix method, we propose a third strategy that is seen to marry the speed of the matrix method to the performance and physicality of the more rigorous approach.
NASA Technical Reports Server (NTRS)
Fisher, Brad; Wolff, David B.
2010-01-01
Passive and active microwave rain sensors onboard earth-orbiting satellites estimate monthly rainfall from the instantaneous rain statistics collected during satellite overpasses. It is well known that climate-scale rain estimates from meteorological satellites incur sampling errors resulting from the process of discrete temporal sampling and statistical averaging. Sampling and retrieval errors ultimately become entangled in the estimation of the mean monthly rain rate. The sampling component of the error budget effectively introduces statistical noise into climate-scale rain estimates that obscure the error component associated with the instantaneous rain retrieval. Estimating the accuracy of the retrievals on monthly scales therefore necessitates a decomposition of the total error budget into sampling and retrieval error quantities. This paper presents results from a statistical evaluation of the sampling and retrieval errors for five different space-borne rain sensors on board nine orbiting satellites. Using an error decomposition methodology developed by one of the authors, sampling and retrieval errors were estimated at 0.25 resolution within 150 km of ground-based weather radars located at Kwajalein, Marshall Islands and Melbourne, Florida. Error and bias statistics were calculated according to the land, ocean and coast classifications of the surface terrain mask developed for the Goddard Profiling (GPROF) rain algorithm. Variations in the comparative error statistics are attributed to various factors related to differences in the swath geometry of each rain sensor, the orbital and instrument characteristics of the satellite and the regional climatology. The most significant result from this study found that each of the satellites incurred negative longterm oceanic retrieval biases of 10 to 30%.
Calibration of remotely sensed proportion or area estimates for misclassification error
Raymond L. Czaplewski; Glenn P. Catts
1992-01-01
Classifications of remotely sensed data contain misclassification errors that bias areal estimates. Monte Carlo techniques were used to compare two statistical methods that correct or calibrate remotely sensed areal estimates for misclassification bias using reference data from an error matrix. The inverse calibration estimator was consistently superior to the...
NASA Astrophysics Data System (ADS)
Wu, Heng
2000-10-01
In this thesis, an a-posteriori error estimator is presented and employed for solving viscous incompressible flow problems. In an effort to detect local flow features, such as vortices and separation, and to resolve flow details precisely, a velocity angle error estimator e theta which is based on the spatial derivative of velocity direction fields is designed and constructed. The a-posteriori error estimator corresponds to the antisymmetric part of the deformation-rate-tensor, and it is sensitive to the second derivative of the velocity angle field. Rationality discussions reveal that the velocity angle error estimator is a curvature error estimator, and its value reflects the accuracy of streamline curves. It is also found that the velocity angle error estimator contains the nonlinear convective term of the Navier-Stokes equations, and it identifies and computes the direction difference when the convective acceleration direction and the flow velocity direction have a disparity. Through benchmarking computed variables with the analytic solution of Kovasznay flow or the finest grid of cavity flow, it is demonstrated that the velocity angle error estimator has a better performance than the strain error estimator. The benchmarking work also shows that the computed profile obtained by using etheta can achieve the best matching outcome with the true theta field, and that it is asymptotic to the true theta variation field, with a promise of fewer unknowns. Unstructured grids are adapted by employing local cell division as well as unrefinement of transition cells. Using element class and node class can efficiently construct a hierarchical data structure which provides cell and node inter-reference at each adaptive level. Employing element pointers and node pointers can dynamically maintain the connection of adjacent elements and adjacent nodes, and thus avoids time-consuming search processes. The adaptive scheme is applied to viscous incompressible flow at different Reynolds numbers. It is found that the velocity angle error estimator can detect most flow characteristics and produce dense grids in the regions where flow velocity directions have abrupt changes. In addition, the e theta estimator makes the derivative error dilutely distribute in the whole computational domain and also allows the refinement to be conducted at regions of high error. Through comparison of the velocity angle error across the interface with neighbouring cells, it is verified that the adaptive scheme in using etheta provides an optimum mesh which can clearly resolve local flow features in a precise way. The adaptive results justify the applicability of the etheta estimator and prove that this error estimator is a valuable adaptive indicator for the automatic refinement of unstructured grids.
NASA Technical Reports Server (NTRS)
Barth, Timothy J.
2016-01-01
This chapter discusses the ongoing development of combined uncertainty and error bound estimates for computational fluid dynamics (CFD) calculations subject to imposed random parameters and random fields. An objective of this work is the construction of computable error bound formulas for output uncertainty statistics that guide CFD practitioners in systematically determining how accurately CFD realizations should be approximated and how accurately uncertainty statistics should be approximated for output quantities of interest. Formal error bounds formulas for moment statistics that properly account for the presence of numerical errors in CFD calculations and numerical quadrature errors in the calculation of moment statistics have been previously presented in [8]. In this past work, hierarchical node-nested dense and sparse tensor product quadratures are used to calculate moment statistics integrals. In the present work, a framework has been developed that exploits the hierarchical structure of these quadratures in order to simplify the calculation of an estimate of the quadrature error needed in error bound formulas. When signed estimates of realization error are available, this signed error may also be used to estimate output quantity of interest probability densities as a means to assess the impact of realization error on these density estimates. Numerical results are presented for CFD problems with uncertainty to demonstrate the capabilities of this framework.
Development of advanced methods for analysis of experimental data in diffusion
NASA Astrophysics Data System (ADS)
Jaques, Alonso V.
There are numerous experimental configurations and data analysis techniques for the characterization of diffusion phenomena. However, the mathematical methods for estimating diffusivities traditionally do not take into account the effects of experimental errors in the data, and often require smooth, noiseless data sets to perform the necessary analysis steps. The current methods used for data smoothing require strong assumptions which can introduce numerical "artifacts" into the data, affecting confidence in the estimated parameters. The Boltzmann-Matano method is used extensively in the determination of concentration - dependent diffusivities, D(C), in alloys. In the course of analyzing experimental data, numerical integrations and differentiations of the concentration profile are performed. These methods require smoothing of the data prior to analysis. We present here an approach to the Boltzmann-Matano method that is based on a regularization method to estimate a differentiation operation on the data, i.e., estimate the concentration gradient term, which is important in the analysis process for determining the diffusivity. This approach, therefore, has the potential to be less subjective, and in numerical simulations shows an increased accuracy in the estimated diffusion coefficients. We present a regression approach to estimate linear multicomponent diffusion coefficients that eliminates the need pre-treat or pre-condition the concentration profile. This approach fits the data to a functional form of the mathematical expression for the concentration profile, and allows us to determine the diffusivity matrix directly from the fitted parameters. Reformulation of the equation for the analytical solution is done in order to reduce the size of the problem and accelerate the convergence. The objective function for the regression can incorporate point estimations for error in the concentration, improving the statistical confidence in the estimated diffusivity matrix. Case studies are presented to demonstrate the reliability and the stability of the method. To the best of our knowledge there is no published analysis of the effects of experimental errors on the reliability of the estimates for the diffusivities. For the case of linear multicomponent diffusion, we analyze the effects of the instrument analytical spot size, positioning uncertainty, and concentration uncertainty on the resulting values of the diffusivities. These effects are studied using Monte Carlo method on simulated experimental data. Several useful scaling relationships were identified which allow more rigorous and quantitative estimates of the errors in the measured data, and are valuable for experimental design. To further analyze anomalous diffusion processes, where traditional diffusional transport equations do not hold, we explore the use of fractional calculus in analytically representing these processes is proposed. We use the fractional calculus approach for anomalous diffusion processes occurring through a finite plane sheet with one face held at a fixed concentration, the other held at zero, and the initial concentration within the sheet equal to zero. This problem is related to cases in nature where diffusion is enhanced relative to the classical process, and the order of differentiation is not necessarily a second--order differential equation. That is, differentiation is of fractional order alpha, where 1 ≤ alpha < 2. For alpha = 2, the presented solutions reduce to the classical second-order diffusion solution for the conditions studied. The solution obtained allows the analysis of permeation experiments. Frequently, hydrogen diffusion is analyzed using electrochemical permeation methods using the traditional, Fickian-based theory. Experimental evidence shows the latter analytical approach is not always appropiate, because reported data shows qualitative (and quantitative) deviation from its theoretical scaling predictions. Preliminary analysis of data shows better agreement with fractional diffusion analysis when compared to traditional square-root scaling. Although there is a large amount of work in the estimation of the diffusivity from experimental data, reported studies typically present only the analytical description for the diffusivity, without scattering. However, because these studies do not consider effects produced by instrument analysis, their direct applicability is limited. We propose alternatives to address these, and to evaluate their influence on the final resulting diffusivity values.
NASA Astrophysics Data System (ADS)
Kim, J.; Park, M.; Baik, H. S.; Choi, Y.
2016-12-01
At the present time, arguments continue regarding the migration speeds of Martian dune fields and their correlation with atmospheric circulation. However, precisely measuring the spatial translation of Martian dunes has rarely conducted only a very few times Therefore, we developed a generic procedure to precisely measure the migration of dune fields with recently introduced 25-cm resolution High Resolution Imaging Science Experimen (HIRISE) employing a high-accuracy photogrammetric processor and sub-pixel image correlator. The processor was designed to trace estimated dune migration, albeit slight, over the Martian surface by 1) the introduction of very high resolution ortho images and stereo analysis based on hierarchical geodetic control for better initial point settings; 2) positioning error removal throughout the sensor model refinement with a non-rigorous bundle block adjustment, which makes possible the co-alignment of all images in a time series; and 3) improved sub-pixel co-registration algorithms using optical flow with a refinement stage conducted on a pyramidal grid processor and a blunder classifier. Moreover, volumetric changes of Martian dunes were additionally traced by means of stereo analysis and photoclinometry. The established algorithms have been tested using high-resolution HIRISE images over a large number of Martian dune fields covering whole Mars Global Dune Database. Migrations over well-known crater dune fields appeared to be almost static for the considerable temporal periods and were weakly correlated with wind directions estimated by the Mars Climate Database (Millour et al. 2015). Only over a few Martian dune fields, such as Kaiser crater, meaningful migration speeds (>1m/year) compared to phtotogrammetric error residual have been measured. Currently a technical improved processor to compensate error residual using time series observation is under developing and expected to produce the long term migration speed over Martian dune fields where constant HIRISE image acquisitions are available. ACKNOWLEDGEMENTS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under iMars grant agreement Nr. 607379.
Mao, Chen; Pinal, Rodolfo; Morris, Kenneth R
2005-07-01
The objective of the study is to develop a model to estimate the solubility ratio of two polymorphic forms based on the calculation of the free energy difference of two forms at any temperature. This model can be used for compounds with low solubility (a few mole percent) in which infinite dilution can be approximated. The model is derived using the melting temperature and heat of fusion for apparent monotropic systems, and the solid-solid transition temperature and heat of transition for apparent enantiotropic systems. A rigorous derivation also requires heat capacity (Cp) measurement of liquid and two solid forms. This model is validated by collecting thermal properties of polymorphs for several drugs using conventional or modulated differential scanning calorimetry. From these properties the solubility ratio of two polymorphs is evaluated using the model and compared with the experimental value at different temperatures. The predicted values using the full model agree well with the experimental ones. For the purpose of easy measurement, working equations without Cp terms are also applied. Ignoring Cp may result in an error of 10% or less, suggesting that the working equation is applicable in practice. Additional error may be generated for the apparent enantiotropic systems due to the inconsistency between the observed solid-solid transition temperature and the true thermodynamic transition temperature. This inconsistency allows the predicted solubility ratios (low melt/high melt) to be smaller. Therefore, a correction factor of 1.1 is recommended to reduce the error when the working equation is used to estimate the solubility ratio of an enantiotropic system. The study of the free energy changes of two crystalline forms of a drug allows for the development of a model that successfully predicts the solubility ratio at any temperature from their thermal properties. This model provides a thermodynamic foundation as to how the free energy difference of two polymorphs is reflected by their equilibrium solubilities. It also provides a quick and practical way of evaluating the relative solubility of two polymorphs from single differential scanning calorimetry runs.
Predictability of the Lagrangian Motion in the Upper Ocean
NASA Astrophysics Data System (ADS)
Piterbarg, L. I.; Griffa, A.; Griffa, A.; Mariano, A. J.; Ozgokmen, T. M.; Ryan, E. H.
2001-12-01
The complex non-linear dynamics of the upper ocean leads to chaotic behavior of drifter trajectories in the ocean. Our study is focused on estimating the predictability limit for the position of an individual Lagrangian particle or a particle cluster based on the knowledge of mean currents and observations of nearby particles (predictors). The Lagrangian prediction problem, besides being a fundamental scientific problem, is also of great importance for practical applications such as search and rescue operations and for modeling the spread of fish larvae. A stochastic multi-particle model for the Lagrangian motion has been rigorously formulated and is a generalization of the well known "random flight" model for a single particle. Our model is mathematically consistent and includes a few easily interpreted parameters, such as the Lagrangian velocity decorrelation time scale, the turbulent velocity variance, and the velocity decorrelation radius, that can be estimated from data. The top Lyapunov exponent for an isotropic version of the model is explicitly expressed as a function of these parameters enabling us to approximate the predictability limit to first order. Lagrangian prediction errors for two new prediction algorithms are evaluated against simple algorithms and each other and are used to test the predictability limits of the stochastic model for isotropic turbulence. The first algorithm is based on a Kalman filter and uses the developed stochastic model. Its implementation for drifter clusters in both the Tropical Pacific and Adriatic Sea, showed good prediction skill over a period of 1-2 weeks. The prediction error is primarily a function of the data density, defined as the number of predictors within a velocity decorrelation spatial scale from the particle to be predicted. The second algorithm is model independent and is based on spatial regression considerations. Preliminary results, based on simulated, as well as, real data, indicate that it performs better than the Kalman-based algorithm in strong shear flows. An important component of our research is the optimal predictor location problem; Where should floats be launched in order to minimize the Lagrangian prediction error? Preliminary Lagrangian sampling results for different flow scenarios will be presented.
Towards Identifying and Reducing the Bias of Disease Information Extracted from Search Engine Data
Huang, Da-Cang; Wang, Jin-Feng; Huang, Ji-Xia; Sui, Daniel Z.; Zhang, Hong-Yan; Hu, Mao-Gui; Xu, Cheng-Dong
2016-01-01
The estimation of disease prevalence in online search engine data (e.g., Google Flu Trends (GFT)) has received a considerable amount of scholarly and public attention in recent years. While the utility of search engine data for disease surveillance has been demonstrated, the scientific community still seeks ways to identify and reduce biases that are embedded in search engine data. The primary goal of this study is to explore new ways of improving the accuracy of disease prevalence estimations by combining traditional disease data with search engine data. A novel method, Biased Sentinel Hospital-based Area Disease Estimation (B-SHADE), is introduced to reduce search engine data bias from a geographical perspective. To monitor search trends on Hand, Foot and Mouth Disease (HFMD) in Guangdong Province, China, we tested our approach by selecting 11 keywords from the Baidu index platform, a Chinese big data analyst similar to GFT. The correlation between the number of real cases and the composite index was 0.8. After decomposing the composite index at the city level, we found that only 10 cities presented a correlation of close to 0.8 or higher. These cities were found to be more stable with respect to search volume, and they were selected as sample cities in order to estimate the search volume of the entire province. After the estimation, the correlation improved from 0.8 to 0.864. After fitting the revised search volume with historical cases, the mean absolute error was 11.19% lower than it was when the original search volume and historical cases were combined. To our knowledge, this is the first study to reduce search engine data bias levels through the use of rigorous spatial sampling strategies. PMID:27271698
Towards Identifying and Reducing the Bias of Disease Information Extracted from Search Engine Data.
Huang, Da-Cang; Wang, Jin-Feng; Huang, Ji-Xia; Sui, Daniel Z; Zhang, Hong-Yan; Hu, Mao-Gui; Xu, Cheng-Dong
2016-06-01
The estimation of disease prevalence in online search engine data (e.g., Google Flu Trends (GFT)) has received a considerable amount of scholarly and public attention in recent years. While the utility of search engine data for disease surveillance has been demonstrated, the scientific community still seeks ways to identify and reduce biases that are embedded in search engine data. The primary goal of this study is to explore new ways of improving the accuracy of disease prevalence estimations by combining traditional disease data with search engine data. A novel method, Biased Sentinel Hospital-based Area Disease Estimation (B-SHADE), is introduced to reduce search engine data bias from a geographical perspective. To monitor search trends on Hand, Foot and Mouth Disease (HFMD) in Guangdong Province, China, we tested our approach by selecting 11 keywords from the Baidu index platform, a Chinese big data analyst similar to GFT. The correlation between the number of real cases and the composite index was 0.8. After decomposing the composite index at the city level, we found that only 10 cities presented a correlation of close to 0.8 or higher. These cities were found to be more stable with respect to search volume, and they were selected as sample cities in order to estimate the search volume of the entire province. After the estimation, the correlation improved from 0.8 to 0.864. After fitting the revised search volume with historical cases, the mean absolute error was 11.19% lower than it was when the original search volume and historical cases were combined. To our knowledge, this is the first study to reduce search engine data bias levels through the use of rigorous spatial sampling strategies.
Suryawanshi, Kulbhushansingh R; Bhatnagar, Yash Veer; Mishra, Charudutt
2012-07-01
Mountain ungulates around the world have been threatened by illegal hunting, habitat modification, increased livestock grazing, disease and development. Mountain ungulates play an important functional role in grasslands as primary consumers and as prey for wild carnivores, and monitoring of their populations is important for conservation purposes. However, most of the several currently available methods of estimating wild ungulate abundance are either difficult to implement or too expensive for mountainous terrain. A rigorous method of sampling ungulate abundance in mountainous areas that can allow for some measure of sampling error is therefore much needed. To this end, we used a combination of field data and computer simulations to test the critical assumptions associated with double-observer technique based on capture-recapture theory. The technique was modified and adapted to estimate the populations of bharal (Pseudois nayaur) and ibex (Capra sibirica) at five different sites. Conducting the two double-observer surveys simultaneously led to underestimation of the population by 15%. We therefore recommend separating the surveys in space or time. The overall detection probability for the two observers was 0.74 and 0.79. Our surveys estimated mountain ungulate populations (± 95% confidence interval) of 735 (± 44), 580 (± 46), 509 (± 53), 184 (± 40) and 30 (± 14) individuals at the five sites, respectively. A detection probability of 0.75 was found to be sufficient to detect a change of 20% in populations of >420 individuals. Based on these results, we believe that this method is sufficiently precise for scientific and conservation purposes and therefore recommend the use of the double-observer approach (with the two surveys separated in time or space) for the estimation and monitoring of mountain ungulate populations.
NASA Astrophysics Data System (ADS)
Eppenhof, Koen A. J.; Pluim, Josien P. W.
2017-02-01
Error estimation in medical image registration is valuable when validating, comparing, or combining registration methods. To validate a nonlinear image registration method, ideally the registration error should be known for the entire image domain. We propose a supervised method for the estimation of a registration error map for nonlinear image registration. The method is based on a convolutional neural network that estimates the norm of the residual deformation from patches around each pixel in two registered images. This norm is interpreted as the registration error, and is defined for every pixel in the image domain. The network is trained using a set of artificially deformed images. Each training example is a pair of images: the original image, and a random deformation of that image. No manually labeled ground truth error is required. At test time, only the two registered images are required as input. We train and validate the network on registrations in a set of 2D digital subtraction angiography sequences, such that errors up to eight pixels can be estimated. We show that for this range of errors the convolutional network is able to learn the registration error in pairs of 2D registered images at subpixel precision. Finally, we present a proof of principle for the extension to 3D registration problems in chest CTs, showing that the method has the potential to estimate errors in 3D registration problems.
Goal-oriented explicit residual-type error estimates in XFEM
NASA Astrophysics Data System (ADS)
Rüter, Marcus; Gerasimov, Tymofiy; Stein, Erwin
2013-08-01
A goal-oriented a posteriori error estimator is derived to control the error obtained while approximately evaluating a quantity of engineering interest, represented in terms of a given linear or nonlinear functional, using extended finite elements of Q1 type. The same approximation method is used to solve the dual problem as required for the a posteriori error analysis. It is shown that for both problems to be solved numerically the same singular enrichment functions can be used. The goal-oriented error estimator presented can be classified as explicit residual type, i.e. the residuals of the approximations are used directly to compute upper bounds on the error of the quantity of interest. This approach therefore extends the explicit residual-type error estimator for classical energy norm error control as recently presented in Gerasimov et al. (Int J Numer Meth Eng 90:1118-1155, 2012a). Without loss of generality, the a posteriori error estimator is applied to the model problem of linear elastic fracture mechanics. Thus, emphasis is placed on the fracture criterion, here the J-integral, as the chosen quantity of interest. Finally, various illustrative numerical examples are presented where, on the one hand, the error estimator is compared to its finite element counterpart and, on the other hand, improved enrichment functions, as introduced in Gerasimov et al. (2012b), are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jakeman, J.D., E-mail: jdjakem@sandia.gov; Wildey, T.
2015-01-01
In this paper we present an algorithm for adaptive sparse grid approximations of quantities of interest computed from discretized partial differential equations. We use adjoint-based a posteriori error estimates of the physical discretization error and the interpolation error in the sparse grid to enhance the sparse grid approximation and to drive adaptivity of the sparse grid. Utilizing these error estimates provides significantly more accurate functional values for random samples of the sparse grid approximation. We also demonstrate that alternative refinement strategies based upon a posteriori error estimates can lead to further increases in accuracy in the approximation over traditional hierarchicalmore » surplus based strategies. Throughout this paper we also provide and test a framework for balancing the physical discretization error with the stochastic interpolation error of the enhanced sparse grid approximation.« less
M. Zachariah Peery; Benjamin H. Becker; Steven R. Beissinger
2007-01-01
The ratio of hatch-year (HY) to after-hatch-year (AHY) individuals (HY:AHY ratio) can be a valuable metric for estimating avian productivity because it does not require monitoring individual breeding sites and can often be estimated across large geographic and temporal scales. However, rigorous estimation of age ratios requires that both young and adult age classes are...
Regression-assisted deconvolution.
McIntyre, Julie; Stefanski, Leonard A
2011-06-30
We present a semi-parametric deconvolution estimator for the density function of a random variable biX that is measured with error, a common challenge in many epidemiological studies. Traditional deconvolution estimators rely only on assumptions about the distribution of X and the error in its measurement, and ignore information available in auxiliary variables. Our method assumes the availability of a covariate vector statistically related to X by a mean-variance function regression model, where regression errors are normally distributed and independent of the measurement errors. Simulations suggest that the estimator achieves a much lower integrated squared error than the observed-data kernel density estimator when models are correctly specified and the assumption of normal regression errors is met. We illustrate the method using anthropometric measurements of newborns to estimate the density function of newborn length. Copyright © 2011 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Yang, Shuang-Long; Liang, Li-Ping; Liu, Hou-De; Xu, Ke-Jun
2018-03-01
Aiming at reducing the estimation error of the sensor frequency response function (FRF) estimated by the commonly used window-based spectral estimation method, the error models of interpolation and transient errors are derived in the form of non-parameter models. Accordingly, window effects on the errors are analyzed and reveal that the commonly used hanning window leads to smaller interpolation error which can also be significantly eliminated by the cubic spline interpolation method when estimating the FRF from the step response data, and window with smaller front-end value can restrain more transient error. Thus, a new dual-cosine window with its non-zero discrete Fourier transform bins at -3, -1, 0, 1, and 3 is constructed for FRF estimation. Compared with the hanning window, the new dual-cosine window has the equivalent interpolation error suppression capability and better transient error suppression capability when estimating the FRF from the step response; specifically, it reduces the asymptotic property of the transient error from O(N-2) of the hanning window method to O(N-4) while only increases the uncertainty slightly (about 0.4 dB). Then, one direction of a wind tunnel strain gauge balance which is a high order, small damping, and non-minimum phase system is employed as the example for verifying the new dual-cosine window-based spectral estimation method. The model simulation result shows that the new dual-cosine window method is better than the hanning window method for FRF estimation, and compared with the Gans method and LPM method, it has the advantages of simple computation, less time consumption, and short data requirement; the actual data calculation result of the balance FRF is consistent to the simulation result. Thus, the new dual-cosine window is effective and practical for FRF estimation.
NASA Technical Reports Server (NTRS)
Bell, Thomas L.; Kundu, Prasun K.; Kummerow, Christian D.; Einaudi, Franco (Technical Monitor)
2000-01-01
Quantitative use of satellite-derived maps of monthly rainfall requires some measure of the accuracy of the satellite estimates. The rainfall estimate for a given map grid box is subject to both remote-sensing error and, in the case of low-orbiting satellites, sampling error due to the limited number of observations of the grid box provided by the satellite. A simple model of rain behavior predicts that Root-mean-square (RMS) random error in grid-box averages should depend in a simple way on the local average rain rate, and the predicted behavior has been seen in simulations using surface rain-gauge and radar data. This relationship was examined using satellite SSM/I data obtained over the western equatorial Pacific during TOGA COARE. RMS error inferred directly from SSM/I rainfall estimates was found to be larger than predicted from surface data, and to depend less on local rain rate than was predicted. Preliminary examination of TRMM microwave estimates shows better agreement with surface data. A simple method of estimating rms error in satellite rainfall estimates is suggested, based on quantities that can be directly computed from the satellite data.
The Sensitivity of Adverse Event Cost Estimates to Diagnostic Coding Error
Wardle, Gavin; Wodchis, Walter P; Laporte, Audrey; Anderson, Geoffrey M; Baker, Ross G
2012-01-01
Objective To examine the impact of diagnostic coding error on estimates of hospital costs attributable to adverse events. Data Sources Original and reabstracted medical records of 9,670 complex medical and surgical admissions at 11 hospital corporations in Ontario from 2002 to 2004. Patient specific costs, not including physician payments, were retrieved from the Ontario Case Costing Initiative database. Study Design Adverse events were identified among the original and reabstracted records using ICD10-CA (Canadian adaptation of ICD10) codes flagged as postadmission complications. Propensity score matching and multivariate regression analysis were used to estimate the cost of the adverse events and to determine the sensitivity of cost estimates to diagnostic coding error. Principal Findings Estimates of the cost of the adverse events ranged from $16,008 (metabolic derangement) to $30,176 (upper gastrointestinal bleeding). Coding errors caused the total cost attributable to the adverse events to be underestimated by 16 percent. The impact of coding error on adverse event cost estimates was highly variable at the organizational level. Conclusions Estimates of adverse event costs are highly sensitive to coding error. Adverse event costs may be significantly underestimated if the likelihood of error is ignored. PMID:22091908
NASA Astrophysics Data System (ADS)
Zheng, Yuejiu; Ouyang, Minggao; Han, Xuebing; Lu, Languang; Li, Jianqiu
2018-02-01
Sate of charge (SOC) estimation is generally acknowledged as one of the most important functions in battery management system for lithium-ion batteries in new energy vehicles. Though every effort is made for various online SOC estimation methods to reliably increase the estimation accuracy as much as possible within the limited on-chip resources, little literature discusses the error sources for those SOC estimation methods. This paper firstly reviews the commonly studied SOC estimation methods from a conventional classification. A novel perspective focusing on the error analysis of the SOC estimation methods is proposed. SOC estimation methods are analyzed from the views of the measured values, models, algorithms and state parameters. Subsequently, the error flow charts are proposed to analyze the error sources from the signal measurement to the models and algorithms for the widely used online SOC estimation methods in new energy vehicles. Finally, with the consideration of the working conditions, choosing more reliable and applicable SOC estimation methods is discussed, and the future development of the promising online SOC estimation methods is suggested.
NASA Astrophysics Data System (ADS)
Beneš, Michal; Pažanin, Igor
2018-03-01
This paper reports an analytical investigation of non-isothermal fluid flow in a thin (or long) vertical pipe filled with porous medium via asymptotic analysis. We assume that the fluid inside the pipe is cooled (or heated) by the surrounding medium and that the flow is governed by the prescribed pressure drop between pipe's ends. Starting from the dimensionless Darcy-Brinkman-Boussinesq system, we formally derive a macroscopic model describing the effective flow at small Brinkman-Darcy number. The asymptotic approximation is given by the explicit formulae for the velocity, pressure and temperature clearly acknowledging the effects of the cooling (heating) and porous structure. The theoretical error analysis is carried out to indicate the order of accuracy and to provide a rigorous justification of the effective model.
David A. Tallmon; Dave Gregovich; Robin S. Waples; C. Scott Baker; Jennifer Jackson; Barbara L. Taylor; Eric Archer; Karen K. Martien; Fred W. Allendorf; Michael K. Schwartz
2010-01-01
The utility of microsatellite markers for inferring population size and trend has not been rigorously examined, even though these markers are commonly used to monitor the demography of natural populations. We assessed the ability of a linkage disequilibrium estimator of effective population size (Ne) and a simple capture-recapture estimator of abundance (N) to quantify...
A posteriori error estimates in voice source recovery
NASA Astrophysics Data System (ADS)
Leonov, A. S.; Sorokin, V. N.
2017-12-01
The inverse problem of voice source pulse recovery from a segment of a speech signal is under consideration. A special mathematical model is used for the solution that relates these quantities. A variational method of solving inverse problem of voice source recovery for a new parametric class of sources, that is for piecewise-linear sources (PWL-sources), is proposed. Also, a technique for a posteriori numerical error estimation for obtained solutions is presented. A computer study of the adequacy of adopted speech production model with PWL-sources is performed in solving the inverse problems for various types of voice signals, as well as corresponding study of a posteriori error estimates. Numerical experiments for speech signals show satisfactory properties of proposed a posteriori error estimates, which represent the upper bounds of possible errors in solving the inverse problem. The estimate of the most probable error in determining the source-pulse shapes is about 7-8% for the investigated speech material. It is noted that a posteriori error estimates can be used as a criterion of the quality for obtained voice source pulses in application to speaker recognition.
NASA Technical Reports Server (NTRS)
Todling, Ricardo
2015-01-01
Recently, this author studied an approach to the estimation of system error based on combining observation residuals derived from a sequential filter and fixed lag-1 smoother. While extending the methodology to a variational formulation, experimenting with simple models and making sure consistency was found between the sequential and variational formulations, the limitations of the residual-based approach came clearly to the surface. This note uses the sequential assimilation application to simple nonlinear dynamics to highlight the issue. Only when some of the underlying error statistics are assumed known is it possible to estimate the unknown component. In general, when considerable uncertainties exist in the underlying statistics as a whole, attempts to obtain separate estimates of the various error covariances are bound to lead to misrepresentation of errors. The conclusions are particularly relevant to present-day attempts to estimate observation-error correlations from observation residual statistics. A brief illustration of the issue is also provided by comparing estimates of error correlations derived from a quasi-operational assimilation system and a corresponding Observing System Simulation Experiments framework.
Comparison of spatial association approaches for landscape mapping of soil organic carbon stocks
NASA Astrophysics Data System (ADS)
Miller, B. A.; Koszinski, S.; Wehrhan, M.; Sommer, M.
2015-03-01
The distribution of soil organic carbon (SOC) can be variable at small analysis scales, but consideration of its role in regional and global issues demands the mapping of large extents. There are many different strategies for mapping SOC, among which is to model the variables needed to calculate the SOC stock indirectly or to model the SOC stock directly. The purpose of this research is to compare direct and indirect approaches to mapping SOC stocks from rule-based, multiple linear regression models applied at the landscape scale via spatial association. The final products for both strategies are high-resolution maps of SOC stocks (kg m-2), covering an area of 122 km2, with accompanying maps of estimated error. For the direct modelling approach, the estimated error map was based on the internal error estimations from the model rules. For the indirect approach, the estimated error map was produced by spatially combining the error estimates of component models via standard error propagation equations. We compared these two strategies for mapping SOC stocks on the basis of the qualities of the resulting maps as well as the magnitude and distribution of the estimated error. The direct approach produced a map with less spatial variation than the map produced by the indirect approach. The increased spatial variation represented by the indirect approach improved R2 values for the topsoil and subsoil stocks. Although the indirect approach had a lower mean estimated error for the topsoil stock, the mean estimated error for the total SOC stock (topsoil + subsoil) was lower for the direct approach. For these reasons, we recommend the direct approach to modelling SOC stocks be considered a more conservative estimate of the SOC stocks' spatial distribution.
Comparison of spatial association approaches for landscape mapping of soil organic carbon stocks
NASA Astrophysics Data System (ADS)
Miller, B. A.; Koszinski, S.; Wehrhan, M.; Sommer, M.
2014-11-01
The distribution of soil organic carbon (SOC) can be variable at small analysis scales, but consideration of its role in regional and global issues demands the mapping of large extents. There are many different strategies for mapping SOC, among which are to model the variables needed to calculate the SOC stock indirectly or to model the SOC stock directly. The purpose of this research is to compare direct and indirect approaches to mapping SOC stocks from rule-based, multiple linear regression models applied at the landscape scale via spatial association. The final products for both strategies are high-resolution maps of SOC stocks (kg m-2), covering an area of 122 km2, with accompanying maps of estimated error. For the direct modelling approach, the estimated error map was based on the internal error estimations from the model rules. For the indirect approach, the estimated error map was produced by spatially combining the error estimates of component models via standard error propagation equations. We compared these two strategies for mapping SOC stocks on the basis of the qualities of the resulting maps as well as the magnitude and distribution of the estimated error. The direct approach produced a map with less spatial variation than the map produced by the indirect approach. The increased spatial variation represented by the indirect approach improved R2 values for the topsoil and subsoil stocks. Although the indirect approach had a lower mean estimated error for the topsoil stock, the mean estimated error for the total SOC stock (topsoil + subsoil) was lower for the direct approach. For these reasons, we recommend the direct approach to modelling SOC stocks be considered a more conservative estimate of the SOC stocks' spatial distribution.
Sampling strategies for estimating brook trout effective population size
Andrew R. Whiteley; Jason A. Coombs; Mark Hudy; Zachary Robinson; Keith H. Nislow; Benjamin H. Letcher
2012-01-01
The influence of sampling strategy on estimates of effective population size (Ne) from single-sample genetic methods has not been rigorously examined, though these methods are increasingly used. For headwater salmonids, spatially close kin association among age-0 individuals suggests that sampling strategy (number of individuals and location from...
Olsen, Morten Tange; Bérubé, Martine; Robbins, Jooke; Palsbøll, Per J
2012-09-06
Telomeres, the protective cap of chromosomes, have emerged as powerful markers of biological age and life history in model and non-model species. The qPCR method for telomere length estimation is one of the most common methods for telomere length estimation, but has received recent critique for being too error-prone and yielding unreliable results. This critique coincides with an increasing awareness of the potentials and limitations of the qPCR technique in general and the proposal of a general set of guidelines (MIQE) for standardization of experimental, analytical, and reporting steps of qPCR. In order to evaluate the utility of the qPCR method for telomere length estimation in non-model species, we carried out four different qPCR assays directed at humpback whale telomeres, and subsequently performed a rigorous quality control to evaluate the performance of each assay. Performance differed substantially among assays and only one assay was found useful for telomere length estimation in humpback whales. The most notable factors causing these inter-assay differences were primer design and choice of using singleplex or multiplex assays. Inferred amplification efficiencies differed by up to 40% depending on assay and quantification method, however this variation only affected telomere length estimates in the worst performing assays. Our results suggest that seemingly well performing qPCR assays may contain biases that will only be detected by extensive quality control. Moreover, we show that the qPCR method for telomere length estimation can be highly precise and accurate, and thus suitable for telomere measurement in non-model species, if effort is devoted to optimization at all experimental and analytical steps. We conclude by highlighting a set of quality controls which may serve for further standardization of the qPCR method for telomere length estimation, and discuss some of the factors that may cause variation in qPCR experiments.
2012-01-01
Background Telomeres, the protective cap of chromosomes, have emerged as powerful markers of biological age and life history in model and non-model species. The qPCR method for telomere length estimation is one of the most common methods for telomere length estimation, but has received recent critique for being too error-prone and yielding unreliable results. This critique coincides with an increasing awareness of the potentials and limitations of the qPCR technique in general and the proposal of a general set of guidelines (MIQE) for standardization of experimental, analytical, and reporting steps of qPCR. In order to evaluate the utility of the qPCR method for telomere length estimation in non-model species, we carried out four different qPCR assays directed at humpback whale telomeres, and subsequently performed a rigorous quality control to evaluate the performance of each assay. Results Performance differed substantially among assays and only one assay was found useful for telomere length estimation in humpback whales. The most notable factors causing these inter-assay differences were primer design and choice of using singleplex or multiplex assays. Inferred amplification efficiencies differed by up to 40% depending on assay and quantification method, however this variation only affected telomere length estimates in the worst performing assays. Conclusion Our results suggest that seemingly well performing qPCR assays may contain biases that will only be detected by extensive quality control. Moreover, we show that the qPCR method for telomere length estimation can be highly precise and accurate, and thus suitable for telomere measurement in non-model species, if effort is devoted to optimization at all experimental and analytical steps. We conclude by highlighting a set of quality controls which may serve for further standardization of the qPCR method for telomere length estimation, and discuss some of the factors that may cause variation in qPCR experiments. PMID:22954451
Estimation of brood and nest survival: Comparative methods in the presence of heterogeneity
Manly, Bryan F.J.; Schmutz, Joel A.
2001-01-01
The Mayfield method has been widely used for estimating survival of nests and young animals, especially when data are collected at irregular observation intervals. However, this method assumes survival is constant throughout the study period, which often ignores biologically relevant variation and may lead to biased survival estimates. We examined the bias and accuracy of 1 modification to the Mayfield method that allows for temporal variation in survival, and we developed and similarly tested 2 additional methods. One of these 2 new methods is simply an iterative extension of Klett and Johnson's method, which we refer to as the Iterative Mayfield method and bears similarity to Kaplan-Meier methods. The other method uses maximum likelihood techniques for estimation and is best applied to survival of animals in groups or families, rather than as independent individuals. We also examined how robust these estimators are to heterogeneity in the data, which can arise from such sources as dependent survival probabilities among siblings, inherent differences among families, and adoption. Testing of estimator performance with respect to bias, accuracy, and heterogeneity was done using simulations that mimicked a study of survival of emperor goose (Chen canagica) goslings. Assuming constant survival for inappropriately long periods of time or use of Klett and Johnson's methods resulted in large bias or poor accuracy (often >5% bias or root mean square error) compared to our Iterative Mayfield or maximum likelihood methods. Overall, estimator performance was slightly better with our Iterative Mayfield than our maximum likelihood method, but the maximum likelihood method provides a more rigorous framework for testing covariates and explicity models a heterogeneity factor. We demonstrated use of all estimators with data from emperor goose goslings. We advocate that future studies use the new methods outlined here rather than the traditional Mayfield method or its previous modifications.
VizieR Online Data Catalog: JMMC Stellar Diameters Catalogue - JSDC. Version 2 (Bourges+, 2017)
NASA Astrophysics Data System (ADS)
Bourges, L.; Mella, G.; Lafrasse, S.; Duvert, G.; Chelli, A.; Le Bouquin, J.-B.; Delfosse, X.; Chesneau, O.
2017-01-01
The JMMC (Jean-Marie Mariotti Center) Calibrator Workgroup has long developed methods to estimate the angular diameter of stars, and provides this expertise in the SearchCal tool (http://www.jmmc.fr/searchcal). SearchCal creates a dynamical catalogue of stars suitable to calibrate Optical Long-Baseline Interferometry (OLBI) observations from on-line queries of CDS catalogues, according to observational parameters. In essence, SearchCal is limited only by the completeness of the stellar catalogues it uses, and in particular is not limited in magnitude. SearchCal being an application centered on the somewhat restricted OLBI observational purposes, it appeared useful to make our angular diameter estimates available for other purposes through a CDS-based catalog, the JMMC Stellar Diameters Catalogue (JSDC, II/300). This second version of the catalog represents a tenfold improvement both in terms of the number of objects and on the precision of the estimates. This is due to a new algorithm using reddening-free quantities -- the pseudomagnitudes, allied to a new database of all the measured stellar angular diameters -- the JMDC (II/345/jmdc), and a rigorous error propagation at all steps of the processing. All this is described in the associated publication by Chelli et al. (2016A&A...589A.112C). The catalog reports the Limb-Darkened Diameter (LDD) and error for 465877 stars, as well as their BVRIJHKLMN magnitudes, Uniform Disk Diameters (UDD) in these same photometric bands, Spectral Type, and two supplementary quality indicators: - the mean-diameter chi-square (see Appendix A.2 of Chelli et al., 2016A&A...589A.112C). - a flag indicating some degree of caution in choosing this star as an OLBI calibrator: known spectroscopic binaries, Algol type stars, etc, see Note (1). The conversion from LDD to UDD in each spectral band is made using mainly the coefficients from J/A+A/556/A86/table16 and J/A+A/554/A98/table16 when possible (compatible spectral types) and following the prescriptions of the JMMC report at http://www.mariotti.fr/doc/approved/JMMC-MEM-2610-0001.pdf in all other cases. The errors on UDD values are omitted as they are similar to the LDD error. Instead of using this catalog to find a suitable OLBI calibrator, the reader is invited to use the SearchCal tool at JMMC (http://www.jmmc.fr/searchcal) which permits a refined search, give access to other possible calibrators (faint stars not in the Tycho catalog) and benefits from the maintainance of JMMC and CDS databases. This catalog replaces the previous JSDC (II/300/jsdc). Almost all stars in II/300/jsdc are found in II/346 with a consistent diameter, with the exception of 1935 stars whose estimated diameter differs from more than 2 sigmas between the two catalogs. The associated file JSDCv2v1 dis.vot (jsdc dis.dat) summarizes this difference. (5 data files).
Fully anisotropic goal-oriented mesh adaptation for 3D steady Euler equations
NASA Astrophysics Data System (ADS)
Loseille, A.; Dervieux, A.; Alauzet, F.
2010-04-01
This paper studies the coupling between anisotropic mesh adaptation and goal-oriented error estimate. The former is very well suited to the control of the interpolation error. It is generally interpreted as a local geometric error estimate. On the contrary, the latter is preferred when studying approximation errors for PDEs. It generally involves non local error contributions. Consequently, a full and strong coupling between both is hard to achieve due to this apparent incompatibility. This paper shows how to achieve this coupling in three steps. First, a new a priori error estimate is proved in a formal framework adapted to goal-oriented mesh adaptation for output functionals. This estimate is based on a careful analysis of the contributions of the implicit error and of the interpolation error. Second, the error estimate is applied to the set of steady compressible Euler equations which are solved by a stabilized Galerkin finite element discretization. A goal-oriented error estimation is derived. It involves the interpolation error of the Euler fluxes weighted by the gradient of the adjoint state associated with the observed functional. Third, rewritten in the continuous mesh framework, the previous estimate is minimized on the set of continuous meshes thanks to a calculus of variations. The optimal continuous mesh is then derived analytically. Thus, it can be used as a metric tensor field to drive the mesh adaptation. From a numerical point of view, this method is completely automatic, intrinsically anisotropic, and does not depend on any a priori choice of variables to perform the adaptation. 3D examples of steady flows around supersonic and transsonic jets are presented to validate the current approach and to demonstrate its efficiency.
Human error mitigation initiative (HEMI) : summary report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stevens, Susan M.; Ramos, M. Victoria; Wenner, Caren A.
2004-11-01
Despite continuing efforts to apply existing hazard analysis methods and comply with requirements, human errors persist across the nuclear weapons complex. Due to a number of factors, current retroactive and proactive methods to understand and minimize human error are highly subjective, inconsistent in numerous dimensions, and are cumbersome to characterize as thorough. An alternative and proposed method begins with leveraging historical data to understand what the systemic issues are and where resources need to be brought to bear proactively to minimize the risk of future occurrences. An illustrative analysis was performed using existing incident databases specific to Pantex weapons operationsmore » indicating systemic issues associated with operating procedures that undergo notably less development rigor relative to other task elements such as tooling and process flow. Future recommended steps to improve the objectivity, consistency, and thoroughness of hazard analysis and mitigation were delineated.« less
Lithographic performance comparison with various RET for 45-nm node with hyper NA
NASA Astrophysics Data System (ADS)
Adachi, Takashi; Inazuki, Yuichi; Sutou, Takanori; Kitahata, Yasuhisa; Morikawa, Yasutaka; Toyama, Nobuhito; Mohri, Hiroshi; Hayashi, Naoya
2006-05-01
In order to realize 45 nm node lithography, strong resolution enhancement technology (RET) and water immersion will be needed. In this research, we discussed about various RET performance comparison for 45 nm node using 3D rigorous simulation. As a candidate, we chose binary mask (BIN), several kinds of attenuated phase-shifting mask (att-PSM) and chrome-less phase-shifting lithography mask (CPL). The printing performance was evaluated and compared for each RET options, after the optimizing illumination conditions, mask structure and optical proximity correction (OPC). The evaluation items of printing performance were CD-DOF, contrast-DOF, conventional ED-window and MEEF, etc. It's expected that effect of mask 3D topography becomes important at 45 nm node, so we argued about not only the case of ideal structures, but also the mask topography error effects. Several kinds of mask topography error were evaluated and we confirmed how these errors affect to printing performance.
Design of an optimal preview controller for linear discrete-time descriptor systems with state delay
NASA Astrophysics Data System (ADS)
Cao, Mengjuan; Liao, Fucheng
2015-04-01
In this paper, the linear discrete-time descriptor system with state delay is studied, and a design method for an optimal preview controller is proposed. First, by using the discrete lifting technique, the original system is transformed into a general descriptor system without state delay in form. Then, taking advantage of the first-order forward difference operator, we construct a descriptor augmented error system, including the state vectors of the lifted system, error vectors, and desired target signals. Rigorous mathematical proofs are given for the regularity, stabilisability, causal controllability, and causal observability of the descriptor augmented error system. Based on these, the optimal preview controller with preview feedforward compensation for the original system is obtained by using the standard optimal regulator theory of the descriptor system. The effectiveness of the proposed method is shown by numerical simulation.
Jakeman, J. D.; Wildey, T.
2015-01-01
In this paper we present an algorithm for adaptive sparse grid approximations of quantities of interest computed from discretized partial differential equations. We use adjoint-based a posteriori error estimates of the interpolation error in the sparse grid to enhance the sparse grid approximation and to drive adaptivity. We show that utilizing these error estimates provides significantly more accurate functional values for random samples of the sparse grid approximation. We also demonstrate that alternative refinement strategies based upon a posteriori error estimates can lead to further increases in accuracy in the approximation over traditional hierarchical surplus based strategies. Throughout this papermore » we also provide and test a framework for balancing the physical discretization error with the stochastic interpolation error of the enhanced sparse grid approximation.« less
NASA Astrophysics Data System (ADS)
Morton, F. I.
1983-10-01
Reliable estimates of areal evapotranspiration are essential to significant improvements in the science and practice of hydrology. Direct measurements, such as those provided by lysimeters, eddy flux instrumentation or Bowen-ratio instrumentation, give point values, require constant attendance by skilled personnel and are based on unverified assumptions. A critical review of the methods used for estimating areal evapotranspiration indicates that the conventional conceptual techniques, such as those used in current watershed models, are based on assumptions that are completely divorced from reality; and that causal techniques based on processes and interactions in the soil-plant-atmosphere system are not likely to prove useful for another generation. However, the complementary relationship can do much to fill the gap until such time as causal techniques become practicable because it provides the basis for models that permit areal evapotranspiration to be estimated from its effects on the routine climatological observations needed to estimate potential evapotranspiration. Such models have a realistic conceptual and empirical basis, by-pass the complexity of the soil-plant system and require no local calibration of coefficients. Therefore, they are falsifiable (i.e. can be tested rigorously) so that errors in the associated assumptions and relationships can be detected and corrected by progressive testing over an ever-widening range of environments. Such a methodology uses the entire world as a laboratory and requires that a correction made to obtain agreement between model and river-basin water budget estimates in one environment must be applicable without modification in all other environment. The most recent version of the complementary relationship areal evapotranspiration (CRAE) models is formulated and documented. The reliability of the independent operational estimates of areal evapotranspiration is tested with comparable long-term water-budget estimates for 143 river basins in North America, Africa, Ireland, Australia and New Zealand. The practicality and potential impact of such estimates are demonstrated with examples which show how the availability of such estimates can revitalize the science and practice of hydrology by providing a reliable basis for detailed water-balance studies; for further research on the development of causal models; for hydrological, agricultural and fire hazard forecasts; for detecting the development of errors in hydrometeorological records; for detecting and monitoring the effects of land-use changes; for explaining hydrologic anomalies; and for other better known applications. It is suggested that the collection of the required climatological data by hydrometric agencies could be justified on the grounds that the agencies would gain a technique for quality control and the users would gain by a significant expansion in the information content of the hydrometric data, all at minimal additional expense.
Kinnamon, Daniel D; Lipsitz, Stuart R; Ludwig, David A; Lipshultz, Steven E; Miller, Tracie L
2010-04-01
The hydration of fat-free mass, or hydration fraction (HF), is often defined as a constant body composition parameter in a two-compartment model and then estimated from in vivo measurements. We showed that the widely used estimator for the HF parameter in this model, the mean of the ratios of measured total body water (TBW) to fat-free mass (FFM) in individual subjects, can be inaccurate in the presence of additive technical errors. We then proposed a new instrumental variables estimator that accurately estimates the HF parameter in the presence of such errors. In Monte Carlo simulations, the mean of the ratios of TBW to FFM was an inaccurate estimator of the HF parameter, and inferences based on it had actual type I error rates more than 13 times the nominal 0.05 level under certain conditions. The instrumental variables estimator was accurate and maintained an actual type I error rate close to the nominal level in all simulations. When estimating and performing inference on the HF parameter, the proposed instrumental variables estimator should yield accurate estimates and correct inferences in the presence of additive technical errors, but the mean of the ratios of TBW to FFM in individual subjects may not.
A-posteriori error estimation for the finite point method with applications to compressible flow
NASA Astrophysics Data System (ADS)
Ortega, Enrique; Flores, Roberto; Oñate, Eugenio; Idelsohn, Sergio
2017-08-01
An a-posteriori error estimate with application to inviscid compressible flow problems is presented. The estimate is a surrogate measure of the discretization error, obtained from an approximation to the truncation terms of the governing equations. This approximation is calculated from the discrete nodal differential residuals using a reconstructed solution field on a modified stencil of points. Both the error estimation methodology and the flow solution scheme are implemented using the Finite Point Method, a meshless technique enabling higher-order approximations and reconstruction procedures on general unstructured discretizations. The performance of the proposed error indicator is studied and applications to adaptive grid refinement are presented.
Shi, Yun; Xu, Peiliang; Peng, Junhuan; Shi, Chuang; Liu, Jingnan
2014-01-01
Modern observation technology has verified that measurement errors can be proportional to the true values of measurements such as GPS, VLBI baselines and LiDAR. Observational models of this type are called multiplicative error models. This paper is to extend the work of Xu and Shimada published in 2000 on multiplicative error models to analytical error analysis of quantities of practical interest and estimates of the variance of unit weight. We analytically derive the variance-covariance matrices of the three least squares (LS) adjustments, the adjusted measurements and the corrections of measurements in multiplicative error models. For quality evaluation, we construct five estimators for the variance of unit weight in association of the three LS adjustment methods. Although LiDAR measurements are contaminated with multiplicative random errors, LiDAR-based digital elevation models (DEM) have been constructed as if they were of additive random errors. We will simulate a model landslide, which is assumed to be surveyed with LiDAR, and investigate the effect of LiDAR-type multiplicative error measurements on DEM construction and its effect on the estimate of landslide mass volume from the constructed DEM. PMID:24434880
Huang, Kuo-Chen; Wang, Hsiu-Feng; Chen, Chun-Ching
2010-06-01
Effects of shape, size, and chromaticity of stimuli on participants' errors when estimating the size of simultaneously presented standard and comparison stimuli were examined. 48 Taiwanese college students ages 20 to 24 years old (M = 22.3, SD = 1.3) participated. Analysis showed that the error for estimated size was significantly greater for those in the low-vision group than for those in the normal-vision and severe-myopia groups. The errors were significantly greater with green and blue stimuli than with red stimuli. Circular stimuli produced smaller mean errors than did square stimuli. The actual size of the standard stimulus significantly affected the error for estimated size. Errors for estimations using smaller sizes were significantly higher than when the sizes were larger. Implications of the results for graphics-based interface design, particularly when taking account of visually impaired users, are discussed.
Statistical methods for biodosimetry in the presence of both Berkson and classical measurement error
NASA Astrophysics Data System (ADS)
Miller, Austin
In radiation epidemiology, the true dose received by those exposed cannot be assessed directly. Physical dosimetry uses a deterministic function of the source term, distance and shielding to estimate dose. For the atomic bomb survivors, the physical dosimetry system is well established. The classical measurement errors plaguing the location and shielding inputs to the physical dosimetry system are well known. Adjusting for the associated biases requires an estimate for the classical measurement error variance, for which no data-driven estimate exists. In this case, an instrumental variable solution is the most viable option to overcome the classical measurement error indeterminacy. Biological indicators of dose may serve as instrumental variables. Specification of the biodosimeter dose-response model requires identification of the radiosensitivity variables, for which we develop statistical definitions and variables. More recently, researchers have recognized Berkson error in the dose estimates, introduced by averaging assumptions for many components in the physical dosimetry system. We show that Berkson error induces a bias in the instrumental variable estimate of the dose-response coefficient, and then address the estimation problem. This model is specified by developing an instrumental variable mixed measurement error likelihood function, which is then maximized using a Monte Carlo EM Algorithm. These methods produce dose estimates that incorporate information from both physical and biological indicators of dose, as well as the first instrumental variable based data-driven estimate for the classical measurement error variance.
Optimized tuner selection for engine performance estimation
NASA Technical Reports Server (NTRS)
Simon, Donald L. (Inventor); Garg, Sanjay (Inventor)
2013-01-01
A methodology for minimizing the error in on-line Kalman filter-based aircraft engine performance estimation applications is presented. This technique specifically addresses the underdetermined estimation problem, where there are more unknown parameters than available sensor measurements. A systematic approach is applied to produce a model tuning parameter vector of appropriate dimension to enable estimation by a Kalman filter, while minimizing the estimation error in the parameters of interest. Tuning parameter selection is performed using a multi-variable iterative search routine which seeks to minimize the theoretical mean-squared estimation error. Theoretical Kalman filter estimation error bias and variance values are derived at steady-state operating conditions, and the tuner selection routine is applied to minimize these values. The new methodology yields an improvement in on-line engine performance estimation accuracy.
Characterizing the SWOT discharge error budget on the Sacramento River, CA
NASA Astrophysics Data System (ADS)
Yoon, Y.; Durand, M. T.; Minear, J. T.; Smith, L.; Merry, C. J.
2013-12-01
The Surface Water and Ocean Topography (SWOT) is an upcoming satellite mission (2020 year) that will provide surface-water elevation and surface-water extent globally. One goal of SWOT is the estimation of river discharge directly from SWOT measurements. SWOT discharge uncertainty is due to two sources. First, SWOT cannot measure channel bathymetry and determine roughness coefficient data necessary for discharge calculations directly; these parameters must be estimated from the measurements or from a priori information. Second, SWOT measurement errors directly impact the discharge estimate accuracy. This study focuses on characterizing parameter and measurement uncertainties for SWOT river discharge estimation. A Bayesian Markov Chain Monte Carlo scheme is used to calculate parameter estimates, given the measurements of river height, slope and width, and mass and momentum constraints. The algorithm is evaluated using simulated both SWOT and AirSWOT (the airborne version of SWOT) observations over seven reaches (about 40 km) of the Sacramento River. The SWOT and AirSWOT observations are simulated by corrupting the ';true' HEC-RAS hydraulic modeling results with the instrument error. This experiment answers how unknown bathymetry and roughness coefficients affect the accuracy of the river discharge algorithm. From the experiment, the discharge error budget is almost completely dominated by unknown bathymetry and roughness; 81% of the variance error is explained by uncertainties in bathymetry and roughness. Second, we show how the errors in water surface, slope, and width observations influence the accuracy of discharge estimates. Indeed, there is a significant sensitivity to water surface, slope, and width errors due to the sensitivity of bathymetry and roughness to measurement errors. Increasing water-surface error above 10 cm leads to a corresponding sharper increase of errors in bathymetry and roughness. Increasing slope error above 1.5 cm/km leads to a significant degradation due to direct error in the discharge estimates. As the width error increases past 20%, the discharge error budget is dominated by the width error. Above two experiments are performed based on AirSWOT scenarios. In addition, we explore the sensitivity of the algorithm to the SWOT scenarios.
Jonsen, Ian
2016-02-08
State-space models provide a powerful way to scale up inference of movement behaviours from individuals to populations when the inference is made across multiple individuals. Here, I show how a joint estimation approach that assumes individuals share identical movement parameters can lead to improved inference of behavioural states associated with different movement processes. I use simulated movement paths with known behavioural states to compare estimation error between nonhierarchical and joint estimation formulations of an otherwise identical state-space model. Behavioural state estimation error was strongly affected by the degree of similarity between movement patterns characterising the behavioural states, with less error when movements were strongly dissimilar between states. The joint estimation model improved behavioural state estimation relative to the nonhierarchical model for simulated data with heavy-tailed Argos location errors. When applied to Argos telemetry datasets from 10 Weddell seals, the nonhierarchical model estimated highly uncertain behavioural state switching probabilities for most individuals whereas the joint estimation model yielded substantially less uncertainty. The joint estimation model better resolved the behavioural state sequences across all seals. Hierarchical or joint estimation models should be the preferred choice for estimating behavioural states from animal movement data, especially when location data are error-prone.
Sources of medical error in refractive surgery.
Moshirfar, Majid; Simpson, Rachel G; Dave, Sonal B; Christiansen, Steven M; Edmonds, Jason N; Culbertson, William W; Pascucci, Stephen E; Sher, Neal A; Cano, David B; Trattler, William B
2013-05-01
To evaluate the causes of laser programming errors in refractive surgery and outcomes in these cases. In this multicenter, retrospective chart review, 22 eyes of 18 patients who had incorrect data entered into the refractive laser computer system at the time of treatment were evaluated. Cases were analyzed to uncover the etiology of these errors, patient follow-up treatments, and final outcomes. The results were used to identify potential methods to avoid similar errors in the future. Every patient experienced compromised uncorrected visual acuity requiring additional intervention, and 7 of 22 eyes (32%) lost corrected distance visual acuity (CDVA) of at least one line. Sixteen patients were suitable candidates for additional surgical correction to address these residual visual symptoms and six were not. Thirteen of 22 eyes (59%) received surgical follow-up treatment; nine eyes were treated with contact lenses. After follow-up treatment, six patients (27%) still had a loss of one line or more of CDVA. Three significant sources of error were identified: errors of cylinder conversion, data entry, and patient identification error. Twenty-seven percent of eyes with laser programming errors ultimately lost one or more lines of CDVA. Patients who underwent surgical revision had better outcomes than those who did not. Many of the mistakes identified were likely avoidable had preventive measures been taken, such as strict adherence to patient verification protocol or rigorous rechecking of treatment parameters. Copyright 2013, SLACK Incorporated.
On-line estimation of error covariance parameters for atmospheric data assimilation
NASA Technical Reports Server (NTRS)
Dee, Dick P.
1995-01-01
A simple scheme is presented for on-line estimation of covariance parameters in statistical data assimilation systems. The scheme is based on a maximum-likelihood approach in which estimates are produced on the basis of a single batch of simultaneous observations. Simple-sample covariance estimation is reasonable as long as the number of available observations exceeds the number of tunable parameters by two or three orders of magnitude. Not much is known at present about model error associated with actual forecast systems. Our scheme can be used to estimate some important statistical model error parameters such as regionally averaged variances or characteristic correlation length scales. The advantage of the single-sample approach is that it does not rely on any assumptions about the temporal behavior of the covariance parameters: time-dependent parameter estimates can be continuously adjusted on the basis of current observations. This is of practical importance since it is likely to be the case that both model error and observation error strongly depend on the actual state of the atmosphere. The single-sample estimation scheme can be incorporated into any four-dimensional statistical data assimilation system that involves explicit calculation of forecast error covariances, including optimal interpolation (OI) and the simplified Kalman filter (SKF). The computational cost of the scheme is high but not prohibitive; on-line estimation of one or two covariance parameters in each analysis box of an operational bozed-OI system is currently feasible. A number of numerical experiments performed with an adaptive SKF and an adaptive version of OI, using a linear two-dimensional shallow-water model and artificially generated model error are described. The performance of the nonadaptive versions of these methods turns out to depend rather strongly on correct specification of model error parameters. These parameters are estimated under a variety of conditions, including uniformly distributed model error and time-dependent model error statistics.
Component Analysis of Errors on PERSIANN Precipitation Estimates over Urmia Lake Basin, IRAN
NASA Astrophysics Data System (ADS)
Ghajarnia, N.; Daneshkar Arasteh, P.; Liaghat, A. M.; Araghinejad, S.
2016-12-01
In this study, PERSIANN daily dataset is evaluated from 2000 to 2011 in 69 pixels over Urmia Lake basin in northwest of Iran. Different analytical approaches and indexes are used to examine PERSIANN precision in detection and estimation of rainfall rate. The residuals are decomposed into Hit, Miss and FA estimation biases while continues decomposition of systematic and random error components are also analyzed seasonally and categorically. New interpretation of estimation accuracy named "reliability on PERSIANN estimations" is introduced while the changing manners of existing categorical/statistical measures and error components are also seasonally analyzed over different rainfall rate categories. This study yields new insights into the nature of PERSIANN errors over Urmia lake basin as a semi-arid region in the middle-east, including the followings: - The analyzed contingency table indexes indicate better detection precision during spring and fall. - A relatively constant level of error is generally observed among different categories. The range of precipitation estimates at different rainfall rate categories is nearly invariant as a sign for the existence of systematic error. - Low level of reliability is observed on PERSIANN estimations at different categories which are mostly associated with high level of FA error. However, it is observed that as the rate of precipitation increase, the ability and precision of PERSIANN in rainfall detection also increases. - The systematic and random error decomposition in this area shows that PERSIANN has more difficulty in modeling the system and pattern of rainfall rather than to have bias due to rainfall uncertainties. The level of systematic error also considerably increases in heavier rainfalls. It is also important to note that PERSIANN error characteristics at each season varies due to the condition and rainfall patterns of that season which shows the necessity of seasonally different approach for the calibration of this product. Overall, we believe that different error component's analysis performed in this study, can substantially help any further local studies for post-calibration and bias reduction of PERSIANN estimations.
NASA Technical Reports Server (NTRS)
Bell, Thomas L.; Kundu, Prasun K.; Einaudi, Franco (Technical Monitor)
2000-01-01
Estimates from TRMM satellite data of monthly total rainfall over an area are subject to substantial sampling errors due to the limited number of visits to the area by the satellite during the month. Quantitative comparisons of TRMM averages with data collected by other satellites and by ground-based systems require some estimate of the size of this sampling error. A method of estimating this sampling error based on the actual statistics of the TRMM observations and on some modeling work has been developed. "Sampling error" in TRMM monthly averages is defined here relative to the monthly total a hypothetical satellite permanently stationed above the area would have reported. "Sampling error" therefore includes contributions from the random and systematic errors introduced by the satellite remote sensing system. As part of our long-term goal of providing error estimates for each grid point accessible to the TRMM instruments, sampling error estimates for TRMM based on rain retrievals from TRMM microwave (TMI) data are compared for different times of the year and different oceanic areas (to minimize changes in the statistics due to algorithmic differences over land and ocean). Changes in sampling error estimates due to changes in rain statistics due 1) to evolution of the official algorithms used to process the data, and 2) differences from other remote sensing systems such as the Defense Meteorological Satellite Program (DMSP) Special Sensor Microwave/Imager (SSM/I), are analyzed.
Fast synthesis of topographic mask effects based on rigorous solutions
NASA Astrophysics Data System (ADS)
Yan, Qiliang; Deng, Zhijie; Shiely, James
2007-10-01
Topographic mask effects can no longer be ignored at technology nodes of 45 nm, 32 nm and beyond. As feature sizes become comparable to the mask topographic dimensions and the exposure wavelength, the popular thin mask model breaks down, because the mask transmission no longer follows the layout. A reliable mask transmission function has to be derived from Maxwell equations. Unfortunately, rigorous solutions of Maxwell equations are only manageable for limited field sizes, but impractical for full-chip optical proximity corrections (OPC) due to the prohibitive runtime. Approximation algorithms are in demand to achieve a balance between acceptable computation time and tolerable errors. In this paper, a fast algorithm is proposed and demonstrated to model topographic mask effects for OPC applications. The ProGen Topographic Mask (POTOMAC) model synthesizes the mask transmission functions out of small-sized Maxwell solutions from a finite-difference-in-time-domain (FDTD) engine, an industry leading rigorous simulator of topographic mask effect from SOLID-E. The integral framework presents a seamless solution to the end user. Preliminary results indicate the overhead introduced by POTOMAC is contained within the same order of magnitude in comparison to the thin mask approach.
Troutman, Brent M.
1982-01-01
Errors in runoff prediction caused by input data errors are analyzed by treating precipitation-runoff models as regression (conditional expectation) models. Independent variables of the regression consist of precipitation and other input measurements; the dependent variable is runoff. In models using erroneous input data, prediction errors are inflated and estimates of expected storm runoff for given observed input variables are biased. This bias in expected runoff estimation results in biased parameter estimates if these parameter estimates are obtained by a least squares fit of predicted to observed runoff values. The problems of error inflation and bias are examined in detail for a simple linear regression of runoff on rainfall and for a nonlinear U.S. Geological Survey precipitation-runoff model. Some implications for flood frequency analysis are considered. A case study using a set of data from Turtle Creek near Dallas, Texas illustrates the problems of model input errors.
Nonparametric Estimation of Standard Errors in Covariance Analysis Using the Infinitesimal Jackknife
ERIC Educational Resources Information Center
Jennrich, Robert I.
2008-01-01
The infinitesimal jackknife provides a simple general method for estimating standard errors in covariance structure analysis. Beyond its simplicity and generality what makes the infinitesimal jackknife method attractive is that essentially no assumptions are required to produce consistent standard error estimates, not even the requirement that the…
Stress Recovery and Error Estimation for 3-D Shell Structures
NASA Technical Reports Server (NTRS)
Riggs, H. R.
2000-01-01
The C1-continuous stress fields obtained from finite element analyses are in general lower- order accurate than are the corresponding displacement fields. Much effort has focussed on increasing their accuracy and/or their continuity, both for improved stress prediction and especially error estimation. A previous project developed a penalized, discrete least squares variational procedure that increases the accuracy and continuity of the stress field. The variational problem is solved by a post-processing, 'finite-element-type' analysis to recover a smooth, more accurate, C1-continuous stress field given the 'raw' finite element stresses. This analysis has been named the SEA/PDLS. The recovered stress field can be used in a posteriori error estimators, such as the Zienkiewicz-Zhu error estimator or equilibrium error estimators. The procedure was well-developed for the two-dimensional (plane) case involving low-order finite elements. It has been demonstrated that, if optimal finite element stresses are used for the post-processing, the recovered stress field is globally superconvergent. Extension of this work to three dimensional solids is straightforward. Attachment: Stress recovery and error estimation for shell structure (abstract only). A 4-node, shear-deformable flat shell element developed via explicit Kirchhoff constraints (abstract only). A novel four-node quadrilateral smoothing element for stress enhancement and error estimation (abstract only).
Wang, Ching-Yun; Cullings, Harry; Song, Xiao; Kopecky, Kenneth J.
2017-01-01
SUMMARY Observational epidemiological studies often confront the problem of estimating exposure-disease relationships when the exposure is not measured exactly. In the paper, we investigate exposure measurement error in excess relative risk regression, which is a widely used model in radiation exposure effect research. In the study cohort, a surrogate variable is available for the true unobserved exposure variable. The surrogate variable satisfies a generalized version of the classical additive measurement error model, but it may or may not have repeated measurements. In addition, an instrumental variable is available for individuals in a subset of the whole cohort. We develop a nonparametric correction (NPC) estimator using data from the subcohort, and further propose a joint nonparametric correction (JNPC) estimator using all observed data to adjust for exposure measurement error. An optimal linear combination estimator of JNPC and NPC is further developed. The proposed estimators are nonparametric, which are consistent without imposing a covariate or error distribution, and are robust to heteroscedastic errors. Finite sample performance is examined via a simulation study. We apply the developed methods to data from the Radiation Effects Research Foundation, in which chromosome aberration is used to adjust for the effects of radiation dose measurement error on the estimation of radiation dose responses. PMID:29354018
Multi-species Identification of Polymorphic Peptide Variants via Propagation in Spectral Networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Na, Seungjin; Payne, Samuel H.; Bandeira, Nuno
The spectral networks approach enables the detection of pairs of spectra from related peptides and thus allows for the propagation of annotations from identified peptides to unidentified spectra. Beyond allowing for unbiased discovery of unexpected post-translational modifications, spectral networks are also applicable to multi-species comparative proteomics or metaproteomics to identify numerous orthologous versions of a protein. We present algorithmic and statistical advances in spectral networks that have made it possible to rigorously assess the statistical significance of spectral pairs and accurately estimate the error rate of identifications via propagation. In the analysis of three related Cyanothece species, a model organismmore » for biohydrogen production, spectral networks identified peptides with highly divergent sequences with up to dozens of variants per peptide, including many novel peptides in species that lack a sequenced genome. Furthermore, spectral networks strongly suggested the presence of novel peptides even in genomically characterized species (i.e. missing from databases) in that a significant portion of unidentified multi-species networks included at least two polymorphic peptide variants.« less
NASA Astrophysics Data System (ADS)
Newbury, Dale E.; Ritchie, Nicholas W. M.
2014-09-01
Quantitative electron-excited x-ray microanalysis by scanning electron microscopy/silicon drift detector energy dispersive x-ray spectrometry (SEM/SDD-EDS) is capable of achieving high accuracy and high precision equivalent to that of the high spectral resolution wavelength dispersive x-ray spectrometer even when severe peak interference occurs. The throughput of the SDD-EDS enables high count spectra to be measured that are stable in calibration and resolution (peak shape) across the full deadtime range. With this high spectral stability, multiple linear least squares peak fitting is successful for separating overlapping peaks and spectral background. Careful specimen preparation is necessary to remove topography on unknowns and standards. The standards-based matrix correction procedure embedded in the NIST DTSA-II software engine returns quantitative results supported by a complete error budget, including estimates of the uncertainties from measurement statistics and from the physical basis of the matrix corrections. NIST DTSA-II is available free for Java-platforms at: http://www.cstl.nist.gov/div837/837.02/epq/dtsa2/index.html).
Antineutrino analysis for continuous monitoring of nuclear reactors: Sensitivity study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stewart, Christopher; Erickson, Anna
This paper explores the various contributors to uncertainty on predictions of the antineutrino source term which is used for reactor antineutrino experiments and is proposed as a safeguard mechanism for future reactor installations. The errors introduced during simulation of the reactor burnup cycle from variation in nuclear reaction cross sections, operating power, and other factors are combined with those from experimental and predicted antineutrino yields, resulting from fissions, evaluated, and compared. The most significant contributor to uncertainty on the reactor antineutrino source term when the reactor was modeled in 3D fidelity with assembly-level heterogeneity was found to be the uncertaintymore » on the antineutrino yields. Using the reactor simulation uncertainty data, the dedicated observation of a rigorously modeled small, fast reactor by a few-ton near-field detector was estimated to offer reduction of uncertainty on antineutrino yields in the 3.0–6.5 MeV range to a few percent for the primary power-producing fuel isotopes, even with zero prior knowledge of the yields.« less
NASA Technical Reports Server (NTRS)
Watson, Robert A.
1991-01-01
Approximate solutions of static and dynamic beam problems by the p-version of the finite element method are investigated. Within a hierarchy of engineering beam idealizations, rigorous formulations of the strain and kinetic energies for straight and circular beam elements are presented. These formulations include rotating coordinate system effects and geometric nonlinearities to allow for the evaluation of vertical axis wind turbines, the motivating problem for this research. Hierarchic finite element spaces, based on extensions of the polynomial orders used to approximate the displacement variables, are constructed. The developed models are implemented into a general purpose computer program for evaluation. Quality control procedures are examined for a diverse set of sample problems. These procedures include estimating discretization errors in energy norm and natural frequencies, performing static and dynamic equilibrium checks, observing convergence for qualities of interest, and comparison with more exacting theories and experimental data. It is demonstrated that p-extensions produce exponential rates of convergence in the approximation of strain energy and natural frequencies for the class of problems investigated.
NASA Technical Reports Server (NTRS)
Rosenberg, Leigh; Hihn, Jairus; Roust, Kevin; Warfield, Keith
2000-01-01
This paper presents an overview of a parametric cost model that has been built at JPL to estimate costs of future, deep space, robotic science missions. Due to the recent dramatic changes in JPL business practices brought about by an internal reengineering effort known as develop new products (DNP), high-level historic cost data is no longer considered analogous to future missions. Therefore, the historic data is of little value in forecasting costs for projects developed using the DNP process. This has lead to the development of an approach for obtaining expert opinion and also for combining actual data with expert opinion to provide a cost database for future missions. In addition, the DNP cost model has a maximum of objective cost drivers which reduces the likelihood of model input error. Version 2 is now under development which expands the model capabilities, links it more tightly with key design technical parameters, and is grounded in more rigorous statistical techniques. The challenges faced in building this model will be discussed, as well as it's background, development approach, status, validation, and future plans.
NASA Astrophysics Data System (ADS)
Qin, Shanlin; Liu, Fawang; Turner, Ian W.
2018-03-01
The consideration of diffusion processes in magnetic resonance imaging (MRI) signal attenuation is classically described by the Bloch-Torrey equation. However, many recent works highlight the distinct deviation in MRI signal decay due to anomalous diffusion, which motivates the fractional order generalization of the Bloch-Torrey equation. In this work, we study the two-dimensional multi-term time and space fractional diffusion equation generalized from the time and space fractional Bloch-Torrey equation. By using the Galerkin finite element method with a structured mesh consisting of rectangular elements to discretize in space and the L1 approximation of the Caputo fractional derivative in time, a fully discrete numerical scheme is derived. A rigorous analysis of stability and error estimation is provided. Numerical experiments in the square and L-shaped domains are performed to give an insight into the efficiency and reliability of our method. Then the scheme is applied to solve the multi-term time and space fractional Bloch-Torrey equation, which shows that the extra time derivative terms impact the relaxation process.
Adaptive Fault-Tolerant Control of Uncertain Nonlinear Large-Scale Systems With Unknown Dead Zone.
Chen, Mou; Tao, Gang
2016-08-01
In this paper, an adaptive neural fault-tolerant control scheme is proposed and analyzed for a class of uncertain nonlinear large-scale systems with unknown dead zone and external disturbances. To tackle the unknown nonlinear interaction functions in the large-scale system, the radial basis function neural network (RBFNN) is employed to approximate them. To further handle the unknown approximation errors and the effects of the unknown dead zone and external disturbances, integrated as the compounded disturbances, the corresponding disturbance observers are developed for their estimations. Based on the outputs of the RBFNN and the disturbance observer, the adaptive neural fault-tolerant control scheme is designed for uncertain nonlinear large-scale systems by using a decentralized backstepping technique. The closed-loop stability of the adaptive control system is rigorously proved via Lyapunov analysis and the satisfactory tracking performance is achieved under the integrated effects of unknown dead zone, actuator fault, and unknown external disturbances. Simulation results of a mass-spring-damper system are given to illustrate the effectiveness of the proposed adaptive neural fault-tolerant control scheme for uncertain nonlinear large-scale systems.
NASA Astrophysics Data System (ADS)
Berger, Lukas; Kleinheinz, Konstantin; Attili, Antonio; Bisetti, Fabrizio; Pitsch, Heinz; Mueller, Michael E.
2018-05-01
Modelling unclosed terms in partial differential equations typically involves two steps: First, a set of known quantities needs to be specified as input parameters for a model, and second, a specific functional form needs to be defined to model the unclosed terms by the input parameters. Both steps involve a certain modelling error, with the former known as the irreducible error and the latter referred to as the functional error. Typically, only the total modelling error, which is the sum of functional and irreducible error, is assessed, but the concept of the optimal estimator enables the separate analysis of the total and the irreducible errors, yielding a systematic modelling error decomposition. In this work, attention is paid to the techniques themselves required for the practical computation of irreducible errors. Typically, histograms are used for optimal estimator analyses, but this technique is found to add a non-negligible spurious contribution to the irreducible error if models with multiple input parameters are assessed. Thus, the error decomposition of an optimal estimator analysis becomes inaccurate, and misleading conclusions concerning modelling errors may be drawn. In this work, numerically accurate techniques for optimal estimator analyses are identified and a suitable evaluation of irreducible errors is presented. Four different computational techniques are considered: a histogram technique, artificial neural networks, multivariate adaptive regression splines, and an additive model based on a kernel method. For multiple input parameter models, only artificial neural networks and multivariate adaptive regression splines are found to yield satisfactorily accurate results. Beyond a certain number of input parameters, the assessment of models in an optimal estimator analysis even becomes practically infeasible if histograms are used. The optimal estimator analysis in this paper is applied to modelling the filtered soot intermittency in large eddy simulations using a dataset of a direct numerical simulation of a non-premixed sooting turbulent flame.
Anderson, N G; Jolley, I J; Wells, J E
2007-08-01
To determine the major sources of error in ultrasonographic assessment of fetal weight and whether they have changed over the last decade. We performed a prospective observational study in 1991 and again in 2000 of a mixed-risk pregnancy population, estimating fetal weight within 7 days of delivery. In 1991, the Rose and McCallum formula was used for 72 deliveries. Inter- and intraobserver agreement was assessed within this group. Bland-Altman measures of agreement from log data were calculated as ratios. We repeated the study in 2000 in 208 consecutive deliveries, comparing predicted and actual weights for 12 published equations using Bland-Altman and percentage error methods. We compared bias (mean percentage error), precision (SD percentage error), and their consistency across the weight ranges. 95% limits of agreement ranged from - 4.4% to + 3.3% for inter- and intraobserver estimates, but were - 18.0% to 24.0% for estimated and actual birth weight. There was no improvement in accuracy between 1991 and 2000. In 2000 only six of the 12 published formulae had overall bias within 7% and precision within 15%. There was greater bias and poorer precision in nearly all equations if the birth weight was < 1,000 g. Observer error is a relatively minor component of the error in estimating fetal weight; error due to the equation is a larger source of error. Improvements in ultrasound technology have not improved the accuracy of estimating fetal weight. Comparison of methods of estimating fetal weight requires statistical methods that can separate out bias, precision and consistency. Estimating fetal weight in the very low birth weight infant is subject to much greater error than it is in larger babies. Copyright (c) 2007 ISUOG. Published by John Wiley & Sons, Ltd.
Technical Note: Introduction of variance component analysis to setup error analysis in radiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsuo, Yukinori, E-mail: ymatsuo@kuhp.kyoto-u.ac.
Purpose: The purpose of this technical note is to introduce variance component analysis to the estimation of systematic and random components in setup error of radiotherapy. Methods: Balanced data according to the one-factor random effect model were assumed. Results: Analysis-of-variance (ANOVA)-based computation was applied to estimate the values and their confidence intervals (CIs) for systematic and random errors and the population mean of setup errors. The conventional method overestimates systematic error, especially in hypofractionated settings. The CI for systematic error becomes much wider than that for random error. The ANOVA-based estimation can be extended to a multifactor model considering multiplemore » causes of setup errors (e.g., interpatient, interfraction, and intrafraction). Conclusions: Variance component analysis may lead to novel applications to setup error analysis in radiotherapy.« less
Zhang, Zheshen; Voss, Paul L
2009-07-06
We propose a continuous variable based quantum key distribution protocol that makes use of discretely signaled coherent light and reverse error reconciliation. We present a rigorous security proof against collective attacks with realistic lossy, noisy quantum channels, imperfect detector efficiency, and detector electronic noise. This protocol is promising for convenient, high-speed operation at link distances up to 50 km with the use of post-selection.
A stopping criterion for the iterative solution of partial differential equations
NASA Astrophysics Data System (ADS)
Rao, Kaustubh; Malan, Paul; Perot, J. Blair
2018-01-01
A stopping criterion for iterative solution methods is presented that accurately estimates the solution error using low computational overhead. The proposed criterion uses information from prior solution changes to estimate the error. When the solution changes are noisy or stagnating it reverts to a less accurate but more robust, low-cost singular value estimate to approximate the error given the residual. This estimator can also be applied to iterative linear matrix solvers such as Krylov subspace or multigrid methods. Examples of the stopping criterion's ability to accurately estimate the non-linear and linear solution error are provided for a number of different test cases in incompressible fluid dynamics.
Consequences of Secondary Calibrations on Divergence Time Estimates.
Schenk, John J
2016-01-01
Secondary calibrations (calibrations based on the results of previous molecular dating studies) are commonly applied in divergence time analyses in groups that lack fossil data; however, the consequences of applying secondary calibrations in a relaxed-clock approach are not fully understood. I tested whether applying the posterior estimate from a primary study as a prior distribution in a secondary study results in consistent age and uncertainty estimates. I compared age estimates from simulations with 100 randomly replicated secondary trees. On average, the 95% credible intervals of node ages for secondary estimates were significantly younger and narrower than primary estimates. The primary and secondary age estimates were significantly different in 97% of the replicates after Bonferroni corrections. Greater error in magnitude was associated with deeper than shallower nodes, but the opposite was found when standardized by median node age, and a significant positive relationship was determined between the number of tips/age of secondary trees and the total amount of error. When two secondary calibrated nodes were analyzed, estimates remained significantly different, and although the minimum and median estimates were associated with less error, maximum age estimates and credible interval widths had greater error. The shape of the prior also influenced error, in which applying a normal, rather than uniform, prior distribution resulted in greater error. Secondary calibrations, in summary, lead to a false impression of precision and the distribution of age estimates shift away from those that would be inferred by the primary analysis. These results suggest that secondary calibrations should not be applied as the only source of calibration in divergence time analyses that test time-dependent hypotheses until the additional error associated with secondary calibrations is more properly modeled to take into account increased uncertainty in age estimates.
Comparing interval estimates for small sample ordinal CFA models
Natesan, Prathiba
2015-01-01
Robust maximum likelihood (RML) and asymptotically generalized least squares (AGLS) methods have been recommended for fitting ordinal structural equation models. Studies show that some of these methods underestimate standard errors. However, these studies have not investigated the coverage and bias of interval estimates. An estimate with a reasonable standard error could still be severely biased. This can only be known by systematically investigating the interval estimates. The present study compares Bayesian, RML, and AGLS interval estimates of factor correlations in ordinal confirmatory factor analysis models (CFA) for small sample data. Six sample sizes, 3 factor correlations, and 2 factor score distributions (multivariate normal and multivariate mildly skewed) were studied. Two Bayesian prior specifications, informative and relatively less informative were studied. Undercoverage of confidence intervals and underestimation of standard errors was common in non-Bayesian methods. Underestimated standard errors may lead to inflated Type-I error rates. Non-Bayesian intervals were more positive biased than negatively biased, that is, most intervals that did not contain the true value were greater than the true value. Some non-Bayesian methods had non-converging and inadmissible solutions for small samples and non-normal data. Bayesian empirical standard error estimates for informative and relatively less informative priors were closer to the average standard errors of the estimates. The coverage of Bayesian credibility intervals was closer to what was expected with overcoverage in a few cases. Although some Bayesian credibility intervals were wider, they reflected the nature of statistical uncertainty that comes with the data (e.g., small sample). Bayesian point estimates were also more accurate than non-Bayesian estimates. The results illustrate the importance of analyzing coverage and bias of interval estimates, and how ignoring interval estimates can be misleading. Therefore, editors and policymakers should continue to emphasize the inclusion of interval estimates in research. PMID:26579002
Comparing interval estimates for small sample ordinal CFA models.
Natesan, Prathiba
2015-01-01
Robust maximum likelihood (RML) and asymptotically generalized least squares (AGLS) methods have been recommended for fitting ordinal structural equation models. Studies show that some of these methods underestimate standard errors. However, these studies have not investigated the coverage and bias of interval estimates. An estimate with a reasonable standard error could still be severely biased. This can only be known by systematically investigating the interval estimates. The present study compares Bayesian, RML, and AGLS interval estimates of factor correlations in ordinal confirmatory factor analysis models (CFA) for small sample data. Six sample sizes, 3 factor correlations, and 2 factor score distributions (multivariate normal and multivariate mildly skewed) were studied. Two Bayesian prior specifications, informative and relatively less informative were studied. Undercoverage of confidence intervals and underestimation of standard errors was common in non-Bayesian methods. Underestimated standard errors may lead to inflated Type-I error rates. Non-Bayesian intervals were more positive biased than negatively biased, that is, most intervals that did not contain the true value were greater than the true value. Some non-Bayesian methods had non-converging and inadmissible solutions for small samples and non-normal data. Bayesian empirical standard error estimates for informative and relatively less informative priors were closer to the average standard errors of the estimates. The coverage of Bayesian credibility intervals was closer to what was expected with overcoverage in a few cases. Although some Bayesian credibility intervals were wider, they reflected the nature of statistical uncertainty that comes with the data (e.g., small sample). Bayesian point estimates were also more accurate than non-Bayesian estimates. The results illustrate the importance of analyzing coverage and bias of interval estimates, and how ignoring interval estimates can be misleading. Therefore, editors and policymakers should continue to emphasize the inclusion of interval estimates in research.
The mean sea surface height and geoid along the Geosat subtrack from Bermuda to Cape Cod
NASA Astrophysics Data System (ADS)
Kelly, Kathryn A.; Joyce, Terrence M.; Schubert, David M.; Caruso, Michael J.
1991-07-01
Measurements of near-surface velocity and concurrent sea level along an ascending Geosat subtrack were used to estimate the mean sea surface height and the Earth's gravitational geoid. Velocity measurements were made on three traverses of a Geosat subtrack within 10 days, using an acoustic Doppler current profiler (ADCP). A small bias in the ADCP velocity was removed by considering a mass balance for two pairs of triangles for which expendable bathythermograph measurements were also made. Because of the large curvature of the Gulf Stream, the gradient wind balance was used to estimate the cross-track component of geostrophic velocity from the ADCP vectors; this component was then integrated to obtain the sea surface height profile. The mean sea surface height was estimated as the difference between the instantaneous sea surface height from ADCP and the Geosat residual sea level, with mesoscale errors reduced by low-pass filtering. The error estimates were divided into a bias, tilt, and mesoscale residual; the bias was ignored because profiles were only determined within a constant of integration. The calculated mean sea surface height estimate agreed with an independent estimate of the mean sea surface height from Geosat, obtained by modeling the Gulf Stream as a Gaussian jet, within the expected errors in the estimates: the tilt error was 0.10 m, and the mesoscale error was 0.044 m. To minimize mesoscale errors in the estimate, the alongtrack geoid estimate was computed as the difference between the mean sea level from the Geosat Exact Repeat Mission and an estimate of the mean sea surface height, rather than as the difference between instantaneous profiles of sea level and sea surface height. In the critical region near the Gulf Stream the estimated error reduction using this method was about 0.07 m. Differences between the geoid estimate and a gravimetric geoid were not within the expected errors: the rms mesoscale difference was 0.24 m rms.
Space-Time Error Representation and Estimation in Navier-Stokes Calculations
NASA Technical Reports Server (NTRS)
Barth, Timothy J.
2006-01-01
The mathematical framework for a-posteriori error estimation of functionals elucidated by Eriksson et al. [7] and Becker and Rannacher [3] is revisited in a space-time context. Using these theories, a hierarchy of exact and approximate error representation formulas are presented for use in error estimation and mesh adaptivity. Numerical space-time results for simple model problems as well as compressible Navier-Stokes flow at Re = 300 over a 2D circular cylinder are then presented to demonstrate elements of the error representation theory for time-dependent problems.
Method of estimating natural recharge to the Edwards Aquifer in the San Antonio area, Texas
Puente, Celso
1978-01-01
The principal errors in the estimates of annual recharge are related to errors in estimating runoff in ungaged areas, which represent about 30 percent of the infiltration area. The estimated long-term average annual recharge in each basin, however, is probably representative of the actual recharge because the averaging procedure tends to cancel out the major errors.
Multiscale sagebrush rangeland habitat modeling in southwest Wyoming
Homer, Collin G.; Aldridge, Cameron L.; Meyer, Debra K.; Coan, Michael J.; Bowen, Zachary H.
2009-01-01
Sagebrush-steppe ecosystems in North America have experienced dramatic elimination and degradation since European settlement. As a result, sagebrush-steppe dependent species have experienced drastic range contractions and population declines. Coordinated ecosystem-wide research, integrated with monitoring and management activities, would improve the ability to maintain existing sagebrush habitats. However, current data only identify resource availability locally, with rigorous spatial tools and models that accurately model and map sagebrush habitats over large areas still unavailable. Here we report on an effort to produce a rigorous large-area sagebrush-habitat classification and inventory with statistically validated products and estimates of precision in the State of Wyoming. This research employs a combination of significant new tools, including (1) modeling sagebrush rangeland as a series of independent continuous field components that can be combined and customized by any user at multiple spatial scales; (2) collecting ground-measured plot data on 2.4-meter imagery in the same season the satellite imagery is acquired; (3) effective modeling of ground-measured data on 2.4-meter imagery to maximize subsequent extrapolation; (4) acquiring multiple seasons (spring, summer, and fall) of an additional two spatial scales of imagery (30 meter and 56 meter) for optimal large-area modeling; (5) using regression tree classification technology that optimizes data mining of multiple image dates, ratios, and bands with ancillary data to extrapolate ground training data to coarser resolution sensors; and (6) employing rigorous accuracy assessment of model predictions to enable users to understand the inherent uncertainties. First-phase results modeled eight rangeland components (four primary targets and four secondary targets) as continuous field predictions. The primary targets included percent bare ground, percent herbaceousness, percent shrub, and percent litter. The four secondary targets included percent sagebrush (Artemisia spp.), percent big sagebrush (Artemisia tridentata), percent Wyoming sagebrush (Artemisia tridentata wyomingensis), and sagebrush height (centimeters). Results were validated by an independent accuracy assessment with root mean square error (RMSE) values ranging from 6.38 percent for bare ground to 2.99 percent for sagebrush at the QuickBird scale and RMSE values ranging from 12.07 percent for bare ground to 6.34 percent for sagebrush at the full Landsat scale. Subsequent project phases are now in progress, with plans to deliver products that improve accuracies of existing components, model new components, complete models over larger areas, track changes over time (from 1988 to 2007), and ultimately model wildlife population trends against these changes. We believe these results offer significant improvement in sagebrush rangeland quantification at multiple scales and offer users products that have been rigorously validated.
Adaptive Error Estimation in Linearized Ocean General Circulation Models
NASA Technical Reports Server (NTRS)
Chechelnitsky, Michael Y.
1999-01-01
Data assimilation methods are routinely used in oceanography. The statistics of the model and measurement errors need to be specified a priori. This study addresses the problem of estimating model and measurement error statistics from observations. We start by testing innovation based methods of adaptive error estimation with low-dimensional models in the North Pacific (5-60 deg N, 132-252 deg E) to TOPEX/POSEIDON (TIP) sea level anomaly data, acoustic tomography data from the ATOC project, and the MIT General Circulation Model (GCM). A reduced state linear model that describes large scale internal (baroclinic) error dynamics is used. The methods are shown to be sensitive to the initial guess for the error statistics and the type of observations. A new off-line approach is developed, the covariance matching approach (CMA), where covariance matrices of model-data residuals are "matched" to their theoretical expectations using familiar least squares methods. This method uses observations directly instead of the innovations sequence and is shown to be related to the MT method and the method of Fu et al. (1993). Twin experiments using the same linearized MIT GCM suggest that altimetric data are ill-suited to the estimation of internal GCM errors, but that such estimates can in theory be obtained using acoustic data. The CMA is then applied to T/P sea level anomaly data and a linearization of a global GFDL GCM which uses two vertical modes. We show that the CMA method can be used with a global model and a global data set, and that the estimates of the error statistics are robust. We show that the fraction of the GCM-T/P residual variance explained by the model error is larger than that derived in Fukumori et al.(1999) with the method of Fu et al.(1993). Most of the model error is explained by the barotropic mode. However, we find that impact of the change in the error statistics on the data assimilation estimates is very small. This is explained by the large representation error, i.e. the dominance of the mesoscale eddies in the T/P signal, which are not part of the 21 by 1" GCM. Therefore, the impact of the observations on the assimilation is very small even after the adjustment of the error statistics. This work demonstrates that simult&neous estimation of the model and measurement error statistics for data assimilation with global ocean data sets and linearized GCMs is possible. However, the error covariance estimation problem is in general highly underdetermined, much more so than the state estimation problem. In other words there exist a very large number of statistical models that can be made consistent with the available data. Therefore, methods for obtaining quantitative error estimates, powerful though they may be, cannot replace physical insight. Used in the right context, as a tool for guiding the choice of a small number of model error parameters, covariance matching can be a useful addition to the repertory of tools available to oceanographers.
Eisele, Thomas P; Rhoda, Dale A; Cutts, Felicity T; Keating, Joseph; Ren, Ruilin; Barros, Aluisio J D; Arnold, Fred
2013-01-01
Nationally representative household surveys are increasingly relied upon to measure maternal, newborn, and child health (MNCH) intervention coverage at the population level in low- and middle-income countries. Surveys are the best tool we have for this purpose and are central to national and global decision making. However, all survey point estimates have a certain level of error (total survey error) comprising sampling and non-sampling error, both of which must be considered when interpreting survey results for decision making. In this review, we discuss the importance of considering these errors when interpreting MNCH intervention coverage estimates derived from household surveys, using relevant examples from national surveys to provide context. Sampling error is usually thought of as the precision of a point estimate and is represented by 95% confidence intervals, which are measurable. Confidence intervals can inform judgments about whether estimated parameters are likely to be different from the real value of a parameter. We recommend, therefore, that confidence intervals for key coverage indicators should always be provided in survey reports. By contrast, the direction and magnitude of non-sampling error is almost always unmeasurable, and therefore unknown. Information error and bias are the most common sources of non-sampling error in household survey estimates and we recommend that they should always be carefully considered when interpreting MNCH intervention coverage based on survey data. Overall, we recommend that future research on measuring MNCH intervention coverage should focus on refining and improving survey-based coverage estimates to develop a better understanding of how results should be interpreted and used.
Eisele, Thomas P.; Rhoda, Dale A.; Cutts, Felicity T.; Keating, Joseph; Ren, Ruilin; Barros, Aluisio J. D.; Arnold, Fred
2013-01-01
Nationally representative household surveys are increasingly relied upon to measure maternal, newborn, and child health (MNCH) intervention coverage at the population level in low- and middle-income countries. Surveys are the best tool we have for this purpose and are central to national and global decision making. However, all survey point estimates have a certain level of error (total survey error) comprising sampling and non-sampling error, both of which must be considered when interpreting survey results for decision making. In this review, we discuss the importance of considering these errors when interpreting MNCH intervention coverage estimates derived from household surveys, using relevant examples from national surveys to provide context. Sampling error is usually thought of as the precision of a point estimate and is represented by 95% confidence intervals, which are measurable. Confidence intervals can inform judgments about whether estimated parameters are likely to be different from the real value of a parameter. We recommend, therefore, that confidence intervals for key coverage indicators should always be provided in survey reports. By contrast, the direction and magnitude of non-sampling error is almost always unmeasurable, and therefore unknown. Information error and bias are the most common sources of non-sampling error in household survey estimates and we recommend that they should always be carefully considered when interpreting MNCH intervention coverage based on survey data. Overall, we recommend that future research on measuring MNCH intervention coverage should focus on refining and improving survey-based coverage estimates to develop a better understanding of how results should be interpreted and used. PMID:23667331
New dimension analyses with error analysis for quaking aspen and black spruce
NASA Technical Reports Server (NTRS)
Woods, K. D.; Botkin, D. B.; Feiveson, A. H.
1987-01-01
Dimension analysis for black spruce in wetland stands and trembling aspen are reported, including new approaches in error analysis. Biomass estimates for sacrificed trees have standard errors of 1 to 3%; standard errors for leaf areas are 10 to 20%. Bole biomass estimation accounts for most of the error for biomass, while estimation of branch characteristics and area/weight ratios accounts for the leaf area error. Error analysis provides insight for cost effective design of future analyses. Predictive equations for biomass and leaf area, with empirically derived estimators of prediction error, are given. Systematic prediction errors for small aspen trees and for leaf area of spruce from different site-types suggest a need for different predictive models within species. Predictive equations are compared with published equations; significant differences may be due to species responses to regional or site differences. Proportional contributions of component biomass in aspen change in ways related to tree size and stand development. Spruce maintains comparatively constant proportions with size, but shows changes corresponding to site. This suggests greater morphological plasticity of aspen and significance for spruce of nutrient conditions.
Doubková, Marcela; Van Dijk, Albert I.J.M.; Sabel, Daniel; Wagner, Wolfgang; Blöschl, Günter
2012-01-01
The Sentinel-1 will carry onboard a C-band radar instrument that will map the European continent once every four days and the global land surface at least once every twelve days with finest 5 × 20 m spatial resolution. The high temporal sampling rate and operational configuration make Sentinel-1 of interest for operational soil moisture monitoring. Currently, updated soil moisture data are made available at 1 km spatial resolution as a demonstration service using Global Mode (GM) measurements from the Advanced Synthetic Aperture Radar (ASAR) onboard ENVISAT. The service demonstrates the potential of the C-band observations to monitor variations in soil moisture. Importantly, a retrieval error estimate is also available; these are needed to assimilate observations into models. The retrieval error is estimated by propagating sensor errors through the retrieval model. In this work, the existing ASAR GM retrieval error product is evaluated using independent top soil moisture estimates produced by the grid-based landscape hydrological model (AWRA-L) developed within the Australian Water Resources Assessment system (AWRA). The ASAR GM retrieval error estimate, an assumed prior AWRA-L error estimate and the variance in the respective datasets were used to spatially predict the root mean square error (RMSE) and the Pearson's correlation coefficient R between the two datasets. These were compared with the RMSE calculated directly from the two datasets. The predicted and computed RMSE showed a very high level of agreement in spatial patterns as well as good quantitative agreement; the RMSE was predicted within accuracy of 4% of saturated soil moisture over 89% of the Australian land mass. Predicted and calculated R maps corresponded within accuracy of 10% over 61% of the continent. The strong correspondence between the predicted and calculated RMSE and R builds confidence in the retrieval error model and derived ASAR GM error estimates. The ASAR GM and Sentinel-1 have the same basic physical measurement characteristics, and therefore very similar retrieval error estimation method can be applied. Because of the expected improvements in radiometric resolution of the Sentinel-1 backscatter measurements, soil moisture estimation errors can be expected to be an order of magnitude less than those for ASAR GM. This opens the possibility for operationally available medium resolution soil moisture estimates with very well-specified errors that can be assimilated into hydrological or crop yield models, with potentially large benefits for land-atmosphere fluxes, crop growth, and water balance monitoring and modelling. PMID:23483015
Shariat, Mohammad Hassan; Gazor, Saeed; Redfearn, Damian
2016-08-01
In this paper, we study the problem of the cardiac conduction velocity (CCV) estimation for the sequential intracardiac mapping. We assume that the intracardiac electrograms of several cardiac sites are sequentially recorded, their activation times (ATs) are extracted, and the corresponding wavefronts are specified. The locations of the mapping catheter's electrodes and the ATs of the wavefronts are used here for the CCV estimation. We assume that the extracted ATs include some estimation errors, which we model with zero-mean white Gaussian noise values with known variances. Assuming stable planar wavefront propagation, we derive the maximum likelihood CCV estimator, when the synchronization times between various recording sites are unknown. We analytically evaluate the performance of the CCV estimator and provide its mean square estimation error. Our simulation results confirm the accuracy of the proposed method and the error analysis of the proposed CCV estimator.
NASA Technical Reports Server (NTRS)
Olson, William S.; Kummerow, Christian D.; Yang, Song; Petty, Grant W.; Tao, Wei-Kuo; Bell, Thomas L.; Braun, Scott A.; Wang, Yansen; Lang, Stephen E.; Johnson, Daniel E.;
2006-01-01
A revised Bayesian algorithm for estimating surface rain rate, convective rain proportion, and latent heating profiles from satellite-borne passive microwave radiometer observations over ocean backgrounds is described. The algorithm searches a large database of cloud-radiative model simulations to find cloud profiles that are radiatively consistent with a given set of microwave radiance measurements. The properties of these radiatively consistent profiles are then composited to obtain best estimates of the observed properties. The revised algorithm is supported by an expanded and more physically consistent database of cloud-radiative model simulations. The algorithm also features a better quantification of the convective and nonconvective contributions to total rainfall, a new geographic database, and an improved representation of background radiances in rain-free regions. Bias and random error estimates are derived from applications of the algorithm to synthetic radiance data, based upon a subset of cloud-resolving model simulations, and from the Bayesian formulation itself. Synthetic rain-rate and latent heating estimates exhibit a trend of high (low) bias for low (high) retrieved values. The Bayesian estimates of random error are propagated to represent errors at coarser time and space resolutions, based upon applications of the algorithm to TRMM Microwave Imager (TMI) data. Errors in TMI instantaneous rain-rate estimates at 0.5 -resolution range from approximately 50% at 1 mm/h to 20% at 14 mm/h. Errors in collocated spaceborne radar rain-rate estimates are roughly 50%-80% of the TMI errors at this resolution. The estimated algorithm random error in TMI rain rates at monthly, 2.5deg resolution is relatively small (less than 6% at 5 mm day.1) in comparison with the random error resulting from infrequent satellite temporal sampling (8%-35% at the same rain rate). Percentage errors resulting from sampling decrease with increasing rain rate, and sampling errors in latent heating rates follow the same trend. Averaging over 3 months reduces sampling errors in rain rates to 6%-15% at 5 mm day.1, with proportionate reductions in latent heating sampling errors.
Decay in blood loss estimation skills after web-based didactic training.
Toledo, Paloma; Eosakul, Stanley T; Goetz, Kristopher; Wong, Cynthia A; Grobman, William A
2012-02-01
Accuracy in blood loss estimation has been shown to improve immediately after didactic training. The objective of this study was to evaluate retention of blood loss estimation skills 9 months after a didactic web-based training. Forty-four participants were recruited from a cohort that had undergone web-based training and testing in blood loss estimation. The web-based posttraining test, consisting of pictures of simulated blood loss, was repeated 9 months after the initial training and testing. The primary outcome was the difference in accuracy of estimated blood loss (percent error) at 9 months compared with immediately posttraining. At the 9-month follow-up, the median error in estimation worsened to -34.6%. Although better than the pretraining error of -47.8% (P = 0.003), the 9-month error was significantly less accurate than the immediate posttraining error of -13.5% (P = 0.01). Decay in blood loss estimation skills occurs by 9 months after didactic training.
NASA Technical Reports Server (NTRS)
Berg, Wesley; Avery, Susan K.
1995-01-01
Estimates of monthly rainfall have been computed over the tropical Pacific using passive microwave satellite observations from the special sensor microwave/imager (SSM/I) for the period from July 1987 through December 1990. These monthly estimates are calibrated using data from a network of Pacific atoll rain gauges in order to account for systematic biases and are then compared with several visible and infrared satellite-based rainfall estimation techniques for the purpose of evaluating the performance of the microwave-based estimates. Although several key differences among the various techniques are observed, the general features of the monthly rainfall time series agree very well. Finally, the significant error sources contributing to uncertainties in the monthly estimates are examined and an estimate of the total error is produced. The sampling error characteristics are investigated using data from two SSM/I sensors and a detailed analysis of the characteristics of the diurnal cycle of rainfall over the oceans and its contribution to sampling errors in the monthly SSM/I estimates is made using geosynchronous satellite data. Based on the analysis of the sampling and other error sources the total error was estimated to be of the order of 30 to 50% of the monthly rainfall for estimates averaged over 2.5 deg x 2.5 deg latitude/longitude boxes, with a contribution due to diurnal variability of the order of 10%.
NASA Astrophysics Data System (ADS)
Tangdamrongsub, Natthachet; Han, Shin-Chan; Decker, Mark; Yeo, In-Young; Kim, Hyungjun
2018-03-01
An accurate estimation of soil moisture and groundwater is essential for monitoring the availability of water supply in domestic and agricultural sectors. In order to improve the water storage estimates, previous studies assimilated terrestrial water storage variation (ΔTWS) derived from the Gravity Recovery and Climate Experiment (GRACE) into land surface models (LSMs). However, the GRACE-derived ΔTWS was generally computed from the high-level products (e.g. time-variable gravity fields, i.e. level 2, and land grid from the level 3 product). The gridded data products are subjected to several drawbacks such as signal attenuation and/or distortion caused by a posteriori filters and a lack of error covariance information. The post-processing of GRACE data might lead to the undesired alteration of the signal and its statistical property. This study uses the GRACE least-squares normal equation data to exploit the GRACE information rigorously and negate these limitations. Our approach combines GRACE's least-squares normal equation (obtained from ITSG-Grace2016 product) with the results from the Community Atmosphere Biosphere Land Exchange (CABLE) model to improve soil moisture and groundwater estimates. This study demonstrates, for the first time, an importance of using the GRACE raw data. The GRACE-combined (GC) approach is developed for optimal least-squares combination and the approach is applied to estimate the soil moisture and groundwater over 10 Australian river basins. The results are validated against the satellite soil moisture observation and the in situ groundwater data. Comparing to CABLE, we demonstrate the GC approach delivers evident improvement of water storage estimates, consistently from all basins, yielding better agreement on seasonal and inter-annual timescales. Significant improvement is found in groundwater storage while marginal improvement is observed in surface soil moisture estimates.
Impact and quantification of the sources of error in DNA pooling designs.
Jawaid, A; Sham, P
2009-01-01
The analysis of genome wide variation offers the possibility of unravelling the genes involved in the pathogenesis of disease. Genome wide association studies are also particularly useful for identifying and validating targets for therapeutic intervention as well as for detecting markers for drug efficacy and side effects. The cost of such large-scale genetic association studies may be reduced substantially by the analysis of pooled DNA from multiple individuals. However, experimental errors inherent in pooling studies lead to a potential increase in the false positive rate and a loss in power compared to individual genotyping. Here we quantify various sources of experimental error using empirical data from typical pooling experiments and corresponding individual genotyping counts using two statistical methods. We provide analytical formulas for calculating these different errors in the absence of complete information, such as replicate pool formation, and for adjusting for the errors in the statistical analysis. We demonstrate that DNA pooling has the potential of estimating allele frequencies accurately, and adjusting the pooled allele frequency estimates for differential allelic amplification considerably improves accuracy. Estimates of the components of error show that differential allelic amplification is the most important contributor to the error variance in absolute allele frequency estimation, followed by allele frequency measurement and pool formation errors. Our results emphasise the importance of minimising experimental errors and obtaining correct error estimates in genetic association studies.
Bayes Error Rate Estimation Using Classifier Ensembles
NASA Technical Reports Server (NTRS)
Tumer, Kagan; Ghosh, Joydeep
2003-01-01
The Bayes error rate gives a statistical lower bound on the error achievable for a given classification problem and the associated choice of features. By reliably estimating th is rate, one can assess the usefulness of the feature set that is being used for classification. Moreover, by comparing the accuracy achieved by a given classifier with the Bayes rate, one can quantify how effective that classifier is. Classical approaches for estimating or finding bounds for the Bayes error, in general, yield rather weak results for small sample sizes; unless the problem has some simple characteristics, such as Gaussian class-conditional likelihoods. This article shows how the outputs of a classifier ensemble can be used to provide reliable and easily obtainable estimates of the Bayes error with negligible extra computation. Three methods of varying sophistication are described. First, we present a framework that estimates the Bayes error when multiple classifiers, each providing an estimate of the a posteriori class probabilities, a recombined through averaging. Second, we bolster this approach by adding an information theoretic measure of output correlation to the estimate. Finally, we discuss a more general method that just looks at the class labels indicated by ensem ble members and provides error estimates based on the disagreements among classifiers. The methods are illustrated for artificial data, a difficult four-class problem involving underwater acoustic data, and two problems from the Problem benchmarks. For data sets with known Bayes error, the combiner-based methods introduced in this article outperform existing methods. The estimates obtained by the proposed methods also seem quite reliable for the real-life data sets for which the true Bayes rates are unknown.
Fatal overdoses involving hydromorphone and morphine among inpatients: a case series
Lowe, Amanda; Hamilton, Michael; Greenall BScPhm MHSc, Julie; Ma, Jessica; Dhalla, Irfan; Persaud, Nav
2017-01-01
Background: Opioids have narrow therapeutic windows, and errors in ordering or administration can be fatal. The purpose of this study was to describe deaths involving hydromorphone and morphine, which have similar-sounding names, but different potencies. Methods: In this case series, we describe deaths of patients admitted to hospital or residents of long-term care facilities that involved hydromorphone and morphine. We searched for deaths referred to the Patient Safety Review Committee of the Office of the Chief Coroner for Ontario between 2007 and 2012, and subsequently reviewed by 2014. We reviewed each case to identify intervention points where errors could have been prevented. Results: We identified 8 cases involving decedents aged 19 to 91 years. The cases involved errors in prescribing, order processing and transcription, dispensing, administration and monitoring. For 7 of the 8 cases, there were multiple (2 or more) possible intervention points. Six cases may have been prevented by additional patient monitoring, and 5 cases involved dispensing errors. Interpretation: Opioid toxicity deaths in patients living in institutions can be prevented at multiple points in the prescribing and dispensing processes. Interventions aimed at preventing errors in hydromorphone and morphine prescribing, administration and patient monitoring should be implemented and rigorously evaluated. PMID:28401133
Fatal overdoses involving hydromorphone and morphine among inpatients: a case series.
Lowe, Amanda; Hamilton, Michael; Greenall BScPhm MHSc, Julie; Ma, Jessica; Dhalla, Irfan; Persaud, Nav
2017-01-01
Opioids have narrow therapeutic windows, and errors in ordering or administration can be fatal. The purpose of this study was to describe deaths involving hydromorphone and morphine, which have similar-sounding names, but different potencies. In this case series, we describe deaths of patients admitted to hospital or residents of long-term care facilities that involved hydromorphone and morphine. We searched for deaths referred to the Patient Safety Review Committee of the Office of the Chief Coroner for Ontario between 2007 and 2012, and subsequently reviewed by 2014. We reviewed each case to identify intervention points where errors could have been prevented. We identified 8 cases involving decedents aged 19 to 91 years. The cases involved errors in prescribing, order processing and transcription, dispensing, administration and monitoring. For 7 of the 8 cases, there were multiple (2 or more) possible intervention points. Six cases may have been prevented by additional patient monitoring, and 5 cases involved dispensing errors. Opioid toxicity deaths in patients living in institutions can be prevented at multiple points in the prescribing and dispensing processes. Interventions aimed at preventing errors in hydromorphone and morphine prescribing, administration and patient monitoring should be implemented and rigorously evaluated.
Measurement uncertainty relations: characterising optimal error bounds for qubits
NASA Astrophysics Data System (ADS)
Bullock, T.; Busch, P.
2018-07-01
In standard formulations of the uncertainty principle, two fundamental features are typically cast as impossibility statements: two noncommuting observables cannot in general both be sharply defined (for the same state), nor can they be measured jointly. The pioneers of quantum mechanics were acutely aware and puzzled by this fact, and it motivated Heisenberg to seek a mitigation, which he formulated in his seminal paper of 1927. He provided intuitive arguments to show that the values of, say, the position and momentum of a particle can at least be unsharply defined, and they can be measured together provided some approximation errors are allowed. Only now, nine decades later, a working theory of approximate joint measurements is taking shape, leading to rigorous and experimentally testable formulations of associated error tradeoff relations. Here we briefly review this new development, explaining the concepts and steps taken in the construction of optimal joint approximations of pairs of incompatible observables. As a case study, we deduce measurement uncertainty relations for qubit observables using two distinct error measures. We provide an operational interpretation of the error bounds and discuss some of the first experimental tests of such relations.
NASA Astrophysics Data System (ADS)
Cao, Lu; Li, Hengnian
2016-10-01
For the satellite attitude estimation problem, the serious model errors always exist and hider the estimation performance of the Attitude Determination and Control System (ACDS), especially for a small satellite with low precision sensors. To deal with this problem, a new algorithm for the attitude estimation, referred to as the unscented predictive variable structure filter (UPVSF) is presented. This strategy is proposed based on the variable structure control concept and unscented transform (UT) sampling method. It can be implemented in real time with an ability to estimate the model errors on-line, in order to improve the state estimation precision. In addition, the model errors in this filter are not restricted only to the Gaussian noises; therefore, it has the advantages to deal with the various kinds of model errors or noises. It is anticipated that the UT sampling strategy can further enhance the robustness and accuracy of the novel UPVSF. Numerical simulations show that the proposed UPVSF is more effective and robustness in dealing with the model errors and low precision sensors compared with the traditional unscented Kalman filter (UKF).
Tissue resistivity estimation in the presence of positional and geometrical uncertainties.
Baysal, U; Eyüboğlu, B M
2000-08-01
Geometrical uncertainties (organ boundary variation and electrode position uncertainties) are the biggest sources of error in estimating electrical resistivity of tissues from body surface measurements. In this study, in order to decrease estimation errors, the statistically constrained minimum mean squared error estimation algorithm (MiMSEE) is constrained with a priori knowledge of the geometrical uncertainties in addition to the constraints based on geometry, resistivity range, linearization and instrumentation errors. The MiMSEE calculates an optimum inverse matrix, which maps the surface measurements to the unknown resistivity distribution. The required data are obtained from four-electrode impedance measurements, similar to injected-current electrical impedance tomography (EIT). In this study, the surface measurements are simulated by using a numerical thorax model. The data are perturbed with additive instrumentation noise. Simulated surface measurements are then used to estimate the tissue resistivities by using the proposed algorithm. The results are compared with the results of conventional least squares error estimator (LSEE). Depending on the region, the MiMSEE yields an estimation error between 0.42% and 31.3% compared with 7.12% to 2010% for the LSEE. It is shown that the MiMSEE is quite robust even in the case of geometrical uncertainties.
Terminal iterative learning control based station stop control of a train
NASA Astrophysics Data System (ADS)
Hou, Zhongsheng; Wang, Yi; Yin, Chenkun; Tang, Tao
2011-07-01
The terminal iterative learning control (TILC) method is introduced for the first time into the field of train station stop control and three TILC-based algorithms are proposed in this study. The TILC-based train station stop control approach utilises the terminal stop position error in previous braking process to update the current control profile. The initial braking position, or the braking force, or their combination is chosen as the control input, and corresponding learning law is developed. The terminal stop position error of each algorithm is guaranteed to converge to a small region related with the initial offset of braking position with rigorous analysis. The validity of the proposed algorithms is verified by illustrative numerical examples.
Accuracy of measurement of star images on a pixel array
NASA Technical Reports Server (NTRS)
King, I. R.
1983-01-01
Algorithms are developed for predicting the accuracy with which the brightness of a star can be determined from its image on a digital detector array, as a function of the brightness of the background. The assumption is made that a known profile is being fitted by least squares. The two profiles used correspond to ST images and to ground-based observations. The first result is an approximate rule of thumb for equivalent noise area. More rigorous results are then given in tabular form. The size of the pixels, relative to the image size, is taken into account. Astronometric accuracy is also discussed briefly; the error, relative to image size, is very similar to the photometric error relative to brightness.
NASA Technical Reports Server (NTRS)
Egbert, Gary D.
2001-01-01
A numerical ocean tide model has been developed and tested using highly accurate TOPEX/Poseidon (T/P) tidal solutions. The hydrodynamic model is based on time stepping a finite difference approximation to the non-linear shallow water equations. Two novel features of our implementation are a rigorous treatment of self attraction and loading (SAL), and a physically based parameterization for internal tide (IT) radiation drag. The model was run for a range of grid resolutions, and with variations in model parameters and bathymetry. For a rational treatment of SAL and IT drag, the model run at high resolution (1/12 degree) fits the T/P solutions to within 5 cm RMS in the open ocean. Both the rigorous SAL treatment and the IT drag parameterization are required to obtain solutions of this quality. The sensitivity of the solution to perturbations in bathymetry suggest that the fit to T/P is probably now limited by errors in this critical input. Since the model is not constrained by any data, we can test the effect of dropping sea-level to match estimated bathymetry from the last glacial maximum (LGM). Our results suggest that the 100 m drop in sea-level in the LGM would have significantly increased tidal amplitudes in the North Atlantic, and increased overall tidal dissipation by about 40%. However, details in tidal solutions for the past 20 ka are sensitive to the assumed stratification. IT drag accounts for a significant fraction of dissipation, especially in the LGM when large areas of present day shallow sea were exposed, and this parameter is poorly constrained at present.
Blanco, Marco A.; Sahin, Erinc; Li, Yi; Roberts, Christopher J.
2011-01-01
The classic analysis of Rayleigh light scattering (LS) is re-examined for multi-component protein solutions, within the context of Kirkwood-Buff (KB) theory as well as a more generalized canonical treatment. Significant differences arise when traditional treatments that approximate constant pressure and neglect concentration fluctuations in one or more (co)solvent∕co-solute species are compared with more rigorous treatments at constant volume and with all species free to fluctuate. For dilute solutions, it is shown that LS can be used to rigorously and unambiguously obtain values for the osmotic second virial coefficient (B22), in contrast with recent arguments regarding protein interactions deduced from LS experiments. For more concentrated solutions, it is shown that conventional analysis over(under)-estimates the magnitude of B22 for significantly repulsive(attractive) conditions, and that protein-protein KB integrals (G22) are the more relevant quantity obtainable from LS. Published data for α–chymotrypsinogen A and a series of monoclonal antibodies at different pH and salt concentrations are re-analyzed using traditional and new treatments. The results illustrate that while traditional analysis may be sufficient if one is interested in only the sign of B22 or G22, the quantitative values can be significantly in error. A simple approach is illustrated for determining whether protein concentration (c2) is sufficiently dilute for B22 to apply, and for correcting B22 values from traditional LS regression at higher c2 values. The apparent molecular weight M2, app obtained from LS is shown to generally not be equal to the true molecular weight, with the differences arising from a combination of protein-solute and protein-cosolute interactions that may, in principle, also be determined from LS. PMID:21682538
Kim, Dong-Kyu; Park, Won-Woong; Lee, Ho Won; Kang, Seong-Hoon; Im, Yong-Taek
2013-12-01
In this study, a rigorous methodology for quantifying recrystallization kinetics by electron backscatter diffraction is proposed in order to reduce errors associated with the operator's skill. An adaptive criterion to determine adjustable grain orientation spread depending on the recrystallization stage is proposed to better identify the recrystallized grains in the partially recrystallized microstructure. The proposed method was applied in characterizing the microstructure evolution during annealing of interstitial-free steel cold rolled to low and high true strain levels of 0.7 and 1.6, respectively. The recrystallization kinetics determined by the proposed method was found to be consistent with the standard method of Vickers microhardness. The application of the proposed method to the overall recrystallization stages showed that it can be used for the rigorous characterization of progressive microstructure evolution, especially for the severely deformed material. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.
New GRACE-Derived Storage Change Estimates Using Empirical Mode Extraction
NASA Astrophysics Data System (ADS)
Aierken, A.; Lee, H.; Yu, H.; Ate, P.; Hossain, F.; Basnayake, S. B.; Jayasinghe, S.; Saah, D. S.; Shum, C. K.
2017-12-01
Estimated mass change from GRACE spherical harmonic solutions have north/south stripes and east/west banded errors due to random noise and modeling errors. Low pass filters like decorrelation and Gaussian smoothing are typically applied to reduce noise and errors. However, these filters introduce leakage errors that need to be addressed. GRACE mascon estimates (JPL and CSR mascon solutions) do not need decorrelation or Gaussian smoothing and offer larger signal magnitudes compared to the GRACE spherical harmonics (SH) filtered results. However, a recent study [Chen et al., JGR, 2017] demonstrated that both JPL and CSR mascon solutions also have leakage errors. We developed a new postprocessing method based on empirical mode decomposition to estimate mass change from GRACE SH solutions without decorrelation and Gaussian smoothing, the two main sources of leakage errors. We found that, without any post processing, the noise and errors in spherical harmonic solutions introduced very clear high frequency components in the spatial domain. By removing these high frequency components and reserve the overall pattern of the signal, we obtained better mass estimates with minimum leakage errors. The new global mass change estimates captured all the signals observed by GRACE without the stripe errors. Results were compared with traditional methods over the Tonle Sap Basin in Cambodia, Northwestern India, Central Valley in California, and the Caspian Sea. Our results provide larger signal magnitudes which are in good agreement with the leakage corrected (forward modeled) SH results.
The Use of Neural Networks in Identifying Error Sources in Satellite-Derived Tropical SST Estimates
Lee, Yung-Hsiang; Ho, Chung-Ru; Su, Feng-Chun; Kuo, Nan-Jung; Cheng, Yu-Hsin
2011-01-01
An neural network model of data mining is used to identify error sources in satellite-derived tropical sea surface temperature (SST) estimates from thermal infrared sensors onboard the Geostationary Operational Environmental Satellite (GOES). By using the Back Propagation Network (BPN) algorithm, it is found that air temperature, relative humidity, and wind speed variation are the major factors causing the errors of GOES SST products in the tropical Pacific. The accuracy of SST estimates is also improved by the model. The root mean square error (RMSE) for the daily SST estimate is reduced from 0.58 K to 0.38 K and mean absolute percentage error (MAPE) is 1.03%. For the hourly mean SST estimate, its RMSE is also reduced from 0.66 K to 0.44 K and the MAPE is 1.3%. PMID:22164030
NASA Astrophysics Data System (ADS)
Debchoudhury, Shantanab; Earle, Gregory
2017-04-01
Retarding Potential Analyzers (RPA) have a rich flight heritage. Standard curve-fitting analysis techniques exist that can infer state variables in the ionospheric plasma environment from RPA data, but the estimation process is prone to errors arising from a number of sources. Previous work has focused on the effects of grid geometry on uncertainties in estimation; however, no prior study has quantified the estimation errors due to additive noise. In this study, we characterize the errors in estimation of thermal plasma parameters by adding noise to the simulated data derived from the existing ionospheric models. We concentrate on low-altitude, mid-inclination orbits since a number of nano-satellite missions are focused on this region of the ionosphere. The errors are quantified and cross-correlated for varying geomagnetic conditions.
Simultaneous overlay and CD measurement for double patterning: scatterometry and RCWA approach
NASA Astrophysics Data System (ADS)
Li, Jie; Liu, Zhuan; Rabello, Silvio; Dasari, Prasad; Kritsun, Oleg; Volkman, Catherine; Park, Jungchul; Singh, Lovejeet
2009-03-01
As optical lithography advances to 32 nm technology node and beyond, double patterning technology (DPT) has emerged as an attractive solution to circumvent the fundamental optical limitations. DPT poses unique demands on critical dimension (CD) uniformity and overlay control, making the tolerance decrease much faster than the rate at which critical dimension shrinks. This, in turn, makes metrology even more challenging. In the past, multi-pad diffractionbased overlay (DBO) using empirical approach has been shown to be an effective approach to measure overlay error associated with double patterning [1]. In this method, registration errors for double patterning were extracted from specially designed diffraction targets (three or four pads for each direction); CD variation is assumed negligible within each group of adjacent pads and not addressed in the measurement. In another paper, encouraging results were reported with a first attempt at simultaneously extracting overlay and CD parameters using scatterometry [2]. In this work, we apply scatterometry with a rigorous coupled wave analysis (RCWA) approach to characterize two double-patterning processes: litho-etch-litho-etch (LELE) and litho-freeze-litho-etch (LFLE). The advantage of performing rigorous modeling is to reduce the number of pads within each measurement target, thus reducing space requirement and improving throughput, and simultaneously extract CD and overlay information. This method measures overlay errors and CDs by fitting the optical signals with spectra calculated from a model of the targets. Good correlation is obtained between the results from this method and that of several reference techniques, including empirical multi-pad DBO, CD-SEM, and IBO. We also perform total measurement uncertainty (TMU) analysis to evaluate the overall performance. We demonstrate that scatterometry provides a promising solution to meet the challenging overlay metrology requirement in DPT.
Using Audit Information to Adjust Parameter Estimates for Data Errors in Clinical Trials
Shepherd, Bryan E.; Shaw, Pamela A.; Dodd, Lori E.
2013-01-01
Background Audits are often performed to assess the quality of clinical trial data, but beyond detecting fraud or sloppiness, the audit data is generally ignored. In earlier work using data from a non-randomized study, Shepherd and Yu (2011) developed statistical methods to incorporate audit results into study estimates, and demonstrated that audit data could be used to eliminate bias. Purpose In this manuscript we examine the usefulness of audit-based error-correction methods in clinical trial settings where a continuous outcome is of primary interest. Methods We demonstrate the bias of multiple linear regression estimates in general settings with an outcome that may have errors and a set of covariates for which some may have errors and others, including treatment assignment, are recorded correctly for all subjects. We study this bias under different assumptions including independence between treatment assignment, covariates, and data errors (conceivable in a double-blinded randomized trial) and independence between treatment assignment and covariates but not data errors (possible in an unblinded randomized trial). We review moment-based estimators to incorporate the audit data and propose new multiple imputation estimators. The performance of estimators is studied in simulations. Results When treatment is randomized and unrelated to data errors, estimates of the treatment effect using the original error-prone data (i.e., ignoring the audit results) are unbiased. In this setting, both moment and multiple imputation estimators incorporating audit data are more variable than standard analyses using the original data. In contrast, in settings where treatment is randomized but correlated with data errors and in settings where treatment is not randomized, standard treatment effect estimates will be biased. And in all settings, parameter estimates for the original, error-prone covariates will be biased. Treatment and covariate effect estimates can be corrected by incorporating audit data using either the multiple imputation or moment-based approaches. Bias, precision, and coverage of confidence intervals improve as the audit size increases. Limitations The extent of bias and the performance of methods depend on the extent and nature of the error as well as the size of the audit. This work only considers methods for the linear model. Settings much different than those considered here need further study. Conclusions In randomized trials with continuous outcomes and treatment assignment independent of data errors, standard analyses of treatment effects will be unbiased and are recommended. However, if treatment assignment is correlated with data errors or other covariates, naive analyses may be biased. In these settings, and when covariate effects are of interest, approaches for incorporating audit results should be considered. PMID:22848072
NASA Technical Reports Server (NTRS)
Pavlis, Nikolaos K.
1991-01-01
An error analysis study was conducted in order to assess the current accuracies and the future anticipated improvements in the estimation of geopotential differences over intercontinental locations. An observation/estimation scheme was proposed and studied, whereby gravity disturbance measurements on the Earth's surface, in caps surrounding the estimation points, are combined with corresponding data in caps directly over these points at the altitude of a low orbiting satellite, for the estimation of the geopotential difference between the terrestrial stations. The mathematical modeling required to relate the primary observables to the parameters to be estimated, was studied for the terrestrial data and the data at altitude. Emphasis was placed on the examination of systematic effects and on the corresponding reductions that need to be applied to the measurements to avoid systematic errors. The error estimation for the geopotential differences was performed using both truncation theory and least squares collocation with ring averages, in case observations on the Earth's surface only are used. The error analysis indicated that with the currently available global geopotential model OSU89B and with gravity disturbance data in 2 deg caps surrounding the estimation points, the error of the geopotential difference arising from errors in the reference model and the cap data is about 23 kgal cm, for 30 deg station separation.
Drach-Zahavy, A; Somech, A; Admi, H; Peterfreund, I; Peker, H; Priente, O
2014-03-01
Attention in the ward should shift from preventing medication administration errors to managing them. Nevertheless, little is known in regard with the practices nursing wards apply to learn from medication administration errors as a means of limiting them. To test the effectiveness of four types of learning practices, namely, non-integrated, integrated, supervisory and patchy learning practices in limiting medication administration errors. Data were collected from a convenient sample of 4 hospitals in Israel by multiple methods (observations and self-report questionnaires) at two time points. The sample included 76 wards (360 nurses). Medication administration error was defined as any deviation from prescribed medication processes and measured by a validated structured observation sheet. Wards' use of medication administration technologies, location of the medication station, and workload were observed; learning practices and demographics were measured by validated questionnaires. Results of the mixed linear model analysis indicated that the use of technology and quiet location of the medication cabinet were significantly associated with reduced medication administration errors (estimate=.03, p<.05 and estimate=-.17, p<.01 correspondingly), while workload was significantly linked to inflated medication administration errors (estimate=.04, p<.05). Of the learning practices, supervisory learning was the only practice significantly linked to reduced medication administration errors (estimate=-.04, p<.05). Integrated and patchy learning were significantly linked to higher levels of medication administration errors (estimate=-.03, p<.05 and estimate=-.04, p<.01 correspondingly). Non-integrated learning was not associated with it (p>.05). How wards manage errors might have implications for medication administration errors beyond the effects of typical individual, organizational and technology risk factors. Head nurse can facilitate learning from errors by "management by walking around" and monitoring nurses' medication administration behaviors. Copyright © 2013 Elsevier Ltd. All rights reserved.
Sliding mode output feedback control based on tracking error observer with disturbance estimator.
Xiao, Lingfei; Zhu, Yue
2014-07-01
For a class of systems who suffers from disturbances, an original output feedback sliding mode control method is presented based on a novel tracking error observer with disturbance estimator. The mathematical models of the systems are not required to be with high accuracy, and the disturbances can be vanishing or nonvanishing, while the bounds of disturbances are unknown. By constructing a differential sliding surface and employing reaching law approach, a sliding mode controller is obtained. On the basis of an extended disturbance estimator, a creative tracking error observer is produced. By using the observation of tracking error and the estimation of disturbance, the sliding mode controller is implementable. It is proved that the disturbance estimation error and tracking observation error are bounded, the sliding surface is reachable and the closed-loop system is robustly stable. The simulations on a servomotor positioning system and a five-degree-of-freedom active magnetic bearings system verify the effect of the proposed method. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
A framework for analyzing the impact of data integrity/quality on electricity market operations
NASA Astrophysics Data System (ADS)
Choi, Dae Hyun
This dissertation examines the impact of data integrity/quality in the supervisory control and data acquisition (SCADA) system on real-time locational marginal price (LMP) in electricity market operations. Measurement noise and/or manipulated sensor errors in a SCADA system may mislead system operators about real-time conditions in a power system, which, in turn, may impact the price signals in real-time power markets. This dissertation serves as a first attempt to analytically investigate the impact of bad/malicious data on electric power market operations. In future power system operations, which will probably involve many more sensors, the impact of sensor data integrity/quality on grid operations will become increasingly important. The first part of this dissertation studies from a market participant's perspective a new class of malicious data attacks on state estimation, which subsequently influences the result of the newly emerging look-ahead dispatch models in the real-time power market. In comparison with prior work of cyber-attack on static dispatch where no inter-temporal ramping constraint is considered, we propose a novel attack strategy, named ramp-induced data (RID) attack, with which the attacker can manipulate the limits of ramp constraints of generators in look-ahead dispatch. It is demonstrated that the proposed attack can lead to financial profits via malicious capacity withholding of selected generators, while being undetected by the existing bad data detection algorithm embedded in today's state estimation software. In the second part, we investigate from a system operator's perspective the sensitivity of locational marginal price (LMP) with respect to data corruption-induced state estimation error in real-time power market. Two data corruption scenarios are considered, in which corrupted continuous data (e.g., the power injection/flow and voltage magnitude) falsify power flow estimate whereas corrupted discrete data (e.g., the on/off status of a circuit breaker) do network topology estimate, thus leading to the distortion of LMP. We present an analytical framework to quantify real-time LMP sensitivity subject to continuous and discrete data corruption via state estimation. The proposed framework offers system operators an analytical tool to identify economically sensitive buses and transmission lines to data corruption as well as find sensors that impact LMP changes significantly. This dissertation serves as a first step towards rigorous understanding of the fundamental coupling among cyber, physical and economical layers of operations in future smart grid.
Lamadrid-Figueroa, Héctor; Téllez-Rojo, Martha M; Angeles, Gustavo; Hernández-Ávila, Mauricio; Hu, Howard
2011-01-01
In-vivo measurement of bone lead by means of K-X-ray fluorescence (KXRF) is the preferred biological marker of chronic exposure to lead. Unfortunately, considerable measurement error associated with KXRF estimations can introduce bias in estimates of the effect of bone lead when this variable is included as the exposure in a regression model. Estimates of uncertainty reported by the KXRF instrument reflect the variance of the measurement error and, although they can be used to correct the measurement error bias, they are seldom used in epidemiological statistical analyzes. Errors-in-variables regression (EIV) allows for correction of bias caused by measurement error in predictor variables, based on the knowledge of the reliability of such variables. The authors propose a way to obtain reliability coefficients for bone lead measurements from uncertainty data reported by the KXRF instrument and compare, by the use of Monte Carlo simulations, results obtained using EIV regression models vs. those obtained by the standard procedures. Results of the simulations show that Ordinary Least Square (OLS) regression models provide severely biased estimates of effect, and that EIV provides nearly unbiased estimates. Although EIV effect estimates are more imprecise, their mean squared error is much smaller than that of OLS estimates. In conclusion, EIV is a better alternative than OLS to estimate the effect of bone lead when measured by KXRF. Copyright © 2010 Elsevier Inc. All rights reserved.
Error identification in a high-volume clinical chemistry laboratory: Five-year experience.
Jafri, Lena; Khan, Aysha Habib; Ghani, Farooq; Shakeel, Shahid; Raheem, Ahmed; Siddiqui, Imran
2015-07-01
Quality indicators for assessing the performance of a laboratory require a systematic and continuous approach in collecting and analyzing data. The aim of this study was to determine the frequency of errors utilizing the quality indicators in a clinical chemistry laboratory and to convert errors to the Sigma scale. Five-year quality indicator data of a clinical chemistry laboratory was evaluated to describe the frequency of errors. An 'error' was defined as a defect during the entire testing process from the time requisition was raised and phlebotomy was done until the result dispatch. An indicator with a Sigma value of 4 was considered good but a process for which the Sigma value was 5 (i.e. 99.977% error-free) was considered well controlled. In the five-year period, a total of 6,792,020 specimens were received in the laboratory. Among a total of 17,631,834 analyses, 15.5% were from within hospital. Total error rate was 0.45% and of all the quality indicators used in this study the average Sigma level was 5.2. Three indicators - visible hemolysis, failure of proficiency testing and delay in stat tests - were below 5 on the Sigma scale and highlight the need to rigorously monitor these processes. Using Six Sigma metrics quality in a clinical laboratory can be monitored more effectively and it can set benchmarks for improving efficiency.
Spatial Statistical Data Fusion (SSDF)
NASA Technical Reports Server (NTRS)
Braverman, Amy J.; Nguyen, Hai M.; Cressie, Noel
2013-01-01
As remote sensing for scientific purposes has transitioned from an experimental technology to an operational one, the selection of instruments has become more coordinated, so that the scientific community can exploit complementary measurements. However, tech nological and scientific heterogeneity across devices means that the statistical characteristics of the data they collect are different. The challenge addressed here is how to combine heterogeneous remote sensing data sets in a way that yields optimal statistical estimates of the underlying geophysical field, and provides rigorous uncertainty measures for those estimates. Different remote sensing data sets may have different spatial resolutions, different measurement error biases and variances, and other disparate characteristics. A state-of-the-art spatial statistical model was used to relate the true, but not directly observed, geophysical field to noisy, spatial aggregates observed by remote sensing instruments. The spatial covariances of the true field and the covariances of the true field with the observations were modeled. The observations are spatial averages of the true field values, over pixels, with different measurement noise superimposed. A kriging framework is used to infer optimal (minimum mean squared error and unbiased) estimates of the true field at point locations from pixel-level, noisy observations. A key feature of the spatial statistical model is the spatial mixed effects model that underlies it. The approach models the spatial covariance function of the underlying field using linear combinations of basis functions of fixed size. Approaches based on kriging require the inversion of very large spatial covariance matrices, and this is usually done by making simplifying assumptions about spatial covariance structure that simply do not hold for geophysical variables. In contrast, this method does not require these assumptions, and is also computationally much faster. This method is fundamentally different than other approaches to data fusion for remote sensing data because it is inferential rather than merely descriptive. All approaches combine data in a way that minimizes some specified loss function. Most of these are more or less ad hoc criteria based on what looks good to the eye, or some criteria that relate only to the data at hand.
NASA Astrophysics Data System (ADS)
Arhonditsis, George B.; Papantou, Dimitra; Zhang, Weitao; Perhar, Gurbir; Massos, Evangelia; Shi, Molu
2008-09-01
Aquatic biogeochemical models have been an indispensable tool for addressing pressing environmental issues, e.g., understanding oceanic response to climate change, elucidation of the interplay between plankton dynamics and atmospheric CO 2 levels, and examination of alternative management schemes for eutrophication control. Their ability to form the scientific basis for environmental management decisions can be undermined by the underlying structural and parametric uncertainty. In this study, we outline how we can attain realistic predictive links between management actions and ecosystem response through a probabilistic framework that accommodates rigorous uncertainty analysis of a variety of error sources, i.e., measurement error, parameter uncertainty, discrepancy between model and natural system. Because model uncertainty analysis essentially aims to quantify the joint probability distribution of model parameters and to make inference about this distribution, we believe that the iterative nature of Bayes' Theorem is a logical means to incorporate existing knowledge and update the joint distribution as new information becomes available. The statistical methodology begins with the characterization of parameter uncertainty in the form of probability distributions, then water quality data are used to update the distributions, and yield posterior parameter estimates along with predictive uncertainty bounds. Our illustration is based on a six state variable (nitrate, ammonium, dissolved organic nitrogen, phytoplankton, zooplankton, and bacteria) ecological model developed for gaining insight into the mechanisms that drive plankton dynamics in a coastal embayment; the Gulf of Gera, Island of Lesvos, Greece. The lack of analytical expressions for the posterior parameter distributions was overcome using Markov chain Monte Carlo simulations; a convenient way to obtain representative samples of parameter values. The Bayesian calibration resulted in realistic reproduction of the key temporal patterns of the system, offered insights into the degree of information the data contain about model inputs, and also allowed the quantification of the dependence structure among the parameter estimates. Finally, our study uses two synthetic datasets to examine the ability of the updated model to provide estimates of predictive uncertainty for water quality variables of environmental management interest.
Fire frequency in the Interior Columbia River Basin: Building regional models from fire history data
McKenzie, D.; Peterson, D.L.; Agee, James K.
2000-01-01
Fire frequency affects vegetation composition and successional pathways; thus it is essential to understand fire regimes in order to manage natural resources at broad spatial scales. Fire history data are lacking for many regions for which fire management decisions are being made, so models are needed to estimate past fire frequency where local data are not yet available. We developed multiple regression models and tree-based (classification and regression tree, or CART) models to predict fire return intervals across the interior Columbia River basin at 1-km resolution, using georeferenced fire history, potential vegetation, cover type, and precipitation databases. The models combined semiqualitative methods and rigorous statistics. The fire history data are of uneven quality; some estimates are based on only one tree, and many are not cross-dated. Therefore, we weighted the models based on data quality and performed a sensitivity analysis of the effects on the models of estimation errors that are due to lack of cross-dating. The regression models predict fire return intervals from 1 to 375 yr for forested areas, whereas the tree-based models predict a range of 8 to 150 yr. Both types of models predict latitudinal and elevational gradients of increasing fire return intervals. Examination of regional-scale output suggests that, although the tree-based models explain more of the variation in the original data, the regression models are less likely to produce extrapolation errors. Thus, the models serve complementary purposes in elucidating the relationships among fire frequency, the predictor variables, and spatial scale. The models can provide local managers with quantitative information and provide data to initialize coarse-scale fire-effects models, although predictions for individual sites should be treated with caution because of the varying quality and uneven spatial coverage of the fire history database. The models also demonstrate the integration of qualitative and quantitative methods when requisite data for fully quantitative models are unavailable. They can be tested by comparing new, independent fire history reconstructions against their predictions and can be continually updated, as better fire history data become available.
Types of Possible Survey Errors in Estimates Published in the Weekly Natural Gas Storage Report
2016-01-01
This document lists types of potential errors in EIA estimates published in the WNGSR. Survey errors are an unavoidable aspect of data collection. Error is inherent in all collected data, regardless of the source of the data and the care and competence of data collectors. The type and extent of error depends on the type and characteristics of the survey.
IVF cycle cost estimation using Activity Based Costing and Monte Carlo simulation.
Cassettari, Lucia; Mosca, Marco; Mosca, Roberto; Rolando, Fabio; Costa, Mauro; Pisaturo, Valerio
2016-03-01
The Authors present a new methodological approach in stochastic regime to determine the actual costs of an healthcare process. The paper specifically shows the application of the methodology for the determination of the cost of an Assisted reproductive technology (ART) treatment in Italy. The reason of this research comes from the fact that deterministic regime is inadequate to implement an accurate estimate of the cost of this particular treatment. In fact the durations of the different activities involved are unfixed and described by means of frequency distributions. Hence the need to determine in addition to the mean value of the cost, the interval within which it is intended to vary with a known confidence level. Consequently the cost obtained for each type of cycle investigated (in vitro fertilization and embryo transfer with or without intracytoplasmic sperm injection), shows tolerance intervals around the mean value sufficiently restricted as to make the data obtained statistically robust and therefore usable also as reference for any benchmark with other Countries. It should be noted that under a methodological point of view the approach was rigorous. In fact it was used both the technique of Activity Based Costing for determining the cost of individual activities of the process both the Monte Carlo simulation, with control of experimental error, for the construction of the tolerance intervals on the final result.
Fisher classifier and its probability of error estimation
NASA Technical Reports Server (NTRS)
Chittineni, C. B.
1979-01-01
Computationally efficient expressions are derived for estimating the probability of error using the leave-one-out method. The optimal threshold for the classification of patterns projected onto Fisher's direction is derived. A simple generalization of the Fisher classifier to multiple classes is presented. Computational expressions are developed for estimating the probability of error of the multiclass Fisher classifier.
Norman, Janette A.; Blackmore, Caroline J.; Rourke, Meaghan; Christidis, Les
2014-01-01
Mitochondrial sequence data is often used to reconstruct the demographic history of Pleistocene populations in an effort to understand how species have responded to past climate change events. However, departures from neutral equilibrium conditions can confound evolutionary inference in species with structured populations or those that have experienced periods of population expansion or decline. Selection can affect patterns of mitochondrial DNA variation and variable mutation rates among mitochondrial genes can compromise inferences drawn from single markers. We investigated the contribution of these factors to patterns of mitochondrial variation and estimates of time to most recent common ancestor (TMRCA) for two clades in a co-operatively breeding avian species, the white-browed babbler Pomatostomus superciliosus. Both the protein-coding ND3 gene and hypervariable domain I control region sequences showed departures from neutral expectations within the superciliosus clade, and a two-fold difference in TMRCA estimates. Bayesian phylogenetic analysis provided evidence of departure from a strict clock model of molecular evolution in domain I, leading to an over-estimation of TMRCA for the superciliosus clade at this marker. Our results suggest mitochondrial studies that attempt to reconstruct Pleistocene demographic histories should rigorously evaluate data for departures from neutral equilibrium expectations, including variation in evolutionary rates across multiple markers. Failure to do so can lead to serious errors in the estimation of evolutionary parameters and subsequent demographic inferences concerning the role of climate as a driver of evolutionary change. These effects may be especially pronounced in species with complex social structures occupying heterogeneous environments. We propose that environmentally driven differences in social structure may explain observed differences in evolutionary rate of domain I sequences, resulting from longer than expected retention times for matriarchal lineages in the superciliosus clade. PMID:25181547
Disturbance torque rejection properties of the NASA/JPL 70-meter antenna axis servos
NASA Technical Reports Server (NTRS)
Hill, R. E.
1989-01-01
Analytic methods for evaluating pointing errors caused by external disturbance torques are developed and applied to determine the effects of representative values of wind and friction torque. The expressions relating pointing errors to disturbance torques are shown to be strongly dependent upon the state estimator parameters, as well as upon the state feedback gain and the flow versus pressure characteristics of the hydraulic system. Under certain conditions, when control is derived from an uncorrected estimate of integral position error, the desired type 2 servo properties are not realized and finite steady-state position errors result. Methods for reducing these errors to negligible proportions through the proper selection of control gain and estimator correction parameters are demonstrated. The steady-state error produced by a disturbance torque is found to be directly proportional to the hydraulic internal leakage. This property can be exploited to provide a convenient method of determining system leakage from field measurements of estimator error, axis rate, and hydraulic differential pressure.
Measurement System Characterization in the Presence of Measurement Errors
NASA Technical Reports Server (NTRS)
Commo, Sean A.
2012-01-01
In the calibration of a measurement system, data are collected in order to estimate a mathematical model between one or more factors of interest and a response. Ordinary least squares is a method employed to estimate the regression coefficients in the model. The method assumes that the factors are known without error; yet, it is implicitly known that the factors contain some uncertainty. In the literature, this uncertainty is known as measurement error. The measurement error affects both the estimates of the model coefficients and the prediction, or residual, errors. There are some methods, such as orthogonal least squares, that are employed in situations where measurement errors exist, but these methods do not directly incorporate the magnitude of the measurement errors. This research proposes a new method, known as modified least squares, that combines the principles of least squares with knowledge about the measurement errors. This knowledge is expressed in terms of the variance ratio - the ratio of response error variance to measurement error variance.
Brown, Judith A.; Bishop, Joseph E.
2016-07-20
An a posteriori error-estimation framework is introduced to quantify and reduce modeling errors resulting from approximating complex mesoscale material behavior with a simpler macroscale model. Such errors may be prevalent when modeling welds and additively manufactured structures, where spatial variations and material textures may be present in the microstructure. We consider a case where a <100> fiber texture develops in the longitudinal scanning direction of a weld. Transversely isotropic elastic properties are obtained through homogenization of a microstructural model with this texture and are considered the reference weld properties within the error-estimation framework. Conversely, isotropic elastic properties are considered approximatemore » weld properties since they contain no representation of texture. Errors introduced by using isotropic material properties to represent a weld are assessed through a quantified error bound in the elastic regime. Lastly, an adaptive error reduction scheme is used to determine the optimal spatial variation of the isotropic weld properties to reduce the error bound.« less
NASA Astrophysics Data System (ADS)
Winiarek, Victor; Bocquet, Marc; Duhanyan, Nora; Roustan, Yelva; Saunier, Olivier; Mathieu, Anne
2014-01-01
Inverse modelling techniques can be used to estimate the amount of radionuclides and the temporal profile of the source term released in the atmosphere during the accident of the Fukushima Daiichi nuclear power plant in March 2011. In Winiarek et al. (2012b), the lower bounds of the caesium-137 and iodine-131 source terms were estimated with such techniques, using activity concentration measurements. The importance of an objective assessment of prior errors (the observation errors and the background errors) was emphasised for a reliable inversion. In such critical context where the meteorological conditions can make the source term partly unobservable and where only a few observations are available, such prior estimation techniques are mandatory, the retrieved source term being very sensitive to this estimation. We propose to extend the use of these techniques to the estimation of prior errors when assimilating observations from several data sets. The aim is to compute an estimate of the caesium-137 source term jointly using all available data about this radionuclide, such as activity concentrations in the air, but also daily fallout measurements and total cumulated fallout measurements. It is crucial to properly and simultaneously estimate the background errors and the prior errors relative to each data set. A proper estimation of prior errors is also a necessary condition to reliably estimate the a posteriori uncertainty of the estimated source term. Using such techniques, we retrieve a total released quantity of caesium-137 in the interval 11.6-19.3 PBq with an estimated standard deviation range of 15-20% depending on the method and the data sets. The “blind” time intervals of the source term have also been strongly mitigated compared to the first estimations with only activity concentration data.
An Empirical State Error Covariance Matrix for Batch State Estimation
NASA Technical Reports Server (NTRS)
Frisbee, Joseph H., Jr.
2011-01-01
State estimation techniques serve effectively to provide mean state estimates. However, the state error covariance matrices provided as part of these techniques suffer from some degree of lack of confidence in their ability to adequately describe the uncertainty in the estimated states. A specific problem with the traditional form of state error covariance matrices is that they represent only a mapping of the assumed observation error characteristics into the state space. Any errors that arise from other sources (environment modeling, precision, etc.) are not directly represented in a traditional, theoretical state error covariance matrix. Consider that an actual observation contains only measurement error and that an estimated observation contains all other errors, known and unknown. It then follows that a measurement residual (the difference between expected and observed measurements) contains all errors for that measurement. Therefore, a direct and appropriate inclusion of the actual measurement residuals in the state error covariance matrix will result in an empirical state error covariance matrix. This empirical state error covariance matrix will fully account for the error in the state estimate. By way of a literal reinterpretation of the equations involved in the weighted least squares estimation algorithm, it is possible to arrive at an appropriate, and formally correct, empirical state error covariance matrix. The first specific step of the method is to use the average form of the weighted measurement residual variance performance index rather than its usual total weighted residual form. Next it is helpful to interpret the solution to the normal equations as the average of a collection of sample vectors drawn from a hypothetical parent population. From here, using a standard statistical analysis approach, it directly follows as to how to determine the standard empirical state error covariance matrix. This matrix will contain the total uncertainty in the state estimate, regardless as to the source of the uncertainty. Also, in its most straight forward form, the technique only requires supplemental calculations to be added to existing batch algorithms. The generation of this direct, empirical form of the state error covariance matrix is independent of the dimensionality of the observations. Mixed degrees of freedom for an observation set are allowed. As is the case with any simple, empirical sample variance problems, the presented approach offers an opportunity (at least in the case of weighted least squares) to investigate confidence interval estimates for the error covariance matrix elements. The diagonal or variance terms of the error covariance matrix have a particularly simple form to associate with either a multiple degree of freedom chi-square distribution (more approximate) or with a gamma distribution (less approximate). The off diagonal or covariance terms of the matrix are less clear in their statistical behavior. However, the off diagonal covariance matrix elements still lend themselves to standard confidence interval error analysis. The distributional forms associated with the off diagonal terms are more varied and, perhaps, more approximate than those associated with the diagonal terms. Using a simple weighted least squares sample problem, results obtained through use of the proposed technique are presented. The example consists of a simple, two observer, triangulation problem with range only measurements. Variations of this problem reflect an ideal case (perfect knowledge of the range errors) and a mismodeled case (incorrect knowledge of the range errors).
1983-03-01
AN ANALYSIS OF A FINITE ELEMENT METHOD FOR CONVECTION- DIFFUSION PROBLEMS PART II: A POSTERIORI ERROR ESTIMATES AND ADAPTIVITY by W. G. Szymczak Y 6a...PERIOD COVERED AN ANALYSIS OF A FINITE ELEMENT METHOD FOR final life of the contract CONVECTION- DIFFUSION PROBLEM S. Part II: A POSTERIORI ERROR ...Element Method for Convection- Diffusion Problems. Part II: A Posteriori Error Estimates and Adaptivity W. G. Szvmczak and I. Babu~ka# Laboratory for
2017-02-15
Maunz2 Quantum information processors promise fast algorithms for problems inaccessible to classical computers. But since qubits are noisy and error-prone...information processors have been demonstrated experimentally using superconducting circuits1–3, electrons in semiconductors4–6, trapped atoms and...qubit quantum information processor has been realized14, and single- qubit gates have demonstrated randomized benchmarking (RB) infidelities as low as 10
NASA Technical Reports Server (NTRS)
Lewis, Robert Michael; Patera, Anthony T.; Peraire, Jaume
1998-01-01
We present a Neumann-subproblem a posteriori finite element procedure for the efficient and accurate calculation of rigorous, 'constant-free' upper and lower bounds for sensitivity derivatives of functionals of the solutions of partial differential equations. The design motivation for sensitivity derivative error control is discussed; the a posteriori finite element procedure is described; the asymptotic bounding properties and computational complexity of the method are summarized; and illustrative numerical results are presented.
A new anisotropic mesh adaptation method based upon hierarchical a posteriori error estimates
NASA Astrophysics Data System (ADS)
Huang, Weizhang; Kamenski, Lennard; Lang, Jens
2010-03-01
A new anisotropic mesh adaptation strategy for finite element solution of elliptic differential equations is presented. It generates anisotropic adaptive meshes as quasi-uniform ones in some metric space, with the metric tensor being computed based on hierarchical a posteriori error estimates. A global hierarchical error estimate is employed in this study to obtain reliable directional information of the solution. Instead of solving the global error problem exactly, which is costly in general, we solve it iteratively using the symmetric Gauß-Seidel method. Numerical results show that a few GS iterations are sufficient for obtaining a reasonably good approximation to the error for use in anisotropic mesh adaptation. The new method is compared with several strategies using local error estimators or recovered Hessians. Numerical results are presented for a selection of test examples and a mathematical model for heat conduction in a thermal battery with large orthotropic jumps in the material coefficients.
A rigorous computational approach to linear response
NASA Astrophysics Data System (ADS)
Bahsoun, Wael; Galatolo, Stefano; Nisoli, Isaia; Niu, Xiaolong
2018-03-01
We present a general setting in which the formula describing the linear response of the physical measure of a perturbed system can be obtained. In this general setting we obtain an algorithm to rigorously compute the linear response. We apply our results to expanding circle maps. In particular, we present examples where we compute, up to a pre-specified error in the L∞ -norm, the response of expanding circle maps under stochastic and deterministic perturbations. Moreover, we present an example where we compute, up to a pre-specified error in the L 1-norm, the response of the intermittent family at the boundary; i.e. when the unperturbed system is the doubling map. This work was mainly conducted during a visit of SG to Loughborough University. WB and SG would like to thank The Leverhulme Trust for supporting mutual research visits through the Network Grant IN-2014-021. SG thanks the Department of Mathematical Sciences at Loughborough University for hospitality. WB thanks Dipartimento di Matematica, Universita di Pisa. The research of SG and IN is partially supported by EU Marie-Curie IRSES ‘Brazilian-European partnership in Dynamical Systems’ (FP7-PEOPLE-2012-IRSES 318999 BREUDS). IN was partially supported by CNPq and FAPERJ. IN would like to thank the Department of Mathematics at Uppsala University and the support of the KAW grant 2013.0315.
Modeling SMAP Spacecraft Attitude Control Estimation Error Using Signal Generation Model
NASA Technical Reports Server (NTRS)
Rizvi, Farheen
2016-01-01
Two ground simulation software are used to model the SMAP spacecraft dynamics. The CAST software uses a higher fidelity model than the ADAMS software. The ADAMS software models the spacecraft plant, controller and actuator models, and assumes a perfect sensor and estimator model. In this simulation study, the spacecraft dynamics results from the ADAMS software are used as CAST software is unavailable. The main source of spacecraft dynamics error in the higher fidelity CAST software is due to the estimation error. A signal generation model is developed to capture the effect of this estimation error in the overall spacecraft dynamics. Then, this signal generation model is included in the ADAMS software spacecraft dynamics estimate such that the results are similar to CAST. This signal generation model has similar characteristics mean, variance and power spectral density as the true CAST estimation error. In this way, ADAMS software can still be used while capturing the higher fidelity spacecraft dynamics modeling from CAST software.
Effect of correlated observation error on parameters, predictions, and uncertainty
Tiedeman, Claire; Green, Christopher T.
2013-01-01
Correlations among observation errors are typically omitted when calculating observation weights for model calibration by inverse methods. We explore the effects of omitting these correlations on estimates of parameters, predictions, and uncertainties. First, we develop a new analytical expression for the difference in parameter variance estimated with and without error correlations for a simple one-parameter two-observation inverse model. Results indicate that omitting error correlations from both the weight matrix and the variance calculation can either increase or decrease the parameter variance, depending on the values of error correlation (ρ) and the ratio of dimensionless scaled sensitivities (rdss). For small ρ, the difference in variance is always small, but for large ρ, the difference varies widely depending on the sign and magnitude of rdss. Next, we consider a groundwater reactive transport model of denitrification with four parameters and correlated geochemical observation errors that are computed by an error-propagation approach that is new for hydrogeologic studies. We compare parameter estimates, predictions, and uncertainties obtained with and without the error correlations. Omitting the correlations modestly to substantially changes parameter estimates, and causes both increases and decreases of parameter variances, consistent with the analytical expression. Differences in predictions for the models calibrated with and without error correlations can be greater than parameter differences when both are considered relative to their respective confidence intervals. These results indicate that including observation error correlations in weighting for nonlinear regression can have important effects on parameter estimates, predictions, and their respective uncertainties.
A New Formulation of the Filter-Error Method for Aerodynamic Parameter Estimation in Turbulence
NASA Technical Reports Server (NTRS)
Grauer, Jared A.; Morelli, Eugene A.
2015-01-01
A new formulation of the filter-error method for estimating aerodynamic parameters in nonlinear aircraft dynamic models during turbulence was developed and demonstrated. The approach uses an estimate of the measurement noise covariance to identify the model parameters, their uncertainties, and the process noise covariance, in a relaxation method analogous to the output-error method. Prior information on the model parameters and uncertainties can be supplied, and a post-estimation correction to the uncertainty was included to account for colored residuals not considered in the theory. No tuning parameters, needing adjustment by the analyst, are used in the estimation. The method was demonstrated in simulation using the NASA Generic Transport Model, then applied to the subscale T-2 jet-engine transport aircraft flight. Modeling results in different levels of turbulence were compared with results from time-domain output error and frequency- domain equation error methods to demonstrate the effectiveness of the approach.
Preisig, James C
2005-07-01
Equations are derived for analyzing the performance of channel estimate based equalizers. The performance is characterized in terms of the mean squared soft decision error (sigma2(s)) of each equalizer. This error is decomposed into two components. These are the minimum achievable error (sigma2(0)) and the excess error (sigma2(e)). The former is the soft decision error that would be realized by the equalizer if the filter coefficient calculation were based upon perfect knowledge of the channel impulse response and statistics of the interfering noise field. The latter is the additional soft decision error that is realized due to errors in the estimates of these channel parameters. These expressions accurately predict the equalizer errors observed in the processing of experimental data by a channel estimate based decision feedback equalizer (DFE) and a passive time-reversal equalizer. Further expressions are presented that allow equalizer performance to be predicted given the scattering function of the acoustic channel. The analysis using these expressions yields insights into the features of surface scattering that most significantly impact equalizer performance in shallow water environments and motivates the implementation of a DFE that is robust with respect to channel estimation errors.
Noise Estimation and Adaptive Encoding for Asymmetric Quantum Error Correcting Codes
NASA Astrophysics Data System (ADS)
Florjanczyk, Jan; Brun, Todd; CenterQuantum Information Science; Technology Team
We present a technique that improves the performance of asymmetric quantum error correcting codes in the presence of biased qubit noise channels. Our study is motivated by considering what useful information can be learned from the statistics of syndrome measurements in stabilizer quantum error correcting codes (QECC). We consider the case of a qubit dephasing channel where the dephasing axis is unknown and time-varying. We are able to estimate the dephasing angle from the statistics of the standard syndrome measurements used in stabilizer QECC's. We use this estimate to rotate the computational basis of the code in such a way that the most likely type of error is covered by the highest distance of the asymmetric code. In particular, we use the [ [ 15 , 1 , 3 ] ] shortened Reed-Muller code which can correct one phase-flip error but up to three bit-flip errors. In our simulations, we tune the computational basis to match the estimated dephasing axis which in turn leads to a decrease in the probability of a phase-flip error. With a sufficiently accurate estimate of the dephasing axis, our memory's effective error is dominated by the much lower probability of four bit-flips. Aro MURI Grant No. W911NF-11-1-0268.
A Monte-Carlo Bayesian framework for urban rainfall error modelling
NASA Astrophysics Data System (ADS)
Ochoa Rodriguez, Susana; Wang, Li-Pen; Willems, Patrick; Onof, Christian
2016-04-01
Rainfall estimates of the highest possible accuracy and resolution are required for urban hydrological applications, given the small size and fast response which characterise urban catchments. While significant progress has been made in recent years towards meeting rainfall input requirements for urban hydrology -including increasing use of high spatial resolution radar rainfall estimates in combination with point rain gauge records- rainfall estimates will never be perfect and the true rainfall field is, by definition, unknown [1]. Quantifying the residual errors in rainfall estimates is crucial in order to understand their reliability, as well as the impact that their uncertainty may have in subsequent runoff estimates. The quantification of errors in rainfall estimates has been an active topic of research for decades. However, existing rainfall error models have several shortcomings, including the fact that they are limited to describing errors associated to a single data source (i.e. errors associated to rain gauge measurements or radar QPEs alone) and to a single representative error source (e.g. radar-rain gauge differences, spatial temporal resolution). Moreover, rainfall error models have been mostly developed for and tested at large scales. Studies at urban scales are mostly limited to analyses of propagation of errors in rain gauge records-only through urban drainage models and to tests of model sensitivity to uncertainty arising from unmeasured rainfall variability. Only few radar rainfall error models -originally developed for large scales- have been tested at urban scales [2] and have been shown to fail to well capture small-scale storm dynamics, including storm peaks, which are of utmost important for urban runoff simulations. In this work a Monte-Carlo Bayesian framework for rainfall error modelling at urban scales is introduced, which explicitly accounts for relevant errors (arising from insufficient accuracy and/or resolution) in multiple data sources (in this case radar and rain gauge estimates typically available at present), while at the same time enabling dynamic combination of these data sources (thus not only quantifying uncertainty, but also reducing it). This model generates an ensemble of merged rainfall estimates, which can then be used as input to urban drainage models in order to examine how uncertainties in rainfall estimates propagate to urban runoff estimates. The proposed model is tested using as case study a detailed rainfall and flow dataset, and a carefully verified urban drainage model of a small (~9 km2) pilot catchment in North-East London. The model has shown to well characterise residual errors in rainfall data at urban scales (which remain after the merging), leading to improved runoff estimates. In fact, the majority of measured flow peaks are bounded within the uncertainty area produced by the runoff ensembles generated with the ensemble rainfall inputs. REFERENCES: [1] Ciach, G. J. & Krajewski, W. F. (1999). On the estimation of radar rainfall error variance. Advances in Water Resources, 22 (6), 585-595. [2] Rico-Ramirez, M. A., Liguori, S. & Schellart, A. N. A. (2015). Quantifying radar-rainfall uncertainties in urban drainage flow modelling. Journal of Hydrology, 528, 17-28.
Dzubak, Allison L.; Krogel, Jaron T.; Reboredo, Fernando A.
2017-07-10
The necessarily approximate evaluation of non-local pseudopotentials in diffusion Monte Carlo (DMC) introduces localization errors. In this paper, we estimate these errors for two families of non-local pseudopotentials for the first-row transition metal atoms Sc–Zn using an extrapolation scheme and multideterminant wavefunctions. Sensitivities of the error in the DMC energies to the Jastrow factor are used to estimate the quality of two sets of pseudopotentials with respect to locality error reduction. The locality approximation and T-moves scheme are also compared for accuracy of total energies. After estimating the removal of the locality and T-moves errors, we present the range ofmore » fixed-node energies between a single determinant description and a full valence multideterminant complete active space expansion. The results for these pseudopotentials agree with previous findings that the locality approximation is less sensitive to changes in the Jastrow than T-moves yielding more accurate total energies, however not necessarily more accurate energy differences. For both the locality approximation and T-moves, we find decreasing Jastrow sensitivity moving left to right across the series Sc–Zn. The recently generated pseudopotentials of Krogel et al. reduce the magnitude of the locality error compared with the pseudopotentials of Burkatzki et al. by an average estimated 40% using the locality approximation. The estimated locality error is equivalent for both sets of pseudopotentials when T-moves is used. Finally, for the Sc–Zn atomic series with these pseudopotentials, and using up to three-body Jastrow factors, our results suggest that the fixed-node error is dominant over the locality error when a single determinant is used.« less
Tooze, Janet A; Troiano, Richard P; Carroll, Raymond J; Moshfegh, Alanna J; Freedman, Laurence S
2013-06-01
Systematic investigations into the structure of measurement error of physical activity questionnaires are lacking. We propose a measurement error model for a physical activity questionnaire that uses physical activity level (the ratio of total energy expenditure to basal energy expenditure) to relate questionnaire-based reports of physical activity level to true physical activity levels. The 1999-2006 National Health and Nutrition Examination Survey physical activity questionnaire was administered to 433 participants aged 40-69 years in the Observing Protein and Energy Nutrition (OPEN) Study (Maryland, 1999-2000). Valid estimates of participants' total energy expenditure were also available from doubly labeled water, and basal energy expenditure was estimated from an equation; the ratio of those measures estimated true physical activity level ("truth"). We present a measurement error model that accommodates the mixture of errors that arise from assuming a classical measurement error model for doubly labeled water and a Berkson error model for the equation used to estimate basal energy expenditure. The method was then applied to the OPEN Study. Correlations between the questionnaire-based physical activity level and truth were modest (r = 0.32-0.41); attenuation factors (0.43-0.73) indicate that the use of questionnaire-based physical activity level would lead to attenuated estimates of effect size. Results suggest that sample sizes for estimating relationships between physical activity level and disease should be inflated, and that regression calibration can be used to provide measurement error-adjusted estimates of relationships between physical activity and disease.
NASA Technical Reports Server (NTRS)
Dong, D.; Fang, P.; Bock, F.; Webb, F.; Prawirondirdjo, L.; Kedar, S.; Jamason, P.
2006-01-01
Spatial filtering is an effective way to improve the precision of coordinate time series for regional GPS networks by reducing so-called common mode errors, thereby providing better resolution for detecting weak or transient deformation signals. The commonly used approach to regional filtering assumes that the common mode error is spatially uniform, which is a good approximation for networks of hundreds of kilometers extent, but breaks down as the spatial extent increases. A more rigorous approach should remove the assumption of spatially uniform distribution and let the data themselves reveal the spatial distribution of the common mode error. The principal component analysis (PCA) and the Karhunen-Loeve expansion (KLE) both decompose network time series into a set of temporally varying modes and their spatial responses. Therefore they provide a mathematical framework to perform spatiotemporal filtering.We apply the combination of PCA and KLE to daily station coordinate time series of the Southern California Integrated GPS Network (SCIGN) for the period 2000 to 2004. We demonstrate that spatially and temporally correlated common mode errors are the dominant error source in daily GPS solutions. The spatial characteristics of the common mode errors are close to uniform for all east, north, and vertical components, which implies a very long wavelength source for the common mode errors, compared to the spatial extent of the GPS network in southern California. Furthermore, the common mode errors exhibit temporally nonrandom patterns.
Partial Deconvolution with Inaccurate Blur Kernel.
Ren, Dongwei; Zuo, Wangmeng; Zhang, David; Xu, Jun; Zhang, Lei
2017-10-17
Most non-blind deconvolution methods are developed under the error-free kernel assumption, and are not robust to inaccurate blur kernel. Unfortunately, despite the great progress in blind deconvolution, estimation error remains inevitable during blur kernel estimation. Consequently, severe artifacts such as ringing effects and distortions are likely to be introduced in the non-blind deconvolution stage. In this paper, we tackle this issue by suggesting: (i) a partial map in the Fourier domain for modeling kernel estimation error, and (ii) a partial deconvolution model for robust deblurring with inaccurate blur kernel. The partial map is constructed by detecting the reliable Fourier entries of estimated blur kernel. And partial deconvolution is applied to wavelet-based and learning-based models to suppress the adverse effect of kernel estimation error. Furthermore, an E-M algorithm is developed for estimating the partial map and recovering the latent sharp image alternatively. Experimental results show that our partial deconvolution model is effective in relieving artifacts caused by inaccurate blur kernel, and can achieve favorable deblurring quality on synthetic and real blurry images.Most non-blind deconvolution methods are developed under the error-free kernel assumption, and are not robust to inaccurate blur kernel. Unfortunately, despite the great progress in blind deconvolution, estimation error remains inevitable during blur kernel estimation. Consequently, severe artifacts such as ringing effects and distortions are likely to be introduced in the non-blind deconvolution stage. In this paper, we tackle this issue by suggesting: (i) a partial map in the Fourier domain for modeling kernel estimation error, and (ii) a partial deconvolution model for robust deblurring with inaccurate blur kernel. The partial map is constructed by detecting the reliable Fourier entries of estimated blur kernel. And partial deconvolution is applied to wavelet-based and learning-based models to suppress the adverse effect of kernel estimation error. Furthermore, an E-M algorithm is developed for estimating the partial map and recovering the latent sharp image alternatively. Experimental results show that our partial deconvolution model is effective in relieving artifacts caused by inaccurate blur kernel, and can achieve favorable deblurring quality on synthetic and real blurry images.
NASA Astrophysics Data System (ADS)
Chen, Xuwen; Holmer, Justin
2016-08-01
We consider the dynamics of N bosons in 1D. We assume that the pair interaction is attractive and given by {N^{β-1}V(N^{β}.) where } where {int V ≤slant 0}. We develop new techniques in treating the N-body Hamiltonian so that we overcome the difficulties generated by the attractive interaction and establish new energy estimates. We also prove the optimal 1D collapsing estimate which reduces the regularity requirement in the uniqueness argument by half a derivative. We derive rigorously the 1D focusing cubic NLS with a quadratic trap as the {N → ∞} limit of the N-body dynamic and hence justify the mean-field limit and prove the propagation of chaos for the focusing quantum many-body system.
On the estimation of the worst-case implant-induced RF-heating in multi-channel MRI.
Córcoles, Juan; Zastrow, Earl; Kuster, Niels
2017-06-21
The increasing use of multiple radiofrequency (RF) transmit channels in magnetic resonance imaging (MRI) systems makes it necessary to rigorously assess the risk of RF-induced heating. This risk is especially aggravated with inclusions of medical implants within the body. The worst-case RF-heating scenario is achieved when the local tissue deposition in the at-risk region (generally in the vicinity of the implant electrodes) reaches its maximum value while MRI exposure is compliant with predefined general specific absorption rate (SAR) limits or power requirements. This work first reviews the common approach to estimate the worst-case RF-induced heating in multi-channel MRI environment, based on the maximization of the ratio of two Hermitian forms by solving a generalized eigenvalue problem. It is then shown that the common approach is not rigorous and may lead to an underestimation of the worst-case RF-heating scenario when there is a large number of RF transmit channels and there exist multiple SAR or power constraints to be satisfied. Finally, this work derives a rigorous SAR-based formulation to estimate a preferable worst-case scenario, which is solved by casting a semidefinite programming relaxation of this original non-convex problem, whose solution closely approximates the true worst-case including all SAR constraints. Numerical results for 2, 4, 8, 16, and 32 RF channels in a 3T-MRI volume coil for a patient with a deep-brain stimulator under a head imaging exposure are provided as illustrative examples.
On the estimation of the worst-case implant-induced RF-heating in multi-channel MRI
NASA Astrophysics Data System (ADS)
Córcoles, Juan; Zastrow, Earl; Kuster, Niels
2017-06-01
The increasing use of multiple radiofrequency (RF) transmit channels in magnetic resonance imaging (MRI) systems makes it necessary to rigorously assess the risk of RF-induced heating. This risk is especially aggravated with inclusions of medical implants within the body. The worst-case RF-heating scenario is achieved when the local tissue deposition in the at-risk region (generally in the vicinity of the implant electrodes) reaches its maximum value while MRI exposure is compliant with predefined general specific absorption rate (SAR) limits or power requirements. This work first reviews the common approach to estimate the worst-case RF-induced heating in multi-channel MRI environment, based on the maximization of the ratio of two Hermitian forms by solving a generalized eigenvalue problem. It is then shown that the common approach is not rigorous and may lead to an underestimation of the worst-case RF-heating scenario when there is a large number of RF transmit channels and there exist multiple SAR or power constraints to be satisfied. Finally, this work derives a rigorous SAR-based formulation to estimate a preferable worst-case scenario, which is solved by casting a semidefinite programming relaxation of this original non-convex problem, whose solution closely approximates the true worst-case including all SAR constraints. Numerical results for 2, 4, 8, 16, and 32 RF channels in a 3T-MRI volume coil for a patient with a deep-brain stimulator under a head imaging exposure are provided as illustrative examples.
Effect of random errors in planar PIV data on pressure estimation in vortex dominated flows
NASA Astrophysics Data System (ADS)
McClure, Jeffrey; Yarusevych, Serhiy
2015-11-01
The sensitivity of pressure estimation techniques from Particle Image Velocimetry (PIV) measurements to random errors in measured velocity data is investigated using the flow over a circular cylinder as a test case. Direct numerical simulations are performed for ReD = 100, 300 and 1575, spanning laminar, transitional, and turbulent wake regimes, respectively. A range of random errors typical for PIV measurements is applied to synthetic PIV data extracted from numerical results. A parametric study is then performed using a number of common pressure estimation techniques. Optimal temporal and spatial resolutions are derived based on the sensitivity of the estimated pressure fields to the simulated random error in velocity measurements, and the results are compared to an optimization model derived from error propagation theory. It is shown that the reductions in spatial and temporal scales at higher Reynolds numbers leads to notable changes in the optimal pressure evaluation parameters. The effect of smaller scale wake structures is also quantified. The errors in the estimated pressure fields are shown to depend significantly on the pressure estimation technique employed. The results are used to provide recommendations for the use of pressure and force estimation techniques from experimental PIV measurements in vortex dominated laminar and turbulent wake flows.
NASA Astrophysics Data System (ADS)
Pakyuz-Charrier, Evren; Lindsay, Mark; Ogarko, Vitaliy; Giraud, Jeremie; Jessell, Mark
2018-04-01
Three-dimensional (3-D) geological structural modeling aims to determine geological information in a 3-D space using structural data (foliations and interfaces) and topological rules as inputs. This is necessary in any project in which the properties of the subsurface matters; they express our understanding of geometries in depth. For that reason, 3-D geological models have a wide range of practical applications including but not restricted to civil engineering, the oil and gas industry, the mining industry, and water management. These models, however, are fraught with uncertainties originating from the inherent flaws of the modeling engines (working hypotheses, interpolator's parameterization) and the inherent lack of knowledge in areas where there are no observations combined with input uncertainty (observational, conceptual and technical errors). Because 3-D geological models are often used for impactful decision-making it is critical that all 3-D geological models provide accurate estimates of uncertainty. This paper's focus is set on the effect of structural input data measurement uncertainty propagation in implicit 3-D geological modeling. This aim is achieved using Monte Carlo simulation for uncertainty estimation (MCUE), a stochastic method which samples from predefined disturbance probability distributions that represent the uncertainty of the original input data set. MCUE is used to produce hundreds to thousands of altered unique data sets. The altered data sets are used as inputs to produce a range of plausible 3-D models. The plausible models are then combined into a single probabilistic model as a means to propagate uncertainty from the input data to the final model. In this paper, several improved methods for MCUE are proposed. The methods pertain to distribution selection for input uncertainty, sample analysis and statistical consistency of the sampled distribution. Pole vector sampling is proposed as a more rigorous alternative than dip vector sampling for planar features and the use of a Bayesian approach to disturbance distribution parameterization is suggested. The influence of incorrect disturbance distributions is discussed and propositions are made and evaluated on synthetic and realistic cases to address the sighted issues. The distribution of the errors of the observed data (i.e., scedasticity) is shown to affect the quality of prior distributions for MCUE. Results demonstrate that the proposed workflows improve the reliability of uncertainty estimation and diminish the occurrence of artifacts.
A review on the inter-frequency biases of GLONASS carrier-phase data
NASA Astrophysics Data System (ADS)
Geng, Jianghui; Zhao, Qile; Shi, Chuang; Liu, Jingnan
2017-03-01
GLONASS ambiguity resolution (AR) between inhomogeneous stations requires correction of inter-frequency phase biases (IFPBs) (a "station" here is an integral ensemble of a receiver, an antenna, firmware, etc.). It has been elucidated that IFPBs as a linear function of channel numbers are not physical in nature, but actually originate in differential code-phase biases (DCPBs). Although IFPBs have been prevalently recognized, an unanswered question is whether IFPBs and DCPBs are equivalent in enabling GLONASS AR. Besides, general strategies for the DCPB estimation across a large network of heterogeneous stations are still under investigation within the GNSS community, such as whether one DCPB per receiver type (rather than individual stations) suffices, as tentatively suggested by the IGS (International GNSS Service), and what accuracy we are able to and ought to achieve for DCPB products. In this study, we review the concept of DCPBs and point out that IFPBs are only approximate derivations from DCPBs, and are potentially problematic if carrier-phase hardware biases differ by up to several millimeters across frequency channels. We further stress the station and observable specific properties of DCPBs which cannot be thoughtlessly ignored as conducted conventionally. With 212 days of data from 200 European stations, we estimated DCPBs per stations by resolving ionosphere-free ambiguities of ˜ 5.3 cm wavelengths, and compared them to the presumed truth benchmarks computed directly with L1 and L2 data on ultra-short baselines. On average, the accuracy of our DCPB products is around 0.7 ns in RMS. According to this uncertainty estimates, we could unambiguously confirm that DCPBs can typically differ substantially by up to 30 ns among receivers of identical types and over 10 ns across different observables. In contrast, a DCPB error of more than 6 ns will decrease the fixing rate of ionosphere-free ambiguities by over 20 %, due to their smallest frequency spacing and highest sensitivity to DCPB errors. Therefore, we suggest that (1) the rigorous DCPB model should be implemented instead of the classic, but inaccurate IFPB model; (2) DCPBs of sub-ns accuracy can be achieved over a large network by efficiently resolving ionosphere-free ambiguities; (3) DCPBs should be estimated and applied on account of their station and observable specific properties, especially for ambiguities of short wavelengths.
ERIC Educational Resources Information Center
Kim, ChangHwan; Tamborini, Christopher R.
2012-01-01
Few studies have considered how earnings inequality estimates may be affected by measurement error in self-reported earnings in surveys. Utilizing restricted-use data that links workers in the Survey of Income and Program Participation with their W-2 earnings records, we examine the effect of measurement error on estimates of racial earnings…
A-Posteriori Error Estimation for Hyperbolic Conservation Laws with Constraint
NASA Technical Reports Server (NTRS)
Barth, Timothy
2004-01-01
This lecture considers a-posteriori error estimates for the numerical solution of conservation laws with time invariant constraints such as those arising in magnetohydrodynamics (MHD) and gravitational physics. Using standard duality arguments, a-posteriori error estimates for the discontinuous Galerkin finite element method are then presented for MHD with solenoidal constraint. From these estimates, a procedure for adaptive discretization is outlined. A taxonomy of Green's functions for the linearized MHD operator is given which characterizes the domain of dependence for pointwise errors. The extension to other constrained systems such as the Einstein equations of gravitational physics are then considered. Finally, future directions and open problems are discussed.
Testolin, C G; Gore, R; Rivkin, T; Horlick, M; Arbo, J; Wang, Z; Chiumello, G; Heymsfield, S B
2000-12-01
Dual-energy X-ray absorptiometry (DXA) percent (%) fat estimates may be inaccurate in young children, who typically have high tissue hydration levels. This study was designed to provide a comprehensive analysis of pediatric tissue hydration effects on DXA %fat estimates. Phase 1 was experimental and included three in vitro studies to establish the physical basis of DXA %fat-estimation models. Phase 2 extended phase 1 models and consisted of theoretical calculations to estimate the %fat errors emanating from previously reported pediatric hydration effects. Phase 1 experiments supported the two-compartment DXA soft tissue model and established that pixel ratio of low to high energy (R values) are a predictable function of tissue elemental content. In phase 2, modeling of reference body composition values from birth to age 120 mo revealed that %fat errors will arise if a "constant" adult lean soft tissue R value is applied to the pediatric population; the maximum %fat error, approximately 0.8%, would be present at birth. High tissue hydration, as observed in infants and young children, leads to errors in DXA %fat estimates. The magnitude of these errors based on theoretical calculations is small and may not be of clinical or research significance.
High dimensional linear regression models under long memory dependence and measurement error
NASA Astrophysics Data System (ADS)
Kaul, Abhishek
This dissertation consists of three chapters. The first chapter introduces the models under consideration and motivates problems of interest. A brief literature review is also provided in this chapter. The second chapter investigates the properties of Lasso under long range dependent model errors. Lasso is a computationally efficient approach to model selection and estimation, and its properties are well studied when the regression errors are independent and identically distributed. We study the case, where the regression errors form a long memory moving average process. We establish a finite sample oracle inequality for the Lasso solution. We then show the asymptotic sign consistency in this setup. These results are established in the high dimensional setup (p> n) where p can be increasing exponentially with n. Finally, we show the consistency, n½ --d-consistency of Lasso, along with the oracle property of adaptive Lasso, in the case where p is fixed. Here d is the memory parameter of the stationary error sequence. The performance of Lasso is also analysed in the present setup with a simulation study. The third chapter proposes and investigates the properties of a penalized quantile based estimator for measurement error models. Standard formulations of prediction problems in high dimension regression models assume the availability of fully observed covariates and sub-Gaussian and homogeneous model errors. This makes these methods inapplicable to measurement errors models where covariates are unobservable and observations are possibly non sub-Gaussian and heterogeneous. We propose weighted penalized corrected quantile estimators for the regression parameter vector in linear regression models with additive measurement errors, where unobservable covariates are nonrandom. The proposed estimators forgo the need for the above mentioned model assumptions. We study these estimators in both the fixed dimension and high dimensional sparse setups, in the latter setup, the dimensionality can grow exponentially with the sample size. In the fixed dimensional setting we provide the oracle properties associated with the proposed estimators. In the high dimensional setting, we provide bounds for the statistical error associated with the estimation, that hold with asymptotic probability 1, thereby providing the ℓ1-consistency of the proposed estimator. We also establish the model selection consistency in terms of the correctly estimated zero components of the parameter vector. A simulation study that investigates the finite sample accuracy of the proposed estimator is also included in this chapter.
Assessing tiger population dynamics using photographic capture-recapture sampling
Karanth, K.U.; Nichols, J.D.; Kumar, N.S.; Hines, J.E.
2006-01-01
Although wide-ranging, elusive, large carnivore species, such as the tiger, are of scientific and conservation interest, rigorous inferences about their population dynamics are scarce because of methodological problems of sampling populations at the required spatial and temporal scales. We report the application of a rigorous, noninvasive method for assessing tiger population dynamics to test model-based predictions about population viability. We obtained photographic capture histories for 74 individual tigers during a nine-year study involving 5725 trap-nights of effort. These data were modeled under a likelihood-based, ?robust design? capture?recapture analytic framework. We explicitly modeled and estimated ecological parameters such as time-specific abundance, density, survival, recruitment, temporary emigration, and transience, using models that incorporated effects of factors such as individual heterogeneity, trap-response, and time on probabilities of photo-capturing tigers. The model estimated a random temporary emigration parameter of =K' =Y' 0.10 ? 0.069 (values are estimated mean ? SE). When scaled to an annual basis, tiger survival rates were estimated at S = 0.77 ? 0.051, and the estimated probability that a newly caught animal was a transient was = 0.18 ? 0.11. During the period when the sampled area was of constant size, the estimated population size Nt varied from 17 ? 1.7 to 31 ? 2.1 tigers, with a geometric mean rate of annual population change estimated as = 1.03 ? 0.020, representing a 3% annual increase. The estimated recruitment of new animals, Bt, varied from 0 ? 3.0 to 14 ? 2.9 tigers. Population density estimates, D, ranged from 7.33 ? 0.8 tigers/100 km2 to 21.73 ? 1.7 tigers/100 km2 during the study. Thus, despite substantial annual losses and temporal variation in recruitment, the tiger density remained at relatively high levels in Nagarahole. Our results are consistent with the hypothesis that protected wild tiger populations can remain healthy despite heavy mortalities because of their inherently high reproductive potential. The ability to model the entire photographic capture history data set and incorporate reduced-parameter models led to estimates of mean annual population change that were sufficiently precise to be useful. This efficient, noninvasive sampling approach can be used to rigorously investigate the population dynamics of tigers and other elusive, rare, wide-ranging animal species in which individuals can be identified from photographs or other means.
Assessing tiger population dynamics using photographic capture-recapture sampling.
Karanth, K Ullas; Nichols, James D; Kumar, N Samba; Hines, James E
2006-11-01
Although wide-ranging, elusive, large carnivore species, such as the tiger, are of scientific and conservation interest, rigorous inferences about their population dynamics are scarce because of methodological problems of sampling populations at the required spatial and temporal scales. We report the application of a rigorous, noninvasive method for assessing tiger population dynamics to test model-based predictions about population viability. We obtained photographic capture histories for 74 individual tigers during a nine-year study involving 5725 trap-nights of effort. These data were modeled under a likelihood-based, "robust design" capture-recapture analytic framework. We explicitly modeled and estimated ecological parameters such as time-specific abundance, density, survival, recruitment, temporary emigration, and transience, using models that incorporated effects of factors such as individual heterogeneity, trap-response, and time on probabilities of photo-capturing tigers. The model estimated a random temporary emigration parameter of gamma" = gamma' = 0.10 +/- 0.069 (values are estimated mean +/- SE). When scaled to an annual basis, tiger survival rates were estimated at S = 0.77 +/- 0.051, and the estimated probability that a newly caught animal was a transient was tau = 0.18 +/- 0.11. During the period when the sampled area was of constant size, the estimated population size N(t) varied from 17 +/- 1.7 to 31 +/- 2.1 tigers, with a geometric mean rate of annual population change estimated as lambda = 1.03 +/- 0.020, representing a 3% annual increase. The estimated recruitment of new animals, B(t), varied from 0 +/- 3.0 to 14 +/- 2.9 tigers. Population density estimates, D, ranged from 7.33 +/- 0.8 tigers/100 km2 to 21.73 +/- 1.7 tigers/100 km2 during the study. Thus, despite substantial annual losses and temporal variation in recruitment, the tiger density remained at relatively high levels in Nagarahole. Our results are consistent with the hypothesis that protected wild tiger populations can remain healthy despite heavy mortalities because of their inherently high reproductive potential. The ability to model the entire photographic capture history data set and incorporate reduced-parameter models led to estimates of mean annual population change that were sufficiently precise to be useful. This efficient, noninvasive sampling approach can be used to rigorously investigate the population dynamics of tigers and other elusive, rare, wide-ranging animal species in which individuals can be identified from photographs or other means.
Wu, Jibo
2016-01-01
In this article, a generalized difference-based ridge estimator is proposed for the vector parameter in a partial linear model when the errors are dependent. It is supposed that some additional linear constraints may hold to the whole parameter space. Its mean-squared error matrix is compared with the generalized restricted difference-based estimator. Finally, the performance of the new estimator is explained by a simulation study and a numerical example.
Sehgal, Muhammad Shoaib B; Gondal, Iqbal; Dooley, Laurence S
2005-05-15
Microarray data are used in a range of application areas in biology, although often it contains considerable numbers of missing values. These missing values can significantly affect subsequent statistical analysis and machine learning algorithms so there is a strong motivation to estimate these values as accurately as possible before using these algorithms. While many imputation algorithms have been proposed, more robust techniques need to be developed so that further analysis of biological data can be accurately undertaken. In this paper, an innovative missing value imputation algorithm called collateral missing value estimation (CMVE) is presented which uses multiple covariance-based imputation matrices for the final prediction of missing values. The matrices are computed and optimized using least square regression and linear programming methods. The new CMVE algorithm has been compared with existing estimation techniques including Bayesian principal component analysis imputation (BPCA), least square impute (LSImpute) and K-nearest neighbour (KNN). All these methods were rigorously tested to estimate missing values in three separate non-time series (ovarian cancer based) and one time series (yeast sporulation) dataset. Each method was quantitatively analyzed using the normalized root mean square (NRMS) error measure, covering a wide range of randomly introduced missing value probabilities from 0.01 to 0.2. Experiments were also undertaken on the yeast dataset, which comprised 1.7% actual missing values, to test the hypothesis that CMVE performed better not only for randomly occurring but also for a real distribution of missing values. The results confirmed that CMVE consistently demonstrated superior and robust estimation capability of missing values compared with other methods for both series types of data, for the same order of computational complexity. A concise theoretical framework has also been formulated to validate the improved performance of the CMVE algorithm. The CMVE software is available upon request from the authors.
NASA Astrophysics Data System (ADS)
Lobuglio, Joseph N.; Characklis, Gregory W.; Serre, Marc L.
2007-03-01
Sparse monitoring data and error inherent in water quality models make the identification of waters not meeting regulatory standards uncertain. Additional monitoring can be implemented to reduce this uncertainty, but it is often expensive. These costs are currently a major concern, since developing total maximum daily loads, as mandated by the Clean Water Act, will require assessing tens of thousands of water bodies across the United States. This work uses the Bayesian maximum entropy (BME) method of modern geostatistics to integrate water quality monitoring data together with model predictions to provide improved estimates of water quality in a cost-effective manner. This information includes estimates of uncertainty and can be used to aid probabilistic-based decisions concerning the status of a water (i.e., impaired or not impaired) and the level of monitoring needed to characterize the water for regulatory purposes. This approach is applied to the Catawba River reservoir system in western North Carolina as a means of estimating seasonal chlorophyll a concentration. Mean concentration and confidence intervals for chlorophyll a are estimated for 66 reservoir segments over an 11-year period (726 values) based on 219 measured seasonal averages and 54 model predictions. Although the model predictions had a high degree of uncertainty, integration of modeling results via BME methods reduced the uncertainty associated with chlorophyll estimates compared with estimates made solely with information from monitoring efforts. Probabilistic predictions of future chlorophyll levels on one reservoir are used to illustrate the cost savings that can be achieved by less extensive and rigorous monitoring methods within the BME framework. While BME methods have been applied in several environmental contexts, employing these methods as a means of integrating monitoring and modeling results, as well as application of this approach to the assessment of surface water monitoring networks, represent unexplored areas of research.
NASA Astrophysics Data System (ADS)
Azarpour, Masoumeh; Enzner, Gerald
2017-12-01
Binaural noise reduction, with applications for instance in hearing aids, has been a very significant challenge. This task relates to the optimal utilization of the available microphone signals for the estimation of the ambient noise characteristics and for the optimal filtering algorithm to separate the desired speech from the noise. The additional requirements of low computational complexity and low latency further complicate the design. A particular challenge results from the desired reconstruction of binaural speech input with spatial cue preservation. The latter essentially diminishes the utility of multiple-input/single-output filter-and-sum techniques such as beamforming. In this paper, we propose a comprehensive and effective signal processing configuration with which most of the aforementioned criteria can be met suitably. This relates especially to the requirement of efficient online adaptive processing for noise estimation and optimal filtering while preserving the binaural cues. Regarding noise estimation, we consider three different architectures: interaural (ITF), cross-relation (CR), and principal-component (PCA) target blocking. An objective comparison with two other noise PSD estimation algorithms demonstrates the superiority of the blocking-based noise estimators, especially the CR-based and ITF-based blocking architectures. Moreover, we present a new noise reduction filter based on minimum mean-square error (MMSE), which belongs to the class of common gain filters, hence being rigorous in terms of spatial cue preservation but also efficient and competitive for the acoustic noise reduction task. A formal real-time subjective listening test procedure is also developed in this paper. The proposed listening test enables a real-time assessment of the proposed computationally efficient noise reduction algorithms in a realistic acoustic environment, e.g., considering time-varying room impulse responses and the Lombard effect. The listening test outcome reveals that the signals processed by the blocking-based algorithms are significantly preferred over the noisy signal in terms of instantaneous noise attenuation. Furthermore, the listening test data analysis confirms the conclusions drawn based on the objective evaluation.
Causal inference with measurement error in outcomes: Bias analysis and estimation methods.
Shu, Di; Yi, Grace Y
2017-01-01
Inverse probability weighting estimation has been popularly used to consistently estimate the average treatment effect. Its validity, however, is challenged by the presence of error-prone variables. In this paper, we explore the inverse probability weighting estimation with mismeasured outcome variables. We study the impact of measurement error for both continuous and discrete outcome variables and reveal interesting consequences of the naive analysis which ignores measurement error. When a continuous outcome variable is mismeasured under an additive measurement error model, the naive analysis may still yield a consistent estimator; when the outcome is binary, we derive the asymptotic bias in a closed-form. Furthermore, we develop consistent estimation procedures for practical scenarios where either validation data or replicates are available. With validation data, we propose an efficient method for estimation of average treatment effect; the efficiency gain is substantial relative to usual methods of using validation data. To provide protection against model misspecification, we further propose a doubly robust estimator which is consistent even when either the treatment model or the outcome model is misspecified. Simulation studies are reported to assess the performance of the proposed methods. An application to a smoking cessation dataset is presented.
NASA Astrophysics Data System (ADS)
He, Bin; Frey, Eric C.
2010-06-01
Accurate and precise estimation of organ activities is essential for treatment planning in targeted radionuclide therapy. We have previously evaluated the impact of processing methodology, statistical noise and variability in activity distribution and anatomy on the accuracy and precision of organ activity estimates obtained with quantitative SPECT (QSPECT) and planar (QPlanar) processing. Another important factor impacting the accuracy and precision of organ activity estimates is accuracy of and variability in the definition of organ regions of interest (ROI) or volumes of interest (VOI). The goal of this work was thus to systematically study the effects of VOI definition on the reliability of activity estimates. To this end, we performed Monte Carlo simulation studies using randomly perturbed and shifted VOIs to assess the impact on organ activity estimates. The 3D NCAT phantom was used with activities that modeled clinically observed 111In ibritumomab tiuxetan distributions. In order to study the errors resulting from misdefinitions due to manual segmentation errors, VOIs of the liver and left kidney were first manually defined. Each control point was then randomly perturbed to one of the nearest or next-nearest voxels in three ways: with no, inward or outward directional bias, resulting in random perturbation, erosion or dilation, respectively, of the VOIs. In order to study the errors resulting from the misregistration of VOIs, as would happen, e.g. in the case where the VOIs were defined using a misregistered anatomical image, the reconstructed SPECT images or projections were shifted by amounts ranging from -1 to 1 voxels in increments of with 0.1 voxels in both the transaxial and axial directions. The activity estimates from the shifted reconstructions or projections were compared to those from the originals, and average errors were computed for the QSPECT and QPlanar methods, respectively. For misregistration, errors in organ activity estimations were linear in the shift for both the QSPECT and QPlanar methods. QPlanar was less sensitive to object definition perturbations than QSPECT, especially for dilation and erosion cases. Up to 1 voxel misregistration or misdefinition resulted in up to 8% error in organ activity estimates, with the largest errors for small or low uptake organs. Both types of VOI definition errors produced larger errors in activity estimates for a small and low uptake organs (i.e. -7.5% to 5.3% for the left kidney) than for a large and high uptake organ (i.e. -2.9% to 2.1% for the liver). We observed that misregistration generally had larger effects than misdefinition, with errors ranging from -7.2% to 8.4%. The different imaging methods evaluated responded differently to the errors from misregistration and misdefinition. We found that QSPECT was more sensitive to misdefinition errors, but less sensitive to misregistration errors, as compared to the QPlanar method. Thus, sensitivity to VOI definition errors should be an important criterion in evaluating quantitative imaging methods.
DIA-datasnooping and identifiability
NASA Astrophysics Data System (ADS)
Zaminpardaz, S.; Teunissen, P. J. G.
2018-04-01
In this contribution, we present and analyze datasnooping in the context of the DIA method. As the DIA method for the detection, identification and adaptation of mismodelling errors is concerned with estimation and testing, it is the combination of both that needs to be considered. This combination is rigorously captured by the DIA estimator. We discuss and analyze the DIA-datasnooping decision probabilities and the construction of the corresponding partitioning of misclosure space. We also investigate the circumstances under which two or more hypotheses are nonseparable in the identification step. By means of a theorem on the equivalence between the nonseparability of hypotheses and the inestimability of parameters, we demonstrate that one can forget about adapting the parameter vector for hypotheses that are nonseparable. However, as this concerns the complete vector and not necessarily functions of it, we also show that parameter functions may exist for which adaptation is still possible. It is shown how this adaptation looks like and how it changes the structure of the DIA estimator. To demonstrate the performance of the various elements of DIA-datasnooping, we apply the theory to some selected examples. We analyze how geometry changes in the measurement setup affect the testing procedure, by studying their partitioning of misclosure space, the decision probabilities and the minimal detectable and identifiable biases. The difference between these two minimal biases is highlighted by showing the difference between their corresponding contributing factors. We also show that if two alternative hypotheses, say Hi and Hj , are nonseparable, the testing procedure may have different levels of sensitivity to Hi -biases compared to the same Hj -biases.
Re-establishment of rigor mortis: evidence for a considerably longer post-mortem time span.
Crostack, Chiara; Sehner, Susanne; Raupach, Tobias; Anders, Sven
2017-07-01
Re-establishment of rigor mortis following mechanical loosening is used as part of the complex method for the forensic estimation of the time since death in human bodies and has formerly been reported to occur up to 8-12 h post-mortem (hpm). We recently described our observation of the phenomenon in up to 19 hpm in cases with in-hospital death. Due to the case selection (preceding illness, immobilisation), transfer of these results to forensic cases might be limited. We therefore examined 67 out-of-hospital cases of sudden death with known time points of death. Re-establishment of rigor mortis was positive in 52.2% of cases and was observed up to 20 hpm. In contrast to the current doctrine that a recurrence of rigor mortis is always of a lesser degree than its first manifestation in a given patient, muscular rigidity at re-establishment equalled or even exceeded the degree observed before dissolving in 21 joints. Furthermore, this is the first study to describe that the phenomenon appears to be independent of body or ambient temperature.
Collisional damping rates for plasma waves
NASA Astrophysics Data System (ADS)
Tigik, S. F.; Ziebell, L. F.; Yoon, P. H.
2016-06-01
The distinction between the plasma dynamics dominated by collisional transport versus collective processes has never been rigorously addressed until recently. A recent paper [P. H. Yoon et al., Phys. Rev. E 93, 033203 (2016)] formulates for the first time, a unified kinetic theory in which collective processes and collisional dynamics are systematically incorporated from first principles. One of the outcomes of such a formalism is the rigorous derivation of collisional damping rates for Langmuir and ion-acoustic waves, which can be contrasted to the heuristic customary approach. However, the results are given only in formal mathematical expressions. The present brief communication numerically evaluates the rigorous collisional damping rates by considering the case of plasma particles with Maxwellian velocity distribution function so as to assess the consequence of the rigorous formalism in a quantitative manner. Comparison with the heuristic ("Spitzer") formula shows that the accurate damping rates are much lower in magnitude than the conventional expression, which implies that the traditional approach over-estimates the importance of attenuation of plasma waves by collisional relaxation process. Such a finding may have a wide applicability ranging from laboratory to space and astrophysical plasmas.
Ogawa, Takahiro; Haseyama, Miki
2013-03-01
A missing texture reconstruction method based on an error reduction (ER) algorithm, including a novel estimation scheme of Fourier transform magnitudes is presented in this brief. In our method, Fourier transform magnitude is estimated for a target patch including missing areas, and the missing intensities are estimated by retrieving its phase based on the ER algorithm. Specifically, by monitoring errors converged in the ER algorithm, known patches whose Fourier transform magnitudes are similar to that of the target patch are selected from the target image. In the second approach, the Fourier transform magnitude of the target patch is estimated from those of the selected known patches and their corresponding errors. Consequently, by using the ER algorithm, we can estimate both the Fourier transform magnitudes and phases to reconstruct the missing areas.
Shimansky, Y P
2011-05-01
It is well known from numerous studies that perception can be significantly affected by intended action in many everyday situations, indicating that perception and related decision-making is not a simple, one-way sequence, but a complex iterative cognitive process. However, the underlying functional mechanisms are yet unclear. Based on an optimality approach, a quantitative computational model of one such mechanism has been developed in this study. It is assumed in the model that significant uncertainty about task-related parameters of the environment results in parameter estimation errors and an optimal control system should minimize the cost of such errors in terms of the optimality criterion. It is demonstrated that, if the cost of a parameter estimation error is significantly asymmetrical with respect to error direction, the tendency to minimize error cost creates a systematic deviation of the optimal parameter estimate from its maximum likelihood value. Consequently, optimization of parameter estimate and optimization of control action cannot be performed separately from each other under parameter uncertainty combined with asymmetry of estimation error cost, thus making the certainty equivalence principle non-applicable under those conditions. A hypothesis that not only the action, but also perception itself is biased by the above deviation of parameter estimate is supported by ample experimental evidence. The results provide important insights into the cognitive mechanisms of interaction between sensory perception and planning an action under realistic conditions. Implications for understanding related functional mechanisms of optimal control in the CNS are discussed.
Liu, Xiaoming; Fu, Yun-Xin; Maxwell, Taylor J.; Boerwinkle, Eric
2010-01-01
It is known that sequencing error can bias estimation of evolutionary or population genetic parameters. This problem is more prominent in deep resequencing studies because of their large sample size n, and a higher probability of error at each nucleotide site. We propose a new method based on the composite likelihood of the observed SNP configurations to infer population mutation rate θ = 4Neμ, population exponential growth rate R, and error rate ɛ, simultaneously. Using simulation, we show the combined effects of the parameters, θ, n, ɛ, and R on the accuracy of parameter estimation. We compared our maximum composite likelihood estimator (MCLE) of θ with other θ estimators that take into account the error. The results show the MCLE performs well when the sample size is large or the error rate is high. Using parametric bootstrap, composite likelihood can also be used as a statistic for testing the model goodness-of-fit of the observed DNA sequences. The MCLE method is applied to sequence data on the ANGPTL4 gene in 1832 African American and 1045 European American individuals. PMID:19952140
A preliminary estimate of geoid-induced variations in repeat orbit satellite altimeter observations
NASA Technical Reports Server (NTRS)
Brenner, Anita C.; Beckley, B. D.; Koblinsky, C. J.
1990-01-01
Altimeter satellites are often maintained in a repeating orbit to facilitate the separation of sea-height variations from the geoid. However, atmospheric drag and solar radiation pressure cause a satellite orbit to drift. For Geosat this drift causes the ground track to vary by + or - 1 km about the nominal repeat path. This misalignment leads to an error in the estimates of sea surface height variations because of the local slope in the geoid. This error has been estimated globally for the Geosat Exact Repeat Mission using a mean sea surface constructed from Geos 3 and Seasat altimeter data. Over most of the ocean the geoid gradient is small, and the repeat-track misalignment leads to errors of only 1 to 2 cm. However, in the vicinity of trenches, continental shelves, islands, and seamounts, errors can exceed 20 cm. The estimated error is compared with direct estimates from Geosat altimetry, and a strong correlation is found in the vicinity of the Tonga and Aleutian trenches. This correlation increases as the orbit error is reduced because of the increased signal-to-noise ratio.
Locatelli, R.; Bousquet, P.; Chevallier, F.; ...
2013-10-08
A modelling experiment has been conceived to assess the impact of transport model errors on methane emissions estimated in an atmospheric inversion system. Synthetic methane observations, obtained from 10 different model outputs from the international TransCom-CH4 model inter-comparison exercise, are combined with a prior scenario of methane emissions and sinks, and integrated into the three-component PYVAR-LMDZ-SACS (PYthon VARiational-Laboratoire de Météorologie Dynamique model with Zooming capability-Simplified Atmospheric Chemistry System) inversion system to produce 10 different methane emission estimates at the global scale for the year 2005. The same methane sinks, emissions and initial conditions have been applied to produce the 10more » synthetic observation datasets. The same inversion set-up (statistical errors, prior emissions, inverse procedure) is then applied to derive flux estimates by inverse modelling. Consequently, only differences in the modelling of atmospheric transport may cause differences in the estimated fluxes. Here in our framework, we show that transport model errors lead to a discrepancy of 27 Tg yr -1 at the global scale, representing 5% of total methane emissions. At continental and annual scales, transport model errors are proportionally larger than at the global scale, with errors ranging from 36 Tg yr -1 in North America to 7 Tg yr -1 in Boreal Eurasia (from 23 to 48%, respectively). At the model grid-scale, the spread of inverse estimates can reach 150% of the prior flux. Therefore, transport model errors contribute significantly to overall uncertainties in emission estimates by inverse modelling, especially when small spatial scales are examined. Sensitivity tests have been carried out to estimate the impact of the measurement network and the advantage of higher horizontal resolution in transport models. The large differences found between methane flux estimates inferred in these different configurations highly question the consistency of transport model errors in current inverse systems.« less
The Hurst Phenomenon in Error Estimates Related to Atmospheric Turbulence
NASA Astrophysics Data System (ADS)
Dias, Nelson Luís; Crivellaro, Bianca Luhm; Chamecki, Marcelo
2018-05-01
The Hurst phenomenon is a well-known feature of long-range persistence first observed in hydrological and geophysical time series by E. Hurst in the 1950s. It has also been found in several cases in turbulence time series measured in the wind tunnel, the atmosphere, and in rivers. Here, we conduct a systematic investigation of the value of the Hurst coefficient H in atmospheric surface-layer data, and its impact on the estimation of random errors. We show that usually H > 0.5 , which implies the non-existence (in the statistical sense) of the integral time scale. Since the integral time scale is present in the Lumley-Panofsky equation for the estimation of random errors, this has important practical consequences. We estimated H in two principal ways: (1) with an extension of the recently proposed filtering method to estimate the random error (H_p ), and (2) with the classical rescaled range introduced by Hurst (H_R ). Other estimators were tried but were found less able to capture the statistical behaviour of the large scales of turbulence. Using data from three micrometeorological campaigns we found that both first- and second-order turbulence statistics display the Hurst phenomenon. Usually, H_R is larger than H_p for the same dataset, raising the question that one, or even both, of these estimators, may be biased. For the relative error, we found that the errors estimated with the approach adopted by us, that we call the relaxed filtering method, and that takes into account the occurrence of the Hurst phenomenon, are larger than both the filtering method and the classical Lumley-Panofsky estimates. Finally, we found that there is no apparent relationship between H and the Obukhov stability parameter. The relative errors, however, do show stability dependence, particularly in the case of the error of the kinematic momentum flux in unstable conditions, and that of the kinematic sensible heat flux in stable conditions.
Ensemble-type numerical uncertainty information from single model integrations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rauser, Florian, E-mail: florian.rauser@mpimet.mpg.de; Marotzke, Jochem; Korn, Peter
2015-07-01
We suggest an algorithm that quantifies the discretization error of time-dependent physical quantities of interest (goals) for numerical models of geophysical fluid dynamics. The goal discretization error is estimated using a sum of weighted local discretization errors. The key feature of our algorithm is that these local discretization errors are interpreted as realizations of a random process. The random process is determined by the model and the flow state. From a class of local error random processes we select a suitable specific random process by integrating the model over a short time interval at different resolutions. The weights of themore » influences of the local discretization errors on the goal are modeled as goal sensitivities, which are calculated via automatic differentiation. The integration of the weighted realizations of local error random processes yields a posterior ensemble of goal approximations from a single run of the numerical model. From the posterior ensemble we derive the uncertainty information of the goal discretization error. This algorithm bypasses the requirement of detailed knowledge about the models discretization to generate numerical error estimates. The algorithm is evaluated for the spherical shallow-water equations. For two standard test cases we successfully estimate the error of regional potential energy, track its evolution, and compare it to standard ensemble techniques. The posterior ensemble shares linear-error-growth properties with ensembles of multiple model integrations when comparably perturbed. The posterior ensemble numerical error estimates are of comparable size as those of a stochastic physics ensemble.« less
Pilot error in air carrier accidents: does age matter?
Li, Guohua; Grabowski, Jurek G; Baker, Susan P; Rebok, George W
2006-07-01
The relationship between pilot age and safety performance has been the subject of research and controversy since the "Age 60 Rule" became effective in 1960. This study aimed to examine age-related differences in the prevalence and patterns of pilot error in air carrier accidents. Investigation reports from the National Transportation Safety Board for accidents involving Part 121 operations in the United States between 1983 and 2002 were reviewed to identify pilot error and other contributing factors. Accident circumstances and the presence and type of pilot error were analyzed in relation to pilot age using Chi-square tests. Of the 558 air carrier accidents studied, 25% resulted from turbulence, 21% from mechanical failure, 16% from taxiing events, 13% from loss of control at landing or takeoff, and 25% from other causes. Accidents involving older pilots were more likely to be caused by turbulence, whereas accidents involving younger pilots were more likely to be taxiing events. Pilot error was a contributing factor in 34%, 38%, 35%, and 34% of the accidents involving pilots ages 25-34 yr, 35-44 yr, 45-54 yr, and 55-59 yr, respectively (p = 0.87). The patterns of pilot error were similar across age groups. Overall, 26% of the pilot errors identified were inattentiveness, 22% flawed decisions, 22% mishandled aircraft kinetics, and 11% poor crew interactions. The prevalence and patterns of pilot error in air carrier accidents do not seem to change with pilot age. The lack of association between pilot age and error may be due to the "safe worker effect" resulting from the rigorous selection processes and certification standards for professional pilots.
Counting OCR errors in typeset text
NASA Astrophysics Data System (ADS)
Sandberg, Jonathan S.
1995-03-01
Frequently object recognition accuracy is a key component in the performance analysis of pattern matching systems. In the past three years, the results of numerous excellent and rigorous studies of OCR system typeset-character accuracy (henceforth OCR accuracy) have been published, encouraging performance comparisons between a variety of OCR products and technologies. These published figures are important; OCR vendor advertisements in the popular trade magazines lead readers to believe that published OCR accuracy figures effect market share in the lucrative OCR market. Curiously, a detailed review of many of these OCR error occurrence counting results reveals that they are not reproducible as published and they are not strictly comparable due to larger variances in the counts than would be expected by the sampling variance. Naturally, since OCR accuracy is based on a ratio of the number of OCR errors over the size of the text searched for errors, imprecise OCR error accounting leads to similar imprecision in OCR accuracy. Some published papers use informal, non-automatic, or intuitively correct OCR error accounting. Still other published results present OCR error accounting methods based on string matching algorithms such as dynamic programming using Levenshtein (edit) distance but omit critical implementation details (such as the existence of suspect markers in the OCR generated output or the weights used in the dynamic programming minimization procedure). The problem with not specifically revealing the accounting method is that the number of errors found by different methods are significantly different. This paper identifies the basic accounting methods used to measure OCR errors in typeset text and offers an evaluation and comparison of the various accounting methods.
Carstensen, C.; Feischl, M.; Page, M.; Praetorius, D.
2014-01-01
This paper aims first at a simultaneous axiomatic presentation of the proof of optimal convergence rates for adaptive finite element methods and second at some refinements of particular questions like the avoidance of (discrete) lower bounds, inexact solvers, inhomogeneous boundary data, or the use of equivalent error estimators. Solely four axioms guarantee the optimality in terms of the error estimators. Compared to the state of the art in the temporary literature, the improvements of this article can be summarized as follows: First, a general framework is presented which covers the existing literature on optimality of adaptive schemes. The abstract analysis covers linear as well as nonlinear problems and is independent of the underlying finite element or boundary element method. Second, efficiency of the error estimator is neither needed to prove convergence nor quasi-optimal convergence behavior of the error estimator. In this paper, efficiency exclusively characterizes the approximation classes involved in terms of the best-approximation error and data resolution and so the upper bound on the optimal marking parameters does not depend on the efficiency constant. Third, some general quasi-Galerkin orthogonality is not only sufficient, but also necessary for the R-linear convergence of the error estimator, which is a fundamental ingredient in the current quasi-optimality analysis due to Stevenson 2007. Finally, the general analysis allows for equivalent error estimators and inexact solvers as well as different non-homogeneous and mixed boundary conditions. PMID:25983390
Modified fast frequency acquisition via adaptive least squares algorithm
NASA Technical Reports Server (NTRS)
Kumar, Rajendra (Inventor)
1992-01-01
A method and the associated apparatus for estimating the amplitude, frequency, and phase of a signal of interest are presented. The method comprises the following steps: (1) inputting the signal of interest; (2) generating a reference signal with adjustable amplitude, frequency and phase at an output thereof; (3) mixing the signal of interest with the reference signal and a signal 90 deg out of phase with the reference signal to provide a pair of quadrature sample signals comprising respectively a difference between the signal of interest and the reference signal and a difference between the signal of interest and the signal 90 deg out of phase with the reference signal; (4) using the pair of quadrature sample signals to compute estimates of the amplitude, frequency, and phase of an error signal comprising the difference between the signal of interest and the reference signal employing a least squares estimation; (5) adjusting the amplitude, frequency, and phase of the reference signal from the numerically controlled oscillator in a manner which drives the error signal towards zero; and (6) outputting the estimates of the amplitude, frequency, and phase of the error signal in combination with the reference signal to produce a best estimate of the amplitude, frequency, and phase of the signal of interest. The preferred method includes the step of providing the error signal as a real time confidence measure as to the accuracy of the estimates wherein the closer the error signal is to zero, the higher the probability that the estimates are accurate. A matrix in the estimation algorithm provides an estimate of the variance of the estimation error.
Attard, Catherine R M; Beheregaray, Luciano B; Möller, Luciana M
2018-05-01
There has been remarkably little attention to using the high resolution provided by genotyping-by-sequencing (i.e., RADseq and similar methods) for assessing relatedness in wildlife populations. A major hurdle is the genotyping error, especially allelic dropout, often found in this type of data that could lead to downward-biased, yet precise, estimates of relatedness. Here, we assess the applicability of genotyping-by-sequencing for relatedness inferences given its relatively high genotyping error rate. Individuals of known relatedness were simulated under genotyping error, allelic dropout and missing data scenarios based on an empirical ddRAD data set, and their true relatedness was compared to that estimated by seven relatedness estimators. We found that an estimator chosen through such analyses can circumvent the influence of genotyping error, with the estimator of Ritland (Genetics Research, 67, 175) shown to be unaffected by allelic dropout and to be the most accurate when there is genotyping error. We also found that the choice of estimator should not rely solely on the strength of correlation between estimated and true relatedness as a strong correlation does not necessarily mean estimates are close to true relatedness. We also demonstrated how even a large SNP data set with genotyping error (allelic dropout or otherwise) or missing data still performs better than a perfectly genotyped microsatellite data set of tens of markers. The simulation-based approach used here can be easily implemented by others on their own genotyping-by-sequencing data sets to confirm the most appropriate and powerful estimator for their data. © 2017 John Wiley & Sons Ltd.
Relative-Error-Covariance Algorithms
NASA Technical Reports Server (NTRS)
Bierman, Gerald J.; Wolff, Peter J.
1991-01-01
Two algorithms compute error covariance of difference between optimal estimates, based on data acquired during overlapping or disjoint intervals, of state of discrete linear system. Provides quantitative measure of mutual consistency or inconsistency of estimates of states. Relative-error-covariance concept applied, to determine degree of correlation between trajectories calculated from two overlapping sets of measurements and construct real-time test of consistency of state estimates based upon recently acquired data.
Ambros Berger; Thomas Gschwantner; Ronald E. McRoberts; Klemens Schadauer
2014-01-01
National forest inventories typically estimate individual tree volumes using models that rely on measurements of predictor variables such as tree height and diameter, both of which are subject to measurement error. The aim of this study was to quantify the impacts of these measurement errors on the uncertainty of the model-based tree stem volume estimates. The impacts...
On the Limitations of Variational Bias Correction
NASA Technical Reports Server (NTRS)
Moradi, Isaac; Mccarty, Will; Gelaro, Ronald
2018-01-01
Satellite radiances are the largest dataset assimilated into Numerical Weather Prediction (NWP) models, however the data are subject to errors and uncertainties that need to be accounted for before assimilating into the NWP models. Variational bias correction uses the time series of observation minus background to estimate the observations bias. This technique does not distinguish between the background error, forward operator error, and observations error so that all these errors are summed up together and counted as observation error. We identify some sources of observations errors (e.g., antenna emissivity, non-linearity in the calibration, and antenna pattern) and show the limitations of variational bias corrections on estimating these errors.
Adaptive Neural Network Control for the Trajectory Tracking of the Furuta Pendulum.
Moreno-Valenzuela, Javier; Aguilar-Avelar, Carlos; Puga-Guzman, Sergio A; Santibanez, Victor
2016-12-01
The purpose of this paper is to introduce a novel adaptive neural network-based control scheme for the Furuta pendulum, which is a two degree-of-freedom underactuated system. Adaptation laws for the input and output weights are also provided. The proposed controller is able to guarantee tracking of a reference signal for the arm while the pendulum remains in the upright position. The key aspect of the derivation of the controller is the definition of an output function that depends on the position and velocity errors. The internal and external dynamics are rigorously analyzed, thereby proving the uniform ultimate boundedness of the error trajectories. By using real-time experiments, the new scheme is compared with other control methodologies, therein demonstrating the improved performance of the proposed adaptive algorithm.
Bernard R. Parresol
1993-01-01
In the context of forest modeling, it is often reasonable to assume a multiplicative heteroscedastic error structure to the data. Under such circumstances ordinary least squares no longer provides minimum variance estimates of the model parameters. Through study of the error structure, a suitable error variance model can be specified and its parameters estimated. This...
Global carbon monoxide cycle: Modeling and data analysis
NASA Astrophysics Data System (ADS)
Arellano, Avelino F., Jr.
The overarching goal of this dissertation is to develop robust, spatially and temporally resolved CO sources, using global chemical transport modeling, CO measurements from Climate Monitoring and Diagnostic Laboratory (CMDL) and Measurement of Pollution In The Troposphere (MOPITT), under the framework of Bayesian synthesis inversion. To rigorously quantify the CO sources, I conducted five sets of inverse analyses, with each set investigating specific methodological and scientific issues. The first two inverse analyses separately explored two different CO observations to estimate CO sources by region and sector. Under a range of scenarios relating to inverse methodology and data quality issues, top-down estimates using CMDL CO surface and MOPITT CO remote-sensed measurements show consistent results particularly on a significantly large fossil fuel/biofuel (FFBF) emission in East Asia than present bottom-up estimates. The robustness of this estimate is strongly supported by forward and inverse modeling studies in the region particularly from TRansport and Chemical Evolution over the Pacific (TRACE-P) campaign. The use of high-resolution measurement for the first time in CO inversion also draws attention to a methodology issue that the range of estimates from the scenarios is larger than posterior uncertainties, suggesting that estimate uncertainties may be underestimated. My analyses highlight the utility of top-down approach to provide additional constraints on present global estimates by also pointing to other discrepancies including apparent underestimation of FFBF from Africa/Latin America and biomass burning (BIOM) sources in Africa, southeast Asia and north-Latin America, indicating inconsistencies on our current understanding of fuel use and land-use patterns in these regions. Inverse analysis using MOPITT is extended to determine the extent of MOPITT information and estimate monthly regional CO sources. A major finding, which is consistent with other atmospheric observations but differ with satellite area-burned observations, is a significant overestimation in southern Africa for June/July relative to satellite-and-model-constrained BIOM emissions of CO. Sensitivity inverse analyses on observation error covariance and structure, and sequential inversion using NOAA CMDL to fully exploit available information, confirm the robustness of the estimates and further recognize the limitations of the approach, implying the need to further improve the methodology and to reconcile discrepancies.
Gonçalves, Fabio; Treuhaft, Robert; Law, Beverly; ...
2017-01-07
Mapping and monitoring of forest carbon stocks across large areas in the tropics will necessarily rely on remote sensing approaches, which in turn depend on field estimates of biomass for calibration and validation purposes. Here, we used field plot data collected in a tropical moist forest in the central Amazon to gain a better understanding of the uncertainty associated with plot-level biomass estimates obtained specifically for the calibration of remote sensing measurements. In addition to accounting for sources of error that would be normally expected in conventional biomass estimates (e.g., measurement and allometric errors), we examined two sources of uncertaintymore » that are specific to the calibration process and should be taken into account in most remote sensing studies: the error resulting from spatial disagreement between field and remote sensing measurements (i.e., co-location error), and the error introduced when accounting for temporal differences in data acquisition. We found that the overall uncertainty in the field biomass was typically 25% for both secondary and primary forests, but ranged from 16 to 53%. Co-location and temporal errors accounted for a large fraction of the total variance (>65%) and were identified as important targets for reducing uncertainty in studies relating tropical forest biomass to remotely sensed data. Although measurement and allometric errors were relatively unimportant when considered alone, combined they accounted for roughly 30% of the total variance on average and should not be ignored. Lastly, our results suggest that a thorough understanding of the sources of error associated with field-measured plot-level biomass estimates in tropical forests is critical to determine confidence in remote sensing estimates of carbon stocks and fluxes, and to develop strategies for reducing the overall uncertainty of remote sensing approaches.« less
Radial orbit error reduction and sea surface topography determination using satellite altimetry
NASA Technical Reports Server (NTRS)
Engelis, Theodossios
1987-01-01
A method is presented in satellite altimetry that attempts to simultaneously determine the geoid and sea surface topography with minimum wavelengths of about 500 km and to reduce the radial orbit error caused by geopotential errors. The modeling of the radial orbit error is made using the linearized Lagrangian perturbation theory. Secular and second order effects are also included. After a rather extensive validation of the linearized equations, alternative expressions of the radial orbit error are derived. Numerical estimates for the radial orbit error and geoid undulation error are computed using the differences of two geopotential models as potential coefficient errors, for a SEASAT orbit. To provide statistical estimates of the radial distances and the geoid, a covariance propagation is made based on the full geopotential covariance. Accuracy estimates for the SEASAT orbits are given which agree quite well with already published results. Observation equations are develped using sea surface heights and crossover discrepancies as observables. A minimum variance solution with prior information provides estimates of parameters representing the sea surface topography and corrections to the gravity field that is used for the orbit generation. The simulation results show that the method can be used to effectively reduce the radial orbit error and recover the sea surface topography.
Statistical rigor in LiDAR-assisted estimation of aboveground forest biomass
Timothy G. Gregoire; Erik Næsset; Ronald E. McRoberts; Göran Ståhl; Hans Andersen; Terje Gobakken; Liviu Ene; Ross Nelson
2016-01-01
For many decades remotely sensed data have been used as a source of auxiliary information when conducting regional or national surveys of forest resources. In the past decade, airborne scanning LiDAR (Light Detection and Ranging) has emerged as a promising tool for sample surveys aimed at improving estimation of aboveground forest biomass. This technology is now...
ERIC Educational Resources Information Center
Glassman, Jill R.; Potter, Susan C.; Baumler, Elizabeth R.; Coyle, Karin K.
2015-01-01
Introduction: Group-randomized trials (GRTs) are one of the most rigorous methods for evaluating the effectiveness of group-based health risk prevention programs. Efficiently designing GRTs with a sample size that is sufficient for meeting the trial's power and precision goals while not wasting resources exceeding them requires estimates of the…
Bootstrap Estimates of Standard Errors in Generalizability Theory
ERIC Educational Resources Information Center
Tong, Ye; Brennan, Robert L.
2007-01-01
Estimating standard errors of estimated variance components has long been a challenging task in generalizability theory. Researchers have speculated about the potential applicability of the bootstrap for obtaining such estimates, but they have identified problems (especially bias) in using the bootstrap. Using Brennan's bias-correcting procedures…
Efficient Measurement of Quantum Gate Error by Interleaved Randomized Benchmarking
NASA Astrophysics Data System (ADS)
Magesan, Easwar; Gambetta, Jay M.; Johnson, B. R.; Ryan, Colm A.; Chow, Jerry M.; Merkel, Seth T.; da Silva, Marcus P.; Keefe, George A.; Rothwell, Mary B.; Ohki, Thomas A.; Ketchen, Mark B.; Steffen, M.
2012-08-01
We describe a scalable experimental protocol for estimating the average error of individual quantum computational gates. This protocol consists of interleaving random Clifford gates between the gate of interest and provides an estimate as well as theoretical bounds for the average error of the gate under test, so long as the average noise variation over all Clifford gates is small. This technique takes into account both state preparation and measurement errors and is scalable in the number of qubits. We apply this protocol to a superconducting qubit system and find a bounded average error of 0.003 [0,0.016] for the single-qubit gates Xπ/2 and Yπ/2. These bounded values provide better estimates of the average error than those extracted via quantum process tomography.
Gelbrich, Bianca; Frerking, Carolin; Weiss, Sandra; Schwerdt, Sebastian; Stellzig-Eisenhauer, Angelika; Tausche, Eve; Gelbrich, Götz
2015-01-01
Forensic age estimation in living adolescents is based on several methods, e.g. the assessment of skeletal and dental maturation. Combination of several methods is mandatory, since age estimates from a single method are too imprecise due to biological variability. The correlation of the errors of the methods being combined must be known to calculate the precision of combined age estimates. To examine the correlation of the errors of the hand and the third molar method and to demonstrate how to calculate the combined age estimate. Clinical routine radiographs of the hand and dental panoramic images of 383 patients (aged 7.8-19.1 years, 56% female) were assessed. Lack of correlation (r = -0.024, 95% CI = -0.124 to + 0.076, p = 0.64) allows calculating the combined age estimate as the weighted average of the estimates from hand bones and third molars. Combination improved the standard deviations of errors (hand = 0.97, teeth = 1.35 years) to 0.79 years. Uncorrelated errors of the age estimates obtained from both methods allow straightforward determination of the common estimate and its variance. This is also possible when reference data for the hand and the third molar method are established independently from each other, using different samples.
Adaptive control of theophylline therapy: importance of blood sampling times.
D'Argenio, D Z; Khakmahd, K
1983-10-01
A two-observation protocol for estimating theophylline clearance during a constant-rate intravenous infusion is used to examine the importance of blood sampling schedules with regard to the information content of resulting concentration data. Guided by a theory for calculating maximally informative sample times, population simulations are used to assess the effect of specific sampling times on the precision of resulting clearance estimates and subsequent predictions of theophylline plasma concentrations. The simulations incorporated noise terms for intersubject variability, dosing errors, sample collection errors, and assay error. Clearance was estimated using Chiou's method, least squares, and a Bayesian estimation procedure. The results of these simulations suggest that clinically significant estimation and prediction errors may result when using the above two-point protocol for estimating theophylline clearance if the time separating the two blood samples is less than one population mean elimination half-life.
A posteriori error estimation for multi-stage Runge–Kutta IMEX schemes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chaudhry, Jehanzeb H.; Collins, J. B.; Shadid, John N.
Implicit–Explicit (IMEX) schemes are widely used for time integration methods for approximating solutions to a large class of problems. In this work, we develop accurate a posteriori error estimates of a quantity-of-interest for approximations obtained from multi-stage IMEX schemes. This is done by first defining a finite element method that is nodally equivalent to an IMEX scheme, then using typical methods for adjoint-based error estimation. Furthermore, the use of a nodally equivalent finite element method allows a decomposition of the error into multiple components, each describing the effect of a different portion of the method on the total error inmore » a quantity-of-interest.« less
A posteriori error estimation for multi-stage Runge–Kutta IMEX schemes
Chaudhry, Jehanzeb H.; Collins, J. B.; Shadid, John N.
2017-02-05
Implicit–Explicit (IMEX) schemes are widely used for time integration methods for approximating solutions to a large class of problems. In this work, we develop accurate a posteriori error estimates of a quantity-of-interest for approximations obtained from multi-stage IMEX schemes. This is done by first defining a finite element method that is nodally equivalent to an IMEX scheme, then using typical methods for adjoint-based error estimation. Furthermore, the use of a nodally equivalent finite element method allows a decomposition of the error into multiple components, each describing the effect of a different portion of the method on the total error inmore » a quantity-of-interest.« less
National suicide rates a century after Durkheim: do we know enough to estimate error?
Claassen, Cynthia A; Yip, Paul S; Corcoran, Paul; Bossarte, Robert M; Lawrence, Bruce A; Currier, Glenn W
2010-06-01
Durkheim's nineteenth-century analysis of national suicide rates dismissed prior concerns about mortality data fidelity. Over the intervening century, however, evidence documenting various types of error in suicide data has only mounted, and surprising levels of such error continue to be routinely uncovered. Yet the annual suicide rate remains the most widely used population-level suicide metric today. After reviewing the unique sources of bias incurred during stages of suicide data collection and concatenation, we propose a model designed to uniformly estimate error in future studies. A standardized method of error estimation uniformly applied to mortality data could produce data capable of promoting high quality analyses of cross-national research questions.
View Estimation Based on Value System
NASA Astrophysics Data System (ADS)
Takahashi, Yasutake; Shimada, Kouki; Asada, Minoru
Estimation of a caregiver's view is one of the most important capabilities for a child to understand the behavior demonstrated by the caregiver, that is, to infer the intention of behavior and/or to learn the observed behavior efficiently. We hypothesize that the child develops this ability in the same way as behavior learning motivated by an intrinsic reward, that is, he/she updates the model of the estimated view of his/her own during the behavior imitated from the observation of the behavior demonstrated by the caregiver based on minimizing the estimation error of the reward during the behavior. From this view, this paper shows a method for acquiring such a capability based on a value system from which values can be obtained by reinforcement learning. The parameters of the view estimation are updated based on the temporal difference error (hereafter TD error: estimation error of the state value), analogous to the way such that the parameters of the state value of the behavior are updated based on the TD error. Experiments with simple humanoid robots show the validity of the method, and the developmental process parallel to young children's estimation of its own view during the imitation of the observed behavior of the caregiver is discussed.
Reference-free error estimation for multiple measurement methods.
Madan, Hennadii; Pernuš, Franjo; Špiclin, Žiga
2018-01-01
We present a computational framework to select the most accurate and precise method of measurement of a certain quantity, when there is no access to the true value of the measurand. A typical use case is when several image analysis methods are applied to measure the value of a particular quantitative imaging biomarker from the same images. The accuracy of each measurement method is characterized by systematic error (bias), which is modeled as a polynomial in true values of measurand, and the precision as random error modeled with a Gaussian random variable. In contrast to previous works, the random errors are modeled jointly across all methods, thereby enabling the framework to analyze measurement methods based on similar principles, which may have correlated random errors. Furthermore, the posterior distribution of the error model parameters is estimated from samples obtained by Markov chain Monte-Carlo and analyzed to estimate the parameter values and the unknown true values of the measurand. The framework was validated on six synthetic and one clinical dataset containing measurements of total lesion load, a biomarker of neurodegenerative diseases, which was obtained with four automatic methods by analyzing brain magnetic resonance images. The estimates of bias and random error were in a good agreement with the corresponding least squares regression estimates against a reference.
Improving estimation of flight altitude in wildlife telemetry studies
Poessel, Sharon; Duerr, Adam E.; Hall, Jonathan C.; Braham, Melissa A.; Katzner, Todd
2018-01-01
Altitude measurements from wildlife tracking devices, combined with elevation data, are commonly used to estimate the flight altitude of volant animals. However, these data often include measurement error. Understanding this error may improve estimation of flight altitude and benefit applied ecology.There are a number of different approaches that have been used to address this measurement error. These include filtering based on GPS data, filtering based on behaviour of the study species, and use of state-space models to correct measurement error. The effectiveness of these approaches is highly variable.Recent studies have based inference of flight altitude on misunderstandings about avian natural history and technical or analytical tools. In this Commentary, we discuss these misunderstandings and suggest alternative strategies both to resolve some of these issues and to improve estimation of flight altitude. These strategies also can be applied to other measures derived from telemetry data.Synthesis and applications. Our Commentary is intended to clarify and improve upon some of the assumptions made when estimating flight altitude and, more broadly, when using GPS telemetry data. We also suggest best practices for identifying flight behaviour, addressing GPS error, and using flight altitudes to estimate collision risk with anthropogenic structures. Addressing the issues we describe would help improve estimates of flight altitude and advance understanding of the treatment of error in wildlife telemetry studies.
Comment on Hoffman and Rovine (2007): SPSS MIXED can estimate models with heterogeneous variances.
Weaver, Bruce; Black, Ryan A
2015-06-01
Hoffman and Rovine (Behavior Research Methods, 39:101-117, 2007) have provided a very nice overview of how multilevel models can be useful to experimental psychologists. They included two illustrative examples and provided both SAS and SPSS commands for estimating the models they reported. However, upon examining the SPSS syntax for the models reported in their Table 3, we found no syntax for models 2B and 3B, both of which have heterogeneous error variances. Instead, there is syntax that estimates similar models with homogeneous error variances and a comment stating that SPSS does not allow heterogeneous errors. But that is not correct. We provide SPSS MIXED commands to estimate models 2B and 3B with heterogeneous error variances and obtain results nearly identical to those reported by Hoffman and Rovine in their Table 3. Therefore, contrary to the comment in Hoffman and Rovine's syntax file, SPSS MIXED can estimate models with heterogeneous error variances.
NASA Technical Reports Server (NTRS)
Yang, Song; Olson, William S.; Wang, Jian-Jian; Bell, Thomas L.; Smith, Eric A.; Kummerow, Christian D.
2006-01-01
Rainfall rate estimates from spaceborne microwave radiometers are generally accepted as reliable by a majority of the atmospheric science community. One of the Tropical Rainfall Measuring Mission (TRMM) facility rain-rate algorithms is based upon passive microwave observations from the TRMM Microwave Imager (TMI). In Part I of this series, improvements of the TMI algorithm that are required to introduce latent heating as an additional algorithm product are described. Here, estimates of surface rain rate, convective proportion, and latent heating are evaluated using independent ground-based estimates and satellite products. Instantaneous, 0.5 deg. -resolution estimates of surface rain rate over ocean from the improved TMI algorithm are well correlated with independent radar estimates (r approx. 0.88 over the Tropics), but bias reduction is the most significant improvement over earlier algorithms. The bias reduction is attributed to the greater breadth of cloud-resolving model simulations that support the improved algorithm and the more consistent and specific convective/stratiform rain separation method utilized. The bias of monthly 2.5 -resolution estimates is similarly reduced, with comparable correlations to radar estimates. Although the amount of independent latent heating data is limited, TMI-estimated latent heating profiles compare favorably with instantaneous estimates based upon dual-Doppler radar observations, and time series of surface rain-rate and heating profiles are generally consistent with those derived from rawinsonde analyses. Still, some biases in profile shape are evident, and these may be resolved with (a) additional contextual information brought to the estimation problem and/or (b) physically consistent and representative databases supporting the algorithm. A model of the random error in instantaneous 0.5 deg. -resolution rain-rate estimates appears to be consistent with the levels of error determined from TMI comparisons with collocated radar. Error model modifications for nonraining situations will be required, however. Sampling error represents only a portion of the total error in monthly 2.5 -resolution TMI estimates; the remaining error is attributed to random and systematic algorithm errors arising from the physical inconsistency and/or nonrepresentativeness of cloud-resolving-model-simulated profiles that support the algorithm.
Trainor, Patrick J; DeFilippis, Andrew P; Rai, Shesh N
2017-06-21
Statistical classification is a critical component of utilizing metabolomics data for examining the molecular determinants of phenotypes. Despite this, a comprehensive and rigorous evaluation of the accuracy of classification techniques for phenotype discrimination given metabolomics data has not been conducted. We conducted such an evaluation using both simulated and real metabolomics datasets, comparing Partial Least Squares-Discriminant Analysis (PLS-DA), Sparse PLS-DA, Random Forests, Support Vector Machines (SVM), Artificial Neural Network, k -Nearest Neighbors ( k -NN), and Naïve Bayes classification techniques for discrimination. We evaluated the techniques on simulated data generated to mimic global untargeted metabolomics data by incorporating realistic block-wise correlation and partial correlation structures for mimicking the correlations and metabolite clustering generated by biological processes. Over the simulation studies, covariance structures, means, and effect sizes were stochastically varied to provide consistent estimates of classifier performance over a wide range of possible scenarios. The effects of the presence of non-normal error distributions, the introduction of biological and technical outliers, unbalanced phenotype allocation, missing values due to abundances below a limit of detection, and the effect of prior-significance filtering (dimension reduction) were evaluated via simulation. In each simulation, classifier parameters, such as the number of hidden nodes in a Neural Network, were optimized by cross-validation to minimize the probability of detecting spurious results due to poorly tuned classifiers. Classifier performance was then evaluated using real metabolomics datasets of varying sample medium, sample size, and experimental design. We report that in the most realistic simulation studies that incorporated non-normal error distributions, unbalanced phenotype allocation, outliers, missing values, and dimension reduction, classifier performance (least to greatest error) was ranked as follows: SVM, Random Forest, Naïve Bayes, sPLS-DA, Neural Networks, PLS-DA and k -NN classifiers. When non-normal error distributions were introduced, the performance of PLS-DA and k -NN classifiers deteriorated further relative to the remaining techniques. Over the real datasets, a trend of better performance of SVM and Random Forest classifier performance was observed.
The Single Event Effect Characteristics of the 486-DX4 Microprocessor
NASA Technical Reports Server (NTRS)
Kouba, Coy; Choi, Gwan
1996-01-01
This research describes the development of an experimental radiation testing environment to investigate the single event effect (SEE) susceptibility of the 486-DX4 microprocessor. SEE effects are caused by radiation particles that disrupt the logic state of an operating semiconductor, and include single event upsets (SEU) and single event latchup (SEL). The relevance of this work can be applied directly to digital devices that are used in spaceflight computer systems. The 486-DX4 is a powerful commercial microprocessor that is currently under consideration for use in several spaceflight systems. As part of its selection process, it must be rigorously tested to determine its overall reliability in the space environment, including its radiation susceptibility. The goal of this research is to experimentally test and characterize the single event effects of the 486-DX4 microprocessor using a cyclotron facility as the fault-injection source. The test philosophy is to focus on the "operational susceptibility," by executing real software and monitoring for errors while the device is under irradiation. This research encompasses both experimental and analytical techniques, and yields a characterization of the 486-DX4's behavior for different operating modes. Additionally, the test methodology can accommodate a wide range of digital devices, such as microprocessors, microcontrollers, ASICS, and memory modules, for future testing. The goals were achieved by testing with three heavy-ion species to provide different linear energy transfer rates, and a total of six microprocessor parts were tested from two different vendors. A consistent set of error modes were identified that indicate the manner in which the errors were detected in the processor. The upset cross-section curves were calculated for each error mode, and the SEU threshold and saturation levels were identified for each processor. Results show a distinct difference in the upset rate for different configurations of the on-chip cache, as well as proving that one vendor is superior to the other in terms of latchup susceptibility. Results from this testing were also used to provide a mean-time-between-failure estimate of the 486-DX4 operating in the radiation environment for the International Space Station.
Terrestrial Water Mass Load Changes from Gravity Recovery and Climate Experiment (GRACE)
NASA Technical Reports Server (NTRS)
Seo, K.-W.; Wilson, C. R.; Famiglietti, J. S.; Chen, J. L.; Rodell M.
2006-01-01
Recent studies show that data from the Gravity Recovery and Climate Experiment (GRACE) is promising for basin- to global-scale water cycle research. This study provides varied assessments of errors associated with GRACE water storage estimates. Thirteen monthly GRACE gravity solutions from August 2002 to December 2004 are examined, along with synthesized GRACE gravity fields for the same period that incorporate simulated errors. The synthetic GRACE fields are calculated using numerical climate models and GRACE internal error estimates. We consider the influence of measurement noise, spatial leakage error, and atmospheric and ocean dealiasing (AOD) model error as the major contributors to the error budget. Leakage error arises from the limited range of GRACE spherical harmonics not corrupted by noise. AOD model error is due to imperfect correction for atmosphere and ocean mass redistribution applied during GRACE processing. Four methods of forming water storage estimates from GRACE spherical harmonics (four different basin filters) are applied to both GRACE and synthetic data. Two basin filters use Gaussian smoothing, and the other two are dynamic basin filters which use knowledge of geographical locations where water storage variations are expected. Global maps of measurement noise, leakage error, and AOD model errors are estimated for each basin filter. Dynamic basin filters yield the smallest errors and highest signal-to-noise ratio. Within 12 selected basins, GRACE and synthetic data show similar amplitudes of water storage change. Using 53 river basins, covering most of Earth's land surface excluding Antarctica and Greenland, we document how error changes with basin size, latitude, and shape. Leakage error is most affected by basin size and latitude, and AOD model error is most dependent on basin latitude.
Dionisio, Kathie L; Chang, Howard H; Baxter, Lisa K
2016-11-25
Exposure measurement error in copollutant epidemiologic models has the potential to introduce bias in relative risk (RR) estimates. A simulation study was conducted using empirical data to quantify the impact of correlated measurement errors in time-series analyses of air pollution and health. ZIP-code level estimates of exposure for six pollutants (CO, NO x , EC, PM 2.5 , SO 4 , O 3 ) from 1999 to 2002 in the Atlanta metropolitan area were used to calculate spatial, population (i.e. ambient versus personal), and total exposure measurement error. Empirically determined covariance of pollutant concentration pairs and the associated measurement errors were used to simulate true exposure (exposure without error) from observed exposure. Daily emergency department visits for respiratory diseases were simulated using a Poisson time-series model with a main pollutant RR = 1.05 per interquartile range, and a null association for the copollutant (RR = 1). Monte Carlo experiments were used to evaluate the impacts of correlated exposure errors of different copollutant pairs. Substantial attenuation of RRs due to exposure error was evident in nearly all copollutant pairs studied, ranging from 10 to 40% attenuation for spatial error, 3-85% for population error, and 31-85% for total error. When CO, NO x or EC is the main pollutant, we demonstrated the possibility of false positives, specifically identifying significant, positive associations for copollutants based on the estimated type I error rate. The impact of exposure error must be considered when interpreting results of copollutant epidemiologic models, due to the possibility of attenuation of main pollutant RRs and the increased probability of false positives when measurement error is present.
NASA Technical Reports Server (NTRS)
Olson, William S.; Kummerow, Christian D.; Yang, Song; Petty, Grant W.; Tao, Wei-Kuo; Bell, Thomas L.; Braun, Scott A.; Wang, Yansen; Lang, Stephen E.; Johnson, Daniel E.
2004-01-01
A revised Bayesian algorithm for estimating surface rain rate, convective rain proportion, and latent heating/drying profiles from satellite-borne passive microwave radiometer observations over ocean backgrounds is described. The algorithm searches a large database of cloud-radiative model simulations to find cloud profiles that are radiatively consistent with a given set of microwave radiance measurements. The properties of these radiatively consistent profiles are then composited to obtain best estimates of the observed properties. The revised algorithm is supported by an expanded and more physically consistent database of cloud-radiative model simulations. The algorithm also features a better quantification of the convective and non-convective contributions to total rainfall, a new geographic database, and an improved representation of background radiances in rain-free regions. Bias and random error estimates are derived from applications of the algorithm to synthetic radiance data, based upon a subset of cloud resolving model simulations, and from the Bayesian formulation itself. Synthetic rain rate and latent heating estimates exhibit a trend of high (low) bias for low (high) retrieved values. The Bayesian estimates of random error are propagated to represent errors at coarser time and space resolutions, based upon applications of the algorithm to TRMM Microwave Imager (TMI) data. Errors in instantaneous rain rate estimates at 0.5 deg resolution range from approximately 50% at 1 mm/h to 20% at 14 mm/h. These errors represent about 70-90% of the mean random deviation between collocated passive microwave and spaceborne radar rain rate estimates. The cumulative algorithm error in TMI estimates at monthly, 2.5 deg resolution is relatively small (less than 6% at 5 mm/day) compared to the random error due to infrequent satellite temporal sampling (8-35% at the same rain rate).
Use of Earth's magnetic field for mitigating gyroscope errors regardless of magnetic perturbation.
Afzal, Muhammad Haris; Renaudin, Valérie; Lachapelle, Gérard
2011-01-01
Most portable systems like smart-phones are equipped with low cost consumer grade sensors, making them useful as Pedestrian Navigation Systems (PNS). Measurements of these sensors are severely contaminated by errors caused due to instrumentation and environmental issues rendering the unaided navigation solution with these sensors of limited use. The overall navigation error budget associated with pedestrian navigation can be categorized into position/displacement errors and attitude/orientation errors. Most of the research is conducted for tackling and reducing the displacement errors, which either utilize Pedestrian Dead Reckoning (PDR) or special constraints like Zero velocity UPdaTes (ZUPT) and Zero Angular Rate Updates (ZARU). This article targets the orientation/attitude errors encountered in pedestrian navigation and develops a novel sensor fusion technique to utilize the Earth's magnetic field, even perturbed, for attitude and rate gyroscope error estimation in pedestrian navigation environments where it is assumed that Global Navigation Satellite System (GNSS) navigation is denied. As the Earth's magnetic field undergoes severe degradations in pedestrian navigation environments, a novel Quasi-Static magnetic Field (QSF) based attitude and angular rate error estimation technique is developed to effectively use magnetic measurements in highly perturbed environments. The QSF scheme is then used for generating the desired measurements for the proposed Extended Kalman Filter (EKF) based attitude estimator. Results indicate that the QSF measurements are capable of effectively estimating attitude and gyroscope errors, reducing the overall navigation error budget by over 80% in urban canyon environment.
Use of Earth’s Magnetic Field for Mitigating Gyroscope Errors Regardless of Magnetic Perturbation
Afzal, Muhammad Haris; Renaudin, Valérie; Lachapelle, Gérard
2011-01-01
Most portable systems like smart-phones are equipped with low cost consumer grade sensors, making them useful as Pedestrian Navigation Systems (PNS). Measurements of these sensors are severely contaminated by errors caused due to instrumentation and environmental issues rendering the unaided navigation solution with these sensors of limited use. The overall navigation error budget associated with pedestrian navigation can be categorized into position/displacement errors and attitude/orientation errors. Most of the research is conducted for tackling and reducing the displacement errors, which either utilize Pedestrian Dead Reckoning (PDR) or special constraints like Zero velocity UPdaTes (ZUPT) and Zero Angular Rate Updates (ZARU). This article targets the orientation/attitude errors encountered in pedestrian navigation and develops a novel sensor fusion technique to utilize the Earth’s magnetic field, even perturbed, for attitude and rate gyroscope error estimation in pedestrian navigation environments where it is assumed that Global Navigation Satellite System (GNSS) navigation is denied. As the Earth’s magnetic field undergoes severe degradations in pedestrian navigation environments, a novel Quasi-Static magnetic Field (QSF) based attitude and angular rate error estimation technique is developed to effectively use magnetic measurements in highly perturbed environments. The QSF scheme is then used for generating the desired measurements for the proposed Extended Kalman Filter (EKF) based attitude estimator. Results indicate that the QSF measurements are capable of effectively estimating attitude and gyroscope errors, reducing the overall navigation error budget by over 80% in urban canyon environment. PMID:22247672
Stekel, Dov J.; Sarti, Donatella; Trevino, Victor; Zhang, Lihong; Salmon, Mike; Buckley, Chris D.; Stevens, Mark; Pallen, Mark J.; Penn, Charles; Falciani, Francesco
2005-01-01
A key step in the analysis of microarray data is the selection of genes that are differentially expressed. Ideally, such experiments should be properly replicated in order to infer both technical and biological variability, and the data should be subjected to rigorous hypothesis tests to identify the differentially expressed genes. However, in microarray experiments involving the analysis of very large numbers of biological samples, replication is not always practical. Therefore, there is a need for a method to select differentially expressed genes in a rational way from insufficiently replicated data. In this paper, we describe a simple method that uses bootstrapping to generate an error model from a replicated pilot study that can be used to identify differentially expressed genes in subsequent large-scale studies on the same platform, but in which there may be no replicated arrays. The method builds a stratified error model that includes array-to-array variability, feature-to-feature variability and the dependence of error on signal intensity. We apply this model to the characterization of the host response in a model of bacterial infection of human intestinal epithelial cells. We demonstrate the effectiveness of error model based microarray experiments and propose this as a general strategy for a microarray-based screening of large collections of biological samples. PMID:15800204
An Interlaboratory Comparison of Dosimetry for a Multi-institutional Radiobiological
Seed, TM; Xiao, S; Manley, N; Nikolich-Zugich, J; Pugh, J; van den Brink, M; Hirabayashi, Y; Yasutomo, K; Iwama, A; Koyasu, S; Shterev, I; Sempowski, G; Macchiarini, F; Nakachi, K; Kunugi, KC; Hammer, CG; DeWerd, LA
2016-01-01
Purpose An interlaboratory comparison of radiation dosimetry was conducted to determine the accuracy of doses being used experimentally for animal exposures within a large multi-institutional research project. The background and approach to this effort are described and discussed in terms of basic findings, problems and solutions. Methods Dosimetry tests were carried out utilizing optically stimulated luminescence (OSL) dosimeters embedded midline into mouse carcasses and thermal luminescence dosimeters (TLD) embedded midline into acrylic phantoms. Results The effort demonstrated that the majority (4/7) of the laboratories was able to deliver sufficiently accurate exposures having maximum dosing errors of ≤ 5%. Comparable rates of ‘dosimetric compliance’ were noted between OSL- and TLD-based tests. Data analysis showed a highly linear relationship between ‘measured’ and ‘target’ doses, with errors falling largely between 0–20%. Outliers were most notable for OSL-based tests, while multiple tests by ‘non-compliant’ laboratories using orthovoltage x-rays contributed heavily to the wide variation in dosing errors. Conclusions For the dosimetrically non-compliant laboratories, the relatively high rates of dosing errors were problematic, potentially compromising the quality of ongoing radiobiological research. This dosimetry effort proved to be instructive in establishing rigorous reviews of basic dosimetry protocols ensuring that dosing errors were minimized. PMID:26857121
Seed, Thomas M; Xiao, Shiyun; Manley, Nancy; Nikolich-Zugich, Janko; Pugh, Jason; Van den Brink, Marcel; Hirabayashi, Yoko; Yasutomo, Koji; Iwama, Atsushi; Koyasu, Shigeo; Shterev, Ivo; Sempowski, Gregory; Macchiarini, Francesca; Nakachi, Kei; Kunugi, Keith C; Hammer, Clifford G; Dewerd, Lawrence A
2016-01-01
An interlaboratory comparison of radiation dosimetry was conducted to determine the accuracy of doses being used experimentally for animal exposures within a large multi-institutional research project. The background and approach to this effort are described and discussed in terms of basic findings, problems and solutions. Dosimetry tests were carried out utilizing optically stimulated luminescence (OSL) dosimeters embedded midline into mouse carcasses and thermal luminescence dosimeters (TLD) embedded midline into acrylic phantoms. The effort demonstrated that the majority (4/7) of the laboratories was able to deliver sufficiently accurate exposures having maximum dosing errors of ≤5%. Comparable rates of 'dosimetric compliance' were noted between OSL- and TLD-based tests. Data analysis showed a highly linear relationship between 'measured' and 'target' doses, with errors falling largely between 0 and 20%. Outliers were most notable for OSL-based tests, while multiple tests by 'non-compliant' laboratories using orthovoltage X-rays contributed heavily to the wide variation in dosing errors. For the dosimetrically non-compliant laboratories, the relatively high rates of dosing errors were problematic, potentially compromising the quality of ongoing radiobiological research. This dosimetry effort proved to be instructive in establishing rigorous reviews of basic dosimetry protocols ensuring that dosing errors were minimized.
Peer Review of EPA's Draft BMDS Document: Exponential ...
BMDS is one of the Agency's premier tools for estimating risk assessments, therefore the validity and reliability of its statistical models are of paramount importance. This page provides links to peer review of the BMDS applications and its models as they were developed and eventually released documenting the rigorous review process taken to provide the best science tools available for statistical modeling. This page provides links to peer review of the BMDS applications and its models as they were developed and eventually released documenting the rigorous review process taken to provide the best science tools available for statistical modeling.
Shabbir, Javid
2018-01-01
In the present paper we propose an improved class of estimators in the presence of measurement error and non-response under stratified random sampling for estimating the finite population mean. The theoretical and numerical studies reveal that the proposed class of estimators performs better than other existing estimators. PMID:29401519
An Investigation of the Standard Errors of Expected A Posteriori Ability Estimates.
ERIC Educational Resources Information Center
De Ayala, R. J.; And Others
Expected a posteriori has a number of advantages over maximum likelihood estimation or maximum a posteriori (MAP) estimation methods. These include ability estimates (thetas) for all response patterns, less regression towards the mean than MAP ability estimates, and a lower average squared error. R. D. Bock and R. J. Mislevy (1982) state that the…
Crop area estimation based on remotely-sensed data with an accurate but costly subsample
NASA Technical Reports Server (NTRS)
Gunst, R. F.
1983-01-01
Alternatives to sampling-theory stratified and regression estimators of crop production and timber biomass were examined. An alternative estimator which is viewed as especially promising is the errors-in-variable regression estimator. Investigations established the need for caution with this estimator when the ratio of two error variances is not precisely known.
NASA Technical Reports Server (NTRS)
Knox, C. E.
1978-01-01
Navigation error data from these flights are presented in a format utilizing three independent axes - horizontal, vertical, and time. The navigation position estimate error term and the autopilot flight technical error term are combined to form the total navigation error in each axis. This method of error presentation allows comparisons to be made between other 2-, 3-, or 4-D navigation systems and allows experimental or theoretical determination of the navigation error terms. Position estimate error data are presented with the navigation system position estimate based on dual DME radio updates that are smoothed with inertial velocities, dual DME radio updates that are smoothed with true airspeed and magnetic heading, and inertial velocity updates only. The normal mode of navigation with dual DME updates that are smoothed with inertial velocities resulted in a mean error of 390 m with a standard deviation of 150 m in the horizontal axis; a mean error of 1.5 m low with a standard deviation of less than 11 m in the vertical axis; and a mean error as low as 252 m with a standard deviation of 123 m in the time axis.
Simulations in site error estimation for direction finders
NASA Astrophysics Data System (ADS)
López, Raúl E.; Passi, Ranjit M.
1991-08-01
The performance of an algorithm for the recovery of site-specific errors of direction finder (DF) networks is tested under controlled simulated conditions. The simulations show that the algorithm has some inherent shortcomings for the recovery of site errors from the measured azimuth data. These limitations are fundamental to the problem of site error estimation using azimuth information. Several ways for resolving or ameliorating these basic complications are tested by means of simulations. From these it appears that for the effective implementation of the site error determination algorithm, one should design the networks with at least four DFs, improve the alignment of the antennas, and increase the gain of the DFs as much as it is compatible with other operational requirements. The use of a nonzero initial estimate of the site errors when working with data from networks of four or more DFs also improves the accuracy of the site error recovery. Even for networks of three DFs, reasonable site error corrections could be obtained if the antennas could be well aligned.
Bioregional monitoring design and occupancy estimation for two Sierra Nevadan amphibian taxa
Land-management agencies need quantitative, statistically rigorous monitoring data, often at large spatial and temporal scales, to support resource-management decisions. Monitoring designs typically must accommodate multiple ecological, logistical, political, and economic objec...
Trommer, J.T.; Loper, J.E.; Hammett, K.M.; Bowman, Georgia
1996-01-01
Hydrologists use several traditional techniques for estimating peak discharges and runoff volumes from ungaged watersheds. However, applying these techniques to watersheds in west-central Florida requires that empirical relationships be extrapolated beyond tested ranges. As a result there is some uncertainty as to their accuracy. Sixty-six storms in 15 west-central Florida watersheds were modeled using (1) the rational method, (2) the U.S. Geological Survey regional regression equations, (3) the Natural Resources Conservation Service (formerly the Soil Conservation Service) TR-20 model, (4) the Army Corps of Engineers HEC-1 model, and (5) the Environmental Protection Agency SWMM model. The watersheds ranged between fully developed urban and undeveloped natural watersheds. Peak discharges and runoff volumes were estimated using standard or recommended methods for determining input parameters. All model runs were uncalibrated and the selection of input parameters was not influenced by observed data. The rational method, only used to calculate peak discharges, overestimated 45 storms, underestimated 20 storms and estimated the same discharge for 1 storm. The mean estimation error for all storms indicates the method overestimates the peak discharges. Estimation errors were generally smaller in the urban watersheds and larger in the natural watersheds. The U.S. Geological Survey regression equations provide peak discharges for storms of specific recurrence intervals. Therefore, direct comparison with observed data was limited to sixteen observed storms that had precipitation equivalent to specific recurrence intervals. The mean estimation error for all storms indicates the method overestimates both peak discharges and runoff volumes. Estimation errors were smallest for the larger natural watersheds in Sarasota County, and largest for the small watersheds located in the eastern part of the study area. The Natural Resources Conservation Service TR-20 model, overestimated peak discharges for 45 storms and underestimated 21 storms, and overestimated runoff volumes for 44 storms and underestimated 22 storms. The mean estimation error for all storms modeled indicates that the model overestimates peak discharges and runoff volumes. The smaller estimation errors in both peak discharges and runoff volumes were for storms occurring in the urban watersheds, and the larger errors were for storms occurring in the natural watersheds. The HEC-1 model overestimated peak discharge rates for 55 storms and underestimated 11 storms. Runoff volumes were overestimated for 44 storms and underestimated for 22 storms using the Army Corps of Engineers HEC-1 model. The mean estimation error for all the storms modeled indicates that the model overestimates peak discharge rates and runoff volumes. Generally, the smaller estimation errors in peak discharges were for storms occurring in the urban watersheds, and the larger errors were for storms occurring in the natural watersheds. Estimation errors in runoff volumes; however, were smallest for the 3 natural watersheds located in the southernmost part of Sarasota County. The Environmental Protection Agency Storm Water Management model produced similar peak discharges and runoff volumes when using both the Green-Ampt and Horton infiltration methods. Estimated peak discharge and runoff volume data calculated with the Horton method was only slightly higher than those calculated with the Green-Ampt method. The mean estimation error for all the storms modeled indicates the model using the Green-Ampt infiltration method overestimates peak discharges and slightly underestimates runoff volumes. Using the Horton infiltration method, the model overestimates both peak discharges and runoff volumes. The smaller estimation errors in both peak discharges and runoff volumes were for storms occurring in the five natural watersheds in Sarasota County with the least amount of impervious cover and the lowest slopes. The largest er
Approximation of Bit Error Rates in Digital Communications
2007-06-01
and Technology Organisation DSTO—TN—0761 ABSTRACT This report investigates the estimation of bit error rates in digital communi- cations, motivated by...recent work in [6]. In the latter, bounds are used to construct estimates for bit error rates in the case of differentially coherent quadrature phase
The Infinitesimal Jackknife with Exploratory Factor Analysis
ERIC Educational Resources Information Center
Zhang, Guangjian; Preacher, Kristopher J.; Jennrich, Robert I.
2012-01-01
The infinitesimal jackknife, a nonparametric method for estimating standard errors, has been used to obtain standard error estimates in covariance structure analysis. In this article, we adapt it for obtaining standard errors for rotated factor loadings and factor correlations in exploratory factor analysis with sample correlation matrices. Both…
Improving the S-Shape Solar Radiation Estimation Method for Supporting Crop Models
Fodor, Nándor
2012-01-01
In line with the critical comments formulated in relation to the S-shape global solar radiation estimation method, the original formula was improved via a 5-step procedure. The improved method was compared to four-reference methods on a large North-American database. According to the investigated error indicators, the final 7-parameter S-shape method has the same or even better estimation efficiency than the original formula. The improved formula is able to provide radiation estimates with a particularly low error pattern index (PIdoy) which is especially important concerning the usability of the estimated radiation values in crop models. Using site-specific calibration, the radiation estimates of the improved S-shape method caused an average of 2.72 ± 1.02 (α = 0.05) relative error in the calculated biomass. Using only readily available site specific metadata the radiation estimates caused less than 5% relative error in the crop model calculations when they were used for locations in the middle, plain territories of the USA. PMID:22645451
NASA Astrophysics Data System (ADS)
Määttä, A.; Laine, M.; Tamminen, J.; Veefkind, J. P.
2014-05-01
Satellite instruments are nowadays successfully utilised for measuring atmospheric aerosol in many applications as well as in research. Therefore, there is a growing need for rigorous error characterisation of the measurements. Here, we introduce a methodology for quantifying the uncertainty in the retrieval of aerosol optical thickness (AOT). In particular, we concentrate on two aspects: uncertainty due to aerosol microphysical model selection and uncertainty due to imperfect forward modelling. We apply the introduced methodology for aerosol optical thickness retrieval of the Ozone Monitoring Instrument (OMI) on board NASA's Earth Observing System (EOS) Aura satellite, launched in 2004. We apply statistical methodologies that improve the uncertainty estimates of the aerosol optical thickness retrieval by propagating aerosol microphysical model selection and forward model error more realistically. For the microphysical model selection problem, we utilise Bayesian model selection and model averaging methods. Gaussian processes are utilised to characterise the smooth systematic discrepancies between the measured and modelled reflectances (i.e. residuals). The spectral correlation is composed empirically by exploring a set of residuals. The operational OMI multi-wavelength aerosol retrieval algorithm OMAERO is used for cloud-free, over-land pixels of the OMI instrument with the additional Bayesian model selection and model discrepancy techniques introduced here. The method and improved uncertainty characterisation is demonstrated by several examples with different aerosol properties: weakly absorbing aerosols, forest fires over Greece and Russia, and Sahara desert dust. The statistical methodology presented is general; it is not restricted to this particular satellite retrieval application.
Validation of a 30 m resolution flood hazard model of the conterminous United States
NASA Astrophysics Data System (ADS)
Wing, Oliver E. J.; Bates, Paul D.; Sampson, Christopher C.; Smith, Andrew M.; Johnson, Kris A.; Erickson, Tyler A.
2017-09-01
This paper reports the development of a ˜30 m resolution two-dimensional hydrodynamic model of the conterminous U.S. using only publicly available data. The model employs a highly efficient numerical solution of the local inertial form of the shallow water equations which simulates fluvial flooding in catchments down to 50 km2 and pluvial flooding in all catchments. Importantly, we use the U.S. Geological Survey (USGS) National Elevation Dataset to determine topography; the U.S. Army Corps of Engineers National Levee Dataset to explicitly represent known flood defenses; and global regionalized flood frequency analysis to characterize return period flows and rainfalls. We validate these simulations against the complete catalogue of Federal Emergency Management Agency (FEMA) Special Flood Hazard Area (SFHA) maps and detailed local hydraulic models developed by the USGS. Where the FEMA SFHAs are based on high-quality local models, the continental-scale model attains a hit rate of 86%. This correspondence improves in temperate areas and for basins above 400 km2. Against the higher quality USGS data, the average hit rate reaches 92% for the 1 in 100 year flood, and 90% for all flood return periods. Given typical hydraulic modeling uncertainties in the FEMA maps and USGS model outputs (e.g., errors in estimating return period flows), it is probable that the continental-scale model can replicate both to within error. The results show that continental-scale models may now offer sufficient rigor to inform some decision-making needs with dramatically lower cost and greater coverage than approaches based on a patchwork of local studies.
NASA Technical Reports Server (NTRS)
Kicklighter, David W.; Melillo, Jerry M.; Peterjohn, William T.; Rastetter, Edward B.; Mcguire, A. David; Steudler, Paul A.; Aber, John D.
1994-01-01
We examine the influence of aggregation errors on developing estimates of regional soil-CO2 flux from temperate forests. We find daily soil-CO2 fluxes to be more sensitive to changes in soil temperatures (Q(sub 10) = 3.08) than air temperatures (Q(sub 10) = 1.99). The direct use of mean monthly air temperatures with a daily flux model underestimates regional fluxes by approximately 4%. Temporal aggregation error varies with spatial resolution. Overall, our calibrated modeling approach reduces spatial aggregation error by 9.3% and temporal aggregation error by 15.5%. After minimizing spatial and temporal aggregation errors, mature temperate forest soils are estimated to contribute 12.9 Pg C/yr to the atmosphere as carbon dioxide. Georeferenced model estimates agree well with annual soil-CO2 fluxes measured during chamber studies in mature temperate forest stands around the globe.
Adjoints and Low-rank Covariance Representation
NASA Technical Reports Server (NTRS)
Tippett, Michael K.; Cohn, Stephen E.
2000-01-01
Quantitative measures of the uncertainty of Earth System estimates can be as important as the estimates themselves. Second moments of estimation errors are described by the covariance matrix, whose direct calculation is impractical when the number of degrees of freedom of the system state is large. Ensemble and reduced-state approaches to prediction and data assimilation replace full estimation error covariance matrices by low-rank approximations. The appropriateness of such approximations depends on the spectrum of the full error covariance matrix, whose calculation is also often impractical. Here we examine the situation where the error covariance is a linear transformation of a forcing error covariance. We use operator norms and adjoints to relate the appropriateness of low-rank representations to the conditioning of this transformation. The analysis is used to investigate low-rank representations of the steady-state response to random forcing of an idealized discrete-time dynamical system.
NASA Technical Reports Server (NTRS)
Calhoun, Philip C.; Sedlak, Joseph E.; Superfin, Emil
2011-01-01
Precision attitude determination for recent and planned space missions typically includes quaternion star trackers (ST) and a three-axis inertial reference unit (IRU). Sensor selection is based on estimates of knowledge accuracy attainable from a Kalman filter (KF), which provides the optimal solution for the case of linear dynamics with measurement and process errors characterized by random Gaussian noise with white spectrum. Non-Gaussian systematic errors in quaternion STs are often quite large and have an unpredictable time-varying nature, particularly when used in non-inertial pointing applications. Two filtering methods are proposed to reduce the attitude estimation error resulting from ST systematic errors, 1) extended Kalman filter (EKF) augmented with Markov states, 2) Unscented Kalman filter (UKF) with a periodic measurement model. Realistic assessments of the attitude estimation performance gains are demonstrated with both simulation and flight telemetry data from the Lunar Reconnaissance Orbiter.
Addressing Angular Single-Event Effects in the Estimation of On-Orbit Error Rates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, David S.; Swift, Gary M.; Wirthlin, Michael J.
2015-12-01
Our study describes complications introduced by angular direct ionization events on space error rate predictions. In particular, prevalence of multiple-cell upsets and a breakdown in the application of effective linear energy transfer in modern-scale devices can skew error rates approximated from currently available estimation models. Moreover, this paper highlights the importance of angular testing and proposes a methodology to extend existing error estimation tools to properly consider angular strikes in modern-scale devices. Finally, these techniques are illustrated with test data provided from a modern 28 nm SRAM-based device.
Monte Carlo errors with less errors
NASA Astrophysics Data System (ADS)
Wolff, Ulli; Alpha Collaboration
2004-01-01
We explain in detail how to estimate mean values and assess statistical errors for arbitrary functions of elementary observables in Monte Carlo simulations. The method is to estimate and sum the relevant autocorrelation functions, which is argued to produce more certain error estimates than binning techniques and hence to help toward a better exploitation of expensive simulations. An effective integrated autocorrelation time is computed which is suitable to benchmark efficiencies of simulation algorithms with regard to specific observables of interest. A Matlab code is offered for download that implements the method. It can also combine independent runs (replica) allowing to judge their consistency.
Stability and error estimation for Component Adaptive Grid methods
NASA Technical Reports Server (NTRS)
Oliger, Joseph; Zhu, Xiaolei
1994-01-01
Component adaptive grid (CAG) methods for solving hyperbolic partial differential equations (PDE's) are discussed in this paper. Applying recent stability results for a class of numerical methods on uniform grids. The convergence of these methods for linear problems on component adaptive grids is established here. Furthermore, the computational error can be estimated on CAG's using the stability results. Using these estimates, the error can be controlled on CAG's. Thus, the solution can be computed efficiently on CAG's within a given error tolerance. Computational results for time dependent linear problems in one and two space dimensions are presented.
Ariyama, Kaoru; Kadokura, Masashi; Suzuki, Tadanao
2008-01-01
Techniques to determine the geographic origin of foods have been developed for various agricultural and fishery products, and they have used various principles. Some of these techniques are already in use for checking the authenticity of the labeling. Many are based on multielement analysis and chemometrics. We have developed such a technique to determine the geographic origin of onions (Allium cepa L.). This technique, which determines whether an onion is from outside Japan, is designed for onions labeled as having a geographic origin of Hokkaido, Hyogo, or Saga, the main onion production areas in Japan. However, estimations of discrimination errors for this technique have not been fully conducted; they have been limited to those for discrimination models and do not include analytical errors. Interlaboratory studies were conducted to estimate the analytical errors of the technique. Four collaborators each determined 11 elements (Na, Mg, P, Mn, Zn, Rb, Sr, Mo, Cd, Cs, and Ba) in 4 test materials of fresh and dried onions. Discrimination errors in this technique were estimated by summing (1) individual differences within lots, (2) variations between lots from the same production area, and (3) analytical errors. The discrimination errors for onions from Hokkaido, Hyogo, and Saga were estimated to be 2.3, 9.5, and 8.0%, respectively. Those for onions from abroad in determinations targeting Hokkaido, Hyogo, and Saga were estimated to be 28.2, 21.6, and 21.9%, respectively.
Signal location using generalized linear constraints
NASA Astrophysics Data System (ADS)
Griffiths, Lloyd J.; Feldman, D. D.
1992-01-01
This report has presented a two-part method for estimating the directions of arrival of uncorrelated narrowband sources when there are arbitrary phase errors and angle independent gain errors. The signal steering vectors are estimated in the first part of the method; in the second part, the arrival directions are estimated. It should be noted that the second part of the method can be tailored to incorporate additional information about the nature of the phase errors. For example, if the phase errors are known to be caused solely by element misplacement, the element locations can be estimated concurrently with the DOA's by trying to match the theoretical steering vectors to the estimated ones. Simulation results suggest that, for general perturbation, the method can resolve closely spaced sources under conditions for which a standard high-resolution DOA method such as MUSIC fails.
Estimation of 3D reconstruction errors in a stereo-vision system
NASA Astrophysics Data System (ADS)
Belhaoua, A.; Kohler, S.; Hirsch, E.
2009-06-01
The paper presents an approach for error estimation for the various steps of an automated 3D vision-based reconstruction procedure of manufactured workpieces. The process is based on a priori planning of the task and built around a cognitive intelligent sensory system using so-called Situation Graph Trees (SGT) as a planning tool. Such an automated quality control system requires the coordination of a set of complex processes performing sequentially data acquisition, its quantitative evaluation and the comparison with a reference model (e.g., CAD object model) in order to evaluate quantitatively the object. To ensure efficient quality control, the aim is to be able to state if reconstruction results fulfill tolerance rules or not. Thus, the goal is to evaluate independently the error for each step of the stereo-vision based 3D reconstruction (e.g., for calibration, contour segmentation, matching and reconstruction) and then to estimate the error for the whole system. In this contribution, we analyze particularly the segmentation error due to localization errors for extracted edge points supposed to belong to lines and curves composing the outline of the workpiece under evaluation. The fitting parameters describing these geometric features are used as quality measure to determine confidence intervals and finally to estimate the segmentation errors. These errors are then propagated through the whole reconstruction procedure, enabling to evaluate their effect on the final 3D reconstruction result, specifically on position uncertainties. Lastly, analysis of these error estimates enables to evaluate the quality of the 3D reconstruction, as illustrated by the shown experimental results.
Stannard, David L.; Rosenberry, Donald O.; Winter, Thomas C.; Parkhurst, Renee S.
2004-01-01
Micrometeorological measurements of evapotranspiration (ET) often are affected to some degree by errors arising from limited fetch. A recently developed model was used to estimate fetch-induced errors in Bowen-ratio energy-budget measurements of ET made at a small wetland with fetch-to-height ratios ranging from 34 to 49. Estimated errors were small, averaging −1.90%±0.59%. The small errors are attributed primarily to the near-zero lower sensor height, and the negative bias reflects the greater Bowen ratios of the drier surrounding upland. Some of the variables and parameters affecting the error were not measured, but instead are estimated. A sensitivity analysis indicates that the uncertainty arising from these estimates is small. In general, fetch-induced error in measured wetland ET increases with decreasing fetch-to-height ratio, with increasing aridity and with increasing atmospheric stability over the wetland. Occurrence of standing water at a site is likely to increase the appropriate time step of data integration, for a given level of accuracy. Occurrence of extensive open water can increase accuracy or decrease the required fetch by allowing the lower sensor to be placed at the water surface. If fetch is highly variable and fetch-induced errors are significant, the variables affecting fetch (e.g., wind direction, water level) need to be measured. Fetch-induced error during the non-growing season may be greater or smaller than during the growing season, depending on how seasonal changes affect both the wetland and upland at a site.
Quantifying uncertainty in carbon and nutrient pools of coarse woody debris
NASA Astrophysics Data System (ADS)
See, C. R.; Campbell, J. L.; Fraver, S.; Domke, G. M.; Harmon, M. E.; Knoepp, J. D.; Woodall, C. W.
2016-12-01
Woody detritus constitutes a major pool of both carbon and nutrients in forested ecosystems. Estimating coarse wood stocks relies on many assumptions, even when full surveys are conducted. Researchers rarely report error in coarse wood pool estimates, despite the importance to ecosystem budgets and modelling efforts. To date, no study has attempted a comprehensive assessment of error rates and uncertainty inherent in the estimation of this pool. Here, we use Monte Carlo analysis to propagate the error associated with the major sources of uncertainty present in the calculation of coarse wood carbon and nutrient (i.e., N, P, K, Ca, Mg, Na) pools. We also evaluate individual sources of error to identify the importance of each source of uncertainty in our estimates. We quantify sampling error by comparing the three most common field methods used to survey coarse wood (two transect methods and a whole-plot survey). We quantify the measurement error associated with length and diameter measurement, and technician error in species identification and decay class using plots surveyed by multiple technicians. We use previously published values of model error for the four most common methods of volume estimation: Smalian's, conical frustum, conic paraboloid, and average-of-ends. We also use previously published values for error in the collapse ratio (cross-sectional height/width) of decayed logs that serves as a surrogate for the volume remaining. We consider sampling error in chemical concentration and density for all decay classes, using distributions from both published and unpublished studies. Analytical uncertainty is calculated using standard reference plant material from the National Institute of Standards. Our results suggest that technician error in decay classification can have a large effect on uncertainty, since many of the error distributions included in the calculation (e.g. density, chemical concentration, volume-model selection, collapse ratio) are decay-class specific.
NASA Astrophysics Data System (ADS)
McGarragh, Gregory R.
Scattering and absorption of solar radiation by aerosols in the atmosphere has a direct radiative effect on the climate of the Earth. Unfortunately, according to the IPCC the uncertainties in aerosol properties and their effect on the climate system represent one of the largest uncertainties in climate change research. Related to aerosols, one of the largest uncertainties is the fraction of the incident radiation that is scattered rather than absorbed, or their single scattering albedo. In fact, differences in single scattering albedo have a significant impact on the magnitude of the cooling effect of aerosols (opposite to that of greenhouse gasses) which can even have a warming effect for strongly absorbing aerosols. Satellites provide a unique opportunity to measure aerosol properties on a global scale. Traditional approaches use multispectral measurements of intensity at a single view angle to retrieve at most two aerosol parameters over land but it is being realized that more detail is required for accurate quantification of the direct effect of aerosols, in particular its anthropogenic component, and therefore more measurement information is required. One approach to more advanced measurements is to use not only intensity measurements but also polarimetric measurements and to use multiple view angles. In this work we explore another alternative: the use of hyperspectral measurements in molecular absorption bands. Our study can be divided into three stages the first of which is the development of a fast radiative transfer model for rapid simulation of measurements. Our approach is matrix operator based and uses the Pade approximation for the matrix exponential to evaluate the homogeneous solution. It is shown that the method is two to four times faster than the standard and efficient discrete ordinate technique and is accurate to the 6th decimal place. The second part of our study forms the core and is divided into two chapters the first of which is a rigorous sensitivity and optimal estimation based information content study that explores the use of measurements made by a MODIS type instrument combined with measurements made by an instrument similar to GOSAT TANSO-FTS which supplies hyperspectral measurements of intensity and polarization in the O2 A-band and the 1.61- and 2.06-mu CO 2 bands. It is found that the use of the hyperspectral bands provides a means to separate the effects of the surface and aerosol absorption from effects related to aerosol single scattering parameters. The amount of information increases significantly when the CO2 bands are included rather than just the more traditional O2 A-band, when polarization measurements are included, and when measurements are made at multiple view angles. We then present a retrieval using co-located observations of MODIS and GOSAT TANSO-FTS which are both also co-located with AERONET sites for validation purposes. We introduce an optimal estimation retrieval and perform this retrieval on our co-located observations. We choose a complete state vector to maximize the use of the information in our measurements and use an a priori constraint and regularization to arrive at a stable solution. In addition to the retrieved parameters, we also calculate a self contained estimation of the retrieval error. Validation with AERONET, for retrievals using MODIS plus TANSO-FTS measurements of intensity and polarization in all three bands indicate accuracies within 15% for optical thickness, 10% for fine mode mean radius, 35% for coarse mode mean radius, 15% for the standard deviation of fine mode mean radius, 25% for the standard deviation of the coarse mode mean radius, 0.04 for the real part of the index of refraction, and 0.05 for single scattering albedo. In addition to the retrieved parameters, we also validate the estimated retrieval error and find that the estimations have distributions that are tighter and within the broader distributions of real errors relative to AERONET. The third part of our study uses the retrieval results to calculate radiative fluxes, errors, and sensitivities at solar wavelengths along with aerosol radiative effect and effect efficiency. In addition, we outline how to propagate the errors in the retrieval through the flux calculations to provide an error estimation of the fluxes. These results are then validated against the corresponding AERONET products. It was found that the flux results were most sensitive to single scattering albedo while the size distribution and real part of the index of refraction also have significant effects. Relative to AERONET our fluxes are less accurate than an independent AERONET validation, due to uncertainties in our satellite based retrieval with accuracies within 13 Wm-2 for TOA upward, 9 Wm-2 for BOA upward, and 30 Wm-2 for BOA downward. The estimated errors also contained uncertainties but were in fact more conservative than the actual errors.
Factor Rotation and Standard Errors in Exploratory Factor Analysis
ERIC Educational Resources Information Center
Zhang, Guangjian; Preacher, Kristopher J.
2015-01-01
In this article, we report a surprising phenomenon: Oblique CF-varimax and oblique CF-quartimax rotation produced similar point estimates for rotated factor loadings and factor correlations but different standard error estimates in an empirical example. Influences of factor rotation on asymptotic standard errors are investigated using a numerical…
Effect of geocoding errors on traffic-related air pollutant exposure and concentration estimates
Exposure to traffic-related air pollutants is highest very near roads, and thus exposure estimates are sensitive to positional errors. This study evaluates positional and PM2.5 concentration errors that result from the use of automated geocoding methods and from linearized approx...
A signal detection-item response theory model for evaluating neuropsychological measures.
Thomas, Michael L; Brown, Gregory G; Gur, Ruben C; Moore, Tyler M; Patt, Virginie M; Risbrough, Victoria B; Baker, Dewleen G
2018-02-05
Models from signal detection theory are commonly used to score neuropsychological test data, especially tests of recognition memory. Here we show that certain item response theory models can be formulated as signal detection theory models, thus linking two complementary but distinct methodologies. We then use the approach to evaluate the validity (construct representation) of commonly used research measures, demonstrate the impact of conditional error on neuropsychological outcomes, and evaluate measurement bias. Signal detection-item response theory (SD-IRT) models were fitted to recognition memory data for words, faces, and objects. The sample consisted of U.S. Infantry Marines and Navy Corpsmen participating in the Marine Resiliency Study. Data comprised item responses to the Penn Face Memory Test (PFMT; N = 1,338), Penn Word Memory Test (PWMT; N = 1,331), and Visual Object Learning Test (VOLT; N = 1,249), and self-report of past head injury with loss of consciousness. SD-IRT models adequately fitted recognition memory item data across all modalities. Error varied systematically with ability estimates, and distributions of residuals from the regression of memory discrimination onto self-report of past head injury were positively skewed towards regions of larger measurement error. Analyses of differential item functioning revealed little evidence of systematic bias by level of education. SD-IRT models benefit from the measurement rigor of item response theory-which permits the modeling of item difficulty and examinee ability-and from signal detection theory-which provides an interpretive framework encompassing the experimentally validated constructs of memory discrimination and response bias. We used this approach to validate the construct representation of commonly used research measures and to demonstrate how nonoptimized item parameters can lead to erroneous conclusions when interpreting neuropsychological test data. Future work might include the development of computerized adaptive tests and integration with mixture and random-effects models.
Novel Hybrid of LS-SVM and Kalman Filter for GPS/INS Integration
NASA Astrophysics Data System (ADS)
Xu, Zhenkai; Li, Yong; Rizos, Chris; Xu, Xiaosu
Integration of Global Positioning System (GPS) and Inertial Navigation System (INS) technologies can overcome the drawbacks of the individual systems. One of the advantages is that the integrated solution can provide continuous navigation capability even during GPS outages. However, bridging the GPS outages is still a challenge when Micro-Electro-Mechanical System (MEMS) inertial sensors are used. Methods being currently explored by the research community include applying vehicle motion constraints, optimal smoother, and artificial intelligence (AI) techniques. In the research area of AI, the neural network (NN) approach has been extensively utilised up to the present. In an NN-based integrated system, a Kalman filter (KF) estimates position, velocity and attitude errors, as well as the inertial sensor errors, to output navigation solutions while GPS signals are available. At the same time, an NN is trained to map the vehicle dynamics with corresponding KF states, and to correct INS measurements when GPS measurements are unavailable. To achieve good performance it is critical to select suitable quality and an optimal number of samples for the NN. This is sometimes too rigorous a requirement which limits real world application of NN-based methods.The support vector machine (SVM) approach is based on the structural risk minimisation principle, instead of the minimised empirical error principle that is commonly implemented in an NN. The SVM can avoid local minimisation and over-fitting problems in an NN, and therefore potentially can achieve a higher level of global performance. This paper focuses on the least squares support vector machine (LS-SVM), which can solve highly nonlinear and noisy black-box modelling problems. This paper explores the application of the LS-SVM to aid the GPS/INS integrated system, especially during GPS outages. The paper describes the principles of the LS-SVM and of the KF hybrid method, and introduces the LS-SVM regression algorithm. Field test data is processed to evaluate the performance of the proposed approach.
Increasing reliability of Gauss-Kronrod quadrature by Eratosthenes' sieve method
NASA Astrophysics Data System (ADS)
Adam, Gh.; Adam, S.
2001-04-01
The reliability of the local error estimates returned by the Gauss-Kronrod quadrature rules can be raised up to the theoretical 100% rate of success, under error estimate sharpening, provided a number of natural validating conditions are required. The self-validating scheme of the local error estimates, which is easy to implement and adds little supplementary computing effort, strengthens considerably the correctness of the decisions within the automatic adaptive quadrature.
The estimation error covariance matrix for the ideal state reconstructor with measurement noise
NASA Technical Reports Server (NTRS)
Polites, Michael E.
1988-01-01
A general expression is derived for the state estimation error covariance matrix for the Ideal State Reconstructor when the input measurements are corrupted by measurement noise. An example is presented which shows that the more measurements used in estimating the state at a given time, the better the estimator.
Estimating Uncertainty in Annual Forest Inventory Estimates
Ronald E. McRoberts; Veronica C. Lessard
1999-01-01
The precision of annual forest inventory estimates may be negatively affected by uncertainty from a variety of sources including: (1) sampling error; (2) procedures for updating plots not measured in the current year; and (3) measurement errors. The impact of these sources of uncertainty on final inventory estimates is investigated using Monte Carlo simulation...
Nonparametric Item Response Curve Estimation with Correction for Measurement Error
ERIC Educational Resources Information Center
Guo, Hongwen; Sinharay, Sandip
2011-01-01
Nonparametric or kernel regression estimation of item response curves (IRCs) is often used in item analysis in testing programs. These estimates are biased when the observed scores are used as the regressor because the observed scores are contaminated by measurement error. Accuracy of this estimation is a concern theoretically and operationally.…
Optimal Tuner Selection for Kalman Filter-Based Aircraft Engine Performance Estimation
NASA Technical Reports Server (NTRS)
Simon, Donald L.; Garg, Sanjay
2010-01-01
A linear point design methodology for minimizing the error in on-line Kalman filter-based aircraft engine performance estimation applications is presented. This technique specifically addresses the underdetermined estimation problem, where there are more unknown parameters than available sensor measurements. A systematic approach is applied to produce a model tuning parameter vector of appropriate dimension to enable estimation by a Kalman filter, while minimizing the estimation error in the parameters of interest. Tuning parameter selection is performed using a multi-variable iterative search routine which seeks to minimize the theoretical mean-squared estimation error. This paper derives theoretical Kalman filter estimation error bias and variance values at steady-state operating conditions, and presents the tuner selection routine applied to minimize these values. Results from the application of the technique to an aircraft engine simulation are presented and compared to the conventional approach of tuner selection. Experimental simulation results are found to be in agreement with theoretical predictions. The new methodology is shown to yield a significant improvement in on-line engine performance estimation accuracy
Silva, Felipe O.; Hemerly, Elder M.; Leite Filho, Waldemar C.
2017-01-01
This paper presents the second part of a study aiming at the error state selection in Kalman filters applied to the stationary self-alignment and calibration (SSAC) problem of strapdown inertial navigation systems (SINS). The observability properties of the system are systematically investigated, and the number of unobservable modes is established. Through the analytical manipulation of the full SINS error model, the unobservable modes of the system are determined, and the SSAC error states (except the velocity errors) are proven to be individually unobservable. The estimability of the system is determined through the examination of the major diagonal terms of the covariance matrix and their eigenvalues/eigenvectors. Filter order reduction based on observability analysis is shown to be inadequate, and several misconceptions regarding SSAC observability and estimability deficiencies are removed. As the main contributions of this paper, we demonstrate that, except for the position errors, all error states can be minimally estimated in the SSAC problem and, hence, should not be removed from the filter. Corroborating the conclusions of the first part of this study, a 12-state Kalman filter is found to be the optimal error state selection for SSAC purposes. Results from simulated and experimental tests support the outlined conclusions. PMID:28241494
Optimal estimation of suspended-sediment concentrations in streams
Holtschlag, D.J.
2001-01-01
Optimal estimators are developed for computation of suspended-sediment concentrations in streams. The estimators are a function of parameters, computed by use of generalized least squares, which simultaneously account for effects of streamflow, seasonal variations in average sediment concentrations, a dynamic error component, and the uncertainty in concentration measurements. The parameters are used in a Kalman filter for on-line estimation and an associated smoother for off-line estimation of suspended-sediment concentrations. The accuracies of the optimal estimators are compared with alternative time-averaging interpolators and flow-weighting regression estimators by use of long-term daily-mean suspended-sediment concentration and streamflow data from 10 sites within the United States. For sampling intervals from 3 to 48 days, the standard errors of on-line and off-line optimal estimators ranged from 52.7 to 107%, and from 39.5 to 93.0%, respectively. The corresponding standard errors of linear and cubic-spline interpolators ranged from 48.8 to 158%, and from 50.6 to 176%, respectively. The standard errors of simple and multiple regression estimators, which did not vary with the sampling interval, were 124 and 105%, respectively. Thus, the optimal off-line estimator (Kalman smoother) had the lowest error characteristics of those evaluated. Because suspended-sediment concentrations are typically measured at less than 3-day intervals, use of optimal estimators will likely result in significant improvements in the accuracy of continuous suspended-sediment concentration records. Additional research on the integration of direct suspended-sediment concentration measurements and optimal estimators applied at hourly or shorter intervals is needed.
NASA Technical Reports Server (NTRS)
Klein, V.
1979-01-01
Two identification methods, the equation error method and the output error method, are used to estimate stability and control parameter values from flight data for a low-wing, single-engine, general aviation airplane. The estimated parameters from both methods are in very good agreement primarily because of sufficient accuracy of measured data. The estimated static parameters also agree with the results from steady flights. The effect of power different input forms are demonstrated. Examination of all results available gives the best values of estimated parameters and specifies their accuracies.
NASA Astrophysics Data System (ADS)
Guzinski, R.; Anderson, M. C.; Kustas, W. P.; Nieto, H.; Sandholt, I.
2013-07-01
The Dual Temperature Difference (DTD) model, introduced by Norman et al. (2000), uses a two source energy balance modelling scheme driven by remotely sensed observations of diurnal changes in land surface temperature (LST) to estimate surface energy fluxes. By using a time-differential temperature measurement as input, the approach reduces model sensitivity to errors in absolute temperature retrieval. The original formulation of the DTD required an early morning LST observation (approximately 1 h after sunrise) when surface fluxes are minimal, limiting application to data provided by geostationary satellites at sub-hourly temporal resolution. The DTD model has been applied primarily during the active growth phase of agricultural crops and rangeland vegetation grasses, and has not been rigorously evaluated during senescence or in forested ecosystems. In this paper we present modifications to the DTD model that enable applications using thermal observations from polar orbiting satellites, such as Terra and Aqua, with day and night overpass times over the area of interest. This allows the application of the DTD model in high latitude regions where large viewing angles preclude the use of geostationary satellites, and also exploits the higher spatial resolution provided by polar orbiting satellites. A method for estimating nocturnal surface fluxes and a scheme for estimating the fraction of green vegetation are developed and evaluated. Modification for green vegetation fraction leads to significantly improved estimation of the heat fluxes from the vegetation canopy during senescence and in forests. When the modified DTD model is run with LST measurements acquired with the Moderate Resolution Imaging Spectroradiometer (MODIS) on board the Terra and Aqua satellites, generally satisfactory agreement with field measurements is obtained for a number of ecosystems in Denmark and the United States. Finally, regional maps of energy fluxes are produced for the Danish Hydrological ObsErvatory (HOBE) in western Denmark, indicating realistic patterns based on land use.
Development and Testing of a Coupled Ocean-atmosphere Mesoscale Ensemble Prediction System
2011-06-28
wind, temperature, and moisture variables, while the oceanographic ET is derived from ocean current, temperature, and salinity variables. Estimates of...wind, temperature, and moisture variables while the oceanographic ET is derived from ocean current temperature, and salinity variables. Estimates of...uncertainty in the model. Rigorously accurate ensemble methods for describing the distribution of future states given past information include particle
State estimation for autopilot control of small unmanned aerial vehicles in windy conditions
NASA Astrophysics Data System (ADS)
Poorman, David Paul
The use of small unmanned aerial vehicles (UAVs) both in the military and civil realms is growing. This is largely due to the proliferation of inexpensive sensors and the increase in capability of small computers that has stemmed from the personal electronic device market. Methods for performing accurate state estimation for large scale aircraft have been well known and understood for decades, which usually involve a complex array of expensive high accuracy sensors. Performing accurate state estimation for small unmanned aircraft is a newer area of study and often involves adapting known state estimation methods to small UAVs. State estimation for small UAVs can be more difficult than state estimation for larger UAVs due to small UAVs employing limited sensor suites due to cost, and the fact that small UAVs are more susceptible to wind than large aircraft. The purpose of this research is to evaluate the ability of existing methods of state estimation for small UAVs to accurately capture the states of the aircraft that are necessary for autopilot control of the aircraft in a Dryden wind field. The research begins by showing which aircraft states are necessary for autopilot control in Dryden wind. Then two state estimation methods that employ only accelerometer, gyro, and GPS measurements are introduced. The first method uses assumptions on aircraft motion to directly solve for attitude information and smooth GPS data, while the second method integrates sensor data to propagate estimates between GPS measurements and then corrects those estimates with GPS information. The performance of both methods is analyzed with and without Dryden wind, in straight and level flight, in a coordinated turn, and in a wings level ascent. It is shown that in zero wind, the first method produces significant steady state attitude errors in both a coordinated turn and in a wings level ascent. In Dryden wind, it produces large noise on the estimates for its attitude states, and has a non-zero mean error that increases when gyro bias is increased. The second method is shown to not exhibit any steady state error in the tested scenarios that is inherent to its design. The second method can correct for attitude errors that arise from both integration error and gyro bias states, but it suffers from lack of attitude error observability. The attitude errors are shown to be more observable in wind, but increased integration error in wind outweighs the increase in attitude corrections that such increased observability brings, resulting in larger attitude errors in wind. Overall, this work highlights many technical deficiencies of both of these methods of state estimation that could be improved upon in the future to enhance state estimation for small UAVs in windy conditions.
NASA Astrophysics Data System (ADS)
Xu, Yadong; Serre, Marc L.; Reyes, Jeanette M.; Vizuete, William
2017-10-01
We have developed a Bayesian Maximum Entropy (BME) framework that integrates observations from a surface monitoring network and predictions from a Chemical Transport Model (CTM) to create improved exposure estimates that can be resolved into any spatial and temporal resolution. The flexibility of the framework allows for input of data in any choice of time scales and CTM predictions of any spatial resolution with varying associated degrees of estimation error and cost in terms of implementation and computation. This study quantifies the impact on exposure estimation error due to these choices by first comparing estimations errors when BME relied on ozone concentration data either as an hourly average, the daily maximum 8-h average (DM8A), or the daily 24-h average (D24A). Our analysis found that the use of DM8A and D24A data, although less computationally intensive, reduced estimation error more when compared to the use of hourly data. This was primarily due to the poorer CTM model performance in the hourly average predicted ozone. Our second analysis compared spatial variability and estimation errors when BME relied on CTM predictions with a grid cell resolution of 12 × 12 km2 versus a coarser resolution of 36 × 36 km2. Our analysis found that integrating the finer grid resolution CTM predictions not only reduced estimation error, but also increased the spatial variability in daily ozone estimates by 5 times. This improvement was due to the improved spatial gradients and model performance found in the finer resolved CTM simulation. The integration of observational and model predictions that is permitted in a BME framework continues to be a powerful approach for improving exposure estimates of ambient air pollution. The results of this analysis demonstrate the importance of also understanding model performance variability and its implications on exposure error.