Sample records for rigorous mathematical framework

  1. Rigorous Science: a How-To Guide.

    PubMed

    Casadevall, Arturo; Fang, Ferric C

    2016-11-08

    Proposals to improve the reproducibility of biomedical research have emphasized scientific rigor. Although the word "rigor" is widely used, there has been little specific discussion as to what it means and how it can be achieved. We suggest that scientific rigor combines elements of mathematics, logic, philosophy, and ethics. We propose a framework for rigor that includes redundant experimental design, sound statistical analysis, recognition of error, avoidance of logical fallacies, and intellectual honesty. These elements lead to five actionable recommendations for research education. Copyright © 2016 Casadevall and Fang.

  2. Rigorous Science: a How-To Guide

    PubMed Central

    Fang, Ferric C.

    2016-01-01

    ABSTRACT Proposals to improve the reproducibility of biomedical research have emphasized scientific rigor. Although the word “rigor” is widely used, there has been little specific discussion as to what it means and how it can be achieved. We suggest that scientific rigor combines elements of mathematics, logic, philosophy, and ethics. We propose a framework for rigor that includes redundant experimental design, sound statistical analysis, recognition of error, avoidance of logical fallacies, and intellectual honesty. These elements lead to five actionable recommendations for research education. PMID:27834205

  3. Rigorous Measures of Implementation: A Methodological Framework for Evaluating Innovative STEM Programs

    ERIC Educational Resources Information Center

    Cassata-Widera, Amy; Century, Jeanne; Kim, Dae Y.

    2011-01-01

    The practical need for multidimensional measures of fidelity of implementation (FOI) of reform-based science, technology, engineering, and mathematics (STEM) instructional materials, combined with a theoretical need in the field for a shared conceptual framework that could support accumulating knowledge on specific enacted program elements across…

  4. A Rigorous Treatment of Energy Extraction from a Rotating Black Hole

    NASA Astrophysics Data System (ADS)

    Finster, F.; Kamran, N.; Smoller, J.; Yau, S.-T.

    2009-05-01

    The Cauchy problem is considered for the scalar wave equation in the Kerr geometry. We prove that by choosing a suitable wave packet as initial data, one can extract energy from the black hole, thereby putting supperradiance, the wave analogue of the Penrose process, into a rigorous mathematical framework. We quantify the maximal energy gain. We also compute the infinitesimal change of mass and angular momentum of the black hole, in agreement with Christodoulou’s result for the Penrose process. The main mathematical tool is our previously derived integral representation of the wave propagator.

  5. Genomic similarity and kernel methods I: advancements by building on mathematical and statistical foundations.

    PubMed

    Schaid, Daniel J

    2010-01-01

    Measures of genomic similarity are the basis of many statistical analytic methods. We review the mathematical and statistical basis of similarity methods, particularly based on kernel methods. A kernel function converts information for a pair of subjects to a quantitative value representing either similarity (larger values meaning more similar) or distance (smaller values meaning more similar), with the requirement that it must create a positive semidefinite matrix when applied to all pairs of subjects. This review emphasizes the wide range of statistical methods and software that can be used when similarity is based on kernel methods, such as nonparametric regression, linear mixed models and generalized linear mixed models, hierarchical models, score statistics, and support vector machines. The mathematical rigor for these methods is summarized, as is the mathematical framework for making kernels. This review provides a framework to move from intuitive and heuristic approaches to define genomic similarities to more rigorous methods that can take advantage of powerful statistical modeling and existing software. A companion paper reviews novel approaches to creating kernels that might be useful for genomic analyses, providing insights with examples [1]. Copyright © 2010 S. Karger AG, Basel.

  6. PISA 2015 Assessment and Analytical Framework: Science, Reading, Mathematic, Financial Literacy and Collaborative Problem Solving

    ERIC Educational Resources Information Center

    OECD Publishing, 2017

    2017-01-01

    What is important for citizens to know and be able to do? The OECD Programme for International Student Assessment (PISA) seeks to answer that question through the most comprehensive and rigorous international assessment of student knowledge and skills. The PISA 2015 Assessment and Analytical Framework presents the conceptual foundations of the…

  7. Stochastic and Deterministic Models for the Metastatic Emission Process: Formalisms and Crosslinks.

    PubMed

    Gomez, Christophe; Hartung, Niklas

    2018-01-01

    Although the detection of metastases radically changes prognosis of and treatment decisions for a cancer patient, clinically undetectable micrometastases hamper a consistent classification into localized or metastatic disease. This chapter discusses mathematical modeling efforts that could help to estimate the metastatic risk in such a situation. We focus on two approaches: (1) a stochastic framework describing metastatic emission events at random times, formalized via Poisson processes, and (2) a deterministic framework describing the micrometastatic state through a size-structured density function in a partial differential equation model. Three aspects are addressed in this chapter. First, a motivation for the Poisson process framework is presented and modeling hypotheses and mechanisms are introduced. Second, we extend the Poisson model to account for secondary metastatic emission. Third, we highlight an inherent crosslink between the stochastic and deterministic frameworks and discuss its implications. For increased accessibility the chapter is split into an informal presentation of the results using a minimum of mathematical formalism and a rigorous mathematical treatment for more theoretically interested readers.

  8. Integrated model development for liquid fueled rocket propulsion systems

    NASA Technical Reports Server (NTRS)

    Santi, L. Michael

    1993-01-01

    As detailed in the original statement of work, the objective of phase two of this research effort was to develop a general framework for rocket engine performance prediction that integrates physical principles, a rigorous mathematical formalism, component level test data, system level test data, and theory-observation reconciliation. Specific phase two development tasks are defined.

  9. A Historical Survey of the Contributions of Francois-Joseph Servois to the Development of the Rigorous Calculus

    ERIC Educational Resources Information Center

    Petrilli, Salvatore John, Jr.

    2009-01-01

    Historians of mathematics considered the nineteenth century to be the Golden Age of mathematics. During this time period many areas of mathematics, such as algebra and geometry, were being placed on rigorous foundations. Another area of mathematics which experienced fundamental change was analysis. The drive for rigor in calculus began in 1797…

  10. Rigor and Relevance of Contextualized Measures in Mathematics, Literacy and Inquiry Learning for Rural Public Schooling in Medellin

    ERIC Educational Resources Information Center

    Amador-Lankster, Clara

    2018-01-01

    The purpose of this article is to discuss a Fulbright Evaluation Framework and to analyze findings resulting from implementation of two contextualized measures designed as LEARNING BY DOING in response to achievement expectations from the National Education Ministry in Colombia in three areas. The goal of the Fulbright funded project was to…

  11. Utah's New Mathematics Core

    ERIC Educational Resources Information Center

    Utah State Office of Education, 2011

    2011-01-01

    Utah has adopted more rigorous mathematics standards known as the Utah Mathematics Core Standards. They are the foundation of the mathematics curriculum for the State of Utah. The standards include the skills and understanding students need to succeed in college and careers. They include rigorous content and application of knowledge and reflect…

  12. Property-Based Software Engineering Measurement

    NASA Technical Reports Server (NTRS)

    Briand, Lionel; Morasca, Sandro; Basili, Victor R.

    1995-01-01

    Little theory exists in the field of software system measurement. Concepts such as complexity, coupling, cohesion or even size are very often subject to interpretation and appear to have inconsistent definitions in the literature. As a consequence, there is little guidance provided to the analyst attempting to define proper measures for specific problems. Many controversies in the literature are simply misunderstandings and stem from the fact that some people talk about different measurement concepts under the same label (complexity is the most common case). There is a need to define unambiguously the most important measurement concepts used in the measurement of software products. One way of doing so is to define precisely what mathematical properties characterize these concepts regardless of the specific software artifacts to which these concepts are applied. Such a mathematical framework could generate a consensus in the software engineering community and provide a means for better communication among researchers, better guidelines for analysis, and better evaluation methods for commercial static analyzers for practitioners. In this paper, we propose a mathematical framework which is generic, because it is not specific to any particular software artifact, and rigorous, because it is based on precise mathematical concepts. This framework defines several important measurement concepts (size, length, complexity, cohesion, coupling). It is not intended to be complete or fully objective; other frameworks could have been proposed and different choices could have been made. However, we believe that the formalism and properties we introduce are convenient and intuitive. In addition, we have reviewed the literature on this subject and compared it with our work. This framework contributes constructively to a firmer theoretical ground of software measurement.

  13. Property-Based Software Engineering Measurement

    NASA Technical Reports Server (NTRS)

    Briand, Lionel C.; Morasca, Sandro; Basili, Victor R.

    1997-01-01

    Little theory exists in the field of software system measurement. Concepts such as complexity, coupling, cohesion or even size are very often subject to interpretation and appear to have inconsistent definitions in the literature. As a consequence, there is little guidance provided to the analyst attempting to define proper measures for specific problems. Many controversies in the literature are simply misunderstandings and stem from the fact that some people talk about different measurement concepts under the same label (complexity is the most common case). There is a need to define unambiguously the most important measurement concepts used in the measurement of software products. One way of doing so is to define precisely what mathematical properties characterize these concepts, regardless of the specific software artifacts to which these concepts are applied. Such a mathematical framework could generate a consensus in the software engineering community and provide a means for better communication among researchers, better guidelines for analysts, and better evaluation methods for commercial static analyzers for practitioners. In this paper, we propose a mathematical framework which is generic, because it is not specific to any particular software artifact and rigorous, because it is based on precise mathematical concepts. We use this framework to propose definitions of several important measurement concepts (size, length, complexity, cohesion, coupling). It does not intend to be complete or fully objective; other frameworks could have been proposed and different choices could have been made. However, we believe that the formalisms and properties we introduce are convenient and intuitive. This framework contributes constructively to a firmer theoretical ground of software measurement.

  14. Teachers' Perspectives Regarding the Decline in Boys' Participation in Post-Compulsory Rigorous Mathematics Subjects

    ERIC Educational Resources Information Center

    Easey, Michael

    2013-01-01

    This paper explores the decline in boys' participation in post-compulsory rigorous mathematics using the perspectives of eight experienced teachers at an independent, boys' College located in Brisbane, Queensland. This study coincides with concerns regarding the decline in suitably qualified tertiary graduates with requisite mathematical skills…

  15. Reference condition approach to restoration planning

    USGS Publications Warehouse

    Nestler, J.M.; Theiling, C.H.; Lubinski, S.J.; Smith, D.L.

    2010-01-01

    Ecosystem restoration planning requires quantitative rigor to evaluate alternatives, define end states, report progress and perform environmental benefits analysis (EBA). Unfortunately, existing planning frameworks are, at best, semi-quantitative. In this paper, we: (1) describe a quantitative restoration planning approach based on a comprehensive, but simple mathematical framework that can be used to effectively apply knowledge and evaluate alternatives, (2) use the approach to derive a simple but precisely defined lexicon based on the reference condition concept and allied terms and (3) illustrate the approach with an example from the Upper Mississippi River System (UMRS) using hydrologic indicators. The approach supports the development of a scaleable restoration strategy that, in theory, can be expanded to ecosystem characteristics such as hydraulics, geomorphology, habitat and biodiversity. We identify three reference condition types, best achievable condition (A BAC), measured magnitude (MMi which can be determined at one or many times and places) and desired future condition (ADFC) that, when used with the mathematical framework, provide a complete system of accounts useful for goal-oriented system-level management and restoration. Published in 2010 by John Wiley & Sons, Ltd.

  16. Rigorous mathematical modelling for a Fast Corrector Power Supply in TPS

    NASA Astrophysics Data System (ADS)

    Liu, K.-B.; Liu, C.-Y.; Chien, Y.-C.; Wang, B.-S.; Wong, Y. S.

    2017-04-01

    To enhance the stability of beam orbit, a Fast Orbit Feedback System (FOFB) eliminating undesired disturbances was installed and tested in the 3rd generation synchrotron light source of Taiwan Photon Source (TPS) of National Synchrotron Radiation Research Center (NSRRC). The effectiveness of the FOFB greatly depends on the output performance of Fast Corrector Power Supply (FCPS); therefore, the design and implementation of an accurate FCPS is essential. A rigorous mathematical modelling is very useful to shorten design time and improve design performance of a FCPS. A rigorous mathematical modelling derived by the state-space averaging method for a FCPS in the FOFB of TPS composed of a full-bridge topology is therefore proposed in this paper. The MATLAB/SIMULINK software is used to construct the proposed mathematical modelling and to conduct the simulations of the FCPS. Simulations for the effects of the different resolutions of ADC on the output accuracy of the FCPS are investigated. A FCPS prototype is realized to demonstrate the effectiveness of the proposed rigorous mathematical modelling for the FCPS. Simulation and experimental results show that the proposed mathematical modelling is helpful for selecting the appropriate components to meet the accuracy requirements of a FCPS.

  17. Near Identifiability of Dynamical Systems

    NASA Technical Reports Server (NTRS)

    Hadaegh, F. Y.; Bekey, G. A.

    1987-01-01

    Concepts regarding approximate mathematical models treated rigorously. Paper presents new results in analysis of structural identifiability, equivalence, and near equivalence between mathematical models and physical processes they represent. Helps establish rigorous mathematical basis for concepts related to structural identifiability and equivalence revealing fundamental requirements, tacit assumptions, and sources of error. "Structural identifiability," as used by workers in this field, loosely translates as meaning ability to specify unique mathematical model and set of model parameters that accurately predict behavior of corresponding physical system.

  18. Statistical Analysis of Protein Ensembles

    NASA Astrophysics Data System (ADS)

    Máté, Gabriell; Heermann, Dieter

    2014-04-01

    As 3D protein-configuration data is piling up, there is an ever-increasing need for well-defined, mathematically rigorous analysis approaches, especially that the vast majority of the currently available methods rely heavily on heuristics. We propose an analysis framework which stems from topology, the field of mathematics which studies properties preserved under continuous deformations. First, we calculate a barcode representation of the molecules employing computational topology algorithms. Bars in this barcode represent different topological features. Molecules are compared through their barcodes by statistically determining the difference in the set of their topological features. As a proof-of-principle application, we analyze a dataset compiled of ensembles of different proteins, obtained from the Ensemble Protein Database. We demonstrate that our approach correctly detects the different protein groupings.

  19. Mathematical Rigor vs. Conceptual Change: Some Early Results

    NASA Astrophysics Data System (ADS)

    Alexander, W. R.

    2003-05-01

    Results from two different pedagogical approaches to teaching introductory astronomy at the college level will be presented. The first of these approaches is a descriptive, conceptually based approach that emphasizes conceptual change. This descriptive class is typically an elective for non-science majors. The other approach is a mathematically rigorous treatment that emphasizes problem solving and is designed to prepare students for further study in astronomy. The mathematically rigorous class is typically taken by science majors. It also fulfills an elective science requirement for these science majors. The Astronomy Diagnostic Test version 2 (ADT 2.0) was used as an assessment instrument since the validity and reliability have been investigated by previous researchers. The ADT 2.0 was administered as both a pre-test and post-test to both groups. Initial results show no significant difference between the two groups in the post-test. However, there is a slightly greater improvement for the descriptive class between the pre and post testing compared to the mathematically rigorous course. There was great care to account for variables. These variables included: selection of text, class format as well as instructor differences. Results indicate that the mathematically rigorous model, doesn't improve conceptual understanding any better than the conceptual change model. Additional results indicate that there is a similar gender bias in favor of males that has been measured by previous investigators. This research has been funded by the College of Science and Mathematics at James Madison University.

  20. Overarching framework for data-based modelling

    NASA Astrophysics Data System (ADS)

    Schelter, Björn; Mader, Malenka; Mader, Wolfgang; Sommerlade, Linda; Platt, Bettina; Lai, Ying-Cheng; Grebogi, Celso; Thiel, Marco

    2014-02-01

    One of the main modelling paradigms for complex physical systems are networks. When estimating the network structure from measured signals, typically several assumptions such as stationarity are made in the estimation process. Violating these assumptions renders standard analysis techniques fruitless. We here propose a framework to estimate the network structure from measurements of arbitrary non-linear, non-stationary, stochastic processes. To this end, we propose a rigorous mathematical theory that underlies this framework. Based on this theory, we present a highly efficient algorithm and the corresponding statistics that are immediately sensibly applicable to measured signals. We demonstrate its performance in a simulation study. In experiments of transitions between vigilance stages in rodents, we infer small network structures with complex, time-dependent interactions; this suggests biomarkers for such transitions, the key to understand and diagnose numerous diseases such as dementia. We argue that the suggested framework combines features that other approaches followed so far lack.

  1. A Formal Framework for the Analysis of Algorithms That Recover From Loss of Separation

    NASA Technical Reports Server (NTRS)

    Butler, RIcky W.; Munoz, Cesar A.

    2008-01-01

    We present a mathematical framework for the specification and verification of state-based conflict resolution algorithms that recover from loss of separation. In particular, we propose rigorous definitions of horizontal and vertical maneuver correctness that yield horizontal and vertical separation, respectively, in a bounded amount of time. We also provide sufficient conditions for independent correctness, i.e., separation under the assumption that only one aircraft maneuvers, and for implicitly coordinated correctness, i.e., separation under the assumption that both aircraft maneuver. An important benefit of this approach is that different aircraft can execute different algorithms and implicit coordination will still be achieved, as long as they all meet the explicit criteria of the framework. Towards this end we have sought to make the criteria as general as possible. The framework presented in this paper has been formalized and mechanically verified in the Prototype Verification System (PVS).

  2. Matter Gravitates, but Does Gravity Matter?

    ERIC Educational Resources Information Center

    Groetsch, C. W.

    2011-01-01

    The interplay of physical intuition, computational evidence, and mathematical rigor in a simple trajectory model is explored. A thought experiment based on the model is used to elicit student conjectures on the influence of a physical parameter; a mathematical model suggests a computational investigation of the conjectures, and rigorous analysis…

  3. Scaling Limit for a Generalization of the Nelson Model and its Application to Nuclear Physics

    NASA Astrophysics Data System (ADS)

    Suzuki, Akito

    We study a mathematically rigorous derivation of a quantum mechanical Hamiltonian in a general framework. We derive such a Hamiltonian by taking a scaling limit for a generalization of the Nelson model, which is an abstract interaction model between particles and a Bose field with some internal degrees of freedom. Applying it to a model for the field of the nuclear force with isospins, we obtain a Schrödinger Hamiltonian with a matrix-valued potential, the one pion exchange potential, describing an effective interaction between nucleons.

  4. Modeling and simulation of high dimensional stochastic multiscale PDE systems at the exascale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zabaras, Nicolas J.

    2016-11-08

    Predictive Modeling of multiscale and Multiphysics systems requires accurate data driven characterization of the input uncertainties, and understanding of how they propagate across scales and alter the final solution. This project develops a rigorous mathematical framework and scalable uncertainty quantification algorithms to efficiently construct realistic low dimensional input models, and surrogate low complexity systems for the analysis, design, and control of physical systems represented by multiscale stochastic PDEs. The work can be applied to many areas including physical and biological processes, from climate modeling to systems biology.

  5. Vision for the College, Career, and Civic Life (C3) Framework for Inquiry in Social Studies State Standards: Guidance for States to Use in Enhancing Their Standards for Rigor in Civics, Economics, Geography, and History in K-12 Schools

    ERIC Educational Resources Information Center

    Council of Chief State School Officers, 2012

    2012-01-01

    In the advent of the development and mass adoption of the common core state standards for English language arts and mathematics, state and local agencies have now expressed a need to the Council of Chief State School Officers (CCSSO or the Council) for assistance as they upgrade existing social studies standards to meet the practical goal of…

  6. A Mathematical Framework for the Analysis of Cyber-Resilient Control Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melin, Alexander M; Ferragut, Erik M; Laska, Jason A

    2013-01-01

    The increasingly recognized vulnerability of industrial control systems to cyber-attacks has inspired a considerable amount of research into techniques for cyber-resilient control systems. The majority of this effort involves the application of well known information security (IT) techniques to control system networks. While these efforts are important to protect the control systems that operate critical infrastructure, they are never perfectly effective. Little research has focused on the design of closed-loop dynamics that are resilient to cyber-attack. The majority of control system protection measures are concerned with how to prevent unauthorized access and protect data integrity. We believe that the abilitymore » to analyze how an attacker can effect the closed loop dynamics of a control system configuration once they have access is just as important to the overall security of a control system. To begin to analyze this problem, consistent mathematical definitions of concepts within resilient control need to be established so that a mathematical analysis of the vulnerabilities and resiliencies of a particular control system design methodology and configuration can be made. In this paper, we propose rigorous definitions for state awareness, operational normalcy, and resiliency as they relate to control systems. We will also discuss some mathematical consequences that arise from the proposed definitions. The goal is to begin to develop a mathematical framework and testable conditions for resiliency that can be used to build a sound theoretical foundation for resilient control research.« less

  7. Mathematics interventions for children and adolescents with Down syndrome: a research synthesis.

    PubMed

    Lemons, C J; Powell, S R; King, S A; Davidson, K A

    2015-08-01

    Many children and adolescents with Down syndrome fail to achieve proficiency in mathematics. Researchers have suggested that tailoring interventions based on the behavioural phenotype may enhance efficacy. The research questions that guided this review were (1) what types of mathematics interventions have been empirically evaluated with children and adolescents with Down syndrome?; (2) do the studies demonstrate sufficient methodological rigor?; (3) is there evidence of efficacy for the evaluated mathematics interventions?; and (4) to what extent have researchers considered aspects of the behavioural phenotype in selecting, designing and/or implementing mathematics interventions for children and adolescents with Down syndrome? Nine studies published between 1989 and 2012 were identified for inclusion. Interventions predominantly focused on early mathematics skills and reported positive outcomes. However, no study met criteria for methodological rigor. Further, no authors explicitly considered the behavioural phenotype. Additional research using rigorous experimental designs is needed to evaluate the efficacy of mathematics interventions for children and adolescents with Down syndrome. Suggestions for considering the behavioural phenotype in future research are provided. © 2015 MENCAP and International Association of the Scientific Study of Intellectual and Developmental Disabilities and John Wiley & Sons Ltd.

  8. Intelligent control of a planning system for astronaut training.

    PubMed

    Ortiz, J; Chen, G

    1999-07-01

    This work intends to design, analyze and solve, from the systems control perspective, a complex, dynamic, and multiconstrained planning system for generating training plans for crew members of the NASA-led International Space Station. Various intelligent planning systems have been developed within the framework of artificial intelligence. These planning systems generally lack a rigorous mathematical formalism to allow a reliable and flexible methodology for their design, modeling, and performance analysis in a dynamical, time-critical, and multiconstrained environment. Formulating the planning problem in the domain of discrete-event systems under a unified framework such that it can be modeled, designed, and analyzed as a control system will provide a self-contained theory for such planning systems. This will also provide a means to certify various planning systems for operations in the dynamical and complex environments in space. The work presented here completes the design, development, and analysis of an intricate, large-scale, and representative mathematical formulation for intelligent control of a real planning system for Space Station crew training. This planning system has been tested and used at NASA-Johnson Space Center.

  9. Properties of field functionals and characterization of local functionals

    NASA Astrophysics Data System (ADS)

    Brouder, Christian; Dang, Nguyen Viet; Laurent-Gengoux, Camille; Rejzner, Kasia

    2018-02-01

    Functionals (i.e., functions of functions) are widely used in quantum field theory and solid-state physics. In this paper, functionals are given a rigorous mathematical framework and their main properties are described. The choice of the proper space of test functions (smooth functions) and of the relevant concept of differential (Bastiani differential) are discussed. The relation between the multiple derivatives of a functional and the corresponding distributions is described in detail. It is proved that, in a neighborhood of every test function, the support of a smooth functional is uniformly compactly supported and the order of the corresponding distribution is uniformly bounded. Relying on a recent work by Dabrowski, several spaces of functionals are furnished with a complete and nuclear topology. In view of physical applications, it is shown that most formal manipulations can be given a rigorous meaning. A new concept of local functionals is proposed and two characterizations of them are given: the first one uses the additivity (or Hammerstein) property, the second one is a variant of Peetre's theorem. Finally, the first step of a cohomological approach to quantum field theory is carried out by proving a global Poincaré lemma and defining multi-vector fields and graded functionals within our framework.

  10. Theory and applications of structured light single pixel imaging

    NASA Astrophysics Data System (ADS)

    Stokoe, Robert J.; Stockton, Patrick A.; Pezeshki, Ali; Bartels, Randy A.

    2018-02-01

    Many single-pixel imaging techniques have been developed in recent years. Though the methods of image acquisition vary considerably, the methods share unifying features that make general analysis possible. Furthermore, the methods developed thus far are based on intuitive processes that enable simple and physically-motivated reconstruction algorithms, however, this approach may not leverage the full potential of single-pixel imaging. We present a general theoretical framework of single-pixel imaging based on frame theory, which enables general, mathematically rigorous analysis. We apply our theoretical framework to existing single-pixel imaging techniques, as well as provide a foundation for developing more-advanced methods of image acquisition and reconstruction. The proposed frame theoretic framework for single-pixel imaging results in improved noise robustness, decrease in acquisition time, and can take advantage of special properties of the specimen under study. By building on this framework, new methods of imaging with a single element detector can be developed to realize the full potential associated with single-pixel imaging.

  11. Gravitation. [Book on general relativity

    NASA Technical Reports Server (NTRS)

    Misner, C. W.; Thorne, K. S.; Wheeler, J. A.

    1973-01-01

    This textbook on gravitation physics (Einstein's general relativity or geometrodynamics) is designed for a rigorous full-year course at the graduate level. The material is presented in two parallel tracks in an attempt to divide key physical ideas from more complex enrichment material to be selected at the discretion of the reader or teacher. The full book is intended to provide competence relative to the laws of physics in flat space-time, Einstein's geometric framework for physics, applications with pulsars and neutron stars, cosmology, the Schwarzschild geometry and gravitational collapse, gravitational waves, experimental tests of Einstein's theory, and mathematical concepts of differential geometry.

  12. Upgrading geometry conceptual understanding and strategic competence through implementing rigorous mathematical thinking (RMT)

    NASA Astrophysics Data System (ADS)

    Nugraheni, Z.; Budiyono, B.; Slamet, I.

    2018-03-01

    To reach higher order thinking skill, needed to be mastered the conceptual understanding and strategic competence as they are two basic parts of high order thinking skill (HOTS). RMT is a unique realization of the cognitive conceptual construction approach based on Feurstein with his theory of Mediated Learning Experience (MLE) and Vygotsky’s sociocultural theory. This was quasi-experimental research which compared the experimental class that was given Rigorous Mathematical Thinking (RMT) as learning method and the control class that was given Direct Learning (DL) as the conventional learning activity. This study examined whether there was different effect of two learning model toward conceptual understanding and strategic competence of Junior High School Students. The data was analyzed by using Multivariate Analysis of Variance (MANOVA) and obtained a significant difference between experimental and control class when considered jointly on the mathematics conceptual understanding and strategic competence (shown by Wilk’s Λ = 0.84). Further, by independent t-test is known that there was significant difference between two classes both on mathematical conceptual understanding and strategic competence. By this result is known that Rigorous Mathematical Thinking (RMT) had positive impact toward Mathematics conceptual understanding and strategic competence.

  13. Investigations into phase effects from diffracted Gaussian beams for high-precision interferometry

    NASA Astrophysics Data System (ADS)

    Lodhia, Deepali

    Gravitational wave detectors are a new class of observatories aiming to detect gravitational waves from cosmic sources. All-reflective interferometer configurations have been proposed for future detectors, replacing transmissive optics with diffractive elements, thereby reducing thermal issues associated with power absorption. However, diffraction gratings introduce additional phase noise, creating more stringent conditions for alignment stability, and further investigations are required into all-reflective interferometers. A suitable mathematical framework using Gaussian modes is required for analysing the alignment stability using diffraction gratings. Such a framework was created, whereby small beam displacements are modelled using a modal technique. It was confirmed that the original modal-based model does not contain the phase changes associated with grating displacements. Experimental tests verified that the phase of a diffracted Gaussian beam is independent of the beam shape. Phase effects were further examined using a rigorous time-domain simulation tool. These findings show that the perceived phase difference is based on an intrinsic change of coordinate system within the modal-based model, and that the extra phase can be added manually to the modal expansion. This thesis provides a well-tested and detailed mathematical framework that can be used to develop simulation codes to model more complex layouts of all-reflective interferometers.

  14. Cooperative interactions in dense thermal Rb vapour confined in nm-scale cells

    NASA Astrophysics Data System (ADS)

    Keaveney, James

    Gravitational wave detectors are a new class of observatories aiming to detect gravitational waves from cosmic sources. All-reflective interferometer configurations have been proposed for future detectors, replacing transmissive optics with diffractive elements, thereby reducing thermal issues associated with power absorption. However, diffraction gratings introduce additional phase noise, creating more stringent conditions for alignment stability, and further investigations are required into all-reflective interferometers. A suitable mathematical framework using Gaussian modes is required for analysing the alignment stability using diffraction gratings. Such a framework was created, whereby small beam displacements are modelled using a modal technique. It was confirmed that the original modal-based model does not contain the phase changes associated with grating displacements. Experimental tests verified that the phase of a diffracted Gaussian beam is independent of the beam shape. Phase effects were further examined using a rigorous time-domain simulation tool. These findings show that the perceived phase difference is based on an intrinsic change of coordinate system within the modal-based model, and that the extra phase can be added manually to the modal expansion. This thesis provides a well-tested and detailed mathematical framework that can be used to develop simulation codes to model more complex layouts of all-reflective interferometers.

  15. The T-TEL Method for Assessing Water, Sediment, and Chemical Connectivity

    NASA Astrophysics Data System (ADS)

    Ali, Genevieve; Oswald, Claire; Spence, Christopher; Wellen, Christopher

    2018-02-01

    The concept of connectivity has been the subject of a great deal of recent research and provided new insights and breakthroughs on runoff generation processes and watershed biogeochemistry. However, a consensus definition and cohesive mathematical framework that would permit the consistent quantification of hydrologic connectivity, the examination of the interrelationships between water and material (e.g., sediment and chemicals) connectivity, or rigorous study intercomparison, have not been presented by the water resource community. Building on previous conceptualizations and site-specific or process-specific metrics, this paper aimed to review the current state of science on hydrologic connectivity and its role in water-mediated connectivity of material such as solutes and sediment before introducing a conceptual and a mathematical connectivity assessment framework. These frameworks rely on the quantification of Time scales, Thresholds, Excesses and Losses related to water and water-mediated material transport dynamics and are referred to as the T-TEL method. Through a small case study, we show how the T-TEL method allows a wide range of properties to be quantified, namely the occurrence, frequency, duration, magnitude, and spatial extent of water and water-mediated material connectivity. We also propose a research agenda to refine the T-TEL method and ensure its usefulness for facilitating the research and management of connectivity in pristine and human-impacted landscapes.

  16. A Constructive Response to "Where Mathematics Comes From."

    ERIC Educational Resources Information Center

    Schiralli, Martin; Sinclair, Nathalie

    2003-01-01

    Reviews the Lakoff and Nunez's book, "Where Mathematics Comes From: How the Embodied Mind Brings Mathematics into Being (2000)," which provided many mathematics education researchers with a novel and startling perspective on mathematical thinking. Suggests that several of the book's flaws can be addressed through a more rigorous establishment of…

  17. The role of a posteriori mathematics in physics

    NASA Astrophysics Data System (ADS)

    MacKinnon, Edward

    2018-05-01

    The calculus that co-evolved with classical mechanics relied on definitions of functions and differentials that accommodated physical intuitions. In the early nineteenth century mathematicians began the rigorous reformulation of calculus and eventually succeeded in putting almost all of mathematics on a set-theoretic foundation. Physicists traditionally ignore this rigorous mathematics. Physicists often rely on a posteriori math, a practice of using physical considerations to determine mathematical formulations. This is illustrated by examples from classical and quantum physics. A justification of such practice stems from a consideration of the role of phenomenological theories in classical physics and effective theories in contemporary physics. This relates to the larger question of how physical theories should be interpreted.

  18. Academic Rigor in General Education, Introductory Astronomy Courses for Nonscience Majors

    ERIC Educational Resources Information Center

    Brogt, Erik; Draeger, John D.

    2015-01-01

    We discuss a model of academic rigor and apply this to a general education introductory astronomy course. We argue that even without central tenets of professional astronomy-the use of mathematics--the course can still be considered academically rigorous when expectations, goals, assessments, and curriculum are properly aligned.

  19. From empirical data to time-inhomogeneous continuous Markov processes.

    PubMed

    Lencastre, Pedro; Raischel, Frank; Rogers, Tim; Lind, Pedro G

    2016-03-01

    We present an approach for testing for the existence of continuous generators of discrete stochastic transition matrices. Typically, existing methods to ascertain the existence of continuous Markov processes are based on the assumption that only time-homogeneous generators exist. Here a systematic extension to time inhomogeneity is presented, based on new mathematical propositions incorporating necessary and sufficient conditions, which are then implemented computationally and applied to numerical data. A discussion concerning the bridging between rigorous mathematical results on the existence of generators to its computational implementation is presented. Our detection algorithm shows to be effective in more than 60% of tested matrices, typically 80% to 90%, and for those an estimate of the (nonhomogeneous) generator matrix follows. We also solve the embedding problem analytically for the particular case of three-dimensional circulant matrices. Finally, a discussion of possible applications of our framework to problems in different fields is briefly addressed.

  20. Model of dissolution in the framework of tissue engineering and drug delivery.

    PubMed

    Sanz-Herrera, J A; Soria, L; Reina-Romo, E; Torres, Y; Boccaccini, A R

    2018-05-22

    Dissolution phenomena are ubiquitously present in biomaterials in many different fields. Despite the advantages of simulation-based design of biomaterials in medical applications, additional efforts are needed to derive reliable models which describe the process of dissolution. A phenomenologically based model, available for simulation of dissolution in biomaterials, is introduced in this paper. The model turns into a set of reaction-diffusion equations implemented in a finite element numerical framework. First, a parametric analysis is conducted in order to explore the role of model parameters on the overall dissolution process. Then, the model is calibrated and validated versus a straightforward but rigorous experimental setup. Results show that the mathematical model macroscopically reproduces the main physicochemical phenomena that take place in the tests, corroborating its usefulness for design of biomaterials in the tissue engineering and drug delivery research areas.

  1. Higher order temporal finite element methods through mixed formalisms.

    PubMed

    Kim, Jinkyu

    2014-01-01

    The extended framework of Hamilton's principle and the mixed convolved action principle provide new rigorous weak variational formalism for a broad range of initial boundary value problems in mathematical physics and mechanics. In this paper, their potential when adopting temporally higher order approximations is investigated. The classical single-degree-of-freedom dynamical systems are primarily considered to validate and to investigate the performance of the numerical algorithms developed from both formulations. For the undamped system, all the algorithms are symplectic and unconditionally stable with respect to the time step. For the damped system, they are shown to be accurate with good convergence characteristics.

  2. David crighton, 1942-2000: a commentary on his career and his influence on aeroacoustic theory

    NASA Astrophysics Data System (ADS)

    Ffowcs Williams, John E.

    David Crighton, a greatly admired figure in fluid mechanics, Head of the Department of Applied Mathematics and Theoretical Physics at Cambridge, and Master of Jesus College, Cambridge, died at the peak of his career. He had made important contributions to the theory of waves generated by unsteady flow. Crighton's work was always characterized by the application of rigorous mathematical approximations to fluid mechanical idealizations of practically relevant problems. At the time of his death, he was certainly the most influential British applied mathematical figure, and his former collaborators and students form a strong school that continues his special style of mathematical application. Rigorous analysis of well-posed aeroacoustical problems was transformed by David Crighton.

  3. What We Do: A Multiple Case Study from Mathematics Coaches' Perspectives

    ERIC Educational Resources Information Center

    Kane, Barbara Ann

    2013-01-01

    Teachers face new challenges when they teach a more rigorous mathematics curriculum than one to which they are accustomed. The rationale for this particular study originated from watching teachers struggle with understanding mathematical content and pedagogical practices. Mathematics coaches can address teachers' concerns through sustained,…

  4. Rigorous Mathematical Thinking Approach to Enhance Students’ Mathematical Creative and Critical Thinking Abilities

    NASA Astrophysics Data System (ADS)

    Hidayat, D.; Nurlaelah, E.; Dahlan, J. A.

    2017-09-01

    The ability of mathematical creative and critical thinking are two abilities that need to be developed in the learning of mathematics. Therefore, efforts need to be made in the design of learning that is capable of developing both capabilities. The purpose of this research is to examine the mathematical creative and critical thinking ability of students who get rigorous mathematical thinking (RMT) approach and students who get expository approach. This research was quasi experiment with control group pretest-posttest design. The population were all of students grade 11th in one of the senior high school in Bandung. The result showed that: the achievement of mathematical creative and critical thinking abilities of student who obtain RMT is better than students who obtain expository approach. The use of Psychological tools and mediation with criteria of intentionality, reciprocity, and mediated of meaning on RMT helps students in developing condition in critical and creative processes. This achievement contributes to the development of integrated learning design on students’ critical and creative thinking processes.

  5. Reading and Reflecting: Elementary Preservice Teachers' Conceptions about Teaching Mathematics for Equity

    ERIC Educational Resources Information Center

    Jackson, Christa; Jong, Cindy

    2017-01-01

    Teaching mathematics for equity is critical because it provides opportunities for all students, especially those who have been traditionally marginalised, to learn mathematics that is rigorous and relevant to their lives. This article reports on our work, as mathematics teacher educators, on exposing and engaging 60 elementary preservice teachers…

  6. A Mathematical Evaluation of the Core Conductor Model

    PubMed Central

    Clark, John; Plonsey, Robert

    1966-01-01

    This paper is a mathematical evaluation of the core conductor model where its three dimensionality is taken into account. The problem considered is that of a single, active, unmyelinated nerve fiber situated in an extensive, homogeneous, conducting medium. Expressions for the various core conductor parameters have been derived in a mathematically rigorous manner according to the principles of electromagnetic theory. The purpose of employing mathematical rigor in this study is to bring to light the inherent assumptions of the one dimensional core conductor model, providing a method of evaluating the accuracy of this linear model. Based on the use of synthetic squid axon data, the conclusion of this study is that the linear core conductor model is a good approximation for internal but not external parameters. PMID:5903155

  7. A systems-theoretical framework for health and disease: inflammation and preconditioning from an abstract modeling point of view.

    PubMed

    Voit, Eberhard O

    2009-01-01

    Modern advances in molecular biology have produced enormous amounts of data characterizing physiological and disease states in cells and organisms. While bioinformatics has facilitated the organizing and mining of these data, it is the task of systems biology to merge the available information into dynamic, explanatory and predictive models. This article takes a step into this direction. It proposes a conceptual approach toward formalizing health and disease and illustrates it in the context of inflammation and preconditioning. Instead of defining health and disease states, the emphasis is on simplexes in a high-dimensional biomarker space. These simplexes are bounded by physiological constraints and permit the quantitative characterization of personalized health trajectories, health risk profiles that change with age, and the efficacy of different treatment options. The article mainly focuses on concepts but also briefly describes how the proposed concepts might be formulated rigorously within a mathematical framework.

  8. Systematic design for trait introgression projects.

    PubMed

    Cameron, John N; Han, Ye; Wang, Lizhi; Beavis, William D

    2017-10-01

    Using an Operations Research approach, we demonstrate design of optimal trait introgression projects with respect to competing objectives. We demonstrate an innovative approach for designing Trait Introgression (TI) projects based on optimization principles from Operations Research. If the designs of TI projects are based on clear and measurable objectives, they can be translated into mathematical models with decision variables and constraints that can be translated into Pareto optimality plots associated with any arbitrary selection strategy. The Pareto plots can be used to make rational decisions concerning the trade-offs between maximizing the probability of success while minimizing costs and time. The systematic rigor associated with a cost, time and probability of success (CTP) framework is well suited to designing TI projects that require dynamic decision making. The CTP framework also revealed that previously identified 'best' strategies can be improved to be at least twice as effective without increasing time or expenses.

  9. The MIXED framework: A novel approach to evaluating mixed-methods rigor.

    PubMed

    Eckhardt, Ann L; DeVon, Holli A

    2017-10-01

    Evaluation of rigor in mixed-methods (MM) research is a persistent challenge due to the combination of inconsistent philosophical paradigms, the use of multiple research methods which require different skill sets, and the need to combine research at different points in the research process. Researchers have proposed a variety of ways to thoroughly evaluate MM research, but each method fails to provide a framework that is useful for the consumer of research. In contrast, the MIXED framework is meant to bridge the gap between an academic exercise and practical assessment of a published work. The MIXED framework (methods, inference, expertise, evaluation, and design) borrows from previously published frameworks to create a useful tool for the evaluation of a published study. The MIXED framework uses an experimental eight-item scale that allows for comprehensive integrated assessment of MM rigor in published manuscripts. Mixed methods are becoming increasingly prevalent in nursing and healthcare research requiring researchers and consumers to address issues unique to MM such as evaluation of rigor. © 2017 John Wiley & Sons Ltd.

  10. towards a theory-based multi-dimensional framework for assessment in mathematics: The "SEA" framework

    NASA Astrophysics Data System (ADS)

    Anku, Sitsofe E.

    1997-09-01

    Using the reform documents of the National Council of Teachers of Mathematics (NCTM) (NCTM, 1989, 1991, 1995), a theory-based multi-dimensional assessment framework (the "SEA" framework) which should help expand the scope of assessment in mathematics is proposed. This framework uses a context based on mathematical reasoning and has components that comprise mathematical concepts, mathematical procedures, mathematical communication, mathematical problem solving, and mathematical disposition.

  11. The impact of rigorous mathematical thinking as learning method toward geometry understanding

    NASA Astrophysics Data System (ADS)

    Nugraheni, Z.; Budiyono, B.; Slamet, I.

    2018-05-01

    To reach higher order thinking skill, needed to be mastered the conceptual understanding. RMT is a unique realization of the cognitive conceptual construction approach based on Mediated Learning Experience (MLE) theory by Feurstein and Vygotsky’s sociocultural theory. This was quasi experimental research which was comparing the experimental class that was given Rigorous Mathematical Thinking (RMT) as learning method and control class that was given Direct Learning (DL) as the conventional learning activity. This study examined whether there was different effect of two learning method toward conceptual understanding of Junior High School students. The data was analyzed by using Independent t-test and obtained a significant difference of mean value between experimental and control class on geometry conceptual understanding. Further, by semi-structure interview known that students taught by RMT had deeper conceptual understanding than students who were taught by conventional way. By these result known that Rigorous Mathematical Thinking (RMT) as learning method have positive impact toward Geometry conceptual understanding.

  12. Secondary School Advanced Mathematics, Chapter 3, Formal Geometry. Student's Text.

    ERIC Educational Resources Information Center

    Stanford Univ., CA. School Mathematics Study Group.

    This text is the second of five in the Secondary School Advanced Mathematics (SSAM) series which was designed to meet the needs of students who have completed the Secondary School Mathematics (SSM) program, and wish to continue their study of mathematics. This volume is devoted to a rigorous development of theorems in plane geometry from 22…

  13. Preventing Early Mathematics Difficulties: The Feasibility of a Rigorous Kindergarten Mathematics Curriculum

    ERIC Educational Resources Information Center

    Chard, David J.; Baker, Scott K.; Clarke, Ben; Jungjohann, Kathleen; Davis, Karen; Smolkowski, Keith

    2008-01-01

    Concern about poor mathematics achievement in U.S. schools has increased in recent years. In part, poor achievement may be attributed to a lack of attention to early instruction and missed opportunities to build on young children's early understanding of mathematics. This study examined the development and feasibility testing of a kindergarten…

  14. What We Are Learning about Mathematics Interventions and Conducting Research on Mathematics Interventions

    ERIC Educational Resources Information Center

    Gersten, Russell

    2016-01-01

    In this commentary, the author reflects on four studies that have greatly expanded the knowledge base on effective interventions in mathematics, and he provides four rigorous experimental studies of approaches for students likely to experience difficulties learning mathematics over a large grade-level span (pre-K to 4th grade). All of the…

  15. 21st Century Mathematics

    ERIC Educational Resources Information Center

    Seeley, Cathy

    2004-01-01

    This article addresses some important issues in mathematics instruction at the middle and secondary levels, including the structuring of a district's mathematics program; the choice of textbooks and use of calculators in the classroom; the need for more rigorous lesson planning practices; and the dangers of teaching to standardized tests rather…

  16. Advanced Mathematical Thinking

    ERIC Educational Resources Information Center

    Dubinsky, Ed; McDonald, Michael A.; Edwards, Barbara S.

    2005-01-01

    In this article we propose the following definition for advanced mathematical thinking: Thinking that requires deductive and rigorous reasoning about mathematical notions that are not entirely accessible to us through our five senses. We argue that this definition is not necessarily tied to a particular kind of educational experience; nor is it…

  17. Inferring the source of evaporated waters using stable H and O isotopes

    NASA Astrophysics Data System (ADS)

    Bowen, G. J.; Putman, A.; Brooks, J. R.; Bowling, D. R.; Oerter, E.; Good, S. P.

    2017-12-01

    Stable isotope ratios of H and O are widely used identify the source of water, e.g., in aquifers, river runoff, soils, plant xylem, and plant-based beverages. In situations where the sampled water is partially evaporated, its isotope values will have evolved along an evaporation line (EL) in δ2H/δ18O space, and back-correction along the EL to its intersection with a meteoric water line (MWL) has been used to estimate the source water's isotope ratios. Several challenges and potential pitfalls exist with traditional approaches to this problem, including potential for bias from a commonly used regression-based approach for EL slope estimation and incomplete estimation of uncertainty in most studies. We suggest the value of a model-based approach to EL estimation, and introduce a mathematical framework that eliminates the need to explicitly estimate the EL-MWL intersection, simplifying analysis and facilitating more rigorous uncertainty estimation. We apply this analysis framework to data from 1,000 lakes sampled in EPA's 2007 National Lakes Assessment. We find that data for most lakes is consistent with a water source similar to annual runoff, estimated from monthly precipitation and evaporation within the lake basin. Strong evidence for both summer- and winter-biased sources exists, however, with winter bias pervasive in most snow-prone regions. The new analytical framework should improve the rigor of source-water inference from evaporated samples in ecohydrology and related sciences, and our initial results from U.S. lakes suggest that previous interpretations of lakes as unbiased isotope integrators may only be valid in certain climate regimes.

  18. Bipotential continuum models for granular mechanics

    NASA Astrophysics Data System (ADS)

    Goddard, Joe

    2014-03-01

    Most currently popular continuum models for granular media are special cases of a generalized Maxwell fluid model, which describes the evolution of stress and internal variables such as granular particle fraction and fabric,in terms of imposed strain rate. It is shown how such models can be obtained from two scalar potentials, a standard elastic free energy and a ``dissipation potential'' given rigorously by the mathematical theory of Edelen. This allows for a relatively easy derivation of properly invariant continuum models for granular media and fluid-particle suspensions within a thermodynamically consistent framework. The resulting continuum models encompass all the prominent regimes of granular flow, ranging from the quasi-static to rapidly sheared, and are readily extended to include higher-gradient or Cosserat effects. Models involving stress diffusion, such as that proposed recently by Kamrin and Koval (PRL 108 178301), provide an alternative approach that is mentioned in passing. This paper provides a brief overview of a forthcoming review articles by the speaker (The Princeton Companion to Applied Mathematics, and Appl. Mech. Rev.,in the press, 2013).

  19. Multiscale Mathematics for Biomass Conversion to Renewable Hydrogen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katsoulakis, Markos

    2014-08-09

    Our two key accomplishments in the first three years were towards the development of, (1) a mathematically rigorous and at the same time computationally flexible framework for parallelization of Kinetic Monte Carlo methods, and its implementation on GPUs, and (2) spatial multilevel coarse-graining methods for Monte Carlo sampling and molecular simulation. A common underlying theme in both these lines of our work is the development of numerical methods which are at the same time both computationally efficient and reliable, the latter in the sense that they provide controlled-error approximations for coarse observables of the simulated molecular systems. Finally, our keymore » accomplishment in the last year of the grant is that we started developing (3) pathwise information theory-based and goal-oriented sensitivity analysis and parameter identification methods for complex high-dimensional dynamics and in particular of nonequilibrium extended (high-dimensional) systems. We discuss these three research directions in some detail below, along with the related publications.« less

  20. Crisis in science: in search for new theoretical foundations.

    PubMed

    Schroeder, Marcin J

    2013-09-01

    Recognition of the need for theoretical biology more than half century ago did not bring substantial progress in this direction. Recently, the need for new methods in science, including physics became clear. The breakthrough should be sought in answering the question "What is life?", which can help to explain the mechanisms of consciousness and consequently give insight into the way we comprehend reality. This could help in the search for new methods in the study of both physical and biological phenomena. However, to achieve this, new theoretical discipline will have to be developed with a very general conceptual framework and rigor of mathematical reasoning, allowing it to assume the leading role in science. Since its foundations are in the recognition of the role of life and consciousness in the epistemic process, it could be called biomathics. The prime candidates proposed here for being the fundamental concepts for biomathics are 'information' and 'information integration', with an appropriately general mathematical formalism. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Teaching Mathematics to Civil Engineers

    ERIC Educational Resources Information Center

    Sharp, J. J.; Moore, E.

    1977-01-01

    This paper outlines a technique for teaching a rigorous course in calculus and differential equations which stresses applicability of the mathematics to problems in civil engineering. The method involves integration of subject matter and team teaching. (SD)

  2. Multi-Disciplinary Knowledge Synthesis for Human Health Assessment on Earth and in Space

    NASA Astrophysics Data System (ADS)

    Christakos, G.

    We discuss methodological developments in multi-disciplinary knowledge synthesis (KS) of human health assessment. A theoretical KS framework can provide the rational means for the assimilation of various information bases (general, site-specific etc.) that are relevant to the life system of interest. KS-based techniques produce a realistic representation of the system, provide a rigorous assessment of the uncertainty sources, and generate informative health state predictions across space-time. The underlying epistemic cognition methodology is based on teleologic criteria and stochastic logic principles. The mathematics of KS involves a powerful and versatile spatiotemporal random field model that accounts rigorously for the uncertainty features of the life system and imposes no restriction on the shape of the probability distributions or the form of the predictors. KS theory is instrumental in understanding natural heterogeneities, assessing crucial human exposure correlations and laws of physical change, and explaining toxicokinetic mechanisms and dependencies in a spatiotemporal life system domain. It is hoped that a better understanding of KS fundamentals would generate multi-disciplinary models that are useful for the maintenance of human health on Earth and in Space.

  3. Preparing and Supporting Black Students to Enroll and Achieve in Advanced Mathematics Classes in Middle School: A Case Study

    ERIC Educational Resources Information Center

    Cobbs, Joyce Bernice

    2014-01-01

    The literature on minority student achievement indicates that Black students are underrepresented in advanced mathematics courses. Advanced mathematics courses offer students the opportunity to engage with challenging curricula, experience rigorous instruction, and interact with quality teachers. The middle school years are particularly…

  4. Community College Pathways: A Descriptive Report of Summative Assessments and Student Learning

    ERIC Educational Resources Information Center

    Strother, Scott; Sowers, Nicole

    2014-01-01

    Carnegie's Community College Pathways (CCP) offers two pathways, Statway® and Quantway®, that reduce the amount of time required to complete developmental mathematics and earn college-level mathematics credit. The Pathways aim to improve student success in mathematics while maintaining rigorous content, pedagogy, and learning outcomes. It is…

  5. Teacher Efficacy of High School Mathematics Co-Teachers

    ERIC Educational Resources Information Center

    Rimpola, Raquel C.

    2011-01-01

    High school mathematics inclusion classes help provide all students the access to rigorous curriculum. This study provides information about the teacher efficacy of high school mathematics co-teachers. It considers the influence of the amount of collaborative planning time on the efficacy of co-teachers. A quantitative research design was used,…

  6. Mathematical Rigor in the Common Core

    ERIC Educational Resources Information Center

    Hull, Ted H.; Balka, Don S.; Miles, Ruth Harbin

    2013-01-01

    A whirlwind of activity surrounds the topic of teaching and learning mathematics. The driving forces are a combination of changes in assessment and advances in technology that are being spurred on by the introduction of content in the Common Core State Standards for Mathematical Practice. Although the issues are certainly complex, the same forces…

  7. Reducible or irreducible? Mathematical reasoning and the ontological method.

    PubMed

    Fisher, William P

    2010-01-01

    Science is often described as nothing but the practice of measurement. This perspective follows from longstanding respect for the roles mathematics and quantification have played as media through which alternative hypotheses are evaluated and experience becomes better managed. Many figures in the history of science and psychology have contributed to what has been called the "quantitative imperative," the demand that fields of study employ number and mathematics even when they do not constitute the language in which investigators think together. But what makes an area of study scientific is, of course, not the mere use of number, but communities of investigators who share common mathematical languages for exchanging quantitative and quantitative value. Such languages require rigorous theoretical underpinning, a basis in data sufficient to the task, and instruments traceable to reference standard quantitative metrics. The values shared and exchanged by such communities typically involve the application of mathematical models that specify the sufficient and invariant relationships necessary for rigorous theorizing and instrument equating. The mathematical metaphysics of science are explored with the aim of connecting principles of quantitative measurement with the structures of sufficient reason.

  8. STEM Pathways: Examining Persistence in Rigorous Math and Science Course Taking

    NASA Astrophysics Data System (ADS)

    Ashford, Shetay N.; Lanehart, Rheta E.; Kersaint, Gladis K.; Lee, Reginald S.; Kromrey, Jeffrey D.

    2016-12-01

    From 2006 to 2012, Florida Statute §1003.4156 required middle school students to complete electronic personal education planners (ePEPs) before promotion to ninth grade. The ePEP helped them identify programs of study and required high school coursework to accomplish their postsecondary education and career goals. During the same period Florida required completion of the ePEP, Florida's Career and Professional Education Act stimulated a rapid increase in the number of statewide high school career academies. Students with interests in STEM careers created STEM-focused ePEPs and may have enrolled in STEM career academies, which offered a unique opportunity to improve their preparedness for the STEM workforce through the integration of rigorous academic and career and technical education courses. This study examined persistence of STEM-interested (i.e., those with expressed interest in STEM careers) and STEM-capable (i.e., those who completed at least Algebra 1 in eighth grade) students ( n = 11,248), including those enrolled in STEM career academies, in rigorous mathematics and science course taking in Florida public high schools in comparison with the national cohort of STEM-interested students to measure the influence of K-12 STEM education efforts in Florida. With the exception of multi-race students, we found that Florida's STEM-capable students had lower persistence in rigorous mathematics and science course taking than students in the national cohort from ninth to eleventh grade. We also found that participation in STEM career academies did not support persistence in rigorous mathematics and science courses, a prerequisite for success in postsecondary STEM education and careers.

  9. Separating intrinsic from extrinsic fluctuations in dynamic biological systems

    PubMed Central

    Paulsson, Johan

    2011-01-01

    From molecules in cells to organisms in ecosystems, biological populations fluctuate due to the intrinsic randomness of individual events and the extrinsic influence of changing environments. The combined effect is often too complex for effective analysis, and many studies therefore make simplifying assumptions, for example ignoring either intrinsic or extrinsic effects to reduce the number of model assumptions. Here we mathematically demonstrate how two identical and independent reporters embedded in a shared fluctuating environment can be used to identify intrinsic and extrinsic noise terms, but also how these contributions are qualitatively and quantitatively different from what has been previously reported. Furthermore, we show for which classes of biological systems the noise contributions identified by dual-reporter methods correspond to the noise contributions predicted by correct stochastic models of either intrinsic or extrinsic mechanisms. We find that for broad classes of systems, the extrinsic noise from the dual-reporter method can be rigorously analyzed using models that ignore intrinsic stochasticity. In contrast, the intrinsic noise can be rigorously analyzed using models that ignore extrinsic stochasticity only under very special conditions that rarely hold in biology. Testing whether the conditions are met is rarely possible and the dual-reporter method may thus produce flawed conclusions about the properties of the system, particularly about the intrinsic noise. Our results contribute toward establishing a rigorous framework to analyze dynamically fluctuating biological systems. PMID:21730172

  10. Separating intrinsic from extrinsic fluctuations in dynamic biological systems.

    PubMed

    Hilfinger, Andreas; Paulsson, Johan

    2011-07-19

    From molecules in cells to organisms in ecosystems, biological populations fluctuate due to the intrinsic randomness of individual events and the extrinsic influence of changing environments. The combined effect is often too complex for effective analysis, and many studies therefore make simplifying assumptions, for example ignoring either intrinsic or extrinsic effects to reduce the number of model assumptions. Here we mathematically demonstrate how two identical and independent reporters embedded in a shared fluctuating environment can be used to identify intrinsic and extrinsic noise terms, but also how these contributions are qualitatively and quantitatively different from what has been previously reported. Furthermore, we show for which classes of biological systems the noise contributions identified by dual-reporter methods correspond to the noise contributions predicted by correct stochastic models of either intrinsic or extrinsic mechanisms. We find that for broad classes of systems, the extrinsic noise from the dual-reporter method can be rigorously analyzed using models that ignore intrinsic stochasticity. In contrast, the intrinsic noise can be rigorously analyzed using models that ignore extrinsic stochasticity only under very special conditions that rarely hold in biology. Testing whether the conditions are met is rarely possible and the dual-reporter method may thus produce flawed conclusions about the properties of the system, particularly about the intrinsic noise. Our results contribute toward establishing a rigorous framework to analyze dynamically fluctuating biological systems.

  11. Grading Rigor in Counselor Education: A Specifications Grading Framework

    ERIC Educational Resources Information Center

    Bonner, Matthew W.

    2016-01-01

    According to accreditation and professional bodies, evaluation and grading are a high priority in counselor education. Specifications grading, an evaluative tool, can be used to increase grading rigor. This article describes the components of specifications grading and applies the framework of specifications grading to a counseling theories course.

  12. Optimal policies of non-cross-resistant chemotherapy on Goldie and Coldman's cancer model.

    PubMed

    Chen, Jeng-Huei; Kuo, Ya-Hui; Luh, Hsing Paul

    2013-10-01

    Mathematical models can be used to study the chemotherapy on tumor cells. Especially, in 1979, Goldie and Coldman proposed the first mathematical model to relate the drug sensitivity of tumors to their mutation rates. Many scientists have since referred to this pioneering work because of its simplicity and elegance. Its original idea has also been extended and further investigated in massive follow-up studies of cancer modeling and optimal treatment. Goldie and Coldman, together with Guaduskas, later used their model to explain why an alternating non-cross-resistant chemotherapy is optimal with a simulation approach. Subsequently in 1983, Goldie and Coldman proposed an extended stochastic based model and provided a rigorous mathematical proof to their earlier simulation work when the extended model is approximated by its quasi-approximation. However, Goldie and Coldman's analytic study of optimal treatments majorly focused on a process with symmetrical parameter settings, and presented few theoretical results for asymmetrical settings. In this paper, we recast and restate Goldie, Coldman, and Guaduskas' model as a multi-stage optimization problem. Under an asymmetrical assumption, the conditions under which a treatment policy can be optimal are derived. The proposed framework enables us to consider some optimal policies on the model analytically. In addition, Goldie, Coldman and Guaduskas' work with symmetrical settings can be treated as a special case of our framework. Based on the derived conditions, this study provides an alternative proof to Goldie and Coldman's work. In addition to the theoretical derivation, numerical results are included to justify the correctness of our work. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Teaching Mathematical Word Problem Solving: The Quality of Evidence for Strategy Instruction Priming the Problem Structure

    ERIC Educational Resources Information Center

    Jitendra, Asha K.; Petersen-Brown, Shawna; Lein, Amy E.; Zaslofsky, Anne F.; Kunkel, Amy K.; Jung, Pyung-Gang; Egan, Andrea M.

    2015-01-01

    This study examined the quality of the research base related to strategy instruction priming the underlying mathematical problem structure for students with learning disabilities and those at risk for mathematics difficulties. We evaluated the quality of methodological rigor of 18 group research studies using the criteria proposed by Gersten et…

  14. Polytechnic Engineering Mathematics: Assessing Its Relevance to the Productivity of Industries in Uganda

    ERIC Educational Resources Information Center

    Jehopio, Peter J.; Wesonga, Ronald

    2017-01-01

    Background: The main objective of the study was to examine the relevance of engineering mathematics to the emerging industries. The level of abstraction, the standard of rigor, and the depth of theoretical treatment are necessary skills expected of a graduate engineering technician to be derived from mathematical knowledge. The question of whether…

  15. Linking Literacy and Mathematics: The Support for Common Core Standards for Mathematical Practice

    ERIC Educational Resources Information Center

    Swanson, Mary; Parrott, Martha

    2013-01-01

    In a new era of Common Core State Standards (CCSS), teachers are expected to provide more rigorous, coherent, and focused curriculum at every grade level. To respond to the call for higher expectations across the curriculum and certainly within reading, writing, and mathematics, educators should work closely together to create mathematically…

  16. Closed-Loop Control of Complex Networks: A Trade-Off between Time and Energy

    NASA Astrophysics Data System (ADS)

    Sun, Yong-Zheng; Leng, Si-Yang; Lai, Ying-Cheng; Grebogi, Celso; Lin, Wei

    2017-11-01

    Controlling complex nonlinear networks is largely an unsolved problem at the present. Existing works focus either on open-loop control strategies and their energy consumptions or on closed-loop control schemes with an infinite-time duration. We articulate a finite-time, closed-loop controller with an eye toward the physical and mathematical underpinnings of the trade-off between the control time and energy as well as their dependence on the network parameters and structure. The closed-loop controller is tested on a large number of real systems including stem cell differentiation, food webs, random ecosystems, and spiking neuronal networks. Our results represent a step forward in developing a rigorous and general framework to control nonlinear dynamical networks with a complex topology.

  17. An Informal History of Formal Proofs: From Vigor to Rigor?

    ERIC Educational Resources Information Center

    Galda, Klaus

    1981-01-01

    The history of formal mathematical proofs is sketched out, starting with the Greeks. Included in this document is a chronological guide to mathematics and the world, highlighting major events in the world and important mathematicians in corresponding times. (MP)

  18. Pattern formation in mass conserving reaction-diffusion systems

    NASA Astrophysics Data System (ADS)

    Brauns, Fridtjof; Halatek, Jacob; Frey, Erwin

    We present a rigorous theoretical framework able to generalize and unify pattern formation for quantitative mass conserving reaction-diffusion models. Mass redistribution controls chemical equilibria locally. Separation of diffusive mass redistribution on the level of conserved species provides a general mathematical procedure to decompose complex reaction-diffusion systems into effectively independent functional units, and to reveal the general underlying bifurcation scenarios. We apply this framework to Min protein pattern formation and identify the mechanistic roles of both involved protein species. MinD generates polarity through phase separation, whereas MinE takes the role of a control variable regulating the existence of MinD phases. Hence, polarization and not oscillations is the generic core dynamics of Min proteins in vivo. This establishes an intrinsic mechanistic link between the Min system and a broad class of intracellular pattern forming systems based on bistability and phase separation (wave-pinning). Oscillations are facilitated by MinE redistribution and can be understood mechanistically as relaxation oscillations of the polarization direction.

  19. Dividing by Zero: Exploring Null Results in a Mathematics Professional Development Program

    ERIC Educational Resources Information Center

    Hill, Heather C.; Corey, Douglas Lyman; Jacob, Robin T.

    2018-01-01

    Background/Context: Since 2002, U.S. federal funding for educational research has favored the development and rigorous testing of interventions designed to improve student outcomes. However, recent reviews suggest that a large fraction of the programs developed and rigorously tested in the past decade have shown null results on student outcomes…

  20. Underprepared Students' Performance on Algebra in a Double-Period High School Mathematics Program

    ERIC Educational Resources Information Center

    Martinez, Mara V.; Bragelman, John; Stoelinga, Timothy

    2016-01-01

    The primary goal of the Intensified Algebra I (IA) program is to enable mathematically underprepared students to successfully complete Algebra I in 9th grade and stay on track to meet increasingly rigorous high school mathematics graduation requirements. The program was designed to bring a range of both cognitive and non-cognitive supports to bear…

  1. Investigation of possible observable e ects in a proposed theory of physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freidan, Daniel

    2015-03-31

    The work supported by this grant produced rigorous mathematical results on what is possible in quantum field theory. Quantum field theory is the well-established mathematical language for fundamental particle physics, for critical phenomena in condensed matter physics, and for Physical Mathematics (the numerous branches of Mathematics that have benefitted from ideas, constructions, and conjectures imported from Theoretical Physics). Proving rigorous constraints on what is possible in quantum field theories thus guides the field, puts actual constraints on what is physically possible in physical or mathematical systems described by quantum field theories, and saves the community the effort of trying tomore » do what is proved impossible. Results were obtained in two dimensional qft (describing, e.g., quantum circuits) and in higher dimensional qft. Rigorous bounds were derived on basic quantities in 2d conformal field theories, i.e., in 2d critical phenomena. Conformal field theories are the basic objects in quantum field theory, the scale invariant theories describing renormalization group fixed points from which all qfts flow. The first known lower bounds on the 2d boundary entropy were found. This is the entropy- information content- in junctions in critical quantum circuits. For dimensions d > 2, a no-go theorem was proved on the possibilities of Cauchy fields, which are the analogs of the holomorphic fields in d = 2 dimensions, which have had enormously useful applications in Physics and Mathematics over the last four decades. This closed o the possibility of finding analogously rich theories in dimensions above 2. The work of two postdoctoral research fellows was partially supported by this grant. Both have gone on to tenure track positions.« less

  2. Developmental engineering: a new paradigm for the design and manufacturing of cell-based products. Part II: from genes to networks: tissue engineering from the viewpoint of systems biology and network science.

    PubMed

    Lenas, Petros; Moos, Malcolm; Luyten, Frank P

    2009-12-01

    The field of tissue engineering is moving toward a new concept of "in vitro biomimetics of in vivo tissue development." In Part I of this series, we proposed a theoretical framework integrating the concepts of developmental biology with those of process design to provide the rules for the design of biomimetic processes. We named this methodology "developmental engineering" to emphasize that it is not the tissue but the process of in vitro tissue development that has to be engineered. To formulate the process design rules in a rigorous way that will allow a computational design, we should refer to mathematical methods to model the biological process taking place in vitro. Tissue functions cannot be attributed to individual molecules but rather to complex interactions between the numerous components of a cell and interactions between cells in a tissue that form a network. For tissue engineering to advance to the level of a technologically driven discipline amenable to well-established principles of process engineering, a scientifically rigorous formulation is needed of the general design rules so that the behavior of networks of genes, proteins, or cells that govern the unfolding of developmental processes could be related to the design parameters. Now that sufficient experimental data exist to construct plausible mathematical models of many biological control circuits, explicit hypotheses can be evaluated using computational approaches to facilitate process design. Recent progress in systems biology has shown that the empirical concepts of developmental biology that we used in Part I to extract the rules of biomimetic process design can be expressed in rigorous mathematical terms. This allows the accurate characterization of manufacturing processes in tissue engineering as well as the properties of the artificial tissues themselves. In addition, network science has recently shown that the behavior of biological networks strongly depends on their topology and has developed the necessary concepts and methods to describe it, allowing therefore a deeper understanding of the behavior of networks during biomimetic processes. These advances thus open the door to a transition for tissue engineering from a substantially empirical endeavor to a technology-based discipline comparable to other branches of engineering.

  3. Multiscale Simulation of Microbe Structure and Dynamics

    PubMed Central

    Joshi, Harshad; Singharoy, Abhishek; Sereda, Yuriy V.; Cheluvaraja, Srinath C.; Ortoleva, Peter J.

    2012-01-01

    A multiscale mathematical and computational approach is developed that captures the hierarchical organization of a microbe. It is found that a natural perspective for understanding a microbe is in terms of a hierarchy of variables at various levels of resolution. This hierarchy starts with the N -atom description and terminates with order parameters characterizing a whole microbe. This conceptual framework is used to guide the analysis of the Liouville equation for the probability density of the positions and momenta of the N atoms constituting the microbe and its environment. Using multiscale mathematical techniques, we derive equations for the co-evolution of the order parameters and the probability density of the N-atom state. This approach yields a rigorous way to transfer information between variables on different space-time scales. It elucidates the interplay between equilibrium and far-from-equilibrium processes underlying microbial behavior. It also provides framework for using coarse-grained nanocharacterization data to guide microbial simulation. It enables a methodical search for free-energy minimizing structures, many of which are typically supported by the set of macromolecules and membranes constituting a given microbe. This suite of capabilities provides a natural framework for arriving at a fundamental understanding of microbial behavior, the analysis of nanocharacterization data, and the computer-aided design of nanostructures for biotechnical and medical purposes. Selected features of the methodology are demonstrated using our multiscale bionanosystem simulator DeductiveMultiscaleSimulator. Systems used to demonstrate the approach are structural transitions in the cowpea chlorotic mosaic virus, RNA of satellite tobacco mosaic virus, virus-like particles related to human papillomavirus, and iron-binding protein lactoferrin. PMID:21802438

  4. Progress in Modeling Nonlinear Dendritic Evolution in Two and Three Dimensions, and Its Mathematical Justification

    NASA Technical Reports Server (NTRS)

    Tanveer, S.; Foster, M. R.

    2002-01-01

    We report progress in three areas of investigation related to dendritic crystal growth. Those items include: 1. Selection of tip features dendritic crystal growth; 2) Investigation of nonlinear evolution for two-sided model; and 3) Rigorous mathematical justification.

  5. Theory of the Decoherence Effect in Finite and Infinite Open Quantum Systems Using the Algebraic Approach

    NASA Astrophysics Data System (ADS)

    Blanchard, Philippe; Hellmich, Mario; Ługiewicz, Piotr; Olkiewicz, Robert

    Quantum mechanics is the greatest revision of our conception of the character of the physical world since Newton. Consequently, David Hilbert was very interested in quantum mechanics. He and John von Neumann discussed it frequently during von Neumann's residence in Göttingen. He published in 1932 his book Mathematical Foundations of Quantum Mechanics. In Hilbert's opinion it was the first exposition of quantum mechanics in a mathematically rigorous way. The pioneers of quantum mechanics, Heisenberg and Dirac, neither had use for rigorous mathematics nor much interest in it. Conceptually, quantum theory as developed by Bohr and Heisenberg is based on the positivism of Mach as it describes only observable quantities. It first emerged as a result of experimental data in the form of statistical observations of quantum noise, the basic concept of quantum probability.

  6. Towards a rigorous mesoscale modeling of reactive flow and transport in an evolving porous medium and its applications to soil science

    NASA Astrophysics Data System (ADS)

    Ray, Nadja; Rupp, Andreas; Knabner, Peter

    2016-04-01

    Soil is arguably the most prominent example of a natural porous medium that is composed of a porous matrix and a pore space. Within this framework and in terms of soil's heterogeneity, we first consider transport and fluid flow at the pore scale. From there, we develop a mechanistic model and upscale it mathematically to transfer our model from the small scale to that of the mesoscale (laboratory scale). The mathematical framework of (periodic) homogenization (in principal) rigorously facilitates such processes by exactly computing the effective coefficients/parameters by means of the pore geometry and processes. In our model, various small-scale soil processes may be taken into account: molecular diffusion, convection, drift emerging from electric forces, and homogeneous reactions of chemical species in a solvent. Additionally, our model may consider heterogeneous reactions at the porous matrix, thus altering both the porosity and the matrix. Moreover, our model may additionally address biophysical processes, such as the growth of biofilms and how this affects the shape of the pore space. Both of the latter processes result in an intrinsically variable soil structure in space and time. Upscaling such models under the assumption of a locally periodic setting must be performed meticulously to preserve information regarding the complex coupling of processes in the evolving heterogeneous medium. Generally, a micro-macro model emerges that is then comprised of several levels of couplings: Macroscopic equations that describe the transport and fluid flow at the scale of the porous medium (mesoscale) include averaged time- and space-dependent coefficient functions. These functions may be explicitly computed by means of auxiliary cell problems (microscale). Finally, the pore space in which the cell problems are defined is time- and space dependent and its geometry inherits information from the transport equation's solutions. Numerical computations using mixed finite elements and potentially random initial data, e.g. that of porosity, complement our theoretical results. Our investigations contribute to the theoretical understanding of the link between soil formation and soil functions. This general framework may be applied to various problems in soil science for a range of scales, such as the formation and turnover of microaggregates or soil remediation.

  7. Safety Verification of the Small Aircraft Transportation System Concept of Operations

    NASA Technical Reports Server (NTRS)

    Carreno, Victor; Munoz, Cesar

    2005-01-01

    A critical factor in the adoption of any new aeronautical technology or concept of operation is safety. Traditionally, safety is accomplished through a rigorous process that involves human factors, low and high fidelity simulations, and flight experiments. As this process is usually performed on final products or functional prototypes, concept modifications resulting from this process are very expensive to implement. This paper describe an approach to system safety that can take place at early stages of a concept design. It is based on a set of mathematical techniques and tools known as formal methods. In contrast to testing and simulation, formal methods provide the capability of exhaustive state exploration analysis. We present the safety analysis and verification performed for the Small Aircraft Transportation System (SATS) Concept of Operations (ConOps). The concept of operations is modeled using discrete and hybrid mathematical models. These models are then analyzed using formal methods. The objective of the analysis is to show, in a mathematical framework, that the concept of operation complies with a set of safety requirements. It is also shown that the ConOps has some desirable characteristic such as liveness and absence of dead-lock. The analysis and verification is performed in the Prototype Verification System (PVS), which is a computer based specification language and a theorem proving assistant.

  8. Robustness of movement models: can models bridge the gap between temporal scales of data sets and behavioural processes?

    PubMed

    Schlägel, Ulrike E; Lewis, Mark A

    2016-12-01

    Discrete-time random walks and their extensions are common tools for analyzing animal movement data. In these analyses, resolution of temporal discretization is a critical feature. Ideally, a model both mirrors the relevant temporal scale of the biological process of interest and matches the data sampling rate. Challenges arise when resolution of data is too coarse due to technological constraints, or when we wish to extrapolate results or compare results obtained from data with different resolutions. Drawing loosely on the concept of robustness in statistics, we propose a rigorous mathematical framework for studying movement models' robustness against changes in temporal resolution. In this framework, we define varying levels of robustness as formal model properties, focusing on random walk models with spatially-explicit component. With the new framework, we can investigate whether models can validly be applied to data across varying temporal resolutions and how we can account for these different resolutions in statistical inference results. We apply the new framework to movement-based resource selection models, demonstrating both analytical and numerical calculations, as well as a Monte Carlo simulation approach. While exact robustness is rare, the concept of approximate robustness provides a promising new direction for analyzing movement models.

  9. Mathematical analysis of the boundary-integral based electrostatics estimation approximation for molecular solvation: exact results for spherical inclusions.

    PubMed

    Bardhan, Jaydeep P; Knepley, Matthew G

    2011-09-28

    We analyze the mathematically rigorous BIBEE (boundary-integral based electrostatics estimation) approximation of the mixed-dielectric continuum model of molecular electrostatics, using the analytically solvable case of a spherical solute containing an arbitrary charge distribution. Our analysis, which builds on Kirkwood's solution using spherical harmonics, clarifies important aspects of the approximation and its relationship to generalized Born models. First, our results suggest a new perspective for analyzing fast electrostatic models: the separation of variables between material properties (the dielectric constants) and geometry (the solute dielectric boundary and charge distribution). Second, we find that the eigenfunctions of the reaction-potential operator are exactly preserved in the BIBEE model for the sphere, which supports the use of this approximation for analyzing charge-charge interactions in molecular binding. Third, a comparison of BIBEE to the recent GBε theory suggests a modified BIBEE model capable of predicting electrostatic solvation free energies to within 4% of a full numerical Poisson calculation. This modified model leads to a projection-framework understanding of BIBEE and suggests opportunities for future improvements. © 2011 American Institute of Physics

  10. The need for data science in epidemic modelling. Comment on: "Mathematical models to characterize early epidemic growth: A review" by Gerardo Chowell et al.

    NASA Astrophysics Data System (ADS)

    Danon, Leon; Brooks-Pollock, Ellen

    2016-09-01

    In their review, Chowell et al. consider the ability of mathematical models to predict early epidemic growth [1]. In particular, they question the central prediction of classical differential equation models that the number of cases grows exponentially during the early stages of an epidemic. Using examples including HIV and Ebola, they argue that classical models fail to capture key qualitative features of early growth and describe a selection of models that do capture non-exponential epidemic growth. An implication of this failure is that predictions may be inaccurate and unusable, highlighting the need for care when embarking upon modelling using classical methodology. There remains a lack of understanding of the mechanisms driving many observed epidemic patterns; we argue that data science should form a fundamental component of epidemic modelling, providing a rigorous methodology for data-driven approaches, rather than trying to enforce established frameworks. The need for refinement of classical models provides a strong argument for the use of data science, to identify qualitative characteristics and pinpoint the mechanisms responsible for the observed epidemic patterns.

  11. Structure, function, and behaviour of computational models in systems biology

    PubMed Central

    2013-01-01

    Background Systems Biology develops computational models in order to understand biological phenomena. The increasing number and complexity of such “bio-models” necessitate computer support for the overall modelling task. Computer-aided modelling has to be based on a formal semantic description of bio-models. But, even if computational bio-models themselves are represented precisely in terms of mathematical expressions their full meaning is not yet formally specified and only described in natural language. Results We present a conceptual framework – the meaning facets – which can be used to rigorously specify the semantics of bio-models. A bio-model has a dual interpretation: On the one hand it is a mathematical expression which can be used in computational simulations (intrinsic meaning). On the other hand the model is related to the biological reality (extrinsic meaning). We show that in both cases this interpretation should be performed from three perspectives: the meaning of the model’s components (structure), the meaning of the model’s intended use (function), and the meaning of the model’s dynamics (behaviour). In order to demonstrate the strengths of the meaning facets framework we apply it to two semantically related models of the cell cycle. Thereby, we make use of existing approaches for computer representation of bio-models as much as possible and sketch the missing pieces. Conclusions The meaning facets framework provides a systematic in-depth approach to the semantics of bio-models. It can serve two important purposes: First, it specifies and structures the information which biologists have to take into account if they build, use and exchange models. Secondly, because it can be formalised, the framework is a solid foundation for any sort of computer support in bio-modelling. The proposed conceptual framework establishes a new methodology for modelling in Systems Biology and constitutes a basis for computer-aided collaborative research. PMID:23721297

  12. An advanced kinetic theory for morphing continuum with inner structures

    NASA Astrophysics Data System (ADS)

    Chen, James

    2017-12-01

    Advanced kinetic theory with the Boltzmann-Curtiss equation provides a promising tool for polyatomic gas flows, especially for fluid flows containing inner structures, such as turbulence, polyatomic gas flows and others. Although a Hamiltonian-based distribution function was proposed for diatomic gas flow, a general distribution function for the generalized Boltzmann-Curtiss equations and polyatomic gas flow is still out of reach. With assistance from Boltzmann's entropy principle, a generalized Boltzmann-Curtiss distribution for polyatomic gas flow is introduced. The corresponding governing equations at equilibrium state are derived and compared with Eringen's morphing (micropolar) continuum theory derived under the framework of rational continuum thermomechanics. Although rational continuum thermomechanics has the advantages of mathematical rigor and simplicity, the presented statistical kinetic theory approach provides a clear physical picture for what the governing equations represent.

  13. Autonomous propulsion of nanorods trapped in an acoustic field

    NASA Astrophysics Data System (ADS)

    Sader, John; Collis, Jesse; Chakraborty, Debadi

    2017-11-01

    Recent measurements demonstrate that nanorods trapped in acoustic fields generate autonomous propulsion, with their direction and speed controlled by both the particle's shape and density distribution. In this talk, we investigate the physical mechanisms underlying this combined density/shape induced phenomenon by developing a simple yet rigorous mathematical framework for arbitrary axisymmetric particles. This only requires solution of the (linear) unsteady Stokes equations. Geometric and density asymmetries in the particle generate axial jets that can produce motion in either direction. Strikingly, the propulsion direction is found to reverse with increasing frequency, an effect that is yet to be reported experimentally. The general theory and mechanism described here enable the a priori design and fabrication of nano-motors in fluid for transport of small-scale payloads and robotic applications.

  14. Seismic waves in a self-gravitating planet

    NASA Astrophysics Data System (ADS)

    Brazda, Katharina; de Hoop, Maarten V.; Hörmann, Günther

    2013-04-01

    The elastic-gravitational equations describe the propagation of seismic waves including the effect of self-gravitation. We rigorously derive and analyze this system of partial differential equations and boundary conditions for a general, uniformly rotating, elastic, but aspherical, inhomogeneous, and anisotropic, fluid-solid earth model, under minimal assumptions concerning the smoothness of material parameters and geometry. For this purpose we first establish a consistent mathematical formulation of the low regularity planetary model within the framework of nonlinear continuum mechanics. Using calculus of variations in a Sobolev space setting, we then show how the weak form of the linearized elastic-gravitational equations directly arises from Hamilton's principle of stationary action. Finally we prove existence and uniqueness of weak solutions by the method of energy estimates and discuss additional regularity properties.

  15. The Menu for Every Young Mathematician's Appetite

    ERIC Educational Resources Information Center

    Legnard, Danielle S.; Austin, Susan L.

    2012-01-01

    Math Workshop offers differentiated instruction to foster a deep understanding of rich, rigorous mathematics that is attainable by all learners. The inquiry-based model provides a menu of multilevel math tasks, within the daily math block, that focus on similar mathematical content. Math Workshop promotes a culture of engagement and…

  16. Math Interventions for Students with Autism Spectrum Disorder: A Best-Evidence Synthesis

    ERIC Educational Resources Information Center

    King, Seth A.; Lemons, Christopher J.; Davidson, Kimberly A.

    2016-01-01

    Educators need evidence-based practices to assist students with disabilities in meeting increasingly rigorous standards in mathematics. Students with autism spectrum disorder (ASD) are increasingly expected to demonstrate learning of basic and advanced mathematical concepts. This review identifies math intervention studies involving children and…

  17. Control Engineering, System Theory and Mathematics: The Teacher's Challenge

    ERIC Educational Resources Information Center

    Zenger, K.

    2007-01-01

    The principles, difficulties and challenges in control education are discussed and compared to the similar problems in the teaching of mathematics and systems science in general. The difficulties of today's students to appreciate the classical teaching of engineering disciplines, which are based on rigorous and scientifically sound grounds, are…

  18. A Qualitative Approach to Enzyme Inhibition

    ERIC Educational Resources Information Center

    Waldrop, Grover L.

    2009-01-01

    Most general biochemistry textbooks present enzyme inhibition by showing how the basic Michaelis-Menten parameters K[subscript m] and V[subscript max] are affected mathematically by a particular type of inhibitor. This approach, while mathematically rigorous, does not lend itself to understanding how inhibition patterns are used to determine the…

  19. Cookies and Pi

    ERIC Educational Resources Information Center

    Dempsey, Michael

    2009-01-01

    If students are in an advanced mathematics class, then at some point they enjoyed mathematics and looked forward to learning and practicing it. There is no reason that this passion and enjoyment should ever be lost because the subject becomes more difficult or rigorous. This author, who teaches advanced precalculus to high school juniors,…

  20. Handbook of applied mathematics for engineers and scientists

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurtz, M.

    1991-12-31

    This book is intended to be reference for applications of mathematics in a wide range of topics of interest to engineers and scientists. An unusual feature of this book is that it covers a large number of topics from elementary algebra, trigonometry, and calculus to computer graphics and cybernetics. The level of mathematics covers high school through about the junior level of an engineering curriculum in a major univeristy. Throughout, the emphasis is on applications of mathematics rather than on rigorous proofs.

  1. Mathematical description of drug-target interactions: application to biologics that bind to targets with two binding sites.

    PubMed

    Gibiansky, Leonid; Gibiansky, Ekaterina

    2018-02-01

    The emerging discipline of mathematical pharmacology occupies the space between advanced pharmacometrics and systems biology. A characteristic feature of the approach is application of advance mathematical methods to study the behavior of biological systems as described by mathematical (most often differential) equations. One of the early application of mathematical pharmacology (that was not called this name at the time) was formulation and investigation of the target-mediated drug disposition (TMDD) model and its approximations. The model was shown to be remarkably successful, not only in describing the observed data for drug-target interactions, but also in advancing the qualitative and quantitative understanding of those interactions and their role in pharmacokinetic and pharmacodynamic properties of biologics. The TMDD model in its original formulation describes the interaction of the drug that has one binding site with the target that also has only one binding site. Following the framework developed earlier for drugs with one-to-one binding, this work aims to describe a rigorous approach for working with similar systems and to apply it to drugs that bind to targets with two binding sites. The quasi-steady-state, quasi-equilibrium, irreversible binding, and Michaelis-Menten approximations of the model are also derived. These equations can be used, in particular, to predict concentrations of the partially bound target (RC). This could be clinically important if RC remains active and has slow internalization rate. In this case, introduction of the drug aimed to suppress target activity may lead to the opposite effect due to RC accumulation.

  2. Student’s rigorous mathematical thinking based on cognitive style

    NASA Astrophysics Data System (ADS)

    Fitriyani, H.; Khasanah, U.

    2017-12-01

    The purpose of this research was to determine the rigorous mathematical thinking (RMT) of mathematics education students in solving math problems in terms of reflective and impulsive cognitive styles. The research used descriptive qualitative approach. Subjects in this research were 4 students of the reflective and impulsive cognitive style which was each consisting male and female subjects. Data collection techniques used problem-solving test and interview. Analysis of research data used Miles and Huberman model that was reduction of data, presentation of data, and conclusion. The results showed that impulsive male subjects used three levels of the cognitive function required for RMT that were qualitative thinking, quantitative thinking with precision, and relational thinking completely while the other three subjects were only able to use cognitive function at qualitative thinking level of RMT. Therefore the subject of impulsive male has a better RMT ability than the other three research subjects.

  3. A Categorization Model for Educational Values of the History of Mathematics. An Empirical Study

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-qin; Qi, Chun-yan; Wang, Ke

    2017-11-01

    There is not a clear consensus on the categorization framework of the educational values of the history of mathematics. By analyzing 20 Chinese teaching cases on integrating the history of mathematics into mathematics teaching based on the relevant literature, this study examined a new categorization framework of the educational values of the history of mathematics by combining the objectives of high school mathematics curriculum in China. This framework includes six dimensions: the harmony of knowledge, the beauty of ideas or methods, the pleasure of inquiries, the improvement of capabilities, the charm of cultures, and the availability of moral education. The results show that this framework better explained the all-educational values of the history of mathematics that all teaching cases showed. Therefore, the framework can guide teachers to better integrate the history of mathematics into teaching.

  4. Improving students’ mathematical critical thinking through rigorous teaching and learning model with informal argument

    NASA Astrophysics Data System (ADS)

    Hamid, H.

    2018-01-01

    The purpose of this study is to analyze an improvement of students’ mathematical critical thinking (CT) ability in Real Analysis course by using Rigorous Teaching and Learning (RTL) model with informal argument. In addition, this research also attempted to understand students’ CT on their initial mathematical ability (IMA). This study was conducted at a private university in academic year 2015/2016. The study employed the quasi-experimental method with pretest-posttest control group design. The participants of the study were 83 students in which 43 students were in the experimental group and 40 students were in the control group. The finding of the study showed that students in experimental group outperformed students in control group on mathematical CT ability based on their IMA (high, medium, low) in learning Real Analysis. In addition, based on medium IMA the improvement of mathematical CT ability of students who were exposed to RTL model with informal argument was greater than that of students who were exposed to CI (conventional instruction). There was also no effect of interaction between RTL model and CI model with both (high, medium, and low) IMA increased mathematical CT ability. Finally, based on (high, medium, and low) IMA there was a significant improvement in the achievement of all indicators of mathematical CT ability of students who were exposed to RTL model with informal argument than that of students who were exposed to CI.

  5. From virtual clustering analysis to self-consistent clustering analysis: a mathematical study

    NASA Astrophysics Data System (ADS)

    Tang, Shaoqiang; Zhang, Lei; Liu, Wing Kam

    2018-03-01

    In this paper, we propose a new homogenization algorithm, virtual clustering analysis (VCA), as well as provide a mathematical framework for the recently proposed self-consistent clustering analysis (SCA) (Liu et al. in Comput Methods Appl Mech Eng 306:319-341, 2016). In the mathematical theory, we clarify the key assumptions and ideas of VCA and SCA, and derive the continuous and discrete Lippmann-Schwinger equations. Based on a key postulation of "once response similarly, always response similarly", clustering is performed in an offline stage by machine learning techniques (k-means and SOM), and facilitates substantial reduction of computational complexity in an online predictive stage. The clear mathematical setup allows for the first time a convergence study of clustering refinement in one space dimension. Convergence is proved rigorously, and found to be of second order from numerical investigations. Furthermore, we propose to suitably enlarge the domain in VCA, such that the boundary terms may be neglected in the Lippmann-Schwinger equation, by virtue of the Saint-Venant's principle. In contrast, they were not obtained in the original SCA paper, and we discover these terms may well be responsible for the numerical dependency on the choice of reference material property. Since VCA enhances the accuracy by overcoming the modeling error, and reduce the numerical cost by avoiding an outer loop iteration for attaining the material property consistency in SCA, its efficiency is expected even higher than the recently proposed SCA algorithm.

  6. Multiplicative Multitask Feature Learning

    PubMed Central

    Wang, Xin; Bi, Jinbo; Yu, Shipeng; Sun, Jiangwen; Song, Minghu

    2016-01-01

    We investigate a general framework of multiplicative multitask feature learning which decomposes individual task’s model parameters into a multiplication of two components. One of the components is used across all tasks and the other component is task-specific. Several previous methods can be proved to be special cases of our framework. We study the theoretical properties of this framework when different regularization conditions are applied to the two decomposed components. We prove that this framework is mathematically equivalent to the widely used multitask feature learning methods that are based on a joint regularization of all model parameters, but with a more general form of regularizers. Further, an analytical formula is derived for the across-task component as related to the task-specific component for all these regularizers, leading to a better understanding of the shrinkage effects of different regularizers. Study of this framework motivates new multitask learning algorithms. We propose two new learning formulations by varying the parameters in the proposed framework. An efficient blockwise coordinate descent algorithm is developed suitable for solving the entire family of formulations with rigorous convergence analysis. Simulation studies have identified the statistical properties of data that would be in favor of the new formulations. Extensive empirical studies on various classification and regression benchmark data sets have revealed the relative advantages of the two new formulations by comparing with the state of the art, which provides instructive insights into the feature learning problem with multiple tasks. PMID:28428735

  7. ¡Enséname! Teaching Each Other to Reason through Math in the Second Grade

    ERIC Educational Resources Information Center

    Schmitz, Lindsey

    2016-01-01

    This action research sought to evaluate the effect of peer teaching structures across subgroups of students differentiated by language and mathematical skill ability. These structures were implemented in an effort to maintain mathematical rigor while building my students' academic language capacity. More specifically, the study investigated peer…

  8. Transforming the Undergraduate Research Experience through Sustained Mentoring: Creating a Strong Support Network and a Collaborative Learning Environment

    ERIC Educational Resources Information Center

    Camacho, Erika T.; Holmes, Raquell M.; Wirkus, Stephen A.

    2015-01-01

    This chapter describes how sustained mentoring together with rigorous collaborative learning and community building contributed to successful mathematical research and individual growth in the Applied Mathematical Sciences Summer Institute (AMSSI), a program that focused on women, underrepresented minorities, and individuals from small teaching…

  9. Water Bottle Designs and Measures

    ERIC Educational Resources Information Center

    Carmody, Heather Gramberg

    2010-01-01

    The increase in the diversity of students and the complexity of their needs can be a rich addition to a mathematics classroom. The challenge for teachers is to find a way to include students' interests and creativity in a way that allows for rigorous mathematics. One method of incorporating the diversity is the development of "open-ended…

  10. Time-ordered exponential on the complex plane and Gell-Mann—Low formula as a mathematical theorem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Futakuchi, Shinichiro; Usui, Kouta

    2016-04-15

    The time-ordered exponential representation of a complex time evolution operator in the interaction picture is studied. Using the complex time evolution, we prove the Gell-Mann—Low formula under certain abstract conditions, in mathematically rigorous manner. We apply the abstract results to quantum electrodynamics with cutoffs.

  11. Science and Mathematics Advanced Placement Exams: Growth and Achievement over Time

    ERIC Educational Resources Information Center

    Judson, Eugene

    2017-01-01

    Rapid growth of Advanced Placement (AP) exams in the last 2 decades has been paralleled by national enthusiasm to promote availability and rigor of science, technology, engineering, and mathematics (STEM). Trends were examined in STEM AP to evaluate and compare growth and achievement. Analysis included individual STEM subjects and disaggregation…

  12. A Framework for Examining Teachers' Noticing of Mathematical Cognitive Technologies

    ERIC Educational Resources Information Center

    Smith, Ryan; Shin, Dongjo; Kim, Somin

    2017-01-01

    In this paper, we propose the mathematical cognitive technology noticing framework for examining how mathematics teachers evaluate, select, and modify mathematical cognitive technology to use in their classrooms. Our framework is based on studies of professional and curricular noticing and data collected in a study that explored how secondary…

  13. Methodological Developments in Geophysical Assimilation Modeling

    NASA Astrophysics Data System (ADS)

    Christakos, George

    2005-06-01

    This work presents recent methodological developments in geophysical assimilation research. We revisit the meaning of the term "solution" of a mathematical model representing a geophysical system, and we examine its operational formulations. We argue that an assimilation solution based on epistemic cognition (which assumes that the model describes incomplete knowledge about nature and focuses on conceptual mechanisms of scientific thinking) could lead to more realistic representations of the geophysical situation than a conventional ontologic assimilation solution (which assumes that the model describes nature as is and focuses on form manipulations). Conceptually, the two approaches are fundamentally different. Unlike the reasoning structure of conventional assimilation modeling that is based mainly on ad hoc technical schemes, the epistemic cognition approach is based on teleologic criteria and stochastic adaptation principles. In this way some key ideas are introduced that could open new areas of geophysical assimilation to detailed understanding in an integrated manner. A knowledge synthesis framework can provide the rational means for assimilating a variety of knowledge bases (general and site specific) that are relevant to the geophysical system of interest. Epistemic cognition-based assimilation techniques can produce a realistic representation of the geophysical system, provide a rigorous assessment of the uncertainty sources, and generate informative predictions across space-time. The mathematics of epistemic assimilation involves a powerful and versatile spatiotemporal random field theory that imposes no restriction on the shape of the probability distributions or the form of the predictors (non-Gaussian distributions, multiple-point statistics, and nonlinear models are automatically incorporated) and accounts rigorously for the uncertainty features of the geophysical system. In the epistemic cognition context the assimilation concept may be used to investigate critical issues related to knowledge reliability, such as uncertainty due to model structure error (conceptual uncertainty).

  14. Definition and solution of a stochastic inverse problem for the Manning's n parameter field in hydrodynamic models.

    PubMed

    Butler, T; Graham, L; Estep, D; Dawson, C; Westerink, J J

    2015-04-01

    The uncertainty in spatially heterogeneous Manning's n fields is quantified using a novel formulation and numerical solution of stochastic inverse problems for physics-based models. The uncertainty is quantified in terms of a probability measure and the physics-based model considered here is the state-of-the-art ADCIRC model although the presented methodology applies to other hydrodynamic models. An accessible overview of the formulation and solution of the stochastic inverse problem in a mathematically rigorous framework based on measure theory is presented. Technical details that arise in practice by applying the framework to determine the Manning's n parameter field in a shallow water equation model used for coastal hydrodynamics are presented and an efficient computational algorithm and open source software package are developed. A new notion of "condition" for the stochastic inverse problem is defined and analyzed as it relates to the computation of probabilities. This notion of condition is investigated to determine effective output quantities of interest of maximum water elevations to use for the inverse problem for the Manning's n parameter and the effect on model predictions is analyzed.

  15. Definition and solution of a stochastic inverse problem for the Manning's n parameter field in hydrodynamic models

    NASA Astrophysics Data System (ADS)

    Butler, T.; Graham, L.; Estep, D.; Dawson, C.; Westerink, J. J.

    2015-04-01

    The uncertainty in spatially heterogeneous Manning's n fields is quantified using a novel formulation and numerical solution of stochastic inverse problems for physics-based models. The uncertainty is quantified in terms of a probability measure and the physics-based model considered here is the state-of-the-art ADCIRC model although the presented methodology applies to other hydrodynamic models. An accessible overview of the formulation and solution of the stochastic inverse problem in a mathematically rigorous framework based on measure theory is presented. Technical details that arise in practice by applying the framework to determine the Manning's n parameter field in a shallow water equation model used for coastal hydrodynamics are presented and an efficient computational algorithm and open source software package are developed. A new notion of "condition" for the stochastic inverse problem is defined and analyzed as it relates to the computation of probabilities. This notion of condition is investigated to determine effective output quantities of interest of maximum water elevations to use for the inverse problem for the Manning's n parameter and the effect on model predictions is analyzed.

  16. Measuring the Mathematical Quality of Instruction

    ERIC Educational Resources Information Center

    Journal of Mathematics Teacher Education, 2011

    2011-01-01

    In this article, we describe a framework and instrument for measuring the mathematical quality of mathematics instruction. In describing this framework, we argue for the separation of the "mathematical quality of instruction" (MQI), such as the absence of mathematical errors and the presence of sound mathematical reasoning, from pedagogical…

  17. MAESTRO: Mathematics and Earth Science Teachers' Resource Organization

    NASA Astrophysics Data System (ADS)

    Courtier, A. M.; Pyle, E. J.; Fichter, L.; Lucas, S.; Jackson, A.

    2013-12-01

    The Mathematics and Earth Science Teachers' Resource Organization (MAESTRO) partnership between James Madison University and Harrisonburg City and Page County Public Schools, funded through NSF-GEO. The partnership aims to transform mathematics and Earth science instruction in middle and high schools by developing an integrated mathematics and Earth systems science approach to instruction. This curricular integration is intended to enhance the mathematical skills and confidence of students through concrete, Earth systems-based examples, while increasing the relevance and rigor of Earth science instruction via quantification and mathematical modeling of Earth system phenomena. MAESTRO draws heavily from the Earth Science Literacy Initiative (2009) and is informed by criterion-level standardized test performance data in both mathematics and Earth science. The project has involved two summer professional development workshops, academic year Lesson Study (structured teacher observation and reflection), and will incorporate site-based case studies with direct student involvement. Participating teachers include Grade 6 Science and Mathematics teachers, and Grade 9 Earth Science and Algebra teachers. It is anticipated that the proposed integration across grade bands will first strengthen students' interests in mathematics and science (a problem in middle school) and subsequently reinforce the relevance of mathematics and other sciences (a problem in high school), both in support of Earth systems literacy. MAESTRO's approach to the integration of math and science focuses on using box models to emphasize the interconnections among the geo-, atmo-, bio-, and hydrospheres, and demonstrates the positive and negative feedback processes that connect their mutual evolution. Within this framework we explore specific relationships that can be described both qualitatively and mathematically, using mathematical operations appropriate for each grade level. Site-based case studies, developed in collaboration between teachers and JMU faculty members, provide a tangible, relevant setting in which students can apply and understand mathematical applications and scientific processes related to evolving Earth systems. Initial results from student questionnaires and teacher focus groups suggest that the anticipated impacts of MAESTRO on students are being realized, including increased valuing of mathematics and Earth science in society and transfer between mathematics and science courses. As a high percentage of students in the MAESTRO schools are of low socio-economic status, they also face the prospect of becoming first-generation college students, hopefully considering STEM academic pathways. MAESTRO will drive the development of challenging and engaging instruction designed to draw a larger pool of students into STEM career pathways.

  18. Fish-Eye Observing with Phased Array Radio Telescopes

    NASA Astrophysics Data System (ADS)

    Wijnholds, S. J.

    The radio astronomical community is currently developing and building several new radio telescopes based on phased array technology. These telescopes provide a large field-of-view, that may in principle span a full hemisphere. This makes calibration and imaging very challenging tasks due to the complex source structures and direction dependent radio wave propagation effects. In this thesis, calibration and imaging methods are developed based on least squares estimation of instrument and source parameters. Monte Carlo simulations and actual observations with several prototype show that this model based approach provides statistically and computationally efficient solutions. The error analysis provides a rigorous mathematical framework to assess the imaging performance of current and future radio telescopes in terms of the effective noise, which is the combined effect of propagated calibration errors, noise in the data and source confusion.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oryu, S.; Nishinohara, S.; Sonoda, K.

    The three-charged-particle Faddeev-type equations for a full potential system are presented in momentum space. The potential is composed of a short range two-body, nuclear potential and a three-body-force potential plus the long range Coulomb potential. A novel framework is proposed for this purpose which contains two innovations aimed at realizing a breakthrough for the notoriously troublesome long range behavior of charged particle systems and tedious Coulomb prescriptions in momentum space calculations. One involves introduction of a Coulomb boundary condition and the other is a new definition of the Coulomb amplitude using two-potential theory for VC = VR + V{phi} withmore » respect to a screened Coulomb potential VR and the remainder V{phi} = VC - VR. Some important equations, which are underlined in our approach, are mathematically proved. The formulation is not only rigorous but also useful for numerical calculations.« less

  20. A Rigorous Statistical Framework for the Mathematics of Sensing, Exploitation and Execution

    DTIC Science & Technology

    2015-05-01

    sports  activities,  including  bike  riding,  disc  golf , baseball, and parkour.  More  detail  about  the  activities  in  this  SOC  may  be  found  in...detect” o swinging  – [the UCLA SUT] “needs accurate 3D arm motion, also [the predicate is] ambiguous.” o occluding  –  “Ambiguous  definition  and...10 touching  2  1 1   4 catching  2  1 1  4 swinging     1  1 occluding  2  1   3 donning  1  2 3*   6 doffing  2  1 4*   7 facing(automobile)    1   1

  1. Survey of Intermediate Microeconomic Textbooks.

    ERIC Educational Resources Information Center

    Goulet, Janet C.

    1986-01-01

    Surveys nine undergraduate microeconomic theory textbooks comprising a representing sample those available. Criteria used were quantity and quality of examples, mathematical rigor, and level of abstraction. (JDH)

  2. A Tool for Rethinking Teachers' Questioning

    ERIC Educational Resources Information Center

    Simpson, Amber; Mokalled, Stefani; Ellenburg, Lou Ann; Che, S. Megan

    2014-01-01

    In this article, the authors present a tool, the Cognitive Rigor Matrix (CRM; Hess et al. 2009), as a means to analyze and reflect on the type of questions posed by mathematics teachers. This tool is intended to promote and develop higher-order thinking and inquiry through the use of purposeful questions and mathematical tasks. The authors…

  3. Oakland and San Francisco Create Course Pathways through Common Core Mathematics. White Paper

    ERIC Educational Resources Information Center

    Daro, Phil

    2014-01-01

    The Common Core State Standards for Mathematics (CCSS-M) set rigorous standards for each of grades 6, 7 and 8. Strategic Education Research Partnership (SERP) has been working with two school districts, Oakland Unified School District and San Francisco Unified School District, to evaluate extant policies and practices and formulate new policies…

  4. Massachusetts Adult Basic Education Curriculum Framework for Mathematics and Numeracy

    ERIC Educational Resources Information Center

    Massachusetts Department of Education, 2005

    2005-01-01

    Over the past number of years, several initiatives have set the stage for writing the Massachusetts ABE (Adult Basic Education) Curriculum Frameworks for Mathematics and Numeracy. This current version of the "Massachusetts ABE Mathematics Curriculum Frameworks" is a second revision of that first framework, but it is heavily influenced by…

  5. Protocol Analysis of Group Problem Solving in Mathematics: A Cognitive-Metacognitive Framework for Assessment.

    ERIC Educational Resources Information Center

    Artzt, Alice F.; Armour-Thomas, Eleanor

    The roles of cognition and metacognition were examined in the mathematical problem-solving behaviors of students as they worked in small groups. As an outcome, a framework that links the literature of cognitive science and mathematical problem solving was developed for protocol analysis of mathematical problem solving. Within this framework, each…

  6. A review on data mining and continuous optimization applications in computational biology and medicine.

    PubMed

    Weber, Gerhard-Wilhelm; Ozöğür-Akyüz, Süreyya; Kropat, Erik

    2009-06-01

    An emerging research area in computational biology and biotechnology is devoted to mathematical modeling and prediction of gene-expression patterns; it nowadays requests mathematics to deeply understand its foundations. This article surveys data mining and machine learning methods for an analysis of complex systems in computational biology. It mathematically deepens recent advances in modeling and prediction by rigorously introducing the environment and aspects of errors and uncertainty into the genetic context within the framework of matrix and interval arithmetics. Given the data from DNA microarray experiments and environmental measurements, we extract nonlinear ordinary differential equations which contain parameters that are to be determined. This is done by a generalized Chebychev approximation and generalized semi-infinite optimization. Then, time-discretized dynamical systems are studied. By a combinatorial algorithm which constructs and follows polyhedra sequences, the region of parametric stability is detected. In addition, we analyze the topological landscape of gene-environment networks in terms of structural stability. As a second strategy, we will review recent model selection and kernel learning methods for binary classification which can be used to classify microarray data for cancerous cells or for discrimination of other kind of diseases. This review is practically motivated and theoretically elaborated; it is devoted to a contribution to better health care, progress in medicine, a better education, and more healthy living conditions.

  7. A Draft Conceptual Framework of Relevant Theories to Inform Future Rigorous Research on Student Service-Learning Outcomes

    ERIC Educational Resources Information Center

    Whitley, Meredith A.

    2014-01-01

    While the quality and quantity of research on service-learning has increased considerably over the past 20 years, researchers as well as governmental and funding agencies have called for more rigor in service-learning research. One key variable in improving rigor is using relevant existing theories to improve the research. The purpose of this…

  8. Criticising with Foucault: Towards a Guiding Framework for Socio-Political Studies in Mathematics Education

    ERIC Educational Resources Information Center

    Kollosche, David

    2016-01-01

    Socio-political studies in mathematics education often touch complex fields of interaction between education, mathematics and the political. In this paper I present a Foucault-based framework for socio-political studies in mathematics education which may guide research in that area. In order to show the potential of such a framework, I discuss the…

  9. Orders of Magnitude Extension of the Effective Dynamic Range of TDC-Based TOFMS Data Through Maximum Likelihood Estimation

    NASA Astrophysics Data System (ADS)

    Ipsen, Andreas; Ebbels, Timothy M. D.

    2014-10-01

    In a recent article, we derived a probability distribution that was shown to closely approximate that of the data produced by liquid chromatography time-of-flight mass spectrometry (LC/TOFMS) instruments employing time-to-digital converters (TDCs) as part of their detection system. The approach of formulating detailed and highly accurate mathematical models of LC/MS data via probability distributions that are parameterized by quantities of analytical interest does not appear to have been fully explored before. However, we believe it could lead to a statistically rigorous framework for addressing many of the data analytical problems that arise in LC/MS studies. In this article, we present new procedures for correcting for TDC saturation using such an approach and demonstrate that there is potential for significant improvements in the effective dynamic range of TDC-based mass spectrometers, which could make them much more competitive with the alternative analog-to-digital converters (ADCs). The degree of improvement depends on our ability to generate mass and chromatographic peaks that conform to known mathematical functions and our ability to accurately describe the state of the detector dead time—tasks that may be best addressed through engineering efforts.

  10. Enhancing student engagement to positively impact mathematics anxiety, confidence and achievement for interdisciplinary science subjects

    NASA Astrophysics Data System (ADS)

    Everingham, Yvette L.; Gyuris, Emma; Connolly, Sean R.

    2017-11-01

    Contemporary science educators must equip their students with the knowledge and practical know-how to connect multiple disciplines like mathematics, computing and the natural sciences to gain a richer and deeper understanding of a scientific problem. However, many biology and earth science students are prejudiced against mathematics due to negative emotions like high mathematical anxiety and low mathematical confidence. Here, we present a theoretical framework that investigates linkages between student engagement, mathematical anxiety, mathematical confidence, student achievement and subject mastery. We implement this framework in a large, first-year interdisciplinary science subject and monitor its impact over several years from 2010 to 2015. The implementation of the framework coincided with an easing of anxiety and enhanced confidence, as well as higher student satisfaction, retention and achievement. The framework offers interdisciplinary science educators greater flexibility and confidence in their approach to designing and delivering subjects that rely on mathematical concepts and practices.

  11. Mathematical and Numerical Analysis of Model Equations on Interactions of the HIV/AIDS Virus and the Immune System

    NASA Astrophysics Data System (ADS)

    Parumasur, N.; Willie, R.

    2008-09-01

    We consider a simple HIV/AIDs finite dimensional mathematical model on interactions of the blood cells, the HIV/AIDs virus and the immune system for consistence of the equations to the real biomedical situation that they model. A better understanding to a cure solution to the illness modeled by the finite dimensional equations is given. This is accomplished through rigorous mathematical analysis and is reinforced by numerical analysis of models developed for real life cases.

  12. TIMSS Advanced 2008 Assessment Frameworks

    ERIC Educational Resources Information Center

    Garden, Robert A.; Lie, Svein; Robitaille, David F.; Angell, Carl; Martin, Michael O.; Mullis, Ina V.S.; Foy, Pierre; Arora, Alka

    2006-01-01

    Developing the Trends in International Mathematics and Science Study (TIMSS) Advanced 2008 Assessment Frameworks was a collaborative venture involving mathematics and physics experts from around the world. The document contains two frameworks for implementing TIMSS Advanced 2008--one for advanced mathematics and one for physics. It also contains…

  13. A Framework for Examining How Mathematics Teachers Evaluate Technology

    ERIC Educational Resources Information Center

    Smith, Ryan C.; Shin, Dongjo; Kim, Somin

    2016-01-01

    Our mathematics cognitive technology noticing framework is based on professional noticing and curricular noticing frameworks and data collected in a study that explored how secondary mathematics teachers evaluate technology. Our participants displayed three categories of noticing: attention to features of technology, interpretation of the…

  14. Logic for Physicists

    NASA Astrophysics Data System (ADS)

    Pereyra, Nicolas A.

    2018-06-01

    This book gives a rigorous yet 'physics-focused' introduction to mathematical logic that is geared towards natural science majors. We present the science major with a robust introduction to logic, focusing on the specific knowledge and skills that will unavoidably be needed in calculus topics and natural science topics in general (rather than taking a philosophical-math-fundamental oriented approach that is commonly found in mathematical logic textbooks).

  15. 13th Annual Systems Engineering Conference: Tues- Wed

    DTIC Science & Technology

    2010-10-28

    greater understanding/documentation of lessons learned – Promotes SE within the organization • Justification for continued funding of SE Infrastructure...educational process – Addresses the development of innovative learning tools, strategies, and teacher training • Research and Development – Promotes ...technology, and mathematics • More commitment to engaging young students in science, engineering, technology and mathematics • More rigor in defining

  16. Discrete structures in continuum descriptions of defective crystals

    PubMed Central

    2016-01-01

    I discuss various mathematical constructions that combine together to provide a natural setting for discrete and continuum geometric models of defective crystals. In particular, I provide a quite general list of ‘plastic strain variables’, which quantifies inelastic behaviour, and exhibit rigorous connections between discrete and continuous mathematical structures associated with crystalline materials that have a correspondingly general constitutive specification. PMID:27002070

  17. Communicational Perspectives on Learning and Teaching Mathematics: Prologue

    ERIC Educational Resources Information Center

    Tabach, Michal; Nachlieli, Talli

    2016-01-01

    This special issue comprises five studies which vary in their focus and mathematical content, yet they all share an underlying communicational theoretical framework--commognition. Within this framework, learning mathematics is defined as a change in one's mathematical discourse, that is, in the form of communication known as mathematical. Teaching…

  18. Comparison of the Effectiveness of a Traditional Intermediate Algebra Course With That of a Less Rigorous Intermediate Algebra Course in Preparing Students for Success in a Subsequent Mathematics Course

    ERIC Educational Resources Information Center

    Sworder, Steven C.

    2007-01-01

    An experimental two-track intermediate algebra course was offered at Saddleback College, Mission Viejo, CA, between the Fall, 2002 and Fall, 2005 semesters. One track was modeled after the existing traditional California community college intermediate algebra course and the other track was a less rigorous intermediate algebra course in which the…

  19. The Alberta K-9 Mathematics Program of Studies with Achievement Indicators

    ERIC Educational Resources Information Center

    Alberta Education, 2007

    2007-01-01

    The "Alberta K-9 Mathematics Program of Studies with Achievement Indicators" has been derived from "The Common Curriculum Framework for K-9 Mathematics: Western and Northern Canadian Protocol," May 2006 (the Common Curriculum Framework). The program of studies incorporates the conceptual framework for Kindergarten to Grade 9…

  20. Metacognition, Positioning and Emotions in Mathematical Activities

    ERIC Educational Resources Information Center

    Daher, Wajeeh; Anabousy, Ahlam; Jabarin, Roqaya

    2018-01-01

    Researchers of mathematics education have been paying attention to the affective aspect of learning mathematics for more than one decade. Different theoretical frameworks have been suggested to analyze this aspect, where we utilize in the present research the discursive framework of Evans, Morgan and Tsatsaroni. This framework enables to link…

  1. The Dependence on Mathematical Theory in TIMSS, PISA and TIMSS Advanced Test Items and Its Relation to Student Achievement

    ERIC Educational Resources Information Center

    Hole, Arne; Grønmo, Liv Sissel; Onstad, Torgeir

    2018-01-01

    Background: This paper discusses a framework for analyzing the dependence on mathematical theory in test items, that is, a framework for discussing to what extent knowledge of mathematical theory is helpful for the student in solving the item. The framework can be applied to any test in which some knowledge of mathematical theory may be useful,…

  2. Generalization of Einstein's gravitational field equations

    NASA Astrophysics Data System (ADS)

    Moulin, Frédéric

    2017-12-01

    The Riemann tensor is the cornerstone of general relativity, but as is well known it does not appear explicitly in Einstein's equation of gravitation. This suggests that the latter may not be the most general equation. We propose here for the first time, following a rigorous mathematical treatment based on the variational principle, that there exists a generalized 4-index gravitational field equation containing the Riemann curvature tensor linearly, and thus the Weyl tensor as well. We show that this equation, written in n dimensions, contains the energy-momentum tensor for matter and that of the gravitational field itself. This new 4-index equation remains completely within the framework of general relativity and emerges as a natural generalization of the familiar 2-index Einstein equation. Due to the presence of the Weyl tensor, we show that this equation contains much more information, which fully justifies the use of a fourth-order theory.

  3. Statistical ecology comes of age.

    PubMed

    Gimenez, Olivier; Buckland, Stephen T; Morgan, Byron J T; Bez, Nicolas; Bertrand, Sophie; Choquet, Rémi; Dray, Stéphane; Etienne, Marie-Pierre; Fewster, Rachel; Gosselin, Frédéric; Mérigot, Bastien; Monestiez, Pascal; Morales, Juan M; Mortier, Frédéric; Munoz, François; Ovaskainen, Otso; Pavoine, Sandrine; Pradel, Roger; Schurr, Frank M; Thomas, Len; Thuiller, Wilfried; Trenkel, Verena; de Valpine, Perry; Rexstad, Eric

    2014-12-01

    The desire to predict the consequences of global environmental change has been the driver towards more realistic models embracing the variability and uncertainties inherent in ecology. Statistical ecology has gelled over the past decade as a discipline that moves away from describing patterns towards modelling the ecological processes that generate these patterns. Following the fourth International Statistical Ecology Conference (1-4 July 2014) in Montpellier, France, we analyse current trends in statistical ecology. Important advances in the analysis of individual movement, and in the modelling of population dynamics and species distributions, are made possible by the increasing use of hierarchical and hidden process models. Exciting research perspectives include the development of methods to interpret citizen science data and of efficient, flexible computational algorithms for model fitting. Statistical ecology has come of age: it now provides a general and mathematically rigorous framework linking ecological theory and empirical data.

  4. Standard representation and unified stability analysis for dynamic artificial neural network models.

    PubMed

    Kim, Kwang-Ki K; Patrón, Ernesto Ríos; Braatz, Richard D

    2018-02-01

    An overview is provided of dynamic artificial neural network models (DANNs) for nonlinear dynamical system identification and control problems, and convex stability conditions are proposed that are less conservative than past results. The three most popular classes of dynamic artificial neural network models are described, with their mathematical representations and architectures followed by transformations based on their block diagrams that are convenient for stability and performance analyses. Classes of nonlinear dynamical systems that are universally approximated by such models are characterized, which include rigorous upper bounds on the approximation errors. A unified framework and linear matrix inequality-based stability conditions are described for different classes of dynamic artificial neural network models that take additional information into account such as local slope restrictions and whether the nonlinearities within the DANNs are odd. A theoretical example shows reduced conservatism obtained by the conditions. Copyright © 2017. Published by Elsevier Ltd.

  5. The renormalization group and the implicit function theorem for amplitude equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirkinis, Eleftherios

    2008-07-15

    This article lays down the foundations of the renormalization group (RG) approach for differential equations characterized by multiple scales. The renormalization of constants through an elimination process and the subsequent derivation of the amplitude equation [Chen et al., Phys. Rev. E 54, 376 (1996)] are given a rigorous but not abstract mathematical form whose justification is based on the implicit function theorem. Developing the theoretical framework that underlies the RG approach leads to a systematization of the renormalization process and to the derivation of explicit closed-form expressions for the amplitude equations that can be carried out with symbolic computation formore » both linear and nonlinear scalar differential equations and first order systems but independently of their particular forms. Certain nonlinear singular perturbation problems are considered that illustrate the formalism and recover well-known results from the literature as special cases.« less

  6. Statistical ecology comes of age

    PubMed Central

    Gimenez, Olivier; Buckland, Stephen T.; Morgan, Byron J. T.; Bez, Nicolas; Bertrand, Sophie; Choquet, Rémi; Dray, Stéphane; Etienne, Marie-Pierre; Fewster, Rachel; Gosselin, Frédéric; Mérigot, Bastien; Monestiez, Pascal; Morales, Juan M.; Mortier, Frédéric; Munoz, François; Ovaskainen, Otso; Pavoine, Sandrine; Pradel, Roger; Schurr, Frank M.; Thomas, Len; Thuiller, Wilfried; Trenkel, Verena; de Valpine, Perry; Rexstad, Eric

    2014-01-01

    The desire to predict the consequences of global environmental change has been the driver towards more realistic models embracing the variability and uncertainties inherent in ecology. Statistical ecology has gelled over the past decade as a discipline that moves away from describing patterns towards modelling the ecological processes that generate these patterns. Following the fourth International Statistical Ecology Conference (1–4 July 2014) in Montpellier, France, we analyse current trends in statistical ecology. Important advances in the analysis of individual movement, and in the modelling of population dynamics and species distributions, are made possible by the increasing use of hierarchical and hidden process models. Exciting research perspectives include the development of methods to interpret citizen science data and of efficient, flexible computational algorithms for model fitting. Statistical ecology has come of age: it now provides a general and mathematically rigorous framework linking ecological theory and empirical data. PMID:25540151

  7. Thermal machines beyond the weak coupling regime

    NASA Astrophysics Data System (ADS)

    Gallego, R.; Riera, A.; Eisert, J.

    2014-12-01

    How much work can be extracted from a heat bath using a thermal machine? The study of this question has a very long history in statistical physics in the weak-coupling limit, when applied to macroscopic systems. However, the assumption that thermal heat baths remain uncorrelated with associated physical systems is less reasonable on the nano-scale and in the quantum setting. In this work, we establish a framework of work extraction in the presence of quantum correlations. We show in a mathematically rigorous and quantitative fashion that quantum correlations and entanglement emerge as limitations to work extraction compared to what would be allowed by the second law of thermodynamics. At the heart of the approach are operations that capture the naturally non-equilibrium dynamics encountered when putting physical systems into contact with each other. We discuss various limits that relate to known results and put our work into the context of approaches to finite-time quantum thermodynamics.

  8. Summary of Funded Race to the Top Applications: Science, Technology, Engineering, and Mathematics Activities in Eleven States and the District of Columbia

    ERIC Educational Resources Information Center

    Mattson, Beverly

    2011-01-01

    One of the competitive priorities of the U.S. Department of Education's Race to the Top applications addressed science, technology, engineering, and mathematics (STEM). States that applied were required to submit plans that addressed rigorous courses of study, cooperative partnerships to prepare and assist teachers in STEM content, and prepare…

  9. Discrete structures in continuum descriptions of defective crystals.

    PubMed

    Parry, G P

    2016-04-28

    I discuss various mathematical constructions that combine together to provide a natural setting for discrete and continuum geometric models of defective crystals. In particular, I provide a quite general list of 'plastic strain variables', which quantifies inelastic behaviour, and exhibit rigorous connections between discrete and continuous mathematical structures associated with crystalline materials that have a correspondingly general constitutive specification. © 2016 The Author(s).

  10. A Reconceptualized Framework for "Opportunity to Learn" in School Mathematics

    ERIC Educational Resources Information Center

    Walkowiak, Temple A.; Pinter, Holly H.; Berry, Robert Q.

    2017-01-01

    We present a reconceptualized framework for opportunity to learn (OTL) in school mathematics that builds on previous conceptualizations of OTL and includes features related to both quantity (i.e., time) and quality. Our framework draws on existing literature and on our own observational research of mathematics teaching practices. Through the…

  11. A Framework for Authenticity in the Mathematics and Statistics Classroom

    ERIC Educational Resources Information Center

    Garrett, Lauretta; Huang, Li; Charleton, Maria Calhoun

    2016-01-01

    Authenticity is a term commonly used in reference to pedagogical and curricular qualities of mathematics teaching and learning, but its use lacks a coherent framework. The work of researchers in engineering education provides such a framework. Authentic qualities of mathematics teaching and learning are fit within a model described by Strobel,…

  12. Multiscale Mathematics for Biomass Conversion to Renewable Hydrogen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plechac, Petr

    2016-03-01

    The overall objective of this project was to develop multiscale models for understanding and eventually designing complex processes for renewables. To the best of our knowledge, our work is the first attempt at modeling complex reacting systems, whose performance relies on underlying multiscale mathematics and developing rigorous mathematical techniques and computational algorithms to study such models. Our specific application lies at the heart of biofuels initiatives of DOE and entails modeling of catalytic systems, to enable economic, environmentally benign, and efficient conversion of biomass into either hydrogen or valuable chemicals.

  13. Depth of Teachers' Knowledge: Frameworks for Teachers' Knowledge of Mathematics

    ERIC Educational Resources Information Center

    Holmes, Vicki-Lynn

    2012-01-01

    This article describes seven teacher knowledge frameworks and relates these frameworks to the teaching and assessment of elementary teacher's mathematics knowledge. The frameworks classify teachers' knowledge and provide a vocabulary and common language through which knowledge can be discussed and assessed. These frameworks are categorized into…

  14. TIMSS 2007 Assessment Frameworks

    ERIC Educational Resources Information Center

    Mullis, Ina V. S.; Martin, Michael O.; Ruddock, Graham J.; O'Sullivan, Christine Y.; Arora, Alka; Erberber, Ebru

    2005-01-01

    Developing the Trends in International Mathematics and Science Study (TIMSS) 2007 Assessment Frameworks represents an extensive collaborative effort involving individuals and expert groups from more than 60 countries around the world. The document contains three frameworks for implementing TIMSS 2007--the Mathematics Framework, the Science…

  15. A cognitive framework for analyzing and describing introductory students' use and understanding of mathematics in physics

    NASA Astrophysics Data System (ADS)

    Tuminaro, Jonathan

    Many introductory, algebra-based physics students perform poorly on mathematical problem solving tasks in physics. There are at least two possible, distinct reasons for this poor performance: (1) students simply lack the mathematical skills needed to solve problems in physics, or (2) students do not know how to apply the mathematical skills they have to particular problem situations in physics. While many students do lack the requisite mathematical skills, a major finding from this work is that the majority of students possess the requisite mathematical skills, yet fail to use or interpret them in the context of physics. In this thesis I propose a theoretical framework to analyze and describe students' mathematical thinking in physics. In particular, I attempt to answer two questions. What are the cognitive tools involved in formal mathematical thinking in physics? And, why do students make the kinds of mistakes they do when using mathematics in physics? According to the proposed theoretical framework there are three major theoretical constructs: mathematical resources, which are the knowledge elements that are activated in mathematical thinking and problem solving; epistemic games, which are patterns of activities that use particular kinds of knowledge to create new knowledge or solve a problem; and frames, which are structures of expectations that determine how individuals interpret situations or events. The empirical basis for this study comes from videotaped sessions of college students solving homework problems. The students are enrolled in an algebra-based introductory physics course. The videotapes were transcribed and analyzed using the aforementioned theoretical framework. Two important results from this work are: (1) the construction of a theoretical framework that offers researchers a vocabulary (ontological classification of cognitive structures) and grammar (relationship between the cognitive structures) for understanding the nature and origin of mathematical use in the context physics, and (2) a detailed understanding, in terms of the proposed theoretical framework, of the errors that students make when using mathematics in the context of physics.

  16. Qualitative models and experimental investigation of chaotic NOR gates and set/reset flip-flops

    NASA Astrophysics Data System (ADS)

    Rahman, Aminur; Jordan, Ian; Blackmore, Denis

    2018-01-01

    It has been observed through experiments and SPICE simulations that logical circuits based upon Chua's circuit exhibit complex dynamical behaviour. This behaviour can be used to design analogues of more complex logic families and some properties can be exploited for electronics applications. Some of these circuits have been modelled as systems of ordinary differential equations. However, as the number of components in newer circuits increases so does the complexity. This renders continuous dynamical systems models impractical and necessitates new modelling techniques. In recent years, some discrete dynamical models have been developed using various simplifying assumptions. To create a robust modelling framework for chaotic logical circuits, we developed both deterministic and stochastic discrete dynamical models, which exploit the natural recurrence behaviour, for two chaotic NOR gates and a chaotic set/reset flip-flop. This work presents a complete applied mathematical investigation of logical circuits. Experiments on our own designs of the above circuits are modelled and the models are rigorously analysed and simulated showing surprisingly close qualitative agreement with the experiments. Furthermore, the models are designed to accommodate dynamics of similarly designed circuits. This will allow researchers to develop ever more complex chaotic logical circuits with a simple modelling framework.

  17. Definition and solution of a stochastic inverse problem for the Manning’s n parameter field in hydrodynamic models

    DOE PAGES

    Butler, Troy; Graham, L.; Estep, D.; ...

    2015-02-03

    The uncertainty in spatially heterogeneous Manning’s n fields is quantified using a novel formulation and numerical solution of stochastic inverse problems for physics-based models. The uncertainty is quantified in terms of a probability measure and the physics-based model considered here is the state-of-the-art ADCIRC model although the presented methodology applies to other hydrodynamic models. An accessible overview of the formulation and solution of the stochastic inverse problem in a mathematically rigorous framework based on measure theory is presented in this paper. Technical details that arise in practice by applying the framework to determine the Manning’s n parameter field in amore » shallow water equation model used for coastal hydrodynamics are presented and an efficient computational algorithm and open source software package are developed. A new notion of “condition” for the stochastic inverse problem is defined and analyzed as it relates to the computation of probabilities. Finally, this notion of condition is investigated to determine effective output quantities of interest of maximum water elevations to use for the inverse problem for the Manning’s n parameter and the effect on model predictions is analyzed.« less

  18. Computing Generalized Matrix Inverse on Spiking Neural Substrate.

    PubMed

    Shukla, Rohit; Khoram, Soroosh; Jorgensen, Erik; Li, Jing; Lipasti, Mikko; Wright, Stephen

    2018-01-01

    Emerging neural hardware substrates, such as IBM's TrueNorth Neurosynaptic System, can provide an appealing platform for deploying numerical algorithms. For example, a recurrent Hopfield neural network can be used to find the Moore-Penrose generalized inverse of a matrix, thus enabling a broad class of linear optimizations to be solved efficiently, at low energy cost. However, deploying numerical algorithms on hardware platforms that severely limit the range and precision of representation for numeric quantities can be quite challenging. This paper discusses these challenges and proposes a rigorous mathematical framework for reasoning about range and precision on such substrates. The paper derives techniques for normalizing inputs and properly quantizing synaptic weights originating from arbitrary systems of linear equations, so that solvers for those systems can be implemented in a provably correct manner on hardware-constrained neural substrates. The analytical model is empirically validated on the IBM TrueNorth platform, and results show that the guarantees provided by the framework for range and precision hold under experimental conditions. Experiments with optical flow demonstrate the energy benefits of deploying a reduced-precision and energy-efficient generalized matrix inverse engine on the IBM TrueNorth platform, reflecting 10× to 100× improvement over FPGA and ARM core baselines.

  19. Qualitative models and experimental investigation of chaotic NOR gates and set/reset flip-flops.

    PubMed

    Rahman, Aminur; Jordan, Ian; Blackmore, Denis

    2018-01-01

    It has been observed through experiments and SPICE simulations that logical circuits based upon Chua's circuit exhibit complex dynamical behaviour. This behaviour can be used to design analogues of more complex logic families and some properties can be exploited for electronics applications. Some of these circuits have been modelled as systems of ordinary differential equations. However, as the number of components in newer circuits increases so does the complexity. This renders continuous dynamical systems models impractical and necessitates new modelling techniques. In recent years, some discrete dynamical models have been developed using various simplifying assumptions. To create a robust modelling framework for chaotic logical circuits, we developed both deterministic and stochastic discrete dynamical models, which exploit the natural recurrence behaviour, for two chaotic NOR gates and a chaotic set/reset flip-flop. This work presents a complete applied mathematical investigation of logical circuits. Experiments on our own designs of the above circuits are modelled and the models are rigorously analysed and simulated showing surprisingly close qualitative agreement with the experiments. Furthermore, the models are designed to accommodate dynamics of similarly designed circuits. This will allow researchers to develop ever more complex chaotic logical circuits with a simple modelling framework.

  20. Historical mathematics in the French eighteenth century.

    PubMed

    Richards, Joan L

    2006-12-01

    At least since the seventeenth century, the strange combination of epistemological certainty and ontological power that characterizes mathematics has made it a major focus of philosophical, social, and cultural negotiation. In the eighteenth century, all of these factors were at play as mathematical thinkers struggled to assimilate and extend the analysis they had inherited from the seventeenth century. A combination of educational convictions and historical assumptions supported a humanistic mathematics essentially defined by its flexibility and breadth. This mathematics was an expression of l'esprit humain, which was unfolding in a progressive historical narrative. The French Revolution dramatically altered the historical and educational landscapes that had supported this eighteenth-century approach, and within thirty years Augustin Louis Cauchy had radically reconceptualized and restructured mathematics to be rigorous rather than narrative.

  1. Interacting partially directed self-avoiding walk: a probabilistic perspective

    NASA Astrophysics Data System (ADS)

    Carmona, Philippe; Nguyen, Gia Bao; Pétrélis, Nicolas; Torri, Niccolò

    2018-04-01

    We review some recent results obtained in the framework of the 2D interacting self-avoiding walk (ISAW). After a brief presentation of the rigorous results that have been obtained so far for ISAW we focus on the interacting partially directed self-avoiding walk (IPDSAW), a model introduced in Zwanzig and Lauritzen (1968 J. Chem. Phys. 48 3351) to decrease the mathematical complexity of ISAW. In the first part of the paper, we discuss how a new probabilistic approach based on a random walk representation (see Nguyen and Pétrélis (2013 J. Stat. Phys. 151 1099–120)) allowed for a sharp determination of the asymptotics of the free energy close to criticality (see Carmona et al (2016 Ann. Probab. 44 3234–90)). Some scaling limits of IPDSAW were conjectured in the physics literature (see e.g. Brak et al (1993 Phys. Rev. E 48 2386–96)). We discuss here the fact that all limits are now proven rigorously, i.e. for the extended regime in Carmona and Pétrélis (2016 Electron. J. Probab. 21 1–52), for the collapsed regime in Carmona et al (2016 Ann. Probab. 44 3234–90) and at criticality in Carmona and Pétrélis (2017b arxiv:1709.06448). The second part of the paper starts with the description of four open questions related to physically relevant extensions of IPDSAW. Among such extensions is the interacting prudent self-avoiding walk (IPSAW) whose configurations are those of the 2D prudent walk. We discuss the main results obtained in Pétrélis and Torri (2016 Ann. Inst. Henri Poincaré D) about IPSAW and in particular the fact that its collapse transition is proven to exist rigorously.

  2. Single toxin dose-response models revisited

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demidenko, Eugene, E-mail: eugened@dartmouth.edu

    The goal of this paper is to offer a rigorous analysis of the sigmoid shape single toxin dose-response relationship. The toxin efficacy function is introduced and four special points, including maximum toxin efficacy and inflection points, on the dose-response curve are defined. The special points define three phases of the toxin effect on mortality: (1) toxin concentrations smaller than the first inflection point or (2) larger then the second inflection point imply low mortality rate, and (3) concentrations between the first and the second inflection points imply high mortality rate. Probabilistic interpretation and mathematical analysis for each of the fourmore » models, Hill, logit, probit, and Weibull is provided. Two general model extensions are introduced: (1) the multi-target hit model that accounts for the existence of several vital receptors affected by the toxin, and (2) model with a nonzero mortality at zero concentration to account for natural mortality. Special attention is given to statistical estimation in the framework of the generalized linear model with the binomial dependent variable as the mortality count in each experiment, contrary to the widespread nonlinear regression treating the mortality rate as continuous variable. The models are illustrated using standard EPA Daphnia acute (48 h) toxicity tests with mortality as a function of NiCl or CuSO{sub 4} toxin. - Highlights: • The paper offers a rigorous study of a sigmoid dose-response relationship. • The concentration with highest mortality rate is rigorously defined. • A table with four special points for five morality curves is presented. • Two new sigmoid dose-response models have been introduced. • The generalized linear model is advocated for estimation of sigmoid dose-response relationship.« less

  3. Mathematical Problem Solving Ability of Junior High School Students through Ang’s Framework for Mathematical Modelling Instruction

    NASA Astrophysics Data System (ADS)

    Fasni, N.; Turmudi, T.; Kusnandi, K.

    2017-09-01

    This research background of this research is the importance of student problem solving abilities. The purpose of this study is to find out whether there are differences in the ability to solve mathematical problems between students who have learned mathematics using Ang’s Framework for Mathematical Modelling Instruction (AFFMMI) and students who have learned using scientific approach (SA). The method used in this research is a quasi-experimental method with pretest-postest control group design. Data analysis of mathematical problem solving ability using Indepent Sample Test. The results showed that there was a difference in the ability to solve mathematical problems between students who received learning with Ang’s Framework for Mathematical Modelling Instruction and students who received learning with a scientific approach. AFFMMI focuses on mathematical modeling. This modeling allows students to solve problems. The use of AFFMMI is able to improve the solving ability.

  4. Teachers' Use of a Pedagogical Framework for Improvement in Mathematics Teaching: Case Studies from YuMi Deadly Maths

    ERIC Educational Resources Information Center

    Carter, Merilyn; Cooper, Tom; Anderson, Robyn

    2016-01-01

    This paper describes the pedagogical framework used by YuMi Deadly Maths, a school change process used to improve mathematics teaching and thus enhance employment and life chances for socially disadvantaged students. The framework, called the RAMR cycle, is capable of being used by mathematics teachers for planning and delivering lessons and units…

  5. How Do Mathematicians Learn Math?: Resources and Acts for Constructing and Understanding Mathematics

    ERIC Educational Resources Information Center

    Wilkerson-Jerde, Michelle H.; Wilensky, Uri J.

    2011-01-01

    In this paper, we present an analytic framework for investigating expert mathematical learning as the process of building a "network of mathematical resources" by establishing relationships between different components and properties of mathematical ideas. We then use this framework to analyze the reasoning of ten mathematicians and mathematics…

  6. A Framework for Describing Mathematics Discourse in Instruction and Interpreting Differences in Teaching

    ERIC Educational Resources Information Center

    Adler, Jill; Ronda, Erlina

    2015-01-01

    We describe and use an analytical framework to document mathematics discourse in instruction (MDI), and interpret differences in mathematics teaching. MDI is characterised by four interacting components in the teaching of a mathematics lesson: exemplification (occurring through a sequence of examples and related tasks), explanatory talk (talk that…

  7. Growth in Mathematical Understanding While Learning How To Teach: A Theoretical Perspective.

    ERIC Educational Resources Information Center

    Cavey, Laurie O.

    This theoretical paper outlines a conceptual framework for examining growth in prospective teachers' mathematical understanding as they engage in thinking about and planning for the mathematical learning of others. The framework is based on the Pirie-Kieren (1994) Dynamical Theory for the Growth of Mathematical Understanding and extends into the…

  8. 34 CFR 691.16 - Rigorous secondary school program of study.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... MATHEMATICS ACCESS TO RETAIN TALENT GRANT (NATIONAL SMART GRANT) PROGRAMS Application Procedures § 691.16..., 2009. (Approved by the Office of Management and Budget under control number 1845-0078] (Authority: 20 U...

  9. Cause and Cure - Deterioration in Accuracy of CFD Simulations with Use of High-Aspect-Ratio Triangular/Tetrahedral Grids

    NASA Technical Reports Server (NTRS)

    Chang, Sin-Chung; Chang, Chau-Lyan; Venkatachari, Balaji Shankar

    2017-01-01

    Traditionally high-aspect ratio triangular/tetrahedral meshes are avoided by CFD researchers in the vicinity of a solid wall, as it is known to reduce the accuracy of gradient computations in those regions. Although for certain complex geometries, the use of high-aspect ratio triangular/tetrahedral elements in the vicinity of a solid wall can be replaced by quadrilateral/prismatic elements, ability to use triangular/tetrahedral elements in such regions without any degradation in accuracy can be beneficial from a mesh generation point of view. The benefits also carry over to numerical frameworks such as the space-time conservation element and solution element (CESE), where simplex elements are the mandatory building blocks. With the requirement of the CESE method in mind, a rigorous mathematical framework that clearly identifies the reason behind the difficulties in use of such high-aspect ratio simplex elements is formulated using two different approaches and presented here. Drawing insights from the analysis, a potential solution to avoid that pitfall is also provided as part of this work. Furthermore, through the use of numerical simulations of practical viscous problems involving high-Reynolds number flows, how the gradient evaluation procedures of the CESE framework can be effectively used to produce accurate and stable results on such high-aspect ratio simplex meshes is also showcased.

  10. RT-18: Value of Flexibility. Phase 1

    DTIC Science & Technology

    2010-09-25

    an analytical framework based on sound mathematical constructs. A review of the current state-of-the-art showed that there is little unifying theory...framework that is mathematically consistent, domain independent and applicable under varying information levels. This report presents our advances in...During this period, we also explored the development of an analytical framework based on sound mathematical constructs. A review of the current state

  11. Unraveling the Mystery of the Origin of Mathematical Problems: Using a Problem-Posing Framework with Prospective Mathematics Teachers

    ERIC Educational Resources Information Center

    Contreras, Jose

    2007-01-01

    In this article, I model how a problem-posing framework can be used to enhance our abilities to systematically generate mathematical problems by modifying the attributes of a given problem. The problem-posing model calls for the application of the following fundamental mathematical processes: proving, reversing, specializing, generalizing, and…

  12. A Framework for Proofs and Refutations in School Mathematics: Increasing Content by Deductive Guessing

    ERIC Educational Resources Information Center

    Komatsu, Kotaro

    2016-01-01

    The process of proofs and refutations described by Lakatos is essential in school mathematics to provide students with an opportunity to experience how mathematical knowledge develops dynamically within the discipline of mathematics. In this paper, a framework for describing student processes of proofs and refutations is constructed using a set of…

  13. A Categorization Model for Educational Values of the History of Mathematics: An Empirical Study

    ERIC Educational Resources Information Center

    Wang, Xiao-qin; Qi, Chun-yan; Wang, Ke

    2017-01-01

    There is not a clear consensus on the categorization framework of the educational values of the history of mathematics. By analyzing 20 Chinese teaching cases on integrating the history of mathematics into mathematics teaching based on the relevant literature, this study examined a new categorization framework of the educational values of the…

  14. ELPSA as a Lesson Design Framework

    ERIC Educational Resources Information Center

    Lowrie, Tom; Patahuddin, Sitti Maesuri

    2015-01-01

    This paper offers a framework for a mathematics lesson design that is consistent with the way we learn about, and discover, most things in life. In addition, the framework provides a structure for identifying how mathematical concepts and understanding are acquired and developed. This framework is called ELPSA and represents five learning…

  15. How Does the Hawaii High School Assessment Measure Up? A Comparison of the 2005 Grade 10 Hawaii State Assessment in Reading and Mathematics with High School Graduation Exams from Other States

    ERIC Educational Resources Information Center

    Achieve, Inc., 2007

    2007-01-01

    At the request of the Hawaii Department of Education, Achieve conducted a study of Hawaii's 2005 grade 10 State Assessment in reading and mathematics. The study compared the content, rigor and passing (meets proficiency) scores on Hawaii's assessment with those of the six states that participated in Achieve's earlier study, "Do Graduation…

  16. Hazardous Asteroids: Cloaking STEM Skills Training within an Attention-Grabbing Science/Math Course

    NASA Astrophysics Data System (ADS)

    Ryan, Eileen V.; Ryan, William H.

    2015-11-01

    A graduate-level course was designed and taught during the summer months from 2009 - 2015 in order to contribute to the training and professional development of K-12 teachers residing in the Southwest. The teachers were seeking Master’s degrees via the New Mexico Institute of Mining and Technology’s (NMT’s) Masters of Science Teaching (MST) program, and the course satisfied a science or math requirement. The MST program provides opportunities for in-service teachers to enhance their content backgrounds in science, mathematics, engineering, and technology (SMET). The ultimate goal is to assist teachers in gaining knowledge that has direct application in the classroom.The engaging topic area of near-Earth object (NEO) characterization studies was used to create a fun and exciting framework for mastering basic skills and concepts in physics and astronomy. The objective was to offer a class that had the appropriate science rigor (with an emphasis on mathematics) within a non-threatening format. The course, entitled “Hazardous Asteroids”, incorporates a basic planetary physics curriculum, with challenging laboratories that include a heavy emphasis on math and technology. Since the authors run a NASA-funded NEO research and follow-up program, also folded into the course is the use of the Magdalena Ridge Observatory’s 2.4-meter telescope so participants can take and reduce their own data on a near-Earth asteroid.In exit assessments, the participants have given the course excellent ratings for design and implementation, and the overall degree of satisfaction was high. This validates that a well-constructed (and rigorous) course can be effective in receptively reaching teachers in need of basic skills refreshment. Many of the teachers taking the course were employed in school districts serving at-risk or under-prepared students, and the course helped provide them with the confidence vital to developing new strategies for successful teaching.

  17. Which Kind of Mathematics for Quantum Mechanics? the Relevance of H. Weyl's Program of Research

    NASA Astrophysics Data System (ADS)

    Drago, Antonino

    In 1918 Weyl's book Das Kontinuum planned to found anew mathematics upon more conservative bases than both rigorous mathematics and set theory. It gave birth to the so-called Weyl's elementary mathematics, i.e. an intermediate mathematics between the mathematics rejecting at all actual infinity and the classical one including it almost freely. The present paper scrutinises the subsequent Weyl's book Gruppentheorie und Quantenmechanik (1928) as a program for founding anew theoretical physics - through quantum theory - and at the same time developing his mathematics through an improvement of group theory; which, according to Weyl, is a mathematical theory effacing the old distinction between discrete and continuous mathematics. Evidence from Weyl's writings is collected for supporting this interpretation. Then Weyl's program is evaluated as unsuccessful, owing to some crucial difficulties of both physical and mathematical nature. The present clear-cut knowledge of Weyl's elementary mathematics allows us to re-evaluate Weyl's program in order to look for more adequate formulations of quantum mechanics in any weaker kind of mathematics than the classical one.

  18. Leading a New Pedagogical Approach to Australian Curriculum Mathematics: Using the Dual Mathematical Modelling Cycle Framework

    ERIC Educational Resources Information Center

    Lamb, Janeen; Kawakami, Takashi; Saeki, Akihiko; Matsuzaki, Akio

    2014-01-01

    The aim of this study was to investigate the use of the "dual mathematical modelling cycle framework" as one way to meet the espoused goals of the Australian Curriculum Mathematics. This study involved 23 Year 6 students from one Australian primary school who engaged in an "Oil Tank Task" that required them to develop two…

  19. Mathematics Education as Sociopolitical: Prospective Teachers' Views of the What, Who, and How

    ERIC Educational Resources Information Center

    Felton-Koestler, Mathew D.

    2017-01-01

    In this article, I introduce a framework--the What, Who, and How of mathematics--that emerged from studying my teaching of prospective teachers and their views of the social and political dimensions of mathematics teaching and learning. The What, Who, How framework asks us to consider What messages we send about mathematics and the world, Whose…

  20. Enhancing rigor and practice of scoping reviews in social policy research: considerations from a worked example on the Americans with disabilities act.

    PubMed

    Harris, Sarah Parker; Gould, Robert; Fujiura, Glenn

    2015-01-01

    There is increasing theoretical consideration about the use of systematic and scoping reviews of evidence in informing disability and rehabilitation research and practice. Indicative of this trend, this journal published a piece by Rumrill, Fitzgerald and Merchant in 2010 explaining the utility and process for conducting reviews of intervention-based research. There is still need to consider how to apply such rigor when conducting more exploratory reviews of heterogeneous research. This article explores the challenges, benefits, and procedures for conducting rigorous exploratory scoping reviews of diverse evidence. The article expands upon Rumrill, Fitzgerald and Merchant's framework and considers its application to more heterogeneous evidence on the impact of social policy. A worked example of a scoping review of the Americans with Disabilities Act is provided with a procedural framework for conducting scoping reviews on the effects of a social policy. The need for more nuanced techniques for enhancing rigor became apparent during the review process. There are multiple methodological steps that can enhance the utility of exploratory scoping reviews. The potential of systematic consideration during the exploratory review process is shown as a viable method to enhance the rigor in reviewing diverse bodies of evidence.

  1. Hierarchical fractional-step approximations and parallel kinetic Monte Carlo algorithms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arampatzis, Giorgos, E-mail: garab@math.uoc.gr; Katsoulakis, Markos A., E-mail: markos@math.umass.edu; Plechac, Petr, E-mail: plechac@math.udel.edu

    2012-10-01

    We present a mathematical framework for constructing and analyzing parallel algorithms for lattice kinetic Monte Carlo (KMC) simulations. The resulting algorithms have the capacity to simulate a wide range of spatio-temporal scales in spatially distributed, non-equilibrium physiochemical processes with complex chemistry and transport micro-mechanisms. Rather than focusing on constructing exactly the stochastic trajectories, our approach relies on approximating the evolution of observables, such as density, coverage, correlations and so on. More specifically, we develop a spatial domain decomposition of the Markov operator (generator) that describes the evolution of all observables according to the kinetic Monte Carlo algorithm. This domain decompositionmore » corresponds to a decomposition of the Markov generator into a hierarchy of operators and can be tailored to specific hierarchical parallel architectures such as multi-core processors or clusters of Graphical Processing Units (GPUs). Based on this operator decomposition, we formulate parallel Fractional step kinetic Monte Carlo algorithms by employing the Trotter Theorem and its randomized variants; these schemes, (a) are partially asynchronous on each fractional step time-window, and (b) are characterized by their communication schedule between processors. The proposed mathematical framework allows us to rigorously justify the numerical and statistical consistency of the proposed algorithms, showing the convergence of our approximating schemes to the original serial KMC. The approach also provides a systematic evaluation of different processor communicating schedules. We carry out a detailed benchmarking of the parallel KMC schemes using available exact solutions, for example, in Ising-type systems and we demonstrate the capabilities of the method to simulate complex spatially distributed reactions at very large scales on GPUs. Finally, we discuss work load balancing between processors and propose a re-balancing scheme based on probabilistic mass transport methods.« less

  2. Curriculum Framework (CF) Implementation Conference. Report of the Regional Educational Laboratory Network Program and the National Network of Eisenhower Mathematics and Science Regional Consortia (Hilton Head Island, South Carolina, January 26-27, 1995).

    ERIC Educational Resources Information Center

    Palmer, Jackie; Powell, Mary Jo

    The Laboratory Network Program and the National Network of Eisenhower Mathematics and Science Regional Consortia, operating as the Curriculum Frameworks Task Force, jointly convened a group of educators involved in implementing state-level mathematics or science curriculum frameworks (CF). The Hilton Head (South Carolina) conference had a dual…

  3. A Rigorous Geometric Derivation of the Chiral Anomaly in Curved Backgrounds

    NASA Astrophysics Data System (ADS)

    Bär, Christian; Strohmaier, Alexander

    2016-11-01

    We discuss the chiral anomaly for a Weyl field in a curved background and show that a novel index theorem for the Lorentzian Dirac operator can be applied to describe the gravitational chiral anomaly. A formula for the total charge generated by the gravitational and gauge field background is derived directly in Lorentzian signature and in a mathematically rigorous manner. It contains a term identical to the integrand in the Atiyah-Singer index theorem and another term involving the {η}-invariant of the Cauchy hypersurfaces.

  4. Mathematical Tasks as a Framework for Reflection: From Research To Practice.

    ERIC Educational Resources Information Center

    Stein, Mary Kay; Smith, Margaret Schwan

    1998-01-01

    Describes the Quantitative Understanding: Amplifying Student Achievement and Reasoning (QUASAR) national reform project aimed at studying and fostering the development and implementation of enhanced mathematics instructional programs. It is a framework for reflection based on mathematical tasks used during classroom instruction and the ways in…

  5. A Framework for Understanding Whiteness in Mathematics Education

    ERIC Educational Resources Information Center

    Battey, Dan; Leyva, Luis A.

    2016-01-01

    In this article, the authors provide a framework for understanding whiteness in mathematics education. While whiteness is receiving more attention in the broader education literature, only a handful of scholars address whiteness in mathematics education in any form. This lack of attention to whiteness leaves it invisible and neutral in documenting…

  6. A Framework of Mathematics Inductive Reasoning

    ERIC Educational Resources Information Center

    Christou, Constantinos; Papageorgiou, Eleni

    2007-01-01

    Based on a synthesis of the literature in inductive reasoning, a framework for prescribing and assessing mathematics inductive reasoning of primary school students was formulated and validated. The major constructs incorporated in this framework were students' cognitive abilities of finding similarities and/or dissimilarities among attributes and…

  7. A framework for grouping nanoparticles based on their measurable characteristics.

    PubMed

    Sayes, Christie M; Smith, P Alex; Ivanov, Ivan V

    2013-01-01

    There is a need to take a broader look at nanotoxicological studies. Eventually, the field will demand that some generalizations be made. To begin to address this issue, we posed a question: are metal colloids on the nanometer-size scale a homogeneous group? In general, most people can agree that the physicochemical properties of nanomaterials can be linked and related to their induced toxicological responses. The focus of this study was to determine how a set of selected physicochemical properties of five specific metal-based colloidal materials on the nanometer-size scale - silver, copper, nickel, iron, and zinc - could be used as nanodescriptors that facilitate the grouping of these metal-based colloids. The example of the framework pipeline processing provided in this paper shows the utility of specific statistical and pattern recognition techniques in grouping nanoparticles based on experimental data about their physicochemical properties. Interestingly, the results of the analyses suggest that a seemingly homogeneous group of nanoparticles could be separated into sub-groups depending on interdependencies observed in their nanodescriptors. These particles represent an important category of nanomaterials that are currently mass produced. Each has been reputed to induce toxicological and/or cytotoxicological effects. Here, we propose an experimental methodology coupled with mathematical and statistical modeling that can serve as a prototype for a rigorous framework that aids in the ability to group nanomaterials together and to facilitate the subsequent analysis of trends in data based on quantitative modeling of nanoparticle-specific structure-activity relationships. The computational part of the proposed framework is rather general and can be applied to other groups of nanomaterials as well.

  8. The Importance of the C3 Framework

    ERIC Educational Resources Information Center

    Social Education, 2013

    2013-01-01

    "The C3 Framework for Social Studies State Standards will soon be released under the title "The College, Career, and Civic Life (C3) Framework for Social Studies State Standards: State Guidance for Enhancing the Rigor of K-12 Civics, Economics, Geography, and History." The C3 Project Director and Lead Writer was NCSS member Kathy…

  9. Mass, Momentum and Kinetic Energy of a Relativistic Particle

    ERIC Educational Resources Information Center

    Zanchini, Enzo

    2010-01-01

    A rigorous definition of mass in special relativity, proposed in a recent paper, is recalled and employed to obtain simple and rigorous deductions of the expressions of momentum and kinetic energy for a relativistic particle. The whole logical framework appears as the natural extension of the classical one. Only the first, second and third laws of…

  10. Four (Algorithms) in One (Bag): An Integrative Framework of Knowledge for Teaching the Standard Algorithms of the Basic Arithmetic Operations

    ERIC Educational Resources Information Center

    Raveh, Ira; Koichu, Boris; Peled, Irit; Zaslavsky, Orit

    2016-01-01

    In this article we present an integrative framework of knowledge for teaching the standard algorithms of the four basic arithmetic operations. The framework is based on a mathematical analysis of the algorithms, a connectionist perspective on teaching mathematics and an analogy with previous frameworks of knowledge for teaching arithmetic…

  11. A Framework for Analyzing the Collaborative Construction of Arguments and Its Interplay with Agency

    ERIC Educational Resources Information Center

    Mueller, Mary; Yankelewitz, Dina; Maher, Carolyn

    2012-01-01

    In this report, we offer a framework for analyzing the ways in which collaboration influences learners' building of mathematical arguments and thus promotes mathematical understanding. Building on a previous model used to analyze discursive practices of students engaged in mathematical problem solving, we introduce three types of collaboration and…

  12. A Framework for Mathematical Thinking: The Case of Linear Algebra

    ERIC Educational Resources Information Center

    Stewart, Sepideh; Thomas, Michael O. J.

    2009-01-01

    Linear algebra is one of the unavoidable advanced courses that many mathematics students encounter at university level. The research reported here was part of the first author's recent PhD study, where she created and applied a theoretical framework combining the strengths of two major mathematics education theories in order to investigate the…

  13. The Importance of Theoretical Frameworks and Mathematical Constructs in Designing Digital Tools

    ERIC Educational Resources Information Center

    Trinter, Christine

    2016-01-01

    The increase in availability of educational technologies over the past few decades has not only led to new practice in teaching mathematics but also to new perspectives in research, methodologies, and theoretical frameworks within mathematics education. Hence, the amalgamation of theoretical and pragmatic considerations in digital tool design…

  14. Teaching Multidigit Multiplication: Combining Multiple Frameworks to Analyse a Class Episode

    ERIC Educational Resources Information Center

    Clivaz, Stéphane

    2017-01-01

    This paper provides an analysis of a teaching episode of the multidigit algorithm for multiplication, with a focus on the influence of the teacher's mathematical knowledge on their teaching. The theoretical framework uses Mathematical Knowledge for Teaching, mathematical pertinence of the teacher and structuration of the milieu in a descending and…

  15. Double Dutch: A Tool for Designing Combinatorial Libraries of Biological Systems.

    PubMed

    Roehner, Nicholas; Young, Eric M; Voigt, Christopher A; Gordon, D Benjamin; Densmore, Douglas

    2016-06-17

    Recently, semirational approaches that rely on combinatorial assembly of characterized DNA components have been used to engineer biosynthetic pathways. In practice, however, it is not practical to assemble and test millions of pathway variants in order to elucidate how different DNA components affect the behavior of a pathway. To address this challenge, we apply a rigorous mathematical approach known as design of experiments (DOE) that can be used to construct empirical models of system behavior without testing all variants. To support this approach, we have developed a tool named Double Dutch, which uses a formal grammar and heuristic algorithms to automate the process of DOE library design. Compared to designing by hand, Double Dutch enables users to more efficiently and scalably design libraries of pathway variants that can be used in a DOE framework and uniquely provides a means to flexibly balance design considerations of statistical analysis, construction cost, and risk of homologous recombination, thereby demonstrating the utility of automating decision making when faced with complex design trade-offs.

  16. Capacity planning of a wide-sense nonblocking generalized survivable network

    NASA Astrophysics Data System (ADS)

    Ho, Kwok Shing; Cheung, Kwok Wai

    2006-06-01

    Generalized survivable networks (GSNs) have two interesting properties that are essential attributes for future backbone networks--full survivability against link failures and support for dynamic traffic demands. GSNs incorporate the nonblocking network concept into the survivable network models. Given a set of nodes and a topology that is at least two-edge connected, a certain minimum capacity is required for each edge to form a GSN. The edge capacity is bounded because each node has an input-output capacity limit that serves as a constraint for any allowable traffic demand matrix. The GSN capacity planning problem is nondeterministic polynomial time (NP) hard. We first give a rigorous mathematical framework; then we offer two different solution approaches. The two-phase approach is fast, but the joint optimization approach yields a better bound. We carried out numerical computations for eight networks with different topologies and found that the cost of a GSN is only a fraction (from 52% to 89%) more than that of a static survivable network.

  17. On the Concept of Random Orientation in Far-Field Electromagnetic Scattering by Nonspherical Particles

    NASA Technical Reports Server (NTRS)

    Mishchenko, Michael I.; Yurkin, Maxim A.

    2017-01-01

    Although the model of randomly oriented nonspherical particles has been used in a great variety of applications of far-field electromagnetic scattering, it has never been defined in strict mathematical terms. In this Letter we use the formalism of Euler rigid-body rotations to clarify the concept of statistically random particle orientations and derive its immediate corollaries in the form of most general mathematical properties of the orientation-averaged extinction and scattering matrices. Our results serve to provide a rigorous mathematical foundation for numerous publications in which the notion of randomly oriented particles and its light-scattering implications have been considered intuitively obvious.

  18. Theoretical Framework of Researcher Knowledge Development in Mathematics Education

    ERIC Educational Resources Information Center

    Kontorovich, Igor'

    2016-01-01

    The goal of this paper is to present a framework of researcher knowledge development in conducting a study in mathematics education. The key components of the framework are: knowledge germane to conducting a particular study, processes of knowledge accumulation, and catalyzing filters that influence a researcher's decision making. The components…

  19. Identifying and Using Picture Books with Quality Mathematical Content: Moving beyond "Counting on Frank" and "The Very Hungry Caterpillar"

    ERIC Educational Resources Information Center

    Marston, Jennie

    2014-01-01

    This article by Jennie Marston provides a framework to assist you in selecting appropriate picture books to present mathematical content. Jennie demonstrates the framework by applying three specific examples of picture books to the framework along with examples of activities.

  20. Morphing Continuum Theory: A First Order Approximation to the Balance Laws

    NASA Astrophysics Data System (ADS)

    Wonnell, Louis; Cheikh, Mohamad Ibrahim; Chen, James

    2017-11-01

    Morphing Continuum Theory is constructed under the framework of Rational Continuum Mechanics (RCM) for fluid flows with inner structure. This multiscale theory has been successfully emplyed to model turbulent flows. The framework of RCM ensures the mathematical rigor of MCT, but contains new material constants related to the inner structure. The physical meanings of these material constants have yet to be determined. Here, a linear deviation from the zeroth-order Boltzmann-Curtiss distribution function is derived. When applied to the Boltzmann-Curtiss equation, a first-order approximation of the MCT governing equations is obtained. The integral equations are then related to the appropriate material constants found in the heat flux, Cauchy stress, and moment stress terms in the governing equations. These new material properties associated with the inner structure of the fluid are compared with the corresponding integrals, and a clearer physical interpretation of these coefficients emerges. The physical meanings of these material properties is determined by analyzing previous results obtained from numerical simulations of MCT for compressible and incompressible flows. The implications for the physics underlying the MCT governing equations will also be discussed. This material is based upon work supported by the Air Force Office of Scientific Research under Award Number FA9550-17-1-0154.

  1. Computing Generalized Matrix Inverse on Spiking Neural Substrate

    PubMed Central

    Shukla, Rohit; Khoram, Soroosh; Jorgensen, Erik; Li, Jing; Lipasti, Mikko; Wright, Stephen

    2018-01-01

    Emerging neural hardware substrates, such as IBM's TrueNorth Neurosynaptic System, can provide an appealing platform for deploying numerical algorithms. For example, a recurrent Hopfield neural network can be used to find the Moore-Penrose generalized inverse of a matrix, thus enabling a broad class of linear optimizations to be solved efficiently, at low energy cost. However, deploying numerical algorithms on hardware platforms that severely limit the range and precision of representation for numeric quantities can be quite challenging. This paper discusses these challenges and proposes a rigorous mathematical framework for reasoning about range and precision on such substrates. The paper derives techniques for normalizing inputs and properly quantizing synaptic weights originating from arbitrary systems of linear equations, so that solvers for those systems can be implemented in a provably correct manner on hardware-constrained neural substrates. The analytical model is empirically validated on the IBM TrueNorth platform, and results show that the guarantees provided by the framework for range and precision hold under experimental conditions. Experiments with optical flow demonstrate the energy benefits of deploying a reduced-precision and energy-efficient generalized matrix inverse engine on the IBM TrueNorth platform, reflecting 10× to 100× improvement over FPGA and ARM core baselines. PMID:29593483

  2. Breaking the Constraints of Modernist Psychologizing: Mathematics Education Flirts with the Postmodern

    ERIC Educational Resources Information Center

    Peck, Frederick; Sriraman, Bharath

    2017-01-01

    Mathematics education emerged as a field in the height of modernism in science and mathematics. For decades, modernist psychology provided the dominant framework for inquiry in the field. Recently, this framework has started to sustain questions, leading to an ongoing conversation in the literature about the identity of the field. We join this…

  3. University Students' Metacognitive Failures in Mathematical Proving Investigated Based on the Framework of Assimilation and Accommodation

    ERIC Educational Resources Information Center

    Huda, Nizlel; Subanji; Nusantar, Toto; Susiswo; Sutawidjaja, Akbar; Rahardjo, Swasono

    2016-01-01

    This study aimed to determine students' metacognitive failure in Mathematics Education Program of FKIP in Jambi University investigated based on assimilation and accommodation Mathematical framework. There were 35 students, five students did not answer the question, three students completed the questions correctly and 27 students tried to solve…

  4. A Renormalisation Group Method. V. A Single Renormalisation Group Step

    NASA Astrophysics Data System (ADS)

    Brydges, David C.; Slade, Gordon

    2015-05-01

    This paper is the fifth in a series devoted to the development of a rigorous renormalisation group method applicable to lattice field theories containing boson and/or fermion fields, and comprises the core of the method. In the renormalisation group method, increasingly large scales are studied in a progressive manner, with an interaction parametrised by a field polynomial which evolves with the scale under the renormalisation group map. In our context, the progressive analysis is performed via a finite-range covariance decomposition. Perturbative calculations are used to track the flow of the coupling constants of the evolving polynomial, but on their own perturbative calculations are insufficient to control error terms and to obtain mathematically rigorous results. In this paper, we define an additional non-perturbative coordinate, which together with the flow of coupling constants defines the complete evolution of the renormalisation group map. We specify conditions under which the non-perturbative coordinate is contractive under a single renormalisation group step. Our framework is essentially combinatorial, but its implementation relies on analytic results developed earlier in the series of papers. The results of this paper are applied elsewhere to analyse the critical behaviour of the 4-dimensional continuous-time weakly self-avoiding walk and of the 4-dimensional -component model. In particular, the existence of a logarithmic correction to mean-field scaling for the susceptibility can be proved for both models, together with other facts about critical exponents and critical behaviour.

  5. An Exploratory Framework for Handling the Complexity of Mathematical Problem Posing in Small Groups

    ERIC Educational Resources Information Center

    Kontorovich, Igor; Koichu, Boris; Leikin, Roza; Berman, Avi

    2012-01-01

    The paper introduces an exploratory framework for handling the complexity of students' mathematical problem posing in small groups. The framework integrates four facets known from past research: task organization, students' knowledge base, problem-posing heuristics and schemes, and group dynamics and interactions. In addition, it contains a new…

  6. Problem Solving Frameworks for Mathematics and Software Development

    ERIC Educational Resources Information Center

    McMaster, Kirby; Sambasivam, Samuel; Blake, Ashley

    2012-01-01

    In this research, we examine how problem solving frameworks differ between Mathematics and Software Development. Our methodology is based on the assumption that the words used frequently in a book indicate the mental framework of the author. We compared word frequencies in a sample of 139 books that discuss problem solving. The books were grouped…

  7. Symmetry Properties of Potentiometric Titration Curves.

    ERIC Educational Resources Information Center

    Macca, Carlo; Bombi, G. Giorgio

    1983-01-01

    Demonstrates how the symmetry properties of titration curves can be efficiently and rigorously treated by means of a simple method, assisted by the use of logarithmic diagrams. Discusses the symmetry properties of several typical titration curves, comparing the graphical approach and an explicit mathematical treatment. (Author/JM)

  8. The KP Approximation Under a Weak Coriolis Forcing

    NASA Astrophysics Data System (ADS)

    Melinand, Benjamin

    2018-02-01

    In this paper, we study the asymptotic behavior of weakly transverse water-waves under a weak Coriolis forcing in the long wave regime. We derive the Boussinesq-Coriolis equations in this setting and we provide a rigorous justification of this model. Then, from these equations, we derive two other asymptotic models. When the Coriolis forcing is weak, we fully justify the rotation-modified Kadomtsev-Petviashvili equation (also called Grimshaw-Melville equation). When the Coriolis forcing is very weak, we rigorously justify the Kadomtsev-Petviashvili equation. This work provides the first mathematical justification of the KP approximation under a Coriolis forcing.

  9. MATHEMATICAL METHODS IN MEDICAL IMAGE PROCESSING

    PubMed Central

    ANGENENT, SIGURD; PICHON, ERIC; TANNENBAUM, ALLEN

    2013-01-01

    In this paper, we describe some central mathematical problems in medical imaging. The subject has been undergoing rapid changes driven by better hardware and software. Much of the software is based on novel methods utilizing geometric partial differential equations in conjunction with standard signal/image processing techniques as well as computer graphics facilitating man/machine interactions. As part of this enterprise, researchers have been trying to base biomedical engineering principles on rigorous mathematical foundations for the development of software methods to be integrated into complete therapy delivery systems. These systems support the more effective delivery of many image-guided procedures such as radiation therapy, biopsy, and minimally invasive surgery. We will show how mathematics may impact some of the main problems in this area, including image enhancement, registration, and segmentation. PMID:23645963

  10. Quantum Chemistry in Great Britain: Developing a Mathematical Framework for Quantum Chemistry

    NASA Astrophysics Data System (ADS)

    Simões, Ana; Gavroglu, Kostas

    By 1935 quantum chemistry was already delineated as a distinct sub-discipline due to the contributions of Fritz London, Walter Heitler, Friedrich Hund, Erich Hückel, Robert Mulliken, Linus Pauling, John van Vleck and John Slater. These people are credited with showing that the application of quantum mechanics to the solution of chemical problems was, indeed, possible, especially so after the introduction of a number of new concepts and the adoption of certain approximation methods. And though a number of chemists had started talking of the formation of theoretical or, even, mathematical chemistry, a fully developed mathematical framework of quantum chemistry was still wanting. The work of three persons in particular-of John E. Lennard-Jones, Douglas R. Hartree, and Charles Alfred Coulson-has been absolutely crucial in the development of such a framework. In this paper we shall discuss the work of these three researchers who started their careers in the Cambridge tradition of mathematical physics and who at some point of their careers all became professors of applied mathematics. We shall argue that their work consisted of decisive contributions to the development of such a mathematical framework for quantum chemistry.

  11. Single-case synthesis tools I: Comparing tools to evaluate SCD quality and rigor.

    PubMed

    Zimmerman, Kathleen N; Ledford, Jennifer R; Severini, Katherine E; Pustejovsky, James E; Barton, Erin E; Lloyd, Blair P

    2018-03-03

    Tools for evaluating the quality and rigor of single case research designs (SCD) are often used when conducting SCD syntheses. Preferred components include evaluations of design features related to the internal validity of SCD to obtain quality and/or rigor ratings. Three tools for evaluating the quality and rigor of SCD (Council for Exceptional Children, What Works Clearinghouse, and Single-Case Analysis and Design Framework) were compared to determine if conclusions regarding the effectiveness of antecedent sensory-based interventions for young children changed based on choice of quality evaluation tool. Evaluation of SCD quality differed across tools, suggesting selection of quality evaluation tools impacts evaluation findings. Suggestions for selecting an appropriate quality and rigor assessment tool are provided and across-tool conclusions are drawn regarding the quality and rigor of studies. Finally, authors provide guidance for using quality evaluations in conjunction with outcome analyses when conducting syntheses of interventions evaluated in the context of SCD. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Q and A about the College, Career, and Civic Life (C3) Framework for Social Studies State Standards

    ERIC Educational Resources Information Center

    Herczog, Michelle

    2013-01-01

    The "College, Career, and Civic Life (C3) Framework for Social Studies State Standards: State Guidance for Enhancing the Rigor of K-12 Civics, Economics, Geography, and History" will soon be released. The C3 Framework was developed to serve two audiences: for states to upgrade their state social studies standards, and for…

  13. DESCQA: Synthetic Sky Catalog Validation Framework

    NASA Astrophysics Data System (ADS)

    Mao, Yao-Yuan; Uram, Thomas D.; Zhou, Rongpu; Kovacs, Eve; Ricker, Paul M.; Kalmbach, J. Bryce; Padilla, Nelson; Lanusse, François; Zu, Ying; Tenneti, Ananth; Vikraman, Vinu; DeRose, Joseph

    2018-04-01

    The DESCQA framework provides rigorous validation protocols for assessing the quality of high-quality simulated sky catalogs in a straightforward and comprehensive way. DESCQA enables the inspection, validation, and comparison of an inhomogeneous set of synthetic catalogs via the provision of a common interface within an automated framework. An interactive web interface is also available at portal.nersc.gov/project/lsst/descqa.

  14. The C3 Framework: One Year Later - an Interview with Kathy Swan

    ERIC Educational Resources Information Center

    Social Education, 2014

    2014-01-01

    On September 17, 2013 (Constitution Day), the C3 Framework was released under the title "The College, Career and Civic Life (C3) Framework for Social Studies State Standards: Guidance for Enhancing the Rigor of K-12 Civics, Economics, Geography, and History." The C3 Project Director and lead writer was NCSS member Kathy Swan, who is…

  15. Tactics for mechanized reasoning: a commentary on Milner (1984) ‘The use of machines to assist in rigorous proof’

    PubMed Central

    Gordon, M. J. C.

    2015-01-01

    Robin Milner's paper, ‘The use of machines to assist in rigorous proof’, introduces methods for automating mathematical reasoning that are a milestone in the development of computer-assisted theorem proving. His ideas, particularly his theory of tactics, revolutionized the architecture of proof assistants. His methodology for automating rigorous proof soundly, particularly his theory of type polymorphism in programing, led to major contributions to the theory and design of programing languages. His citation for the 1991 ACM A.M. Turing award, the most prestigious award in computer science, credits him with, among other achievements, ‘probably the first theoretically based yet practical tool for machine assisted proof construction’. This commentary was written to celebrate the 350th anniversary of the journal Philosophical Transactions of the Royal Society. PMID:25750147

  16. Towards a Socio-Cultural Framework for the Analysis of Joint Student-Teacher Development over Technology-Based Mathematics Lessons

    ERIC Educational Resources Information Center

    Monaghan, John

    2013-01-01

    This paper offers a framework, an extension of Valsiner's "zone theory", for the analysis of joint student-teacher development over a series of technology-based mathematics lessons. The framework is suitable for developing research studies over a moderately long period of time and considers interrelated student-teacher development as…

  17. Mathematical Frameworks for Diagnostics, Prognostics and Condition Based Maintenance Problems

    DTIC Science & Technology

    2008-08-15

    REPORT Mathematical Frameworks for Diagnostics, Prognostics and Condition Based Maintenance Problems (W911NF-05-1-0426) 14. ABSTRACT 16. SECURITY ...other documentation. 12. DISTRIBUTION AVAILIBILITY STATEMENT Approved for Public Release; Distribution Unlimited 9. SPONSORING/MONITORING AGENCY NAME...parallel and distributed computing environment were researched. In support of the Condition Based Maintenance (CBM) philosophy, a theoretical framework

  18. Towards a Unified Theory of Engineering Education

    ERIC Educational Resources Information Center

    Salcedo Orozco, Oscar H.

    2017-01-01

    STEM education is an interdisciplinary approach to learning where rigorous academic concepts are coupled with real-world lessons and activities as students apply science, technology, engineering, and mathematics in contexts that make connections between school, community, work, and the global enterprise enabling STEM literacy (Tsupros, Kohler and…

  19. Evaluation, Instruction and Policy Making. IIEP Seminar Paper: 9.

    ERIC Educational Resources Information Center

    Bloom, Benjamin S.

    Recently, educational evaluation has attempted to use the precision, objectivity, and mathematical rigor of the psychological measurement field as well as to find ways in which instrumentation and data utilization could more directly be related to educational institutions, educational processes, and educational purposes. The linkages between…

  20. Mathematical methods for protein science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hart, W.; Istrail, S.; Atkins, J.

    1997-12-31

    Understanding the structure and function of proteins is a fundamental endeavor in molecular biology. Currently, over 100,000 protein sequences have been determined by experimental methods. The three dimensional structure of the protein determines its function, but there are currently less than 4,000 structures known to atomic resolution. Accordingly, techniques to predict protein structure from sequence have an important role in aiding the understanding of the Genome and the effects of mutations in genetic disease. The authors describe current efforts at Sandia to better understand the structure of proteins through rigorous mathematical analyses of simple lattice models. The efforts have focusedmore » on two aspects of protein science: mathematical structure prediction, and inverse protein folding.« less

  1. A Rigorous Framework for Optimization of Expensive Functions by Surrogates

    NASA Technical Reports Server (NTRS)

    Booker, Andrew J.; Dennis, J. E., Jr.; Frank, Paul D.; Serafini, David B.; Torczon, Virginia; Trosset, Michael W.

    1998-01-01

    The goal of the research reported here is to develop rigorous optimization algorithms to apply to some engineering design problems for which design application of traditional optimization approaches is not practical. This paper presents and analyzes a framework for generating a sequence of approximations to the objective function and managing the use of these approximations as surrogates for optimization. The result is to obtain convergence to a minimizer of an expensive objective function subject to simple constraints. The approach is widely applicable because it does not require, or even explicitly approximate, derivatives of the objective. Numerical results are presented for a 31-variable helicopter rotor blade design example and for a standard optimization test example.

  2. Creating opportunities to learn in mathematics education: a sociocultural perspective

    NASA Astrophysics Data System (ADS)

    Goos, Merrilyn

    2014-09-01

    The notion of `opportunities to learn in mathematics education' is open to interpretation from multiple theoretical perspectives, where the focus may be on cognitive, social or affective dimensions of learning, curriculum and assessment design, issues of equity and access, or the broad policy and political contexts of learning and teaching. In this paper, I conceptualise opportunities to learn from a sociocultural perspective. Beginning with my own research on the learning of students and teachers of mathematics, I sketch out two theoretical frameworks for understanding this learning. One framework extends Valsiner's zone theory of child development, and the other draws on Wenger's ideas about communities of practice. My aim is then to suggest how these two frameworks might help us understand the learning of others who have an interest in mathematics education, such as mathematics teacher educator-researchers and mathematicians. In doing so, I attempt to move towards a synthesis of ideas to inform mathematics education research and development.

  3. The Material Supply Adjustment Process in RAMF-SM, Step 2

    DTIC Science & Technology

    2016-06-01

    contain. The Risk Assessment and Mitigation Framework for Strategic Materials (RAMF-SM) is a suite of mathematical models and databases that has been...Risk Assessment and Mitigation Framework for Strategic Materials (RAMF-SM) is a suite of mathematical models and databases used to support the...and computes material shortfalls.1 Several mathematical models and dozens of databases, encompassing thousands of data items, support the

  4. Value of Flexibility - Phase 1

    DTIC Science & Technology

    2010-09-25

    weaknesses of each approach. During this period, we also explored the development of an analytical framework based on sound mathematical constructs... mathematical constructs. A review of the current state-of-the-art showed that there is little unifying theory or guidance on best approaches to...research activities is in developing a coherent value based definition of flexibility that is based on an analytical framework that is mathematically

  5. A framework for optimization and quantification of uncertainty and sensitivity for developing carbon capture systems

    DOE PAGES

    Eslick, John C.; Ng, Brenda; Gao, Qianwen; ...

    2014-12-31

    Under the auspices of the U.S. Department of Energy’s Carbon Capture Simulation Initiative (CCSI), a Framework for Optimization and Quantification of Uncertainty and Sensitivity (FOQUS) has been developed. This tool enables carbon capture systems to be rapidly synthesized and rigorously optimized, in an environment that accounts for and propagates uncertainties in parameters and models. FOQUS currently enables (1) the development of surrogate algebraic models utilizing the ALAMO algorithm, which can be used for superstructure optimization to identify optimal process configurations, (2) simulation-based optimization utilizing derivative free optimization (DFO) algorithms with detailed black-box process models, and (3) rigorous uncertainty quantification throughmore » PSUADE. FOQUS utilizes another CCSI technology, the Turbine Science Gateway, to manage the thousands of simulated runs necessary for optimization and UQ. Thus, this computational framework has been demonstrated for the design and analysis of a solid sorbent based carbon capture system.« less

  6. A Mathematical Model for Pathogen Cross-Contamination Dynamics during the Postharvest Processing of Leafy Greens.

    PubMed

    Mokhtari, Amir; Oryang, David; Chen, Yuhuan; Pouillot, Regis; Van Doren, Jane

    2018-01-08

    We developed a probabilistic mathematical model for the postharvest processing of leafy greens focusing on Escherichia coli O157:H7 contamination of fresh-cut romaine lettuce as the case study. Our model can (i) support the investigation of cross-contamination scenarios, and (ii) evaluate and compare different risk mitigation options. We used an agent-based modeling framework to predict the pathogen prevalence and levels in bags of fresh-cut lettuce and quantify spread of E. coli O157:H7 from contaminated lettuce to surface areas of processing equipment. Using an unbalanced factorial design, we were able to propagate combinations of random values assigned to model inputs through different processing steps and ranked statistically significant inputs with respect to their impacts on selected model outputs. Results indicated that whether contamination originated on incoming lettuce heads or on the surface areas of processing equipment, pathogen prevalence among bags of fresh-cut lettuce and batches was most significantly impacted by the level of free chlorine in the flume tank and frequency of replacing the wash water inside the tank. Pathogen levels in bags of fresh-cut lettuce were most significantly influenced by the initial levels of contamination on incoming lettuce heads or surface areas of processing equipment. The influence of surface contamination on pathogen prevalence or levels in fresh-cut bags depended on the location of that surface relative to the flume tank. This study demonstrates that developing a flexible yet mathematically rigorous modeling tool, a "virtual laboratory," can provide valuable insights into the effectiveness of individual and combined risk mitigation options. © 2018 The Authors Risk Analysis published by Wiley Periodicals, Inc. on behalf of Society for Risk Analysis.

  7. Thermodynamically accurate modeling of the catalytic cycle of photosynthetic oxygen evolution: a mathematical solution to asymmetric Markov chains.

    PubMed

    Vinyard, David J; Zachary, Chase E; Ananyev, Gennady; Dismukes, G Charles

    2013-07-01

    Forty-three years ago, Kok and coworkers introduced a phenomenological model describing period-four oscillations in O2 flash yields during photosynthetic water oxidation (WOC), which had been first reported by Joliot and coworkers. The original two-parameter Kok model was subsequently extended in its level of complexity to better simulate diverse data sets, including intact cells and isolated PSII-WOCs, but at the expense of introducing physically unrealistic assumptions necessary to enable numerical solutions. To date, analytical solutions have been found only for symmetric Kok models (inefficiencies are equally probable for all intermediates, called "S-states"). However, it is widely accepted that S-state reaction steps are not identical and some are not reversible (by thermodynamic restraints) thereby causing asymmetric cycles. We have developed a mathematically more rigorous foundation that eliminates unphysical assumptions known to be in conflict with experiments and adopts a new experimental constraint on solutions. This new algorithm termed STEAMM for S-state Transition Eigenvalues of Asymmetric Markov Models enables solutions to models having fewer adjustable parameters and uses automated fitting to experimental data sets, yielding higher accuracy and precision than the classic Kok or extended Kok models. This new tool provides a general mathematical framework for analyzing damped oscillations arising from any cycle period using any appropriate Markov model, regardless of symmetry. We illustrate applications of STEAMM that better describe the intrinsic inefficiencies for photon-to-charge conversion within PSII-WOCs that are responsible for damped period-four and period-two oscillations of flash O2 yields across diverse species, while using simpler Markov models free from unrealistic assumptions. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Solving America's Math Problem

    ERIC Educational Resources Information Center

    Vigdor, Jacob

    2013-01-01

    Concern about students' math achievement is nothing new, and debates about the mathematical training of the nation's youth date back a century or more. In the early 20th century, American high-school students were starkly divided, with rigorous math courses restricted to a college-bound elite. At midcentury, the "new math" movement sought,…

  9. Rigorous Mathematical Modeling of the Adsorption System with Electrothermal Regeneration of the Used Adsorbent

    DTIC Science & Technology

    2003-09-29

    NanoTechnology and Metallurgy Belgrade 11000 Yugoslavia 8. PERFORMING ORGANIZATION REPORT NUMBER N/A 10. SPONSOR/MONITOR’S ACRONYM(S)9...outlet annular tube I - ZONE I II - ZONE II 39 References: 1. Tayo Kaken Company, A means of reactivating worked charcoal , Japanese

  10. A Novel Approach to Physiology Education for Biomedical Engineering Students

    ERIC Educational Resources Information Center

    DiCecco, J.; Wu, J.; Kuwasawa, K.; Sun, Y.

    2007-01-01

    It is challenging for biomedical engineering programs to incorporate an indepth study of the systemic interdependence of cells, tissues, and organs into the rigorous mathematical curriculum that is the cornerstone of engineering education. To be sure, many biomedical engineering programs require their students to enroll in anatomy and physiology…

  11. Group Practices: A New Way of Viewing CSCL

    ERIC Educational Resources Information Center

    Stahl, Gerry

    2017-01-01

    The analysis of "group practices" can make visible the work of novices learning how to inquire in science or mathematics. These ubiquitous practices are invisibly taken for granted by adults, but can be observed and rigorously studied in adequate traces of online collaborative learning. Such an approach contrasts with traditional…

  12. A Transformative Model for Undergraduate Quantitative Biology Education

    ERIC Educational Resources Information Center

    Usher, David C.; Driscoll, Tobin A.; Dhurjati, Prasad; Pelesko, John A.; Rossi, Louis F.; Schleiniger, Gilberto; Pusecker, Kathleen; White, Harold B.

    2010-01-01

    The "BIO2010" report recommended that students in the life sciences receive a more rigorous education in mathematics and physical sciences. The University of Delaware approached this problem by (1) developing a bio-calculus section of a standard calculus course, (2) embedding quantitative activities into existing biology courses, and (3)…

  13. Exploring in Aeronautics. An Introduction to Aeronautical Sciences.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Cleveland, OH. Lewis Research Center.

    This curriculum guide is based on a year of lectures and projects of a contemporary special-interest Explorer program intended to provide career guidance and motivation for promising students interested in aerospace engineering and scientific professions. The adult-oriented program avoids technicality and rigorous mathematics and stresses real…

  14. Virginia's College and Career Readiness Initiative

    ERIC Educational Resources Information Center

    Virginia Department of Education, 2010

    2010-01-01

    In 1995, Virginia began a broad educational reform program that resulted in revised, rigorous content standards, the Virginia Standards of Learning (SOL), in the content areas of English, mathematics, science, and history and social science. These grade-by-grade and course-based standards were developed over 14 months with revision teams including…

  15. Math Exchanges: Guiding Young Mathematicians in Small-Group Meetings

    ERIC Educational Resources Information Center

    Wedekind, Kassia Omohundro

    2011-01-01

    Traditionally, small-group math instruction has been used as a format for reaching children who struggle to understand. Math coach Kassia Omohundro Wedekind uses small-group instruction as the centerpiece of her math workshop approach, engaging all students in rigorous "math exchanges." The key characteristics of these mathematical conversations…

  16. Zoos, Aquariums, and Expanding Students' Data Literacy

    ERIC Educational Resources Information Center

    Mokros, Jan; Wright, Tracey

    2009-01-01

    Zoo and aquarium educators are increasingly providing educationally rigorous programs that connect their animal collections with curriculum standards in mathematics as well as science. Partnering with zoos and aquariums is a powerful way for teachers to provide students with more opportunities to observe, collect, and analyze scientific data. This…

  17. TIMSS Advanced 2015 Assessment Frameworks

    ERIC Educational Resources Information Center

    Mullis, Ina V. S., Ed.; Martin, Michael O., Ed.

    2014-01-01

    The "TIMSS Advanced 2015 Assessment Frameworks" provides the foundation for the two international assessments to take place as part of the International Association for the Evaluation of Educational Achievement's TIMSS (Trends in International Mathematics and Science Study) Advanced 2015--Advanced Mathematics and Physics. Chapter 1 (Liv…

  18. A user-centered model for designing consumer mobile health (mHealth) applications (apps).

    PubMed

    Schnall, Rebecca; Rojas, Marlene; Bakken, Suzanne; Brown, William; Carballo-Dieguez, Alex; Carry, Monique; Gelaude, Deborah; Mosley, Jocelyn Patterson; Travers, Jasmine

    2016-04-01

    Mobile technologies are a useful platform for the delivery of health behavior interventions. Yet little work has been done to create a rigorous and standardized process for the design of mobile health (mHealth) apps. This project sought to explore the use of the Information Systems Research (ISR) framework as guide for the design of mHealth apps. Our work was guided by the ISR framework which is comprised of 3 cycles: Relevance, Rigor and Design. In the Relevance cycle, we conducted 5 focus groups with 33 targeted end-users. In the Rigor cycle, we performed a review to identify technology-based interventions for meeting the health prevention needs of our target population. In the Design Cycle, we employed usability evaluation methods to iteratively develop and refine mock-ups for a mHealth app. Through an iterative process, we identified barriers and facilitators to the use of mHealth technology for HIV prevention for high-risk MSM, developed 'use cases' and identified relevant functional content and features for inclusion in a design document to guide future app development. Findings from our work support the use of the ISR framework as a guide for designing future mHealth apps. Results from this work provide detailed descriptions of the user-centered design and system development and have heuristic value for those venturing into the area of technology-based intervention work. Findings from this study support the use of the ISR framework as a guide for future mHealth app development. Use of the ISR framework is a potentially useful approach for the design of a mobile app that incorporates end-users' design preferences. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. On making cuts for magnetic scalar potentials in multiply connected regions

    NASA Astrophysics Data System (ADS)

    Kotiuga, P. R.

    1987-04-01

    The problem of making cuts is of importance to scalar potential formulations of three-dimensional eddy current problems. Its heuristic solution has been known for a century [J. C. Maxwell, A Treatise on Electricity and Magnetism, 3rd ed. (Clarendon, Oxford, 1981), Chap. 1, Article 20] and in the last decade, with the use of finite element methods, a restricted combinatorial variant has been proposed and solved [M. L. Brown, Int. J. Numer. Methods Eng. 20, 665 (1984)]. This problem, in its full generality, has never received a rigorous mathematical formulation. This paper presents such a formulation and outlines a rigorous proof of existence. The technique used in the proof expose the incredible intricacy of the general problem and the restrictive assumptions of Brown [Int. J. Numer. Methods Eng. 20, 665 (1984)]. Finally, the results make rigorous Kotiuga's (Ph. D. Thesis, McGill University, Montreal, 1984) heuristic interpretation of cuts and duality theorems via intersection matrices.

  20. Collisional damping rates for plasma waves

    NASA Astrophysics Data System (ADS)

    Tigik, S. F.; Ziebell, L. F.; Yoon, P. H.

    2016-06-01

    The distinction between the plasma dynamics dominated by collisional transport versus collective processes has never been rigorously addressed until recently. A recent paper [P. H. Yoon et al., Phys. Rev. E 93, 033203 (2016)] formulates for the first time, a unified kinetic theory in which collective processes and collisional dynamics are systematically incorporated from first principles. One of the outcomes of such a formalism is the rigorous derivation of collisional damping rates for Langmuir and ion-acoustic waves, which can be contrasted to the heuristic customary approach. However, the results are given only in formal mathematical expressions. The present brief communication numerically evaluates the rigorous collisional damping rates by considering the case of plasma particles with Maxwellian velocity distribution function so as to assess the consequence of the rigorous formalism in a quantitative manner. Comparison with the heuristic ("Spitzer") formula shows that the accurate damping rates are much lower in magnitude than the conventional expression, which implies that the traditional approach over-estimates the importance of attenuation of plasma waves by collisional relaxation process. Such a finding may have a wide applicability ranging from laboratory to space and astrophysical plasmas.

  1. TIMSS Advanced 2015 and Advanced Placement Calculus & Physics. A Framework Analysis. Research in Review 2016-1

    ERIC Educational Resources Information Center

    Lazzaro, Christopher; Jones, Lee; Webb, David C.; Grover, Ryan; Di Giacomo, F. Tony; Marino, Katherine Adele

    2016-01-01

    This report will determine to what degree the AP Physics 1 and 2 and AP Calculus AB and BC frameworks are aligned with the Trends in International Mathematics and Science Study (TIMSS) Advanced Physics and Mathematics frameworks. This will enable an exploration of any differences in content coverage and levels of complexity, and will set the stage…

  2. Defining as a Mathematical Activity: A Framework for Characterizing Progress from Informal to More Formal Ways of Reasoning

    ERIC Educational Resources Information Center

    Zandieh, Michelle; Rasmussen, Chris

    2010-01-01

    The purpose of this paper is to further the notion of defining as a mathematical activity by elaborating a framework that structures the role of defining in student progress from informal to more formal ways of reasoning. The framework is the result of a retrospective account of a significant learning experience that occurred in an undergraduate…

  3. Creative strategies of businesses with the holistic eigensolution in manufacturing industries

    NASA Astrophysics Data System (ADS)

    Zeichen, Gerfried; Huray, Paul G.

    1998-10-01

    It is a mission of this contribution to recognize and synthesize all the efforts in industry and in management science to strengthen our techniques and tools for successfully solving increasingly complex leadership problems in manufacturing industries. With the high standard of the work sharing method--the so called Taylorism principle--for cost efficient and mass production, invented at the beginning of the 20th century and the opening of the world market for global sales of goods and services a gigantic progress in living standards was reached. But at the beginning of the 21st century we are needing new ideas and methods for the guidance of overcoming increasing complexity. The holistic eigensolution presents a new operational framework for viewing and controlling the behavior of businesses. In contrast to the traditional process for viewing complex business systems through the intricate analysis of every part of that system, the authors have employed a technique used by physicists to understand the characteristic of `eigen' behaviors of complex physical systems. This method of systems analysis is achieved by observing interactions between the parts in a whole. This kind of analysis has a rigorous mathematical foundation in the physical world and it can be employed to understand most natural phenomena. Within a holistic framework, the observer is challenged to view the system form just the right perspective so that characteristic eigenmodes reveal themselves. The conclusion of the article describes why exactly the intelligent manufacturing science--especially in a broader sense--has the responsibility and chance to develop the holistic eigensolution framework as a Taylorism II-principle for the 21st century.

  4. Computation of elementary modes: a unifying framework and the new binary approach

    PubMed Central

    Gagneur, Julien; Klamt, Steffen

    2004-01-01

    Background Metabolic pathway analysis has been recognized as a central approach to the structural analysis of metabolic networks. The concept of elementary (flux) modes provides a rigorous formalism to describe and assess pathways and has proven to be valuable for many applications. However, computing elementary modes is a hard computational task. In recent years we assisted in a multiplication of algorithms dedicated to it. We require a summarizing point of view and a continued improvement of the current methods. Results We show that computing the set of elementary modes is equivalent to computing the set of extreme rays of a convex cone. This standard mathematical representation provides a unified framework that encompasses the most prominent algorithmic methods that compute elementary modes and allows a clear comparison between them. Taking lessons from this benchmark, we here introduce a new method, the binary approach, which computes the elementary modes as binary patterns of participating reactions from which the respective stoichiometric coefficients can be computed in a post-processing step. We implemented the binary approach in FluxAnalyzer 5.1, a software that is free for academics. The binary approach decreases the memory demand up to 96% without loss of speed giving the most efficient method available for computing elementary modes to date. Conclusions The equivalence between elementary modes and extreme ray computations offers opportunities for employing tools from polyhedral computation for metabolic pathway analysis. The new binary approach introduced herein was derived from this general theoretical framework and facilitates the computation of elementary modes in considerably larger networks. PMID:15527509

  5. Using Framework Analysis in nursing research: a worked example.

    PubMed

    Ward, Deborah J; Furber, Christine; Tierney, Stephanie; Swallow, Veronica

    2013-11-01

    To demonstrate Framework Analysis using a worked example and to illustrate how criticisms of qualitative data analysis including issues of clarity and transparency can be addressed. Critics of the analysis of qualitative data sometimes cite lack of clarity and transparency about analytical procedures; this can deter nurse researchers from undertaking qualitative studies. Framework Analysis is flexible, systematic, and rigorous, offering clarity, transparency, an audit trail, an option for theme-based and case-based analysis and for readily retrievable data. This paper offers further explanation of the process undertaken which is illustrated with a worked example. Data were collected from 31 nursing students in 2009 using semi-structured interviews. The data collected are not reported directly here but used as a worked example for the five steps of Framework Analysis. Suggestions are provided to guide researchers through essential steps in undertaking Framework Analysis. The benefits and limitations of Framework Analysis are discussed. Nurses increasingly use qualitative research methods and need to use an analysis approach that offers transparency and rigour which Framework Analysis can provide. Nurse researchers may find the detailed critique of Framework Analysis presented in this paper a useful resource when designing and conducting qualitative studies. Qualitative data analysis presents challenges in relation to the volume and complexity of data obtained and the need to present an 'audit trail' for those using the research findings. Framework Analysis is an appropriate, rigorous and systematic method for undertaking qualitative analysis. © 2013 Blackwell Publishing Ltd.

  6. Mathematics education for social justice

    NASA Astrophysics Data System (ADS)

    Suhendra

    2016-02-01

    Mathematics often perceived as a difficult subject with many students failing to understand why they learn mathematics. This situation has been further aggravated by the teaching and learning processes used, which is mechanistic without considering students' needs. The learning of mathematics tends to be just a compulsory subject, in which all students have to attend its classes. Social justice framework facilitates individuals or groups as a whole and provides equitable approaches to achieving equitable outcomes by recognising disadvantage. Applying social justice principles in educational context is related to how the teachers treat their students, dictates that all students the right to equal treatment regardless of their background and completed with applying social justice issues integrated with the content of the subject in order to internalise the principles of social justice simultaneously the concepts of the subject. The study examined the usefulness of implementing the social justice framework as a means of improving the quality of mathematics teaching in Indonesia involved four teacher-participants and their mathematics classes. The study used action research as the research methodology in which the teachers implemented and evaluated their use of social justice framework in their teaching. The data were collected using multiple research methods while analysis and interpretation of the data were carried out throughout the study. The findings of the study indicated that there were a number of challengesrelated to the implementation of the social justice framework. The findings also indicated that, the teachers were provided with a comprehensive guide that they could draw on to make decisions about how they could improve their lessons. The interactions among students and between the teachers and the students improved, they became more involved in teaching and learning process. Using social justice framework helped the teachers to make mathematics more relevant to students. This increased relevance led to increasing students' engagement in the teaching and learning process and becoming more accessible to all students. Additionally, the findings have the potential to make a contribution to those seeking to reform mathematics teaching in Indonesia. The results could inform policy makers and professional development providers about how social justice framework might contribute to the educational reform in Indonesia.

  7. Knowledge of Curriculum Embedded Mathematics: Exploring a Critical Domain of Teaching

    ERIC Educational Resources Information Center

    Remillard, Janine; Kim, Ok-Kyeong

    2017-01-01

    This paper proposes a framework for identifying the mathematical knowledge teachers activate when using curriculum resources. We use the term "knowledge of curriculum embedded mathematics" (KCEM) to refer to the mathematics knowledge activated by teachers when reading and interpreting mathematical tasks, instructional designs, and…

  8. Approximation Methods for Inverse Problems Governed by Nonlinear Parabolic Systems

    DTIC Science & Technology

    1999-12-17

    We present a rigorous theoretical framework for approximation of nonlinear parabolic systems with delays in the context of inverse least squares...numerical results demonstrating the convergence are given for a model of dioxin uptake and elimination in a distributed liver model that is a special case of the general theoretical framework .

  9. Higher Order Thinking Skills: Challenging All Students to Achieve

    ERIC Educational Resources Information Center

    Williams, R. Bruce

    2007-01-01

    Explicit instruction in thinking skills must be a priority goal of all teachers. In this book, the author presents a framework of the five Rs: Relevancy, Richness, Relatedness, Rigor, and Recursiveness. The framework serves to illuminate instruction in critical and creative thinking skills for K-12 teachers across content areas. Each chapter…

  10. Test Anxiety and the Curriculum: The Subject Matters.

    ERIC Educational Resources Information Center

    Everson, Howard T.; And Others

    College students' self-reported test anxiety levels in English, mathematics, physical science, and social science were compared to develop empirical support for the claim that students, in general, are more anxious about tests in rigorous academic subjects than in the humanities and to understand the curriculum-related sources of anxiety. It was…

  11. Useful Material Efficiency Green Metrics Problem Set Exercises for Lecture and Laboratory

    ERIC Educational Resources Information Center

    Andraos, John

    2015-01-01

    A series of pedagogical problem set exercises are posed that illustrate the principles behind material efficiency green metrics and their application in developing a deeper understanding of reaction and synthesis plan analysis and strategies to optimize them. Rigorous, yet simple, mathematical proofs are given for some of the fundamental concepts,…

  12. The Art of Learning: A Guide to Outstanding North Carolina Arts in Education Programs.

    ERIC Educational Resources Information Center

    Herman, Miriam L.

    The Arts in Education programs delineated in this guide complement the rigorous arts curriculum taught by arts specialists in North Carolina schools and enable students to experience the joy of the creative process while reinforcing learning in other curricula: language arts, mathematics, social studies, science, and physical education. Programs…

  13. Topics in Computational Learning Theory and Graph Algorithms.

    ERIC Educational Resources Information Center

    Board, Raymond Acton

    This thesis addresses problems from two areas of theoretical computer science. The first area is that of computational learning theory, which is the study of the phenomenon of concept learning using formal mathematical models. The goal of computational learning theory is to investigate learning in a rigorous manner through the use of techniques…

  14. High Standards Help Struggling Students: New Evidence. Charts You Can Trust

    ERIC Educational Resources Information Center

    Clark, Constance; Cookson, Peter W., Jr.

    2012-01-01

    The Common Core State Standards, adopted by 46 states and the District of Columbia, promise to raise achievement in English and mathematics through rigorous standards that promote deeper learning. But while most policymakers, researchers, and educators have embraced these higher standards, some question the fairness of raising the academic bar on…

  15. Improving Mathematical Problem Solving in Grades 4 through 8. IES Practice Guide. NCEE 2012-4055

    ERIC Educational Resources Information Center

    Woodward, John; Beckmann, Sybilla; Driscoll, Mark; Franke, Megan; Herzig, Patricia; Jitendra, Asha; Koedinger, Kenneth R.; Ogbuehi, Philip

    2012-01-01

    The Institute of Education Sciences (IES) publishes practice guides in education to bring the best available evidence and expertise to bear on current challenges in education. Authors of practice guides combine their expertise with the findings of rigorous research, when available, to develop specific recommendations for addressing these…

  16. Statistical Analyses Comparing Prismatic Magnetite Crystals in ALH84001 Carbonate Globules with those from the Terrestrial Magnetotactic Bacteria Strain MV-1

    NASA Technical Reports Server (NTRS)

    Thomas-Keprta, Kathie L.; Clemett, Simon J.; Bazylinski, Dennis A.; Kirschvink, Joseph L.; McKay, David S.; Wentworth, Susan J.; Vali, H.; Gibson, Everett K.

    2000-01-01

    Here we use rigorous mathematical modeling to compare ALH84001 prismatic magnetites with those produced by terrestrial magnetotactic bacteria, MV-1. We find that this subset of the Martian magnetites appears to be statistically indistinguishable from those of MV-1.

  17. Shaping Social Work Science: What Should Quantitative Researchers Do?

    ERIC Educational Resources Information Center

    Guo, Shenyang

    2015-01-01

    Based on a review of economists' debates on mathematical economics, this article discusses a key issue for shaping the science of social work--research methodology. The article describes three important tasks quantitative researchers need to fulfill in order to enhance the scientific rigor of social work research. First, to test theories using…

  18. Louis Guttman's Contributions to Classical Test Theory

    ERIC Educational Resources Information Center

    Zimmerman, Donald W.; Williams, Richard H.; Zumbo, Bruno D.; Ross, Donald

    2005-01-01

    This article focuses on Louis Guttman's contributions to the classical theory of educational and psychological tests, one of the lesser known of his many contributions to quantitative methods in the social sciences. Guttman's work in this field provided a rigorous mathematical basis for ideas that, for many decades after Spearman's initial work,…

  19. Using the Principles of "BIO2010" to Develop an Introductory, Interdisciplinary Course for Biology Students

    ERIC Educational Resources Information Center

    Matthews, Kelly E.; Adams, Peter; Goos, Merrilyn

    2010-01-01

    Modern biological sciences require practitioners to have increasing levels of knowledge, competence, and skills in mathematics and programming. A recent review of the science curriculum at the University of Queensland, a large, research-intensive institution in Australia, resulted in the development of a more quantitatively rigorous undergraduate…

  20. State College- and Career-Ready High School Graduation Requirements. Updated

    ERIC Educational Resources Information Center

    Achieve, Inc., 2013

    2013-01-01

    Research by Achieve, ACT, and others suggests that for high school graduates to be prepared for success in a wide range of postsecondary settings, they need to take four years of challenging mathematics--covering Advanced Algebra; Geometry; and data, probability, and statistics content--and four years of rigorous English aligned with college- and…

  1. Rigorous Mathematical Modeling of Adsorption System with Electrothermal Regeneration of the Used Adsorbent

    DTIC Science & Technology

    2006-12-01

    DISTRIBUTION STATEMENT. ________//signature//________________ ________//signature//________________ PATRICK D. SULLIVAN, Ph.D., P.E. SANDRA R ...adsorber, at r =1.24 cm: (a) gas phase; (b) solid phase..................................................................................... 30 46 The...34 57 Axial profiles of the gas velocity during adsorption in the 2-cartridge adsorber at r =1.25cm..... 34 60

  2. Mathematics Awareness through Technology, Teamwork, Engagement, and Rigor

    ERIC Educational Resources Information Center

    James, Laurie

    2016-01-01

    The purpose of this two-year observational study was to determine if the use of technology and intervention groups affected fourth-grade math scores. Specifically, the desire was to identify the percentage of students who met or exceeded grade-level standards on the state standardized test. This study indicated possible reasons that enhanced…

  3. The Study of an Intervention Summer Bridge Program Learning Community: Remediation, Retention, and Graduation

    ERIC Educational Resources Information Center

    McEvoy, Suzanne

    2012-01-01

    With the changing U.S. demographics, higher numbers of diverse, low-income, first-generation students are underprepared for the academic rigors of four-year institutions oftentimes requiring assistance, and remedial and/or developmental coursework in English and mathematics. Without intervention approaches these students are at high risk for…

  4. Building Better Bridges into STEM: A Synthesis of 25 Years of Literature on STEM Summer Bridge Programs

    ERIC Educational Resources Information Center

    Ashley, Michael; Cooper, Katelyn M.; Cala, Jacqueline M.; Brownell, Sara E.

    2017-01-01

    Summer bridge programs are designed to help transition students into the college learning environment. Increasingly, bridge programs are being developed in science, technology, engineering, and mathematics (STEM) disciplines because of the rigorous content and lower student persistence in college STEM compared with other disciplines. However, to…

  5. Visualizing, Rather than Deriving, Russell-Saunders Terms: A Classroom Activity with Quantum Numbers

    ERIC Educational Resources Information Center

    Coppo, Paolo

    2016-01-01

    A 1 h classroom activity is presented, aimed at consolidating the concepts of microstates and Russell-Saunders energy terms in transition metal atoms and coordination complexes. The unconventional approach, based on logic and intuition rather than rigorous mathematics, is designed to stimulate discussion and enhance familiarity with quantum…

  6. Teaching the Concept of Breakdown Point in Simple Linear Regression.

    ERIC Educational Resources Information Center

    Chan, Wai-Sum

    2001-01-01

    Most introductory textbooks on simple linear regression analysis mention the fact that extreme data points have a great influence on ordinary least-squares regression estimation; however, not many textbooks provide a rigorous mathematical explanation of this phenomenon. Suggests a way to fill this gap by teaching students the concept of breakdown…

  7. Uncertainty Analysis of Instrument Calibration and Application

    NASA Technical Reports Server (NTRS)

    Tripp, John S.; Tcheng, Ping

    1999-01-01

    Experimental aerodynamic researchers require estimated precision and bias uncertainties of measured physical quantities, typically at 95 percent confidence levels. Uncertainties of final computed aerodynamic parameters are obtained by propagation of individual measurement uncertainties through the defining functional expressions. In this paper, rigorous mathematical techniques are extended to determine precision and bias uncertainties of any instrument-sensor system. Through this analysis, instrument uncertainties determined through calibration are now expressed as functions of the corresponding measurement for linear and nonlinear univariate and multivariate processes. Treatment of correlated measurement precision error is developed. During laboratory calibration, calibration standard uncertainties are assumed to be an order of magnitude less than those of the instrument being calibrated. Often calibration standards do not satisfy this assumption. This paper applies rigorous statistical methods for inclusion of calibration standard uncertainty and covariance due to the order of their application. The effects of mathematical modeling error on calibration bias uncertainty are quantified. The effects of experimental design on uncertainty are analyzed. The importance of replication is emphasized, techniques for estimation of both bias and precision uncertainties using replication are developed. Statistical tests for stationarity of calibration parameters over time are obtained.

  8. Treatment of charge singularities in implicit solvent models.

    PubMed

    Geng, Weihua; Yu, Sining; Wei, Guowei

    2007-09-21

    This paper presents a novel method for solving the Poisson-Boltzmann (PB) equation based on a rigorous treatment of geometric singularities of the dielectric interface and a Green's function formulation of charge singularities. Geometric singularities, such as cusps and self-intersecting surfaces, in the dielectric interfaces are bottleneck in developing highly accurate PB solvers. Based on an advanced mathematical technique, the matched interface and boundary (MIB) method, we have recently developed a PB solver by rigorously enforcing the flux continuity conditions at the solvent-molecule interface where geometric singularities may occur. The resulting PB solver, denoted as MIBPB-II, is able to deliver second order accuracy for the molecular surfaces of proteins. However, when the mesh size approaches half of the van der Waals radius, the MIBPB-II cannot maintain its accuracy because the grid points that carry the interface information overlap with those that carry distributed singular charges. In the present Green's function formalism, the charge singularities are transformed into interface flux jump conditions, which are treated on an equal footing as the geometric singularities in our MIB framework. The resulting method, denoted as MIBPB-III, is able to provide highly accurate electrostatic potentials at a mesh as coarse as 1.2 A for proteins. Consequently, at a given level of accuracy, the MIBPB-III is about three times faster than the APBS, a recent multigrid PB solver. The MIBPB-III has been extensively validated by using analytically solvable problems, molecular surfaces of polyatomic systems, and 24 proteins. It provides reliable benchmark numerical solutions for the PB equation.

  9. Treatment of charge singularities in implicit solvent models

    NASA Astrophysics Data System (ADS)

    Geng, Weihua; Yu, Sining; Wei, Guowei

    2007-09-01

    This paper presents a novel method for solving the Poisson-Boltzmann (PB) equation based on a rigorous treatment of geometric singularities of the dielectric interface and a Green's function formulation of charge singularities. Geometric singularities, such as cusps and self-intersecting surfaces, in the dielectric interfaces are bottleneck in developing highly accurate PB solvers. Based on an advanced mathematical technique, the matched interface and boundary (MIB) method, we have recently developed a PB solver by rigorously enforcing the flux continuity conditions at the solvent-molecule interface where geometric singularities may occur. The resulting PB solver, denoted as MIBPB-II, is able to deliver second order accuracy for the molecular surfaces of proteins. However, when the mesh size approaches half of the van der Waals radius, the MIBPB-II cannot maintain its accuracy because the grid points that carry the interface information overlap with those that carry distributed singular charges. In the present Green's function formalism, the charge singularities are transformed into interface flux jump conditions, which are treated on an equal footing as the geometric singularities in our MIB framework. The resulting method, denoted as MIBPB-III, is able to provide highly accurate electrostatic potentials at a mesh as coarse as 1.2Å for proteins. Consequently, at a given level of accuracy, the MIBPB-III is about three times faster than the APBS, a recent multigrid PB solver. The MIBPB-III has been extensively validated by using analytically solvable problems, molecular surfaces of polyatomic systems, and 24 proteins. It provides reliable benchmark numerical solutions for the PB equation.

  10. Mathematics Framework for California Public Schools, Kindergarten Through Grade Twelve.

    ERIC Educational Resources Information Center

    California State Dept. of Education, Sacramento.

    This report, prepared by a statewide Mathematics Advisory Committee, revises the framework in the Second Strands Report of 1972, expanding it to encompass kindergarten through grade 12. Strands for kindergarten through grade 8 are: arithmetic, numbers, and operations; geometry; measurement, problem solving/ applications; probability and…

  11. Assessing Mathematics: 1. APU Framework and Modes of Assessment.

    ERIC Educational Resources Information Center

    Foxman, Derek; Mitchell, Peter

    1983-01-01

    The "what" and "how" of the Assessment of Performance Unit surveys of the mathematics performance of 11- and 15-year-olds in England, Wales, and Northern Ireland are explained. The framework and forms of assessment are detailed, and the experience of the testers noted. (MNS)

  12. Adapting Technological Pedagogical Content Knowledge Framework to Teach Mathematics

    ERIC Educational Resources Information Center

    Getenet, Seyum Tekeher

    2017-01-01

    The technological pedagogical content knowledge framework is increasingly in use by educational technology researcher as a generic description of the knowledge requirements for teachers using technology in all subjects. This study describes the development of a mathematics specific variety of the technological pedagogical content knowledge…

  13. Helping Children Learn Mathematics through Multiple Intelligences and Standards for School Mathematics.

    ERIC Educational Resources Information Center

    Adams, Thomasenia Lott

    2001-01-01

    Focuses on the National Council of Teachers of Mathematics 2000 process-oriented standards of problem solving, reasoning and proof, communication, connections, and representation as providing a framework for using the multiple intelligences that children bring to mathematics learning. Presents ideas for mathematics lessons and activities to…

  14. Manipulatives and problem situations as escalators for students' geometric understanding: a semiotic analysis

    NASA Astrophysics Data System (ADS)

    Daher, Wajeeh M.

    2014-04-01

    Mathematical learning and teaching are increasingly seen as a multimodal experience involved in cultural and social semiotic registers and means, and as such social-cultural semiotic analysis is expected to shed light on learning and teaching processes occurring in the mathematics classroom. In this research, three social-cultural semiotic frameworks were utilised to analyse elementary school students' learning of a geometric relation: the semiotic bundle, the space of action, production and communication and the theoretical framework of attention, awareness and objectification. Educational mathematical situations are described, in addition to semiotic sets, registers and means emerging in the different mathematical situations and that are relevant to the three social-cultural semiotic frameworks which the current research utilizes. Further, the students, as a consequence of (1) their multimodal experience, (2) their connecting between the different mathematical situations and semiotic registers, and (3) the teacher's questions and tasks, could objectify the geometric relation between the lengths of the triangle's edges.

  15. The motion behind the symbols: a vital role for dynamism in the conceptualization of limits and continuity in expert mathematics.

    PubMed

    Marghetis, Tyler; Núñez, Rafael

    2013-04-01

    The canonical history of mathematics suggests that the late 19th-century "arithmetization" of calculus marked a shift away from spatial-dynamic intuitions, grounding concepts in static, rigorous definitions. Instead, we argue that mathematicians, both historically and currently, rely on dynamic conceptualizations of mathematical concepts like continuity, limits, and functions. In this article, we present two studies of the role of dynamic conceptual systems in expert proof. The first is an analysis of co-speech gesture produced by mathematics graduate students while proving a theorem, which reveals a reliance on dynamic conceptual resources. The second is a cognitive-historical case study of an incident in 19th-century mathematics that suggests a functional role for such dynamism in the reasoning of the renowned mathematician Augustin Cauchy. Taken together, these two studies indicate that essential concepts in calculus that have been defined entirely in abstract, static terms are nevertheless conceptualized dynamically, in both contemporary and historical practice. Copyright © 2013 Cognitive Science Society, Inc.

  16. On the mathematical treatment of the Born-Oppenheimer approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jecko, Thierry, E-mail: thierry.jecko@u-cergy.fr

    2014-05-15

    Motivated by the paper by Sutcliffe and Woolley [“On the quantum theory of molecules,” J. Chem. Phys. 137, 22A544 (2012)], we present the main ideas used by mathematicians to show the accuracy of the Born-Oppenheimer approximation for molecules. Based on mathematical works on this approximation for molecular bound states, in scattering theory, in resonance theory, and for short time evolution, we give an overview of some rigorous results obtained up to now. We also point out the main difficulties mathematicians are trying to overcome and speculate on further developments. The mathematical approach does not fit exactly to the common usemore » of the approximation in Physics and Chemistry. We criticize the latter and comment on the differences, contributing in this way to the discussion on the Born-Oppenheimer approximation initiated by Sutcliffe and Woolley. The paper neither contains mathematical statements nor proofs. Instead, we try to make accessible mathematically rigourous results on the subject to researchers in Quantum Chemistry or Physics.« less

  17. Teaching mathematical word problem solving: the quality of evidence for strategy instruction priming the problem structure.

    PubMed

    Jitendra, Asha K; Petersen-Brown, Shawna; Lein, Amy E; Zaslofsky, Anne F; Kunkel, Amy K; Jung, Pyung-Gang; Egan, Andrea M

    2015-01-01

    This study examined the quality of the research base related to strategy instruction priming the underlying mathematical problem structure for students with learning disabilities and those at risk for mathematics difficulties. We evaluated the quality of methodological rigor of 18 group research studies using the criteria proposed by Gersten et al. and 10 single case design (SCD) research studies using criteria suggested by Horner et al. and the What Works Clearinghouse. Results indicated that 14 group design studies met the criteria for high-quality or acceptable research, whereas SCD studies did not meet the standards for an evidence-based practice. Based on these findings, strategy instruction priming the mathematics problem structure is considered an evidence-based practice using only group design methodological criteria. Implications for future research and for practice are discussed. © Hammill Institute on Disabilities 2013.

  18. Four Factors to Consider in Helping Low Achievers in Mathematics

    ERIC Educational Resources Information Center

    Leong, Yew Hoong; Yap, Sook Fwe; Tay, Eng Guan

    2013-01-01

    In this paper, we propose and describe in some detail a framework for helping low achievers in mathematics that attends to the following areas: Mathematical content resources, Problem Solving disposition, Feelings towards the learning of mathematics, and Study habits.

  19. Ologs: a categorical framework for knowledge representation.

    PubMed

    Spivak, David I; Kent, Robert E

    2012-01-01

    In this paper we introduce the olog, or ontology log, a category-theoretic model for knowledge representation (KR). Grounded in formal mathematics, ologs can be rigorously formulated and cross-compared in ways that other KR models (such as semantic networks) cannot. An olog is similar to a relational database schema; in fact an olog can serve as a data repository if desired. Unlike database schemas, which are generally difficult to create or modify, ologs are designed to be user-friendly enough that authoring or reconfiguring an olog is a matter of course rather than a difficult chore. It is hoped that learning to author ologs is much simpler than learning a database definition language, despite their similarity. We describe ologs carefully and illustrate with many examples. As an application we show that any primitive recursive function can be described by an olog. We also show that ologs can be aligned or connected together into a larger network using functors. The various methods of information flow and institutions can then be used to integrate local and global world-views. We finish by providing several different avenues for future research.

  20. High-order asynchrony-tolerant finite difference schemes for partial differential equations

    NASA Astrophysics Data System (ADS)

    Aditya, Konduri; Donzis, Diego A.

    2017-12-01

    Synchronizations of processing elements (PEs) in massively parallel simulations, which arise due to communication or load imbalances between PEs, significantly affect the scalability of scientific applications. We have recently proposed a method based on finite-difference schemes to solve partial differential equations in an asynchronous fashion - synchronization between PEs is relaxed at a mathematical level. While standard schemes can maintain their stability in the presence of asynchrony, their accuracy is drastically affected. In this work, we present a general methodology to derive asynchrony-tolerant (AT) finite difference schemes of arbitrary order of accuracy, which can maintain their accuracy when synchronizations are relaxed. We show that there are several choices available in selecting a stencil to derive these schemes and discuss their effect on numerical and computational performance. We provide a simple classification of schemes based on the stencil and derive schemes that are representative of different classes. Their numerical error is rigorously analyzed within a statistical framework to obtain the overall accuracy of the solution. Results from numerical experiments are used to validate the performance of the schemes.

  1. Ologs: A Categorical Framework for Knowledge Representation

    PubMed Central

    Spivak, David I.; Kent, Robert E.

    2012-01-01

    In this paper we introduce the olog, or ontology log, a category-theoretic model for knowledge representation (KR). Grounded in formal mathematics, ologs can be rigorously formulated and cross-compared in ways that other KR models (such as semantic networks) cannot. An olog is similar to a relational database schema; in fact an olog can serve as a data repository if desired. Unlike database schemas, which are generally difficult to create or modify, ologs are designed to be user-friendly enough that authoring or reconfiguring an olog is a matter of course rather than a difficult chore. It is hoped that learning to author ologs is much simpler than learning a database definition language, despite their similarity. We describe ologs carefully and illustrate with many examples. As an application we show that any primitive recursive function can be described by an olog. We also show that ologs can be aligned or connected together into a larger network using functors. The various methods of information flow and institutions can then be used to integrate local and global world-views. We finish by providing several different avenues for future research. PMID:22303434

  2. Hard Constraints in Optimization Under Uncertainty

    NASA Technical Reports Server (NTRS)

    Crespo, Luis G.; Giesy, Daniel P.; Kenny, Sean P.

    2008-01-01

    This paper proposes a methodology for the analysis and design of systems subject to parametric uncertainty where design requirements are specified via hard inequality constraints. Hard constraints are those that must be satisfied for all parameter realizations within a given uncertainty model. Uncertainty models given by norm-bounded perturbations from a nominal parameter value, i.e., hyper-spheres, and by sets of independently bounded uncertain variables, i.e., hyper-rectangles, are the focus of this paper. These models, which are also quite practical, allow for a rigorous mathematical treatment within the proposed framework. Hard constraint feasibility is determined by sizing the largest uncertainty set for which the design requirements are satisfied. Analytically verifiable assessments of robustness are attained by comparing this set with the actual uncertainty model. Strategies that enable the comparison of the robustness characteristics of competing design alternatives, the description and approximation of the robust design space, and the systematic search for designs with improved robustness are also proposed. Since the problem formulation is generic and the tools derived only require standard optimization algorithms for their implementation, this methodology is applicable to a broad range of engineering problems.

  3. Estimation of integral curves from high angular resolution diffusion imaging (HARDI) data.

    PubMed

    Carmichael, Owen; Sakhanenko, Lyudmila

    2015-05-15

    We develop statistical methodology for a popular brain imaging technique HARDI based on the high order tensor model by Özarslan and Mareci [10]. We investigate how uncertainty in the imaging procedure propagates through all levels of the model: signals, tensor fields, vector fields, and fibers. We construct asymptotically normal estimators of the integral curves or fibers which allow us to trace the fibers together with confidence ellipsoids. The procedure is computationally intense as it blends linear algebra concepts from high order tensors with asymptotical statistical analysis. The theoretical results are illustrated on simulated and real datasets. This work generalizes the statistical methodology proposed for low angular resolution diffusion tensor imaging by Carmichael and Sakhanenko [3], to several fibers per voxel. It is also a pioneering statistical work on tractography from HARDI data. It avoids all the typical limitations of the deterministic tractography methods and it delivers the same information as probabilistic tractography methods. Our method is computationally cheap and it provides well-founded mathematical and statistical framework where diverse functionals on fibers, directions and tensors can be studied in a systematic and rigorous way.

  4. Estimation of integral curves from high angular resolution diffusion imaging (HARDI) data

    PubMed Central

    Carmichael, Owen; Sakhanenko, Lyudmila

    2015-01-01

    We develop statistical methodology for a popular brain imaging technique HARDI based on the high order tensor model by Özarslan and Mareci [10]. We investigate how uncertainty in the imaging procedure propagates through all levels of the model: signals, tensor fields, vector fields, and fibers. We construct asymptotically normal estimators of the integral curves or fibers which allow us to trace the fibers together with confidence ellipsoids. The procedure is computationally intense as it blends linear algebra concepts from high order tensors with asymptotical statistical analysis. The theoretical results are illustrated on simulated and real datasets. This work generalizes the statistical methodology proposed for low angular resolution diffusion tensor imaging by Carmichael and Sakhanenko [3], to several fibers per voxel. It is also a pioneering statistical work on tractography from HARDI data. It avoids all the typical limitations of the deterministic tractography methods and it delivers the same information as probabilistic tractography methods. Our method is computationally cheap and it provides well-founded mathematical and statistical framework where diverse functionals on fibers, directions and tensors can be studied in a systematic and rigorous way. PMID:25937674

  5. Promoting Student Learning and Productive Persistence in Developmental Mathematics: Research Frameworks Informing the Carnegie Pathways

    ERIC Educational Resources Information Center

    Edwards, Ann R.; Beattie, Rachel L.

    2016-01-01

    This paper focuses on two research-based frameworks that inform the design of instruction and promote student success in accelerated, developmental mathematics pathways. These are Learning Opportunities--productive struggle on challenging and relevant tasks, deliberate practice, and explicit connections, and Productive Persistence--promoting…

  6. Making Shifts toward Proficiency

    ERIC Educational Resources Information Center

    McGatha, Maggie B.; Bay-Williams, Jennifer M.

    2013-01-01

    The Leading for Mathematical Proficiency (LMP) Framework (Bay-Williams et al.) has three components: (1) The Standards for Mathematical Practice; (2) Shifts in classroom practice; and (3) Teaching skills. This article briefly describes each component of the LMP framework and then focuses more in depth on the second component, the shifts in…

  7. The Conceptual Framework for the Development of a Mathematics Performance Assessment Instrument.

    ERIC Educational Resources Information Center

    Lane, Suzanne

    1993-01-01

    A conceptual framework is presented for the development of the Quantitative Understanding: Amplifying Student Achievement and Reasoning (QUASAR) Cognitive Assessment Instrument (QCAI) that focuses on the ability of middle-school students to problem solve, reason, and communicate mathematically. The instrument will provide programatic rather than…

  8. Ratio Analysis: Where Investments Meet Mathematics.

    ERIC Educational Resources Information Center

    Barton, Susan D.; Woodbury, Denise

    2002-01-01

    Discusses ratio analysis by which investments may be evaluated. Requires the use of fundamental mathematics, problem solving, and a comparison of the mathematical results within the framework of industry. (Author/NB)

  9. Crystal Growth and Fluid Mechanics Problems in Directional Solidification

    NASA Technical Reports Server (NTRS)

    Tanveer, Saleh A.; Baker, Gregory R.; Foster, Michael R.

    2001-01-01

    Our work in directional solidification has been in the following areas: (1) Dynamics of dendrites including rigorous mathematical analysis of the resulting equations; (2) Examination of the near-structurally unstable features of the mathematically related Hele-Shaw dynamics; (3) Numerical studies of steady temperature distribution in a vertical Bridgman device; (4) Numerical study of transient effects in a vertical Bridgman device; (5) Asymptotic treatment of quasi-steady operation of a vertical Bridgman furnace for large Rayleigh numbers and small Biot number in 3D; and (6) Understanding of Mullins-Sererka transition in a Bridgman device with fluid dynamics is accounted for.

  10. Manpower Substitution and Productivity in Medical Practice

    PubMed Central

    Reinhardt, Uwe E.

    1973-01-01

    Probably in response to the often alleged physician shortage in this country, concerted research efforts are under way to identify technically feasible opportunities for manpower substitution in the production of ambulatory health care. The approaches range from descriptive studies of the effect of task delegation on output of medical services to rigorous mathematical modeling of health care production by means of linear or continuous production functions. In this article the distinct methodological approaches underlying mathematical models are presented in synopsis, and their inherent strengths and weaknesses are contrasted. The discussion includes suggestions for future research directions. Images Fig. 2 PMID:4586735

  11. Universal Algorithm for Identification of Fractional Brownian Motion. A Case of Telomere Subdiffusion

    PubMed Central

    Burnecki, Krzysztof; Kepten, Eldad; Janczura, Joanna; Bronshtein, Irena; Garini, Yuval; Weron, Aleksander

    2012-01-01

    We present a systematic statistical analysis of the recently measured individual trajectories of fluorescently labeled telomeres in the nucleus of living human cells. The experiments were performed in the U2OS cancer cell line. We propose an algorithm for identification of the telomere motion. By expanding the previously published data set, we are able to explore the dynamics in six time orders, a task not possible earlier. As a result, we establish a rigorous mathematical characterization of the stochastic process and identify the basic mathematical mechanisms behind the telomere motion. We find that the increments of the motion are stationary, Gaussian, ergodic, and even more chaotic—mixing. Moreover, the obtained memory parameter estimates, as well as the ensemble average mean square displacement reveal subdiffusive behavior at all time spans. All these findings statistically prove a fractional Brownian motion for the telomere trajectories, which is confirmed by a generalized p-variation test. Taking into account the biophysical nature of telomeres as monomers in the chromatin chain, we suggest polymer dynamics as a sufficient framework for their motion with no influence of other models. In addition, these results shed light on other studies of telomere motion and the alternative telomere lengthening mechanism. We hope that identification of these mechanisms will allow the development of a proper physical and biological model for telomere subdynamics. This array of tests can be easily implemented to other data sets to enable quick and accurate analysis of their statistical characteristics. PMID:23199912

  12. Modeling Synergistic Drug Inhibition of Mycobacterium tuberculosis Growth in Murine Macrophages

    DTIC Science & Technology

    2011-01-01

    important application of metabolic network modeling is the ability to quantitatively model metabolic enzyme inhibition and predict bacterial growth...describe the extensions of this framework to model drug- induced growth inhibition of M. tuberculosis in macrophages.39 Mathematical framework Fig. 1 shows...starting point, we used the previously developed iNJ661v model to represent the metabolic Fig. 1 Mathematical framework: a set of coupled models used to

  13. Middle School Mathematics Teachers Panel Perspectives of Instructional Practicess

    ERIC Educational Resources Information Center

    Ziegler, Cindy

    2017-01-01

    In a local middle school, students were not meeting standards on the state mathematics tests. The purpose of this qualitative study was to explore mathematics teachers' perspectives on effective mathematics instruction vis-a-vis the principles of the National Council of Teachers of Mathematics (NCTM). Within this framework, the 6 principles in the…

  14. The Stability of Kindergarten Teachers' Effectiveness: A Generalizability Study Comparing the Framework for Teaching and the Classroom Assessment Scoring System

    ERIC Educational Resources Information Center

    Mantzicopoulos, Panayota; French, Brian F.; Patrick, Helen; Watson, J. Samuel; Ahn, Inok

    2018-01-01

    To meet recent accountability mandates, school districts are implementing assessment frameworks to document teachers' effectiveness. Observational assessments play a key role in this process, albeit without compelling evidence of their psychometric rigor. Using a sample of kindergarten teachers, we employed Generalizability theory to investigate…

  15. Relevance and Rigor in International Business Teaching: Using the CSA-FSA Matrix

    ERIC Educational Resources Information Center

    Collinson, Simon C.; Rugman, Alan M.

    2011-01-01

    We advance three propositions in this paper. First, teaching international business (IB) at any level needs to be theoretically driven, using mainstream frameworks to organize thinking. Second, these frameworks need to be made relevant to the experiences of the students; for example, by using them in case studies. Third, these parameters of rigor…

  16. Towards a rigorous framework for studying 2-player continuous games.

    PubMed

    Shutters, Shade T

    2013-03-21

    The use of 2-player strategic games is one of the most common frameworks for studying the evolution of economic and social behavior. Games are typically played between two players, each given two choices that lie at the extremes of possible behavior (e.g. completely cooperate or completely defect). Recently there has been much interest in studying the outcome of games in which players may choose a strategy from the continuous interval between extremes, requiring the set of two possible choices be replaced by a single continuous equation. This has led to confusion and even errors in the classification of the game being played. The issue is described here specifically in relation to the continuous prisoners dilemma and the continuous snowdrift game. A case study is then presented demonstrating the misclassification that can result from the extension of discrete games into continuous space. The paper ends with a call for a more rigorous and clear framework for working with continuous games. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. MOOSE: A PARALLEL COMPUTATIONAL FRAMEWORK FOR COUPLED SYSTEMS OF NONLINEAR EQUATIONS.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    G. Hansen; C. Newman; D. Gaston

    Systems of coupled, nonlinear partial di?erential equations often arise in sim- ulation of nuclear processes. MOOSE: Multiphysics Ob ject Oriented Simulation Environment, a parallel computational framework targeted at solving these systems is presented. As opposed to traditional data / ?ow oriented com- putational frameworks, MOOSE is instead founded on mathematics based on Jacobian-free Newton Krylov (JFNK). Utilizing the mathematical structure present in JFNK, physics are modularized into “Kernels” allowing for rapid production of new simulation tools. In addition, systems are solved fully cou- pled and fully implicit employing physics based preconditioning allowing for a large amount of ?exibility even withmore » large variance in time scales. Background on the mathematics, an inspection of the structure of MOOSE and several rep- resentative solutions from applications built on the framework are presented.« less

  18. MOOSE: A parallel computational framework for coupled systems of nonlinear equations.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Derek Gaston; Chris Newman; Glen Hansen

    Systems of coupled, nonlinear partial differential equations (PDEs) often arise in simulation of nuclear processes. MOOSE: Multiphysics Object Oriented Simulation Environment, a parallel computational framework targeted at the solution of such systems, is presented. As opposed to traditional data-flow oriented computational frameworks, MOOSE is instead founded on the mathematical principle of Jacobian-free Newton-Krylov (JFNK) solution methods. Utilizing the mathematical structure present in JFNK, physics expressions are modularized into `Kernels,'' allowing for rapid production of new simulation tools. In addition, systems are solved implicitly and fully coupled, employing physics based preconditioning, which provides great flexibility even with large variance in timemore » scales. A summary of the mathematics, an overview of the structure of MOOSE, and several representative solutions from applications built on the framework are presented.« less

  19. Motivation and engagement in mathematics: a qualitative framework for teacher-student interactions

    NASA Astrophysics Data System (ADS)

    Durksen, Tracy L.; Way, Jennifer; Bobis, Janette; Anderson, Judy; Skilling, Karen; Martin, Andrew J.

    2017-02-01

    We started with a classic research question (How do teachers motivate and engage middle year students in mathematics?) that is solidly underpinned and guided by an integration of two theoretical and multidimensional models. In particular, the current study illustrates how theory is important for guiding qualitative analytical approaches to motivation and engagement in mathematics. With little research on how teachers of mathematics are able to maintain high levels of student motivation and engagement, we focused on developing a qualitative framework that highlights the influence of teacher-student interactions. Participants were six teachers (upper primary and secondary) that taught students with higher-than-average levels of motivation and engagement in mathematics. Data sources included one video-recorded lesson and associated transcripts from pre- and post-lesson interviews with each teacher. Overall, effective classroom organisation stood out as a priority when promoting motivation and engagement in mathematics. Results on classroom organisation revealed four key indicators within teacher-student interactions deemed important for motivation and engagement in mathematics—confidence, climate, contact, and connection. Since much of the effect of teachers on student learning relies on interactions, and given the universal trend of declining mathematical performance during the middle years of schooling, future research and intervention studies might be assisted by our qualitative framework.

  20. Contemplating Symbolic Literacy of First Year Mathematics Students

    ERIC Educational Resources Information Center

    Bardini, Caroline; Pierce, Robyn; Vincent, Jill

    2015-01-01

    Analysis of mathematical notations must consider both syntactical aspects of symbols and the underpinning mathematical concept(s) conveyed. We argue that the construct of "syntax template" provides a theoretical framework to analyse undergraduate mathematics students' written solutions, where we have identified several types of…

  1. Statistical Mechanics of Disordered Systems - Series: Cambridge Series in Statistical and Probabilistic Mathematics (No. 18)

    NASA Astrophysics Data System (ADS)

    Bovier, Anton

    2006-06-01

    Our mathematical understanding of the statistical mechanics of disordered systems is going through a period of stunning progress. This self-contained book is a graduate-level introduction for mathematicians and for physicists interested in the mathematical foundations of the field, and can be used as a textbook for a two-semester course on mathematical statistical mechanics. It assumes only basic knowledge of classical physics and, on the mathematics side, a good working knowledge of graduate-level probability theory. The book starts with a concise introduction to statistical mechanics, proceeds to disordered lattice spin systems, and concludes with a presentation of the latest developments in the mathematical understanding of mean-field spin glass models. In particular, recent progress towards a rigorous understanding of the replica symmetry-breaking solutions of the Sherrington-Kirkpatrick spin glass models, due to Guerra, Aizenman-Sims-Starr and Talagrand, is reviewed in some detail. Comprehensive introduction to an active and fascinating area of research Clear exposition that builds to the state of the art in the mathematics of spin glasses Written by a well-known and active researcher in the field

  2. Prospective elementary teachers' conceptions of multidigit number: exemplifying a replication framework for mathematics education

    NASA Astrophysics Data System (ADS)

    Jacobson, Erik; Simpson, Amber

    2018-04-01

    Replication studies play a critical role in scientific accumulation of knowledge, yet replication studies in mathematics education are rare. In this study, the authors replicated Thanheiser's (Educational Studies in Mathematics 75:241-251, 2010) study of prospective elementary teachers' conceptions of multidigit number and examined the main claim that most elementary pre-service teachers think about digits incorrectly at least some of the time. Results indicated no statistically significant difference in the distribution of conceptions between the original and replication samples and, moreover, no statistically significant differences in the distribution of sub-conceptions among prospective teachers with the most common conception. These results suggest confidence is warranted both in the generality of the main claim and in the utility of the conceptions framework for describing prospective elementary teachers' conceptions of multidigit number. The report further contributes a framework for replication of mathematics education research adapted from the field of psychology.

  3. Predicting disease progression from short biomarker series using expert advice algorithm

    NASA Astrophysics Data System (ADS)

    Morino, Kai; Hirata, Yoshito; Tomioka, Ryota; Kashima, Hisashi; Yamanishi, Kenji; Hayashi, Norihiro; Egawa, Shin; Aihara, Kazuyuki

    2015-05-01

    Well-trained clinicians may be able to provide diagnosis and prognosis from very short biomarker series using information and experience gained from previous patients. Although mathematical methods can potentially help clinicians to predict the progression of diseases, there is no method so far that estimates the patient state from very short time-series of a biomarker for making diagnosis and/or prognosis by employing the information of previous patients. Here, we propose a mathematical framework for integrating other patients' datasets to infer and predict the state of the disease in the current patient based on their short history. We extend a machine-learning framework of ``prediction with expert advice'' to deal with unstable dynamics. We construct this mathematical framework by combining expert advice with a mathematical model of prostate cancer. Our model predicted well the individual biomarker series of patients with prostate cancer that are used as clinical samples.

  4. Predicting disease progression from short biomarker series using expert advice algorithm.

    PubMed

    Morino, Kai; Hirata, Yoshito; Tomioka, Ryota; Kashima, Hisashi; Yamanishi, Kenji; Hayashi, Norihiro; Egawa, Shin; Aihara, Kazuyuki

    2015-05-20

    Well-trained clinicians may be able to provide diagnosis and prognosis from very short biomarker series using information and experience gained from previous patients. Although mathematical methods can potentially help clinicians to predict the progression of diseases, there is no method so far that estimates the patient state from very short time-series of a biomarker for making diagnosis and/or prognosis by employing the information of previous patients. Here, we propose a mathematical framework for integrating other patients' datasets to infer and predict the state of the disease in the current patient based on their short history. We extend a machine-learning framework of "prediction with expert advice" to deal with unstable dynamics. We construct this mathematical framework by combining expert advice with a mathematical model of prostate cancer. Our model predicted well the individual biomarker series of patients with prostate cancer that are used as clinical samples.

  5. A Role for Language Analysis in Mathematics Textbook Analysis

    ERIC Educational Resources Information Center

    O'Keeffe, Lisa; O'Donoghue, John

    2015-01-01

    In current textbook analysis research, there is a strong focus on the content, structure and expectation presented by the textbook as elements for analysis. This research moves beyond such foci and proposes a framework for textbook language analysis which is intended to be integrated into an overall framework for mathematics textbook analysis. The…

  6. Developing and Validating a Competence Framework for Secondary Mathematics Student Teachers through a Delphi Method

    ERIC Educational Resources Information Center

    Muñiz-Rodríguez, Laura; Alonso, Pedro; Rodríguez-Muñiz, Luis J.; Valcke, Martin

    2017-01-01

    Initial teacher education programmes provide student teachers with the desired competences to develop themselves as teachers. Although a generic framework for teaching competences is available covering all school subjects in Spain, the initial teacher education programmes curriculum does not specify which competences secondary mathematics student…

  7. Pedagogies of Practice and Opportunities to Learn about Classroom Mathematics Discussions

    ERIC Educational Resources Information Center

    Ghousseini, Hala; Herbst, Patricio

    2016-01-01

    In this paper, we argue that to prepare pre-service teachers for doing complex work of teaching like leading classroom mathematics discussions requires an implementation of different pedagogies of teacher education in deliberate ways. In supporting our argument, we use two frameworks: one curricular and one pedagogical. The curricular framework is…

  8. Development of a Framework for Teaching Mathematics in Depth

    ERIC Educational Resources Information Center

    LaFramenta, Joanne Jensen

    2011-01-01

    This study illuminates the practice of teaching mathematics in depth by developing a framework to serve practicing teachers and those who educate teachers. A thorough reading of the literature that began with all of the volumes in the decades since the publication of the Standards (1989) identified six elements that were profitable for effective…

  9. Negotiating Meaning in Cross-National Studies of Mathematics Teaching: Kissing Frogs to Find Princes

    ERIC Educational Resources Information Center

    Andrews, Paul

    2007-01-01

    This paper outlines the iterative processes by which a multinational team of researchers developed a low-inference framework for the analysis of video recordings of mathematics lessons drawn from Flemish Belgium, England, Finland, Hungary and Spain. Located within a theoretical framework concerning learning as the negotiation of meaning, we…

  10. Validation of a multi-phase plant-wide model for the description of the aeration process in a WWTP.

    PubMed

    Lizarralde, I; Fernández-Arévalo, T; Beltrán, S; Ayesa, E; Grau, P

    2018-02-01

    This paper introduces a new mathematical model built under the PC-PWM methodology to describe the aeration process in a full-scale WWTP. This methodology enables a systematic and rigorous incorporation of chemical and physico-chemical transformations into biochemical process models, particularly for the description of liquid-gas transfer to describe the aeration process. The mathematical model constructed is able to reproduce biological COD and nitrogen removal, liquid-gas transfer and chemical reactions. The capability of the model to describe the liquid-gas mass transfer has been tested by comparing simulated and experimental results in a full-scale WWTP. Finally, an exploration by simulation has been undertaken to show the potential of the mathematical model. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. How Big Is That? Reporting the Effect Size and Cost of ASSISTments in the Maine Homework Efficacy Study

    ERIC Educational Resources Information Center

    Roschelle, Jeremy; Murphy, Robert; Feng, Mingyu; Bakia, Marianne

    2017-01-01

    In a rigorous evaluation of ASSISTments as an online homework support conducted in the state of Maine, SRI International reported that "the intervention significantly increased student scores on an end-of-the-year standardized mathematics assessment as compared with a control group that continued with existing homework practices."…

  12. A Curricular-Sampling Approach to Progress Monitoring: Mathematics Concepts and Applications

    ERIC Educational Resources Information Center

    Fuchs, Lynn S.; Fuchs, Douglas; Zumeta, Rebecca O.

    2008-01-01

    Progress monitoring is an important component of effective instructional practice. Curriculum-based measurement (CBM) is a form of progress monitoring that has been the focus of rigorous research. Two approaches for formulating CBM systems exist. The first is to assess performance regularly on a task that serves as a global indicator of competence…

  13. REPORT OF FINDINGS AND RESULTS OF TECHNICAL EDUCATION CURRICULUM WORKSHOP (LOS ALAMOS, NEW MEXICO, AUGUST 7-11, 1967).

    ERIC Educational Resources Information Center

    HARDWICK, ARTHUR LEE

    AT THIS WORKSHOP OF INDUSTRIAL REPRESENTATIVE AND TECHNICAL EDUCATORS, A TECHNICIAN WAS DEFINED AS ONE WITH BROAD-BASED MATHEMATICAL AND SCIENTIFIC TRAINING AND WITH COMPETENCE TO SUPPORT PROFESSIONAL SYSTEMS, ENGINEERING, AND OTHER SCIENTIFIC PERSONNEL. HE SHOULD RECEIVE A RIGOROUS, 2-YEAR, POST SECONDARY EDUCATION ESPECIALLY DESIGNED FOR HIS…

  14. What Can Graph Theory Tell Us about Word Learning and Lexical Retrieval?

    ERIC Educational Resources Information Center

    Vitevitch, Michael S.

    2008-01-01

    Purpose: Graph theory and the new science of networks provide a mathematically rigorous approach to examine the development and organization of complex systems. These tools were applied to the mental lexicon to examine the organization of words in the lexicon and to explore how that structure might influence the acquisition and retrieval of…

  15. Rigor "and" Relevance: Enhancing High School Students' Math Skills through Career and Technical Education

    ERIC Educational Resources Information Center

    Stone, James R., III; Alfeld, Corinne; Pearson, Donna

    2008-01-01

    Numerous high school students, including many who are enrolled in career and technical education (CTE) courses, do not have the math skills necessary for today's high-skill workplace or college entrance requirements. This study tests a model for enhancing mathematics instruction in five high school CTE programs (agriculture, auto technology,…

  16. Slow off the Mark: Elementary School Teachers and the Crisis in STEM Education

    ERIC Educational Resources Information Center

    Epstein, Diana; Miller, Raegen T.

    2011-01-01

    Prospective teachers can typically obtain a license to teach elementary school without taking a rigorous college-level STEM class such as calculus, statistics, or chemistry, and without demonstrating a solid grasp of mathematics knowledge, scientific knowledge, or the nature of scientific inquiry. This is not a recipe for ensuring students have…

  17. High School Graduation Requirements in a Time of College and Career Readiness. CSAI Report

    ERIC Educational Resources Information Center

    Center on Standards and Assessments Implementation, 2016

    2016-01-01

    Ensuring that students graduate high school prepared for college and careers has become a national priority in the last decade. To support this goal, states have adopted rigorous college and career readiness (CCR) standards in English language arts (ELA) and mathematics. Additionally, states have begun to require students to pass assessments, in…

  18. Quantifying falsifiability of scientific theories

    NASA Astrophysics Data System (ADS)

    Nemenman, Ilya

    I argue that the notion of falsifiability, a key concept in defining a valid scientific theory, can be quantified using Bayesian Model Selection, which is a standard tool in modern statistics. This relates falsifiability to the quantitative version of the statistical Occam's razor, and allows transforming some long-running arguments about validity of scientific theories from philosophical discussions to rigorous mathematical calculations.

  19. Using Teacher Evaluation Reform and Professional Development to Support Common Core Assessments

    ERIC Educational Resources Information Center

    Youngs, Peter

    2013-01-01

    The Common Core State Standards Initiative, in its aim to align diverse state curricula and improve educational outcomes, calls for K-12 teachers in the United States to engage all students in mathematical problem solving along with reading and writing complex text through the use of rigorous academic content. Until recently, most teacher…

  20. Mathematical Abstraction: Constructing Concept of Parallel Coordinates

    NASA Astrophysics Data System (ADS)

    Nurhasanah, F.; Kusumah, Y. S.; Sabandar, J.; Suryadi, D.

    2017-09-01

    Mathematical abstraction is an important process in teaching and learning mathematics so pre-service mathematics teachers need to understand and experience this process. One of the theoretical-methodological frameworks for studying this process is Abstraction in Context (AiC). Based on this framework, abstraction process comprises of observable epistemic actions, Recognition, Building-With, Construction, and Consolidation called as RBC + C model. This study investigates and analyzes how pre-service mathematics teachers constructed and consolidated concept of Parallel Coordinates in a group discussion. It uses AiC framework for analyzing mathematical abstraction of a group of pre-service teachers consisted of four students in learning Parallel Coordinates concepts. The data were collected through video recording, students’ worksheet, test, and field notes. The result shows that the students’ prior knowledge related to concept of the Cartesian coordinate has significant role in the process of constructing Parallel Coordinates concept as a new knowledge. The consolidation process is influenced by the social interaction between group members. The abstraction process taken place in this group were dominated by empirical abstraction that emphasizes on the aspect of identifying characteristic of manipulated or imagined object during the process of recognizing and building-with.

  1. Understanding the Chinese Approach to Creative Teaching in Mathematics Classrooms

    ERIC Educational Resources Information Center

    Niu, Weihua; Zhou, Zheng; Zhou, Xinlin

    2017-01-01

    Using Amabile's componential theory of creativity as a framework, this paper analyzes how Chinese mathematics teachers achieve creative teaching through acquiring in-depth domain-specific knowledge in mathematics, developing creativity-related skills, as well as stimulating student interest in learning mathematics, through well-crafted,…

  2. Reaching the Mountaintop: Addressing the Common Core Standards in Mathematics for Students with Mathematics Difficulties

    ERIC Educational Resources Information Center

    Powell, Sarah R.; Fuchs, Lynn S.; Fuchs, Doug

    2013-01-01

    The Common Core State Standards provide teachers with a framework of necessary mathematics skills across grades K-12, which vary considerably from previous mathematics standards. In this article, we discuss concerns about the implications of the Common Core for students with mathematics difficulties (MD), given that students with MD, by…

  3. "Mathematics Is Just 1 + 1 = 2, What Is There to Argue About?": Developing a Framework for Argument-Based Mathematical Inquiry

    ERIC Educational Resources Information Center

    Fielding-Wells, Jill

    2016-01-01

    One potential means to develop students' contextual and conceptual understanding of mathematics is through Inquiry Learning. However, introducing a problem context can distract from mathematical content. Incorporating argumentation practices into Inquiry may address this through providing a stronger reliance on mathematical evidence and reasoning.…

  4. In the Middle of Nowhere: How a Textbook Can Position the Mathematics Learner

    ERIC Educational Resources Information Center

    Herbel-Eisenmann, Beth; Wagner, David

    2005-01-01

    We outline a framework for investigating how a mathematics textbook positions the mathematics learner. We use tools and concepts from discourse analysis, a field of linguistic scholarship, to illustrate the ways in which a textbook can position people in relation to mathematics and how the text can position the mathematics learner in relation to…

  5. Achieving Quality Mathematics Classroom Instruction through Productive Pedagogies

    ERIC Educational Resources Information Center

    Bature, Iliya Joseph; Atweh, Bill

    2016-01-01

    This paper seeks to investigate the implementation of the Productive Pedagogies Framework in Nigerian mathematics classroom setting. The researcher adopted a qualitative case study approach to seeking data for the three research questions postulated for the study. Three mathematics teachers taught mathematics in two secondary schools in two…

  6. Saussurian Linguistics Revisited: Can It Inform Our Interpretation of Mathematical Activity?.

    ERIC Educational Resources Information Center

    McNamara, O.

    1995-01-01

    Examines the basic notions of Ferdinand de Saussure and proposes that language is fundamental to the process of learning mathematics. Investigates possible mathematical perspectives upon Saussure's ideas and explores the contribution his work can offer to enhance and enrich the interpretive framework through which mathematical activity is observed…

  7. Learning Mathematical Concepts through Authentic Learning

    ERIC Educational Resources Information Center

    Koh, Noi Keng; Low, Hwee Kian

    2010-01-01

    This paper explores the infusion of financial literacy into the Mathematics curriculum in a secondary school in Singapore. By infusing financial literacy, a core theme in the 21st century framework, into mathematics education, this study investigated the impact of using financial literacy-rich mathematics lessons by using validated learning…

  8. Mathematics University Teachers' Perception of Pedagogical Content Knowledge (PCK)

    ERIC Educational Resources Information Center

    Khakbaz, Azimehsadat

    2016-01-01

    Teaching mathematics in university levels is one of the most important fields of research in the area of mathematics education. Nevertheless, there is little information about teaching knowledge of mathematics university teachers. Pedagogical content knowledge (PCK) provides a suitable framework to study knowledge of teachers. The purpose of this…

  9. Mathematics, Programming, and STEM

    ERIC Educational Resources Information Center

    Yeh, Andy; Chandra, Vinesh

    2015-01-01

    Learning mathematics is a complex and dynamic process. In this paper, the authors adopt a semiotic framework (Yeh & Nason, 2004) and highlight programming as one of the main aspects of the semiosis or meaning-making for the learning of mathematics. During a 10- week teaching experiment, mathematical meaning-making was enriched when primary…

  10. Measuring Mathematics Teacher Educators' Knowledge of Technology Integrated Teaching: Instrument Development

    ERIC Educational Resources Information Center

    Getenet, Seyum Tekeher; Beswick, Kim

    2013-01-01

    This study describes the construction of a questionnaire instrument to measure mathematics teacher educators' knowledge for technology integrated mathematics teaching. The study was founded on a reconceptualisation of the generic Technological Pedagogical Content Knowledge framework in the specific context of mathematics teaching. Steps in the…

  11. A conceptual framework for invasion in microbial communities.

    PubMed

    Kinnunen, Marta; Dechesne, Arnaud; Proctor, Caitlin; Hammes, Frederik; Johnson, David; Quintela-Baluja, Marcos; Graham, David; Daffonchio, Daniele; Fodelianakis, Stilianos; Hahn, Nicole; Boon, Nico; Smets, Barth F

    2016-12-01

    There is a growing interest in controlling-promoting or avoiding-the invasion of microbial communities by new community members. Resource availability and community structure have been reported as determinants of invasion success. However, most invasion studies do not adhere to a coherent and consistent terminology nor always include rigorous interpretations of the processes behind invasion. Therefore, we suggest that a consistent set of definitions and a rigorous conceptual framework are needed. We define invasion in a microbial community as the establishment of an alien microbial type in a resident community and argue how simple criteria to define aliens, residents, and alien establishment can be applied for a wide variety of communities. In addition, we suggest an adoption of the community ecology framework advanced by Vellend (2010) to clarify potential determinants of invasion. This framework identifies four fundamental processes that control community dynamics: dispersal, selection, drift and diversification. While selection has received ample attention in microbial community invasion research, the three other processes are often overlooked. Here, we elaborate on the relevance of all four processes and conclude that invasion experiments should be designed to elucidate the role of dispersal, drift and diversification, in order to obtain a complete picture of invasion as a community process.

  12. A conceptual framework for invasion in microbial communities

    PubMed Central

    Kinnunen, Marta; Dechesne, Arnaud; Proctor, Caitlin; Hammes, Frederik; Johnson, David; Quintela-Baluja, Marcos; Graham, David; Daffonchio, Daniele; Fodelianakis, Stilianos; Hahn, Nicole; Boon, Nico; Smets, Barth F

    2016-01-01

    There is a growing interest in controlling—promoting or avoiding—the invasion of microbial communities by new community members. Resource availability and community structure have been reported as determinants of invasion success. However, most invasion studies do not adhere to a coherent and consistent terminology nor always include rigorous interpretations of the processes behind invasion. Therefore, we suggest that a consistent set of definitions and a rigorous conceptual framework are needed. We define invasion in a microbial community as the establishment of an alien microbial type in a resident community and argue how simple criteria to define aliens, residents, and alien establishment can be applied for a wide variety of communities. In addition, we suggest an adoption of the community ecology framework advanced by Vellend (2010) to clarify potential determinants of invasion. This framework identifies four fundamental processes that control community dynamics: dispersal, selection, drift and diversification. While selection has received ample attention in microbial community invasion research, the three other processes are often overlooked. Here, we elaborate on the relevance of all four processes and conclude that invasion experiments should be designed to elucidate the role of dispersal, drift and diversification, in order to obtain a complete picture of invasion as a community process. PMID:27137125

  13. The Impact of a "Framework"-Aligned Science Professional Development Program on Literacy and Mathematics Achievement of K-3 Students

    ERIC Educational Resources Information Center

    Paprzycki, Peter; Tuttle, Nicole; Czerniak, Charlene M.; Molitor, Scott; Kadervaek, Joan; Mendenhall, Robert

    2017-01-01

    This study investigates the effect of a Framework-aligned professional development program at the PreK-3 level. The NSF funded program integrated science with literacy and mathematics learning and provided teacher professional development, along with materials and programming for parents to encourage science investigations and discourse around…

  14. Using a Framework for Three Levels of Sense Making in a Mathematics Classroom

    ERIC Educational Resources Information Center

    Moss, Diana L.; Lamberg, Teruni

    2016-01-01

    This discussion-based lesson is designed to support Year 6 students in their initial understanding of using letters to represent numbers, expressions, and equations in algebra. The three level framework is designed for: (1) making thinking explicit, (2) exploring each other's solutions, and (3) developing new mathematical insights. In each level…

  15. Playing with Maths: Implications for Early Childhood Mathematics Teaching from an Implementation Study in Melbourne, Australia

    ERIC Educational Resources Information Center

    Cohrssen, Caroline; Tayler, Collette; Cloney, Dan

    2015-01-01

    The Early Years Learning Framework for Australia governs early childhood education in the years before school in Australia. Since this framework is not a curriculum, early childhood educators report uncertainty regarding what mathematical concepts to teach and how to teach them. This implementation study, positioned within the broader E4Kids…

  16. Evidence-Based Practices: Applications of Concrete Representational Abstract Framework across Math Concepts for Students with Mathematics Disabilities

    ERIC Educational Resources Information Center

    Agrawal, Jugnu; Morin, Lisa L.

    2016-01-01

    Students with mathematics disabilities (MD) experience difficulties with both conceptual and procedural knowledge of different math concepts across grade levels. Research shows that concrete representational abstract framework of instruction helps to bridge this gap for students with MD. In this article, we provide an overview of this strategy…

  17. Bush Physics for the 21st Century, A Distance Delivery Physics Course to Bridge the Gap in Rural Alaska and Across the North

    NASA Astrophysics Data System (ADS)

    Solie, D. J.; Spencer, V.

    2009-12-01

    Bush Physics for the 21st Century brings physics that is culturally connected, engaging to modern youth, and mathematically rigorous, to high school and college students in the remote and often road-less villages of Alaska. The primary goal of the course is to prepare rural (predominantly Alaska Native) students for success in university science and engineering degree programs and ultimately STEM careers. The course is currently delivered via video conference and web based electronic blackboard tailored to the needs of remote students. Practical, culturally relevant kinetic examples from traditional and modern northern life are used to engage students, and a rigorous and mathematical focus is stressed to strengthen problem solving skills. Simple hands-on-lab experiments are delivered to the students with the exercises completed on-line. In addition, students are teamed and required to perform a much more involved experimental study with the results presented by teams at the conclusion of the course. Connecting abstract mathematical symbols and equations to real physical objects and problems is one of the most difficult things to master in physics. Greek symbols are traditionally used in equations, however, to strengthen the visual/conceptual connection with symbol and encourage an indigenous connection to the concepts we have introduced Inuktitut symbols to complement the traditional Greek symbols. Results and observations from the first two pilot semesters (spring 2008 and 2009) will be presented.

  18. Bush Physics for the 21st Century, A Distance Delivery Physics Course Targeting Students in Rural Alaska and Across the North

    NASA Astrophysics Data System (ADS)

    Solie, D. J.; Spencer, V. K.

    2010-12-01

    Bush Physics for the 21st Century brings physics that is engaging to modern youth, and mathematically rigorous, to high school and college students in the remote and often road-less villages of Alaska where the opportunity to take a physics course has been nearly nonexistent. The primary goal of the course is to prepare rural (predominantly Alaska Native) students for success in university science and engineering degree programs and ultimately STEM careers. The course is delivered via video conference and web based electronic blackboard tailored to the needs of remote students. Kinetic, practical and culturally relevant place-based examples from traditional and modern northern life are used to engage students, and a rigorous and mathematical focus is stressed to strengthen problem solving skills. Simple hands-on-lab experiment kits are shipped to the students. In addition students conduct a Collaborative Research Experiment where they coordinate times of sun angle measurements with teams in other villages to determine their latitude and longitude as well as an estimate of the circumference of the earth. Connecting abstract mathematical symbols and equations to real physical objects and problems is one of the most difficult things to master in physics. We introduce Inuktitut symbols to complement the traditional Greek symbols in equations to strengthen the visual/conceptual connection with symbol and encourage an indigenous connection to the physical concepts. Results and observations from the first three pilot semesters (spring 2008, 2009 and 2010) will be presented.

  19. Communication and Academic Vocabulary in Mathematics: A Content Analysis of Prompts Eliciting Written Responses in Two Elementary Mathematics Textbooks

    ERIC Educational Resources Information Center

    Joseph, Christine M.

    2012-01-01

    The purpose of this study was to investigate how writing in mathematics is treated in one 4th grade National Science Foundation (NSF)-funded mathematics textbook titled "Everyday Mathematics" and one publisher-generated textbook titled "enVision MATH." The developed framework provided categories to support each of the research…

  20. Developing a Leveling Framework of Mathematical Belief and Mathematical Knowledge for Teaching of Indonesian Pre-Service Teachers

    ERIC Educational Resources Information Center

    Novikasari, Ifada; Darhim, Didi Suryadi

    2015-01-01

    This study explored the characteristics of pre-service primary teachers (PSTs) influenced by mathematical belief and mathematical knowledge for teaching (MKT) PSTs'. A qualitative approach was used to investigate the levels of PSTs on mathematical belief and MKT. The two research instruments used in this study were an interview-based task and a…

  1. A Core Curriculum: Making Mathematics Count for Everyone. Curriculum and Evaluation Standards for School Mathematics Addenda Series, Grades 9-12.

    ERIC Educational Resources Information Center

    Meiring, Steven P.; And Others

    The 1989 document, "Curriculum and Evaluation Standards for School Mathematics," provides a vision and a framework for revising and strengthening the K-12 mathematics curriculum in North American schools and for evaluating both the mathematics curriculum and students' progress. When completed, it is expected that the Addenda Series will…

  2. Vicious Cycles of Identifying and Mathematizing: A Case Study of the Development of Mathematical Failure

    ERIC Educational Resources Information Center

    Heyd-Metzuyanim, Einat

    2015-01-01

    This study uses a new communicational lens that conceptualizes the activity of learning mathematics as interplay between mathematizing and identifying in order to study how the emotional, social, and cognitive aspects of learning mathematics interact with one another. The proposed framework is used to analyze the case of Idit, a girl who started…

  3. A Mathematical Account of the NEGF Formalism

    NASA Astrophysics Data System (ADS)

    Cornean, Horia D.; Moldoveanu, Valeriu; Pillet, Claude-Alain

    2018-02-01

    The main goal of this paper is to put on solid mathematical grounds the so-called Non-Equilibrium Green's Function (NEGF) transport formalism for open systems. In particular, we derive the Jauho-Meir-Wingreen formula for the time-dependent current through an interacting sample coupled to non-interacting leads. Our proof is non-perturbative and uses neither complex-time Keldysh contours, nor Langreth rules of 'analytic continuation'. We also discuss other technical identities (Langreth, Keldysh) involving various many body Green's functions. Finally, we study the Dyson equation for the advanced/retarded interacting Green's function and we rigorously construct its (irreducible) self-energy, using the theory of Volterra operators.

  4. YouTube Physics

    NASA Astrophysics Data System (ADS)

    Riendeau, Diane

    2012-09-01

    To date, this column has presented videos to show in class, Don Mathieson from Tulsa Community College suggested that YouTube could be used in another fashion. In Don's experience, his students are not always prepared for the mathematic rigor of his course. Even at the high school level, math can be a barrier for physics students. Walid Shihabi, a colleague of Don's, decided to compile a list of YouTube videos that his students could watch to relearn basic mathematics. I thought this sounded like a fantastic idea and a great service to the students. Walid graciously agreed to share his list and I have reproduced a large portion of it below.

  5. Comparison of optimal design methods in inverse problems

    NASA Astrophysics Data System (ADS)

    Banks, H. T.; Holm, K.; Kappel, F.

    2011-07-01

    Typical optimal design methods for inverse or parameter estimation problems are designed to choose optimal sampling distributions through minimization of a specific cost function related to the resulting error in parameter estimates. It is hoped that the inverse problem will produce parameter estimates with increased accuracy using data collected according to the optimal sampling distribution. Here we formulate the classical optimal design problem in the context of general optimization problems over distributions of sampling times. We present a new Prohorov metric-based theoretical framework that permits one to treat succinctly and rigorously any optimal design criteria based on the Fisher information matrix. A fundamental approximation theory is also included in this framework. A new optimal design, SE-optimal design (standard error optimal design), is then introduced in the context of this framework. We compare this new design criterion with the more traditional D-optimal and E-optimal designs. The optimal sampling distributions from each design are used to compute and compare standard errors; the standard errors for parameters are computed using asymptotic theory or bootstrapping and the optimal mesh. We use three examples to illustrate ideas: the Verhulst-Pearl logistic population model (Banks H T and Tran H T 2009 Mathematical and Experimental Modeling of Physical and Biological Processes (Boca Raton, FL: Chapman and Hall/CRC)), the standard harmonic oscillator model (Banks H T and Tran H T 2009) and a popular glucose regulation model (Bergman R N, Ider Y Z, Bowden C R and Cobelli C 1979 Am. J. Physiol. 236 E667-77 De Gaetano A and Arino O 2000 J. Math. Biol. 40 136-68 Toffolo G, Bergman R N, Finegood D T, Bowden C R and Cobelli C 1980 Diabetes 29 979-90).

  6. A theoretical Gaussian framework for anomalous change detection in hyperspectral images

    NASA Astrophysics Data System (ADS)

    Acito, Nicola; Diani, Marco; Corsini, Giovanni

    2017-10-01

    Exploitation of temporal series of hyperspectral images is a relatively new discipline that has a wide variety of possible applications in fields like remote sensing, area surveillance, defense and security, search and rescue and so on. In this work, we discuss how images taken at two different times can be processed to detect changes caused by insertion, deletion or displacement of small objects in the monitored scene. This problem is known in the literature as anomalous change detection (ACD) and it can be viewed as the extension, to the multitemporal case, of the well-known anomaly detection problem in a single image. In fact, in both cases, the hyperspectral images are processed blindly in an unsupervised manner and without a-priori knowledge about the target spectrum. We introduce the ACD problem using an approach based on the statistical decision theory and we derive a common framework including different ACD approaches. Particularly, we clearly define the observation space, the data statistical distribution conditioned to the two competing hypotheses and the procedure followed to come with the solution. The proposed overview places emphasis on techniques based on the multivariate Gaussian model that allows a formal presentation of the ACD problem and the rigorous derivation of the possible solutions in a way that is both mathematically more tractable and easier to interpret. We also discuss practical problems related to the application of the detectors in the real world and present affordable solutions. Namely, we describe the ACD processing chain including the strategies that are commonly adopted to compensate pervasive radiometric changes, caused by the different illumination/atmospheric conditions, and to mitigate the residual geometric image co-registration errors. Results obtained on real freely available data are discussed in order to test and compare the methods within the proposed general framework.

  7. Predictive characterization of aging and degradation of reactor materials in extreme environments. Final report, December 20, 2013 - September 20, 2017

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qu, Jianmin

    Understanding of reactor material behavior in extreme environments is vital not only to the development of new materials for the next generation nuclear reactors, but also to the extension of the operating lifetimes of the current fleet of nuclear reactors. To this end, this project conducted a suite of unique experimental techniques, augmented by a mesoscale computational framework, to understand and predict the long-term effects of irradiation, temperature, and stress on material microstructures and their macroscopic behavior. The experimental techniques and computational tools were demonstrated on two distinctive types of reactor materials, namely, Zr alloys and high-Cr martensitic steels. Thesemore » materials are chosen as the test beds because they are the archetypes of high-performance reactor materials (cladding, wrappers, ducts, pressure vessel, piping, etc.). To fill the knowledge gaps, and to meet the technology needs, a suite of innovative in situ transmission electron microscopy (TEM) characterization techniques (heating, heavy ion irradiation, He implantation, quantitative small-scale mechanical testing, and various combinations thereof) were developed and used to elucidate and map the fundamental mechanisms of microstructure evolution in both Zr and Cr alloys for a wide range environmental boundary conditions in the thermal-mechanical-irradiation input space. Knowledge gained from the experimental observations of the active mechanisms and the role of local microstructural defects on the response of the material has been incorporated into a mathematically rigorous and comprehensive three-dimensional mesoscale framework capable of accounting for the compositional variation, microstructural evolution and localized deformation (radiation damage) to predict aging and degradation of key reactor materials operating in extreme environments. Predictions from this mesoscale framework were compared with the in situ TEM observations to validate the model.« less

  8. Chain representations of Open Quantum Systems and Lieb-Robinson like bounds for the dynamics

    NASA Astrophysics Data System (ADS)

    Woods, Mischa

    2013-03-01

    This talk is concerned with the mapping of the Hamiltonian of open quantum systems onto chain representations, which forms the basis for a rigorous theory of the interaction of a system with its environment. This mapping progresses as an interaction which gives rise to a sequence of residual spectral densities of the system. The rigorous mathematical properties of this mapping have been unknown so far. Here we develop the theory of secondary measures to derive an analytic, expression for the sequence solely in terms of the initial measure and its associated orthogonal polynomials of the first and second kind. These mappings can be thought of as taking a highly nonlocal Hamiltonian to a local Hamiltonian. In the latter, a Lieb-Robinson like bound for the dynamics of the open quantum system makes sense. We develop analytical bounds on the error to observables of the system as a function of time when the semi-infinite chain in truncated at some finite length. The fact that this is possible shows that there is a finite ``Speed of sound'' in these chain representations. This has many implications of the simulatability of open quantum systems of this type and demonstrates that a truncated chain can faithfully reproduce the dynamics at shorter times. These results make a significant and mathematically rigorous contribution to the understanding of the theory of open quantum systems; and pave the way towards the efficient simulation of these systems, which within the standard methods, is often an intractable problem. EPSRC CDT in Controlled Quantum Dynamics, EU STREP project and Alexander von Humboldt Foundation

  9. Why so many "rigorous" evaluations fail to identify unintended consequences of development programs: How mixed methods can contribute.

    PubMed

    Bamberger, Michael; Tarsilla, Michele; Hesse-Biber, Sharlene

    2016-04-01

    Many widely-used impact evaluation designs, including randomized control trials (RCTs) and quasi-experimental designs (QEDs), frequently fail to detect what are often quite serious unintended consequences of development programs. This seems surprising as experienced planners and evaluators are well aware that unintended consequences frequently occur. Most evaluation designs are intended to determine whether there is credible evidence (statistical, theory-based or narrative) that programs have achieved their intended objectives and the logic of many evaluation designs, even those that are considered the most "rigorous," does not permit the identification of outcomes that were not specified in the program design. We take the example of RCTs as they are considered by many to be the most rigorous evaluation designs. We present a numbers of cases to illustrate how infusing RCTs with a mixed-methods approach (sometimes called an "RCT+" design) can strengthen the credibility of these designs and can also capture important unintended consequences. We provide a Mixed Methods Evaluation Framework that identifies 9 ways in which UCs can occur, and we apply this framework to two of the case studies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Modeling the Cloud to Enhance Capabilities for Crises and Catastrophe Management

    DTIC Science & Technology

    2016-11-16

    order for cloud computing infrastructures to be successfully deployed in real world scenarios as tools for crisis and catastrophe management, where...Statement of the Problem Studied As cloud computing becomes the dominant computational infrastructure[1] and cloud technologies make a transition to hosting...1. Formulate rigorous mathematical models representing technological capabilities and resources in cloud computing for performance modeling and

  11. High School Opportunities for STEM: Comparing Inclusive STEM-Focused and Comprehensive High Schools in Two US Cities

    ERIC Educational Resources Information Center

    Eisenhart, Margaret; Weis, Lois; Allen, Carrie D.; Cipollone, Kristin; Stich, Amy; Dominguez, Rachel

    2015-01-01

    In response to numerous calls for more rigorous STEM (science, technology, engineering, and mathematics) education to improve US competitiveness and the job prospects of next-generation workers, especially those from low-income and minority groups, a growing number of schools emphasizing STEM have been established in the US over the past decade.…

  12. Effects of a Data-Based Decision-Making Intervention for Teachers on Students' Mathematical Achievement

    ERIC Educational Resources Information Center

    van der Scheer, Emmelien A.; Visscher, Adrie J.

    2018-01-01

    Data-based decision making (DBDM) is an important element of educational policy in many countries, as it is assumed that student achievement will improve if teachers worked in a data-based way. However, studies that evaluate rigorously the effects of DBDM on student achievement are scarce. In this study, the effects of an intensive…

  13. Classroom Assessment for Student Learning: Impact on Elementary School Mathematics in the Central Region. Final Report. NCEE 2011-4005

    ERIC Educational Resources Information Center

    Randel, Bruce; Beesley, Andrea D.; Apthorp, Helen; Clark, Tedra F.; Wang, Xin; Cicchinelli, Louis F.; Williams, Jean M.

    2011-01-01

    This study was conducted by the Central Region Educational Laboratory (REL Central) administered by Mid-continent Research for Education and Learning to provide educators and policymakers with rigorous evidence about the potential of Classroom Assessment for Student Learning (CASL) to improve student achievement. CASL is a widely used professional…

  14. How PARCC's False Rigor Stunts the Academic Growth of All Students. White Paper No. 135

    ERIC Educational Resources Information Center

    McQuillan, Mark; Phelps, Richard P.; Stotsky, Sandra

    2015-01-01

    In July 2010, the Massachusetts Board of Elementary and Secondary Education (BESE) voted to adopt Common Core's standards in English language arts (ELA) and mathematics in place of the state's own standards in these two subjects. The vote was based largely on recommendations by Commissioner of Education Mitchell Chester and then Secretary of…

  15. Increasing Academic Rigor through Comprehensive, Ongoing Professional Development in Rural Special Education: A Description of the SPLASH Program

    ERIC Educational Resources Information Center

    Courtade, Ginevra R.; Shipman, Stacy D.; Williams, Rachel

    2017-01-01

    SPLASH is a 3-year professional development program designed to work with classroom teachers of students with moderate and severe disabilities. The program targets new teachers and employs methods aimed at supporting rural classrooms. The training content focuses on evidence-based practices in English language arts, mathematics, and science, as…

  16. Results of the Salish Projects: Summary and Implications for Science Teacher Education

    ERIC Educational Resources Information Center

    Yager, Robert E.; Simmons, Patricia

    2013-01-01

    Science teaching and teacher education in the U.S.A. have been of great national interest recently due to a severe shortage of science (and mathematics) teachers who do not hold strong qualifications in their fields of study. Unfortunately we lack a rigorous research base that helps inform solid practices about various models or elements of…

  17. The Relationship between the Rigor of a State's Proficiency Standard and Student Achievement in the State

    ERIC Educational Resources Information Center

    Stoneberg, Bert D.

    2015-01-01

    The National Center of Education Statistics conducted a mapping study that equated the percentage proficient or above on each state's NCLB reading and mathematics tests in grades 4 and 8 to the NAEP scale. Each "NAEP equivalent score" was labeled according to NAEP's achievement levels and used to compare state proficiency standards and…

  18. Bayesian Inference: with ecological applications

    USGS Publications Warehouse

    Link, William A.; Barker, Richard J.

    2010-01-01

    This text provides a mathematically rigorous yet accessible and engaging introduction to Bayesian inference with relevant examples that will be of interest to biologists working in the fields of ecology, wildlife management and environmental studies as well as students in advanced undergraduate statistics.. This text opens the door to Bayesian inference, taking advantage of modern computational efficiencies and easily accessible software to evaluate complex hierarchical models.

  19. Jones index, secret sharing and total quantum dimension

    NASA Astrophysics Data System (ADS)

    Fiedler, Leander; Naaijkens, Pieter; Osborne, Tobias J.

    2017-02-01

    We study the total quantum dimension in the thermodynamic limit of topologically ordered systems. In particular, using the anyons (or superselection sectors) of such models, we define a secret sharing scheme, storing information invisible to a malicious party, and argue that the total quantum dimension quantifies how well we can perform this task. We then argue that this can be made mathematically rigorous using the index theory of subfactors, originally due to Jones and later extended by Kosaki and Longo. This theory provides us with a ‘relative entropy’ of two von Neumann algebras and a quantum channel, and we argue how these can be used to quantify how much classical information two parties can hide form an adversary. We also review the total quantum dimension in finite systems, in particular how it relates to topological entanglement entropy. It is known that the latter also has an interpretation in terms of secret sharing schemes, although this is shown by completely different methods from ours. Our work provides a different and independent take on this, which at the same time is completely mathematically rigorous. This complementary point of view might be beneficial, for example, when studying the stability of the total quantum dimension when the system is perturbed.

  20. Cause and Cure - Deterioration in Accuracy of CFD Simulations With Use of High-Aspect-Ratio Triangular Tetrahedral Grids

    NASA Technical Reports Server (NTRS)

    Chang, Sin-Chung; Chang, Chau-Lyan; Venkatachari, Balaji Shankar

    2017-01-01

    Traditionally high-aspect ratio triangular/tetrahedral meshes are avoided by CFD re-searchers in the vicinity of a solid wall, as it is known to reduce the accuracy of gradient computations in those regions and also cause numerical instability. Although for certain complex geometries, the use of high-aspect ratio triangular/tetrahedral elements in the vicinity of a solid wall can be replaced by quadrilateral/prismatic elements, ability to use triangular/tetrahedral elements in such regions without any degradation in accuracy can be beneficial from a mesh generation point of view. The benefits also carry over to numerical frameworks such as the space-time conservation element and solution element (CESE), where triangular/tetrahedral elements are the mandatory building blocks. With the requirement of the CESE method in mind, a rigorous mathematical framework that clearly identities the reason behind the difficulties in use of such high-aspect ratio triangular/tetrahedral elements is presented here. As will be shown, it turns out that the degree of accuracy deterioration of gradient computation involving a triangular element is hinged on the value of its shape factor Gamma def = sq sin Alpha1 + sq sin Alpha2 + sq sin Alpha3, where Alpha1; Alpha2 and Alpha3 are the internal angles of the element. In fact, it is shown that the degree of accuracy deterioration increases monotonically as the value of Gamma decreases monotonically from its maximal value 9/4 (attained by an equilateral triangle only) to a value much less than 1 (associated with a highly obtuse triangle). By taking advantage of the fact that a high-aspect ratio triangle is not necessarily highly obtuse, and in fact it can have a shape factor whose value is close to the maximal value 9/4, a potential solution to avoid accuracy deterioration of gradient computation associated with a high-aspect ratio triangular grid is given. Also a brief discussion on the extension of the current mathematical framework to the tetrahedral-grid case along with some of the practical results of this extension is also provided. Furthermore, through the use of numerical simulations of practical viscous problems involving high-Reynolds number flows, the effectiveness of the gradient evaluation procedures within the CESE framework (that have their basis on the analysis presented here) to produce accurate and stable results on such high-aspect ratio meshes is also showcased.

  1. Understanding Understanding Mathematics. Artificial Intelligence Memo No. 488.

    ERIC Educational Resources Information Center

    Michener, Edwina Rissland

    This document is concerned with the important extra-logical knowledge that is often outside of traditional discussions in mathematics, and looks at some of the ingredients and processes involved in the understanding of mathematics. The goal is to develop a conceptual framework in which to talk about mathematical knowledge and to understand the…

  2. Mathematical String Sculptures: A Case Study in Computationally-Enhanced Mathematical Crafts

    ERIC Educational Resources Information Center

    Eisenberg, Michael

    2007-01-01

    Mathematical string sculptures constitute an extremely beautiful realm of mathematical crafts. This snapshot begins with a description of a marvelous (and no longer manufactured) toy called Space Spider, which provided a framework with which children could experiment with string sculptures. Using a computer-controlled laser cutter to create frames…

  3. Mathematics-Literacy Checklists: A Pedagogical Innovation to Support Teachers as They Implement the Common Core

    ERIC Educational Resources Information Center

    del Prado Hill, Pixita; Friedland, Ellen S.; McMillen, Susan

    2016-01-01

    This article presents two innovative tools--the Mathematics-Literacy Planning Framework and Mathematics-Literacy Implementation Checklist--which are designed to help instructional coaches and specialists support teachers to meet the challenges of the mathematics-literacy integration goals of the Common Core. Developed with teacher input, these…

  4. A Conceptual Metaphor Framework for the Teaching of Mathematics

    ERIC Educational Resources Information Center

    Danesi, Marcel

    2007-01-01

    Word problems in mathematics seem to constantly pose learning difficulties for all kinds of students. Recent work in math education (for example, [Lakoff, G. & Nunez, R. E. (2000). "Where mathematics comes from: How the embodied mind brings mathematics into being." New York: Basic Books]) suggests that the difficulties stem from an…

  5. Radical-Driven Silicon Surface Passivation for Organic-Inorganic Hybrid Photovoltaics

    NASA Astrophysics Data System (ADS)

    Chandra, Nitish

    The advent of metamaterials has increased the complexity of possible light-matter interactions, creating gaps in knowledge and violating various commonly used approximations and rendering some common mathematical frameworks incomplete. Our forward scattering experiments on metallic shells and cavities have created a need for a rigorous geometry-based analysis of scattering problems and more rigorous current distribution descriptions in the volume of the scattering object. In order to build an accurate understanding of these interactions, we have revisited the fundamentals of Maxwell's equations, electromagnetic potentials and boundary conditions to build a bottom-up geometry-based analysis of scattering. Individual structures or meta-atoms can be designed to localize the incident electromagnetic radiation in order to create a change in local constitutive parameters and possible nonlinear responses. Hence, in next generation engineered materials, an accurate determination of current distribution on the surface and in the structure's volume play an important role in describing and designing desired properties. Multipole expansions of the exact current distribution determined using principles of differential geometry provides an elegant way to study these local interactions of meta-atoms. The dynamics of the interactions can be studied using the behavior of the polarization and magnetization densities generated by localized current densities interacting with the electromagnetic potentials associated with the incident waves. The multipole method combined with propagation of electromagnetic potentials can be used to predict a large variety of linear and nonlinear physical phenomena. This has been demonstrated in experiments that enable the analog detection of sources placed at subwavelength separation by using time reversal of observed signals. Time reversal is accomplished by reversing the direction of the magnetic dipole in bianisotropic metasurfaces while simultaneously providing a method to reduce the losses often observed when light interacts with meta-structures.

  6. Mathematics Education and the Objectivist Programme in HPS

    NASA Astrophysics Data System (ADS)

    Glas, Eduard

    2013-06-01

    Using history of mathematics for studying concepts, methods, problems and other internal features of the discipline may give rise to a certain tension between descriptive adequacy and educational demands. Other than historians, educators are concerned with mathematics as a normatively defined discipline. Teaching cannot but be based on a pre-understanding of what mathematics `is' or, in other words, on a normative (methodological, philosophical) view of the identity or nature of the discipline. Educators are primarily concerned with developments at the level of objective mathematical knowledge, that is: with the relations between successive theories, problems and proposed solutions—relations which are independent of whatever has been the role of personal or collective beliefs, convictions, traditions and other historical circumstances. Though not exactly `historical' in the usual sense, I contend that this `objectivist' approach does represent one among other entirely legitimate and valuable approaches to the historical development of mathematics. Its retrospective importance to current practitioners and students is illustrated by a reconstruction of the development of Eudoxus's theory of proportionality in response to the problem of irrationality, and the way in which Dedekind some two millennia later almost literally used this ancient theory for the rigorous introduction of irrational numbers and hence of the real number continuum.

  7. Text + Book = Textbook? Development of a Conceptual Framework for Non-Textual Elements in Middle School Mathematics Textbooks

    ERIC Educational Resources Information Center

    Kim, Rae Young

    2009-01-01

    This study is an initial analytic attempt to iteratively develop a conceptual framework informed by both theoretical and practical perspectives that may be used to analyze non-textual elements in mathematics textbooks. Despite the importance of visual representations in teaching and learning, little effort has been made to specify in any…

  8. Comparing the Similarities and Differences of PISA 2003 and TIMSS. OECD Education Working Papers, No. 32

    ERIC Educational Resources Information Center

    Wu, Margaret

    2010-01-01

    This paper makes an in-depth comparison of the PISA (OECD) and TIMSS (IEA) mathematics assessments conducted in 2003. First, a comparison of survey methodologies is presented, followed by an examination of the mathematics frameworks in the two studies. The methodologies and the frameworks in the two studies form the basis for providing…

  9. The Pedagogy of Primary Historical Sources in Mathematics: Classroom Practice Meets Theoretical Frameworks

    ERIC Educational Resources Information Center

    Barnett, Janet Heine; Lodder, Jerry; Pengelley, David

    2014-01-01

    We analyze our method of teaching with primary historical sources within the context of theoretical frameworks for the role of history in teaching mathematics developed by Barbin, Fried, Jahnke, Jankvist, and Kjeldsen and Blomhøj, and more generally from the perspective of Sfard's theory of learning as communication. We present case studies…

  10. Delayed bet-hedging resilience strategies under environmental fluctuations

    NASA Astrophysics Data System (ADS)

    Ogura, Masaki; Wakaiki, Masashi; Rubin, Harvey; Preciado, Victor M.

    2017-05-01

    Many biological populations, such as bacterial colonies, have developed through evolution a protection mechanism, called bet hedging, to increase their probability of survival under stressful environmental fluctuation. In this context, the concept of preadaptation refers to a common type of bet-hedging protection strategy in which a relatively small number of individuals in a population stochastically switch their phenotypes to a dormant metabolic state in which they increase their probability of survival against potential environmental shocks. Hence, if an environmental shock took place at some point in time, preadapted organisms would be better adapted to survive and proliferate once the shock is over. In many biological populations, the mechanisms of preadaptation and proliferation present delays whose influence in the fitness of the population are not well understood. In this paper, we propose a rigorous mathematical framework to analyze the role of delays in both preadaptation and proliferation mechanisms in the survival of biological populations, with an emphasis on bacterial colonies. Our theoretical framework allows us to analytically quantify the average growth rate of a bet-hedging bacterial colony with stochastically delayed reactions with arbitrary precision. We verify the accuracy of the proposed method by numerical simulations and conclude that the growth rate of a bet-hedging population shows a nontrivial dependency on their preadaptation and proliferation delays. Contrary to the current belief, our results show that faster reactions do not, in general, increase the overall fitness of a biological population.

  11. [Reconsidering evaluation criteria regarding health care research: toward an integrative framework of quantitative and qualitative criteria].

    PubMed

    Miyata, Hiroaki; Kai, Ichiro

    2006-05-01

    Debate about the relationship between quantitative and qualitative paradigms is often muddled and confused and the clutter of terms and arguments has resulted in the concepts becoming obscure and unrecognizable. It is therefore very important to reconsider evaluation criteria regarding rigor in social science. As Lincoln & Guba have already compared quantitative paradigms (validity, reliability, neutrality, generalizability) with qualitative paradigms (credibility, dependability, confirmability, transferability), we have discuss use of evaluation criteria based on pragmatic perspective. Validity/Credibility is the paradigm concerned to observational framework, while Reliability/Dependability refer to the range of stability in observations, Neutrality/Confirmability reflect influences between observers and subjects, Generalizability/Transferability have epistemological difference in the way findings are applied. Qualitative studies, however, does not always chose the qualitative paradigms. If we assume the stability to some extent, it is better to use the quantitative paradigm (reliability). Moreover as a quantitative study can not always guarantee a perfect observational framework, with stability in all phases of observations, it is useful to use qualitative paradigms to enhance the rigor in the study.

  12. Mathematical Education for Geographers

    ERIC Educational Resources Information Center

    Wilson, Alan

    1978-01-01

    Outlines mathematical topics of use to college geography students identifies teaching methods for mathematical techniques in geography at the University of Leeds; and discusses problem of providing students with a framework for synthesizing all content of geography education. For journal availability, see SO 506 593. (Author/AV)

  13. A Framework for Teachers' Knowledge of Mathematical Reasoning

    ERIC Educational Resources Information Center

    Herbert, Sandra

    2014-01-01

    Exploring and developing primary teachers' understanding of mathematical reasoning was the focus of the "Mathematical Reasoning Professional Learning Research Program." Twenty-four primary teachers were interviewed after engagement in the first stage of the program incorporating demonstration lessons focused on reasoning conducted in…

  14. Universal algorithm for identification of fractional Brownian motion. A case of telomere subdiffusion.

    PubMed

    Burnecki, Krzysztof; Kepten, Eldad; Janczura, Joanna; Bronshtein, Irena; Garini, Yuval; Weron, Aleksander

    2012-11-07

    We present a systematic statistical analysis of the recently measured individual trajectories of fluorescently labeled telomeres in the nucleus of living human cells. The experiments were performed in the U2OS cancer cell line. We propose an algorithm for identification of the telomere motion. By expanding the previously published data set, we are able to explore the dynamics in six time orders, a task not possible earlier. As a result, we establish a rigorous mathematical characterization of the stochastic process and identify the basic mathematical mechanisms behind the telomere motion. We find that the increments of the motion are stationary, Gaussian, ergodic, and even more chaotic--mixing. Moreover, the obtained memory parameter estimates, as well as the ensemble average mean square displacement reveal subdiffusive behavior at all time spans. All these findings statistically prove a fractional Brownian motion for the telomere trajectories, which is confirmed by a generalized p-variation test. Taking into account the biophysical nature of telomeres as monomers in the chromatin chain, we suggest polymer dynamics as a sufficient framework for their motion with no influence of other models. In addition, these results shed light on other studies of telomere motion and the alternative telomere lengthening mechanism. We hope that identification of these mechanisms will allow the development of a proper physical and biological model for telomere subdynamics. This array of tests can be easily implemented to other data sets to enable quick and accurate analysis of their statistical characteristics. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  15. Proofs and Refutations in the Undergraduate Mathematics Classroom

    ERIC Educational Resources Information Center

    Larsen, Sean; Zandieh, Michelle

    2008-01-01

    In his 1976 book, "Proofs and Refutations," Lakatos presents a collection of case studies to illustrate methods of mathematical discovery in the history of mathematics. In this paper, we reframe these methods in ways that we have found make them more amenable for use as a framework for research on learning and teaching mathematics. We present an…

  16. Language and Thought in Mathematics Staff Development: A Problem Probing Protocol

    ERIC Educational Resources Information Center

    Kabasakalian, Rita

    2007-01-01

    Background/Context: The theoretical framework of the paper comes from research on problem solving, considered by many to be the essence of mathematics; research on the importance of oral language in learning mathematics; and on the importance of the teacher as the primary instrument of learning mathematics for most students. As a nation, we are…

  17. Using CAS to Solve a Mathematics Task: A Deconstruction

    ERIC Educational Resources Information Center

    Berger, Margot

    2010-01-01

    I investigate how and whether a heterogeneous group of first-year university mathematics students in South Africa harness the potential power of a computer algebra system (CAS) when doing a specific mathematics task. In order to do this, I develop a framework for deconstructing a mathematics task requiring the use of CAS, into its primary…

  18. Applying a Universal Design for Learning Framework to Mediate the Language Demands of Mathematics

    ERIC Educational Resources Information Center

    Thomas, Cathy Newman; Van Garderen, Delinda; Scheuermann, Amy; Lee, Eun Ju

    2015-01-01

    This article provides information about the relationship between mathematics, language, and literacy and describes the difficulties faced by students with disabilities with math content based on the language demands of mathematics. We conceptualize mathematics language as a mode of discourse for math learning that can be thought of as receptive…

  19. Mathematics Education in Singapore--An Insider's Perspective

    ERIC Educational Resources Information Center

    Kaur, Berinderjeet

    2014-01-01

    Singapore's Education System has evolved over time and so has Mathematics Education in Singapore. The present day School Mathematics Curricula can best be described as one that caters for the needs of every child in school. It is based on a framework that has mathematical problem solving as its primary focus. The developments from 1946 to 2012…

  20. Understanding the Technological, Pedagogical, and Mathematical Issues That Emerge as Secondary Mathematics Teachers Design Lessons That Integrate Technology

    ERIC Educational Resources Information Center

    Gonzalez, Marggie Denise

    2016-01-01

    This multiple case study examines four groups of secondary mathematics teachers engaged in a Lesson Study approach to professional development where they planned and taught lessons that integrate technology. Informed by current literature, a framework was developed to focus on the dimensions of teacher's knowledge to teach mathematics with…

  1. Data Analysis and Statistics across the Curriculum. Curriculum and Evaluation Standards for School Mathematics Addenda Series. Grades 9-12.

    ERIC Educational Resources Information Center

    Burrill, Gail; And Others

    The 1989 document, "Curriculum and Evaluation Standards for School Mathematics" (the "Standards"), provides a vision and a framework for revising and strengthening the K-12 mathematics curriculum in North American schools and for evaluating both the mathematics curriculum and students' progress. When completed, it is expected…

  2. A Conceptual Framework for Digital Libraries for K-12 Mathematics Education: Part 1, Information Organization, Information Literacy, and Integrated Learning

    ERIC Educational Resources Information Center

    Chen, Hsin-liang; Doty, Philip

    2005-01-01

    This article is the first of two that present a six-part conceptual framework for the design and evaluation of digital libraries meant to support mathematics education in K-12 settings (see also pt. 2). This first article concentrates on (1) information organization, (2) information literacy, and (3) integrated learning with multimedia materials.…

  3. Use of Interactive Whiteboard in the Mathematics Classroom: Students' Perceptions within the Framework of the Technology Acceptance Model

    ERIC Educational Resources Information Center

    Önal, Nezih

    2017-01-01

    The purpose of the present research was to reveal students' perceptions regarding the use of the interactive whiteboard in the mathematics classroom within the framework of the Technology Acceptance Model. Semi-structured interviews were performed with 58 secondary school students (5th, 6th, 7th, and 8th grades) to collect data. The data obtained…

  4. A mathematical applications into the cells.

    PubMed

    Tiwari, Manjul

    2012-01-01

    Biology has become the new "physics" of mathematics, one of the areas of greatest mathematical applications. In turn, mathematics has provided powerful tools and metaphors to approach the astonishing complexity of biological systems. This has allowed the development of sound theoretical frameworks. Here, in this review article, some of the most significant contributions of mathematics to biology, ranging from population genetics, to developmental biology, and to networks of species interactions are summarized.

  5. University students' achievement goals and approaches to learning in mathematics.

    PubMed

    Cano, Francisco; Berbén, A B G

    2009-03-01

    Achievement goals (AG) and students' approaches to learning (SAL) are two research perspectives on student motivation and learning in higher education that have until now been pursued quite independently. This study sets out: (a) to explore the relationship between the most representative variables of SAL and AG; (b) to identify subgroups (clusters) of students with multiple AG; and (c) to examine the differences between these clusters with respect to various SAL and AG characteristics. The participants were 680 male and female 1st year university students studying different subjects (e.g. mathematics, physics, economics) but all enrolled on mathematics courses (e.g. algebra, calculus). Participants completed a series of questionnaires that measured their conceptions of mathematics, approaches to learning, course experience, personal 2 x 2 AG, and perceived AG. SAL and AG variables were moderately associated and related to both the way students perceived their academic environment and the way they conceived of the nature of mathematics (i.e. the perceptual-cognitive framework). Four clusters of students with distinctive multiple AG were identified and when the differences between clusters were analysed, we were able to attribute them to various constructs including perceptual-cognitive framework, learning approaches, and academic performance. This study reveals a consistent pattern of relationships between SAL and AG perspectives across different methods of analysis, supports the relevance of the 2 x 2 AG framework in a mathematics learning context and suggests that AG and SAL may be intertwined aspects of students' experience of learning mathematics at university.

  6. Mathematics Framework, Kindergarten-Grade 12.

    ERIC Educational Resources Information Center

    Texas Education Agency, Austin.

    This publication should help educators provide a mathematics program that emphasizes productive time on task and active involvement of students in mathematics activities. The focus on problem solving is stressed. Time allotments are stated, followed by descriptions of essential elements for kindergarten through grade 8: understanding numbers and…

  7. Connecting Mathematics Learning through Spatial Reasoning

    ERIC Educational Resources Information Center

    Mulligan, Joanne; Woolcott, Geoffrey; Mitchelmore, Michael; Davis, Brent

    2018-01-01

    Spatial reasoning, an emerging transdisciplinary area of interest to mathematics education research, is proving integral to all human learning. It is particularly critical to science, technology, engineering and mathematics (STEM) fields. This project will create an innovative knowledge framework based on spatial reasoning that identifies new…

  8. Considering Indigenous Knowledges and Mathematics Curriculum

    ERIC Educational Resources Information Center

    Sterenberg, Gladys

    2013-01-01

    Across Canada, significant program changes in school mathematics have been made that encourage teachers to consider Aboriginal perspectives. In this article, I investigate one Aboriginal teacher's approaches to integrating Indigenous knowledges and the mandated mathematics curriculum in a Blackfoot First Nation school. Using a framework that…

  9. Promoting Mathematical Connections Using Three-Dimensional Manipulatives

    ERIC Educational Resources Information Center

    Safi, Farshid; Desai, Siddhi

    2017-01-01

    "Principles to Actions: Ensuring Mathematical Success for All" (NCTM 2014) gives teachers access to an insightful, research-informed framework that outlines ways to promote reasoning and sense making. Specifically, as students transition on their mathematical journey through middle school and beyond, their knowledge and use of…

  10. Can We Really Count on Frank?

    ERIC Educational Resources Information Center

    Marston, Jennifer L.; Muir, Tracey; Livy, Sharyn

    2013-01-01

    The National Council of Teachers of Mathematics (NCTM) and the Australian National Curriculum encourage the integration of literacy and numeracy, and "Teaching Children Mathematics" ("TCM") regularly includes articles on incorporating picture books into the mathematics program. Marston has developed a new framework (2010) to assist teachers in…

  11. California and the "Common Core": Will There Be a New Debate about K-12 Standards?

    ERIC Educational Resources Information Center

    EdSource, 2010

    2010-01-01

    A growing chorus of state and federal policymakers, large foundations, and business leaders across the country are calling for states to adopt a common, rigorous body of college- and career-ready skills and knowledge in English and mathematics that all K-12 students will be expected to master by the time they graduate. This report looks at the…

  12. An Experimental Study of the Project CRISS Reading Program on Grade 9 Reading Achievement in Rural High Schools. Final Report NCEE 2011-4007

    ERIC Educational Resources Information Center

    Kushman, Jim; Hanita, Makoto; Raphael, Jacqueline

    2011-01-01

    Students entering high school face many new academic challenges. One of the most important is their ability to read and understand more complex text in literature, mathematics, science, and social studies courses as they navigate through a rigorous high school curriculum. The Regional Educational Laboratory (REL) Northwest conducted a study to…

  13. Next Generation of Leaching Tests

    EPA Science Inventory

    A corresponding abstract has been cleared for this presentation. The four methods comprising the Leaching Environmental Assessment Framework are described along with the tools to support implementation of the more rigorous and accurate source terms that are developed using LEAF ...

  14. Measuring coherence with entanglement concurrence

    NASA Astrophysics Data System (ADS)

    Qi, Xianfei; Gao, Ting; Yan, Fengli

    2017-07-01

    Quantum coherence is a fundamental manifestation of the quantum superposition principle. Recently, Baumgratz et al (2014 Phys. Rev. Lett. 113 140401) presented a rigorous framework to quantify coherence from the view of theory of physical resource. Here we propose a new valid quantum coherence measure which is a convex roof measure, for a quantum system of arbitrary dimension, essentially using the generalized Gell-Mann matrices. Rigorous proof shows that the proposed coherence measure, coherence concurrence, fulfills all the requirements dictated by the resource theory of quantum coherence measures. Moreover, strong links between the resource frameworks of coherence concurrence and entanglement concurrence is derived, which shows that any degree of coherence with respect to some reference basis can be converted to entanglement via incoherent operations. Our work provides a clear quantitative and operational connection between coherence and entanglement based on two kinds of concurrence. This new coherence measure, coherence concurrence, may also be beneficial to the study of quantum coherence.

  15. Theory of wavelet-based coarse-graining hierarchies for molecular dynamics.

    PubMed

    Rinderspacher, Berend Christopher; Bardhan, Jaydeep P; Ismail, Ahmed E

    2017-07-01

    We present a multiresolution approach to compressing the degrees of freedom and potentials associated with molecular dynamics, such as the bond potentials. The approach suggests a systematic way to accelerate large-scale molecular simulations with more than two levels of coarse graining, particularly applications of polymeric materials. In particular, we derive explicit models for (arbitrarily large) linear (homo)polymers and iterative methods to compute large-scale wavelet decompositions from fragment solutions. This approach does not require explicit preparation of atomistic-to-coarse-grained mappings, but instead uses the theory of diffusion wavelets for graph Laplacians to develop system-specific mappings. Our methodology leads to a hierarchy of system-specific coarse-grained degrees of freedom that provides a conceptually clear and mathematically rigorous framework for modeling chemical systems at relevant model scales. The approach is capable of automatically generating as many coarse-grained model scales as necessary, that is, to go beyond the two scales in conventional coarse-grained strategies; furthermore, the wavelet-based coarse-grained models explicitly link time and length scales. Furthermore, a straightforward method for the reintroduction of omitted degrees of freedom is presented, which plays a major role in maintaining model fidelity in long-time simulations and in capturing emergent behaviors.

  16. Finding the way with a noisy brain.

    PubMed

    Cheung, Allen; Vickerstaff, Robert

    2010-11-11

    Successful navigation is fundamental to the survival of nearly every animal on earth, and achieved by nervous systems of vastly different sizes and characteristics. Yet surprisingly little is known of the detailed neural circuitry from any species which can accurately represent space for navigation. Path integration is one of the oldest and most ubiquitous navigation strategies in the animal kingdom. Despite a plethora of computational models, from equational to neural network form, there is currently no consensus, even in principle, of how this important phenomenon occurs neurally. Recently, all path integration models were examined according to a novel, unifying classification system. Here we combine this theoretical framework with recent insights from directed walk theory, and develop an intuitive yet mathematically rigorous proof that only one class of neural representation of space can tolerate noise during path integration. This result suggests many existing models of path integration are not biologically plausible due to their intolerance to noise. This surprising result imposes significant computational limitations on the neurobiological spatial representation of all successfully navigating animals, irrespective of species. Indeed, noise-tolerance may be an important functional constraint on the evolution of neuroarchitectural plans in the animal kingdom.

  17. Moran-evolution of cooperation: From well-mixed to heterogeneous complex networks

    NASA Astrophysics Data System (ADS)

    Sarkar, Bijan

    2018-05-01

    Configurational arrangement of network architecture and interaction character of individuals are two most influential factors on the mechanisms underlying the evolutionary outcome of cooperation, which is explained by the well-established framework of evolutionary game theory. In the current study, not only qualitatively but also quantitatively, we measure Moran-evolution of cooperation to support an analytical agreement based on the consequences of the replicator equation in a finite population. The validity of the measurement has been double-checked in the well-mixed network by the Langevin stochastic differential equation and the Gillespie-algorithmic version of Moran-evolution, while in a structured network, the measurement of accuracy is verified by the standard numerical simulation. Considering the Birth-Death and Death-Birth updating rules through diffusion of individuals, the investigation is carried out in the wide range of game environments those relate to the various social dilemmas where we are able to draw a new rigorous mathematical track to tackle the heterogeneity of complex networks. The set of modified criteria reveals the exact fact about the emergence and maintenance of cooperation in the structured population. We find that in general, nature promotes the environment of coexistent traits.

  18. Optical methods in nano-biotechnology

    NASA Astrophysics Data System (ADS)

    Bruno, Luigi; Gentile, Francesco

    2016-01-01

    A scientific theory is not a mathematical paradigm. It is a framework that explains natural facts and may predict future observations. A scientific theory may be modified, improved, or rejected. Science is less a collection of theories and more the process that brings either to deny some hypothesis, maintain or accept somehow universal beliefs (or disbeliefs), and create new models that may improve or replace precedent theories. This process cannot be entrusted to common sense, personal experiences or anecdotes (many precepts in physics are indeed counterintuitive), but on a rigorous design, observation and rational to statistical analysis of new experiments. Scientific results are always provisional: scientists rarely proclaim an absolute truth or absolute certainty. Uncertainty is inevitable at the frontiers of knowledge. Notably, this is the definition of the scientific method and what we have written in the above echoes the opinion Marcia McNutt who is the Editor of Science 'Science is a method for deciding whether what we choose to believe has a basis in the laws of nature or not'. A new discovery, a new theory that explains that discovery and the scientific method itself need observations, verifications and are susceptible of falsification.

  19. Adaptive tracking control for active suspension systems with non-ideal actuators

    NASA Astrophysics Data System (ADS)

    Pan, Huihui; Sun, Weichao; Jing, Xingjian; Gao, Huijun; Yao, Jianyong

    2017-07-01

    As a critical component of transportation vehicles, active suspension systems are instrumental in the improvement of ride comfort and maneuverability. However, practical active suspensions commonly suffer from parameter uncertainties (e.g., the variations of payload mass and suspension component parameters), external disturbances and especially the unknown non-ideal actuators (i.e., dead-zone and hysteresis nonlinearities), which always significantly deteriorate the control performance in practice. To overcome these issues, this paper synthesizes an adaptive tracking control strategy for vehicle suspension systems to achieve suspension performance improvements. The proposed control algorithm is formulated by developing a unified framework of non-ideal actuators rather than a separate way, which is a simple yet effective approach to remove the unexpected nonlinear effects. From the perspective of practical implementation, the advantages of the presented controller for active suspensions include that the assumptions on the measurable actuator outputs, the prior knowledge of nonlinear actuator parameters and the uncertain parameters within a known compact set are not required. Furthermore, the stability of the closed-loop suspension system is theoretically guaranteed by rigorous mathematical analysis. Finally, the effectiveness of the presented adaptive control scheme is confirmed using comparative numerical simulation validations.

  20. Predictability Experiments With the Navy Operational Global Atmospheric Prediction System

    NASA Astrophysics Data System (ADS)

    Reynolds, C. A.; Gelaro, R.; Rosmond, T. E.

    2003-12-01

    There are several areas of research in numerical weather prediction and atmospheric predictability, such as targeted observations and ensemble perturbation generation, where it is desirable to combine information about the uncertainty of the initial state with information about potential rapid perturbation growth. Singular vectors (SVs) provide a framework to accomplish this task in a mathematically rigorous and computationally feasible manner. In this study, SVs are calculated using the tangent and adjoint models of the Navy Operational Global Atmospheric Prediction System (NOGAPS). The analysis error variance information produced by the NRL Atmospheric Variational Data Assimilation System is used as the initial-time SV norm. These VAR SVs are compared to SVs for which total energy is both the initial and final time norms (TE SVs). The incorporation of analysis error variance information has a significant impact on the structure and location of the SVs. This in turn has a significant impact on targeted observing applications. The utility and implications of such experiments in assessing the analysis error variance estimates will be explored. Computing support has been provided by the Department of Defense High Performance Computing Center at the Naval Oceanographic Office Major Shared Resource Center at Stennis, Mississippi.

  1. Lyapunov exponents, covariant vectors and shadowing sensitivity analysis of 3D wakes: from laminar to chaotic regimes

    NASA Astrophysics Data System (ADS)

    Wang, Qiqi; Rigas, Georgios; Esclapez, Lucas; Magri, Luca; Blonigan, Patrick

    2016-11-01

    Bluff body flows are of fundamental importance to many engineering applications involving massive flow separation and in particular the transport industry. Coherent flow structures emanating in the wake of three-dimensional bluff bodies, such as cars, trucks and lorries, are directly linked to increased aerodynamic drag, noise and structural fatigue. For low Reynolds laminar and transitional regimes, hydrodynamic stability theory has aided the understanding and prediction of the unstable dynamics. In the same framework, sensitivity analysis provides the means for efficient and optimal control, provided the unstable modes can be accurately predicted. However, these methodologies are limited to laminar regimes where only a few unstable modes manifest. Here we extend the stability analysis to low-dimensional chaotic regimes by computing the Lyapunov covariant vectors and their associated Lyapunov exponents. We compare them to eigenvectors and eigenvalues computed in traditional hydrodynamic stability analysis. Computing Lyapunov covariant vectors and Lyapunov exponents also enables the extension of sensitivity analysis to chaotic flows via the shadowing method. We compare the computed shadowing sensitivities to traditional sensitivity analysis. These Lyapunov based methodologies do not rely on mean flow assumptions, and are mathematically rigorous for calculating sensitivities of fully unsteady flow simulations.

  2. Automated inference procedure for the determination of cell growth parameters

    NASA Astrophysics Data System (ADS)

    Harris, Edouard A.; Koh, Eun Jee; Moffat, Jason; McMillen, David R.

    2016-01-01

    The growth rate and carrying capacity of a cell population are key to the characterization of the population's viability and to the quantification of its responses to perturbations such as drug treatments. Accurate estimation of these parameters necessitates careful analysis. Here, we present a rigorous mathematical approach for the robust analysis of cell count data, in which all the experimental stages of the cell counting process are investigated in detail with the machinery of Bayesian probability theory. We advance a flexible theoretical framework that permits accurate estimates of the growth parameters of cell populations and of the logical correlations between them. Moreover, our approach naturally produces an objective metric of avoidable experimental error, which may be tracked over time in a laboratory to detect instrumentation failures or lapses in protocol. We apply our method to the analysis of cell count data in the context of a logistic growth model by means of a user-friendly computer program that automates this analysis, and present some samples of its output. Finally, we note that a traditional least squares fit can provide misleading estimates of parameter values, because it ignores available information with regard to the way in which the data have actually been collected.

  3. Directly Measuring the Degree of Quantum Coherence using Interference Fringes

    NASA Astrophysics Data System (ADS)

    Wang, Yi-Tao; Tang, Jian-Shun; Wei, Zhi-Yuan; Yu, Shang; Ke, Zhi-Jin; Xu, Xiao-Ye; Li, Chuan-Feng; Guo, Guang-Can

    2017-01-01

    Quantum coherence is the most distinguished feature of quantum mechanics. It lies at the heart of the quantum-information technologies as the fundamental resource and is also related to other quantum resources, including entanglement. It plays a critical role in various fields, even in biology. Nevertheless, the rigorous and systematic resource-theoretic framework of coherence has just been developed recently, and several coherence measures are proposed. Experimentally, the usual method to measure coherence is to perform state tomography and use mathematical expressions. Here, we alternatively develop a method to measure coherence directly using its most essential behavior—the interference fringes. The ancilla states are mixed into the target state with various ratios, and the minimal ratio that makes the interference fringes of the "mixed state" vanish is taken as the quantity of coherence. We also use the witness observable to witness coherence, and the optimal witness constitutes another direct method to measure coherence. For comparison, we perform tomography and calculate l1 norm of coherence, which coincides with the results of the other two methods in our situation. Our methods are explicit and robust, providing a nice alternative to the tomographic technique.

  4. Directly Measuring the Degree of Quantum Coherence using Interference Fringes.

    PubMed

    Wang, Yi-Tao; Tang, Jian-Shun; Wei, Zhi-Yuan; Yu, Shang; Ke, Zhi-Jin; Xu, Xiao-Ye; Li, Chuan-Feng; Guo, Guang-Can

    2017-01-13

    Quantum coherence is the most distinguished feature of quantum mechanics. It lies at the heart of the quantum-information technologies as the fundamental resource and is also related to other quantum resources, including entanglement. It plays a critical role in various fields, even in biology. Nevertheless, the rigorous and systematic resource-theoretic framework of coherence has just been developed recently, and several coherence measures are proposed. Experimentally, the usual method to measure coherence is to perform state tomography and use mathematical expressions. Here, we alternatively develop a method to measure coherence directly using its most essential behavior-the interference fringes. The ancilla states are mixed into the target state with various ratios, and the minimal ratio that makes the interference fringes of the "mixed state" vanish is taken as the quantity of coherence. We also use the witness observable to witness coherence, and the optimal witness constitutes another direct method to measure coherence. For comparison, we perform tomography and calculate l_{1} norm of coherence, which coincides with the results of the other two methods in our situation. Our methods are explicit and robust, providing a nice alternative to the tomographic technique.

  5. An initial framework for the language of higher-order thinking mathematics practices

    NASA Astrophysics Data System (ADS)

    Staples, Megan E.; Truxaw, Mary P.

    2012-09-01

    This article presents an examination of the language demands of cognitively demanding tasks and proposes an initial framework for the language demands of higher-order mathematics thinking practices. We articulate four categories for this framework: language of generalisation, language of comparison, language of proportional reasoning, and language of analysing impact. These categories were developed out of our collaborative work to design and implement higher-order thinking tasks with a group of Grade 9 (14- and 15-year-olds) teachers teaching in a linguistically diverse setting; analyses of student work samples on these tasks; and our knowledge of the literature. We describe each type of language demand and then analyse student work in each category to reveal linguistic challenges facing students as they engage these mathematical tasks. Implications for teaching and professional development are discussed.

  6. JACOB: an enterprise framework for computational chemistry.

    PubMed

    Waller, Mark P; Dresselhaus, Thomas; Yang, Jack

    2013-06-15

    Here, we present just a collection of beans (JACOB): an integrated batch-based framework designed for the rapid development of computational chemistry applications. The framework expedites developer productivity by handling the generic infrastructure tier, and can be easily extended by user-specific scientific code. Paradigms from enterprise software engineering were rigorously applied to create a scalable, testable, secure, and robust framework. A centralized web application is used to configure and control the operation of the framework. The application-programming interface provides a set of generic tools for processing large-scale noninteractive jobs (e.g., systematic studies), or for coordinating systems integration (e.g., complex workflows). The code for the JACOB framework is open sourced and is available at: www.wallerlab.org/jacob. Copyright © 2013 Wiley Periodicals, Inc.

  7. An Examination of the Levels of Cognitive Demand Required by Probability Tasks in Middle Grades Mathematics Textbooks

    ERIC Educational Resources Information Center

    Jones, Dustin L.; Tarr, James E.

    2007-01-01

    We analyze probability content within middle grades (6, 7, and 8) mathematics textbooks from a historical perspective. Two series, one popular and the other alternative, from four recent eras of mathematics education (New Math, Back to Basics, Problem Solving, and Standards) were analyzed using the Mathematical Tasks Framework (Stein, Smith,…

  8. Exploring the Impact of a Standards-Based Mathematics and Pedagogy Class on Preservice Teachers' Beliefs and Subject Matter Knowledge

    ERIC Educational Resources Information Center

    Stohlmann, Micah Stephen

    2012-01-01

    This case study explored the impact of a standards-based mathematics and pedagogy class on preservice elementary teachers' beliefs and conceptual subject matter knowledge of linear functions. The framework for the standards-based mathematics and pedagogy class in this study involved the National Council of Teachers of Mathematics Standards,…

  9. "Let's Count": Improving Community Approaches to Early Years Mathematics Learning, Teaching and Dispositions through Noticing, Exploring and Talking about Mathematics

    ERIC Educational Resources Information Center

    Perry, Bob; Hampshire, Ann; Gervaxoni, Ann; O'Neill, Will

    2016-01-01

    "Let's Count" is a preschool mathematics intervention implemented by The Smith Family from 2012 to the present in "disdvantaged" communities across Australia. It is based on current mathematics and early childhood education research and aligns with the Early Years Learning Framework. Let's Count has been shown to be effective…

  10. Status of Teachers' Proficiency in Mathematical Knowledge for Teaching at Secondary School Level in Kenya

    ERIC Educational Resources Information Center

    Miheso-O'Connor Khakasa, Marguerite; Berger, Margot

    2016-01-01

    Mathematical knowledge for teaching (MKT), defined by Ball ("Elementary Journal," 93, 373-397, 1993) as knowledge that is needed to teach mathematics, has been used as a framework by researchers to interrogate various aspects of teaching and learning mathematics. In this article, which draws from a larger study, we show how an in-depth…

  11. An Emergent Framework: Views of Mathematical Processes

    ERIC Educational Resources Information Center

    Sanchez, Wendy B.; Lischka, Alyson E.; Edenfield, Kelly W.; Gammill, Rebecca

    2015-01-01

    The findings reported in this paper were generated from a case study of teacher leaders at a state-level mathematics conference. Investigation focused on how participants viewed the mathematical processes of communication, connections, representations, problem solving, and reasoning and proof. Purposeful sampling was employed to select nine…

  12. Reconstructing Mathematics Pedagogy from a Constructivist Perspective.

    ERIC Educational Resources Information Center

    Simon, Martin A.

    1995-01-01

    Begins with an overview of the constructivist perspective and the pedagogical theory development upon which a constructivist teaching experiment with 20 prospective elementary teachers was based. Derives a theoretical framework for mathematics pedagogy with a focus on decisions about content and mathematical tasks. (49 references) (Author/DDD)

  13. Mathematical Problem Solving through Sequential Process Analysis

    ERIC Educational Resources Information Center

    Codina, A.; Cañadas, M. C.; Castro, E.

    2015-01-01

    Introduction: The macroscopic perspective is one of the frameworks for research on problem solving in mathematics education. Coming from this perspective, our study addresses the stages of thought in mathematical problem solving, offering an innovative approach because we apply sequential relations and global interrelations between the different…

  14. A Mathematical Framework for Image Analysis

    DTIC Science & Technology

    1991-08-01

    The results reported here were derived from the research project ’A Mathematical Framework for Image Analysis ’ supported by the Office of Naval...Research, contract N00014-88-K-0289 to Brown University. A common theme for the work reported is the use of probabilistic methods for problems in image ... analysis and image reconstruction. Five areas of research are described: rigid body recognition using a decision tree/combinatorial approach; nonrigid

  15. The Rights of the Learner: A Framework for Promoting Equity through Formative Assessment in Mathematics Education

    ERIC Educational Resources Information Center

    Kalinec-Craig, Crystal A.

    2017-01-01

    An elementary mathematics teacher once argued that she and her students held four Rights of the Learner in the classroom: (1) the right to be confused; (2) the right to claim a mistake; (3) the right to speak, listen and be heard; and (4) the right to write, do, and represent only what makes sense. Written as an emerging framework to promote…

  16. Student and high-school characteristics related to completing a science, technology, engineering or mathematics (STEM) major in college

    NASA Astrophysics Data System (ADS)

    LeBeau, Brandon; Harwell, Michael; Monson, Debra; Dupuis, Danielle; Medhanie, Amanuel; Post, Thomas R.

    2012-04-01

    Background: The importance of increasing the number of US college students completing degrees in science, technology, engineering or mathematics (STEM) has prompted calls for research to provide a better understanding of factors related to student participation in these majors, including the impact of a student's high-school mathematics curriculum. Purpose: This study examines the relationship between various student and high-school characteristics and completion of a STEM major in college. Of specific interest is the influence of a student's high-school mathematics curriculum on the completion of a STEM major in college. Sample: The sample consisted of approximately 3500 students from 229 high schools. Students were predominantly Caucasian (80%), with slightly more males than females (52% vs 48%). Design and method: A quasi-experimental design with archival data was used for students who enrolled in, and graduated from, a post-secondary institution in the upper Midwest. To be included in the sample, students needed to have completed at least three years of high-school mathematics. A generalized linear mixed model was used with students nested within high schools. The data were cross-sectional. Results: High-school predictors were not found to have a significant impact on the completion of a STEM major. Significant student-level predictors included ACT mathematics score, gender and high-school mathematics GPA. Conclusions: The results provide evidence that on average students are equally prepared for the rigorous mathematics coursework regardless of the high-school mathematics curriculum they completed.

  17. Grade Expectations for Vermont's Framework of Standards and Learning Opportunities, Spring 2004 (Mathematics, Reading and Writing)

    ERIC Educational Resources Information Center

    Vermont Department of Education, 2004

    2004-01-01

    This document, "Grade Expectations for Vermont's Framework of Standards and Learning Opportunities" (hereafter "Vermont's Grade Expectations"), is an important companion to "Vermont's Framework." These Grade Expectations (GEs) serve the same purposes as "Vermont's Framework," but articulate learning…

  18. Texas M-E flexible pavement design system: literature review and proposed framework.

    DOT National Transportation Integrated Search

    2012-04-01

    Recent developments over last several decades have offered an opportunity for more rational and rigorous pavement design procedures. Substantial work has already been completed in Texas, nationally, and internationally, in all aspects of modeling, ma...

  19. From screening to synthesis: using nvivo to enhance transparency in qualitative evidence synthesis.

    PubMed

    Houghton, Catherine; Murphy, Kathy; Meehan, Ben; Thomas, James; Brooker, Dawn; Casey, Dympna

    2017-03-01

    To explore the experiences and perceptions of healthcare staff caring for people with dementia in the acute setting. This article focuses on the methodological process of conducting framework synthesis using nvivo for each stage of the review: screening, data extraction, synthesis and critical appraisal. Qualitative evidence synthesis brings together many research findings in a meaningful way that can be used to guide practice and policy development. For this purpose, synthesis must be conducted in a comprehensive and rigorous way. There has been previous discussion on how using nvivo can assist in enhancing and illustrate the rigorous processes involved. Qualitative framework synthesis. Twelve documents, or research reports, based on nine studies, were included for synthesis. The benefits of using nvivo are outlined in terms of facilitating teams of researchers to systematically and rigorously synthesise findings. nvivo functions were used to conduct a sensitivity analysis. Some valuable lessons were learned, and these are presented to assist and guide researchers who wish to use similar methods in future. Ultimately, good qualitative evidence synthesis will provide practitioners and policymakers with significant information that will guide decision-making on many aspects of clinical practice. The example provided explored how people with dementia are cared for acute settings. © 2016 The Authors. Journal of Clinical Nursing Published by John Wiley & Sons Ltd.

  20. MONTO: A Machine-Readable Ontology for Teaching Word Problems in Mathematics

    ERIC Educational Resources Information Center

    Lalingkar, Aparna; Ramnathan, Chandrashekar; Ramani, Srinivasan

    2015-01-01

    The Indian National Curriculum Framework has as one of its objectives the development of mathematical thinking and problem solving ability. However, recent studies conducted in Indian metros have expressed concern about students' mathematics learning. Except in some private coaching academies, regular classroom teaching does not include problem…

  1. CCSSM: Teaching in Grades 3 and 4

    ERIC Educational Resources Information Center

    Barlow, Angela T.; Harmon, Shannon

    2012-01-01

    Common Core State Standards for Mathematics (CCSSM) is different from the objectives that many teachers have previously experienced in their state frameworks. Although the mathematical topics of the two may be the same, the mathematical expectations within the Standards require a deeper understanding by teachers and students. In this article, the…

  2. Techno-Mathematical Discourse: A Conceptual Framework for Analyzing Classroom Discussions

    ERIC Educational Resources Information Center

    Anderson-Pence, Katie L.

    2017-01-01

    Extensive research has been published on the nature of classroom mathematical discourse and on the impact of technology tools, such as virtual manipulatives (VM), on students' learning, while less research has focused on how technology tools facilitate that mathematical discourse. This paper presents an emerging construct, the Techno-Mathematical…

  3. Circles, Materiality and Movement

    ERIC Educational Resources Information Center

    Chorney, Sean

    2017-01-01

    This paper approaches the concept of the circle through the framework of mathematics-as-becoming. This paper focuses specifically on how a concept can be thought of as a process, and on the implications that this might have for mathematics learning. Contrary to long-standing assumptions about mathematical concepts as ideal, inert, Platonic forms,…

  4. A Reflection Framework for Teaching Mathematics

    ERIC Educational Resources Information Center

    Merritt, Eileen G.; Rimm-Kaufman, Sara E.; Berry, Robert Q., III; Walkowiak, Temple A.; McCracken, Erin R.

    2010-01-01

    Mathematics teachers confront dozens of daily decisions about how to instruct students. It is well established that high-quality instruction provides benefits for students with diverse learning and family backgrounds. However, it is often difficult for teachers to identify the critical aspects of a successful mathematics lesson as they strive to…

  5. Raising Concerns about Sharing and Reusing Large-Scale Mathematics Classroom Observation Video Data

    ERIC Educational Resources Information Center

    Ing, Marsha; Samkian, Artineh

    2018-01-01

    There are great opportunities and challenges to sharing large-scale mathematics classroom observation data. This Research Commentary describes the methodological opportunities and challenges and provides a specific example from a mathematics education research project to illustrate how the research questions and framework drove observational…

  6. Commognitive Analysis of Undergraduate Mathematics Students' First Encounter with the Subgroup Test

    ERIC Educational Resources Information Center

    Ioannou, Marios

    2018-01-01

    This study analyses learning aspects of undergraduate mathematics students' first encounter with the subgroup test, using the commognitive theoretical framework. It focuses on students' difficulties as these are related to the object-level and metalevel mathematical learning in group theory, and, when possible, highlights any commognitive…

  7. Mathematical Working Spaces through Networking Lens

    ERIC Educational Resources Information Center

    Artigue, Michèle

    2016-01-01

    This issue of "ZDM" collects research works sharing a common reference to the theoretical framework of Mathematical Working Spaces (MWS), a construction which emerged about one decade ago, and has progressively found its way in the mathematics education community, thanks to the collaborative work of an international group of researchers.…

  8. Children's Mathematical Knowledge Prior to Starting School

    ERIC Educational Resources Information Center

    Gervasoni, Ann; Perry, Bob

    2013-01-01

    The introduction of the "Early Years Learning Framework and the Australian Curriculum-Mathematics" in Australian preschools and primary schools has caused early childhood educators to reconsider what may be appropriate levels of mathematics knowledge to expect from children as they start school. This paper reports on initial data from an…

  9. Mathematics Framework for the 2011 National Assessment of Educational Progress

    ERIC Educational Resources Information Center

    National Assessment Governing Board, 2010

    2010-01-01

    Since 1973, the National Assessment of Educational Progress (NAEP) has gathered information about student achievement in mathematics. Results of these periodic assessments, produced in print and web-based formats, provide valuable information to a wide variety of audiences. The NAEP Assessment in mathematics has two components that differ in…

  10. Mathematical Literacy of School Leaving Pupils in South Africa

    ERIC Educational Resources Information Center

    Howie, S.; Plomp, T.

    2002-01-01

    This paper discusses some results of South African (SA) grade 12 pupils on an international test of mathematical literacy, administered in the framework of the Third International Mathematics and Science Study (TIMSS) under the auspices of the International Association for the Evaluation of Educational Achievement (IEA). Three questions are…

  11. Psychological Aspects of Genetic Approach to Teaching Mathematics

    ERIC Educational Resources Information Center

    Safuanov, Ildar S.

    2004-01-01

    In this theoretical essay the psychological aspects of genetic approach to teaching mathematics (mainly at universities) are discussed. Analysis of the history and modern state of genetic teaching shows that its psychological aspects may be explained using both Vygotskian and Piagetian frameworks. Experience of practice of mathematical education…

  12. Novice Mathematics Teachers Create Themselves

    ERIC Educational Resources Information Center

    Schatz Oppenheimer, Orna; Dvir, Nurit

    2018-01-01

    This study presents a qualitative research based on three narratives written by novice mathematics teachers. We examine their unique professional world during their first year of work. The methodology of narrative framework, on which this article is based, helps to gain better understanding of the need for novice mathematics teachers to have…

  13. The Pedagogy of Primary Historical Sources in Mathematics: Classroom Practice Meets Theoretical Frameworks

    NASA Astrophysics Data System (ADS)

    Barnett, Janet Heine; Lodder, Jerry; Pengelley, David

    2014-01-01

    We analyze our method of teaching with primary historical sources within the context of theoretical frameworks for the role of history in teaching mathematics developed by Barbin, Fried, Jahnke, Jankvist, and Kjeldsen and Blomhøj, and more generally from the perspective of Sfard's theory of learning as communication. We present case studies for two of our guided student modules that are built around sequences of primary sources and are intended for learning core curricular material, one on logical implication, the other on the concept of a group. Additionally, we propose some conclusions about the advantages and challenges of using primary sources in teaching mathematics.

  14. A transformative model for undergraduate quantitative biology education.

    PubMed

    Usher, David C; Driscoll, Tobin A; Dhurjati, Prasad; Pelesko, John A; Rossi, Louis F; Schleiniger, Gilberto; Pusecker, Kathleen; White, Harold B

    2010-01-01

    The BIO2010 report recommended that students in the life sciences receive a more rigorous education in mathematics and physical sciences. The University of Delaware approached this problem by (1) developing a bio-calculus section of a standard calculus course, (2) embedding quantitative activities into existing biology courses, and (3) creating a new interdisciplinary major, quantitative biology, designed for students interested in solving complex biological problems using advanced mathematical approaches. To develop the bio-calculus sections, the Department of Mathematical Sciences revised its three-semester calculus sequence to include differential equations in the first semester and, rather than using examples traditionally drawn from application domains that are most relevant to engineers, drew models and examples heavily from the life sciences. The curriculum of the B.S. degree in Quantitative Biology was designed to provide students with a solid foundation in biology, chemistry, and mathematics, with an emphasis on preparation for research careers in life sciences. Students in the program take core courses from biology, chemistry, and physics, though mathematics, as the cornerstone of all quantitative sciences, is given particular prominence. Seminars and a capstone course stress how the interplay of mathematics and biology can be used to explain complex biological systems. To initiate these academic changes required the identification of barriers and the implementation of solutions.

  15. A Transformative Model for Undergraduate Quantitative Biology Education

    PubMed Central

    Driscoll, Tobin A.; Dhurjati, Prasad; Pelesko, John A.; Rossi, Louis F.; Schleiniger, Gilberto; Pusecker, Kathleen; White, Harold B.

    2010-01-01

    The BIO2010 report recommended that students in the life sciences receive a more rigorous education in mathematics and physical sciences. The University of Delaware approached this problem by (1) developing a bio-calculus section of a standard calculus course, (2) embedding quantitative activities into existing biology courses, and (3) creating a new interdisciplinary major, quantitative biology, designed for students interested in solving complex biological problems using advanced mathematical approaches. To develop the bio-calculus sections, the Department of Mathematical Sciences revised its three-semester calculus sequence to include differential equations in the first semester and, rather than using examples traditionally drawn from application domains that are most relevant to engineers, drew models and examples heavily from the life sciences. The curriculum of the B.S. degree in Quantitative Biology was designed to provide students with a solid foundation in biology, chemistry, and mathematics, with an emphasis on preparation for research careers in life sciences. Students in the program take core courses from biology, chemistry, and physics, though mathematics, as the cornerstone of all quantitative sciences, is given particular prominence. Seminars and a capstone course stress how the interplay of mathematics and biology can be used to explain complex biological systems. To initiate these academic changes required the identification of barriers and the implementation of solutions. PMID:20810949

  16. The Science behind Curriculum Development and Evaluation: Taking a Design Science Approach in the Production of a Tier 2 Mathematics Curriculum

    ERIC Educational Resources Information Center

    Doabler, Christian T.; Clarke, Ben; Fien, Hank; Baker, Scott K.; Kosty, Derek B.; Cary, Mari Strand

    2015-01-01

    The production of an effective mathematics curriculum begins with a scientific development, evaluation, and revision framework. The purpose of this study was to conduct an initial investigation of a recently developed Tier 2 mathematics curriculum designed to improve the outcomes of first grade students at risk for mathematics difficulties (MD).…

  17. What the United States Can Learn From Singapore's World-Class Mathematics System (and What Singapore Can Learn from the United States): An Exploratory Study

    ERIC Educational Resources Information Center

    Ginsburg, Alan; Leinwand, Steven; Anstrom, Terry; Pollock, Elizabeth

    2005-01-01

    This exploratory study compares key features of the Singapore and U.S. mathematics systems in the primary grades, when students need to build a strong mathematics foundation. It identifies major differences between the mathematics frameworks, textbooks, assessments, and teachers in Singapore and the United States. It also presents initial results…

  18. The Applied Mathematics for Power Systems (AMPS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chertkov, Michael

    2012-07-24

    Increased deployment of new technologies, e.g., renewable generation and electric vehicles, is rapidly transforming electrical power networks by crossing previously distinct spatiotemporal scales and invalidating many traditional approaches for designing, analyzing, and operating power grids. This trend is expected to accelerate over the coming years, bringing the disruptive challenge of complexity, but also opportunities to deliver unprecedented efficiency and reliability. Our Applied Mathematics for Power Systems (AMPS) Center will discover, enable, and solve emerging mathematics challenges arising in power systems and, more generally, in complex engineered networks. We will develop foundational applied mathematics resulting in rigorous algorithms and simulation toolboxesmore » for modern and future engineered networks. The AMPS Center deconstruction/reconstruction approach 'deconstructs' complex networks into sub-problems within non-separable spatiotemporal scales, a missing step in 20th century modeling of engineered networks. These sub-problems are addressed within the appropriate AMPS foundational pillar - complex systems, control theory, and optimization theory - and merged or 'reconstructed' at their boundaries into more general mathematical descriptions of complex engineered networks where important new questions are formulated and attacked. These two steps, iterated multiple times, will bridge the growing chasm between the legacy power grid and its future as a complex engineered network.« less

  19. A Proposed Solution to the Problem with Using Completely Random Data to Assess the Number of Factors with Parallel Analysis

    ERIC Educational Resources Information Center

    Green, Samuel B.; Levy, Roy; Thompson, Marilyn S.; Lu, Min; Lo, Wen-Juo

    2012-01-01

    A number of psychometricians have argued for the use of parallel analysis to determine the number of factors. However, parallel analysis must be viewed at best as a heuristic approach rather than a mathematically rigorous one. The authors suggest a revision to parallel analysis that could improve its accuracy. A Monte Carlo study is conducted to…

  20. Statistical hydrodynamics and related problems in spaces of probability measures

    NASA Astrophysics Data System (ADS)

    Dostoglou, Stamatios

    2017-11-01

    A rigorous theory of statistical solutions of the Navier-Stokes equations, suitable for exploring Kolmogorov's ideas, has been developed by M.I. Vishik and A.V. Fursikov, culminating in their monograph "Mathematical problems of Statistical Hydromechanics." We review some progress made in recent years following this approach, with emphasis on problems concerning the correlation of velocities and corresponding questions in the space of probability measures on Hilbert spaces.

  1. ACM TOMS replicated computational results initiative

    DOE PAGES

    Heroux, Michael Allen

    2015-06-03

    In this study, the scientific community relies on the peer review process for assuring the quality of published material, the goal of which is to build a body of work we can trust. Computational journals such as The ACM Transactions on Mathematical Software (TOMS) use this process for rigorously promoting the clarity and completeness of content, and citation of prior work. At the same time, it is unusual to independently confirm computational results.

  2. Modeling Studies of Inhomogeneity Effects during Laser Flash Photolysis Experiments: A Reaction-Diffusion Approach.

    PubMed

    Dóka, Éva; Lente, Gábor

    2017-04-13

    This work presents a rigorous mathematical study of the effect of unavoidable inhomogeneities in laser flash photolysis experiments. There are two different kinds of inhomegenities: the first arises from diffusion, whereas the second one has geometric origins (the shapes of the excitation and detection light beams). Both of these are taken into account in our reported model, which gives rise to a set of reaction-diffusion type partial differential equations. These equations are solved by a specially developed finite volume method. As an example, the aqueous reaction between the sulfate ion radical and iodide ion is used, for which sufficiently detailed experimental data are available from an earlier publication. The results showed that diffusion itself is in general too slow to influence the kinetic curves on the usual time scales of laser flash photolysis experiments. However, the use of the absorbances measured (e.g., to calculate the molar absorption coefficients of transient species) requires very detailed mathematical consideration and full knowledge of the geometrical shapes of the excitation laser beam and the separate detection light beam. It is also noted that the usual pseudo-first-order approach to evaluating the kinetic traces can be used successfully even if the usual large excess condition is not rigorously met in the reaction cell locally.

  3. The Nature of Scaffolding in Undergraduate Students' Transition to Mathematical Proof

    ERIC Educational Resources Information Center

    Blanton, Maria L.; Stylianou, Despina A.; David, Maria Manuela

    2003-01-01

    This paper explores the role of instructional scaffolding in the development of undergraduate students' understanding of mathematical proof during a one-year discrete mathematics course. We describe here the framework adapted for the analysis of whole-class discussion and examine how the teacher scaffolded students' thinking. Results suggest that…

  4. Mathematics Teaching as Problem Solving: A Framework for Studying Teacher Metacognition Underlying Instructional Practice in Mathematics.

    ERIC Educational Resources Information Center

    Artzt, Alice F.; Armour-Thomas, Eleanor

    1998-01-01

    Uses a "teaching as problem solving" perspective to examine the components of metacognition underlying the instructional practice of seven experienced and seven beginning secondary-school mathematics teachers. Data analysis of observations, lesson plans, videotapes, and audiotapes of structured interviews suggests that the metacognition of…

  5. Early Career Elementary Mathematics Teachers' Noticing Related to Language and Language Learners

    ERIC Educational Resources Information Center

    Turner, Erin Elizabeth; McDuffie, Amy Roth; Sugimoto, Amanda Tori; Stoehr, Kathleen Jablon; Witters, Angela; Aguirre, Julia; Bartell, Tonya; Drake, Corey; Foote, Mary Q.

    2016-01-01

    There has been limited attention to early career teachers' (ECTs) understandings and practices related to language in teaching and learning mathematics. In this qualitative case study, we drew upon frameworks for teacher noticing to study the language practices of six early career elementary and middle school mathematics teachers. We describe…

  6. Conceptualizing Mathematics as Discourse in Different Educational Settings

    ERIC Educational Resources Information Center

    Güçler, Beste; Wang, Sasha; Kim, Dong-Joong

    2015-01-01

    In this work, we focus on a relatively new theory in mathematics education research, which views thinking as communication and characterizes mathematics as a form of discourse. We discuss how this framework can be utilized in different educational settings by giving examples from our own research to highlight the insights it provides in the…

  7. A Framework for Re-Envisioning Mathematics Instruction for English Language Learners

    ERIC Educational Resources Information Center

    Council of the Great City Schools, 2016

    2016-01-01

    The overarching purpose of this document is to define a new vision for mathematics instruction that explicitly attends to the needs of English Language Learners (ELLs), addressing the interdependence of language and mathematics. The sections in this report are devoted to (1) making clear that the grade-level college- and career-readiness…

  8. Family Involvement in Children's Mathematics Education Experiences: Voices of Immigrant Chinese American Students and Their Parents

    ERIC Educational Resources Information Center

    Liang, Senfeng

    2013-01-01

    This study examines ways in which Chinese immigrant families are involved in their children's mathematics education, particularly focusing on how different types of families utilize different forms of capital to support their children's mathematics education. The theoretical framework defines four types of Chinese immigrant families--working…

  9. Mathematics Lectures as Narratives: Insights from Network Graph Methodology

    ERIC Educational Resources Information Center

    Weinberg, Aaron; Wiesner, Emilie; Fukawa-Connelly, Tim

    2016-01-01

    Although lecture is the traditional method of university mathematics instruction, there has been little empirical research that describes the general structure of lectures. In this paper, we adapt ideas from narrative analysis and apply them to an upper-level mathematics lecture. We develop a framework that enables us to conceptualize the lecture…

  10. STEM and Model-Eliciting Activities: Responsive Professional Development for K-8 Mathematics Coaches

    ERIC Educational Resources Information Center

    Baker, Courtney; Galanti, Terrie; Birkhead, Sara

    2017-01-01

    This research highlights a university-school division collaboration to pilot a professional development framework for integrating STEM in K-8 mathematics classrooms. The university researchers worked with mathematics coaches to construct a realistic and reasonable vision of STEM integration built upon the design principles of model-eliciting…

  11. A Comparison of Geometry Problems in Middle-Grade Mathematics Textbooks from Taiwan, Singapore, Finland, and the United States

    ERIC Educational Resources Information Center

    Yang, Der-Ching; Tseng, Yi-Kuan; Wang, Tzu-Ling

    2017-01-01

    This study analyzed geometry problems in four middle-grade mathematics textbook series from Taiwan, Singapore, Finland, and the United States, while exploring the expectations for students' learning experiences with these problems. An analytical framework developed for mathematics textbook problem analysis had three dimensions: representation…

  12. Mathematics Teachers' Knowledge of Student Thinking and Its Evidences in Their Instruction

    ERIC Educational Resources Information Center

    Çelik, Aytug Özaltun; Güzel, Esra Bukova

    2017-01-01

    The aim of this case study is to examine mathematics teachers' knowledge of students' thinking and its evidences in their teaching. The participants were three secondary mathematics teachers. Data were gathered from interviews and observations. While analyzing the data, the framework about teachers' knowledge of students' thinking was used. The…

  13. Procedural Explanations in Mathematics Writing: A Framework for Understanding College Students' Effective Communication Practices

    ERIC Educational Resources Information Center

    Kline, Susan L.; Ishii, Drew K.

    2008-01-01

    This study analyzes the procedural explanations written by remedial college mathematics students. Relevant literatures suggest that six communication activities might be key in effective procedural explanations in mathematics writing: (a) orienting the learner, (b) providing kernels or definitions of concepts and procedures, (c) using exemplars or…

  14. Mathematical Practices in a Technological Workplace: The Role of Tools

    ERIC Educational Resources Information Center

    Triantafillou, Chrissavgi; Potari, Despina

    2010-01-01

    This paper investigates the role of tools in the formation of mathematical practices and the construction of mathematical meanings in the setting of a telecommunication organization through the actions undertaken by a group of technicians in their working activity. The theoretical and analytical framework is guided by the first-generation activity…

  15. Students' Mathematical Work on Absolute Value: Focusing on Conceptions, Errors and Obstacles

    ERIC Educational Resources Information Center

    Elia, Iliada; Özel, Serkan; Gagatsis, Athanasios; Panaoura, Areti; Özel, Zeynep Ebrar Yetkiner

    2016-01-01

    This study investigates students' conceptions of absolute value (AV), their performance in various items on AV, their errors in these items and the relationships between students' conceptions and their performance and errors. The Mathematical Working Space (MWS) is used as a framework for studying students' mathematical work on AV and the…

  16. Dynamic and Interactive Mathematics Learning Environments: The Case of Teaching the Limit Concept

    ERIC Educational Resources Information Center

    Martinovic, Dragana; Karadag, Zekeriya

    2012-01-01

    This theoretical study is an attempt to explore the potential of the dynamic and interactive mathematics learning environments (DIMLE) in relation to the technological pedagogical content knowledge (TPACK) framework. DIMLE are developed with intent to support learning mathematics through free exploration in a less constrained environment. A…

  17. Saussurian linguistics revisited: Can it inform our interpretation of mathematical activity?

    NASA Astrophysics Data System (ADS)

    McNamara, O.

    1995-07-01

    This paper examines the basic notions of Ferdinand de Saussure (1857 1913) who was a preeminent figure in the development of linguistics and the foundation of structuralism. It suggests that a key aspect of twentieth century thought has been the growing recognition that the study of language can offer a framework through which we can develop an understanding of our world. It thus proposes that language is fundamental to the process of learning mathematics on every level whether it be through classroom discussion, group exploration, teacher exposition or individual interaction with printed material. Ensuing from this the paper investigates possible mathematical perspectives upon Saussure's ideas and explores what contribution his work can offer to enhance and enrich the interpretive framework through which we observe mathematical activity in the classroom. It takes as an example a mathematical investigation carried out by a group of 12 year old girls and develops the analysis from a Saussurian stance. The paper concludes that language is the medium through which, and in which, mathematical ideas are formed and exchanged.

  18. The Co-Construction of Learning Difficulties in Mathematics--Teacher-Student Interactions and Their Role in the Development of a Disabled Mathematical Identity

    ERIC Educational Resources Information Center

    Heyd-Metzuyanim, Einat

    2013-01-01

    Leaning on a communicational framework for studying social, affective, and cognitive aspects of learning, the present study offers a new look at the construction of an identity of failure in mathematics as it occurs through teaching-learning interactions. Using the case of Dana, an extremely low-achieving student in 7th grade mathematics, I…

  19. Separation Kernel Protection Profile Revisited: Choices and Rationale

    DTIC Science & Technology

    2010-12-01

    provide the most stringent protection and rigorous security countermeasures” [ IATF ]. In other words, robustness is not the same as assurance. Figure 3... IATF Information Assurance Technical Framework, Chapter 4, Release 3.1, National Security Agency, September 2002. Karjoth01 G. Karjoth, “The

  20. Removing Preconceptions with a "Learning Cycle."

    ERIC Educational Resources Information Center

    Gang, Su

    1995-01-01

    Describes a teaching experiment that uses the Learning Cycle to achieve the reorientation of physics' students conceptual frameworks away from commonsense perspectives toward scientifically rigorous outlooks. Uses Archimedes' principle as the content topic while using the Learning Cycle to remove students' nonscientific preconceptions. (JRH)

  1. New Insights into the Estimation of Extreme Geomagnetic Storm Occurrences

    NASA Astrophysics Data System (ADS)

    Ruffenach, Alexis; Winter, Hugo; Lavraud, Benoit; Bernardara, Pietro

    2017-04-01

    Space weather events such as intense geomagnetic storms are major disturbances of the near-Earth environment that may lead to serious impacts on our modern society. As such, it is of great importance to estimate their probability, and in particular that of extreme events. One approach largely used in statistical sciences for extreme events probability estimates is Extreme Value Analysis (EVA). Using this rigorous statistical framework, estimations of the occurrence of extreme geomagnetic storms are performed here based on the most relevant global parameters related to geomagnetic storms, such as ground parameters (e.g. geomagnetic Dst and aa indexes), and space parameters related to the characteristics of Coronal Mass Ejections (CME) (velocity, southward magnetic field component, electric field). Using our fitted model, we estimate the annual probability of a Carrington-type event (Dst = -850nT) to be on the order of 10-3, with a lower limit of the uncertainties on the return period of ˜500 years. Our estimate is significantly higher than that of most past studies, which typically had a return period of a few 100 years at maximum. Thus precautions are required when extrapolating intense values. Currently, the complexity of the processes and the length of available data inevitably leads to significant uncertainties in return period estimates for the occurrence of extreme geomagnetic storms. However, our application of extreme value models for extrapolating into the tail of the distribution provides a mathematically justified framework for the estimation of extreme return periods, thereby enabling the determination of more accurate estimates and reduced associated uncertainties.

  2. A Systems Engineering Process for Selecting Technologies to Mitigate the Risk of Operating Rotorcraft in Degraded Visual Environments

    DTIC Science & Technology

    2013-09-30

    combining their know-how into a mathematical framework that properly captures their intent. Leveraging this framework is the final step by which all...into quantifiable and measureable concepts. The prior phase identified the capability gaps as the highest level goals and a series of DVE mitigation...gapy and s, is the level of satisfaction of said function as mathematically defined below. Similarly, the relationship between technology and

  3. A computational framework for automation of point defect calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goyal, Anuj; Gorai, Prashun; Peng, Haowei

    We have developed a complete and rigorously validated open-source Python framework to automate point defect calculations using density functional theory. Furthermore, the framework provides an effective and efficient method for defect structure generation, and creation of simple yet customizable workflows to analyze defect calculations. This package provides the capability to compute widely-accepted correction schemes to overcome finite-size effects, including (1) potential alignment, (2) image-charge correction, and (3) band filling correction to shallow defects. Using Si, ZnO and In2O3 as test examples, we demonstrate the package capabilities and validate the methodology.

  4. A computational framework for automation of point defect calculations

    DOE PAGES

    Goyal, Anuj; Gorai, Prashun; Peng, Haowei; ...

    2017-01-13

    We have developed a complete and rigorously validated open-source Python framework to automate point defect calculations using density functional theory. Furthermore, the framework provides an effective and efficient method for defect structure generation, and creation of simple yet customizable workflows to analyze defect calculations. This package provides the capability to compute widely-accepted correction schemes to overcome finite-size effects, including (1) potential alignment, (2) image-charge correction, and (3) band filling correction to shallow defects. Using Si, ZnO and In2O3 as test examples, we demonstrate the package capabilities and validate the methodology.

  5. Comparison of two gas chromatograph models and analysis of binary data

    NASA Technical Reports Server (NTRS)

    Keba, P. S.; Woodrow, P. T.

    1972-01-01

    The overall objective of the gas chromatograph system studies is to generate fundamental design criteria and techniques to be used in the optimum design of the system. The particular tasks currently being undertaken are the comparison of two mathematical models of the chromatograph and the analysis of binary system data. The predictions of two mathematical models, an equilibrium absorption model and a non-equilibrium absorption model exhibit the same weaknesses in their inability to predict chromatogram spreading for certain systems. The analysis of binary data using the equilibrium absorption model confirms that, for the systems considered, superposition of predicted single component behaviors is a first order representation of actual binary data. Composition effects produce non-idealities which limit the rigorous validity of superposition.

  6. Adjoint-Based Algorithms for Adaptation and Design Optimizations on Unstructured Grids

    NASA Technical Reports Server (NTRS)

    Nielsen, Eric J.

    2006-01-01

    Schemes based on discrete adjoint algorithms present several exciting opportunities for significantly advancing the current state of the art in computational fluid dynamics. Such methods provide an extremely efficient means for obtaining discretely consistent sensitivity information for hundreds of design variables, opening the door to rigorous, automated design optimization of complex aerospace configuration using the Navier-Stokes equation. Moreover, the discrete adjoint formulation provides a mathematically rigorous foundation for mesh adaptation and systematic reduction of spatial discretization error. Error estimates are also an inherent by-product of an adjoint-based approach, valuable information that is virtually non-existent in today's large-scale CFD simulations. An overview of the adjoint-based algorithm work at NASA Langley Research Center is presented, with examples demonstrating the potential impact on complex computational problems related to design optimization as well as mesh adaptation.

  7. The transition to formal thinking in mathematics

    NASA Astrophysics Data System (ADS)

    Tall, David

    2008-09-01

    This paper focuses on the changes in thinking involved in the transition from school mathematics to formal proof in pure mathematics at university. School mathematics is seen as a combination of visual representations, including geometry and graphs, together with symbolic calculations and manipulations. Pure mathematics in university shifts towards a formal framework of axiomatic systems and mathematical proof. In this paper, the transition in thinking is formulated within a framework of `three worlds of mathematics'- the `conceptual-embodied' world based on perception, action and thought experiment, the `proceptual-symbolic' world of calculation and algebraic manipulation compressing processes such as counting into concepts such as number, and the `axiomatic-formal' world of set-theoretic concept definitions and mathematical proof. Each `world' has its own sequence of development and its own forms of proof that may be blended together to give a rich variety of ways of thinking mathematically. This reveals mathematical thinking as a blend of differing knowledge structures; for instance, the real numbers blend together the embodied number line, symbolic decimal arithmetic and the formal theory of a complete ordered field. Theoretical constructs are introduced to describe how genetic structures set before birth enable the development of mathematical thinking, and how experiences that the individual has met before affect their personal growth. These constructs are used to consider how students negotiate the transition from school to university mathematics as embodiment and symbolism are blended with formalism. At a higher level, structure theorems proved in axiomatic theories link back to more sophisticated forms of embodiment and symbolism, revealing the intimate relationship between the three worlds.

  8. MOE vs. M&E: considering the difference between measuring strategic effectiveness and monitoring tactical evaluation.

    PubMed

    Diehl, Glen; Major, Solomon

    2015-01-01

    Measuring the effectiveness of military Global Health Engagements (GHEs) has become an area of increasing interest to the military medical field. As a result, there have been efforts to more logically and rigorously evaluate GHE projects and programs; many of these have been based on the Logic and Results Frameworks. However, while these Frameworks are apt and appropriate planning tools, they are not ideally suited to measuring programs' effectiveness. This article introduces military medicine professionals to the Measures of Effectiveness for Defense Engagement and Learning (MODEL) program, which implements a new method of assessment, one that seeks to rigorously use Measures of Effectiveness (vs. Measures of Performance) to gauge programs' and projects' success and fidelity to Theater Campaign goals. While the MODEL method draws on the Logic and Results Frameworks where appropriate, it goes beyond their planning focus by using the latest social scientific and econometric evaluation methodologies to link on-the-ground GHE "lines of effort" to the realization of national and strategic goals and end-states. It is hoped these methods will find use beyond the MODEL project itself, and will catalyze a new body of rigorous, empirically based work, which measures the effectiveness of a broad spectrum of GHE and security cooperation activities. We based our strategies on the principle that it is much more cost-effective to prevent conflicts than it is to stop one once it's started. I cannot overstate the importance of our theater security cooperation programs as the centerpiece to securing our Homeland from the irregular and catastrophic threats of the 21st Century.-GEN James L. Jones, USMC (Ret.). Reprint & Copyright © 2015 Association of Military Surgeons of the U.S.

  9. Teaching Equivalent Fractions to Secondary Students with Disabilities via the Virtual-Representational-Abstract Instructional Sequence

    ERIC Educational Resources Information Center

    Bouck, Emily C.; Bassette, Laura; Shurr, Jordan; Park, Jiyoon; Kerr, Jackie; Whorley, Abbie

    2017-01-01

    Fractions are an important mathematical concept; however, fractions are also a struggle for many students with disabilities. This study explored a new framework adapted from the evidence-based concrete-representational-abstract framework: the virtual-representational-abstract (VRA) framework. The VRA framework involves teaching students to solve…

  10. First-Order Frameworks for Managing Models in Engineering Optimization

    NASA Technical Reports Server (NTRS)

    Alexandrov, Natlia M.; Lewis, Robert Michael

    2000-01-01

    Approximation/model management optimization (AMMO) is a rigorous methodology for attaining solutions of high-fidelity optimization problems with minimal expense in high- fidelity function and derivative evaluation. First-order AMMO frameworks allow for a wide variety of models and underlying optimization algorithms. Recent demonstrations with aerodynamic optimization achieved three-fold savings in terms of high- fidelity function and derivative evaluation in the case of variable-resolution models and five-fold savings in the case of variable-fidelity physics models. The savings are problem dependent but certain trends are beginning to emerge. We give an overview of the first-order frameworks, current computational results, and an idea of the scope of the first-order framework applicability.

  11. High-Leverage Principles of Effective Instruction for English Learners. From College and Career Ready Standards to Teaching and Learning in the Classroom: A Series of Resources for Teachers

    ERIC Educational Resources Information Center

    Neri, Rebecca; Lozano, Maritza; Chang, Sandy; Herman, Joan

    2016-01-01

    New college and career ready standards (CCRS) have established more rigorous expectations of learning for all learners, including English learner (EL) students, than what was expected in previous standards. A common feature in these new content-area standards, such as the Common Core State Standards in English language arts and mathematics and the…

  12. Mathematical Aspects of Finite Element Methods for Incompressible Viscous Flows.

    DTIC Science & Technology

    1986-09-01

    respectively. Here h is a parameter which is usually related to the size of the grid associated with the finite element partitioning of Q. Then one... grid and of not at least performing serious mesh refinement studies. It also points out the usefulness of rigorous results concerning the stability...overconstrained the .1% approximate velocity field. However, by employing different grids for the ’z pressure and velocity fields, the linear-constant

  13. Advanced Extremely High Frequency Satellite (AEHF)

    DTIC Science & Technology

    2015-12-01

    control their tactical and strategic forces at all levels of conflict up to and including general nuclear war, and it supports the attainment of...10195.1 10622.2 Confidence Level Confidence Level of cost estimate for current APB: 50% The ICE) that supports the AEHF SV 1-4, like all life-cycle cost...mathematically the precise confidence levels associated with life-cycle cost estimates prepared for MDAPs. Based on the rigor in methods used in building

  14. Wideband Global SATCOM (WGS)

    DTIC Science & Technology

    2015-12-01

    system level testing. ​The WGS-6 financial data is not reported in this SAR because funding is provided by Australia in exchange for access to a...A 3831.3 3539.7 3539.7 3801.9 Confidence Level Confidence Level of cost estimate for current APB: 50% The ICE to support WGS Milestone C decision...to calculate mathematically the precise confidence levels associated with life-cycle cost estimates prepared for MDAPs. Based on the rigor in

  15. Novel Image Quality Control Systems(Add-On). Innovative Computational Methods for Inverse Problems in Optical and SAR Imaging

    DTIC Science & Technology

    2007-02-28

    Iterative Ultrasonic Signal and Image Deconvolution for Estimation of the Complex Medium Response, International Journal of Imaging Systems and...1767-1782, 2006. 31. Z. Mu, R. Plemmons, and P. Santago. Iterative Ultrasonic Signal and Image Deconvolution for Estimation of the Complex...rigorous mathematical and computational research on inverse problems in optical imaging of direct interest to the Army and also the intelligence agencies

  16. All biology is computational biology.

    PubMed

    Markowetz, Florian

    2017-03-01

    Here, I argue that computational thinking and techniques are so central to the quest of understanding life that today all biology is computational biology. Computational biology brings order into our understanding of life, it makes biological concepts rigorous and testable, and it provides a reference map that holds together individual insights. The next modern synthesis in biology will be driven by mathematical, statistical, and computational methods being absorbed into mainstream biological training, turning biology into a quantitative science.

  17. Measuring and factors influencing mathematics teachers' technological pedagogical and content knowledge (TPACK) in three southernmost provinces, Thailand

    NASA Astrophysics Data System (ADS)

    Adulyasas, Lilla

    2017-08-01

    Technology becomes an important role in teaching and learning mathematics nowadays. Integrating technology in the classroom helps students have better understanding in many of mathematics concepts. One of the major framework for assessing the knowledge of integrating technology with the pedagogy and content in the classroom is Technological Pedagogical and Content Knowledge (TPACK) framework. This study aimed to measure mathematics teachers' TPACK in three southernmost provinces, Thailand and to study on factors influencing their TPACK. A quantitative study was carried out with 210 secondary level mathematics teachers in the three southernmost provinces, Thailand which were random by two stage sampling technique. Data were collected by using a questionnaire to identify the level of mathematics teachers' TPACK and the factors influencing their TPACK. Descriptive statistics, Pearson product moment correlation and multiple regression analysis were used for analysing data. Findings reveal that the mean score of mathematics teachers' TPACK is 3.33 which is in the medium level and the three factors which have positive correlation at .05 level of significant with the level of TPACK are teaching experience factor, individual specialization factor and personal & organization factor. However, there are only two factors influencing mathematics teachers' TPACK. The two factors are individual specialization factor and personal & organization factors. These give better understanding on mathematics teachers' knowledge in integrating technology with the pedagogy and content which will be the important information for improving mathematics teachers' TPACK.

  18. Meta Didactic-Mathematical Knowledge of Teachers: Criteria for the Reflection and Assessment on Teaching Practice

    ERIC Educational Resources Information Center

    Breda, Adriana; Pino-Fan, Luis Roberto; Font, Vicenç

    2017-01-01

    The objective of this study is to demonstrate that the criteria of didactical suitability, proposed by the theoretical framework known as the Onto-Semiotic Approach (OSA) of mathematical knowledge and instruction, are powerful tools for organizing the reflection and assessment of instruction processes carried out by mathematics teachers. To this…

  19. Becoming a Reflective Mathematics Teacher: A Guide for Observations and Self-Assessment. Studies in Mathematical Thinking and Learning Series.

    ERIC Educational Resources Information Center

    Artzt, Alice F.; Armour-Thomas, Eleanor

    This activity-oriented book for preservice mathematics teachers who are taking methods courses or who have been student teaching offers a framework for teacher reflection and self- assessment. It supplies detailed observation instruments for observing other teachers, reflective activities, and guidelines and instruments for supervisors. There are…

  20. Towards the Construction of a Framework to Deal with Routine Problems to Foster Mathematical Inquiry

    ERIC Educational Resources Information Center

    Santos-Trigo, Manuel; Camacho-Machin, Matias

    2009-01-01

    To what extent does the process of solving textbook problems help students develop a way of thinking that is consistent with mathematical practice? Can routine problems be transformed into problem solving activities that promote students' mathematical reflection? These questions are used to outline and discuss features of an inquiry framework…

  1. A Mathematical Experience Involving Defining Processes: In-Action Definitions and Zero-Definitions

    ERIC Educational Resources Information Center

    Ouvrier-Buffet, Cecile

    2011-01-01

    In this paper, a focus is made on defining processes at stake in an unfamiliar situation coming from discrete mathematics which brings surprising mathematical results. The epistemological framework of Lakatos is questioned and used for the design and the analysis of the situation. The cognitive background of Vergnaud's approach enriches the study…

  2. An Iceberg Model for Improving Mathematical Understanding and Mindset or Disposition: An Individualized Summer Intervention Program

    ERIC Educational Resources Information Center

    Westensko, Arla; Moyer-Packenham, Patricia S.; Child, Barbara

    2017-01-01

    This study describes 3 years of mathematics intervention research examining the effectiveness of a summer individualized tutoring program for rising fourth-, fifth-, and sixth-grade students with low mathematics achievement. Based on an iceberg model of learning, an instructional framework was developed that identified and targeted students'…

  3. A Case Study of Pedagogy of Mathematics Support Tutors without a Background in Mathematics Education

    ERIC Educational Resources Information Center

    Walsh, Richard

    2017-01-01

    This study investigates the pedagogical skills and knowledge of three tertiary-level mathematics support tutors in a large group classroom setting. This is achieved through the use of video analysis and a theoretical framework comprising Rowland's Knowledge Quartet and general pedagogical knowledge. The study reports on the findings in relation to…

  4. Perspectives on Equity and Access in Mathematics and Science for a 21st-Century Democracy: Re-Visioning Our Gaze

    ERIC Educational Resources Information Center

    Williams, Brian A.; Lemons-Smith, Shonda

    2009-01-01

    In 1996, the National Research Council (NRC) published the "National Science Education Standards." Similarly in 2000, the National Council of Teachers of Mathematics (NCTM) published the "Principles and Standards for School Mathematics." These standards provided the nation with a framework for conceptualizing what and how…

  5. Developing a Framework for the Evaluation of Picturebooks That Support Kindergartners' Learning of Mathematics

    ERIC Educational Resources Information Center

    van den Heuvel-Panhuizen, Marja; Elia, Iliada

    2012-01-01

    The purpose of this study was to investigate what experts in the use of picturebooks in mathematics education consider powerful characteristics of such books in the support of young children's learning of mathematics. The study started by investigating experts' views of such characteristics, as reflected in academic and professional publications…

  6. The Development and Scaling of the easyCBM CCSS Middle School Mathematics Measures. Technical Report #1207

    ERIC Educational Resources Information Center

    Anderson, Daniel; Irvin, P. Shawn; Patarapichayatham, Chalie; Alonzo, Julie; Tindal, Gerald

    2012-01-01

    In the following technical report, we describe the development and scaling of the easyCBM CCSS middle school mathematics measures, designed for use within a response to intervention framework. All items were developed in collaboration with experienced middle school mathematics teachers and were written to align with the Common Core State…

  7. Becoming Mathematicians: Women and Students of Color Choosing and Leaving Doctoral Mathematics

    ERIC Educational Resources Information Center

    Herzig, Abbe H.

    2004-01-01

    Few women and even fewer African Americans, Latinos, and Native Americans complete doctoral degrees in mathematics in the United States. This article proposes a framework for understanding the small numbers of women and students of color who persist in doctoral mathematics based on the notion that academic and social integration are critical to…

  8. Mathematics Teacher Education Quality in TEDS-M: Globalizing the Views of Future Teachers and Teacher Educators

    ERIC Educational Resources Information Center

    Hsieh, Feng-Jui; Law, Chiu-Keung; Shy, Haw-Yaw; Wang, Ting-Ying; Hsieh, Chia-Jui; Tang, Shu-Jyh

    2011-01-01

    The Teacher Education and Development Study in Mathematics, sponsored by the International Association for the Evaluation of Educational Achievement, is the first data-based study about mathematics teacher education with large-scale samples; this article is based on its data but develops a stand-alone conceptual framework to investigate the…

  9. Integrating STEM in Elementary Classrooms Using Model-Eliciting Activities: Responsive Professional Development for Mathematics Coaches and Teachers

    ERIC Educational Resources Information Center

    Baker, Courtney K.; Galanti, Terrie M.

    2017-01-01

    Background: This research highlights a school-university collaboration to pilot a professional development framework for integrating STEM in K-6 mathematics classrooms in a mid-Atlantic suburban school division. Because mathematics within STEM integration is often characterized as the calculations or the data representations in science classrooms,…

  10. Validity-Supporting Evidence of the Self-Efficacy for Teaching Mathematics Instrument

    ERIC Educational Resources Information Center

    McGee, Jennifer R.; Wang, Chuang

    2014-01-01

    The purpose of this study is to provide evidence of reliability and validity of the Self-Efficacy for Teaching Mathematics Instrument (SETMI). Self-efficacy, as defined by Bandura, was the theoretical framework for the development of the instrument. The complex belief systems of mathematics teachers, as touted by Ernest provided insights into the…

  11. Modelling the Intention to Use Technology for Teaching Mathematics among Pre-Service Teachers in Serbia

    ERIC Educational Resources Information Center

    Teo, Timothy; Milutinovic, Verica

    2015-01-01

    This study aims to examine the variables that influence Serbian pre-service teachers' intention to use technology to teach mathematics. Using the technology acceptance model (TAM) as the framework, we developed a research model to include subjective norm, knowledge of mathematics, and facilitating conditions as external variables to the TAM. In…

  12. Mathematics Teachers' Visualization of Complex Number Multiplication and the Roots of Unity in a Dynamic Geometry Environment

    ERIC Educational Resources Information Center

    Caglayan, Gunhan

    2016-01-01

    This qualitative research, drawing on the theoretical frameworks by Even (1990, 1993) and Sfard (2007), investigated five high school mathematics teachers' geometric interpretations of complex number multiplication along with the roots of unity. The main finding was that mathematics teachers constructed the modulus, the argument, and the conjugate…

  13. Understanding and Supporting Teacher Horizon Knowledge around Limits: A Framework for Evaluating Textbooks for Teachers

    ERIC Educational Resources Information Center

    Kajander, Ann; Lovric, Miroslav

    2017-01-01

    As part of recent scrutiny of teacher capacity, the question of teachers' content knowledge of higher level mathematics emerges as important to the field of mathematics education. Elementary teachers in North America and some other countries tend to be subject generalists, yet it appears that some higher level mathematics background may be…

  14. Robust and Fragile Mathematical Identities: A Framework for Exploring Racialized Experiences and High Achievement among Black College Students

    ERIC Educational Resources Information Center

    McGee, Ebony O.

    2015-01-01

    I introduce the construct of fragile and robust identities for the purpose of exploring the experiences that influenced the mathematical and racial identities of high-achieving Black college students in mathematics and engineering. These students maintained high levels of academic achievement in these fields while enduring marginalization,…

  15. Using the Scientific Method to Engage Mathematical Modeling: An Investigation of pi

    ERIC Educational Resources Information Center

    Archer, Lester A. C.; Ng, Karen E.

    2016-01-01

    The purpose of this paper is to explain how to use the scientific method as the framework to introduce mathematical model. Two interdisciplinary activities, targeted for students in grade 6 or grade 7, are explained to show the application of the scientific method while building a mathematical model to investigate the relationship between the…

  16. A global solution to the Schrödinger equation: From Henstock to Feynman

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nathanson, Ekaterina S., E-mail: enathanson@ggc.edu; Jørgensen, Palle E. T., E-mail: palle-jorgensen@uiowa.edu

    2015-09-15

    One of the key elements of Feynman’s formulation of non-relativistic quantum mechanics is a so-called Feynman path integral. It plays an important role in the theory, but it appears as a postulate based on intuition, rather than a well-defined object. All previous attempts to supply Feynman’s theory with rigorous mathematics underpinning, based on the physical requirements, have not been satisfactory. The difficulty comes from the need to define a measure on the infinite dimensional space of paths and to create an integral that would possess all of the properties requested by Feynman. In the present paper, we consider a newmore » approach to defining the Feynman path integral, based on the theory developed by Muldowney [A Modern Theory of Random Variable: With Applications in Stochastic Calcolus, Financial Mathematics, and Feynman Integration (John Wiley & Sons, Inc., New Jersey, 2012)]. Muldowney uses the Henstock integration technique and deals with non-absolute integrability of the Fresnel integrals, in order to obtain a representation of the Feynman path integral as a functional. This approach offers a mathematically rigorous definition supporting Feynman’s intuitive derivations. But in his work, Muldowney gives only local in space-time solutions. A physical solution to the non-relativistic Schrödinger equation must be global, and it must be given in the form of a unitary one-parameter group in L{sup 2}(ℝ{sup n}). The purpose of this paper is to show that a system of one-dimensional local Muldowney’s solutions may be extended to yield a global solution. Moreover, the global extension can be represented by a unitary one-parameter group acting in L{sup 2}(ℝ{sup n})« less

  17. Neuromorphic log-domain silicon synapse circuits obey bernoulli dynamics: a unifying tutorial analysis

    PubMed Central

    Papadimitriou, Konstantinos I.; Liu, Shih-Chii; Indiveri, Giacomo; Drakakis, Emmanuel M.

    2014-01-01

    The field of neuromorphic silicon synapse circuits is revisited and a parsimonious mathematical framework able to describe the dynamics of this class of log-domain circuits in the aggregate and in a systematic manner is proposed. Starting from the Bernoulli Cell Formalism (BCF), originally formulated for the modular synthesis and analysis of externally linear, time-invariant logarithmic filters, and by means of the identification of new types of Bernoulli Cell (BC) operators presented here, a generalized formalism (GBCF) is established. The expanded formalism covers two new possible and practical combinations of a MOS transistor (MOST) and a linear capacitor. The corresponding mathematical relations codifying each case are presented and discussed through the tutorial treatment of three well-known transistor-level examples of log-domain neuromorphic silicon synapses. The proposed mathematical tool unifies past analysis approaches of the same circuits under a common theoretical framework. The speed advantage of the proposed mathematical framework as an analysis tool is also demonstrated by a compelling comparative circuit analysis example of high order, where the GBCF and another well-known log-domain circuit analysis method are used for the determination of the input-output transfer function of the high (4th) order topology. PMID:25653579

  18. Neuromorphic log-domain silicon synapse circuits obey bernoulli dynamics: a unifying tutorial analysis.

    PubMed

    Papadimitriou, Konstantinos I; Liu, Shih-Chii; Indiveri, Giacomo; Drakakis, Emmanuel M

    2014-01-01

    The field of neuromorphic silicon synapse circuits is revisited and a parsimonious mathematical framework able to describe the dynamics of this class of log-domain circuits in the aggregate and in a systematic manner is proposed. Starting from the Bernoulli Cell Formalism (BCF), originally formulated for the modular synthesis and analysis of externally linear, time-invariant logarithmic filters, and by means of the identification of new types of Bernoulli Cell (BC) operators presented here, a generalized formalism (GBCF) is established. The expanded formalism covers two new possible and practical combinations of a MOS transistor (MOST) and a linear capacitor. The corresponding mathematical relations codifying each case are presented and discussed through the tutorial treatment of three well-known transistor-level examples of log-domain neuromorphic silicon synapses. The proposed mathematical tool unifies past analysis approaches of the same circuits under a common theoretical framework. The speed advantage of the proposed mathematical framework as an analysis tool is also demonstrated by a compelling comparative circuit analysis example of high order, where the GBCF and another well-known log-domain circuit analysis method are used for the determination of the input-output transfer function of the high (4(th)) order topology.

  19. Interactions Between Mathematics and Physics: The History of the Concept of Function—Teaching with and About Nature of Mathematics

    NASA Astrophysics Data System (ADS)

    Kjeldsen, Tinne Hoff; Lützen, Jesper

    2015-07-01

    In this paper, we discuss the history of the concept of function and emphasize in particular how problems in physics have led to essential changes in its definition and application in mathematical practices. Euler defined a function as an analytic expression, whereas Dirichlet defined it as a variable that depends in an arbitrary manner on another variable. The change was required when mathematicians discovered that analytic expressions were not sufficient to represent physical phenomena such as the vibration of a string (Euler) and heat conduction (Fourier and Dirichlet). The introduction of generalized functions or distributions is shown to stem partly from the development of new theories of physics such as electrical engineering and quantum mechanics that led to the use of improper functions such as the delta function that demanded a proper foundation. We argue that the development of student understanding of mathematics and its nature is enhanced by embedding mathematical concepts and theories, within an explicit-reflective framework, into a rich historical context emphasizing its interaction with other disciplines such as physics. Students recognize and become engaged with meta-discursive rules governing mathematics. Mathematics teachers can thereby teach inquiry in mathematics as it occurs in the sciences, as mathematical practice aimed at obtaining new mathematical knowledge. We illustrate such a historical teaching and learning of mathematics within an explicit and reflective framework by two examples of student-directed, problem-oriented project work following the Roskilde Model, in which the connection to physics is explicit and provides a learning space where the nature of mathematics and mathematical practices are linked to natural science.

  20. Mathematical marriages: intercourse between mathematics and Semiotic choice.

    PubMed

    Wagner, Roy

    2009-04-01

    This paper examines the interaction between Semiotic choices and the presentation and solution of a family of contemporary mathematical problems centred around the so-called 'stable marriage problem'. I investigate how a socially restrictive choice of signs impacts mathematical production both in terms of problem formation and of solutions. I further note how the choice of gendered language ends up constructing a reality, which duplicates the very structural framework that it imported into mathematical analysis in the first place. I go on to point out some semiotic lines of flight from this interlocking grip of mathematics and gendered language.

Top