On the use of log-transformation vs. nonlinear regression for analyzing biological power laws.
Xiao, Xiao; White, Ethan P; Hooten, Mevin B; Durham, Susan L
2011-10-01
Power-law relationships are among the most well-studied functional relationships in biology. Recently the common practice of fitting power laws using linear regression (LR) on log-transformed data has been criticized, calling into question the conclusions of hundreds of studies. It has been suggested that nonlinear regression (NLR) is preferable, but no rigorous comparison of these two methods has been conducted. Using Monte Carlo simulations, we demonstrate that the error distribution determines which method performs better, with NLR better characterizing data with additive, homoscedastic, normal error and LR better characterizing data with multiplicative, heteroscedastic, lognormal error. Analysis of 471 biological power laws shows that both forms of error occur in nature. While previous analyses based on log-transformation appear to be generally valid, future analyses should choose methods based on a combination of biological plausibility and analysis of the error distribution. We provide detailed guidelines and associated computer code for doing so, including a model averaging approach for cases where the error structure is uncertain.
On the use of log-transformation vs. nonlinear regression for analyzing biological power laws
Xiao, X.; White, E.P.; Hooten, M.B.; Durham, S.L.
2011-01-01
Power-law relationships are among the most well-studied functional relationships in biology. Recently the common practice of fitting power laws using linear regression (LR) on log-transformed data has been criticized, calling into question the conclusions of hundreds of studies. It has been suggested that nonlinear regression (NLR) is preferable, but no rigorous comparison of these two methods has been conducted. Using Monte Carlo simulations, we demonstrate that the error distribution determines which method performs better, with NLR better characterizing data with additive, homoscedastic, normal error and LR better characterizing data with multiplicative, heteroscedastic, lognormal error. Analysis of 471 biological power laws shows that both forms of error occur in nature. While previous analyses based on log-transformation appear to be generally valid, future analyses should choose methods based on a combination of biological plausibility and analysis of the error distribution. We provide detailed guidelines and associated computer code for doing so, including a model averaging approach for cases where the error structure is uncertain. ?? 2011 by the Ecological Society of America.
On the Modeling of Shells in Multibody Dynamics
NASA Technical Reports Server (NTRS)
Bauchau, Olivier A.; Choi, Jou-Young; Bottasso, Carlo L.
2000-01-01
Energy preserving/decaying schemes are presented for the simulation of the nonlinear multibody systems involving shell components. The proposed schemes are designed to meet four specific requirements: unconditional nonlinear stability of the scheme, a rigorous treatment of both geometric and material nonlinearities, exact satisfaction of the constraints, and the presence of high frequency numerical dissipation. The kinematic nonlinearities associated with arbitrarily large displacements and rotations of shells are treated in a rigorous manner, and the material nonlinearities can be handled when the, constitutive laws stem from the existence of a strain energy density function. The efficiency and robustness of the proposed approach is illustrated with specific numerical examples that also demonstrate the need for integration schemes possessing high frequency numerical dissipation.
Árnadóttir, Í.; Gíslason, M. K.; Carraro, U.
2016-01-01
Muscle degeneration has been consistently identified as an independent risk factor for high mortality in both aging populations and individuals suffering from neuromuscular pathology or injury. While there is much extant literature on its quantification and correlation to comorbidities, a quantitative gold standard for analyses in this regard remains undefined. Herein, we hypothesize that rigorously quantifying entire radiodensitometric distributions elicits more muscle quality information than average values reported in extant methods. This study reports the development and utility of a nonlinear trimodal regression analysis method utilized on radiodensitometric distributions of upper leg muscles from CT scans of a healthy young adult, a healthy elderly subject, and a spinal cord injury patient. The method was then employed with a THA cohort to assess pre- and postsurgical differences in their healthy and operative legs. Results from the initial representative models elicited high degrees of correlation to HU distributions, and regression parameters highlighted physiologically evident differences between subjects. Furthermore, results from the THA cohort echoed physiological justification and indicated significant improvements in muscle quality in both legs following surgery. Altogether, these results highlight the utility of novel parameters from entire HU distributions that could provide insight into the optimal quantification of muscle degeneration. PMID:28115982
Forecasting volatility with neural regression: a contribution to model adequacy.
Refenes, A N; Holt, W T
2001-01-01
Neural nets' usefulness for forecasting is limited by problems of overfitting and the lack of rigorous procedures for model identification, selection and adequacy testing. This paper describes a methodology for neural model misspecification testing. We introduce a generalization of the Durbin-Watson statistic for neural regression and discuss the general issues of misspecification testing using residual analysis. We derive a generalized influence matrix for neural estimators which enables us to evaluate the distribution of the statistic. We deploy Monte Carlo simulation to compare the power of the test for neural and linear regressors. While residual testing is not a sufficient condition for model adequacy, it is nevertheless a necessary condition to demonstrate that the model is a good approximation to the data generating process, particularly as neural-network estimation procedures are susceptible to partial convergence. The work is also an important step toward developing rigorous procedures for neural model identification, selection and adequacy testing which have started to appear in the literature. We demonstrate its applicability in the nontrivial problem of forecasting implied volatility innovations using high-frequency stock index options. Each step of the model building process is validated using statistical tests to verify variable significance and model adequacy with the results confirming the presence of nonlinear relationships in implied volatility innovations.
Wu, Xue; Sengupta, Kaushik
2018-03-19
This paper demonstrates a methodology to miniaturize THz spectroscopes into a single silicon chip by eliminating traditional solid-state architectural components such as complex tunable THz and optical sources, nonlinear mixing and amplifiers. The proposed method achieves this by extracting incident THz spectral signatures from the surface of an on-chip antenna itself. The information is sensed through the spectrally-sensitive 2D distribution of the impressed current surface under the THz incident field. By converting the antenna from a single-port to a massively multi-port architecture with integrated electronics and deep subwavelength sensing, THz spectral estimation is converted into a linear estimation problem. We employ rigorous regression techniques and analysis to demonstrate a single silicon chip system operating at room temperature across 0.04-0.99 THz with 10 MHz accuracy in spectrum estimation of THz tones across the entire spectrum.
Efficient numerical method for analyzing optical bistability in photonic crystal microcavities.
Yuan, Lijun; Lu, Ya Yan
2013-05-20
Nonlinear optical effects can be enhanced by photonic crystal microcavities and be used to develop practical ultra-compact optical devices with low power requirements. The finite-difference time-domain method is the standard numerical method for simulating nonlinear optical devices, but it has limitations in terms of accuracy and efficiency. In this paper, a rigorous and efficient frequency-domain numerical method is developed for analyzing nonlinear optical devices where the nonlinear effect is concentrated in the microcavities. The method replaces the linear problem outside the microcavities by a rigorous and numerically computed boundary condition, then solves the nonlinear problem iteratively in a small region around the microcavities. Convergence of the iterative method is much easier to achieve since the size of the problem is significantly reduced. The method is presented for a specific two-dimensional photonic crystal waveguide-cavity system with a Kerr nonlinearity, using numerical methods that can take advantage of the geometric features of the structure. The method is able to calculate multiple solutions exhibiting the optical bistability phenomenon in the strongly nonlinear regime.
Statistical linearization for multi-input/multi-output nonlinearities
NASA Technical Reports Server (NTRS)
Lin, Ching-An; Cheng, Victor H. L.
1991-01-01
Formulas are derived for the computation of the random input-describing functions for MIMO nonlinearities; these straightforward and rigorous derivations are based on the optimal mean square linear approximation. The computations involve evaluations of multiple integrals. It is shown that, for certain classes of nonlinearities, multiple-integral evaluations are obviated and the computations are significantly simplified.
NASA Technical Reports Server (NTRS)
Tanveer, S.; Foster, M. R.
2002-01-01
We report progress in three areas of investigation related to dendritic crystal growth. Those items include: 1. Selection of tip features dendritic crystal growth; 2) Investigation of nonlinear evolution for two-sided model; and 3) Rigorous mathematical justification.
Linear regression models for solvent accessibility prediction in proteins.
Wagner, Michael; Adamczak, Rafał; Porollo, Aleksey; Meller, Jarosław
2005-04-01
The relative solvent accessibility (RSA) of an amino acid residue in a protein structure is a real number that represents the solvent exposed surface area of this residue in relative terms. The problem of predicting the RSA from the primary amino acid sequence can therefore be cast as a regression problem. Nevertheless, RSA prediction has so far typically been cast as a classification problem. Consequently, various machine learning techniques have been used within the classification framework to predict whether a given amino acid exceeds some (arbitrary) RSA threshold and would thus be predicted to be "exposed," as opposed to "buried." We have recently developed novel methods for RSA prediction using nonlinear regression techniques which provide accurate estimates of the real-valued RSA and outperform classification-based approaches with respect to commonly used two-class projections. However, while their performance seems to provide a significant improvement over previously published approaches, these Neural Network (NN) based methods are computationally expensive to train and involve several thousand parameters. In this work, we develop alternative regression models for RSA prediction which are computationally much less expensive, involve orders-of-magnitude fewer parameters, and are still competitive in terms of prediction quality. In particular, we investigate several regression models for RSA prediction using linear L1-support vector regression (SVR) approaches as well as standard linear least squares (LS) regression. Using rigorously derived validation sets of protein structures and extensive cross-validation analysis, we compare the performance of the SVR with that of LS regression and NN-based methods. In particular, we show that the flexibility of the SVR (as encoded by metaparameters such as the error insensitivity and the error penalization terms) can be very beneficial to optimize the prediction accuracy for buried residues. We conclude that the simple and computationally much more efficient linear SVR performs comparably to nonlinear models and thus can be used in order to facilitate further attempts to design more accurate RSA prediction methods, with applications to fold recognition and de novo protein structure prediction methods.
Bayesian Nonlinear Assimilation of Eulerian and Lagrangian Coastal Flow Data
2015-09-30
Lagrangian Coastal Flow Data Dr. Pierre F.J. Lermusiaux Department of Mechanical Engineering Center for Ocean Science and Engineering Massachusetts...Develop and apply theory, schemes and computational systems for rigorous Bayesian nonlinear assimilation of Eulerian and Lagrangian coastal flow data...coastal ocean fields, both in Eulerian and Lagrangian forms. - Further develop and implement our GMM-DO schemes for robust Bayesian nonlinear estimation
On the Rigorous Derivation of the 3D Cubic Nonlinear Schrödinger Equation with a Quadratic Trap
NASA Astrophysics Data System (ADS)
Chen, Xuwen
2013-11-01
We consider the dynamics of the three-dimensional N-body Schrödinger equation in the presence of a quadratic trap. We assume the pair interaction potential is N 3 β-1 V( N β x). We justify the mean-field approximation and offer a rigorous derivation of the three-dimensional cubic nonlinear Schrödinger equation (NLS) with a quadratic trap. We establish the space-time bound conjectured by Klainerman and Machedon (Commun Math Phys 279:169-185, 2008) for by adapting and simplifying an argument in Chen and Pavlović (Annales Henri Poincaré, 2013) which solves the problem for in the absence of a trap.
Approximation Methods for Inverse Problems Governed by Nonlinear Parabolic Systems
1999-12-17
We present a rigorous theoretical framework for approximation of nonlinear parabolic systems with delays in the context of inverse least squares...numerical results demonstrating the convergence are given for a model of dioxin uptake and elimination in a distributed liver model that is a special case of the general theoretical framework .
NASA Astrophysics Data System (ADS)
Mc Namara, Hugh A.; Pokrovskii, Alexei V.
2006-02-01
The Kaldor model-one of the first nonlinear models of macroeconomics-is modified to incorporate a Preisach nonlinearity. The new dynamical system thus created shows highly complicated behaviour. This paper presents a rigorous (computer aided) proof of chaos in this new model, and of the existence of unstable periodic orbits of all minimal periods p>57.
Motulsky, Harvey J; Brown, Ronald E
2006-01-01
Background Nonlinear regression, like linear regression, assumes that the scatter of data around the ideal curve follows a Gaussian or normal distribution. This assumption leads to the familiar goal of regression: to minimize the sum of the squares of the vertical or Y-value distances between the points and the curve. Outliers can dominate the sum-of-the-squares calculation, and lead to misleading results. However, we know of no practical method for routinely identifying outliers when fitting curves with nonlinear regression. Results We describe a new method for identifying outliers when fitting data with nonlinear regression. We first fit the data using a robust form of nonlinear regression, based on the assumption that scatter follows a Lorentzian distribution. We devised a new adaptive method that gradually becomes more robust as the method proceeds. To define outliers, we adapted the false discovery rate approach to handling multiple comparisons. We then remove the outliers, and analyze the data using ordinary least-squares regression. Because the method combines robust regression and outlier removal, we call it the ROUT method. When analyzing simulated data, where all scatter is Gaussian, our method detects (falsely) one or more outlier in only about 1–3% of experiments. When analyzing data contaminated with one or several outliers, the ROUT method performs well at outlier identification, with an average False Discovery Rate less than 1%. Conclusion Our method, which combines a new method of robust nonlinear regression with a new method of outlier identification, identifies outliers from nonlinear curve fits with reasonable power and few false positives. PMID:16526949
Optical scatterometry of quarter-micron patterns using neural regression
NASA Astrophysics Data System (ADS)
Bischoff, Joerg; Bauer, Joachim J.; Haak, Ulrich; Hutschenreuther, Lutz; Truckenbrodt, Horst
1998-06-01
With shrinking dimensions and increasing chip areas, a rapid and non-destructive full wafer characterization after every patterning cycle is an inevitable necessity. In former publications it was shown that Optical Scatterometry (OS) has the potential to push the attainable feature limits of optical techniques from 0.8 . . . 0.5 microns for imaging methods down to 0.1 micron and below. Thus the demands of future metrology can be met. Basically being a nonimaging method, OS combines light scatter (or diffraction) measurements with modern data analysis schemes to solve the inverse scatter issue. For very fine patterns with lambda-to-pitch ratios grater than one, the specular reflected light versus the incidence angle is recorded. Usually, the data analysis comprises two steps -- a training cycle connected the a rigorous forward modeling and the prediction itself. Until now, two data analysis schemes are usually applied -- the multivariate regression based Partial Least Squares method (PLS) and a look-up-table technique which is also referred to as Minimum Mean Square Error approach (MMSE). Both methods are afflicted with serious drawbacks. On the one hand, the prediction accuracy of multivariate regression schemes degrades with larger parameter ranges due to the linearization properties of the method. On the other hand, look-up-table methods are rather time consuming during prediction thus prolonging the processing time and reducing the throughput. An alternate method is an Artificial Neural Network (ANN) based regression which combines the advantages of multivariate regression and MMSE. Due to the versatility of a neural network, not only can its structure be adapted more properly to the scatter problem, but also the nonlinearity of the neuronal transfer functions mimic the nonlinear behavior of optical diffraction processes more adequately. In spite of these pleasant properties, the prediction speed of ANN regression is comparable with that of the PLS-method. In this paper, the viability and performance of ANN-regression will be demonstrated with the example of sub-quarter-micron resist metrology. To this end, 0.25 micrometer line/space patterns have been printed in positive photoresist by means of DUV projection lithography. In order to evaluate the total metrology chain from light scatter measurement through data analysis, a thorough modeling has been performed. Assuming a trapezoidal shape of the developed resist profile, a training data set was generated by means of the Rigorous Coupled Wave Approach (RCWA). After training the model, a second data set was computed and deteriorated by Gaussian noise to imitate real measuring conditions. Then, these data have been fed into the models established before resulting in a Standard Error of Prediction (SEP) which corresponds to the measuring accuracy. Even with putting only little effort in the design of a back-propagation network, the ANN is clearly superior to the PLS-method. Depending on whether a network with one or two hidden layers was used, accuracy gains between 2 and 5 can be achieved compared with PLS regression. Furthermore, the ANN is less noise sensitive, for there is only a doubling of the SEP at 5% noise for ANN whereas for PLS the accuracy degrades rapidly with increasing noise. The accuracy gain also depends on the light polarization and on the measured parameters. Finally, these results have been proven experimentally, where the OS-results are in good accordance with the profiles obtained from cross- sectioning micrographs.
A Theoretical Framework for Lagrangian Descriptors
NASA Astrophysics Data System (ADS)
Lopesino, C.; Balibrea-Iniesta, F.; García-Garrido, V. J.; Wiggins, S.; Mancho, A. M.
This paper provides a theoretical background for Lagrangian Descriptors (LDs). The goal of achieving rigorous proofs that justify the ability of LDs to detect invariant manifolds is simplified by introducing an alternative definition for LDs. The definition is stated for n-dimensional systems with general time dependence, however we rigorously prove that this method reveals the stable and unstable manifolds of hyperbolic points in four particular 2D cases: a hyperbolic saddle point for linear autonomous systems, a hyperbolic saddle point for nonlinear autonomous systems, a hyperbolic saddle point for linear nonautonomous systems and a hyperbolic saddle point for nonlinear nonautonomous systems. We also discuss further rigorous results which show the ability of LDs to highlight additional invariants sets, such as n-tori. These results are just a simple extension of the ergodic partition theory which we illustrate by applying this methodology to well-known examples, such as the planar field of the harmonic oscillator and the 3D ABC flow. Finally, we provide a thorough discussion on the requirement of the objectivity (frame-invariance) property for tools designed to reveal phase space structures and their implications for Lagrangian descriptors.
Nonlinear normal modes in electrodynamic systems: A nonperturbative approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kudrin, A. V., E-mail: kud@rf.unn.ru; Kudrina, O. A.; Petrov, E. Yu.
2016-06-15
We consider electromagnetic nonlinear normal modes in cylindrical cavity resonators filled with a nonlinear nondispersive medium. The key feature of the analysis is that exact analytic solutions of the nonlinear field equations are employed to study the mode properties in detail. Based on such a nonperturbative approach, we rigorously prove that the total energy of free nonlinear oscillations in a distributed conservative system, such as that considered in our work, can exactly coincide with the sum of energies of the normal modes of the system. This fact implies that the energy orthogonality property, which has so far been known tomore » hold only for linear oscillations and fields, can also be observed in a nonlinear oscillatory system.« less
Comparison between Linear and Nonlinear Regression in a Laboratory Heat Transfer Experiment
ERIC Educational Resources Information Center
Gonçalves, Carine Messias; Schwaab, Marcio; Pinto, José Carlos
2013-01-01
In order to interpret laboratory experimental data, undergraduate students are used to perform linear regression through linearized versions of nonlinear models. However, the use of linearized models can lead to statistically biased parameter estimates. Even so, it is not an easy task to introduce nonlinear regression and show for the students…
Additivity of nonlinear biomass equations
Bernard R. Parresol
2001-01-01
Two procedures that guarantee the property of additivity among the components of tree biomass and total tree biomass utilizing nonlinear functions are developed. Procedure 1 is a simple combination approach, and procedure 2 is based on nonlinear joint-generalized regression (nonlinear seemingly unrelated regressions) with parameter restrictions. Statistical theory is...
Kumar, K Vasanth
2007-04-02
Kinetic experiments were carried out for the sorption of safranin onto activated carbon particles. The kinetic data were fitted to pseudo-second order model of Ho, Sobkowsk and Czerwinski, Blanchard et al. and Ritchie by linear and non-linear regression methods. Non-linear method was found to be a better way of obtaining the parameters involved in the second order rate kinetic expressions. Both linear and non-linear regression showed that the Sobkowsk and Czerwinski and Ritchie's pseudo-second order models were the same. Non-linear regression analysis showed that both Blanchard et al. and Ho have similar ideas on the pseudo-second order model but with different assumptions. The best fit of experimental data in Ho's pseudo-second order expression by linear and non-linear regression method showed that Ho pseudo-second order model was a better kinetic expression when compared to other pseudo-second order kinetic expressions.
Spillover, nonlinearity, and flexible structures
NASA Technical Reports Server (NTRS)
Bass, Robert W.; Zes, Dean
1991-01-01
Many systems whose evolution in time is governed by Partial Differential Equations (PDEs) are linearized around a known equilibrium before Computer Aided Control Engineering (CACE) is considered. In this case, there are infinitely many independent vibrational modes, and it is intuitively evident on physical grounds that infinitely many actuators would be needed in order to control all modes. A more precise, general formulation of this grave difficulty (spillover problem) is due to A.V. Balakrishnan. A possible route to circumvention of this difficulty lies in leaving the PDE in its original nonlinear form, and adding the essentially finite dimensional control action prior to linearization. One possibly applicable technique is the Liapunov Schmidt rigorous reduction of singular infinite dimensional implicit function problems to finite dimensional implicit function problems. Omitting details of Banach space rigor, the formalities of this approach are given.
Demidenko, Eugene
2017-09-01
The exact density distribution of the nonlinear least squares estimator in the one-parameter regression model is derived in closed form and expressed through the cumulative distribution function of the standard normal variable. Several proposals to generalize this result are discussed. The exact density is extended to the estimating equation (EE) approach and the nonlinear regression with an arbitrary number of linear parameters and one intrinsically nonlinear parameter. For a very special nonlinear regression model, the derived density coincides with the distribution of the ratio of two normally distributed random variables previously obtained by Fieller (1932), unlike other approximations previously suggested by other authors. Approximations to the density of the EE estimators are discussed in the multivariate case. Numerical complications associated with the nonlinear least squares are illustrated, such as nonexistence and/or multiple solutions, as major factors contributing to poor density approximation. The nonlinear Markov-Gauss theorem is formulated based on the near exact EE density approximation.
Drake, Andrew W; Klakamp, Scott L
2007-01-10
A new 4-parameter nonlinear equation based on the standard multiple independent binding site model (MIBS) is presented for fitting cell-based ligand titration data in order to calculate the ligand/cell receptor equilibrium dissociation constant and the number of receptors/cell. The most commonly used linear (Scatchard Plot) or nonlinear 2-parameter model (a single binding site model found in commercial programs like Prism(R)) used for analysis of ligand/receptor binding data assumes only the K(D) influences the shape of the titration curve. We demonstrate using simulated data sets that, depending upon the cell surface receptor expression level, the number of cells titrated, and the magnitude of the K(D) being measured, this assumption of always being under K(D)-controlled conditions can be erroneous and can lead to unreliable estimates for the binding parameters. We also compare and contrast the fitting of simulated data sets to the commonly used cell-based binding equation versus our more rigorous 4-parameter nonlinear MIBS model. It is shown through these simulations that the new 4-parameter MIBS model, when used for cell-based titrations under optimal conditions, yields highly accurate estimates of all binding parameters and hence should be the preferred model to fit cell-based experimental nonlinear titration data.
Exact axisymmetric solutions of the Maxwell equations in a nonlinear nondispersive medium.
Petrov, E Yu; Kudrin, A V
2010-05-14
The features of propagation of intense waves are of great interest for theory and experiment in electrodynamics and acoustics. The behavior of nonlinear waves in a bounded volume is of special importance and, at the same time, is an extremely complicated problem. It seems almost impossible to find a rigorous solution to such a problem even for any model of nonlinearity. We obtain the first exact solution of this type. We present a new method for deriving exact solutions of the Maxwell equations in a nonlinear medium without dispersion and give examples of the obtained solutions that describe propagation of cylindrical electromagnetic waves in a nonlinear nondispersive medium and free electromagnetic oscillations in a cylindrical cavity resonator filled with such a medium.
NASA Astrophysics Data System (ADS)
Mahaboob, B.; Venkateswarlu, B.; Sankar, J. Ravi; Balasiddamuni, P.
2017-11-01
This paper uses matrix calculus techniques to obtain Nonlinear Least Squares Estimator (NLSE), Maximum Likelihood Estimator (MLE) and Linear Pseudo model for nonlinear regression model. David Pollard and Peter Radchenko [1] explained analytic techniques to compute the NLSE. However the present research paper introduces an innovative method to compute the NLSE using principles in multivariate calculus. This study is concerned with very new optimization techniques used to compute MLE and NLSE. Anh [2] derived NLSE and MLE of a heteroscedatistic regression model. Lemcoff [3] discussed a procedure to get linear pseudo model for nonlinear regression model. In this research article a new technique is developed to get the linear pseudo model for nonlinear regression model using multivariate calculus. The linear pseudo model of Edmond Malinvaud [4] has been explained in a very different way in this paper. David Pollard et.al used empirical process techniques to study the asymptotic of the LSE (Least-squares estimation) for the fitting of nonlinear regression function in 2006. In Jae Myung [13] provided a go conceptual for Maximum likelihood estimation in his work “Tutorial on maximum likelihood estimation
Single toxin dose-response models revisited
DOE Office of Scientific and Technical Information (OSTI.GOV)
Demidenko, Eugene, E-mail: eugened@dartmouth.edu
The goal of this paper is to offer a rigorous analysis of the sigmoid shape single toxin dose-response relationship. The toxin efficacy function is introduced and four special points, including maximum toxin efficacy and inflection points, on the dose-response curve are defined. The special points define three phases of the toxin effect on mortality: (1) toxin concentrations smaller than the first inflection point or (2) larger then the second inflection point imply low mortality rate, and (3) concentrations between the first and the second inflection points imply high mortality rate. Probabilistic interpretation and mathematical analysis for each of the fourmore » models, Hill, logit, probit, and Weibull is provided. Two general model extensions are introduced: (1) the multi-target hit model that accounts for the existence of several vital receptors affected by the toxin, and (2) model with a nonzero mortality at zero concentration to account for natural mortality. Special attention is given to statistical estimation in the framework of the generalized linear model with the binomial dependent variable as the mortality count in each experiment, contrary to the widespread nonlinear regression treating the mortality rate as continuous variable. The models are illustrated using standard EPA Daphnia acute (48 h) toxicity tests with mortality as a function of NiCl or CuSO{sub 4} toxin. - Highlights: • The paper offers a rigorous study of a sigmoid dose-response relationship. • The concentration with highest mortality rate is rigorously defined. • A table with four special points for five morality curves is presented. • Two new sigmoid dose-response models have been introduced. • The generalized linear model is advocated for estimation of sigmoid dose-response relationship.« less
Aircraft Accident Prevention: Loss-of-Control Analysis
NASA Technical Reports Server (NTRS)
Kwatny, Harry G.; Dongmo, Jean-Etienne T.; Chang, Bor-Chin; Bajpai, Guarav; Yasar, Murat; Belcastro, Christine M.
2009-01-01
The majority of fatal aircraft accidents are associated with loss-of-control . Yet the notion of loss-of-control is not well-defined in terms suitable for rigorous control systems analysis. Loss-of-control is generally associated with flight outside of the normal flight envelope, with nonlinear influences, and with an inability of the pilot to control the aircraft. The two primary sources of nonlinearity are the intrinsic nonlinear dynamics of the aircraft and the state and control constraints within which the aircraft must operate. In this paper we examine how these nonlinearities affect the ability to control the aircraft and how they may contribute to loss-of-control. Examples are provided using NASA s Generic Transport Model.
Numerical Analysis of the Dynamics of Nonlinear Solids and Structures
2008-08-01
to arrive to a new numerical scheme that exhibits rigorously the dissipative character of the so-called canonical free en - ergy characteristic of...UCLA), February 14 2006. 5. "Numerical Integration of the Nonlinear Dynamics of Elastoplastic Solids," keynote lecture , 3rd European Conference on...Computational Mechanics (ECCM 3), Lisbon, Portugal, June 5-9 2006. 6. "Energy-Momentum Schemes for Finite Strain Plasticity," keynote lecture , 7th
Understanding of flux-limited behaviors of heat transport in nonlinear regime
NASA Astrophysics Data System (ADS)
Guo, Yangyu; Jou, David; Wang, Moran
2016-01-01
The classical Fourier's law of heat transport breaks down in highly nonequilibrium situations as in nanoscale heat transport, where nonlinear effects become important. The present work is aimed at exploring the flux-limited behaviors based on a categorization of existing nonlinear heat transport models in terms of their theoretical foundations. Different saturation heat fluxes are obtained, whereas the same qualitative variation trend of heat flux versus exerted temperature gradient is got in diverse nonlinear models. The phonon hydrodynamic model is proposed to act as a standard to evaluate other heat flux limiters because of its more rigorous physical foundation. A deeper knowledge is thus achieved about the phenomenological generalized heat transport models. The present work provides deeper understanding and accurate modeling of nonlocal and nonlinear heat transport beyond the diffusive limit.
Method for nonlinear exponential regression analysis
NASA Technical Reports Server (NTRS)
Junkin, B. G.
1972-01-01
Two computer programs developed according to two general types of exponential models for conducting nonlinear exponential regression analysis are described. Least squares procedure is used in which the nonlinear problem is linearized by expanding in a Taylor series. Program is written in FORTRAN 5 for the Univac 1108 computer.
Pérez-Rodríguez, Paulino; Gianola, Daniel; González-Camacho, Juan Manuel; Crossa, José; Manès, Yann; Dreisigacker, Susanne
2012-01-01
In genome-enabled prediction, parametric, semi-parametric, and non-parametric regression models have been used. This study assessed the predictive ability of linear and non-linear models using dense molecular markers. The linear models were linear on marker effects and included the Bayesian LASSO, Bayesian ridge regression, Bayes A, and Bayes B. The non-linear models (this refers to non-linearity on markers) were reproducing kernel Hilbert space (RKHS) regression, Bayesian regularized neural networks (BRNN), and radial basis function neural networks (RBFNN). These statistical models were compared using 306 elite wheat lines from CIMMYT genotyped with 1717 diversity array technology (DArT) markers and two traits, days to heading (DTH) and grain yield (GY), measured in each of 12 environments. It was found that the three non-linear models had better overall prediction accuracy than the linear regression specification. Results showed a consistent superiority of RKHS and RBFNN over the Bayesian LASSO, Bayesian ridge regression, Bayes A, and Bayes B models. PMID:23275882
Pérez-Rodríguez, Paulino; Gianola, Daniel; González-Camacho, Juan Manuel; Crossa, José; Manès, Yann; Dreisigacker, Susanne
2012-12-01
In genome-enabled prediction, parametric, semi-parametric, and non-parametric regression models have been used. This study assessed the predictive ability of linear and non-linear models using dense molecular markers. The linear models were linear on marker effects and included the Bayesian LASSO, Bayesian ridge regression, Bayes A, and Bayes B. The non-linear models (this refers to non-linearity on markers) were reproducing kernel Hilbert space (RKHS) regression, Bayesian regularized neural networks (BRNN), and radial basis function neural networks (RBFNN). These statistical models were compared using 306 elite wheat lines from CIMMYT genotyped with 1717 diversity array technology (DArT) markers and two traits, days to heading (DTH) and grain yield (GY), measured in each of 12 environments. It was found that the three non-linear models had better overall prediction accuracy than the linear regression specification. Results showed a consistent superiority of RKHS and RBFNN over the Bayesian LASSO, Bayesian ridge regression, Bayes A, and Bayes B models.
A Practical Guide to Regression Discontinuity
ERIC Educational Resources Information Center
Jacob, Robin; Zhu, Pei; Somers, Marie-Andrée; Bloom, Howard
2012-01-01
Regression discontinuity (RD) analysis is a rigorous nonexperimental approach that can be used to estimate program impacts in situations in which candidates are selected for treatment based on whether their value for a numeric rating exceeds a designated threshold or cut-point. Over the last two decades, the regression discontinuity approach has…
Rigorous Model Reduction for a Damped-Forced Nonlinear Beam Model: An Infinite-Dimensional Analysis
NASA Astrophysics Data System (ADS)
Kogelbauer, Florian; Haller, George
2018-06-01
We use invariant manifold results on Banach spaces to conclude the existence of spectral submanifolds (SSMs) in a class of nonlinear, externally forced beam oscillations. SSMs are the smoothest nonlinear extensions of spectral subspaces of the linearized beam equation. Reduction in the governing PDE to SSMs provides an explicit low-dimensional model which captures the correct asymptotics of the full, infinite-dimensional dynamics. Our approach is general enough to admit extensions to other types of continuum vibrations. The model-reduction procedure we employ also gives guidelines for a mathematically self-consistent modeling of damping in PDEs describing structural vibrations.
Second-harmonic generation from a positive-negative index material heterostructure.
Mattiucci, Nadia; D'Aguanno, Giuseppe; Bloemer, Mark J; Scalora, Michael
2005-12-01
Resonant cavities have been widely used in the past to enhance material, nonlinear response. Traditional mirrors include metallic films and distributed Bragg reflectors. In this paper we propose negative index material mirrors as a third alternative. With the help of a rigorous Green function approach, we investigate second harmonic generation from single and coupled cavities, and theoretically prove that negative index material mirrors can raise the nonlinear conversion efficiency of a bulk material by at least four orders of magnitude compared to a bulk medium.
NASA Technical Reports Server (NTRS)
Hofmann, R.
1980-01-01
The STEALTH code system, which solves large strain, nonlinear continuum mechanics problems, was rigorously structured in both overall design and programming standards. The design is based on the theoretical elements of analysis while the programming standards attempt to establish a parallelism between physical theory, programming structure, and documentation. These features have made it easy to maintain, modify, and transport the codes. It has also guaranteed users a high level of quality control and quality assurance.
Initial-boundary layer associated with the nonlinear Darcy-Brinkman-Oberbeck-Boussinesq system
NASA Astrophysics Data System (ADS)
Fei, Mingwen; Han, Daozhi; Wang, Xiaoming
2017-01-01
In this paper, we study the vanishing Darcy number limit of the nonlinear Darcy-Brinkman-Oberbeck-Boussinesq system (DBOB). This singular perturbation problem involves singular structures both in time and in space giving rise to initial layers, boundary layers and initial-boundary layers. We construct an approximate solution to the DBOB system by the method of multiple scale expansions. The convergence with optimal convergence rates in certain Sobolev norms is established rigorously via the energy method.
The effects of anisotropy on the nonlinear behavior of bridged cracks in long strips
NASA Technical Reports Server (NTRS)
Ballarini, R.; Luo, H. A.
1994-01-01
A model which can be used to predict the two-dimensional nonlinear behavior of bridged cracks in orthotropic strips is presented. The results obtained using a singular integral equation formulation which incorporates the anisotropy rigorously show that, although the effects of anisotropy are significant, the nondimensional quantities employed by Cox and Marshall can generate nearly universal results (R-curves, for example) for different levels of relative anisotropy. The role of composite constituent properties in the behavior of bridged cracks is clarified.
Kaneko, Hiromasa; Funatsu, Kimito
2013-09-23
We propose predictive performance criteria for nonlinear regression models without cross-validation. The proposed criteria are the determination coefficient and the root-mean-square error for the midpoints between k-nearest-neighbor data points. These criteria can be used to evaluate predictive ability after the regression models are updated, whereas cross-validation cannot be performed in such a situation. The proposed method is effective and helpful in handling big data when cross-validation cannot be applied. By analyzing data from numerical simulations and quantitative structural relationships, we confirm that the proposed criteria enable the predictive ability of the nonlinear regression models to be appropriately quantified.
Teaching the Concept of Breakdown Point in Simple Linear Regression.
ERIC Educational Resources Information Center
Chan, Wai-Sum
2001-01-01
Most introductory textbooks on simple linear regression analysis mention the fact that extreme data points have a great influence on ordinary least-squares regression estimation; however, not many textbooks provide a rigorous mathematical explanation of this phenomenon. Suggests a way to fill this gap by teaching students the concept of breakdown…
Probability bounds analysis for nonlinear population ecology models.
Enszer, Joshua A; Andrei Măceș, D; Stadtherr, Mark A
2015-09-01
Mathematical models in population ecology often involve parameters that are empirically determined and inherently uncertain, with probability distributions for the uncertainties not known precisely. Propagating such imprecise uncertainties rigorously through a model to determine their effect on model outputs can be a challenging problem. We illustrate here a method for the direct propagation of uncertainties represented by probability bounds though nonlinear, continuous-time, dynamic models in population ecology. This makes it possible to determine rigorous bounds on the probability that some specified outcome for a population is achieved, which can be a core problem in ecosystem modeling for risk assessment and management. Results can be obtained at a computational cost that is considerably less than that required by statistical sampling methods such as Monte Carlo analysis. The method is demonstrated using three example systems, with focus on a model of an experimental aquatic food web subject to the effects of contamination by ionic liquids, a new class of potentially important industrial chemicals. Copyright © 2015. Published by Elsevier Inc.
Explicit formulation of second and third order optical nonlinearity in the FDTD framework
NASA Astrophysics Data System (ADS)
Varin, Charles; Emms, Rhys; Bart, Graeme; Fennel, Thomas; Brabec, Thomas
2018-01-01
The finite-difference time-domain (FDTD) method is a flexible and powerful technique for rigorously solving Maxwell's equations. However, three-dimensional optical nonlinearity in current commercial and research FDTD softwares requires solving iteratively an implicit form of Maxwell's equations over the entire numerical space and at each time step. Reaching numerical convergence demands significant computational resources and practical implementation often requires major modifications to the core FDTD engine. In this paper, we present an explicit method to include second and third order optical nonlinearity in the FDTD framework based on a nonlinear generalization of the Lorentz dispersion model. A formal derivation of the nonlinear Lorentz dispersion equation is equally provided, starting from the quantum mechanical equations describing nonlinear optics in the two-level approximation. With the proposed approach, numerical integration of optical nonlinearity and dispersion in FDTD is intuitive, transparent, and fully explicit. A strong-field formulation is also proposed, which opens an interesting avenue for FDTD-based modelling of the extreme nonlinear optics phenomena involved in laser filamentation and femtosecond micromachining of dielectrics.
Rigorous theory of molecular orientational nonlinear optics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwak, Chong Hoon, E-mail: chkwak@ynu.ac.kr; Kim, Gun Yeup
2015-01-15
Classical statistical mechanics of the molecular optics theory proposed by Buckingham [A. D. Buckingham and J. A. Pople, Proc. Phys. Soc. A 68, 905 (1955)] has been extended to describe the field induced molecular orientational polarization effects on nonlinear optics. In this paper, we present the generalized molecular orientational nonlinear optical processes (MONLO) through the calculation of the classical orientational averaging using the Boltzmann type time-averaged orientational interaction energy in the randomly oriented molecular system under the influence of applied electric fields. The focal points of the calculation are (1) the derivation of rigorous tensorial components of the effective molecularmore » hyperpolarizabilities, (2) the molecular orientational polarizations and the electronic polarizations including the well-known third-order dc polarization, dc electric field induced Kerr effect (dc Kerr effect), optical Kerr effect (OKE), dc electric field induced second harmonic generation (EFISH), degenerate four wave mixing (DFWM) and third harmonic generation (THG). We also present some of the new predictive MONLO processes. For second-order MONLO, second-order optical rectification (SOR), Pockels effect and difference frequency generation (DFG) are described in terms of the anisotropic coefficients of first hyperpolarizability. And, for third-order MONLO, third-order optical rectification (TOR), dc electric field induced difference frequency generation (EFIDFG) and pump-probe transmission are presented.« less
Robust approximation-free prescribed performance control for nonlinear systems and its application
NASA Astrophysics Data System (ADS)
Sun, Ruisheng; Na, Jing; Zhu, Bin
2018-02-01
This paper presents a robust prescribed performance control approach and its application to nonlinear tail-controlled missile systems with unknown dynamics and uncertainties. The idea of prescribed performance function (PPF) is incorporated into the control design, such that both the steady-state and transient control performance can be strictly guaranteed. Unlike conventional PPF-based control methods, we further tailor a recently proposed systematic control design procedure (i.e. approximation-free control) using the transformed tracking error dynamics, which provides a proportional-like control action. Hence, the function approximators (e.g. neural networks, fuzzy systems) that are widely used to address the unknown nonlinearities in the nonlinear control designs are not needed. The proposed control design leads to a robust yet simplified function approximation-free control for nonlinear systems. The closed-loop system stability and the control error convergence are all rigorously proved. Finally, comparative simulations are conducted based on nonlinear missile systems to validate the improved response and the robustness of the proposed control method.
Nonlinear saturation of tearing mode islands.
Hastie, R J; Militello, F; Porcelli, F
2005-08-05
New, rigorous results for the tearing island saturation problem are presented. These results are valid for the realistic case where the magnetic island structure is non-symmetric about the reconnection surface and the electron temperature, on which the electrical resistivity depends, is evolved self-consistently with the island growth.
Wu, Lingtao; Lord, Dominique
2017-05-01
This study further examined the use of regression models for developing crash modification factors (CMFs), specifically focusing on the misspecification in the link function. The primary objectives were to validate the accuracy of CMFs derived from the commonly used regression models (i.e., generalized linear models or GLMs with additive linear link functions) when some of the variables have nonlinear relationships and quantify the amount of bias as a function of the nonlinearity. Using the concept of artificial realistic data, various linear and nonlinear crash modification functions (CM-Functions) were assumed for three variables. Crash counts were randomly generated based on these CM-Functions. CMFs were then derived from regression models for three different scenarios. The results were compared with the assumed true values. The main findings are summarized as follows: (1) when some variables have nonlinear relationships with crash risk, the CMFs for these variables derived from the commonly used GLMs are all biased, especially around areas away from the baseline conditions (e.g., boundary areas); (2) with the increase in nonlinearity (i.e., nonlinear relationship becomes stronger), the bias becomes more significant; (3) the quality of CMFs for other variables having linear relationships can be influenced when mixed with those having nonlinear relationships, but the accuracy may still be acceptable; and (4) the misuse of the link function for one or more variables can also lead to biased estimates for other parameters. This study raised the importance of the link function when using regression models for developing CMFs. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kumar, K Vasanth; Sivanesan, S
2006-08-25
Pseudo second order kinetic expressions of Ho, Sobkowsk and Czerwinski, Blanachard et al. and Ritchie were fitted to the experimental kinetic data of malachite green onto activated carbon by non-linear and linear method. Non-linear method was found to be a better way of obtaining the parameters involved in the second order rate kinetic expressions. Both linear and non-linear regression showed that the Sobkowsk and Czerwinski and Ritchie's pseudo second order model were the same. Non-linear regression analysis showed that both Blanachard et al. and Ho have similar ideas on the pseudo second order model but with different assumptions. The best fit of experimental data in Ho's pseudo second order expression by linear and non-linear regression method showed that Ho pseudo second order model was a better kinetic expression when compared to other pseudo second order kinetic expressions. The amount of dye adsorbed at equilibrium, q(e), was predicted from Ho pseudo second order expression and were fitted to the Langmuir, Freundlich and Redlich Peterson expressions by both linear and non-linear method to obtain the pseudo isotherms. The best fitting pseudo isotherm was found to be the Langmuir and Redlich Peterson isotherm. Redlich Peterson is a special case of Langmuir when the constant g equals unity.
Fluid moments of the nonlinear Landau collision operator
Hirvijoki, E.; Lingam, M.; Pfefferle, D.; ...
2016-08-09
An important problem in plasma physics is the lack of an accurate and complete description of Coulomb collisions in associated fluid models. To shed light on the problem, this Letter introduces an integral identity involving the multivariate Hermite tensor polynomials and presents a method for computing exact expressions for the fluid moments of the nonlinear Landau collision operator. In conclusion, the proposed methodology provides a systematic and rigorous means of extending the validity of fluid models that have an underlying inverse-square force particle dynamics to arbitrary collisionality and flow.
ERIC Educational Resources Information Center
Drabinová, Adéla; Martinková, Patrícia
2017-01-01
In this article we present a general approach not relying on item response theory models (non-IRT) to detect differential item functioning (DIF) in dichotomous items with presence of guessing. The proposed nonlinear regression (NLR) procedure for DIF detection is an extension of method based on logistic regression. As a non-IRT approach, NLR can…
Towards a wave theory of charged beam transport: A collection of thoughts
NASA Technical Reports Server (NTRS)
Dattoli, G.; Mari, C.; Torre, A.
1992-01-01
We formulate in a rigorous way a wave theory of charged beam linear transport. The Wigner distribution function is introduced and provides the link with classical mechanics. Finally, the von Neumann equation is shown to coincide with the Liouville equation for the nonlinear transport.
Regression modeling of ground-water flow
Cooley, R.L.; Naff, R.L.
1985-01-01
Nonlinear multiple regression methods are developed to model and analyze groundwater flow systems. Complete descriptions of regression methodology as applied to groundwater flow models allow scientists and engineers engaged in flow modeling to apply the methods to a wide range of problems. Organization of the text proceeds from an introduction that discusses the general topic of groundwater flow modeling, to a review of basic statistics necessary to properly apply regression techniques, and then to the main topic: exposition and use of linear and nonlinear regression to model groundwater flow. Statistical procedures are given to analyze and use the regression models. A number of exercises and answers are included to exercise the student on nearly all the methods that are presented for modeling and statistical analysis. Three computer programs implement the more complex methods. These three are a general two-dimensional, steady-state regression model for flow in an anisotropic, heterogeneous porous medium, a program to calculate a measure of model nonlinearity with respect to the regression parameters, and a program to analyze model errors in computed dependent variables such as hydraulic head. (USGS)
NASA Astrophysics Data System (ADS)
Sirenko, M. A.; Tarasenko, P. F.; Pushkarev, M. I.
2017-01-01
One of the most noticeable features of sign-based statistical procedures is an opportunity to build an exact test for simple hypothesis testing of parameters in a regression model. In this article, we expanded a sing-based approach to the nonlinear case with dependent noise. The examined model is a multi-quantile regression, which makes it possible to test hypothesis not only of regression parameters, but of noise parameters as well.
An Excel Solver Exercise to Introduce Nonlinear Regression
ERIC Educational Resources Information Center
Pinder, Jonathan P.
2013-01-01
Business students taking business analytics courses that have significant predictive modeling components, such as marketing research, data mining, forecasting, and advanced financial modeling, are introduced to nonlinear regression using application software that is a "black box" to the students. Thus, although correct models are…
Bifurcation and chaos analysis of a nonlinear electromechanical coupling relative rotation system
NASA Astrophysics Data System (ADS)
Liu, Shuang; Zhao, Shuang-Shuang; Sun, Bao-Ping; Zhang, Wen-Ming
2014-09-01
Hopf bifurcation and chaos of a nonlinear electromechanical coupling relative rotation system are studied in this paper. Considering the energy in air-gap field of AC motor, the dynamical equation of nonlinear electromechanical coupling relative rotation system is deduced by using the dissipation Lagrange equation. Choosing the electromagnetic stiffness as a bifurcation parameter, the necessary and sufficient conditions of Hopf bifurcation are given, and the bifurcation characteristics are studied. The mechanism and conditions of system parameters for chaotic motions are investigated rigorously based on the Silnikov method, and the homoclinic orbit is found by using the undetermined coefficient method. Therefore, Smale horseshoe chaos occurs when electromagnetic stiffness changes. Numerical simulations are also given, which confirm the analytical results.
Nonlinear dynamics of mini-satellite respinup by weak internal controllable torques
NASA Astrophysics Data System (ADS)
Somov, Yevgeny
2014-12-01
Contemporary space engineering advanced new problem before theoretical mechanics and motion control theory: a spacecraft directed respinup by the weak restricted control internal forces. The paper presents some results on this problem, which is very actual for energy supply of information mini-satellites (for communication, geodesy, radio- and opto-electronic observation of the Earth et al.) with electro-reaction plasma thrusters and gyro moment cluster based on the reaction wheels or the control moment gyros. The solution achieved is based on the methods for synthesis of nonlinear robust control and on rigorous analytical proof for the required spacecraft rotation stability by Lyapunov function method. These results were verified by a computer simulation of strongly nonlinear oscillatory processes at respinuping of a flexible spacecraft.
Lopes, Marta B; Calado, Cecília R C; Figueiredo, Mário A T; Bioucas-Dias, José M
2017-06-01
The monitoring of biopharmaceutical products using Fourier transform infrared (FT-IR) spectroscopy relies on calibration techniques involving the acquisition of spectra of bioprocess samples along the process. The most commonly used method for that purpose is partial least squares (PLS) regression, under the assumption that a linear model is valid. Despite being successful in the presence of small nonlinearities, linear methods may fail in the presence of strong nonlinearities. This paper studies the potential usefulness of nonlinear regression methods for predicting, from in situ near-infrared (NIR) and mid-infrared (MIR) spectra acquired in high-throughput mode, biomass and plasmid concentrations in Escherichia coli DH5-α cultures producing the plasmid model pVAX-LacZ. The linear methods PLS and ridge regression (RR) are compared with their kernel (nonlinear) versions, kPLS and kRR, as well as with the (also nonlinear) relevance vector machine (RVM) and Gaussian process regression (GPR). For the systems studied, RR provided better predictive performances compared to the remaining methods. Moreover, the results point to further investigation based on larger data sets whenever differences in predictive accuracy between a linear method and its kernelized version could not be found. The use of nonlinear methods, however, shall be judged regarding the additional computational cost required to tune their additional parameters, especially when the less computationally demanding linear methods herein studied are able to successfully monitor the variables under study.
Learning accurate and interpretable models based on regularized random forests regression
2014-01-01
Background Many biology related research works combine data from multiple sources in an effort to understand the underlying problems. It is important to find and interpret the most important information from these sources. Thus it will be beneficial to have an effective algorithm that can simultaneously extract decision rules and select critical features for good interpretation while preserving the prediction performance. Methods In this study, we focus on regression problems for biological data where target outcomes are continuous. In general, models constructed from linear regression approaches are relatively easy to interpret. However, many practical biological applications are nonlinear in essence where we can hardly find a direct linear relationship between input and output. Nonlinear regression techniques can reveal nonlinear relationship of data, but are generally hard for human to interpret. We propose a rule based regression algorithm that uses 1-norm regularized random forests. The proposed approach simultaneously extracts a small number of rules from generated random forests and eliminates unimportant features. Results We tested the approach on some biological data sets. The proposed approach is able to construct a significantly smaller set of regression rules using a subset of attributes while achieving prediction performance comparable to that of random forests regression. Conclusion It demonstrates high potential in aiding prediction and interpretation of nonlinear relationships of the subject being studied. PMID:25350120
Huang, C.; Townshend, J.R.G.
2003-01-01
A stepwise regression tree (SRT) algorithm was developed for approximating complex nonlinear relationships. Based on the regression tree of Breiman et al . (BRT) and a stepwise linear regression (SLR) method, this algorithm represents an improvement over SLR in that it can approximate nonlinear relationships and over BRT in that it gives more realistic predictions. The applicability of this method to estimating subpixel forest was demonstrated using three test data sets, on all of which it gave more accurate predictions than SLR and BRT. SRT also generated more compact trees and performed better than or at least as well as BRT at all 10 equal forest proportion interval ranging from 0 to 100%. This method is appealing to estimating subpixel land cover over large areas.
Yobbi, D.K.
2000-01-01
A nonlinear least-squares regression technique for estimation of ground-water flow model parameters was applied to an existing model of the regional aquifer system underlying west-central Florida. The regression technique minimizes the differences between measured and simulated water levels. Regression statistics, including parameter sensitivities and correlations, were calculated for reported parameter values in the existing model. Optimal parameter values for selected hydrologic variables of interest are estimated by nonlinear regression. Optimal estimates of parameter values are about 140 times greater than and about 0.01 times less than reported values. Independently estimating all parameters by nonlinear regression was impossible, given the existing zonation structure and number of observations, because of parameter insensitivity and correlation. Although the model yields parameter values similar to those estimated by other methods and reproduces the measured water levels reasonably accurately, a simpler parameter structure should be considered. Some possible ways of improving model calibration are to: (1) modify the defined parameter-zonation structure by omitting and/or combining parameters to be estimated; (2) carefully eliminate observation data based on evidence that they are likely to be biased; (3) collect additional water-level data; (4) assign values to insensitive parameters, and (5) estimate the most sensitive parameters first, then, using the optimized values for these parameters, estimate the entire data set.
Electrets in soft materials: nonlinearity, size effects, and giant electromechanical coupling.
Deng, Qian; Liu, Liping; Sharma, Pradeep
2014-07-01
Development of soft electromechanical materials is critical for several tantalizing applications such as soft robots and stretchable electronics, among others. Soft nonpiezoelectric materials can be coaxed to behave like piezoelectrics by merely embedding charges and dipoles in their interior and assuring some elastic heterogeneity. Such so-called electret materials have been experimentally shown to exhibit very large electromechanical coupling. In this work, we derive rigorous nonlinear expressions that relate effective electromechanical coupling to the creation of electret materials. In contrast to the existing models, we are able to both qualitatively and quantitatively capture the known experimental results on the nonlinear response of electret materials. Furthermore, we show that the presence of another form of electromechanical coupling, flexoelectricity, leads to size effects that dramatically alter the electromechanical response at submicron feature sizes. One of our key conclusions is that nonlinear deformation (prevalent in soft materials) significantly enhances the flexoelectric response and hence the aforementioned size effects.
NASA Astrophysics Data System (ADS)
Syusina, O. M.; Chernitsov, A. M.; Tamarov, V. A.
2011-07-01
Simple and mathematically rigorous methods for calculating of nonlinearity coefficients are proposed. These coefficients allow us to make classification for the least squares problem as strongly or weakly nonlinear one. The advices are given on how to reduce a concrete estimation problem to weakly nonlinear one where a more efficient linear approach can be used.
USDA-ARS?s Scientific Manuscript database
Parametric non-linear regression (PNR) techniques commonly are used to develop weed seedling emergence models. Such techniques, however, require statistical assumptions that are difficult to meet. To examine and overcome these limitations, we compared PNR with a nonparametric estimation technique. F...
Existence and Stability of Viscoelastic Shock Profiles
NASA Astrophysics Data System (ADS)
Barker, Blake; Lewicka, Marta; Zumbrun, Kevin
2011-05-01
We investigate existence and stability of viscoelastic shock profiles for a class of planar models including the incompressible shear case studied by Antman and Malek-Madani. We establish that the resulting equations fall into the class of symmetrizable hyperbolic-parabolic systems, hence spectral stability implies linearized and nonlinear stability with sharp rates of decay. The new contributions are treatment of the compressible case, formulation of a rigorous nonlinear stability theory, including verification of stability of small-amplitude Lax shocks, and the systematic incorporation in our investigations of numerical Evans function computations determining stability of large-amplitude and nonclassical type shock profiles.
Kernel Partial Least Squares for Nonlinear Regression and Discrimination
NASA Technical Reports Server (NTRS)
Rosipal, Roman; Clancy, Daniel (Technical Monitor)
2002-01-01
This paper summarizes recent results on applying the method of partial least squares (PLS) in a reproducing kernel Hilbert space (RKHS). A previously proposed kernel PLS regression model was proven to be competitive with other regularized regression methods in RKHS. The family of nonlinear kernel-based PLS models is extended by considering the kernel PLS method for discrimination. Theoretical and experimental results on a two-class discrimination problem indicate usefulness of the method.
A Fast Reduced Kernel Extreme Learning Machine.
Deng, Wan-Yu; Ong, Yew-Soon; Zheng, Qing-Hua
2016-04-01
In this paper, we present a fast and accurate kernel-based supervised algorithm referred to as the Reduced Kernel Extreme Learning Machine (RKELM). In contrast to the work on Support Vector Machine (SVM) or Least Square SVM (LS-SVM), which identifies the support vectors or weight vectors iteratively, the proposed RKELM randomly selects a subset of the available data samples as support vectors (or mapping samples). By avoiding the iterative steps of SVM, significant cost savings in the training process can be readily attained, especially on Big datasets. RKELM is established based on the rigorous proof of universal learning involving reduced kernel-based SLFN. In particular, we prove that RKELM can approximate any nonlinear functions accurately under the condition of support vectors sufficiency. Experimental results on a wide variety of real world small instance size and large instance size applications in the context of binary classification, multi-class problem and regression are then reported to show that RKELM can perform at competitive level of generalized performance as the SVM/LS-SVM at only a fraction of the computational effort incurred. Copyright © 2015 Elsevier Ltd. All rights reserved.
Gimelfarb, A.; Willis, J. H.
1994-01-01
An experiment was conducted to investigate the offspring-parent regression for three quantitative traits (weight, abdominal bristles and wing length) in Drosophila melanogaster. Linear and polynomial models were fitted for the regressions of a character in offspring on both parents. It is demonstrated that responses by the characters to selection predicted by the nonlinear regressions may differ substantially from those predicted by the linear regressions. This is true even, and especially, if selection is weak. The realized heritability for a character under selection is shown to be determined not only by the offspring-parent regression but also by the distribution of the character and by the form and strength of selection. PMID:7828818
USDA-ARS?s Scientific Manuscript database
Non-linear regression techniques are used widely to fit weed field emergence patterns to soil microclimatic indices using S-type functions. Artificial neural networks present interesting and alternative features for such modeling purposes. In this work, a univariate hydrothermal-time based Weibull m...
Tøndel, Kristin; Indahl, Ulf G; Gjuvsland, Arne B; Vik, Jon Olav; Hunter, Peter; Omholt, Stig W; Martens, Harald
2011-06-01
Deterministic dynamic models of complex biological systems contain a large number of parameters and state variables, related through nonlinear differential equations with various types of feedback. A metamodel of such a dynamic model is a statistical approximation model that maps variation in parameters and initial conditions (inputs) to variation in features of the trajectories of the state variables (outputs) throughout the entire biologically relevant input space. A sufficiently accurate mapping can be exploited both instrumentally and epistemically. Multivariate regression methodology is a commonly used approach for emulating dynamic models. However, when the input-output relations are highly nonlinear or non-monotone, a standard linear regression approach is prone to give suboptimal results. We therefore hypothesised that a more accurate mapping can be obtained by locally linear or locally polynomial regression. We present here a new method for local regression modelling, Hierarchical Cluster-based PLS regression (HC-PLSR), where fuzzy C-means clustering is used to separate the data set into parts according to the structure of the response surface. We compare the metamodelling performance of HC-PLSR with polynomial partial least squares regression (PLSR) and ordinary least squares (OLS) regression on various systems: six different gene regulatory network models with various types of feedback, a deterministic mathematical model of the mammalian circadian clock and a model of the mouse ventricular myocyte function. Our results indicate that multivariate regression is well suited for emulating dynamic models in systems biology. The hierarchical approach turned out to be superior to both polynomial PLSR and OLS regression in all three test cases. The advantage, in terms of explained variance and prediction accuracy, was largest in systems with highly nonlinear functional relationships and in systems with positive feedback loops. HC-PLSR is a promising approach for metamodelling in systems biology, especially for highly nonlinear or non-monotone parameter to phenotype maps. The algorithm can be flexibly adjusted to suit the complexity of the dynamic model behaviour, inviting automation in the metamodelling of complex systems.
2011-01-01
Background Deterministic dynamic models of complex biological systems contain a large number of parameters and state variables, related through nonlinear differential equations with various types of feedback. A metamodel of such a dynamic model is a statistical approximation model that maps variation in parameters and initial conditions (inputs) to variation in features of the trajectories of the state variables (outputs) throughout the entire biologically relevant input space. A sufficiently accurate mapping can be exploited both instrumentally and epistemically. Multivariate regression methodology is a commonly used approach for emulating dynamic models. However, when the input-output relations are highly nonlinear or non-monotone, a standard linear regression approach is prone to give suboptimal results. We therefore hypothesised that a more accurate mapping can be obtained by locally linear or locally polynomial regression. We present here a new method for local regression modelling, Hierarchical Cluster-based PLS regression (HC-PLSR), where fuzzy C-means clustering is used to separate the data set into parts according to the structure of the response surface. We compare the metamodelling performance of HC-PLSR with polynomial partial least squares regression (PLSR) and ordinary least squares (OLS) regression on various systems: six different gene regulatory network models with various types of feedback, a deterministic mathematical model of the mammalian circadian clock and a model of the mouse ventricular myocyte function. Results Our results indicate that multivariate regression is well suited for emulating dynamic models in systems biology. The hierarchical approach turned out to be superior to both polynomial PLSR and OLS regression in all three test cases. The advantage, in terms of explained variance and prediction accuracy, was largest in systems with highly nonlinear functional relationships and in systems with positive feedback loops. Conclusions HC-PLSR is a promising approach for metamodelling in systems biology, especially for highly nonlinear or non-monotone parameter to phenotype maps. The algorithm can be flexibly adjusted to suit the complexity of the dynamic model behaviour, inviting automation in the metamodelling of complex systems. PMID:21627852
Nonlinear dynamics of mini-satellite respinup by weak internal controllable torques
DOE Office of Scientific and Technical Information (OSTI.GOV)
Somov, Yevgeny, E-mail: e-somov@mail.ru
Contemporary space engineering advanced new problem before theoretical mechanics and motion control theory: a spacecraft directed respinup by the weak restricted control internal forces. The paper presents some results on this problem, which is very actual for energy supply of information mini-satellites (for communication, geodesy, radio- and opto-electronic observation of the Earth et al.) with electro-reaction plasma thrusters and gyro moment cluster based on the reaction wheels or the control moment gyros. The solution achieved is based on the methods for synthesis of nonlinear robust control and on rigorous analytical proof for the required spacecraft rotation stability by Lyapunov functionmore » method. These results were verified by a computer simulation of strongly nonlinear oscillatory processes at respinuping of a flexible spacecraft.« less
Multilayer Perceptron for Robust Nonlinear Interval Regression Analysis Using Genetic Algorithms
2014-01-01
On the basis of fuzzy regression, computational models in intelligence such as neural networks have the capability to be applied to nonlinear interval regression analysis for dealing with uncertain and imprecise data. When training data are not contaminated by outliers, computational models perform well by including almost all given training data in the data interval. Nevertheless, since training data are often corrupted by outliers, robust learning algorithms employed to resist outliers for interval regression analysis have been an interesting area of research. Several approaches involving computational intelligence are effective for resisting outliers, but the required parameters for these approaches are related to whether the collected data contain outliers or not. Since it seems difficult to prespecify the degree of contamination beforehand, this paper uses multilayer perceptron to construct the robust nonlinear interval regression model using the genetic algorithm. Outliers beyond or beneath the data interval will impose slight effect on the determination of data interval. Simulation results demonstrate that the proposed method performs well for contaminated datasets. PMID:25110755
Multilayer perceptron for robust nonlinear interval regression analysis using genetic algorithms.
Hu, Yi-Chung
2014-01-01
On the basis of fuzzy regression, computational models in intelligence such as neural networks have the capability to be applied to nonlinear interval regression analysis for dealing with uncertain and imprecise data. When training data are not contaminated by outliers, computational models perform well by including almost all given training data in the data interval. Nevertheless, since training data are often corrupted by outliers, robust learning algorithms employed to resist outliers for interval regression analysis have been an interesting area of research. Several approaches involving computational intelligence are effective for resisting outliers, but the required parameters for these approaches are related to whether the collected data contain outliers or not. Since it seems difficult to prespecify the degree of contamination beforehand, this paper uses multilayer perceptron to construct the robust nonlinear interval regression model using the genetic algorithm. Outliers beyond or beneath the data interval will impose slight effect on the determination of data interval. Simulation results demonstrate that the proposed method performs well for contaminated datasets.
New methods of testing nonlinear hypothesis using iterative NLLS estimator
NASA Astrophysics Data System (ADS)
Mahaboob, B.; Venkateswarlu, B.; Mokeshrayalu, G.; Balasiddamuni, P.
2017-11-01
This research paper discusses the method of testing nonlinear hypothesis using iterative Nonlinear Least Squares (NLLS) estimator. Takeshi Amemiya [1] explained this method. However in the present research paper, a modified Wald test statistic due to Engle, Robert [6] is proposed to test the nonlinear hypothesis using iterative NLLS estimator. An alternative method for testing nonlinear hypothesis using iterative NLLS estimator based on nonlinear hypothesis using iterative NLLS estimator based on nonlinear studentized residuals has been proposed. In this research article an innovative method of testing nonlinear hypothesis using iterative restricted NLLS estimator is derived. Pesaran and Deaton [10] explained the methods of testing nonlinear hypothesis. This paper uses asymptotic properties of nonlinear least squares estimator proposed by Jenrich [8]. The main purpose of this paper is to provide very innovative methods of testing nonlinear hypothesis using iterative NLLS estimator, iterative NLLS estimator based on nonlinear studentized residuals and iterative restricted NLLS estimator. Eakambaram et al. [12] discussed least absolute deviation estimations versus nonlinear regression model with heteroscedastic errors and also they studied the problem of heteroscedasticity with reference to nonlinear regression models with suitable illustration. William Grene [13] examined the interaction effect in nonlinear models disused by Ai and Norton [14] and suggested ways to examine the effects that do not involve statistical testing. Peter [15] provided guidelines for identifying composite hypothesis and addressing the probability of false rejection for multiple hypotheses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Bin; Research Center of Applied Statistics, Jiangxi University of Finance and Economics, Nanchang, Jiangxi 330013; Lin, Boqiang, E-mail: bqlin@xmu.edu.cn
China is currently the world's largest carbon dioxide (CO{sub 2}) emitter. Moreover, total energy consumption and CO{sub 2} emissions in China will continue to increase due to the rapid growth of industrialization and urbanization. Therefore, vigorously developing the high–tech industry becomes an inevitable choice to reduce CO{sub 2} emissions at the moment or in the future. However, ignoring the existing nonlinear links between economic variables, most scholars use traditional linear models to explore the impact of the high–tech industry on CO{sub 2} emissions from an aggregate perspective. Few studies have focused on nonlinear relationships and regional differences in China. Basedmore » on panel data of 1998–2014, this study uses the nonparametric additive regression model to explore the nonlinear effect of the high–tech industry from a regional perspective. The estimated results show that the residual sum of squares (SSR) of the nonparametric additive regression model in the eastern, central and western regions are 0.693, 0.054 and 0.085 respectively, which are much less those that of the traditional linear regression model (3.158, 4.227 and 7.196). This verifies that the nonparametric additive regression model has a better fitting effect. Specifically, the high–tech industry produces an inverted “U–shaped” nonlinear impact on CO{sub 2} emissions in the eastern region, but a positive “U–shaped” nonlinear effect in the central and western regions. Therefore, the nonlinear impact of the high–tech industry on CO{sub 2} emissions in the three regions should be given adequate attention in developing effective abatement policies. - Highlights: • The nonlinear effect of the high–tech industry on CO{sub 2} emissions was investigated. • The high–tech industry yields an inverted “U–shaped” effect in the eastern region. • The high–tech industry has a positive “U–shaped” nonlinear effect in other regions. • The linear impact of the high–tech industry in the eastern region is the strongest.« less
ERIC Educational Resources Information Center
Strang, Kenneth David
2009-01-01
This paper discusses how a seldom-used statistical procedure, recursive regression (RR), can numerically and graphically illustrate data-driven nonlinear relationships and interaction of variables. This routine falls into the family of exploratory techniques, yet a few interesting features make it a valuable compliment to factor analysis and…
The ice age cycle and the deglaciations: an application of nonlinear regression modelling
NASA Astrophysics Data System (ADS)
Dalgleish, A. N.; Boulton, G. S.; Renshaw, E.
2000-03-01
We have applied the nonlinear regression technique known as additivity and variance stabilisation (AVAS) to time series which reflect Earth's climate over the last 600 ka. AVAS estimates a smooth, nonlinear transform for each variable, under the assumption of an additive model. The Earth's orbital parameters and insolation variations have been used as regression variables. Analysis of the contribution of each variable shows that the deglaciations are characterised by periods of increasing obliquity and perihelion approaching the vernal equinox, but not by any systematic change in eccentricity. The magnitude of insolation changes also plays no role. By approximating the transforms we can obtain a future prediction, with a glacial maximum at 60 ka AP, and a subsequent obliquity and precession forced deglaciation.
A method for nonlinear exponential regression analysis
NASA Technical Reports Server (NTRS)
Junkin, B. G.
1971-01-01
A computer-oriented technique is presented for performing a nonlinear exponential regression analysis on decay-type experimental data. The technique involves the least squares procedure wherein the nonlinear problem is linearized by expansion in a Taylor series. A linear curve fitting procedure for determining the initial nominal estimates for the unknown exponential model parameters is included as an integral part of the technique. A correction matrix was derived and then applied to the nominal estimate to produce an improved set of model parameters. The solution cycle is repeated until some predetermined criterion is satisfied.
ERIC Educational Resources Information Center
Cole, Russell; Deke, John; Seftor, Neil
2016-01-01
The What Works Clearinghouse (WWC) maintains design standards to identify rigorous, internally valid education research. As education researchers advance new methodologies, the WWC must revise its standards to include an assessment of the new designs. Recently, the WWC has revised standards for two emerging study designs: regression discontinuity…
Note: Nonpolar solute partial molar volume response to attractive interactions with water.
Williams, Steven M; Ashbaugh, Henry S
2014-01-07
The impact of attractive interactions on the partial molar volumes of methane-like solutes in water is characterized using molecular simulations. Attractions account for a significant 20% volume drop between a repulsive Weeks-Chandler-Andersen and full Lennard-Jones description of methane interactions. The response of the volume to interaction perturbations is characterized by linear fits to our simulations and a rigorous statistical thermodynamic expression for the derivative of the volume to increasing attractions. While a weak non-linear response is observed, an average effective slope accurately captures the volume decrease. This response, however, is anticipated to become more non-linear with increasing solute size.
Experimental Observation and Theoretical Description of Multisoliton Fission in Shallow Water
NASA Astrophysics Data System (ADS)
Trillo, S.; Deng, G.; Biondini, G.; Klein, M.; Clauss, G. F.; Chabchoub, A.; Onorato, M.
2016-09-01
We observe the dispersive breaking of cosine-type long waves [Phys. Rev. Lett. 15, 240 (1965)] in shallow water, characterizing the highly nonlinear "multisoliton" fission over variable conditions. We provide new insight into the interpretation of the results by analyzing the data in terms of the periodic inverse scattering transform for the Korteweg-de Vries equation. In a wide range of dispersion and nonlinearity, the data compare favorably with our analytical estimate, based on a rigorous WKB approach, of the number of emerging solitons. We are also able to observe experimentally the universal Fermi-Pasta-Ulam recurrence in the regime of moderately weak dispersion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laboure, Vincent M., E-mail: vincent.laboure@tamu.edu; McClarren, Ryan G., E-mail: rgm@tamu.edu; Hauck, Cory D., E-mail: hauckc@ornl.gov
2016-09-15
In this work, we provide a fully-implicit implementation of the time-dependent, filtered spherical harmonics (FP{sub N}) equations for non-linear, thermal radiative transfer. We investigate local filtering strategies and analyze the effect of the filter on the conditioning of the system, showing in particular that the filter improves the convergence properties of the iterative solver. We also investigate numerically the rigorous error estimates derived in the linear setting, to determine whether they hold also for the non-linear case. Finally, we simulate a standard test problem on an unstructured mesh and make comparisons with implicit Monte Carlo (IMC) calculations.
Note: Nonpolar solute partial molar volume response to attractive interactions with water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Steven M.; Ashbaugh, Henry S., E-mail: hanka@tulane.edu
2014-01-07
The impact of attractive interactions on the partial molar volumes of methane-like solutes in water is characterized using molecular simulations. Attractions account for a significant 20% volume drop between a repulsive Weeks-Chandler-Andersen and full Lennard-Jones description of methane interactions. The response of the volume to interaction perturbations is characterized by linear fits to our simulations and a rigorous statistical thermodynamic expression for the derivative of the volume to increasing attractions. While a weak non-linear response is observed, an average effective slope accurately captures the volume decrease. This response, however, is anticipated to become more non-linear with increasing solute size.
Global adaptive control for uncertain nonaffine nonlinear hysteretic systems.
Liu, Yong-Hua; Huang, Liangpei; Xiao, Dongming; Guo, Yong
2015-09-01
In this paper, the global output tracking is investigated for a class of uncertain nonlinear hysteretic systems with nonaffine structures. By combining the solution properties of the hysteresis model with the novel backstepping approach, a robust adaptive control algorithm is developed without constructing a hysteresis inverse. The proposed control scheme is further modified to tackle the bounded disturbances by adaptively estimating their bounds. It is rigorously proven that the designed adaptive controllers can guarantee global stability of the closed-loop system. Two numerical examples are provided to show the effectiveness of the proposed control schemes. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Adaptive Fault-Tolerant Control of Uncertain Nonlinear Large-Scale Systems With Unknown Dead Zone.
Chen, Mou; Tao, Gang
2016-08-01
In this paper, an adaptive neural fault-tolerant control scheme is proposed and analyzed for a class of uncertain nonlinear large-scale systems with unknown dead zone and external disturbances. To tackle the unknown nonlinear interaction functions in the large-scale system, the radial basis function neural network (RBFNN) is employed to approximate them. To further handle the unknown approximation errors and the effects of the unknown dead zone and external disturbances, integrated as the compounded disturbances, the corresponding disturbance observers are developed for their estimations. Based on the outputs of the RBFNN and the disturbance observer, the adaptive neural fault-tolerant control scheme is designed for uncertain nonlinear large-scale systems by using a decentralized backstepping technique. The closed-loop stability of the adaptive control system is rigorously proved via Lyapunov analysis and the satisfactory tracking performance is achieved under the integrated effects of unknown dead zone, actuator fault, and unknown external disturbances. Simulation results of a mass-spring-damper system are given to illustrate the effectiveness of the proposed adaptive neural fault-tolerant control scheme for uncertain nonlinear large-scale systems.
A mass-energy preserving Galerkin FEM for the coupled nonlinear fractional Schrödinger equations
NASA Astrophysics Data System (ADS)
Zhang, Guoyu; Huang, Chengming; Li, Meng
2018-04-01
We consider the numerical simulation of the coupled nonlinear space fractional Schrödinger equations. Based on the Galerkin finite element method in space and the Crank-Nicolson (CN) difference method in time, a fully discrete scheme is constructed. Firstly, we focus on a rigorous analysis of conservation laws for the discrete system. The definitions of discrete mass and energy here correspond with the original ones in physics. Then, we prove that the fully discrete system is uniquely solvable. Moreover, we consider the unconditionally convergent properties (that is to say, we complete the error estimates without any mesh ratio restriction). We derive L2-norm error estimates for the nonlinear equations and L^{∞}-norm error estimates for the linear equations. Finally, some numerical experiments are included showing results in agreement with the theoretical predictions.
Quantization of the nonlinear sigma model revisited
NASA Astrophysics Data System (ADS)
Nguyen, Timothy
2016-08-01
We revisit the subject of perturbatively quantizing the nonlinear sigma model in two dimensions from a rigorous, mathematical point of view. Our main contribution is to make precise the cohomological problem of eliminating potential anomalies that may arise when trying to preserve symmetries under quantization. The symmetries we consider are twofold: (i) diffeomorphism covariance for a general target manifold; (ii) a transitive group of isometries when the target manifold is a homogeneous space. We show that there are no anomalies in case (i) and that (ii) is also anomaly-free under additional assumptions on the target homogeneous space, in agreement with the work of Friedan. We carry out some explicit computations for the O(N)-model. Finally, we show how a suitable notion of the renormalization group establishes the Ricci flow as the one loop renormalization group flow of the nonlinear sigma model.
Adaptive sensor-fault tolerant control for a class of multivariable uncertain nonlinear systems.
Khebbache, Hicham; Tadjine, Mohamed; Labiod, Salim; Boulkroune, Abdesselem
2015-03-01
This paper deals with the active fault tolerant control (AFTC) problem for a class of multiple-input multiple-output (MIMO) uncertain nonlinear systems subject to sensor faults and external disturbances. The proposed AFTC method can tolerate three additive (bias, drift and loss of accuracy) and one multiplicative (loss of effectiveness) sensor faults. By employing backstepping technique, a novel adaptive backstepping-based AFTC scheme is developed using the fact that sensor faults and system uncertainties (including external disturbances and unexpected nonlinear functions caused by sensor faults) can be on-line estimated and compensated via robust adaptive schemes. The stability analysis of the closed-loop system is rigorously proven using a Lyapunov approach. The effectiveness of the proposed controller is illustrated by two simulation examples. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Kretschmer, Tina; Vollebergh, Wilma; Oldehinkel, Albertine J.
2017-01-01
Romantic relationship quality in adolescence and early adulthood has often been linked to earlier parent-child relationship quality but it is possible that these links are nonlinear. Moreover, the role of social skills as mediator of associations between parent-child and romantic relations has been discussed but not rigorously tested. Using data…
The Three-Component Defocusing Nonlinear Schrödinger Equation with Nonzero Boundary Conditions
NASA Astrophysics Data System (ADS)
Biondini, Gino; Kraus, Daniel K.; Prinari, Barbara
2016-12-01
We present a rigorous theory of the inverse scattering transform (IST) for the three-component defocusing nonlinear Schrödinger (NLS) equation with initial conditions approaching constant values with the same amplitude as {xto±∞}. The theory combines and extends to a problem with non-zero boundary conditions three fundamental ideas: (i) the tensor approach used by Beals, Deift and Tomei for the n-th order scattering problem, (ii) the triangular decompositions of the scattering matrix used by Novikov, Manakov, Pitaevski and Zakharov for the N-wave interaction equations, and (iii) a generalization of the cross product via the Hodge star duality, which, to the best of our knowledge, is used in the context of the IST for the first time in this work. The combination of the first two ideas allows us to rigorously obtain a fundamental set of analytic eigenfunctions. The third idea allows us to establish the symmetries of the eigenfunctions and scattering data. The results are used to characterize the discrete spectrum and to obtain exact soliton solutions, which describe generalizations of the so-called dark-bright solitons of the two-component NLS equation.
Choi, Yun Ho; Yoo, Sung Jin
2017-03-28
A minimal-approximation-based distributed adaptive consensus tracking approach is presented for strict-feedback multiagent systems with unknown heterogeneous nonlinearities and control directions under a directed network. Existing approximation-based consensus results for uncertain nonlinear multiagent systems in lower-triangular form have used multiple function approximators in each local controller to approximate unmatched nonlinearities of each follower. Thus, as the follower's order increases, the number of the approximators used in its local controller increases. However, the proposed approach employs only one function approximator to construct the local controller of each follower regardless of the order of the follower. The recursive design methodology using a new error transformation is derived for the proposed minimal-approximation-based design. Furthermore, a bounding lemma on parameters of Nussbaum functions is presented to handle the unknown control direction problem in the minimal-approximation-based distributed consensus tracking framework and the stability of the overall closed-loop system is rigorously analyzed in the Lyapunov sense.
Model-Based Adaptive Event-Triggered Control of Strict-Feedback Nonlinear Systems.
Li, Yuan-Xin; Yang, Guang-Hong
2018-04-01
This paper is concerned with the adaptive event-triggered control problem of nonlinear continuous-time systems in strict-feedback form. By using the event-sampled neural network (NN) to approximate the unknown nonlinear function, an adaptive model and an associated event-triggered controller are designed by exploiting the backstepping method. In the proposed method, the feedback signals and the NN weights are aperiodically updated only when the event-triggered condition is violated. A positive lower bound on the minimum intersample time is guaranteed to avoid accumulation point. The closed-loop stability of the resulting nonlinear impulsive dynamical system is rigorously proved via Lyapunov analysis under an adaptive event sampling condition. In comparing with the traditional adaptive backstepping design with a fixed sample period, the event-triggered method samples the state and updates the NN weights only when it is necessary. Therefore, the number of transmissions can be significantly reduced. Finally, two simulation examples are presented to show the effectiveness of the proposed control method.
Zhang, Yiming; Jin, Quan; Wang, Shuting; Ren, Ren
2011-05-01
The mobile behavior of 1481 peptides in ion mobility spectrometry (IMS), which are generated by protease digestion of the Drosophila melanogaster proteome, is modeled and predicted based on two different types of characterization methods, i.e. sequence-based approach and structure-based approach. In this procedure, the sequence-based approach considers both the amino acid composition of a peptide and the local environment profile of each amino acid in the peptide; the structure-based approach is performed with the CODESSA protocol, which regards a peptide as a common organic compound and generates more than 200 statistically significant variables to characterize the whole structure profile of a peptide molecule. Subsequently, the nonlinear support vector machine (SVM) and Gaussian process (GP) as well as linear partial least squares (PLS) regression is employed to correlate the structural parameters of the characterizations with the IMS drift times of these peptides. The obtained quantitative structure-spectrum relationship (QSSR) models are evaluated rigorously and investigated systematically via both one-deep and two-deep cross-validations as well as the rigorous Monte Carlo cross-validation (MCCV). We also give a comprehensive comparison on the resulting statistics arising from the different combinations of variable types with modeling methods and find that the sequence-based approach can give the QSSR models with better fitting ability and predictive power but worse interpretability than the structure-based approach. In addition, though the QSSR modeling using sequence-based approach is not needed for the preparation of the minimization structures of peptides before the modeling, it would be considerably efficient as compared to that using structure-based approach. Copyright © 2011 Elsevier Ltd. All rights reserved.
Association between climate variability and malaria epidemics in the East African highlands.
Zhou, Guofa; Minakawa, Noboru; Githeko, Andrew K; Yan, Guiyun
2004-02-24
The causes of the recent reemergence of Plasmodium falciparum epidemic malaria in the East African highlands are controversial. Regional climate changes have been invoked as a major factor; however, assessing the impact of climate in malaria resurgence is difficult due to high spatial and temporal climate variability and the lack of long-term data series on malaria cases from different sites. Climate variability, defined as short-term fluctuations around the mean climate state, may be epidemiologically more relevant than mean temperature change, but its effects on malaria epidemics have not been rigorously examined. Here we used nonlinear mixed-regression model to investigate the association between autoregression (number of malaria outpatients during the previous time period), seasonality and climate variability, and the number of monthly malaria outpatients of the past 10-20 years in seven highland sites in East Africa. The model explained 65-81% of the variance in the number of monthly malaria outpatients. Nonlinear and synergistic effects of temperature and rainfall on the number of malaria outpatients were found in all seven sites. The net variance in the number of monthly malaria outpatients caused by autoregression and seasonality varied among sites and ranged from 18 to 63% (mean=38.6%), whereas 12-63% (mean=36.1%) of variance is attributed to climate variability. Our results suggest that there was a high spatial variation in the sensitivity of malaria outpatient number to climate fluctuations in the highlands, and that climate variability played an important role in initiating malaria epidemics in the East African highlands.
Machine learning in the string landscape
NASA Astrophysics Data System (ADS)
Carifio, Jonathan; Halverson, James; Krioukov, Dmitri; Nelson, Brent D.
2017-09-01
We utilize machine learning to study the string landscape. Deep data dives and conjecture generation are proposed as useful frameworks for utilizing machine learning in the landscape, and examples of each are presented. A decision tree accurately predicts the number of weak Fano toric threefolds arising from reflexive polytopes, each of which determines a smooth F-theory compactification, and linear regression generates a previously proven conjecture for the gauge group rank in an ensemble of 4/3× 2.96× {10}^{755} F-theory compactifications. Logistic regression generates a new conjecture for when E 6 arises in the large ensemble of F-theory compactifications, which is then rigorously proven. This result may be relevant for the appearance of visible sectors in the ensemble. Through conjecture generation, machine learning is useful not only for numerics, but also for rigorous results.
Detecting influential observations in nonlinear regression modeling of groundwater flow
Yager, Richard M.
1998-01-01
Nonlinear regression is used to estimate optimal parameter values in models of groundwater flow to ensure that differences between predicted and observed heads and flows do not result from nonoptimal parameter values. Parameter estimates can be affected, however, by observations that disproportionately influence the regression, such as outliers that exert undue leverage on the objective function. Certain statistics developed for linear regression can be used to detect influential observations in nonlinear regression if the models are approximately linear. This paper discusses the application of Cook's D, which measures the effect of omitting a single observation on a set of estimated parameter values, and the statistical parameter DFBETAS, which quantifies the influence of an observation on each parameter. The influence statistics were used to (1) identify the influential observations in the calibration of a three-dimensional, groundwater flow model of a fractured-rock aquifer through nonlinear regression, and (2) quantify the effect of omitting influential observations on the set of estimated parameter values. Comparison of the spatial distribution of Cook's D with plots of model sensitivity shows that influential observations correspond to areas where the model heads are most sensitive to certain parameters, and where predicted groundwater flow rates are largest. Five of the six discharge observations were identified as influential, indicating that reliable measurements of groundwater flow rates are valuable data in model calibration. DFBETAS are computed and examined for an alternative model of the aquifer system to identify a parameterization error in the model design that resulted in overestimation of the effect of anisotropy on horizontal hydraulic conductivity.
Estimating monotonic rates from biological data using local linear regression.
Olito, Colin; White, Craig R; Marshall, Dustin J; Barneche, Diego R
2017-03-01
Accessing many fundamental questions in biology begins with empirical estimation of simple monotonic rates of underlying biological processes. Across a variety of disciplines, ranging from physiology to biogeochemistry, these rates are routinely estimated from non-linear and noisy time series data using linear regression and ad hoc manual truncation of non-linearities. Here, we introduce the R package LoLinR, a flexible toolkit to implement local linear regression techniques to objectively and reproducibly estimate monotonic biological rates from non-linear time series data, and demonstrate possible applications using metabolic rate data. LoLinR provides methods to easily and reliably estimate monotonic rates from time series data in a way that is statistically robust, facilitates reproducible research and is applicable to a wide variety of research disciplines in the biological sciences. © 2017. Published by The Company of Biologists Ltd.
NASA Astrophysics Data System (ADS)
Shi, Jinfei; Zhu, Songqing; Chen, Ruwen
2017-12-01
An order selection method based on multiple stepwise regressions is proposed for General Expression of Nonlinear Autoregressive model which converts the model order problem into the variable selection of multiple linear regression equation. The partial autocorrelation function is adopted to define the linear term in GNAR model. The result is set as the initial model, and then the nonlinear terms are introduced gradually. Statistics are chosen to study the improvements of both the new introduced and originally existed variables for the model characteristics, which are adopted to determine the model variables to retain or eliminate. So the optimal model is obtained through data fitting effect measurement or significance test. The simulation and classic time-series data experiment results show that the method proposed is simple, reliable and can be applied to practical engineering.
Standard representation and unified stability analysis for dynamic artificial neural network models.
Kim, Kwang-Ki K; Patrón, Ernesto Ríos; Braatz, Richard D
2018-02-01
An overview is provided of dynamic artificial neural network models (DANNs) for nonlinear dynamical system identification and control problems, and convex stability conditions are proposed that are less conservative than past results. The three most popular classes of dynamic artificial neural network models are described, with their mathematical representations and architectures followed by transformations based on their block diagrams that are convenient for stability and performance analyses. Classes of nonlinear dynamical systems that are universally approximated by such models are characterized, which include rigorous upper bounds on the approximation errors. A unified framework and linear matrix inequality-based stability conditions are described for different classes of dynamic artificial neural network models that take additional information into account such as local slope restrictions and whether the nonlinearities within the DANNs are odd. A theoretical example shows reduced conservatism obtained by the conditions. Copyright © 2017. Published by Elsevier Ltd.
Toroidal gyrofluid equations for simulations of tokamak turbulence
NASA Astrophysics Data System (ADS)
Beer, M. A.; Hammett, G. W.
1996-11-01
A set of nonlinear gyrofluid equations for simulations of tokamak turbulence are derived by taking moments of the nonlinear toroidal gyrokinetic equation. The moment hierarchy is closed with approximations that model the kinetic effects of parallel Landau damping, toroidal drift resonances, and finite Larmor radius effects. These equations generalize the work of Dorland and Hammett [Phys. Fluids B 5, 812 (1993)] to toroidal geometry by including essential toroidal effects. The closures for phase mixing from toroidal ∇B and curvature drifts take the basic form presented in Waltz et al. [Phys. Fluids B 4, 3138 (1992)], but here a more rigorous procedure is used, including an extension to higher moments, which provides significantly improved accuracy. In addition, trapped ion effects and collisions are incorporated. This reduced set of nonlinear equations accurately models most of the physics considered important for ion dynamics in core tokamak turbulence, and is simple enough to be used in high resolution direct numerical simulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ooi, C. H. Raymond
2009-07-10
Nonlinear spectroscopy using coherent anti-Stokes Raman scattering and femtosecond laser pulses has been successfully developed as powerful tools for chemical analysis and biological imaging. Recent developments show promising possibilities of incorporating CARS into LIDAR system for remote detection of molecular species in airborne particles. The corresponding theory is being developed to describe nonlinear scattering of a mesoscopic particle composed of complex molecules by laser pulses with arbitrary shape and spectral content. Microscopic many-body transform theory is used to compute the third order susceptibility for CARS in molecules with known absorption spectrum and vibrational modes. The theory is combined with anmore » integral scattering formula and Mie-Lorentz formulae, giving a rigorous formalism which provides powerful numerical experimentation of CARS spectra, particularly on the variations with the laser parameters and the direction of detection.« less
Adaptive Neural Control of Uncertain MIMO Nonlinear Systems With State and Input Constraints.
Chen, Ziting; Li, Zhijun; Chen, C L Philip
2017-06-01
An adaptive neural control strategy for multiple input multiple output nonlinear systems with various constraints is presented in this paper. To deal with the nonsymmetric input nonlinearity and the constrained states, the proposed adaptive neural control is combined with the backstepping method, radial basis function neural network, barrier Lyapunov function (BLF), and disturbance observer. By ensuring the boundedness of the BLF of the closed-loop system, it is demonstrated that the output tracking is achieved with all states remaining in the constraint sets and the general assumption on nonsingularity of unknown control coefficient matrices has been eliminated. The constructed adaptive neural control has been rigorously proved that it can guarantee the semiglobally uniformly ultimate boundedness of all signals in the closed-loop system. Finally, the simulation studies on a 2-DOF robotic manipulator system indicate that the designed adaptive control is effective.
Learning-Based Adaptive Optimal Tracking Control of Strict-Feedback Nonlinear Systems.
Gao, Weinan; Jiang, Zhong-Ping; Weinan Gao; Zhong-Ping Jiang; Gao, Weinan; Jiang, Zhong-Ping
2018-06-01
This paper proposes a novel data-driven control approach to address the problem of adaptive optimal tracking for a class of nonlinear systems taking the strict-feedback form. Adaptive dynamic programming (ADP) and nonlinear output regulation theories are integrated for the first time to compute an adaptive near-optimal tracker without any a priori knowledge of the system dynamics. Fundamentally different from adaptive optimal stabilization problems, the solution to a Hamilton-Jacobi-Bellman (HJB) equation, not necessarily a positive definite function, cannot be approximated through the existing iterative methods. This paper proposes a novel policy iteration technique for solving positive semidefinite HJB equations with rigorous convergence analysis. A two-phase data-driven learning method is developed and implemented online by ADP. The efficacy of the proposed adaptive optimal tracking control methodology is demonstrated via a Van der Pol oscillator with time-varying exogenous signals.
A simplified competition data analysis for radioligand specific activity determination.
Venturino, A; Rivera, E S; Bergoc, R M; Caro, R A
1990-01-01
Non-linear regression and two-step linear fit methods were developed to determine the actual specific activity of 125I-ovine prolactin by radioreceptor self-displacement analysis. The experimental results obtained by the different methods are superposable. The non-linear regression method is considered to be the most adequate procedure to calculate the specific activity, but if its software is not available, the other described methods are also suitable.
Xu, Wenjun; Chen, Jie; Lau, Henry Y K; Ren, Hongliang
2017-09-01
Accurate motion control of flexible surgical manipulators is crucial in tissue manipulation tasks. The tendon-driven serpentine manipulator (TSM) is one of the most widely adopted flexible mechanisms in minimally invasive surgery because of its enhanced maneuverability in torturous environments. TSM, however, exhibits high nonlinearities and conventional analytical kinematics model is insufficient to achieve high accuracy. To account for the system nonlinearities, we applied a data driven approach to encode the system inverse kinematics. Three regression methods: extreme learning machine (ELM), Gaussian mixture regression (GMR) and K-nearest neighbors regression (KNNR) were implemented to learn a nonlinear mapping from the robot 3D position states to the control inputs. The performance of the three algorithms was evaluated both in simulation and physical trajectory tracking experiments. KNNR performed the best in the tracking experiments, with the lowest RMSE of 2.1275 mm. The proposed inverse kinematics learning methods provide an alternative and efficient way to accurately model the tendon driven flexible manipulator. Copyright © 2016 John Wiley & Sons, Ltd.
Sridhar, Upasana Manimegalai; Govindarajan, Anand; Rhinehart, R Russell
2016-01-01
This work reveals the applicability of a relatively new optimization technique, Leapfrogging, for both nonlinear regression modeling and a methodology for nonlinear model-predictive control. Both are relatively simple, yet effective. The application on a nonlinear, pilot-scale, shell-and-tube heat exchanger reveals practicability of the techniques. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Murrell, Ebony G.; Juliano, Steven A.
2012-01-01
Resource competition theory predicts that R*, the equilibrium resource amount yielding zero growth of a consumer population, should predict species' competitive abilities for that resource. This concept has been supported for unicellular organisms, but has not been well-tested for metazoans, probably due to the difficulty of raising experimental populations to equilibrium and measuring population growth rates for species with long or complex life cycles. We developed an index (Rindex) of R* based on demography of one insect cohort, growing from egg to adult in a non-equilibrium setting, and tested whether Rindex yielded accurate predictions of competitive abilities using mosquitoes as a model system. We estimated finite rate of increase (λ′) from demographic data for cohorts of three mosquito species raised with different detritus amounts, and estimated each species' Rindex using nonlinear regressions of λ′ vs. initial detritus amount. All three species' Rindex differed significantly, and accurately predicted competitive hierarchy of the species determined in simultaneous pairwise competition experiments. Our Rindex could provide estimates and rigorous statistical comparisons of competitive ability for organisms for which typical chemostat methods and equilibrium population conditions are impractical. PMID:22970128
NASA Astrophysics Data System (ADS)
Vintila, Iuliana; Gavrus, Adinel
2017-10-01
The present research paper proposes the validation of a rigorous computation model used as a numerical tool to identify rheological behavior of complex emulsions W/O. Considering a three-dimensional description of a general viscoplastic flow it is detailed the thermo-mechanical equations used to identify fluid or soft material's rheological laws starting from global experimental measurements. Analyses are conducted for complex emulsions W/O having generally a Bingham behavior using the shear stress - strain rate dependency based on a power law and using an improved analytical model. Experimental results are investigated in case of rheological behavior for crude and refined rapeseed/soybean oils and four types of corresponding W/O emulsions using different physical-chemical composition. The rheological behavior model was correlated with the thermo-mechanical analysis of a plane-plane rheometer, oil content, chemical composition, particle size and emulsifier's concentration. The parameters of rheological laws describing the industrial oils and the W/O concentrated emulsions behavior were computed from estimated shear stresses using a non-linear regression technique and from experimental torques using the inverse analysis tool designed by A. Gavrus (1992-2000).
Regression of non-linear coupling of noise in LIGO detectors
NASA Astrophysics Data System (ADS)
Da Silva Costa, C. F.; Billman, C.; Effler, A.; Klimenko, S.; Cheng, H.-P.
2018-03-01
In 2015, after their upgrade, the advanced Laser Interferometer Gravitational-Wave Observatory (LIGO) detectors started acquiring data. The effort to improve their sensitivity has never stopped since then. The goal to achieve design sensitivity is challenging. Environmental and instrumental noise couple to the detector output with different, linear and non-linear, coupling mechanisms. The noise regression method we use is based on the Wiener–Kolmogorov filter, which uses witness channels to make noise predictions. We present here how this method helped to determine complex non-linear noise couplings in the output mode cleaner and in the mirror suspension system of the LIGO detector.
A controlled experiment in ground water flow model calibration
Hill, M.C.; Cooley, R.L.; Pollock, D.W.
1998-01-01
Nonlinear regression was introduced to ground water modeling in the 1970s, but has been used very little to calibrate numerical models of complicated ground water systems. Apparently, nonlinear regression is thought by many to be incapable of addressing such complex problems. With what we believe to be the most complicated synthetic test case used for such a study, this work investigates using nonlinear regression in ground water model calibration. Results of the study fall into two categories. First, the study demonstrates how systematic use of a well designed nonlinear regression method can indicate the importance of different types of data and can lead to successive improvement of models and their parameterizations. Our method differs from previous methods presented in the ground water literature in that (1) weighting is more closely related to expected data errors than is usually the case; (2) defined diagnostic statistics allow for more effective evaluation of the available data, the model, and their interaction; and (3) prior information is used more cautiously. Second, our results challenge some commonly held beliefs about model calibration. For the test case considered, we show that (1) field measured values of hydraulic conductivity are not as directly applicable to models as their use in some geostatistical methods imply; (2) a unique model does not necessarily need to be identified to obtain accurate predictions; and (3) in the absence of obvious model bias, model error was normally distributed. The complexity of the test case involved implies that the methods used and conclusions drawn are likely to be powerful in practice.Nonlinear regression was introduced to ground water modeling in the 1970s, but has been used very little to calibrate numerical models of complicated ground water systems. Apparently, nonlinear regression is thought by many to be incapable of addressing such complex problems. With what we believe to be the most complicated synthetic test case used for such a study, this work investigates using nonlinear regression in ground water model calibration. Results of the study fall into two categories. First, the study demonstrates how systematic use of a well designed nonlinear regression method can indicate the importance of different types of data and can lead to successive improvement of models and their parameterizations. Our method differs from previous methods presented in the ground water literature in that (1) weighting is more closely related to expected data errors than is usually the case; (2) defined diagnostic statistics allow for more effective evaluation of the available data, the model, and their interaction; and (3) prior information is used more cautiously. Second, our results challenge some commonly held beliefs about model calibration. For the test case considered, we show that (1) field measured values of hydraulic conductivity are not as directly applicable to models as their use in some geostatistical methods imply; (2) a unique model does not necessarily need to be identified to obtain accurate predictions; and (3) in the absence of obvious model bias, model error was normally distributed. The complexity of the test case involved implies that the methods used and conclusions drawn are likely to be powerful in practice.
Simulations and model of the nonlinear Richtmyer–Meshkov instability
Dimonte, Guy; Ramaprabhu, P.
2010-01-21
The nonlinear evolution of the Richtmyer-Meshkov (RM) instability is investigated using numerical simulations with the FLASH code in two-dimensions (2D). The purpose of the simulations is to develop an empiricial nonlinear model of the RM instability that is applicable to inertial confinement fusion (ICF) and ejecta formation, namely, at large Atwood number A and scaled initial amplitude kh o (k ≡ wavenumber) of the perturbation. The FLASH code is first validated with a variety of RM experiments that evolve well into the nonlinear regime. They reveal that bubbles stagnate when they grow by an increment of 2/k and that spikesmore » accelerate for A > 0.5 due to higher harmonics that focus them. These results are then compared with a variety of nonlinear models that are based on potential flow. We find that the models agree with simulations for moderate values of A < 0.9 and kh o< 1, but not for the larger values that characterize ICF and ejecta formation. We thus develop a new nonlinear empirical model that captures the simulation results consistent with potential flow for a broader range of A and kh o. Our hope is that such empirical models concisely capture the RM simulations and inspire more rigorous solutions.« less
Igne, Benoît; Drennen, James K; Anderson, Carl A
2014-01-01
Changes in raw materials and process wear and tear can have significant effects on the prediction error of near-infrared calibration models. When the variability that is present during routine manufacturing is not included in the calibration, test, and validation sets, the long-term performance and robustness of the model will be limited. Nonlinearity is a major source of interference. In near-infrared spectroscopy, nonlinearity can arise from light path-length differences that can come from differences in particle size or density. The usefulness of support vector machine (SVM) regression to handle nonlinearity and improve the robustness of calibration models in scenarios where the calibration set did not include all the variability present in test was evaluated. Compared to partial least squares (PLS) regression, SVM regression was less affected by physical (particle size) and chemical (moisture) differences. The linearity of the SVM predicted values was also improved. Nevertheless, although visualization and interpretation tools have been developed to enhance the usability of SVM-based methods, work is yet to be done to provide chemometricians in the pharmaceutical industry with a regression method that can supplement PLS-based methods.
NASA Astrophysics Data System (ADS)
Liu, Changying; Iserles, Arieh; Wu, Xinyuan
2018-03-01
The Klein-Gordon equation with nonlinear potential occurs in a wide range of application areas in science and engineering. Its computation represents a major challenge. The main theme of this paper is the construction of symmetric and arbitrarily high-order time integrators for the nonlinear Klein-Gordon equation by integrating Birkhoff-Hermite interpolation polynomials. To this end, under the assumption of periodic boundary conditions, we begin with the formulation of the nonlinear Klein-Gordon equation as an abstract second-order ordinary differential equation (ODE) and its operator-variation-of-constants formula. We then derive a symmetric and arbitrarily high-order Birkhoff-Hermite time integration formula for the nonlinear abstract ODE. Accordingly, the stability, convergence and long-time behaviour are rigorously analysed once the spatial differential operator is approximated by an appropriate positive semi-definite matrix, subject to suitable temporal and spatial smoothness. A remarkable characteristic of this new approach is that the requirement of temporal smoothness is reduced compared with the traditional numerical methods for PDEs in the literature. Numerical results demonstrate the advantage and efficiency of our time integrators in comparison with the existing numerical approaches.
Terza, Joseph V; Bradford, W David; Dismuke, Clara E
2008-01-01
Objective To investigate potential bias in the use of the conventional linear instrumental variables (IV) method for the estimation of causal effects in inherently nonlinear regression settings. Data Sources Smoking Supplement to the 1979 National Health Interview Survey, National Longitudinal Alcohol Epidemiologic Survey, and simulated data. Study Design Potential bias from the use of the linear IV method in nonlinear models is assessed via simulation studies and real world data analyses in two commonly encountered regression setting: (1) models with a nonnegative outcome (e.g., a count) and a continuous endogenous regressor; and (2) models with a binary outcome and a binary endogenous regressor. Principle Findings The simulation analyses show that substantial bias in the estimation of causal effects can result from applying the conventional IV method in inherently nonlinear regression settings. Moreover, the bias is not attenuated as the sample size increases. This point is further illustrated in the survey data analyses in which IV-based estimates of the relevant causal effects diverge substantially from those obtained with appropriate nonlinear estimation methods. Conclusions We offer this research as a cautionary note to those who would opt for the use of linear specifications in inherently nonlinear settings involving endogeneity. PMID:18546544
Geometrically Nonlinear Static Analysis of 3D Trusses Using the Arc-Length Method
NASA Technical Reports Server (NTRS)
Hrinda, Glenn A.
2006-01-01
Rigorous analysis of geometrically nonlinear structures demands creating mathematical models that accurately include loading and support conditions and, more importantly, model the stiffness and response of the structure. Nonlinear geometric structures often contain critical points with snap-through behavior during the response to large loads. Studying the post buckling behavior during a portion of a structure's unstable load history may be necessary. Primary structures made from ductile materials will stretch enough prior to failure for loads to redistribute producing sudden and often catastrophic collapses that are difficult to predict. The responses and redistribution of the internal loads during collapses and possible sharp snap-back of structures have frequently caused numerical difficulties in analysis procedures. The presence of critical stability points and unstable equilibrium paths are major difficulties that numerical solutions must pass to fully capture the nonlinear response. Some hurdles still exist in finding nonlinear responses of structures under large geometric changes. Predicting snap-through and snap-back of certain structures has been difficult and time consuming. Also difficult is finding how much load a structure may still carry safely. Highly geometrically nonlinear responses of structures exhibiting complex snap-back behavior are presented and analyzed with a finite element approach. The arc-length method will be reviewed and shown to predict the proper response and follow the nonlinear equilibrium path through limit points.
Lim, Changwon
2015-03-30
Nonlinear regression is often used to evaluate the toxicity of a chemical or a drug by fitting data from a dose-response study. Toxicologists and pharmacologists may draw a conclusion about whether a chemical is toxic by testing the significance of the estimated parameters. However, sometimes the null hypothesis cannot be rejected even though the fit is quite good. One possible reason for such cases is that the estimated standard errors of the parameter estimates are extremely large. In this paper, we propose robust ridge regression estimation procedures for nonlinear models to solve this problem. The asymptotic properties of the proposed estimators are investigated; in particular, their mean squared errors are derived. The performances of the proposed estimators are compared with several standard estimators using simulation studies. The proposed methodology is also illustrated using high throughput screening assay data obtained from the National Toxicology Program. Copyright © 2014 John Wiley & Sons, Ltd.
ERIC Educational Resources Information Center
Hovardas, Tasos
2016-01-01
Although ecological systems at varying scales involve non-linear interactions, learners insist thinking in a linear fashion when they deal with ecological phenomena. The overall objective of the present contribution was to propose a hypothetical learning progression for developing non-linear reasoning in prey-predator systems and to provide…
1991-05-22
plasticity, including those of DiMaggio and Sandier (1971), Baladi and Rohani (1979), Lade (1977), Prevost (1978, 1985), Dafalias and Herrmann (1982). In...distribution can be achieved only if the behavior at the contact is fully understood and rigorously modelled. 18 REFERENCES Baladi , G.Y. and Rohani, B. (1979
NASA Astrophysics Data System (ADS)
Gonçalves, Karen dos Santos; Winkler, Mirko S.; Benchimol-Barbosa, Paulo Roberto; de Hoogh, Kees; Artaxo, Paulo Eduardo; de Souza Hacon, Sandra; Schindler, Christian; Künzli, Nino
2018-07-01
Epidemiological studies generally use particulate matter measurements with diameter less 2.5 μm (PM2.5) from monitoring networks. Satellite aerosol optical depth (AOD) data has considerable potential in predicting PM2.5 concentrations, and thus provides an alternative method for producing knowledge regarding the level of pollution and its health impact in areas where no ground PM2.5 measurements are available. This is the case in the Brazilian Amazon rainforest region where forest fires are frequent sources of high pollution. In this study, we applied a non-linear model for predicting PM2.5 concentration from AOD retrievals using interaction terms between average temperature, relative humidity, sine, cosine of date in a period of 365,25 days and the square of the lagged relative residual. Regression performance statistics were tested comparing the goodness of fit and R2 based on results from linear regression and non-linear regression for six different models. The regression results for non-linear prediction showed the best performance, explaining on average 82% of the daily PM2.5 concentrations when considering the whole period studied. In the context of Amazonia, it was the first study predicting PM2.5 concentrations using the latest high-resolution AOD products also in combination with the testing of a non-linear model performance. Our results permitted a reliable prediction considering the AOD-PM2.5 relationship and set the basis for further investigations on air pollution impacts in the complex context of Brazilian Amazon Region.
Revisiting tests for neglected nonlinearity using artificial neural networks.
Cho, Jin Seo; Ishida, Isao; White, Halbert
2011-05-01
Tests for regression neglected nonlinearity based on artificial neural networks (ANNs) have so far been studied by separately analyzing the two ways in which the null of regression linearity can hold. This implies that the asymptotic behavior of general ANN-based tests for neglected nonlinearity is still an open question. Here we analyze a convenient ANN-based quasi-likelihood ratio statistic for testing neglected nonlinearity, paying careful attention to both components of the null. We derive the asymptotic null distribution under each component separately and analyze their interaction. Somewhat remarkably, it turns out that the previously known asymptotic null distribution for the type 1 case still applies, but under somewhat stronger conditions than previously recognized. We present Monte Carlo experiments corroborating our theoretical results and showing that standard methods can yield misleading inference when our new, stronger regularity conditions are violated.
Cooley, Richard L.
1982-01-01
Prior information on the parameters of a groundwater flow model can be used to improve parameter estimates obtained from nonlinear regression solution of a modeling problem. Two scales of prior information can be available: (1) prior information having known reliability (that is, bias and random error structure) and (2) prior information consisting of best available estimates of unknown reliability. A regression method that incorporates the second scale of prior information assumes the prior information to be fixed for any particular analysis to produce improved, although biased, parameter estimates. Approximate optimization of two auxiliary parameters of the formulation is used to help minimize the bias, which is almost always much smaller than that resulting from standard ridge regression. It is shown that if both scales of prior information are available, then a combined regression analysis may be made.
Stewart, David J.; Behrens, Carmen; Roth, Jack; Wistuba, Ignacio I.
2010-01-01
Background For processes that follow first order kinetics, exponential decay nonlinear regression analysis (EDNRA) may delineate curve characteristics and suggest processes affecting curve shape. We conducted a preliminary feasibility assessment of EDNRA of patient survival curves. Methods EDNRA was performed on Kaplan-Meier overall survival (OS) and time-to-relapse (TTR) curves for 323 patients with resected NSCLC and on OS and progression-free survival (PFS) curves from selected publications. Results and Conclusions In our resected patients, TTR curves were triphasic with a “cured” fraction of 60.7% (half-life [t1/2] >100,000 months), a rapidly-relapsing group (7.4%, t1/2=5.9 months) and a slowly-relapsing group (31.9%, t1/2=23.6 months). OS was uniphasic (t1/2=74.3 months), suggesting an impact of co-morbidities; hence, tumor molecular characteristics would more likely predict TTR than OS. Of 172 published curves analyzed, 72 (42%) were uniphasic, 92 (53%) were biphasic, 8 (5%) were triphasic. With first-line chemotherapy in advanced NSCLC, 87.5% of curves from 2-3 drug regimens were uniphasic vs only 20% of those with best supportive care or 1 drug (p<0.001). 54% of curves from 2-3 drug regimens had convex rapid-decay phases vs 0% with fewer agents (p<0.001). Curve convexities suggest that discontinuing chemotherapy after 3-6 cycles “synchronizes” patient progression and death. With postoperative adjuvant chemotherapy, the PFS rapid-decay phase accounted for a smaller proportion of the population than in controls (p=0.02) with no significant difference in rapid-decay t1/2, suggesting adjuvant chemotherapy may move a subpopulation of patients with sensitive tumors from the relapsing group to the cured group, with minimal impact on time to relapse for a larger group of patients with resistant tumors. In untreated patients, the proportion of patients in the rapid-decay phase increased (p=0.04) while rapid-decay t1/2 decreased (p=0.0004) with increasing stage, suggesting that higher stage may be associated with tumor cells that both grow more rapidly and have a higher probability of surviving metastatic processes than in early stage tumors. This preliminary assessment of EDNRA suggests that it may be worth exploring this approach further using more sophisticated, statistically rigorous nonlinear modelling approaches. Using such approaches to supplement standard survival analyses could suggest or support specific testable hypotheses. PMID:20627364
Closed-Loop Control of Complex Networks: A Trade-Off between Time and Energy
NASA Astrophysics Data System (ADS)
Sun, Yong-Zheng; Leng, Si-Yang; Lai, Ying-Cheng; Grebogi, Celso; Lin, Wei
2017-11-01
Controlling complex nonlinear networks is largely an unsolved problem at the present. Existing works focus either on open-loop control strategies and their energy consumptions or on closed-loop control schemes with an infinite-time duration. We articulate a finite-time, closed-loop controller with an eye toward the physical and mathematical underpinnings of the trade-off between the control time and energy as well as their dependence on the network parameters and structure. The closed-loop controller is tested on a large number of real systems including stem cell differentiation, food webs, random ecosystems, and spiking neuronal networks. Our results represent a step forward in developing a rigorous and general framework to control nonlinear dynamical networks with a complex topology.
On the nonlinear stability of mKdV breathers
NASA Astrophysics Data System (ADS)
Alejo, Miguel A.; Muñoz, Claudio
2012-11-01
Breather modes of the mKdV equation on the real line are known to be elastic under collisions with other breathers and solitons. This fact indicates very strong stability properties of breathers. In this communication we describe a rigorous, mathematical proof of the stability of breathers under a class of small perturbations. Our proof involves the existence of a nonlinear equation satisfied by all breather profiles, and a new Lyapunov functional which controls the dynamics of small perturbations and instability modes. In order to construct such a functional, we work in a subspace of the energy one. However, our proof introduces new ideas in order to attack the corresponding stability problem in the energy space. Some remarks about the sine-Gordon case are also considered.
A different approach to estimate nonlinear regression model using numerical methods
NASA Astrophysics Data System (ADS)
Mahaboob, B.; Venkateswarlu, B.; Mokeshrayalu, G.; Balasiddamuni, P.
2017-11-01
This research paper concerns with the computational methods namely the Gauss-Newton method, Gradient algorithm methods (Newton-Raphson method, Steepest Descent or Steepest Ascent algorithm method, the Method of Scoring, the Method of Quadratic Hill-Climbing) based on numerical analysis to estimate parameters of nonlinear regression model in a very different way. Principles of matrix calculus have been used to discuss the Gradient-Algorithm methods. Yonathan Bard [1] discussed a comparison of gradient methods for the solution of nonlinear parameter estimation problems. However this article discusses an analytical approach to the gradient algorithm methods in a different way. This paper describes a new iterative technique namely Gauss-Newton method which differs from the iterative technique proposed by Gorden K. Smyth [2]. Hans Georg Bock et.al [10] proposed numerical methods for parameter estimation in DAE’s (Differential algebraic equation). Isabel Reis Dos Santos et al [11], Introduced weighted least squares procedure for estimating the unknown parameters of a nonlinear regression metamodel. For large-scale non smooth convex minimization the Hager and Zhang (HZ) conjugate gradient Method and the modified HZ (MHZ) method were presented by Gonglin Yuan et al [12].
An evaluation of bias in propensity score-adjusted non-linear regression models.
Wan, Fei; Mitra, Nandita
2018-03-01
Propensity score methods are commonly used to adjust for observed confounding when estimating the conditional treatment effect in observational studies. One popular method, covariate adjustment of the propensity score in a regression model, has been empirically shown to be biased in non-linear models. However, no compelling underlying theoretical reason has been presented. We propose a new framework to investigate bias and consistency of propensity score-adjusted treatment effects in non-linear models that uses a simple geometric approach to forge a link between the consistency of the propensity score estimator and the collapsibility of non-linear models. Under this framework, we demonstrate that adjustment of the propensity score in an outcome model results in the decomposition of observed covariates into the propensity score and a remainder term. Omission of this remainder term from a non-collapsible regression model leads to biased estimates of the conditional odds ratio and conditional hazard ratio, but not for the conditional rate ratio. We further show, via simulation studies, that the bias in these propensity score-adjusted estimators increases with larger treatment effect size, larger covariate effects, and increasing dissimilarity between the coefficients of the covariates in the treatment model versus the outcome model.
NASA Astrophysics Data System (ADS)
Chen, Xuwen; Holmer, Justin
2016-08-01
We consider the dynamics of N bosons in 1D. We assume that the pair interaction is attractive and given by {N^{β-1}V(N^{β}.) where } where {int V ≤slant 0}. We develop new techniques in treating the N-body Hamiltonian so that we overcome the difficulties generated by the attractive interaction and establish new energy estimates. We also prove the optimal 1D collapsing estimate which reduces the regularity requirement in the uniqueness argument by half a derivative. We derive rigorously the 1D focusing cubic NLS with a quadratic trap as the {N → ∞} limit of the N-body dynamic and hence justify the mean-field limit and prove the propagation of chaos for the focusing quantum many-body system.
Multi-Target Regression via Robust Low-Rank Learning.
Zhen, Xiantong; Yu, Mengyang; He, Xiaofei; Li, Shuo
2018-02-01
Multi-target regression has recently regained great popularity due to its capability of simultaneously learning multiple relevant regression tasks and its wide applications in data mining, computer vision and medical image analysis, while great challenges arise from jointly handling inter-target correlations and input-output relationships. In this paper, we propose Multi-layer Multi-target Regression (MMR) which enables simultaneously modeling intrinsic inter-target correlations and nonlinear input-output relationships in a general framework via robust low-rank learning. Specifically, the MMR can explicitly encode inter-target correlations in a structure matrix by matrix elastic nets (MEN); the MMR can work in conjunction with the kernel trick to effectively disentangle highly complex nonlinear input-output relationships; the MMR can be efficiently solved by a new alternating optimization algorithm with guaranteed convergence. The MMR leverages the strength of kernel methods for nonlinear feature learning and the structural advantage of multi-layer learning architectures for inter-target correlation modeling. More importantly, it offers a new multi-layer learning paradigm for multi-target regression which is endowed with high generality, flexibility and expressive ability. Extensive experimental evaluation on 18 diverse real-world datasets demonstrates that our MMR can achieve consistently high performance and outperforms representative state-of-the-art algorithms, which shows its great effectiveness and generality for multivariate prediction.
Briggs, Martin A.; Day-Lewis, Frederick D.; Ong, John B.; Curtis, Gary P.; Lane, John W.
2013-01-01
Anomalous solute transport, modeled as rate-limited mass transfer, has an observable geoelectrical signature that can be exploited to infer the controlling parameters. Previous experiments indicate the combination of time-lapse geoelectrical and fluid conductivity measurements collected during ionic tracer experiments provides valuable insight into the exchange of solute between mobile and immobile porosity. Here, we use geoelectrical measurements to monitor tracer experiments at a former uranium mill tailings site in Naturita, Colorado. We use nonlinear regression to calibrate dual-domain mass transfer solute-transport models to field data. This method differs from previous approaches by calibrating the model simultaneously to observed fluid conductivity and geoelectrical tracer signals using two parameter scales: effective parameters for the flow path upgradient of the monitoring point and the parameters local to the monitoring point. We use regression statistics to rigorously evaluate the information content and sensitivity of fluid conductivity and geophysical data, demonstrating multiple scales of mass transfer parameters can simultaneously be estimated. Our results show, for the first time, field-scale spatial variability of mass transfer parameters (i.e., exchange-rate coefficient, porosity) between local and upgradient effective parameters; hence our approach provides insight into spatial variability and scaling behavior. Additional synthetic modeling is used to evaluate the scope of applicability of our approach, indicating greater range than earlier work using temporal moments and a Lagrangian-based Damköhler number. The introduced Eulerian-based Damköhler is useful for estimating tracer injection duration needed to evaluate mass transfer exchange rates that range over several orders of magnitude.
NASA Astrophysics Data System (ADS)
Huffaker, R.; Munoz-Carpena, R.
2016-12-01
There are increasing calls to audit decision-support models used for environmental policy to ensure that they correspond with the reality facing policy makers. Modelers can establish correspondence by providing empirical evidence of real-world dynamic behavior that their models skillfully simulate. We present a pre-modeling diagnostic framework—based on nonlinear dynamic analysis—for detecting and reconstructing real-world environmental dynamics from observed time-sequenced data. Phenomenological (data-driven) modeling—based on machine learning regression techniques—extracts a set of ordinary differential equations governing empirically-diagnosed system dynamics from a single time series, or from multiple time series on causally-interacting variables. We apply the framework to investigate saltwater intrusion into coastal wetlands in Everglades National Park, Florida, USA. We test the following hypotheses posed in the literature linking regional hydrologic variables with global climatic teleconnections: (1) Sea level in Florida Bay drives well level and well salinity in the coastal Everglades; (2) Atlantic Multidecadal Oscillation (AMO) drives sea level, well level and well salinity; and (3) AMO and (El Niño Southern Oscillation) ENSO bi-causally interact. The thinking is that salt water intrusion links ocean-surface salinity with salinity of inland water sources, and sea level with inland water; that AMO and ENSO share a teleconnective relationship (perhaps through the atmosphere); and that AMO and ENSO both influence inland precipitation and thus well levels. Our results support these hypotheses, and we successfully construct a parsimonious phenomenological model that reproduces diagnosed nonlinear dynamics and system interactions. We propose that reconstructed data dynamics be used, along with other expert information, as a rigorous benchmark to guide specification and testing of hydrologic decision support models corresponding with real-world behavior.
Geographical variation of cerebrovascular disease in New York State: the correlation with income
Han, Daikwon; Carrow, Shannon S; Rogerson, Peter A; Munschauer, Frederick E
2005-01-01
Background Income is known to be associated with cerebrovascular disease; however, little is known about the more detailed relationship between cerebrovascular disease and income. We examined the hypothesis that the geographical distribution of cerebrovascular disease in New York State may be predicted by a nonlinear model using income as a surrogate socioeconomic risk factor. Results We used spatial clustering methods to identify areas with high and low prevalence of cerebrovascular disease at the ZIP code level after smoothing rates and correcting for edge effects; geographic locations of high and low clusters of cerebrovascular disease in New York State were identified with and without income adjustment. To examine effects of income, we calculated the excess number of cases using a non-linear regression with cerebrovascular disease rates taken as the dependent variable and income and income squared taken as independent variables. The resulting regression equation was: excess rate = 32.075 - 1.22*10-4(income) + 8.068*10-10(income2), and both income and income squared variables were significant at the 0.01 level. When income was included as a covariate in the non-linear regression, the number and size of clusters of high cerebrovascular disease prevalence decreased. Some 87 ZIP codes exceeded the critical value of the local statistic yielding a relative risk of 1.2. The majority of low cerebrovascular disease prevalence geographic clusters disappeared when the non-linear income effect was included. For linear regression, the excess rate of cerebrovascular disease falls with income; each $10,000 increase in median income of each ZIP code resulted in an average reduction of 3.83 observed cases. The significant nonlinear effect indicates a lessening of this income effect with increasing income. Conclusion Income is a non-linear predictor of excess cerebrovascular disease rates, with both low and high observed cerebrovascular disease rate areas associated with higher income. Income alone explains a significant amount of the geographical variance in cerebrovascular disease across New York State since both high and low clusters of cerebrovascular disease dissipate or disappear with income adjustment. Geographical modeling, including non-linear effects of income, may allow for better identification of other non-traditional risk factors. PMID:16242043
A phenomenological biological dose model for proton therapy based on linear energy transfer spectra.
Rørvik, Eivind; Thörnqvist, Sara; Stokkevåg, Camilla H; Dahle, Tordis J; Fjaera, Lars Fredrik; Ytre-Hauge, Kristian S
2017-06-01
The relative biological effectiveness (RBE) of protons varies with the radiation quality, quantified by the linear energy transfer (LET). Most phenomenological models employ a linear dependency of the dose-averaged LET (LET d ) to calculate the biological dose. However, several experiments have indicated a possible non-linear trend. Our aim was to investigate if biological dose models including non-linear LET dependencies should be considered, by introducing a LET spectrum based dose model. The RBE-LET relationship was investigated by fitting of polynomials from 1st to 5th degree to a database of 85 data points from aerobic in vitro experiments. We included both unweighted and weighted regression, the latter taking into account experimental uncertainties. Statistical testing was performed to decide whether higher degree polynomials provided better fits to the data as compared to lower degrees. The newly developed models were compared to three published LET d based models for a simulated spread out Bragg peak (SOBP) scenario. The statistical analysis of the weighted regression analysis favored a non-linear RBE-LET relationship, with the quartic polynomial found to best represent the experimental data (P = 0.010). The results of the unweighted regression analysis were on the borderline of statistical significance for non-linear functions (P = 0.053), and with the current database a linear dependency could not be rejected. For the SOBP scenario, the weighted non-linear model estimated a similar mean RBE value (1.14) compared to the three established models (1.13-1.17). The unweighted model calculated a considerably higher RBE value (1.22). The analysis indicated that non-linear models could give a better representation of the RBE-LET relationship. However, this is not decisive, as inclusion of the experimental uncertainties in the regression analysis had a significant impact on the determination and ranking of the models. As differences between the models were observed for the SOBP scenario, both non-linear LET spectrum- and linear LET d based models should be further evaluated in clinically realistic scenarios. © 2017 American Association of Physicists in Medicine.
NASA Astrophysics Data System (ADS)
Liu, Changying; Wu, Xinyuan
2017-07-01
In this paper we explore arbitrarily high-order Lagrange collocation-type time-stepping schemes for effectively solving high-dimensional nonlinear Klein-Gordon equations with different boundary conditions. We begin with one-dimensional periodic boundary problems and first formulate an abstract ordinary differential equation (ODE) on a suitable infinity-dimensional function space based on the operator spectrum theory. We then introduce an operator-variation-of-constants formula which is essential for the derivation of our arbitrarily high-order Lagrange collocation-type time-stepping schemes for the nonlinear abstract ODE. The nonlinear stability and convergence are rigorously analysed once the spatial differential operator is approximated by an appropriate positive semi-definite matrix under some suitable smoothness assumptions. With regard to the two dimensional Dirichlet or Neumann boundary problems, our new time-stepping schemes coupled with discrete Fast Sine / Cosine Transformation can be applied to simulate the two-dimensional nonlinear Klein-Gordon equations effectively. All essential features of the methodology are present in one-dimensional and two-dimensional cases, although the schemes to be analysed lend themselves with equal to higher-dimensional case. The numerical simulation is implemented and the numerical results clearly demonstrate the advantage and effectiveness of our new schemes in comparison with the existing numerical methods for solving nonlinear Klein-Gordon equations in the literature.
Non-Linear Approach in Kinesiology Should Be Preferred to the Linear--A Case of Basketball.
Trninić, Marko; Jeličić, Mario; Papić, Vladan
2015-07-01
In kinesiology, medicine, biology and psychology, in which research focus is on dynamical self-organized systems, complex connections exist between variables. Non-linear nature of complex systems has been discussed and explained by the example of non-linear anthropometric predictors of performance in basketball. Previous studies interpreted relations between anthropometric features and measures of effectiveness in basketball by (a) using linear correlation models, and by (b) including all basketball athletes in the same sample of participants regardless of their playing position. In this paper the significance and character of linear and non-linear relations between simple anthropometric predictors (AP) and performance criteria consisting of situation-related measures of effectiveness (SE) in basketball were determined and evaluated. The sample of participants consisted of top-level junior basketball players divided in three groups according to their playing time (8 minutes and more per game) and playing position: guards (N = 42), forwards (N = 26) and centers (N = 40). Linear (general model) and non-linear (general model) regression models were calculated simultaneously and separately for each group. The conclusion is viable: non-linear regressions are frequently superior to linear correlations when interpreting actual association logic among research variables.
NASA Astrophysics Data System (ADS)
Cai, Jun; Wang, Kuaishe; Shi, Jiamin; Wang, Wen; Liu, Yingying
2018-01-01
Constitutive analysis for hot working of BFe10-1-2 alloy was carried out by using experimental stress-strain data from isothermal hot compression tests, in a wide range of temperature of 1,023 1,273 K, and strain rate range of 0.001 10 s-1. A constitutive equation based on modified double multiple nonlinear regression was proposed considering the independent effects of strain, strain rate, temperature and their interrelation. The predicted flow stress data calculated from the developed equation was compared with the experimental data. Correlation coefficient (R), average absolute relative error (AARE) and relative errors were introduced to verify the validity of the developed constitutive equation. Subsequently, a comparative study was made on the capability of strain-compensated Arrhenius-type constitutive model. The results showed that the developed constitutive equation based on modified double multiple nonlinear regression could predict flow stress of BFe10-1-2 alloy with good correlation and generalization.
TG study of the Li0.4Fe2.4Zn0.2O4 ferrite synthesis
NASA Astrophysics Data System (ADS)
Lysenko, E. N.; Nikolaev, E. V.; Surzhikov, A. P.
2016-02-01
In this paper, the kinetic analysis of Li-Zn ferrite synthesis was studied using thermogravimetry (TG) method through the simultaneous application of non-linear regression to several measurements run at different heating rates (multivariate non-linear regression). Using TG-curves obtained for the four heating rates and Netzsch Thermokinetics software package, the kinetic models with minimal adjustable parameters were selected to quantitatively describe the reaction of Li-Zn ferrite synthesis. It was shown that the experimental TG-curves clearly suggest a two-step process for the ferrite synthesis and therefore a model-fitting kinetic analysis based on multivariate non-linear regressions was conducted. The complex reaction was described by a two-step reaction scheme consisting of sequential reaction steps. It is established that the best results were obtained using the Yander three-dimensional diffusion model at the first stage and Ginstling-Bronstein model at the second step. The kinetic parameters for lithium-zinc ferrite synthesis reaction were found and discussed.
NASA Astrophysics Data System (ADS)
Cheng, X. Y.; Wang, H. B.; Jia, Y. L.; Dong, YH
2018-05-01
In this paper, an open-closed-loop iterative learning control (ILC) algorithm is constructed for a class of nonlinear systems subjecting to random data dropouts. The ILC algorithm is implemented by a networked control system (NCS), where only the off-line data is transmitted by network while the real-time data is delivered in the point-to-point way. Thus, there are two controllers rather than one in the control system, which makes better use of the saved and current information and thereby improves the performance achieved by open-loop control alone. During the transfer of off-line data between the nonlinear plant and the remote controller data dropout occurs randomly and the data dropout rate is modeled as a binary Bernoulli random variable. Both measurement and control data dropouts are taken into consideration simultaneously. The convergence criterion is derived based on rigorous analysis. Finally, the simulation results verify the effectiveness of the proposed method.
NASA Astrophysics Data System (ADS)
Choi, Youngsun; Hahn, Choloong; Yoon, Jae Woong; Song, Seok Ho; Berini, Pierre
2017-01-01
Time-asymmetric state-evolution properties while encircling an exceptional point are presently of great interest in search of new principles for controlling atomic and optical systems. Here, we show that encircling-an-exceptional-point interactions that are essentially reciprocal in the linear interaction regime make a plausible nonlinear integrated optical device architecture highly nonreciprocal over an extremely broad spectrum. In the proposed strategy, we describe an experimentally realizable coupled-waveguide structure that supports an encircling-an-exceptional-point parametric evolution under the influence of a gain saturation nonlinearity. Using an intuitive time-dependent Hamiltonian and rigorous numerical computations, we demonstrate strictly nonreciprocal optical transmission with a forward-to-backward transmission ratio exceeding 10 dB and high forward transmission efficiency (~100%) persisting over an extremely broad bandwidth approaching 100 THz. This predicted performance strongly encourages experimental realization of the proposed concept to establish a practical on-chip optical nonreciprocal element for ultra-short laser pulses and broadband high-density optical signal processing.
Dual RBFNNs-Based Model-Free Adaptive Control With Aspen HYSYS Simulation.
Zhu, Yuanming; Hou, Zhongsheng; Qian, Feng; Du, Wenli
2017-03-01
In this brief, we propose a new data-driven model-free adaptive control (MFAC) method with dual radial basis function neural networks (RBFNNs) for a class of discrete-time nonlinear systems. The main novelty lies in that it provides a systematic design method for controller structure by the direct usage of I/O data, rather than using the first-principle model or offline identified plant model. The controller structure is determined by equivalent-dynamic-linearization representation of the ideal nonlinear controller, and the controller parameters are tuned by the pseudogradient information extracted from the I/O data of the plant, which can deal with the unknown nonlinear system. The stability of the closed-loop control system and the stability of the training process for RBFNNs are guaranteed by rigorous theoretical analysis. Meanwhile, the effectiveness and the applicability of the proposed method are further demonstrated by the numerical example and Aspen HYSYS simulation of distillation column in crude styrene produce process.
NASA Astrophysics Data System (ADS)
Courdurier, M.; Monard, F.; Osses, A.; Romero, F.
2015-09-01
In medical single-photon emission computed tomography (SPECT) imaging, we seek to simultaneously obtain the internal radioactive sources and the attenuation map using not only ballistic measurements but also first-order scattering measurements and assuming a very specific scattering regime. The problem is modeled using the radiative transfer equation by means of an explicit non-linear operator that gives the ballistic and scattering measurements as a function of the radioactive source and attenuation distributions. First, by differentiating this non-linear operator we obtain a linearized inverse problem. Then, under regularity hypothesis for the source distribution and attenuation map and considering small attenuations, we rigorously prove that the linear operator is invertible and we compute its inverse explicitly. This allows proof of local uniqueness for the non-linear inverse problem. Finally, using the previous inversion result for the linear operator, we propose a new type of iterative algorithm for simultaneous source and attenuation recovery for SPECT based on the Neumann series and a Newton-Raphson algorithm.
A VLF-based technique in applications to digital control of nonlinear hybrid multirate systems
NASA Astrophysics Data System (ADS)
Vassilyev, Stanislav; Ulyanov, Sergey; Maksimkin, Nikolay
2017-01-01
In this paper, a technique for rigorous analysis and design of nonlinear multirate digital control systems on the basis of the reduction method and sublinear vector Lyapunov functions is proposed. The control system model under consideration incorporates continuous-time dynamics of the plant and discrete-time dynamics of the controller and takes into account uncertainties of the plant, bounded disturbances, nonlinear characteristics of sensors and actuators. We consider a class of multirate systems where the control update rate is slower than the measurement sampling rates and periodic non-uniform sampling is admitted. The proposed technique does not use the preliminary discretization of the system, and, hence, allows one to eliminate the errors associated with the discretization and improve the accuracy of analysis. The technique is applied to synthesis of digital controller for a flexible spacecraft in the fine stabilization mode and decentralized controller for a formation of autonomous underwater vehicles. Simulation results are provided to validate the good performance of the designed controllers.
Gauge invariance of excitonic linear and nonlinear optical response
NASA Astrophysics Data System (ADS)
Taghizadeh, Alireza; Pedersen, T. G.
2018-05-01
We study the equivalence of four different approaches to calculate the excitonic linear and nonlinear optical response of multiband semiconductors. These four methods derive from two choices of gauge, i.e., length and velocity gauges, and two ways of computing the current density, i.e., direct evaluation and evaluation via the time-derivative of the polarization density. The linear and quadratic response functions are obtained for all methods by employing a perturbative density-matrix approach within the mean-field approximation. The equivalence of all four methods is shown rigorously, when a correct interaction Hamiltonian is employed for the velocity gauge approaches. The correct interaction is written as a series of commutators containing the unperturbed Hamiltonian and position operators, which becomes equivalent to the conventional velocity gauge interaction in the limit of infinite Coulomb screening and infinitely many bands. As a case study, the theory is applied to hexagonal boron nitride monolayers, and the linear and nonlinear optical response found in different approaches are compared.
Shah, A A; Xing, W W; Triantafyllidis, V
2017-04-01
In this paper, we develop reduced-order models for dynamic, parameter-dependent, linear and nonlinear partial differential equations using proper orthogonal decomposition (POD). The main challenges are to accurately and efficiently approximate the POD bases for new parameter values and, in the case of nonlinear problems, to efficiently handle the nonlinear terms. We use a Bayesian nonlinear regression approach to learn the snapshots of the solutions and the nonlinearities for new parameter values. Computational efficiency is ensured by using manifold learning to perform the emulation in a low-dimensional space. The accuracy of the method is demonstrated on a linear and a nonlinear example, with comparisons with a global basis approach.
Xing, W. W.; Triantafyllidis, V.
2017-01-01
In this paper, we develop reduced-order models for dynamic, parameter-dependent, linear and nonlinear partial differential equations using proper orthogonal decomposition (POD). The main challenges are to accurately and efficiently approximate the POD bases for new parameter values and, in the case of nonlinear problems, to efficiently handle the nonlinear terms. We use a Bayesian nonlinear regression approach to learn the snapshots of the solutions and the nonlinearities for new parameter values. Computational efficiency is ensured by using manifold learning to perform the emulation in a low-dimensional space. The accuracy of the method is demonstrated on a linear and a nonlinear example, with comparisons with a global basis approach. PMID:28484327
Investigating the Utility of a GPA Institutional Adjustment Index
ERIC Educational Resources Information Center
Didier, Thomas; Kreiter, Clarence D.; Buri, Russell; Solow, Catherine
2006-01-01
Background: Grading standards vary widely across undergraduate institutions. If, during the medical school admissions process, GPA is considered without reference to the institution attended, it will disadvantage applicants from undergraduate institutions employing rigorous grading standards. Method: A regression-based GPA institutional equating…
Injection-salting of pre rigor fillets of Atlantic salmon (Salmo salar).
Birkeland, Sveinung; Akse, Leif; Joensen, Sjurdur; Tobiassen, Torbjørn; Skåra, Torstein
2007-01-01
The effects of temperature (-1, 4, and 10 degrees C), brine concentration (12% and 25% NaCl), injection volumes, and needle densities were investigated on fillet weight gain (%), salt content (%), fillet contraction (%), and muscle gaping in pre rigor brine-injected fillets of Atlantic salmon (Salmo salar). Increased brine concentration (12% to 25%) significantly increased the initial (< 5 min after injection) and final contraction (24 h after injection) of pre rigor fillets. Increased brine concentration significantly reduced weight gain and increased salt content but had no significant effect on muscle gaping. The temperatures tested did not significantly affect weight gain, fillet contraction, or gaping score. Significant regressions (P < 0.01) between the injection volume and weight gain (range: 2.5% to 15.5%) and salt content (range: 1.7% to 6.5%) were observed for injections of pre rigor fillets. Double injections significantly increased the weight gain and salt content compared to single injections. Initial fillet contraction measured 30 min after brine injection increased significantly (P < 0.01) with increasing brine injection volume but no significant difference in the fillet contraction was observed 12 h after brine injection (range: 7.9% to 8.9%). Brine-injected post rigor control fillets obtained higher weight gain, higher salt content, more muscle gaping, and significantly lower fillet contraction compared to the pre rigor injected fillets. Injection-salting is an applicable technology as a means to obtain satisfactory salt contents and homogenously distribute the salt into the muscle of pre rigor fillets of Atlantic salmon before further processing steps such as drying and smoking.
NASA Astrophysics Data System (ADS)
Song, Lanlan
2017-04-01
Nitrous oxide is much more potent greenhouse gas than carbon dioxide. However, the estimation of N2O flux is usually clouded with uncertainty, mainly due to high spatial and temporal variations. This hampers the development of general mechanistic models for N2O emission as well, as most previously developed models were empirical or exhibited low predictability with numerous assumptions. In this study, we tested General Regression Neural Networks (GRNN) as an alternative to classic empirical models for simulating N2O emission in riparian zones of Reservoirs. GRNN and nonlinear regression (NLR) were applied to estimate the N2O flux of 1-year observations in riparian zones of Three Gorge Reservoir. NLR resulted in lower prediction power and higher residuals compared to GRNN. Although nonlinear regression model estimated similar average values of N2O, it could not capture the fluctuation patterns accurately. In contrast, GRNN model achieved a fairly high predictability, with an R2 of 0.59 for model validation, 0.77 for model calibration (training), and a low root mean square error (RMSE), indicating a high capacity to simulate the dynamics of N2O flux. According to a sensitivity analysis of the GRNN, nonlinear relationships between input variables and N2O flux were well explained. Our results suggest that the GRNN developed in this study has a greater performance in simulating variations in N2O flux than nonlinear regressions.
Nouvelles bornes et estimations pour les milieux poreux à matrice rigide parfaitement plastique
NASA Astrophysics Data System (ADS)
Bilger, Nicolas; Auslender, François; Bornert, Michel; Masson, Renaud
We derive new rigorous bounds and self-consistent estimates for the effective yield surface of porous media with a rigid perfectly plastic matrix and a microstructure similar to Hashin's composite spheres assemblage. These results arise from a homogenisation technique that combines a pattern-based modelling for linear composite materials and a variational formulation for nonlinear media. To cite this article: N. Bilger et al., C. R. Mecanique 330 (2002) 127-132.
A Survey of Ship Motion Reduction Devices
1990-09-01
Bhattacharyya, R., Dynamics of Marine Vehicles, John Wiley & Sons, Inc. (1978) Chapter 14 - Motion Control. 24. Lewison , G. R. G. and J. M. Williams, "An...given in Miller et al." and Barr and Akudinov2 s . Lewison and Williams24 show the effectiveness of these tanks through case studies of commercial...fully understood. Rigorous derivations of the stabilized equations of motion tend to be non-linear with coefficients that are hard to define. Lewison 27
Nonlinear control of magnetic bearings
NASA Technical Reports Server (NTRS)
Pradeep, A. K.; Gurumoorthy, R.
1994-01-01
In this paper we present a variety of nonlinear controllers for the magnetic bearing that ensure both stability and robustness. We utilize techniques of discontinuous control to design novel control laws for the magnetic bearing. We present in particular sliding mode controllers, time optimal controllers, winding algorithm based controllers, nested switching controllers, fractional controllers, and synchronous switching controllers for the magnetic bearing. We show existence of solutions to systems governed by discontinuous control laws, and prove stability and robustness of the chosen control laws in a rigorous setting. We design sliding mode observers for the magnetic bearing and prove the convergence of the state estimates to their true values. We present simulation results of the performance of the magnetic bearing subject to the aforementioned control laws, and conclude with comments on design.
Results of including geometric nonlinearities in an aeroelastic model of an F/A-18
NASA Technical Reports Server (NTRS)
Buttrill, Carey S.
1989-01-01
An integrated, nonlinear simulation model suitable for aeroelastic modeling of fixed-wing aircraft has been developed. While the author realizes that the subject of modeling rotating, elastic structures is not closed, it is believed that the equations of motion developed and applied herein are correct to second order and are suitable for use with typical aircraft structures. The equations are not suitable for large elastic deformation. In addition, the modeling framework generalizes both the methods and terminology of non-linear rigid-body airplane simulation and traditional linear aeroelastic modeling. Concerning the importance of angular/elastic inertial coupling in the dynamic analysis of fixed-wing aircraft, the following may be said. The rigorous inclusion of said coupling is not without peril and must be approached with care. In keeping with the same engineering judgment that guided the development of the traditional aeroelastic equations, the effect of non-linear inertial effects for most airplane applications is expected to be small. A parameter does not tell the whole story, however, and modes flagged by the parameter as significant also need to be checked to see if the coupling is not a one-way path, i.e., the inertially affected modes can influence other modes.
Nonlinear Bayesian filtering and learning: a neuronal dynamics for perception.
Kutschireiter, Anna; Surace, Simone Carlo; Sprekeler, Henning; Pfister, Jean-Pascal
2017-08-18
The robust estimation of dynamical hidden features, such as the position of prey, based on sensory inputs is one of the hallmarks of perception. This dynamical estimation can be rigorously formulated by nonlinear Bayesian filtering theory. Recent experimental and behavioral studies have shown that animals' performance in many tasks is consistent with such a Bayesian statistical interpretation. However, it is presently unclear how a nonlinear Bayesian filter can be efficiently implemented in a network of neurons that satisfies some minimum constraints of biological plausibility. Here, we propose the Neural Particle Filter (NPF), a sampling-based nonlinear Bayesian filter, which does not rely on importance weights. We show that this filter can be interpreted as the neuronal dynamics of a recurrently connected rate-based neural network receiving feed-forward input from sensory neurons. Further, it captures properties of temporal and multi-sensory integration that are crucial for perception, and it allows for online parameter learning with a maximum likelihood approach. The NPF holds the promise to avoid the 'curse of dimensionality', and we demonstrate numerically its capability to outperform weighted particle filters in higher dimensions and when the number of particles is limited.
A regularization corrected score method for nonlinear regression models with covariate error.
Zucker, David M; Gorfine, Malka; Li, Yi; Tadesse, Mahlet G; Spiegelman, Donna
2013-03-01
Many regression analyses involve explanatory variables that are measured with error, and failing to account for this error is well known to lead to biased point and interval estimates of the regression coefficients. We present here a new general method for adjusting for covariate error. Our method consists of an approximate version of the Stefanski-Nakamura corrected score approach, using the method of regularization to obtain an approximate solution of the relevant integral equation. We develop the theory in the setting of classical likelihood models; this setting covers, for example, linear regression, nonlinear regression, logistic regression, and Poisson regression. The method is extremely general in terms of the types of measurement error models covered, and is a functional method in the sense of not involving assumptions on the distribution of the true covariate. We discuss the theoretical properties of the method and present simulation results in the logistic regression setting (univariate and multivariate). For illustration, we apply the method to data from the Harvard Nurses' Health Study concerning the relationship between physical activity and breast cancer mortality in the period following a diagnosis of breast cancer. Copyright © 2013, The International Biometric Society.
von Lilienfeld, O. Anatole
2013-02-26
A well-defined notion of chemical compound space (CCS) is essential for gaining rigorous control of properties through variation of elemental composition and atomic configurations. Here, we give an introduction to an atomistic first principles perspective on CCS. First, CCS is discussed in terms of variational nuclear charges in the context of conceptual density functional and molecular grand-canonical ensemble theory. Thereafter, we revisit the notion of compound pairs, related to each other via “alchemical” interpolations involving fractional nuclear charges in the electronic Hamiltonian. We address Taylor expansions in CCS, property nonlinearity, improved predictions using reference compound pairs, and the ounce-of-gold prizemore » challenge to linearize CCS. Finally, we turn to machine learning of analytical structure property relationships in CCS. Here, these relationships correspond to inferred, rather than derived through variational principle, solutions of the electronic Schrödinger equation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harlim, John, E-mail: jharlim@psu.edu; Mahdi, Adam, E-mail: amahdi@ncsu.edu; Majda, Andrew J., E-mail: jonjon@cims.nyu.edu
2014-01-15
A central issue in contemporary science is the development of nonlinear data driven statistical–dynamical models for time series of noisy partial observations from nature or a complex model. It has been established recently that ad-hoc quadratic multi-level regression models can have finite-time blow-up of statistical solutions and/or pathological behavior of their invariant measure. Recently, a new class of physics constrained nonlinear regression models were developed to ameliorate this pathological behavior. Here a new finite ensemble Kalman filtering algorithm is developed for estimating the state, the linear and nonlinear model coefficients, the model and the observation noise covariances from available partialmore » noisy observations of the state. Several stringent tests and applications of the method are developed here. In the most complex application, the perfect model has 57 degrees of freedom involving a zonal (east–west) jet, two topographic Rossby waves, and 54 nonlinearly interacting Rossby waves; the perfect model has significant non-Gaussian statistics in the zonal jet with blocked and unblocked regimes and a non-Gaussian skewed distribution due to interaction with the other 56 modes. We only observe the zonal jet contaminated by noise and apply the ensemble filter algorithm for estimation. Numerically, we find that a three dimensional nonlinear stochastic model with one level of memory mimics the statistical effect of the other 56 modes on the zonal jet in an accurate fashion, including the skew non-Gaussian distribution and autocorrelation decay. On the other hand, a similar stochastic model with zero memory levels fails to capture the crucial non-Gaussian behavior of the zonal jet from the perfect 57-mode model.« less
Hemmila, April; McGill, Jim; Ritter, David
2008-03-01
To determine if changes in fingerprint infrared spectra linear with age can be found, partial least squares (PLS1) regression of 155 fingerprint infrared spectra against the person's age was constructed. The regression produced a linear model of age as a function of spectrum with a root mean square error of calibration of less than 4 years, showing an inflection at about 25 years of age. The spectral ranges emphasized by the regression do not correspond to the highest concentration constituents of the fingerprints. Separate linear regression models for old and young people can be constructed with even more statistical rigor. The success of the regression demonstrates that a combination of constituents can be found that changes linearly with age, with a significant shift around puberty.
NASA Astrophysics Data System (ADS)
Lu, Lin; Chang, Yunlong; Li, Yingmin; He, Youyou
2013-05-01
A transverse magnetic field was introduced to the arc plasma in the process of welding stainless steel tubes by high-speed Tungsten Inert Gas Arc Welding (TIG for short) without filler wire. The influence of external magnetic field on welding quality was investigated. 9 sets of parameters were designed by the means of orthogonal experiment. The welding joint tensile strength and form factor of weld were regarded as the main standards of welding quality. A binary quadratic nonlinear regression equation was established with the conditions of magnetic induction and flow rate of Ar gas. The residual standard deviation was calculated to adjust the accuracy of regression model. The results showed that, the regression model was correct and effective in calculating the tensile strength and aspect ratio of weld. Two 3D regression models were designed respectively, and then the impact law of magnetic induction on welding quality was researched.
Nonlinear multivariate and time series analysis by neural network methods
NASA Astrophysics Data System (ADS)
Hsieh, William W.
2004-03-01
Methods in multivariate statistical analysis are essential for working with large amounts of geophysical data, data from observational arrays, from satellites, or from numerical model output. In classical multivariate statistical analysis, there is a hierarchy of methods, starting with linear regression at the base, followed by principal component analysis (PCA) and finally canonical correlation analysis (CCA). A multivariate time series method, the singular spectrum analysis (SSA), has been a fruitful extension of the PCA technique. The common drawback of these classical methods is that only linear structures can be correctly extracted from the data. Since the late 1980s, neural network methods have become popular for performing nonlinear regression and classification. More recently, neural network methods have been extended to perform nonlinear PCA (NLPCA), nonlinear CCA (NLCCA), and nonlinear SSA (NLSSA). This paper presents a unified view of the NLPCA, NLCCA, and NLSSA techniques and their applications to various data sets of the atmosphere and the ocean (especially for the El Niño-Southern Oscillation and the stratospheric quasi-biennial oscillation). These data sets reveal that the linear methods are often too simplistic to describe real-world systems, with a tendency to scatter a single oscillatory phenomenon into numerous unphysical modes or higher harmonics, which can be largely alleviated in the new nonlinear paradigm.
NASA Astrophysics Data System (ADS)
Olivier, Thomas; Billard, Franck; Akhouayri, Hassan
2004-06-01
Self-focusing is one of the dramatic phenomena that may occur during the propagation of a high power laser beam in a nonlinear material. This phenomenon leads to a degradation of the wave front and may also lead to a photoinduced damage of the material. Realistic simulations of the propagation of high power laser beams require an accurate knowledge of the nonlinear refractive index γ. In the particular case of fused silica and in the nanosecond regime, it seems that electronic mechanisms as well as electrostriction and thermal effects can lead to a significant refractive index variation. Compared to the different methods used to measure this parmeter, the Z-scan method is simple, offers a good sensitivity and may give absolute measurements if the incident beam is accurately studied. However, this method requires a very good knowledge of the incident beam and of its propagation inside a nonlinear sample. We used a split-step propagation algorithm to simlate Z-scan curves for arbitrary beam shape, sample thickness and nonlinear phase shift. According to our simulations and a rigorous analysis of the Z-scan measured signal, it appears that some abusive approximations lead to very important errors. Thus, by reducing possible errors on the interpretation of Z-scan experimental studies, we performed accurate measurements of the nonlinear refractive index of fused silica that show the significant contribution of nanosecond mechanisms.
Maximum Path Information and Fokker Planck Equation
NASA Astrophysics Data System (ADS)
Li, Wei; Wang A., Q.; LeMehaute, A.
2008-04-01
We present a rigorous method to derive the nonlinear Fokker-Planck (FP) equation of anomalous diffusion directly from a generalization of the principle of least action of Maupertuis proposed by Wang [Chaos, Solitons & Fractals 23 (2005) 1253] for smooth or quasi-smooth irregular dynamics evolving in Markovian process. The FP equation obtained may take two different but equivalent forms. It was also found that the diffusion constant may depend on both q (the index of Tsallis entropy [J. Stat. Phys. 52 (1988) 479] and the time t.
Fellner, Klemens; Kovtunenko, Victor A
2016-01-01
A nonlinear Poisson-Boltzmann equation with inhomogeneous Robin type boundary conditions at the interface between two materials is investigated. The model describes the electrostatic potential generated by a vector of ion concentrations in a periodic multiphase medium with dilute solid particles. The key issue stems from interfacial jumps, which necessitate discontinuous solutions to the problem. Based on variational techniques, we derive the homogenisation of the discontinuous problem and establish a rigorous residual error estimate up to the first-order correction.
NASA Astrophysics Data System (ADS)
Ghosh, Dipak; Dutta, Srimonti; Chakraborty, Sayantan
2015-09-01
This paper reports a study on the cross-correlation between the electric bid price and SENSEX using Multifractal Detrended Cross-correlation Analysis (MF-DXA). MF-DXA is a very rigorous and robust technique for assessment of cross-correction between two non-linear time series. The study reveals power law cross-correlation between Market Clearing Price (MCP) and SENSEX which suggests that a change in the value of one can create a subjective change in the value of the other.
Selection theory of free dendritic growth in a potential flow.
von Kurnatowski, Martin; Grillenbeck, Thomas; Kassner, Klaus
2013-04-01
The Kruskal-Segur approach to selection theory in diffusion-limited or Laplacian growth is extended via combination with the Zauderer decomposition scheme. This way nonlinear bulk equations become tractable. To demonstrate the method, we apply it to two-dimensional crystal growth in a potential flow. We omit the simplifying approximations used in a preliminary calculation for the same system [Fischaleck, Kassner, Europhys. Lett. 81, 54004 (2008)], thus exhibiting the capability of the method to extend mathematical rigor to more complex problems than hitherto accessible.
Gamst-Klaussen, Thor; Chen, Gang; Lamu, Admassu N; Olsen, Jan Abel
2016-07-01
Different health state utility (HSU) instruments produce different utilities for the same individuals, thereby compromising the intended comparability of economic evaluations of health care interventions. When developing crosswalks, previous studies have indicated nonlinear relationships. This paper inquires into the degree of nonlinearity across the four most widely used HSU-instruments and proposes exchange rates that differ depending on the severity levels of the health state utility scale. Overall, 7933 respondents from six countries, 1760 in a non-diagnosed healthy group and 6173 in seven disease groups, reported their health states using four different instruments: EQ-5D-5L, SF-6D, HUI-3 and 15D. Quantile regressions investigate the degree of nonlinear relationships between these instruments. To compare the instruments across different disease severities, we split the health state utility scale into utility intervals with 0.2 successive decrements in utility starting from perfect health at 1.00. Exchange rates (ERs) are calculated as the mean utility difference between two utility intervals on one HSU-instrument divided by the difference in mean utility on another HSU-instrument. Quantile regressions reveal significant nonlinear relationships across all four HSU-instruments. The degrees of nonlinearities differ, with a maximum degree of difference in the coefficients along the health state utility scale of 3.34 when SF-6D is regressed on EQ-5D. At the lower end of the health state utility scale, the exchange rate from SF-6D to EQ-5D is 2.11, whilst at the upper end it is 0.38. Comparisons at different utility levels illustrate the fallacy of using linear functions as crosswalks between HSU-instruments. The existence of nonlinear relationships between different HSU-instruments suggests that level-specific exchange rates should be used when converting a change in utility on the instrument used, onto a corresponding utility change had another instrument been used. Accounting for nonlinearities will increase the validity of the comparison for decision makers when faced with a choice between interventions whose calculations of QALY gains have been based on different HSU-instruments.
NASA Astrophysics Data System (ADS)
Khawaja, Taimoor Saleem
A high-belief low-overhead Prognostics and Health Management (PHM) system is desired for online real-time monitoring of complex non-linear systems operating in a complex (possibly non-Gaussian) noise environment. This thesis presents a Bayesian Least Squares Support Vector Machine (LS-SVM) based framework for fault diagnosis and failure prognosis in nonlinear non-Gaussian systems. The methodology assumes the availability of real-time process measurements, definition of a set of fault indicators and the existence of empirical knowledge (or historical data) to characterize both nominal and abnormal operating conditions. An efficient yet powerful Least Squares Support Vector Machine (LS-SVM) algorithm, set within a Bayesian Inference framework, not only allows for the development of real-time algorithms for diagnosis and prognosis but also provides a solid theoretical framework to address key concepts related to classification for diagnosis and regression modeling for prognosis. SVM machines are founded on the principle of Structural Risk Minimization (SRM) which tends to find a good trade-off between low empirical risk and small capacity. The key features in SVM are the use of non-linear kernels, the absence of local minima, the sparseness of the solution and the capacity control obtained by optimizing the margin. The Bayesian Inference framework linked with LS-SVMs allows a probabilistic interpretation of the results for diagnosis and prognosis. Additional levels of inference provide the much coveted features of adaptability and tunability of the modeling parameters. The two main modules considered in this research are fault diagnosis and failure prognosis. With the goal of designing an efficient and reliable fault diagnosis scheme, a novel Anomaly Detector is suggested based on the LS-SVM machines. The proposed scheme uses only baseline data to construct a 1-class LS-SVM machine which, when presented with online data is able to distinguish between normal behavior and any abnormal or novel data during real-time operation. The results of the scheme are interpreted as a posterior probability of health (1 - probability of fault). As shown through two case studies in Chapter 3, the scheme is well suited for diagnosing imminent faults in dynamical non-linear systems. Finally, the failure prognosis scheme is based on an incremental weighted Bayesian LS-SVR machine. It is particularly suited for online deployment given the incremental nature of the algorithm and the quick optimization problem solved in the LS-SVR algorithm. By way of kernelization and a Gaussian Mixture Modeling (GMM) scheme, the algorithm can estimate "possibly" non-Gaussian posterior distributions for complex non-linear systems. An efficient regression scheme associated with the more rigorous core algorithm allows for long-term predictions, fault growth estimation with confidence bounds and remaining useful life (RUL) estimation after a fault is detected. The leading contributions of this thesis are (a) the development of a novel Bayesian Anomaly Detector for efficient and reliable Fault Detection and Identification (FDI) based on Least Squares Support Vector Machines, (b) the development of a data-driven real-time architecture for long-term Failure Prognosis using Least Squares Support Vector Machines, (c) Uncertainty representation and management using Bayesian Inference for posterior distribution estimation and hyper-parameter tuning, and finally (d) the statistical characterization of the performance of diagnosis and prognosis algorithms in order to relate the efficiency and reliability of the proposed schemes.
Bayesian Analysis of Nonlinear Structural Equation Models with Nonignorable Missing Data
ERIC Educational Resources Information Center
Lee, Sik-Yum
2006-01-01
A Bayesian approach is developed for analyzing nonlinear structural equation models with nonignorable missing data. The nonignorable missingness mechanism is specified by a logistic regression model. A hybrid algorithm that combines the Gibbs sampler and the Metropolis-Hastings algorithm is used to produce the joint Bayesian estimates of…
Revival of oscillations from deaths in diffusively coupled nonlinear systems: Theory and experiment
NASA Astrophysics Data System (ADS)
Zou, Wei; Sebek, Michael; Kiss, István Z.; Kurths, Jürgen
2017-06-01
Amplitude death (AD) and oscillation death (OD) are two structurally different oscillation quenching phenomena in coupled nonlinear systems. As a reverse issue of AD and OD, revival of oscillations from deaths attracts an increasing attention recently. In this paper, we clearly disclose that a time delay in the self-feedback component of the coupling destabilizes not only AD but also OD, and even the AD to OD transition in paradigmatic models of coupled Stuart-Landau oscillators under diverse death configurations. Using a rigorous analysis, the effectiveness of this self-feedback delay in revoking AD is theoretically proved to be valid in an arbitrary network of coupled Stuart-Landau oscillators with generally distributed propagation delays. Moreover, the role of self-feedback delay in reviving oscillations from AD is experimentally verified in two delay-coupled electrochemical reactions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perina, Jan Jr.; Centini, Marco; Sibilia, Concita
We have developed a rigorous quantum model of spontaneous parametric down-conversion in a nonlinear 1D photonic-band-gap structure based upon expansion of the field into monochromatic plane waves. The model provides a two-photon amplitude of a created photon pair. The spectra of the signal and idler fields, their intensity profiles in the time domain, as well as the coincidence-count interference pattern in a Hong-Ou-Mandel interferometer are determined both for cw and pulsed pumping regimes in terms of the two-photon amplitude. A broad range of parameters characterizing the emitted down-converted fields can be used. As an example, a structure composed of 49more » layers of GaN/AlN is analyzed as a suitable source of photon pairs having high efficiency.« less
Revival of oscillations from deaths in diffusively coupled nonlinear systems: Theory and experiment.
Zou, Wei; Sebek, Michael; Kiss, István Z; Kurths, Jürgen
2017-06-01
Amplitude death (AD) and oscillation death (OD) are two structurally different oscillation quenching phenomena in coupled nonlinear systems. As a reverse issue of AD and OD, revival of oscillations from deaths attracts an increasing attention recently. In this paper, we clearly disclose that a time delay in the self-feedback component of the coupling destabilizes not only AD but also OD, and even the AD to OD transition in paradigmatic models of coupled Stuart-Landau oscillators under diverse death configurations. Using a rigorous analysis, the effectiveness of this self-feedback delay in revoking AD is theoretically proved to be valid in an arbitrary network of coupled Stuart-Landau oscillators with generally distributed propagation delays. Moreover, the role of self-feedback delay in reviving oscillations from AD is experimentally verified in two delay-coupled electrochemical reactions.
Deriving the Regression Equation without Using Calculus
ERIC Educational Resources Information Center
Gordon, Sheldon P.; Gordon, Florence S.
2004-01-01
Probably the one "new" mathematical topic that is most responsible for modernizing courses in college algebra and precalculus over the last few years is the idea of fitting a function to a set of data in the sense of a least squares fit. Whether it be simple linear regression or nonlinear regression, this topic opens the door to applying the…
Boosted Regression Tree Models to Explain Watershed Nutrient Concentrations and Biological Condition
Boosted regression tree (BRT) models were developed to quantify the nonlinear relationships between landscape variables and nutrient concentrations in a mesoscale mixed land cover watershed during base-flow conditions. Factors that affect instream biological components, based on ...
Transport of polar and non-polar volatile compounds in polystyrene foam and oriented strand board
NASA Astrophysics Data System (ADS)
Yuan, Huali; Little, John C.; Hodgson, Alfred T.
Transport of hexanal and styrene in polystyrene foam (PSF) and oriented strand board (OSB) was characterized. A microbalance was used to measure sorption/desorption kinetics and equilibrium data. While styrene transport in PSF can be described by Fickian diffusion with a symmetrical and reversible sorption/desorption process, hexanal transport in both PSF and OSB exhibited significant hysteresis, with desorption being much slower than sorption. A porous media diffusion model that assumes instantaneous local equilibrium governed by a nonlinear Freundlich isotherm was found to explain the hysteresis in hexanal transport. A new nonlinear sorption and porous diffusion emissions model was, therefore, developed and partially validated using independent chamber data. The results were also compared to the more conventional linear Fickian-diffusion emissions model. While the linear emissions model predicts styrene emissions from PSF with reasonable accuracy, it substantially underestimates the rate of hexanal emissions from OSB. Although further research and more rigorous validation is needed, the new nonlinear emissions model holds promise for predicting emissions of polar VOCs such as hexanal from porous building materials.
NASA Astrophysics Data System (ADS)
Saha, Surajit; Ghosh, Manas
2016-02-01
We perform a rigorous analysis of the profiles of a few diagonal and off-diagonal components of linear ( α xx , α yy , α xy , and α yx ), first nonlinear ( β xxx , β yyy , β xyy , and β yxx ), and second nonlinear ( γ xxxx , γ yyyy , γ xxyy , and γ yyxx ) polarizabilities of quantum dots exposed to an external pulsed field. Simultaneous presence of multiplicative white noise has also been taken into account. The quantum dot contains a dopant represented by a Gaussian potential. The number of pulse and the dopant location have been found to fabricate the said profiles through their interplay. Moreover, a variation in the noise strength also contributes evidently in designing the profiles of above polarizability components. In general, the off-diagonal components have been found to be somewhat more responsive to a variation of noise strength. However, we have found some exception to the above fact for the off-diagonal β yxx component. The study projects some pathways of achieving stable, enhanced, and often maximized output of linear and nonlinear polarizabilities of doped quantum dots driven by multiplicative noise.
NASA Astrophysics Data System (ADS)
Kutzbach, L.; Schneider, J.; Sachs, T.; Giebels, M.; Nykänen, H.; Shurpali, N. J.; Martikainen, P. J.; Alm, J.; Wilmking, M.
2007-07-01
Closed (non-steady state) chambers are widely used for quantifying carbon dioxide (CO2) fluxes between soils or low-stature canopies and the atmosphere. It is well recognised that covering a soil or vegetation by a closed chamber inherently disturbs the natural CO2 fluxes by altering the concentration gradients between the soil, the vegetation and the overlying air. Thus, the driving factors of CO2 fluxes are not constant during the closed chamber experiment, and no linear increase or decrease of CO2 concentration over time within the chamber headspace can be expected. Nevertheless, linear regression has been applied for calculating CO2 fluxes in many recent, partly influential, studies. This approach was justified by keeping the closure time short and assuming the concentration change over time to be in the linear range. Here, we test if the application of linear regression is really appropriate for estimating CO2 fluxes using closed chambers over short closure times and if the application of nonlinear regression is necessary. We developed a nonlinear exponential regression model from diffusion and photosynthesis theory. This exponential model was tested with four different datasets of CO2 flux measurements (total number: 1764) conducted at three peatland sites in Finland and a tundra site in Siberia. The flux measurements were performed using transparent chambers on vegetated surfaces and opaque chambers on bare peat surfaces. Thorough analyses of residuals demonstrated that linear regression was frequently not appropriate for the determination of CO2 fluxes by closed-chamber methods, even if closure times were kept short. The developed exponential model was well suited for nonlinear regression of the concentration over time c(t) evolution in the chamber headspace and estimation of the initial CO2 fluxes at closure time for the majority of experiments. CO2 flux estimates by linear regression can be as low as 40% of the flux estimates of exponential regression for closure times of only two minutes and even lower for longer closure times. The degree of underestimation increased with increasing CO2 flux strength and is dependent on soil and vegetation conditions which can disturb not only the quantitative but also the qualitative evaluation of CO2 flux dynamics. The underestimation effect by linear regression was observed to be different for CO2 uptake and release situations which can lead to stronger bias in the daily, seasonal and annual CO2 balances than in the individual fluxes. To avoid serious bias of CO2 flux estimates based on closed chamber experiments, we suggest further tests using published datasets and recommend the use of nonlinear regression models for future closed chamber studies.
Scarneciu, Camelia C; Sangeorzan, Livia; Rus, Horatiu; Scarneciu, Vlad D; Varciu, Mihai S; Andreescu, Oana; Scarneciu, Ioan
2017-01-01
This study aimed at assessing the incidence of pulmonary hypertension (PH) at newly diagnosed hyperthyroid patients and at finding a simple model showing the complex functional relation between pulmonary hypertension in hyperthyroidism and the factors causing it. The 53 hyperthyroid patients (H-group) were evaluated mainly by using an echocardiographical method and compared with 35 euthyroid (E-group) and 25 healthy people (C-group). In order to identify the factors causing pulmonary hypertension the statistical method of comparing the values of arithmetical means is used. The functional relation between the two random variables (PAPs and each of the factors determining it within our research study) can be expressed by linear or non-linear function. By applying the linear regression method described by a first-degree equation the line of regression (linear model) has been determined; by applying the non-linear regression method described by a second degree equation, a parabola-type curve of regression (non-linear or polynomial model) has been determined. We made the comparison and the validation of these two models by calculating the determination coefficient (criterion 1), the comparison of residuals (criterion 2), application of AIC criterion (criterion 3) and use of F-test (criterion 4). From the H-group, 47% have pulmonary hypertension completely reversible when obtaining euthyroidism. The factors causing pulmonary hypertension were identified: previously known- level of free thyroxin, pulmonary vascular resistance, cardiac output; new factors identified in this study- pretreatment period, age, systolic blood pressure. According to the four criteria and to the clinical judgment, we consider that the polynomial model (graphically parabola- type) is better than the linear one. The better model showing the functional relation between the pulmonary hypertension in hyperthyroidism and the factors identified in this study is given by a polynomial equation of second degree where the parabola is its graphical representation.
Equilibrium E × B Flows in Nonlinear Gyrofluid Flux-Tube Simulations
NASA Astrophysics Data System (ADS)
Beer, M. A.; Hammett, G. W.
2000-10-01
Comparisons of theory with experiment often indicate levels of sheared E × B flow large enough to significantly suppress turbulence, especially when local transport barriers are formed. We extend our previous simulations by including equilibrium scale sheared E × B flow directly, by introducing a coordinate transformation which shears the simulation domain with the equilibrium E × B flow, while preserving smooth statistical periodicity across the radial domain. This method was used linearly in our previous comparisons with JET [Beer, Budny, Challis, et al., EPS (1999)] and is now applied to nonlinear simulations. This method makes use of some tricks suggested for this problem by Dimits [Int. Conf. on Numerical Simulation of Plasmas (1994)] based on special properties of discrete Fourier transforms. A similar coordinate transformation was previously used successfully by Waltz, et al. [Phys. Plasmas 5, 1784 (1998)], and we confirm their finding that the turbulence is suppressed when the shearing rate, ω_E, is comparable to the maximum linear growth rate in the absence of sheared flow, γ_lin. This is often significantly different than the threshold for linear suppression. With this extension, our simulations are able to address transport barriers from a more rigorous footing. Of particular interest will be the investigation of the expansion or propagation of barriers, where E × B shear suppression is by definition at the marginal point. In addition, our formulation uses general magnetic geometry, so we can rigorously investigate various geometrical effects (e.g. hats, Δ', κ) on the threshold for suppression.
Nonlinear Constitutive Modeling of Piezoelectric Ceramics
NASA Astrophysics Data System (ADS)
Xu, Jia; Li, Chao; Wang, Haibo; Zhu, Zhiwen
2017-12-01
Nonlinear constitutive modeling of piezoelectric ceramics is discussed in this paper. Van der Pol item is introduced to explain the simple hysteretic curve. Improved nonlinear difference items are used to interpret the hysteresis phenomena of piezoelectric ceramics. The fitting effect of the model on experimental data is proved by the partial least-square regression method. The results show that this method can describe the real curve well. The results of this paper are helpful to piezoelectric ceramics constitutive modeling.
Sumner, Anne E; Luercio, Marcella F; Frempong, Barbara A; Ricks, Madia; Sen, Sabyasachi; Kushner, Harvey; Tulloch-Reid, Marshall K
2009-02-01
The disposition index, the product of the insulin sensitivity index (S(I)) and the acute insulin response to glucose, is linked in African Americans to chromosome 11q. This link was determined with S(I) calculated with the nonlinear regression approach to the minimal model and data from the reduced-sample insulin-modified frequently-sampled intravenous glucose tolerance test (Reduced-Sample-IM-FSIGT). However, the application of the nonlinear regression approach to calculate S(I) using data from the Reduced-Sample-IM-FSIGT has been challenged as being not only inaccurate but also having a high failure rate in insulin-resistant subjects. Our goal was to determine the accuracy and failure rate of the Reduced-Sample-IM-FSIGT using the nonlinear regression approach to the minimal model. With S(I) from the Full-Sample-IM-FSIGT considered the standard and using the nonlinear regression approach to the minimal model, we compared the agreement between S(I) from the Full- and Reduced-Sample-IM-FSIGT protocols. One hundred African Americans (body mass index, 31.3 +/- 7.6 kg/m(2) [mean +/- SD]; range, 19.0-56.9 kg/m(2)) had FSIGTs. Glucose (0.3 g/kg) was given at baseline. Insulin was infused from 20 to 25 minutes (total insulin dose, 0.02 U/kg). For the Full-Sample-IM-FSIGT, S(I) was calculated based on the glucose and insulin samples taken at -1, 1, 2, 3, 4, 5, 6, 7, 8,10, 12, 14, 16, 19, 22, 23, 24, 25, 27, 30, 40, 50, 60, 70, 80, 90, 100, 120, 150, and 180 minutes. For the Reduced-Sample-FSIGT, S(I) was calculated based on the time points that appear in bold. Agreement was determined by Spearman correlation, concordance, and the Bland-Altman method. In addition, for both protocols, the population was divided into tertiles of S(I). Insulin resistance was defined by the lowest tertile of S(I) from the Full-Sample-IM-FSIGT. The distribution of subjects across tertiles was compared by rank order and kappa statistic. We found that the rate of failure of resolution of S(I) by the Reduced-Sample-IM-FSIGT was 3% (3/100). For the remaining 97 subjects, S(I) for the Full- and Reduced-Sample-IM-FSIGTs were as follows: 3.76 +/- 2.41 L mU(-1) min(-1) (range, 0.58-14.50) and 4.29 +/- 2.89 L mU(-1) min(-1) (range, 0.52-14.42); relative error, 21% +/- 18%; Spearman r = 0.97; and concordance, 0.94 (both P < .001). After log transformation, the Bland-Altman limits of agreement were -0.29 and 0.53. The exact agreement for distribution of the population in the insulin-resistant tertile vs the insulin-sensitive tertiles was 92%, kappa of 0.82 +/- 0.06. Using the nonlinear regression approach and data from the Reduced-Sample-IM-FSIGT in subjects with a wide range of insulin sensitivity, failure to resolve S(I) occurred in only 3% of subjects. The agreement and maintenance of rank order of S(I) between protocols support the use of the nonlinear regression approach to the minimal model and the Reduced-Sample-IM-FSIGT in clinical studies.
Kumar, K Vasanth; Porkodi, K; Rocha, F
2008-01-15
A comparison of linear and non-linear regression method in selecting the optimum isotherm was made to the experimental equilibrium data of basic red 9 sorption by activated carbon. The r(2) was used to select the best fit linear theoretical isotherm. In the case of non-linear regression method, six error functions namely coefficient of determination (r(2)), hybrid fractional error function (HYBRID), Marquardt's percent standard deviation (MPSD), the average relative error (ARE), sum of the errors squared (ERRSQ) and sum of the absolute errors (EABS) were used to predict the parameters involved in the two and three parameter isotherms and also to predict the optimum isotherm. Non-linear regression was found to be a better way to obtain the parameters involved in the isotherms and also the optimum isotherm. For two parameter isotherm, MPSD was found to be the best error function in minimizing the error distribution between the experimental equilibrium data and predicted isotherms. In the case of three parameter isotherm, r(2) was found to be the best error function to minimize the error distribution structure between experimental equilibrium data and theoretical isotherms. The present study showed that the size of the error function alone is not a deciding factor to choose the optimum isotherm. In addition to the size of error function, the theory behind the predicted isotherm should be verified with the help of experimental data while selecting the optimum isotherm. A coefficient of non-determination, K(2) was explained and was found to be very useful in identifying the best error function while selecting the optimum isotherm.
Goodarzi, Mohammad; Jensen, Richard; Vander Heyden, Yvan
2012-12-01
A Quantitative Structure-Retention Relationship (QSRR) is proposed to estimate the chromatographic retention of 83 diverse drugs on a Unisphere poly butadiene (PBD) column, using isocratic elutions at pH 11.7. Previous work has generated QSRR models for them using Classification And Regression Trees (CART). In this work, Ant Colony Optimization is used as a feature selection method to find the best molecular descriptors from a large pool. In addition, several other selection methods have been applied, such as Genetic Algorithms, Stepwise Regression and the Relief method, not only to evaluate Ant Colony Optimization as a feature selection method but also to investigate its ability to find the important descriptors in QSRR. Multiple Linear Regression (MLR) and Support Vector Machines (SVMs) were applied as linear and nonlinear regression methods, respectively, giving excellent correlation between the experimental, i.e. extrapolated to a mobile phase consisting of pure water, and predicted logarithms of the retention factors of the drugs (logk(w)). The overall best model was the SVM one built using descriptors selected by ACO. Copyright © 2012 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Pek, Jolynn; Chalmers, R. Philip; Kok, Bethany E.; Losardo, Diane
2015-01-01
Structural equation mixture models (SEMMs), when applied as a semiparametric model (SPM), can adequately recover potentially nonlinear latent relationships without their specification. This SPM is useful for exploratory analysis when the form of the latent regression is unknown. The purpose of this article is to help users familiar with structural…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seong W. Lee
2004-10-01
The systematic tests of the gasifier simulator on the clean thermocouple were completed in this reporting period. Within the systematic tests on the clean thermocouple, five (5) factors were considered as the experimental parameters including air flow rate, water flow rate, fine dust particle amount, ammonia addition and high/low frequency device (electric motor). The fractional factorial design method was used in the experiment design with sixteen (16) data sets of readings. Analysis of Variances (ANOVA) was applied to the results from systematic tests. The ANOVA results show that the un-balanced motor vibration frequency did not have the significant impact onmore » the temperature changes in the gasifier simulator. For the fine dust particles testing, the amount of fine dust particles has significant impact to the temperature measurements in the gasifier simulator. The effects of the air and water on the temperature measurements show the same results as reported in the previous report. The ammonia concentration was included as an experimental parameter for the reducing environment in this reporting period. The ammonia concentration does not seem to be a significant factor on the temperature changes. The linear regression analysis was applied to the temperature reading with five (5) factors. The accuracy of the linear regression is relatively low, which is less than 10% accuracy. Nonlinear regression was also conducted to the temperature reading with the same factors. Since the experiments were designed in two (2) levels, the nonlinear regression is not very effective with the dataset (16 readings). An extra central point test was conducted. With the data of the center point testing, the accuracy of the nonlinear regression is much better than the linear regression.« less
Wang, Zheng-Xin; Hao, Peng; Yao, Pei-Yi
2017-01-01
The non-linear relationship between provincial economic growth and carbon emissions is investigated by using panel smooth transition regression (PSTR) models. The research indicates that, on the condition of separately taking Gross Domestic Product per capita (GDPpc), energy structure (Es), and urbanisation level (Ul) as transition variables, three models all reject the null hypothesis of a linear relationship, i.e., a non-linear relationship exists. The results show that the three models all contain only one transition function but different numbers of location parameters. The model taking GDPpc as the transition variable has two location parameters, while the other two models separately considering Es and Ul as the transition variables both contain one location parameter. The three models applied in the study all favourably describe the non-linear relationship between economic growth and CO2 emissions in China. It also can be seen that the conversion rate of the influence of Ul on per capita CO2 emissions is significantly higher than those of GDPpc and Es on per capita CO2 emissions. PMID:29236083
Savary, Serge; Delbac, Lionel; Rochas, Amélie; Taisant, Guillaume; Willocquet, Laetitia
2009-08-01
Dual epidemics are defined as epidemics developing on two or several plant organs in the course of a cropping season. Agricultural pathosystems where such epidemics develop are often very important, because the harvestable part is one of the organs affected. These epidemics also are often difficult to manage, because the linkage between epidemiological components occurring on different organs is poorly understood, and because prediction of the risk toward the harvestable organs is difficult. In the case of downy mildew (DM) and powdery mildew (PM) of grapevine, nonlinear modeling and logistic regression indicated nonlinearity in the foliage-cluster relationships. Nonlinear modeling enabled the parameterization of a transmission coefficient that numerically links the two components, leaves and clusters, in DM and PM epidemics. Logistic regression analysis yielded a series of probabilistic models that enabled predicting preset levels of cluster infection risks based on DM and PM severities on the foliage at successive crop stages. The usefulness of this framework for tactical decision-making for disease control is discussed.
Wang, Zheng-Xin; Hao, Peng; Yao, Pei-Yi
2017-12-13
The non-linear relationship between provincial economic growth and carbon emissions is investigated by using panel smooth transition regression (PSTR) models. The research indicates that, on the condition of separately taking Gross Domestic Product per capita (GDPpc), energy structure (Es), and urbanisation level (Ul) as transition variables, three models all reject the null hypothesis of a linear relationship, i.e., a non-linear relationship exists. The results show that the three models all contain only one transition function but different numbers of location parameters. The model taking GDPpc as the transition variable has two location parameters, while the other two models separately considering Es and Ul as the transition variables both contain one location parameter. The three models applied in the study all favourably describe the non-linear relationship between economic growth and CO₂ emissions in China. It also can be seen that the conversion rate of the influence of Ul on per capita CO₂ emissions is significantly higher than those of GDPpc and Es on per capita CO₂ emissions.
A general U-block model-based design procedure for nonlinear polynomial control systems
NASA Astrophysics Data System (ADS)
Zhu, Q. M.; Zhao, D. Y.; Zhang, Jianhua
2016-10-01
The proposition of U-model concept (in terms of 'providing concise and applicable solutions for complex problems') and a corresponding basic U-control design algorithm was originated in the first author's PhD thesis. The term of U-model appeared (not rigorously defined) for the first time in the first author's other journal paper, which established a framework for using linear polynomial control system design approaches to design nonlinear polynomial control systems (in brief, linear polynomial approaches → nonlinear polynomial plants). This paper represents the next milestone work - using linear state-space approaches to design nonlinear polynomial control systems (in brief, linear state-space approaches → nonlinear polynomial plants). The overall aim of the study is to establish a framework, defined as the U-block model, which provides a generic prototype for using linear state-space-based approaches to design the control systems with smooth nonlinear plants/processes described by polynomial models. For analysing the feasibility and effectiveness, sliding mode control design approach is selected as an exemplary case study. Numerical simulation studies provide a user-friendly step-by-step procedure for the readers/users with interest in their ad hoc applications. In formality, this is the first paper to present the U-model-oriented control system design in a formal way and to study the associated properties and theorems. The previous publications, in the main, have been algorithm-based studies and simulation demonstrations. In some sense, this paper can be treated as a landmark for the U-model-based research from intuitive/heuristic stage to rigour/formal/comprehensive studies.
Equilibrium, kinetics and process design of acid yellow 132 adsorption onto red pine sawdust.
Can, Mustafa
2015-01-01
Linear and non-linear regression procedures have been applied to the Langmuir, Freundlich, Tempkin, Dubinin-Radushkevich, and Redlich-Peterson isotherms for adsorption of acid yellow 132 (AY132) dye onto red pine (Pinus resinosa) sawdust. The effects of parameters such as particle size, stirring rate, contact time, dye concentration, adsorption dose, pH, and temperature were investigated, and interaction was characterized by Fourier transform infrared spectroscopy and field emission scanning electron microscope. The non-linear method of the Langmuir isotherm equation was found to be the best fitting model to the equilibrium data. The maximum monolayer adsorption capacity was found as 79.5 mg/g. The calculated thermodynamic results suggested that AY132 adsorption onto red pine sawdust was an exothermic, physisorption, and spontaneous process. Kinetics was analyzed by four different kinetic equations using non-linear regression analysis. The pseudo-second-order equation provides the best fit with experimental data.
High-order computer-assisted estimates of topological entropy
NASA Astrophysics Data System (ADS)
Grote, Johannes
The concept of Taylor Models is introduced, which offers highly accurate C0-estimates for the enclosures of functional dependencies, combining high-order Taylor polynomial approximation of functions and rigorous estimates of the truncation error, performed using verified interval arithmetic. The focus of this work is on the application of Taylor Models in algorithms for strongly nonlinear dynamical systems. A method to obtain sharp rigorous enclosures of Poincare maps for certain types of flows and surfaces is developed and numerical examples are presented. Differential algebraic techniques allow the efficient and accurate computation of polynomial approximations for invariant curves of certain planar maps around hyperbolic fixed points. Subsequently we introduce a procedure to extend these polynomial curves to verified Taylor Model enclosures of local invariant manifolds with C0-errors of size 10-10--10 -14, and proceed to generate the global invariant manifold tangle up to comparable accuracy through iteration in Taylor Model arithmetic. Knowledge of the global manifold structure up to finite iterations of the local manifold pieces enables us to find all homoclinic and heteroclinic intersections in the generated manifold tangle. Combined with the mapping properties of the homoclinic points and their ordering we are able to construct a subshift of finite type as a topological factor of the original planar system to obtain rigorous lower bounds for its topological entropy. This construction is fully automatic and yields homoclinic tangles with several hundred homoclinic points. As an example rigorous lower bounds for the topological entropy of the Henon map are computed, which to the best knowledge of the authors yield the largest such estimates published so far.
Comparison of Sub-Pixel Classification Approaches for Crop-Specific Mapping
This paper examined two non-linear models, Multilayer Perceptron (MLP) regression and Regression Tree (RT), for estimating sub-pixel crop proportions using time-series MODIS-NDVI data. The sub-pixel proportions were estimated for three major crop types including corn, soybean, a...
NASA Astrophysics Data System (ADS)
Kutzbach, L.; Schneider, J.; Sachs, T.; Giebels, M.; Nykänen, H.; Shurpali, N. J.; Martikainen, P. J.; Alm, J.; Wilmking, M.
2007-11-01
Closed (non-steady state) chambers are widely used for quantifying carbon dioxide (CO2) fluxes between soils or low-stature canopies and the atmosphere. It is well recognised that covering a soil or vegetation by a closed chamber inherently disturbs the natural CO2 fluxes by altering the concentration gradients between the soil, the vegetation and the overlying air. Thus, the driving factors of CO2 fluxes are not constant during the closed chamber experiment, and no linear increase or decrease of CO2 concentration over time within the chamber headspace can be expected. Nevertheless, linear regression has been applied for calculating CO2 fluxes in many recent, partly influential, studies. This approach has been justified by keeping the closure time short and assuming the concentration change over time to be in the linear range. Here, we test if the application of linear regression is really appropriate for estimating CO2 fluxes using closed chambers over short closure times and if the application of nonlinear regression is necessary. We developed a nonlinear exponential regression model from diffusion and photosynthesis theory. This exponential model was tested with four different datasets of CO2 flux measurements (total number: 1764) conducted at three peatlands sites in Finland and a tundra site in Siberia. Thorough analyses of residuals demonstrated that linear regression was frequently not appropriate for the determination of CO2 fluxes by closed-chamber methods, even if closure times were kept short. The developed exponential model was well suited for nonlinear regression of the concentration over time c(t) evolution in the chamber headspace and estimation of the initial CO2 fluxes at closure time for the majority of experiments. However, a rather large percentage of the exponential regression functions showed curvatures not consistent with the theoretical model which is considered to be caused by violations of the underlying model assumptions. Especially the effects of turbulence and pressure disturbances by the chamber deployment are suspected to have caused unexplainable curvatures. CO2 flux estimates by linear regression can be as low as 40% of the flux estimates of exponential regression for closure times of only two minutes. The degree of underestimation increased with increasing CO2 flux strength and was dependent on soil and vegetation conditions which can disturb not only the quantitative but also the qualitative evaluation of CO2 flux dynamics. The underestimation effect by linear regression was observed to be different for CO2 uptake and release situations which can lead to stronger bias in the daily, seasonal and annual CO2 balances than in the individual fluxes. To avoid serious bias of CO2 flux estimates based on closed chamber experiments, we suggest further tests using published datasets and recommend the use of nonlinear regression models for future closed chamber studies.
Applications of Support Vector Machines In Chemo And Bioinformatics
NASA Astrophysics Data System (ADS)
Jayaraman, V. K.; Sundararajan, V.
2010-10-01
Conventional linear & nonlinear tools for classification, regression & data driven modeling are being replaced on a rapid scale by newer techniques & tools based on artificial intelligence and machine learning. While the linear techniques are not applicable for inherently nonlinear problems, newer methods serve as attractive alternatives for solving real life problems. Support Vector Machine (SVM) classifiers are a set of universal feed-forward network based classification algorithms that have been formulated from statistical learning theory and structural risk minimization principle. SVM regression closely follows the classification methodology. In this work recent applications of SVM in Chemo & Bioinformatics will be described with suitable illustrative examples.
NASA Astrophysics Data System (ADS)
Liu, Bilan; Qiu, Xing; Zhu, Tong; Tian, Wei; Hu, Rui; Ekholm, Sven; Schifitto, Giovanni; Zhong, Jianhui
2016-03-01
Subject-specific longitudinal DTI study is vital for investigation of pathological changes of lesions and disease evolution. Spatial Regression Analysis of Diffusion tensor imaging (SPREAD) is a non-parametric permutation-based statistical framework that combines spatial regression and resampling techniques to achieve effective detection of localized longitudinal diffusion changes within the whole brain at individual level without a priori hypotheses. However, boundary blurring and dislocation limit its sensitivity, especially towards detecting lesions of irregular shapes. In the present study, we propose an improved SPREAD (dubbed improved SPREAD, or iSPREAD) method by incorporating a three-dimensional (3D) nonlinear anisotropic diffusion filtering method, which provides edge-preserving image smoothing through a nonlinear scale space approach. The statistical inference based on iSPREAD was evaluated and compared with the original SPREAD method using both simulated and in vivo human brain data. Results demonstrated that the sensitivity and accuracy of the SPREAD method has been improved substantially by adapting nonlinear anisotropic filtering. iSPREAD identifies subject-specific longitudinal changes in the brain with improved sensitivity, accuracy, and enhanced statistical power, especially when the spatial correlation is heterogeneous among neighboring image pixels in DTI.
NASA Astrophysics Data System (ADS)
Bizoń, Piotr; Chmaj, Tadeusz; Szpak, Nikodem
2011-10-01
We study dynamics near the threshold for blowup in the focusing nonlinear Klein-Gordon equation utt - uxx + u - |u|2αu = 0 on the line. Using mixed numerical and analytical methods we find that solutions starting from even initial data, fine-tuned to the threshold, are trapped by the static solution S for intermediate times. The details of trapping are shown to depend on the power α, namely, we observe fast convergence to S for α > 1, slow convergence for α = 1, and very slow (if any) convergence for 0 < α < 1. Our findings are complementary with respect to the recent rigorous analysis of the same problem (for α > 2) by Krieger, Nakanishi, and Schlag ["Global dynamics above from the ground state energy for the one-dimensional NLKG equation," preprint arXiv:1011.1776 [math.AP
Yang, Jun; Zolotas, Argyrios; Chen, Wen-Hua; Michail, Konstantinos; Li, Shihua
2011-07-01
Robust control of a class of uncertain systems that have disturbances and uncertainties not satisfying "matching" condition is investigated in this paper via a disturbance observer based control (DOBC) approach. In the context of this paper, "matched" disturbances/uncertainties stand for the disturbances/uncertainties entering the system through the same channels as control inputs. By properly designing a disturbance compensation gain, a novel composite controller is proposed to counteract the "mismatched" lumped disturbances from the output channels. The proposed method significantly extends the applicability of the DOBC methods. Rigorous stability analysis of the closed-loop system with the proposed method is established under mild assumptions. The proposed method is applied to a nonlinear MAGnetic LEViation (MAGLEV) suspension system. Simulation shows that compared to the widely used integral control method, the proposed method provides significantly improved disturbance rejection and robustness against load variation. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.
The renormalization group and the implicit function theorem for amplitude equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirkinis, Eleftherios
2008-07-15
This article lays down the foundations of the renormalization group (RG) approach for differential equations characterized by multiple scales. The renormalization of constants through an elimination process and the subsequent derivation of the amplitude equation [Chen et al., Phys. Rev. E 54, 376 (1996)] are given a rigorous but not abstract mathematical form whose justification is based on the implicit function theorem. Developing the theoretical framework that underlies the RG approach leads to a systematization of the renormalization process and to the derivation of explicit closed-form expressions for the amplitude equations that can be carried out with symbolic computation formore » both linear and nonlinear scalar differential equations and first order systems but independently of their particular forms. Certain nonlinear singular perturbation problems are considered that illustrate the formalism and recover well-known results from the literature as special cases.« less
A Penalty Method for the Numerical Solution of Hamilton-Jacobi-Bellman (HJB) Equations in Finance
NASA Astrophysics Data System (ADS)
Witte, J. H.; Reisinger, C.
2010-09-01
We present a simple and easy to implement method for the numerical solution of a rather general class of Hamilton-Jacobi-Bellman (HJB) equations. In many cases, the considered problems have only a viscosity solution, to which, fortunately, many intuitive (e.g. finite difference based) discretisations can be shown to converge. However, especially when using fully implicit time stepping schemes with their desireable stability properties, one is still faced with the considerable task of solving the resulting nonlinear discrete system. In this paper, we introduce a penalty method which approximates the nonlinear discrete system to an order of O(1/ρ), where ρ>0 is the penalty parameter, and we show that an iterative scheme can be used to solve the penalised discrete problem in finitely many steps. We include a number of examples from mathematical finance for which the described approach yields a rigorous numerical scheme and present numerical results.
Li, Yanan; Yang, Chenguang; Ge, Shuzhi Sam; Lee, Tong Heng
2011-04-01
In this paper, adaptive neural network (NN) control is investigated for a class of block triangular multiinput-multioutput nonlinear discrete-time systems with each subsystem in pure-feedback form with unknown control directions. These systems are of couplings in every equation of each subsystem, and different subsystems may have different orders. To avoid the noncausal problem in the control design, the system is transformed into a predictor form by rigorous derivation. By exploring the properties of the block triangular form, implicit controls are developed for each subsystem such that the couplings of inputs and states among subsystems have been completely decoupled. The radial basis function NN is employed to approximate the unknown control. Each subsystem achieves a semiglobal uniformly ultimately bounded stability with the proposed control, and simulation results are presented to demonstrate its efficiency.
NASA Astrophysics Data System (ADS)
Sun, Qiming; Melnikov, Alexander; Wang, Jing; Mandelis, Andreas
2018-04-01
A rigorous treatment of the nonlinear behavior of photocarrier radiometric (PCR) signals is presented theoretically and experimentally for the quantitative characterization of semiconductor photocarrier recombination and transport properties. A frequency-domain model based on the carrier rate equation and the classical carrier radiative recombination theory was developed. The derived concise expression reveals different functionalities of the PCR amplitude and phase channels: the phase bears direct quantitative correlation with the carrier effective lifetime, while the amplitude versus the estimated photocarrier density dependence can be used to extract the equilibrium majority carrier density and thus, resistivity. An experimental ‘ripple’ optical excitation mode (small modulation depth compared to the dc level) was introduced to bypass the complicated ‘modulated lifetime’ problem so as to simplify theoretical interpretation and guarantee measurement self-consistency and reliability. Two Si wafers with known resistivity values were tested to validate the method.
Global optimization algorithm for heat exchanger networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quesada, I.; Grossmann, I.E.
This paper deals with the global optimization of heat exchanger networks with fixed topology. It is shown that if linear area cost functions are assumed, as well as arithmetic mean driving force temperature differences in networks with isothermal mixing, the corresponding nonlinear programming (NLP) optimization problem involves linear constraints and a sum of linear fractional functions in the objective which are nonconvex. A rigorous algorithm is proposed that is based on a convex NLP underestimator that involves linear and nonlinear estimators for fractional and bilinear terms which provide a tight lower bound to the global optimum. This NLP problem ismore » used within a spatial branch and bound method for which branching rules are given. Basic properties of the proposed method are presented, and its application is illustrated with several example problems. The results show that the proposed method only requires few nodes in the branch and bound search.« less
Numerical proof of stability of roll waves in the small-amplitude limit for inclined thin film flow
NASA Astrophysics Data System (ADS)
Barker, Blake
2014-10-01
We present a rigorous numerical proof based on interval arithmetic computations categorizing the linearized and nonlinear stability of periodic viscous roll waves of the KdV-KS equation modeling weakly unstable flow of a thin fluid film on an incline in the small-amplitude KdV limit. The argument proceeds by verification of a stability condition derived by Bar-Nepomnyashchy and Johnson-Noble-Rodrigues-Zumbrun involving inner products of various elliptic functions arising through the KdV equation. One key point in the analysis is a bootstrap argument balancing the extremely poor sup norm bounds for these functions against the extremely good convergence properties for analytic interpolation in order to obtain a feasible computation time. Another is the way of handling analytic interpolation in several variables by a two-step process carving up the parameter space into manageable pieces for rigorous evaluation. These and other general aspects of the analysis should serve as blueprints for more general analyses of spectral stability.
Fractional Stochastic Differential Equations Satisfying Fluctuation-Dissipation Theorem
NASA Astrophysics Data System (ADS)
Li, Lei; Liu, Jian-Guo; Lu, Jianfeng
2017-10-01
We propose in this work a fractional stochastic differential equation (FSDE) model consistent with the over-damped limit of the generalized Langevin equation model. As a result of the `fluctuation-dissipation theorem', the differential equations driven by fractional Brownian noise to model memory effects should be paired with Caputo derivatives, and this FSDE model should be understood in an integral form. We establish the existence of strong solutions for such equations and discuss the ergodicity and convergence to Gibbs measure. In the linear forcing regime, we show rigorously the algebraic convergence to Gibbs measure when the `fluctuation-dissipation theorem' is satisfied, and this verifies that satisfying `fluctuation-dissipation theorem' indeed leads to the correct physical behavior. We further discuss possible approaches to analyze the ergodicity and convergence to Gibbs measure in the nonlinear forcing regime, while leave the rigorous analysis for future works. The FSDE model proposed is suitable for systems in contact with heat bath with power-law kernel and subdiffusion behaviors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhardwaj, Shubhendu; Sensale-Rodriguez, Berardi; Xing, Huili Grace
A rigorous theoretical and computational model is developed for the plasma-wave propagation in high electron mobility transistor structures with electron injection from a resonant tunneling diode at the gate. We discuss the conditions in which low-loss and sustainable plasmon modes can be supported in such structures. The developed analytical model is used to derive the dispersion relation for these plasmon-modes. A non-linear full-wave-hydrodynamic numerical solver is also developed using a finite difference time domain algorithm. The developed analytical solutions are validated via the numerical solution. We also verify previous observations that were based on a simplified transmission line model. Itmore » is shown that at high levels of negative differential conductance, plasmon amplification is indeed possible. The proposed rigorous models can enable accurate design and optimization of practical resonant tunnel diode-based plasma-wave devices for terahertz sources, mixers, and detectors, by allowing a precise representation of their coupling when integrated with other electromagnetic structures.« less
User's manual for the Macintosh version of PASCO
NASA Technical Reports Server (NTRS)
Lucas, S. H.; Davis, Randall C.
1991-01-01
A user's manual for Macintosh PASCO is presented. Macintosh PASCO is an Apple Macintosh version of PASCO, an existing computer code for structural analysis and optimization of longitudinally stiffened composite panels. PASCO combines a rigorous buckling analysis program with a nonlinear mathematical optimization routine to minimize panel mass. Macintosh PASCO accepts the same input as mainframe versions of PASCO. As output, Macintosh PASCO produces a text file and mode shape plots in the form of Apple Macintosh PICT files. Only the user interface for Macintosh is discussed here.
Light focusing using epsilon-near-zero metamaterials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Weiren, E-mail: weiren.zhu@monash.edu; Premaratne, Malin; Si, Li-Ming, E-mail: lms@bit.edu.cn
2013-11-15
We present a strategy of focusing light using epsilon-near-zero metamaterials with embedded dielectric cylinder. The focusing mechanism is analytically investigated, and its accuracy is substantiated by rigorous full-wave simulations. It is found that the focusing intensity is highly depend on the embedded medium and its size, and the magnetic field amplitude of the focused beam itself can reach as high as 98.2 times the incident field. Owing to its versatility, the proposed light focusing system is sure to find applications in fields such as bio-sensing and in nonlinear optics.
An Obstacle Problem for Conical Deformations of Thin Elastic Sheets
NASA Astrophysics Data System (ADS)
Figalli, Alessio; Mooney, Connor
2018-05-01
A developable cone ("d-cone") is the shape made by an elastic sheet when it is pressed at its center into a hollow cylinder by a distance {ɛ}. Starting from a nonlinear model depending on the thickness h > 0 of the sheet, we prove a {Γ} -convergence result as {h → 0} to a fourth-order obstacle problem for curves in {S^2}. We then describe the exact shape of minimizers of the limit problem when {ɛ} is small. In particular, we rigorously justify previous results in the physics literature.
Aerodynamic Design of a Propeller for High-Altitude Balloon Trajectory Control
NASA Technical Reports Server (NTRS)
Eppler, Richard; Somers, Dan M.
2012-01-01
The aerodynamic design of a propeller for the trajectory control of a high-altitude, scientific balloon has been performed using theoretical methods developed especially for such applications. The methods are described. Optimum, nonlinear chord and twist distributions have been developed in conjunction with the design of a family of airfoils, the SE403, SE404, and SE405, for the propeller. The very low Reynolds numbers along the propeller blade fall in a range that has yet to be rigorously investigated, either experimentally or theoretically.
Can you trust the parametric standard errors in nonlinear least squares? Yes, with provisos.
Tellinghuisen, Joel
2018-04-01
Questions about the reliability of parametric standard errors (SEs) from nonlinear least squares (LS) algorithms have led to a general mistrust of these precision estimators that is often unwarranted. The importance of non-Gaussian parameter distributions is illustrated by converting linear models to nonlinear by substituting e A , ln A, and 1/A for a linear parameter a. Monte Carlo (MC) simulations characterize parameter distributions in more complex cases, including when data have varying uncertainty and should be weighted, but weights are neglected. This situation leads to loss of precision and erroneous parametric SEs, as is illustrated for the Lineweaver-Burk analysis of enzyme kinetics data and the analysis of isothermal titration calorimetry data. Non-Gaussian parameter distributions are generally asymmetric and biased. However, when the parametric SE is <10% of the magnitude of the parameter, both the bias and the asymmetry can usually be ignored. Sometimes nonlinear estimators can be redefined to give more normal distributions and better convergence properties. Variable data uncertainty, or heteroscedasticity, can sometimes be handled by data transforms but more generally requires weighted LS, which in turn require knowledge of the data variance. Parametric SEs are rigorously correct in linear LS under the usual assumptions, and are a trustworthy approximation in nonlinear LS provided they are sufficiently small - a condition favored by the abundant, precise data routinely collected in many modern instrumental methods. Copyright © 2018 Elsevier B.V. All rights reserved.
Inverse models: A necessary next step in ground-water modeling
Poeter, E.P.; Hill, M.C.
1997-01-01
Inverse models using, for example, nonlinear least-squares regression, provide capabilities that help modelers take full advantage of the insight available from ground-water models. However, lack of information about the requirements and benefits of inverse models is an obstacle to their widespread use. This paper presents a simple ground-water flow problem to illustrate the requirements and benefits of the nonlinear least-squares repression method of inverse modeling and discusses how these attributes apply to field problems. The benefits of inverse modeling include: (1) expedited determination of best fit parameter values; (2) quantification of the (a) quality of calibration, (b) data shortcomings and needs, and (c) confidence limits on parameter estimates and predictions; and (3) identification of issues that are easily overlooked during nonautomated calibration.Inverse models using, for example, nonlinear least-squares regression, provide capabilities that help modelers take full advantage of the insight available from ground-water models. However, lack of information about the requirements and benefits of inverse models is an obstacle to their widespread use. This paper presents a simple ground-water flow problem to illustrate the requirements and benefits of the nonlinear least-squares regression method of inverse modeling and discusses how these attributes apply to field problems. The benefits of inverse modeling include: (1) expedited determination of best fit parameter values; (2) quantification of the (a) quality of calibration, (b) data shortcomings and needs, and (c) confidence limits on parameter estimates and predictions; and (3) identification of issues that are easily overlooked during nonautomated calibration.
Real, Jordi; Forné, Carles; Roso-Llorach, Albert; Martínez-Sánchez, Jose M
2016-05-01
Controlling for confounders is a crucial step in analytical observational studies, and multivariable models are widely used as statistical adjustment techniques. However, the validation of the assumptions of the multivariable regression models (MRMs) should be made clear in scientific reporting. The objective of this study is to review the quality of statistical reporting of the most commonly used MRMs (logistic, linear, and Cox regression) that were applied in analytical observational studies published between 2003 and 2014 by journals indexed in MEDLINE.Review of a representative sample of articles indexed in MEDLINE (n = 428) with observational design and use of MRMs (logistic, linear, and Cox regression). We assessed the quality of reporting about: model assumptions and goodness-of-fit, interactions, sensitivity analysis, crude and adjusted effect estimate, and specification of more than 1 adjusted model.The tests of underlying assumptions or goodness-of-fit of the MRMs used were described in 26.2% (95% CI: 22.0-30.3) of the articles and 18.5% (95% CI: 14.8-22.1) reported the interaction analysis. Reporting of all items assessed was higher in articles published in journals with a higher impact factor.A low percentage of articles indexed in MEDLINE that used multivariable techniques provided information demonstrating rigorous application of the model selected as an adjustment method. Given the importance of these methods to the final results and conclusions of observational studies, greater rigor is required in reporting the use of MRMs in the scientific literature.
Prediction of Battery Life and Behavior from Analysis of Voltage Data
NASA Technical Reports Server (NTRS)
Mcdermott, P. P.
1984-01-01
A method for simulating charge and discharge characteristics of secondary batteries is discussed. The analysis utilizes a nonlinear regression technique where empirical data is computer fitted with a five coefficient nonlinear equation. The equations for charge and discharge voltage are identical except for a change of sign before the second and third terms.
Wan, Jian; Chen, Yi-Chieh; Morris, A Julian; Thennadil, Suresh N
2017-07-01
Near-infrared (NIR) spectroscopy is being widely used in various fields ranging from pharmaceutics to the food industry for analyzing chemical and physical properties of the substances concerned. Its advantages over other analytical techniques include available physical interpretation of spectral data, nondestructive nature and high speed of measurements, and little or no need for sample preparation. The successful application of NIR spectroscopy relies on three main aspects: pre-processing of spectral data to eliminate nonlinear variations due to temperature, light scattering effects and many others, selection of those wavelengths that contribute useful information, and identification of suitable calibration models using linear/nonlinear regression . Several methods have been developed for each of these three aspects and many comparative studies of different methods exist for an individual aspect or some combinations. However, there is still a lack of comparative studies for the interactions among these three aspects, which can shed light on what role each aspect plays in the calibration and how to combine various methods of each aspect together to obtain the best calibration model. This paper aims to provide such a comparative study based on four benchmark data sets using three typical pre-processing methods, namely, orthogonal signal correction (OSC), extended multiplicative signal correction (EMSC) and optical path-length estimation and correction (OPLEC); two existing wavelength selection methods, namely, stepwise forward selection (SFS) and genetic algorithm optimization combined with partial least squares regression for spectral data (GAPLSSP); four popular regression methods, namely, partial least squares (PLS), least absolute shrinkage and selection operator (LASSO), least squares support vector machine (LS-SVM), and Gaussian process regression (GPR). The comparative study indicates that, in general, pre-processing of spectral data can play a significant role in the calibration while wavelength selection plays a marginal role and the combination of certain pre-processing, wavelength selection, and nonlinear regression methods can achieve superior performance over traditional linear regression-based calibration.
Mansour, Heidi M; Xu, Zhen; Hickey, Anthony J
2010-08-01
The relationship between physicochemical properties of drug/carrier blends and aerosol drug powder delivery was evaluated. Four pulmonary drugs each representing the major pulmonary therapeutic classes and with a different pharmacological action were employed. Specifically, the four pulmonary drugs were albuterol sulfate, ipratropium bromide monohydrate, disodium cromoglycate, and fluticasone propionate. The two carrier sugars, each representing a different sugar class, were D-mannitol and trehalose dihydrate. Dry powder aerosols (2%, w/w, drug in carrier) delivered using standardized entrainment tubes (SETs) were characterized by twin-stage liquid impinger. The fine particle fraction (FPF) was correlated with SET shear stress, tau(s), and the maximum fine particle fraction (FPF(max)) was correlated with a deaggregation constant, k(d), by using a powder aerosol deaggregation equation (PADE) by nonlinear and linear regression analyses applied to pharmaceutical inhalation aerosol systems in the solid state. For the four pulmonary drugs representing the major pulmonary therapeutic classes and two chemically distinct pulmonary sugar carriers (non-lactose types) aerosolized with SETs having well-defined shear stress values, excellent correlation and predictive relationships were demonstrated for the novel and rigorous application of PADE for dry powder inhalation aerosol dispersion within a well-defined shear stress range, in the context of pulmonary drug/sugar carrier physicochemical and interfacial properties. (c) 2010 Wiley-Liss, Inc. and the American Pharmacists Association
Fisz, Jacek J
2006-12-07
The optimization approach based on the genetic algorithm (GA) combined with multiple linear regression (MLR) method, is discussed. The GA-MLR optimizer is designed for the nonlinear least-squares problems in which the model functions are linear combinations of nonlinear functions. GA optimizes the nonlinear parameters, and the linear parameters are calculated from MLR. GA-MLR is an intuitive optimization approach and it exploits all advantages of the genetic algorithm technique. This optimization method results from an appropriate combination of two well-known optimization methods. The MLR method is embedded in the GA optimizer and linear and nonlinear model parameters are optimized in parallel. The MLR method is the only one strictly mathematical "tool" involved in GA-MLR. The GA-MLR approach simplifies and accelerates considerably the optimization process because the linear parameters are not the fitted ones. Its properties are exemplified by the analysis of the kinetic biexponential fluorescence decay surface corresponding to a two-excited-state interconversion process. A short discussion of the variable projection (VP) algorithm, designed for the same class of the optimization problems, is presented. VP is a very advanced mathematical formalism that involves the methods of nonlinear functionals, algebra of linear projectors, and the formalism of Fréchet derivatives and pseudo-inverses. Additional explanatory comments are added on the application of recently introduced the GA-NR optimizer to simultaneous recovery of linear and weakly nonlinear parameters occurring in the same optimization problem together with nonlinear parameters. The GA-NR optimizer combines the GA method with the NR method, in which the minimum-value condition for the quadratic approximation to chi(2), obtained from the Taylor series expansion of chi(2), is recovered by means of the Newton-Raphson algorithm. The application of the GA-NR optimizer to model functions which are multi-linear combinations of nonlinear functions, is indicated. The VP algorithm does not distinguish the weakly nonlinear parameters from the nonlinear ones and it does not apply to the model functions which are multi-linear combinations of nonlinear functions.
Modelling the nonlinear behaviour of an underplatform damper test rig for turbine applications
NASA Astrophysics Data System (ADS)
Pesaresi, L.; Salles, L.; Jones, A.; Green, J. S.; Schwingshackl, C. W.
2017-02-01
Underplatform dampers (UPD) are commonly used in aircraft engines to mitigate the risk of high-cycle fatigue failure of turbine blades. The energy dissipated at the friction contact interface of the damper reduces the vibration amplitude significantly, and the couplings of the blades can also lead to significant shifts of the resonance frequencies of the bladed disk. The highly nonlinear behaviour of bladed discs constrained by UPDs requires an advanced modelling approach to ensure that the correct damper geometry is selected during the design of the turbine, and that no unexpected resonance frequencies and amplitudes will occur in operation. Approaches based on an explicit model of the damper in combination with multi-harmonic balance solvers have emerged as a promising way to predict the nonlinear behaviour of UPDs correctly, however rigorous experimental validations are required before approaches of this type can be used with confidence. In this study, a nonlinear analysis based on an updated explicit damper model having different levels of detail is performed, and the results are evaluated against a newly-developed UPD test rig. Detailed linear finite element models are used as input for the nonlinear analysis, allowing the inclusion of damper flexibility and inertia effects. The nonlinear friction interface between the blades and the damper is described with a dense grid of 3D friction contact elements which allow accurate capturing of the underlying nonlinear mechanism that drives the global nonlinear behaviour. The introduced explicit damper model showed a great dependence on the correct contact pressure distribution. The use of an accurate, measurement based, distribution, better matched the nonlinear dynamic behaviour of the test rig. Good agreement with the measured frequency response data could only be reached when the zero harmonic term (constant term) was included in the multi-harmonic expansion of the nonlinear problem, highlighting its importance when the contact interface experiences large normal load variation. The resulting numerical damper kinematics with strong translational and rotational motion, and the global blades frequency response were fully validated experimentally, showing the accuracy of the suggested high detailed explicit UPD modelling approach.
Linear and nonlinear regression techniques for simultaneous and proportional myoelectric control.
Hahne, J M; Biessmann, F; Jiang, N; Rehbaum, H; Farina, D; Meinecke, F C; Muller, K-R; Parra, L C
2014-03-01
In recent years the number of active controllable joints in electrically powered hand-prostheses has increased significantly. However, the control strategies for these devices in current clinical use are inadequate as they require separate and sequential control of each degree-of-freedom (DoF). In this study we systematically compare linear and nonlinear regression techniques for an independent, simultaneous and proportional myoelectric control of wrist movements with two DoF. These techniques include linear regression, mixture of linear experts (ME), multilayer-perceptron, and kernel ridge regression (KRR). They are investigated offline with electro-myographic signals acquired from ten able-bodied subjects and one person with congenital upper limb deficiency. The control accuracy is reported as a function of the number of electrodes and the amount and diversity of training data providing guidance for the requirements in clinical practice. The results showed that KRR, a nonparametric statistical learning method, outperformed the other methods. However, simple transformations in the feature space could linearize the problem, so that linear models could achieve similar performance as KRR at much lower computational costs. Especially ME, a physiologically inspired extension of linear regression represents a promising candidate for the next generation of prosthetic devices.
Composite Beam Theory with Material Nonlinearities and Progressive Damage
NASA Astrophysics Data System (ADS)
Jiang, Fang
Beam has historically found its broad applications. Nowadays, many engineering constructions still rely on this type of structure which could be made of anisotropic and heterogeneous materials. These applications motivate the development of beam theory in which the impact of material nonlinearities and damage on the global constitutive behavior has been a focus in recent years. Reliable predictions of these nonlinear beam responses depend on not only the quality of the material description but also a comprehensively generalized multiscale methodology which fills the theoretical gaps between the scales in an efficient yet high-fidelity manner. The conventional beam modeling methodologies which are built upon ad hoc assumptions are in lack of such reliability in need. Therefore, the focus of this dissertation is to create a reliable yet efficient method and the corresponding tool for composite beam modeling. A nonlinear beam theory is developed based on the Mechanics of Structure Genome (MSG) using the variational asymptotic method (VAM). The three-dimensional (3D) nonlinear continuum problem is rigorously reduced to a one-dimensional (1D) beam model and a two-dimensional (2D) cross-sectional analysis featuring both geometric and material nonlinearities by exploiting the small geometric parameter which is an inherent geometric characteristic of the beam. The 2D nonlinear cross-sectional analysis utilizes the 3D material models to homogenize the beam cross-sectional constitutive responses considering the nonlinear elasticity and progressive damage. The results from such a homogenization are inputs as constitutive laws into the global nonlinear 1D beam analysis. The theoretical foundation is formulated without unnecessary kinematic assumptions. Curvilinear coordinates and vector calculus are utilized to build the 3D deformation gradient tensor, of which the components are formulated in terms of cross-sectional coordinates, generalized beam strains, unknown warping functions, and the 3D spatial gradients of these warping functions. Asymptotic analysis of the extended Hamiltonian's principle suggests dropping the terms of axial gradients of the warping functions. As a result, the solid mechanics problem resolved into a 3D continuum is dimensionally reduced to a problem of solving the warping functions on a 2D cross-sectional field by minimizing the information loss. The present theory is implemented using the finite element method (FEM) in Variational Asymptotic Beam Sectional Analysis (VABS), a general-purpose cross-sectional analysis tool. An iterative method is applied to solve the finite warping field for the classical-type model in the form of the Euler-Bernoulli beam theory. The deformation gradient tensor is directly used to enable the capability of dealing with finite deformation, various strain definitions, and several types of material constitutive laws regarding the nonlinear elasticity and progressive damage. Analytical and numerical examples are given for various problems including the trapeze effect, Poynting effect, Brazier effect, extension-bending coupling effect, and free edge damage. By comparison with the predictions from 3D finite element analyses (FEA), 2D FEA based on plane stress assumptions, and experimental data, the structural and material responses are proven to be rigorously captured by the present theory and the computational cost is significantly reduced. Due to the semi-analytical feature of the code developed, the unrealistic numerical issues widely seen in the conventional FEA with strain softening material behaviors are prevented by VABS. In light of these intrinsic features, the nonlinear elastic and inelastic 3D material models can be economically calibrated by data-matching the VABS predictions directly with the experimental measurements from slender coupons. Furthermore, the global behavior of slender composite structures in meters can also be effectively characterized by VABS without unnecessary loss of important information of its local laminae in micrometers.
Cooley, Richard L.
1983-01-01
This paper investigates factors influencing the degree of improvement in estimates of parameters of a nonlinear regression groundwater flow model by incorporating prior information of unknown reliability. Consideration of expected behavior of the regression solutions and results of a hypothetical modeling problem lead to several general conclusions. First, if the parameters are properly scaled, linearized expressions for the mean square error (MSE) in parameter estimates of a nonlinear model will often behave very nearly as if the model were linear. Second, by using prior information, the MSE in properly scaled parameters can be reduced greatly over the MSE of ordinary least squares estimates of parameters. Third, plots of estimated MSE and the estimated standard deviation of MSE versus an auxiliary parameter (the ridge parameter) specifying the degree of influence of the prior information on regression results can help determine the potential for improvement of parameter estimates. Fourth, proposed criteria can be used to make appropriate choices for the ridge parameter and another parameter expressing degree of overall bias in the prior information. Results of a case study of Truckee Meadows, Reno-Sparks area, Washoe County, Nevada, conform closely to the results of the hypothetical problem. In the Truckee Meadows case, incorporation of prior information did not greatly change the parameter estimates from those obtained by ordinary least squares. However, the analysis showed that both sets of estimates are more reliable than suggested by the standard errors from ordinary least squares.
NASA Astrophysics Data System (ADS)
Kuchar, A.; Sacha, P.; Miksovsky, J.; Pisoft, P.
2015-06-01
This study focusses on the variability of temperature, ozone and circulation characteristics in the stratosphere and lower mesosphere with regard to the influence of the 11-year solar cycle. It is based on attribution analysis using multiple nonlinear techniques (support vector regression, neural networks) besides the multiple linear regression approach. The analysis was applied to several current reanalysis data sets for the 1979-2013 period, including MERRA, ERA-Interim and JRA-55, with the aim to compare how these types of data resolve especially the double-peaked solar response in temperature and ozone variables and the consequent changes induced by these anomalies. Equatorial temperature signals in the tropical stratosphere were found to be in qualitative agreement with previous attribution studies, although the agreement with observational results was incomplete, especially for JRA-55. The analysis also pointed to the solar signal in the ozone data sets (i.e. MERRA and ERA-Interim) not being consistent with the observed double-peaked ozone anomaly extracted from satellite measurements. The results obtained by linear regression were confirmed by the nonlinear approach through all data sets, suggesting that linear regression is a relevant tool to sufficiently resolve the solar signal in the middle atmosphere. The seasonal evolution of the solar response was also discussed in terms of dynamical causalities in the winter hemispheres. The hypothetical mechanism of a weaker Brewer-Dobson circulation at solar maxima was reviewed together with a discussion of polar vortex behaviour.
Handling nonnormality and variance heterogeneity for quantitative sublethal toxicity tests.
Ritz, Christian; Van der Vliet, Leana
2009-09-01
The advantages of using regression-based techniques to derive endpoints from environmental toxicity data are clear, and slowly, this superior analytical technique is gaining acceptance. As use of regression-based analysis becomes more widespread, some of the associated nuances and potential problems come into sharper focus. Looking at data sets that cover a broad spectrum of standard test species, we noticed that some model fits to data failed to meet two key assumptions-variance homogeneity and normality-that are necessary for correct statistical analysis via regression-based techniques. Failure to meet these assumptions often is caused by reduced variance at the concentrations showing severe adverse effects. Although commonly used with linear regression analysis, transformation of the response variable only is not appropriate when fitting data using nonlinear regression techniques. Through analysis of sample data sets, including Lemna minor, Eisenia andrei (terrestrial earthworm), and algae, we show that both the so-called Box-Cox transformation and use of the Poisson distribution can help to correct variance heterogeneity and nonnormality and so allow nonlinear regression analysis to be implemented. Both the Box-Cox transformation and the Poisson distribution can be readily implemented into existing protocols for statistical analysis. By correcting for nonnormality and variance heterogeneity, these two statistical tools can be used to encourage the transition to regression-based analysis and the depreciation of less-desirable and less-flexible analytical techniques, such as linear interpolation.
Pointwise influence matrices for functional-response regression.
Reiss, Philip T; Huang, Lei; Wu, Pei-Shien; Chen, Huaihou; Colcombe, Stan
2017-12-01
We extend the notion of an influence or hat matrix to regression with functional responses and scalar predictors. For responses depending linearly on a set of predictors, our definition is shown to reduce to the conventional influence matrix for linear models. The pointwise degrees of freedom, the trace of the pointwise influence matrix, are shown to have an adaptivity property that motivates a two-step bivariate smoother for modeling nonlinear dependence on a single predictor. This procedure adapts to varying complexity of the nonlinear model at different locations along the function, and thereby achieves better performance than competing tensor product smoothers in an analysis of the development of white matter microstructure in the brain. © 2017, The International Biometric Society.
An Application to the Prediction of LOD Change Based on General Regression Neural Network
NASA Astrophysics Data System (ADS)
Zhang, X. H.; Wang, Q. J.; Zhu, J. J.; Zhang, H.
2011-07-01
Traditional prediction of the LOD (length of day) change was based on linear models, such as the least square model and the autoregressive technique, etc. Due to the complex non-linear features of the LOD variation, the performances of the linear model predictors are not fully satisfactory. This paper applies a non-linear neural network - general regression neural network (GRNN) model to forecast the LOD change, and the results are analyzed and compared with those obtained with the back propagation neural network and other models. The comparison shows that the performance of the GRNN model in the prediction of the LOD change is efficient and feasible.
Nonlinear Plasma Response to Resonant Magnetic Perturbation in Rutherford Regime
NASA Astrophysics Data System (ADS)
Zhu, Ping; Yan, Xingting; Huang, Wenlong
2017-10-01
Recently a common analytic relation for both the locked mode and the nonlinear plasma response in the Rutherford regime has been developed based on the steady-state solution to the coupled dynamic system of magnetic island evolution and torque balance equations. The analytic relation predicts the threshold and the island size for the full penetration of resonant magnetic perturbation (RMP). It also rigorously proves a screening effect of the equilibrium toroidal flow. In this work, we test the theory by solving for the nonlinear plasma response to a single-helicity RMP of a circular-shaped limiter tokamak equilibrium with a constant toroidal flow, using the initial-value, full MHD simulation code NIMROD. Time evolution of the parallel flow or ``slip frequency'' profile and its asymptotic approach to steady state obtained from the NIMROD simulations qualitatively agree with the theory predictions. Further comparisons are carried out for the saturated island size, the threshold for full mode penetration, as well as the screening effects of equilibrium toroidal flow in order to understand the physics of nonlinear plasma response in the Rutherford regime. Supported by National Magnetic Confinement Fusion Science Program of China Grants 2014GB124002 and 2015GB101004, the 100 Talent Program of the Chinese Academy of Sciences, and U.S. Department of Energy Grants DE-FG02-86ER53218 and DE-FC02-08ER54975.
Kalkan, Erol; Chopra, Anil K.
2010-01-01
Earthquake engineering practice is increasingly using nonlinear response history analysis (RHA) to demonstrate performance of structures. This rigorous method of analysis requires selection and scaling of ground motions appropriate to design hazard levels. Presented herein is a modal-pushover-based scaling (MPS) method to scale ground motions for use in nonlinear RHA of buildings and bridges. In the MPS method, the ground motions are scaled to match (to a specified tolerance) a target value of the inelastic deformation of the first-'mode' inelastic single-degree-of-freedom (SDF) system whose properties are determined by first-'mode' pushover analysis. Appropriate for first-?mode? dominated structures, this approach is extended for structures with significant contributions of higher modes by considering elastic deformation of second-'mode' SDF system in selecting a subset of the scaled ground motions. Based on results presented for two bridges, covering single- and multi-span 'ordinary standard' bridge types, and six buildings, covering low-, mid-, and tall building types in California, the accuracy and efficiency of the MPS procedure are established and its superiority over the ASCE/SEI 7-05 scaling procedure is demonstrated.
Adaptive tracking control for active suspension systems with non-ideal actuators
NASA Astrophysics Data System (ADS)
Pan, Huihui; Sun, Weichao; Jing, Xingjian; Gao, Huijun; Yao, Jianyong
2017-07-01
As a critical component of transportation vehicles, active suspension systems are instrumental in the improvement of ride comfort and maneuverability. However, practical active suspensions commonly suffer from parameter uncertainties (e.g., the variations of payload mass and suspension component parameters), external disturbances and especially the unknown non-ideal actuators (i.e., dead-zone and hysteresis nonlinearities), which always significantly deteriorate the control performance in practice. To overcome these issues, this paper synthesizes an adaptive tracking control strategy for vehicle suspension systems to achieve suspension performance improvements. The proposed control algorithm is formulated by developing a unified framework of non-ideal actuators rather than a separate way, which is a simple yet effective approach to remove the unexpected nonlinear effects. From the perspective of practical implementation, the advantages of the presented controller for active suspensions include that the assumptions on the measurable actuator outputs, the prior knowledge of nonlinear actuator parameters and the uncertain parameters within a known compact set are not required. Furthermore, the stability of the closed-loop suspension system is theoretically guaranteed by rigorous mathematical analysis. Finally, the effectiveness of the presented adaptive control scheme is confirmed using comparative numerical simulation validations.
NASA Astrophysics Data System (ADS)
McCollam, K. J.; den Hartog, D. J.; Jacobson, C. M.; Sovinec, C. R.; Masamune, S.; Sanpei, A.
2017-10-01
We present comparisons of magnetic tearing fluctuation activity between RFP experiments on the low-aspect-ratio RELAX device (R / a 2) and nonlinear simulations of zero-beta, single-fluid MHD using the NIMROD code in both cylindrical and toroidal geometries at a Lundquist number of S =104 , nearly as high as experimental values. Time-average fluctuation amplitudes observed in the simulations are similar to those from the experiments, but more rigorous comparisons versus spectral mode numbers are in progress. We also focus on how the spatiotemporal dynamics of the fluctuations vary with RFP equilibrium parameters. Interestingly, at shallow reversal, cylindrical simulations show a relatively uncoupled spectrum of nearly quiescent modes periodically varying in time, whereas the corresponding toroidal cases show a fully chaotic spectrum of strongly nonlinearly interacting modes. We ascribe this to the geometric m = 1 coupling present in the toroidal but not the cylindrical case. We present initial results from convergence studies with increased spatial resolution for both geometries. Simulations at higher S are planned. This work is supported by the U.S. DOE and by the Japan Society for the Promotion of Science.
NASA Astrophysics Data System (ADS)
Kim, Minwoo; Park, Hyeon K.; Yun, Gunsu; Lee, Jaehyun; Lee, Jieun; Lee, Woochang; Jardin, Stephen; Xu, X. Q.; Kstar Team
2015-11-01
The modeling of the Edge-localized-mode (ELM) should be rigorously pursued for reliable and robust ELM control for steady-state long-pulse H-mode operation in ITER as well as DEMO. In the KSTAR discharge #7328, a linear stability of the ELMs is investigated using M3D-C1 and BOUT + + codes. This is achieved by linear simulation for the n = 8 mode structure of the ELM observed by the KSTAR electron cyclotron emission imaging (ECEI) systems. In the process of analysis, variations due to the plasma equilibrium profiles and transport coefficients on the ELM growth rate are investigated and simulation results with the two codes are compared. The numerical simulations are extended to nonlinear phase of the ELM dynamics, which includes saturation and crash of the modes. Preliminary results of the nonlinear simulations are compared with the measured images especially from the saturation to the crash. This work is supported by NRF of Korea under contract no. NRF-2014M1A7A1A03029865, US DoE by LLNL under contract DE-AC52-07NA27344 and US DoE by PPPL under contract DE-AC02-09CH11466.
Fenske, Nora; Burns, Jacob; Hothorn, Torsten; Rehfuess, Eva A.
2013-01-01
Background Most attempts to address undernutrition, responsible for one third of global child deaths, have fallen behind expectations. This suggests that the assumptions underlying current modelling and intervention practices should be revisited. Objective We undertook a comprehensive analysis of the determinants of child stunting in India, and explored whether the established focus on linear effects of single risks is appropriate. Design Using cross-sectional data for children aged 0–24 months from the Indian National Family Health Survey for 2005/2006, we populated an evidence-based diagram of immediate, intermediate and underlying determinants of stunting. We modelled linear, non-linear, spatial and age-varying effects of these determinants using additive quantile regression for four quantiles of the Z-score of standardized height-for-age and logistic regression for stunting and severe stunting. Results At least one variable within each of eleven groups of determinants was significantly associated with height-for-age in the 35% Z-score quantile regression. The non-modifiable risk factors child age and sex, and the protective factors household wealth, maternal education and BMI showed the largest effects. Being a twin or multiple birth was associated with dramatically decreased height-for-age. Maternal age, maternal BMI, birth order and number of antenatal visits influenced child stunting in non-linear ways. Findings across the four quantile and two logistic regression models were largely comparable. Conclusions Our analysis confirms the multifactorial nature of child stunting. It emphasizes the need to pursue a systems-based approach and to consider non-linear effects, and suggests that differential effects across the height-for-age distribution do not play a major role. PMID:24223839
Fenske, Nora; Burns, Jacob; Hothorn, Torsten; Rehfuess, Eva A
2013-01-01
Most attempts to address undernutrition, responsible for one third of global child deaths, have fallen behind expectations. This suggests that the assumptions underlying current modelling and intervention practices should be revisited. We undertook a comprehensive analysis of the determinants of child stunting in India, and explored whether the established focus on linear effects of single risks is appropriate. Using cross-sectional data for children aged 0-24 months from the Indian National Family Health Survey for 2005/2006, we populated an evidence-based diagram of immediate, intermediate and underlying determinants of stunting. We modelled linear, non-linear, spatial and age-varying effects of these determinants using additive quantile regression for four quantiles of the Z-score of standardized height-for-age and logistic regression for stunting and severe stunting. At least one variable within each of eleven groups of determinants was significantly associated with height-for-age in the 35% Z-score quantile regression. The non-modifiable risk factors child age and sex, and the protective factors household wealth, maternal education and BMI showed the largest effects. Being a twin or multiple birth was associated with dramatically decreased height-for-age. Maternal age, maternal BMI, birth order and number of antenatal visits influenced child stunting in non-linear ways. Findings across the four quantile and two logistic regression models were largely comparable. Our analysis confirms the multifactorial nature of child stunting. It emphasizes the need to pursue a systems-based approach and to consider non-linear effects, and suggests that differential effects across the height-for-age distribution do not play a major role.
Minimizing bias in biomass allometry: Model selection and log transformation of data
Joseph Mascaro; undefined undefined; Flint Hughes; Amanda Uowolo; Stefan A. Schnitzer
2011-01-01
Nonlinear regression is increasingly used to develop allometric equations for forest biomass estimation (i.e., as opposed to the raditional approach of log-transformation followed by linear regression). Most statistical software packages, however, assume additive errors by default, violating a key assumption of allometric theory and possibly producing spurious models....
A Comparison of Methods for Estimating Quadratic Effects in Nonlinear Structural Equation Models
ERIC Educational Resources Information Center
Harring, Jeffrey R.; Weiss, Brandi A.; Hsu, Jui-Chen
2012-01-01
Two Monte Carlo simulations were performed to compare methods for estimating and testing hypotheses of quadratic effects in latent variable regression models. The methods considered in the current study were (a) a 2-stage moderated regression approach using latent variable scores, (b) an unconstrained product indicator approach, (c) a latent…
Logarithmic Transformations in Regression: Do You Transform Back Correctly?
ERIC Educational Resources Information Center
Dambolena, Ismael G.; Eriksen, Steven E.; Kopcso, David P.
2009-01-01
The logarithmic transformation is often used in regression analysis for a variety of purposes such as the linearization of a nonlinear relationship between two or more variables. We have noticed that when this transformation is applied to the response variable, the computation of the point estimate of the conditional mean of the original response…
Photonic single nonlinear-delay dynamical node for information processing
NASA Astrophysics Data System (ADS)
Ortín, Silvia; San-Martín, Daniel; Pesquera, Luis; Gutiérrez, José Manuel
2012-06-01
An electro-optical system with a delay loop based on semiconductor lasers is investigated for information processing by performing numerical simulations. This system can replace a complex network of many nonlinear elements for the implementation of Reservoir Computing. We show that a single nonlinear-delay dynamical system has the basic properties to perform as reservoir: short-term memory and separation property. The computing performance of this system is evaluated for two prediction tasks: Lorenz chaotic time series and nonlinear auto-regressive moving average (NARMA) model. We sweep the parameters of the system to find the best performance. The results achieved for the Lorenz and the NARMA-10 tasks are comparable to those obtained by other machine learning methods.
NASA Astrophysics Data System (ADS)
Gürcan, Eser Kemal
2017-04-01
The most commonly used methods for analyzing time-dependent data are multivariate analysis of variance (MANOVA) and nonlinear regression models. The aim of this study was to compare some MANOVA techniques and nonlinear mixed modeling approach for investigation of growth differentiation in female and male Japanese quail. Weekly individual body weight data of 352 male and 335 female quail from hatch to 8 weeks of age were used to perform analyses. It is possible to say that when all the analyses are evaluated, the nonlinear mixed modeling is superior to the other techniques because it also reveals the individual variation. In addition, the profile analysis also provides important information.
Brown, A M
2001-06-01
The objective of this present study was to introduce a simple, easily understood method for carrying out non-linear regression analysis based on user input functions. While it is relatively straightforward to fit data with simple functions such as linear or logarithmic functions, fitting data with more complicated non-linear functions is more difficult. Commercial specialist programmes are available that will carry out this analysis, but these programmes are expensive and are not intuitive to learn. An alternative method described here is to use the SOLVER function of the ubiquitous spreadsheet programme Microsoft Excel, which employs an iterative least squares fitting routine to produce the optimal goodness of fit between data and function. The intent of this paper is to lead the reader through an easily understood step-by-step guide to implementing this method, which can be applied to any function in the form y=f(x), and is well suited to fast, reliable analysis of data in all fields of biology.
Regression Models and Fuzzy Logic Prediction of TBM Penetration Rate
NASA Astrophysics Data System (ADS)
Minh, Vu Trieu; Katushin, Dmitri; Antonov, Maksim; Veinthal, Renno
2017-03-01
This paper presents statistical analyses of rock engineering properties and the measured penetration rate of tunnel boring machine (TBM) based on the data of an actual project. The aim of this study is to analyze the influence of rock engineering properties including uniaxial compressive strength (UCS), Brazilian tensile strength (BTS), rock brittleness index (BI), the distance between planes of weakness (DPW), and the alpha angle (Alpha) between the tunnel axis and the planes of weakness on the TBM rate of penetration (ROP). Four
Multivariate meta-analysis for non-linear and other multi-parameter associations
Gasparrini, A; Armstrong, B; Kenward, M G
2012-01-01
In this paper, we formalize the application of multivariate meta-analysis and meta-regression to synthesize estimates of multi-parameter associations obtained from different studies. This modelling approach extends the standard two-stage analysis used to combine results across different sub-groups or populations. The most straightforward application is for the meta-analysis of non-linear relationships, described for example by regression coefficients of splines or other functions, but the methodology easily generalizes to any setting where complex associations are described by multiple correlated parameters. The modelling framework of multivariate meta-analysis is implemented in the package mvmeta within the statistical environment R. As an illustrative example, we propose a two-stage analysis for investigating the non-linear exposure–response relationship between temperature and non-accidental mortality using time-series data from multiple cities. Multivariate meta-analysis represents a useful analytical tool for studying complex associations through a two-stage procedure. Copyright © 2012 John Wiley & Sons, Ltd. PMID:22807043
Guan, Yongtao; Li, Yehua; Sinha, Rajita
2011-01-01
In a cocaine dependence treatment study, we use linear and nonlinear regression models to model posttreatment cocaine craving scores and first cocaine relapse time. A subset of the covariates are summary statistics derived from baseline daily cocaine use trajectories, such as baseline cocaine use frequency and average daily use amount. These summary statistics are subject to estimation error and can therefore cause biased estimators for the regression coefficients. Unlike classical measurement error problems, the error we encounter here is heteroscedastic with an unknown distribution, and there are no replicates for the error-prone variables or instrumental variables. We propose two robust methods to correct for the bias: a computationally efficient method-of-moments-based method for linear regression models and a subsampling extrapolation method that is generally applicable to both linear and nonlinear regression models. Simulations and an application to the cocaine dependence treatment data are used to illustrate the efficacy of the proposed methods. Asymptotic theory and variance estimation for the proposed subsampling extrapolation method and some additional simulation results are described in the online supplementary material. PMID:21984854
Creep analysis of silicone for podiatry applications.
Janeiro-Arocas, Julia; Tarrío-Saavedra, Javier; López-Beceiro, Jorge; Naya, Salvador; López-Canosa, Adrián; Heredia-García, Nicolás; Artiaga, Ramón
2016-10-01
This work shows an effective methodology to characterize the creep-recovery behavior of silicones before their application in podiatry. The aim is to characterize, model and compare the creep-recovery properties of different types of silicone used in podiatry orthotics. Creep-recovery phenomena of silicones used in podiatry orthotics is characterized by dynamic mechanical analysis (DMA). Silicones provided by Herbitas are compared by observing their viscoelastic properties by Functional Data Analysis (FDA) and nonlinear regression. The relationship between strain and time is modeled by fixed and mixed effects nonlinear regression to compare easily and intuitively podiatry silicones. Functional ANOVA and Kohlrausch-Willians-Watts (KWW) model with fixed and mixed effects allows us to compare different silicones observing the values of fitting parameters and their physical meaning. The differences between silicones are related to the variations of breadth of creep-recovery time distribution and instantaneous deformation-permanent strain. Nevertheless, the mean creep-relaxation time is the same for all the studied silicones. Silicones used in palliative orthoses have higher instantaneous deformation-permanent strain and narrower creep-recovery distribution. The proposed methodology based on DMA, FDA and nonlinear regression is an useful tool to characterize and choose the proper silicone for each podiatry application according to their viscoelastic properties. Copyright © 2016 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Mooijaart, Ab; Satorra, Albert
2009-01-01
In this paper, we show that for some structural equation models (SEM), the classical chi-square goodness-of-fit test is unable to detect the presence of nonlinear terms in the model. As an example, we consider a regression model with latent variables and interactions terms. Not only the model test has zero power against that type of…
Nonlinear Simulation of the Tooth Enamel Spectrum for EPR Dosimetry
NASA Astrophysics Data System (ADS)
Kirillov, V. A.; Dubovsky, S. V.
2016-07-01
Software was developed where initial EPR spectra of tooth enamel were deconvoluted based on nonlinear simulation, line shapes and signal amplitudes in the model initial spectrum were calculated, the regression coefficient was evaluated, and individual spectra were summed. Software validation demonstrated that doses calculated using it agreed excellently with the applied radiation doses and the doses reconstructed by the method of additive doses.
Structural efficiency studies of corrugated compression panels with curved caps and beaded webs
NASA Technical Reports Server (NTRS)
Davis, R. C.; Mills, C. T.; Prabhakaran, R.; Jackson, L. R.
1984-01-01
Curved cross-sectional elements are employed in structural concepts for minimum-mass compression panels. Corrugated panel concepts with curved caps and beaded webs are optimized by using a nonlinear mathematical programming procedure and a rigorous buckling analysis. These panel geometries are shown to have superior structural efficiencies compared with known concepts published in the literature. Fabrication of these efficient corrugation concepts became possible by advances made in the art of superplastically forming of metals. Results of the mass optimization studies of the concepts are presented as structural efficiency charts for axial compression.
Kim, Minseok; Eleftheriades, George V
2016-10-15
We propose a highly efficient (nearly lossless and impedance-matched) all-dielectric optical tensor impedance metasurface that mimics chiral effects at optical wavelengths. By cascading an array of rotated crossed silicon nanoblocks, we realize chiral optical tensor impedance metasurfaces that operate as circular polarization selective surfaces. Their efficiencies are maximized through a nonlinear numerical optimization process in which the tensor impedance metasurfaces are modeled via multi-conductor transmission line theory. From rigorous full-wave simulations that include all material losses, we show field transmission efficiencies of 94% for right- and left-handed circular polarization selective surfaces at 800 nm.
Quantum gravity model with fundamental spinor fields
NASA Astrophysics Data System (ADS)
Obukhov, Yu. N.; Hehl, F. W.
2014-01-01
We discuss the possibility that gravitational potentials (metric, coframe and connection) may emerge as composite fields from more fundamental spinor constituents. We use the formalism of Poincaré gauge gravity as an appropriate theoretical scheme for the rigorous development of such an approach. We postulate the constitutive relations of an elastic Cosserat type continuum that models spacetime. These generalized Hooke and MacCullagh type laws consistently take into account the translational and Lorentz rotational deformations, respectively. The resulting theory extends the recently proposed Diakonov model. An intriguing feature of our theory is that in the lowest approximation it reproduces Heisenberg's nonlinear spinor model.
Evaluation of confidence intervals for a steady-state leaky aquifer model
Christensen, S.; Cooley, R.L.
1999-01-01
The fact that dependent variables of groundwater models are generally nonlinear functions of model parameters is shown to be a potentially significant factor in calculating accurate confidence intervals for both model parameters and functions of the parameters, such as the values of dependent variables calculated by the model. The Lagrangian method of Vecchia and Cooley [Vecchia, A.V. and Cooley, R.L., Water Resources Research, 1987, 23(7), 1237-1250] was used to calculate nonlinear Scheffe-type confidence intervals for the parameters and the simulated heads of a steady-state groundwater flow model covering 450 km2 of a leaky aquifer. The nonlinear confidence intervals are compared to corresponding linear intervals. As suggested by the significant nonlinearity of the regression model, linear confidence intervals are often not accurate. The commonly made assumption that widths of linear confidence intervals always underestimate the actual (nonlinear) widths was not correct. Results show that nonlinear effects can cause the nonlinear intervals to be asymmetric and either larger or smaller than the linear approximations. Prior information on transmissivities helps reduce the size of the confidence intervals, with the most notable effects occurring for the parameters on which there is prior information and for head values in parameter zones for which there is prior information on the parameters.The fact that dependent variables of groundwater models are generally nonlinear functions of model parameters is shown to be a potentially significant factor in calculating accurate confidence intervals for both model parameters and functions of the parameters, such as the values of dependent variables calculated by the model. The Lagrangian method of Vecchia and Cooley was used to calculate nonlinear Scheffe-type confidence intervals for the parameters and the simulated heads of a steady-state groundwater flow model covering 450 km2 of a leaky aquifer. The nonlinear confidence intervals are compared to corresponding linear intervals. As suggested by the significant nonlinearity of the regression model, linear confidence intervals are often not accurate. The commonly made assumption that widths of linear confidence intervals always underestimate the actual (nonlinear) widths was not correct. Results show that nonlinear effects can cause the nonlinear intervals to be asymmetric and either larger or smaller than the linear approximations. Prior information on transmissivities helps reduce the size of the confidence intervals, with the most notable effects occurring for the parameters on which there is prior information and for head values in parameter zones for which there is prior information on the parameters.
Campbell, J Elliott; Moen, Jeremie C; Ney, Richard A; Schnoor, Jerald L
2008-03-01
Estimates of forest soil organic carbon (SOC) have applications in carbon science, soil quality studies, carbon sequestration technologies, and carbon trading. Forest SOC has been modeled using a regression coefficient methodology that applies mean SOC densities (mass/area) to broad forest regions. A higher resolution model is based on an approach that employs a geographic information system (GIS) with soil databases and satellite-derived landcover images. Despite this advancement, the regression approach remains the basis of current state and federal level greenhouse gas inventories. Both approaches are analyzed in detail for Wisconsin forest soils from 1983 to 2001, applying rigorous error-fixing algorithms to soil databases. Resulting SOC stock estimates are 20% larger when determined using the GIS method rather than the regression approach. Average annual rates of increase in SOC stocks are 3.6 and 1.0 million metric tons of carbon per year for the GIS and regression approaches respectively.
Advanced Statistical Analyses to Reduce Inconsistency of Bond Strength Data.
Minamino, T; Mine, A; Shintani, A; Higashi, M; Kawaguchi-Uemura, A; Kabetani, T; Hagino, R; Imai, D; Tajiri, Y; Matsumoto, M; Yatani, H
2017-11-01
This study was designed to clarify the interrelationship of factors that affect the value of microtensile bond strength (µTBS), focusing on nondestructive testing by which information of the specimens can be stored and quantified. µTBS test specimens were prepared from 10 noncarious human molars. Six factors of µTBS test specimens were evaluated: presence of voids at the interface, X-ray absorption coefficient of resin, X-ray absorption coefficient of dentin, length of dentin part, size of adhesion area, and individual differences of teeth. All specimens were observed nondestructively by optical coherence tomography and micro-computed tomography before µTBS testing. After µTBS testing, the effect of these factors on µTBS data was analyzed by the general linear model, linear mixed effects regression model, and nonlinear regression model with 95% confidence intervals. By the general linear model, a significant difference in individual differences of teeth was observed ( P < 0.001). A significantly positive correlation was shown between µTBS and length of dentin part ( P < 0.001); however, there was no significant nonlinearity ( P = 0.157). Moreover, a significantly negative correlation was observed between µTBS and size of adhesion area ( P = 0.001), with significant nonlinearity ( P = 0.014). No correlation was observed between µTBS and X-ray absorption coefficient of resin ( P = 0.147), and there was no significant nonlinearity ( P = 0.089). Additionally, a significantly positive correlation was observed between µTBS and X-ray absorption coefficient of dentin ( P = 0.022), with significant nonlinearity ( P = 0.036). A significant difference was also observed between the presence and absence of voids by linear mixed effects regression analysis. Our results showed correlations between various parameters of tooth specimens and µTBS data. To evaluate the performance of the adhesive more precisely, the effect of tooth variability and a method to reduce variation in bond strength values should also be considered.
NASA Astrophysics Data System (ADS)
Marensi, Elena; Ricco, Pierre
2017-11-01
The generation, nonlinear evolution, and wall-transpiration control of unsteady Görtler vortices in an incompressible boundary layer over a concave plate is studied theoretically and numerically. Görtler rolls are initiated and driven by free-stream vortical perturbations of which only the low-frequency components are considered because they penetrate the most into the boundary layer. The formation and development of the disturbances are governed by the nonlinear unsteady boundary-region equations with the centrifugal force included. These equations are subject to appropriate initial and outer boundary conditions, which account for the influence of the upstream and free-stream forcing in a rigorous and mutually consistent manner. Numerical solutions show that the stabilizing effect on nonlinearity, which also occurs in flat-plate boundary layers, is significantly enhanced in the presence of centrifugal forces. Sufficiently downstream, the nonlinear vortices excited at different free-stream turbulence intensities Tu saturate at the same level, proving that the initial amplitude of the forcing becomes unimportant. At low Tu, the disturbance exhibits a quasi-exponential growth with the growth rate being intensified for more curved plates and for lower frequencies. At higher Tu, in the typical range of turbomachinery applications, the Görtler vortices do not undergo a modal stage as nonlinearity saturates rapidly, and the wall curvature does not affect the boundary-layer response. Good quantitative agreement with data from direct numerical simulations and experiments is obtained. Steady spanwise-uniform and spanwise-modulated zero-mass-flow-rate wall transpiration is shown to attenuate the growth of the Görtler vortices significantly. A novel modified version of the Fukagata-Iwamoto-Kasagi identity, used for the first time to study a transitional flow, reveals which terms in the streamwise momentum balance are mostly affected by the wall transpiration, thus offering insight into the increased nonlinear growth of the wall-shear stress.
Frequency-domain nonlinear regression algorithm for spectral analysis of broadband SFG spectroscopy.
He, Yuhan; Wang, Ying; Wang, Jingjing; Guo, Wei; Wang, Zhaohui
2016-03-01
The resonant spectral bands of the broadband sum frequency generation (BB-SFG) spectra are often distorted by the nonresonant portion and the lineshapes of the laser pulses. Frequency domain nonlinear regression (FDNLR) algorithm was proposed to retrieve the first-order polarization induced by the infrared pulse and to improve the analysis of SFG spectra through simultaneous fitting of a series of time-resolved BB-SFG spectra. The principle of FDNLR was presented, and the validity and reliability were tested by the analysis of the virtual and measured SFG spectra. The relative phase, dephasing time, and lineshapes of the resonant vibrational SFG bands can be retrieved without any preset assumptions about the SFG bands and the incident laser pulses.
Application of General Regression Neural Network to the Prediction of LOD Change
NASA Astrophysics Data System (ADS)
Zhang, Xiao-Hong; Wang, Qi-Jie; Zhu, Jian-Jun; Zhang, Hao
2012-01-01
Traditional methods for predicting the change in length of day (LOD change) are mainly based on some linear models, such as the least square model and autoregression model, etc. However, the LOD change comprises complicated non-linear factors and the prediction effect of the linear models is always not so ideal. Thus, a kind of non-linear neural network — general regression neural network (GRNN) model is tried to make the prediction of the LOD change and the result is compared with the predicted results obtained by taking advantage of the BP (back propagation) neural network model and other models. The comparison result shows that the application of the GRNN to the prediction of the LOD change is highly effective and feasible.
ERIC Educational Resources Information Center
Bloom, Allan M.; And Others
In response to the increasing importance of student performance in required classes, research was conducted to compare two prediction procedures, linear modeling using multiple regression and nonlinear modeling using AID3. Performance in the first college math course (College Mathematics, Calculus, or Business Calculus Matrices) was the dependent…
Modeling maximum daily temperature using a varying coefficient regression model
Han Li; Xinwei Deng; Dong-Yum Kim; Eric P. Smith
2014-01-01
Relationships between stream water and air temperatures are often modeled using linear or nonlinear regression methods. Despite a strong relationship between water and air temperatures and a variety of models that are effective for data summarized on a weekly basis, such models did not yield consistently good predictions for summaries such as daily maximum temperature...
Naval Research Logistics Quarterly. Volume 28. Number 3,
1981-09-01
denotes component-wise maximum. f has antone (isotone) differences on C x D if for cl < c2 and d, < d2, NAVAL RESEARCH LOGISTICS QUARTERLY VOL. 28...or negative correlations and linear or nonlinear regressions. Given are the mo- ments to order two and, for special cases, (he regression function and...data sets. We designate this bnb distribution as G - B - N(a, 0, v). The distribution admits only of positive correlation and linear regressions
Nonlinear System Identification for Aeroelastic Systems with Application to Experimental Data
NASA Technical Reports Server (NTRS)
Kukreja, Sunil L.
2008-01-01
Representation and identification of a nonlinear aeroelastic pitch-plunge system as a model of the Nonlinear AutoRegressive, Moving Average eXogenous (NARMAX) class is considered. A nonlinear difference equation describing this aircraft model is derived theoretically and shown to be of the NARMAX form. Identification methods for NARMAX models are applied to aeroelastic dynamics and its properties demonstrated via continuous-time simulations of experimental conditions. Simulation results show that (1) the outputs of the NARMAX model closely match those generated using continuous-time methods, and (2) NARMAX identification methods applied to aeroelastic dynamics provide accurate discrete-time parameter estimates. Application of NARMAX identification to experimental pitch-plunge dynamics data gives a high percent fit for cross-validated data.
Boosting structured additive quantile regression for longitudinal childhood obesity data.
Fenske, Nora; Fahrmeir, Ludwig; Hothorn, Torsten; Rzehak, Peter; Höhle, Michael
2013-07-25
Childhood obesity and the investigation of its risk factors has become an important public health issue. Our work is based on and motivated by a German longitudinal study including 2,226 children with up to ten measurements on their body mass index (BMI) and risk factors from birth to the age of 10 years. We introduce boosting of structured additive quantile regression as a novel distribution-free approach for longitudinal quantile regression. The quantile-specific predictors of our model include conventional linear population effects, smooth nonlinear functional effects, varying-coefficient terms, and individual-specific effects, such as intercepts and slopes. Estimation is based on boosting, a computer intensive inference method for highly complex models. We propose a component-wise functional gradient descent boosting algorithm that allows for penalized estimation of the large variety of different effects, particularly leading to individual-specific effects shrunken toward zero. This concept allows us to flexibly estimate the nonlinear age curves of upper quantiles of the BMI distribution, both on population and on individual-specific level, adjusted for further risk factors and to detect age-varying effects of categorical risk factors. Our model approach can be regarded as the quantile regression analog of Gaussian additive mixed models (or structured additive mean regression models), and we compare both model classes with respect to our obesity data.
Uncertainty Analysis of Instrument Calibration and Application
NASA Technical Reports Server (NTRS)
Tripp, John S.; Tcheng, Ping
1999-01-01
Experimental aerodynamic researchers require estimated precision and bias uncertainties of measured physical quantities, typically at 95 percent confidence levels. Uncertainties of final computed aerodynamic parameters are obtained by propagation of individual measurement uncertainties through the defining functional expressions. In this paper, rigorous mathematical techniques are extended to determine precision and bias uncertainties of any instrument-sensor system. Through this analysis, instrument uncertainties determined through calibration are now expressed as functions of the corresponding measurement for linear and nonlinear univariate and multivariate processes. Treatment of correlated measurement precision error is developed. During laboratory calibration, calibration standard uncertainties are assumed to be an order of magnitude less than those of the instrument being calibrated. Often calibration standards do not satisfy this assumption. This paper applies rigorous statistical methods for inclusion of calibration standard uncertainty and covariance due to the order of their application. The effects of mathematical modeling error on calibration bias uncertainty are quantified. The effects of experimental design on uncertainty are analyzed. The importance of replication is emphasized, techniques for estimation of both bias and precision uncertainties using replication are developed. Statistical tests for stationarity of calibration parameters over time are obtained.
Shuguang Liua; Pamela Anderson; Guoyi Zhoud; Boone Kauffman; Flint Hughes; David Schimel; Vicente Watson; Joseph Tosi
2008-01-01
Objectively assessing the performance of a model and deriving model parameter values from observations are critical and challenging in landscape to regional modeling. In this paper, we applied a nonlinear inversion technique to calibrate the ecosystem model CENTURY against carbon (C) and nitrogen (N) stock measurements collected from 39 mature tropical forest sites in...
Kumar, K Vasanth
2006-10-11
Batch kinetic experiments were carried out for the sorption of methylene blue onto activated carbon. The experimental kinetics were fitted to the pseudo first-order and pseudo second-order kinetics by linear and a non-linear method. The five different types of Ho pseudo second-order expression have been discussed. A comparison of linear least-squares method and a trial and error non-linear method of estimating the pseudo second-order rate kinetic parameters were examined. The sorption process was found to follow a both pseudo first-order kinetic and pseudo second-order kinetic model. Present investigation showed that it is inappropriate to use a type 1 and type pseudo second-order expressions as proposed by Ho and Blanachard et al. respectively for predicting the kinetic rate constants and the initial sorption rate for the studied system. Three correct possible alternate linear expressions (type 2 to type 4) to better predict the initial sorption rate and kinetic rate constants for the studied system (methylene blue/activated carbon) was proposed. Linear method was found to check only the hypothesis instead of verifying the kinetic model. Non-linear regression method was found to be the more appropriate method to determine the rate kinetic parameters.
[Relationship between shift work and overweight/obesity in male steel workers].
Xiao, M Y; Wang, Z Y; Fan, H M; Che, C L; Lu, Y; Cong, L X; Gao, X J; Liu, Y J; Yuan, J X; Li, X M; Hu, B; Chen, Y P
2016-11-10
Objective: To investigate the relationship between shift work and overweight/obesity in male steel workers. Methods: A questionnaire survey was conducted among the male steel workers selected during health examination in Tangshan Steel Company from March 2015 to March 2016. The relationship between shift work and overweight/obesity in the male steel workers were analyzed by using logistic regression model and restricted cubic splinemodel. Results: A total of 7 262 male steel workers were surveyed, the overall prevalence of overweight/obesitywas 64.5% (4 686/7 262), the overweight rate was 34.3% and the obesity rate was 30.2%, respectively. After adjusting for age, educational level and average family income level per month by multivariable logistic regression analysis, shift work was associated with overweight/obesity and obesity in the male steel workers. The OR was 1.19(95% CI : 1.05-1.35) and 1.15(95% CI : 1.00-1.32). Restricted cubic spline model analysis showed that the relationship between shift work years and overweight/obesity in the male steel workers was a nonlinear dose response one (nonlinear test χ 2 =7.43, P <0.05). Restricted cubic spline model analysis showed that the relationship between shift work years and obesity in the male steel workers was a nonlinear dose response one (nonlinear test χ 2 =10.48, P <0.05). Conclusion: Shift work was associated with overweight and obesity in the male steel workers, and shift work years and overweight/obesity had a nonlinear relationship.
Modal-pushover-based ground-motion scaling procedure
Kalkan, Erol; Chopra, Anil K.
2011-01-01
Earthquake engineering is increasingly using nonlinear response history analysis (RHA) to demonstrate the performance of structures. This rigorous method of analysis requires selection and scaling of ground motions appropriate to design hazard levels. This paper presents a modal-pushover-based scaling (MPS) procedure to scale ground motions for use in a nonlinear RHA of buildings. In the MPS method, the ground motions are scaled to match to a specified tolerance, a target value of the inelastic deformation of the first-mode inelastic single-degree-of-freedom (SDF) system whose properties are determined by the first-mode pushover analysis. Appropriate for first-mode dominated structures, this approach is extended for structures with significant contributions of higher modes by considering elastic deformation of second-mode SDF systems in selecting a subset of the scaled ground motions. Based on results presented for three actual buildings-4, 6, and 13-story-the accuracy and efficiency of the MPS procedure are established and its superiority over the ASCE/SEI 7-05 scaling procedure is demonstrated.
Divergent expansion, Borel summability and three-dimensional Navier-Stokes equation.
Costin, Ovidiu; Luo, Guo; Tanveer, Saleh
2008-08-13
We describe how the Borel summability of a divergent asymptotic expansion can be expanded and applied to nonlinear partial differential equations (PDEs). While Borel summation does not apply for non-analytic initial data, the present approach generates an integral equation (IE) applicable to much more general data. We apply these concepts to the three-dimensional Navier-Stokes (NS) system and show how the IE approach can give rise to local existence proofs. In this approach, the global existence problem in three-dimensional NS systems, for specific initial condition and viscosity, becomes a problem of asymptotics in the variable p (dual to 1/t or some positive power of 1/t). Furthermore, the errors in numerical computations in the associated IE can be controlled rigorously, which is very important for nonlinear PDEs such as NS when solutions are not known to exist globally.Moreover, computation of the solution of the IE over an interval [0,p0] provides sharper control of its p-->infinity behaviour. Preliminary numerical computations give encouraging results.
Nonlinear collisionless electron cyclotron interaction in the pre-ionisation stage
NASA Astrophysics Data System (ADS)
Farina, D.
2018-06-01
Electron cyclotron (EC) wave-particle interaction is theoretically investigated in the pre-ionisation phase, much before collisions and other mechanisms can play a role. In the very first phase of a plasma discharge with EC-assisted breakdown, the motion of an electron at room temperature in a static magnetic field under the action of a localised microwave beam is nonlinear, and transition to states of larger energy can occur via wave trapping. Within a Hamiltonian adiabatic formalism, the conditions at which the particles gain energy in single beam crossing are derived in a rigorous way, and the energy variation is characterized quantitatively as a function of the wave frequency, harmonic number, polarisation and EC power and beam width. Estimates of interest for applications to tokamak start-up are obtained for the first, second and third cyclotron harmonic. The investigation confirms that electrons can easily gain energies well above the ionisation energy in most conditions at the first two harmonics, while not at the third harmonic, as observed in experiments.
Wagner, Brian J.; Gorelick, Steven M.
1986-01-01
A simulation nonlinear multiple-regression methodology for estimating parameters that characterize the transport of contaminants is developed and demonstrated. Finite difference contaminant transport simulation is combined with a nonlinear weighted least squares multiple-regression procedure. The technique provides optimal parameter estimates and gives statistics for assessing the reliability of these estimates under certain general assumptions about the distributions of the random measurement errors. Monte Carlo analysis is used to estimate parameter reliability for a hypothetical homogeneous soil column for which concentration data contain large random measurement errors. The value of data collected spatially versus data collected temporally was investigated for estimation of velocity, dispersion coefficient, effective porosity, first-order decay rate, and zero-order production. The use of spatial data gave estimates that were 2–3 times more reliable than estimates based on temporal data for all parameters except velocity. Comparison of estimated linear and nonlinear confidence intervals based upon Monte Carlo analysis showed that the linear approximation is poor for dispersion coefficient and zero-order production coefficient when data are collected over time. In addition, examples demonstrate transport parameter estimation for two real one-dimensional systems. First, the longitudinal dispersivity and effective porosity of an unsaturated soil are estimated using laboratory column data. We compare the reliability of estimates based upon data from individual laboratory experiments versus estimates based upon pooled data from several experiments. Second, the simulation nonlinear regression procedure is extended to include an additional governing equation that describes delayed storage during contaminant transport. The model is applied to analyze the trends, variability, and interrelationship of parameters in a mourtain stream in northern California.
Helbich, Marco; Klein, Nadja; Roberts, Hannah; Hagedoorn, Paulien; Groenewegen, Peter P
2018-06-20
Exposure to green space seems to be beneficial for self-reported mental health. In this study we used an objective health indicator, namely antidepressant prescription rates. Current studies rely exclusively upon mean regression models assuming linear associations. It is, however, plausible that the presence of green space is non-linearly related with different quantiles of the outcome antidepressant prescription rates. These restrictions may contribute to inconsistent findings. Our aim was: a) to assess antidepressant prescription rates in relation to green space, and b) to analyze how the relationship varies non-linearly across different quantiles of antidepressant prescription rates. We used cross-sectional data for the year 2014 at a municipality level in the Netherlands. Ecological Bayesian geoadditive quantile regressions were fitted for the 15%, 50%, and 85% quantiles to estimate green space-prescription rate correlations, controlling for physical activity levels, socio-demographics, urbanicity, etc. RESULTS: The results suggested that green space was overall inversely and non-linearly associated with antidepressant prescription rates. More important, the associations differed across the quantiles, although the variation was modest. Significant non-linearities were apparent: The associations were slightly positive in the lower quantile and strongly negative in the upper one. Our findings imply that an increased availability of green space within a municipality may contribute to a reduction in the number of antidepressant prescriptions dispensed. Green space is thus a central health and community asset, whilst a minimum level of 28% needs to be established for health gains. The highest effectiveness occurred at a municipality surface percentage higher than 79%. This inverse dose-dependent relation has important implications for setting future community-level health and planning policies. Copyright © 2018 Elsevier Inc. All rights reserved.
Radical-Driven Silicon Surface Passivation for Organic-Inorganic Hybrid Photovoltaics
NASA Astrophysics Data System (ADS)
Chandra, Nitish
The advent of metamaterials has increased the complexity of possible light-matter interactions, creating gaps in knowledge and violating various commonly used approximations and rendering some common mathematical frameworks incomplete. Our forward scattering experiments on metallic shells and cavities have created a need for a rigorous geometry-based analysis of scattering problems and more rigorous current distribution descriptions in the volume of the scattering object. In order to build an accurate understanding of these interactions, we have revisited the fundamentals of Maxwell's equations, electromagnetic potentials and boundary conditions to build a bottom-up geometry-based analysis of scattering. Individual structures or meta-atoms can be designed to localize the incident electromagnetic radiation in order to create a change in local constitutive parameters and possible nonlinear responses. Hence, in next generation engineered materials, an accurate determination of current distribution on the surface and in the structure's volume play an important role in describing and designing desired properties. Multipole expansions of the exact current distribution determined using principles of differential geometry provides an elegant way to study these local interactions of meta-atoms. The dynamics of the interactions can be studied using the behavior of the polarization and magnetization densities generated by localized current densities interacting with the electromagnetic potentials associated with the incident waves. The multipole method combined with propagation of electromagnetic potentials can be used to predict a large variety of linear and nonlinear physical phenomena. This has been demonstrated in experiments that enable the analog detection of sources placed at subwavelength separation by using time reversal of observed signals. Time reversal is accomplished by reversing the direction of the magnetic dipole in bianisotropic metasurfaces while simultaneously providing a method to reduce the losses often observed when light interacts with meta-structures.
NASA Astrophysics Data System (ADS)
Weisz, Elisabeth; Smith, William L.; Smith, Nadia
2013-06-01
The dual-regression (DR) method retrieves information about the Earth surface and vertical atmospheric conditions from measurements made by any high-spectral resolution infrared sounder in space. The retrieved information includes temperature and atmospheric gases (such as water vapor, ozone, and carbon species) as well as surface and cloud top parameters. The algorithm was designed to produce a high-quality product with low latency and has been demonstrated to yield accurate results in real-time environments. The speed of the retrieval is achieved through linear regression, while accuracy is achieved through a series of classification schemes and decision-making steps. These steps are necessary to account for the nonlinearity of hyperspectral retrievals. In this work, we detail the key steps that have been developed in the DR method to advance accuracy in the retrieval of nonlinear parameters, specifically cloud top pressure. The steps and their impact on retrieval results are discussed in-depth and illustrated through relevant case studies. In addition to discussing and demonstrating advances made in addressing nonlinearity in a linear geophysical retrieval method, advances toward multi-instrument geophysical analysis by applying the DR to three different operational sounders in polar orbit are also noted. For any area on the globe, the DR method achieves consistent accuracy and precision, making it potentially very valuable to both the meteorological and environmental user communities.
NASA Astrophysics Data System (ADS)
Haris, A.; Nafian, M.; Riyanto, A.
2017-07-01
Danish North Sea Fields consist of several formations (Ekofisk, Tor, and Cromer Knoll) that was started from the age of Paleocene to Miocene. In this study, the integration of seismic and well log data set is carried out to determine the chalk sand distribution in the Danish North Sea field. The integration of seismic and well log data set is performed by using the seismic inversion analysis and seismic multi-attribute. The seismic inversion algorithm, which is used to derive acoustic impedance (AI), is model-based technique. The derived AI is then used as external attributes for the input of multi-attribute analysis. Moreover, the multi-attribute analysis is used to generate the linear and non-linear transformation of among well log properties. In the case of the linear model, selected transformation is conducted by weighting step-wise linear regression (SWR), while for the non-linear model is performed by using probabilistic neural networks (PNN). The estimated porosity, which is resulted by PNN shows better suited to the well log data compared with the results of SWR. This result can be understood since PNN perform non-linear regression so that the relationship between the attribute data and predicted log data can be optimized. The distribution of chalk sand has been successfully identified and characterized by porosity value ranging from 23% up to 30%.
NASA Astrophysics Data System (ADS)
Koyuncu, A.; Cigeroglu, E.; Özgüven, H. N.
2017-10-01
In this study, a new approach is proposed for identification of structural nonlinearities by employing cascaded optimization and neural networks. Linear finite element model of the system and frequency response functions measured at arbitrary locations of the system are used in this approach. Using the finite element model, a training data set is created, which appropriately spans the possible nonlinear configurations space of the system. A classification neural network trained on these data sets then localizes and determines the types of all nonlinearities associated with the nonlinear degrees of freedom in the system. A new training data set spanning the parametric space associated with the determined nonlinearities is created to facilitate parametric identification. Utilizing this data set, initially, a feed forward regression neural network is trained, which parametrically identifies the classified nonlinearities. Then, the results obtained are further improved by carrying out an optimization which uses network identified values as starting points. Unlike identification methods available in literature, the proposed approach does not require data collection from the degrees of freedoms where nonlinear elements are attached, and furthermore, it is sufficiently accurate even in the presence of measurement noise. The application of the proposed approach is demonstrated on an example system with nonlinear elements and on a real life experimental setup with a local nonlinearity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Wenqiang, E-mail: wfeng1@vols.utk.edu; Salgado, Abner J., E-mail: asalgad1@utk.edu; Wang, Cheng, E-mail: cwang1@umassd.edu
We describe and analyze preconditioned steepest descent (PSD) solvers for fourth and sixth-order nonlinear elliptic equations that include p-Laplacian terms on periodic domains in 2 and 3 dimensions. The highest and lowest order terms of the equations are constant-coefficient, positive linear operators, which suggests a natural preconditioning strategy. Such nonlinear elliptic equations often arise from time discretization of parabolic equations that model various biological and physical phenomena, in particular, liquid crystals, thin film epitaxial growth and phase transformations. The analyses of the schemes involve the characterization of the strictly convex energies associated with the equations. We first give a generalmore » framework for PSD in Hilbert spaces. Based on certain reasonable assumptions of the linear pre-conditioner, a geometric convergence rate is shown for the nonlinear PSD iteration. We then apply the general theory to the fourth and sixth-order problems of interest, making use of Sobolev embedding and regularity results to confirm the appropriateness of our pre-conditioners for the regularized p-Lapacian problems. Our results include a sharper theoretical convergence result for p-Laplacian systems compared to what may be found in existing works. We demonstrate rigorously how to apply the theory in the finite dimensional setting using finite difference discretization methods. Numerical simulations for some important physical application problems – including thin film epitaxy with slope selection and the square phase field crystal model – are carried out to verify the efficiency of the scheme.« less
NASA Astrophysics Data System (ADS)
Feng, Wenqiang; Salgado, Abner J.; Wang, Cheng; Wise, Steven M.
2017-04-01
We describe and analyze preconditioned steepest descent (PSD) solvers for fourth and sixth-order nonlinear elliptic equations that include p-Laplacian terms on periodic domains in 2 and 3 dimensions. The highest and lowest order terms of the equations are constant-coefficient, positive linear operators, which suggests a natural preconditioning strategy. Such nonlinear elliptic equations often arise from time discretization of parabolic equations that model various biological and physical phenomena, in particular, liquid crystals, thin film epitaxial growth and phase transformations. The analyses of the schemes involve the characterization of the strictly convex energies associated with the equations. We first give a general framework for PSD in Hilbert spaces. Based on certain reasonable assumptions of the linear pre-conditioner, a geometric convergence rate is shown for the nonlinear PSD iteration. We then apply the general theory to the fourth and sixth-order problems of interest, making use of Sobolev embedding and regularity results to confirm the appropriateness of our pre-conditioners for the regularized p-Lapacian problems. Our results include a sharper theoretical convergence result for p-Laplacian systems compared to what may be found in existing works. We demonstrate rigorously how to apply the theory in the finite dimensional setting using finite difference discretization methods. Numerical simulations for some important physical application problems - including thin film epitaxy with slope selection and the square phase field crystal model - are carried out to verify the efficiency of the scheme.
The Changing Nonlinear Relationship between Income and Terrorism
Enders, Walter; Hoover, Gary A.
2014-01-01
This article reinvestigates the relationship between real per capita gross domestic product (GDP) and terrorism. We devise a terrorism Lorenz curve to show that domestic and transnational terrorist attacks are each more concentrated in middle-income countries, thereby suggesting a nonlinear income–terrorism relationship. Moreover, this point of concentration shifted to lower income countries after the rising influence of the religious fundamentalist and nationalist/separatist terrorists in the early 1990s. For transnational terrorist attacks, this shift characterized not only the attack venue but also the perpetrators’ nationality. The article then uses nonlinear smooth transition regressions to establish the relationship between real per capita GDP and terrorism for eight alternative terrorism samples, accounting for venue, perpetrators’ nationality, terrorism type, and the period. Our nonlinear estimates are shown to be favored over estimates using linear or quadratic income determinants of terrorism. These nonlinear estimates are robust to additional controls. PMID:28579636
Model-free inference of direct network interactions from nonlinear collective dynamics.
Casadiego, Jose; Nitzan, Mor; Hallerberg, Sarah; Timme, Marc
2017-12-19
The topology of interactions in network dynamical systems fundamentally underlies their function. Accelerating technological progress creates massively available data about collective nonlinear dynamics in physical, biological, and technological systems. Detecting direct interaction patterns from those dynamics still constitutes a major open problem. In particular, current nonlinear dynamics approaches mostly require to know a priori a model of the (often high dimensional) system dynamics. Here we develop a model-independent framework for inferring direct interactions solely from recording the nonlinear collective dynamics generated. Introducing an explicit dependency matrix in combination with a block-orthogonal regression algorithm, the approach works reliably across many dynamical regimes, including transient dynamics toward steady states, periodic and non-periodic dynamics, and chaos. Together with its capabilities to reveal network (two point) as well as hypernetwork (e.g., three point) interactions, this framework may thus open up nonlinear dynamics options of inferring direct interaction patterns across systems where no model is known.
Using nonlinear quantile regression to estimate the self-thinning boundary curve
Quang V. Cao; Thomas J. Dean
2015-01-01
The relationship between tree size (quadratic mean diameter) and tree density (number of trees per unit area) has been a topic of research and discussion for many decades. Starting with Reineke in 1933, the maximum size-density relationship, on a log-log scale, has been assumed to be linear. Several techniques, including linear quantile regression, have been employed...
A New SEYHAN's Approach in Case of Heterogeneity of Regression Slopes in ANCOVA.
Ankarali, Handan; Cangur, Sengul; Ankarali, Seyit
2018-06-01
In this study, when the assumptions of linearity and homogeneity of regression slopes of conventional ANCOVA are not met, a new approach named as SEYHAN has been suggested to use conventional ANCOVA instead of robust or nonlinear ANCOVA. The proposed SEYHAN's approach involves transformation of continuous covariate into categorical structure when the relationship between covariate and dependent variable is nonlinear and the regression slopes are not homogenous. A simulated data set was used to explain SEYHAN's approach. In this approach, we performed conventional ANCOVA in each subgroup which is constituted according to knot values and analysis of variance with two-factor model after MARS method was used for categorization of covariate. The first model is a simpler model than the second model that includes interaction term. Since the model with interaction effect has more subjects, the power of test also increases and the existing significant difference is revealed better. We can say that linearity and homogeneity of regression slopes are not problem for data analysis by conventional linear ANCOVA model by helping this approach. It can be used fast and efficiently for the presence of one or more covariates.
The Influential Effect of Blending, Bump, Changing Period, and Eclipsing Cepheids on the Leavitt Law
NASA Astrophysics Data System (ADS)
García-Varela, A.; Muñoz, J. R.; Sabogal, B. E.; Vargas Domínguez, S.; Martínez, J.
2016-06-01
The investigation of the nonlinearity of the Leavitt law (LL) is a topic that began more than seven decades ago, when some of the studies in this field found that the LL has a break at about 10 days. The goal of this work is to investigate a possible statistical cause of this nonlinearity. By applying linear regressions to OGLE-II and OGLE-IV data, we find that to obtain the LL by using linear regression, robust techniques to deal with influential points and/or outliers are needed instead of the ordinary least-squares regression traditionally used. In particular, by using M- and MM-regressions we establish firmly and without doubt the linearity of the LL in the Large Magellanic Cloud, without rejecting or excluding Cepheid data from the analysis. This implies that light curves of Cepheids suggesting blending, bumps, eclipses, or period changes do not affect the LL for this galaxy. For the Small Magellanic Cloud, when including Cepheids of this kind, it is not possible to find an adequate model, probably because of the geometry of the galaxy. In that case, a possible influence of these stars could exist.
Higher-order Multivariable Polynomial Regression to Estimate Human Affective States
NASA Astrophysics Data System (ADS)
Wei, Jie; Chen, Tong; Liu, Guangyuan; Yang, Jiemin
2016-03-01
From direct observations, facial, vocal, gestural, physiological, and central nervous signals, estimating human affective states through computational models such as multivariate linear-regression analysis, support vector regression, and artificial neural network, have been proposed in the past decade. In these models, linear models are generally lack of precision because of ignoring intrinsic nonlinearities of complex psychophysiological processes; and nonlinear models commonly adopt complicated algorithms. To improve accuracy and simplify model, we introduce a new computational modeling method named as higher-order multivariable polynomial regression to estimate human affective states. The study employs standardized pictures in the International Affective Picture System to induce thirty subjects’ affective states, and obtains pure affective patterns of skin conductance as input variables to the higher-order multivariable polynomial model for predicting affective valence and arousal. Experimental results show that our method is able to obtain efficient correlation coefficients of 0.98 and 0.96 for estimation of affective valence and arousal, respectively. Moreover, the method may provide certain indirect evidences that valence and arousal have their brain’s motivational circuit origins. Thus, the proposed method can serve as a novel one for efficiently estimating human affective states.
Higher-order Multivariable Polynomial Regression to Estimate Human Affective States
Wei, Jie; Chen, Tong; Liu, Guangyuan; Yang, Jiemin
2016-01-01
From direct observations, facial, vocal, gestural, physiological, and central nervous signals, estimating human affective states through computational models such as multivariate linear-regression analysis, support vector regression, and artificial neural network, have been proposed in the past decade. In these models, linear models are generally lack of precision because of ignoring intrinsic nonlinearities of complex psychophysiological processes; and nonlinear models commonly adopt complicated algorithms. To improve accuracy and simplify model, we introduce a new computational modeling method named as higher-order multivariable polynomial regression to estimate human affective states. The study employs standardized pictures in the International Affective Picture System to induce thirty subjects’ affective states, and obtains pure affective patterns of skin conductance as input variables to the higher-order multivariable polynomial model for predicting affective valence and arousal. Experimental results show that our method is able to obtain efficient correlation coefficients of 0.98 and 0.96 for estimation of affective valence and arousal, respectively. Moreover, the method may provide certain indirect evidences that valence and arousal have their brain’s motivational circuit origins. Thus, the proposed method can serve as a novel one for efficiently estimating human affective states. PMID:26996254
Total Ambient Dose Equivalent Buildup Factor Determination for Nbs04 Concrete.
Duckic, Paulina; Hayes, Robert B
2018-06-01
Buildup factors are dimensionless multiplicative factors required by the point kernel method to account for scattered radiation through a shielding material. The accuracy of the point kernel method is strongly affected by the correspondence of analyzed parameters to experimental configurations, which is attempted to be simplified here. The point kernel method has not been found to have widespread practical use for neutron shielding calculations due to the complex neutron transport behavior through shielding materials (i.e. the variety of interaction mechanisms that neutrons may undergo while traversing the shield) as well as non-linear neutron total cross section energy dependence. In this work, total ambient dose buildup factors for NBS04 concrete are calculated in terms of neutron and secondary gamma ray transmission factors. The neutron and secondary gamma ray transmission factors are calculated using MCNP6™ code with updated cross sections. Both transmission factors and buildup factors are given in a tabulated form. Practical use of neutron transmission and buildup factors warrants rigorously calculated results with all associated uncertainties. In this work, sensitivity analysis of neutron transmission factors and total buildup factors with varying water content has been conducted. The analysis showed significant impact of varying water content in concrete on both neutron transmission factors and total buildup factors. Finally, support vector regression, a machine learning technique, has been engaged to make a model based on the calculated data for calculation of the buildup factors. The developed model can predict most of the data with 20% relative error.
Zhu, L; Yang, Y; Lu, X
2016-01-01
The Rho-associated kinases (ROCKs) have long been recognized as an attractive therapeutic target for various neurological diseases; selective inhibition of ROCK1 and ROCK2 isoforms would result in distinct biological effects on neurogenesis, neuroplasticity and neuroregeneration after brain surgery and traumatic brain injury. However, the discovery and design of isoform-selective inhibitors remain a great challenge due to the high conservation and similarity between the kinase domains of ROCK1 and ROCK2. Here, a structure-based quantitative structure-selectivity relationship (SB-QSSR) approach was used to correlate experimentally measured selectivity with the difference in inhibitor binding to the two kinase isoforms. The resulting regression models were examined rigorously through both internal cross-validation and external blind validation; a nonlinear predictor was found to have high fitting stability and strong generalization ability, which was then employed to perform virtual screening against a structurally diverse, drug-like compound library. Consequently, five and seven hits were identified as promising candidates of 1-o-2 and 2-o-1 selective inhibitors, respectively, from which seven purchasable compounds were tested in vitro using a standard kinase assay protocol to determine their inhibitory activity against and selectivity between ROCK1 and ROCK2. The structural basis, energetic property and biological implication underlying inhibitor selectivity and promiscuity were also investigated systematically using a hybrid quantum mechanics/molecular mechanics (QM/MM) scheme.
On the interannual oscillations in the northern temperate total ozone
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krzyscin, J.W.
1994-07-01
The interannual variations in total ozone are studied using revised Dobson total ozone records (1961-1990) from 17 stations located within the latitude band 30 deg N - 60 deg N. To obtain the quasi-biennial oscillation (QBO), El Nino-Southern Oscillation (ENSO), and 11-year solar cycle manifestation in the `northern temperate` total ozone data, various multiple regression models are constructed by the least squares fitting to the observed ozone. The statistical relationships between the selected indices of the atmospheric variabilities and total ozone are described in the linear and nonlinear regression models. Nonlinear relationships to the predictor variables are found. That is,more » the total ozone variations are statistically modeled by nonlinear terms accounting for the coupling between QBO and ENSO, QBO and solar activity, and ENSO and solar activity. It is suggested that large reduction of total ozone values over the `northern temperate` region occurs in cold season when a strong ENSO warm event meets the west phase of the QBO during the period of high solar activity.« less
MATERNAL CHRONOLOGICAL AGE, PRENATAL AND PERINATAL HISTORY, SOCIAL SUPPORT, AND PARENTING OF INFANTS
Bornstein, Marc H.; Putnick, Diane L.; Suwalsky, Joan T. D.; Gini, Motti
2018-01-01
The role of maternal chronological age in prenatal and perinatal history, social support, and parenting practices of new mothers (N = 335) was examined. Primiparas of 5-month-old infants ranged in age from 13 to 42 years. Age effects were zero, linear, and nonlinear. Nonlinear age effects were significantly associated up to a certain age with little or no association afterward; by spline regression, estimated points at which the slope of the regression line changed were 25 years for prenatal and perinatal history, 31 years for social supports, and 27 years for parenting practices. Given the expanding age range of first-time parents, these findings underscore the importance of incorporating maternal age as a factor in studies of parenting and child development. PMID:16942495
Evaluation of a physically based quasi-linear and a conceptually based nonlinear Muskingum methods
NASA Astrophysics Data System (ADS)
Perumal, Muthiah; Tayfur, Gokmen; Rao, C. Madhusudana; Gurarslan, Gurhan
2017-03-01
Two variants of the Muskingum flood routing method formulated for accounting nonlinearity of the channel routing process are investigated in this study. These variant methods are: (1) The three-parameter conceptual Nonlinear Muskingum (NLM) method advocated by Gillin 1978, and (2) The Variable Parameter McCarthy-Muskingum (VPMM) method recently proposed by Perumal and Price in 2013. The VPMM method does not require rigorous calibration and validation procedures as required in the case of NLM method due to established relationships of its parameters with flow and channel characteristics based on hydrodynamic principles. The parameters of the conceptual nonlinear storage equation used in the NLM method were calibrated using the Artificial Intelligence Application (AIA) techniques, such as the Genetic Algorithm (GA), the Differential Evolution (DE), the Particle Swarm Optimization (PSO) and the Harmony Search (HS). The calibration was carried out on a given set of hypothetical flood events obtained by routing a given inflow hydrograph in a set of 40 km length prismatic channel reaches using the Saint-Venant (SV) equations. The validation of the calibrated NLM method was investigated using a different set of hypothetical flood hydrographs obtained in the same set of channel reaches used for calibration studies. Both the sets of solutions obtained in the calibration and validation cases using the NLM method were compared with the corresponding solutions of the VPMM method based on some pertinent evaluation measures. The results of the study reveal that the physically based VPMM method is capable of accounting for nonlinear characteristics of flood wave movement better than the conceptually based NLM method which requires the use of tedious calibration and validation procedures.
Equal Pay for Equal Work in Academic Obstetrics and Gynecology.
Eichelberger, Kacey Y
2018-02-01
The most compelling data suggest women in academic obstetrics and gynecology earn approximately $36,000 less than male colleagues per year in regression models correcting for commonly cited explanatory variables. Although residual confounding may exist, academic departments in the United States should consider rigorous examination of their own internal metrics around salary to ensure gender-neutral compensation, commonly referred to as equal pay for equal work.
The Relationship between TOC and pH with Exchangeable Heavy Metal Levels in Lithuanian Podzols
NASA Astrophysics Data System (ADS)
Khaledian, Yones; Pereira, Paulo; Brevik, Eric C.; Pundyte, Neringa; Paliulis, Dainius
2017-04-01
Heavy metals can have a negative impact on public and environmental health. The objective of this study was to investigate the relationship between total organic carbon (TOC) and pH with exchangeable heavy metals (Pb, Cd, Cu and Zn) in order to predict exchangeable heavy metal content in soils sampled near Panevėžys and Kaunas, Lithuania. Principal component regression (PCR) and nonlinear regression methods were tested to find the statistical relationship between TOC and pH with heavy metals. The results of PCR [R2 = 0.68, RMSE = 0.07] and non-linear regression [R2 = 0.74, RMSE= 0.065] (pH with TOC and exchangeable parameters) were statistically significant. However, this was not observed in the relationships of pH and TOC separately with exchangeable heavy metals. The results indicated that pH had a higher correlation with exchangeable heavy metals (non-linear regression [R2 = 0.72, RMSE= 0.066]) than TOC with heavy metals [R2 = 0.30, RMSE= 0.004]. It can be concluded that even though there was a strong relationship between TOC and pH with exchangeable metals, the metal mobility (exchangeable metals) can be explained by pH better than TOC in this study. Finally, manipulating soil pH could likely be productive to assess and control heavy metals when financial and time limitations exist (Khaledian et al. 2016). Reference(s) Khaledian Y, Pereira P, Brevik E.C, Pundyte N, Paliulis D. 2016. The Influence of Organic Carbon and pH on Heavy Metals, Potassium, and Magnesium Levels in Lithuanian Podzols. Land Degradation and Development. DOI: 10.1002/ldr.2638
Long, Yi; Du, Zhi-Jiang; Chen, Chao-Feng; Dong, Wei; Wang, Wei-Dong
2017-07-01
The most important step for lower extremity exoskeleton is to infer human motion intent (HMI), which contributes to achieve human exoskeleton collaboration. Since the user is in the control loop, the relationship between human robot interaction (HRI) information and HMI is nonlinear and complicated, which is difficult to be modeled by using mathematical approaches. The nonlinear approximation can be learned by using machine learning approaches. Gaussian Process (GP) regression is suitable for high-dimensional and small-sample nonlinear regression problems. GP regression is restrictive for large data sets due to its computation complexity. In this paper, an online sparse GP algorithm is constructed to learn the HMI. The original training dataset is collected when the user wears the exoskeleton system with friction compensation to perform unconstrained movement as far as possible. The dataset has two kinds of data, i.e., (1) physical HRI, which is collected by torque sensors placed at the interaction cuffs for the active joints, i.e., knee joints; (2) joint angular position, which is measured by optical position sensors. To reduce the computation complexity of GP, grey relational analysis (GRA) is utilized to specify the original dataset and provide the final training dataset. Those hyper-parameters are optimized offline by maximizing marginal likelihood and will be applied into online GP regression algorithm. The HMI, i.e., angular position of human joints, will be regarded as the reference trajectory for the mechanical legs. To verify the effectiveness of the proposed algorithm, experiments are performed on a subject at a natural speed. The experimental results show the HMI can be obtained in real time, which can be extended and employed in the similar exoskeleton systems.
Nonlinear optical properties of interconnected gold nanoparticles on silicon
NASA Astrophysics Data System (ADS)
Lesuffleur, Antoine; Gogol, Philippe; Beauvillain, Pierre; Guizal, B.; Van Labeke, D.; Georges, P.
2008-12-01
We report second harmonic generation (SHG) measurements in reflectivity from chains of gold nanoparticles interconnected with metallic bridges. We measured more than 30 times a SHG enhancement when a surface plasmon resonance was excited in the chains of nanoparticles, which was influenced by coupling due to the electrical connectivity of the bridges. This enhancement was confirmed by rigorous coupled wave method calculations and came from high localization of the electric field at the bridge. The introduction of 10% random defects into the chains of nanoparticles dropped the SHG by a factor of 2 and was shown to be very sensitive to the fundamental wavelength.
NASA Astrophysics Data System (ADS)
Griffin, Patrick; Rochman, Dimitri; Koning, Arjan
2017-09-01
A rigorous treatment of the uncertainty in the underlying nuclear data on silicon displacement damage metrics is presented. The uncertainty in the cross sections and recoil atom spectra are propagated into the energy-dependent uncertainty contribution in the silicon displacement kerma and damage energy using a Total Monte Carlo treatment. An energy-dependent covariance matrix is used to characterize the resulting uncertainty. A strong correlation between different reaction channels is observed in the high energy neutron contributions to the displacement damage metrics which supports the necessity of using a Monte Carlo based method to address the nonlinear nature of the uncertainty propagation.
Geodesics in nonexpanding impulsive gravitational waves with Λ. II
NASA Astrophysics Data System (ADS)
Sämann, Clemens; Steinbauer, Roland
2017-11-01
We investigate all geodesics in the entire class of nonexpanding impulsive gravitational waves propagating in an (anti-)de Sitter universe using the distributional metric. We extend the regularization approach of part I [Sämann, C. et al., Classical Quantum Gravity 33(11), 115002 (2016)] to a full nonlinear distributional analysis within the geometric theory of generalized functions. We prove global existence and uniqueness of geodesics that cross the impulsive wave and hence geodesic completeness in full generality for this class of low regularity spacetimes. This, in particular, prepares the ground for a mathematically rigorous account on the "physical equivalence" of the continuous form with the distributional "form" of the metric.
Magnetoplasmon spectrum for realistic off-plane structure of dissipative 2D system
NASA Astrophysics Data System (ADS)
Cheremisin, M. V.
2017-12-01
The rigorous analysis of the textbook result (Chiu and Quinn, 1974) gives unexpectedly the dramatic change of the magnetoplasmon spectrum taking into account both the arbitrary dissipation and asymmetric off-plane structure of 2D system. For given wave vector the dissipation enhancement leads to decrease(increase) of magnetoplasmon frequency at low(high) magnetic field. At certain range of disorder the purely relaxational mode appears in magnetoplasmon spectrum. In strong magnetic fields the magnetoplasmon frequency falls to cyclotron resonance line even in presence of finite dissipation. The observation of nonlinearity and, moreover, the mysterious zig-zag behavior 2D magnetoplasmon spectrum is consistent with our findings.
NASA Technical Reports Server (NTRS)
Arbocz, Johann; Hol, J. M. A. M.; deVries, J.
1998-01-01
A rigorous solution is presented for the case of stiffened anisotropic cylindrical shells with general imperfections under combined loading, where the edge supports are provided by symmetrical or unsymmetrical elastic rings. The circumferential dependence is eliminated by a truncated Fourier series. The resulting nonlinear 2-point boundary value problem is solved numerically via the "Parallel Shooting Method". The changing deformation patterns resulting from the different degrees of interaction between the given initial imperfections and the specified end rings are displayed. Recommendations are made as to the minimum ring stiffnesses required for optimal load carrying configurations.
Liang, Hua; Miao, Hongyu; Wu, Hulin
2010-03-01
Modeling viral dynamics in HIV/AIDS studies has resulted in deep understanding of pathogenesis of HIV infection from which novel antiviral treatment guidance and strategies have been derived. Viral dynamics models based on nonlinear differential equations have been proposed and well developed over the past few decades. However, it is quite challenging to use experimental or clinical data to estimate the unknown parameters (both constant and time-varying parameters) in complex nonlinear differential equation models. Therefore, investigators usually fix some parameter values, from the literature or by experience, to obtain only parameter estimates of interest from clinical or experimental data. However, when such prior information is not available, it is desirable to determine all the parameter estimates from data. In this paper, we intend to combine the newly developed approaches, a multi-stage smoothing-based (MSSB) method and the spline-enhanced nonlinear least squares (SNLS) approach, to estimate all HIV viral dynamic parameters in a nonlinear differential equation model. In particular, to the best of our knowledge, this is the first attempt to propose a comparatively thorough procedure, accounting for both efficiency and accuracy, to rigorously estimate all key kinetic parameters in a nonlinear differential equation model of HIV dynamics from clinical data. These parameters include the proliferation rate and death rate of uninfected HIV-targeted cells, the average number of virions produced by an infected cell, and the infection rate which is related to the antiviral treatment effect and is time-varying. To validate the estimation methods, we verified the identifiability of the HIV viral dynamic model and performed simulation studies. We applied the proposed techniques to estimate the key HIV viral dynamic parameters for two individual AIDS patients treated with antiretroviral therapies. We demonstrate that HIV viral dynamics can be well characterized and quantified for individual patients. As a result, personalized treatment decision based on viral dynamic models is possible.
NASA Astrophysics Data System (ADS)
Yadav, Manish; Singh, Nitin Kumar
2017-12-01
A comparison of the linear and non-linear regression method in selecting the optimum isotherm among three most commonly used adsorption isotherms (Langmuir, Freundlich, and Redlich-Peterson) was made to the experimental data of fluoride (F) sorption onto Bio-F at a solution temperature of 30 ± 1 °C. The coefficient of correlation (r2) was used to select the best theoretical isotherm among the investigated ones. A total of four Langmuir linear equations were discussed and out of which linear form of most popular Langmuir-1 and Langmuir-2 showed the higher coefficient of determination (0.976 and 0.989) as compared to other Langmuir linear equations. Freundlich and Redlich-Peterson isotherms showed a better fit to the experimental data in linear least-square method, while in non-linear method Redlich-Peterson isotherm equations showed the best fit to the tested data set. The present study showed that the non-linear method could be a better way to obtain the isotherm parameters and represent the most suitable isotherm. Redlich-Peterson isotherm was found to be the best representative (r2 = 0.999) for this sorption system. It is also observed that the values of β are not close to unity, which means the isotherms are approaching the Freundlich but not the Langmuir isotherm.
On the Tracy-Widomβ Distribution for β=6
NASA Astrophysics Data System (ADS)
Grava, Tamara; Its, Alexander; Kapaev, Andrei; Mezzadri, Francesco
2016-11-01
We study the Tracy-Widom distribution function for Dyson's β-ensemble with β = 6. The starting point of our analysis is the recent work of I. Rumanov where he produces a Lax-pair representation for the Bloemendal-Virág equation. The latter is a linear PDE which describes the Tracy-Widom functions corresponding to general values of β. Using his Lax pair, Rumanov derives an explicit formula for the Tracy-Widom β=6 function in terms of the second Painlevé transcendent and the solution of an auxiliary ODE. Rumanov also shows that this formula allows him to derive formally the asymptotic expansion of the Tracy-Widom function. Our goal is to make Rumanov's approach and hence the asymptotic analysis it provides rigorous. In this paper, the first one in a sequel, we show that Rumanov's Lax-pair can be interpreted as a certain gauge transformation of the standard Lax pair for the second Painlevé equation. This gauge transformation though contains functional parameters which are defined via some auxiliary nonlinear ODE which is equivalent to the auxiliary ODE of Rumanov's formula. The gauge-interpretation of Rumanov's Lax-pair allows us to highlight the steps of the original Rumanov's method which needs rigorous justifications in order to make the method complete. We provide a rigorous justification of one of these steps. Namely, we prove that the Painlevé function involved in Rumanov's formula is indeed, as it has been suggested by Rumanov, the Hastings-McLeod solution of the second Painlevé equation. The key issue which we also discuss and which is still open is the question of integrability of the auxiliary ODE in Rumanov's formula. We note that this question is crucial for the rigorous asymptotic analysis of the Tracy-Widom function. We also notice that our work is a partial answer to one of the problems related to the β-ensembles formulated by Percy Deift during the June 2015 Montreal Conference on integrable systems.
Tiedeman, C.R.; Kernodle, J.M.; McAda, D.P.
1998-01-01
This report documents the application of nonlinear-regression methods to a numerical model of ground-water flow in the Albuquerque Basin, New Mexico. In the Albuquerque Basin, ground water is the primary source for most water uses. Ground-water withdrawal has steadily increased since the 1940's, resulting in large declines in water levels in the Albuquerque area. A ground-water flow model was developed in 1994 and revised and updated in 1995 for the purpose of managing basin ground- water resources. In the work presented here, nonlinear-regression methods were applied to a modified version of the previous flow model. Goals of this work were to use regression methods to calibrate the model with each of six different configurations of the basin subsurface and to assess and compare optimal parameter estimates, model fit, and model error among the resulting calibrations. The Albuquerque Basin is one in a series of north trending structural basins within the Rio Grande Rift, a region of Cenozoic crustal extension. Mountains, uplifts, and fault zones bound the basin, and rock units within the basin include pre-Santa Fe Group deposits, Tertiary Santa Fe Group basin fill, and post-Santa Fe Group volcanics and sediments. The Santa Fe Group is greater than 14,000 feet (ft) thick in the central part of the basin. During deposition of the Santa Fe Group, crustal extension resulted in development of north trending normal faults with vertical displacements of as much as 30,000 ft. Ground-water flow in the Albuquerque Basin occurs primarily in the Santa Fe Group and post-Santa Fe Group deposits. Water flows between the ground-water system and surface-water bodies in the inner valley of the basin, where the Rio Grande, a network of interconnected canals and drains, and Cochiti Reservoir are located. Recharge to the ground-water flow system occurs as infiltration of precipitation along mountain fronts and infiltration of stream water along tributaries to the Rio Grande; subsurface flow from adjacent regions; irrigation and septic field seepage; and leakage through the Rio Grande, canal, and Cochiti Reservoir beds. Ground water is discharged from the basin by withdrawal; evapotranspiration; subsurface flow; and flow to the Rio Grande, canals, and drains. The transient, three-dimensional numerical model of ground-water flow to which nonlinear-regression methods were applied simulates flow in the Albuquerque Basin from 1900 to March 1995. Six different basin subsurface configurations are considered in the model. These configurations are designed to test the effects of (1) varying the simulated basin thickness, (2) including a hypothesized hydrogeologic unit with large hydraulic conductivity in the western part of the basin (the west basin high-K zone), and (3) substantially lowering the simulated hydraulic conductivity of a fault in the western part of the basin (the low-K fault zone). The model with each of the subsurface configurations was calibrated using a nonlinear least- squares regression technique. The calibration data set includes 802 hydraulic-head measurements that provide broad spatial and temporal coverage of basin conditions, and one measurement of net flow from the Rio Grande and drains to the ground-water system in the Albuquerque area. Data are weighted on the basis of estimates of the standard deviations of measurement errors. The 10 to 12 parameters to which the calibration data as a whole are generally most sensitive were estimated by nonlinear regression, whereas the remaining model parameter values were specified. Results of model calibration indicate that the optimal parameter estimates as a whole are most reasonable in calibrations of the model with with configurations 3 (which contains 1,600-ft-thick basin deposits and the west basin high-K zone), 4 (which contains 5,000-ft-thick basin de
Van Looy, Stijn; Verplancke, Thierry; Benoit, Dominique; Hoste, Eric; Van Maele, Georges; De Turck, Filip; Decruyenaere, Johan
2007-01-01
Tacrolimus is an important immunosuppressive drug for organ transplantation patients. It has a narrow therapeutic range, toxic side effects, and a blood concentration with wide intra- and interindividual variability. Hence, it is of the utmost importance to monitor tacrolimus blood concentration, thereby ensuring clinical effect and avoiding toxic side effects. Prediction models for tacrolimus blood concentration can improve clinical care by optimizing monitoring of these concentrations, especially in the initial phase after transplantation during intensive care unit (ICU) stay. This is the first study in the ICU in which support vector machines, as a new data modeling technique, are investigated and tested in their prediction capabilities of tacrolimus blood concentration. Linear support vector regression (SVR) and nonlinear radial basis function (RBF) SVR are compared with multiple linear regression (MLR). Tacrolimus blood concentrations, together with 35 other relevant variables from 50 liver transplantation patients, were extracted from our ICU database. This resulted in a dataset of 457 blood samples, on average between 9 and 10 samples per patient, finally resulting in a database of more than 16,000 data values. Nonlinear RBF SVR, linear SVR, and MLR were performed after selection of clinically relevant input variables and model parameters. Differences between observed and predicted tacrolimus blood concentrations were calculated. Prediction accuracy of the three methods was compared after fivefold cross-validation (Friedman test and Wilcoxon signed rank analysis). Linear SVR and nonlinear RBF SVR had mean absolute differences between observed and predicted tacrolimus blood concentrations of 2.31 ng/ml (standard deviation [SD] 2.47) and 2.38 ng/ml (SD 2.49), respectively. MLR had a mean absolute difference of 2.73 ng/ml (SD 3.79). The difference between linear SVR and MLR was statistically significant (p < 0.001). RBF SVR had the advantage of requiring only 2 input variables to perform this prediction in comparison to 15 and 16 variables needed by linear SVR and MLR, respectively. This is an indication of the superior prediction capability of nonlinear SVR. Prediction of tacrolimus blood concentration with linear and nonlinear SVR was excellent, and accuracy was superior in comparison with an MLR model.
Traffic Predictive Control: Case Study and Evaluation
DOT National Transportation Integrated Search
2017-06-26
This project developed a quantile regression method for predicting future traffic flow at a signalized intersection by combining both historical and real-time data. The algorithm exploits nonlinear correlations in historical measurements and efficien...
Differentially private distributed logistic regression using private and public data.
Ji, Zhanglong; Jiang, Xiaoqian; Wang, Shuang; Xiong, Li; Ohno-Machado, Lucila
2014-01-01
Privacy protecting is an important issue in medical informatics and differential privacy is a state-of-the-art framework for data privacy research. Differential privacy offers provable privacy against attackers who have auxiliary information, and can be applied to data mining models (for example, logistic regression). However, differentially private methods sometimes introduce too much noise and make outputs less useful. Given available public data in medical research (e.g. from patients who sign open-consent agreements), we can design algorithms that use both public and private data sets to decrease the amount of noise that is introduced. In this paper, we modify the update step in Newton-Raphson method to propose a differentially private distributed logistic regression model based on both public and private data. We try our algorithm on three different data sets, and show its advantage over: (1) a logistic regression model based solely on public data, and (2) a differentially private distributed logistic regression model based on private data under various scenarios. Logistic regression models built with our new algorithm based on both private and public datasets demonstrate better utility than models that trained on private or public datasets alone without sacrificing the rigorous privacy guarantee.
NASA Technical Reports Server (NTRS)
Whitlock, C. H., III
1977-01-01
Constituents with linear radiance gradients with concentration may be quantified from signals which contain nonlinear atmospheric and surface reflection effects for both homogeneous and non-homogeneous water bodies provided accurate data can be obtained and nonlinearities are constant with wavelength. Statistical parameters must be used which give an indication of bias as well as total squared error to insure that an equation with an optimum combination of bands is selected. It is concluded that the effect of error in upwelled radiance measurements is to reduce the accuracy of the least square fitting process and to increase the number of points required to obtain a satisfactory fit. The problem of obtaining a multiple regression equation that is extremely sensitive to error is discussed.
Solar cycle in current reanalyses: (non)linear attribution study
NASA Astrophysics Data System (ADS)
Kuchar, A.; Sacha, P.; Miksovsky, J.; Pisoft, P.
2014-12-01
This study focusses on the variability of temperature, ozone and circulation characteristics in the stratosphere and lower mesosphere with regard to the influence of the 11 year solar cycle. It is based on attribution analysis using multiple nonlinear techniques (Support Vector Regression, Neural Networks) besides the traditional linear approach. The analysis was applied to several current reanalysis datasets for the 1979-2013 period, including MERRA, ERA-Interim and JRA-55, with the aim to compare how this type of data resolves especially the double-peaked solar response in temperature and ozone variables and the consequent changes induced by these anomalies. Equatorial temperature signals in the lower and upper stratosphere were found to be sufficiently robust and in qualitative agreement with previous observational studies. The analysis also pointed to the solar signal in the ozone datasets (i.e. MERRA and ERA-Interim) not being consistent with the observed double-peaked ozone anomaly extracted from satellite measurements. Consequently the results obtained by linear regression were confirmed by the nonlinear approach through all datasets, suggesting that linear regression is a relevant tool to sufficiently resolve the solar signal in the middle atmosphere. Furthermore, the seasonal dependence of the solar response was also discussed, mainly as a source of dynamical causalities in the wave propagation characteristics in the zonal wind and the induced meridional circulation in the winter hemispheres. The hypothetical mechanism of a weaker Brewer Dobson circulation was reviewed together with discussion of polar vortex stability.
Modelling daily water temperature from air temperature for the Missouri River.
Zhu, Senlin; Nyarko, Emmanuel Karlo; Hadzima-Nyarko, Marijana
2018-01-01
The bio-chemical and physical characteristics of a river are directly affected by water temperature, which thereby affects the overall health of aquatic ecosystems. It is a complex problem to accurately estimate water temperature. Modelling of river water temperature is usually based on a suitable mathematical model and field measurements of various atmospheric factors. In this article, the air-water temperature relationship of the Missouri River is investigated by developing three different machine learning models (Artificial Neural Network (ANN), Gaussian Process Regression (GPR), and Bootstrap Aggregated Decision Trees (BA-DT)). Standard models (linear regression, non-linear regression, and stochastic models) are also developed and compared to machine learning models. Analyzing the three standard models, the stochastic model clearly outperforms the standard linear model and nonlinear model. All the three machine learning models have comparable results and outperform the stochastic model, with GPR having slightly better results for stations No. 2 and 3, while BA-DT has slightly better results for station No. 1. The machine learning models are very effective tools which can be used for the prediction of daily river temperature.
Purpura, David J; Logan, Jessica A R
2015-12-01
Both mathematical language and the approximate number system (ANS) have been identified as strong predictors of early mathematics performance. Yet, these relations may be different depending on a child's developmental level. The purpose of this study was to evaluate the relations between these domains across different levels of ability. Participants included 114 children who were assessed in the fall and spring of preschool on a battery of academic and cognitive tasks. Children were 3.12 to 5.26 years old (M = 4.18, SD = .58) and 53.6% were girls. Both mixed-effect and quantile regressions were conducted. The mixed-effect regressions indicated that mathematical language, but not the ANS, nor other cognitive domains, predicted mathematics performance. However, the quantile regression analyses revealed a more nuanced relation among domains. Specifically, it was found that mathematical language and the ANS predicted mathematical performance at different points on the ability continuum. These dual nonlinear relations indicate that different mechanisms may enhance mathematical acquisition dependent on children's developmental abilities. (c) 2015 APA, all rights reserved).
NASA Astrophysics Data System (ADS)
Xenopoulos, M. A.; Vogt, R. J.
2014-12-01
There is now increasing evidence that non-linearity is a common response in ecological systems to pressures caused by human activities. There is also increasing evidence that exogenous environmental drivers, such as climate, induce spatial and temporal synchrony in a wide range of ecological variables. Using Moran's I and Pearson's correlation, we quantified the synchrony of dissolved organic carbon concentration (DOC) and quality (DOM; e.g., specific UV absorbance, Fluorescence Index, PARAFAC), nutrients, discharge and temperature in 40 streams that span an agriculture gradient (0 to >70% cropland), over 10 years. We then used breakpoint regression, 2D-Kolmogorov-Smirnov test and significant zero crossings (SiZer) analyses to quantify the prevalence of nonlinearity and ecological thresholds (breakpoints) where applicable. There was a high degree of synchrony in DOM quality (r > 0.7) but not DOC (r < 0.4). The degree of synchrony was driven in part by the catchment's land use. With respect to the nonlinear analyses we found non-linearity in ~50% of bivariate datasets analyzed. Non-linearity was also driven in part by the catchment's land use. Breakpoints defined different DOM properties. Nonlinearity and synchronous behaviour in DOM are intimately linked to land use.
Genomic prediction based on data from three layer lines using non-linear regression models.
Huang, Heyun; Windig, Jack J; Vereijken, Addie; Calus, Mario P L
2014-11-06
Most studies on genomic prediction with reference populations that include multiple lines or breeds have used linear models. Data heterogeneity due to using multiple populations may conflict with model assumptions used in linear regression methods. In an attempt to alleviate potential discrepancies between assumptions of linear models and multi-population data, two types of alternative models were used: (1) a multi-trait genomic best linear unbiased prediction (GBLUP) model that modelled trait by line combinations as separate but correlated traits and (2) non-linear models based on kernel learning. These models were compared to conventional linear models for genomic prediction for two lines of brown layer hens (B1 and B2) and one line of white hens (W1). The three lines each had 1004 to 1023 training and 238 to 240 validation animals. Prediction accuracy was evaluated by estimating the correlation between observed phenotypes and predicted breeding values. When the training dataset included only data from the evaluated line, non-linear models yielded at best a similar accuracy as linear models. In some cases, when adding a distantly related line, the linear models showed a slight decrease in performance, while non-linear models generally showed no change in accuracy. When only information from a closely related line was used for training, linear models and non-linear radial basis function (RBF) kernel models performed similarly. The multi-trait GBLUP model took advantage of the estimated genetic correlations between the lines. Combining linear and non-linear models improved the accuracy of multi-line genomic prediction. Linear models and non-linear RBF models performed very similarly for genomic prediction, despite the expectation that non-linear models could deal better with the heterogeneous multi-population data. This heterogeneity of the data can be overcome by modelling trait by line combinations as separate but correlated traits, which avoids the occasional occurrence of large negative accuracies when the evaluated line was not included in the training dataset. Furthermore, when using a multi-line training dataset, non-linear models provided information on the genotype data that was complementary to the linear models, which indicates that the underlying data distributions of the three studied lines were indeed heterogeneous.
A quantile regression model for failure-time data with time-dependent covariates
Gorfine, Malka; Goldberg, Yair; Ritov, Ya’acov
2017-01-01
Summary Since survival data occur over time, often important covariates that we wish to consider also change over time. Such covariates are referred as time-dependent covariates. Quantile regression offers flexible modeling of survival data by allowing the covariates to vary with quantiles. This article provides a novel quantile regression model accommodating time-dependent covariates, for analyzing survival data subject to right censoring. Our simple estimation technique assumes the existence of instrumental variables. In addition, we present a doubly-robust estimator in the sense of Robins and Rotnitzky (1992, Recovery of information and adjustment for dependent censoring using surrogate markers. In: Jewell, N. P., Dietz, K. and Farewell, V. T. (editors), AIDS Epidemiology. Boston: Birkhaäuser, pp. 297–331.). The asymptotic properties of the estimators are rigorously studied. Finite-sample properties are demonstrated by a simulation study. The utility of the proposed methodology is demonstrated using the Stanford heart transplant dataset. PMID:27485534
Thermal noise in mid-infrared broadband upconversion detectors.
Barh, Ajanta; Tidemand-Lichtenberg, Peter; Pedersen, Christian
2018-02-05
Low noise detection with state-of-the-art mid-infrared (MIR) detectors (e.g., PbS, PbSe, InSb, HgCdTe) is a primary challenge owing to the intrinsic thermal background radiation of the low bandgap detector material itself. However, researchers have employed frequency upconversion based detectors (UCD), operable at room temperature, as a promising alternative to traditional direct detection schemes. UCD allows for the use of a low noise silicon-CCD/camera to improve the SNR. Using UCD, the noise contributions from the nonlinear material itself should be evaluated in order to estimate the limits of the noise-equivalent power of an UCD system. In this article, we rigorously analyze the optical power generated by frequency upconversion of the intrinsic black-body radiation in the nonlinear material itself due to the crystals residual emissivity, i.e. absorption. The thermal radiation is particularly prominent at the optical absorption edge of the nonlinear material even at room temperature. We consider a conventional periodically poled lithium niobate (PPLN) based MIR-UCD for the investigation. The UCD is designed to cover a broad spectral range, overlapping with the entire absorption edge of the PPLN (3.5 - 5 µm). Finally, an upconverted thermal radiation power of ~30 pW at room temperature (~30°C) and a maximum of ~70 pW at 120°C of the PPLN crystal are measured for a CW mixing beam of power ~60 W, supporting a good quantitative agreement with the theory. The analysis can easily be extended to other popular nonlinear conversion processes including OPO, DFG, and SHG.
NASA Astrophysics Data System (ADS)
Karami, K.; Mohebi, R.
2007-08-01
We introduce a new method to derive the orbital parameters of spectroscopic binary stars by nonlinear least squares of (o-c). Using the measured radial velocity data of the four double lined spectroscopic binary systems, AI Phe, GM Dra, HD 93917 and V502 Oph, we derived both the orbital and combined spectroscopic elements of these systems. Our numerical results are in good agreement with the those obtained using the method of Lehmann-Filhé.
2008-01-01
strategies, increasing the prevalence of both hypoglycemia and anemia in the ICU.14–20 The change in allogeneic blood transfusion practices occurred in...measurements in samples with low HCT levels.4,5,7,8,12 The error occurs because de- creased red blood cell causes less displacement of plasma, resulting...Nonlinear component regression was performed be- cause HCT has a nonlinear effect on accuracy of POC glucometers. A dual parameter correction factor was
PharmML in Action: an Interoperable Language for Modeling and Simulation
Bizzotto, R; Smith, G; Yvon, F; Kristensen, NR; Swat, MJ
2017-01-01
PharmML1 is an XML‐based exchange format2, 3, 4 created with a focus on nonlinear mixed‐effect (NLME) models used in pharmacometrics,5, 6 but providing a very general framework that also allows describing mathematical and statistical models such as single‐subject or nonlinear and multivariate regression models. This tutorial provides an overview of the structure of this language, brief suggestions on how to work with it, and use cases demonstrating its power and flexibility. PMID:28575551
Two-dimensional advective transport in ground-water flow parameter estimation
Anderman, E.R.; Hill, M.C.; Poeter, E.P.
1996-01-01
Nonlinear regression is useful in ground-water flow parameter estimation, but problems of parameter insensitivity and correlation often exist given commonly available hydraulic-head and head-dependent flow (for example, stream and lake gain or loss) observations. To address this problem, advective-transport observations are added to the ground-water flow, parameter-estimation model MODFLOWP using particle-tracking methods. The resulting model is used to investigate the importance of advective-transport observations relative to head-dependent flow observations when either or both are used in conjunction with hydraulic-head observations in a simulation of the sewage-discharge plume at Otis Air Force Base, Cape Cod, Massachusetts, USA. The analysis procedure for evaluating the probable effect of new observations on the regression results consists of two steps: (1) parameter sensitivities and correlations calculated at initial parameter values are used to assess the model parameterization and expected relative contributions of different types of observations to the regression; and (2) optimal parameter values are estimated by nonlinear regression and evaluated. In the Cape Cod parameter-estimation model, advective-transport observations did not significantly increase the overall parameter sensitivity; however: (1) inclusion of advective-transport observations decreased parameter correlation enough for more unique parameter values to be estimated by the regression; (2) realistic uncertainties in advective-transport observations had a small effect on parameter estimates relative to the precision with which the parameters were estimated; and (3) the regression results and sensitivity analysis provided insight into the dynamics of the ground-water flow system, especially the importance of accurate boundary conditions. In this work, advective-transport observations improved the calibration of the model and the estimation of ground-water flow parameters, and use of regression and related techniques produced significant insight into the physical system.
Concrete ensemble Kalman filters with rigorous catastrophic filter divergence
Kelly, David; Majda, Andrew J.; Tong, Xin T.
2015-01-01
The ensemble Kalman filter and ensemble square root filters are data assimilation methods used to combine high-dimensional, nonlinear dynamical models with observed data. Ensemble methods are indispensable tools in science and engineering and have enjoyed great success in geophysical sciences, because they allow for computationally cheap low-ensemble-state approximation for extremely high-dimensional turbulent forecast models. From a theoretical perspective, the dynamical properties of these methods are poorly understood. One of the central mysteries is the numerical phenomenon known as catastrophic filter divergence, whereby ensemble-state estimates explode to machine infinity, despite the true state remaining in a bounded region. In this article we provide a breakthrough insight into the phenomenon, by introducing a simple and natural forecast model that transparently exhibits catastrophic filter divergence under all ensemble methods and a large set of initializations. For this model, catastrophic filter divergence is not an artifact of numerical instability, but rather a true dynamical property of the filter. The divergence is not only validated numerically but also proven rigorously. The model cleanly illustrates mechanisms that give rise to catastrophic divergence and confirms intuitive accounts of the phenomena given in past literature. PMID:26261335
Muthukkumaran, A; Aravamudan, K
2017-12-15
Adsorption, a popular technique for removing azo dyes from aqueous streams, is influenced by several factors such as pH, initial dye concentration, temperature and adsorbent dosage. Any strategy that seeks to identify optimal conditions involving these factors, should take into account both kinetic and equilibrium aspects since they influence rate and extent of removal by adsorption. Hence rigorous kinetics and accurate equilibrium models are required. In this work, the experimental investigations pertaining to adsorption of acid orange 10 dye (AO10) on activated carbon were carried out using Central Composite Design (CCD) strategy. The significant factors that affected adsorption were identified to be solution temperature, solution pH, adsorbent dosage and initial solution concentration. Thermodynamic analysis showed the endothermic nature of the dye adsorption process. The kinetics of adsorption has been rigorously modeled using the Homogeneous Surface Diffusion Model (HSDM) after incorporating the non-linear Freundlich adsorption isotherm. Optimization was performed for kinetic parameters (color removal time and surface diffusion coefficient) as well as the equilibrium affected response viz. percentage removal. Finally, the optimum conditions predicted were experimentally validated. Copyright © 2017 Elsevier Ltd. All rights reserved.
Rigorous derivation of porous-media phase-field equations
NASA Astrophysics Data System (ADS)
Schmuck, Markus; Kalliadasis, Serafim
2017-11-01
The evolution of interfaces in Complex heterogeneous Multiphase Systems (CheMSs) plays a fundamental role in a wide range of scientific fields such as thermodynamic modelling of phase transitions, materials science, or as a computational tool for interfacial flow studies or material design. Here, we focus on phase-field equations in CheMSs such as porous media. To the best of our knowledge, we present the first rigorous derivation of error estimates for fourth order, upscaled, and nonlinear evolution equations. For CheMs with heterogeneity ɛ, we obtain the convergence rate ɛ 1 / 4 , which governs the error between the solution of the new upscaled formulation and the solution of the microscopic phase-field problem. This error behaviour has recently been validated computationally in. Due to the wide range of application of phase-field equations, we expect this upscaled formulation to allow for new modelling, analytic, and computational perspectives for interfacial transport and phase transformations in CheMSs. This work was supported by EPSRC, UK, through Grant Nos. EP/H034587/1, EP/L027186/1, EP/L025159/1, EP/L020564/1, EP/K008595/1, and EP/P011713/1 and from ERC via Advanced Grant No. 247031.
Liu, Jianfeng; Laird, Carl Damon
2017-09-22
Optimal design of a gas detection systems is challenging because of the numerous sources of uncertainty, including weather and environmental conditions, leak location and characteristics, and process conditions. Rigorous CFD simulations of dispersion scenarios combined with stochastic programming techniques have been successfully applied to the problem of optimal gas detector placement; however, rigorous treatment of sensor failure and nonuniform unavailability has received less attention. To improve reliability of the design, this paper proposes a problem formulation that explicitly considers nonuniform unavailabilities and all backup detection levels. The resulting sensor placement problem is a large-scale mixed-integer nonlinear programming (MINLP) problem thatmore » requires a tailored solution approach for efficient solution. We have developed a multitree method which depends on iteratively solving a sequence of upper-bounding master problems and lower-bounding subproblems. The tailored global solution strategy is tested on a real data problem and the encouraging numerical results indicate that our solution framework is promising in solving sensor placement problems. This study was selected for the special issue in JLPPI from the 2016 International Symposium of the MKO Process Safety Center.« less
Concrete ensemble Kalman filters with rigorous catastrophic filter divergence.
Kelly, David; Majda, Andrew J; Tong, Xin T
2015-08-25
The ensemble Kalman filter and ensemble square root filters are data assimilation methods used to combine high-dimensional, nonlinear dynamical models with observed data. Ensemble methods are indispensable tools in science and engineering and have enjoyed great success in geophysical sciences, because they allow for computationally cheap low-ensemble-state approximation for extremely high-dimensional turbulent forecast models. From a theoretical perspective, the dynamical properties of these methods are poorly understood. One of the central mysteries is the numerical phenomenon known as catastrophic filter divergence, whereby ensemble-state estimates explode to machine infinity, despite the true state remaining in a bounded region. In this article we provide a breakthrough insight into the phenomenon, by introducing a simple and natural forecast model that transparently exhibits catastrophic filter divergence under all ensemble methods and a large set of initializations. For this model, catastrophic filter divergence is not an artifact of numerical instability, but rather a true dynamical property of the filter. The divergence is not only validated numerically but also proven rigorously. The model cleanly illustrates mechanisms that give rise to catastrophic divergence and confirms intuitive accounts of the phenomena given in past literature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Jianfeng; Laird, Carl Damon
Optimal design of a gas detection systems is challenging because of the numerous sources of uncertainty, including weather and environmental conditions, leak location and characteristics, and process conditions. Rigorous CFD simulations of dispersion scenarios combined with stochastic programming techniques have been successfully applied to the problem of optimal gas detector placement; however, rigorous treatment of sensor failure and nonuniform unavailability has received less attention. To improve reliability of the design, this paper proposes a problem formulation that explicitly considers nonuniform unavailabilities and all backup detection levels. The resulting sensor placement problem is a large-scale mixed-integer nonlinear programming (MINLP) problem thatmore » requires a tailored solution approach for efficient solution. We have developed a multitree method which depends on iteratively solving a sequence of upper-bounding master problems and lower-bounding subproblems. The tailored global solution strategy is tested on a real data problem and the encouraging numerical results indicate that our solution framework is promising in solving sensor placement problems. This study was selected for the special issue in JLPPI from the 2016 International Symposium of the MKO Process Safety Center.« less
BIODEGRADATION PROBABILITY PROGRAM (BIODEG)
The Biodegradation Probability Program (BIODEG) calculates the probability that a chemical under aerobic conditions with mixed cultures of microorganisms will biodegrade rapidly or slowly. It uses fragment constants developed using multiple linear and non-linear regressions and d...
Burnett-Cattaneo continuum theory for shock waves.
Holian, Brad Lee; Mareschal, Michel; Ravelo, Ramon
2011-02-01
We model strong shock-wave propagation, both in the ideal gas and in the dense Lennard-Jones fluid, using a refinement of earlier work, which accounts for the cold compression in the early stages of the shock rise by a nonlinear, Burnett-like, strain-rate dependence of the thermal conductivity, and relaxation of kinetic-temperature components on the hot, compressed side of the shock front. The relaxation of the disequilibrium among the three components of the kinetic temperature, namely, the difference between the component in the direction of a planar shock wave and those in the transverse directions, particularly in the region near the shock front, is accomplished at a much more quantitative level by a rigorous application of the Cattaneo-Maxwell relaxation equation to a reference solution, namely, the steady shock-wave solution of linear Navier-Stokes-Fourier theory, along with the nonlinear Burnett heat-flux term. Our new continuum theory is in nearly quantitative agreement with nonequilibrium molecular-dynamics simulations under strong shock-wave conditions, using relaxation parameters obtained from the reference solution. ©2011 American Physical Society
An almost symmetric Strang splitting scheme for nonlinear evolution equations.
Einkemmer, Lukas; Ostermann, Alexander
2014-07-01
In this paper we consider splitting methods for the time integration of parabolic and certain classes of hyperbolic partial differential equations, where one partial flow cannot be computed exactly. Instead, we use a numerical approximation based on the linearization of the vector field. This is of interest in applications as it allows us to apply splitting methods to a wider class of problems from the sciences. However, in the situation described, the classic Strang splitting scheme, while still being a method of second order, is not longer symmetric. This, in turn, implies that the construction of higher order methods by composition is limited to order three only. To remedy this situation, based on previous work in the context of ordinary differential equations, we construct a class of Strang splitting schemes that are symmetric up to a desired order. We show rigorously that, under suitable assumptions on the nonlinearity, these methods are of second order and can then be used to construct higher order methods by composition. In addition, we illustrate the theoretical results by conducting numerical experiments for the Brusselator system and the KdV equation.
A Mathematical Motivation for Complex-Valued Convolutional Networks.
Tygert, Mark; Bruna, Joan; Chintala, Soumith; LeCun, Yann; Piantino, Serkan; Szlam, Arthur
2016-05-01
A complex-valued convolutional network (convnet) implements the repeated application of the following composition of three operations, recursively applying the composition to an input vector of nonnegative real numbers: (1) convolution with complex-valued vectors, followed by (2) taking the absolute value of every entry of the resulting vectors, followed by (3) local averaging. For processing real-valued random vectors, complex-valued convnets can be viewed as data-driven multiscale windowed power spectra, data-driven multiscale windowed absolute spectra, data-driven multiwavelet absolute values, or (in their most general configuration) data-driven nonlinear multiwavelet packets. Indeed, complex-valued convnets can calculate multiscale windowed spectra when the convnet filters are windowed complex-valued exponentials. Standard real-valued convnets, using rectified linear units (ReLUs), sigmoidal (e.g., logistic or tanh) nonlinearities, or max pooling, for example, do not obviously exhibit the same exact correspondence with data-driven wavelets (whereas for complex-valued convnets, the correspondence is much more than just a vague analogy). Courtesy of the exact correspondence, the remarkably rich and rigorous body of mathematical analysis for wavelets applies directly to (complex-valued) convnets.
An almost symmetric Strang splitting scheme for nonlinear evolution equations☆
Einkemmer, Lukas; Ostermann, Alexander
2014-01-01
In this paper we consider splitting methods for the time integration of parabolic and certain classes of hyperbolic partial differential equations, where one partial flow cannot be computed exactly. Instead, we use a numerical approximation based on the linearization of the vector field. This is of interest in applications as it allows us to apply splitting methods to a wider class of problems from the sciences. However, in the situation described, the classic Strang splitting scheme, while still being a method of second order, is not longer symmetric. This, in turn, implies that the construction of higher order methods by composition is limited to order three only. To remedy this situation, based on previous work in the context of ordinary differential equations, we construct a class of Strang splitting schemes that are symmetric up to a desired order. We show rigorously that, under suitable assumptions on the nonlinearity, these methods are of second order and can then be used to construct higher order methods by composition. In addition, we illustrate the theoretical results by conducting numerical experiments for the Brusselator system and the KdV equation. PMID:25844017
Existence, stability, and nonlinear dynamics of detached Bridgman growth states under zero gravity
NASA Astrophysics Data System (ADS)
Yeckel, Andrew; Derby, Jeffrey J.
2011-01-01
A thermocapillary model is used to study the existence, stability, and nonlinear dynamics of detached melt crystal growth in a vertical Bridgman system under zero gravity conditions. The model incorporates time-dependent heat, mass, and momentum transport, and accounts for temperature-dependent surface tension effects at the menisci bounding the melt. The positions of the menisci and phase-change boundary are computed to satisfy the conservation laws rigorously. A rich bifurcation structure in gap width versus pressure difference is uncovered, demarcating conditions under which growth with a stable gap is feasible. Thermal effects shift the bifurcation diagram to a slightly different pressure range, but do not alter its general structure. Necking and freeze-off are shown to be two different manifestations of the same instability mechanism. Supercooling of melt at the meniscus and low thermal gradients in the melt ahead of the crystal-melt-gas triple phase line, either of which may be destabilizing, are both observed under some conditions. The role of wetting and growth angles in dynamic shape stability is clarified.
Lin, Jian Hung; Tseng, Chun-Yen; Lee, Ching-Ting; Young, Jeff F; Kan, Hung-Chih; Hsu, Chia Chen
2014-02-10
Guided mode resonance (GMR) enhanced second- and third-harmonic generation (SHG and THG) is demonstrated in an azo-polymer resonant waveguide grating (RWG), comprised of a poled azo-polymer layer on top of a textured SU8 substrate with a thin intervening layer of TiO2. Strong SHG and THG outputs are observed by matching either in-coming fundamental- or out-going harmonic-wavelength to the GMR wavelengths of the azo-polymer RWG. Without the azo-polymer coating, pure TiO2 RWGs, do not generate any detectable SHG using a fundamental beam peak intensity of 2 MW/cm(2). Without the textured TiO2 layer, a planar poled azo-polymer layer results in 3650 times less SHG than the full nonlinear RWG structure under identical excitation conditions. Rigorous coupled-wave analysis calculations confirm that this enhancement of the nonlinear conversion is due to strong local electric fields that are generated at the interfaces of the TiO2 and azo-polymer layers when the RWG is excited at resonant wavelengths associated with both SHG and THG conversion processes.
NASA Astrophysics Data System (ADS)
Wang, Jing; Yang, Tianyu; Staskevich, Gennady; Abbe, Brian
2017-04-01
This paper studies the cooperative control problem for a class of multiagent dynamical systems with partially unknown nonlinear system dynamics. In particular, the control objective is to solve the state consensus problem for multiagent systems based on the minimisation of certain cost functions for individual agents. Under the assumption that there exist admissible cooperative controls for such class of multiagent systems, the formulated problem is solved through finding the optimal cooperative control using the approximate dynamic programming and reinforcement learning approach. With the aid of neural network parameterisation and online adaptive learning, our method renders a practically implementable approximately adaptive neural cooperative control for multiagent systems. Specifically, based on the Bellman's principle of optimality, the Hamilton-Jacobi-Bellman (HJB) equation for multiagent systems is first derived. We then propose an approximately adaptive policy iteration algorithm for multiagent cooperative control based on neural network approximation of the value functions. The convergence of the proposed algorithm is rigorously proved using the contraction mapping method. The simulation results are included to validate the effectiveness of the proposed algorithm.
Instability of turing patterns in reaction-diffusion-ODE systems.
Marciniak-Czochra, Anna; Karch, Grzegorz; Suzuki, Kanako
2017-02-01
The aim of this paper is to contribute to the understanding of the pattern formation phenomenon in reaction-diffusion equations coupled with ordinary differential equations. Such systems of equations arise, for example, from modeling of interactions between cellular processes such as cell growth, differentiation or transformation and diffusing signaling factors. We focus on stability analysis of solutions of a prototype model consisting of a single reaction-diffusion equation coupled to an ordinary differential equation. We show that such systems are very different from classical reaction-diffusion models. They exhibit diffusion-driven instability (turing instability) under a condition of autocatalysis of non-diffusing component. However, the same mechanism which destabilizes constant solutions of such models, destabilizes also all continuous spatially heterogeneous stationary solutions, and consequently, there exist no stable Turing patterns in such reaction-diffusion-ODE systems. We provide a rigorous result on the nonlinear instability, which involves the analysis of a continuous spectrum of a linear operator induced by the lack of diffusion in the destabilizing equation. These results are extended to discontinuous patterns for a class of nonlinearities.
NASA Astrophysics Data System (ADS)
Coddington, O. M.; Vukicevic, T.; Schmidt, K. S.; Platnick, S.
2017-08-01
We rigorously quantify the probability of liquid or ice thermodynamic phase using only shortwave spectral channels specific to the National Aeronautics and Space Administration's Moderate Resolution Imaging Spectroradiometer, Visible Infrared Imaging Radiometer Suite, and the notional future Plankton, Aerosol, Cloud, ocean Ecosystem imager. The results show that two shortwave-infrared channels (2135 and 2250 nm) provide more information on cloud thermodynamic phase than either channel alone; in one case, the probability of ice phase retrieval increases from 65 to 82% by combining 2135 and 2250 nm channels. The analysis is performed with a nonlinear statistical estimation approach, the GEneralized Nonlinear Retrieval Analysis (GENRA). The GENRA technique has previously been used to quantify the retrieval of cloud optical properties from passive shortwave observations, for an assumed thermodynamic phase. Here we present the methodology needed to extend the utility of GENRA to a binary thermodynamic phase space (i.e., liquid or ice). We apply formal information content metrics to quantify our results; two of these (mutual and conditional information) have not previously been used in the field of cloud studies.
Quaternion-valued echo state networks.
Xia, Yili; Jahanchahi, Cyrus; Mandic, Danilo P
2015-04-01
Quaternion-valued echo state networks (QESNs) are introduced to cater for 3-D and 4-D processes, such as those observed in the context of renewable energy (3-D wind modeling) and human centered computing (3-D inertial body sensors). The introduction of QESNs is made possible by the recent emergence of quaternion nonlinear activation functions with local analytic properties, required by nonlinear gradient descent training algorithms. To make QENSs second-order optimal for the generality of quaternion signals (both circular and noncircular), we employ augmented quaternion statistics to introduce widely linear QESNs. To that end, the standard widely linear model is modified so as to suit the properties of dynamical reservoir, typically realized by recurrent neural networks. This allows for a full exploitation of second-order information in the data, contained both in the covariance and pseudocovariances, and a rigorous account of second-order noncircularity (improperness), and the corresponding power mismatch and coupling between the data components. Simulations in the prediction setting on both benchmark circular and noncircular signals and on noncircular real-world 3-D body motion data support the analysis.
Bias and uncertainty in regression-calibrated models of groundwater flow in heterogeneous media
Cooley, R.L.; Christensen, S.
2006-01-01
Groundwater models need to account for detailed but generally unknown spatial variability (heterogeneity) of the hydrogeologic model inputs. To address this problem we replace the large, m-dimensional stochastic vector ?? that reflects both small and large scales of heterogeneity in the inputs by a lumped or smoothed m-dimensional approximation ????*, where ?? is an interpolation matrix and ??* is a stochastic vector of parameters. Vector ??* has small enough dimension to allow its estimation with the available data. The consequence of the replacement is that model function f(????*) written in terms of the approximate inputs is in error with respect to the same model function written in terms of ??, ??,f(??), which is assumed to be nearly exact. The difference f(??) - f(????*), termed model error, is spatially correlated, generates prediction biases, and causes standard confidence and prediction intervals to be too small. Model error is accounted for in the weighted nonlinear regression methodology developed to estimate ??* and assess model uncertainties by incorporating the second-moment matrix of the model errors into the weight matrix. Techniques developed by statisticians to analyze classical nonlinear regression methods are extended to analyze the revised method. The analysis develops analytical expressions for bias terms reflecting the interaction of model nonlinearity and model error, for correction factors needed to adjust the sizes of confidence and prediction intervals for this interaction, and for correction factors needed to adjust the sizes of confidence and prediction intervals for possible use of a diagonal weight matrix in place of the correct one. If terms expressing the degree of intrinsic nonlinearity for f(??) and f(????*) are small, then most of the biases are small and the correction factors are reduced in magnitude. Biases, correction factors, and confidence and prediction intervals were obtained for a test problem for which model error is large to test robustness of the methodology. Numerical results conform with the theoretical analysis. ?? 2005 Elsevier Ltd. All rights reserved.
Relationship between age and elite marathon race time in world single age records from 5 to 93 years
2014-01-01
Background The aims of the study were (i) to investigate the relationship between elite marathon race times and age in 1-year intervals by using the world single age records in marathon running from 5 to 93 years and (ii) to evaluate the sex difference in elite marathon running performance with advancing age. Methods World single age records in marathon running in 1-year intervals for women and men were analysed regarding changes across age for both men and women using linear and non-linear regression analyses for each age for women and men. Results The relationship between elite marathon race time and age was non-linear (i.e. polynomial regression 4th degree) for women and men. The curve was U-shaped where performance improved from 5 to ~20 years. From 5 years to ~15 years, boys and girls performed very similar. Between ~20 and ~35 years, performance was quite linear, but started to decrease at the age of ~35 years in a curvilinear manner with increasing age in both women and men. The sex difference increased non-linearly (i.e. polynomial regression 7th degree) from 5 to ~20 years, remained unchanged at ~20 min from ~20 to ~50 years and increased thereafter. The sex difference was lowest (7.5%, 10.5 min) at the age of 49 years. Conclusion Elite marathon race times improved from 5 to ~20 years, remained linear between ~20 and ~35 years, and started to increase at the age of ~35 years in a curvilinear manner with increasing age in both women and men. The sex difference in elite marathon race time increased non-linearly and was lowest at the age of ~49 years. PMID:25120915
Evolution of large amplitude Alfven waves in solar wind plasmas: Kinetic-fluid models
NASA Astrophysics Data System (ADS)
Nariyuki, Y.
2014-12-01
Large amplitude Alfven waves are ubiquitously observed in solar wind plasmas. Mjolhus(JPP, 1976) and Mio et al(JPSJ, 1976) found that nonlinear evolution of the uni-directional, parallel propagating Alfven waves can be described by the derivative nonlinear Schrodinger equation (DNLS). Later, the multi-dimensional extension (Mjolhus and Wyller, JPP, 1988; Passot and Sulem, POP, 1993; Gazol et al, POP, 1999) and ion kinetic modification (Mjolhus and Wyller, JPP, 1988; Spangler, POP, 1989; Medvedev and Diamond, POP, 1996; Nariyuki et al, POP, 2013) of DNLS have been reported. Recently, Nariyuki derived multi-dimensional DNLS from an expanding box model of the Hall-MHD system (Nariyuki, submitted). The set of equations including the nonlinear evolution of compressional wave modes (TDNLS) was derived by Hada(GRL, 1993). DNLS can be derived from TDNLS by rescaling of the variables (Mjolhus, Phys. Scr., 2006). Nariyuki and Hada(JPSJ, 2007) derived a kinetically modified TDNLS by using a simple Landau closure (Hammet and Perkins, PRL, 1990; Medvedev and Diamond, POP, 1996). In the present study, we revisit the ion kinetic modification of multi-dimensional TDNLS through more rigorous derivations, which is consistent with the past kinetic modification of DNLS. Although the original TDNLS was derived in the multi-dimensional form, the evolution of waves with finite propagation angles in TDNLS has not been paid much attention. Applicability of the resultant models to solar wind turbulence is discussed.
NASA Astrophysics Data System (ADS)
See, J. J.; Jamaian, S. S.; Salleh, R. M.; Nor, M. E.; Aman, F.
2018-04-01
This research aims to estimate the parameters of Monod model of microalgae Botryococcus Braunii sp growth by the Least-Squares method. Monod equation is a non-linear equation which can be transformed into a linear equation form and it is solved by implementing the Least-Squares linear regression method. Meanwhile, Gauss-Newton method is an alternative method to solve the non-linear Least-Squares problem with the aim to obtain the parameters value of Monod model by minimizing the sum of square error ( SSE). As the result, the parameters of the Monod model for microalgae Botryococcus Braunii sp can be estimated by the Least-Squares method. However, the estimated parameters value obtained by the non-linear Least-Squares method are more accurate compared to the linear Least-Squares method since the SSE of the non-linear Least-Squares method is less than the linear Least-Squares method.
A PHARMACOKINETIC PROGRAM (PKFIT) FOR R
The purpose of this study was to create a nonlinear regression (including a genetic algorithm) program (R script) to deal with data fitting for pharmacokinetics (PK) in R environment using its available packages. We call this tool as PKfit.
Experimental validation of a coupled neutron-photon inverse radiation transport solver
NASA Astrophysics Data System (ADS)
Mattingly, John; Mitchell, Dean J.; Harding, Lee T.
2011-10-01
Sandia National Laboratories has developed an inverse radiation transport solver that applies nonlinear regression to coupled neutron-photon deterministic transport models. The inverse solver uses nonlinear regression to fit a radiation transport model to gamma spectrometry and neutron multiplicity counting measurements. The subject of this paper is the experimental validation of that solver. This paper describes a series of experiments conducted with a 4.5 kg sphere of α-phase, weapons-grade plutonium. The source was measured bare and reflected by high-density polyethylene (HDPE) spherical shells with total thicknesses between 1.27 and 15.24 cm. Neutron and photon emissions from the source were measured using three instruments: a gross neutron counter, a portable neutron multiplicity counter, and a high-resolution gamma spectrometer. These measurements were used as input to the inverse radiation transport solver to evaluate the solver's ability to correctly infer the configuration of the source from its measured radiation signatures.
Sim, K S; Norhisham, S
2016-11-01
A new method based on nonlinear least squares regression (NLLSR) is formulated to estimate signal-to-noise ratio (SNR) of scanning electron microscope (SEM) images. The estimation of SNR value based on NLLSR method is compared with the three existing methods of nearest neighbourhood, first-order interpolation and the combination of both nearest neighbourhood and first-order interpolation. Samples of SEM images with different textures, contrasts and edges were used to test the performance of NLLSR method in estimating the SNR values of the SEM images. It is shown that the NLLSR method is able to produce better estimation accuracy as compared to the other three existing methods. According to the SNR results obtained from the experiment, the NLLSR method is able to produce approximately less than 1% of SNR error difference as compared to the other three existing methods. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sadat Hayatshahi, Sayyed Hamed; Abdolmaleki, Parviz; Safarian, Shahrokh
2005-12-16
Logistic regression and artificial neural networks have been developed as two non-linear models to establish quantitative structure-activity relationships between structural descriptors and biochemical activity of adenosine based competitive inhibitors, toward adenosine deaminase. The training set included 24 compounds with known k {sub i} values. The models were trained to solve two-class problems. Unlike the previous work in which multiple linear regression was used, the highest of positive charge on the molecules was recognized to be in close relation with their inhibition activity, while the electric charge on atom N1 of adenosine was found to be a poor descriptor. Consequently, themore » previously developed equation was improved and the newly formed one could predict the class of 91.66% of compounds correctly. Also optimized 2-3-1 and 3-4-1 neural networks could increase this rate to 95.83%.« less
Linear and nonlinear models for predicting fish bioconcentration factors for pesticides.
Yuan, Jintao; Xie, Chun; Zhang, Ting; Sun, Jinfang; Yuan, Xuejie; Yu, Shuling; Zhang, Yingbiao; Cao, Yunyuan; Yu, Xingchen; Yang, Xuan; Yao, Wu
2016-08-01
This work is devoted to the applications of the multiple linear regression (MLR), multilayer perceptron neural network (MLP NN) and projection pursuit regression (PPR) to quantitative structure-property relationship analysis of bioconcentration factors (BCFs) of pesticides tested on Bluegill (Lepomis macrochirus). Molecular descriptors of a total of 107 pesticides were calculated with the DRAGON Software and selected by inverse enhanced replacement method. Based on the selected DRAGON descriptors, a linear model was built by MLR, nonlinear models were developed using MLP NN and PPR. The robustness of the obtained models was assessed by cross-validation and external validation using test set. Outliers were also examined and deleted to improve predictive power. Comparative results revealed that PPR achieved the most accurate predictions. This study offers useful models and information for BCF prediction, risk assessment, and pesticide formulation. Copyright © 2016 Elsevier Ltd. All rights reserved.
On the possibility of observing bound soliton pairs in a wave-breaking-free mode-locked fiber laser
NASA Astrophysics Data System (ADS)
Martel, G.; Chédot, C.; Réglier, V.; Hideur, A.; Ortaç, B.; Grelu, Ph.
2007-02-01
On the basis of numerical simulations, we explain the formation of the stable bound soliton pairs that were experimentally reported in a high-power mode-locked ytterbium fiber laser [Opt. Express 14, 6075 (2006)], in a regime where wave-breaking-free operation is expected. A fully vectorial model allows one to rigorously reproduce the nonmonotonic nature for the nonlinear polarization effect that generally limits the power scalability of a single-pulse self-similar regime. Simulations show that a self-similar regime is not fully obtained, although positive linear chirps and parabolic spectra are always reported. As a consequence, nonvanishing pulse tails allow distant stable binding of highly-chirped pulses.
A general panel sizing computer code and its application to composite structural panels
NASA Technical Reports Server (NTRS)
Anderson, M. S.; Stroud, W. J.
1978-01-01
A computer code for obtaining the dimensions of optimum (least mass) stiffened composite structural panels is described. The procedure, which is based on nonlinear mathematical programming and a rigorous buckling analysis, is applicable to general cross sections under general loading conditions causing buckling. A simplified method of accounting for bow-type imperfections is also included. Design studies in the form of structural efficiency charts for axial compression loading are made with the code for blade and hat stiffened panels. The effects on panel mass of imperfections, material strength limitations, and panel stiffness requirements are also examined. Comparisons with previously published experimental data show that accounting for imperfections improves correlation between theory and experiment.
Robust Adaptive Modified Newton Algorithm for Generalized Eigendecomposition and Its Application
NASA Astrophysics Data System (ADS)
Yang, Jian; Yang, Feng; Xi, Hong-Sheng; Guo, Wei; Sheng, Yanmin
2007-12-01
We propose a robust adaptive algorithm for generalized eigendecomposition problems that arise in modern signal processing applications. To that extent, the generalized eigendecomposition problem is reinterpreted as an unconstrained nonlinear optimization problem. Starting from the proposed cost function and making use of an approximation of the Hessian matrix, a robust modified Newton algorithm is derived. A rigorous analysis of its convergence properties is presented by using stochastic approximation theory. We also apply this theory to solve the signal reception problem of multicarrier DS-CDMA to illustrate its practical application. The simulation results show that the proposed algorithm has fast convergence and excellent tracking capability, which are important in a practical time-varying communication environment.
Correlation and simple linear regression.
Zou, Kelly H; Tuncali, Kemal; Silverman, Stuart G
2003-06-01
In this tutorial article, the concepts of correlation and regression are reviewed and demonstrated. The authors review and compare two correlation coefficients, the Pearson correlation coefficient and the Spearman rho, for measuring linear and nonlinear relationships between two continuous variables. In the case of measuring the linear relationship between a predictor and an outcome variable, simple linear regression analysis is conducted. These statistical concepts are illustrated by using a data set from published literature to assess a computed tomography-guided interventional technique. These statistical methods are important for exploring the relationships between variables and can be applied to many radiologic studies.
On neural networks in identification and control of dynamic systems
NASA Technical Reports Server (NTRS)
Phan, Minh; Juang, Jer-Nan; Hyland, David C.
1993-01-01
This paper presents a discussion of the applicability of neural networks in the identification and control of dynamic systems. Emphasis is placed on the understanding of how the neural networks handle linear systems and how the new approach is related to conventional system identification and control methods. Extensions of the approach to nonlinear systems are then made. The paper explains the fundamental concepts of neural networks in their simplest terms. Among the topics discussed are feed forward and recurrent networks in relation to the standard state-space and observer models, linear and nonlinear auto-regressive models, linear, predictors, one-step ahead control, and model reference adaptive control for linear and nonlinear systems. Numerical examples are presented to illustrate the application of these important concepts.
Method and Excel VBA Algorithm for Modeling Master Recession Curve Using Trigonometry Approach.
Posavec, Kristijan; Giacopetti, Marco; Materazzi, Marco; Birk, Steffen
2017-11-01
A new method was developed and implemented into an Excel Visual Basic for Applications (VBAs) algorithm utilizing trigonometry laws in an innovative way to overlap recession segments of time series and create master recession curves (MRCs). Based on a trigonometry approach, the algorithm horizontally translates succeeding recession segments of time series, placing their vertex, that is, the highest recorded value of each recession segment, directly onto the appropriate connection line defined by measurement points of a preceding recession segment. The new method and algorithm continues the development of methods and algorithms for the generation of MRC, where the first published method was based on a multiple linear/nonlinear regression model approach (Posavec et al. 2006). The newly developed trigonometry-based method was tested on real case study examples and compared with the previously published multiple linear/nonlinear regression model-based method. The results show that in some cases, that is, for some time series, the trigonometry-based method creates narrower overlaps of the recession segments, resulting in higher coefficients of determination R 2 , while in other cases the multiple linear/nonlinear regression model-based method remains superior. The Excel VBA algorithm for modeling MRC using the trigonometry approach is implemented into a spreadsheet tool (MRCTools v3.0 written by and available from Kristijan Posavec, Zagreb, Croatia) containing the previously published VBA algorithms for MRC generation and separation. All algorithms within the MRCTools v3.0 are open access and available free of charge, supporting the idea of running science on available, open, and free of charge software. © 2017, National Ground Water Association.
Bittencourt, Natalia F N; Ocarino, Juliana M; Mendonça, Luciana D M; Hewett, Timothy E; Fonseca, Sergio T
2012-12-01
Cross-sectional. To investigate predictors of increased frontal plane knee projection angle (FPKPA) in athletes. The underlying mechanisms that lead to increased FPKPA are likely multifactorial and depend on how the musculoskeletal system adapts to the possible interactions between its distal and proximal segments. Bivariate and linear analyses traditionally employed to analyze the occurrence of increased FPKPA are not sufficiently robust to capture complex relationships among predictors. The investigation of nonlinear interactions among biomechanical factors is necessary to further our understanding of the interdependence of lower-limb segments and resultant dynamic knee alignment. The FPKPA was assessed in 101 athletes during a single-leg squat and in 72 athletes at the moment of landing from a jump. The investigated predictors were sex, hip abductor isometric torque, passive range of motion (ROM) of hip internal rotation (IR), and shank-forefoot alignment. Classification and regression trees were used to investigate nonlinear interactions among predictors and their influence on the occurrence of increased FPKPA. During single-leg squatting, the occurrence of high FPKPA was predicted by the interaction between hip abductor isometric torque and passive hip IR ROM. At the moment of landing, the shank-forefoot alignment, abductor isometric torque, and passive hip IR ROM were predictors of high FPKPA. In addition, the classification and regression trees established cutoff points that could be used in clinical practice to identify athletes who are at potential risk for excessive FPKPA. The models captured nonlinear interactions between hip abductor isometric torque, passive hip IR ROM, and shank-forefoot alignment.
Learning Inverse Rig Mappings by Nonlinear Regression.
Holden, Daniel; Saito, Jun; Komura, Taku
2017-03-01
We present a framework to design inverse rig-functions-functions that map low level representations of a character's pose such as joint positions or surface geometry to the representation used by animators called the animation rig. Animators design scenes using an animation rig, a framework widely adopted in animation production which allows animators to design character poses and geometry via intuitive parameters and interfaces. Yet most state-of-the-art computer animation techniques control characters through raw, low level representations such as joint angles, joint positions, or vertex coordinates. This difference often stops the adoption of state-of-the-art techniques in animation production. Our framework solves this issue by learning a mapping between the low level representations of the pose and the animation rig. We use nonlinear regression techniques, learning from example animation sequences designed by the animators. When new motions are provided in the skeleton space, the learned mapping is used to estimate the rig controls that reproduce such a motion. We introduce two nonlinear functions for producing such a mapping: Gaussian process regression and feedforward neural networks. The appropriate solution depends on the nature of the rig and the amount of data available for training. We show our framework applied to various examples including articulated biped characters, quadruped characters, facial animation rigs, and deformable characters. With our system, animators have the freedom to apply any motion synthesis algorithm to arbitrary rigging and animation pipelines for immediate editing. This greatly improves the productivity of 3D animation, while retaining the flexibility and creativity of artistic input.
Hosseinifard, Behshad; Moradi, Mohammad Hassan; Rostami, Reza
2013-03-01
Diagnosing depression in the early curable stages is very important and may even save the life of a patient. In this paper, we study nonlinear analysis of EEG signal for discriminating depression patients and normal controls. Forty-five unmedicated depressed patients and 45 normal subjects were participated in this study. Power of four EEG bands and four nonlinear features including detrended fluctuation analysis (DFA), higuchi fractal, correlation dimension and lyapunov exponent were extracted from EEG signal. For discriminating the two groups, k-nearest neighbor, linear discriminant analysis and logistic regression as the classifiers are then used. Highest classification accuracy of 83.3% is obtained by correlation dimension and LR classifier among other nonlinear features. For further improvement, all nonlinear features are combined and applied to classifiers. A classification accuracy of 90% is achieved by all nonlinear features and LR classifier. In all experiments, genetic algorithm is employed to select the most important features. The proposed technique is compared and contrasted with the other reported methods and it is demonstrated that by combining nonlinear features, the performance is enhanced. This study shows that nonlinear analysis of EEG can be a useful method for discriminating depressed patients and normal subjects. It is suggested that this analysis may be a complementary tool to help psychiatrists for diagnosing depressed patients. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Differentially private distributed logistic regression using private and public data
2014-01-01
Background Privacy protecting is an important issue in medical informatics and differential privacy is a state-of-the-art framework for data privacy research. Differential privacy offers provable privacy against attackers who have auxiliary information, and can be applied to data mining models (for example, logistic regression). However, differentially private methods sometimes introduce too much noise and make outputs less useful. Given available public data in medical research (e.g. from patients who sign open-consent agreements), we can design algorithms that use both public and private data sets to decrease the amount of noise that is introduced. Methodology In this paper, we modify the update step in Newton-Raphson method to propose a differentially private distributed logistic regression model based on both public and private data. Experiments and results We try our algorithm on three different data sets, and show its advantage over: (1) a logistic regression model based solely on public data, and (2) a differentially private distributed logistic regression model based on private data under various scenarios. Conclusion Logistic regression models built with our new algorithm based on both private and public datasets demonstrate better utility than models that trained on private or public datasets alone without sacrificing the rigorous privacy guarantee. PMID:25079786
Flexible link functions in nonparametric binary regression with Gaussian process priors.
Li, Dan; Wang, Xia; Lin, Lizhen; Dey, Dipak K
2016-09-01
In many scientific fields, it is a common practice to collect a sequence of 0-1 binary responses from a subject across time, space, or a collection of covariates. Researchers are interested in finding out how the expected binary outcome is related to covariates, and aim at better prediction in the future 0-1 outcomes. Gaussian processes have been widely used to model nonlinear systems; in particular to model the latent structure in a binary regression model allowing nonlinear functional relationship between covariates and the expectation of binary outcomes. A critical issue in modeling binary response data is the appropriate choice of link functions. Commonly adopted link functions such as probit or logit links have fixed skewness and lack the flexibility to allow the data to determine the degree of the skewness. To address this limitation, we propose a flexible binary regression model which combines a generalized extreme value link function with a Gaussian process prior on the latent structure. Bayesian computation is employed in model estimation. Posterior consistency of the resulting posterior distribution is demonstrated. The flexibility and gains of the proposed model are illustrated through detailed simulation studies and two real data examples. Empirical results show that the proposed model outperforms a set of alternative models, which only have either a Gaussian process prior on the latent regression function or a Dirichlet prior on the link function. © 2015, The International Biometric Society.
Flexible Link Functions in Nonparametric Binary Regression with Gaussian Process Priors
Li, Dan; Lin, Lizhen; Dey, Dipak K.
2015-01-01
Summary In many scientific fields, it is a common practice to collect a sequence of 0-1 binary responses from a subject across time, space, or a collection of covariates. Researchers are interested in finding out how the expected binary outcome is related to covariates, and aim at better prediction in the future 0-1 outcomes. Gaussian processes have been widely used to model nonlinear systems; in particular to model the latent structure in a binary regression model allowing nonlinear functional relationship between covariates and the expectation of binary outcomes. A critical issue in modeling binary response data is the appropriate choice of link functions. Commonly adopted link functions such as probit or logit links have fixed skewness and lack the flexibility to allow the data to determine the degree of the skewness. To address this limitation, we propose a flexible binary regression model which combines a generalized extreme value link function with a Gaussian process prior on the latent structure. Bayesian computation is employed in model estimation. Posterior consistency of the resulting posterior distribution is demonstrated. The flexibility and gains of the proposed model are illustrated through detailed simulation studies and two real data examples. Empirical results show that the proposed model outperforms a set of alternative models, which only have either a Gaussian process prior on the latent regression function or a Dirichlet prior on the link function. PMID:26686333
The allometry of coarse root biomass: log-transformed linear regression or nonlinear regression?
Lai, Jiangshan; Yang, Bo; Lin, Dunmei; Kerkhoff, Andrew J; Ma, Keping
2013-01-01
Precise estimation of root biomass is important for understanding carbon stocks and dynamics in forests. Traditionally, biomass estimates are based on allometric scaling relationships between stem diameter and coarse root biomass calculated using linear regression (LR) on log-transformed data. Recently, it has been suggested that nonlinear regression (NLR) is a preferable fitting method for scaling relationships. But while this claim has been contested on both theoretical and empirical grounds, and statistical methods have been developed to aid in choosing between the two methods in particular cases, few studies have examined the ramifications of erroneously applying NLR. Here, we use direct measurements of 159 trees belonging to three locally dominant species in east China to compare the LR and NLR models of diameter-root biomass allometry. We then contrast model predictions by estimating stand coarse root biomass based on census data from the nearby 24-ha Gutianshan forest plot and by testing the ability of the models to predict known root biomass values measured on multiple tropical species at the Pasoh Forest Reserve in Malaysia. Based on likelihood estimates for model error distributions, as well as the accuracy of extrapolative predictions, we find that LR on log-transformed data is superior to NLR for fitting diameter-root biomass scaling models. More importantly, inappropriately using NLR leads to grossly inaccurate stand biomass estimates, especially for stands dominated by smaller trees.
Optimizing separate phase light hydrocarbon recovery from contaminated unconfined aquifers
NASA Astrophysics Data System (ADS)
Cooper, Grant S.; Peralta, Richard C.; Kaluarachchi, Jagath J.
A modeling approach is presented that optimizes separate phase recovery of light non-aqueous phase liquids (LNAPL) for a single dual-extraction well in a homogeneous, isotropic unconfined aquifer. A simulation/regression/optimization (S/R/O) model is developed to predict, analyze, and optimize the oil recovery process. The approach combines detailed simulation, nonlinear regression, and optimization. The S/R/O model utilizes nonlinear regression equations describing system response to time-varying water pumping and oil skimming. Regression equations are developed for residual oil volume and free oil volume. The S/R/O model determines optimized time-varying (stepwise) pumping rates which minimize residual oil volume and maximize free oil recovery while causing free oil volume to decrease a specified amount. This S/R/O modeling approach implicitly immobilizes the free product plume by reversing the water table gradient while achieving containment. Application to a simple representative problem illustrates the S/R/O model utility for problem analysis and remediation design. When compared with the best steady pumping strategies, the optimal stepwise pumping strategy improves free oil recovery by 11.5% and reduces the amount of residual oil left in the system due to pumping by 15%. The S/R/O model approach offers promise for enhancing the design of free phase LNAPL recovery systems and to help in making cost-effective operation and management decisions for hydrogeologists, engineers, and regulators.
Evaluation of laser cutting process with auxiliary gas pressure by soft computing approach
NASA Astrophysics Data System (ADS)
Lazov, Lyubomir; Nikolić, Vlastimir; Jovic, Srdjan; Milovančević, Miloš; Deneva, Heristina; Teirumenieka, Erika; Arsic, Nebojsa
2018-06-01
Evaluation of the optimal laser cutting parameters is very important for the high cut quality. This is highly nonlinear process with different parameters which is the main challenge in the optimization process. Data mining methodology is one of most versatile method which can be used laser cutting process optimization. Support vector regression (SVR) procedure is implemented since it is a versatile and robust technique for very nonlinear data regression. The goal in this study was to determine the optimal laser cutting parameters to ensure robust condition for minimization of average surface roughness. Three cutting parameters, the cutting speed, the laser power, and the assist gas pressure, were used in the investigation. As a laser type TruLaser 1030 technological system was used. Nitrogen as an assisted gas was used in the laser cutting process. As the data mining method, support vector regression procedure was used. Data mining prediction accuracy was very high according the coefficient (R2) of determination and root mean square error (RMSE): R2 = 0.9975 and RMSE = 0.0337. Therefore the data mining approach could be used effectively for determination of the optimal conditions of the laser cutting process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seong W. Lee
During this reporting period, the literature survey including the gasifier temperature measurement literature, the ultrasonic application and its background study in cleaning application, and spray coating process are completed. The gasifier simulator (cold model) testing has been successfully conducted. Four factors (blower voltage, ultrasonic application, injection time intervals, particle weight) were considered as significant factors that affect the temperature measurement. The Analysis of Variance (ANOVA) was applied to analyze the test data. The analysis shows that all four factors are significant to the temperature measurements in the gasifier simulator (cold model). The regression analysis for the case with the normalizedmore » room temperature shows that linear model fits the temperature data with 82% accuracy (18% error). The regression analysis for the case without the normalized room temperature shows 72.5% accuracy (27.5% error). The nonlinear regression analysis indicates a better fit than that of the linear regression. The nonlinear regression model's accuracy is 88.7% (11.3% error) for normalized room temperature case, which is better than the linear regression analysis. The hot model thermocouple sleeve design and fabrication are completed. The gasifier simulator (hot model) design and the fabrication are completed. The system tests of the gasifier simulator (hot model) have been conducted and some modifications have been made. Based on the system tests and results analysis, the gasifier simulator (hot model) has met the proposed design requirement and the ready for system test. The ultrasonic cleaning method is under evaluation and will be further studied for the gasifier simulator (hot model) application. The progress of this project has been on schedule.« less
NASA Astrophysics Data System (ADS)
Böbel, A.; Knapek, C. A.; Räth, C.
2018-05-01
Experiments of the recrystallization processes in two-dimensional complex plasmas are analyzed to rigorously test a recently developed scale-free phase transition theory. The "fractal-domain-structure" (FDS) theory is based on the kinetic theory of Frenkel. It assumes the formation of homogeneous domains, separated by defect lines, during crystallization and a fractal relationship between domain area and boundary length. For the defect number fraction and system energy a scale-free power-law relation is predicted. The long-range scaling behavior of the bond-order correlation function shows clearly that the complex plasma phase transitions are not of the Kosterlitz, Thouless, Halperin, Nelson, and Young type. Previous preliminary results obtained by counting the number of dislocations and applying a bond-order metric for structural analysis are reproduced. These findings are supplemented by extending the use of the bond-order metric to measure the defect number fraction and furthermore applying state-of-the-art analysis methods, allowing a systematic testing of the FDS theory with unprecedented scrutiny: A morphological analysis of lattice structure is performed via Minkowski tensor methods. Minkowski tensors form a complete family of additive, motion covariant and continuous morphological measures that are sensitive to nonlinear properties. The FDS theory is rigorously confirmed and predictions of the theory are reproduced extremely well. The predicted scale-free power-law relation between defect fraction number and system energy is verified for one more order of magnitude at high energies compared to the inherently discontinuous bond-order metric. It is found that the fractal relation between crystalline domain area and circumference is independent of the experiment, the particular Minkowski tensor method, and the particular choice of parameters. Thus, the fractal relationship seems to be inherent to two-dimensional phase transitions in complex plasmas. Minkowski tensor analysis turns out to be a powerful tool for investigations of crystallization processes. It is capable of revealing nonlinear local topological properties, however, still provides easily interpretable results founded on a solid mathematical framework.
NASA Astrophysics Data System (ADS)
Anishchenko, V. S.; Boev, Ya. I.; Semenova, N. I.; Strelkova, G. I.
2015-07-01
We review rigorous and numerical results on the statistics of Poincaré recurrences which are related to the modern development of the Poincaré recurrence problem. We analyze and describe the rigorous results which are achieved both in the classical (local) approach and in the recently developed global approach. These results are illustrated by numerical simulation data for simple chaotic and ergodic systems. It is shown that the basic theoretical laws can be applied to noisy systems if the probability measure is ergodic and stationary. Poincaré recurrences are studied numerically in nonautonomous systems. Statistical characteristics of recurrences are analyzed in the framework of the global approach for the cases of positive and zero topological entropy. We show that for the positive entropy, there is a relationship between the Afraimovich-Pesin dimension, Lyapunov exponents and the Kolmogorov-Sinai entropy either without and in the presence of external noise. The case of zero topological entropy is exemplified by numerical results for the Poincare recurrence statistics in the circle map. We show and prove that the dependence of minimal recurrence times on the return region size demonstrates universal properties for the golden and the silver ratio. The behavior of Poincaré recurrences is analyzed at the critical point of Feigenbaum attractor birth. We explore Poincaré recurrences for an ergodic set which is generated in the stroboscopic section of a nonautonomous oscillator and is similar to a circle shift. Based on the obtained results we show how the Poincaré recurrence statistics can be applied for solving a number of nonlinear dynamics issues. We propose and illustrate alternative methods for diagnosing effects of external and mutual synchronization of chaotic systems in the context of the local and global approaches. The properties of the recurrence time probability density can be used to detect the stochastic resonance phenomenon. We also discuss how the fractal dimension of chaotic attractors can be estimated using the Poincaré recurrence statistics.
Linear and nonlinear stiffness and friction in biological rhythmic movements.
Beek, P J; Schmidt, R C; Morris, A W; Sim, M Y; Turvey, M T
1995-11-01
Biological rhythmic movements can be viewed as instances of self-sustained oscillators. Auto-oscillatory phenomena must involve a nonlinear friction function, and usually involve a nonlinear elastic function. With respect to rhythmic movements, the question is: What kinds of nonlinear friction and elastic functions are involved? The nonlinear friction functions of the kind identified by Rayleigh (involving terms such as theta3) and van der Pol (involving terms such as theta2theta), and the nonlinear elastic functions identified by Duffing (involving terms such as theta3), constitute elementary nonlinear components for the assembling of self-sustained oscillators, Recently, additional elementary nonlinear friction and stiffness functions expressed, respectively, through terms such as theta2theta3 and thetatheta2, and a methodology for evaluating the contribution of the elementary components to any given cyclic activity have been identified. The methodology uses a quantification of the continuous deviation of oscillatory motion from ideal (harmonic) motion. Multiple regression of this quantity on the elementary linear and nonlinear terms reveals the individual contribution of each term to the oscillator's non-harmonic behavior. In the present article the methodology was applied to the data from three experiments in which human subjects produced pendular rhythmic movements under manipulations of rotational inertia (experiment 1), rotational inertia and frequency (experiment 2), and rotational inertia and amplitude (experiment 3). The analysis revealed that the pendular oscillators assembled in the three experiments were compositionally rich, braiding linear and nonlinear friction and elastic functions in a manner that depended on the nature of the task.
Nonlinear Interactions Between Shear Alfvén waves on LaPD
NASA Astrophysics Data System (ADS)
Brugman, B.; Carter, T. A.; Pribyl, P.; Dorland, W.; Quataert, E.
2003-10-01
Turbulent energy cascades may play a major role in many astrophysical phenomenon, such as accretion disks, as well as in terrestrial plasmas, as related to turbulent cross field transport. Existing theories have yet to be rigorously compared with experimental results and instead have relied on indirect measurements from astrophysics and solar probes. The turbulent interaction between counter propagating shear Alfvén waves and the interaction of Alfvén waves launched into a reflecting cavity represent two practical experiments relevant to the study of such cascades. These experiments will be conducted on the LaPD and the results compared to those calculated using the GS2 code, which makes use of the gyrokinetic approximation. Due to the effects of Landau damping it is believed that high amplitude Alfvén waves must be launched in order for nonlinear processes to be measurable; several means of launching such waves will be employed. The first method will employ the use of antenna launched Alfvén waves and the second will make use of waves launched by a source instability native to LaPD (J. E. Maggs, G. Morales, PRL, In Press). It is believed that both of these schemes will be capable of generating waves of sufficient magnitude to probe the nonlinear interactions of interest. Initial measurements show signs of nonlinear effects when shear Alfvén waves, generated by instabilities in the LaPD source, are launched into a closed cavity. These effects are manifested as coupling between a low frequency wave and the launched wave, as indicated by the creation of side bands centered on the frequency of the launched wave. Further measurements of this effect and wave sources will be presented.
Zouari, Farouk; Ibeas, Asier; Boulkroune, Abdesselem; Cao, Jinde; Mehdi Arefi, Mohammad
2018-06-01
This study addresses the issue of the adaptive output tracking control for a category of uncertain nonstrict-feedback delayed incommensurate fractional-order systems in the presence of nonaffine structures, unmeasured pseudo-states, unknown control directions, unknown actuator nonlinearities and output constraints. Firstly, the mean value theorem and the Gaussian error function are introduced to eliminate the difficulties that arise from the nonaffine structures and the unknown actuator nonlinearities, respectively. Secondly, the immeasurable tracking error variables are suitably estimated by constructing a fractional-order linear observer. Thirdly, the neural network, the Razumikhin Lemma, the variable separation approach, and the smooth Nussbaum-type function are used to deal with the uncertain nonlinear dynamics, the unknown time-varying delays, the nonstrict feedback and the unknown control directions, respectively. Fourthly, asymmetric barrier Lyapunov functions are employed to overcome the violation of the output constraints and to tune online the parameters of the adaptive neural controller. Through rigorous analysis, it is proved that the boundedness of all variables in the closed-loop system and the semi global asymptotic tracking are ensured without transgression of the constraints. The principal contributions of this study can be summarized as follows: (1) based on Caputo's definitions and new lemmas, methods concerning the controllability, observability and stability analysis of integer-order systems are extended to fractional-order ones, (2) the output tracking objective for a relatively large class of uncertain systems is achieved with a simple controller and less tuning parameters. Finally, computer-simulation studies from the robotic field are given to demonstrate the effectiveness of the proposed controller. Copyright © 2018 Elsevier Ltd. All rights reserved.
Coarse-grained incompressible magnetohydrodynamics: Analyzing the turbulent cascades
Aluie, Hussein
2017-02-21
Here, we formulate a coarse-graining approach to the dynamics of magnetohydrodynamic (MHD) fluids at a continuum of length-scales. In this methodology, effective equations are derived for the observable velocity and magnetic fields spatially-averaged at an arbitrary scale of resolution. The microscopic equations for the bare velocity and magnetic fields are renormalized by coarse-graining to yield macroscopic effective equations that contain both a subscale stress and a subscale electromotive force (EMF) generated by nonlinear interaction of eliminated fields and plasma motions. At large coarse-graining length-scales, the direct dissipation of invariants by microscopic mechanisms (such as molecular viscosity and Spitzer resistivity) ismore » shown to be negligible. The balance at large scales is dominated instead by the subscale nonlinear terms, which can transfer invariants across scales, and are interpreted in terms of work concepts for energy and in terms of topological flux-linkage for the two helicities. An important application of this approach is to MHD turbulence, where the coarse-graining length ℓ lies in the inertial cascade range. We show that in the case of sufficiently rough velocity and/or magnetic fields, the nonlinear inter-scale transfer need not vanish and can persist to arbitrarily small scales. Although closed expressions are not available for subscale stress and subscale EMF, we derive rigorous upper bounds on the effective dissipation they produce in terms of scaling exponents of the velocity and magnetic fields. These bounds provide exact constraints on phenomenological theories of MHD turbulence in order to allow the nonlinear cascade of energy and cross-helicity. On the other hand, we show that the forward cascade of magnetic helicity to asymptotically small scales is impossible unless 3rd-order moments of either velocity or magnetic field become infinite.« less
Estimating cosmic velocity fields from density fields and tidal tensors
NASA Astrophysics Data System (ADS)
Kitaura, Francisco-Shu; Angulo, Raul E.; Hoffman, Yehuda; Gottlöber, Stefan
2012-10-01
In this work we investigate the non-linear and non-local relation between cosmological density and peculiar velocity fields. Our goal is to provide an algorithm for the reconstruction of the non-linear velocity field from the fully non-linear density. We find that including the gravitational tidal field tensor using second-order Lagrangian perturbation theory based upon an estimate of the linear component of the non-linear density field significantly improves the estimate of the cosmic flow in comparison to linear theory not only in the low density, but also and more dramatically in the high-density regions. In particular we test two estimates of the linear component: the lognormal model and the iterative Lagrangian linearization. The present approach relies on a rigorous higher order Lagrangian perturbation theory analysis which incorporates a non-local relation. It does not require additional fitting from simulations being in this sense parameter free, it is independent of statistical-geometrical optimization and it is straightforward and efficient to compute. The method is demonstrated to yield an unbiased estimator of the velocity field on scales ≳5 h-1 Mpc with closely Gaussian distributed errors. Moreover, the statistics of the divergence of the peculiar velocity field is extremely well recovered showing a good agreement with the true one from N-body simulations. The typical errors of about 10 km s-1 (1σ confidence intervals) are reduced by more than 80 per cent with respect to linear theory in the scale range between 5 and 10 h-1 Mpc in high-density regions (δ > 2). We also find that iterative Lagrangian linearization is significantly superior in the low-density regime with respect to the lognormal model.
A new linear least squares method for T1 estimation from SPGR signals with multiple TRs
NASA Astrophysics Data System (ADS)
Chang, Lin-Ching; Koay, Cheng Guan; Basser, Peter J.; Pierpaoli, Carlo
2009-02-01
The longitudinal relaxation time, T1, can be estimated from two or more spoiled gradient recalled echo x (SPGR) images with two or more flip angles and one or more repetition times (TRs). The function relating signal intensity and the parameters are nonlinear; T1 maps can be computed from SPGR signals using nonlinear least squares regression. A widely-used linear method transforms the nonlinear model by assuming a fixed TR in SPGR images. This constraint is not desirable since multiple TRs are a clinically practical way to reduce the total acquisition time, to satisfy the required resolution, and/or to combine SPGR data acquired at different times. A new linear least squares method is proposed using the first order Taylor expansion. Monte Carlo simulations of SPGR experiments are used to evaluate the accuracy and precision of the estimated T1 from the proposed linear and the nonlinear methods. We show that the new linear least squares method provides T1 estimates comparable in both precision and accuracy to those from the nonlinear method, allowing multiple TRs and reducing computation time significantly.
Developing a predictive tropospheric ozone model for Tabriz
NASA Astrophysics Data System (ADS)
Khatibi, Rahman; Naghipour, Leila; Ghorbani, Mohammad A.; Smith, Michael S.; Karimi, Vahid; Farhoudi, Reza; Delafrouz, Hadi; Arvanaghi, Hadi
2013-04-01
Predictive ozone models are becoming indispensable tools by providing a capability for pollution alerts to serve people who are vulnerable to the risks. We have developed a tropospheric ozone prediction capability for Tabriz, Iran, by using the following five modeling strategies: three regression-type methods: Multiple Linear Regression (MLR), Artificial Neural Networks (ANNs), and Gene Expression Programming (GEP); and two auto-regression-type models: Nonlinear Local Prediction (NLP) to implement chaos theory and Auto-Regressive Integrated Moving Average (ARIMA) models. The regression-type modeling strategies explain the data in terms of: temperature, solar radiation, dew point temperature, and wind speed, by regressing present ozone values to their past values. The ozone time series are available at various time intervals, including hourly intervals, from August 2010 to March 2011. The results for MLR, ANN and GEP models are not overly good but those produced by NLP and ARIMA are promising for the establishing a forecasting capability.
Orbital State Uncertainty Realism
NASA Astrophysics Data System (ADS)
Horwood, J.; Poore, A. B.
2012-09-01
Fundamental to the success of the space situational awareness (SSA) mission is the rigorous inclusion of uncertainty in the space surveillance network. The *proper characterization of uncertainty* in the orbital state of a space object is a common requirement to many SSA functions including tracking and data association, resolution of uncorrelated tracks (UCTs), conjunction analysis and probability of collision, sensor resource management, and anomaly detection. While tracking environments, such as air and missile defense, make extensive use of Gaussian and local linearity assumptions within algorithms for uncertainty management, space surveillance is inherently different due to long time gaps between updates, high misdetection rates, nonlinear and non-conservative dynamics, and non-Gaussian phenomena. The latter implies that "covariance realism" is not always sufficient. SSA also requires "uncertainty realism"; the proper characterization of both the state and covariance and all non-zero higher-order cumulants. In other words, a proper characterization of a space object's full state *probability density function (PDF)* is required. In order to provide a more statistically rigorous treatment of uncertainty in the space surveillance tracking environment and to better support the aforementioned SSA functions, a new class of multivariate PDFs are formulated which more accurately characterize the uncertainty of a space object's state or orbit. The new distribution contains a parameter set controlling the higher-order cumulants which gives the level sets a distinctive "banana" or "boomerang" shape and degenerates to a Gaussian in a suitable limit. Using the new class of PDFs within the general Bayesian nonlinear filter, the resulting filter prediction step (i.e., uncertainty propagation) is shown to have the *same computational cost as the traditional unscented Kalman filter* with the former able to maintain a proper characterization of the uncertainty for up to *ten times as long* as the latter. The filter correction step also furnishes a statistically rigorous *prediction error* which appears in the likelihood ratios for scoring the association of one report or observation to another. Thus, the new filter can be used to support multi-target tracking within a general multiple hypothesis tracking framework. Additionally, the new distribution admits a distance metric which extends the classical Mahalanobis distance (chi^2 statistic). This metric provides a test for statistical significance and facilitates single-frame data association methods with the potential to easily extend the covariance-based track association algorithm of Hill, Sabol, and Alfriend. The filtering, data fusion, and association methods using the new class of orbital state PDFs are shown to be mathematically tractable and operationally viable.
NASA Astrophysics Data System (ADS)
Mustac, M.; Kim, S.; Tkalcic, H.; Rhie, J.; Chen, Y.; Ford, S. R.; Sebastian, N.
2015-12-01
Conventional approaches to inverse problems suffer from non-linearity and non-uniqueness in estimations of seismic structures and source properties. Estimated results and associated uncertainties are often biased by applied regularizations and additional constraints, which are commonly introduced to solve such problems. Bayesian methods, however, provide statistically meaningful estimations of models and their uncertainties constrained by data information. In addition, hierarchical and trans-dimensional (trans-D) techniques are inherently implemented in the Bayesian framework to account for involved error statistics and model parameterizations, and, in turn, allow more rigorous estimations of the same. Here, we apply Bayesian methods throughout the entire inference process to estimate seismic structures and source properties in Northeast Asia including east China, the Korean peninsula, and the Japanese islands. Ambient noise analysis is first performed to obtain a base three-dimensional (3-D) heterogeneity model using continuous broadband waveforms from more than 300 stations. As for the tomography of surface wave group and phase velocities in the 5-70 s band, we adopt a hierarchical and trans-D Bayesian inversion method using Voronoi partition. The 3-D heterogeneity model is further improved by joint inversions of teleseismic receiver functions and dispersion data using a newly developed high-efficiency Bayesian technique. The obtained model is subsequently used to prepare 3-D structural Green's functions for the source characterization. A hierarchical Bayesian method for point source inversion using regional complete waveform data is applied to selected events from the region. The seismic structure and source characteristics with rigorously estimated uncertainties from the novel Bayesian methods provide enhanced monitoring and discrimination of seismic events in northeast Asia.
Two-Stage Residual Inclusion Estimation in Health Services Research and Health Economics.
Terza, Joseph V
2018-06-01
Empirical analyses in health services research and health economics often require implementation of nonlinear models whose regressors include one or more endogenous variables-regressors that are correlated with the unobserved random component of the model. In such cases, implementation of conventional regression methods that ignore endogeneity will likely produce results that are biased and not causally interpretable. Terza et al. (2008) discuss a relatively simple estimation method that avoids endogeneity bias and is applicable in a wide variety of nonlinear regression contexts. They call this method two-stage residual inclusion (2SRI). In the present paper, I offer a 2SRI how-to guide for practitioners and a step-by-step protocol that can be implemented with any of the popular statistical or econometric software packages. We introduce the protocol and its Stata implementation in the context of a real data example. Implementation of 2SRI for a very broad class of nonlinear models is then discussed. Additional examples are given. We analyze cigarette smoking as a determinant of infant birthweight using data from Mullahy (1997). It is hoped that the discussion will serve as a practical guide to implementation of the 2SRI protocol for applied researchers. © Health Research and Educational Trust.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biyanto, Totok R.
Fouling in a heat exchanger in Crude Preheat Train (CPT) refinery is an unsolved problem that reduces the plant efficiency, increases fuel consumption and CO{sub 2} emission. The fouling resistance behavior is very complex. It is difficult to develop a model using first principle equation to predict the fouling resistance due to different operating conditions and different crude blends. In this paper, Artificial Neural Networks (ANN) MultiLayer Perceptron (MLP) with input structure using Nonlinear Auto-Regressive with eXogenous (NARX) is utilized to build the fouling resistance model in shell and tube heat exchanger (STHX). The input data of the model aremore » flow rates and temperatures of the streams of the heat exchanger, physical properties of product and crude blend data. This model serves as a predicting tool to optimize operating conditions and preventive maintenance of STHX. The results show that the model can capture the complexity of fouling characteristics in heat exchanger due to thermodynamic conditions and variations in crude oil properties (blends). It was found that the Root Mean Square Error (RMSE) are suitable to capture the nonlinearity and complexity of the STHX fouling resistance during phases of training and validation.« less
Zhao, Rui; Catalano, Paul; DeGruttola, Victor G.; Michor, Franziska
2017-01-01
The dynamics of tumor burden, secreted proteins or other biomarkers over time, is often used to evaluate the effectiveness of therapy and to predict outcomes for patients. Many methods have been proposed to investigate longitudinal trends to better characterize patients and to understand disease progression. However, most approaches assume a homogeneous patient population and a uniform response trajectory over time and across patients. Here, we present a mixture piecewise linear Bayesian hierarchical model, which takes into account both population heterogeneity and nonlinear relationships between biomarkers and time. Simulation results show that our method was able to classify subjects according to their patterns of treatment response with greater than 80% accuracy in the three scenarios tested. We then applied our model to a large randomized controlled phase III clinical trial of multiple myeloma patients. Analysis results suggest that the longitudinal tumor burden trajectories in multiple myeloma patients are heterogeneous and nonlinear, even among patients assigned to the same treatment cohort. In addition, between cohorts, there are distinct differences in terms of the regression parameters and the distributions among categories in the mixture. Those results imply that longitudinal data from clinical trials may harbor unobserved subgroups and nonlinear relationships; accounting for both may be important for analyzing longitudinal data. PMID:28723910
Vathsangam, Harshvardhan; Emken, Adar; Schroeder, E. Todd; Spruijt-Metz, Donna; Sukhatme, Gaurav S.
2011-01-01
This paper describes an experimental study in estimating energy expenditure from treadmill walking using a single hip-mounted triaxial inertial sensor comprised of a triaxial accelerometer and a triaxial gyroscope. Typical physical activity characterization using accelerometer generated counts suffers from two drawbacks - imprecison (due to proprietary counts) and incompleteness (due to incomplete movement description). We address these problems in the context of steady state walking by directly estimating energy expenditure with data from a hip-mounted inertial sensor. We represent the cyclic nature of walking with a Fourier transform of sensor streams and show how one can map this representation to energy expenditure (as measured by V O2 consumption, mL/min) using three regression techniques - Least Squares Regression (LSR), Bayesian Linear Regression (BLR) and Gaussian Process Regression (GPR). We perform a comparative analysis of the accuracy of sensor streams in predicting energy expenditure (measured by RMS prediction accuracy). Triaxial information is more accurate than uniaxial information. LSR based approaches are prone to outlier sensitivity and overfitting. Gyroscopic information showed equivalent if not better prediction accuracy as compared to accelerometers. Combining accelerometer and gyroscopic information provided better accuracy than using either sensor alone. We also analyze the best algorithmic approach among linear and nonlinear methods as measured by RMS prediction accuracy and run time. Nonlinear regression methods showed better prediction accuracy but required an order of magnitude of run time. This paper emphasizes the role of probabilistic techniques in conjunction with joint modeling of triaxial accelerations and rotational rates to improve energy expenditure prediction for steady-state treadmill walking. PMID:21690001
Quasi-experimental study designs series-paper 6: risk of bias assessment.
Waddington, Hugh; Aloe, Ariel M; Becker, Betsy Jane; Djimeu, Eric W; Hombrados, Jorge Garcia; Tugwell, Peter; Wells, George; Reeves, Barney
2017-09-01
Rigorous and transparent bias assessment is a core component of high-quality systematic reviews. We assess modifications to existing risk of bias approaches to incorporate rigorous quasi-experimental approaches with selection on unobservables. These are nonrandomized studies using design-based approaches to control for unobservable sources of confounding such as difference studies, instrumental variables, interrupted time series, natural experiments, and regression-discontinuity designs. We review existing risk of bias tools. Drawing on these tools, we present domains of bias and suggest directions for evaluation questions. The review suggests that existing risk of bias tools provide, to different degrees, incomplete transparent criteria to assess the validity of these designs. The paper then presents an approach to evaluating the internal validity of quasi-experiments with selection on unobservables. We conclude that tools for nonrandomized studies of interventions need to be further developed to incorporate evaluation questions for quasi-experiments with selection on unobservables. Copyright © 2017 Elsevier Inc. All rights reserved.
Optimal correction and design parameter search by modern methods of rigorous global optimization
NASA Astrophysics Data System (ADS)
Makino, K.; Berz, M.
2011-07-01
Frequently the design of schemes for correction of aberrations or the determination of possible operating ranges for beamlines and cells in synchrotrons exhibit multitudes of possibilities for their correction, usually appearing in disconnected regions of parameter space which cannot be directly qualified by analytical means. In such cases, frequently an abundance of optimization runs are carried out, each of which determines a local minimum depending on the specific chosen initial conditions. Practical solutions are then obtained through an often extended interplay of experienced manual adjustment of certain suitable parameters and local searches by varying other parameters. However, in a formal sense this problem can be viewed as a global optimization problem, i.e. the determination of all solutions within a certain range of parameters that lead to a specific optimum. For example, it may be of interest to find all possible settings of multiple quadrupoles that can achieve imaging; or to find ahead of time all possible settings that achieve a particular tune; or to find all possible manners to adjust nonlinear parameters to achieve correction of high order aberrations. These tasks can easily be phrased in terms of such an optimization problem; but while mathematically this formulation is often straightforward, it has been common belief that it is of limited practical value since the resulting optimization problem cannot usually be solved. However, recent significant advances in modern methods of rigorous global optimization make these methods feasible for optics design for the first time. The key ideas of the method lie in an interplay of rigorous local underestimators of the objective functions, and by using the underestimators to rigorously iteratively eliminate regions that lie above already known upper bounds of the minima, in what is commonly known as a branch-and-bound approach. Recent enhancements of the Differential Algebraic methods used in particle optics for the computation of aberrations allow the determination of particularly sharp underestimators for large regions. As a consequence, the subsequent progressive pruning of the allowed search space as part of the optimization progresses is carried out particularly effectively. The end result is the rigorous determination of the single or multiple optimal solutions of the parameter optimization, regardless of their location, their number, and the starting values of optimization. The methods are particularly powerful if executed in interplay with genetic optimizers generating their new populations within the currently active unpruned space. Their current best guess provides rigorous upper bounds of the minima, which can then beneficially be used for better pruning. Examples of the method and its performance will be presented, including the determination of all operating points of desired tunes or chromaticities, etc. in storage ring lattices.
A nonlinear cointegration approach with applications to structural health monitoring
NASA Astrophysics Data System (ADS)
Shi, H.; Worden, K.; Cross, E. J.
2016-09-01
One major obstacle to the implementation of structural health monitoring (SHM) is the effect of operational and environmental variabilities, which may corrupt the signal of structural degradation. Recently, an approach inspired from the community of econometrics, called cointegration, has been employed to eliminate the adverse influence from operational and environmental changes and still maintain sensitivity to structural damage. However, the linear nature of cointegration may limit its application when confronting nonlinear relations between system responses. This paper proposes a nonlinear cointegration method based on Gaussian process regression (GPR); the method is constructed under the Engle-Granger framework, and tests for unit root processes are conducted both before and after the GPR is applied. The proposed approach is examined with real engineering data from the monitoring of the Z24 Bridge.
Mizutani, Eiji; Demmel, James W
2003-01-01
This paper briefly introduces our numerical linear algebra approaches for solving structured nonlinear least squares problems arising from 'multiple-output' neural-network (NN) models. Our algorithms feature trust-region regularization, and exploit sparsity of either the 'block-angular' residual Jacobian matrix or the 'block-arrow' Gauss-Newton Hessian (or Fisher information matrix in statistical sense) depending on problem scale so as to render a large class of NN-learning algorithms 'efficient' in both memory and operation costs. Using a relatively large real-world nonlinear regression application, we shall explain algorithmic strengths and weaknesses, analyzing simulation results obtained by both direct and iterative trust-region algorithms with two distinct NN models: 'multilayer perceptrons' (MLP) and 'complementary mixtures of MLP-experts' (or neuro-fuzzy modular networks).
A local basal area adjustment for crown width prediction
Don C. Bragg
2001-01-01
Nonlinear crown width regressive equations were developed for 24 species common to the upper Lake States of Michigan, Minnesota, and Wisconsin. Of the species surveyed, 15 produced statistically significant (P 0.05) local basal area effect coefficients showing a reduction in crown...
NASA Technical Reports Server (NTRS)
Mcdermott, P. P.
1980-01-01
The design of an accelerated life test program for electric batteries is discussed. A number of observations and suggestions on the procedures and objectives for conducting an accelerated life test program are presented. Equations based on nonlinear regression analysis for predicting the accelerated life test parameters are discussed.
NASA Astrophysics Data System (ADS)
Krishnan, M.; Bhowmik, B.; Hazra, B.; Pakrashi, V.
2018-02-01
In this paper, a novel baseline free approach for continuous online damage detection of multi degree of freedom vibrating structures using Recursive Principal Component Analysis (RPCA) in conjunction with Time Varying Auto-Regressive Modeling (TVAR) is proposed. In this method, the acceleration data is used to obtain recursive proper orthogonal components online using rank-one perturbation method, followed by TVAR modeling of the first transformed response, to detect the change in the dynamic behavior of the vibrating system from its pristine state to contiguous linear/non-linear-states that indicate damage. Most of the works available in the literature deal with algorithms that require windowing of the gathered data owing to their data-driven nature which renders them ineffective for online implementation. Algorithms focussed on mathematically consistent recursive techniques in a rigorous theoretical framework of structural damage detection is missing, which motivates the development of the present framework that is amenable for online implementation which could be utilized along with suite experimental and numerical investigations. The RPCA algorithm iterates the eigenvector and eigenvalue estimates for sample covariance matrices and new data point at each successive time instants, using the rank-one perturbation method. TVAR modeling on the principal component explaining maximum variance is utilized and the damage is identified by tracking the TVAR coefficients. This eliminates the need for offline post processing and facilitates online damage detection especially when applied to streaming data without requiring any baseline data. Numerical simulations performed on a 5-dof nonlinear system under white noise excitation and El Centro (also known as 1940 Imperial Valley earthquake) excitation, for different damage scenarios, demonstrate the robustness of the proposed algorithm. The method is further validated on results obtained from case studies involving experiments performed on a cantilever beam subjected to earthquake excitation; a two-storey benchscale model with a TMD and, data from recorded responses of UCLA factor building demonstrate the efficacy of the proposed methodology as an ideal candidate for real time, reference free structural health monitoring.
Dynamic Characteristics of Micro-Beams Considering the Effect of Flexible Supports
Zhong, Zuo-Yang; Zhang, Wen-Ming; Meng, Guang
2013-01-01
Normally, the boundaries are assumed to allow small deflections and moments for MEMS beams with flexible supports. The non-ideal boundary conditions have a significant effect on the qualitative dynamical behavior. In this paper, by employing the principle of energy equivalence, rigorous theoretical solutions of the tangential and rotational equivalent stiffness are derived based on the Boussinesq's and Cerruti's displacement equations. The non-dimensional differential partial equation of the motion, as well as coupled boundary conditions, are solved analytically using the method of multiple time scales. The closed-form solution provides a direct insight into the relationship between the boundary conditions and vibration characteristics of the dynamic system, in which resonance frequencies increase with the nonlinear mechanical spring effect but decrease with the effect of flexible supports. The obtained results of frequencies and mode shapes are compared with the cases of ideal boundary conditions, and the differences between them are contrasted on frequency response curves. The influences of the support material property on the equivalent stiffness and resonance frequency shift are also discussed. It is demonstrated that the proposed model with the flexible supports boundary conditions has significant effect on the rigorous quantitative dynamical analysis of the MEMS beams. Moreover, the proposed analytical solutions are in good agreement with those obtained from finite element analyses.
Boundary control for a constrained two-link rigid-flexible manipulator with prescribed performance
NASA Astrophysics Data System (ADS)
Cao, Fangfei; Liu, Jinkun
2018-05-01
In this paper, we consider a boundary control problem for a constrained two-link rigid-flexible manipulator. The nonlinear system is described by hybrid ordinary differential equation-partial differential equation (ODE-PDE) dynamic model. Based on the coupled ODE-PDE model, boundary control is proposed to regulate the joint positions and eliminate the elastic vibration simultaneously. With the help of prescribed performance functions, the tracking error can converge to an arbitrarily small residual set and the convergence rate is no less than a certain pre-specified value. Asymptotic stability of the closed-loop system is rigorously proved by the LaSalle's Invariance Principle extended to infinite-dimensional system. Numerical simulations are provided to demonstrate the effectiveness of the proposed controller.
NASA Astrophysics Data System (ADS)
Bellugi, D. G.; Tennant, C.; Larsen, L.
2016-12-01
Catchment and climate heterogeneity complicate prediction of runoff across time and space, and resulting parameter uncertainty can lead to large accumulated errors in hydrologic models, particularly in ungauged basins. Recently, data-driven modeling approaches have been shown to avoid the accumulated uncertainty associated with many physically-based models, providing an appealing alternative for hydrologic prediction. However, the effectiveness of different methods in hydrologically and geomorphically distinct catchments, and the robustness of these methods to changing climate and changing hydrologic processes remain to be tested. Here, we evaluate the use of machine learning techniques to predict daily runoff across time and space using only essential climatic forcing (e.g. precipitation, temperature, and potential evapotranspiration) time series as model input. Model training and testing was done using a high quality dataset of daily runoff and climate forcing data for 25+ years for 600+ minimally-disturbed catchments (drainage area range 5-25,000 km2, median size 336 km2) that cover a wide range of climatic and physical characteristics. Preliminary results using Support Vector Regression (SVR) suggest that in some catchments this nonlinear-based regression technique can accurately predict daily runoff, while the same approach fails in other catchments, indicating that the representation of climate inputs and/or catchment filter characteristics in the model structure need further refinement to increase performance. We bolster this analysis by using Sparse Identification of Nonlinear Dynamics (a sparse symbolic regression technique) to uncover the governing equations that describe runoff processes in catchments where SVR performed well and for ones where it performed poorly, thereby enabling inference about governing processes. This provides a robust means of examining how catchment complexity influences runoff prediction skill, and represents a contribution towards the integration of data-driven inference and physically-based models.
Development of Ensemble Model Based Water Demand Forecasting Model
NASA Astrophysics Data System (ADS)
Kwon, Hyun-Han; So, Byung-Jin; Kim, Seong-Hyeon; Kim, Byung-Seop
2014-05-01
In recent years, Smart Water Grid (SWG) concept has globally emerged over the last decade and also gained significant recognition in South Korea. Especially, there has been growing interest in water demand forecast and optimal pump operation and this has led to various studies regarding energy saving and improvement of water supply reliability. Existing water demand forecasting models are categorized into two groups in view of modeling and predicting their behavior in time series. One is to consider embedded patterns such as seasonality, periodicity and trends, and the other one is an autoregressive model that is using short memory Markovian processes (Emmanuel et al., 2012). The main disadvantage of the abovementioned model is that there is a limit to predictability of water demands of about sub-daily scale because the system is nonlinear. In this regard, this study aims to develop a nonlinear ensemble model for hourly water demand forecasting which allow us to estimate uncertainties across different model classes. The proposed model is consist of two parts. One is a multi-model scheme that is based on combination of independent prediction model. The other one is a cross validation scheme named Bagging approach introduced by Brieman (1996) to derive weighting factors corresponding to individual models. Individual forecasting models that used in this study are linear regression analysis model, polynomial regression, multivariate adaptive regression splines(MARS), SVM(support vector machine). The concepts are demonstrated through application to observed from water plant at several locations in the South Korea. Keywords: water demand, non-linear model, the ensemble forecasting model, uncertainty. Acknowledgements This subject is supported by Korea Ministry of Environment as "Projects for Developing Eco-Innovation Technologies (GT-11-G-02-001-6)
A deep belief network with PLSR for nonlinear system modeling.
Qiao, Junfei; Wang, Gongming; Li, Wenjing; Li, Xiaoli
2018-08-01
Nonlinear system modeling plays an important role in practical engineering, and deep learning-based deep belief network (DBN) is now popular in nonlinear system modeling and identification because of the strong learning ability. However, the existing weights optimization for DBN is based on gradient, which always leads to a local optimum and a poor training result. In this paper, a DBN with partial least square regression (PLSR-DBN) is proposed for nonlinear system modeling, which focuses on the problem of weights optimization for DBN using PLSR. Firstly, unsupervised contrastive divergence (CD) algorithm is used in weights initialization. Secondly, initial weights derived from CD algorithm are optimized through layer-by-layer PLSR modeling from top layer to bottom layer. Instead of gradient method, PLSR-DBN can determine the optimal weights using several PLSR models, so that a better performance of PLSR-DBN is achieved. Then, the analysis of convergence is theoretically given to guarantee the effectiveness of the proposed PLSR-DBN model. Finally, the proposed PLSR-DBN is tested on two benchmark nonlinear systems and an actual wastewater treatment system as well as a handwritten digit recognition (nonlinear mapping and modeling) with high-dimension input data. The experiment results show that the proposed PLSR-DBN has better performances of time and accuracy on nonlinear system modeling than that of other methods. Copyright © 2017 Elsevier Ltd. All rights reserved.
PRESS-based EFOR algorithm for the dynamic parametrical modeling of nonlinear MDOF systems
NASA Astrophysics Data System (ADS)
Liu, Haopeng; Zhu, Yunpeng; Luo, Zhong; Han, Qingkai
2017-09-01
In response to the identification problem concerning multi-degree of freedom (MDOF) nonlinear systems, this study presents the extended forward orthogonal regression (EFOR) based on predicted residual sums of squares (PRESS) to construct a nonlinear dynamic parametrical model. The proposed parametrical model is based on the non-linear autoregressive with exogenous inputs (NARX) model and aims to explicitly reveal the physical design parameters of the system. The PRESS-based EFOR algorithm is proposed to identify such a model for MDOF systems. By using the algorithm, we built a common-structured model based on the fundamental concept of evaluating its generalization capability through cross-validation. The resulting model aims to prevent over-fitting with poor generalization performance caused by the average error reduction ratio (AERR)-based EFOR algorithm. Then, a functional relationship is established between the coefficients of the terms and the design parameters of the unified model. Moreover, a 5-DOF nonlinear system is taken as a case to illustrate the modeling of the proposed algorithm. Finally, a dynamic parametrical model of a cantilever beam is constructed from experimental data. Results indicate that the dynamic parametrical model of nonlinear systems, which depends on the PRESS-based EFOR, can accurately predict the output response, thus providing a theoretical basis for the optimal design of modeling methods for MDOF nonlinear systems.
Nonlinear analysis of pupillary dynamics.
Onorati, Francesco; Mainardi, Luca Tommaso; Sirca, Fabiola; Russo, Vincenzo; Barbieri, Riccardo
2016-02-01
Pupil size reflects autonomic response to different environmental and behavioral stimuli, and its dynamics have been linked to other autonomic correlates such as cardiac and respiratory rhythms. The aim of this study is to assess the nonlinear characteristics of pupil size of 25 normal subjects who participated in a psychophysiological experimental protocol with four experimental conditions, namely “baseline”, “anger”, “joy”, and “sadness”. Nonlinear measures, such as sample entropy, correlation dimension, and largest Lyapunov exponent, were computed on reconstructed signals of spontaneous fluctuations of pupil dilation. Nonparametric statistical tests were performed on surrogate data to verify that the nonlinear measures are an intrinsic characteristic of the signals. We then developed and applied a piecewise linear regression model to detrended fluctuation analysis (DFA). Two joinpoints and three scaling intervals were identified: slope α0, at slow time scales, represents a persistent nonstationary long-range correlation, whereas α1 and α2, at middle and fast time scales, respectively, represent long-range power-law correlations, similarly to DFA applied to heart rate variability signals. Of the computed complexity measures, α0 showed statistically significant differences among experimental conditions (p<0.001). Our results suggest that (a) pupil size at constant light condition is characterized by nonlinear dynamics, (b) three well-defined and distinct long-memory processes exist at different time scales, and (c) autonomic stimulation is partially reflected in nonlinear dynamics. (c) autonomic stimulation is partially reflected in nonlinear dynamics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marzouk, Youssef
Predictive simulation of complex physical systems increasingly rests on the interplay of experimental observations with computational models. Key inputs, parameters, or structural aspects of models may be incomplete or unknown, and must be developed from indirect and limited observations. At the same time, quantified uncertainties are needed to qualify computational predictions in the support of design and decision-making. In this context, Bayesian statistics provides a foundation for inference from noisy and limited data, but at prohibitive computional expense. This project intends to make rigorous predictive modeling *feasible* in complex physical systems, via accelerated and scalable tools for uncertainty quantification, Bayesianmore » inference, and experimental design. Specific objectives are as follows: 1. Develop adaptive posterior approximations and dimensionality reduction approaches for Bayesian inference in high-dimensional nonlinear systems. 2. Extend accelerated Bayesian methodologies to large-scale {\\em sequential} data assimilation, fully treating nonlinear models and non-Gaussian state and parameter distributions. 3. Devise efficient surrogate-based methods for Bayesian model selection and the learning of model structure. 4. Develop scalable simulation/optimization approaches to nonlinear Bayesian experimental design, for both parameter inference and model selection. 5. Demonstrate these inferential tools on chemical kinetic models in reacting flow, constructing and refining thermochemical and electrochemical models from limited data. Demonstrate Bayesian filtering on canonical stochastic PDEs and in the dynamic estimation of inhomogeneous subsurface properties and flow fields.« less
Frequency, pressure and strain dependence of nonlinear elasticity in Berea Sandstone
Riviere, Jacques; Johnson, Paul Allan; Marone, Chris; ...
2016-04-14
Acoustoelasticity measurements in a sample of room dry Berea sandstone are conducted at various loading frequencies to explore the transition between the quasi-static ( f → 0) and dynamic (few kilohertz) nonlinear elastic response. We carry out these measurements at multiple confining pressures and perform a multivariate regression analysis to quantify the dependence of the harmonic content on strain amplitude, frequency, and pressure. The modulus softening (equivalent to the harmonic at 0f) increases by a factor 2–3 over 3 orders of magnitude increase in frequency. Harmonics at 2f, 4f, and 6f exhibit similar behaviors. In contrast, the harmonic at 1fmore » appears frequency independent. This result corroborates previous studies showing that the nonlinear elasticity of rocks can be described with a minimum of two physical mechanisms. This study provides quantitative data that describes the rate dependency of nonlinear elasticity. Furthermore, these findings can be used to improve theories relating the macroscopic elastic response to microstructural features.« less
A data-driven approach for modeling post-fire debris-flow volumes and their uncertainty
Friedel, Michael J.
2011-01-01
This study demonstrates the novel application of genetic programming to evolve nonlinear post-fire debris-flow volume equations from variables associated with a data-driven conceptual model of the western United States. The search space is constrained using a multi-component objective function that simultaneously minimizes root-mean squared and unit errors for the evolution of fittest equations. An optimization technique is then used to estimate the limits of nonlinear prediction uncertainty associated with the debris-flow equations. In contrast to a published multiple linear regression three-variable equation, linking basin area with slopes greater or equal to 30 percent, burn severity characterized as area burned moderate plus high, and total storm rainfall, the data-driven approach discovers many nonlinear and several dimensionally consistent equations that are unbiased and have less prediction uncertainty. Of the nonlinear equations, the best performance (lowest prediction uncertainty) is achieved when using three variables: average basin slope, total burned area, and total storm rainfall. Further reduction in uncertainty is possible for the nonlinear equations when dimensional consistency is not a priority and by subsequently applying a gradient solver to the fittest solutions. The data-driven modeling approach can be applied to nonlinear multivariate problems in all fields of study.
Kuriakose, Saji; Joe, I Hubert
2013-11-01
Determination of the authenticity of essential oils has become more significant, in recent years, following some illegal adulteration and contamination scandals. The present investigative study focuses on the application of near infrared spectroscopy to detect sample authenticity and quantify economic adulteration of sandalwood oils. Several data pre-treatments are investigated for calibration and prediction using partial least square regression (PLSR). The quantitative data analysis is done using a new spectral approach - full spectrum or sequential spectrum. The optimum number of PLS components is obtained according to the lowest root mean square error of calibration (RMSEC=0.00009% v/v). The lowest root mean square error of prediction (RMSEP=0.00016% v/v) in the test set and the highest coefficient of determination (R(2)=0.99989) are used as the evaluation tools for the best model. A nonlinear method, locally weighted regression (LWR), is added to extract nonlinear information and to compare with the linear PLSR model. Copyright © 2013 Elsevier B.V. All rights reserved.
Nonlinear least-squares data fitting in Excel spreadsheets.
Kemmer, Gerdi; Keller, Sandro
2010-02-01
We describe an intuitive and rapid procedure for analyzing experimental data by nonlinear least-squares fitting (NLSF) in the most widely used spreadsheet program. Experimental data in x/y form and data calculated from a regression equation are inputted and plotted in a Microsoft Excel worksheet, and the sum of squared residuals is computed and minimized using the Solver add-in to obtain the set of parameter values that best describes the experimental data. The confidence of best-fit values is then visualized and assessed in a generally applicable and easily comprehensible way. Every user familiar with the most basic functions of Excel will be able to implement this protocol, without previous experience in data fitting or programming and without additional costs for specialist software. The application of this tool is exemplified using the well-known Michaelis-Menten equation characterizing simple enzyme kinetics. Only slight modifications are required to adapt the protocol to virtually any other kind of dataset or regression equation. The entire protocol takes approximately 1 h.
Brown, Angus M
2006-04-01
The objective of this present study was to demonstrate a method for fitting complex electrophysiological data with multiple functions using the SOLVER add-in of the ubiquitous spreadsheet Microsoft Excel. SOLVER minimizes the difference between the sum of the squares of the data to be fit and the function(s) describing the data using an iterative generalized reduced gradient method. While it is a straightforward procedure to fit data with linear functions, and we have previously demonstrated a method of non-linear regression analysis of experimental data based upon a single function, it is more complex to fit data with multiple functions, usually requiring specialized expensive computer software. In this paper we describe an easily understood program for fitting experimentally acquired data, in this case the stimulus-evoked compound action potential from the mouse optic nerve, with multiple Gaussian functions. The program is flexible and can be applied to describe data with a wide variety of user-input functions.
Macrocell path loss prediction using artificial intelligence techniques
NASA Astrophysics Data System (ADS)
Usman, Abraham U.; Okereke, Okpo U.; Omizegba, Elijah E.
2014-04-01
The prediction of propagation loss is a practical non-linear function approximation problem which linear regression or auto-regression models are limited in their ability to handle. However, some computational Intelligence techniques such as artificial neural networks (ANNs) and adaptive neuro-fuzzy inference systems (ANFISs) have been shown to have great ability to handle non-linear function approximation and prediction problems. In this study, the multiple layer perceptron neural network (MLP-NN), radial basis function neural network (RBF-NN) and an ANFIS network were trained using actual signal strength measurement taken at certain suburban areas of Bauchi metropolis, Nigeria. The trained networks were then used to predict propagation losses at the stated areas under differing conditions. The predictions were compared with the prediction accuracy of the popular Hata model. It was observed that ANFIS model gave a better fit in all cases having higher R2 values in each case and on average is more robust than MLP and RBF models as it generalises better to a different data.
Applications of Monte Carlo method to nonlinear regression of rheological data
NASA Astrophysics Data System (ADS)
Kim, Sangmo; Lee, Junghaeng; Kim, Sihyun; Cho, Kwang Soo
2018-02-01
In rheological study, it is often to determine the parameters of rheological models from experimental data. Since both rheological data and values of the parameters vary in logarithmic scale and the number of the parameters is quite large, conventional method of nonlinear regression such as Levenberg-Marquardt (LM) method is usually ineffective. The gradient-based method such as LM is apt to be caught in local minima which give unphysical values of the parameters whenever the initial guess of the parameters is far from the global optimum. Although this problem could be solved by simulated annealing (SA), the Monte Carlo (MC) method needs adjustable parameter which could be determined in ad hoc manner. We suggest a simplified version of SA, a kind of MC methods which results in effective values of the parameters of most complicated rheological models such as the Carreau-Yasuda model of steady shear viscosity, discrete relaxation spectrum and zero-shear viscosity as a function of concentration and molecular weight.
Big Data Toolsets to Pharmacometrics: Application of Machine Learning for Time‐to‐Event Analysis
Gong, Xiajing; Hu, Meng
2018-01-01
Abstract Additional value can be potentially created by applying big data tools to address pharmacometric problems. The performances of machine learning (ML) methods and the Cox regression model were evaluated based on simulated time‐to‐event data synthesized under various preset scenarios, i.e., with linear vs. nonlinear and dependent vs. independent predictors in the proportional hazard function, or with high‐dimensional data featured by a large number of predictor variables. Our results showed that ML‐based methods outperformed the Cox model in prediction performance as assessed by concordance index and in identifying the preset influential variables for high‐dimensional data. The prediction performances of ML‐based methods are also less sensitive to data size and censoring rates than the Cox regression model. In conclusion, ML‐based methods provide a powerful tool for time‐to‐event analysis, with a built‐in capacity for high‐dimensional data and better performance when the predictor variables assume nonlinear relationships in the hazard function. PMID:29536640
Missing-value estimation using linear and non-linear regression with Bayesian gene selection.
Zhou, Xiaobo; Wang, Xiaodong; Dougherty, Edward R
2003-11-22
Data from microarray experiments are usually in the form of large matrices of expression levels of genes under different experimental conditions. Owing to various reasons, there are frequently missing values. Estimating these missing values is important because they affect downstream analysis, such as clustering, classification and network design. Several methods of missing-value estimation are in use. The problem has two parts: (1) selection of genes for estimation and (2) design of an estimation rule. We propose Bayesian variable selection to obtain genes to be used for estimation, and employ both linear and nonlinear regression for the estimation rule itself. Fast implementation issues for these methods are discussed, including the use of QR decomposition for parameter estimation. The proposed methods are tested on data sets arising from hereditary breast cancer and small round blue-cell tumors. The results compare very favorably with currently used methods based on the normalized root-mean-square error. The appendix is available from http://gspsnap.tamu.edu/gspweb/zxb/missing_zxb/ (user: gspweb; passwd: gsplab).
Critical Analysis of Dual-Probe Heat-Pulse Technique Applied to Measuring Thermal Diffusivity
NASA Astrophysics Data System (ADS)
Bovesecchi, G.; Coppa, P.; Corasaniti, S.; Potenza, M.
2018-07-01
The paper presents an analysis of the experimental parameters involved in application of the dual-probe heat pulse technique, followed by a critical review of methods for processing thermal response data (e.g., maximum detection and nonlinear least square regression) and the consequent obtainable uncertainty. Glycerol was selected as testing liquid, and its thermal diffusivity was evaluated over the temperature range from - 20 °C to 60 °C. In addition, Monte Carlo simulation was used to assess the uncertainty propagation for maximum detection. It was concluded that maximum detection approach to process thermal response data gives the closest results to the reference data inasmuch nonlinear regression results are affected by major uncertainties due to partial correlation between the evaluated parameters. Besides, the interpolation of temperature data with a polynomial to find the maximum leads to a systematic difference between measured and reference data, as put into evidence by the Monte Carlo simulations; through its correction, this systematic error can be reduced to a negligible value, about 0.8 %.
NASA Astrophysics Data System (ADS)
Kuriakose, Saji; Joe, I. Hubert
2013-11-01
Determination of the authenticity of essential oils has become more significant, in recent years, following some illegal adulteration and contamination scandals. The present investigative study focuses on the application of near infrared spectroscopy to detect sample authenticity and quantify economic adulteration of sandalwood oils. Several data pre-treatments are investigated for calibration and prediction using partial least square regression (PLSR). The quantitative data analysis is done using a new spectral approach - full spectrum or sequential spectrum. The optimum number of PLS components is obtained according to the lowest root mean square error of calibration (RMSEC = 0.00009% v/v). The lowest root mean square error of prediction (RMSEP = 0.00016% v/v) in the test set and the highest coefficient of determination (R2 = 0.99989) are used as the evaluation tools for the best model. A nonlinear method, locally weighted regression (LWR), is added to extract nonlinear information and to compare with the linear PLSR model.
Bayesian Inference of High-Dimensional Dynamical Ocean Models
NASA Astrophysics Data System (ADS)
Lin, J.; Lermusiaux, P. F. J.; Lolla, S. V. T.; Gupta, A.; Haley, P. J., Jr.
2015-12-01
This presentation addresses a holistic set of challenges in high-dimension ocean Bayesian nonlinear estimation: i) predict the probability distribution functions (pdfs) of large nonlinear dynamical systems using stochastic partial differential equations (PDEs); ii) assimilate data using Bayes' law with these pdfs; iii) predict the future data that optimally reduce uncertainties; and (iv) rank the known and learn the new model formulations themselves. Overall, we allow the joint inference of the state, equations, geometry, boundary conditions and initial conditions of dynamical models. Examples are provided for time-dependent fluid and ocean flows, including cavity, double-gyre and Strait flows with jets and eddies. The Bayesian model inference, based on limited observations, is illustrated first by the estimation of obstacle shapes and positions in fluid flows. Next, the Bayesian inference of biogeochemical reaction equations and of their states and parameters is presented, illustrating how PDE-based machine learning can rigorously guide the selection and discovery of complex ecosystem models. Finally, the inference of multiscale bottom gravity current dynamics is illustrated, motivated in part by classic overflows and dense water formation sites and their relevance to climate monitoring and dynamics. This is joint work with our MSEAS group at MIT.
Nonlinear asymmetric tearing mode evolution in cylindrical geometry
Teng, Qian; Ferraro, N.; Gates, David A.; ...
2016-10-27
The growth of a tearing mode is described by reduced MHD equations. For a cylindrical equilibrium, tearing mode growth is governed by the modified Rutherford equation, i.e., the nonlinear Δ'(w). For a low beta plasma without external heating, Δ'(w) can be approximately described by two terms, Δ' ql(w), Δ'A(w). In this work, we present a simple method to calculate the quasilinear stability index Δ'ql rigorously, for poloidal mode number m ≥ 2. Δ' ql is derived by solving the outer equation through the Frobenius method. Δ'ql is composed of four terms proportional to: constant Δ' 0, w, wlnw, and w2.more » Δ' A is proportional to the asymmetry of island that is roughly proportional to w. The sum of Δ' ql and Δ' A is consistent with the more accurate expression calculated perturbatively. The reduced MHD equations are also solved numerically through a 3D MHD code M3D-C1. The analytical expression of the perturbed helical flux and the saturated island width agree with the simulation results. Lastly, it is also confirmed by the simulation that the Δ' A has to be considered in calculating island saturation.« less
Automated Design Space Exploration with Aspen
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spafford, Kyle L.; Vetter, Jeffrey S.
Architects and applications scientists often use performance models to explore a multidimensional design space of architectural characteristics, algorithm designs, and application parameters. With traditional performance modeling tools, these explorations forced users to first develop a performance model and then repeatedly evaluate and analyze the model manually. These manual investigations proved laborious and error prone. More importantly, the complexity of this traditional process often forced users to simplify their investigations. To address this challenge of design space exploration, we extend our Aspen (Abstract Scalable Performance Engineering Notation) language with three new language constructs: user-defined resources, parameter ranges, and a collection ofmore » costs in the abstract machine model. Then, we use these constructs to enable automated design space exploration via a nonlinear optimization solver. We show how four interesting classes of design space exploration scenarios can be derived from Aspen models and formulated as pure nonlinear programs. The analysis tools are demonstrated using examples based on Aspen models for a three-dimensional Fast Fourier Transform, the CoMD molecular dynamics proxy application, and the DARPA Streaming Sensor Challenge Problem. Our results show that this approach can compose and solve arbitrary performance modeling questions quickly and rigorously when compared to the traditional manual approach.« less
Automated Design Space Exploration with Aspen
Spafford, Kyle L.; Vetter, Jeffrey S.
2015-01-01
Architects and applications scientists often use performance models to explore a multidimensional design space of architectural characteristics, algorithm designs, and application parameters. With traditional performance modeling tools, these explorations forced users to first develop a performance model and then repeatedly evaluate and analyze the model manually. These manual investigations proved laborious and error prone. More importantly, the complexity of this traditional process often forced users to simplify their investigations. To address this challenge of design space exploration, we extend our Aspen (Abstract Scalable Performance Engineering Notation) language with three new language constructs: user-defined resources, parameter ranges, and a collection ofmore » costs in the abstract machine model. Then, we use these constructs to enable automated design space exploration via a nonlinear optimization solver. We show how four interesting classes of design space exploration scenarios can be derived from Aspen models and formulated as pure nonlinear programs. The analysis tools are demonstrated using examples based on Aspen models for a three-dimensional Fast Fourier Transform, the CoMD molecular dynamics proxy application, and the DARPA Streaming Sensor Challenge Problem. Our results show that this approach can compose and solve arbitrary performance modeling questions quickly and rigorously when compared to the traditional manual approach.« less
Using Approximations to Accelerate Engineering Design Optimization
NASA Technical Reports Server (NTRS)
Torczon, Virginia; Trosset, Michael W.
1998-01-01
Optimization problems that arise in engineering design are often characterized by several features that hinder the use of standard nonlinear optimization techniques. Foremost among these features is that the functions used to define the engineering optimization problem often are computationally intensive. Within a standard nonlinear optimization algorithm, the computational expense of evaluating the functions that define the problem would necessarily be incurred for each iteration of the optimization algorithm. Faced with such prohibitive computational costs, an attractive alternative is to make use of surrogates within an optimization context since surrogates can be chosen or constructed so that they are typically much less expensive to compute. For the purposes of this paper, we will focus on the use of algebraic approximations as surrogates for the objective. In this paper we introduce the use of so-called merit functions that explicitly recognize the desirability of improving the current approximation to the objective during the course of the optimization. We define and experiment with the use of merit functions chosen to simultaneously improve both the solution to the optimization problem (the objective) and the quality of the approximation. Our goal is to further improve the effectiveness of our general approach without sacrificing any of its rigor.
Rahman, Md Arifur; Al Mamun, Abdullah; Yao, Kui
2015-08-01
The head positioning servo system in hard disk drive is implemented nowadays using a dual-stage actuator—the primary stage consisting of a voice coil motor actuator providing long range motion and the secondary stage controlling the position of the read/write head with fine resolution. Piezoelectric micro-actuator made of lead zirconate titanate (PZT) has been a popular choice for the secondary stage. However, PZT micro-actuator exhibits hysteresis—an inherent nonlinear characteristic of piezoelectric material. The advantage expected from using the secondary micro-actuator is somewhat lost by the hysteresis of the micro-actuator that contributes to tracking error. Hysteresis nonlinearity adversely affects the performance and, if not compensated, may cause inaccuracy and oscillation in the response. Compensation of hysteresis is therefore an important aspect for designing head-positioning servo system. This paper presents a new rate dependent model of hysteresis along with rigorous analysis and identification of the model. Parameters of the model are found using particle swarm optimization. Direct inverse of the proposed rate-dependent generalized Prandtl-Ishlinskii model is used as the hysteresis compensator. Effectiveness of the overall solution is underscored through experimental results.
Guastello, Stephen J
2009-07-01
The landmarks in the use of chaos and related constructs in psychology were entwined with the growing use of other nonlinear dynamical constructs, especially catastrophes and self-organization. The growth in substantive applications of chaos in psychology is partially related to the development of methodologies that work within the constraints of psychological data. The psychological literature includes rigorous theory with testable propositions, lighter-weight metaphorical uses of the construct, and colloquial uses of "chaos" with no particular theoretical intent. The current state of the chaos construct and supporting empirical research in psychological theory is summarized in neuroscience, psychophysics, psychomotor skill and other learning phenomena, clinical and abnormal psychology, and group dynamics and organizational behavior. Trends indicate that human systems do not remain chaotic indefinitely; they eventually self-organize, and the concept of the complex adaptive system has become prominent. Chaotic turbulence is generally higher in healthy systems compared to unhealthy systems, although opposite appears true in mood disorders. Group dynamics research shows trends consistent with the complex adaptive system, whereas organizational behavior lags behind in empirical studies relative to the quantity of its theory. Future directions for research involving the chaos construct and other nonlinear dynamics are outlined.
The tug-of-war: fidelity versus adaptation throughout the health promotion program life cycle.
Bopp, Melissa; Saunders, Ruth P; Lattimore, Diana
2013-06-01
Researchers across multiple fields have described the iterative and nonlinear phases of the translational research process from program development to dissemination. This process can be conceptualized within a "program life cycle" framework that includes overlapping and nonlinear phases: development, adoption, implementation, maintenance, sustainability or termination, and dissemination or diffusion, characterized by tensions between fidelity to the original plan and adaptation for the setting and population. In this article, we describe the life cycle (phases) for research-based health promotion programs, the key influences at each phase, and the issues related to the tug-of-war between fidelity and adaptation throughout the process using a fictionalized case study based on our previous research. This article suggests the importance of reconceptualizing intervention design, involving stakeholders, and monitoring fidelity and adaptation throughout all phases to maintain implementation fidelity and completeness. Intervention fidelity should be based on causal mechanisms to ensure effectiveness, while allowing for appropriate adaption to ensure maximum implementation and sustainability. Recommendations for future interventions include considering the determinants of implementation including contextual factors at each phase, the roles of stakeholders, and the importance of developing a rigorous, adaptive, and flexible definition of implementation fidelity and completeness.
Validation of Extended MHD Models using MST RFP Plasmas
NASA Astrophysics Data System (ADS)
Jacobson, C. M.; Chapman, B. E.; Craig, D.; McCollam, K. J.; Sovinec, C. R.
2016-10-01
Significant effort has been devoted to improvement of computational models used in fusion energy sciences. Rigorous validation of these models is necessary in order to increase confidence in their ability to predict the performance of future devices. MST is a well diagnosed reversed-field pinch (RFP) capable of operation over a wide range of parameters. In particular, the Lundquist number S, a key parameter in resistive magnetohydrodynamics (MHD), can be varied over a wide range and provide substantial overlap with MHD RFP simulations. MST RFP plasmas are simulated using both DEBS, a nonlinear single-fluid visco-resistive MHD code, and NIMROD, a nonlinear extended MHD code, with S ranging from 104 to 5 ×104 for single-fluid runs, with the magnetic Prandtl number Pm = 1 . Experiments with plasma current IP ranging from 60 kA to 500 kA result in S from 4 ×104 to 8 ×106 . Validation metric comparisons are presented, focusing on how magnetic fluctuations b scale with S. Single-fluid NIMROD results give S b - 0.21 , and experiments give S b - 0.28 for the dominant m = 1 , n = 6 mode. Preliminary two-fluid NIMROD results are also presented. Work supported by US DOE.
PharmML in Action: an Interoperable Language for Modeling and Simulation.
Bizzotto, R; Comets, E; Smith, G; Yvon, F; Kristensen, N R; Swat, M J
2017-10-01
PharmML is an XML-based exchange format created with a focus on nonlinear mixed-effect (NLME) models used in pharmacometrics, but providing a very general framework that also allows describing mathematical and statistical models such as single-subject or nonlinear and multivariate regression models. This tutorial provides an overview of the structure of this language, brief suggestions on how to work with it, and use cases demonstrating its power and flexibility. © 2017 The Authors CPT: Pharmacometrics & Systems Pharmacology published by Wiley Periodicals, Inc. on behalf of American Society for Clinical Pharmacology and Therapeutics.
Wu, F; Callisaya, M; Laslett, L L; Wills, K; Zhou, Y; Jones, G; Winzenberg, T
2016-07-01
This was the first study investigating both linear associations between lower limb muscle strength and balance in middle-aged women and the potential for thresholds for the associations. There was strong evidence that even in middle-aged women, poorer LMS was associated with reduced balance. However, no evidence was found for thresholds. Decline in balance begins in middle age, yet, the role of muscle strength in balance is rarely examined in this age group. We aimed to determine the association between lower limb muscle strength (LMS) and balance in middle-aged women and investigate whether cut-points of LMS exist that might identify women at risk of poorer balance. Cross-sectional analysis of 345 women aged 36-57 years was done. Associations between LMS and balance tests (timed up and go (TUG), step test (ST), functional reach test (FRT), and lateral reach test (LRT)) were assessed using linear regression. Nonlinear associations were explored using locally weighted regression smoothing (LOWESS) and potential cut-points identified using nonlinear least-squares estimation. Segmented regression was used to estimate associations above and below the identified cut-points. Weaker LMS was associated with poorer performance on the TUG (β -0.008 (95 % CI: -0.010, -0.005) second/kg), ST (β 0.031 (0.011, 0.051) step/kg), FRT (β 0.071 (0.047, 0.096) cm/kg), and LRT (β 0.028 (0.011, 0.044) cm/kg), independent of confounders. Potential nonlinear associations were evident from LOWESS results; significant cut-points of LMS were identified for all balance tests (29-50 kg). However, excepting ST, cut-points did not persist after excluding potentially influential data points. In middle-aged women, poorer LMS is associated with reduced balance. Therefore, improving muscle strength in middle-age may be a useful strategy to improve balance and reduce falls risk in later life. Middle-aged women with low muscle strength may be an effective target group for future randomized controlled trials. Australian New Zealand Clinical Trials Registry (ANZCTR) NCT00273260.
A novel model incorporating two variability sources for describing motor evoked potentials
Goetz, Stefan M.; Luber, Bruce; Lisanby, Sarah H.; Peterchev, Angel V.
2014-01-01
Objective Motor evoked potentials (MEPs) play a pivotal role in transcranial magnetic stimulation (TMS), e.g., for determining the motor threshold and probing cortical excitability. Sampled across the range of stimulation strengths, MEPs outline an input–output (IO) curve, which is often used to characterize the corticospinal tract. More detailed understanding of the signal generation and variability of MEPs would provide insight into the underlying physiology and aid correct statistical treatment of MEP data. Methods A novel regression model is tested using measured IO data of twelve subjects. The model splits MEP variability into two independent contributions, acting on both sides of a strong sigmoidal nonlinearity that represents neural recruitment. Traditional sigmoidal regression with a single variability source after the nonlinearity is used for comparison. Results The distribution of MEP amplitudes varied across different stimulation strengths, violating statistical assumptions in traditional regression models. In contrast to the conventional regression model, the dual variability source model better described the IO characteristics including phenomena such as changing distribution spread and skewness along the IO curve. Conclusions MEP variability is best described by two sources that most likely separate variability in the initial excitation process from effects occurring later on. The new model enables more accurate and sensitive estimation of the IO curve characteristics, enhancing its power as a detection tool, and may apply to other brain stimulation modalities. Furthermore, it extracts new information from the IO data concerning the neural variability—information that has previously been treated as noise. PMID:24794287
Raj, Retheep; Sivanandan, K S
2017-01-01
Estimation of elbow dynamics has been the object of numerous investigations. In this work a solution is proposed for estimating elbow movement velocity and elbow joint angle from Surface Electromyography (SEMG) signals. Here the Surface Electromyography signals are acquired from the biceps brachii muscle of human hand. Two time-domain parameters, Integrated EMG (IEMG) and Zero Crossing (ZC), are extracted from the Surface Electromyography signal. The relationship between the time domain parameters, IEMG and ZC with elbow angular displacement and elbow angular velocity during extension and flexion of the elbow are studied. A multiple input-multiple output model is derived for identifying the kinematics of elbow. A Nonlinear Auto Regressive with eXogenous inputs (NARX) structure based multiple layer perceptron neural network (MLPNN) model is proposed for the estimation of elbow joint angle and elbow angular velocity. The proposed NARX MLPNN model is trained using Levenberg-marquardt based algorithm. The proposed model is estimating the elbow joint angle and elbow movement angular velocity with appreciable accuracy. The model is validated using regression coefficient value (R). The average regression coefficient value (R) obtained for elbow angular displacement prediction is 0.9641 and for the elbow anglular velocity prediction is 0.9347. The Nonlinear Auto Regressive with eXogenous inputs (NARX) structure based multiple layer perceptron neural networks (MLPNN) model can be used for the estimation of angular displacement and movement angular velocity of the elbow with good accuracy.
Claessens, T E; Georgakopoulos, D; Afanasyeva, M; Vermeersch, S J; Millar, H D; Stergiopulos, N; Westerhof, N; Verdonck, P R; Segers, P
2006-04-01
The linear time-varying elastance theory is frequently used to describe the change in ventricular stiffness during the cardiac cycle. The concept assumes that all isochrones (i.e., curves that connect pressure-volume data occurring at the same time) are linear and have a common volume intercept. Of specific interest is the steepest isochrone, the end-systolic pressure-volume relationship (ESPVR), of which the slope serves as an index for cardiac contractile function. Pressure-volume measurements, achieved with a combined pressure-conductance catheter in the left ventricle of 13 open-chest anesthetized mice, showed a marked curvilinearity of the isochrones. We therefore analyzed the shape of the isochrones by using six regression algorithms (two linear, two quadratic, and two logarithmic, each with a fixed or time-varying intercept) and discussed the consequences for the elastance concept. Our main observations were 1) the volume intercept varies considerably with time; 2) isochrones are equally well described by using quadratic or logarithmic regression; 3) linear regression with a fixed intercept shows poor correlation (R(2) < 0.75) during isovolumic relaxation and early filling; and 4) logarithmic regression is superior in estimating the fixed volume intercept of the ESPVR. In conclusion, the linear time-varying elastance fails to provide a sufficiently robust model to account for changes in pressure and volume during the cardiac cycle in the mouse ventricle. A new framework accounting for the nonlinear shape of the isochrones needs to be developed.
Meta-regression analysis of the effect of trans fatty acids on low-density lipoprotein cholesterol.
Allen, Bruce C; Vincent, Melissa J; Liska, DeAnn; Haber, Lynne T
2016-12-01
We conducted a meta-regression of controlled clinical trial data to investigate quantitatively the relationship between dietary intake of industrial trans fatty acids (iTFA) and increased low-density lipoprotein cholesterol (LDL-C). Previous regression analyses included insufficient data to determine the nature of the dose response in the low-dose region and have nonetheless assumed a linear relationship between iTFA intake and LDL-C levels. This work contributes to the previous work by 1) including additional studies examining low-dose intake (identified using an evidence mapping procedure); 2) investigating a range of curve shapes, including both linear and nonlinear models; and 3) using Bayesian meta-regression to combine results across trials. We found that, contrary to previous assumptions, the linear model does not acceptably fit the data, while the nonlinear, S-shaped Hill model fits the data well. Based on a conservative estimate of the degree of intra-individual variability in LDL-C (0.1 mmoL/L), as an estimate of a change in LDL-C that is not adverse, a change in iTFA intake of 2.2% of energy intake (%en) (corresponding to a total iTFA intake of 2.2-2.9%en) does not cause adverse effects on LDL-C. The iTFA intake associated with this change in LDL-C is substantially higher than the average iTFA intake (0.5%en). Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Ahn, Jae Joon; Kim, Young Min; Yoo, Keunje; Park, Joonhong; Oh, Kyong Joo
2012-11-01
For groundwater conservation and management, it is important to accurately assess groundwater pollution vulnerability. This study proposed an integrated model using ridge regression and a genetic algorithm (GA) to effectively select the major hydro-geological parameters influencing groundwater pollution vulnerability in an aquifer. The GA-Ridge regression method determined that depth to water, net recharge, topography, and the impact of vadose zone media were the hydro-geological parameters that influenced trichloroethene pollution vulnerability in a Korean aquifer. When using these selected hydro-geological parameters, the accuracy was improved for various statistical nonlinear and artificial intelligence (AI) techniques, such as multinomial logistic regression, decision trees, artificial neural networks, and case-based reasoning. These results provide a proof of concept that the GA-Ridge regression is effective at determining influential hydro-geological parameters for the pollution vulnerability of an aquifer, and in turn, improves the AI performance in assessing groundwater pollution vulnerability.
Bilgili, Mehmet; Sahin, Besir; Sangun, Levent
2013-01-01
The aim of this study is to estimate the soil temperatures of a target station using only the soil temperatures of neighboring stations without any consideration of the other variables or parameters related to soil properties. For this aim, the soil temperatures were measured at depths of 5, 10, 20, 50, and 100 cm below the earth surface at eight measuring stations in Turkey. Firstly, the multiple nonlinear regression analysis was performed with the "Enter" method to determine the relationship between the values of target station and neighboring stations. Then, the stepwise regression analysis was applied to determine the best independent variables. Finally, an artificial neural network (ANN) model was developed to estimate the soil temperature of a target station. According to the derived results for the training data set, the mean absolute percentage error and correlation coefficient ranged from 1.45% to 3.11% and from 0.9979 to 0.9986, respectively, while corresponding ranges of 1.685-3.65% and 0.9988-0.9991, respectively, were obtained based on the testing data set. The obtained results show that the developed ANN model provides a simple and accurate prediction to determine the soil temperature. In addition, the missing data at the target station could be determined within a high degree of accuracy.
Incorporating nonlinearity into mediation analyses.
Knafl, George J; Knafl, Kathleen A; Grey, Margaret; Dixon, Jane; Deatrick, Janet A; Gallo, Agatha M
2017-03-21
Mediation is an important issue considered in the behavioral, medical, and social sciences. It addresses situations where the effect of a predictor variable X on an outcome variable Y is explained to some extent by an intervening, mediator variable M. Methods for addressing mediation have been available for some time. While these methods continue to undergo refinement, the relationships underlying mediation are commonly treated as linear in the outcome Y, the predictor X, and the mediator M. These relationships, however, can be nonlinear. Methods are needed for assessing when mediation relationships can be treated as linear and for estimating them when they are nonlinear. Existing adaptive regression methods based on fractional polynomials are extended here to address nonlinearity in mediation relationships, but assuming those relationships are monotonic as would be consistent with theories about directionality of such relationships. Example monotonic mediation analyses are provided assessing linear and monotonic mediation of the effect of family functioning (X) on a child's adaptation (Y) to a chronic condition by the difficulty (M) for the family in managing the child's condition. Example moderated monotonic mediation and simulation analyses are also presented. Adaptive methods provide an effective way to incorporate possibly nonlinear monotonicity into mediation relationships.
Balabin, Roman M; Lomakina, Ekaterina I
2011-04-21
In this study, we make a general comparison of the accuracy and robustness of five multivariate calibration models: partial least squares (PLS) regression or projection to latent structures, polynomial partial least squares (Poly-PLS) regression, artificial neural networks (ANNs), and two novel techniques based on support vector machines (SVMs) for multivariate data analysis: support vector regression (SVR) and least-squares support vector machines (LS-SVMs). The comparison is based on fourteen (14) different datasets: seven sets of gasoline data (density, benzene content, and fractional composition/boiling points), two sets of ethanol gasoline fuel data (density and ethanol content), one set of diesel fuel data (total sulfur content), three sets of petroleum (crude oil) macromolecules data (weight percentages of asphaltenes, resins, and paraffins), and one set of petroleum resins data (resins content). Vibrational (near-infrared, NIR) spectroscopic data are used to predict the properties and quality coefficients of gasoline, biofuel/biodiesel, diesel fuel, and other samples of interest. The four systems presented here range greatly in composition, properties, strength of intermolecular interactions (e.g., van der Waals forces, H-bonds), colloid structure, and phase behavior. Due to the high diversity of chemical systems studied, general conclusions about SVM regression methods can be made. We try to answer the following question: to what extent can SVM-based techniques replace ANN-based approaches in real-world (industrial/scientific) applications? The results show that both SVR and LS-SVM methods are comparable to ANNs in accuracy. Due to the much higher robustness of the former, the SVM-based approaches are recommended for practical (industrial) application. This has been shown to be especially true for complicated, highly nonlinear objects.
Aqil, Muhammad; Kita, Ichiro; Yano, Akira; Nishiyama, Soichi
2007-10-01
Traditionally, the multiple linear regression technique has been one of the most widely used models in simulating hydrological time series. However, when the nonlinear phenomenon is significant, the multiple linear will fail to develop an appropriate predictive model. Recently, neuro-fuzzy systems have gained much popularity for calibrating the nonlinear relationships. This study evaluated the potential of a neuro-fuzzy system as an alternative to the traditional statistical regression technique for the purpose of predicting flow from a local source in a river basin. The effectiveness of the proposed identification technique was demonstrated through a simulation study of the river flow time series of the Citarum River in Indonesia. Furthermore, in order to provide the uncertainty associated with the estimation of river flow, a Monte Carlo simulation was performed. As a comparison, a multiple linear regression analysis that was being used by the Citarum River Authority was also examined using various statistical indices. The simulation results using 95% confidence intervals indicated that the neuro-fuzzy model consistently underestimated the magnitude of high flow while the low and medium flow magnitudes were estimated closer to the observed data. The comparison of the prediction accuracy of the neuro-fuzzy and linear regression methods indicated that the neuro-fuzzy approach was more accurate in predicting river flow dynamics. The neuro-fuzzy model was able to improve the root mean square error (RMSE) and mean absolute percentage error (MAPE) values of the multiple linear regression forecasts by about 13.52% and 10.73%, respectively. Considering its simplicity and efficiency, the neuro-fuzzy model is recommended as an alternative tool for modeling of flow dynamics in the study area.
NASA Technical Reports Server (NTRS)
Whitlock, C. H.; Kuo, C. Y.
1979-01-01
The objective of this paper is to define optical physics and/or environmental conditions under which the linear multiple-regression should be applicable. An investigation of the signal-response equations is conducted and the concept is tested by application to actual remote sensing data from a laboratory experiment performed under controlled conditions. Investigation of the signal-response equations shows that the exact solution for a number of optical physics conditions is of the same form as a linearized multiple-regression equation, even if nonlinear contributions from surface reflections, atmospheric constituents, or other water pollutants are included. Limitations on achieving this type of solution are defined.
Evaluation and application of regional turbidity-sediment regression models in Virginia
Hyer, Kenneth; Jastram, John D.; Moyer, Douglas; Webber, James S.; Chanat, Jeffrey G.
2015-01-01
Conventional thinking has long held that turbidity-sediment surrogate-regression equations are site specific and that regression equations developed at a single monitoring station should not be applied to another station; however, few studies have evaluated this issue in a rigorous manner. If robust regional turbidity-sediment models can be developed successfully, their applications could greatly expand the usage of these methods. Suspended sediment load estimation could occur as soon as flow and turbidity monitoring commence at a site, suspended sediment sampling frequencies for various projects potentially could be reduced, and special-project applications (sediment monitoring following dam removal, for example) could be significantly enhanced. The objective of this effort was to investigate the turbidity-suspended sediment concentration (SSC) relations at all available USGS monitoring sites within Virginia to determine whether meaningful turbidity-sediment regression models can be developed by combining the data from multiple monitoring stations into a single model, known as a “regional” model. Following the development of the regional model, additional objectives included a comparison of predicted SSCs between the regional model and commonly used site-specific models, as well as an evaluation of why specific monitoring stations did not fit the regional model.
On statistical inference in time series analysis of the evolution of road safety.
Commandeur, Jacques J F; Bijleveld, Frits D; Bergel-Hayat, Ruth; Antoniou, Constantinos; Yannis, George; Papadimitriou, Eleonora
2013-11-01
Data collected for building a road safety observatory usually include observations made sequentially through time. Examples of such data, called time series data, include annual (or monthly) number of road traffic accidents, traffic fatalities or vehicle kilometers driven in a country, as well as the corresponding values of safety performance indicators (e.g., data on speeding, seat belt use, alcohol use, etc.). Some commonly used statistical techniques imply assumptions that are often violated by the special properties of time series data, namely serial dependency among disturbances associated with the observations. The first objective of this paper is to demonstrate the impact of such violations to the applicability of standard methods of statistical inference, which leads to an under or overestimation of the standard error and consequently may produce erroneous inferences. Moreover, having established the adverse consequences of ignoring serial dependency issues, the paper aims to describe rigorous statistical techniques used to overcome them. In particular, appropriate time series analysis techniques of varying complexity are employed to describe the development over time, relating the accident-occurrences to explanatory factors such as exposure measures or safety performance indicators, and forecasting the development into the near future. Traditional regression models (whether they are linear, generalized linear or nonlinear) are shown not to naturally capture the inherent dependencies in time series data. Dedicated time series analysis techniques, such as the ARMA-type and DRAG approaches are discussed next, followed by structural time series models, which are a subclass of state space methods. The paper concludes with general recommendations and practice guidelines for the use of time series models in road safety research. Copyright © 2012 Elsevier Ltd. All rights reserved.
Univariate Time Series Prediction of Solar Power Using a Hybrid Wavelet-ARMA-NARX Prediction Method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nazaripouya, Hamidreza; Wang, Yubo; Chu, Chi-Cheng
This paper proposes a new hybrid method for super short-term solar power prediction. Solar output power usually has a complex, nonstationary, and nonlinear characteristic due to intermittent and time varying behavior of solar radiance. In addition, solar power dynamics is fast and is inertia less. An accurate super short-time prediction is required to compensate for the fluctuations and reduce the impact of solar power penetration on the power system. The objective is to predict one step-ahead solar power generation based only on historical solar power time series data. The proposed method incorporates discrete wavelet transform (DWT), Auto-Regressive Moving Average (ARMA)more » models, and Recurrent Neural Networks (RNN), while the RNN architecture is based on Nonlinear Auto-Regressive models with eXogenous inputs (NARX). The wavelet transform is utilized to decompose the solar power time series into a set of richer-behaved forming series for prediction. ARMA model is employed as a linear predictor while NARX is used as a nonlinear pattern recognition tool to estimate and compensate the error of wavelet-ARMA prediction. The proposed method is applied to the data captured from UCLA solar PV panels and the results are compared with some of the common and most recent solar power prediction methods. The results validate the effectiveness of the proposed approach and show a considerable improvement in the prediction precision.« less
NASA Astrophysics Data System (ADS)
Chen, Yi-Ying; Chu, Chia-Ren; Li, Ming-Hsu
2012-10-01
SummaryIn this paper we present a semi-parametric multivariate gap-filling model for tower-based measurement of latent heat flux (LE). Two statistical techniques, the principal component analysis (PCA) and a nonlinear interpolation approach were integrated into this LE gap-filling model. The PCA was first used to resolve the multicollinearity relationships among various environmental variables, including radiation, soil moisture deficit, leaf area index, wind speed, etc. Two nonlinear interpolation methods, multiple regressions (MRS) and the K-nearest neighbors (KNNs) were examined with random selected flux gaps for both clear sky and nighttime/cloudy data to incorporate into this LE gap-filling model. Experimental results indicated that the KNN interpolation approach is able to provide consistent LE estimations while MRS presents over estimations during nighttime/cloudy. Rather than using empirical regression parameters, the KNN approach resolves the nonlinear relationship between the gap-filled LE flux and principal components with adaptive K values under different atmospheric states. The developed LE gap-filling model (PCA with KNN) works with a RMSE of 2.4 W m-2 (˜0.09 mm day-1) at a weekly time scale by adding 40% artificial flux gaps into original dataset. Annual evapotranspiration at this study site were estimated at 736 mm (1803 MJ) and 728 mm (1785 MJ) for year 2008 and 2009, respectively.
Geszke-Moritz, Małgorzata; Moritz, Michał
2016-12-01
The present study deals with the adsorption of boldine onto pure and propyl-sulfonic acid-functionalized SBA-15, SBA-16 and mesocellular foam (MCF) materials. Siliceous adsorbents were characterized by nitrogen sorption analysis, transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier-transform infrared (FT-IR) spectroscopy and thermogravimetric analysis. The equilibrium adsorption data were analyzed using the Langmuir, Freundlich, Redlich-Peterson, and Temkin isotherms. Moreover, the Dubinin-Radushkevich and Dubinin-Astakhov isotherm models based on the Polanyi adsorption potential were employed. The latter was calculated using two alternative formulas including solubility-normalized (S-model) and empirical C-model. In order to find the best-fit isotherm, both linear regression and nonlinear fitting analysis were carried out. The Dubinin-Astakhov (S-model) isotherm revealed the best fit to the experimental points for adsorption of boldine onto pure mesoporous materials using both linear and nonlinear fitting analysis. Meanwhile, the process of boldine sorption onto modified silicas was described the best by the Langmuir and Temkin isotherms using linear regression and nonlinear fitting analysis, respectively. The values of adsorption energy (below 8kJ/mol) indicate the physical nature of boldine adsorption onto unmodified silicas whereas the ionic interactions seem to be the main force of alkaloid adsorption onto functionalized sorbents (energy of adsorption above 8kJ/mol). Copyright © 2016 Elsevier B.V. All rights reserved.
Han, Hyung Joon; Choi, Sae Byeol; Park, Man Sik; Lee, Jin Suk; Kim, Wan Bae; Song, Tae Jin; Choi, Sang Yong
2011-07-01
Single port laparoscopic surgery has come to the forefront of minimally invasive surgery. For those familiar with conventional techniques, however, this type of operation demands a different type of eye/hand coordination and involves unfamiliar working instruments. Herein, the authors describe the learning curve and the clinical outcomes of single port laparoscopic cholecystectomy for 150 consecutive patients with benign gallbladder disease. All patients underwent single port laparoscopic cholecystectomy using a homemade glove port by one of five operators with different levels of experiences of laparoscopic surgery. The learning curve for each operator was fitted using the non-linear ordinary least squares method based on a non-linear regression model. Mean operating time was 77.6 ± 28.5 min. Fourteen patients (6.0%) were converted to conventional laparoscopic cholecystectomy. Complications occurred in 15 patients (10.0%), as follows: bile duct injury (n = 2), surgical site infection (n = 8), seroma (n = 2), and wound pain (n = 3). One operator achieved a learning curve plateau at 61.4 min per procedure after 8.5 cases and his time improved by 95.3 min as compared with initial operation time. Younger surgeons showed significant decreases in mean operation time and achieved stable mean operation times. In particular, younger surgeons showed significant decreases in operation times after 20 cases. Experienced laparoscopic surgeons can safely perform single port laparoscopic cholecystectomy using conventional or angled laparoscopic instruments. The present study shows that an operator can overcome the single port laparoscopic cholecystectomy learning curve in about eight cases.
Development and Application of Nonlinear Land-Use Regression Models
NASA Astrophysics Data System (ADS)
Champendal, Alexandre; Kanevski, Mikhail; Huguenot, Pierre-Emmanuel
2014-05-01
The problem of air pollution modelling in urban zones is of great importance both from scientific and applied points of view. At present there are several fundamental approaches either based on science-based modelling (air pollution dispersion) or on the application of space-time geostatistical methods (e.g. family of kriging models or conditional stochastic simulations). Recently, there were important developments in so-called Land Use Regression (LUR) models. These models take into account geospatial information (e.g. traffic network, sources of pollution, average traffic, population census, land use, etc.) at different scales, for example, using buffering operations. Usually the dimension of the input space (number of independent variables) is within the range of (10-100). It was shown that LUR models have some potential to model complex and highly variable patterns of air pollution in urban zones. Most of LUR models currently used are linear models. In the present research the nonlinear LUR models are developed and applied for Geneva city. Mainly two nonlinear data-driven models were elaborated: multilayer perceptron and random forest. An important part of the research deals also with a comprehensive exploratory data analysis using statistical, geostatistical and time series tools. Unsupervised self-organizing maps were applied to better understand space-time patterns of the pollution. The real data case study deals with spatial-temporal air pollution data of Geneva (2002-2011). Nitrogen dioxide (NO2) has caught our attention. It has effects on human health and on plants; NO2 contributes to the phenomenon of acid rain. The negative effects of nitrogen dioxides on plants are the reduction of the growth, production and pesticide resistance. And finally, the effects on materials: nitrogen dioxide increases the corrosion. The data used for this study consist of a set of 106 NO2 passive sensors. 80 were used to build the models and the remaining 36 have constituted the testing set. Missing data have been completed using multiple linear regression and annual average values of pollutant concentrations were computed. All sensors are dispersed homogeneously over the central urban area of Geneva. The main result of the study is that the nonlinear LUR models developed have demonstrated their efficiency in modelling complex phrenomena of air pollution in urban zones and significantly reduced the testing error in comparison with linear models. Further research deals with the development and application of other non-linear data-driven models (Kanevski et al. 2009). References Kanevski M., Pozdnoukhov A. and Timonin V. (2009). Machine Learning for Spatial Environmental Data. Theory, Applications and Software. EPLF Press, Lausanne.
Deep ensemble learning of sparse regression models for brain disease diagnosis.
Suk, Heung-Il; Lee, Seong-Whan; Shen, Dinggang
2017-04-01
Recent studies on brain imaging analysis witnessed the core roles of machine learning techniques in computer-assisted intervention for brain disease diagnosis. Of various machine-learning techniques, sparse regression models have proved their effectiveness in handling high-dimensional data but with a small number of training samples, especially in medical problems. In the meantime, deep learning methods have been making great successes by outperforming the state-of-the-art performances in various applications. In this paper, we propose a novel framework that combines the two conceptually different methods of sparse regression and deep learning for Alzheimer's disease/mild cognitive impairment diagnosis and prognosis. Specifically, we first train multiple sparse regression models, each of which is trained with different values of a regularization control parameter. Thus, our multiple sparse regression models potentially select different feature subsets from the original feature set; thereby they have different powers to predict the response values, i.e., clinical label and clinical scores in our work. By regarding the response values from our sparse regression models as target-level representations, we then build a deep convolutional neural network for clinical decision making, which thus we call 'Deep Ensemble Sparse Regression Network.' To our best knowledge, this is the first work that combines sparse regression models with deep neural network. In our experiments with the ADNI cohort, we validated the effectiveness of the proposed method by achieving the highest diagnostic accuracies in three classification tasks. We also rigorously analyzed our results and compared with the previous studies on the ADNI cohort in the literature. Copyright © 2017 Elsevier B.V. All rights reserved.
Deep ensemble learning of sparse regression models for brain disease diagnosis
Suk, Heung-Il; Lee, Seong-Whan; Shen, Dinggang
2018-01-01
Recent studies on brain imaging analysis witnessed the core roles of machine learning techniques in computer-assisted intervention for brain disease diagnosis. Of various machine-learning techniques, sparse regression models have proved their effectiveness in handling high-dimensional data but with a small number of training samples, especially in medical problems. In the meantime, deep learning methods have been making great successes by outperforming the state-of-the-art performances in various applications. In this paper, we propose a novel framework that combines the two conceptually different methods of sparse regression and deep learning for Alzheimer’s disease/mild cognitive impairment diagnosis and prognosis. Specifically, we first train multiple sparse regression models, each of which is trained with different values of a regularization control parameter. Thus, our multiple sparse regression models potentially select different feature subsets from the original feature set; thereby they have different powers to predict the response values, i.e., clinical label and clinical scores in our work. By regarding the response values from our sparse regression models as target-level representations, we then build a deep convolutional neural network for clinical decision making, which thus we call ‘ Deep Ensemble Sparse Regression Network.’ To our best knowledge, this is the first work that combines sparse regression models with deep neural network. In our experiments with the ADNI cohort, we validated the effectiveness of the proposed method by achieving the highest diagnostic accuracies in three classification tasks. We also rigorously analyzed our results and compared with the previous studies on the ADNI cohort in the literature. PMID:28167394
Regression-based model of skin diffuse reflectance for skin color analysis
NASA Astrophysics Data System (ADS)
Tsumura, Norimichi; Kawazoe, Daisuke; Nakaguchi, Toshiya; Ojima, Nobutoshi; Miyake, Yoichi
2008-11-01
A simple regression-based model of skin diffuse reflectance is developed based on reflectance samples calculated by Monte Carlo simulation of light transport in a two-layered skin model. This reflectance model includes the values of spectral reflectance in the visible spectra for Japanese women. The modified Lambert Beer law holds in the proposed model with a modified mean free path length in non-linear density space. The averaged RMS and maximum errors of the proposed model were 1.1 and 3.1%, respectively, in the above range.
Methods for scalar-on-function regression.
Reiss, Philip T; Goldsmith, Jeff; Shang, Han Lin; Ogden, R Todd
2017-08-01
Recent years have seen an explosion of activity in the field of functional data analysis (FDA), in which curves, spectra, images, etc. are considered as basic functional data units. A central problem in FDA is how to fit regression models with scalar responses and functional data points as predictors. We review some of the main approaches to this problem, categorizing the basic model types as linear, nonlinear and nonparametric. We discuss publicly available software packages, and illustrate some of the procedures by application to a functional magnetic resonance imaging dataset.
ERIC Educational Resources Information Center
Culpepper, Steven Andrew
2010-01-01
Statistical prediction remains an important tool for decisions in a variety of disciplines. An equally important issue is identifying factors that contribute to more or less accurate predictions. The time series literature includes well developed methods for studying predictability and volatility over time. This article develops…
We compared two regression models, which are based on the Weibull and probit functions, for the analysis of pesticide toxicity data from laboratory studies on Illinois crop and native plant species. Both mathematical models are continuous, differentiable, strictly positive, and...
Various approaches and tools exist to estimate local and regional PM2.5 impacts from a single emissions source, ranging from simple screening techniques to Gaussian based dispersion models and complex grid-based Eulerian photochemical transport models. These approache...
Individual tree growth models for natural even-aged shortleaf pine
Chakra B. Budhathoki; Thomas B. Lynch; James M. Guldin
2006-01-01
Shortleaf pine (Pinus echinata Mill.) measurements were available from permanent plots established in even-aged stands of the Ouachita Mountains for studying growth. Annual basal area growth was modeled with a least-squares nonlinear regression method utilizing three measurements. The analysis showed that the parameter estimates were in agreement...
Nonparametric Stochastic Model for Uncertainty Quantifi cation of Short-term Wind Speed Forecasts
NASA Astrophysics Data System (ADS)
AL-Shehhi, A. M.; Chaouch, M.; Ouarda, T.
2014-12-01
Wind energy is increasing in importance as a renewable energy source due to its potential role in reducing carbon emissions. It is a safe, clean, and inexhaustible source of energy. The amount of wind energy generated by wind turbines is closely related to the wind speed. Wind speed forecasting plays a vital role in the wind energy sector in terms of wind turbine optimal operation, wind energy dispatch and scheduling, efficient energy harvesting etc. It is also considered during planning, design, and assessment of any proposed wind project. Therefore, accurate prediction of wind speed carries a particular importance and plays significant roles in the wind industry. Many methods have been proposed in the literature for short-term wind speed forecasting. These methods are usually based on modeling historical fixed time intervals of the wind speed data and using it for future prediction. The methods mainly include statistical models such as ARMA, ARIMA model, physical models for instance numerical weather prediction and artificial Intelligence techniques for example support vector machine and neural networks. In this paper, we are interested in estimating hourly wind speed measures in United Arab Emirates (UAE). More precisely, we predict hourly wind speed using a nonparametric kernel estimation of the regression and volatility functions pertaining to nonlinear autoregressive model with ARCH model, which includes unknown nonlinear regression function and volatility function already discussed in the literature. The unknown nonlinear regression function describe the dependence between the value of the wind speed at time t and its historical data at time t -1, t - 2, … , t - d. This function plays a key role to predict hourly wind speed process. The volatility function, i.e., the conditional variance given the past, measures the risk associated to this prediction. Since the regression and the volatility functions are supposed to be unknown, they are estimated using nonparametric kernel methods. In addition, to the pointwise hourly wind speed forecasts, a confidence interval is also provided which allows to quantify the uncertainty around the forecasts.
Partitioning sources of variation in vertebrate species richness
Boone, R.B.; Krohn, W.B.
2000-01-01
Aim: To explore biogeographic patterns of terrestrial vertebrates in Maine, USA using techniques that would describe local and spatial correlations with the environment. Location: Maine, USA. Methods: We delineated the ranges within Maine (86,156 km2) of 275 species using literature and expert review. Ranges were combined into species richness maps, and compared to geomorphology, climate, and woody plant distributions. Methods were adapted that compared richness of all vertebrate classes to each environmental correlate, rather than assessing a single explanatory theory. We partitioned variation in species richness into components using tree and multiple linear regression. Methods were used that allowed for useful comparisons between tree and linear regression results. For both methods we partitioned variation into broad-scale (spatially autocorrelated) and fine-scale (spatially uncorrelated) explained and unexplained components. By partitioning variance, and using both tree and linear regression in analyses, we explored the degree of variation in species richness for each vertebrate group that Could be explained by the relative contribution of each environmental variable. Results: In tree regression, climate variation explained richness better (92% of mean deviance explained for all species) than woody plant variation (87%) and geomorphology (86%). Reptiles were highly correlated with environmental variation (93%), followed by mammals, amphibians, and birds (each with 84-82% deviance explained). In multiple linear regression, climate was most closely associated with total vertebrate richness (78%), followed by woody plants (67%) and geomorphology (56%). Again, reptiles were closely correlated with the environment (95%), followed by mammals (73%), amphibians (63%) and birds (57%). Main conclusions: Comparing variation explained using tree and multiple linear regression quantified the importance of nonlinear relationships and local interactions between species richness and environmental variation, identifying the importance of linear relationships between reptiles and the environment, and nonlinear relationships between birds and woody plants, for example. Conservation planners should capture climatic variation in broad-scale designs; temperatures may shift during climate change, but the underlying correlations between the environment and species richness will presumably remain.
Research and education at the NASA Fisk University Center for Photonic Materials and Devices
NASA Astrophysics Data System (ADS)
Silberman, Enrique
1996-07-01
In 1992, NASA awarded Fisk University a 5 year grant to establish a center for research and education on photonic materials are synthesized, characterized and, in some cases, developed into devices with applications in the fields of radiation detectors and nonlinear optical crystals, glasses and nanomaterials. The educational components include participation in the research by 3 types of students majoring in Physics, Chemistry and Biology: 1) Fisk undergraduates participating during the academic year. 2) Fisk graduates performing their Maser Thesis research. 3) Fisk and other HBCU's and Minority Institutions' undergraduates attending a 10 week summer workshop with a very rigorous program of study, research and progress reporting. Funds are available for supporting participating students. Prerequisite, schedules of activities, evaluation procedures and typical examples of the outcome are presented.
Minimax confidence intervals in geomagnetism
NASA Technical Reports Server (NTRS)
Stark, Philip B.
1992-01-01
The present paper uses theory of Donoho (1989) to find lower bounds on the lengths of optimally short fixed-length confidence intervals (minimax confidence intervals) for Gauss coefficients of the field of degree 1-12 using the heat flow constraint. The bounds on optimal minimax intervals are about 40 percent shorter than Backus' intervals: no procedure for producing fixed-length confidence intervals, linear or nonlinear, can give intervals shorter than about 60 percent the length of Backus' in this problem. While both methods rigorously account for the fact that core field models are infinite-dimensional, the application of the techniques to the geomagnetic problem involves approximations and counterfactual assumptions about the data errors, and so these results are likely to be extremely optimistic estimates of the actual uncertainty in Gauss coefficients.
Charge-based MOSFET model based on the Hermite interpolation polynomial
NASA Astrophysics Data System (ADS)
Colalongo, Luigi; Richelli, Anna; Kovacs, Zsolt
2017-04-01
An accurate charge-based compact MOSFET model is developed using the third order Hermite interpolation polynomial to approximate the relation between surface potential and inversion charge in the channel. This new formulation of the drain current retains the same simplicity of the most advanced charge-based compact MOSFET models such as BSIM, ACM and EKV, but it is developed without requiring the crude linearization of the inversion charge. Hence, the asymmetry and the non-linearity in the channel are accurately accounted for. Nevertheless, the expression of the drain current can be worked out to be analytically equivalent to BSIM, ACM and EKV. Furthermore, thanks to this new mathematical approach the slope factor is rigorously defined in all regions of operation and no empirical assumption is required.
Bayesian evidence computation for model selection in non-linear geoacoustic inference problems.
Dettmer, Jan; Dosso, Stan E; Osler, John C
2010-12-01
This paper applies a general Bayesian inference approach, based on Bayesian evidence computation, to geoacoustic inversion of interface-wave dispersion data. Quantitative model selection is carried out by computing the evidence (normalizing constants) for several model parameterizations using annealed importance sampling. The resulting posterior probability density estimate is compared to estimates obtained from Metropolis-Hastings sampling to ensure consistent results. The approach is applied to invert interface-wave dispersion data collected on the Scotian Shelf, off the east coast of Canada for the sediment shear-wave velocity profile. Results are consistent with previous work on these data but extend the analysis to a rigorous approach including model selection and uncertainty analysis. The results are also consistent with core samples and seismic reflection measurements carried out in the area.
Advanced analysis technique for the evaluation of linear alternators and linear motors
NASA Technical Reports Server (NTRS)
Holliday, Jeffrey C.
1995-01-01
A method for the mathematical analysis of linear alternator and linear motor devices and designs is described, and an example of its use is included. The technique seeks to surpass other methods of analysis by including more rigorous treatment of phenomena normally omitted or coarsely approximated such as eddy braking, non-linear material properties, and power losses generated within structures surrounding the device. The technique is broadly applicable to linear alternators and linear motors involving iron yoke structures and moving permanent magnets. The technique involves the application of Amperian current equivalents to the modeling of the moving permanent magnet components within a finite element formulation. The resulting steady state and transient mode field solutions can simultaneously account for the moving and static field sources within and around the device.
Multidimensional FEM-FCT schemes for arbitrary time stepping
NASA Astrophysics Data System (ADS)
Kuzmin, D.; Möller, M.; Turek, S.
2003-05-01
The flux-corrected-transport paradigm is generalized to finite-element schemes based on arbitrary time stepping. A conservative flux decomposition procedure is proposed for both convective and diffusive terms. Mathematical properties of positivity-preserving schemes are reviewed. A nonoscillatory low-order method is constructed by elimination of negative off-diagonal entries of the discrete transport operator. The linearization of source terms and extension to hyperbolic systems are discussed. Zalesak's multidimensional limiter is employed to switch between linear discretizations of high and low order. A rigorous proof of positivity is provided. The treatment of non-linearities and iterative solution of linear systems are addressed. The performance of the new algorithm is illustrated by numerical examples for the shock tube problem in one dimension and scalar transport equations in two dimensions.
Seismic waves in a self-gravitating planet
NASA Astrophysics Data System (ADS)
Brazda, Katharina; de Hoop, Maarten V.; Hörmann, Günther
2013-04-01
The elastic-gravitational equations describe the propagation of seismic waves including the effect of self-gravitation. We rigorously derive and analyze this system of partial differential equations and boundary conditions for a general, uniformly rotating, elastic, but aspherical, inhomogeneous, and anisotropic, fluid-solid earth model, under minimal assumptions concerning the smoothness of material parameters and geometry. For this purpose we first establish a consistent mathematical formulation of the low regularity planetary model within the framework of nonlinear continuum mechanics. Using calculus of variations in a Sobolev space setting, we then show how the weak form of the linearized elastic-gravitational equations directly arises from Hamilton's principle of stationary action. Finally we prove existence and uniqueness of weak solutions by the method of energy estimates and discuss additional regularity properties.
A numerical identifiability test for state-space models--application to optimal experimental design.
Hidalgo, M E; Ayesa, E
2001-01-01
This paper describes a mathematical tool for identifiability analysis, easily applicable to high order non-linear systems modelled in state-space and implementable in simulators with a time-discrete approach. This procedure also permits a rigorous analysis of the expected estimation errors (average and maximum) in calibration experiments. The methodology is based on the recursive numerical evaluation of the information matrix during the simulation of a calibration experiment and in the setting-up of a group of information parameters based on geometric interpretations of this matrix. As an example of the utility of the proposed test, the paper presents its application to an optimal experimental design of ASM Model No. 1 calibration, in order to estimate the maximum specific growth rate microH and the concentration of heterotrophic biomass XBH.
Tsallis thermostatistics for finite systems: a Hamiltonian approach
NASA Astrophysics Data System (ADS)
Adib, Artur B.; Moreira, Andrã© A.; Andrade, José S., Jr.; Almeida, Murilo P.
2003-05-01
The derivation of the Tsallis generalized canonical distribution from the traditional approach of the Gibbs microcanonical ensemble is revisited (Phys. Lett. A 193 (1994) 140). We show that finite systems whose Hamiltonians obey a generalized homogeneity relation rigorously follow the nonextensive thermostatistics of Tsallis. In the thermodynamical limit, however, our results indicate that the Boltzmann-Gibbs statistics is always recovered, regardless of the type of potential among interacting particles. This approach provides, moreover, a one-to-one correspondence between the generalized entropy and the Hamiltonian structure of a wide class of systems, revealing a possible origin for the intrinsic nonlinear features present in the Tsallis formalism that lead naturally to power-law behavior. Finally, we confirm these exact results through extensive numerical simulations of the Fermi-Pasta-Ulam chain of anharmonic oscillators.
Rigorous high-precision enclosures of fixed points and their invariant manifolds
NASA Astrophysics Data System (ADS)
Wittig, Alexander N.
The well established concept of Taylor Models is introduced, which offer highly accurate C0 enclosures of functional dependencies, combining high-order polynomial approximation of functions and rigorous estimates of the truncation error, performed using verified arithmetic. The focus of this work is on the application of Taylor Models in algorithms for strongly non-linear dynamical systems. A method is proposed to extend the existing implementation of Taylor Models in COSY INFINITY from double precision coefficients to arbitrary precision coefficients. Great care is taken to maintain the highest efficiency possible by adaptively adjusting the precision of higher order coefficients in the polynomial expansion. High precision operations are based on clever combinations of elementary floating point operations yielding exact values for round-off errors. An experimental high precision interval data type is developed and implemented. Algorithms for the verified computation of intrinsic functions based on the High Precision Interval datatype are developed and described in detail. The application of these operations in the implementation of High Precision Taylor Models is discussed. An application of Taylor Model methods to the verification of fixed points is presented by verifying the existence of a period 15 fixed point in a near standard Henon map. Verification is performed using different verified methods such as double precision Taylor Models, High Precision intervals and High Precision Taylor Models. Results and performance of each method are compared. An automated rigorous fixed point finder is implemented, allowing the fully automated search for all fixed points of a function within a given domain. It returns a list of verified enclosures of each fixed point, optionally verifying uniqueness within these enclosures. An application of the fixed point finder to the rigorous analysis of beam transfer maps in accelerator physics is presented. Previous work done by Johannes Grote is extended to compute very accurate polynomial approximations to invariant manifolds of discrete maps of arbitrary dimension around hyperbolic fixed points. The algorithm presented allows for automatic removal of resonances occurring during construction. A method for the rigorous enclosure of invariant manifolds of continuous systems is introduced. Using methods developed for discrete maps, polynomial approximations of invariant manifolds of hyperbolic fixed points of ODEs are obtained. These approximations are outfit with a sharp error bound which is verified to rigorously contain the manifolds. While we focus on the three dimensional case, verification in higher dimensions is possible using similar techniques. Integrating the resulting enclosures using the verified COSY VI integrator, the initial manifold enclosures are expanded to yield sharp enclosures of large parts of the stable and unstable manifolds. To demonstrate the effectiveness of this method, we construct enclosures of the invariant manifolds of the Lorenz system and show pictures of the resulting manifold enclosures. To the best of our knowledge, these enclosures are the largest verified enclosures of manifolds in the Lorenz system in existence.
Lopez, David S; Advani, Shailesh; Qiu, Xueting; Tsilidis, Konstantinos K; Khera, Mohit; Kim, Jeri; Canfield, Steven
2018-04-25
The association of caffeine intake with testosterone remains unclear. We evaluated the association of caffeine intake with serum testosterone among American men and determined whether this association varied by race/ethnicity and measurements of adiposity. Data were analyzed for 2581 men (≥20 years old) who participated in the cycles of the NHANES 1999-2004 and 2011-2012, a cross-sectional study. Testosterone (ng/mL) was measured by immunoassay among men who participated in the morning examination session. We analyzed 24-h dietary recall data to estimate caffeine intake (mg/day). Multivariable weighted linear regression models were conducted. We identified no linear relationship between caffeine intake and testosterone levels in the total population, but there was a non-linear association (p nonlinearity < .01). Similarly, stratified analysis showed nonlinear associations among Mexican-American and Non-Hispanic White men (p nonlinearity ≤ .03 both) and only among men with waist circumference <102 cm and body mass index <25 kg/m 2 (p nonlinearity < .01, both). No linear association was identified between levels of caffeine intake and testosterone in US men, but we observed a non-linear association, including among racial/ethnic groups and measurements of adiposity in this cross-sectional study. These associations are warranted to be investigated in larger prospective studies.
Goeyvaerts, Nele; Leuridan, Elke; Faes, Christel; Van Damme, Pierre; Hens, Niel
2015-09-10
Biomedical studies often generate repeated measures of multiple outcomes on a set of subjects. It may be of interest to develop a biologically intuitive model for the joint evolution of these outcomes while assessing inter-subject heterogeneity. Even though it is common for biological processes to entail non-linear relationships, examples of multivariate non-linear mixed models (MNMMs) are still fairly rare. We contribute to this area by jointly analyzing the maternal antibody decay for measles, mumps, rubella, and varicella, allowing for a different non-linear decay model for each infectious disease. We present a general modeling framework to analyze multivariate non-linear longitudinal profiles subject to censoring, by combining multivariate random effects, non-linear growth and Tobit regression. We explore the hypothesis of a common infant-specific mechanism underlying maternal immunity using a pairwise correlated random-effects approach and evaluating different correlation matrix structures. The implied marginal correlation between maternal antibody levels is estimated using simulations. The mean duration of passive immunity was less than 4 months for all diseases with substantial heterogeneity between infants. The maternal antibody levels against rubella and varicella were found to be positively correlated, while little to no correlation could be inferred for the other disease pairs. For some pairs, computational issues occurred with increasing correlation matrix complexity, which underlines the importance of further developing estimation methods for MNMMs. Copyright © 2015 John Wiley & Sons, Ltd.
The NLS-Based Nonlinear Grey Multivariate Model for Forecasting Pollutant Emissions in China.
Pei, Ling-Ling; Li, Qin; Wang, Zheng-Xin
2018-03-08
The relationship between pollutant discharge and economic growth has been a major research focus in environmental economics. To accurately estimate the nonlinear change law of China's pollutant discharge with economic growth, this study establishes a transformed nonlinear grey multivariable (TNGM (1, N )) model based on the nonlinear least square (NLS) method. The Gauss-Seidel iterative algorithm was used to solve the parameters of the TNGM (1, N ) model based on the NLS basic principle. This algorithm improves the precision of the model by continuous iteration and constantly approximating the optimal regression coefficient of the nonlinear model. In our empirical analysis, the traditional grey multivariate model GM (1, N ) and the NLS-based TNGM (1, N ) models were respectively adopted to forecast and analyze the relationship among wastewater discharge per capita (WDPC), and per capita emissions of SO₂ and dust, alongside GDP per capita in China during the period 1996-2015. Results indicated that the NLS algorithm is able to effectively help the grey multivariable model identify the nonlinear relationship between pollutant discharge and economic growth. The results show that the NLS-based TNGM (1, N ) model presents greater precision when forecasting WDPC, SO₂ emissions and dust emissions per capita, compared to the traditional GM (1, N ) model; WDPC indicates a growing tendency aligned with the growth of GDP, while the per capita emissions of SO₂ and dust reduce accordingly.
Bornstein, Marc H.; Putnick, Diane L.
2018-01-01
We studied multiple parenting cognitions and practices in European American mothers (N = 262) who ranged in age from 15 to 47 years. All were first-time parents of 20-month-old children. Some age effects were zero; others were linear or nonlinear. Nonlinear age effects determined by spline regression showed significant associations to a “knot” age (~30 years) with little or no association afterward. For parenting cognitions and practices that are age-sensitive, a two-phase model of parental development is proposed. These findings stress the importance of considering maternal chronological age as a factor in developmental study. PMID:17605519
DOE Office of Scientific and Technical Information (OSTI.GOV)
Southworth, Frank; Garrow, Dr. Laurie
This chapter describes the principal types of both passenger and freight demand models in use today, providing a brief history of model development supported by references to a number of popular texts on the subject, and directing the reader to papers covering some of the more recent technical developments in the area. Over the past half century a variety of methods have been used to estimate and forecast travel demands, drawing concepts from economic/utility maximization theory, transportation system optimization and spatial interaction theory, using and often combining solution techniques as varied as Box-Jenkins methods, non-linear multivariate regression, non-linear mathematical programming,more » and agent-based microsimulation.« less
Mechanical properties of frog skeletal muscles in iodoacetic acid rigor.
Mulvany, M J
1975-01-01
1. Methods have been developed for describing the length: tension characteristics of frog skeletal muscles which go into rigor at 4 degrees C following iodoacetic acid poisoning either in the presence of Ca2+ (Ca-rigor) or its absence (Ca-free-rigor). 2. Such rigor muscles showed less resistance to slow stretch (slow rigor resistance) that to fast stretch (fast rigor resistance). The slow and fast rigor resistances of Ca-free-rigor muscles were much lower than those of Ca-rigor muscles. 3. The slow rigor resistance of Ca-rigor muscles was proportional to the amount of overlap between the contractile filaments present when the muscles were put into rigor. 4. Withdrawing Ca2+ from Ca-rigor muscles (induced-Ca-free rigor) reduced their slow and fast rigor resistances. Readdition of Ca2+ (but not Mg2+, Mn2+ or Sr2+) reversed the effect. 5. The slow and fast rigor resistances of Ca-rigor muscles (but not of Ca-free-rigor muscles) decreased with time. 6.The sarcomere structure of Ca-rigor and induced-Ca-free rigor muscles stretched by 0.2lo was destroyed in proportion to the amount of stretch, but the lengths of the remaining intact sarcomeres were essentially unchanged. This suggests that there had been a successive yielding of the weakeast sarcomeres. 7. The difference between the slow and fast rigor resistance and the effect of calcium on these resistances are discussed in relation to possible variations in the strength of crossbridges between the thick and thin filaments. Images Plate 1 Plate 2 PMID:1082023
Flexible nonlinear estimates of the association between height and mental ability in early life.
Murasko, Jason E
2014-01-01
To estimate associations between early-life mental ability and height/height-growth in contemporary US children. Structured additive regression models are used to flexibly estimate the associations between height and mental ability at approximately 24 months of age. The sample is taken from the Early Childhood Longitudinal Study-Birth Cohort, a national study whose target population was children born in the US during 2001. A nonlinear association is indicated between height and mental ability at approximately 24 months of age. There is an increasing association between height and mental ability below the mean value of height, but a flat association thereafter. Annualized growth shows the same nonlinear association to ability when controlling for baseline length at 9 months. Restricted growth at lower values of the height distribution is associated with lower measured mental ability in contemporary US children during the first years of life. Copyright © 2013 Wiley Periodicals, Inc.
Nonlinear GARCH model and 1 / f noise
NASA Astrophysics Data System (ADS)
Kononovicius, A.; Ruseckas, J.
2015-06-01
Auto-regressive conditionally heteroskedastic (ARCH) family models are still used, by practitioners in business and economic policy making, as a conditional volatility forecasting models. Furthermore ARCH models still are attracting an interest of the researchers. In this contribution we consider the well known GARCH(1,1) process and its nonlinear modifications, reminiscent of NGARCH model. We investigate the possibility to reproduce power law statistics, probability density function and power spectral density, using ARCH family models. For this purpose we derive stochastic differential equations from the GARCH processes in consideration. We find the obtained equations to be similar to a general class of stochastic differential equations known to reproduce power law statistics. We show that linear GARCH(1,1) process has power law distribution, but its power spectral density is Brownian noise-like. However, the nonlinear modifications exhibit both power law distribution and power spectral density of the 1 /fβ form, including 1 / f noise.
NASA Technical Reports Server (NTRS)
Stankiewicz, N.
1982-01-01
The multiple channel input signal to a soft limiter amplifier as a traveling wave tube is represented as a finite, linear sum of Gaussian functions in the frequency domain. Linear regression is used to fit the channel shapes to a least squares residual error. Distortions in output signal, namely intermodulation products, are produced by the nonlinear gain characteristic of the amplifier and constitute the principal noise analyzed in this study. The signal to noise ratios are calculated for various input powers from saturation to 10 dB below saturation for two specific distributions of channels. A criterion for the truncation of the series expansion of the nonlinear transfer characteristic is given. It is found that he signal to noise ratios are very sensitive to the coefficients used in this expansion. Improper or incorrect truncation of the series leads to ambiguous results in the signal to noise ratios.
Modeling workplace bullying using catastrophe theory.
Escartin, J; Ceja, L; Navarro, J; Zapf, D
2013-10-01
Workplace bullying is defined as negative behaviors directed at organizational members or their work context that occur regularly and repeatedly over a period of time. Employees' perceptions of psychosocial safety climate, workplace bullying victimization, and workplace bullying perpetration were assessed within a sample of nearly 5,000 workers. Linear and nonlinear approaches were applied in order to model both continuous and sudden changes in workplace bullying. More specifically, the present study examines whether a nonlinear dynamical systems model (i.e., a cusp catastrophe model) is superior to the linear combination of variables for predicting the effect of psychosocial safety climate and workplace bullying victimization on workplace bullying perpetration. According to the AICc, and BIC indices, the linear regression model fits the data better than the cusp catastrophe model. The study concludes that some phenomena, especially unhealthy behaviors at work (like workplace bullying), may be better studied using linear approaches as opposed to nonlinear dynamical systems models. This can be explained through the healthy variability hypothesis, which argues that positive organizational behavior is likely to present nonlinear behavior, while a decrease in such variability may indicate the occurrence of negative behaviors at work.
A LEAST ABSOLUTE SHRINKAGE AND SELECTION OPERATOR (LASSO) FOR NONLINEAR SYSTEM IDENTIFICATION
NASA Technical Reports Server (NTRS)
Kukreja, Sunil L.; Lofberg, Johan; Brenner, Martin J.
2006-01-01
Identification of parametric nonlinear models involves estimating unknown parameters and detecting its underlying structure. Structure computation is concerned with selecting a subset of parameters to give a parsimonious description of the system which may afford greater insight into the functionality of the system or a simpler controller design. In this study, a least absolute shrinkage and selection operator (LASSO) technique is investigated for computing efficient model descriptions of nonlinear systems. The LASSO minimises the residual sum of squares by the addition of a 1 penalty term on the parameter vector of the traditional 2 minimisation problem. Its use for structure detection is a natural extension of this constrained minimisation approach to pseudolinear regression problems which produces some model parameters that are exactly zero and, therefore, yields a parsimonious system description. The performance of this LASSO structure detection method was evaluated by using it to estimate the structure of a nonlinear polynomial model. Applicability of the method to more complex systems such as those encountered in aerospace applications was shown by identifying a parsimonious system description of the F/A-18 Active Aeroelastic Wing using flight test data.
Nonlinear Cross-Bridge Elasticity and Post-Power-Stroke Events in Fast Skeletal Muscle Actomyosin
Persson, Malin; Bengtsson, Elina; ten Siethoff, Lasse; Månsson, Alf
2013-01-01
Generation of force and movement by actomyosin cross-bridges is the molecular basis of muscle contraction, but generally accepted ideas about cross-bridge properties have recently been questioned. Of the utmost significance, evidence for nonlinear cross-bridge elasticity has been presented. We here investigate how this and other newly discovered or postulated phenomena would modify cross-bridge operation, with focus on post-power-stroke events. First, as an experimental basis, we present evidence for a hyperbolic [MgATP]-velocity relationship of heavy-meromyosin-propelled actin filaments in the in vitro motility assay using fast rabbit skeletal muscle myosin (28–29°C). As the hyperbolic [MgATP]-velocity relationship was not consistent with interhead cooperativity, we developed a cross-bridge model with independent myosin heads and strain-dependent interstate transition rates. The model, implemented with inclusion of MgATP-independent detachment from the rigor state, as suggested by previous single-molecule mechanics experiments, accounts well for the [MgATP]-velocity relationship if nonlinear cross-bridge elasticity is assumed, but not if linear cross-bridge elasticity is assumed. In addition, a better fit is obtained with load-independent than with load-dependent MgATP-induced detachment rate. We discuss our results in relation to previous data showing a nonhyperbolic [MgATP]-velocity relationship when actin filaments are propelled by myosin subfragment 1 or full-length myosin. We also consider the implications of our results for characterization of the cross-bridge elasticity in the filament lattice of muscle. PMID:24138863
Sequential reconstruction of driving-forces from nonlinear nonstationary dynamics
NASA Astrophysics Data System (ADS)
Güntürkün, Ulaş
2010-07-01
This paper describes a functional analysis-based method for the estimation of driving-forces from nonlinear dynamic systems. The driving-forces account for the perturbation inputs induced by the external environment or the secular variations in the internal variables of the system. The proposed algorithm is applicable to the problems for which there is too little or no prior knowledge to build a rigorous mathematical model of the unknown dynamics. We derive the estimator conditioned on the differentiability of the unknown system’s mapping, and smoothness of the driving-force. The proposed algorithm is an adaptive sequential realization of the blind prediction error method, where the basic idea is to predict the observables, and retrieve the driving-force from the prediction error. Our realization of this idea is embodied by predicting the observables one-step into the future using a bank of echo state networks (ESN) in an online fashion, and then extracting the raw estimates from the prediction error and smoothing these estimates in two adaptive filtering stages. The adaptive nature of the algorithm enables to retrieve both slowly and rapidly varying driving-forces accurately, which are illustrated by simulations. Logistic and Moran-Ricker maps are studied in controlled experiments, exemplifying chaotic state and stochastic measurement models. The algorithm is also applied to the estimation of a driving-force from another nonlinear dynamic system that is stochastic in both state and measurement equations. The results are judged by the posterior Cramer-Rao lower bounds. The method is finally put into test on a real-world application; extracting sun’s magnetic flux from the sunspot time series.
Pasekov, V P
2013-03-01
The paper considers the problems in the adaptive evolution of life-history traits for individuals in the nonlinear Leslie model of age-structured population. The possibility to predict adaptation results as the values of organism's traits (properties) that provide for the maximum of a certain function of traits (optimization criterion) is studied. An ideal criterion of this type is Darwinian fitness as a characteristic of success of an individual's life history. Criticism of the optimization approach is associated with the fact that it does not take into account the changes in the environmental conditions (in a broad sense) caused by evolution, thereby leading to losses in the adequacy of the criterion. In addition, the justification for this criterion under stationary conditions is not usually rigorous. It has been suggested to overcome these objections in terms of the adaptive dynamics theory using the concept of invasive fitness. The reasons are given that favor the application of the average number of offspring for an individual, R(L), as an optimization criterion in the nonlinear Leslie model. According to the theory of quantitative genetics, the selection for fertility (that is, for a set of correlated quantitative traits determined by both multiple loci and the environment) leads to an increase in R(L). In terms of adaptive dynamics, the maximum R(L) corresponds to the evolutionary stability and, in certain cases, convergent stability of the values for traits. The search for evolutionarily stable values on the background of limited resources for reproduction is a problem of linear programming.
Nonlinear-regression groundwater flow modeling of a deep regional aquifer system
Cooley, Richard L.; Konikow, Leonard F.; Naff, Richard L.
1986-01-01
A nonlinear regression groundwater flow model, based on a Galerkin finite-element discretization, was used to analyze steady state two-dimensional groundwater flow in the areally extensive Madison aquifer in a 75,000 mi2 area of the Northern Great Plains. Regression parameters estimated include intrinsic permeabilities of the main aquifer and separate lineament zones, discharges from eight major springs surrounding the Black Hills, and specified heads on the model boundaries. Aquifer thickness and temperature variations were included as specified functions. The regression model was applied using sequential F testing so that the fewest number and simplest zonation of intrinsic permeabilities, combined with the simplest overall model, were evaluated initially; additional complexities (such as subdivisions of zones and variations in temperature and thickness) were added in stages to evaluate the subsequent degree of improvement in the model results. It was found that only the eight major springs, a single main aquifer intrinsic permeability, two separate lineament intrinsic permeabilities of much smaller values, and temperature variations are warranted by the observed data (hydraulic heads and prior information on some parameters) for inclusion in a model that attempts to explain significant controls on groundwater flow. Addition of thickness variations did not significantly improve model results; however, thickness variations were included in the final model because they are fairly well defined. Effects on the observed head distribution from other features, such as vertical leakage and regional variations in intrinsic permeability, apparently were overshadowed by measurement errors in the observed heads. Estimates of the parameters correspond well to estimates obtained from other independent sources.
Yu, Lijing; Zhou, Lingling; Tan, Li; Jiang, Hongbo; Wang, Ying; Wei, Sheng; Nie, Shaofa
2014-01-01
Outbreaks of hand-foot-mouth disease (HFMD) have been reported for many times in Asia during the last decades. This emerging disease has drawn worldwide attention and vigilance. Nowadays, the prevention and control of HFMD has become an imperative issue in China. Early detection and response will be helpful before it happening, using modern information technology during the epidemic. In this paper, a hybrid model combining seasonal auto-regressive integrated moving average (ARIMA) model and nonlinear auto-regressive neural network (NARNN) is proposed to predict the expected incidence cases from December 2012 to May 2013, using the retrospective observations obtained from China Information System for Disease Control and Prevention from January 2008 to November 2012. The best-fitted hybrid model was combined with seasonal ARIMA [Formula: see text] and NARNN with 15 hidden units and 5 delays. The hybrid model makes the good forecasting performance and estimates the expected incidence cases from December 2012 to May 2013, which are respectively -965.03, -1879.58, 4138.26, 1858.17, 4061.86 and 6163.16 with an obviously increasing trend. The model proposed in this paper can predict the incidence trend of HFMD effectively, which could be helpful to policy makers. The usefulness of expected cases of HFMD perform not only in detecting outbreaks or providing probability statements, but also in providing decision makers with a probable trend of the variability of future observations that contains both historical and recent information.
Nonlinear-Regression Groundwater Flow Modeling of a Deep Regional Aquifer System
NASA Astrophysics Data System (ADS)
Cooley, Richard L.; Konikow, Leonard F.; Naff, Richard L.
1986-12-01
A nonlinear regression groundwater flow model, based on a Galerkin finite-element discretization, was used to analyze steady state two-dimensional groundwater flow in the areally extensive Madison aquifer in a 75,000 mi2 area of the Northern Great Plains. Regression parameters estimated include intrinsic permeabilities of the main aquifer and separate lineament zones, discharges from eight major springs surrounding the Black Hills, and specified heads on the model boundaries. Aquifer thickness and temperature variations were included as specified functions. The regression model was applied using sequential F testing so that the fewest number and simplest zonation of intrinsic permeabilities, combined with the simplest overall model, were evaluated initially; additional complexities (such as subdivisions of zones and variations in temperature and thickness) were added in stages to evaluate the subsequent degree of improvement in the model results. It was found that only the eight major springs, a single main aquifer intrinsic permeability, two separate lineament intrinsic permeabilities of much smaller values, and temperature variations are warranted by the observed data (hydraulic heads and prior information on some parameters) for inclusion in a model that attempts to explain significant controls on groundwater flow. Addition of thickness variations did not significantly improve model results; however, thickness variations were included in the final model because they are fairly well defined. Effects on the observed head distribution from other features, such as vertical leakage and regional variations in intrinsic permeability, apparently were overshadowed by measurement errors in the observed heads. Estimates of the parameters correspond well to estimates obtained from other independent sources.
NASA Astrophysics Data System (ADS)
Chilenski, M. A.; Greenwald, M. J.; Hubbard, A. E.; Hughes, J. W.; Lee, J. P.; Marzouk, Y. M.; Rice, J. E.; White, A. E.
2017-12-01
It remains an open question to explain the dramatic change in intrinsic rotation induced by slight changes in electron density (White et al 2013 Phys. Plasmas 20 056106). One proposed explanation is that momentum transport is sensitive to the second derivatives of the temperature and density profiles (Lee et al 2015 Plasma Phys. Control. Fusion 57 125006), but it is widely considered to be impossible to measure these higher derivatives. In this paper, we show that it is possible to estimate second derivatives of electron density and temperature using a nonparametric regression technique known as Gaussian process regression. This technique avoids over-constraining the fit by not assuming an explicit functional form for the fitted curve. The uncertainties, obtained rigorously using Markov chain Monte Carlo sampling, are small enough that it is reasonable to explore hypotheses which depend on second derivatives. It is found that the differences in the second derivatives of n{e} and T{e} between the peaked and hollow rotation cases are rather small, suggesting that changes in the second derivatives are not likely to explain the experimental results.
NASA Astrophysics Data System (ADS)
Cenek, Martin; Dahl, Spencer K.
2016-11-01
Systems with non-linear dynamics frequently exhibit emergent system behavior, which is important to find and specify rigorously to understand the nature of the modeled phenomena. Through this analysis, it is possible to characterize phenomena such as how systems assemble or dissipate and what behaviors lead to specific final system configurations. Agent Based Modeling (ABM) is one of the modeling techniques used to study the interaction dynamics between a system's agents and its environment. Although the methodology of ABM construction is well understood and practiced, there are no computational, statistically rigorous, comprehensive tools to evaluate an ABM's execution. Often, a human has to observe an ABM's execution in order to analyze how the ABM functions, identify the emergent processes in the agent's behavior, or study a parameter's effect on the system-wide behavior. This paper introduces a new statistically based framework to automatically analyze agents' behavior, identify common system-wide patterns, and record the probability of agents changing their behavior from one pattern of behavior to another. We use network based techniques to analyze the landscape of common behaviors in an ABM's execution. Finally, we test the proposed framework with a series of experiments featuring increasingly emergent behavior. The proposed framework will allow computational comparison of ABM executions, exploration of a model's parameter configuration space, and identification of the behavioral building blocks in a model's dynamics.
Cenek, Martin; Dahl, Spencer K
2016-11-01
Systems with non-linear dynamics frequently exhibit emergent system behavior, which is important to find and specify rigorously to understand the nature of the modeled phenomena. Through this analysis, it is possible to characterize phenomena such as how systems assemble or dissipate and what behaviors lead to specific final system configurations. Agent Based Modeling (ABM) is one of the modeling techniques used to study the interaction dynamics between a system's agents and its environment. Although the methodology of ABM construction is well understood and practiced, there are no computational, statistically rigorous, comprehensive tools to evaluate an ABM's execution. Often, a human has to observe an ABM's execution in order to analyze how the ABM functions, identify the emergent processes in the agent's behavior, or study a parameter's effect on the system-wide behavior. This paper introduces a new statistically based framework to automatically analyze agents' behavior, identify common system-wide patterns, and record the probability of agents changing their behavior from one pattern of behavior to another. We use network based techniques to analyze the landscape of common behaviors in an ABM's execution. Finally, we test the proposed framework with a series of experiments featuring increasingly emergent behavior. The proposed framework will allow computational comparison of ABM executions, exploration of a model's parameter configuration space, and identification of the behavioral building blocks in a model's dynamics.
Bifurcation Analysis Using Rigorous Branch and Bound Methods
NASA Technical Reports Server (NTRS)
Smith, Andrew P.; Crespo, Luis G.; Munoz, Cesar A.; Lowenberg, Mark H.
2014-01-01
For the study of nonlinear dynamic systems, it is important to locate the equilibria and bifurcations occurring within a specified computational domain. This paper proposes a new approach for solving these problems and compares it to the numerical continuation method. The new approach is based upon branch and bound and utilizes rigorous enclosure techniques to yield outer bounding sets of both the equilibrium and local bifurcation manifolds. These sets, which comprise the union of hyper-rectangles, can be made to be as tight as desired. Sufficient conditions for the existence of equilibrium and bifurcation points taking the form of algebraic inequality constraints in the state-parameter space are used to calculate their enclosures directly. The enclosures for the bifurcation sets can be computed independently of the equilibrium manifold, and are guaranteed to contain all solutions within the computational domain. A further advantage of this method is the ability to compute a near-maximally sized hyper-rectangle of high dimension centered at a fixed parameter-state point whose elements are guaranteed to exclude all bifurcation points. This hyper-rectangle, which requires a global description of the bifurcation manifold within the computational domain, cannot be obtained otherwise. A test case, based on the dynamics of a UAV subject to uncertain center of gravity location, is used to illustrate the efficacy of the method by comparing it with numerical continuation and to evaluate its computational complexity.
HOS network-based classification of power quality events via regression algorithms
NASA Astrophysics Data System (ADS)
Palomares Salas, José Carlos; González de la Rosa, Juan José; Sierra Fernández, José María; Pérez, Agustín Agüera
2015-12-01
This work compares seven regression algorithms implemented in artificial neural networks (ANNs) supported by 14 power-quality features, which are based in higher-order statistics. Combining time and frequency domain estimators to deal with non-stationary measurement sequences, the final goal of the system is the implementation in the future smart grid to guarantee compatibility between all equipment connected. The principal results are based in spectral kurtosis measurements, which easily adapt to the impulsive nature of the power quality events. These results verify that the proposed technique is capable of offering interesting results for power quality (PQ) disturbance classification. The best results are obtained using radial basis networks, generalized regression, and multilayer perceptron, mainly due to the non-linear nature of data.
Brunton, Steven L; Brunton, Bingni W; Proctor, Joshua L; Kutz, J Nathan
2016-01-01
In this wIn this work, we explore finite-dimensional linear representations of nonlinear dynamical systems by restricting the Koopman operator to an invariant subspace spanned by specially chosen observable functions. The Koopman operator is an infinite-dimensional linear operator that evolves functions of the state of a dynamical system. Dominant terms in the Koopman expansion are typically computed using dynamic mode decomposition (DMD). DMD uses linear measurements of the state variables, and it has recently been shown that this may be too restrictive for nonlinear systems. Choosing the right nonlinear observable functions to form an invariant subspace where it is possible to obtain linear reduced-order models, especially those that are useful for control, is an open challenge. Here, we investigate the choice of observable functions for Koopman analysis that enable the use of optimal linear control techniques on nonlinear problems. First, to include a cost on the state of the system, as in linear quadratic regulator (LQR) control, it is helpful to include these states in the observable subspace, as in DMD. However, we find that this is only possible when there is a single isolated fixed point, as systems with multiple fixed points or more complicated attractors are not globally topologically conjugate to a finite-dimensional linear system, and cannot be represented by a finite-dimensional linear Koopman subspace that includes the state. We then present a data-driven strategy to identify relevant observable functions for Koopman analysis by leveraging a new algorithm to determine relevant terms in a dynamical system by ℓ1-regularized regression of the data in a nonlinear function space; we also show how this algorithm is related to DMD. Finally, we demonstrate the usefulness of nonlinear observable subspaces in the design of Koopman operator optimal control laws for fully nonlinear systems using techniques from linear optimal control.ork, we explore finite-dimensional linear representations of nonlinear dynamical systems by restricting the Koopman operator to an invariant subspace spanned by specially chosen observable functions. The Koopman operator is an infinite-dimensional linear operator that evolves functions of the state of a dynamical system. Dominant terms in the Koopman expansion are typically computed using dynamic mode decomposition (DMD). DMD uses linear measurements of the state variables, and it has recently been shown that this may be too restrictive for nonlinear systems. Choosing the right nonlinear observable functions to form an invariant subspace where it is possible to obtain linear reduced-order models, especially those that are useful for control, is an open challenge. Here, we investigate the choice of observable functions for Koopman analysis that enable the use of optimal linear control techniques on nonlinear problems. First, to include a cost on the state of the system, as in linear quadratic regulator (LQR) control, it is helpful to include these states in the observable subspace, as in DMD. However, we find that this is only possible when there is a single isolated fixed point, as systems with multiple fixed points or more complicated attractors are not globally topologically conjugate to a finite-dimensional linear system, and cannot be represented by a finite-dimensional linear Koopman subspace that includes the state. We then present a data-driven strategy to identify relevant observable functions for Koopman analysis by leveraging a new algorithm to determine relevant terms in a dynamical system by ℓ1-regularized regression of the data in a nonlinear function space; we also show how this algorithm is related to DMD. Finally, we demonstrate the usefulness of nonlinear observable subspaces in the design of Koopman operator optimal control laws for fully nonlinear systems using techniques from linear optimal control.
Analysis of Sting Balance Calibration Data Using Optimized Regression Models
NASA Technical Reports Server (NTRS)
Ulbrich, Norbert; Bader, Jon B.
2009-01-01
Calibration data of a wind tunnel sting balance was processed using a search algorithm that identifies an optimized regression model for the data analysis. The selected sting balance had two moment gages that were mounted forward and aft of the balance moment center. The difference and the sum of the two gage outputs were fitted in the least squares sense using the normal force and the pitching moment at the balance moment center as independent variables. The regression model search algorithm predicted that the difference of the gage outputs should be modeled using the intercept and the normal force. The sum of the two gage outputs, on the other hand, should be modeled using the intercept, the pitching moment, and the square of the pitching moment. Equations of the deflection of a cantilever beam are used to show that the search algorithm s two recommended math models can also be obtained after performing a rigorous theoretical analysis of the deflection of the sting balance under load. The analysis of the sting balance calibration data set is a rare example of a situation when regression models of balance calibration data can directly be derived from first principles of physics and engineering. In addition, it is interesting to see that the search algorithm recommended the same regression models for the data analysis using only a set of statistical quality metrics.
Stocking Percent And Seedlings Per Acre In Naturally Established Longleaf Pine
William D. Boyer
1977-01-01
A relationship between milacre stocking and number of longleaf pine seedlings (Pinus palustris Mill.) per acre was derived from observations of 128 populations naturally established under a wide range of site conditions. The nonlinear regression obtained from the data was Y = 100 [1-(0.561)X], in which Y is the percentage...
Wilderness recreation participation: Projections for the next half century
J. M. Bowker; D. Murphy; H. K. Cordell; D. B. K. English; J. C. Bergstrom; C. M. Starbuck; C. J. Betz; G. T. Green; P. Reed
2007-01-01
This paper explores the influence of demographic and spatial variables on individual participation in wildland area recreation. Data from the National Survey on Recreation and the Environment (NSRE) are combined with GIS-based distance measures to develop nonlinear regression models used to predict both participation and the number of days of participation in...
ERIC Educational Resources Information Center
Silverstein, Todd P.
2016-01-01
A highly instructive, wide-ranging laboratory project in which students study the effects of various parameters on the enzymatic activity of alcohol dehydrogenase has been adapted for the upper-division biochemistry and physical biochemistry laboratory. Our two main goals were to provide enhanced data analysis, featuring nonlinear regression, and…
ERIC Educational Resources Information Center
Diehl, Manfred; Chui, Helena; Hay, Elizabeth L.; Lumley, Mark A.; Grühn, Daniel; Labouvie-Vief, Gisela
2014-01-01
This study examined longitudinal changes in coping and defense mechanisms in an age- and gender-stratified sample of 392 European American adults. Nonlinear age-related changes were found for the coping mechanisms of sublimation and suppression and the defense mechanisms of intellectualization, doubt, displacement, and regression. The change…
A Process Dynamics and Control Experiment for the Undergraduate Laboratory
ERIC Educational Resources Information Center
Spencer, Jordan L.
2009-01-01
This paper describes a process control experiment. The apparatus includes a three-vessel glass flow system with a variable flow configuration, means for feeding dye solution controlled by a stepper-motor driven valve, and a flow spectrophotometer. Students use impulse response data and nonlinear regression to estimate three parameters of a model…
Assessing the Impact of Drug Use on Hospital Costs
Stuart, Bruce C; Doshi, Jalpa A; Terza, Joseph V
2009-01-01
Objective To assess whether outpatient prescription drug utilization produces offsets in the cost of hospitalization for Medicare beneficiaries. Data Sources/Study Setting The study analyzed a sample (N=3,101) of community-dwelling fee-for-service U.S. Medicare beneficiaries drawn from the 1999 and 2000 Medicare Current Beneficiary Surveys. Study Design Using a two-part model specification, we regressed any hospital admission (part 1: probit) and hospital spending by those with one or more admissions (part 2: nonlinear least squares regression) on drug use in a standard model with strong covariate controls and a residual inclusion instrumental variable (IV) model using an exogenous measure of drug coverage as the instrument. Principal Findings The covariate control model predicted that each additional prescription drug used (mean=30) raised hospital spending by $16 (p<.001). The residual inclusion IV model prediction was that each additional prescription fill reduced hospital spending by $104 (p<.001). Conclusions The findings indicate that drug use is associated with cost offsets in hospitalization among Medicare beneficiaries, once omitted variable bias is corrected using an IV technique appropriate for nonlinear applications. PMID:18783453
SigrafW: An easy-to-use program for fitting enzyme kinetic data.
Leone, Francisco Assis; Baranauskas, José Augusto; Furriel, Rosa Prazeres Melo; Borin, Ivana Aparecida
2005-11-01
SigrafW is Windows-compatible software developed using the Microsoft® Visual Basic Studio program that uses the simplified Hill equation for fitting kinetic data from allosteric and Michaelian enzymes. SigrafW uses a modified Fibonacci search to calculate maximal velocity (V), the Hill coefficient (n), and the enzyme-substrate apparent dissociation constant (K). The estimation of V, K, and the sum of the squares of residuals is performed using a Wilkinson nonlinear regression at any Hill coefficient (n). In contrast to many currently available kinetic analysis programs, SigrafW shows several advantages for the determination of kinetic parameters of both hyperbolic and nonhyperbolic saturation curves. No initial estimates of the kinetic parameters are required, a measure of the goodness-of-the-fit for each calculation performed is provided, the nonlinear regression used for calculations eliminates the statistical bias inherent in linear transformations, and the software can be used for enzyme kinetic simulations either for educational or research purposes. Persons interested in receiving a free copy of the software should contact Dr. F. A. Leone. Copyright © 2005 International Union of Biochemistry and Molecular Biology, Inc.
Coelho, Lúcia H G; Gutz, Ivano G R
2006-03-15
A chemometric method for analysis of conductometric titration data was introduced to extend its applicability to lower concentrations and more complex acid-base systems. Auxiliary pH measurements were made during the titration to assist the calculation of the distribution of protonable species on base of known or guessed equilibrium constants. Conductivity values of each ionized or ionizable species possibly present in the sample were introduced in a general equation where the only unknown parameters were the total concentrations of (conjugated) bases and of strong electrolytes not involved in acid-base equilibria. All these concentrations were adjusted by a multiparametric nonlinear regression (NLR) method, based on the Levenberg-Marquardt algorithm. This first conductometric titration method with NLR analysis (CT-NLR) was successfully applied to simulated conductometric titration data and to synthetic samples with multiple components at concentrations as low as those found in rainwater (approximately 10 micromol L(-1)). It was possible to resolve and quantify mixtures containing a strong acid, formic acid, acetic acid, ammonium ion, bicarbonate and inert electrolyte with accuracy of 5% or better.
Big Data Toolsets to Pharmacometrics: Application of Machine Learning for Time-to-Event Analysis.
Gong, Xiajing; Hu, Meng; Zhao, Liang
2018-05-01
Additional value can be potentially created by applying big data tools to address pharmacometric problems. The performances of machine learning (ML) methods and the Cox regression model were evaluated based on simulated time-to-event data synthesized under various preset scenarios, i.e., with linear vs. nonlinear and dependent vs. independent predictors in the proportional hazard function, or with high-dimensional data featured by a large number of predictor variables. Our results showed that ML-based methods outperformed the Cox model in prediction performance as assessed by concordance index and in identifying the preset influential variables for high-dimensional data. The prediction performances of ML-based methods are also less sensitive to data size and censoring rates than the Cox regression model. In conclusion, ML-based methods provide a powerful tool for time-to-event analysis, with a built-in capacity for high-dimensional data and better performance when the predictor variables assume nonlinear relationships in the hazard function. © 2018 The Authors. Clinical and Translational Science published by Wiley Periodicals, Inc. on behalf of American Society for Clinical Pharmacology and Therapeutics.
Does money matter in inflation forecasting?
NASA Astrophysics Data System (ADS)
Binner, J. M.; Tino, P.; Tepper, J.; Anderson, R.; Jones, B.; Kendall, G.
2010-11-01
This paper provides the most fully comprehensive evidence to date on whether or not monetary aggregates are valuable for forecasting US inflation in the early to mid 2000s. We explore a wide range of different definitions of money, including different methods of aggregation and different collections of included monetary assets. In our forecasting experiment we use two nonlinear techniques, namely, recurrent neural networks and kernel recursive least squares regression-techniques that are new to macroeconomics. Recurrent neural networks operate with potentially unbounded input memory, while the kernel regression technique is a finite memory predictor. The two methodologies compete to find the best fitting US inflation forecasting models and are then compared to forecasts from a naïve random walk model. The best models were nonlinear autoregressive models based on kernel methods. Our findings do not provide much support for the usefulness of monetary aggregates in forecasting inflation. Beyond its economic findings, our study is in the tradition of physicists’ long-standing interest in the interconnections among statistical mechanics, neural networks, and related nonparametric statistical methods, and suggests potential avenues of extension for such studies.
Hoyer, Dirk; Leder, Uwe; Hoyer, Heike; Pompe, Bernd; Sommer, Michael; Zwiener, Ulrich
2002-01-01
The heart rate variability (HRV) is related to several mechanisms of the complex autonomic functioning such as respiratory heart rate modulation and phase dependencies between heart beat cycles and breathing cycles. The underlying processes are basically nonlinear. In order to understand and quantitatively assess those physiological interactions an adequate coupling analysis is necessary. We hypothesized that nonlinear measures of HRV and cardiorespiratory interdependencies are superior to the standard HRV measures in classifying patients after acute myocardial infarction. We introduced mutual information measures which provide access to nonlinear interdependencies as counterpart to the classically linear correlation analysis. The nonlinear statistical autodependencies of HRV were quantified by auto mutual information, the respiratory heart rate modulation by cardiorespiratory cross mutual information, respectively. The phase interdependencies between heart beat cycles and breathing cycles were assessed basing on the histograms of the frequency ratios of the instantaneous heart beat and respiratory cycles. Furthermore, the relative duration of phase synchronized intervals was acquired. We investigated 39 patients after acute myocardial infarction versus 24 controls. The discrimination of these groups was improved by cardiorespiratory cross mutual information measures and phase interdependencies measures in comparison to the linear standard HRV measures. This result was statistically confirmed by means of logistic regression models of particular variable subsets and their receiver operating characteristics.
Ladstätter, Felix; Garrosa, Eva; Moreno-Jiménez, Bernardo; Ponsoda, Vicente; Reales Aviles, José Manuel; Dai, Junming
2016-01-01
Artificial neural networks are sophisticated modelling and prediction tools capable of extracting complex, non-linear relationships between predictor (input) and predicted (output) variables. This study explores this capacity by modelling non-linearities in the hardiness-modulated burnout process with a neural network. Specifically, two multi-layer feed-forward artificial neural networks are concatenated in an attempt to model the composite non-linear burnout process. Sensitivity analysis, a Monte Carlo-based global simulation technique, is then utilised to examine the first-order effects of the predictor variables on the burnout sub-dimensions and consequences. Results show that (1) this concatenated artificial neural network approach is feasible to model the burnout process, (2) sensitivity analysis is a prolific method to study the relative importance of predictor variables and (3) the relationships among variables involved in the development of burnout and its consequences are to different degrees non-linear. Many relationships among variables (e.g., stressors and strains) are not linear, yet researchers use linear methods such as Pearson correlation or linear regression to analyse these relationships. Artificial neural network analysis is an innovative method to analyse non-linear relationships and in combination with sensitivity analysis superior to linear methods.
Determination of nonlinear genetic architecture using compressed sensing.
Ho, Chiu Man; Hsu, Stephen D H
2015-01-01
One of the fundamental problems of modern genomics is to extract the genetic architecture of a complex trait from a data set of individual genotypes and trait values. Establishing this important connection between genotype and phenotype is complicated by the large number of candidate genes, the potentially large number of causal loci, and the likely presence of some nonlinear interactions between different genes. Compressed Sensing methods obtain solutions to under-constrained systems of linear equations. These methods can be applied to the problem of determining the best model relating genotype to phenotype, and generally deliver better performance than simply regressing the phenotype against each genetic variant, one at a time. We introduce a Compressed Sensing method that can reconstruct nonlinear genetic models (i.e., including epistasis, or gene-gene interactions) from phenotype-genotype (GWAS) data. Our method uses L1-penalized regression applied to nonlinear functions of the sensing matrix. The computational and data resource requirements for our method are similar to those necessary for reconstruction of linear genetic models (or identification of gene-trait associations), assuming a condition of generalized sparsity, which limits the total number of gene-gene interactions. An example of a sparse nonlinear model is one in which a typical locus interacts with several or even many others, but only a small subset of all possible interactions exist. It seems plausible that most genetic architectures fall in this category. We give theoretical arguments suggesting that the method is nearly optimal in performance, and demonstrate its effectiveness on broad classes of nonlinear genetic models using simulated human genomes and the small amount of currently available real data. A phase transition (i.e., dramatic and qualitative change) in the behavior of the algorithm indicates when sufficient data is available for its successful application. Our results indicate that predictive models for many complex traits, including a variety of human disease susceptibilities (e.g., with additive heritability h (2)∼0.5), can be extracted from data sets comprised of n ⋆∼100s individuals, where s is the number of distinct causal variants influencing the trait. For example, given a trait controlled by ∼10 k loci, roughly a million individuals would be sufficient for application of the method.
Chip-Scale Architectures for Precise Optical Frequency Synthesis
NASA Astrophysics Data System (ADS)
Yang, Jinghui
Scientists and engineers have investigated various types of stable and accurate optical synthesizers, where mode-locked laser based optical frequency comb synthesizers have been widely investigated. These frequency combs bridge the frequencies from optical domain to microwave domain with orders of magnitude difference, providing a metrological tool for various platforms. The demand for highly robust, scalable, compact and cost-effective femtosecond-laser synthesizers, however, are of great importance for applications in air- or space-borne platforms, where low cost and rugged packaging are particularly required. This has been afforded in the past several years due to breakthroughs in chip-scale nanofabrication, bringing advances in optical frequency combs down to semiconductor chips. These platforms, with significantly enhanced light-matter interaction, provide a fertile sandbox for research rich in nonlinear dynamics, and offer a reliable route towards low-phase noise photonic oscillators, broadband optical frequency synthesizers, miniaturized optical clockwork, and coherent terabit communications. The dissertation explores various types of optical frequency comb synthesizers based on nonlinear microresonators. Firstly, the fundamental mechanism of mode-locking in a high-quality factor microresonator is examined, supported by ultrafast optical characterizations, analytical closed-form solutions and numerical modeling. In the evolution of these frequency microcombs, the key nonlinear dynamical effect governing the comb state coherence is rigorously analyzed. Secondly, a prototype of chip-scale optical frequency synthesizer is demonstrated, with the laser frequency comb stabilized down to instrument-limited 50-mHz RF frequency inaccuracies and 10-16 fractional frequency inaccuracies, near the fundamental limits. Thirdly, a globally stable Turing pattern is achieved and characterized in these nonlinear resonators with high-efficiency conversion, subsequently generating coherent high-power terahertz radiation via plasmonic photomixers. Finally, a new universal modality of frequency combs is discussed, including satellite states, dynamical tunability, and high efficiency conversion towards direct chip-scale optical frequency synthesis at the precision metrology frontiers.
Assessing the potential for improving S2S forecast skill through multimodel ensembling
NASA Astrophysics Data System (ADS)
Vigaud, N.; Robertson, A. W.; Tippett, M. K.; Wang, L.; Bell, M. J.
2016-12-01
Non-linear logistic regression is well suited to probability forecasting and has been successfully applied in the past to ensemble weather and climate predictions, providing access to the full probabilities distribution without any Gaussian assumption. However, little work has been done at sub-monthly lead times where relatively small re-forecast ensembles and lengths represent new challenges for which post-processing avenues have yet to be investigated. A promising approach consists in extending the definition of non-linear logistic regression by including the quantile of the forecast distribution as one of the predictors. So-called Extended Logistic Regression (ELR), which enables mutually consistent individual threshold probabilities, is here applied to ECMWF, CFSv2 and CMA re-forecasts from the S2S database in order to produce rainfall probabilities at weekly resolution. The ELR model is trained on seasonally-varying tercile categories computed for lead times of 1 to 4 weeks. It is then tested in a cross-validated manner, i.e. allowing real-time predictability applications, to produce rainfall tercile probabilities from individual weekly hindcasts that are finally combined by equal pooling. Results will be discussed over a broader North American region, where individual and MME forecasts generated out to 4 weeks lead are characterized by good probabilistic reliability but low sharpness, exhibiting systematically more skill in winter than summer.
Finding structure in data using multivariate tree boosting
Miller, Patrick J.; Lubke, Gitta H.; McArtor, Daniel B.; Bergeman, C. S.
2016-01-01
Technology and collaboration enable dramatic increases in the size of psychological and psychiatric data collections, but finding structure in these large data sets with many collected variables is challenging. Decision tree ensembles such as random forests (Strobl, Malley, & Tutz, 2009) are a useful tool for finding structure, but are difficult to interpret with multiple outcome variables which are often of interest in psychology. To find and interpret structure in data sets with multiple outcomes and many predictors (possibly exceeding the sample size), we introduce a multivariate extension to a decision tree ensemble method called gradient boosted regression trees (Friedman, 2001). Our extension, multivariate tree boosting, is a method for nonparametric regression that is useful for identifying important predictors, detecting predictors with nonlinear effects and interactions without specification of such effects, and for identifying predictors that cause two or more outcome variables to covary. We provide the R package ‘mvtboost’ to estimate, tune, and interpret the resulting model, which extends the implementation of univariate boosting in the R package ‘gbm’ (Ridgeway et al., 2015) to continuous, multivariate outcomes. To illustrate the approach, we analyze predictors of psychological well-being (Ryff & Keyes, 1995). Simulations verify that our approach identifies predictors with nonlinear effects and achieves high prediction accuracy, exceeding or matching the performance of (penalized) multivariate multiple regression and multivariate decision trees over a wide range of conditions. PMID:27918183
Wasson, Anton P; Chiu, Grace S; Zwart, Alexander B; Binns, Timothy R
2017-01-01
Ensuring future food security for a growing population while climate change and urban sprawl put pressure on agricultural land will require sustainable intensification of current farming practices. For the crop breeder this means producing higher crop yields with less resources due to greater environmental stresses. While easy gains in crop yield have been made mostly "above ground," little progress has been made "below ground"; and yet it is these root system traits that can improve productivity and resistance to drought stress. Wheat pre-breeders use soil coring and core-break counts to phenotype root architecture traits, with data collected on rooting density for hundreds of genotypes in small increments of depth. The measured densities are both large datasets and highly variable even within the same genotype, hence, any rigorous, comprehensive statistical analysis of such complex field data would be technically challenging. Traditionally, most attributes of the field data are therefore discarded in favor of simple numerical summary descriptors which retain much of the high variability exhibited by the raw data. This poses practical challenges: although plant scientists have established that root traits do drive resource capture in crops, traits that are more randomly (rather than genetically) determined are difficult to breed for. In this paper we develop a hierarchical nonlinear mixed modeling approach that utilizes the complete field data for wheat genotypes to fit, under the Bayesian paradigm, an "idealized" relative intensity function for the root distribution over depth. Our approach was used to determine heritability : how much of the variation between field samples was purely random vs. being mechanistically driven by the plant genetics? Based on the genotypic intensity functions, the overall heritability estimate was 0.62 (95% Bayesian confidence interval was 0.52 to 0.71). Despite root count profiles that were statistically very noisy, our approach led to denoised profiles which exhibited rigorously discernible phenotypic traits. Profile-specific traits could be representative of a genotype, and thus, used as a quantitative tool to associate phenotypic traits with specific genotypes. This would allow breeders to select for whole root system distributions appropriate for sustainable intensification, and inform policy for mitigating crop yield risk and food insecurity.
Factor complexity of crash occurrence: An empirical demonstration using boosted regression trees.
Chung, Yi-Shih
2013-12-01
Factor complexity is a characteristic of traffic crashes. This paper proposes a novel method, namely boosted regression trees (BRT), to investigate the complex and nonlinear relationships in high-variance traffic crash data. The Taiwanese 2004-2005 single-vehicle motorcycle crash data are used to demonstrate the utility of BRT. Traditional logistic regression and classification and regression tree (CART) models are also used to compare their estimation results and external validities. Both the in-sample cross-validation and out-of-sample validation results show that an increase in tree complexity provides improved, although declining, classification performance, indicating a limited factor complexity of single-vehicle motorcycle crashes. The effects of crucial variables including geographical, time, and sociodemographic factors explain some fatal crashes. Relatively unique fatal crashes are better approximated by interactive terms, especially combinations of behavioral factors. BRT models generally provide improved transferability than conventional logistic regression and CART models. This study also discusses the implications of the results for devising safety policies. Copyright © 2012 Elsevier Ltd. All rights reserved.
Zhang, Hong-guang; Lu, Jian-gang
2016-02-01
Abstract To overcome the problems of significant difference among samples and nonlinearity between the property and spectra of samples in spectral quantitative analysis, a local regression algorithm is proposed in this paper. In this algorithm, net signal analysis method(NAS) was firstly used to obtain the net analyte signal of the calibration samples and unknown samples, then the Euclidean distance between net analyte signal of the sample and net analyte signal of calibration samples was calculated and utilized as similarity index. According to the defined similarity index, the local calibration sets were individually selected for each unknown sample. Finally, a local PLS regression model was built on each local calibration sets for each unknown sample. The proposed method was applied to a set of near infrared spectra of meat samples. The results demonstrate that the prediction precision and model complexity of the proposed method are superior to global PLS regression method and conventional local regression algorithm based on spectral Euclidean distance.
Krasikova, Dina V; Le, Huy; Bachura, Eric
2018-06-01
To address a long-standing concern regarding a gap between organizational science and practice, scholars called for more intuitive and meaningful ways of communicating research results to users of academic research. In this article, we develop a common language effect size index (CLβ) that can help translate research results to practice. We demonstrate how CLβ can be computed and used to interpret the effects of continuous and categorical predictors in multiple linear regression models. We also elaborate on how the proposed CLβ index is computed and used to interpret interactions and nonlinear effects in regression models. In addition, we test the robustness of the proposed index to violations of normality and provide means for computing standard errors and constructing confidence intervals around its estimates. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Fatigue design of a cellular phone folder using regression model-based multi-objective optimization
NASA Astrophysics Data System (ADS)
Kim, Young Gyun; Lee, Jongsoo
2016-08-01
In a folding cellular phone, the folding device is repeatedly opened and closed by the user, which eventually results in fatigue damage, particularly to the front of the folder. Hence, it is important to improve the safety and endurance of the folder while also reducing its weight. This article presents an optimal design for the folder front that maximizes its fatigue endurance while minimizing its thickness. Design data for analysis and optimization were obtained experimentally using a test jig. Multi-objective optimization was carried out using a nonlinear regression model. Three regression methods were employed: back-propagation neural networks, logistic regression and support vector machines. The AdaBoost ensemble technique was also used to improve the approximation. Two-objective Pareto-optimal solutions were identified using the non-dominated sorting genetic algorithm (NSGA-II). Finally, a numerically optimized solution was validated against experimental product data, in terms of both fatigue endurance and thickness index.
Troutman, Brent M.
1982-01-01
Errors in runoff prediction caused by input data errors are analyzed by treating precipitation-runoff models as regression (conditional expectation) models. Independent variables of the regression consist of precipitation and other input measurements; the dependent variable is runoff. In models using erroneous input data, prediction errors are inflated and estimates of expected storm runoff for given observed input variables are biased. This bias in expected runoff estimation results in biased parameter estimates if these parameter estimates are obtained by a least squares fit of predicted to observed runoff values. The problems of error inflation and bias are examined in detail for a simple linear regression of runoff on rainfall and for a nonlinear U.S. Geological Survey precipitation-runoff model. Some implications for flood frequency analysis are considered. A case study using a set of data from Turtle Creek near Dallas, Texas illustrates the problems of model input errors.
Impact of topographic mask models on scanner matching solutions
NASA Astrophysics Data System (ADS)
Tyminski, Jacek K.; Pomplun, Jan; Renwick, Stephen P.
2014-03-01
Of keen interest to the IC industry are advanced computational lithography applications such as Optical Proximity Correction of IC layouts (OPC), scanner matching by optical proximity effect matching (OPEM), and Source Optimization (SO) and Source-Mask Optimization (SMO) used as advanced reticle enhancement techniques. The success of these tasks is strongly dependent on the integrity of the lithographic simulators used in computational lithography (CL) optimizers. Lithographic mask models used by these simulators are key drivers impacting the accuracy of the image predications, and as a consequence, determine the validity of these CL solutions. Much of the CL work involves Kirchhoff mask models, a.k.a. thin masks approximation, simplifying the treatment of the mask near-field images. On the other hand, imaging models for hyper-NA scanner require that the interactions of the illumination fields with the mask topography be rigorously accounted for, by numerically solving Maxwell's Equations. The simulators used to predict the image formation in the hyper-NA scanners must rigorously treat the masks topography and its interaction with the scanner illuminators. Such imaging models come at a high computational cost and pose challenging accuracy vs. compute time tradeoffs. Additional complication comes from the fact that the performance metrics used in computational lithography tasks show highly non-linear response to the optimization parameters. Finally, the number of patterns used for tasks such as OPC, OPEM, SO, or SMO range from tens to hundreds. These requirements determine the complexity and the workload of the lithography optimization tasks. The tools to build rigorous imaging optimizers based on first-principles governing imaging in scanners are available, but the quantifiable benefits they might provide are not very well understood. To quantify the performance of OPE matching solutions, we have compared the results of various imaging optimization trials obtained with Kirchhoff mask models to those obtained with rigorous models involving solutions of Maxwell's Equations. In both sets of trials, we used sets of large numbers of patterns, with specifications representative of CL tasks commonly encountered in hyper-NA imaging. In this report we present OPEM solutions based on various mask models and discuss the models' impact on hyper- NA scanner matching accuracy. We draw conclusions on the accuracy of results obtained with thin mask models vs. the topographic OPEM solutions. We present various examples representative of the scanner image matching for patterns representative of the current generation of IC designs.
NASA Astrophysics Data System (ADS)
Bhojawala, V. M.; Vakharia, D. P.
2017-12-01
This investigation provides an accurate prediction of static pull-in voltage for clamped-clamped micro/nano beams based on distributed model. The Euler-Bernoulli beam theory is used adapting geometric non-linearity of beam, internal (residual) stress, van der Waals force, distributed electrostatic force and fringing field effects for deriving governing differential equation. The Galerkin discretisation method is used to make reduced-order model of the governing differential equation. A regime plot is presented in the current work for determining the number of modes required in reduced-order model to obtain completely converged pull-in voltage for micro/nano beams. A closed-form relation is developed based on the relationship obtained from curve fitting of pull-in instability plots and subsequent non-linear regression for the proposed relation. The output of regression analysis provides Chi-square (χ 2) tolerance value equals to 1 × 10-9, adjusted R-square value equals to 0.999 29 and P-value equals to zero, these statistical parameters indicate the convergence of non-linear fit, accuracy of fitted data and significance of the proposed model respectively. The closed-form equation is validated using available data of experimental and numerical results. The relative maximum error of 4.08% in comparison to several available experimental and numerical data proves the reliability of the proposed closed-form equation.
Omnibus Risk Assessment via Accelerated Failure Time Kernel Machine Modeling
Sinnott, Jennifer A.; Cai, Tianxi
2013-01-01
Summary Integrating genomic information with traditional clinical risk factors to improve the prediction of disease outcomes could profoundly change the practice of medicine. However, the large number of potential markers and possible complexity of the relationship between markers and disease make it difficult to construct accurate risk prediction models. Standard approaches for identifying important markers often rely on marginal associations or linearity assumptions and may not capture non-linear or interactive effects. In recent years, much work has been done to group genes into pathways and networks. Integrating such biological knowledge into statistical learning could potentially improve model interpretability and reliability. One effective approach is to employ a kernel machine (KM) framework, which can capture nonlinear effects if nonlinear kernels are used (Scholkopf and Smola, 2002; Liu et al., 2007, 2008). For survival outcomes, KM regression modeling and testing procedures have been derived under a proportional hazards (PH) assumption (Li and Luan, 2003; Cai et al., 2011). In this paper, we derive testing and prediction methods for KM regression under the accelerated failure time model, a useful alternative to the PH model. We approximate the null distribution of our test statistic using resampling procedures. When multiple kernels are of potential interest, it may be unclear in advance which kernel to use for testing and estimation. We propose a robust Omnibus Test that combines information across kernels, and an approach for selecting the best kernel for estimation. The methods are illustrated with an application in breast cancer. PMID:24328713
Møller, Anne; Reventlow, Susanne; Hansen, Åse Marie; Andersen, Lars L; Siersma, Volkert; Lund, Rikke; Avlund, Kirsten; Andersen, Johan Hviid; Mortensen, Ole Steen
2015-01-01
Objectives Our aim was to study associations between physical exposures throughout working life and physical function measured as chair-rise performance in midlife. Methods The Copenhagen Aging and Midlife Biobank (CAMB) provided data about employment and measures of physical function. Individual job histories were assigned exposures from a job exposure matrix. Exposures were standardised to ton-years (lifting 1000 kg each day in 1 year), stand-years (standing/walking for 6 h each day in 1 year) and kneel-years (kneeling for 1 h each day in 1 year). The associations between exposure-years and chair-rise performance (number of chair-rises in 30 s) were analysed in multivariate linear and non-linear regression models adjusted for covariates. Results Mean age among the 5095 participants was 59 years in both genders, and, on average, men achieved 21.58 (SD=5.60) and women 20.38 (SD=5.33) chair-rises in 30 s. Physical exposures were associated with poorer chair-rise performance in both men and women, however, only associations between lifting and standing/walking and chair-rise remained statistically significant among men in the final model. Spline regression analyses showed non-linear associations and confirmed the findings. Conclusions Higher physical exposure throughout working life is associated with slightly poorer chair-rise performance. The associations between exposure and outcome were non-linear. PMID:26537502
Parameterizing sorption isotherms using a hybrid global-local fitting procedure.
Matott, L Shawn; Singh, Anshuman; Rabideau, Alan J
2017-05-01
Predictive modeling of the transport and remediation of groundwater contaminants requires an accurate description of the sorption process, which is usually provided by fitting an isotherm model to site-specific laboratory data. Commonly used calibration procedures, listed in order of increasing sophistication, include: trial-and-error, linearization, non-linear regression, global search, and hybrid global-local search. Given the considerable variability in fitting procedures applied in published isotherm studies, we investigated the importance of algorithm selection through a series of numerical experiments involving 13 previously published sorption datasets. These datasets, considered representative of state-of-the-art for isotherm experiments, had been previously analyzed using trial-and-error, linearization, or non-linear regression methods. The isotherm expressions were re-fit using a 3-stage hybrid global-local search procedure (i.e. global search using particle swarm optimization followed by Powell's derivative free local search method and Gauss-Marquardt-Levenberg non-linear regression). The re-fitted expressions were then compared to previously published fits in terms of the optimized weighted sum of squared residuals (WSSR) fitness function, the final estimated parameters, and the influence on contaminant transport predictions - where easily computed concentration-dependent contaminant retardation factors served as a surrogate measure of likely transport behavior. Results suggest that many of the previously published calibrated isotherm parameter sets were local minima. In some cases, the updated hybrid global-local search yielded order-of-magnitude reductions in the fitness function. In particular, of the candidate isotherms, the Polanyi-type models were most likely to benefit from the use of the hybrid fitting procedure. In some cases, improvements in fitness function were associated with slight (<10%) changes in parameter values, but in other cases significant (>50%) changes in parameter values were noted. Despite these differences, the influence of isotherm misspecification on contaminant transport predictions was quite variable and difficult to predict from inspection of the isotherms. Copyright © 2017 Elsevier B.V. All rights reserved.
Saucedo-Reyes, Daniela; Carrillo-Salazar, José A; Román-Padilla, Lizbeth; Saucedo-Veloz, Crescenciano; Reyes-Santamaría, María I; Ramírez-Gilly, Mariana; Tecante, Alberto
2018-03-01
High hydrostatic pressure inactivation kinetics of Escherichia coli ATCC 25922 and Salmonella enterica subsp. enterica serovar Typhimurium ATCC 14028 ( S. typhimurium) in a low acid mamey pulp at four pressure levels (300, 350, 400, and 450 MPa), different exposure times (0-8 min), and temperature of 25 ± 2℃ were obtained. Survival curves showed deviations from linearity in the form of a tail (upward concavity). The primary models tested were the Weibull model, the modified Gompertz equation, and the biphasic model. The Weibull model gave the best goodness of fit ( R 2 adj > 0.956, root mean square error < 0.290) in the modeling and the lowest Akaike information criterion value. Exponential-logistic and exponential decay models, and Bigelow-type and an empirical models for b'( P) and n( P) parameters, respectively, were tested as alternative secondary models. The process validation considered the two- and one-step nonlinear regressions for making predictions of the survival fraction; both regression types provided an adequate goodness of fit and the one-step nonlinear regression clearly reduced fitting errors. The best candidate model according to the Akaike theory information, with better accuracy and more reliable predictions was the Weibull model integrated by the exponential-logistic and exponential decay secondary models as a function of time and pressure (two-step procedure) or incorporated as one equation (one-step procedure). Both mathematical expressions were used to determine the t d parameter, where the desired reductions ( 5D) (considering d = 5 ( t 5 ) as the criterion of 5 Log 10 reduction (5 D)) in both microorganisms are attainable at 400 MPa for 5.487 ± 0.488 or 5.950 ± 0.329 min, respectively, for the one- or two-step nonlinear procedure.
NASA Astrophysics Data System (ADS)
Brümmer, C.; Moffat, A. M.; Huth, V.; Augustin, J.; Herbst, M.; Kutsch, W. L.
2016-12-01
Manual carbon dioxide flux measurements with closed chambers at scheduled campaigns are a versatile method to study management effects at small scales in multiple-plot experiments. The eddy covariance technique has the advantage of quasi-continuous measurements but requires large homogeneous areas of a few hectares. To evaluate the uncertainties associated with interpolating from individual campaigns to the whole vegetation period, we installed both techniques at an agricultural site in Northern Germany. The presented comparison covers two cropping seasons, winter oilseed rape in 2012/13 and winter wheat in 2013/14. Modeling half-hourly carbon fluxes from campaigns is commonly performed based on non-linear regressions for the light response and respiration. The daily averages of net CO2 modeled from chamber data deviated from eddy covariance measurements in the range of ± 5 g C m-2 day-1. To understand the observed differences and to disentangle the effects, we performed four additional setups (expert versus default settings of the non-linear regressions based algorithm, purely empirical modeling with artificial neural networks versus non-linear regressions, cross-validating using eddy covariance measurements as campaign fluxes, weekly versus monthly scheduling of campaigns) to model the half-hourly carbon fluxes for the whole vegetation period. The good agreement of the seasonal course of net CO2 at plot and field scale for our agricultural site demonstrates that both techniques are robust and yield consistent results at seasonal time scale even for a managed ecosystem with high temporal dynamics in the fluxes. This allows combining the respective advantages of factorial experiments at plot scale with dense time series data at field scale. Furthermore, the information from the quasi-continuous eddy covariance measurements can be used to derive vegetation proxies to support the interpolation of carbon fluxes in-between the manual chamber campaigns.
Pande, Amit; Mohapatra, Prasant; Nicorici, Alina; Han, Jay J
2016-07-19
Children with physical impairments are at a greater risk for obesity and decreased physical activity. A better understanding of physical activity pattern and energy expenditure (EE) would lead to a more targeted approach to intervention. This study focuses on studying the use of machine-learning algorithms for EE estimation in children with disabilities. A pilot study was conducted on children with Duchenne muscular dystrophy (DMD) to identify important factors for determining EE and develop a novel algorithm to accurately estimate EE from wearable sensor-collected data. There were 7 boys with DMD, 6 healthy control boys, and 22 control adults recruited. Data were collected using smartphone accelerometer and chest-worn heart rate sensors. The gold standard EE values were obtained from the COSMED K4b2 portable cardiopulmonary metabolic unit worn by boys (aged 6-10 years) with DMD and controls. Data from this sensor setup were collected simultaneously during a series of concurrent activities. Linear regression and nonlinear machine-learning-based approaches were used to analyze the relationship between accelerometer and heart rate readings and COSMED values. Existing calorimetry equations using linear regression and nonlinear machine-learning-based models, developed for healthy adults and young children, give low correlation to actual EE values in children with disabilities (14%-40%). The proposed model for boys with DMD uses ensemble machine learning techniques and gives a 91% correlation with actual measured EE values (root mean square error of 0.017). Our results confirm that the methods developed to determine EE using accelerometer and heart rate sensor values in normal adults are not appropriate for children with disabilities and should not be used. A much more accurate model is obtained using machine-learning-based nonlinear regression specifically developed for this target population. ©Amit Pande, Prasant Mohapatra, Alina Nicorici, Jay J Han. Originally published in JMIR Rehabilitation and Assistive Technology (http://rehab.jmir.org), 19.07.2016.
Stochastic Ocean Predictions with Dynamically-Orthogonal Primitive Equations
NASA Astrophysics Data System (ADS)
Subramani, D. N.; Haley, P., Jr.; Lermusiaux, P. F. J.
2017-12-01
The coastal ocean is a prime example of multiscale nonlinear fluid dynamics. Ocean fields in such regions are complex and intermittent with unstationary heterogeneous statistics. Due to the limited measurements, there are multiple sources of uncertainties, including the initial conditions, boundary conditions, forcing, parameters, and even the model parameterizations and equations themselves. For efficient and rigorous quantification and prediction of these uncertainities, the stochastic Dynamically Orthogonal (DO) PDEs for a primitive equation ocean modeling system with a nonlinear free-surface are derived and numerical schemes for their space-time integration are obtained. Detailed numerical studies with idealized-to-realistic regional ocean dynamics are completed. These include consistency checks for the numerical schemes and comparisons with ensemble realizations. As an illustrative example, we simulate the 4-d multiscale uncertainty in the Middle Atlantic/New York Bight region during the months of Jan to Mar 2017. To provide intitial conditions for the uncertainty subspace, uncertainties in the region were objectively analyzed using historical data. The DO primitive equations were subsequently integrated in space and time. The probability distribution function (pdf) of the ocean fields is compared to in-situ, remote sensing, and opportunity data collected during the coincident POSYDON experiment. Results show that our probabilistic predictions had skill and are 3- to 4- orders of magnitude faster than classic ensemble schemes.
A topological proof of chaos for two nonlinear heterogeneous triopoly game models
NASA Astrophysics Data System (ADS)
Pireddu, Marina
2016-08-01
We rigorously prove the existence of chaotic dynamics for two nonlinear Cournot triopoly game models with heterogeneous players, for which in the existing literature the presence of complex phenomena and strange attractors has been shown via numerical simulations. In the first model that we analyze, costs are linear but the demand function is isoelastic, while, in the second model, the demand function is linear and production costs are quadratic. As concerns the decisional mechanisms adopted by the firms, in both models one firm adopts a myopic adjustment mechanism, considering the marginal profit of the last period; the second firm maximizes its own expected profit under the assumption that the competitors' production levels will not vary with respect to the previous period; the third firm acts adaptively, changing its output proportionally to the difference between its own output in the previous period and the naive expectation value. The topological method we employ in our analysis is the so-called "Stretching Along the Paths" technique, based on the Poincaré-Miranda Theorem and the properties of the cutting surfaces, which allows to prove the existence of a semi-conjugacy between the system under consideration and the Bernoulli shift, so that the former inherits from the latter several crucial chaotic features, among which a positive topological entropy.
A three-dimensional meso-macroscopic model for Li-Ion intercalation batteries
Allu, S.; Kalnaus, S.; Simunovic, S.; ...
2016-06-09
Through this study, we present a three-dimensional computational formulation for electrode-electrolyte-electrode system of Li-Ion batteries. The physical consistency between electrical, thermal and chemical equations is enforced at each time increment by driving the residual of the resulting coupled system of nonlinear equations to zero. The formulation utilizes a rigorous volume averaging approach typical of multiphase formulations used in other fields and recently extended to modeling of supercapacitors [1]. Unlike existing battery modeling methods which use segregated solution of conservation equations and idealized geometries, our unified approach can model arbitrary battery and electrode configurations. The consistency of multi-physics solution also allowsmore » for consideration of a wide array of initial conditions and load cases. The formulation accounts for spatio-temporal variations of material and state properties such as electrode/void volume fractions and anisotropic conductivities. The governing differential equations are discretized using the finite element method and solved using a nonlinearly consistent approach that provides robust stability and convergence. The new formulation was validated for standard Li-ion cells and compared against experiments. Finally, its scope and ability to capture spatio-temporal variations of potential and lithium distribution is demonstrated on a prototypical three-dimensional electrode problem.« less
A topological proof of chaos for two nonlinear heterogeneous triopoly game models.
Pireddu, Marina
2016-08-01
We rigorously prove the existence of chaotic dynamics for two nonlinear Cournot triopoly game models with heterogeneous players, for which in the existing literature the presence of complex phenomena and strange attractors has been shown via numerical simulations. In the first model that we analyze, costs are linear but the demand function is isoelastic, while, in the second model, the demand function is linear and production costs are quadratic. As concerns the decisional mechanisms adopted by the firms, in both models one firm adopts a myopic adjustment mechanism, considering the marginal profit of the last period; the second firm maximizes its own expected profit under the assumption that the competitors' production levels will not vary with respect to the previous period; the third firm acts adaptively, changing its output proportionally to the difference between its own output in the previous period and the naive expectation value. The topological method we employ in our analysis is the so-called "Stretching Along the Paths" technique, based on the Poincaré-Miranda Theorem and the properties of the cutting surfaces, which allows to prove the existence of a semi-conjugacy between the system under consideration and the Bernoulli shift, so that the former inherits from the latter several crucial chaotic features, among which a positive topological entropy.
NASA Astrophysics Data System (ADS)
Dutta, Sekhar Chandra; Chakroborty, Suvonkar; Raychaudhuri, Anusrita
Vibration transmitted to the structure during earthquake may vary in magnitude over a wide range. Design methodology should, therefore, enumerates steps so that structures are able to survive in the event of even severe ground motion. However, on account of economic reason, the strengths can be provided to the structures in such a way that the structure remains in elastic range in low to moderate range earthquake and is allowed to undergo inelastic deformation in severe earthquake without collapse. To implement this design philosophy a rigorous nonlinear dynamic analysis is needed to be performed to estimate the inelastic demands. Furthermore, the same is time consuming and requires expertise to judge the results obtained from the same. In this context, the present paper discusses and demonstrates an alternative simple method known as Pushover method, which can be easily used by practicing engineers bypassing intricate nonlinear dynamic analysis and can be thought of as a substitute of the latter. This method is in the process of development and is increasingly becoming popular for its simplicity. The objective of this paper is to emphasize and demonstrate the basic concept, strength and ease of this state of the art methodology for regular use in design offices in performance based seismic design of structures.
Dynamic analysis of space-related linear and non-linear structures
NASA Technical Reports Server (NTRS)
Bosela, Paul A.; Shaker, Francis J.; Fertis, Demeter G.
1990-01-01
In order to be cost effective, space structures must be extremely light weight, and subsequently, very flexible structures. The power system for Space Station Freedom is such a structure. Each array consists of a deployable truss mast and a split blanket of photo-voltaic solar collectors. The solar arrays are deployed in orbit, and the blanket is stretched into position as the mast is extended. Geometric stiffness due to the preload make this an interesting non-linear problem. The space station will be subjected to various dynamic loads, during shuttle docking, solar tracking, attitude adjustment, etc. Accurate prediction of the natural frequencies and mode shapes of the space station components, including the solar arrays, is critical for determining the structural adequacy of the components, and for designing a dynamic control system. The process used in developing and verifying the finite element dynamic model of the photo-voltaic arrays is documented. Various problems were identified, such as grounding effects due to geometric stiffness, large displacement effects, and pseudo-stiffness (grounding) due to lack of required rigid body modes. Analysis techniques, such as development of rigorous solutions using continuum mechanics, finite element solution sequence altering, equivalent systems using a curvature basis, Craig-Bampton superelement approach, and modal ordering schemes were utilized. The grounding problems associated with the geometric stiffness are emphasized.
Dynamic analysis of space-related linear and non-linear structures
NASA Technical Reports Server (NTRS)
Bosela, Paul A.; Shaker, Francis J.; Fertis, Demeter G.
1990-01-01
In order to be cost effective, space structures must be extremely light weight, and subsequently, very flexible structures. The power system for Space Station Freedom is such a structure. Each array consists of a deployable truss mast and a split blanket of photovoltaic solar collectors. The solar arrays are deployed in orbit, and the blanket is stretched into position as the mast is extended. Geometric stiffness due to the preload make this an interesting non-linear problem. The space station will be subjected to various dynamic loads, during shuttle docking, solar tracking, attitude adjustment, etc. Accurate prediction of the natural frequencies and mode shapes of the space station components, including the solar arrays, is critical for determining the structural adequacy of the components, and for designing a dynamic controls system. The process used in developing and verifying the finite element dynamic model of the photo-voltaic arrays is documented. Various problems were identified, such as grounding effects due to geometric stiffness, large displacement effects, and pseudo-stiffness (grounding) due to lack of required rigid body modes. Analysis techniques, such as development of rigorous solutions using continuum mechanics, finite element solution sequence altering, equivalent systems using a curvature basis, Craig-Bampton superelement approach, and modal ordering schemes were utilized. The grounding problems associated with the geometric stiffness are emphasized.