Picric acid-2,4,6-trichloro-aniline (1/1).
Wang, Wan-Qiang
2011-04-01
In the title adduct, C(6)H(4)Cl(3)N·C(6)H(3)N(3)O(7), the two benzene rings are almost coplanar, with a dihedral angle of 1.19 (1)° and an inter-ring centroid-centroid separation of 4.816 (2) Å. The crystal structure is stabilized by inter-molecular N-H⋯O(nitro) hydrogen bonds, giving a chain structure. In addition, there are phenol-nitro O-H⋯O inter-actions.
Smith, Graham; Wermuth, Urs D
2013-05-01
The structures of the anhydrous proton-transfer compounds of the sulfa drug sulfamethazine with 5-nitrosalicylic acid and picric acid, namely 2-(4-aminobenzenesulfonamido)-4,6-dimethylpyrimidinium 2-hydroxy-5-nitrobenzoate, C12H15N4O2S(+)·C7H4NO4(-), (I), and 2-(4-aminobenzenesulfonamido)-4,6-dimethylpyrimidinium 2,4,6-trinitrophenolate, C12H15N4O2S(+)·C6H2N3O7(-), (II), respectively, have been determined. In the asymmetric unit of (I), there are two independent but conformationally similar cation-anion heterodimer pairs which are formed through duplex intermolecular N(+)-H···O(carboxylate) and N-H···O(carboxylate) hydrogen-bond pairs, giving a cyclic motif [graph set R2(2)(8)]. These heterodimers form separate and different non-associated substructures through aniline N-H···O hydrogen bonds, one one-dimensional, involving carboxylate O-atom acceptors, the other two-dimensional, involving both carboxylate and hydroxy O-atom acceptors. The overall two-dimensional structure is stabilized by π-π interactions between the pyrimidinium ring and the 5-nitrosalicylate ring in both heterodimers [minimum ring-centroid separation = 3.4580 (8) Å]. For picrate (II), the cation-anion interaction involves a slightly asymmetric chelating N-H···O R2(1)(6) hydrogen-bonding association with the phenolate O atom, together with peripheral conjoint R1(2)(6) interactions between the same N-H groups and O atoms of the ortho-related nitro groups. An inter-unit amine N-H···O(sulfone) hydrogen bond gives one-dimensional chains which extend along a and inter-associate through π-π interactions between the pyrimidinium rings [centroid-centroid separation = 3.4752 (9) Å]. The two structures reported here now bring to a total of four the crystallographically characterized examples of proton-transfer salts of sulfamethazine with strong organic acids.
1-(2,4-Di-nitro-phen-yl)-2-[(E)-(3,4,5-tri-meth-oxy-benzyl-idene)]hydrazine.
Chantrapromma, Suchada; Ruanwas, Pumsak; Boonnak, Nawong; Chidan Kumar, C S; Fun, Hoong-Kun
2014-02-01
Mol-ecules of the title compound, C16H16N4O7, are not planar with a dihedral angle of 5.50 (11)° between the substituted benzene rings. The two meta-meth-oxy groups of the 3,4,5-tri-meth-oxy-benzene moiety lie in the plane of the attached ring [Cmeth-yl-O-C-C torsion angles -0.1 (4)° and -3.7 (3)°] while the para-meth-oxy substituent lies out of the plane [Cmeth-yl-O-C-C, -86.0 (3)°]. An intra-molecular N-H⋯O hydrogen bond involving the 2-nitro substituent generates an S(6) ring motif. In the crystal structure, mol-ecules are linked by weak C-H⋯O inter-actions into screw chains, that are arranged into a sheet parallel to the bc plane. These sheets are connected by π-π stacking inter-actions between the nitro and meth-oxy substituted aromatic rings with a centroid-centroid separation of 3.9420 (13) Å. C-H⋯π contacts further stabilize the two-dimensional network.
1,1'-Bis[bis-(4-meth-oxy-phen-yl)phosphan-yl]ferrocene.
Ren, Xinfeng; Wang, Le; Li, Ya
2012-07-01
In the crystal structure of the title substituted ferrocene complex, [Fe(C₁₉H₁₈O₂P)₂], the Fe(II) atom lies on a twofold rotation axis, giving an eclipsed cyclo-penta-dienyl conformation with a ring centroid separation of 3.292 (7) Å and an Fe-C bond-length range of 2.0239 (15)-2.0521 (15) Å. In the ligand, the cyclo-penta-dienyl ring forms dihedral angles of 60.36 (6) and 82.93 (6)° with the two benzene rings of the diphenyl-phosphine group, while the dihedral angle between the benzene rings is 67.4 (5)°.
4,4'-Bipyridine-pyroglutamic acid (1/2).
Arman, Hadi D; Kaulgud, Trupta; Tiekink, Edward R T
2009-10-31
In the title co-crystal, C(10)H(8)N(2)·2C(5)H(7)NO(3), the 4,4'-bipyridine mol-ecule [dihedral angle between the pyridine rings = 36.33 (11)°] accepts O-H⋯N hydrogen bonds from the two pyroglutamic (pga) acid mol-ecules. The pga mol-ecules at each end of the trimeric aggregate self-associate via centrosymmetric eight-membered amide {⋯HNCO}(2) synthons, so that the crystal structure comprises one-dimensional supra-molecular chains propagating in [13]. C-H⋯O and π-π stacking inter-actions [centroid-centroid separation = 3.590 (2) Å] consolidate the structure.
3-Phenyl-6-(2-pyrid-yl)-1,2,4,5-tetra-zine.
Chartrand, Daniel; Laverdière, François; Hanan, Garry
2007-12-06
The title compound, C(13)H(9)N(5), is the first asymmetric diaryl-1,2,4,5-tetra-zine to be crystallographically characterized. We have been inter-ested in this motif for incorporation into supra-molecular assemblies based on coordination chemistry. The solid state structure shows a centrosymmetric mol-ecule, forcing a positional disorder of the terminal phenyl and pyridyl rings. The mol-ecule is completely planar, unusual for aromatic rings with N atoms in adjacent ortho positions. The stacking observed is very common in diaryl-tetra-zines and is dominated by π stacking [centroid-to-centroid distance between the tetrazine ring and the aromatic ring of an adjacent molecule is 3.6 Å, perpendicular (centroid-to-plane) distance of about 3.3 Å].
1,1′-Bis[bis(4-methoxyphenyl)phosphanyl]ferrocene
Ren, Xinfeng; Wang, Le; Li, Ya
2012-01-01
In the crystal structure of the title substituted ferrocene complex, [Fe(C19H18O2P)2], the FeII atom lies on a twofold rotation axis, giving an eclipsed cyclopentadienyl conformation with a ring centroid separation of 3.292 (7) Å and an Fe—C bond-length range of 2.0239 (15)–2.0521 (15) Å. In the ligand, the cyclopentadienyl ring forms dihedral angles of 60.36 (6) and 82.93 (6)° with the two benzene rings of the diphenylphosphine group, while the dihedral angle between the benzene rings is 67.4 (5)°. PMID:22807756
3-Phenyl-6-(2-pyridyl)-1,2,4,5-tetrazine
Chartrand, Daniel; Laverdière, François; Hanan, Garry
2008-01-01
The title compound, C13H9N5, is the first asymmetric diaryl-1,2,4,5-tetrazine to be crystallographically characterized. We have been interested in this motif for incorporation into supramolecular assemblies based on coordination chemistry. The solid state structure shows a centrosymmetric molecule, forcing a positional disorder of the terminal phenyl and pyridyl rings. The molecule is completely planar, unusual for aromatic rings with N atoms in adjacent ortho positions. The stacking observed is very common in diaryltetrazines and is dominated by π stacking [centroid-to-centroid distance between the tetrazine ring and the aromatic ring of an adjacent molecule is 3.6 Å, perpendicular (centroid-to-plane) distance of about 3.3 Å]. PMID:21200916
(2-{[2-(diphenyl-phosphino)phen-yl]thio}-phen-yl)diphenyl-phosphine sulfide.
Alvarez-Larena, Angel; Martinez-Cuevas, Francisco J; Flor, Teresa; Real, Juli
2012-11-01
In the title compound, C(36)H(28)P(2)S(2), the dihedral angle between the central benzene rings is 66.95 (13)°. In the crystal, molecules are linked via C(ar)-H⋯π and π-π inter-actions [shortest centroid-centroid distance between benzene rings = 3.897 (2) Å].
Crystal structure of azilsartan methyl ester ethyl acetate hemisolvate.
Li, Zhengyi; Liu, Rong; Zhu, Meilan; Chen, Liang; Sun, Xiaoqiang
2015-02-01
The title compound, C26H22N4O5 (systematic name: methyl 2-eth-oxy-1-{4-[2-(5-oxo-4,5-di-hydro-1,2,4-oxa-diazol-3-yl)phenyl]benz-yl}-1H-1,3-benzo-diazole-7-carboxyl-ate ethyl acetate hemisolvate), was obtained via cyclization of methyl (Z)-2-eth-oxy-1-{(2'-(N'-hy-droxy-carbamimido-yl)-[1,1'-biphen-yl]-4-yl)meth-yl}-1H-benzo[d]imidazole-7-carboxyl-ate with diphen-yl carbonate. There are two independent mol-ecules (A and B) with different conformations and an ethyl acetate solvent mol-ecule in the asymmetric unit. In mol-ecule A, the dihedral angle between the benzene ring and its attached oxa-diazole ring is 59.36 (17); the dihedral angle between the benzene rings is 43.89 (15) and that between the benzene ring and its attached imidazole ring system is 80.06 (11)°. The corres-ponding dihedral angles in mol-ecule B are 58.45 (18), 50.73 (16) and 85.37 (10)°, respectively. The C-O-C-Cm (m = meth-yl) torsion angles for the eth-oxy side chains attached to the imidazole rings in mol-ecules A and B are 93.9 (3) and -174.6 (3)°, respectively. In the crystal, the components are linked by N-H⋯N and C-H⋯O hydrogen bonds, generating a three-dimensional network. Aromatic π-π stacking inter-actions [shortest centroid-centroid separation = 3.536 (3)Å] are also observed.
1-(2,4-Dinitrophenyl)-2-(1,2,3,4-tetrahydronaphthalen-1-ylidene)hydrazine
Danish, M.; Hamid, Masood; Tahir, M. Nawaz; Ahmad, Nazir; Ghafoor, Sabiha
2010-01-01
In the title compound, C14H14N4O4, the dihedral angle between the benzene rings is 10.42 (8)°. The nitro groups make dihedral angles of 5.3 (2) and 6.47 (15)° with their parent ring and are oriented at 11.2 (3)° with respect to each other. An intramolecular N—H⋯O hydrogen bond completes an S(6) ring motif. In the crystal, molecules are linked by C—H⋯O interactions, thus forming (010) chains in which R 2 2(13) ring motifs are present. There also exist aromatic π–π stacking interactions [centroid–centroid separation = 3.7046 (9) Å]. PMID:21588393
3,4-Dimethyl-1-phenylpyrano[2,3-c]pyrazol-6(1H)-one
Ahmad, Neman; Tahir, M. Nawaz; Khan, Misbahul Ain; Ather, Abdul Qayyum; Khan, Muhammad Naeem
2011-01-01
In the title compound, C14H12N2O2, the dihedral angle between the phenyl ring and the 3,4-dimethylpyrano[2,3-c]pyrazol-6(1H)-one system is 7.28 (6)°. An intramolecular C—H⋯O interaction generates an S(6) ring. In the crystal, the molecules are linked by C—H⋯O hydrogen bonds, forming C(8) chains. C–H⋯π and π–π interactions [centroid–centroid separation = 3.6374 (12) Å] further consolidate the packing. PMID:21754037
Moon, Suk-Hee; Seo, Joobeom; Park, Ki-Min
2017-11-01
The asymmetric unit of the title compound, [Co(NO 3 ) 2 (C 12 H 12 N 2 S) 2 ] n , contains a bis-(pyridin-3-ylmeth-yl)sulfane ( L ) ligand, an NO 3 - anion and half a Co II cation, which lies on an inversion centre. The Co II cation is six-coordinated, being bound to four pyridine N atoms from four symmetry-related L ligands. The remaining coordination sites are occupied by two O atoms from two symmetry-related nitrate anions in a monodentate manner. Thus, the Co II centre adopts a distorted octa-hedral geometry. Two symmetry-related L ligands are connected by two symmetry-related Co II cations, forming a 20-membered cyclic dimer, in which the Co II atoms are separated by 10.2922 (7) Å. The cyclic dimers are connected to each other by sharing Co II atoms, giving rise to the formation of an infinite looped chain propagating along the [101] direction. Inter-molecular C-H⋯π (H⋯ring centroid = 2.89 Å) inter-actions between one pair of corresponding L ligands and C-H⋯O hydrogen bonds between the L ligands and the nitrate anions occur in the looped chain. In the crystal, adjacent looped chains are connected by inter-molecular π-π stacking inter-actions [centroid-to-centroid distance = 3.8859 (14) Å] and C-H⋯π hydrogen bonds (H⋯ring centroid = 2.65 Å), leading to the formation of layers parallel to (101). These layers are further connected through C-H⋯O hydrogen bonds between the layers, resulting in the formation of a three-dimensional supra-molecular architecture.
Berke, Ethan M; Shi, Xun
2009-04-29
Travel time is an important metric of geographic access to health care. We compared strategies of estimating travel times when only subject ZIP code data were available. Using simulated data from New Hampshire and Arizona, we estimated travel times to nearest cancer centers by using: 1) geometric centroid of ZIP code polygons as origins, 2) population centroids as origin, 3) service area rings around each cancer center, assigning subjects to rings by assuming they are evenly distributed within their ZIP code, 4) service area rings around each center, assuming the subjects follow the population distribution within the ZIP code. We used travel times based on street addresses as true values to validate estimates. Population-based methods have smaller errors than geometry-based methods. Within categories (geometry or population), centroid and service area methods have similar errors. Errors are smaller in urban areas than in rural areas. Population-based methods are superior to the geometry-based methods, with the population centroid method appearing to be the best choice for estimating travel time. Estimates in rural areas are less reliable.
4-[(1E)-3-(2,6-Dichloro-3-fluoro-phen-yl)-3-oxoprop-1-en-1-yl]benzonitrile.
Praveen, Aletti S; Yathirajan, Hemmige S; Narayana, Badiadka; Gerber, Thomas; Hosten, Eric; Betz, Richard
2012-05-01
In the title mol-ecule, C(16)H(8)Cl(2)FNO, the benzene rings form a dihedral angle of 78.69 (8)°. The F atom is disordered over two positions in a 0.530 (3):0.470 (3) ratio. The crystal packing exhibits π-π inter-actions between dichloro-substituted rings [centroid-centroid distance = 3.6671 (10) Å] and weak inter-molecular C-H⋯F contacts.
1-(3,3-Dichloro-all-yloxy)-4-methyl-2-nitro-benzene.
Ren, Dong-Mei
2012-06-01
In the title compound, C(10)H(9)Cl(2)NO(3), the dihedral angle between the benzene ring and the plane of the nitro group is 39.1 (1)°, while that between the benzene ring and the plane through the three C and two Cl atoms of the dichloro-all-yloxy unit is 40.1 (1)°. In the crystal, C-H⋯O hydrogen bonds to the nitro groups form chains along the b axis. These chains are linked by inversion-related pairs of Cl⋯O inter-actions at a distance of 3.060 (3) Å, forming sheets approximately parallel to [-201] and generating R(2) (2)(18) rings. π-π contacts between benzene rings in adjacent sheets, with centroid-centroid distances of 3.671 (2) Å, stack mol-ecules along c.
(E)-2-[(2,4,6-Tri-meth-oxy-benzyl-idene)amino]-phenol.
Kaewmanee, Narissara; Chantrapromma, Suchada; Boonnak, Nawong; Quah, Ching Kheng; Fun, Hoong-Kun
2014-01-01
There are two independent mol-ecules in the asymmetric unit of the title compound, C16H17NO4, with similar conformations but some differences in their bond angles. Each mol-ecule adopts a trans configuration with respect to the methyl-idene C=N bond and is twisted with a dihedral angle between the two substituted benzene rings of 80.52 (7)° in one mol-ecule and 83.53 (7)° in the other. All meth-oxy groups are approximately coplanar with the attached benzene rings, with Cmeth-yl-O-C-C torsion angles ranging from -6.7 (2) to 5.07 (19)°. In the crystal, independent mol-ecules are linked together by O-H⋯N and O-H⋯O hydrogen bonds and a π-π inter-action [centroid-centroid distance of 3.6030 (9) Å], forming a dimer. The dimers are further linked by weak C-H⋯O inter-actions and another π-π inter-action [centroid-centroid distance of 3.9452 (9) Å] into layers lying parallel to the ab plane.
(Z)-3-Methyl-4-[1-(4-methylanilino)propylidene]-1-phenyl-1H-pyrazol-5(4H)-one
Sharma, Naresh; Vyas, Komal M.; Jadeja, R. N.; Kant, Rajni; Gupta, Vivek K.
2013-01-01
In the title molecule, C20H21N3O, the central pyrazole ring forms dihedral angles of 4.75 (9) and 49.11 (9)°, respectively, with the phenyl and methyl-substituted benzene rings. The dihedral angle between the phenyl and benzene rings is 51.76 (8)°. The amino group and carbonyl O atom are involved in an intramolecular N—H⋯O hydrogen bond. In the crystal, π–π interactions are observed between benzene rings [centroid–centroid seperation = 3.892 (2) Å] and pyrazole rings [centroid–centroid seperation = 3.626 (2) Å], forming chains along [111]. The H atoms of the methyl group on the p-tolyl substituent were refined as disordered over two sets of sites in a 0.60 (4):0.40 (4) ratio. PMID:24109353
Methyl 4-eth-oxy-2-methyl-2H-1,2-benzothia-zine-3-carboxyl-ate 1,1-dioxide.
Zia-Ur-Rehman, Muhammad; Choudary, Jamil Anwar; Elsegood, Mark R J; Akbar, Noshin; Latif Siddiqui, Hamid
2008-07-16
In the crystal structure of the title compound, C(13)H(15)NO(5)S, the mol-ecules exhibit weak S=O⋯H-C and C=O⋯H-C inter-molecular inter-actions and arrange themselves into centrosymmetric dimers by means of π-π inter-actions (ring centroids are separated by 3.619 Å, while the closest C⋯C contacts are 3.514 Å). 1,2-Benzothia-zines of this kind have a range of biological activities and are used as medicines in the treatment of inflammation and rheumatoid arthritis.
Crystal structure of 1-iodo-3-{[4-(tert-butylsulfanyl)phenyl]ethynyl}azulene
Förster, Sebastian; Seichter, Wilhelm; Weber, Edwin
2015-01-01
The title compound, C20H19IS, features a 1,3-disubstituted azulene involving an ethynylene elongated 4-(tert-butylsulfanyl)phenyl sidearm and an iodine atom as the substituents. The azulene ring system is almost planar (r.m.s. deviation = 0.012 Å) and subtends a dihedral angle of 35.7 (1)° with the benzene ring. As a result of the inherent dipole character of the azulene core, a supramolecular π–π dimer [separation between the centroids of the five- and seven-membered rings = 3.7632 (10) Å] with antiparallel orientated molecules can be observed in the crystal. The packing is consolidated by an unusual I⋯π(acetylene) contact [I⋯Cg = 3.34 Å, C—I⋯Cg = 173.3°], and a very weak C—H⋯π interaction is also found in the structure, with the azulene five-membered ring as the acceptor. PMID:26396788
Crystal structure of 2-(1,3-dioxoindan-2-yl)iso-quinoline-1,3,4-trione.
Ghalib, Raza Murad; Chidan Kumar, C S; Hashim, Rokiah; Sulaiman, Othman; Fun, Hoong-Kun
2015-01-01
In the title iso-quinoline-1,3,4-trione derivative, C18H9NO5, the five-membered ring of the indane fragment adopts an envelope conformation with the nitro-gen-substituted C atom being the flap. The planes of the indane benzene ring and the iso-quinoline-1,3,4-trione ring make a dihedral angle of 82.06 (6)°. In the crystal, mol-ecules are linked into chains extending along the bc plane via C-H⋯O hydrogen-bonding inter-actions, enclosing R 2 (2)(8) and R 2 (2)(10) loops. The chains are further connected by π-π stacking inter-ations, with centroid-to-centroid distances of 3.9050 (7) Å, forming layers parallel to the b axis.
Crystal structure of bis[bis(4-azaniumylphenyl) sulfone] tetranitrate monohydrate
Benahsene, Amani Hind; Bendjeddou, Lamia; Merazig, Hocine
2017-01-01
In the title compound, the hydrated tetra(nitrate) salt of dapsone (4,4′-diaminodiphenylsulfone), 2C12H14N2O2S2+·4NO3 −·H2O {alternative name: bis[bis(4,4′-diazaniumylphenyl) sulfone] tetranitrate monohydrate}, the cations are conformationally similar, with comparable dihedral angles between the two benzene rings in each of 70.03 (18) and 69.69 (19)°. In the crystal, mixed cation–anion–water molecule layers lying parallel to the (001) plane are formed through N—H⋯O, O—H⋯O and C—H⋯O hydrogen-bonding interactions and these layers are further extended into an overall three-dimensional supramolecular network structure. Inter-ring π–π interactions are also present [minimum ring centroid separation = 3.693 (3) Å]. PMID:29152359
Faizi, Md Serajul Haque; Dege, Necmi; Goleva, Kateryna
2017-06-01
The title dinuclear mercury(II) complex, [Hg 2 Cl 4 (C 16 H 19 N 3 ) 2 ], synthesized from the pyridine-derived Schiff base ( E )- N 1 , N 1 -diethyl- N 4 -[(pyridin-2-yl)methyl-idene]benzene-1,4-di-amine (DPMBD), has inversion symmetry. The five-coordinated Hg II atoms have distorted square-pyramidal stereochemistry comprising two N-atom donors from bidentate chelate BPMBD ligands and three Cl-atom donors, two bridging and one monodentate. The dihedral angle between the benzene and the pyridine rings in the BPMBD ligand is 7.55 (4)°. In the crystal, the dinuclear mol-ecules are linked by weak C-H⋯Cl hydrogen bonds, forming zigzag ribbons lying parallel to [001]. Also present in the structure are π-π inter-actions between benzene and pyridine rings [minimum ring-centroid separation = 3.698 (8) Å].
(E)-1-(2,4-Di-nitro-phen-yl)-2-(3-eth-oxy-4-hy-droxy-benzyl-idene)hydrazine.
Fun, Hoong-Kun; Chantrapromma, Suchada; Ruanwas, Pumsak; Kobkeatthawin, Thawanrat; Chidan Kumar, C S
2014-01-01
The mol-ecule of the title hydrazine derivative, C15H14N4O6, is essentially planar, the dihedral angle between the substituted benzene rings being 2.25 (9)°. The eth-oxy and hy-droxy groups are almost coplanar with their bound benzene ring [r.m.s. deviation = 0.0153 (2) Å for the ten non-H atoms]. Intra-molecular N-H⋯O and O-H⋯Oeth-oxy hydrogen bonds generate S(6) and S(5) ring motifs, respectively. In the crystal, mol-ecules are linked by O-H⋯Onitro hydrogen bonds into chains propagating in [010]. Weak aromatic π-π inter-actions, with centroid-centroid distances of 3.8192 (19) and 4.0491 (19) Å, are also observed.
Dichloridobis(phenanthridine-κN)zinc(II).
Khoshtarkib, Zeinab; Ebadi, Amin; Alizadeh, Robabeh; Ahmadi, Roya; Amani, Vahid
2009-06-06
In the mol-ecule of the title compound, [ZnCl(2)(C(13)H(9)N)(2)], the Zn(II) atom is four-coordinated in a distorted tetra-hedral configuration by two N atoms from two phenanthridine ligands and by two terminal Cl atoms. The dihedral angle between the planes of the phenanthridine ring systems is 69.92 (3)°. An intra-molecular C-H⋯Cl inter-action results in the formation of a planar five-membered ring, which is oriented at a dihedral angle of 8.32 (3)° with respect to the adjacent phenanthridine ring system. In the crystal structure, π-π contacts between the phenanthridine systems [centroid-centroid distances = 3.839 (2), 3.617 (1) and 3.682 (1) Å] may stabilize the structure. Two weak C-H⋯π inter-actions are also found.
Crystal structure of N-{[3-bromo-1-(phenyl-sulfon-yl)-1H-indol-2-yl]meth-yl}benzene-sulfonamide.
Umadevi, M; Raju, P; Yamuna, R; Mohanakrishnan, A K; Chakkaravarthi, G
2015-10-01
In the title compound, C21H17BrN2O4S2, the indole ring system subtends dihedral angles of 85.96 (13) and 9.62 (16)° with the planes of the N- and C-bonded benzene rings, respectively. The dihedral angles between the benzene rings is 88.05 (17)°. The mol-ecular conformation is stabilized by intra-molecular N-H⋯O and C-H⋯O hydrogen bonds and an aromatic π-π stacking [centroid-to-centroid distance = 3.503 (2) Å] inter-action. In the crystal, short Br⋯O [2.9888 (18) Å] contacts link the mol-ecules into [010] chains. The chains are cross-linked by weak C-H⋯π inter-actions, forming a three-dimensional network.
1-(Benzylideneamino)pyridinum iodide
Cui, Yong-Tao; Wang, Jian-Qiang; Ji, Chun-Xiang; Wu, Cong-Ren; Guo, Cheng
2009-01-01
In the title compound, C12H11N2 +·I−, the aromatic rings are oriented at a dihedral angle of 73.40 (3)°. In the crystal structure, π–π contacts between the pyridine rings and the benzene and pyridine rings [centroid–centroid distances = 3.548 (3) and 4.211 (3) Å] may stabilize the structure. PMID:21581846
Ethyl 4,4''-difluoro-5'-meth-oxy-1,1':3',1''-terphenyl-4'-carboxyl-ate.
Fun, Hoong-Kun; Chia, Tze Shyang; Samshuddin, S; Narayana, B; Sarojini, B K
2012-01-01
In the title compound, C(22)H(18)F(2)O(3), the two fluoro-substituted rings form dihedral angles of 25.89 (15) and 55.00 (12)° with the central benzene ring. The eth-oxy group in the mol-ecule is disordered over two positions with a site-occupancy ratio of 0.662 (7):0.338 (7). In the crystal, mol-ecules are linked by C-H⋯O hydrogen bonds into chains along the a axis. The crystal packing is further stabilized by C-H⋯π and π-π inter-actions, with centroid-centroid distances of 3.8605 (15) Å.
Rahmani, Rachida; Djafri, Ahmed; Daran, Jean-Claude; Djafri, Ayada; Chouaih, Abdelkader; Hamzaoui, Fodil
2016-01-01
In the title compound, C26H21N3O5S, the thiazole ring is nearly planar with a maximum deviation of 0.017 (2) Å, and is twisted with respect to the three benzene rings, making dihedral angles of 25.52 (12), 85.77 (12) and 81.85 (13)°. In the crystal, weak C—H⋯O hydrogen bonds and C—H⋯π interactions link the molecules into a three-dimensional supramolecular architecture. Aromatic π–π stacking is also observed between the parallel nitrobenzene rings of neighbouring molecules, the centroid-to-centroid distance being 3.5872 (15) Å. PMID:26958377
Orphenadrinium picrate picric acid.
Fun, Hoong-Kun; Hemamalini, Madhukar; Siddaraju, B P; Yathirajan, H S; Narayana, B
2010-02-24
The asymmetric unit of the title compound N,N-dimethyl-2-[(2-methyl-phen-yl)phenyl-meth-oxy]ethanaminium picrate picric acid, C(18)H(24)NO(+)·C(6)H(2)N(3)O(7) (-)·C(6)H(3)N(3)O(7), contains one orphenadrinium cation, one picrate anion and one picric acid mol-ecule. In the orphenadrine cation, the two aromatic rings form a dihedral angle of 70.30 (7)°. There is an intra-molecular O-H⋯O hydrogen bond in the picric acid mol-ecule, which generates an S(6) ring motif. In the crystal structure, the orphenadrine cations, picrate anions and picric acid mol-ecules are connected by strong inter-molecular N-H⋯O hydrogen bonds, π⋯π inter-actions between the benzene rings of cations and anions [centroid-centroid distance = 3.5603 (9) Å] and weak C-H⋯O hydrogen bonds, forming a three-dimensional network.
Mobilio, Dominick; Walker, Gary; Brooijmans, Natasja; Nilakantan, Ramaswamy; Denny, R Aldrin; Dejoannis, Jason; Feyfant, Eric; Kowticwar, Rupesh K; Mankala, Jyoti; Palli, Satish; Punyamantula, Sairam; Tatipally, Maneesh; John, Reji K; Humblet, Christine
2010-08-01
The Protein Data Bank is the most comprehensive source of experimental macromolecular structures. It can, however, be difficult at times to locate relevant structures with the Protein Data Bank search interface. This is particularly true when searching for complexes containing specific interactions between protein and ligand atoms. Moreover, searching within a family of proteins can be tedious. For example, one cannot search for some conserved residue as residue numbers vary across structures. We describe herein three databases, Protein Relational Database, Kinase Knowledge Base, and Matrix Metalloproteinase Knowledge Base, containing protein structures from the Protein Data Bank. In Protein Relational Database, atom-atom distances between protein and ligand have been precalculated allowing for millisecond retrieval based on atom identity and distance constraints. Ring centroids, centroid-centroid and centroid-atom distances and angles have also been included permitting queries for pi-stacking interactions and other structural motifs involving rings. Other geometric features can be searched through the inclusion of residue pair and triplet distances. In Kinase Knowledge Base and Matrix Metalloproteinase Knowledge Base, the catalytic domains have been aligned into common residue numbering schemes. Thus, by searching across Protein Relational Database and Kinase Knowledge Base, one can easily retrieve structures wherein, for example, a ligand of interest is making contact with the gatekeeper residue.
Bahoussi, Rawia Imane; Djafri, Ahmed; Djafri, Ayada
2017-01-01
In the title compound, C18H20N4O3S, the 1,2,4-triazole ring is twisted with respect to the mean plane of quinoline moiety at 65.24 (4)°. In the crystal, molecules are linked by weak C—H⋯O and C—H⋯N hydrogen bonds, forming the three-dimensional supramolecular packing. π–π stacking between the quinoline ring systems of neighbouring molecules is also observed, the centroid-to-centroid distance being 3.6169 (6) Å. Hirshfeld surface (HS) analyses were performed. PMID:28217336
Crystal structure of di-bromo-meth-oxy-seselin (DBMS), a photobiologically active pyran-ocoumarin.
Bauri, A K; Foro, Sabine; Rahman, A F M M
2017-05-01
The title compound, C 15 H 14 Br 2 O 4 [systematic name: rac -(9 S ,10 R )-3,9-dibromo-10-methoxy-8,8-dimethyl-9,10-dihydropyrano[2,3- h ]chromen-2(8 H )-one], is a pyran-ocoumarin derivative formed by the bromination of seselin, which is a naturally occurring angular pyran-ocoumarin isolated from the Indian herb Trachyspermum stictocarpum . In the mol-ecule, the benzo-pyran ring system is essentially planar, with a maximum deviation of 0.044 (2) Å for the O atom. The di-hydro-pyran ring is in a half-chair conformation and the four essentially planar atoms of this ring form a dihedral angle of 4.6 (2)° with the benzo-pyran ring system. In the crystal, mol-ecules are linked by weak C-H⋯O hydrogen bonds, forming chains propagating along [010]. In addition, π-π stacking inter-actions, with centroid-centroid distances of 3.902 (2) and 3.908 (2) Å, link the hydrogen-bonded chains into layers parallel to (001).
Tsipis, A C; Stalikas, A V
2012-02-20
The molecular and electronic structures, stabilities, bonding features, magnetotropicity and absorption spectra of benzene-trinuclear Cu(I) and Ag(I) trihalide columnar binary stacks with the general formula [c-M(3)(μ(2)-X)(3)](n)(C(6)H(6))(m) (M = Cu, Ag; X = halide; n, m ≤ 2) have been investigated by means of electronic structure calculation methods. The interaction of c-M(3)(μ(2)-X)(3) clusters with one and two benzene molecules yields 1:1 and 1:2 binary stacks, while benzene sandwiched 2:1 stacks are formed upon interaction of two c-M(3)(μ(2)-X)(3) clusters with one benzene molecule. In all binary stacks the plane of the alternating c-M(3)(μ(2)-X)(3) and benzene components adopts an almost parallel orientation. The separation distance between the centroids of the benzene and the proximal c-M(3)(μ(2)-X)(3) metallic cluster found in the range 2.97-3.33 Å at the B97D/Def2-TZVP level is indicative of a π···π stacking interaction mode, for the centroid separation distance is very close to the sum of the van der Waals radii of Cu···C (3.10 Å) and Ag···C (3.44 Å). Energy decomposition analysis (EDA) at the SSB-D/TZP level revealed that the dominant term in the c-M(3)(μ(2)-X)(3)···C(6)H(6) interaction arises from dispersion and electrostatic forces while the covalent interactions are predicted to be negligible. On the other hand, charge decomposition analysis (CDA) illustrated very small charge transfer from C(6)H(6) toward the c-M(3)(μ(2)-X)(3) clusters, thus reflecting weak π-base/π-acid interactions which are further corroborated by the respective electrostatic potentials and the fact that the total dipole moment vector points to the center of the metallic ring of the c-M(3)(μ(2)-X)(3) cluster. The absorption spectra of all aromatic columnar binary stacks simulated by means of TD-DFT calculations showed strong absorptions in the UV region. The main features of the simulated absorption spectra are thoroughly analyzed, and assignments of the contributing electronic transitions are given. The magnetotropicity of the binary stacks evaluated by the NICS(zz)-scan curves indicated an enhancement of the diatropicity of the inorganic ring upon interaction with the aromatic benzene molecule. Noteworthy is the slight enhancement of the diatropicity of the benzene ring, particularly in the region between the interacting rings, probably due to the superposition (coupling) of the diamagnetic ring currents of the interacting aromatic ring systems.
Methyl 4-ethoxy-2-methyl-2H-1,2-benzothiazine-3-carboxylate 1,1-dioxide
Zia-ur-Rehman, Muhammad; Choudary, Jamil Anwar; Elsegood, Mark R. J.; Akbar, Noshin; Latif Siddiqui, Hamid
2008-01-01
In the crystal structure of the title compound, C13H15NO5S, the molecules exhibit weak S=O⋯H—C and C=O⋯H—C intermolecular interactions and arrange themselves into centrosymmetric dimers by means of π–π interactions (ring centroids are separated by 3.619 Å, while the closest C⋯C contacts are 3.514 Å). 1,2-Benzothiazines of this kind have a range of biological activities and are used as medicines in the treatment of inflammation and rheumatoid arthritis. PMID:21203217
4,4′-Bipyridine–pyroglutamic acid (1/2)
Arman, Hadi D.; Kaulgud, Trupta; Tiekink, Edward R. T.
2009-01-01
In the title co-crystal, C10H8N2·2C5H7NO3, the 4,4′-bipyridine molecule [dihedral angle between the pyridine rings = 36.33 (11)°] accepts O—H⋯N hydrogen bonds from the two pyroglutamic (pga) acid molecules. The pga molecules at each end of the trimeric aggregate self-associate via centrosymmetric eight-membered amide {⋯HNCO}2 synthons, so that the crystal structure comprises one-dimensional supramolecular chains propagating in [13]. C—H⋯O and π–π stacking interactions [centroid–centroid separation = 3.590 (2) Å] consolidate the structure. PMID:21578523
2-(4-Hy-droxy-phen-yl)-1H-benzimidazol-3-ium chloride monohydrate.
González-Padilla, Jazmin E; Rosales-Hernández, Martha Cecila; Padilla-Martínez, Itzia I; García-Báez, Efren V; Rojas-Lima, Susana
2013-01-01
The title mol-ecular salt, C13H11N2O(+)·Cl(-)·H2O, crystallizes as a monohydrate. In the cation, the phenol and benzimidazole rings are almost coplanar, making a dihedral angle of 3.18 (4)°. The chloride anion and benzimidazole cation are linked by two N(+)-H⋯Cl(-) hydrogen bonds, forming chains propagating along [010]. These chains are linked through O-H⋯Cl hydrogen bonds involving the water mol-ecule and the chloride anion, which form a diamond core, giving rise to the formation of two-dimensional networks lying parallel to (10-2). Two π-π inter-actions involving the imidazolium ring with the benzene and phenol rings [centroid-centroid distances = 3.859 (3) and 3.602 (3) Å, respectively], contribute to this second dimension. A strong O-H⋯O hydrogen bond involving the water mol-ecule and the phenol substituent on the benzimidazole unit links the networks, forming a three-dimensional structure.
Chantrapromma, Suchada; Chanawanno, Kullapa; Boonnak, Nawong; Fun, Hoong-Kun
2012-01-01
The asymmetric unit of the title compound, C(36)H(32)N(2) (2+)·2I(-), consists of one half-mol-ecule of the cation and one I(-) anion. The cation is located on an inversion centre. The dihedral angle between the pyridinium ring and the naphthalene ring system in the asymmetric unit is 19.01 (14)°. In the crystal, the cations and the anions are linked by C-H⋯I inter-actions into a layer parallel to the bc plane. Intra- and inter-molecular π-π inter-actions with centroid-centroid distances of 3.533 (2)-3.807 (2) Å are also observed.
1-(2,4-Dinitrophenyl)-2-[(E)-(3,4,5-trimethoxybenzylidene)]hydrazine
Chantrapromma, Suchada; Ruanwas, Pumsak; Boonnak, Nawong; Chidan Kumar, C. S.; Fun, Hoong-Kun
2014-01-01
Molecules of the title compound, C16H16N4O7, are not planar with a dihedral angle of 5.50 (11)° between the substituted benzene rings. The two meta-methoxy groups of the 3,4,5-trimethoxybenzene moiety lie in the plane of the attached ring [Cmethyl–O–C–C torsion angles −0.1 (4)° and −3.7 (3)°] while the para-methoxy substituent lies out of the plane [Cmethyl—O—C—C, −86.0 (3)°]. An intramolecular N—H⋯O hydrogen bond involving the 2-nitro substituent generates an S(6) ring motif. In the crystal structure, molecules are linked by weak C—H⋯O interactions into screw chains, that are arranged into a sheet parallel to the bc plane. These sheets are connected by π–π stacking interactions between the nitro and methoxy substituted aromatic rings with a centroid–centroid separation of 3.9420 (13) Å. C—H⋯π contacts further stabilize the two-dimensional network. PMID:24764900
Gallagher, John F; Goswami, Shyamaprosad; Chatterjee, Baidyanath; Jana, Subrata; Dutta, Kalyani
2004-04-01
The title compound, C(16)H(13)N(3), isolated from Justicia secunda (Acanthaceae), comprises two molecules (which differ slightly in conformation) in the asymmetric unit of space group P-1. Intermolecular N(amino)-H.N(pyrm) interactions (N(pyrm) is a pyrimidine ring N atom) involve only one of the two donor amino H atoms and pyrimidine N atoms per molecule, forming dimeric units via R(2)(2)(8) rings, with N.N distances of 3.058 (2) and 3.106 (3) A, and N-H.N angles of 172.7 (18) and 175.8 (17) degrees. The dimers are linked by C-H.pi(arene) contacts, with an H.centroid distance of 2.77 A and a C-H.centroid angle of 141 degrees.
(2-{[2-(diphenylphosphino)phenyl]thio}phenyl)diphenylphosphine sulfide
Alvarez-Larena, Angel; Martinez-Cuevas, Francisco J.; Flor, Teresa; Real, Juli
2012-01-01
In the title compound, C36H28P2S2, the dihedral angle between the central benzene rings is 66.95 (13)°. In the crystal, molecules are linked via Car—H⋯π and π–π interactions [shortest centroid–centroid distance between benzene rings = 3.897 (2) Å]. PMID:23284423
NASA Technical Reports Server (NTRS)
Strekalov, Dmitry V.
2012-01-01
Ring Image Analyzer software analyzes images to recognize elliptical patterns. It determines the ellipse parameters (axes ratio, centroid coordinate, tilt angle). The program attempts to recognize elliptical fringes (e.g., Newton Rings) on a photograph and determine their centroid position, the short-to-long-axis ratio, and the angle of rotation of the long axis relative to the horizontal direction on the photograph. These capabilities are important in interferometric imaging and control of surfaces. In particular, this program has been developed and applied for determining the rim shape of precision-machined optical whispering gallery mode resonators. The program relies on a unique image recognition algorithm aimed at recognizing elliptical shapes, but can be easily adapted to other geometric shapes. It is robust against non-elliptical details of the image and against noise. Interferometric analysis of precision-machined surfaces remains an important technological instrument in hardware development and quality analysis. This software automates and increases the accuracy of this technique. The software has been developed for the needs of an R&TD-funded project and has become an important asset for the future research proposal to NASA as well as other agencies.
Cieplik, Jerzy; Pluta, Janusz; Bryndal, Iwona; Lis, Tadeusz
2013-11-27
The title compound, C26H23F3N4O, crystallizes with two symmetry-independent mol-ecules in the asymmetric unit, denoted A and B, which differ mainly in the rotation of the meth-oxy-phenyl ring. The -CF3 group of mol-ecule B is disordered by rotation, with the F atoms split over two sets of sites; the occupancy factor for the major component is 0.853 (4). The dihedral angles between the pyrimidine ring and the attached phenyl, meth-oxy-phenyl and tri-fluoro-methyl-phenyl rings are 8.1 (2), 37.5 (2) and 70.7 (2)°, respectively, in mol-ecule A, and 9.3 (2), 5.3 (2) and 79.7 (2)° in mol-ecule B. An intra-molecular N-H⋯N hydrogen bond occurs in each mol-ecule. In the crystal, two crystallographically independent mol-ecules associate into a dimer via a pair of N-H⋯N hydrogen bonds, with a resulting R 2 (2)(12) ring motif and π-π stacking inter-actions [centroid-centroid distance = 3.517 (4) Å] between the pyrimidine rings. For the A mol-ecules, there are inter-molecular C-H⋯O hydrogen bonds between an aryl C atom of meth-oxy-phenyl ring and a meth-oxy O atom of an adjacent mol-ecule. A similar inter-action is lacking in the B mol-ecules.
2-(4,5-Dihydro-1H-imidazol-2-yl)pyridine
Kia, Reza; Fun, Hoong-Kun; Kargar, Hadi
2009-01-01
In the molecule of the title compound, C8H9N3, a new imidazoline derivative, the six- and five-membered rings are slightly twisted away from each other, forming a dihedral angle of 7.96 (15)°. In the crystal structure, neighbouring molecules are linked together by intermolecular N—H⋯N hydrogen bonds into extended one-dimensional chains along the a axis. The pyridine N atom is in close proximity to a carbon-bound H atom of the imidazoline ring, with an H⋯N distance of 2.70 Å, which is slightly shorter than the sum of the van der Waals radii of these atoms (2.75 Å). The crystal structure is further stabilized by intermolecular C—H⋯π and π–π interactions (centroid-to-centroid distance 3.853 Å). PMID:21582505
7-Methoxy-2-phenylchroman-4-one
Piaskowska, Agata; Hodorowicz, Maciej; Nitek, Wojciech
2013-01-01
In the title compound, C16H14O3, the ring O atom and the two adjacent non-fused C atoms, as well as the attached phenyl ring, exhibit static disorder [occupancy ratio 0.559 (12):0.441 (12)]. The crystal packing features π–π [centroid–centroid distance = 3.912 (1) Å] and C—H⋯π interactions. PMID:23424545
3-Methyl-1,4-dioxo-1,4-dihydronaphthalen-2-yl 4-aminobenzoate
Bambagiotti-Alberti, Massimo; Bartolucci, Gianluca; Bruni, Bruno; Coran, Silvia; Di Vaira, Massimo
2008-01-01
The crystal structure of the title compound, C18H13NO4, the oxidized form of the drug aminaftone used in venous disease therapy, is characterized by the presence of ribbons of hydrogen-bonded molecules parallel to the [111] crystallographic direction and by stacking interactions between rings [centroid–centroid distance between quinone rings = 3.684 (3) Å and between aminobenzoate rings = 4.157 (3) Å] along the ribbons. PMID:21202108
2-(1,2,3,4-Tetra-hydro-1-naphth-yl)imidazolium chloride monohydrate.
Bruni, Bruno; Bartolucci, Gianluca; Ciattini, Samuele; Coran, Silvia
2010-08-18
In the title compound, C(13)H(15)N(2) (+)·Cl(-)·H(2)O, the ions and water mol-ecules are -connected by N-H⋯Cl, O-H⋯Cl, NH⋯Cl⋯HO, NH⋯Cl⋯HN and OH⋯Cl⋯HO inter-actions, forming discrete D(2) and D(2) (1)(3) chains, C(2) (1)(6) chains and R(4) (2)(8) rings, leading to a neutral two-dimensional network. The crystal structure is further stabilized by π-π stacking inter-actions [centroid-centroid distance = 3.652 (11) Å].
Redetermination of (2,2'-bipyridine-κN,N')dichlorido-palladium(II) dichloro-methane solvate.
Kim, Nam-Ho; Hwang, In-Chul; Ha, Kwang
2009-05-07
In the title compound, [PdCl(2)(C(10)H(8)N(2))]·CH(2)Cl(2), the Pd(2+) ion is four-coordinated in a slightly distorted square-planar environment by two N atoms of the 2,2'-bipyridine (bipy) ligand and two chloride ions. The compound displays intra-molecular C-H⋯Cl hydrogen bonds and pairs of complex mol-ecules are connected by inter-molecular C-H⋯Cl hydrogen bonds. Inter-molecular π-π inter-actions are present between the pyridine rings of the ligand, the shortest centroid-centroid distance being 4.096 (3) Å. As a result of the electronic nature of the chelate ring, it is possible to create π-π inter-actions to its symmetry-related counterpart [3.720 (2) Å] and also with a pyridine ring [3.570 (3) Å] of the bipy unit. The present structure is a redetermination of a previous structure [Vicente et al. (1997 ▶). Private communication (refcode PYCXMN02). CCDC, Cambridge, England]. In the new structure refinement all H atoms were located in a difference Fourier synthesis. Their coordinates were refined freely, together with isotropic displacement parameters.
2,3-Dimethyl-6-nitro-2H-indazole
Chen, Yan; Fang, Zheng; Wei, Ping
2009-01-01
In the molecule of the title compound, C9H9N3O2, the indazole ring system is almost planar [maximum deviation = 0.019 (3) Å for the C atom bearing the nitro group]. In the crystal structure, intermolecular C—H⋯O interactions link the molecules into centrosymmetric dimers, forming R 2 2(18) ring motifs. Aromatic π–π contacts between indazole rings [centroid–centroid distances = 3.632 (1) and 3.705 (1) Å] may further stabilize the structure. PMID:21583483
3-Ethyl-5-(4-methoxyphenoxy)-2-(pyridin-4-yl)-3H-imidazo[4,5-b]pyridine
Ranjith, S.; SubbiahPandi, A.; Suresh, A. D.; Pitchumani, K.
2011-01-01
In the title compound, C20H18N4O2, the imidazopyridine fused ring system is almost perpendicular to the benzene ring [dihedral angle = 87.6 (5)°]. The pyridine ring makes a dihedral angle of 35.5 (5)° with the mean plane of the imidazopyridine fragment. The crystal structure is stabilized by an aromatic π–π stacking interaction between the phenyl rings of neighbouring molecules [centroid–centroid distance = 3.772 (2) Å, interplanar distance = 3.546 (2) Å and slippage = 1.286 (2) Å]. PMID:21837144
Philippe, Elisabeth; Manoury, Eric; Daran, Jean-Claude
2012-06-01
In the title compound, [Fe(C(20)H(21)NPS)(C(17)H(14)PS)]·CH(2)Cl(2), both cyclo-penta-dienyl (Cp) rings constituting the ferrocene unit are substituted by a sulfur-protected diphenyl-phosphine. One of the Cp ligands is additionally substituted by a dimethyl-amino-methyl group causing the chirality of the mol-ecule. Surprisingly, although the synthetic procedure yielded the title compound as a racemic mixture, the reported crystal is enanti-omerically pure with the R absolute configuration. The dimethyl-amino group is exo with respect to the Cp ring. Both diphenyl-thio-phosphine groups are trans with respect to the centroid-Fe-centroid direction. Weak intra-molecular C-H⋯S and C-H⋯π inter-actions between symmetry-related mol-ecules are observed. The contribution of the disordered solvent was removed from the refinement using SQUEEZE in PLATON [Spek (2009 ▶). Acta Cryst. D65, 148-155].
He, Lei; Ma, Dongxin; Duan, Lian; Wei, Yongge; Qiao, Juan; Zhang, Deqiang; Dong, Guifang; Wang, Liduo; Qiu, Yong
2012-04-16
Intramolecular π-π stacking interaction in one kind of phosphorescent cationic iridium complexes has been controlled through fluorination of the pendant phenyl rings on the ancillary ligands. Two blue-green-emitting cationic iridium complexes, [Ir(ppy)(2)(F2phpzpy)]PF(6) (2) and [Ir(ppy)(2)(F5phpzpy)]PF(6) (3), with the pendant phenyl rings on the ancillary ligands substituted with two and five fluorine atoms, respectively, have been synthesized and compared to the parent complex, [Ir(ppy)(2)(phpzpy)]PF(6) (1). Here Hppy is 2-phenylpyridine, F2phpzpy is 2-(1-(3,5-difluorophenyl)-1H-pyrazol-3-yl)pyridine, F5phpzpy is 2-(1-pentafluorophenyl-1H-pyrazol-3-yl)-pyridine, and phpzpy is 2-(1-phenyl-1H-pyrazol-3-yl)pyridine. Single crystal structures reveal that the pendant phenyl rings on the ancillary ligands stack to the phenyl rings of the ppy ligands, with dihedral angles of 21°, 18°, and 5.0° between least-squares planes for complexes 1, 2, and 3, respectively, and centroid-centroid distances of 3.75, 3.65, and 3.52 Å for complexes 1, 2, and 3, respectively, indicating progressively reinforced intramolecular π-π stacking interactions from complexes 1 to 2 and 3. Compared to complex 1, complex 3 with a significantly reinforced intramolecular face-to-face π-π stacking interaction exhibits a significantly enhanced (by 1 order of magnitude) photoluminescent efficiency in solution. Theoretical calculations reveal that in complex 3 it is unfavorable in energy for the pentafluorophenyl ring to swing by a large degree and the intramolecular π-π stacking interaction remains on the lowest triplet state. © 2012 American Chemical Society
Vibration characteristics of a steadily rotating slender ring
NASA Technical Reports Server (NTRS)
Lallman, F. J.
1980-01-01
Partial differential equations are derived to describe the structural vibrations of a uniform homogeneous ring which is very flexible because the radius is very large compared with the cross sectional dimensions. Elementary beam theory is used and small deflections are assumed in the derivation. Four sets of structural modes are examined: bending and compression modes in the plane of the ring; bending modes perpendicular to the plane of the ring; and twisting modes about the centroid of the ring cross section. Spatial and temporal characteristics of these modes, presented in terms of vibration frequencies and ratios between vibration amplitudes, are demonstrated in several figures. Given a sufficiently high rotational rate, the dynamics of the ring approach those of a vibrating string. In this case, the velocity of traveling wave in the material of the ring approaches in velocity of the material relative to inertial space, resulting in structural modes which are almost stationary in space.
2-[(E)-2-(4-Eth-oxy-phen-yl)ethen-yl]-1-methyl-quinolinium 4-fluoro-benzene-sulfonate.
Fun, Hoong-Kun; Kobkeatthawin, Thawanrat; Ruanwas, Pumsak; Quah, Ching Kheng; Chantrapromma, Suchada
2014-01-01
In the structure of the title salt, C20H20NO(+)·C6H4FO3S(-), the 4-(eth-oxy-phen-yl)ethenyl unit is disordered over two positions with a refined site-occupancy ratio of 0.610 (6):0.390 (6). The cation is nearly planar, the dihedral angle between the quinolinium and benzene rings being 6.7 (4) and 1.7 (7)° for the major and minor components, respectively. The eth-oxy group is essentially coplanar with the benzene ring [C-O-C-Cmethy = 177.1 (8) and 177.8 (12)° for the major and minor components, respectively]. In the crystal, cations and anions are linked into chains along the b-axis direction by C-H⋯Osulfon-yl weak inter-actions. These chains are further connected into sheets parallel to (001) by C-H⋯Osulfon-yl weak inter-actions. The chains are also stacked along the a axis through π-π inter-actions involving the quinolinium and benzene rings [centroid-centroid distances = 3.636 (5) Å for the major component and 3.800 (9) Å for the minor component]. C-H⋯π inter-actions are also present.
2-(Naphthalen-1-yl)-4-(naphthalen-1-ylmethylidene)-1,3-oxazol-5(4H)-one
Gündoğdu, Cevher; Alp, Serap; Ergün, Yavuz; Tercan, Barış; Hökelek, Tuncer
2011-01-01
In the title compound, C24H15NO2, the oxazole ring is oriented at dihedral angles of 10.09 (4) and 6.04 (4)° with respect to the mean planes of the naphthalene ring systems, while the two naphthalene ring systems make a dihedral angle of 4.32 (3)°. Intramolecular C—H⋯N hydrogen bonds link the oxazole N atom to the naphthalene ring systems. In the crystal, intermolecular weak C—H⋯O hydrogen bonds link the molecules into centrosymmetric dimers. π–π contacts between the oxazole and naphthalene rings and between the naphthalene ring systems [centroid–centroid distances = 3.5947 (9) and 3.7981 (9) Å] may further stabilize the crystal structure. Three weak C—H⋯π interactions also occur. PMID:21754548
Hökelek, Tuncer; Akduran, Nurcan; Özen, Azer; Uğurlu, Güventürk; Necefoğlu, Hacali
2017-03-01
The asymmetric unit of the title compound, [Cd 2 (C 7 H 4 NO 4 ) 4 (C 6 H 4 N 2 ) 4 ], contains one Cd II atom, two 3-nitro-benzoate (NB) anions and two 3-cyano-pyridine (CPy) ligands. The two CPy ligands act as monodentate N(pyridine)-bonding ligands, while the two NB anions act as bidentate ligands through the carboxyl-ate O atoms. The centrosymmetric dinuclear complex is generated by application of inversion symmetry, whereby the Cd II atoms are bridged by the carboxyl-ate O atoms of two symmetry-related NB anions, thus completing the distorted N 2 O 5 penta-gonal-bipyramidal coordination sphere of each Cd II atom. The benzene and pyridine rings are oriented at dihedral angles of 10.02 (7) and 5.76 (9)°, respectively. In the crystal, C-H⋯N hydrogen bonds link the mol-ecules, enclosing R 2 2 (26) ring motifs, in which they are further linked via C-H⋯O hydrogen bonds, resulting in a three-dimensional network. In addition, π-π stacking inter-actions between parallel benzene rings and between parallel pyridine rings of adjacent mol-ecules [shortest centroid-to-centroid distances = 3.885 (1) and 3.712 (1) Å, respectively], as well as a weak C-H⋯π inter-action, may further stabilize the crystal structure.
Fan, Chong-Guang; Chen, Jian-Cun; Dai, Hong; Wei, Yun-Hua; Shi, Yu-Jun
2012-01-01
In the title molecule, C16H16BrN5O3S, the 1,3,4-thiadiazole ring is situated under the benzene ring, forming a dihedral angle of 86.6 (2)°, and with an S⋯Cg (where Cg is the centroid of the benzene ring) distance of 3.312 (3) Å. The benzene and 1,3,4-thiadiazole rings form dihedral angles of 83.8 (3) and 57.7 (2)°, respectively, with the central pyrazole ring. In the absence of classical hydrogen bonds, the crystal packing is stabilized by a C—H⋯π interaction.. PMID:23284447
(E)-4-Methyl-N′-[(4-oxo-4H-chromen-3-yl)methylidene]benzohydrazide
Ishikawa, Yoshinobu; Watanabe, Kohzoh
2014-01-01
In the title chromone-tethered benzohydrazide derivative, C18H14N2O3, the 4H-chromen-4-one and the –CH=N–NH–CO– units are each essentially planar, with the largest deviations from thei planes being 0.052 (2) and 0.003 (2) Å, respectively. The dihedral angles between the 4H-chromen-4-one and the –CH=N–NH–CO– units, the 4H-chromen-4-one unit and the benzene ring of the 4-tolyl group, and the benzene ring of the 4-tolyl group and the –CH=N–NH–CO– unit are 8.09 (7), 9.94 (5) and 17.97 (8)°, respectively. In the crystal, the molecules form two types of centrosymmetric dimers: one by N—H⋯O hydrogen bonds and the other by π–π stacking interactions between the 4H-chromen-4-one unit and the 4-tolyl group [centroid–centroid distance = 3.641 (5) Å]. These dimers form one-dimensional assemblies extending along the a-axis direction. Additional π–π stacking interactions between two 4H-chromen-4-one units [centroid–centroid distance = 3.591 (5) Å] and two 4-tolyl groups [centroid–centroid distance = 3.792 (5) Å] organize the molecules into a three-dimensional network. PMID:24860370
(S)-N-[1-(5-Benzyl-sulfan-yl-1,3,4-oxa-diazol-2-yl)-2-phenyl-eth-yl]-4-methyl-benzene-sulfonamide.
Syed, Tayyaba; Hameed, Shahid; Jones, Peter G
2011-11-01
The title compound, C(24)H(23)N(3)O(3)S(2), crystallizes with two independent mol-ecules in the asymmetric unit. They differ essentially in the orientation of the tolyl rings, between which there is π-π stacking (centroid-centroid distance = 3.01 Å). The absolute configuration was confirmed by the determination of the Flack parameter [x = 0.008 (9)]. In the crystal, mol-ecules are connected by two classical N-H⋯N hydrogen bonds and two weak but very short C-H⋯O(sulfon-yl) inter-actions, forming layers lying parallel to the bc plane.
N-(Quinolin-8-yl)quinoline-2-carboxamide
Li, Yanfeng; Zhou, Hongbo; Shen, Xiaoping
2012-01-01
In the title compound, C19H13N3O, the dihedral angle between the two quinoline systems is 11.54 (3)°. The molecular conformation is stabilized by intramolecular N—H⋯N and C—H⋯O hydrogen bonds, with N—H⋯N being bifurcated towards the two N atoms of the two quinoline rings. In the crystal, there are weak intermolecular π–π interactions present involving the quinoline rings [centroid–centroid distance 3.7351 (14) Å]. PMID:22719482
1-[(3,5-Dimethyl-1H-pyrazol-1-yl)carbonyl]-5-methylindolizine-3-carbonitrile
Gu, Wei-Jin; Xie, Wen-Li; Wang, Ting-Ting
2012-01-01
In the title molecule, C16H14N4O, the indolizine ring system is essentially planar, with a maximum deviation of 0.013 (3) Å, and forms a dihedral angle of 7.52 (12)° with the pyrazole ring. In the crystal, weak C—H⋯O hydrogen bonds and π–π stacking interactions, with a centroid–centroid distance of 3.6378 (16) Å, link molecules along [001]. PMID:23476226
(2E)-1-(2,6-Dichloro-3-fluoro-phen-yl)-3-phenyl-prop-2-en-1-one.
Praveen, Aletti S; Yathirajan, Hemmige S; Narayana, Badiadka; Gerber, Thomas; Hosten, Eric; Betz, Richard
2012-04-01
In the title compound, C(15)H(9)Cl(2)FO, the F atom shows positional disorder over two positions, with site-occupancy factors of 0.747 (4) and 0.253 (4). The dihedral angle between the rings is 86.37 (10)°. In the crystal, C-H⋯O contacts connect the mol-ecules into chains along the c axis. The shortest inter-centroid distance between two aromatic systems is 3.6686 (12) Å and is apparent between the halogenated rings.
Tan, Ming Yueh; Crouse, Karen A; Ravoof, Thahira B S A; Jotani, Mukesh M; Tiekink, Edward R T
2017-07-01
The title Zn II complex, [Zn(C 18 H 18 N 3 S) 2 ], (I), features two independent but chemically equivalent mol-ecules in the asymmetric unit. In each, the thio-semicarbazonate monoanion coordinates the Zn II atom via the thiol-ate-S and imine-N atoms, with the resulting N 2 S 2 donor set defining a distorted tetra-hedral geometry. The five-membered ZnSCN 2 chelate rings adopt distinct conformations in each independent mol-ecule, i.e. one ring is almost planar while the other is twisted about the Zn-S bond. In the crystal, the two mol-ecules comprising the asymmetric unit are linked by amine-N-H⋯N(imine) and amine-N-H⋯S(thiol-ate) hydrogen bonds via an eight-membered heterosynthon, {⋯HNCN⋯HNCS}. The dimeric aggregates are further consolidated by benzene-C-H⋯S(thiol-ate) inter-actions and are linked into a zigzag supra-molecular chain along the c axis via amine-N-H⋯S(thiol-ate) hydrogen bonds. The chains are connected into a three-dimensional architecture via phenyl-C-H⋯π(phen-yl) and π-π inter-actions, the latter occurring between chelate and phenyl rings [inter-centroid separation = 3.6873 (11) Å]. The analysis of the Hirshfeld surfaces calculated for (I) emphasizes the different inter-actions formed by the independent mol-ecules in the crystal and the impact of the π-π inter-actions between chelate and phenyl rings.
NASA Astrophysics Data System (ADS)
Kreis, Karsten; Kremer, Kurt; Potestio, Raffaello; Tuckerman, Mark E.
2017-12-01
Path integral-based methodologies play a crucial role for the investigation of nuclear quantum effects by means of computer simulations. However, these techniques are significantly more demanding than corresponding classical simulations. To reduce this numerical effort, we recently proposed a method, based on a rigorous Hamiltonian formulation, which restricts the quantum modeling to a small but relevant spatial region within a larger reservoir where particles are treated classically. In this work, we extend this idea and show how it can be implemented along with state-of-the-art path integral simulation techniques, including path-integral molecular dynamics, which allows for the calculation of quantum statistical properties, and ring-polymer and centroid molecular dynamics, which allow the calculation of approximate quantum dynamical properties. To this end, we derive a new integration algorithm that also makes use of multiple time-stepping. The scheme is validated via adaptive classical-path-integral simulations of liquid water. Potential applications of the proposed multiresolution method are diverse and include efficient quantum simulations of interfaces as well as complex biomolecular systems such as membranes and proteins.
N-(3-Chloro-4-eth-oxy-1-methyl-1H-indazol-5-yl)-4-meth-oxy-benzene-sulfonamide.
Chicha, Hakima; Rakib, El Mostapha; Hannioui, Abdellah; Saadi, Mohamed; El Ammari, Lahcen
2014-06-01
The indazole ring system of the title compound, C17H18ClN3O4S, is almost planar (r.m.s. deviation = 0.0113 Å) and forms dihedral angles of 32.22 (8) and 57.5 (3)° with the benzene ring and the mean plane through the 4-eth-oxy group, respectively. In the crystal, mol-ecules are connected by pairs of N-H⋯O hydrogen bonds into inversion dimers, which are further linked by π-π inter-actions between the diazole rings [inter-centroid distance = 3.4946 (11) Å], forming chains parallel to [101].
(Nitrato-κ2 O,O′)bis(1,10-phenanthroline-κ2 N,N′)copper(II) tricyanomethanide
Lacková, Katarína; Potočňák, Ivan
2012-01-01
The title compound, [Cu(NO3)(C12H8N2)2][C(CN)3], is formed of discrete [Cu(NO3)(phen)2]+ complex cations (phen is 1,10-phenanthroline) and C(CN)3 − counter-anions. The CuII atom has an asymmetric tetragonal–bipyramidal (4 + 1+1) stereochemistry with a pseudo-C 2 symmetry axis bisecting the nitrate ligand and passing through the CuII atom between the two phen ligands. The four N atoms of the phen ligands coordinate to the CuII atom with Cu—N distances in the range 1.974 (2)–2.126 (2) Å, while the two O atoms coordinate at substantially different distances [2.154 (2) and 2.586 (2) Å]. The structure is stabilized by C—H⋯O hydrogen bonds and weak π–π interactions between nearly parallel benzene and pyridine rings of two adjacent phen molecules, with centroid–centroid distances of 3.684 (2) and 3.6111 (2) Å, and between π-electrons of the tricyanomethanide anion and the pyridine or benzene rings [N⋯(ring centroid) distances = 3.553 (3)–3.875 (3) Å]. PMID:23468758
Prado, Karinne E.; Name, Luccas L.; Jotani, Mukesh M.
2017-01-01
The title organoselenium compound, C19H13ClO3Se {systematic name: 2-[(4-chlorophenyl)selanyl]-2H,3H,4H,5H,6H-naphtho[1,2-b]pyran-5,6-dione}, has the substituted 2-pyranyl ring in a half-chair conformation with the methylene-C atom bound to the methine-C atom being the flap atom. The dihedral angle between the two aromatic regions of the molecule is 9.96 (9)° and indicates a step-like conformation. An intramolecular Se⋯O interaction of 2.8122 (13) Å is noted. In the crystal, π–π contacts between naphthyl rings [inter-centroid distance = 3.7213 (12) Å] and between naphthyl and chlorobenzene rings [inter-centroid distance = 3.7715 (13) Å], along with C—Cl⋯π(chlorobenzene) contacts, lead to supramolecular layers parallel to the ab plane, which are connected into a three-dimensional architecture via methylene-C—H⋯O(carbonyl) interactions. The contributions of these and other weak contacts to the Hirshfeld surface is described. PMID:28638659
Crystal structure of 2-amino-pyridinium 6-chloro-nicotinate.
Jasmine, N Jeeva; Rajam, A; Muthiah, P Thomas; Stanley, N; Razak, I Abdul; Rosli, M Mustaqim
2015-09-01
In the title salt, C5H7N(+)·C6H3ClNO(-), the 2-amino-pyri-din-ium cation inter-acts with the carboxyl-ate group of the 6-chloro-nicotinate anion through a pair of independent N-H⋯O hydrogen bonds, forming an R 2 (2)(8) ring motif. In the crystal, these dimeric units are connected further via N-H⋯O hydrogen bonds, forming chains along [001]. In addition, weak C-H⋯N and C-H⋯O hydrogen bonds, together with weak π-π inter-actions, with centroid-centroid distances of 3.6560 (5) and 3.6295 (5) Å, connect the chains, forming a two-dimensional network parallel to (100).
Crystal structure of 8-hy-droxy-quinolin-ium 2-carboxy-6-nitro-benzoate mono-hydrate.
Divya Bharathi, M; Ahila, G; Mohana, J; Chakkaravarthi, G; Anbalagan, G
2015-04-01
In the title hydrated salt, C9H8NO(+)·C8H4NO6 (-)·H2O, the deprotonated carboxyl-ate group is almost normal to its attached benzene ring [dihedral angle = 83.56 (8)°], whereas the protonated carboxyl-ate group is close to parallel [dihedral angle = 24.56 (9)°]. In the crystal, the components are linked by N-H⋯O and O-H⋯O hydrogen bonds, generating [001] chains. The packing is consolidated by C-H⋯O and π-π [centroid-to-centroid distances = 3.6408 (9) and 3.6507 (9) Å] inter-actions, which result in a three-dimensional network.
Crystal structure of (7-methyl-2-oxo-2H-chromen-4-yl)methyl piperidine-1-carbodithioate
Roopashree, K. R.; Meenakshi, T. G.; Kumar, K. Mahesh; Kotresh, O.; Devarajegowda, H. C.
2015-01-01
In the title compound, C17H19NO2S2, the 2H-chromene ring system is nearly planar, with a maximum deviation of 0.0383 (28) Å, and the piperidine ring adopts a chair conformation. The 2H-chromene ring makes dihedral angles of 32.89 (16) and 67.33 (8)°, respectively, with the mean planes of the piperidine ring and the carbodithioate group. In the crystal, C—H⋯O and weak C—H⋯S hydrogen bonds link the molecules into chains along [001]. The crystal structure also features C—H⋯π and π–π interactions, with a centroid–centroid distance of 3.7097 (17) Å. PMID:26396821
Kumar, Mohan; Mallesha, L.; Sridhar, M. A.; Kapoor, Kamini; Gupta, Vivek K.; Kant, Rajni
2012-01-01
In the title compound, C23H25BrN4O3S2, the benzene rings bridged by the sulfonamide group are tilted relative to each other by 69.7 (1)° and the dihedral angle between the sulfur-bridged pyrimidine and benzene rings is 70.4 (1)°. The molecular conformation is stabilized by a weak intramolecular π–π stacking interaction between the pyrimidine and the 4-methyl benzene rings [centroid–centroid distance = 3.633 (2) Å]. The piperidine ring adopts a chair conformation. In the crystal, molecules are linked into inversion dimers by pairs of N—H⋯O hydrogen bonds. PMID:23125637
N-(3-Chloro-4-ethoxy-1-methyl-1H-indazol-5-yl)-4-methoxybenzenesulfonamide
Chicha, Hakima; Rakib, El Mostapha; Hannioui, Abdellah; Saadi, Mohamed; El Ammari, Lahcen
2014-01-01
The indazole ring system of the title compound, C17H18ClN3O4S, is almost planar (r.m.s. deviation = 0.0113 Å) and forms dihedral angles of 32.22 (8) and 57.5 (3)° with the benzene ring and the mean plane through the 4-ethoxy group, respectively. In the crystal, molecules are connected by pairs of N—H⋯O hydrogen bonds into inversion dimers, which are further linked by π–π interactions between the diazole rings [intercentroid distance = 3.4946 (11) Å], forming chains parallel to [101]. PMID:24940259
Morscher, Alexandra; de Souza, Marcus V N; Wardell, James L; Harrison, William T A
2018-05-01
The syntheses and crystal structures of 2-[2-(propan-2-yl-idene)hydrazin-yl]-1,3-benzo-thia-zol-3-ium 3-nitro-benzene-sulfonate (C 10 H 12 N 2 S + ·C 6 H 4 NO 5 S - ), (I), 2-[2-(3-nitro-benzene-sulfon-yl)hydrazin-yl]-1,3-benzo-thia-zole (C 13 H 10 N 4 O 4 S 2 ), (II) and 2-[2-(3-nitro-benzene-sulfon-yl)hydrazin-yl]-1,3-benzo-thia-zol-3-ium 3-nitro-benzene-sulfonate (C 13 H 11 N 4 O 4 S 2 + ·C 6 H 4 NO 5 S - ), (III) are reported. Salt (I) arose from an unexpected reaction of 2-hydrazinylbenzo-thia-zole with the acetone solvent in the presence of 3-nitro-benzene-sulfonyl chloride, whereas (II) and (III) were recovered from the equivalent reaction carried out in methanol. The crystal of (I) features ion pairs linked by pairs of N-H⋯O s (s = sulfonate) hydrogen bonds; adjacent cations inter-act by way of short π-π stacking inter-actions between the thia-zole rings [centroid-centroid separation = 3.4274 (18) Å]. In (II), which crystallizes with two neutral mol-ecules in the asymmetric unit, the mol-ecules are linked by N-H⋯N and N-H⋯O n (n = nitro) hydrogen bonds to generate [[Formula: see text]1[Formula: see text
A JOINT CHANDRA AND SWIFT VIEW OF THE 2015 X-RAY DUST-SCATTERING ECHO OF V404 CYGNI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heinz, S.; Corrales, L.; Neilsen, J.
2016-07-01
We present a combined analysis of the Chandra and Swift observations of the 2015 X-ray echo of V404 Cygni. Using a stacking analysis, we identify eight separate rings in the echo. We reconstruct the soft X-ray light curve of the 2015 June outburst using the high-resolution Chandra images and cross-correlations of the radial intensity profiles, indicating that about 70% of the outburst fluence occurred during the bright flare at the end of the outburst on MJD 57199.8. By deconvolving the intensity profiles with the reconstructed outburst light curve, we show that the rings correspond to eight separate dust concentrations withmore » precise distance determinations. We further show that the column density of the clouds varies significantly across the field of view, with the centroid of most of the clouds shifted toward the Galactic plane, relative to the position of V404 Cyg, invalidating the assumption of uniform cloud column typically made in attempts to constrain dust properties from light echoes. We present a new XSPEC spectral dust-scattering model that calculates the differential dust-scattering cross section for a range of commonly used dust distributions and compositions and use it to jointly fit the entire set of Swift echo data. We find that a standard Mathis–Rumpl–Nordsieck model provides an adequate fit to the ensemble of echo data. The fit is improved by allowing steeper dust distributions, and models with simple silicate and graphite grains are preferred over models with more complex composition.« less
Dibenzo-18-crown-6–picric acid–water (1/2/3)
Saleh, Muhammad Idiris; Kusrini, Eny; Rosli, Mohd Mustaqim; Fun, Hoong-Kun
2008-01-01
In the crown ether ring of the title compound, C20H24O6·2C6H3N3O7·3H2O, the O—C(H2)—C(H2)—O torsion angles indicate a gauche conformation of the ethyleneoxy units, while the C—O—C—C torsion angles indicate planarity of these segments; the dihedral angle between the two benzene rings is 44.53 (13)°. In both picric acid molecules, one of the nitro groups is twisted away from the attached ring. The molecules are linked into chains along the b axis via intermolecular O—H⋯O hydrogen bonds. In addition, the crystal structure is stabilized by C—H⋯O hydrogen bonds and π–π interactions [centroid–centroid distance between benzene rings = 3.5697 (16) Å]. PMID:21202944
Crystal structure of 8-hydroxyquinolinium 2-carboxy-6-nitrobenzoate monohydrate
Divya Bharathi, M.; Ahila, G.; Mohana, J.; Chakkaravarthi, G.; Anbalagan, G.
2015-01-01
In the title hydrated salt, C9H8NO+·C8H4NO6 −·H2O, the deprotonated carboxylate group is almost normal to its attached benzene ring [dihedral angle = 83.56 (8)°], whereas the protonated carboxylate group is close to parallel [dihedral angle = 24.56 (9)°]. In the crystal, the components are linked by N—H⋯O and O—H⋯O hydrogen bonds, generating [001] chains. The packing is consolidated by C—H⋯O and π–π [centroid-to-centroid distances = 3.6408 (9) and 3.6507 (9) Å] interactions, which result in a three-dimensional network. PMID:26029446
(E)-4-Methoxy-N′-[(6-methyl-4-oxo-4H-chromen-3-yl)methylidene]benzohydrazide monohydrate
Ishikawa, Yoshinobu; Watanabe, Kohzoh
2014-01-01
In the title hydrate, C19H16N2O4·H2O, the 4H-chromen-4-one segment is slightly twisted, with a dihedral angle between the two six-membered rings of 3.30 (5)°. The dihedral angles between the plane of the pyranone ring and the hydrazide plane and between the planes of the pyranone ring and the benzene ring of the p-methoxybenzene unit are 26.69 (4) and 2.23 (3)°, respectively. The molecule is connected to the solvent water molecule by an N—H⋯O hydrogen bond. In the crystal, there are π–π stacking interactions between centrosymmetrically related pyranone rings [centroid–centroid distance = 3.5394 (9) Å], as well as bridges formed by the water molecules via O—H⋯O hydrogen bonds. PMID:25161570
Benzene-1,4-diol–5-(1H-imidazol-1-yl)pyrimidine (1/1)
Jiang, Yan-Ke; Hou, Gui-Ge
2011-01-01
The asymmetric unit of title compound, C7H6N4·C6H6O2, contains one 5-(1H-imidazol-1-yl)pyrimidine molecule and two half benzene-1,4-diol molecules; the benzene-1,4-diol molecules are located on individual inversion centers. In the pyrimidine molecule, the imidazole ring is twisted with respect to the pyrimidine ring at a dihedral angle of 25.73 (7)°. In the crystal, O—H⋯N hydrogen bonds link the molecules to form supramolecular chains. π–π stacking is also observed in the crystal, the centroid–centroid distance between parallel imdazole rings being 3.5543 (16) Å. PMID:22220081
1-(Prop-2-yn-yl)indoline-2,3-dione.
Qachchachi, Fatima-Zahrae; Ouazzani Chahdi, Fouad; Misbahi, Houria; Bodensteiner, Michael; El Ammari, Lahcen
2014-03-01
The structure of the title compound, C11H7NO2, is isotypic to that of its homologue, 1-octylindoline-2,3-dione [Qachchachi et al. (2013 ▶). Acta Cryst. E69, o1801]. The indoline ring and the two carbonyl O atoms are approximately coplanar, the largest deviation from the mean plane being 0.021 (1) Å for one of the O atoms. The mean plane through the fused ring system is nearly perpendicular to the propynyl group, as indicated by the N-C-C-C torsion angle of 77.9 (1)°. In the crystal, mol-ecules are linked by C-H⋯O hydrogen bonds and π-π inter-actions between benzene rings [inter-centroid distance = 3.5630 (10) Å], forming a three-dimensional structure.
3-(4-Hydroxyphenyl)-7-methoxychroman-4-one monohydrate
Xiao, Zhu-Ping; Peng, Zhu-Yun; Luo, Qun; Wu, Ying; Yang, Ye-Ling
2011-01-01
In the title compound, C16H14O4·H2O, the dihedral angle betwen the benzene rings is 71.4 (6)°. The pyran ring is in a sofa conformation. In the crystal, O—H⋯O hydrogen bonds connect the components into a two-dimensional network parallel to (010), incorporating C 2 2(4) and C 2 2(11) chains. In addition, weak C—H⋯O, C—H⋯π and π–π stacking interactions [centroid–centroid distance = 3.768 (2) Å] are present. PMID:22199730
(E)-2-[4-(Diethylamino)styryl]-1-methylpyridinium 4-chlorobenzenesulfonate monohydrate
Fun, Hoong-Kun; Kaewmanee, Narissara; Chanawanno, Kullapa; Karalai, Chatchanok; Chantrapromma, Suchada
2011-01-01
In the title hydrated molecular salt, C18H23N2 +·C6H4ClO3S−·H2O, which shows moderate biological activity against methicillin-resistant Staphylococcus aureus (MRSA), one ethyl group of the 2-[4-(diethylamino)styryl]-1-methylpyridinium cation is disordered over two orientations in a 0.604 (13):0.396 (13) ratio. The main part of the cation is nearly planar with a dihedral angle of 4.50 (10)° between the pyridinium and benzene rings. In the crystal, the components are linked by O—H⋯O hydrogen bonds and C—H⋯O weak interactions. Aromatic π–π stacking interactions with centroid–centroid separations of 3.7363 (12) and 3.7490 (13) Å also occur. PMID:22059040
Nielsen, Anne; McKenzie, Christine J.; Bond, Andrew D.
2009-01-01
The title compound, [FeCl3(C12H18N4)]·0.5CH3OH, contains an FeIII ion in a distorted octahedral coordination environment. The neutral N,N′,N′′-tridentate ligand adopts a fac coordination mode, and chloride ligands lie trans to each of the three coordinated N atoms. In the crystal, the complexes form columns extending parallel to the approximate local threefold axes of the FeN3Cl3 octahedra, and the columns are arranged so that the uncoordinated nitrile groups align in an antiparallel manner and the pyridyl rings form offset face-to-face arrangements [interplanar separations = 2.95 (1) and 3.11 (1) Å; centroid–centroid distances = 5.31 (1) and 4.92 (1) Å]. The methanol solvent molecule is disordered about a twofold rotation axis. PMID:21578169
Enzymatic Kinetic Isotope Effects from Path-Integral Free Energy Perturbation Theory.
Gao, J
2016-01-01
Path-integral free energy perturbation (PI-FEP) theory is presented to directly determine the ratio of quantum mechanical partition functions of different isotopologs in a single simulation. Furthermore, a double averaging strategy is used to carry out the practical simulation, separating the quantum mechanical path integral exactly into two separate calculations, one corresponding to a classical molecular dynamics simulation of the centroid coordinates, and another involving free-particle path-integral sampling over the classical, centroid positions. An integrated centroid path-integral free energy perturbation and umbrella sampling (PI-FEP/UM, or simply, PI-FEP) method along with bisection sampling was summarized, which provides an accurate and fast convergent method for computing kinetic isotope effects for chemical reactions in solution and in enzymes. The PI-FEP method is illustrated by a number of applications, to highlight the computational precision and accuracy, the rule of geometrical mean in kinetic isotope effects, enhanced nuclear quantum effects in enzyme catalysis, and protein dynamics on temperature dependence of kinetic isotope effects. © 2016 Elsevier Inc. All rights reserved.
Crystal structure of quinolinium 2-carboxy-6-nitro-benzoate monohydrate.
Mohana, J; Divya Bharathi, M; Ahila, G; Chakkaravarthi, G; Anbalagan, G
2015-05-01
In the anion of the title hydrated mol-ecular salt, C9H8N(+)·C8H4NO6 (-)·H2O, the protonated carboxyl and nitro groups makes dihedral angles of 27.56 (5) and 6.86 (8)°, respectively, with the attached benzene ring, whereas the deprotonated carb-oxy group is almost orthogonal to it with a dihedral angle of 80.21 (1)°. In the crystal, the components are linked by O-H⋯O and N-H⋯O hydrogen bonds, generating [001] chains. The packing is consolidated by weak C-H⋯N and C-H⋯O inter-actions as well as aromatic π-π stacking [centroid-to-centroid distances: 3.7023 (8) & 3.6590 (9)Å] inter-actions, resulting in a three-dimensional network.
Aqua-(3-fluoro-benzoato-κO)(3-fluoro-benzoato-κO,O')(1,10-phenanthroline-κN,N')cobalt(II).
Wang, Xiao-Hui; Sun, Li-Mei
2012-01-01
In the title compound, [Co(C(7)H(4)FO(2))(2)(C(12)H(8)N(2))(H(2)O)], the Co(II) ion is coordinated by two O atoms from one 3-fluoro-benzoate (fb) ligand and one O atom from another fb ligand, two N atoms from the 1,10-phenanthroline ligand and a water mol-ecule in a distorted octa-hedral geometry. An intra-molecular O-H⋯O hydrogen bond occurs. Inter-molecular O-H⋯O hydrogen bonds link pairs of mol-ecules into centrosymmetric dimers. Weak inter-molecular C-H⋯O and C-H⋯F hydrogen bonds and π-π inter-actions between the aromatic rings [shortest centroid-centroid distance = 3.4962 (2) Å] further stabilize the crystal packing.
1-(Prop-2-ynyl)indoline-2,3-dione
Qachchachi, Fatima-Zahrae; Ouazzani Chahdi, Fouad; Misbahi, Houria; Bodensteiner, Michael; El Ammari, Lahcen
2014-01-01
The structure of the title compound, C11H7NO2, is isotypic to that of its homologue, 1-octylindoline-2,3-dione [Qachchachi et al. (2013 ▶). Acta Cryst. E69, o1801]. The indoline ring and the two carbonyl O atoms are approximately coplanar, the largest deviation from the mean plane being 0.021 (1) Å for one of the O atoms. The mean plane through the fused ring system is nearly perpendicular to the propynyl group, as indicated by the N—C—C—C torsion angle of 77.9 (1)°. In the crystal, molecules are linked by C—H⋯O hydrogen bonds and π–π interactions between benzene rings [intercentroid distance = 3.5630 (10) Å], forming a three-dimensional structure. PMID:24765046
3-Chloro-4-methylquinolin-2(1H)-one
Kassem, Mohamed G.; Ghabbour, Hazem A.; Abdel-Aziz, Hatem A.; Fun, Hoong-Kun; Ooi, Chin Wei
2012-01-01
The title compound, C10H8ClNO, is almost planar (r.m.s. deviation for the 13 non-H atoms = 0.023 Å). In the crystal, inversion dimers linked by pairs of N—H⋯O hydrogen bonds generate R 2 2(8) rings. Weak aromatic π–π stacking interactions [centroid–centroid distance = 3.7622 (12) Å] also occur. PMID:22589913
A second triclinic polymorph of azimsulfuron
Kwon, Eunjin; Kim, Jineun; Park, Hyunjin; Kim, Tae Ho
2016-01-01
The title compound, C13H16N10O5S (systematic name: 1-(4,6-dimethoxypyrimidin-2-yl)-3-{[1-methyl-4-(2-methyl-2H-tetrazol-5-yl)pyrazol-5-yl]sulfonyl}urea), is a second triclinic polymorph of this crystal [for the other, see: Jeon et al., (2015 ▸). Acta Cryst. E71, o470–o471]. There are two molecules, A and B, in the asymmetric unit; the dihedral angles between the pyrazole ring and the tetrazole and dimethoxypyrimidine ring planes are 72.84 (10) and 37.24 (14)°, respectively (molecule A) and 84.38 (9) and 26.09 (15)°, respectively (molecule B). Each molecule features an intramolecular N—H⋯N hydrogen bond. In the crystal, aromatic π–π stacking interactions [centroid–centroid separations = 3.9871 (16), 3.4487 (14) and 3.5455 (16) Å] link the molecules into [001] chains. In addition, N—H⋯N, N—H⋯O, C—H⋯O and C—H⋯N hydrogen bonds occur, forming a three-dimensional architecture. We propose that the dimorphism results from differences in conformations and packing owing to different intermolecular interactions, especially aromatic π–π stacking. PMID:27746943
3-(4-Hydroxyphenyl)-1,5-bis(pyridin-2-yl)pentane-1,5-dione
Pan, Lixia; Shi, Huaduan; Ma, Zhen
2013-01-01
In the title molecule, C21H18N2O3, the pyridine rings make a dihedral angle of 13.1 (1)°. The phenyl ring is approximately perpendicular to both of them, forming dihedral angles of 87.4 (1)and 81.9 (1)°. In the crystal, pairs of O—H⋯N hydrogen bonds link the molecules into centrosymmetric dimers. Additional C—H⋯O, π–π [centroid–centroid distance = 3.971 (2) Å] and C—H⋯π interactions consolidate the dimers into a three-dimensional network. PMID:24098256
2-[4-(4,5-Dihydro-1H-pyrrol-2-yl)phenyl]-4,5-dihydro-1H-imidazole
Kia, Reza; Fun, Hoong-Kun; Kargar, Hadi
2008-01-01
The molecule of the title compound, C12H14N4, lies about a crystallographic inversion centre. The five- and six-membered rings are twisted from each other, forming a dihedral angle of 18.06 (7)°. In the crystal structure, neighbouring molecules are linked by intermolecular N—H⋯N hydrogen bonds into one-dimensional infinite chains forming 18-membered rings with R 2 2(18) motifs. The crystal structure is further stabilized by weak intermolecular π–π stacking [centroid–centroid distance = 3.8254 (6) Å] and C—H⋯π interactions. PMID:21581375
Kumar, Mohan; Mallesha, L.; Sridhar, M. A.; Kapoor, Kamini; Gupta, Vivek K.; Kant, Rajni
2012-01-01
In the title compound, C21H20BrClN4O4S2, the benzene rings bridged by the sulfonamide group are tilted relative to each other by a dihedral angle of 70.2 (1)° and the dihedral angle between the sulfur-bridged pyrimidine and benzene rings is 69.5 (1)°. The molecular conformation is stabilized by a weak intramolecular π–π stacking interaction between the pyrimidine and the 4-chlorobenzene rings [centroid–centroid distance = 3.978 (2) Å]. The morpholine ring adopts a chair conformation. In the crystal, molecules are linked into inversion dimers by pairs of C—H⋯N hydrogen bonds and these dimers are further connected by N—H⋯O hydrogen bonds, forming a tape along the a axis. PMID:22969673
Kumar, Mohan; Mallesha, L.; Sridhar, M. A.; Kapoor, Kamini; Gupta, Vivek K.; Kant, Rajni
2012-01-01
In the title compound, C25H29BrN4O3S2, the benzene rings bridged by the sulfonamide group are tilted relative to each other by 63.9 (1)° and the dihedral angle between the sulfur-bridged pyrimidine and benzene rings is 64.9 (1)°. The molecular conformation is stabilized by a weak intramolecular π–π stacking interaction between the pyrimidine and the 2,4,6-trimethylbenzene rings [centroid–centroid distance = 3.766 (2) Å]. The piperidine ring adopts a chair conformation. In the crystal, molecules are linked into inversion dimers by pairs of N—H⋯O hydrogen bonds and these dimers are further linked by C—H⋯O hydrogen bonds into chains propagating along [010]. PMID:22969648
(7-Chloro-2-oxo-2H-chromen-4-yl)methyl pyrrolidine-1-carbodithioate
Kotresh, O.; Devarajegowda, H. C.; Shirahatti, Arunkumar; Kumar, K. Mahesh; Mahabhaleshwaraiah, N. M.
2013-01-01
In the title compound, C15H14ClNO2S2, the 2H-chromene ring system is essentially planar, with a maximum deviation of 0.0133 (10) Å. Three C atoms and their attached H atoms of the pyrrolidine ring are disordered [occupany ratio 0.874 (7):0.126 (7)] with both disorder components adopting a twisted conformation. The dihedral angle between the 2H-chromene ring system and the major occupancy component of the pyrrolidine ring is 89.45 (7)°. In the crystal, inversion dimers linked by pairs of C—H⋯S and C—H⋯O interactions generate R 2 2(24) and R 2 2(10) loops, respectively. Further C—H⋯O hydrogen bonds link the dimers into [100] chains. C—H⋯π interactions also occur and there is very weak π–π stacking [interplanar spacing = 3.650 (5) Å; centroid–centroid distance = 4.095 (7) Å] between inversion-related chlorobenzene rings. PMID:24454115
Time resolving beam position measurement and analysis of beam unstable movement in PSR
NASA Astrophysics Data System (ADS)
Aleksandrov, A. V.
2000-11-01
Precise measurement of beam centroid movement is very important for understanding the fast transverse instability in the Los Alamos Proton Storage Ring (PSR). Proton bunch in the PSR is long thus different parts of the bunch can have different betatron phase and move differently therefore time resolving position measurement is needed. Wide band strip line BPM can be adequate if proper processing algorithm is used. In this work we present the results of the analysis of unstable transverse beam motion using time resolving processing algorithm. Suggested algorithm allows to calculate transverse position of different parts of the beam on each turn, then beam centroid movement on successive turns can be developed in series of plane travelling waves in the beam frame of reference thus providing important information on instability development. Some general features of fast transverse instability, unknown before, are discovered.
Crystal structure of quinolinium 2-carboxy-6-nitrobenzoate monohydrate
Mohana, J.; Divya Bharathi, M.; Ahila, G.; Chakkaravarthi, G.; Anbalagan, G.
2015-01-01
In the anion of the title hydrated molecular salt, C9H8N+·C8H4NO6 −·H2O, the protonated carboxyl and nitro groups makes dihedral angles of 27.56 (5) and 6.86 (8)°, respectively, with the attached benzene ring, whereas the deprotonated carboxy group is almost orthogonal to it with a dihedral angle of 80.21 (1)°. In the crystal, the components are linked by O—H⋯O and N—H⋯O hydrogen bonds, generating [001] chains. The packing is consolidated by weak C—H⋯N and C—H⋯O interactions as well as aromatic π–π stacking [centroid-to-centroid distances: 3.7023 (8) & 3.6590 (9)Å] interactions, resulting in a three-dimensional network. PMID:25995899
Gruber, Tobias; Seichter, Wilhelm; Weber, Edwin
2010-01-01
The asymmetric unit of the title compound, C17H12O, contains two molecules, in which the fused aromatic ring systems are almost planar [maximum deviations = 0.0529 (9) and 0.0256 (9) Å]. In the crystal, aromatic π–π stacking interactions (perpendicular distance of centroids of about 3.4 Å) and strong O—H⋯O hydrogen bonds result in a helical arrangement of pyrenyl dimers. PMID:21579858
1-Bromo-1′-(diphenylthiophosphoryl)ferrocene
Štěpnička, Petr; Schulz, Jiří; Císařová, Ivana
2009-01-01
The title compound, [Fe(C5H4Br)(C17H14PS)], crystallizes with two practically undistiguishable molecules in the asymmetric unit, which are related by a non-space-group inversion. The ferrocene-1,1′-diyl units exhibit a regular geometry with negligible tilting and balanced Fe–ring centroid distances, and with the attached substituents assuming conformations close to ideal synclinal eclipsed. PMID:21577736
(E)-1-(2,4-Dinitrophenyl)-2-(3-ethoxy-4-hydroxybenzylidene)hydrazine
Fun, Hoong-Kun; Chantrapromma, Suchada; Ruanwas, Pumsak; Kobkeatthawin, Thawanrat; Chidan Kumar, C. S.
2014-01-01
The molecule of the title hydrazine derivative, C15H14N4O6, is essentially planar, the dihedral angle between the substituted benzene rings being 2.25 (9)°. The ethoxy and hydroxy groups are almost coplanar with their bound benzene ring [r.m.s. deviation = 0.0153 (2) Å for the ten non-H atoms]. Intramolecular N—H⋯O and O—H⋯Oethoxy hydrogen bonds generate S(6) and S(5) ring motifs, respectively. In the crystal, molecules are linked by O—H⋯Onitro hydrogen bonds into chains propagating in [010]. Weak aromatic π–π interactions, with centroid–centroid distances of 3.8192 (19) and 4.0491 (19) Å, are also observed. PMID:24527018
(2-{[2-(1H-Benzimidazol-2-yl-κN 3)phenyl]iminomethyl-κN}-5-methylphenolato-κO)chloridozinc(II)
Eltayeb, Naser Eltaher; Teoh, Siang Guan; Chantrapromma, Suchada; Fun, Hoong-Kun
2011-01-01
In the title mononuclear complex, [Zn(C21H16N3O)Cl], the ZnII ion is coordinated in a distorted tetrahedral geometry by two benzimidazole N atoms and one phenolate O atom from the tridentate Schiff base ligand and a chloride ligand. The benzimidazole ring system forms dihedral angles of 26.68 (9) and 56.16 (9)° with the adjacent benzene ring and the methylphenolate group benzene ring, respectively. In the crystal, molecules are linked by N—H⋯Cl hydrogen bonds into chains along [100]. Furthermore, weak C—H⋯O and C—H⋯π interactions, in addition to π–π interactions with centroid–centroid distances in the range 3.5826 (13)–3.9681 (13) Å, are also observed. PMID:22065469
Dichloridobis(phenanthridine-κN)zinc(II)
Khoshtarkib, Zeinab; Ebadi, Amin; Alizadeh, Robabeh; Ahmadi, Roya; Amani, Vahid
2009-01-01
In the molecule of the title compound, [ZnCl2(C13H9N)2], the ZnII atom is four-coordinated in a distorted tetrahedral configuration by two N atoms from two phenanthridine ligands and by two terminal Cl atoms. The dihedral angle between the planes of the phenanthridine ring systems is 69.92 (3)°. An intramolecular C—H⋯Cl interaction results in the formation of a planar five-membered ring, which is oriented at a dihedral angle of 8.32 (3)° with respect to the adjacent phenanthridine ring system. In the crystal structure, π–π contacts between the phenanthridine systems [centroid–centroid distances = 3.839 (2), 3.617 (1) and 3.682 (1) Å] may stabilize the structure. Two weak C—H⋯π interactions are also found. PMID:21582680
8-Chloro-6-iodo-2-phenylchromeno[4,3-c]pyrazol-4(2H)-one N,N-dimethylformamide monosolvate
Lokhande, Pradeep; Hasanzadeh, Kamal; Khaledi, Hamid; Mohd Ali, Hapipah
2011-01-01
In the title compound, C16H8ClIN2O2·C3H7NO, the fused tricyclic pyrazolocoumarin ring and the N-phenyl ring are almost coplanar, the dihedral angle between them being 1.86 (9)°. In the crystal, these rings stack on top of each other via π–π interactions [centroid–centroid distances = 3.489 (2), 3.637 (2), 3.505 (2) and 3.662 (2) Å], forming infinite chains along the a axis. The chains are connected into layers parallel to ac plane through I⋯O interactions [3.0011 (18) Å] between pairs of symmetry-related molecules. The DMF solvent molecules are C—H⋯O bonded to this network. PMID:21837089
Goodpaster, Aaron M.; Kennedy, Michael A.
2015-01-01
Currently, no standard metrics are used to quantify cluster separation in PCA or PLS-DA scores plots for metabonomics studies or to determine if cluster separation is statistically significant. Lack of such measures makes it virtually impossible to compare independent or inter-laboratory studies and can lead to confusion in the metabonomics literature when authors putatively identify metabolites distinguishing classes of samples based on visual and qualitative inspection of scores plots that exhibit marginal separation. While previous papers have addressed quantification of cluster separation in PCA scores plots, none have advocated routine use of a quantitative measure of separation that is supported by a standard and rigorous assessment of whether or not the cluster separation is statistically significant. Here quantification and statistical significance of separation of group centroids in PCA and PLS-DA scores plots are considered. The Mahalanobis distance is used to quantify the distance between group centroids, and the two-sample Hotelling's T2 test is computed for the data, related to an F-statistic, and then an F-test is applied to determine if the cluster separation is statistically significant. We demonstrate the value of this approach using four datasets containing various degrees of separation, ranging from groups that had no apparent visual cluster separation to groups that had no visual cluster overlap. Widespread adoption of such concrete metrics to quantify and evaluate the statistical significance of PCA and PLS-DA cluster separation would help standardize reporting of metabonomics data. PMID:26246647
Interferometric superlocalization of two incoherent optical point sources.
Nair, Ranjith; Tsang, Mankei
2016-02-22
A novel interferometric method - SLIVER (Super Localization by Image inVERsion interferometry) - is proposed for estimating the separation of two incoherent point sources with a mean squared error that does not deteriorate as the sources are brought closer. The essential component of the interferometer is an image inversion device that inverts the field in the transverse plane about the optical axis, assumed to pass through the centroid of the sources. The performance of the device is analyzed using the Cramér-Rao bound applied to the statistics of spatially-unresolved photon counting using photon number-resolving and on-off detectors. The analysis is supported by Monte-Carlo simulations of the maximum likelihood estimator for the source separation, demonstrating the superlocalization effect for separations well below that set by the Rayleigh criterion. Simulations indicating the robustness of SLIVER to mismatch between the optical axis and the centroid are also presented. The results are valid for any imaging system with a circularly symmetric point-spread function.
Concentric ring flywheel with hooked ring carbon fiber separator/torque coupler
Kuklo, Thomas C.
1999-01-01
A concentric ring flywheel with expandable separators, which function as torque couplers, between the rings to take up the gap formed between adjacent rings due to differential expansion between different radius rings during rotation of the flywheel. The expandable separators or torque couplers include a hook-like section at an upper end which is positioned over an inner ring and a shelf-like or flange section at a lower end onto which the next adjacent outer ring is positioned. As the concentric rings are rotated the gap formed by the differential expansion there between is partially taken up by the expandable separators or torque couplers to maintain torque and centering attachment of the concentric rings.
1,1′:4′,1′′-Terphenyl-2′,5′-dicarboxylic acid dimethyl sulfoxide-d 6 disolvate
Pop, Lucian C.; Preite, Marcelo; Manriquez, Juan Manuel; Vega, Andrés; Chavez, Ivonne
2012-01-01
The asymmetric unit of the title solvate, C20H14O4·2C2D6OS, contains half of the substituted terephthalic acid molecule and one solvent molecule. The centroid of the central benzene ring in the acid molecule is coincident with a crystallographic inversion center. Neither the carboxyl nor the phenyl substituents are coplanar with the central aromatic ring, showing dihedral angles of 53.18 (11) and 47.83 (11)°, respectively. The dimethyl sulfoxide solvent molecules are hydrogen bonded to the carboxylic acid groups. PMID:22606132
3-Fluorosalicylaldoxime at 6.5 GPa
Wood, Peter A.; Forgan, Ross S.; Parsons, Simon; Pidcock, Elna; Tasker, Peter A.
2009-01-01
3-Fluorosalicylaldoxime, C7H6FNO2, unlike many salicylaldoxime derivatives, forms a crystal structure containing hydrogen-bonded chains rather than centrosymmetric hydrogen-bonded ring motifs. Each chain interacts with two chains above and two chains below via π–π stacking contacts [shortest centroid–centroid distance = 3.295 (1) Å]. This structure at 6.5 GPa represents the final point in a single-crystal compression study. PMID:21583672
Deep neural network-based domain adaptation for classification of remote sensing images
NASA Astrophysics Data System (ADS)
Ma, Li; Song, Jiazhen
2017-10-01
We investigate the effectiveness of deep neural network for cross-domain classification of remote sensing images in this paper. In the network, class centroid alignment is utilized as a domain adaptation strategy, making the network able to transfer knowledge from the source domain to target domain on a per-class basis. Since predicted labels of target data should be used to estimate the centroid of each class, we use overall centroid alignment as a coarse domain adaptation method to improve the estimation accuracy. In addition, rectified linear unit is used as the activation function to produce sparse features, which may improve the separation capability. The proposed network can provide both aligned features and an adaptive classifier, as well as obtain label-free classification of target domain data. The experimental results using Hyperion, NCALM, and WorldView-2 remote sensing images demonstrated the effectiveness of the proposed approach.
Concentric ring flywheel with hooked ring carbon fiber separator/torque coupler
Kuklo, T.C.
1999-07-20
A concentric ring flywheel with expandable separators, which function as torque couplers, between the rings to take up the gap formed between adjacent rings due to differential expansion between different radius rings during rotation of the flywheel. The expandable separators or torque couplers include a hook-like section at an upper end which is positioned over an inner ring and a shelf-like or flange section at a lower end onto which the next adjacent outer ring is positioned. As the concentric rings are rotated the gap formed by the differential expansion there between is partially taken up by the expandable separators or torque couplers to maintain torque and centering attachment of the concentric rings. 2 figs.
Kumar, Mohan; Mallesha, L.; Sridhar, M. A.; Kapoor, Kamini; Gupta, Vivek K.; Kant, Rajni
2012-01-01
In the title compound, C24H27BrN4O4S2, the molecule is twisted at the sulfonyl S atom with a C—S(O2)—N(H)—C torsion angle of 62.6 (3)°. The benzene rings bridged by the sulfonamide group are tilted to each other by a dihedral angle of 60.6 (1)°. The dihedral angle between the sulfur-bridged pyrimidine and benzene rings is 62.7 (1)°. The morpholine ring adopts a chair conformation. The molecular conformation is stabilized by a weak intramolecular π–π stacking interaction between the pyrimidine and the 2,4,6-trimethylbenzene rings [centroid–centroid distance = 3.793 (2) Å]. In the crystal, molecules are linked by N—H⋯O hydrogen bonds into a chain along the b axis. PMID:23284396
Kant, Rajni; Gupta, Vivek K.; Kapoor, Kamini; Kumar, Mohan; Mallesha, L.; Sridhar, M. A.
2012-01-01
In the title compound, C22H23BrN4O4S2, the benzene rings bridged by the sulfonamide group are tilted relative to each other by 68.9 (1)° and the dihedral angle between the sulfur-bridged pyrimidine and benzene rings is 69.7 (1)°. The molecular conformation is stabilized by a weak intramolecular π–π stacking interaction between the pyrimidine and the 4-methylbenzene rings [centroid–centroid distance = 3.934 (2) Å]. The morpholine ring adopts a chair conformation and is disordered over two positions with an occupancy ratio of 0.853 (6):0.147 (6). In the crystal, molecules are linked by N—H⋯O hydrogen bonds into chains extending along the a axis and further, through C—H⋯N and C—H⋯O interactions, into a three-dimensional supramolecular structure. PMID:22905015
Fun, Hoong-Kun; Loh, Wan-Sin; Nithinchandra; Kalluraya, Balakrishna
2011-01-01
The title compound, C18H13ClN6O2S, exists in trans and cis configurations with respect to the acyclic C=N bonds [C=N = 1.2837 (15) and 1.3000 (14) Å, respectively]. The 3,6-dihydro-2H-1,3,4-thiadiazine ring adopts a half-boat conformation. The sydnone ring is approximately planar [maximum deviation = 0.002 (1) Å] and forms dihedral angles of 50.45 (7) and 61.21 (6)° with the aromatic rings. In the crystal, intermolecular N—H⋯N, C—H⋯Cl and C—H⋯S hydrogen bonds link the molecules into layers parallel to ab plane. The crystal packing is stabilized by C—H⋯π interactions and further consolidated by π–π interactions involving the phenyl rings [centroid–centroid distance = 3.6306 (7) Å]. PMID:21754481
Al-Alshaikh, Monirah A; Abuelizz, Hatem A; El-Emam, Ali A; Abdelbaky, Mohammed S M; Garcia-Granda, Santiago
2016-02-01
The title compound, C18H20N4O2S2, is a new 1,3,4-oxa-diazole and a key pharmacophore of several biologically active agents. It is composed of a meth-yl(thio-phen-2-yl)-1,3,4-oxa-diazole-2(3H)-thione moiety linked to a 2-meth-oxy-phenyl unit via a piperazine ring that has a chair conformation. The thio-phene ring mean plane lies almost in the plane of the oxa-diazole ring, with a dihedral angle of 4.35 (9)°. The 2-meth-oxy-phenyl ring is almost normal to the oxa-diazole ring, with a dihedral angle of 84.17 (10)°. In the crystal, mol-ecules are linked by weak C-H⋯S hydrogen bonds and C-H⋯π inter-actions, forming layers parallel to the bc plane. The layers are linked via weak C-H⋯O hydrogen bonds and slipped parallel π-π inter-actions [inter-centroid distance = 3.6729 (10) Å], forming a three-dimensional structure. The thio-phene ring has an approximate 180° rotational disorder about the bridging C-C bond.
RADIO ASTROMETRY OF THE CLOSE ACTIVE BINARY HR 5110
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abbuhl, E.; Mutel, R. L.; Lynch, C.
2015-09-20
The close active binary HR 5110 was observed at six epochs over 26 days using a global very long baseline interferometry array at 15.4 GHz. We used phase referencing to determine the position of the radio centroid at each epoch with an uncertainty significantly smaller than the component separation. After correcting for proper motion and parallax, we find that the centroid locations of all six epochs have barycenter separations consistent with an emission source located on the KIV secondary, and not in an interaction region between the stars or on the F primary. We used a homogeneous power-law gyrosynchrotron emissionmore » model to reproduce the observed flux densities and fractional circular polarization. The resulting ranges of mean magnetic field strength and relativistic electron densities are of the order of 10 G and 10{sup 5} cm{sup −3}, respectively, in the source region.« less
(2,2′-Biquinoline-κ2 N,N′)dichloridoiron(II)
Rahimi, Narjes; Safari, Nasser; Amani, Vahid; Khavasi, Hamid Reza
2009-01-01
In the title compound, [FeCl2(C18H12N2)], the FeII atom is four-coordinated in a distorted tetrahedral arrangement by an N,N′-bidentate 2,2′-biquinoline ligand and two chloride ions. In the crystal, there are extensive π–π contacts between the pyridine rings [centroid–centroid distances = 3.7611 (3), 3.7603 (4), 3.5292 (4), 3.5336 (5) and 3.6656 (4) Å]. PMID:21578122
Ethyl 5-amino-1-[(4-methylphenyl)sulfonyl]-1H-pyrazole-4-carboxylate
Elgazwy, Abdel-Sattar S. Hamad; Nassar, Ibrahim F.; Jones, Peter G.
2013-01-01
In the title molecule, C13H15N3O4S, the benzene and pyrazole rings are inclined to each other at 77.48 (3)°. Two amino H atoms are involved in bifurcated hydrogen bonds, viz. intramolecular N—H⋯O and intermolecular N—H⋯O(N). The intermolecular hydrogen bonds link the molecules related by translation in [100] into chains. A short distance of 3.680 (3) Å between the centroids of benzene and pyrazole rings from neighbouring molecules shows the presence of π–π interactions, which link the hydrogen-bonded chains into layers parallel to the ab plane. PMID:24427020
(Carbonato-κ(2)O,O')bis-(5,5'-dimethyl-2,2'-bipyridyl-κ(2)N,N')cobalt(III) bromide trihydrate.
Arun Kumar, Kannan; Meera, Parthsarathi; Amutha Selvi, Madhavan; Dayalan, Arunachalam
2012-04-01
In the title complex, [Co(CO(3))(C(12)H(12)N(2))(2)]Br·3H(2)O, the Co(III) cation has a distorted octa-hedral coordination environment. It is chelated by four N atoms of two different 5,5'-dimethyl-2,2'-bipyridyl (dmbpy) ligands in axial and equatorial positions, and by two O atoms of a carbonate anion completing the equatorial positions. Although the water mol-ecules are disordered and their H atoms were not located, there are typical O⋯O distances between 2.8 and 3.0 Å, indicating O-H⋯O hydrogen bonding. The crystal packing is consolidated by C-H⋯O and C-H⋯Br hydrogen bonds, as well as π-π stacking inter-actions between adjacent pyridine rings of the dmbpy ligands, with centroid-centroid distances of 3.694 (3) and 3.7053 (3) Å.
Line shifts due to blending. [in stellar spectra
NASA Technical Reports Server (NTRS)
Young, A. T.
1978-01-01
The reported investigation is concerned with the case in which the measured position of a strong line of the spectrum is blended with a weaker one, taking into account the traditional solution proposed by Hartmann (1901) concerning the mean of the solar lines. An arbitrary element regarding the use of the centroid is related to the decision at which separation the components pass from being 'blended' to being 'resolved'. At this separation, the adopted wavelength suddenly jumps from the centroid of the blend to the position of the stronger line alone. It is pointed out that this discontinuous behavior is physically implausible. Attention is given to a solution involving a gradual diminution of the effect of the weaker line with increasing separation. Thus the weight of each component should depend on its position as well as its intensity. When partially blended lines cannot be decomposed into their components, and an effective line-position for the hole blend is needed, the line peak is the criterion least affected by blending. A method is presented for calculating such peak positions.
Crystal structure of 3-{1′-[3,5-bis(trifluoromethyl)phenyl]ferrocenyl}-4-bromothiophene
Poppitz, Elisabeth A.; Korb, Marcus; Lang, Heinrich
2014-01-01
The molecular structure of the title compound, [Fe(C9H6BrS)(C13H7F6)], consists of a ferrocene backbone with a bis(trifluoromethyl)phenyl group at one cyclopentadienyl ring and a thiophene heterocycle at the other cyclopentadienyl ring. The latter is disordered over two sets of sites in a 0.6:0.4 ratio. In the crystal structure, intramolecular π–π interactions between the thienyl and the phenyl substituent [centroid–centroid distance 3.695 (4) Å] and additional weak T-shaped π–π interactions between the thienyl and the phenyl-substituted cyclopentadienyl ring [4.688 (6) Å] consolidate the crystal packing. PMID:25484662
N-[4-(9-Chloroquino[3,2-b]benzo[1,4]thiazin-6-yl)butyl]acetamide1
Jeleń, Małgorzata; Suwińska, Kinga; Pluta, Krystian; Morak-Młodawska, Beata
2012-01-01
In the title molecule, C21H20ClN3OS, the tetracyclic system is close to planar [r.m.s. deviation = 0.110 (4) Å]. The dihedral angle between the quinoline ring system and the benzene ring is 178.3 (1)° and the angle between two (S—C=C—N) halves of the thiazine ring is 173.4 (1)°. In the crystal, molecules are arranged via π–π interactions [centroid–centroid distances = 3.603 (2)–3.739 (2) Å] into slipped stacks extending along [010]. Intermolecular N—H⋯O hydrogen bonds link the amide groups of neighbouring molecules along the stack, generating a C(4) motif. The title compound shows promising antiproliferative and anticancer activity. PMID:23476166
Orphenadrinium picrate picric acid
Fun, Hoong-Kun; Hemamalini, Madhukar; Siddaraju, B. P.; Yathirajan, H. S.; Narayana, B.
2010-01-01
The asymmetric unit of the title compound N,N-dimethyl-2-[(2-methylphenyl)phenylmethoxy]ethanaminium picrate picric acid, C18H24NO+·C6H2N3O7 −·C6H3N3O7, contains one orphenadrinium cation, one picrate anion and one picric acid molecule. In the orphenadrine cation, the two aromatic rings form a dihedral angle of 70.30 (7)°. There is an intramolecular O—H⋯O hydrogen bond in the picric acid molecule, which generates an S(6) ring motif. In the crystal structure, the orphenadrine cations, picrate anions and picric acid molecules are connected by strong intermolecular N—H⋯O hydrogen bonds, π⋯π interactions between the benzene rings of cations and anions [centroid–centroid distance = 3.5603 (9) Å] and weak C—H⋯O hydrogen bonds, forming a three-dimensional network. PMID:21580426
Concentric ring flywheel without expansion separators
Kuklo, Thomas C.
1999-01-01
A concentric ring flywheel wherein the adjacent rings are configured to eliminate the need for differential expansion separators between the adjacent rings. This is accomplished by forming a circumferential step on an outer surface of an inner concentric ring and forming a matching circumferential step on the inner surface of an adjacent outer concentric ring. During operation the circumferential steps allow the rings to differentially expand due to the difference in the radius of the rings without the formation of gaps therebetween, thereby eliminating the need for expansion separators to take up the gaps formed by differential expansion.
Statistical Properties of Line Centroid Velocity Increments in the rho Ophiuchi Cloud
NASA Technical Reports Server (NTRS)
Lis, D. C.; Keene, Jocelyn; Li, Y.; Phillips, T. G.; Pety, J.
1998-01-01
We present a comparison of histograms of CO (2-1) line centroid velocity increments in the rho Ophiuchi molecular cloud with those computed for spectra synthesized from a three-dimensional, compressible, but non-starforming and non-gravitating hydrodynamic simulation. Histograms of centroid velocity increments in the rho Ophiuchi cloud show clearly non-Gaussian wings, similar to those found in histograms of velocity increments and derivatives in experimental studies of laboratory and atmospheric flows, as well as numerical simulations of turbulence. The magnitude of these wings increases monotonically with decreasing separation, down to the angular resolution of the data. This behavior is consistent with that found in the phase of the simulation which has most of the properties of incompressible turbulence. The time evolution of the magnitude of the non-Gaussian wings in the histograms of centroid velocity increments in the simulation is consistent with the evolution of the vorticity in the flow. However, we cannot exclude the possibility that the wings are associated with the shock interaction regions. Moreover, in an active starforming region like the rho Ophiuchi cloud, the effects of shocks may be more important than in the simulation. However, being able to identify shock interaction regions in the interstellar medium is also important, since numerical simulations show that vorticity is generated in shock interactions.
1-Methyl-4-(4-nitrobenzoyl)pyridinium perchlorate
Gruber, Tobias; Eissmann, Frank; Weber, Edwin; Schüürmann, Gerrit
2011-01-01
In the main molecule of the title compound, C13H11N2O3 +·ClO4 −, the two aromatic rings are twisted by 56.19 (3)° relative to each other and the nitro group is not coplanar with the benzene ring [36.43 (4)°]. The crystal packing is dominated by infinite aromatic stacks in the a-axis direction. These are formed by the benzene units of the molecule featuring an alternating arrangement, which explains the two different distances of 3.3860 (4) and 3.4907 (4) Å for the aromatic units (these are the perpendicular distances of the centroid of one aromatic ring on the mean plane of the other other aromatic ring). Adjacent stacks are connected by π–π stacking between two pyridinium units [3.5949 (4) Å] and weak C—H⋯O interactions. The perchlorate anions are accomodated in the lattice voids connected to the cation via weak C—H⋯O contacts between the O atoms of the anion and various aromatic as well as methyl H atoms. PMID:22059070
3-(2,3-Dioxoindolin-1-yl)propanenitrile
Qachchachi, Fatima-Zahrae; Kandri Rodi, Youssef; Essassi, El Mokhtar; Bodensteiner, Michael; El Ammari, Lahcen
2014-01-01
The asymmetric unit of the title compound, C11H8N2O2, contains two independent molecules (A and B). Each molecule is build up from fused five- and six-membered rings with the former linked to a cyanoethyl group. The indoline ring and two carbonyl O atoms of each molecule are nearly coplanar, with the largest deviations from the mean planes being 0.0198 (9) (molecule A) and 0.0902 (9) Å (molecule B), each by a carbonyl O atom. The fused ring system is nearly perpendicular to the mean plane passing through the cyanoethyl chains, as indicated by the dihedral angles between them of 69.72 (9) (molecule A) and 69.15 (9)° (molecule B). In the crystal, molecules are linked by C—H⋯O and π–π [intercentroid distance between inversion-related indoline (A) rings = 3.6804 (7) Å] interactions into a double layer that stacks along the a-axis direction. PMID:24765047
2,2,2-Trifluoro-1-[3-(2,2,2-trifluoroacetyl)azulen-1-yl]ethanone
Förster, Sebastian; Eissmann, Frank; Seichter, Wilhelm; Weber, Edwin
2011-01-01
There are two molecules in the asymmetric unit of the title compound, C14H6F6O2, in which the azulene systems possess an almost planar geometry with maximum deviations of 0.0438 (15) and 0.0396 (14) Å. Besides intra- and intermolecular C—H⋯O and C—H⋯F interactions, the structure displays three F⋯F contacts [2.793 (2), 2.8820 (17) and 2.9181 (16) Å]. Furthermore, a characteristic azulene π-stacking is observed with an alternating sequence of electron-rich five-membered rings and electron-deficient seven-membered rings [centroid–centroid distances = 3.5413 (12), 3.6847 (12), 3.5790 (12) and 3.7718 (12) Å]. PMID:21754800
Crystal structure of 4-meth-oxy-N-(piperidine-1-carbono-thio-yl)benzamide.
Suhud, Khairi; Hasbullah, Siti Aishah; Ahmad, Musa; Heng, Lee Yook; Kassim, Mohammad B
2017-10-01
In the title compound, C 14 H 18 N 2 O 2 S, the piperidine ring has a chair conformation. Its mean plane is twisted with respect to the 4-meth-oxy-benzoyl ring, with a dihedral angle of 63.0 (3)°. The central N-C(=S)-N(H)-C(=O) bridge is twisted with an N-C-N-C torsion angle of 74.8 (6)°. In the crystal, mol-ecules are linked by N-H⋯O and C-H⋯O hydrogen bonds, forming chains along the c -axis direction. Adjacent chains are linked by C-H⋯π inter-actions, forming layers parallel to the ac plane. The layers are linked by offset π-π inter-actions [inter-centroid distance = 3.927 (3) Å], forming a supra-molecular three-dimensional structure.
NASA Astrophysics Data System (ADS)
Kendur, Umashri; Chimmalagi, Geeta H.; Patil, Sunil M.; Gudasi, Kalagouda B.; Frampton, Christopher S.; Mangannavar, Chandrashekhar V.; Muchchandi, Iranna S.
2018-02-01
Air and moisture stable coordination compounds of late first row transition metal ions, viz., Co(II), Ni(II), Cu(II) and Zn(II) with a newly designed ligand, (E)-2-amino-N'-(1-(2-hydroxy-6-methyl-4-oxo-4H-pyran-3-yl)ethylidene)benzohydrazide (H2L) were prepared and extensively characterized using various spectro-analytical techniques. The ligand acts both in mono as well as doubly deprotonated manner. The ligand to metal stoichiometry was found to be 1:2 in case of complexes using chloride salts, whereas 1:1 in case of copper (II) complex using its acetate salt. The molecular structures of H2L, nickel and copper complexes were unambiguously determined by single-crystal X-ray diffraction studies reveal that H2L exists in a zwitterionic form while copper complex has copper centre in a distorted square planar environment. On the other hand, cobalt, nickel and zinc complexes display distorted octahedral coordination around the metal ion. In case of [Ni(HL)2].H2O, intramolecular Csbnd H⋯π stacking interaction were observed between the centroid of five membered chelate ring and phenyl proton C5sbnd H5 and intermolecular Csbnd H⋯π stacking interaction between the centroid of phenyl ring, dehydroacetic acid (DHA) ring and phenyl protons. The [Cu(L)DMF] complex is stabilized by intramolecular hydrogen bonding N1H⋯N2 and by intermolecular hydrogen bonding N1H⋯O4. Intermolecular interactions were investigated by Hirshfeld surfaces. Further, H2L and its metal complexes were screened for their in vivo and in vitro anti-inflammatory activities. The activity of the ligand has enhanced on coordination with transition metals. The tested compounds have shown excellent activity, which is almost equipotent to the standard used in the study.
Crystal structure of 1-(3-chloro-phen-yl)piperazin-1-ium picrate-picric acid (2/1).
Kavitha, Channappa N; Jasinski, Jerry P; Kaur, Manpreet; Anderson, Brian J; Yathirajan, H S
2014-11-01
The title salt {systematic name: bis-[1-(3-chloro-phen-yl)piperazinium 2,4,6-tri-nitro-phenolate]-picric acid (2/1)}, 2C10H14ClN2 (+)·2C6H5N3O7 (-)·C6H6N3O7, crystallized with two independent 1-(3-chloro-phen-yl)piperazinium cations, two picrate anions and a picric acid mol-ecule in the asymmetric unit. The six-membered piperazine ring in each cation adopts a slightly distorted chair conformation and contains a protonated N atom. In the picric acid mol-ecule, the mean planes of the nitro groups in the ortho-, meta-, and para-positions are twisted from the benzene ring by 31.5 (3), 7.7 (1), and 3.8 (2)°, respectively. In the anions, the dihedral angles between the benzene ring and the ortho-, meta-, and para-nitro groups are 36.7 (1), 5.0 (6), 4.8 (2)°, and 34.4 (9), 15.3 (8), 4.5 (1)°, respectively. The nitro group in one anion is disordered and was modeled with two sites for one O atom with an occupancy ratio of 0.627 (7):0.373 (7). In the crystal, the picric acid mol-ecule inter-acts with the picrate anion through a trifurcated O-H⋯O four-centre hydrogen bond involving an intra-molecular O-H⋯O hydrogen bond and a weak C-H⋯O inter-action. Weak inter-molecular C-H⋯O inter-actions are responsible for the formation of cation-anion-cation trimers resulting in a chain along [010]. In addition, weak C-H⋯Cl and weak π-π inter-actions [centroid-centroid distances of 3.532 (3), 3.756 (4) and 3.705 (3) Å] are observed and contribute to the stability of the crystal packing.
Exciplex and excimer molecular probes: detection of conformational flip in a myo-inositol chair.
Kadirvel, Manikandan; Arsic, Biljana; Freeman, Sally; Bichenkova, Elena V
2008-06-07
2-O-tert-Butyldimethylsilyl-4,6-bis-O-pyrenoyl-myo-inositol-1,3,5-orthoformate (6) and 2-O-tert-butyldimethylsilyl-4-O-[4-(dimethylamino)benzoyl]-6-O-pyrenoyl-myo-inositol-1,3,5-orthoacetate (10) adopt conformationally restricted unstable chairs with five axial substituents. In the symmetrical diester 6, the two pi-stacked pyrenoyl groups are electron acceptor-donor partners, giving a strong intramolecular excimer emission. In the mixed ester 10, the pyrenoyl group is the electron acceptor and the 4-(dimethylamino)benzoyl ester is the electron donor, giving a strong intramolecular exciplex emission. The conformation of the mixed ester 10 was assessed using 1H NMR spectroscopy (1H-NOESY) and computational studies. which showed the minimum inter-centroid distance between the two aromatic systems to be approximately 3.9 A. Upon addition of acid, the orthoformate/orthoacetate trigger in 6 and 10 was cleaved, which caused a switch of the conformation of the myo-inositol ring to the more stable penta-equatorial chair, leading to separation of the aromatic ester groups and loss of excimer and exciplex fluorescence, respectively. This study provides proof of principle for the development of novel fluorescent molecular probes.
Localized Ambient Solidity Separation Algorithm Based Computer User Segmentation.
Sun, Xiao; Zhang, Tongda; Chai, Yueting; Liu, Yi
2015-01-01
Most of popular clustering methods typically have some strong assumptions of the dataset. For example, the k-means implicitly assumes that all clusters come from spherical Gaussian distributions which have different means but the same covariance. However, when dealing with datasets that have diverse distribution shapes or high dimensionality, these assumptions might not be valid anymore. In order to overcome this weakness, we proposed a new clustering algorithm named localized ambient solidity separation (LASS) algorithm, using a new isolation criterion called centroid distance. Compared with other density based isolation criteria, our proposed centroid distance isolation criterion addresses the problem caused by high dimensionality and varying density. The experiment on a designed two-dimensional benchmark dataset shows that our proposed LASS algorithm not only inherits the advantage of the original dissimilarity increments clustering method to separate naturally isolated clusters but also can identify the clusters which are adjacent, overlapping, and under background noise. Finally, we compared our LASS algorithm with the dissimilarity increments clustering method on a massive computer user dataset with over two million records that contains demographic and behaviors information. The results show that LASS algorithm works extremely well on this computer user dataset and can gain more knowledge from it.
Localized Ambient Solidity Separation Algorithm Based Computer User Segmentation
Sun, Xiao; Zhang, Tongda; Chai, Yueting; Liu, Yi
2015-01-01
Most of popular clustering methods typically have some strong assumptions of the dataset. For example, the k-means implicitly assumes that all clusters come from spherical Gaussian distributions which have different means but the same covariance. However, when dealing with datasets that have diverse distribution shapes or high dimensionality, these assumptions might not be valid anymore. In order to overcome this weakness, we proposed a new clustering algorithm named localized ambient solidity separation (LASS) algorithm, using a new isolation criterion called centroid distance. Compared with other density based isolation criteria, our proposed centroid distance isolation criterion addresses the problem caused by high dimensionality and varying density. The experiment on a designed two-dimensional benchmark dataset shows that our proposed LASS algorithm not only inherits the advantage of the original dissimilarity increments clustering method to separate naturally isolated clusters but also can identify the clusters which are adjacent, overlapping, and under background noise. Finally, we compared our LASS algorithm with the dissimilarity increments clustering method on a massive computer user dataset with over two million records that contains demographic and behaviors information. The results show that LASS algorithm works extremely well on this computer user dataset and can gain more knowledge from it. PMID:26221133
Slavov, Svetoslav H; Wilkes, Jon G; Buzatu, Dan A; Kruhlak, Naomi L; Willard, James M; Hanig, Joseph P; Beger, Richard D
2014-12-01
Modified 3D-SDAR fingerprints combining (13)C and (15)N NMR chemical shifts augmented with inter-atomic distances were used to model the potential of chemicals to induce phospholipidosis (PLD). A curated dataset of 328 compounds (some of which were cationic amphiphilic drugs) was used to generate 3D-QSDAR models based on tessellations of the 3D-SDAR space with grids of different density. Composite PLS models averaging the aggregated predictions from 100 fully randomized individual models were generated. On each of the 100 runs, the activities of an external blind test set comprised of 294 proprietary chemicals were predicted and averaged to provide composite estimates of their PLD-inducing potentials (PLD+ if PLD is observed, otherwise PLD-). The best performing 3D-QSDAR model utilized a grid with a density of 8ppm×8ppm in the C-C region, 8ppm×20ppm in the C-N region and 20ppm×20ppm in the N-N region. The classification predictive performance parameters of this model evaluated on the basis of the external test set were as follows: accuracy=0.70, sensitivity=0.73 and specificity=0.66. A projection of the most frequently occurring bins on the standard coordinate space suggested a toxicophore composed of an aromatic ring with a centroid 3.5-7.5Å distant from an amino-group. The presence of a second aromatic ring separated by a 4-5Å spacer from the first ring and at a distance of between 5.5Å and 7Å from the amino-group was also associated with a PLD+ effect. These models provide comparable predictive performance to previously reported models for PLD with the added benefit of being based entirely on non-confidential, publicly available training data and with good predictive performance when tested in a rigorous, external validation exercise. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Chantrapromma, S.; Ruanwas, P.; Boonnak, N.; Chantrapromma, K.; Fun, H.-K.
2016-12-01
Five derivatives of curcumin analogue ( R = OCH2CH3 ( 1), R = N(CH3)2 ( 2), R = 2,4,5-OCH3 ( 3), R = 2,4,6-OCH3 ( 4), and R = 3,4,5-OCH3 ( 5)) were synthesized and characterized by 1H NMR, FT-IR and UV-Vis spectroscopy. The synthesized derivatives were screened for antityrosinase activity, and found that 4 and 5 possess such activity. The crystal structure of 1 was determined by single crystal X-ray diffraction: monoclinic, sp. gr. P21/ c, a = 17.5728(15) Å, b = 5.9121(5) Å, c = 19.8269(13) Å, β = 121.155(5)°, Z = 4. The molecule 1 is twisted with the dihedral angle between two phenyl rings being 15.68(10)°. In the crystal packing, the molecules 1 are linked into chains by C-H···π interactions and further stacked by π···π interactions with the centroid-centroid distance of 3.9311(13) Å.
NASA Astrophysics Data System (ADS)
Buth, G.; Huttel, E.; Mangold, S.; Steininger, R.; Batchelor, D.; Doyle, S.; Simon, R.
2013-03-01
Different methods have been proposed to calculate the vertical position of the photon beam centroid from the four blade currents of staggered pair X-ray beam position monitors (XBPMs) at bending magnet beamlines since they emerged about 15 years ago. The original difference-over-sum method introduced by Peatman and Holldack is still widely used, even though it has been proven to be rather inaccurate at large beam displacements. By systematically generating bumps in the electron orbit of the ANKA storage ring and comparing synchronized data from electron BPMs and XBPM blade currents, we have been able to show that the log-ratio method by S. F. Lin, B.G. Sun et al. is superior (meaning the characteristic being closer to linear) to the ratio method, which in turn is superior to the difference over sum method. These findings are supported by simulations of the XBPM response to changes of the beam centroid. The heuristic basis for each of the methods is investigated. The implications on using XBPM readings for orbit correction are discussed
Crystal structure of bis-(3-bromo-pyridine-κN)bis-(O-ethyl di-thio-carbonato-κ(2) S,S')nickel(II).
Kant, Rajni; Kour, Gurvinder; Anthal, Sumati; Neerupama; Sachar, Renu
2015-01-01
In the title mol-ecular complex, [Ni(C3H5OS2)2(C5H4BrN)2], the Ni(2+) cation is located on a centre of inversion and has a distorted octa-hedral N2S4 environment defined by two chelating xanthate ligands and two monodentate pyridine ligands. The C-S bond lengths of the thio-carboxyl-ate group are indicative of a delocalized bond and the O-Csp (2) bond is considerably shorter than the O-Csp (3) bond, consistent with a significant contribution of one resonance form of the xanthate anion that features a formal C=O+ unit and a negative charge on each of the S atoms. The packing of the mol-ecules is stabilized by C-H⋯S and C-H⋯π inter-actions. In addition, π-π inter-actions between the pyridine rings [centroid-to-centroid distance = 3.797 (3) Å] are also present. In the crystal structure, mol-ecules are arranged in rows along [100], forming layers parallel to (010) and (001).
2-(4-Hydroxyphenyl)-1H-benzimidazol-3-ium chloride monohydrate
González-Padilla, Jazmin E.; Rosales-Hernández, Martha Cecila; Padilla-Martínez, Itzia I.; García-Báez, Efren V.; Rojas-Lima, Susana
2013-01-01
The title molecular salt, C13H11N2O+·Cl−·H2O, crystallizes as a monohydrate. In the cation, the phenol and benzimidazole rings are almost coplanar, making a dihedral angle of 3.18 (4)°. The chloride anion and benzimidazole cation are linked by two N+—H⋯Cl− hydrogen bonds, forming chains propagating along [010]. These chains are linked through O—H⋯Cl hydrogen bonds involving the water molecule and the chloride anion, which form a diamond core, giving rise to the formation of two-dimensional networks lying parallel to (10-2). Two π–π interactions involving the imidazolium ring with the benzene and phenol rings [centroid–centroid distances = 3.859 (3) and 3.602 (3) Å, respectively], contribute to this second dimension. A strong O—H⋯O hydrogen bond involving the water molecule and the phenol substituent on the benzimidazole unit links the networks, forming a three-dimensional structure. PMID:24427105
3,3′′-Bis(9-hydroxyfluoren-9-yl)-1,1′:3′,1′′-terphenyl
Skobridis, Konstantinos; Theodorou, Vassiliki; Paraskevopoulos, Georgios; Seichter, Wilhelm; Weber, Edwin
2013-01-01
The asymmetric unit of the title compound, C44H30O2, contains two independent molecules in which the terminal rings of the terphenyl element are inclined at angles of 36.3 (1) and 22.5 (1)° with respect to the central ring and the dihedral angles between the fluorenyl units are 72.3 (1) and 62.8 (1)°. In the crystal, pairs of O—H⋯O hydrogen bonds link the molecules into inversion dimers. The hydroxy H atoms not involved in these hydrogen bonds form O—H⋯π interactions in which the central terphenyl rings act as acceptors. Weak C—H⋯O contacts and π–π [centroid–centroid distance = 4.088 (2) Å] stacking interactions also occur. Taking into account directed non-covalent bonding between the molecules, the crystal is constructed of supramolecular strands extending along the a-axis direction. PMID:24098206
Chantrapromma, Suchada; Chanawanno, Kullapa; Boonnak, Nawong; Fun, Hoong-Kun
2012-01-01
The asymmetric unit of the title compound, C36H32N2 2+·2I−, consists of one half-molecule of the cation and one I− anion. The cation is located on an inversion centre. The dihedral angle between the pyridinium ring and the naphthalene ring system in the asymmetric unit is 19.01 (14)°. In the crystal, the cations and the anions are linked by C—H⋯I interactions into a layer parallel to the bc plane. Intra- and intermolecular π–π interactions with centroid–centroid distances of 3.533 (2)–3.807 (2) Å are also observed. PMID:22259568
8-Fluoro-4-oxo-4H-chromene-3-carbaldehyde
Ishikawa, Yoshinobu
2014-01-01
In the title compound, C10H5FO3, the non-H atoms of the 8-fluorochromone unit are essentially coplanar (r.m.s. deviation = 0.0259 Å), with a largest deviation from the mean plane of 0.0660 (12) Å for the chromone carbonyl O atom. The formyl group is twisted with respect to the attached ring [C—C—C—O torsion angles = −11.00 (19) and 170.81 (11)°]. In the crystal, molecules are linked via weak C—H⋯O hydrogen bonds along the a axis and [-101], forming corrugated layers parallel to (010). In addition, π–π stacking interactions [centroid–centroid distance between the planes of the pyran and benzene rings = 3.519 (2) Å] are observed between these layers. PMID:25161562
Crystal structure of 4-methoxy-N-(piperidine-1-carbonothioyl)benzamide
Suhud, Khairi; Hasbullah, Siti Aishah; Ahmad, Musa; Heng, Lee Yook
2017-01-01
In the title compound, C14H18N2O2S, the piperidine ring has a chair conformation. Its mean plane is twisted with respect to the 4-methoxybenzoyl ring, with a dihedral angle of 63.0 (3)°. The central N—C(=S)—N(H)—C(=O) bridge is twisted with an N—C—N—C torsion angle of 74.8 (6)°. In the crystal, molecules are linked by N—H⋯O and C—H⋯O hydrogen bonds, forming chains along the c-axis direction. Adjacent chains are linked by C—H⋯π interactions, forming layers parallel to the ac plane. The layers are linked by offset π–π interactions [intercentroid distance = 3.927 (3) Å], forming a supramolecular three-dimensional structure. PMID:29250374
1,3-Bis(chloro-meth-yl)-2-methyl-5-nitro-benzene.
Shao, Chang-Lun; Li, Chunyuan; Liu, Zhen; Wei, Mei-Yan; Wang, Chang-Yun
2008-03-20
The title compound, C(9)H(9)Cl(2)NO(2), is a natural product isolated from the endophytic fungus No. B77 of the mangrove tree from the South China Sea coast. In the crystal structure, the mol-ecules lie on twofold axes and form offset stacks through face-to-face π-π inter-actions. Adjacent mol-ecules in each stack are related by a centre of inversion and have an inter-planar separation of 3.53 (1) Å, with a centroid-centroid distance of 3.76 (1) Å. Between stacks, there are C-H⋯O inter-actions to the nitro groups and Cl⋯Cl contacts of 3.462 (1) Å.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hurtubise, R.J.; Allen, T.W.; Hussain, A.
1981-03-29
Dry-column chromatography with an aluminum oxide stationary phase and a n-hexane-ether (19:1) mobile phase was used to separate polycyclic aromatic hydrocarbons (PAH) by ring size. Prior to the dry-column chromatography step, the coal derived solvents were added to an acid treated silica gel column and eluted with chloroform. This step removed pyridine-type nitrogen heterocycles. After separation of the individual ring fractions, the fractions were further separated by either thin layer chromatography (TLC) or high performance liquid chromatography (HPLC). If TLC was used, then after separation fluorescence profiles of each PAH ring fraction distributed on 30%-acetylated cellulose chromatoplates were obtained withmore » a spectrodensitometer. Measurement of fluorescence peak heights gave an approximate measure of the amount of the 3-, 4-, 5-, and 6- ring PAH. For HPLC separation, the 3- and 4- ring PAH fractions obtained from the dry-column chromatography step were separated with a ..mu..-Bondapak C/sub 18/ column and methanol:water (65:35) mobile phase. The HPLC separated PAH were characterized by chromatographic correlation factors and corrected fluorescence excitation spectra. Alkylphenols were identified in coal recycle solvent sample following separation by HPLC.« less
Dai, Hong; Zhu, Peng-Fei; Zhu, Yu-Jun; Fang, Jian-Xin; Shi, Yu-Jun
2011-01-01
In the title molecule, C18H13Cl2F3N4O2, the intramolecular distance between the centroids of the benzene and pyridine rings is 3.953 (3) Å, and the trifluoromethyl group is rotationally disordered over two orientations in a 0.678 (19):0.322 (19) ratio. The crystal packing exhibits weak intermolecular C—H⋯F interactions. PMID:22199756
2-Amino-4,6-dimethylpyrimidin-1-ium chloride
Hu, Hui-Ling; Yeh, Chun-Wei
2012-01-01
In the title compound, C6H10N3 +·Cl−, the cation is essentially planar with an r.m.s. deviations of the fitted atoms of 0.008 Å. In the crystal, adjacent ions are linked by weak N—H⋯Cl hydrogen bonds involving the pyrimidine and amine N atoms, forming a three-dimensional network. C—H⋯π interactions between the methyl and pyrimidine groups and π–π stacking [centroid–centroid distance = 3.474 (1) Å] between parallel pyrimidine ring systems are also observed. PMID:23476204
Mun, Sungyong; Wang, Nien-Hwa Linda
2017-03-10
One of the trustworthy processes for ternary separation is a tandem simulated moving bed (SMB) process, which consists of two subordinate four-zone SMB units (Ring I and Ring II). To take full advantage of a tandem SMB as a means of recovering all three products with high purities and high economical efficiency, it is important to understand how the separation condition in Ring II is affected by that in Ring I, and further to reflect such point in the stage of designing a tandem SMB. In regard to such issue, it was clarified in this study that the Ring I factors affecting the Ring II condition could be represented by the yield level of a key product of Ring I (Y key RingI ). As the Y key RingI level became higher, the amount of the Ring I key-product that was reloaded into Ring II was reduced, which affected favorably the Ring II separation condition. On the other hand, the higher Y key RingI level caused a larger dilution for the stream from Ring I to Ring II, which affected adversely the Ring II separation condition. As a result, a minimum in the desorbent usage of a tandem SMB occurred at the Y key RingI level where the two aforementioned factors could be balanced with each other. If such an optimal Y key RingI level was adopted, the desorbent usage could be reduced by up to 25%. It was also found that as the throughput of a tandem SMB became higher, the factor related to the migration of the Ring I key-product into Ring II was more influential in the performances of a tandem SMB than the factor related to the dilution of the stream from Ring I to Ring II. Copyright © 2016 Elsevier B.V. All rights reserved.
Ring correlations in random networks.
Sadjadi, Mahdi; Thorpe, M F
2016-12-01
We examine the correlations between rings in random network glasses in two dimensions as a function of their separation. Initially, we use the topological separation (measured by the number of intervening rings), but this leads to pseudo-long-range correlations due to a lack of topological charge neutrality in the shells surrounding a central ring. This effect is associated with the noncircular nature of the shells. It is, therefore, necessary to use the geometrical distance between ring centers. Hence we find a generalization of the Aboav-Weaire law out to larger distances, with the correlations between rings decaying away when two rings are more than about three rings apart.
6-[3-(p-Tolylsulfonylamino)propyl]diquinothiazine1
Jeleń, Małgorzata; Shkurenko, Aleksander; Suwińska, Kinga; Pluta, Krystian; Morak-Młodawska, Beata
2013-01-01
In the title molecule {systematic name: N-[3-(diquino[3,2-b;2′,3′-e][1,4]thiazin-6-yl)propyl]-4-methylbenzenesulfonamide}, C28H24N4O2S2, the pentacyclic system is relatively planar [maximum deviation from the mean plane = 0.242 (1) Å]. The dihedral angle between two quinoline ring systems is 8.23 (2)° and that between the two halves of the 1,4-thiazine ring is 5.68 (3)°. The conformation adopted by the 3-(p-tolylsulfonylamino)propyl substituent allows for the formation of an intramolecular N—H⋯N hydrogen bond and places the benzene ring of this substituent above one of the quinoline fragments of the pentacyclic system. In the crystal, molecules are arranged via π–π stacking interactions into (0-11) layers [centroid–centroid distances = 3.981 (1)–4.320 (1) Å for the rings in the pentacyclic system and 3.645 (1) Å for the tolyl benzene rings]. In addition, molecules are involved in weak C—H⋯O, which connect the layers, and C—H⋯S hydrogen bonds. The title compound shows promising anticancer activity against renal cancer cell line UO-31. PMID:23795128
Crystal structure of bis(3-bromopyridine-κN)bis(O-ethyl dithiocarbonato-κ2 S,S′)nickel(II)
Kant, Rajni; Kour, Gurvinder; Anthal, Sumati; Neerupama; Sachar, Renu
2015-01-01
In the title molecular complex, [Ni(C3H5OS2)2(C5H4BrN)2], the Ni2+ cation is located on a centre of inversion and has a distorted octahedral N2S4 environment defined by two chelating xanthate ligands and two monodentate pyridine ligands. The C—S bond lengths of the thiocarboxylate group are indicative of a delocalized bond and the O—Csp 2 bond is considerably shorter than the O—Csp 3 bond, consistent with a significant contribution of one resonance form of the xanthate anion that features a formal C=O+ unit and a negative charge on each of the S atoms. The packing of the molecules is stabilized by C—H⋯S and C—H⋯π interactions. In addition, π–π interactions between the pyridine rings [centroid-to-centroid distance = 3.797 (3) Å] are also present. In the crystal structure, molecules are arranged in rows along [100], forming layers parallel to (010) and (001). PMID:25705471
NASA Technical Reports Server (NTRS)
McDowell, Mark
2004-01-01
An integrated algorithm for decomposing overlapping particle images (multi-particle objects) along with determining each object s constituent particle centroid(s) has been developed using image analysis techniques. The centroid finding algorithm uses a modified eight-direction search method for finding the perimeter of any enclosed object. The centroid is calculated using the intensity-weighted center of mass of the object. The overlap decomposition algorithm further analyzes the object data and breaks it down into its constituent particle centroid(s). This is accomplished with an artificial neural network, feature based technique and provides an efficient way of decomposing overlapping particles. Combining the centroid finding and overlap decomposition routines into a single algorithm allows us to accurately predict the error associated with finding the centroid(s) of particles in our experiments. This algorithm has been tested using real, simulated, and synthetic data and the results are presented and discussed.
2-[(E)-(1,10-Phenanthrolin-5-yl)iminomethyl]phenol methanol monosolvate
Öztürk Yíldírím, Sema; Demirhan, Nebahat; Elmalí, Fikriye; Butcher, Ray J.
2012-01-01
In the title multi-donor Schiff base compound, C19H13N3O·CH3OH, the dihedral angle between the mean planes of the phenanthroline and phenol rings is 59.3 (1)°. The Schiff base molecule is linked to the solvent molecule by an O—H⋯O hydrogen bond. In the crystal, the components are linked by O—H⋯N hydrogen bonds, weak O—H⋯N interactions and π–π stacking interactions [centroid–centroid distances = 3.701 (1) and 3.656 (1) Å]. PMID:22606116
Dichlorido[2-(phenyliminomethyl)quinoline-N,N′]palladium(II)
Motswainyana, William M.; Onani, Martin O.; Madiehe, Abram M.
2012-01-01
In the title complex, [PdCl2(C16H12N2)], the PdII ion is coordinated by two N atoms [Pd—N 2.039 (2), 2.073 (2) Å] from a bidentate ligand and two chloride anions [Pd—Cl 2.2655 (7), 2.2991 (7) Å] in a distorted square-planar geometry. In the crystal, π–π interactions between the six-membered rings of the quinoline fragments [centroid–centroid distances = 3.815 (5), 3.824 (5) Å] link two molecules into centrosymmetric dimers. PMID:22589771
2-(1,2,3,4-Tetrahydro-1-naphthyl)imidazolium chloride monohydrate
Bruni, Bruno; Bartolucci, Gianluca; Ciattini, Samuele; Coran, Silvia
2010-01-01
In the title compound, C13H15N2 +·Cl−·H2O, the ions and water molecules are connected by N—H⋯Cl, O—H⋯Cl, NH⋯Cl⋯HO, NH⋯Cl⋯HN and OH⋯Cl⋯HO interactions, forming discrete D(2) and D 2 1(3) chains, C 2 1(6) chains and R 4 2(8) rings, leading to a neutral two-dimensional network. The crystal structure is further stabilized by π–π stacking interactions [centroid–centroid distance = 3.652 (11) Å]. PMID:21588668
N-(2-{[5-Bromo-2-(piperidin-1-yl)pyrimidin-4-yl]sulfanyl}-4-methoxyphenyl)benzenesulfonamide
Kumar, Mohan; Mallesha, L.; Sridhar, M. A.; Kapoor, Kamini; Gupta, Vivek K.; Kant, Rajni
2012-01-01
The title compound, C22H23BrN4O3S2, crystallizes with two molecules, A and B, in the asymmetric unit. In one of these, the methoxy group is disordered over two sets of sites in a 0.565 (9):0.435 (9) ratio. The benzene rings bridged by the sulfonamide group are tilted relative to each other by 37.4 (1) and 56.1 (1)° in molecules A and B, respectively, while the dihedral angles between the sulfur-bridged pyrimidine and benzene rings are 72.4 (1) and 70.2 (1)° for A and B, respectively. The piperidine ring adopts a chair conformation in both molecules. In the crystal, inversion dimers linked by pairs of N—H⋯N hydrogen bonds occur for both A and B; the dimers are linked into [010] chains by C—H⋯O hydrogen bonds. The crystal structure also features inversion-generated aromatic π–π stacking interactions between the pyrimidine rings for both molecules [centroid–centroid distances = 3.412 (2) (molecule A) and 3.396 (2) Å (molecule B)]. PMID:23284517
Chantrapromma, Suchada; Chanawanno, Kullapa; Boonnak, Nawong; Fun, Hoong-Kun
2014-01-01
The asymmetric unit of the title salt, C36H32N2 2+·2C6H4ClO3S−, consists of one anion and one half-cation, the other half being generated by inversion symmetry. The dihedral angle between the pyridinium ring and the napthalene ring system in the asymmetric unit is 42.86 (6)°. In the crystal, cations and anions are linked by weak C—H⋯O interactions into chains along [010]. Adjacent chains are further arranged in an antiparallel manner into sheets parallel to the bc plane. π–π interactions are observed involving the cations, with centroid–centroid distances of 3.7664 (8) and 3.8553 (8) Å. PMID:24860326
Diaquabis{5-carboxy-2-[(1H-1,2,4-triazol-1-yl)methyl]-1H-imidazole-4-carboxylato}manganese(II)
Ding, De-Gang; Tong, Yan
2010-01-01
In the title compound, [Mn(C8H6N5O4)2(H2O)2], the MnII ion is situated on an inversion center and is six-coordinated by two N and two O atoms from two L ligands (HL = 2-[(1H-1,2,4-triazol-1-yl)methyl]-1H-imidazole-4,5-dicarboxylic acid) and two water molecules in a distorted octahedral geometry. In ligand L, the imidazole and triazole rings form a dihedral angle of 74.25 (8)°. Molecules are assembled into a three-dimensional structure via intermolecular O—H⋯O, O—H⋯N and N—H⋯N hydrogen-bonds, and π–π interactions with a short distance of 3.665 (2) Å between the centroids of the imidazole and triazole rings of neighbouring molecules. PMID:21579014
How best to geo-reference farms? A case study from Cornwall, England.
Durr, P A; Froggatt, A E A
2002-11-29
The commonest way of geo-referencing farms as single points is using the location of the farmhouse as either read off a map or approximated by its postcode. While these two methods may be adequate for small farms, they are unlikely to be satisfactory for large ones, or alternatively when they are comprised of several discrete units or holdings. In order to investigate the best representation of the total farm polygon(s) by a single point, we undertook a study using nearly 500 actual farm boundaries in the county of Cornwall, England. For each farm, the farm boundaries were digitised, and its area and centroid determined using ArcView 3.2. A variety of point geo-referencing systems were tested to find the best single point location for a farm, as judged by the proportion of farm area captured. Whilst the centroid was found to capture the largest area, the main farm building was judged to be the best geo-referencing method for practical purposes. In contrast, the various systems of geo-coding using the farm postal address performed relatively poorly. Where there are separate parcels of land managed together in a single parish, they may be identified as a single unit, but if there are separate parcels in different parishes they should be identified as separate units.The implications of these results for Great Britain's national animal health information system (VETNET) are discussed.
NASA Astrophysics Data System (ADS)
Haka, Abigail S.; Kidder, Linda H.; Lewis, E. Neil
2001-07-01
We have applied Fourier transform infrared (FTIR) spectroscopic imaging, coupling a mercury cadmium telluride (MCT) focal plane array detector (FPA) and a Michelson step scan interferometer, to the investigation of various states of malignant human prostate tissue. The MCT FPA used consists of 64x64 pixels, each 61 micrometers 2, and has a spectral range of 2-10.5 microns. Each imaging data set was collected at 16-1 resolution, resulting in 512 image planes and a total of 4096 interferograms. In this article we describe a method for separating different tissue types contained within FTIR spectroscopic imaging data sets of human prostate tissue biopsies. We present images, generated by the Fuzzy C-Means clustering algorithm, which demonstrate the successful partitioning of distinct tissue type domains. Additionally, analysis of differences in the centroid spectra corresponding to different tissue types provides an insight into their biochemical composition. Lastly, we demonstrate the ability to partition tissue type regions in a different data set using centroid spectra calculated from the original data set. This has implications for the use of the Fuzzy C-Means algorithm as an automated technique for the separation and examination of tissue domains in biopsy samples.
Tree Rings: Timekeepers of the Past.
ERIC Educational Resources Information Center
Phipps, R. L.; McGowan, J.
One of a series of general interest publications on science issues, this booklet describes the uses of tree rings in historical and biological recordkeeping. Separate sections cover the following topics: dating of tree rings, dating with tree rings, tree ring formation, tree ring identification, sample collections, tree ring cross dating, tree…
Estimates of Rayleigh-to-Love wave ratio in microseisms by co-located Ring Laser and STS-2
NASA Astrophysics Data System (ADS)
Tanimoto, Toshiro; Hadziioannou, Céline; Igel, Heiner; Wassermann, Joachim; Schreiber, Ulrich; Gebauer, André
2015-04-01
In older studies of microseisms (seismic noise), it was often assumed that microseisms, especially the secondary microseisms (0.1-0.3 Hz), mainly consist of Rayleigh waves. However, it has become clear that there exists a large amount of Love-wave energy mixed in it (e.g., Nishida et al., 2008). However, its confirmation is not necessarily straightforward and often required an array of seismographs. In this study, we take advantage of two co-located instruments, a Ring Laser and an STS-2 type seismograph, at Wettzell (WET), Germany (Schreiber et al., 2009). The Ring Laser records rotation (its vertical component) and is thus only sensitive to Love waves. The vertical component of STS-2 seismograph is only sensitive to Rayleigh waves. Therefore, a combination of the two instruments provides a unique opportunity to separate Rayleigh waves and Love waves in microseisms. The question we address in this paper is the ratio of Rayleigh waves to Love waves in microseisms. For both instruments, we analyze data from 2009 to 2014. Our basic approach is to create stacked vertical acceleration spectra for Rayleigh waves from STS-2 and stacked transverse acceleration spectra for Love waves from Ring Laser. The two spectra at Earth's surface can then be compared directly by their amplitudes. The first step in our analysis is a selection of time portions (each six-hour long) that are least affected by earthquakes. We do this by examining the GCMT (Global Centroid Moment Tensor) catalogue and also checking the PSDs for various frequency ranges. The second step is to create stacked (averaged) Fourier spectra from those selected time portions. The key is to use the same time portions for the STS-2 and the Ring Laser data so that the two can be directly compared. The vertical spectra from STS-2 are converted to acceleration spectra. The Ring Laser rotation spectra are first obtained in the unit of radians/sec (rotation rate). But as the Ring Laser spectra are dominated by fundamental-mode Love waves, the rotation spectra can be converted to transverse (SH) acceleration by multiplying them by the factor 2xCp where Cp is the Love-wave phase velocity. We used a seismic model by Fichtner et al. (2013) at WET to estimate Love-wave phase velocity. This conversion from rotation to transverse acceleration was first extensively used by Igel et al. (2005) for the analysis of lower frequency Love waves and the same relation holds for our spectral data. The two spectra provide the ratio of surface amplitudes. In the frequency range of secondary microseisms (0.10-0.35 Hz), they are comparable; near the spectral peak (~0.20 Hz), Rayleigh waves are about 20 percent larger in amplitudes but outside this peak region, Love waves have comparable or slightly larger amplitudes than Rayleigh waves. Therefore, the secondary microseisms at WET consist of similar contributions from Rayleigh waves and Love waves.
Angles-centroids fitting calibration and the centroid algorithm applied to reverse Hartmann test
NASA Astrophysics Data System (ADS)
Zhao, Zhu; Hui, Mei; Xia, Zhengzheng; Dong, Liquan; Liu, Ming; Liu, Xiaohua; Kong, Lingqin; Zhao, Yuejin
2017-02-01
In this paper, we develop an angles-centroids fitting (ACF) system and the centroid algorithm to calibrate the reverse Hartmann test (RHT) with sufficient precision. The essence of ACF calibration is to establish the relationship between ray angles and detector coordinates. Centroids computation is used to find correspondences between the rays of datum marks and detector pixels. Here, the point spread function of RHT is classified as circle of confusion (CoC), and the fitting of a CoC spot with 2D Gaussian profile to identify the centroid forms the basis of the centroid algorithm. Theoretical and experimental results of centroids computation demonstrate that the Gaussian fitting method has a less centroid shift or the shift grows at a slower pace when the quality of the image is reduced. In ACF tests, the optical instrumental alignments reach an overall accuracy of 0.1 pixel with the application of laser spot centroids tracking program. Locating the crystal at different positions, the feasibility and accuracy of ACF calibration are further validated to 10-6-10-4 rad root-mean-square error of the calibrations differences.
NASA Astrophysics Data System (ADS)
Sheridan, T. E.
2009-12-01
A model of a dusty plasma (Yukawa) ring is presented. We consider n identical particles confined in a two-dimensional (2D) annular potential well and interacting through a Debye (i.e. Yukawa or screened Coulomb) potential. Equilibrium configurations are computed versus n, the Debye shielding parameter and the trap radius. When the particle separation exceeds a critical value the particles form a 1D chain with a ring topology. Below the critical separation the zigzag instability gives a 2D configuration. Computed critical separations are shown to agree well with a theoretical prediction for the zigzag threshold. Normal mode spectra for 1D rings are computed and found to be in excellent agreement with the longitudinal and transverse dispersion relations for unbounded straight chains. When the longitudinal and transverse dispersion relations intersect we observe a resonance due to the finite curvature of the ring.
Vehicle speed detection based on gaussian mixture model using sequential of images
NASA Astrophysics Data System (ADS)
Setiyono, Budi; Ratna Sulistyaningrum, Dwi; Soetrisno; Fajriyah, Farah; Wahyu Wicaksono, Danang
2017-09-01
Intelligent Transportation System is one of the important components in the development of smart cities. Detection of vehicle speed on the highway is supporting the management of traffic engineering. The purpose of this study is to detect the speed of the moving vehicles using digital image processing. Our approach is as follows: The inputs are a sequence of frames, frame rate (fps) and ROI. The steps are following: First we separate foreground and background using Gaussian Mixture Model (GMM) in each frames. Then in each frame, we calculate the location of object and its centroid. Next we determine the speed by computing the movement of centroid in sequence of frames. In the calculation of speed, we only consider frames when the centroid is inside the predefined region of interest (ROI). Finally we transform the pixel displacement into a time unit of km/hour. Validation of the system is done by comparing the speed calculated manually and obtained by the system. The results of software testing can detect the speed of vehicles with the highest accuracy is 97.52% and the lowest accuracy is 77.41%. And the detection results of testing by using real video footage on the road is included with real speed of the vehicle.
Accidental ingestion of BiTine ring and a note on inefficient ring separation forceps.
Baghele, Om Nemichand; Baghele, Mangala Om
2011-01-01
Accidental ingestion of medium-to-large instruments is relatively uncommon during dental treatment but can be potentially dangerous. A case of BiTine ring ingestion is presented with a note on inefficient ring separation forceps. A 28-year-old male patient accidentally ingested the BiTine ring (2 cm diameter, 0.5 cm outward projections) while it was being applied to a distoproximal cavity in tooth # 19. The ring placement forceps were excessively flexible; bending of the beaks towards the ring combined with a poor no-slippage mechanism led to sudden disengagement of the ring and accelerated movement towards the pharynx. We followed the patient with bulk forming agents and radiographs. Fortunately the ring passed out without any complications. Checking equipment and methods is as important as taking precautions against any preventable medical emergency. It is the responsibility of the clinician to check, verify and then use any instrument/equipment.
Rotary Apparatus Concentrates And Separates Micro-Organisms
NASA Technical Reports Server (NTRS)
Noever, David A.
1992-01-01
Apparatus concentrates and separates swimming micro-organisms of different species into concentric rings in fluid. Fluid containing high concentration of desired species removed by use of small scoop placed into fluid at radius of one of rings formed by that species. Micro-organisms concentrated into concentric rings by combined dynamic effects of upward and horizontal components of swimming, rotation of dish, gravitation, and viscosity.
Fracture mechanics modeling of popping event during daughter cell separation.
Jiang, Yuxuan; Liang, Xudong; Guo, Ming; Cao, Yanping; Cai, Shengqiang
2018-05-10
Most bacteria cells divide by binary fission which is part of a bacteria cell cycle and requires tight regulations and precise coordination. Fast separation of Staphylococcus Aureus (S. Aureus) daughter cells, named as popping event, has been observed in recent experiments. The popping event was proposed to be driven by mechanical crack propagation in the peripheral ring which connected two daughter cells before their separation. It has also been shown that after the fast separation, a small portion of the peripheral ring was left as a hinge. In the article, we develop a fracture mechanics model for the crack growth in the peripheral ring during S. Aureus daughter cell separation. In particular, using finite element analysis, we calculate the energy release rate associated with the crack growth in the peripheral ring, when daughter cells are inflated by a uniform turgor pressure inside. Our results show that with a fixed inflation of daughter cells, the energy release rate depends on the crack length non-monotonically. The energy release rate reaches a maximum value for a crack of an intermediate length. The non-monotonic relationship between the energy release rate and crack length clearly indicates that the crack propagation in the peripheral ring can be unstable. The computed energy release rate as a function of crack length can also be used to explain the existence of a small portion of peripheral ring remained as hinge after the popping event.
(E)-3-(2,3,4,5,6-Pentafluorostyryl)thiophene
Clément, Sébastien; Coulembier, Olivier; Meyer, Franck; Zeller, Matthias; Vande Velde, Christophe M. L.
2010-01-01
The reaction of thiophene-3-carboxaldehyde and perfluorobenzyltriphenylphosphonium bromide in the presence of sodium hydride gave the title compound, C12H5F5S, in 70% yield. The thiophene and perfluorophenyl groups form a dihedral angle of 5.4 (2)°. The structure is characterized by a head-to-tail organization in a columnar arrangement due to π–π interactions between the thiophene and pentafluorophenyl rings with centroid–centroid distances in the range 3.698 (2)–3.802 (2) Å. PMID:21580713
Ballestero-Martínez, Ernesto; Campos-Fernández, Cristian Saul; Soto-Tellini, Victor Hugo; Gonzalez-Montiel, Simplicio; Martínez-Otero, Diego
2013-06-01
In the title compound, {[Cu(C10H8N4)3(H2O)2](ClO4)2} n , the coordination environment of the cationic Cu(II) atom is distorted octa-hedral, formed by pairs of symmetry-equivalent 1,2-bis-(pyridin-4-yl)diazene ligands, bridging 1,2-bis-(pyridin-4-yl)diazene ligands and two non-equivalent water mol-ecules. The 1,2-bis-(pyridin-4-yl)diazene mol-ecules form polymeric chains parallel to [-101] via azo bonds which are situated about inversion centres. Since the Cu(II) atom is situated on a twofold rotation axis, the monomeric unit has point symmetry 2. The perchlorate anions are disordered in a 0.536 (9):0.464 (9) ratio and are acceptors of water H atoms in medium-strong O-H⋯O hydrogen bonds with graph set R 4 (4)(12). The water mol-ecules, which are coordinated to the Cu(II) atom and are hydrogen-bonded to the perchlorate anions, form columns parallel to [010]. A π-π inter-action [centroid-centroid distance = 3.913 (2) Å] occurs between pyridine rings, and weak C-H⋯O inter-actions also occur.
Boldyreva, E V; Shakhtshneider, T P; Vasilchenko, M A; Ahsbahs, H; Uchtmann, H
2000-04-01
The anisotropy of structural distortion of the monoclinic polymorph of acetaminophen induced by hydrostatic pressure up to 4.0 GPa was studied by single-crystal X-ray diffraction in a Merrill-Bassett diamond anvil cell (DAC). The space group (P2(1)/n) and the general structural pattern remained unchanged with pressure. Despite the overall decrease in the molar volume with pressure, the structure expanded in particular crystallographic directions. One of the linear cell parameters (c) passed through a minimum as the pressure increased. The intramolecular bond lengths changed only slightly with pressure, but the changes in the dihedral and torsion angles were very large. The compressibility of the intermolecular hydrogen bonds NH...O and OH...O was measured. NH...O bonds were shown to be slightly more compressible than OH...O bonds. The anisotropy of structural distortion was analysed in detail in relation to the pressure-induced changes in the molecular conformations, to the compression of the hydrogen-bond network, and to the changes in the orientation of molecules with respect to each other in the pleated sheets in the structure. Dirichlet domains were calculated in order to analyse the relative shifts of the centroids of the hydrogen-bonded cycles and of the centroids of the benzene rings with pressure.
Formation and behavior of counter-rotating vortex rings
NASA Astrophysics Data System (ADS)
Sadri, V.; Krueger, P. S.
2017-08-01
Concentric, counter-rotating vortex ring formation by transient jet ejection between concentric cylinders was studied numerically to determine the effects of cylinder gap ratio, Δ R/R, and jet stroke length-to-gap ratio, L/Δ R, on the evolution of the vorticity and the trajectories of the resulting axisymmetric vortex pair. The flow was simulated at a jet Reynolds number of 1000 (based on Δ R and the jet velocity), L/Δ R in the range 1-20, and Δ R/R in the range 0.05-0.25. Five characteristic flow evolution patterns were observed and classified based on L/Δ R and Δ R/R. The results showed that the relative position, relative strength, and radii of the vortex rings during and soon after formation played a prominent role in the evolution of the trajectories of their vorticity centroids at the later time. The conditions on relative strength of the vortices necessary for them to travel together as a pair following formation were studied, and factors affecting differences in vortex circulation following formation were investigated. In addition to the characteristics of the primary vortices, the stopping vortices had a strong influence on the initial vortex configuration and effected the long-time flow evolution at low L/Δ R and small Δ R/R. For long L/Δ R and small Δ R/R, shedding of vorticity was sometimes observed and this shedding was related to the Kelvin-Benjamin variational principle of maximal energy for steadily translating vortex rings.
Huang, Qiongyu; Sauer, John R.; Swatantran, Anu; Dubayah, Ralph
2016-01-01
Drastic shifts in species distributions are a cause of concern for ecologists. Such shifts pose great threat to biodiversity especially under unprecedented anthropogenic and natural disturbances. Many studies have documented recent shifts in species distributions. However, most of these studies are limited to regional scales, and do not consider the abundance structure within species ranges. Developing methods to detect systematic changes in species distributions over their full ranges is critical for understanding the impact of changing environments and for successful conservation planning. Here, we demonstrate a centroid model for range-wide analysis of distribution shifts using the North American Breeding Bird Survey. The centroid model is based on a hierarchical Bayesian framework which models population change within physiographic strata while accounting for several factors affecting species detectability. Yearly abundance-weighted range centroids are estimated. As case studies, we derive annual centroids for the Carolina wren and house finch in their ranges in the U.S. We further evaluate the first-difference correlation between species’ centroid movement and changes in winter severity, total population abundance. We also examined associations of change in centroids from sub-ranges. Change in full-range centroid movements of Carolina wren significantly correlate with snow cover days (r = −0.58). For both species, the full-range centroid shifts also have strong correlation with total abundance (r = 0.65, and 0.51 respectively). The movements of the full-range centroids of the two species are correlated strongly (up to r = 0.76) with that of the sub-ranges with more drastic population changes. Our study demonstrates the usefulness of centroids for analyzing distribution changes in a two-dimensional spatial context. Particularly it highlights applications that associate the centroid with factors such as environmental stressors, population characteristics, and progression of invasive species. Routine monitoring of changes in centroid will provide useful insights into long-term avian responses to environmental changes.
NASA Technical Reports Server (NTRS)
Dermott, S. F.
1984-01-01
Some of the problems of the shepherding satellite model of Goldreich ant tremaine are discussed. The following topics are studied: (1) optical depths of the all the observed narrow rings; (2) satellite and ring separation timescales; (3) ring edge sharpness; (4) shock formation in narrow rings; (5) the existence of small satellites near the Uranian rings; and (6) the apse and node alignments of the eccentric and inclined rings.
(E)-2-[2-(4-Carboxyphenyl)ethenyl]-8-hydroxyquinolin-1-ium chloride ethanol monosolvate
Schulze, Mathias M.; Seichter, Wilhelm; Weber, Edwin
2013-01-01
In the title compound, C18H14NO3 +·Cl−·CH3CH2OH, the dihedral angle formed by the mean planes of the quinolinium and benzene rings is 3.4 (1)°, while the carboxy substituent is tilted at an angle of 4.8 (1)° with respect to the benzene ring. There is a short N—H⋯O contact in the cation. In the crystal, due to the planar molecular geometry, two-dimensional aggregates are formed parallel to (221) via C—H⋯O, C—H⋯Cl, O—H⋯Cl and N—H⋯Cl hydrogen bonds. Interlayer association is accomplished by O—Hethanol⋯Cl and O—H⋯Oethanol hydrogen bonds and π–π stacking interactions [centroid–centroid distances vary from 3.6477 (12) to 3.8381 (11) Å]. A supramolecular three-dimensional architecture results from a stacked arrangement of layers comprising the ionic and hydrogen-bonded components. PMID:24454221
Philippe, Elisabeth; Manoury, Eric; Daran, Jean-Claude
2012-01-01
In the title compound, [Fe(C20H21NPS)(C17H14PS)]·CH2Cl2, both cyclopentadienyl (Cp) rings constituting the ferrocene unit are substituted by a sulfur-protected diphenylphosphine. One of the Cp ligands is additionally substituted by a dimethylaminomethyl group causing the chirality of the molecule. Surprisingly, although the synthetic procedure yielded the title compound as a racemic mixture, the reported crystal is enantiomerically pure with the R absolute configuration. The dimethylamino group is exo with respect to the Cp ring. Both diphenylthiophosphine groups are trans with respect to the centroid–Fe–centroid direction. Weak intramolecular C—H⋯S and C—H⋯π interactions between symmetry-related molecules are observed. The contribution of the disordered solvent was removed from the refinement using SQUEEZE in PLATON [Spek (2009 ▶). Acta Cryst. D65, 148–155]. PMID:22719348
2-Aminobenzoic acid–4-(pyridin-4-yldisulfanyl)pyridine (1/1)
Arman, Hadi D.; Kaulgud, Trupta; Tiekink, Edward R. T.
2011-01-01
The title 1:1 co-crystal, C7H7NO2·C10H8N2S2, features a highly twisted 4-(pyridin-4-yldisulfanyl)pyridine molecule [dihedral angle between the pyridine rings = 89.06 (10)°]. A small twist is evident in the 2-aminobenzoic acid molecule, with the C—C—C—O torsion angle being −7.7 (3)°. An N—H⋯O hydrogen bond occurs in the 2-aminobenzoic acid molecule. In the crystal, molecules are linked by O—H⋯N and N—H⋯N hydrogen bonds into a supramolecular chain along the b axis. These are connected into layers by π–π interactions occurring between pyridine rings [centroid–centroid distance = 3.8489 (15) Å]. The layers are connected along the a axis by C—H⋯O contacts. The crystal studied was a racemic twin. PMID:22199855
Aeroelastically coupled blades for vertical axis wind turbines
Paquette, Joshua; Barone, Matthew F.
2016-02-23
Various technologies described herein pertain to a vertical axis wind turbine blade configured to rotate about a rotation axis. The vertical axis wind turbine blade includes at least an attachment segment, a rear swept segment, and optionally, a forward swept segment. The attachment segment is contiguous with the forward swept segment, and the forward swept segment is contiguous with the rear swept segment. The attachment segment includes a first portion of a centroid axis, the forward swept segment includes a second portion of the centroid axis, and the rear swept segment includes a third portion of the centroid axis. The second portion of the centroid axis is angularly displaced ahead of the first portion of the centroid axis and the third portion of the centroid axis is angularly displaced behind the first portion of the centroid axis in the direction of rotation about the rotation axis.
A Doppler centroid estimation algorithm for SAR systems optimized for the quasi-homogeneous source
NASA Technical Reports Server (NTRS)
Jin, Michael Y.
1989-01-01
Radar signal processing applications frequently require an estimate of the Doppler centroid of a received signal. The Doppler centroid estimate is required for synthetic aperture radar (SAR) processing. It is also required for some applications involving target motion estimation and antenna pointing direction estimation. In some cases, the Doppler centroid can be accurately estimated based on available information regarding the terrain topography, the relative motion between the sensor and the terrain, and the antenna pointing direction. Often, the accuracy of the Doppler centroid estimate can be improved by analyzing the characteristics of the received SAR signal. This kind of signal processing is also referred to as clutterlock processing. A Doppler centroid estimation (DCE) algorithm is described which contains a linear estimator optimized for the type of terrain surface that can be modeled by a quasi-homogeneous source (QHS). Information on the following topics is presented: (1) an introduction to the theory of Doppler centroid estimation; (2) analysis of the performance characteristics of previously reported DCE algorithms; (3) comparison of these analysis results with experimental results; (4) a description and performance analysis of a Doppler centroid estimator which is optimized for a QHS; and (5) comparison of the performance of the optimal QHS Doppler centroid estimator with that of previously reported methods.
Analysis of k-means clustering approach on the breast cancer Wisconsin dataset.
Dubey, Ashutosh Kumar; Gupta, Umesh; Jain, Sonal
2016-11-01
Breast cancer is one of the most common cancers found worldwide and most frequently found in women. An early detection of breast cancer provides the possibility of its cure; therefore, a large number of studies are currently going on to identify methods that can detect breast cancer in its early stages. This study was aimed to find the effects of k-means clustering algorithm with different computation measures like centroid, distance, split method, epoch, attribute, and iteration and to carefully consider and identify the combination of measures that has potential of highly accurate clustering accuracy. K-means algorithm was used to evaluate the impact of clustering using centroid initialization, distance measures, and split methods. The experiments were performed using breast cancer Wisconsin (BCW) diagnostic dataset. Foggy and random centroids were used for the centroid initialization. In foggy centroid, based on random values, the first centroid was calculated. For random centroid, the initial centroid was considered as (0, 0). The results were obtained by employing k-means algorithm and are discussed with different cases considering variable parameters. The calculations were based on the centroid (foggy/random), distance (Euclidean/Manhattan/Pearson), split (simple/variance), threshold (constant epoch/same centroid), attribute (2-9), and iteration (4-10). Approximately, 92 % average positive prediction accuracy was obtained with this approach. Better results were found for the same centroid and the highest variance. The results achieved using Euclidean and Manhattan were better than the Pearson correlation. The findings of this work provided extensive understanding of the computational parameters that can be used with k-means. The results indicated that k-means has a potential to classify BCW dataset.
Noise estimation of beam position monitors at RHIC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, X.; Bai, M.; Lee, S. Y.
2014-02-10
Beam position monitors (BPM) are used to record the average orbits and transverse turn-by-turn displacements of the beam centroid motion. The Relativistic Hadron Ion Collider (RHIC) has 160 BPMs for each plane in each of the Blue and Yellow rings: 72 dual-plane BPMs in the insertion regions (IR) and 176 single-plane modules in the arcs. Each BPM is able to acquire 1024 or 4096 consecutive turn-by-turn beam positions. Inevitably, there are broadband noisy signals in the turn-by-turn data due to BPM electronics as well as other sources. A detailed study of the BPM noise performance is critical for reliable opticsmore » measurement and beam dynamics analysis based on turn-by-turn data.« less
Diaquabis[2-(2-hydroxyethyl)pyridine-κ2 N,O]cobalt(II) dichloride
Zeghouan, Ouahida; Guenifa, Fatiha; Hadjadj, Nasreddine; Bendjeddou, Lamia; Merazig, Hocine
2013-01-01
In the title salt, [Co(C7H9NO)2(H2O)2]Cl2, the CoII cation, located on an inversion center, is N,O-chelated by two hydroxyethylpyridine ligands and coordinated by two water molecules in a distorted O4N2 octahedral geometry. In the crystal, the Cl− anions link with the complex cations via O—H⋯Cl hydrogen bonds, forming a three-dimensional supramolecular architecture. π–π stacking is observed between the pyridine rings of adjacent molecules [centroid–centroid distance = 3.5810 (11) Å]. PMID:24109269
Atria, Ana María; Garland, Maria Teresa; Baggio, Ricardo
2014-01-01
The asymmetric unit of the title compound, C8H9NO2·H2O consists of an isolated 4-(ammoniomethyl)benzoate zwitterion derived from 4-aminomethylbenzoic acid through the migration of the acidic proton, together with a water molecule of crystallization that is disordered over three sites with occupancy ratios (0.50:0.35:0.15). In the crystal structure, N—H⋯O hydrogen bonds together with π–π stacking of the benzene rings [centroid–centroid distance = 3.8602 (18) Å] result in a strongly linked, compact three-dimensional structure. PMID:25484753
The betainic form of (imidazol-2-yl)phenylphosphinic acid hydrate
Kunz, Peter C.; Frank, Walter
2010-01-01
Single crystals of the title compound, (imidazolium-2-yl)phenylphosphinate monohydrate, C9H9N2O2·H2O, were obtained from methanol/water after deprotection and oxidation of bis(1-diethoxymethylimidazol-2-yl)phenylphosphane. In the structure, several N–H⋯O and P—O⋯H–O hydrogen bonds are found. π–π interactions between the protonated imidazolyl rings [centroid–centroid distance = 3.977 (2) Å] help to establish the crystal packing. The hydrate water molecule builds hydrogen bridges to three molecules of the phosphinic acid by the O and both H atoms. PMID:21579513
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, M., E-mail: chengm@ihpc.a-star.edu.sg; Lou, J.; Lim, T. T.
A recent theoretical study [Borisov, Kilin, and Mamaev, “The dynamics of vortex rings: Leapfrogging, choreographies and the stability problem,” Regular Chaotic Dyn. 18, 33 (2013); Borisov et al., “The dynamics of vortex rings: Leapfrogging in an ideal and viscous fluid,” Fluid Dyn. Res. 46, 031415 (2014)] shows that when three coaxial vortex rings travel in the same direction in an incompressible ideal fluid, each of the vortex rings alternately slips through (or leapfrogs) the other two ahead. Here, we use a lattice Boltzmann method to simulate viscous vortex rings with an identical initial circulation, radius, and separation distance with themore » aim of studying how viscous effect influences the outcomes of the leapfrogging process. For the case of two identical vortex rings, our computation shows that leapfrogging can be achieved only under certain favorable conditions, which depend on Reynolds number, vortex core size, and initial separation distance between the two rings. For the case of three coaxial vortex rings, the result differs from the inviscid model and shows that the second vortex ring always slips through the leading ring first, followed by the third ring slipping through the other two ahead. A simple physical model is proposed to explain the observed behavior.« less
CCD centroiding analysis for Nano-JASMINE observation data
NASA Astrophysics Data System (ADS)
Niwa, Yoshito; Yano, Taihei; Araki, Hiroshi; Gouda, Naoteru; Kobayashi, Yukiyasu; Yamada, Yoshiyuki; Tazawa, Seiichi; Hanada, Hideo
2010-07-01
Nano-JASMINE is a very small satellite mission for global space astrometry with milli-arcsecond accuracy, which will be launched in 2011. In this mission, centroids of stars in CCD image frames are estimated with sub-pixel accuracy. In order to realize such a high precision centroiding an algorithm utilizing a least square method is employed. One of the advantages is that centroids can be calculated without explicit assumption of the point spread functions of stars. CCD centroiding experiment has been performed to investigate whether this data analysis is available, and centroids of artificial star images on a CCD are determined with a precision of less than 0.001 pixel. This result indicates parallaxes of stars within 300 pc from Sun can be observed in Nano-JASMINE.
The molecular mechanism of fullerene-inhibited aggregation of Alzheimer's β-amyloid peptide fragment
NASA Astrophysics Data System (ADS)
Xie, Luogang; Luo, Yin; Lin, Dongdong; Xi, Wenhui; Yang, Xinju; Wei, Guanghong
2014-07-01
Amyloid deposits are implicated in the pathogenesis of many neurodegenerative diseases such as Alzheimer's disease (AD). The inhibition of β-sheet formation has been considered as the primary therapeutic strategy for AD. Increasing data show that nanoparticles can retard or promote the fibrillation of amyloid-β (Aβ) peptides depending on the physicochemical properties of nanoparticles, however, the underlying molecular mechanism remains elusive. In this study, our replica exchange molecular dynamics (REMD) simulations show that fullerene nanoparticle - C60 (with a fullerene : peptide molar ratio greater than 1 : 8) can dramatically prevent β-sheet formation of Aβ(16-22) peptides. Atomic force microscopy (AFM) experiments further confirm the inhibitory effect of C60 on Aβ(16-22) fibrillation, in support of our REMD simulations. An important finding from our REMD simulations is that fullerene C180, albeit with the same number of carbon atoms as three C60 molecules (3C60) and smaller surface area than 3C60, displays an unexpected stronger inhibitory effect on the β-sheet formation of Aβ(16-22) peptides. A detailed analysis of the fullerene-peptide interaction reveals that the stronger inhibition of β-sheet formation by C180 results from the strong hydrophobic and aromatic-stacking interactions of the fullerene hexagonal rings with the Phe rings relative to the pentagonal rings. The strong interactions between the fullerene nanoparticles and Aβ(16-22) peptides significantly weaken the peptide-peptide interaction that is important for β-sheet formation, thus retarding Aβ(16-22) fibrillation. Overall, our studies reveal the significant role of fullerene hexagonal rings in the inhibition of Aβ(16-22) fibrillation and provide novel insight into the development of drug candidates against Alzheimer's disease.Amyloid deposits are implicated in the pathogenesis of many neurodegenerative diseases such as Alzheimer's disease (AD). The inhibition of β-sheet formation has been considered as the primary therapeutic strategy for AD. Increasing data show that nanoparticles can retard or promote the fibrillation of amyloid-β (Aβ) peptides depending on the physicochemical properties of nanoparticles, however, the underlying molecular mechanism remains elusive. In this study, our replica exchange molecular dynamics (REMD) simulations show that fullerene nanoparticle - C60 (with a fullerene : peptide molar ratio greater than 1 : 8) can dramatically prevent β-sheet formation of Aβ(16-22) peptides. Atomic force microscopy (AFM) experiments further confirm the inhibitory effect of C60 on Aβ(16-22) fibrillation, in support of our REMD simulations. An important finding from our REMD simulations is that fullerene C180, albeit with the same number of carbon atoms as three C60 molecules (3C60) and smaller surface area than 3C60, displays an unexpected stronger inhibitory effect on the β-sheet formation of Aβ(16-22) peptides. A detailed analysis of the fullerene-peptide interaction reveals that the stronger inhibition of β-sheet formation by C180 results from the strong hydrophobic and aromatic-stacking interactions of the fullerene hexagonal rings with the Phe rings relative to the pentagonal rings. The strong interactions between the fullerene nanoparticles and Aβ(16-22) peptides significantly weaken the peptide-peptide interaction that is important for β-sheet formation, thus retarding Aβ(16-22) fibrillation. Overall, our studies reveal the significant role of fullerene hexagonal rings in the inhibition of Aβ(16-22) fibrillation and provide novel insight into the development of drug candidates against Alzheimer's disease. Electronic supplementary information (ESI) available: The description of REMD simulations, analysis parameters, and AFM imaging of Aβ(16-22) aggregation with and without C60 nanoparticles, and three figures. The figures show the initial states, the convergence check for all the REMD runs, the PDF of the centroid distance (d) between the aromatic rings of Phe and its closest carbon ring, and the PDF of the angle between the two rings with a centroid distance of d <= 0.65 nm. See DOI: 10.1039/c4nr01005a
Yusof, Enis Nadia Md; Ravoof, Thahira Begum S A; Tahir, Mohamed Ibrahim Mohamed; Tiekink, Edward R T
2015-04-01
In the title compound, C25H26N2O2S2, the central CN2S2 atoms are almost coplanar (r.m.s. deviation = 0.0058 Å). One phenyl ring clearly lies to one side of the central plane, while the other is oriented in the plane but splayed. Despite the different relative orientations, the phenyl rings form similar dihedral angles of 64.90 (3) and 70.06 (3)° with the central plane, and 63.28 (4)° with each other. The benzene ring is twisted with respect to the central plane, forming a dihedral angle of 13.17 (7)°. The S2C=N, N-N and N-N=C bond lengths of 1.2919 (19), 1.4037 (17) and 1.2892 (19) Å, respectively, suggest limited conjugation over these atoms; the configuration about the N-N=C bond is E. An intra-molecular O-H⋯N hydrogen bond is noted. In the crystal, phen-yl-meth-oxy C-H⋯O and phen-yl-phenyl C-H⋯π inter-actions lead to supra-molecular double chains parallel to the b axis. These are connected into a layer via meth-yl-phenyl C-H⋯π inter-actions, and layers stack along the a axis, being connected by weak π-π inter-actions between phenyl rings [inter-centroid distance = 3.9915 (9) Å] so that a three-dimensional architecture ensues.
Marsalek, Ondrej; Markland, Thomas E
2016-02-07
Path integral molecular dynamics simulations, combined with an ab initio evaluation of interactions using electronic structure theory, incorporate the quantum mechanical nature of both the electrons and nuclei, which are essential to accurately describe systems containing light nuclei. However, path integral simulations have traditionally required a computational cost around two orders of magnitude greater than treating the nuclei classically, making them prohibitively costly for most applications. Here we show that the cost of path integral simulations can be dramatically reduced by extending our ring polymer contraction approach to ab initio molecular dynamics simulations. By using density functional tight binding as a reference system, we show that our ring polymer contraction scheme gives rapid and systematic convergence to the full path integral density functional theory result. We demonstrate the efficiency of this approach in ab initio simulations of liquid water and the reactive protonated and deprotonated water dimer systems. We find that the vast majority of the nuclear quantum effects are accurately captured using contraction to just the ring polymer centroid, which requires the same number of density functional theory calculations as a classical simulation. Combined with a multiple time step scheme using the same reference system, which allows the time step to be increased, this approach is as fast as a typical classical ab initio molecular dynamics simulation and 35× faster than a full path integral calculation, while still exactly including the quantum sampling of nuclei. This development thus offers a route to routinely include nuclear quantum effects in ab initio molecular dynamics simulations at negligible computational cost.
Assembling a ring-shaped crystal in a microfabricated surface ion trap
Stick, Daniel Lynn; Tabakov, Boyan; Benito, Francisco; ...
2015-09-01
We report on experiments with a microfabricated surface trap designed for confining a chain of ions in a ring. Uniform ion separation over most of the ring is achieved with a rotationally symmetric design and by measuring and suppressing undesired electric fields. After reducing stray fields, the ions are confined primarily by a radio-frequency pseudopotential and their mutual Coulomb repulsion. As a result, approximately 400 40Ca + ions with an average separation of 9 μm comprise the ion crystal.
Assembling a ring-shaped crystal in a microfabricated surface ion trap
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stick, Daniel Lynn; Tabakov, Boyan; Benito, Francisco
We report on experiments with a microfabricated surface trap designed for confining a chain of ions in a ring. Uniform ion separation over most of the ring is achieved with a rotationally symmetric design and by measuring and suppressing undesired electric fields. After reducing stray fields, the ions are confined primarily by a radio-frequency pseudopotential and their mutual Coulomb repulsion. As a result, approximately 400 40Ca + ions with an average separation of 9 μm comprise the ion crystal.
Ring Shake in Eastern Hemlock: Frequency and Relationship to Tree Attributes
John E. Baumgras; Paul E. Sendak; David L. Sonderman; David L. Sonderman
2000-01-01
Ring shake is a barrier to improved utilization of eastern hemlock, an important component of the total softwood timber resource in the Eastern United States and Canada. Ring shake is the lengthwise separation of wood that occurs between and parallel to growth rings, diminishing lumber yields and values. Evaluating the potential for ring shake is essential to improving...
Ring shake in eastern hemlock: frequency and relationship to tree attributes
John E. Baumgras; Paul E. Sendak; David L. Sonderman
2000-01-01
Ring shake is a barrier to improved utilization of eastern hemlock, an important component of the total softwood timber resource in the Eastern United States and Canada. Ring shake is the lengthwise separation of wood that occurs between and parallel to growth rings, diminishing lumber yields and values. Evaluating the potential for ring shake is essential to improving...
Approximating Matsubara dynamics using the planetary model: Tests on liquid water and ice
NASA Astrophysics Data System (ADS)
Willatt, Michael J.; Ceriotti, Michele; Althorpe, Stuart C.
2018-03-01
Matsubara dynamics is the quantum-Boltzmann-conserving classical dynamics which remains when real-time coherences are taken out of the exact quantum Liouvillian [T. J. H. Hele et al., J. Chem. Phys. 142, 134103 (2015)]; because of a phase-term, it cannot be used as a practical method without further approximation. Recently, Smith et al. [J. Chem. Phys. 142, 244112 (2015)] developed a "planetary" model dynamics which conserves the Feynman-Kleinert (FK) approximation to the quantum-Boltzmann distribution. Here, we show that for moderately anharmonic potentials, the planetary dynamics gives a good approximation to Matsubara trajectories on the FK potential surface by decoupling the centroid trajectory from the locally harmonic Matsubara fluctuations, which reduce to a single phase-less fluctuation particle (the "planet"). We also show that the FK effective frequency can be approximated by a direct integral over these fluctuations, obviating the need to solve iterative equations. This modification, together with use of thermostatted ring-polymer molecular dynamics, allows us to test the planetary model on water (gas-phase, liquid, and ice) using the q-TIP4P/F potential surface. The "planetary" fluctuations give a poor approximation to the rotational/librational bands in the infrared spectrum, but a good approximation to the bend and stretch bands, where the fluctuation lineshape is found to be motionally narrowed by the vibrations of the centroid.
Chebout, Oussama; Boudraa, Mhamed; Bouacida, Sofiane; Merazig, Hocine; Boudaren, Chaouki
2016-01-01
The title compound, {(C7H6NS)2[Sb2Cl6O]}n, contains two benzothiazolidium cations and one tri-μ-chlorido-trichlorido-μ-oxido-diantimonate(III) anion. The structure of the inorganic cation may be described as as being built up from two polyhedra, i.e. a square-pyramidal SbCl4O and a distorted octahedral SbOCl5 unit, sharing a common face (comprising the O atom and two Cl atoms). The two benzothiazole cations are quasi-planar and subtend a dihedral angle of 19.93 (5)°. The crystal packing can be described by alternating (100) layers and [001] chains of the organic cations and inorganic anions connected through an extensive three-dimensional network of N—H⋯Cl, C—H⋯O and C—H⋯Cl hydrogen bonds. This is consolidated by slipped π–π stacking, with centroid-to-centroid distances between the benzothiazole rings of 3.7111 (18)–3.8452 (16) Å. These interactions link the molecules within the layers and also link the layers together and reinforce the cohesion of the ionic structure. PMID:26958390
Approximating Matsubara dynamics using the planetary model: Tests on liquid water and ice.
Willatt, Michael J; Ceriotti, Michele; Althorpe, Stuart C
2018-03-14
Matsubara dynamics is the quantum-Boltzmann-conserving classical dynamics which remains when real-time coherences are taken out of the exact quantum Liouvillian [T. J. H. Hele et al., J. Chem. Phys. 142, 134103 (2015)]; because of a phase-term, it cannot be used as a practical method without further approximation. Recently, Smith et al. [J. Chem. Phys. 142, 244112 (2015)] developed a "planetary" model dynamics which conserves the Feynman-Kleinert (FK) approximation to the quantum-Boltzmann distribution. Here, we show that for moderately anharmonic potentials, the planetary dynamics gives a good approximation to Matsubara trajectories on the FK potential surface by decoupling the centroid trajectory from the locally harmonic Matsubara fluctuations, which reduce to a single phase-less fluctuation particle (the "planet"). We also show that the FK effective frequency can be approximated by a direct integral over these fluctuations, obviating the need to solve iterative equations. This modification, together with use of thermostatted ring-polymer molecular dynamics, allows us to test the planetary model on water (gas-phase, liquid, and ice) using the q-TIP4P/F potential surface. The "planetary" fluctuations give a poor approximation to the rotational/librational bands in the infrared spectrum, but a good approximation to the bend and stretch bands, where the fluctuation lineshape is found to be motionally narrowed by the vibrations of the centroid.
Shrinkage simplex-centroid designs for a quadratic mixture model
NASA Astrophysics Data System (ADS)
Hasan, Taha; Ali, Sajid; Ahmed, Munir
2018-03-01
A simplex-centroid design for q mixture components comprises of all possible subsets of the q components, present in equal proportions. The design does not contain full mixture blends except the overall centroid. In real-life situations, all mixture blends comprise of at least a minimum proportion of each component. Here, we introduce simplex-centroid designs which contain complete blends but with some loss in D-efficiency and stability in G-efficiency. We call such designs as shrinkage simplex-centroid designs. Furthermore, we use the proposed designs to generate component-amount designs by their projection.
Ruffolo, R R; Yaden, E L; Waddell, J E; Dillard, R D
1980-09-01
The pharmacological significance of the carbon bridge separating the imidazoline and phenyl rings of tolazoline-like alpha adrenergic imidazolines has been investigated. Extending the carbon bridge to two carbon atoms, or deleting the carbon bridge, lowers affinity of the imidazolines for the alpha receptor and markedly decreases or abolishes efficacy (i.e., agonist activity), suggesting that a single carbon atome optimallyu separates the phenyl and imidazoline rings. Although one carbon is optimal for alpha adrenergic activity, this particular atom does not appear to be essential since nitrogen may substitute for carbon with no marked or consistent changes observed in affinity or efficacy. Hydroxylation of the carbon bridge decreases affinity for the receptor approximately 10-fold but does not alter efficacy, whereas a similar substitution made in the norepinephrine-series of phenethylamines markedly increases affinity (Patil et al., 1974). With both the imidazolines and phenethylamines, this carbon atom may stereoselectively influence binding to the receptor. These results suggest that the carbon atom bridging the phenyl and imidazoline rings of tolazoline-like imidazolines serves only to provide optimal separation between these rings and does not contribute directly to the binding process. It is proposed that alpha adrenergic imidazolines interact differently with the alpha adrenergic receptor than the norepinephrine-like phenethylamines.
NASA Technical Reports Server (NTRS)
Dietrich, David E.; Mehra, Avichal; Haney, Robert L.; Bowman, Malcolm J.; Tseng, Yu-Heng
2003-01-01
Gulf Stream (GS) separation near its observed Cape Hatteras (CH) separation location, and its ensuing path and dynamics, is a challenging ocean modeling problem. If a model GS separates much farther north than CH, then northward GS meanders, which pinch off warm core eddies (rings), are not possible or are strongly constrained by the Grand Banks shelfbreak. Cold core rings pinch off the southward GS meanders. The rings are often re-absorbed by the GS. The important warm core rings enhance heat exchange and, especially, affect the northern GS branch after GS bifurcation near the New England Seamount Chain. This northern branch gains heat by contact with the southern branch water upstream of bifurcation, and warms the Arctic Ocean and northern seas, thus playing a major role in ice dynamics, thermohaline circulation and possible global climate warming. These rings transport heat northward between the separated GS and shelf slope/Deep Western Boundary Current system (DWBC). This region has nearly level time mean isopycnals. The eddy heat transport convergence/divergence enhances the shelfbreak and GS front intensities and thus also increases watermass transformation. The fronts are maintained by warm advection by the Florida Current and cool advection by the DWBC. Thus, the GS interaction with the DWBC through the intermediate eddy field is climatologically important.
Centroid tracker and aimpoint selection
NASA Astrophysics Data System (ADS)
Venkateswarlu, Ronda; Sujata, K. V.; Venkateswara Rao, B.
1992-11-01
Autonomous fire and forget weapons have gained importance to achieve accurate first pass kill by hitting the target at an appropriate aim point. Centroid of the image presented by a target in the field of view (FOV) of a sensor is generally accepted as the aimpoint for these weapons. Centroid trackers are applicable only when the target image is of significant size in the FOV of the sensor but does not overflow the FOV. But as the range between the sensor and the target decreases the image of the target will grow and finally overflow the FOV at close ranges and the centroid point on the target will keep on changing which is not desirable. And also centroid need not be the most desired/vulnerable point on the target. For hardened targets like tanks, proper aimpoint selection and guidance up to almost zero range is essential to achieve maximum kill probability. This paper presents a centroid tracker realization. As centroid offers a stable tracking point, it can be used as a reference to select the proper aimpoint. The centroid and the desired aimpoint are simultaneously tracked to avoid jamming by flares and also to take care of the problems arising due to image overflow. Thresholding of gray level image to binary image is a crucial step in centroid tracker. Different thresholding algorithms are discussed and a suitable algorithm is chosen. The real-time hardware implementation of centroid tracker with a suitable thresholding technique is presented including the interfacing to a multimode tracker for autonomous target tracking and aimpoint selection. The hardware uses very high speed arithmetic and programmable logic devices to meet the speed requirement and a microprocessor based subsystem for the system control. The tracker has been evaluated in a field environment.
Yin, Xiaoming; Li, Xiang; Zhao, Liping; Fang, Zhongping
2009-11-10
A Shack-Hartmann wavefront sensor (SWHS) splits the incident wavefront into many subsections and transfers the distorted wavefront detection into the centroid measurement. The accuracy of the centroid measurement determines the accuracy of the SWHS. Many methods have been presented to improve the accuracy of the wavefront centroid measurement. However, most of these methods are discussed from the point of view of optics, based on the assumption that the spot intensity of the SHWS has a Gaussian distribution, which is not applicable to the digital SHWS. In this paper, we present a centroid measurement algorithm based on the adaptive thresholding and dynamic windowing method by utilizing image processing techniques for practical application of the digital SHWS in surface profile measurement. The method can detect the centroid of each focal spot precisely and robustly by eliminating the influence of various noises, such as diffraction of the digital SHWS, unevenness and instability of the light source, as well as deviation between the centroid of the focal spot and the center of the detection area. The experimental results demonstrate that the algorithm has better precision, repeatability, and stability compared with other commonly used centroid methods, such as the statistical averaging, thresholding, and windowing algorithms.
Nidheesh, N; Abdul Nazeer, K A; Ameer, P M
2017-12-01
Clustering algorithms with steps involving randomness usually give different results on different executions for the same dataset. This non-deterministic nature of algorithms such as the K-Means clustering algorithm limits their applicability in areas such as cancer subtype prediction using gene expression data. It is hard to sensibly compare the results of such algorithms with those of other algorithms. The non-deterministic nature of K-Means is due to its random selection of data points as initial centroids. We propose an improved, density based version of K-Means, which involves a novel and systematic method for selecting initial centroids. The key idea of the algorithm is to select data points which belong to dense regions and which are adequately separated in feature space as the initial centroids. We compared the proposed algorithm to a set of eleven widely used single clustering algorithms and a prominent ensemble clustering algorithm which is being used for cancer data classification, based on the performances on a set of datasets comprising ten cancer gene expression datasets. The proposed algorithm has shown better overall performance than the others. There is a pressing need in the Biomedical domain for simple, easy-to-use and more accurate Machine Learning tools for cancer subtype prediction. The proposed algorithm is simple, easy-to-use and gives stable results. Moreover, it provides comparatively better predictions of cancer subtypes from gene expression data. Copyright © 2017 Elsevier Ltd. All rights reserved.
Liu, Tao; Thibos, Larry; Marin, Gildas; Hernandez, Martha
2014-01-01
Conventional aberration analysis by a Shack-Hartmann aberrometer is based on the implicit assumption that an injected probe beam reflects from a single fundus layer. In fact, the biological fundus is a thick reflector and therefore conventional analysis may produce errors of unknown magnitude. We developed a novel computational method to investigate this potential failure of conventional analysis. The Shack-Hartmann wavefront sensor was simulated by computer software and used to recover by two methods the known wavefront aberrations expected from a population of normally-aberrated human eyes and bi-layer fundus reflection. The conventional method determines the centroid of each spot in the SH data image, from which wavefront slopes are computed for least-squares fitting with derivatives of Zernike polynomials. The novel 'global' method iteratively adjusted the aberration coefficients derived from conventional centroid analysis until the SH image, when treated as a unitary picture, optimally matched the original data image. Both methods recovered higher order aberrations accurately and precisely, but only the global algorithm correctly recovered the defocus coefficients associated with each layer of fundus reflection. The global algorithm accurately recovered Zernike coefficients for mean defocus and bi-layer separation with maximum error <0.1%. The global algorithm was robust for bi-layer separation up to 2 dioptres for a typical SH wavefront sensor design. For 100 randomly generated test wavefronts with 0.7 D axial separation, the retrieved mean axial separation was 0.70 D with standard deviations (S.D.) of 0.002 D. Sufficient information is contained in SH data images to measure the dioptric thickness of dual-layer fundus reflection. The global algorithm is superior since it successfully recovered the focus value associated with both fundus layers even when their separation was too small to produce clearly separated spots, while the conventional analysis misrepresents the defocus component of the wavefront aberration as the mean defocus for the two reflectors. Our novel global algorithm is a promising method for SH data image analysis in clinical and visual optics research for human and animal eyes. © 2013 The Authors Ophthalmic & Physiological Optics © 2013 The College of Optometrists.
Centroid of a Polygon--Three Views.
ERIC Educational Resources Information Center
Shilgalis, Thomas W.; Benson, Carol T.
2001-01-01
Investigates the idea of the center of mass of a polygon and illustrates centroids of polygons. Connects physics, mathematics, and technology to produces results that serve to generalize the notion of centroid to polygons other than triangles. (KHR)
Comparison of performance of some common Hartmann-Shack centroid estimation methods
NASA Astrophysics Data System (ADS)
Thatiparthi, C.; Ommani, A.; Burman, R.; Thapa, D.; Hutchings, N.; Lakshminarayanan, V.
2016-03-01
The accuracy of the estimation of optical aberrations by measuring the distorted wave front using a Hartmann-Shack wave front sensor (HSWS) is mainly dependent upon the measurement accuracy of the centroid of the focal spot. The most commonly used methods for centroid estimation such as the brightest spot centroid; first moment centroid; weighted center of gravity and intensity weighted center of gravity, are generally applied on the entire individual sub-apertures of the lens let array. However, these processes of centroid estimation are sensitive to the influence of reflections, scattered light, and noise; especially in the case where the signal spot area is smaller compared to the whole sub-aperture area. In this paper, we give a comparison of performance of the commonly used centroiding methods on estimation of optical aberrations, with and without the use of some pre-processing steps (thresholding, Gaussian smoothing and adaptive windowing). As an example we use the aberrations of the human eye model. This is done using the raw data collected from a custom made ophthalmic aberrometer and a model eye to emulate myopic and hyper-metropic defocus values up to 2 Diopters. We show that the use of any simple centroiding algorithm is sufficient in the case of ophthalmic applications for estimating aberrations within the typical clinically acceptable limits of a quarter Diopter margins, when certain pre-processing steps to reduce the impact of external factors are used.
Vortex Ring Interaction With a Coaxially Aligned Cylinderical Rod
NASA Astrophysics Data System (ADS)
Arakeri, Jaywant H.; Rajmanoharan, P.; Koochesfahani, Manoochehr
1998-11-01
We present results of experiments of a fully developed vortex ring interacting with a cylinderical rod, having a rounded nose, placed coaxially in line with the motion of the ring. The pressure field of the translating ring causes unsteady boundary layer separation and results in the formation of one or more ( secondary ) vortex rings, that subsequently interact. The nature and strength of the interaction depends on the ratio of the cylinder diameter to the ring diameter. For the larger diameter cylinders the vortex ring travels a few ring diameters before it breaks up. For the smaller diameter cylinders the vortex ring speed decreases slowly and, simultaneously, its diameter increases.
Star sub-pixel centroid calculation based on multi-step minimum energy difference method
NASA Astrophysics Data System (ADS)
Wang, Duo; Han, YanLi; Sun, Tengfei
2013-09-01
The star's centroid plays a vital role in celestial navigation, star images which be gotten during daytime, due to the strong sky background, have a low SNR, and the star objectives are nearly submerged in the background, takes a great trouble to the centroid localization. Traditional methods, such as a moment method, weighted centroid calculation method is simple but has a big error, especially in the condition of a low SNR. Gaussian method has a high positioning accuracy, but the computational complexity. Analysis of the energy distribution in star image, a location method for star target centroids based on multi-step minimum energy difference is proposed. This method uses the linear superposition to narrow the centroid area, in the certain narrow area uses a certain number of interpolation to pixels for the pixels' segmentation, and then using the symmetry of the stellar energy distribution, tentatively to get the centroid position: assume that the current pixel is the star centroid position, and then calculates and gets the difference of the sum of the energy which in the symmetric direction(in this paper we take the two directions of transverse and longitudinal) and the equal step length(which can be decided through different conditions, the paper takes 9 as the step length) of the current pixel, and obtain the centroid position in this direction when the minimum difference appears, and so do the other directions, then the validation comparison of simulated star images, and compare with several traditional methods, experiments shows that the positioning accuracy of the method up to 0.001 pixel, has good effect to calculate the centroid of low SNR conditions; at the same time, uses this method on a star map which got at the fixed observation site during daytime in near-infrared band, compare the results of the paper's method with the position messages which were known of the star, it shows that :the multi-step minimum energy difference method achieves a better effect.
A recursive technique for adaptive vector quantization
NASA Technical Reports Server (NTRS)
Lindsay, Robert A.
1989-01-01
Vector Quantization (VQ) is fast becoming an accepted, if not preferred method for image compression. The VQ performs well when compressing all types of imagery including Video, Electro-Optical (EO), Infrared (IR), Synthetic Aperture Radar (SAR), Multi-Spectral (MS), and digital map data. The only requirement is to change the codebook to switch the compressor from one image sensor to another. There are several approaches for designing codebooks for a vector quantizer. Adaptive Vector Quantization is a procedure that simultaneously designs codebooks as the data is being encoded or quantized. This is done by computing the centroid as a recursive moving average where the centroids move after every vector is encoded. When computing the centroid of a fixed set of vectors the resultant centroid is identical to the previous centroid calculation. This method of centroid calculation can be easily combined with VQ encoding techniques. The defined quantizer changes after every encoded vector by recursively updating the centroid of minimum distance which is the selected by the encoder. Since the quantizer is changing definition or states after every encoded vector, the decoder must now receive updates to the codebook. This is done as side information by multiplexing bits into the compressed source data.
Crystal structure of (E)-4-hy-droxy-N'-(3-meth-oxy-benzyl-idene)benzohydrazide.
Chantrapromma, Suchada; Prachumrat, Patcharawadee; Ruanwas, Pumsak; Boonnak, Nawong; Kassim, Mohammad B
2016-09-01
The title compound, C 15 H 14 N 2 O 3 , crystallizes with two independent mol-ecules ( A and B ) in the asymmetric unit that differ in the orientation of the 3-meth-oxy-phenyl group with respect to the methyl-idenebenzohydrazide unit. The dihedral angles between the two benzene rings are 24.02 (10) and 29.30 (9)° in mol-ecules A and B , respectively. In mol-ecule A , the meth-oxy group is twisted slightly relative to its bound benzene ring, with a C meth-yl -O-C-C torsion angle of 14.2 (3)°, whereas it is almost co-planar in mol-ecule B , where the corresponding angle is -2.4 (3)°. In the crystal, the mol-ecules are linked by N-H⋯O, O-H⋯N and O-H⋯O hydrogen bonds, as well as by weak C-H⋯O inter-actions, forming sheets parallel to the bc plane. The N-H⋯O hydrogen bond and weak C-H⋯O inter-action link different mol-ecules ( A ⋯ B ) whereas both O-H⋯N and O-H⋯O hydrogen bonds link like mol-ecules ( A ⋯ A ) and ( B ⋯ B ). Pairs of inversion-related B mol-ecules are stacked approximately along the a axis by π-π inter-actions in which the distance between the centroids of the 3-meth-oxy-phenyl rings is 3.5388 (12) Å. The B mol-ecules also participate in weak C-H⋯π inter-actions between the 4-hy-droxy-phenyl and the 3-meth-oxy-phenyl rings.
Yusof, Enis Nadia Md; Ravoof, Thahira Begum S. A.; Tahir, Mohamed Ibrahim Mohamed; Tiekink, Edward R. T.
2015-01-01
In the title compound, C25H26N2O2S2, the central CN2S2 atoms are almost coplanar (r.m.s. deviation = 0.0058 Å). One phenyl ring clearly lies to one side of the central plane, while the other is oriented in the plane but splayed. Despite the different relative orientations, the phenyl rings form similar dihedral angles of 64.90 (3) and 70.06 (3)° with the central plane, and 63.28 (4)° with each other. The benzene ring is twisted with respect to the central plane, forming a dihedral angle of 13.17 (7)°. The S2C=N, N—N and N—N=C bond lengths of 1.2919 (19), 1.4037 (17) and 1.2892 (19) Å, respectively, suggest limited conjugation over these atoms; the configuration about the N—N=C bond is E. An intramolecular O—H⋯N hydrogen bond is noted. In the crystal, phenyl–methoxy C—H⋯O and phenyl–phenyl C—H⋯π interactions lead to supramolecular double chains parallel to the b axis. These are connected into a layer via methyl–phenyl C—H⋯π interactions, and layers stack along the a axis, being connected by weak π–π interactions between phenyl rings [inter-centroid distance = 3.9915 (9) Å] so that a three-dimensional architecture ensues. PMID:26029435
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marsalek, Ondrej; Markland, Thomas E., E-mail: tmarkland@stanford.edu
Path integral molecular dynamics simulations, combined with an ab initio evaluation of interactions using electronic structure theory, incorporate the quantum mechanical nature of both the electrons and nuclei, which are essential to accurately describe systems containing light nuclei. However, path integral simulations have traditionally required a computational cost around two orders of magnitude greater than treating the nuclei classically, making them prohibitively costly for most applications. Here we show that the cost of path integral simulations can be dramatically reduced by extending our ring polymer contraction approach to ab initio molecular dynamics simulations. By using density functional tight binding asmore » a reference system, we show that our ring polymer contraction scheme gives rapid and systematic convergence to the full path integral density functional theory result. We demonstrate the efficiency of this approach in ab initio simulations of liquid water and the reactive protonated and deprotonated water dimer systems. We find that the vast majority of the nuclear quantum effects are accurately captured using contraction to just the ring polymer centroid, which requires the same number of density functional theory calculations as a classical simulation. Combined with a multiple time step scheme using the same reference system, which allows the time step to be increased, this approach is as fast as a typical classical ab initio molecular dynamics simulation and 35× faster than a full path integral calculation, while still exactly including the quantum sampling of nuclei. This development thus offers a route to routinely include nuclear quantum effects in ab initio molecular dynamics simulations at negligible computational cost.« less
A Navier-Stokes Solution of Hull-Ring Wing-Thruster Interaction
NASA Technical Reports Server (NTRS)
Yang, C.-I.; Hartwich, P.; Sundaram, P.
1991-01-01
Navier-Stokes simulations of high Reynolds number flow around an axisymmetric body supported in a water tunnel were made. The numerical method is based on a finite-differencing high resolution second-order accurate implicit upwind scheme. Four different configurations were investigated, these are: (1) barebody; (2) body with an operating propeller; (3) body with a ring wing; and (4) body with a ring wing and an operating propeller. Pressure and velocity components near the stern region were obtained computationally and are shown to compare favorably with the experimental data. The method correctly predicts the existence and extent of stern flow separation for the barebody and the absence of flow separation for the three other configurations with ring wing and/or propeller.
A PET Design Based on SiPM and Monolithic LYSO Crystals: Performance Evaluation
NASA Astrophysics Data System (ADS)
González, Antonio J.; Aguilar, Albert; Conde, Pablo; Hernández, Liczandro; Moliner, Laura; Vidal, Luis F.; Sánchez, Filomeno; Sánchez, Sebastián; Correcher, Carlos; Molinos, César; Barberá, Julio; Lankes, Konrad; Junge, Sven; Bruckbauer, Thomas; Bruyndonckx, Peter; Benlloch, Jose M.
2016-10-01
A new small animal PET based on SiPM and monolithic LYSO crystals has been developed. Eight detector modules form the PET ring, each mounting an array of 12 × 12 SiPMs coupled to a readout providing the summed signals of the pixels on each of the 12 rows and 12 columns of the SiPM array. This design makes it possible to accurately determine the centroid of the scintillation light distribution with about 1.6 mm full width at half maximum (FWHM) resolution without correction for the 1 mm source size, and the photon depth of interaction (DOI) with nearly 2 mm FWHM. This single ring PET system has a homogeneous spatial resolution across the entire 80 mm transaxial field of view (FOV) of about 1 mm FWHM. The noise equivalent count rate (NECR) peak is estimated to occur at around 39.2 MBq with a rate of approximately 82.7 kcps for the mouse-like phantom and 22 kcps at 48.1 MBq for the rat-like phantom. Following the NEMA protocol, the peak absolute sensitivity in the center of the FOV is 2.8% for a 30% peak energy window. A pilot test injecting NaF to a mouse of 20 grams is also presented. Finally, the PET ring has been tested in front of a high field 15.2 T Magnetic Resonance (MR). No significant variation on energy and spatial resolution across the FOV has been observed due to the presence of the magnetic field.
Mirchi, Ali; Sizochenko, Natalia; Dinadayalane, Tandabany; Leszczynski, Jerzy
2017-11-22
The effect of substitution of phenyl and naphthyl rings to benzene was examined to elucidate the cation-π interactions involving alkali metal ions with 1,3,5-tri(phenyl)benzene (TPB) and 1,3,5-tri(naphthyl)benzene (TNB). Benzene, TPB, and four TNB isomers (with ααα, ααβ, αββ, and βββ types of fusion) and their complexes with Li + , Na + , K + , Rb + , and Cs + were optimized using DFT approach with B3LYP and M06-2X functionals in conjunction with the def2-QZVP basis set. Higher relative stability of β,β,β-TNB over α,α,α-TNB can be attributed to peri repulsion, which is defined as the nonbonding repulsive interaction between substituents in the 1- and the 8-positions on the naphthalene core. Binding energies, distances between ring centroid and the metal ions, and the distance to metal ions from the center of other six-membered rings were compared for all complexes. Our computational study reveals that the binding affinity of alkali metal cations increases significantly with the 1,3,5-trisubstitution of phenyl and naphthyl rings to benzene. The detailed computational analyses of geometries, partial charges, binding energies, and ligand organization energies reveal the possibility of favorable C-H···M + interactions when a α-naphthyl group exists in complexes of TNB structures. Like benzene-alkali metal ion complexes, the binding affinity of metal ions follows the order: Li + > Na + > K + > Rb + > Cs + for any considered 1,3,5-trisubstituted benzene systems. In case of TNB, we found that the strength of interactions increases as the fusion point changes from α to β position of naphthalene.
Aeroacoustic Simulations of Tandem Cylinders with Subcritical Spacing
NASA Technical Reports Server (NTRS)
Lockard, David P.; Choudhari, Meelan M.; Khorrami, Mehdi R.; Neuhart, Dan H.; Hutcheson, Florence V.; Brooks, Thomas F.; Stead, Daniel J.
2008-01-01
Tandem cylinders are being studied because they model a variety of component level interactions of landing gear. The present effort is directed at the case of two identical cylinders with their centroids separated in the streamwise direction by 1.435 diameters. Experiments in the Basic Aerodynamic Research Tunnel and Quiet Flow Facility at NASA Langley Research Center have provided an extensive experimental database of the nearfield flow and radiated noise. The measurements were conducted at a Mach number of 0.1285 and Reynolds number of 1.66x10(exp 5) based on the cylinder diameter. A trip was used on the upstream cylinder to insure a fully turbulent flow separation and, hence, to simulate a major aspect of high Reynolds number flow. The parallel computational effort uses the three-dimensional Navier-Stokes solver CFL3D with a hybrid, zonal turbulence model that turns off the turbulence production term everywhere except in a narrow ring surrounding solid surfaces. The experiments exhibited an asymmetry in the surface pressure that was persistent despite attempts to eliminate it through small changes in the configuration. To model the asymmetry, the simulations were run with the cylinder configuration at a nonzero but small angle of attack. The computed results and experiments are in general agreement that vortex shedding for the spacing studied herein is weak relative to that observed at supercritical spacings. Although the shedding was subdued in the simulations, it was still more prominent than in the experiments. Overall, the simulation comparisons with measured near-field data and the radiated acoustics are reasonable, especially if one is concerned with capturing the trends relative to larger cylinder spacings. However, the flow details of the 1.435 diameter spacing have not been captured in full even though very fine grid computations have been performed. Some of the discrepancy may be associated with the simulation s inexact representation of the experimental configuration, but numerical and flow modeling errors are also likely contributors to the observed differences.
Asteroid detection using a single multi-wavelength CCD scan
NASA Astrophysics Data System (ADS)
Melton, Jonathan
2016-09-01
Asteroid detection is a topic of great interest due to the possibility of diverting possibly dangerous asteroids or mining potentially lucrative ones. Currently, asteroid detection is generally performed by taking multiple images of the same patch of sky separated by 10-15 minutes, then subtracting the images to find movement. However, this is time consuming because of the need to revisit the same area multiple times per night. This paper describes an algorithm that can detect asteroids using a single CCD camera scan, thus cutting down on the time and cost of an asteroid survey. The algorithm is based on the fact that some telescopes scan the sky at multiple wavelengths with a small time separation between the wavelength components. As a result, an object moving with sufficient speed will appear in different places in different wavelength components of the same image. Using image processing techniques we detect the centroids of points of light in the first component and compare these positions to the centroids in the other components using a nearest neighbor algorithm. The algorithm was used on a test set of 49 images obtained from the Sloan telescope in New Mexico and found 100% of known asteroids with only 3 false positives. This algorithm has the advantage of decreasing the amount of time required to perform an asteroid scan, thus allowing more sky to be scanned in the same amount of time or freeing a telescope for other pursuits.
NASA Astrophysics Data System (ADS)
Bie, Lidong; Hicks, Stephen; Garth, Thomas; Gonzalez, Pablo; Rietbrock, Andreas
2018-06-01
On 25 November 2016, a Mw 6.6 earthquake ruptured the Muji fault in western Xinjiang, China. We investigate the earthquake rupture independently using geodetic observations from Interferometric Synthetic Aperture Radar (InSAR) and regional seismic recordings. To constrain the fault geometry and slip distribution, we test different combinations of fault dip and slip direction to reproduce InSAR observations. Both InSAR observations and optimal distributed slip model suggest buried rupture of two asperities separated by a gap of greater than 5 km. Additional seismic gaps exist at the end of both asperities that failed in the 2016 earthquake. To reveal the dynamic history of asperity failure, we inverted regional seismic waveforms for multiple centroid moment tensors and construct a moment rate function. The results show a small centroid time gap of 2.6 s between the two sub-events. Considering the >5 km gap between the two asperities and short time interval, we propose that the two asperities failed near-simultaneously, rather than in a cascading rupture propagation style. The second sub-event locates ∼39 km to the east of the epicenter and the centroid time is at 10.7 s. It leads to an estimate of average velocity of 3.7 km/s as an upper bound, consistent with upper crust shear wave velocity in this region. We interpret that the rupture front is propagating at sub-shear wave velocities, but that the second sub-event has a reduced or asymmetric rupture time, leading to the apparent near-simultaneous moment release of the two asperities.
Structure of Saturn's rings: Optical and dynamical considerations
NASA Technical Reports Server (NTRS)
Franklin, F. A.
1974-01-01
The photometric phase curves of Saturn's rings are considered, as well as a conflict between dynamical and photometric models of the rings. The dependence of ring brightness on angular separation of the earth and sun as viewed from Saturn is discussed. The nonlinear brightness surge is interpreted. Some quantitative calculations were carried out for bodies in and near the asteroidal belt. Predicted density profiles of the ring obtained with Mimas in an eccentric orbit and in a circular orbit are also included.
Crystal structure of 10-ethyl-7-(9-ethyl-9H-carbazol-3-yl)-10H-pheno-thia-zine-3-carbaldehyde.
Mahalakshmi, Vairavan; Gouthaman, Siddan; Sugunalakshmi, Madurai; Bargavi, Srinivasan; Lakshmi, Srinivasakannan
2017-05-01
The title compound, C 29 H 24 N 2 OS, contains a pheno-thia-zine moiety linked to a planar carbazole unit (r.m.s. deviation = 0.029 Å) by a C-C single bond. The pheno-thia-zine moiety possesses a typical non-planar butterfly structure with a fold angle of 27.36 (9)° between the two benzene rings. The dihedral angle between the mean planes of the carbazole and pheno-thia-zine units is 27.28 (5)°. In the crystal, mol-ecules stack in pairs along the c -axis direction, linked by offset π-π inter-actions [inter-centroid distance = 3.797 (1) Å]. There are C-H⋯π inter-actions present linking these dimers to form a three-dimensional structure.
Fiber Bragg grating sensor interrogators on chip: challenges and opportunities
NASA Astrophysics Data System (ADS)
Marin, Yisbel; Nannipieri, Tiziano; Oton, Claudio J.; Di Pasquale, Fabrizio
2017-04-01
In this paper we present an overview of the current efforts towards integration of Fiber Bragg Grating (FBG) sensor interrogators. Different photonic integration platforms will be discussed, including monolithic planar lightwave circuit technology, silicon on insulator (SOI), indium phosphide (InP) and gallium arsenide (GaAs) material platforms. Also various possible techniques for wavelength metering and methods for FBG multiplexing will be discussed and compared in terms of resolution, dynamic performance, multiplexing capabilities and reliability. The use of linear filters, array waveguide gratings (AWG) as multiple linear filters and AWG based centroid signal processing techniques will be addressed as well as interrogation techniques based on tunable micro-ring resonators and Mach-Zehnder interferometers (MZI) for phase sensitive detection. The paper will also discuss the challenges and perspectives of photonic integration to address the increasing requirements of several industrial applications.
(E)-1,2-Bis(4-methylphenyl)ethane-1,2-dione
Fun, Hoong-Kun; Kia, Reza
2008-01-01
In the molecule of the title compound, C16H14O2, a substituted benzil, the dicarbonyl unit has an s-trans conformation. This conformation is substantiated by the O—C—C—O torsion angle of 108.16 (15)°. The dihedral angle between the two aromatic rings is 72.00 (6)°. In the crystal structure, neighbouring molecules are linked together by weak intermolecular C—H⋯O hydrogen bonds and weak intermolecular C—H⋯π interactions. In addition, the crystal structure is further stabilized by intermolecular π–π interactions with centroid–centroid distances in the range 3.6000 (8)–3.8341 (8) Å. PMID:21203307
Reliability of an experimental method to analyse the impact point on a golf ball during putting.
Richardson, Ashley K; Mitchell, Andrew C S; Hughes, Gerwyn
2015-06-01
This study aimed to examine the reliability of an experimental method identifying the location of the impact point on a golf ball during putting. Forty trials were completed using a mechanical putting robot set to reproduce a putt of 3.2 m, with four different putter-ball combinations. After locating the centre of the dimple pattern (centroid) the following variables were tested; distance of the impact point from the centroid, angle of the impact point from the centroid and distance of the impact point from the centroid derived from the X, Y coordinates. Good to excellent reliability was demonstrated in all impact variables reflected in very strong relative (ICC = 0.98-1.00) and absolute reliability (SEM% = 0.9-4.3%). The highest SEM% observed was 7% for the angle of the impact point from the centroid. In conclusion, the experimental method was shown to be reliable at locating the centroid location of a golf ball, therefore allowing for the identification of the point of impact with the putter head and is suitable for use in subsequent studies.
NASA Astrophysics Data System (ADS)
Coleman, J. E.; Ekdahl, C. A.; Moir, D. C.; Sullivan, G. W.; Crawford, M. T.
2014-09-01
Axial beam centroid and beam breakup (BBU) measurements were conducted on an 80 ns FWHM, intense relativistic electron bunch with an injected energy of 3.8 MV and current of 2.9 kA. The intense relativistic electron bunch is accelerated and transported through a nested solenoid and ferrite induction core lattice consisting of 64 elements, exiting the accelerator with a nominal energy of 19.8 MeV. The principal objective of these experiments is to quantify the coupling of the beam centroid motion to the BBU instability and validate the theory of this coupling for the first time. Time resolved centroid measurements indicate a reduction in the BBU amplitude, ⟨ξ⟩, of 19% and a reduction in the BBU growth rate (Γ) of 4% by reducing beam centroid misalignments ˜50% throughout the accelerator. An investigation into the contribution of the misaligned elements is made. An alignment algorithm is presented in addition to a qualitative comparison of experimental and calculated results which include axial beam centroid oscillations, BBU amplitude, and growth with different dipole steering.
NASA Astrophysics Data System (ADS)
Adya Zizwan, Putra; Zarlis, Muhammad; Budhiarti Nababan, Erna
2017-12-01
The determination of Centroid on K-Means Algorithm directly affects the quality of the clustering results. Determination of centroid by using random numbers has many weaknesses. The GenClust algorithm that combines the use of Genetic Algorithms and K-Means uses a genetic algorithm to determine the centroid of each cluster. The use of the GenClust algorithm uses 50% chromosomes obtained through deterministic calculations and 50% is obtained from the generation of random numbers. This study will modify the use of the GenClust algorithm in which the chromosomes used are 100% obtained through deterministic calculations. The results of this study resulted in performance comparisons expressed in Mean Square Error influenced by centroid determination on K-Means method by using GenClust method, modified GenClust method and also classic K-Means.
A focal plane metrology system and PSF centroiding experiment
NASA Astrophysics Data System (ADS)
Li, Haitao; Li, Baoquan; Cao, Yang; Li, Ligang
2016-10-01
In this paper, we present an overview of a detector array equipment metrology testbed and a micro-pixel centroiding experiment currently under development at the National Space Science Center, Chinese Academy of Sciences. We discuss on-going development efforts aimed at calibrating the intra-/inter-pixel quantum efficiency and pixel positions for scientific grade CMOS detector, and review significant progress in achieving higher precision differential centroiding for pseudo star images in large area back-illuminated CMOS detector. Without calibration of pixel positions and intrapixel response, we have demonstrated that the standard deviation of differential centroiding is below 2.0e-3 pixels.
High-speed on-chip windowed centroiding using photodiode-based CMOS imager
NASA Technical Reports Server (NTRS)
Pain, Bedabrata (Inventor); Sun, Chao (Inventor); Yang, Guang (Inventor); Cunningham, Thomas J. (Inventor); Hancock, Bruce (Inventor)
2003-01-01
A centroid computation system is disclosed. The system has an imager array, a switching network, computation elements, and a divider circuit. The imager array has columns and rows of pixels. The switching network is adapted to receive pixel signals from the image array. The plurality of computation elements operates to compute inner products for at least x and y centroids. The plurality of computation elements has only passive elements to provide inner products of pixel signals the switching network. The divider circuit is adapted to receive the inner products and compute the x and y centroids.
High-speed on-chip windowed centroiding using photodiode-based CMOS imager
NASA Technical Reports Server (NTRS)
Pain, Bedabrata (Inventor); Sun, Chao (Inventor); Yang, Guang (Inventor); Cunningham, Thomas J. (Inventor); Hancock, Bruce (Inventor)
2004-01-01
A centroid computation system is disclosed. The system has an imager array, a switching network, computation elements, and a divider circuit. The imager array has columns and rows of pixels. The switching network is adapted to receive pixel signals from the image array. The plurality of computation elements operates to compute inner products for at least x and y centroids. The plurality of computation elements has only passive elements to provide inner products of pixel signals the switching network. The divider circuit is adapted to receive the inner products and compute the x and y centroids.
Orr, Lindsay; Hernández de la Peña, Lisandro; Roy, Pierre-Nicholas
2017-06-07
A derivation of quantum statistical mechanics based on the concept of a Feynman path centroid is presented for the case of generalized density operators using the projected density operator formalism of Blinov and Roy [J. Chem. Phys. 115, 7822-7831 (2001)]. The resulting centroid densities, centroid symbols, and centroid correlation functions are formulated and analyzed in the context of the canonical equilibrium picture of Jang and Voth [J. Chem. Phys. 111, 2357-2370 (1999)]. The case where the density operator projects onto a particular energy eigenstate of the system is discussed, and it is shown that one can extract microcanonical dynamical information from double Kubo transformed correlation functions. It is also shown that the proposed projection operator approach can be used to formally connect the centroid and Wigner phase-space distributions in the zero reciprocal temperature β limit. A Centroid Molecular Dynamics (CMD) approximation to the state-projected exact quantum dynamics is proposed and proven to be exact in the harmonic limit. The state projected CMD method is also tested numerically for a quartic oscillator and a double-well potential and found to be more accurate than canonical CMD. In the case of a ground state projection, this method can resolve tunnelling splittings of the double well problem in the higher barrier regime where canonical CMD fails. Finally, the state-projected CMD framework is cast in a path integral form.
NASA Astrophysics Data System (ADS)
Orr, Lindsay; Hernández de la Peña, Lisandro; Roy, Pierre-Nicholas
2017-06-01
A derivation of quantum statistical mechanics based on the concept of a Feynman path centroid is presented for the case of generalized density operators using the projected density operator formalism of Blinov and Roy [J. Chem. Phys. 115, 7822-7831 (2001)]. The resulting centroid densities, centroid symbols, and centroid correlation functions are formulated and analyzed in the context of the canonical equilibrium picture of Jang and Voth [J. Chem. Phys. 111, 2357-2370 (1999)]. The case where the density operator projects onto a particular energy eigenstate of the system is discussed, and it is shown that one can extract microcanonical dynamical information from double Kubo transformed correlation functions. It is also shown that the proposed projection operator approach can be used to formally connect the centroid and Wigner phase-space distributions in the zero reciprocal temperature β limit. A Centroid Molecular Dynamics (CMD) approximation to the state-projected exact quantum dynamics is proposed and proven to be exact in the harmonic limit. The state projected CMD method is also tested numerically for a quartic oscillator and a double-well potential and found to be more accurate than canonical CMD. In the case of a ground state projection, this method can resolve tunnelling splittings of the double well problem in the higher barrier regime where canonical CMD fails. Finally, the state-projected CMD framework is cast in a path integral form.
Zhang, Kai; Du, Kai; Liu, Hao; ...
2015-07-20
The interesting transport and magnetic properties in manganites depend sensitively on the nucleation and growth of electronic phase-separated domains. In this paper, by fabricating antidot arrays in La 0.325Pr 0.3Ca 0.375MnO 3 (LPCMO) epitaxial thin films, we create ordered arrays of micrometer-sized ferromagnetic metallic (FMM) rings in the LPCMO films that lead to dramatically increased metal–insulator transition temperatures and reduced resistances. The FMM rings emerge from the edges of the antidots where the lattice symmetry is broken. Based on our Monte Carlo simulation, these FMM rings assist the nucleation and growth of FMM phase domains increasing the metal–insulator transition withmore » decreasing temperature or increasing magnetic field. Finally, this study points to a way in which electronic phase separation in manganites can be artificially controlled without changing chemical composition or applying external field.« less
Involvement of an Actomyosin Contractile Ring in Saccharomyces cerevisiae Cytokinesis
Bi, Erfei; Maddox, Paul; Lew, Daniel J.; Salmon, E.D.; McMillan, John N.; Yeh, Elaine; Pringle, John R.
1998-01-01
In Saccharomyces cerevisiae, the mother cell and bud are connected by a narrow neck. The mechanism by which this neck is closed during cytokinesis has been unclear. Here we report on the role of a contractile actomyosin ring in this process. Myo1p (the only type II myosin in S. cerevisiae) forms a ring at the presumptive bud site shortly before bud emergence. Myo1p ring formation depends on the septins but not on F-actin, and preexisting Myo1p rings are stable when F-actin is depolymerized. The Myo1p ring remains in the mother–bud neck until the end of anaphase, when a ring of F-actin forms in association with it. The actomyosin ring then contracts to a point and disappears. In the absence of F-actin, the Myo1p ring does not contract. After ring contraction, cortical actin patches congregate at the mother–bud neck, and septum formation and cell separation rapidly ensue. Strains deleted for MYO1 are viable; they fail to form the actin ring but show apparently normal congregation of actin patches at the neck. Some myo1Δ strains divide nearly as efficiently as wild type; other myo1Δ strains divide less efficiently, but it is unclear whether the primary defect is in cytokinesis, septum formation, or cell separation. Even cells lacking F-actin can divide, although in this case division is considerably delayed. Thus, the contractile actomyosin ring is not essential for cytokinesis in S. cerevisiae. In its absence, cytokinesis can still be completed by a process (possibly localized cell–wall synthesis leading to septum formation) that appears to require septin function and to be facilitated by F-actin. PMID:9732290
Saeed, Sohail; Rashid, Naghmana; Butcher, Ray J.; Öztürk Yildirim, Sema; Hussain, Rizwan
2012-01-01
The asymmetric unit of the title compound, C16H13N2O+·NCS−·C16H12N2O, contains two N-(pyridin-4-yl)naphthalene-2-carboxamide molecules, both are partially protonated in the pyridine moiety, i.e. the H atom attached to the pyridine N atom is partially occupied with an occupancy factor of 0.61 (3) and 0.39 (3), respectively. In the crystal, protonated and neutral N-(pyridin-4-yl)naphthalene-2-carboxamide molecules are linked by N—H⋯N hydrogen bonding; the thiocyanate counter-ion links with both protonated and neutral N-(pyridin-4-yl)naphthalene-2-carboxamide molecules via N—H⋯S and N—H⋯N hydrogen bonding. The dihedral angles between the pyridine ring and naphthalene ring systems are 11.33 (6) and 9.51 (6)°, respectively. π–π stacking is observed in the crystal structure, the shortest centroid–centroid distance being 3.5929 (8) Å. The crystal structure was determined from a nonmerohedral twin {ratio of the twin components = 0.357 (1):0.643 (1) and twin law [-100 0-10 -101]}. PMID:23125774
(E)-1,2-Bis(4-fluorophenyl)ethane-1,2-dione
Fun, Hoong-Kun; Kia, Reza
2008-01-01
The title compound, C14H8F2O2, is a substituted benzil with an s-trans conformation of the dicarbonyl unit. This conformation is also shown by the O—C—C—O torsion angle of −110.65 (12)°. An unusual feature of the structure is the length, 1.536 (2) Å, of the central C—C bond connecting the carbonyl units, which is significantly longer than a normal Csp 2—Csp 2 single bond. This is probably the result of decreasing the unfavourable vicinal dipole–dipole interactions by increasing the distance between the two electronegative O atoms [O⋯O = 3.1867 (12) Å] and allowing orbital overlap of the dione with the π system of the benzene rings. The dihedral angle between the aromatic rings is 64.74 (5)°. In the crystal structure, neighbouring molecules are linked together by weak intermolecular C—H⋯O (× 2) hydrogen bonds. In addition, the crystal structure is further stabilized by intermolecular π–π interactions with centroid–centroid distances in the range 3.6416 (6)–3.7150 (7) Å. PMID:21203308
Observation of Bright Ring Phenomenon for Red Blood Cells by Lattice Boltzmann Method
NASA Astrophysics Data System (ADS)
Kim, Young Woo; Moon, Ji Young; Lee, Joon Sang
2017-11-01
RBC (Red Blood Cell) aggregation is one of interests for various biomechanical fields such as cell chip or visualization. The unique phenomenon called ``bright ring'' is due to RBC aggregation in pulsatile flow of blood. Shear rate and flow acceleration on RBC causes them to repeat aggregating and scattering from center of the channel. The reason that this phenomenon is called bright ring is because that when observed by ultrasound imaging, the bright ring occurs periodically. Many studies tried to observe this bright ring phenomenon experimentally. However, there are yet not many studies trying to make use of this phenomenon for practical purposes. Bright ring phenomenon has high potential when used for cell separation or other microchip devices. In this paper, the Lattice Boltzmann method is used to control this bright ring phenomenon. The purpose of this paper is to find conditions when bright ring phenomenon occurs, and to control the aggregating-scattering frequency and degree. Deformability of RBC is calculated following the work of Moon JY et al. (2016). The result of this paper could be further extended to the optimization of cell-separating microchips. This work was also supported by the National Research Foundation of Korea (NRF) Grant funded by the Korean Government (MSIP) (No. 2015R1A5A1037668) and Brain Korea 21 Plus.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rossi, Mariana; Manolopoulos, David E.; Ceriotti, Michele
Two of the most successful methods that are presently available for simulating the quantum dynamics of condensed phase systems are centroid molecular dynamics (CMD) and ring polymer molecular dynamics (RPMD). Despite their conceptual differences, practical implementations of these methods differ in just two respects: the choice of the Parrinello-Rahman mass matrix and whether or not a thermostat is applied to the internal modes of the ring polymer during the dynamics. Here, we explore a method which is halfway between the two approximations: we keep the path integral bead masses equal to the physical particle masses but attach a Langevin thermostatmore » to the internal modes of the ring polymer during the dynamics. We justify this by showing analytically that the inclusion of an internal mode thermostat does not affect any of the established features of RPMD: thermostatted RPMD is equally valid with respect to everything that has actually been proven about the method as RPMD itself. In particular, because of the choice of bead masses, the resulting method is still optimum in the short-time limit, and the transition state approximation to its reaction rate theory remains closely related to the semiclassical instanton approximation in the deep quantum tunneling regime. In effect, there is a continuous family of methods with these properties, parameterised by the strength of the Langevin friction. Here, we explore numerically how the approximation to quantum dynamics depends on this friction, with a particular emphasis on vibrational spectroscopy. We find that a broad range of frictions approaching optimal damping give similar results, and that these results are immune to both the resonance problem of RPMD and the curvature problem of CMD.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan, Margaret; Chiang, Eugene, E-mail: mpan@astro.berkeley.edu
2012-01-15
'Propellers' are features in Saturn's A ring associated with moonlets that open partial gaps. They exhibit non-Keplerian motion (Tiscareno et al.); the longitude residuals of the best-observed propeller, 'Bleriot', appear consistent with a sinusoid of period {approx}4 years. Pan and Chiang proposed that propeller moonlets librate in 'frog resonances' with co-orbiting ring material. By analogy with the restricted three-body problem, they treated the co-orbital material as stationary in the rotating frame and neglected non-co-orbital material. Here we use simple numerical experiments to extend the frog model, including feedback due to the gap's motion, and drag associated with the Lindblad diskmore » torques that cause Type I migration. Because the moonlet creates the gap, we expect the gap centroid to track the moonlet, but only after a time delay t{sub delay}, the time for a ring particle to travel from conjunction with the moonlet to the end of the gap. We find that frog librations can persist only if t{sub delay} exceeds the frog libration period P{sub lib}, and if damping from Lindblad torques balances driving from co-orbital torques. If t{sub delay} << Pl{sub ib}, then the libration amplitude damps to zero. In the case of Bleriot, the frog resonance model can reproduce the observed libration period P{sub lib} {approx_equal} 4 yr. However, our simple feedback prescription suggests that Bleriot's t{sub delay} {approx} 0.01P{sub lib}, which is inconsistent with the observed libration amplitude of 260 km. We urge more accurate treatments of feedback to test the assumptions of our toy models.« less
Syed, Sabrina; Halim, Siti Nadiah Abdul; Jotani, Mukesh M; Tiekink, Edward R T
2016-01-01
The title 2:1 co-crystal, 2C7H5NO4·C14H14N4O2, in which the complete di-amide mol-ecule is generated by crystallographic inversion symmetry, features a three-mol-ecule aggregate sustained by hydroxyl-O-H⋯N(pyrid-yl) hydrogen bonds. The p-nitro-benzoic acid mol-ecule is non-planar, exhibiting twists of both the carb-oxy-lic acid and nitro groups, which form dihedral angles of 10.16 (9) and 4.24 (4)°, respectively, with the benzene ring. The di-amide mol-ecule has a conformation approximating to a Z shape, with the pyridyl rings lying to either side of the central, almost planar di-amide residue (r.m.s. deviation of the eight atoms being 0.025 Å), and forming dihedral angles of 77.22 (6)° with it. In the crystal, three-mol-ecule aggregates are linked into a linear supra-molecular ladder sustained by amide-N-H⋯O(nitro) hydrogen bonds and orientated along [10-4]. The ladders are connected into a double layer via pyridyl- and benzene-C-H⋯O(amide) inter-actions, which, in turn, are connected into a three-dimensional architecture via π-π stacking inter-actions between pyridyl and benzene rings [inter-centroid distance = 3.6947 (8) Å]. An evaluation of the Hirshfeld surfaces confirm the importance of inter-molecular inter-actions involving oxygen atoms as well as the π-π inter-actions.
Ring-diameter Ratios for Multi-ring Basins Average 2.0(0.5)D
NASA Technical Reports Server (NTRS)
Pike, R. J.; Spudis, P. D.
1985-01-01
The spacing of the concentric rings of planetary impact basins was studied. It is shown that a radial increment of x (sup 0.5) D, where x is about 2.0 and D = ring diameter, separates both (1) adjacent least-squares groups of rings and arcs of multi-ring basins on Mars, Mercury, and the Moon; and (2) adjacent rings of individual basins on the three planets. Statistics for ratios of ring diameters are presented, the first and most-applied parameter of ring spacing. It is found that ratios excluding rings flanking the main ring also have a mean spacing increment of about 2.0. Ratios including such rings, as for the least-squares groups, and (1) above, have a larger increment, averaging 2.1. The F-test indicates, that these spacings of basin ring locations, and mode of ring formation are controlled by the mechanics of the impact event itself, rather than by crustal properties.
Model-independent analysis of the Fermilab Tevatron turn-by-turn beam position monitor measurements
NASA Astrophysics Data System (ADS)
Petrenko, A. V.; Valishev, A. A.; Lebedev, V. A.
2011-09-01
Coherent transverse beam oscillations in the Tevatron were analyzed with the model-independent analysis (MIA) technique. This allowed one to obtain the model-independent values of coupled betatron amplitudes, phase advances, and dispersion function around the ring from a single dipole kick measurement. In order to solve the MIA mode mixing problem which limits the accuracy of determination of the optical functions, we have developed a new technique of rotational MIA mode untangling. The basic idea is to treat each beam position monitor (BPM) as two BPMs separated in a ring by exactly one turn. This leads to a simple criterion of MIA mode separation: the betatron phase advance between any BPM and its counterpart shifted by one turn should be equal to the betatron tune and therefore should not depend on the BPM position in the ring. Furthermore, we describe a MIA-based technique to locate vibrating magnets in a storage ring.
Development of a new seal for use on large openings of pressurized spacecraft
NASA Technical Reports Server (NTRS)
Weddendorf, B.
1994-01-01
The goal of this project was to design, build, and test an example of the seal invented by the author for use on Space Station Freedom and patented in 1991. The seal features a metallic spring core and replaceable elastomeric sealing elements. The metallic spring is designed to retain the sealing force of the elastomeric element against both sides of face seal gland for any specified amount of waviness or separation of the glands. A seal able to tolerate at least 1.3 mm (0.05 in) of flange distortion or separation and a test fixture of this seal which allowed direct comparison testing of O-rings were built. These designs were tested to compare leakage at different amounts of flange deflection. Results of the testing show the development seal exceeded its requirement to seal 1.3 mm of flange separation by 1 mm. This compared with the O-ring leakage, increasing dramatically at 0.5 mm of separation. The development seal also leaked at a lower rate than the O-ring seals in all tests.
Back-to-back mechanisms drive actomyosin ring closure during Drosophila embryo cleavage
2016-01-01
Contraction of actomyosin rings during cytokinesis is typically attributed to actin filaments sliding toward each other via Myosin-2 motor activity. However, rings constrict in some cells in the absence of Myosin-2 activity. Thus, ring closure uses Myosin-2–dependent and –independent mechanisms. But what the Myosin-2–independent mechanisms are, and to what extent they are sufficient to drive closure, remains unclear. During cleavage in Drosophila melanogaster embryos, actomyosin rings constrict in two sequential and mechanistically distinct phases. We show that these phases differ in constriction speed and are genetically and pharmacologically separable. Further, Myosin-2 activity is required for slow constriction in “phase 1” but is largely dispensable for fast constriction in “phase 2,” and F-actin disassembly is only required for fast constriction in phase 2. Switching from phase 1 to phase 2 seemingly relies on the spatial organization of F-actin as controlled by Cofilin, Anillin, and Septin. Our work shows that fly embryos present a singular opportunity to compare separable ring constriction mechanisms, with varying Myosin-2 dependencies, in one cell type and in vivo. PMID:27799369
Harry V., Jr. Wiant; Michael L. Spangler; John E. Baumgras
2002-01-01
Various taper systems and the centroid method were compared to unbiased volume estimates made by importance sampling for 720 hardwood trees selected throughout the state of West Virginia. Only the centroid method consistently gave volumes estimates that did not differ significantly from those made by importance sampling, although some taper equations did well for most...
Vegetation characteristics important to common songbirds in east Texas
Conner, Richard N.; Dickson, James G.; Locke, Brian A.; Segelquist, Charles A.
1983-01-01
Multivariate studies of breeding bird communities have used principal component analysis (PCA) or several-group (three or more groups) discriminant function analysis (DFA) to ordinate bird species on vegetational continua (Cody 1968, James 1971, Whitmore 1975). In community studies, high resolution of habitat requirements for individual species is not always possible with either PCA or several-group DFA. When habitat characteristics of several species are examined with a DFA the resultant axes optimally discriminate among all species simultaneously. Hence, the characteristics assigned to a particular species reflect in part the presence of other species in the analyses. A better resolution of each species' habitat requirements may be obtained from a two-group DFA, wherein habitats selected by a species are discriminated from all other available habitats. Analyses using two-group DFAs to compare habitat used by a species with habitat unused by the same species have the potential to provide an optimal frame of reference from which to examine habitat variables (Martinka 1972, Conner and Adkisson 1976, Whitmore 1981). Mathematically (DFA) it is possible to maximally separate two groups of multivariate observations with a single axis (Harner and whitmore 1977). A line drawn in three or n-dimensional space can easily be positioned to intersect two multivariate means (centroids). If three or more centroids for species are analyzed simultaneously, a single line can no longer intersect all centroids unless a perfectly linear relationship exists for the species being examined. The probability of such an occurrence is extremely low. Thus, a high degree of resolution can be realized when a two-group DFA is used to determine habitat parameters important to individual species. We have used two-group DFA to identify vegetation variable important to 12 common species of songbirds in East Texas.
Doppler centroid estimation ambiguity for synthetic aperture radars
NASA Technical Reports Server (NTRS)
Chang, C. Y.; Curlander, J. C.
1989-01-01
A technique for estimation of the Doppler centroid of an SAR in the presence of large uncertainty in antenna boresight pointing is described. Also investigated is the image degradation resulting from data processing that uses an ambiguous centroid. Two approaches for resolving ambiguities in Doppler centroid estimation (DCE) are presented: the range cross-correlation technique and the multiple-PRF (pulse repetition frequency) technique. Because other design factors control the PRF selection for SAR, a generalized algorithm is derived for PRFs not containing a common divisor. An example using the SIR-C parameters illustrates that this algorithm is capable of resolving the C-band DCE ambiguities for antenna pointing uncertainties of about 2-3 deg.
Conical refraction and formation of multiring focal image with Laguerre-Gauss light beams.
Peet, Viktor
2011-08-01
For a light beam focused through a biaxial crystal along one of its optical axes, the effect of internal conical refraction in the crystal leads to the formation in the focal image plane of two bright rings separated by a dark ring. It is shown that, with circularly polarized Laguerre-Gauss LG(0)(ℓ) beams entering the crystal, this classical double-ring pattern is transformed into a multiring one consisting of ℓ+2 bright rings. © 2011 Optical Society of America
Experimental Observation of Fermi-Pasta-Ulam Recurrence in a Nonlinear Feedback Ring System
NASA Astrophysics Data System (ADS)
Wu, Mingzhong; Patton, Carl E.
2007-01-01
Fermi-Pasta-Ulam recurrence through soliton dynamics has been realized. The experiment used a magnetic film strip-based active feedback ring. At some ring gain level, a wide spin wave pulse is self-generated in the ring. As the pulse circulates, it separates into two envelop solitons with different speeds. When the fast soliton catches up and collides with the slow soliton, the initial wide pulse is perfectly reconstructed. The repetition of this process leads to periodic recurrences of the initial pulse.
NASA Astrophysics Data System (ADS)
Tebib, Souhail; Bourguignon, Jean-Jacques; Wermuth, Camille-Georges
1987-07-01
Applied to seven potent benzodiazepine-receptor ligands belonging to chemically different classes, the active analog approach allowed the stepwise identification of the pharmacophoric pattern associated with the recognition by the benzodiazepine receptor. A unique pharmacophore model was derived which involves six critical zones: (a) a π-electron rich aromatic (PAR) zone; (b) two electron-rich zones δ1 and δ2 placed at 5.0 and 4.5 Å respectively from the reference centroid in the PAR zone; (c) a freely rotating aromatic ring (FRA) region; (d) an out-of-plane region (OPR), strongly associated with agonist properties; and (e) an additional hydrophobic region (AHR). The model accommodates all presently known ligands of the benzodiazepine receptor, identifies sensitivity to steric hindrance close to the δ1 zone, accounts for R and S differential affinities and distinguishes requirements for agonist versus non-agonist activity profiles.
N,N′-Bis(3-chloro-2-fluorobenzylidene)ethane-1,2-diamine
Fun, Hoong-Kun; Kia, Reza
2008-01-01
The molecule of the title centrosymmetric Schiff base compound, C16H12Cl2F2N2, adopts an E configuration with respect to the azomethine C=N bond. The imino groups are coplanar with the aromatic rings. Within the molecule, the planar units are parallel, but extend in opposite directions from the dimethylene bridge. An interesting feature of the crystal structure is the short intermolecular Cl⋯F [3.1747 (5) Å] interactions, which are shorter than the sum of the van der Waals radii of these atoms. These interactions link neighbouring molecules along the b axis. The crystal structure is further stabilized by π–π interactions, with a centroid–centroid distance of 3.5244 (4) Å. PMID:21201124
Thermal quantum time-correlation functions from classical-like dynamics
NASA Astrophysics Data System (ADS)
Hele, Timothy J. H.
2017-07-01
Thermal quantum time-correlation functions are of fundamental importance in quantum dynamics, allowing experimentally measurable properties such as reaction rates, diffusion constants and vibrational spectra to be computed from first principles. Since the exact quantum solution scales exponentially with system size, there has been considerable effort in formulating reliable linear-scaling methods involving exact quantum statistics and approximate quantum dynamics modelled with classical-like trajectories. Here, we review recent progress in the field with the development of methods including centroid molecular dynamics , ring polymer molecular dynamics (RPMD) and thermostatted RPMD (TRPMD). We show how these methods have recently been obtained from 'Matsubara dynamics', a form of semiclassical dynamics which conserves the quantum Boltzmann distribution. We also apply the Matsubara formalism to reaction rate theory, rederiving t → 0+ quantum transition-state theory (QTST) and showing that Matsubara-TST, like RPMD-TST, is equivalent to QTST. We end by surveying areas for future progress.
Bis(acesulfamato-kappaO4)diaquabis(3-methylpyridine-kappaN)nickel(II).
Dege, Necmi; Içbudak, Hasan; Adiyaman, Elif
2007-01-01
In the crystal structure of the title compound [systematic name: diaquabis(6-methyl-2,2-dioxo-1,2,3-oxathiazin-4-olato-kappaO4)bis(3-methylpyridine-kappaN)nickel(II)], [Ni(C4H4NO4S)2(C6H7N)2(H2O)2], the Ni(II) centre resides on a centre of symmetry and has a distorted octahedral geometry. The basal plane is formed by two carbonyl O atoms of two monodentate trans-oriented acesulfamate ligands and two trans aqua ligands. The axial positions in the octahedron are occupied by two N atoms of two trans pyridine ligands. Molecules are stacked in columns running along the a axis. There are pi-pi stacking interactions between the molecules in each column, with a distance of 3.623 (2) A between the centroids of the pyridine rings. There are also O-H...O interactions between the columns.
NASA Astrophysics Data System (ADS)
Sirait, Kamson; Tulus; Budhiarti Nababan, Erna
2017-12-01
Clustering methods that have high accuracy and time efficiency are necessary for the filtering process. One method that has been known and applied in clustering is K-Means Clustering. In its application, the determination of the begining value of the cluster center greatly affects the results of the K-Means algorithm. This research discusses the results of K-Means Clustering with starting centroid determination with a random and KD-Tree method. The initial determination of random centroid on the data set of 1000 student academic data to classify the potentially dropout has a sse value of 952972 for the quality variable and 232.48 for the GPA, whereas the initial centroid determination by KD-Tree has a sse value of 504302 for the quality variable and 214,37 for the GPA variable. The smaller sse values indicate that the result of K-Means Clustering with initial KD-Tree centroid selection have better accuracy than K-Means Clustering method with random initial centorid selection.
Characterization of trabecular bone using the backscattered spectral centroid shift.
Wear, Keith A
2003-04-01
Ultrasonic attenuation in bone in vivo is generally measured using a through-transmission method at the calcaneus. Although attenuation in calcaneus has been demonstrated to be a useful predictor for osteoporotic fracture risk, measurements at other clinically important sites, such as hip and spine, could potentially contain additional useful diagnostic information. Through-transmission measurements may not be feasible at these sites due to complex bone shapes and the increased amount of intervening soft tissue. Centroid shift from the backscattered signal is an index of attenuation slope and has been used previously to characterize soft tissues. In this paper, centroid shift from signals backscattered from 30 trabecular bone samples in vitro were measured. Attenuation slope also was measured using a through-transmission method. The correlation coefficient between centroid shift and attenuation slope was -0.71. The 95% confidence interval was (-0.86, -0.47). These results suggest that the backscattered spectral centroid shift may contain useful diagnostic information potentially applicable to hip and spine.
Garra, Brian S; Locher, Melanie; Felker, Steven; Wear, Keith A
2009-01-01
Ultrasonic backscatter measurements from vertebral bodies (L3 and L4) in nine women were performed using a clinical ultrasonic imaging system. Measurements were made through the abdomen. The location of a vertebra was identified from the bright specular reflection from the vertebral anterior surface. Backscattered signals were gated to isolate signal emanating from the cancellous interiors of vertebrae. The spectral centroid shift of the backscattered signal, which has previously been shown to correlate highly with bone mineral density (BMD) in human calcaneus in vitro, was measured. BMD was also measured in the nine subjects' vertebrae using a clinical bone densitometer. The correlation coefficient between centroid shift and BMD was r = -0.61. The slope of the linear fit was -160 kHz / (g/cm(2)). The negative slope was expected because the attenuation coefficient (and therefore magnitude of the centroid downshift) is known from previous studies to increase with BMD. The centroid shift may be a useful parameter for characterizing bone in vivo.
Nine unanswered questions about cytokinesis
2017-01-01
Experiments on model systems have revealed that cytokinesis in cells with contractile rings (amoebas, fungi, and animals) depends on shared molecular mechanisms in spite of some differences that emerged during a billion years of divergent evolution. Understanding these fundamental mechanisms depends on identifying the participating proteins and characterizing the mechanisms that position the furrow, assemble the contractile ring, anchor the ring to the plasma membrane, trigger ring constriction, produce force to form a furrow, disassemble the ring, expand the plasma membrane in the furrow, and separate the daughter cell membranes. This review reveals that fascinating questions remain about each step. PMID:28807993
Nine unanswered questions about cytokinesis.
Pollard, Thomas D
2017-10-02
Experiments on model systems have revealed that cytokinesis in cells with contractile rings (amoebas, fungi, and animals) depends on shared molecular mechanisms in spite of some differences that emerged during a billion years of divergent evolution. Understanding these fundamental mechanisms depends on identifying the participating proteins and characterizing the mechanisms that position the furrow, assemble the contractile ring, anchor the ring to the plasma membrane, trigger ring constriction, produce force to form a furrow, disassemble the ring, expand the plasma membrane in the furrow, and separate the daughter cell membranes. This review reveals that fascinating questions remain about each step. © 2017 Pollard.
NASA Astrophysics Data System (ADS)
Chatterjee, Subhamoy; Hegde, Manjunath; Banerjee, Dipankar; Ravindra, B.
2017-11-01
The century long (1914-2007) {{{H}}}α (656.28 nm) spectroheliograms from the Kodaikanal Solar Observatory (KSO) have been recently digitized. Using these newly calibrated, processed images we study the evolution of dark elongated on-disk structures called filaments, which are potential representatives of magnetic activities on the Sun. To our knowledge, this is the oldest uniform digitized data set with daily images available today in {{{H}}}α . We generate Carrington maps for the entire time duration and try to find the correlations with maps of the same Carrington rotation from the Ca II K KSO data. Filaments are segmented from the Carrington maps using a semi-automated technique and are studied individually to extract their centroids and tilts. We plot the time-latitude distribution of the filament centroids, producing a butterfly diagram which clearly shows the presence of poleward migration. We separate polar filaments for each cycle and try to estimate the delay between the polar filament number cycle and the sunspot number cycle peaks. We correlate this delay with the delay between polar reversal and sunspot number maxima. This provides new insight on the role of polar filaments on polar reversal.
Computational Study of the Effect of Slot Orientation on Synthetic Jet-Based Separation Control
2012-01-01
Wind Turbine Blades,” Journal of Wind Energy, Vol. 13, Issue 2-3, 2009, pp. 221 – 237. [10] Crook, A. and Wood, N. J., “Measurements and...by these hairpin structures could be desirable for separation control. Roll-up of jets into vortex ring followed by tilting and stretching occurred...at an intermediate Reynolds number and velocity ratio. By increasing these two flow parameters, rapid penetration of the tilted vortex ring up to the
NASA Astrophysics Data System (ADS)
Wu, Yaw-Dong; Shih, Tien-Tsorng; Lee, Jian-Jang
2009-11-01
In this paper, we proposed the design of directional coupler integrated with ring resonator based on two-dimensional photonic crystals (2D PCs) to develop a triplexer filter. It can be widely used as the fiber access network element for multiplexer-demultiplexer wavelength selective in fiber-to-the-home (FTTH) communication systems. The directional coupler is chosen to separate the wavelengths of 1490nm and 1310nm. The ring resonator separates the wavelength of 1550nm. The transmission efficiency is larger than 90%. Besides, the total size of propose triplexer is only 19μm×12μm. We present simulation results using the finite-difference time-domain (FDTD) method for the proposed structure.
Analysis of a Triple Star System Occulted By Saturn’s Rings
NASA Astrophysics Data System (ADS)
Bratcher, Allison; Colwell, J. E.; Bolin, B.
2012-10-01
On January 4, 2012, the Ultraviolet Imaging Spectrograph aboard the Cassini Spacecraft observed Saturn’s rings as they occulted the triple star system, Iota Orionis. Remarkably, the brightest star was occulted by the moon Prometheus, and we provide the timing information of first and last contact for navigation purposes and a chord across the moon. The large separation of the individual stars projected in the ring plane makes it possible to measure the profiles of narrow features in the rings as they were occulted by each of the three stars. This occultation thus provides a unique opportunity to measure short-scale longitudinal variations in narrow ringlets with stellar occultation data that usually provide only a single longitudinal sample. Iota Orionis has a low elevation angle (B=1.4 degrees) above the plane of the rings, enhancing the sensitivity of the occultation (by a factor of 1/sin(B)=41) to the optically thin regions of the rings such as the C Ring and the Cassini Division as well as faint ringlets in the Encke gap. We distinguished the three signals by creating a model triple star signal using data from another occultation. We were able to identify several faint, narrow ringlets, including two in the Encke gap, occulted by two of the three stars and more prominent ringlets, such as the Huygens ringlet, in all three stellar light curves. We present the equivalent widths of these ringlets in the data from this triple star system and limits on ring variability over the azimuthal separation of the stars that ranges from 6000 km at the inner C ring to 200 km at the outer A ring.
Seasonal variation in Rayleigh-to-Love wave ratio in the secondary microseism
NASA Astrophysics Data System (ADS)
Tanimoto, T.; Hadziioannou, C.; Igel, H.; Wassermann, J. M.; Schreiber, U.; Gebauer, A.; Chow, B.
2015-12-01
The Ring Laser (the G-ring) at Wettzell (WET), Germany, is a rotation-measurement instrument that can monitor tiny variations in seismic noise. It essentially records only SH-type signals. Combined with a co-located seismograph (three-component seismograph STS-2), we can monitor the amount of Love waves from this instrument and that of Rayleigh waves from the STS seismograph. We report on seasonal variation of Rayleigh-to-Love wave ratio in the secondary microseism. The first step in our analysis is to obtain stacked Fourier spectra that were least affected by earthquakes. We used two earthquake catalogues to do this; the GCMT (Global Centroid Moment Tensor, Earthquakes M > 5.5) catalogue and the EMSC (European-Mediterranean Seismic Centre) catalogue for regional earthquakes (distance < 1000 km) with M > 4.5. We then created monthly averages of noise Fourier spectra for the frequency range 0.13-0.30 Hz using both the G-ring and STS data from 2009 to 2015. Monthly spectra show clear seasonal variations for the secondary microseism. We obtained surface vertical acceleration from STS and surface transverse acceleration from G-ring from which we can directly measure the Rayleigh-to-Love wave ratio. The procedure is the same with an account in our recent GRL paper (Tanimoto et al., 2015). Comparison between vertical acceleration and transverse acceleration shows that Rayleigh-wave surface amplitudes are about 20 percent larger than Love waves but in terms of kinetic energy this ratio will be different. We converted these ratios of surface amplitude to those of kinetic energy using an available earth model (Fichtner et al., 2013). The averaged ratio over the frequency band 0.13-0.30 Hz shows is in the range 0.6-0.8 in spring, autumn and winter but it increases to about 1.2 in summer. Except for the summer, the amount of Love waves are higher but the amount of Rayleigh waves increases in summer and appears to exceed that of Love waves.
NASA Astrophysics Data System (ADS)
Li, Xiaoliang; Luo, Lei; Li, Pengwei; Yu, Qingkui
2018-03-01
The image sensor in satellite optical communication system may generate noise due to space irradiation damage, leading to deviation for the determination of the light spot centroid. Based on the irradiation test data of CMOS devices, simulated defect spots in different sizes have been used for calculating the centroid deviation value by grey-level centroid algorithm. The impact on tracking & pointing accuracy of the system has been analyzed. The results show that both the amount and the position of irradiation-induced defect pixels contribute to spot centroid deviation. And the larger spot has less deviation. At last, considering the space radiation damage, suggestions are made for the constraints of spot size selection.
Self-assembly of vertically aligned quantum ring-dot structure by Multiple Droplet Epitaxy
NASA Astrophysics Data System (ADS)
Elborg, Martin; Noda, Takeshi; Mano, Takaaki; Kuroda, Takashi; Yao, Yuanzhao; Sakuma, Yoshiki; Sakoda, Kazuaki
2017-11-01
We successfully grow vertically aligned quantum ring-dot structures by Multiple Droplet Epitaxy technique. The growth is achieved by depositing GaAs quantum rings in a first droplet epitaxy process which are subsequently covered by a thin AlGaAs barrier. In a second droplet epitaxy process, Ga droplets preferentially position in the center indentation of the ring as well as attached to the edge of the ring in [ 1 1 bar 0 ] direction. By designing the ring geometry, full selectivity for the center position of the ring is achieved where we crystallize the droplets into quantum dots. The geometry of the ring and dot as well as barrier layer can be controlled in separate growth steps. This technique offers great potential for creating complex quantum molecules for novel quantum information technologies.
Planetary rings as relics of plasma pre-rings
NASA Astrophysics Data System (ADS)
Rabinovich, B. I.
2007-02-01
A possibility is discussed that the rings of large planets observed in the modern epoch are relics of some pre-rings consisting of magnetized plasma (according to a hypothesis by H. Alfven). The solution to a model problem published in [36, 37] is used. Its main result is a mechanism of stratification of an evolutionally mature plasma pre-ring into a large number of narrow elite rings separated by anti-rings (gaps). Another result is the theoretical substantiation of the presence in the near-planetary space of a region of existence and stability (in what follows it is referred to as ES-region) of plasma rings. The data obtained in the course of the Voyager, Galileo, and Cassini missions are used below for verification of the model on which the solutions presented in [36, 37] are based.
REDSPEC: NIRSPEC data reduction
NASA Astrophysics Data System (ADS)
Kim, S.; Prato, L.; McLean, I.
2015-07-01
REDSPEC is an IDL based reduction package designed with NIRSPEC in mind though can be used to reduce data from other spectrographs as well. REDSPEC accomplishes spatial rectification by summing an A+B pair of a calibration star to produce an image with two spectra; the image is remapped on the basis of polynomial fits to the spectral traces and calculation of gaussian centroids to define their separation, producing straight spectral traces with respect to the detector rows. The raw images are remapped onto a coordinate system with uniform intervals in spatial extent along the slit and in wavelength along the dispersion axis.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-22
... Community. The MCAI AD reports the separation and loss of a stainless steel ring (75 millimeter (mm) in... of a stainless steel ring (75 mm in diameter) from a blade sleeve resulting in severe, high-frequency... information specifies checking the blade sleeve for slippage of the stainless steel ring (75 mm in diameter...
NASA Astrophysics Data System (ADS)
Sancho de Salas, Fernando
2017-12-01
A ringed finite space is a ringed space whose underlying topological space is finite. The category of ringed finite spaces contains, fully faithfully, the category of finite topological spaces and the category of affine schemes. Any ringed space, endowed with a finite open covering, produces a ringed finite space. We introduce the notions of schematic finite space and schematic morphism, showing that they behave, with respect to quasi-coherence, like schemes and morphisms of schemes do. Finally, we construct a fully faithful and essentially surjective functor from a localization of a full subcategory of the category of schematic finite spaces and schematic morphisms to the category of quasi-compact and quasi-separated schemes.
NASA Astrophysics Data System (ADS)
Han, Cheongho; Jeong, Youngjin; Kim, Ho-Il
1998-11-01
Recently Alard, Mao, & Guibert and Alard proposed to detect the shift of a star's image centroid, δx, as a method to identify the lensed source among blended stars. Goldberg & Woźniak actually applied this method to the OGLE-1 database and found that seven of 15 events showed significant centroid shifts of δx >~ 0.2". The amount of centroid shift has been estimated theoretically by Goldberg; however, he treated the problem in general and did not apply it to a particular survey or field and therefore based his estimate on simple toy model luminosity functions (i.e., power laws). In this paper, we construct the expected distribution of δx for Galactic bulge events based on the precise stellar luminosity function observed by Holtzman et al. using the Hubble Space Telescope. Their luminosity function is complete up to MI ~ 9.0 (MV ~ 12), which corresponds to faint M-type stars. In our analysis we find that regular blending cannot produce a large fraction of events with measurable centroid shifts. By contrast, a significant fraction of events would have measurable centroid shifts if they are affected by amplification-bias blending. Therefore, the measurements of large centroid shifts for an important fraction of microlensing events of Goldberg & Woźniak confirm the prediction of Han & Alard that a large fraction of Galactic bulge events are affected by amplification-bias blending.
Shack-Hartmann wavefront sensor with large dynamic range.
Xia, Mingliang; Li, Chao; Hu, Lifa; Cao, Zhaoliang; Mu, Quanquan; Xuan, Li
2010-01-01
A new spot centroid detection algorithm for a Shack-Hartmann wavefront sensor (SHWFS) is experimentally investigated. The algorithm is a kind of dynamic tracking algorithm that tracks and calculates the corresponding spot centroid of the current spot map based on the spot centroid of the previous spot map, according to the strong correlation of the wavefront slope and the centroid of the corresponding spot between temporally adjacent SHWFS measurements. That is, for adjacent measurements, the spot centroid movement will usually fall within some range. Using the algorithm, the dynamic range of an SHWFS can be expanded by a factor of three in the measurement of tilt aberration compared with the conventional algorithm, more than 1.3 times in the measurement of defocus aberration, and more than 2 times in the measurement of the mixture of spherical aberration plus coma aberration. The algorithm is applied in our SHWFS to measure the distorted wavefront of the human eye. The experimental results of the adaptive optics (AO) system for retina imaging are presented to prove its feasibility for highly aberrated eyes.
Lin, Hui; Zhang, Zhenbin; Dong, Jing; Liu, Zhongshan; Ou, Junjie; Zou, Hanfa
2013-09-01
A new organic-inorganic hybrid monolith was prepared by the ring-opening polymerization of octaglycidyldimethylsilyl polyhedral oligomeric silsesquioxane (POSS) with 1,4-butanediamine (BDA) using 1-propanol, 1,4-butanediol, and PEG 10,000 as a porogenic system. Benefiting from the moderate phase separation process, the resulting poly(POSS-co-BDA) hybrid monolith possessed a uniform microstructure and exhibited excellent performance in chromatographic applications. Neutral, acidic, and basic compounds were successfully separated on the hybrid monolith in capillary LC (cLC), and high column efficiencies were achieved in all of the separations. In addition, as the amino groups could generate a strong EOF, the hybrid monolith was also applied in CEC for the separation of neutral and polar compounds, and a satisfactory performance was obtained. These results demonstrate that the poly(POSS-co-BDA) hybrid monolith is a good separation media in chromatographic separations of various types of compounds by both cLC and CEC. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Schwarzer, Anke; Kroke, Edwin
2014-01-01
In the asymmetric unit of the title compound, C26H17N13O·C2H6OS·2H2O, there is one independent heptazine-based main molecule, one dimethyl sulfoxide molecule and two water molecules as solvents. The tri-s-triazine unit is substituted with two dipyridyl amine moieties and a carbonylic O atom. As indicated by the bond lengths in this acid unit of the heptazine derivative [C=O = 1.213 (2) Å, while the adjacent C—N(H) bond = 1.405 (2) Å] it is best described by the keto form. The cyameluric nucleus is close to planar (r.m.s. deviation = 0.061 Å) and the pyridine rings are inclined to its mean plane by dihedral angles varying from 47.47 (5) to 70.22 (5)°. The host and guest molecules are connected via N—H⋯O, O—H⋯O and O—H⋯N hydrogen bonds, forming a four-membered inversion dimer-like arrangement enclosing an R 4 4(24) ring motif. These arrangements stack along [1-10] with a weak π–π interaction [inter-centroid distance = 3.8721 (12) Å] involving adjacent pyridine rings. There are also C—H⋯N and C—H⋯O hydrogen bonds and C—H⋯π interactions present within the host molecule and linking inversion-related molecules, forming a three-dimensional structure. PMID:24826156
Linear dispersion properties of ring velocity distribution functions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vandas, Marek, E-mail: marek.vandas@asu.cas.cz; Hellinger, Petr; Institute of Atmospheric Physics, AS CR, Bocni II/1401, CZ-14100 Prague
2015-06-15
Linear properties of ring velocity distribution functions are investigated. The dispersion tensor in a form similar to the case of a Maxwellian distribution function, but for a general distribution function separable in velocities, is presented. Analytical forms of the dispersion tensor are derived for two cases of ring velocity distribution functions: one obtained from physical arguments and one for the usual, ad hoc ring distribution. The analytical expressions involve generalized hypergeometric, Kampé de Fériet functions of two arguments. For a set of plasma parameters, the two ring distribution functions are compared. At the parallel propagation with respect to the ambientmore » magnetic field, the two ring distributions give the same results identical to the corresponding bi-Maxwellian distribution. At oblique propagation, the two ring distributions give similar results only for strong instabilities, whereas for weak growth rates their predictions are significantly different; the two ring distributions have different marginal stability conditions.« less
Mass Measurements of Proton-rich Nuclides at the Cooler Storage Ring at IMP
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Y. H.; Xu, H. S.; Wang, M.
2011-11-30
Recent results and progress of mass measurements of proton-rich nuclei using isochronous mass spectrometry (IMS) are reported. The nuclei under investigation were produced via fragmentation of relativistic energy heavy ions of {sup 78}Kr and {sup 58}Ni. After in-flight separation by the fragment separator RIBLL-2, the nuclei were injected and stored in the experimental storage ring CSRe, and their masses were determined from measurements of the revolution times. The impact of these measurements on the stellar nucleosynthesis in the rp-process is discussed.
Structure, stratigraphy, and eruption chronology of the Hanauma Bay Tuff Ring, Oahu, Hawaii
NASA Astrophysics Data System (ADS)
Rottas, K. M.; Houghton, B. F.
2010-12-01
The Hanauma Bay-Koko Head Complex is one of several volcanic landforms along the Koko fissure, in southeastern Oahu, that formed during rejuvenated volcanism. The Hanauma Bay region of the complex is comprised of two nested tuff rings. The internal structure of the inner tuff ring is well exposed due to subsequent breaching and wave erosion and is described in detail here for the first time. The inner tuff ring is currently believed to have formed during a single eruption episode. However, field observations, detailed photography, structural mapping in both the vertical and horizontal planes, extensive measurements of bedding attitudes, and stratigraphic analysis suggest that there were a minimum of five distinct intervals of deposition, which also blanketed the deposits of the outer tuff ring with ejecta. These intervals of sedimentation were separated by significant collapses, generating major unconformities that cross the inner wall of the inner ring. The planes of failure are marked by smaller steep-walled channels and gullies, eroded by rainfall-induced runoff and suggesting the failures were each followed by short time breaks with erosion. Within each pyroclastic sequence there are also smaller slump scars and local unconformities. The inner tuff ring was predominately formed by pyroclastic surges, although the beds of Phase 3 are primarily fall deposits. From ballistic trajectories and bedding features, it is apparent that the eruption locus shifted a minimum of two times during tuff ring growth. Ballistic blocks in the final Phase 5 indicate that the Hanauma Bay eruption was contemporaneous with a separate eruption to the north, most likely that of the Kahauloa tuff ring 880 meters away.
High speed wide field CMOS camera for Transneptunian Automatic Occultation Survey
NASA Astrophysics Data System (ADS)
Wang, Shiang-Yu; Geary, John C.; Amato, Stephen M.; Hu, Yen-Sang; Ling, Hung-Hsu; Huang, Pin-Jie; Furesz, Gabor; Chen, Hsin-Yo; Chang, Yin-Chang; Szentgyorgyi, Andrew; Lehner, Matthew; Norton, Timothy
2014-08-01
The Transneptunian Automated Occultation Survey (TAOS II) is a three robotic telescope project to detect the stellar occultation events generated by Trans Neptunian Objects (TNOs). TAOS II project aims to monitor about 10000 stars simultaneously at 20Hz to enable statistically significant event rate. The TAOS II camera is designed to cover the 1.7 degree diameter field of view (FoV) of the 1.3m telescope with 10 mosaic 4.5kx2k CMOS sensors. The new CMOS sensor has a back illumination thinned structure and high sensitivity to provide similar performance to that of the backillumination thinned CCDs. The sensor provides two parallel and eight serial decoders so the region of interests can be addressed and read out separately through different output channels efficiently. The pixel scale is about 0.6"/pix with the 16μm pixels. The sensors, mounted on a single Invar plate, are cooled to the operation temperature of about 200K by a cryogenic cooler. The Invar plate is connected to the dewar body through a supporting ring with three G10 bipods. The deformation of the cold plate is less than 10μm to ensure the sensor surface is always within ±40μm of focus range. The control electronics consists of analog part and a Xilinx FPGA based digital circuit. For each field star, 8×8 pixels box will be readout. The pixel rate for each channel is about 1Mpix/s and the total pixel rate for each camera is about 80Mpix/s. The FPGA module will calculate the total flux and also the centroid coordinates for every field star in each exposure.
A multiple-orbit time-of-flight mass spectrometer based on a low energy electrostatic storage ring
NASA Astrophysics Data System (ADS)
Sullivan, M. R.; Spanjers, T. L.; Thorn, P. A.; Reddish, T. J.; Hammond, P.
2012-11-01
The results are presented for an electrostatic storage ring, consisting of two hemispherical deflector analyzers (HDA) connected by two separate sets of cylindrical lenses, used as a time-of-flight mass spectrometer. Based on the results of charged particle simulations and formal matrix model, the Ion Storage Ring is capable of operating with multiple stable orbits, for both single and multiply charged ions simultaneously.
Dendropedagogy: Teaching Botany, Ecology and Statistical Principles through Tree-Ring Studies.
ERIC Educational Resources Information Center
Rubino, Darrin L.; McCarthy, Brian C.
2002-01-01
Develops a simple tree-ring laboratory to demonstrate the basics of dendrochronology. Provides two upper-level laboratory exercises primarily intended to demonstrate the specific dendrochronology subdisciplines of dendroclimatology and dendroecology. Suggests using the exercises separately or in unison as part of a multidisciplinary capstone…
Concurrent Timbres in Orchestration: a Perceptual Study of Factors Determining "blend"
NASA Astrophysics Data System (ADS)
Sandell, Gregory John
Orchestration often involves selecting instruments for concurrent presentation, as in melodic doubling or chords. One evaluation of the aural outcome of such choices is along the continuum of "blend": whether the instruments fuse into a single composite timbre, segregate into distinct timbral entities, or fall somewhere in between the two extremes. This study investigates, through perceptual experimentation, the acoustical correlates of blend for 15 natural-sounding orchestral instruments presented in concurrently-sounding pairs (e.g. flute-cello, trumpet -oboe, etc.). Ratings of blend showed primary effects for centroid (the location of the midpoint of the spectral energy distribution) and duration of the onset for the tones. Lower average values of both centroid and onset duration for a pair of tones led to increased blends, as did closeness in value for the two factors. Blend decreased (instruments segregated) with higher average values or increased difference in value for the two factors. The musical interval of presentation slightly affected the relative importance of these two mechanisms, with unison intervals determined more by lower average centroid, and minor thirds determined more by closeness in centroid. The contribution of onset in general was slightly more pronounced in the unison conditions than in the minor third condition. Additional factors contributing to blend were correlation of amplitude and centroid envelopes (blend increased as temporal patterns rose and fell in synchrony) and similarity in the overall amount of fundamental frequency perturbation (decreased blend with increasing jitter from both tones). To confirm the importance of centroid as an independent factor determining blend, pairs of tones including instruments with artificially changed centroids were rated for blend. Judgments for several versions of the same instrument pair showed that blend decreased as the altered instrument increased in centroid, corroborating the earlier experiments. Other factors manipulated were amplitude level and the degree of inharmonicity. A survey of orchestration manuals showed many illustrations of "blending" combinations of instruments that were consistent with the results of these experiments. This study's acoustically-based guidelines for blend augment instance-based methods of traditional orchestration teaching, providing underlying abstractions helpful for evaluating the blend of arbitrary combinations of instruments.
About separation and collision of Saturn rings particles
NASA Astrophysics Data System (ADS)
Tchernyi, Vladimir
There is no yet clear picture of the origin of Saturn's rings. We follow importance of electromag-netic idea that rings could originate and form from the frozen particles of the protoplanetary cloud after the appearance of the magnetic field of Saturn due to electromagnetic interaction of icy particles with the planetary magnetic field. The Sun heats the rings weakly, temperature in the area of the rings is about 70-110 K. It makes possible the existence of the superconduct-ing substance in the space behind the belt of asteroids. Theoretical electromagnetic modeling demonstrates that superconductivity can be the physical reason of the origin of the sombrero of rings of Saturn from the frozen particles of the protoplanetary cloud. The sombrero appears during some time after magnetic field of planet appears. Finally, all the Kepler's orbits of the superconducting particles are localizing as a sombrero disk of rings in the magnetic equator plane, where the energy of particles in the magnetic field of Saturn has a minimum value. Recently space probe "Cassini" discovered collisions and separation of the Saturn's rings parti-cles. It is also important fact that from electromagnetic modeling follows possibility of collide of the rings particles on the vertical direction within the width of the sombrero. It could be a reason for the formation of the particles of the bigger size due to coalescence, until gravity and centrifugal force will destroy them to the particles of smaller size again. From the solution of the electromagnetic problem we will demonstrate how rings of Saturn could be originated from the iced particles located within the protoplanetary cloud. Before appearance of the magnetic field of Saturn all particles within the protoplanetary cloud are located on such an orbit as Kepler's, where there is a balance of the force of gravity and the centrifugal force. With the occurrence of the magnetic field of the Saturn the superconducting particles of the protoplane-tary cloud begin to demonstrate an ideal diamagnetism. Due to appearance of the third force of diamagnetic push-out particles start to interact with the magnetic field and all the orbits of the particles become to be involved in additional azimuth-orbital movement. As a result, eventually, during some time, all orbits of the particles of the protoplanetary cloud should come together to magnetic equator plane and create highly flattening disc around planet. For separa-tion and collision of the particles within the sombrero of rings from solution of electromagnetic problem follows that for two particles which are located on the same plane, both particles will be pushing each other and they will be holding separation distance in between them. Then for another situation both particles are located on the same axis but on the different planes, both particles will be attracting each other, they could even collide or stick together and form bigger pieces or lumps of ice. Both facts have an experimental conformation by Cassini mission. Reference: Tchernyi V.V. Origin of the Saturn rings: electromagnetic model of the sombrero rings formation. Chapter in book: Space Exploration Research. Editors: John H. Denis and Paul D. Aldridge. Series: Space Science, Exploration and Policies. ISBN: 978-1-60692-264-4. Hauppauge, NY, USA, Nova Science Publishers, 2009:
NASA Astrophysics Data System (ADS)
Villarosa Garcia, M.
2016-02-01
Morphologic disparity, carries both an ecological and evolutionary signal and, where practical, might bridge ecological processes observed in modern seas with macroevolutionary processes observed in the fossil record, complementing taxonomic diversity studies. I compare the biogeography of morphologic disparity and taxonomic richness in extant coccolithophores to understand the role of environmental conditions in their spatial partitioning. I analyze 112 traits in 125 species and measure geographic extent as the occupation of pelagic biogeographic provinces (sensu Spalding et al. 2012). In the modern ocean, coccolithophorid species richness increases towards the equator, peaking in the subtropics, and certain biomes harbor more species. In contrast, their morphologic disparity does not vary across latitudes and biomes, yielding similar values of variance and mean pair-wise distances. Disparity is weakly correlated to richness across clades and biomes (no clear latitudinal pattern). I also study the morphological breadth of clades in a multivariate morphospace plotted as principal coordinate axes (PCO). Clades have distinct centroids but show some overlap in volume. However, they are completely separate when using canonical variates analysis (CVA) on these PCO axes. The centroids of latitudinal groups are closely spaced, and overlap in morphospace, but again separate with CVA. However biome groups can't be distinguished using PCO or CVA. Although clades with the most species tend to have high disparity, most clades are found in every region yielding similar group disparities. Despite the fact that taxonomic diversity is spatially partitioned on the globe, morphologic disparity has no such organization. Past studies using marine gastropods (Roy et al. 2001; McClain 2005), cuttlefish (Neige 2003), and birds (Jønsson et al. 2015) also find minimal support for a biogeographic structure of disparity, highlighting the profound nature of this differential response.
Muñoz, Sofía; Manjón, Elvira; Sánchez, Yolanda
2014-01-01
The small GTP-binding proteins of the Rho family and its regulatory proteins play a central role in cytokinetic actomyosin ring assembly and cytokinesis. Here we show that the fission yeast guanine nucleotide exchange factor Gef3p interacts with Rho3p at the division site. Gef3p contains a putative DH homology domain and a BAR/IMD-like domain. The protein localized to the division site late in mitosis, where it formed a ring that did not constrict with actomyosin ring (cytokinetic actomyosin ring) invagination; instead, it split into a double ring that resembled the septin ring. Gef3p co-localized with septins and Mid2p and required septins and Mid2p for its localization. Gef3p interacts physically with the GTP-bound form of Rho3p. Although Gef3p is not essential for cell separation, the simultaneous disruption of gef3+ and Rho3p-interacting proteins, such as Sec8p, an exocyst component, Apm1p, a subunit of the clathrin adaptor complex or For3p, an actin-polymerizing protein, yielded cells with strong defects in septation and polarity respectively. Our results suggest that interactions between septins and Rho-GEFs provide a new targeting mechanism for GTPases in cytokinesis, in this case probably contributing to Rho3p function in vesicle tethering and vesicle trafficking in the later steps of cell separation. PMID:24947517
Ponomarova, Vira V; Rusanova, Julia A; Rusanov, Eduard B; Domasevitch, Konstantin V
2015-10-01
In (1,4,7,10,13,16-hexaoxacyclooctadecane)rubidium hexachloridoantimonate(V), [Rb(C12H24O6)][SbCl6], (1), and its isomorphous caesium {(1,4,7,10,13,16-hexaoxacyclooctadecane)caesium hexachloridoantimonate(V), [Cs(C12H24O6)][SbCl6]}, (2), and ammonium {ammonium hexachloridoantimonate(V)-1,4,7,10,13,16-hexaoxacyclooctadecane (1/1), (NH4)[SbCl6]·C12H24O6}, (3), analogues, the hexachloridoantimonate(V) anions and 18-crown-6 molecules reside across -3 axes passing through the Sb atoms and the centroids of the 18-crown-6 groups, both of which coincide with centres of inversion. The Rb(+) [in (1)], Cs(+) [in (2)] and NH4(+) [in (3)] cations are situated inside the cavity of the 18-crown-6 ring; they are situated on -3 axes and are equally disordered about centres of inversion, deviating from the centroid of the 18-crown-6 molecule by 0.4808 (13), 0.9344 (7) and 0.515 (8) Å, respectively. Interaction of the ammonium cation and the 18-crown-6 group is supported by three equivalent hydrogen bonds [N...O = 2.928 (3) Å and N-H...O = 162°]. The centrosymmetric structure of [Cs(18-crown-6)](+), with the large Cs(+) cation approaching the centre of the ligand cavity, is unprecedented and accompanied by unusually short Cs-O bonds [2.939 (2) and 3.091 (2) Å]. For all three compounds, the [M(18-crown-6)](+) cations and [SbCl6](-) anions afford linear stacks along the c axis, with the cationic complexes embedded between pairs of inversion-related anions.
Code of Federal Regulations, 2014 CFR
2014-10-01
...: SPECIFICATIONS AND APPROVAL ENGINEERING EQUIPMENT Fixed Clean Agent Fire Extinguishing Systems § 162.161-3... § 162.161-2) and be made of metal, except for bushings, o-rings, and gaskets. Aluminum or aluminum..., or if galvanically incompatible, be separated by a bushing, o-ring, gasket, or similar device. (c...
Code of Federal Regulations, 2013 CFR
2013-10-01
...: SPECIFICATIONS AND APPROVAL ENGINEERING EQUIPMENT Fixed Clean Agent Fire Extinguishing Systems § 162.161-3... § 162.161-2) and be made of metal, except for bushings, o-rings, and gaskets. Aluminum or aluminum..., or if galvanically incompatible, be separated by a bushing, o-ring, gasket, or similar device. (c...
Code of Federal Regulations, 2012 CFR
2012-10-01
...: SPECIFICATIONS AND APPROVAL ENGINEERING EQUIPMENT Fixed Clean Agent Fire Extinguishing Systems § 162.161-3... § 162.161-2) and be made of metal, except for bushings, o-rings, and gaskets. Aluminum or aluminum..., or if galvanically incompatible, be separated by a bushing, o-ring, gasket, or similar device. (c...
The varieties of symmetric stellar rings and radial caustics in galaxy disks
NASA Technical Reports Server (NTRS)
Struck-Marcell, Curtis; Lotan, Pnina
1990-01-01
Numerical, restricted three-body and analytic calculations are used to study the formation and propagation of cylindrically symmetric stellar ring waves in galaxy disks. It is shown that such waves can evolve in a variety of ways, depending on the amplitude of the perturbation and the potential of the target galaxy. Rings can thicken as they propagate outward, remain at a nearly constant width, or be pinched off at large radii. Multiple, closely spaced rings can result from a low-amplitude collision, while an outer ring can appear well-separated from overlapping inner rings or an apparent lens structure in halo-dominated potentials. All the single-encounter rings consist of paired fold caustics. The simple, impulsive, kinematic oscillation equations appear to provide a remarkably accurate model of the numerical simulations. Simple analytic approximations to these equations permit very good estimates of oscillation periods and amplitudes, the evolution of ring widths, and ring birth and propagation characteristics.
A photonic crystal ring resonator formed by SOI nano-rods.
Chiu, Wei-Yu; Huang, Tai-Wei; Wu, Yen-Hsiang; Chan, Yi-Jen; Hou, Chia-Hunag; Chien, Huang Ta; Chen, Chii-Chang
2007-11-12
The design, fabrication and measurement of a silicon-on-insulator (SOI) two-dimensional photonic crystal ring resonator are demonstrated in this study. The structure of the photonic crystal is comprised of silicon nano-rods arranged in a hexagonal lattice on an SOI wafer. The photonic crystal ring resonator allows for the simultaneous separation of light at wavelengths of 1.31 and 1.55mum. The device is fabricated by e-beam lithography. The measurement results confirm that a 1.31mum/1.55mum wavelength ring resonator filter with a nano-rod photonic crystal structure can be realized.
Experiment to demonstrate separation of Cherenkov and scintillation signals
Caravaca, J.; Descamps, F. B.; Land, B. J.; ...
2017-05-05
The ability to separately identify the Cherenkov and scintillation light components produced in scintillating mediums holds the potential for a major breakthrough in neutrino detection technology, allowing development of a large, low-threshold, directional detector with a broad physics program. Furthermore, the CHESS (CHErenkov/Scintillation Separation) experiment employs an innovative detector design with an array of small, fast photomultiplier tubes and state-of-the-art electronics to demonstrate the reconstruction of a Cherenkov ring in a scintillating medium based on photon hit time and detected photoelectron density. Our paper describes the physical properties and calibration of CHESS along with first results. The ability to reconstructmore » Cherenkov rings are demonstrated in a water target, and a time precision of 338 ± 12 ps FWHM is achieved. Finally, Monte Carlo–based predictions for the ring imaging sensitivity with a liquid scintillator target predict an efficiency for identifying Cherenkov hits of 94 ± 1 % and 81 ± 1 % in pure linear alkyl benzene (LAB) and LAB loaded with 2 g/L of a fluor, PPO, respectively, with a scintillation contamination of 12 ± 1 % and 26 ± 1 % .« less
Experiment to demonstrate separation of Cherenkov and scintillation signals
NASA Astrophysics Data System (ADS)
Caravaca, J.; Descamps, F. B.; Land, B. J.; Wallig, J.; Yeh, M.; Orebi Gann, G. D.
2017-05-01
The ability to separately identify the Cherenkov and scintillation light components produced in scintillating mediums holds the potential for a major breakthrough in neutrino detection technology, allowing development of a large, low-threshold, directional detector with a broad physics program. The CHESS (CHErenkov/Scintillation Separation) experiment employs an innovative detector design with an array of small, fast photomultiplier tubes and state-of-the-art electronics to demonstrate the reconstruction of a Cherenkov ring in a scintillating medium based on photon hit time and detected photoelectron density. This paper describes the physical properties and calibration of CHESS along with first results. The ability to reconstruct Cherenkov rings is demonstrated in a water target, and a time precision of 338 ±12 ps FWHM is achieved. Monte Carlo-based predictions for the ring imaging sensitivity with a liquid scintillator target predict an efficiency for identifying Cherenkov hits of 94 ±1 % and 81 ±1 % in pure linear alkyl benzene (LAB) and LAB loaded with 2 g/L of a fluor, PPO, respectively, with a scintillation contamination of 12 ±1 % and 26 ±1 % .
Relethford, John H; Smith, Fred H
2018-05-01
Ancient DNA analysis has shown that present-day humans of Eurasian ancestry are more similar to Neandertals than are present-day humans of sub-Saharan African ancestry, reflecting interbreeding after modern humans first left Africa. We use craniometric data to test the hypothesis that the crania of recent modern humans show the same pattern. We computed Mahalanobis squared distances between a published Neandertal centroid based on 37 craniometric traits and each of 2,413 recent modern humans from the Howells global data set (N = 373 sub-Saharan Africans, N = 2,040 individuals of Eurasian descent). The average distance to the Neandertal centroid is significantly lower for Eurasian crania than for sub-Saharan African crania as expected from the findings of ancient DNA (p < 0.001). This result holds when examining distances for separate geographic regions of humans of Eurasian descent (Europeans, Asians, Australasians, Native Americans, and Pacific Islanders). Most of these results are also seen when examining distances partitioning size and shape variation. Our results show that the genetic difference in Neandertal ancestry seen in the DNA of present-day sub-Saharan Africans and Eurasians is also found in patterns of recent modern human craniometric variation. © 2018 Wiley Periodicals, Inc.
Generic Design Procedures for the Repair of Acoustically Damaged Panels
2008-12-01
plate for component 1 h2 Thickness of plate for component 2 h3 Thickness of plate for component 3 h13 Distance from centroid of component 1 to centroid...E1 View AA Simply supported/clamped plate h13 Ly Lx y x d3 d1 y 2a Figure 4: Geometry for constrained layer damping of a simply...dimensions, properties and parameters Physical dimensions (Figure 4) Material properties Key parameters h1, h2 , h3 , h13 , Lx , Ly , 2a E1 , E3 , G2
Some new concepts in the n-body and 3-body problems
NASA Astrophysics Data System (ADS)
Kyrala, A.
1982-06-01
A new approach to the n-body problem in terms of an rms particle velocity and a harmonic mean particle separation has been constructed by using averaging procedures formulated in terms of a single parameter. A systematic classification of escape and collision processes by means of specific polynomials, which can be used somewhat like generating functions, is introduced. For n-body problems with non-null total angular momentum, an rms angular momentum is defined which together with a harmonic mean centroidal moment of inertia characterizes the rotational kinetic energy. Finally, a graphical construction for the equipotentials of the three-body problem is given and attention is drawn to the use of the apex, defined as the point of least average separation, in this problem. It is supposed that the n-bodies interact with one another via the Newtonian potential in an inertial system.
Tian, Yun; Zhong, Cheng; Fu, Enqin; Zeng, Zhaorui
2009-02-06
A novel enantioselective polymethacrylate-based monolithic column for capillary electrochromatography was prepared by ring-opening reaction of epoxy groups from poly(glycidyl methacrylate-co-ethylene dimethacrylate) monolith with a novel beta-cyclodextrin derivative bearing 4-dimethylamino-1,8-naphthalimide functionalities. Conditions for the ring-opening reaction with respect to different reaction parameters were thoroughly optimized to obtain high electroosmotic flow, separation efficiency and enantioselectivity for the analytes. The nonaqueous mobile phase composition regarding acetonitrile-methanol ratio and the concentration of electrolyte were examined to manipulate the hydrophobic inclusion and anion-exchange interaction between the analytes and chiral stationary phase. It was observed that in addition to beta-cyclodextrin cavity, the electrostatic interaction exhibited pronounced influence on the enantioseparation of acidic analytes. Acidic enantiomers (ibuprofen and naproxen) could be separated with separation factor (alpha) values up to 1.08 and a maximum separation efficiency of 86000 plates/m could be achieved.
Chiral-phase high-performance liquid chromatography of rotenoid racemates
Abidi, S.L.
1987-01-01
The high-performance liquid chromatograhic (HPLC) behavior of parent rotenoids (type I) and the hydroxyl-analogues (type II) on three different chiral stationary phases (CSPs) was studied. Separations of optical isomers were achieved in various degrees depending largely upon the rotenoidal structures and the CSP types employed. Enantiomers of all but elliptone compounds were separable on β-cyclodextrin-bonded silica (CDS). Without exception, the 12a-hydroxyrotenoid antipodes were resolved on Pirkle's phenylglycine-bonded silica (PGS) despite unsuccessful attenmpts to resolve the type I rotenoidal racemates. Conversely, optical resolution of the latter rotenoids was accomplished by using a helical polytriphenylmethylacrylate-coated silica (TPS) column and the observed separation factors (α values) ranged from 1.14 to 1.90. The results from HPLC of type II rotenoids on TPS (α = 1.00–1.63) suggested that variations in E-ring structures had profound influence on the resolution outcome. Conjugated double bonds on the E-ring and the desisopropylation of the five-membered E-ring ot type II rotenoids appeared to be important structural features for chiral recognition involving the TPS substrate. In both reversed-phase (CDS) and normal-pahse (PGS and TPS) HPLC modes, the less polar enantiomers were the 6aβ,12aβ-rotenoids as observed in most cases, though this relationship was reversed in the cases of deguelin and hydroxyelliptone probably due to conformational effects of rotenoidal ring systems.
Ambiguity Of Doppler Centroid In Synthetic-Aperture Radar
NASA Technical Reports Server (NTRS)
Chang, Chi-Yung; Curlander, John C.
1991-01-01
Paper discusses performances of two algorithms for resolution of ambiguity in estimated Doppler centroid frequency of echoes in synthetic-aperture radar. One based on range-cross-correlation technique, other based on multiple-pulse-repetition-frequency technique.
Shaffer, Franklin D.
2013-03-12
The application relates to particle trajectory recognition from a Centroid Population comprised of Centroids having an (x, y, t) or (x, y, f) coordinate. The method is applicable to visualization and measurement of particle flow fields of high particle. In one embodiment, the centroids are generated from particle images recorded on camera frames. The application encompasses digital computer systems and distribution mediums implementing the method disclosed and is particularly applicable to recognizing trajectories of particles in particle flows of high particle concentration. The method accomplishes trajectory recognition by forming Candidate Trajectory Trees and repeated searches at varying Search Velocities, such that initial search areas are set to a minimum size in order to recognize only the slowest, least accelerating particles which produce higher local concentrations. When a trajectory is recognized, the centroids in that trajectory are removed from consideration in future searches.
Centroid estimation for a Shack-Hartmann wavefront sensor based on stream processing.
Kong, Fanpeng; Polo, Manuel Cegarra; Lambert, Andrew
2017-08-10
Using center of gravity to estimate the centroid of the spot in a Shack-Hartmann wavefront sensor, the measurement corrupts with photon and detector noise. Parameters, like window size, often require careful optimization to balance the noise error, dynamic range, and linearity of the response coefficient under different photon flux. It also needs to be substituted by the correlation method for extended sources. We propose a centroid estimator based on stream processing, where the center of gravity calculation window floats with the incoming pixel from the detector. In comparison with conventional methods, we show that the proposed estimator simplifies the choice of optimized parameters, provides a unit linear coefficient response, and reduces the influence of background and noise. It is shown that the stream-based centroid estimator also works well for limited size extended sources. A hardware implementation of the proposed estimator is discussed.
Effects of window size and shape on accuracy of subpixel centroid estimation of target images
NASA Technical Reports Server (NTRS)
Welch, Sharon S.
1993-01-01
A new algorithm is presented for increasing the accuracy of subpixel centroid estimation of (nearly) point target images in cases where the signal-to-noise ratio is low and the signal amplitude and shape vary from frame to frame. In the algorithm, the centroid is calculated over a data window that is matched in width to the image distribution. Fourier analysis is used to explain the dependency of the centroid estimate on the size of the data window, and simulation and experimental results are presented which demonstrate the effects of window size for two different noise models. The effects of window shape were also investigated for uniform and Gaussian-shaped windows. The new algorithm was developed to improve the dynamic range of a close-range photogrammetric tracking system that provides feedback for control of a large gap magnetic suspension system (LGMSS).
Photometric analysis in the Kepler Science Operations Center pipeline
NASA Astrophysics Data System (ADS)
Twicken, Joseph D.; Clarke, Bruce D.; Bryson, Stephen T.; Tenenbaum, Peter; Wu, Hayley; Jenkins, Jon M.; Girouard, Forrest; Klaus, Todd C.
2010-07-01
We describe the Photometric Analysis (PA) software component and its context in the Kepler Science Operations Center (SOC) Science Processing Pipeline. The primary tasks of this module are to compute the photometric flux and photocenters (centroids) for over 160,000 long cadence (~thirty minute) and 512 short cadence (~one minute) stellar targets from the calibrated pixels in their respective apertures. We discuss science algorithms for long and short cadence PA: cosmic ray cleaning; background estimation and removal; aperture photometry; and flux-weighted centroiding. We discuss the end-to-end propagation of uncertainties for the science algorithms. Finally, we present examples of photometric apertures, raw flux light curves, and centroid time series from Kepler flight data. PA light curves, centroid time series, and barycentric timestamp corrections are exported to the Multi-mission Archive at Space Telescope [Science Institute] (MAST) and are made available to the general public in accordance with the NASA/Kepler data release policy.
Photometric Analysis in the Kepler Science Operations Center Pipeline
NASA Technical Reports Server (NTRS)
Twicken, Joseph D.; Clarke, Bruce D.; Bryson, Stephen T.; Tenenbaum, Peter; Wu, Hayley; Jenkins, Jon M.; Girouard, Forrest; Klaus, Todd C.
2010-01-01
We describe the Photometric Analysis (PA) software component and its context in the Kepler Science Operations Center (SOC) pipeline. The primary tasks of this module are to compute the photometric flux and photocenters (centroids) for over 160,000 long cadence (thirty minute) and 512 short cadence (one minute) stellar targets from the calibrated pixels in their respective apertures. We discuss the science algorithms for long and short cadence PA: cosmic ray cleaning; background estimation and removal; aperture photometry; and flux-weighted centroiding. We discuss the end-to-end propagation of uncertainties for the science algorithms. Finally, we present examples of photometric apertures, raw flux light curves, and centroid time series from Kepler flight data. PA light curves, centroid time series, and barycentric timestamp corrections are exported to the Multi-mission Archive at Space Telescope [Science Institute] (MAST) and are made available to the general public in accordance with the NASA/Kepler data release policy.
NASA Astrophysics Data System (ADS)
Dotani, T.
1989-11-01
Strong Quasi-Periodic Oscillations (QPO) in type 2 bursts from the rapid burster with Ginga were detected. The QPD have centroid frequency of approximately 5 and 2 Hz during bursts which lasted for approximately 10 and 30 sec, respectively. The QPO observations were analyzed and the following results were obtained: QPO centroid frequencies have some correlation with burst duration and peak count rate, however the correlations are complicated and the burst parameters do not uniquely determine the QPO centroid frequency; the appearance of the QPO is closely related to the so-called timescale-invariant profile of the bursts; the QPO are significant only in the even numbered peaks of the profile and not in the odd numbered peaks; in most cases the QPO centroid frequency decreases up to approximately 25 percent during a burst. The energy spectra at the QPO peaks and valleys were investigated and the QPO peaks were found to have significantely higher blackbody temperature than the QPD valleys.
Sensing roller for in-process thickness measurement
Novak, James L.
1996-01-01
An apparatus and method for processing materials by sensing roller, in which the sensing roller has a plurality of conductive rings (electrodes) separated by rings of dielectric material. Sensing capacitances or impedances between the electrodes provides information on thicknesses of the materials being processed, location of wires therein, and other like characteristics of the materials.
Choi, Sun; Birarda, Giovanni
2017-08-03
During natural drying process, all solutions and suspensions tend to form the so-called "coffee-ring" deposits. This phenomenon, by far, has been interpreted by the hydrodynamics of evaporating fluids. However, in this study, by applying Fourier transform infrared imaging (FTIRI), it is possible to observe the segregation and separation of a protein mixture at the "ring", hence we suggest a new way to interpret "coffee-ring effect" of solutions. The results explore the dynamic process that leads to the ring formation in case of model plasma proteins, such as BGG (bovine γ globulin), BSA (bovine serum albumin), and Hfib (human fibrinogen), and also report fascinating discovery of the segregation at the ring deposits of two model proteins BGG and BSA, which can be explained by an energy kinetic model, only. The investigation suggests that the coffee-ring effect of solute in an evaporating solution drop is driven by an energy gradient created from change of particle-water-air interfacial energy configuration.
Use of a Hybrid Edge Node-Centroid Node Approach to Thermal Modeling
NASA Technical Reports Server (NTRS)
Peabody, Hume L.
2010-01-01
A recent proposal submitted for an ESA mission required that models be delivered in ESARAD/ESAT AN formats. ThermalDesktop was the preferable analysis code to be used for model development with a conversion done as the final step before delivery. However, due to some differences between the capabilities of the two codes, a unique approach was developed to take advantage of the edge node capability of ThermalDesktop while maintaining the centroid node approach used by ESARAD. In essence, two separate meshes were used: one for conduction and one for radiation. The conduction calculations were eliminated from the radiation surfaces and the capacitance and radiative calculations were eliminated from the conduction surfaces. The resulting conduction surface nodes were coincident with all nodes of the radiation surface and were subsequently merged, while the nodes along the edges remained free. Merging of nodes on the edges of adjacent surfaces provided the conductive links between surfaces. Lastly, all nodes along edges were placed into the subnetwork and the resulting supernetwork included only the nodes associated with radiation surfaces. This approach had both benefits and disadvantages. The use of centroid, surface based radiation reduces the overall size of the radiation network, which is often the most computationally intensive part of the modeling process. Furthermore, using the conduction surfaces and allowing ThermalDesktop to calculate the conduction network can save significant time by not having to manually generate the couplings. Lastly, the resulting GMM/TMM models can be exported to formats which do not support edge nodes. One drawback, however, is the necessity to maintain two sets of surfaces. This requires additional care on the part of the analyst to ensure communication between the conductive and radiative surfaces in the resulting overall network. However, with more frequent use of this technique, the benefits of this approach can far outweigh the additional effort.
Use of a Hybrid Edge Node-Centroid Node Approach to Thermal Modeling
NASA Technical Reports Server (NTRS)
Peabody, Hume L.
2010-01-01
A recent proposal submitted for an ESA mission required that models be delivered in ESARAD/ESATAN formats. ThermalDesktop was the preferable analysis code to be used for model development with a conversion done as the final step before delivery. However, due to some differences between the capabilities of the two codes, a unique approach was developed to take advantage of the edge node capability of ThermalDesktop while maintaining the centroid node approach used by ESARAD. In essence, two separate meshes were used: one for conduction and one for radiation. The conduction calculations were eliminated from the radiation surfaces and the capacitance and radiative calculations were eliminated from the conduction surfaces. The resulting conduction surface nodes were coincident with all nodes of the radiation surface and were subsequently merged, while the nodes along the edges remained free. Merging of nodes on the edges of adjacent surfaces provided the conductive links between surfaces. Lastly, all nodes along edges were placed into the subnetwork and the resulting supernetwork included only the nodes associated with radiation surfaces. This approach had both benefits and disadvantages. The use of centroid, surface based radiation reduces the overall size of the radiation network, which is often the most computationally intensive part of the modeling process. Furthermore, using the conduction surfaces and allowing ThermalDesktop to calculate the conduction network can save significant time by not having to manually generate the couplings. Lastly, the resulting GMM/TMM models can be exported to formats which do not support edge nodes. One drawback, however, is the necessity to maintain two sets of surfaces. This requires additional care on the part of the analyst to ensure communication between the conductive and radiative surfaces in the resulting overall network. However, with more frequent use of this technique, the benefits of this approach can far outweigh the additional effort.
Structure, stratigraphy, and eruption dynamics of a young tuff ring: Hanauma Bay, O'ahu, Hawai'i
NASA Astrophysics Data System (ADS)
Rottas, K. M.; Houghton, B. F.
2012-09-01
The Hanauma Bay-Koko Head complex is one of several young volcanic landforms along the Koko fissure, in southeastern O'ahu. The Hanauma Bay region of the complex comprises two nested tuff rings, inner and outer Hanauma Bay, and multiple smaller vents. The internal structure of the inner tuff ring, well exposed due to subsequent breaching by the ocean and wave erosion, indicates that it formed during a minimum of five distinct phases of deposition that produced five mappable units. Significant inward collapses generated major unconformities that separate the units exposed in the inner wall. The planes of failure are cut by narrow steep-walled, locally overhung channels and gullies, suggesting that the collapse events were each followed by short time breaks during which the deposits were eroded by rainfall runoff. Within each pyroclastic unit, there are many local slump scars and unconformities, suggesting that minor instability of the inner wall was a near-constant feature. From bedding sags and surge bed forms, it is apparent that the vent shifted at least twice during tuff ring growth. Ballistic blocks in the youngest unit indicate that the eruption overlapped in time with a separate eruption to the north, most likely to be that of the Kahauloa tuff ring 880 m away.
Oña-Ruales, Jorge O; Sander, Lane C; Wilson, Walter B; Wise, Stephen A
2018-01-01
The relationship of reversed-phase liquid chromatography (RPLC) retention on a polymeric C 18 stationary phase and the shape of polycyclic aromatic hydrocarbons (PAHs) was investigated for three-ring to seven-ring cata-condensed isomers. We report the first RPLC separation for six-ring and seven-ring cata-condensed PAH isomers. Correlations of LC retention and shape parameters (length-to-breath ratio, L/B and thickness, T) were investigated for 2 three-ring isomers (molecular mass 178 Da), 5 four-ring isomers (molecular mass 228 Da), 11 five-ring isomers (molecular mass 278 Da), 17 six-ring isomers (molecular mass 328 Da), and 20 seven-ring isomers (molecular mass 378 Da). Significant linear correlations were found for all isomer groups (r = 0.71 to 0.94). Nonplanarity of the PAH isomers was found to influence retention (i.e., nonplanar isomers eluting earlier than expected based on L/B) and linear correlations of retention vs. T for isomer groups containing nonplanar isomers were significant (r = 0.71 to 0.86). Graphical abstract.
Segawa, Hiroki; T Iwata, Yuko; Yamamuro, Tadashi; Kuwayama, Kenji; Tsujikawa, Kenji; Kanamori, Tatsuyuki; Inoue, Hiroyuki
2017-03-01
Chromatographic differentiation of the ring-substituted regioisomers of amphetamine (AMP) and methamphetamine (MA) was performed by supercritical fluid chromatography (SFC). The behaviour of the retention against the changes of column temperature and co-solvent proportion was studied. The obtained information facilitated the optimization of the each regioisomer. As a result, 2-, 3-, and 4-ring-substituted analogues of AMP and MA with methyl, methoxy, fluoro, chloro, and bromo groups were separated, generally within 6 min. In addition, we found that the separation pattern of the examined regioisomers was classified into two, which depended on the electron donating/withdrawing effect of the substituent. Our results indicate that SFC could be used in forensic drug analysis for fast, reliable identification of structurally similar drugs of abuse. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Path-integral isomorphic Hamiltonian for including nuclear quantum effects in non-adiabatic dynamics
NASA Astrophysics Data System (ADS)
Tao, Xuecheng; Shushkov, Philip; Miller, Thomas F.
2018-03-01
We describe a path-integral approach for including nuclear quantum effects in non-adiabatic chemical dynamics simulations. For a general physical system with multiple electronic energy levels, a corresponding isomorphic Hamiltonian is introduced such that Boltzmann sampling of the isomorphic Hamiltonian with classical nuclear degrees of freedom yields the exact quantum Boltzmann distribution for the original physical system. In the limit of a single electronic energy level, the isomorphic Hamiltonian reduces to the familiar cases of either ring polymer molecular dynamics (RPMD) or centroid molecular dynamics Hamiltonians, depending on the implementation. An advantage of the isomorphic Hamiltonian is that it can easily be combined with existing mixed quantum-classical dynamics methods, such as surface hopping or Ehrenfest dynamics, to enable the simulation of electronically non-adiabatic processes with nuclear quantum effects. We present numerical applications of the isomorphic Hamiltonian to model two- and three-level systems, with encouraging results that include improvement upon a previously reported combination of RPMD with surface hopping in the deep-tunneling regime.
Optical performances of the FM JEM-X masks
NASA Astrophysics Data System (ADS)
Reglero, V.; Rodrigo, J.; Velasco, T.; Gasent, J. L.; Chato, R.; Alamo, J.; Suso, J.; Blay, P.; Martínez, S.; Doñate, M.; Reina, M.; Sabau, D.; Ruiz-Urien, I.; Santos, I.; Zarauz, J.; Vázquez, J.
2001-09-01
The JEM-X Signal Multiplexing Systems are large HURA codes "written" in a pure tungsten plate 0.5 mm thick. 24.247 hexagonal pixels (25% open) are spread over a total area of 535 mm diameter. The tungsten plate is embedded in a mechanical structure formed by a Ti ring, a pretensioning system (Cu-Be) and an exoskeleton structure that provides the required stiffness. The JEM-X masks differ from the SPI and IBIS masks on the absence of a code support structure covering the mask assembly. Open pixels are fully transparent to X-rays. The scope of this paper is to report the optical performances of the FM JEM-X masks defined by uncertainties on the pixel location (centroid) and size coming from the manufacturing and assembly processes. Stability of the code elements under thermoelastic deformations is also discussed. As a general statement, JEM-X Mask optical properties are nearly one order of magnitude better than specified in 1994 during the ESA instrument selection.
(Carbonato-κ2 O,O′)bis(5,5′-dimethyl-2,2′-bipyridyl-κ2 N,N′)cobalt(III) bromide trihydrate
Arun Kumar, Kannan; Meera, Parthsarathi; Amutha Selvi, Madhavan; Dayalan, Arunachalam
2012-01-01
In the title complex, [Co(CO3)(C12H12N2)2]Br·3H2O, the CoIII cation has a distorted octahedral coordination environment. It is chelated by four N atoms of two different 5,5′-dimethyl-2,2′-bipyridyl (dmbpy) ligands in axial and equatorial positions, and by two O atoms of a carbonate anion completing the equatorial positions. Although the water molecules are disordered and their H atoms were not located, there are typical O⋯O distances between 2.8 and 3.0 Å, indicating O—H⋯O hydrogen bonding. The crystal packing is consolidated by C—H⋯O and C—H⋯Br hydrogen bonds, as well as π–π stacking interactions between adjacent pyridine rings of the dmbpy ligands, with centroid–centroid distances of 3.694 (3) and 3.7053 (3) Å. PMID:22589773
Centroids evaluation of the images obtained with the conical null-screen corneal topographer
NASA Astrophysics Data System (ADS)
Osorio-Infante, Arturo I.; Armengol-Cruz, Victor de Emanuel; Campos-García, Manuel; Cossio-Guerrero, Cesar; Marquez-Flores, Jorge; Díaz-Uribe, José Rufino
2016-09-01
In this work, we propose some algorithms to recover the centroids of the resultant image obtained by a conical nullscreen based corneal topographer. With these algorithms, we obtain the region of interest (roi) of the original image and using an image-processing algorithm, we calculate the geometric centroid of each roi. In order to improve our algorithm performance, we use different settings of null-screen targets, changing their size and number. We also improved the illumination system to avoid inhomogeneous zones in the corneal images. Finally, we report some corneal topographic measurements with the best setting we found.
An Accurate Centroiding Algorithm for PSF Reconstruction
NASA Astrophysics Data System (ADS)
Lu, Tianhuan; Luo, Wentao; Zhang, Jun; Zhang, Jiajun; Li, Hekun; Dong, Fuyu; Li, Yingke; Liu, Dezi; Fu, Liping; Li, Guoliang; Fan, Zuhui
2018-07-01
In this work, we present a novel centroiding method based on Fourier space Phase Fitting (FPF) for Point Spread Function (PSF) reconstruction. We generate two sets of simulations to test our method. The first set is generated by GalSim with an elliptical Moffat profile and strong anisotropy that shifts the center of the PSF. The second set of simulations is drawn from CFHT i band stellar imaging data. We find non-negligible anisotropy from CFHT stellar images, which leads to ∼0.08 scatter in units of pixels using a polynomial fitting method (Vakili & Hogg). When we apply the FPF method to estimate the centroid in real space, the scatter reduces to ∼0.04 in S/N = 200 CFHT-like sample. In low signal-to-noise ratio (S/N; 50 and 100) CFHT-like samples, the background noise dominates the shifting of the centroid; therefore, the scatter estimated from different methods is similar. We compare polynomial fitting and FPF using GalSim simulation with optical anisotropy. We find that in all S/N (50, 100, and 200) samples, FPF performs better than polynomial fitting by a factor of ∼3. In general, we suggest that in real observations there exists anisotropy that shifts the centroid, and thus, the FPF method provides a better way to accurately locate it.
Accuracy of Shack-Hartmann wavefront sensor using a coherent wound fibre image bundle
NASA Astrophysics Data System (ADS)
Zheng, Jessica R.; Goodwin, Michael; Lawrence, Jon
2018-03-01
Shack-Hartmannwavefront sensors using wound fibre image bundles are desired for multi-object adaptive optical systems to provide large multiplex positioned by Starbugs. The use of a large-sized wound fibre image bundle provides the flexibility to use more sub-apertures wavefront sensor for ELTs. These compact wavefront sensors take advantage of large focal surfaces such as the Giant Magellan Telescope. The focus of this paper is to study the wound fibre image bundle structure defects effect on the centroid measurement accuracy of a Shack-Hartmann wavefront sensor. We use the first moment centroid method to estimate the centroid of a focused Gaussian beam sampled by a simulated bundle. Spot estimation accuracy with wound fibre image bundle and its structure impact on wavefront measurement accuracy statistics are addressed. Our results show that when the measurement signal-to-noise ratio is high, the centroid measurement accuracy is dominated by the wound fibre image bundle structure, e.g. tile angle and gap spacing. For the measurement with low signal-to-noise ratio, its accuracy is influenced by the read noise of the detector instead of the wound fibre image bundle structure defects. We demonstrate this both with simulation and experimentally. We provide a statistical model of the centroid and wavefront error of a wound fibre image bundle found through experiment.
Sensing roller for in-process thickness measurement
Novak, J.L.
1996-07-16
An apparatus and method are disclosed for processing materials by sensing roller, in which the sensing roller has a plurality of conductive rings (electrodes) separated by rings of dielectric material. Sensing capacitances or impedances between the electrodes provides information on thicknesses of the materials being processed, location of wires therein, and other like characteristics of the materials. 6 figs.
Theory and Programs for Dynamic Modeling of Tree Rings from Climate
Paul C. van Deusen; Jennifer Koretz
1988-01-01
Computer programs written in GAUSS(TM) for IBM compatible personal computers are described that perform dynamic tree ring modeling with climate data; the underlying theory is also described. The programs and a separate users manual are available from the authors, although users must have the GAUSS software package on their personal computer. An example application of...
Intraoperative cyclorotation and pupil centroid shift during LASIK and PRK.
Narváez, Julio; Brucks, Matthew; Zimmerman, Grenith; Bekendam, Peter; Bacon, Gregory; Schmid, Kristin
2012-05-01
To determine the degree of cyclorotation and centroid shift in the x and y axis that occurs intraoperatively during LASIK and photorefractive keratectomy (PRK). Intraoperative cyclorotation and centroid shift were measured in 63 eyes from 34 patients with a mean age of 34 years (range: 20 to 56 years) undergoing either LASIK or PRK. Preoperatively, an iris image of each eye was obtained with the VISX WaveScan Wavefront System (Abbott Medical Optics Inc) with iris registration. A VISX Star S4 (Abbott Medical Optics Inc) laser was later used to measure cyclotorsion and pupil centroid shift at the beginning of the refractive procedure and after flap creation or epithelial removal. The mean change in intraoperative cyclorotation was 1.48±1.11° in LASIK eyes and 2.02±2.63° in PRK eyes. Cyclorotation direction changed by >2° in 21% of eyes after flap creation in LASIK and in 32% of eyes after epithelial removal in PRK. The respective mean intraoperative shift in the x axis and y axis was 0.13±0.15 mm and 0.17±0.14 mm, respectively, in LASIK eyes, and 0.09±0.07 mm and 0.10±0.13 mm, respectively, in PRK eyes. Intraoperative centroid shifts >100 μm in either the x axis or y axis occurred in 71% of LASIK eyes and 55% of PRK eyes. Significant changes in cyclotorsion and centroid shifts were noted prior to surgery as well as intraoperatively with both LASIK and PRK. It may be advantageous to engage iris registration immediately prior to ablation to provide a reference point representative of eye position at the initiation of laser delivery. Copyright 2012, SLACK Incorporated.
Performance of Oil Pumping Rings: An Analytical and Experimental Study
NASA Technical Reports Server (NTRS)
Eusepi, M. W.; Walowit, J. A.; Pinkus, O.; Holmes, P.
1986-01-01
A steady-state design computer program was developed to predict the performance of pumping rings as functions of geometry, applied loading, speed, ring modulus, and fluid viscosity. Additional analyses were developed to predict transient behavior of the ring and the effects of temperature rises occurring in the hydrodynamic film between the ring and shaft. The analysis was initially compared with previous experimental data and then used to design additional rings for further testing. Tests were performed with Rulon, carbon-graphite, and babbit rings. The design analysis was used to size all of the rings and to select the ranges of clearances, thickness, and loading. Although full quantitative agreement was lacking, relative agreement existed in that rings that were predicted to perform well theoretically, generally performed well experimentally. Some causes for discrepanices between theory and experiment are believed to be due to starvation, leakage past the secondary seal at high pressures, and uncertainties in the small clearances and local inlet temperatures to the pumping ring. A separate preliminary analysis was performed for a pumping Leningrader seal. This anlaysis can be used to predict the film thickness and flow rate thr ough the seal as a function of pressure, speed, loading, and geometry.
Cleavage of cohesin rings coordinates the separation of centrioles and chromatids.
Schöckel, Laura; Möckel, Martin; Mayer, Bernd; Boos, Dominik; Stemmann, Olaf
2011-07-10
Cohesin pairs sister chromatids by forming a tripartite Scc1-Smc1-Smc3 ring around them. In mitosis, cohesin is removed from chromosome arms by the phosphorylation-dependent prophase pathway. Centromeric cohesin is protected by shugoshin 1 and protein phosphatase 2A (Sgo1-PP2A) and opened only in anaphase by separase-dependent cleavage of Scc1 (refs 4-6). Following chromosome segregation, centrioles loosen their tight orthogonal arrangement, which licenses later centrosome duplication in S phase. Although a role of separase in centriole disengagement has been reported, the molecular details of this process remain enigmatic. Here, we identify cohesin as a centriole-engagement factor. Both premature sister-chromatid separation and centriole disengagement are induced by ectopic activation of separase or depletion of Sgo1. These unscheduled events are suppressed by expression of non-cleavable Scc1 or inhibition of the prophase pathway. When endogenous Scc1 is replaced by artificially cleavable Scc1, the corresponding site-specific protease triggers centriole disengagement. Separation of centrioles can alternatively be induced by ectopic cleavage of an engineered Smc3. Thus, the chromosome and centrosome cycles exhibit extensive parallels and are coordinated with each other by dual use of the cohesin ring complex.
The price of independence: cell separation in fission yeast.
Martín-García, Rebeca; Santos, Beatriz
2016-04-01
The ultimate goal of cell division is to give rise to two viable independent daughter cells. A tight spatial and temporal regulation between chromosome segregation and cytokinesis ensures the viability of the daughter cells. Schizosaccharomyces pombe, commonly known as fission yeast, has become a leading model organism for studying essential and conserved mechanisms of the eukaryotic cell division process. Like many other eukaryotic cells it divides by binary fission and the cleavage furrow undergoes ingression due to the contraction of an actomyosin ring. In contrast to mammalian cells, yeasts as cell-walled organisms, also need to form a division septum made of cell wall material to complete the process of cytokinesis. The division septum is deposited behind the constricting ring and it will constitute the new ends of the daughter cells. Cell separation also involves cell wall degradation and this process should be precisely regulated to avoid cell lysis. In this review, we will give a brief overview of the whole cytokinesis process in fission yeast, from the positioning and assembly of the contractile ring to the final step of cell separation, and the problems generated when these processes are not precise.
Deposition of bi-dispersed particles in inkjet-printed evaporating colloidal drops
NASA Astrophysics Data System (ADS)
Sun, Ying; Joshi, Abhijit; Chhasatia, Viral
2010-11-01
In this study, the deposition behaviors of inkjet-printed evaporating colloidal drops consisting of bi-dispersed micro and nano-sized particles are investigated by fluorescence microscopy and SEM. The results on hydrophilic glass substrates show that, evaporatively-driven outward flow drives the nanoparticles to deposit close to the pinned contact line while an inner ring deposition is formed by microparticles. This size-induced particle separation is consistent with the existence of a wedge-shaped drop edge near the contact line region of an evaporating drop on a hydrophilic substrate. The replenishing evaporatively-driven flow assembles nanoparticles closer to the pinned contact line forming an outer ring of nanoparticles and this particle jamming further enhances the contact line pinning. Microparticles are observed to form an inner ring inside the nano-sized deposits. This size-induced particle separation presents a new challenge to the uniformity of functional materials in bioprinting applications where nanoparticles and micro-sized cells are mixed together. On the other hand, particle self-assembly based on their sizes provides enables easy and well-controlled pattern formation. The effects of particle size contrast, particle volume fraction, substrate surface energy, and relative humidity of the printing environment on particle separation are examined in detail.
Klien, Henrik; Seichter, Wilhelm; Weber, Edwin
2015-01-01
In the title solvate, C44H26Cl4O2·3C6H15N, the asymmetric part of the unit cell comprises two halves of the diol molecules, 2,2′′-bis(2,7-dichloro-9-hydroxy-9H-fluoren-9-yl)-1,1′:4′,1′′-terphenyl, and three molecules of triethylamine, i. e. the diol molecules are located on crystallographic symmetry centres. Two of the solvent molecules are disordered over two positions [occupancy ratios of 0.567 (3):0.433 (3) and 0.503 (3):0.497 (3)]. In the diol molecules, the outer rings of the 1,1′:4′,1′′-terphenyl elements are twisted with reference to their central arene ring and the mean planes of the fluorenyl moieties are inclined with respect to the terphenyl ring to which they are connected, the latter making dihedral angles of 82.05 (8) and 82.28 (8)°. The presence of two 9-fluoren-9-ol units attached at positions 2 and 2′′ of the terphenyl moiety induces a ‘folded’ geometry which is stabilized by intramolecular C—H⋯O hydrogen bonds and π–π stacking interactions, the latter formed between the fluorenyl units and the central ring of the terphenyl unit [centroid–centroid distances = 3.559 (1) and 3.562 (1) Å]. The crystal is composed of 1:2 complex units, in which the solvent molecules are associated with the diol molecules via O—H⋯N hydrogen bonds, while the remaining solvent molecule is linked to the host by a C—H⋯N hydrogen bond. The given pattern of intermolecular interactions results in formation of chain structures extending along [010]. PMID:26870400
Evaluation of centroiding algorithm error for Nano-JASMINE
NASA Astrophysics Data System (ADS)
Hara, Takuji; Gouda, Naoteru; Yano, Taihei; Yamada, Yoshiyuki
2014-08-01
The Nano-JASMINE mission has been designed to perform absolute astrometric measurements with unprecedented accuracy; the end-of-mission parallax standard error is required to be of the order of 3 milli arc seconds for stars brighter than 7.5 mag in the zw-band(0.6μm-1.0μm) .These requirements set a stringent constraint on the accuracy of the estimation of the location of the stellar image on the CCD for each observation. However each stellar images have individual shape depend on the spectral energy distribution of the star, the CCD properties, and the optics and its associated wave front errors. So it is necessity that the centroiding algorithm performs a high accuracy in any observables. Referring to the study of Gaia, we use LSF fitting method for centroiding algorithm, and investigate systematic error of the algorithm for Nano-JASMINE. Furthermore, we found to improve the algorithm by restricting sample LSF when we use a Principle Component Analysis. We show that centroiding algorithm error decrease after adapted the method.
A Herschel-Resolved Debris Disk Around the Nearby G Star HIP 32480
NASA Technical Reports Server (NTRS)
Stapelfeldt, K.
2011-01-01
The Herschel Space Observatory is providing unprecedented sensitivity and angular resolution in the far-infrared. The DUNES Key Project (DUst around NEarby Stars, PI Carlos Eiroa) has finished its survey of 133 FGK stars within 25 pc of the Sun using the PACS photometer at 100 and 160 microns. We report the detection of a resolved debris ring around HIP 32480, a G0 star 16.5 parsecs distant. The ring is almost 300 AU in diameter and inclined 30 degrees from edge-on. We present a thermal emission model for the system that fits the Spitzer spectroscopy and Herschel images of the system. We find a minimum grainsize of approximately 4 microns in the main ring and a distinct warm dust population interior to it. Faint detached emission features just outside the ring may trace a separate, more distant ring in the system. The non-detection of the ring in archival HST/ACS coronagraphic images limits the dust grain albedo in the ring to be no more than 10%.
A Resolved Debris Disk Around the Nearby G Star HIP 32480
NASA Technical Reports Server (NTRS)
Stapelfeldt, K. R.; Bryden, G. C.; Marshall, J.; Eiroa, C.; Absil, O.; Mora, A.; Krist, J. E.; Su, K. Y. L.
2012-01-01
The Herschel Space Observatory is providing unprecedented sensitivity and angular resolution in the far-infrared. The DUNES Key Project (DUst around NEarby Stars, PI Carlos Eiroa) has finished its survey of 133 FGK stars within 25 pc of the Sun using the PACS photometer at 100 and 160 microns. We report the detection of a resolved debris ring around HIP 32480, a GO star 16.5 parsecs distant. The ring is almost 300 AU in diameter and inclined 30 degrees from edge-on. We present a thermal emission model for the system that fits the Spitzer spectroscopy and Herschel images of the system. We find a minimum grain-size of 4 microns in the main ring and a distinct warm dust population interior to it. Faint detached emission features just outside the ring may trace a separate, more distant ring in the system. The non-detection of the ring in archival HST/ACS coronagraphic images limits the dust grain albedo in the ring to be no more than 10%.
Bashar, Md Khayrul; Komatsu, Koji; Fujimori, Toshihiko; Kobayashi, Tetsuya J
2012-01-01
Accurate identification of cell nuclei and their tracking using three dimensional (3D) microscopic images is a demanding task in many biological studies. Manual identification of nuclei centroids from images is an error-prone task, sometimes impossible to accomplish due to low contrast and the presence of noise. Nonetheless, only a few methods are available for 3D bioimaging applications, which sharply contrast with 2D analysis, where many methods already exist. In addition, most methods essentially adopt segmentation for which a reliable solution is still unknown, especially for 3D bio-images having juxtaposed cells. In this work, we propose a new method that can directly extract nuclei centroids from fluorescence microscopy images. This method involves three steps: (i) Pre-processing, (ii) Local enhancement, and (iii) Centroid extraction. The first step includes two variations: first variation (Variant-1) uses the whole 3D pre-processed image, whereas the second one (Variant-2) modifies the preprocessed image to the candidate regions or the candidate hybrid image for further processing. At the second step, a multiscale cube filtering is employed in order to locally enhance the pre-processed image. Centroid extraction in the third step consists of three stages. In Stage-1, we compute a local characteristic ratio at every voxel and extract local maxima regions as candidate centroids using a ratio threshold. Stage-2 processing removes spurious centroids from Stage-1 results by analyzing shapes of intensity profiles from the enhanced image. An iterative procedure based on the nearest neighborhood principle is then proposed to combine if there are fragmented nuclei. Both qualitative and quantitative analyses on a set of 100 images of 3D mouse embryo are performed. Investigations reveal a promising achievement of the technique presented in terms of average sensitivity and precision (i.e., 88.04% and 91.30% for Variant-1; 86.19% and 95.00% for Variant-2), when compared with an existing method (86.06% and 90.11%), originally developed for analyzing C. elegans images.
RHIC Polarization Decay in FY15 pp Run due to Polarization Profile Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, H.; Adams, P.
2016-05-23
The decay over time of ratio between polarization profile and beam profile has been analyzed previously. A follow up question is if we can get the decay of polarization profile and beam profile separately. With the beam profiles obtained from Ion Profile Monitor (IPM), this analysis was done and the results are analyzed. The results show that the contribution from polarization profile and beam profile is similar for yellow ring, but the contribution from polarization profile is much stronger in blue ring, which is consistent with lower polarization Blue ring.
Compact thermoelectric converter systems technology
NASA Technical Reports Server (NTRS)
1973-01-01
A schematic of the developed tubular thermoelectric module is shown. It consists of alternate washers of n- and p-type lead telluride, separated by thin natural mica washers. Electrical continuity within the circuit is accomplished by cylindrical conductor rings located at the I.D. and O.D. of the lead telluride washers. The conductor rings are also separated by the same mica which separate the lead telluride washers. The result is a radially serpentine current path along the length of the module. The circuit is isolated from the structural claddings by thin sleeves of boron nitride. Circuit containment and heat transfer surfaces are provided by the inner and outer cladding, heat being transferred from a heat source at the inner clad, conducted radially outward through the lead telluride to the outer clad where the waste heat is removed by a heat rejection system.
Polymeric molecular sieve membranes for gas separation
Dai, Sheng; Qiao, Zhenan; Chai, Songhai
2017-08-15
A porous polymer membrane useful in gas separation, the porous polymer membrane comprising a polymeric structure having crosslinked aromatic groups and a hierarchical porosity in which micropores having a pore size less than 2 nm are present at least in an outer layer of the porous polymer membrane, and macropores having a pore size of over 50 nm are present at least in an inner layer of the porous polymer membrane. Also described are methods for producing the porous polymer membrane in which a non-porous polymer membrane containing aromatic rings is subjected to a Friedel-Crafts crosslinking reaction in which a crosslinking molecule crosslinks the aromatic rings in the presence of a Friedel-Crafts catalyst and organic solvent under sufficiently elevated temperature, as well as methods for using the porous polymer membranes for gas or liquid separation, filtration, or purification.
NASA Astrophysics Data System (ADS)
Asoka-Kumar, P.; Leung, T. C.; Lynn, K. G.; Nielsen, B.; Forcier, M. P.; Weinberg, Z. A.; Rubloff, G. W.
1992-06-01
The centroid shifts of positron annihilation spectra are reported from the depletion regions of metal-oxide-semiconductor (MOS) capacitors at room temperature and at 35 K. The centroid shift measurement can be explained using the variation of the electric field strength and depletion layer thickness as a function of the applied gate bias. An estimate for the relevant MOS quantities is obtained by fitting the centroid shift versus beam energy data with a steady-state diffusion-annihilation equation and a derivative-gaussian positron implantation profile. Inadequacy of the present analysis scheme is evident from the derived quantities and alternate methods are required for better predictions.
Crystal structure of tetraaqua(5,5′-dimethyl-2,2′-bipyridyl-κ2 N,N′)iron(II) sulfate
Belamri, Yamine; Setifi, Fatima; Francuski, Bojana M.; Novaković, Sladjana B.; Zouaoui, Setifi
2014-01-01
In the title compound, [Fe(C12H12N2)(H2O)4]SO4, the central FeII ion is coordinated by two N atoms from the 5,5′-dimethyl-2,2′-bipyridine ligand and four water O atoms in a distorted octahedral geometry. The Fe—O coordination bond lengths vary from 2.080 (3) to 2.110 (3) Å, while the two Fe—N coordination bonds have practically identical lengths [2.175 (3) and 2.177 (3) Å]. The chelating N—Fe—N angle of 75.6 (1)° shows the largest deviation from an ideal octahedral geometry; the other coordination angles deviate from ideal values by 0.1 (1) to 9.1 (1)°. O—H⋯O hydrogen bonding between the four aqua ligands of the cationic complex and four O-atom acceptors of the anion leads to the formation of layers parallel to the ab plane. Neighbouring layers further interact by means of C—H⋯O and π–π interactions involving the laterally positioned bipyridine rings. The perpendicular distance between π–π interacting rings is 3.365 (2) Å, with a centroid–centroid distance of 3.702 (3) Å. PMID:25552988
Eryanti, Yum; Zamri, Adel; Herlina, Tati; Supratman, Unang; Rosli, Mohd Mustaqim; Fun, Hoong-Kun
2015-12-01
The title compounds, C20H19NO3, (1), and C20H17Cl2NO, (2), are the 3-hy-droxy-benzyl-idene and 2-chloro-benzyl-idene derivatives, respectively, of curcumin [systematic name: (1E,6E)-1,7-bis-(4-hy-droxy-3-meth-oxy-phen-yl)-1,6-hepta-diene-3,5-dione]. The dihedral angles between the benzene rings in each compound are 21.07 (6)° for (1) and 13.4 (3)° for (2). In both compounds, the piperidinone rings adopt a sofa confirmation and the methyl group attached to the N atom is in an equatorial position. In the crystal of (1), two pairs of O-H⋯N and O-H⋯O hydrogen bonds link the mol-ecules, forming chains along [10-1]. The chains are linked via C-H⋯O hydrogen bonds, forming undulating sheets parallel to the ac plane. In the crystal of (2), mol-ecules are linked by weak C-H⋯Cl hydrogen bonds, forming chains along the [204] direction. The chains are linked along the a-axis direction by π-π inter-actions [inter-centroid distance = 3.779 (4) Å]. For compound (2), the crystal studied was a non-merohedral twin with the refined ratio of the twin components being 0.116 (6):0.886 (6).
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKenna, Gregory B.; Grubbs, Robert H.; Kornfield, Julia A.
2012-04-25
The work described in the present report had the original goal to produce large, entangled, ring polymers that were uncontaminated by linear chains and to characterize by rheological methods the dynamics of these rings. While the work fell short of this specific goal, the outcomes of the research performed under support from this grant provided novel macromolecular synthesis methods, new separation methods for ring and linear chains, and novel rheological data on bottle brush polymers, wedge polymers and dendron-based ring molecules. The grant funded a total of 8 archival manuscripts and one patent, all of which are attached to themore » present report.« less
DYNAMICS OF SELF-GRAVITY WAKES IN DENSE PLANETARY RINGS. I. PITCH ANGLE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michikoshi, Shugo; Kokubo, Eiichiro; Fujii, Akihiko
2015-10-20
We investigate the dynamics of self-gravity wakes in dense planetary rings. In particular, we examine how the pitch angles of self-gravity wakes depend on ring parameters using N-body simulations. We calculate the pitch angles using the two-dimensional autocorrelation function of the ring surface density. We obtain the pitch angles for the inner and outer parts of the autocorrelation function separately. We confirm that the pitch angles are 15°–30° for reasonable ring parameters, which are consistent with previous studies. We find that the inner pitch angle increases with the Saturnicentric distance, while it barely depends on the optical depth and themore » restitution coefficient of ring particles. The increase of the inner pitch angle with the Saturnicentric distance is consistent with the observations of the A ring. The outer pitch angle does not have a clear dependence on any ring parameters and is about 10°–15°. This value is consistent with the pitch angle of spiral arms in collisionless systems.« less
Planetary rings as relics of plasma proto-rings rotating in the magnetic field of a central body
NASA Astrophysics Data System (ADS)
Rabinovich, B.
2007-08-01
A possibility is discussed in accordance to hypothesis by H. Alfven, that the rings of large planets are relics of some plasma proto-rings rotating in the magnetic fields of central bodies. A finite-dimensional mathematical model of the system is synthesized using the solution of the boundary-value problem by the Boubnov - Galerkin method. The dipole magnetic field of the central body is assumed to have a small eccentricity, and the dipole axis - to be inclined at a small angle to the central body's axis of rotation which coincides with the ring's rotation axis. The proto-ring is supposed to be thin and narrow and having the same rotating axis as the central body. A medium forming the ring is cold rarefied plasma with high electron density, so that electric conductivity of the medium tends to infinity, as well as the magnetic Reynolds number. The original mathematical model is reduced to a system of finite-difference equations whose asymptotic analytical solution is obtained. Emphasis is placed on the problems of stability of the ring's steady state rotation and quantization of the eigenvalues of nondimensional sector velocity of the ring with respect to the central body. The solutions corresponding to magneto-gravitational and to magneto-gyroscopic waves are considered It is demonstrated that some
Finger vein identification using fuzzy-based k-nearest centroid neighbor classifier
NASA Astrophysics Data System (ADS)
Rosdi, Bakhtiar Affendi; Jaafar, Haryati; Ramli, Dzati Athiar
2015-02-01
In this paper, a new approach for personal identification using finger vein image is presented. Finger vein is an emerging type of biometrics that attracts attention of researchers in biometrics area. As compared to other biometric traits such as face, fingerprint and iris, finger vein is more secured and hard to counterfeit since the features are inside the human body. So far, most of the researchers focus on how to extract robust features from the captured vein images. Not much research was conducted on the classification of the extracted features. In this paper, a new classifier called fuzzy-based k-nearest centroid neighbor (FkNCN) is applied to classify the finger vein image. The proposed FkNCN employs a surrounding rule to obtain the k-nearest centroid neighbors based on the spatial distributions of the training images and their distance to the test image. Then, the fuzzy membership function is utilized to assign the test image to the class which is frequently represented by the k-nearest centroid neighbors. Experimental evaluation using our own database which was collected from 492 fingers shows that the proposed FkNCN has better performance than the k-nearest neighbor, k-nearest-centroid neighbor and fuzzy-based-k-nearest neighbor classifiers. This shows that the proposed classifier is able to identify the finger vein image effectively.
Unraveling the strands of Saturn's F ring
Murray, C.D.; Gordon, M.K.; Giuliatti, Winter S.M.
1997-01-01
Several high-resolution Voyager 2 images of Saturn's F ring show that it is composed of at least four separate, non-intersecting strands extending ~45?? in longitude. Voyager 1 images show that the two brightest strands appear to intersect, giving rise to a "braided" morphology. From a study of all available Voyager images the detectable radial structure is cataloged and reviewed. Previous indications that there is fine material interior to the orbit of the F ring are confirmed. Evidence is presented that a model of four strands with comparable eccentricities and nearly aligned perichrones is consistent with all the Voyager observations. The observed perichrone offset of the two brightest strands suggests a minimum radial separation of ~20 km, which implies intersection of these strands when their finite radial widths are taken into account. The longitude range of such an intersection includes that observed in the Voyager 1 "braid" images. The proximity of these two strands at some longitudes may account for the apparent differences in the ring between the Voyager encounters, as well as provide a source for the short-lived features detected in the Hubble Space Telescope images of the F ring. There is no evidence that the locations of the individual strands are determined by resonant perturbations with known satellites. It is proposed that the radial structure is formed by the localized action of small satellites orbiting within the strand region. ?? 1997 Academic Press.
NASA Astrophysics Data System (ADS)
Zábranová, Eliška; Matyska, Ctirad
2014-10-01
After the 2010 Maule and 2011 Tohoku earthquakes the spheroidal modes up to 1 mHz were clearly registered by the Global Geodynamic Project (GGP) network of superconducting gravimeters (SG). Fundamental parameters in synthetic calculations of the signals are the quality factors of the modes. We study the role of their uncertainties in the centroid-moment-tensor (CMT) inversions. First, we have inverted the SG data from selected GGP stations to jointly determine the quality factors of these normal modes and the three low-frequency CMT components, Mrr,(Mϑϑ-Mφφ)/2 and Mϑφ, that generate the observed SG signal. We have used several-days-long records to minimize the trade-off between the quality factors and the CMT but it was not eliminated completely. We have also inverted each record separately to get error estimates of the obtained parameters. Consequently, we have employed the GGP records of 60-h lengths for several published modal-quality-factor sets and inverted only the same three CMT components. The obtained CMT tensors are close to the solution from the joint Q-CMT inversion of longer records and resulting variability of the CMT components is smaller than differences among routine agency solutions. Reliable low-frequency CMT components can thus be obtained for any quality factors from the studied sets.
Measurement of the Σπ photoproduction line shapes near the Λ(1405)
NASA Astrophysics Data System (ADS)
Moriya, K.; Schumacher, R. A.; Adhikari, K. P.; Adikaram, D.; Aghasyan, M.; Anderson, M. D.; Anefalos Pereira, S.; Ball, J.; Baltzell, N. A.; Battaglieri, M.; Batourine, V.; Bedlinskiy, I.; Bellis, M.; Biselli, A. S.; Bono, J.; Boiarinov, S.; Briscoe, W. J.; Burkert, V. D.; Carman, D. S.; Celentano, A.; Chandavar, S.; Charles, G.; Cole, P. L.; Collins, P.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Sanctis, E.; De Vita, R.; Deur, A.; Dey, B.; Djalali, C.; Doughty, D.; Dupre, R.; Egiyan, H.; El Fassi, L.; Eugenio, P.; Fedotov, G.; Fegan, S.; Fersch, R.; Fleming, J. A.; Gevorgyan, N.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Gohn, W.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Hafidi, K.; Hakobyan, H.; Hanretty, C.; Harrison, N.; Heddle, D.; Hicks, K.; Ho, D.; Holtrop, M.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jo, H. S.; Keller, D.; Khandaker, M.; Khetarpal, P.; Kim, A.; Kim, W.; Klein, A.; Klein, F. J.; Koirala, S.; Kubarovsky, A.; Kubarovsky, V.; Kuleshov, S. V.; Kvaltine, N. D.; Livingston, K.; Lu, H. Y.; MacGregor, I. J. D.; Markov, N.; Mayer, M.; McCracken, M.; McKinnon, B.; Mestayer, M. D.; Meyer, C. A.; Mirazita, M.; Mineeva, T.; Mokeev, V.; Montgomery, R. A.; Munevar, E.; Munoz Camacho, C.; Nadel-Turonski, P.; Nasseripour, R.; Nepali, C. S.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Pappalardo, L. L.; Paremuzyan, R.; Park, K.; Park, S.; Pasyuk, E.; Phelps, E.; Phillips, J. J.; Pisano, S.; Pivnyuk, N.; Pogorelko, O.; Pozdniakov, S.; Price, J. W.; Procureur, S.; Protopopescu, D.; Rimal, D.; Ripani, M.; Ritchie, B. G.; Rosner, G.; Rossi, P.; Sabatié, F.; Saini, M. S.; Salgado, C.; Schott, D.; Seder, E.; Seraydaryan, H.; Sharabian, Y. G.; Smith, E. S.; Smith, G. D.; Sober, D. I.; Stepanyan, S. S.; Stepanyan, S.; Stoler, P.; Strakovsky, I. I.; Strauch, S.; Taiuti, M.; Tang, W.; Taylor, S.; Taylor, C. E.; Tian, Ye; Tkachenko, S.; Torayev, B.; Ungaro, M.; Vernarsky, B.; Vlassov, A. V.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D. P.; Weygand, D. P.; Williams, M.; Zachariou, N.; Zana, L.; Zhang, J.; Zhao, Z. W.; Zonta, I.
2013-03-01
The reaction γ+p→K++Σ+π was used to determine the invariant mass distributions or “line shapes” of the Σ+π-, Σ-π+, and Σ0π0 final states, from threshold at 1328 MeV/c2 through the mass range of the Λ(1405) and the Λ(1520). The measurements were made with the CLAS system at Jefferson Lab using tagged real photons, for center-of-mass energies 1.95
New x-ray pink-beam profile monitor system for the SPring-8 beamline front-end
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takahashi, Sunao; Kudo, Togo; Sano, Mutsumi
A new beam profile monitoring system for the small X-ray beam exiting from the SPring-8 front-end was developed and tested at BL13XU. This system is intended as a screen monitor and also as a position monitor even at beam currents of 100 mA by using photoluminescence of a chemical vapor deposition-grown diamond film. To cope with the challenge that the spatial distribution of the photoluminescence in the vertical direction is too flat to detect the beam centroid within a limited narrow aperture, a filter was installed that absorbs the fundamental harmonic concentrated in the beam center, which resulted in “de-flattening”more » of the vertical distribution. For the measurement, the filter crossed the photon beam vertically at high speed to withstand the intense heat flux of the undulator pink-beam. A transient thermal analysis, which can simulate the movement of the irradiation position with time, was conducted to determine the appropriate configuration and the required moving speed of the filter to avoid accidental melting. In a demonstration experiment, the vertically separated beam profile could be successfully observed for a 0.8 × 0.8 mm{sup 2} beam shaped by an XY slit and with a fundamental energy of 18.48 keV. The vertical beam centroid could be detected with a resolution of less than 0.1 mm.« less
A Self-Adaptive Fuzzy c-Means Algorithm for Determining the Optimal Number of Clusters
Wang, Zhihao; Yi, Jing
2016-01-01
For the shortcoming of fuzzy c-means algorithm (FCM) needing to know the number of clusters in advance, this paper proposed a new self-adaptive method to determine the optimal number of clusters. Firstly, a density-based algorithm was put forward. The algorithm, according to the characteristics of the dataset, automatically determined the possible maximum number of clusters instead of using the empirical rule n and obtained the optimal initial cluster centroids, improving the limitation of FCM that randomly selected cluster centroids lead the convergence result to the local minimum. Secondly, this paper, by introducing a penalty function, proposed a new fuzzy clustering validity index based on fuzzy compactness and separation, which ensured that when the number of clusters verged on that of objects in the dataset, the value of clustering validity index did not monotonically decrease and was close to zero, so that the optimal number of clusters lost robustness and decision function. Then, based on these studies, a self-adaptive FCM algorithm was put forward to estimate the optimal number of clusters by the iterative trial-and-error process. At last, experiments were done on the UCI, KDD Cup 1999, and synthetic datasets, which showed that the method not only effectively determined the optimal number of clusters, but also reduced the iteration of FCM with the stable clustering result. PMID:28042291
ERIC Educational Resources Information Center
Ferrarello, Daniela; Mammana, Maria Flavia; Pennisi, Mario
2018-01-01
In this paper, we show some properties of centroids of geometric figures, such as triangles, quadrilaterals and tetrahedra. In particular, we will prove the properties by means of geometric transformations and by introducing extensions of triangles and quadrilaterals, i.e. by adding one, two or three new vertices to the figure. The study of these…
Centroid and Theoretical Rotation: Justification for Their Use in Q Methodology Research
ERIC Educational Resources Information Center
Ramlo, Sue
2016-01-01
This manuscript's purpose is to introduce Q as a methodology before providing clarification about the preferred factor analytical choices of centroid and theoretical (hand) rotation. Stephenson, the creator of Q, designated that only these choices allowed for scientific exploration of subjectivity while not violating assumptions associated with…
Experimenatal analysis of the effect of cartilaginous rings on human tracheobronchial flow
NASA Astrophysics Data System (ADS)
Montoya Segnini, Jose; Bocanegra Evans, Humberto; Castillo, Luciano
2016-11-01
We present a set of high-resolution PIV experiments carried out in a refractive index-matched model of a trachea with cartilage rings at Re 2800. Results show a higher vorticity along the walls of the trachea in the model with cartilaginous rings as well as small recirculation areas on the upstream side of the wall cavities created by the rings. Furthermore, the ringed model experiences higher shear stress in the trachea due to the sudden change in the wall position created by the rings. Additionally, small recirculation areas are identified in the cavities between rings. For the smooth model, a stronger separation bubble is observed at the bronchi entrance, generating a stronger shear layer and increasing the wall shear stress on the bottom bronchi wall. The differences observed go against the notion that the main airway, i.e. trachea and main bronchi, may be modeled as smooth. Our results suggest that cartilage rings will have an impact on the wall shear stress and may affect particle deposition, which is of importance in inhaled drug delivery and pollutant deposition in the airway. Additionally, the effects introduced by the rings may change the flow characteristics in further generations.
Wolken, Dana M. Alessi; McInnes, Joseph; Pon, Liza A.
2014-01-01
Whereas actomyosin and septin ring organization and function in cytokinesis are thoroughly described, little is known regarding the mechanisms by which the actomyosin ring interacts with septins and associated proteins to coordinate cell division. Here we show that the protein product of YPL158C, Aim44p, undergoes septin-dependent recruitment to the site of cell division. Aim44p colocalizes with Myo1p, the type II myosin of the contractile ring, throughout most of the cell cycle. The Aim44p ring does not contract when the actomyosin ring closes. Instead, it forms a double ring that associates with septin rings on mother and daughter cells after cell separation. Deletion of AIM44 results in defects in contractile ring closure. Aim44p coimmunoprecipitates with Hof1p, a conserved F-BAR protein that binds both septins and type II myosins and promotes contractile ring closure. Deletion of AIM44 results in a delay in Hof1p phosphorylation and altered Hof1p localization. Finally, overexpression of Dbf2p, a kinase that phosphorylates Hof1p and is required for relocalization of Hof1p from septin rings to the contractile ring and for Hof1p-triggered contractile ring closure, rescues the cytokinesis defect observed in aim44∆ cells. Our studies reveal a novel role for Aim44p in regulating contractile ring closure through effects on Hof1p. PMID:24451263
NASA Technical Reports Server (NTRS)
Antreasian, Peter G.
1988-01-01
Two orbit simulations, one representing the actual Geopotential Research Mission (GRM) orbit and the other representing the orbit estimated from orbit determination techniques, are presented. A computer algorithm was created to simulate GRM's drag compensation mechanism so the fuel expenditure and proof mass trajectories relative to the spacecraft centroid could be calculated for the mission. The results of the GRM DISCOS simulation demonstrated that the spacecraft can essentially be drag-free. The results showed that the centroid of the spacecraft can be controlled so that it will not deviate more than 1.0 mm in any direction from the centroid of the proof mass.
Yu, Tianbao; Huang, Jiehui; Liu, Nianhua; Yang, Jianyi; Liao, Qinghua; Jiang, Xiaoqing
2010-04-10
We propose and simulate a new kind of compact polarizing beam splitter (PBS) based on a photonic crystal ring resonator (PCRR) with complete photonic bandgaps. The two polarized states are separated far enough by resonant and nonresonant coupling between the waveguide modes and the microring modes. Some defect holes are utilized to control the beam propagation. The simulated results obtained by the finite-difference time-domain method show that high transmission (over 95%) is obtained and the polarization separation is realized with a length as short as 3.1 microm. The design of the proposed PBS can be flexible, thanks to the advantages of PCRRs.
Experimental Determination of Exhaust Gas Thrust, Special Report
NASA Technical Reports Server (NTRS)
Pinkel, Benjamin; Voss, Fred
1940-01-01
This investigation presents the results of tests made on a radial engine to determine the thrust that can be obtained from the exhaust gas when discharged from separate stacks and when discharged from the collector ring with various discharge nozzles. The engine was provided with a propeller to absorb the power and was mounted on a test stand equipped with scales for measuring the thrust and engine torque. The results indicate that at full open throttle at sea level, for the engine tested, a gain in thrust horsepower of 18 percent using separate stacks, and 9.5 percent using a collector ring and discharge nozzle, can be expected at an air speed of 550 miles per hour.
Generating and Separating Twisted Light by gradient-rotation Split-Ring Antenna Metasurfaces.
Zeng, Jinwei; Li, Ling; Yang, Xiaodong; Gao, Jie
2016-05-11
Nanoscale compact optical vortex generators promise substantially significant prospects in modern optics and photonics, leading to many advances in sensing, imaging, quantum communication, and optical manipulation. However, conventional vortex generators often suffer from bulky size, low vortex mode purity in the converted beam, or limited operation bandwidth. Here, we design and demonstrate gradient-rotation split-ring antenna metasurfaces as unique spin-to-orbital angular momentum beam converters to simultaneously generate and separate pure optical vortices in a broad wavelength range. Our proposed design has the potential for realizing miniaturized on-chip OAM-multiplexers, as well as enabling new types of metasurface devices for the manipulation of complex structured light beams.
Lilga, Michael A.; Hallen, Richard T.
1990-01-01
The present invention constitutes a class of organometallic complexes which reversibly react with hydrogen to form dihydrides and processes by which these compounds can be utilized. The class includes bimetallic complexes in which two cyclopentadienyl rings are bridged together and also separately .pi.-bonded to two transition metal atoms. The transition metals are believed to bond with the hydrogen in forming the dihydride. Transition metals such as Fe, Mn or Co may be employed in the complexes although Cr constitutes the preferred metal. A multiple number of ancilliary ligands such as CO are bonded to the metal atoms in the complexes. Alkyl groups and the like may be substituted on the cyclopentadienyl rings. These organometallic compounds may be used in absorption/desorption systems and in facilitated transport membrane systems for storing and separating out H.sub.2 from mixed gas streams such as the produce gas from coal gasification processes.
Lilga, M.A.; Hallen, R.T.
1991-10-15
The present invention constitutes a class of organometallic complexes which reversibly react with hydrogen to form dihydrides and processes by which these compounds can be utilized. The class includes bimetallic complexes in which two cyclopentadienyl rings are bridged together and also separately [pi]-bonded to two transition metal atoms. The transition metals are believed to bond with the hydrogen in forming the dihydride. Transition metals such as Fe, Mn or Co may be employed in the complexes although Cr constitutes the preferred metal. A multiple number of ancillary ligands such as CO are bonded to the metal atoms in the complexes. Alkyl groups and the like may be substituted on the cyclopentadienyl rings. These organometallic compounds may be used in absorption/desorption systems and in facilitated transport membrane systems for storing and separating out H[sub 2] from mixed gas streams such as the product gas from coal gasification processes. 3 figures.
Lilga, M.A.; Hallen, R.T.
1990-08-28
The present invention constitutes a class of organometallic complexes which reversibly react with hydrogen to form dihydrides and processes by which these compounds can be utilized. The class includes bimetallic complexes in which two cyclopentadienyl rings are bridged together and also separately [pi]-bonded to two transition metal atoms. The transition metals are believed to bond with the hydrogen in forming the dihydride. Transition metals such as Fe, Mn or Co may be employed in the complexes although Cr constitutes the preferred metal. A multiple number of ancillary ligands such as CO are bonded to the metal atoms in the complexes. Alkyl groups and the like may be substituted on the cyclopentadienyl rings. These organometallic compounds may be used in absorption/desorption systems and in facilitated transport membrane systems for storing and separating out H[sub 2] from mixed gas streams such as the producer gas from coal gasification processes. 3 figs.
Lilga, Michael A.; Hallen, Richard T.
1991-01-01
The present invention constitutes a class of organometallic complexes which reversibly react with hydrogen to form dihydrides and processes by which these compounds can be utilized. The class includes bimetallic complexes in which two cyclopentadienyl rings are bridged together and also separately .pi.-bonded to two transition metal atoms. The transition metals are believed to bond with the hydrogen in forming the dihydride. Transition metals such as Fe, Mn or Co may be employed in the complexes although Cr constitutes the preferred metal. A multiple number of ancilliary ligands such as CO are bonded to the metal atoms in the complexes. Alkyl groups and the like may be substituted on the cyclopentadienyl rings. These organometallic compounds may be used in absorption/desorption systems and in facilitated transport membrane systems for storing and separating out H.sub.2 from mixed gas streams such as the product gas from coal gasification processes.
NASA Technical Reports Server (NTRS)
Peters, Kevin A.; Hammond, Ernest C., Jr.
1987-01-01
The age of the surf clam (Spisula solidissima) can be determined with the use of the Digital Image Processor. This technique is used in conjunction with a modified method for aging, refined by John Ropes of the Woods Hole Laboratory, Massachusetts. This method utilizes a thinned sectioned chondrophore of the surf clam which contains annual rings. The rings of the chondrophore are then counted to determine age. By digitizing the chondrophore, the Digital Image Processor is clearly able to separate these annual rings more accurately. This technique produces an easier and more efficient way to count annual rings to determine the age of the surf clam.
FtsZ ring: the eubacterial division apparatus conserved in archaebacteria.
Wang, X; Lutkenhaus, J
1996-07-01
FtsZ is a tubulin-like protein that is essential for cell division in eubacteria. It functions by forming a ring at the division site that directs septation. The archaebacteria constitute a kingdom of life separate from eubacteria and eukaryotes. Like eubacteria, archaebacteria are prokaryotes, although they are phylogenetically closer to eukaryotes. Here it is shown that archaebacteria also possess FtsZ and that it is biochemically similar to eubacterial FtsZs. Significantly, FtsZ from the archaebacterium Haloferax volcanii is a GTPase that is localized to a ring that coincides with the division constriction. These results indicate that the FtsZ ring was part of the division apparatus of a common prokaryotic ancestor that was retained by both eubacteria and archaebacteria.
Dynamic imaging model and parameter optimization for a star tracker.
Yan, Jinyun; Jiang, Jie; Zhang, Guangjun
2016-03-21
Under dynamic conditions, star spots move across the image plane of a star tracker and form a smeared star image. This smearing effect increases errors in star position estimation and degrades attitude accuracy. First, an analytical energy distribution model of a smeared star spot is established based on a line segment spread function because the dynamic imaging process of a star tracker is equivalent to the static imaging process of linear light sources. The proposed model, which has a clear physical meaning, explicitly reflects the key parameters of the imaging process, including incident flux, exposure time, velocity of a star spot in an image plane, and Gaussian radius. Furthermore, an analytical expression of the centroiding error of the smeared star spot is derived using the proposed model. An accurate and comprehensive evaluation of centroiding accuracy is obtained based on the expression. Moreover, analytical solutions of the optimal parameters are derived to achieve the best performance in centroid estimation. Finally, we perform numerical simulations and a night sky experiment to validate the correctness of the dynamic imaging model, the centroiding error expression, and the optimal parameters.
Two-dimensional shape recognition using oriented-polar representation
NASA Astrophysics Data System (ADS)
Hu, Neng-Chung; Yu, Kuo-Kan; Hsu, Yung-Li
1997-10-01
To deal with such a problem as object recognition of position, scale, and rotation invariance (PSRI), we utilize some PSRI properties of images obtained from objects, for example, the centroid of the image. The corresponding position of the centroid to the boundary of the image is invariant in spite of rotation, scale, and translation of the image. To obtain the information of the image, we use the technique similar to Radon transform, called the oriented-polar representation of a 2D image. In this representation, two specific points, the centroid and the weighted mean point, are selected to form an initial ray, then the image is sampled with N angularly equispaced rays departing from the initial rays. Each ray contains a number of intersections and the distance information obtained from the centroid to the intersections. The shape recognition algorithm is based on the least total error of these two items of information. Together with a simple noise removal and a typical backpropagation neural network, this algorithm is simple, but the PSRI is achieved with a high recognition rate.
NASA Astrophysics Data System (ADS)
Li, Xinji; Hui, Mei; Zhao, Zhu; Liu, Ming; Dong, Liquan; Kong, Lingqin; Zhao, Yuejin
2018-05-01
A differential computation method is presented to improve the precision of calibration for coaxial reverse Hartmann test (RHT). In the calibration, the accuracy of the distance measurement greatly influences the surface shape test, as demonstrated in the mathematical analyses. However, high-precision absolute distance measurement is difficult in the calibration. Thus, a differential computation method that only requires the relative distance was developed. In the proposed method, a liquid crystal display screen successively displayed two regular dot matrix patterns with different dot spacing. In a special case, images on the detector exhibited similar centroid distributions during the reflector translation. Thus, the critical value of the relative displacement distance and the centroid distributions of the dots on the detector were utilized to establish the relationship between the rays at certain angles and the detector coordinates. Experiments revealed the approximately linear behavior of the centroid variation with the relative displacement distance. With the differential computation method, we increased the precision of traditional calibration 10-5 rad root mean square. The precision of the RHT was increased by approximately 100 nm.
Helicity conservation under quantum reconnection of vortex rings.
Zuccher, Simone; Ricca, Renzo L
2015-12-01
Here we show that under quantum reconnection, simulated by using the three-dimensional Gross-Pitaevskii equation, self-helicity of a system of two interacting vortex rings remains conserved. By resolving the fine structure of the vortex cores, we demonstrate that the total length of the vortex system reaches a maximum at the reconnection time, while both writhe helicity and twist helicity remain separately unchanged throughout the process. Self-helicity is computed by two independent methods, and topological information is based on the extraction and analysis of geometric quantities such as writhe, total torsion, and intrinsic twist of the reconnecting vortex rings.
The dynamics of magnetic flux rings
NASA Technical Reports Server (NTRS)
Deluca, E. E.; Fisher, G. H.; Patten, B. M.
1993-01-01
The evolution of magnetic fields in the presence of turbulent convection is examined using results of numerical simulations of closed magnetic flux tubes embedded in a steady 'ABC' flow field, which approximate some of the important characteristics of a turbulent convecting flow field. Three different evolutionary scenarios were found: expansion to a steady deformed ring; collapse to a compact fat flux ring, separated from the expansion type of behavior by a critical length scale; and, occasionally, evolution toward an advecting, oscillatory state. The work suggests that small-scale flows will not have a strong effect on large-scale, strong fields.
Automated quasi-3D spine curvature quantification and classification
NASA Astrophysics Data System (ADS)
Khilari, Rupal; Puchin, Juris; Okada, Kazunori
2018-02-01
Scoliosis is a highly prevalent spine deformity that has traditionally been diagnosed through measurement of the Cobb angle on radiographs. More recent technology such as the commercial EOS imaging system, although more accurate, also require manual intervention for selecting the extremes of the vertebrae forming the Cobb angle. This results in a high degree of inter and intra observer error in determining the extent of spine deformity. Our primary focus is to eliminate the need for manual intervention by robustly quantifying the curvature of the spine in three dimensions, making it consistent across multiple observers. Given the vertebrae centroids, the proposed Vertebrae Sequence Angle (VSA) estimation and segmentation algorithm finds the largest angle between consecutive pairs of centroids within multiple inflection points on the curve. To exploit existing clinical diagnostic standards, the algorithm uses a quasi-3-dimensional approach considering the curvature in the coronal and sagittal projection planes of the spine. Experiments were performed with manuallyannotated ground-truth classification of publicly available, centroid-annotated CT spine datasets. This was compared with the results obtained from manual Cobb and Centroid angle estimation methods. Using the VSA, we then automatically classify the occurrence and the severity of spine curvature based on Lenke's classification for idiopathic scoliosis. We observe that the results appear promising with a scoliotic angle lying within +/- 9° of the Cobb and Centroid angle, and vertebrae positions differing by at the most one position. Our system also resulted in perfect classification of scoliotic from healthy spines with our dataset with six cases.
360-degrees profilometry using strip-light projection coupled to Fourier phase-demodulation.
Servin, Manuel; Padilla, Moises; Garnica, Guillermo
2016-01-11
360 degrees (360°) digitalization of three dimensional (3D) solids using a projected light-strip is a well-established technique in academic and commercial profilometers. These profilometers project a light-strip over the digitizing solid while the solid is rotated a full revolution or 360-degrees. Then, a computer program typically extracts the centroid of this light-strip, and by triangulation one obtains the shape of the solid. Here instead of using intensity-based light-strip centroid estimation, we propose to use Fourier phase-demodulation for 360° solid digitalization. The advantage of Fourier demodulation over strip-centroid estimation is that the accuracy of phase-demodulation linearly-increases with the fringe density, while in strip-light the centroid-estimation errors are independent. Here we proposed first to construct a carrier-frequency fringe-pattern by closely adding the individual light-strip images recorded while the solid is being rotated. Next, this high-density fringe-pattern is phase-demodulated using the standard Fourier technique. To test the feasibility of this Fourier demodulation approach, we have digitized two solids with increasing topographic complexity: a Rubik's cube and a plastic model of a human-skull. According to our results, phase demodulation based on the Fourier technique is less noisy than triangulation based on centroid light-strip estimation. Moreover, Fourier demodulation also provides the amplitude of the analytic signal which is a valuable information for the visualization of surface details.
Chirally selective, intramolecular interaction observed in an aminoacyl adenylate anhydride
NASA Technical Reports Server (NTRS)
Lacey, J. C., Jr.; Hall, L. M.; Mullins, D. W., Jr.; Watkins, C. L.
1985-01-01
The interaction between amino acids and nucleotide bases is studied. The proton NMR spectrum of N-acetylphenylalanyl-AMP-anhydride is analyzed H8 and H2 signals, two upfield signals of equal size, and five phenylalanine ring proton signals are observed in the spectrum; the upfield movement of the proton and the racemization of the N-acetyl L-phenylalanine material are examined. The differences in the position of the signals due to the diastereoisomers are investigated. The separation of the D and L amino acyl adenylates using HPLC is described. H-1 NMR spectra of the isomers are examined in order to determine which isomer displays the strongest interaction between the phenyl ring and the adenine ring. The spectra reveal that the L isomer shows the highest upfield change of both H8 and H2 signals. It is noted that the phenyl ring lies over C2 of the adenine ring with the phenyl meta and para protons extended past the adenine ring and the phenyl ortho protons.
Division and dynamic morphology of plastids.
Osteryoung, Katherine W; Pyke, Kevin A
2014-01-01
Plastid division is fundamental to the biology of plant cells. Division by binary fission entails the coordinated assembly and constriction of four concentric rings, two internal and two external to the organelle. The internal FtsZ ring and external dynamin-like ARC5/DRP5B ring are connected across the two envelopes by the membrane proteins ARC6, PARC6, PDV1, and PDV2. Assembly-stimulated GTPase activity drives constriction of the FtsZ and ARC5/DRP5B rings, which together with the plastid-dividing rings pull and squeeze the envelope membranes until the two daughter plastids are formed, with the final separation requiring additional proteins. The positioning of the division machinery is controlled by the chloroplast Min system, which confines FtsZ-ring formation to the plastid midpoint. The dynamic morphology of plastids, especially nongreen plastids, is also considered here, particularly in relation to the production of stromules and plastid-derived vesicles and their possible roles in cellular communication and plastid functionality.
Gross anatomy of the ringed seal (Pusa hispida) gastro-intestinal tract.
Smodlaka, H; Henry, R W
2014-06-01
The gross anatomical structure of the ringed seal (Pusa hispida) gastrointestinal tract is poorly described and often veterinary anatomical terminology is not used. Although the basic abdominal visceral pattern corresponded to domestic carnivores, significant differences were noted. The stomach was an elongated sharply bent tube (u-shaped) with the pylorus and fundus juxtaposed. The elongated jejunum measured up to 15.6 times body length and had 37 jejunal arteries from the cranial mesenteric artery. The pancreas was asymmetrical with a small right lobe and a large left lobe. The unusually short greater omentum negated formation of deep and superficial leaves. The most remarkable difference was the separation of the liver parenchyma into three physically separate masses, held together by hepatic ducts, veins and arteries. The topography and position of the liver was dependent on the amount of blood in the hepatic sinus (distended hepatic veins and hepatic portion of vena cava). Thus, as the hepatic sinus filled, the lateral liver masses separate from the central mass by moving caudolaterally. This was facilitated by modified coronary and triangular ligaments which did not attach directly to the liver, but instead to the hepatic sinus. These anatomical adaptations are apparently advantageous to ringed seal's survival in a deep marine environment. © 2013 Blackwell Verlag GmbH.
Hanigan, Ivan; Hall, Gillian; Dear, Keith B G
2006-09-13
To explain the possible effects of exposure to weather conditions on population health outcomes, weather data need to be calculated at a level in space and time that is appropriate for the health data. There are various ways of estimating exposure values from raw data collected at weather stations but the rationale for using one technique rather than another; the significance of the difference in the values obtained; and the effect these have on a research question are factors often not explicitly considered. In this study we compare different techniques for allocating weather data observations to small geographical areas and different options for weighting averages of these observations when calculating estimates of daily precipitation and temperature for Australian Postal Areas. Options that weight observations based on distance from population centroids and population size are more computationally intensive but give estimates that conceptually are more closely related to the experience of the population. Options based on values derived from sites internal to postal areas, or from nearest neighbour sites--that is, using proximity polygons around weather stations intersected with postal areas--tended to include fewer stations' observations in their estimates, and missing values were common. Options based on observations from stations within 50 kilometres radius of centroids and weighting of data by distance from centroids gave more complete estimates. Using the geographic centroid of the postal area gave estimates that differed slightly from the population weighted centroids and the population weighted average of sub-unit estimates. To calculate daily weather exposure values for analysis of health outcome data for small areas, the use of data from weather stations internal to the area only, or from neighbouring weather stations (allocated by the use of proximity polygons), is too limited. The most appropriate method conceptually is the use of weather data from sites within 50 kilometres radius of the area weighted to population centres, but a simpler acceptable option is to weight to the geographic centroid.
Leak Rate Performance of Silicone Elastomer O-Rings Contaminated with JSC-1A Lunar Regolith Simulant
NASA Technical Reports Server (NTRS)
Oravec, Heather Ann; Daniels, Christopher C.
2014-01-01
Contamination of spacecraft components with planetary and foreign object debris is a growing concern. Face seals separating the spacecraft cabin from the debris filled environment are particularly susceptible; if the seal becomes contaminated there is potential for decreased performance, mission failure, or catastrophe. In this study, silicone elastomer O-rings were contaminated with JSC- 1A lunar regolith and their leak rate performance was evaluated. The leak rate values of contaminated O-rings at four levels of seal compression were compared to those of as-received, uncontaminated, O-rings. The results showed a drastic increase in leak rate after contamination. JSC-1A contaminated O-rings lead to immeasurably high leak rate values for all levels of compression except complete closure. Additionally, a mechanical method of simulant removal was examined. In general, this method returned the leak rate to as-received values.
Franson, J.C.; Pearson, J.E.
1995-01-01
During the summer of 1986, more than 400 California gulls (Larus californicus) and ring-billed gulls (Larvus delawarensis), primarily fledglings, died on an island in Lake Sakakawea near New Town, North Dakota (USA). Mortality was attributed largely to chlamydiosis. Necropsy findings in nine carcasses included splenomegaly (n = 9), hepatomegaly (n = 4), and pericarditis (n = 1). Livers from three California gulls and two ring-billed gulls, and spleens from the same five birds plus a third ring-billed gull were positive for Chlamydia psittaci by the direct immunofluorescence test. Chlamydia psittaci was isolated from separate pools of liver and spleen from one California gull and one ring-billed gull. This is believed to be the first record of epizootic chlamydiosis in gulls and the second report of epizootic chlamydial mortality in wild birds in North America.
Structures with negative index of refraction
Soukoulis, Costas M [Ames, IA; Zhou, Jiangfeng [Ames, IA; Koschny, Thomas [Ames, IA; Zhang, Lei [Ames, IA; Tuttle, Gary [Ames, IA
2011-11-08
The invention provides simplified negative index materials (NIMs) using wire-pair structures, 4-gap single ring split-ring resonator (SRR), fishnet structures and overleaf capacitor SRR. In the wire-pair arrangement, a pair of short parallel wires and continuous wires are used. In the 4-gap single-ring SRR, the SRRs are centered on the faces of a cubic unit cell combined with a continuous wire type resonator. Combining both elements creates a frequency band where the metamaterial is transparent with simultaneously negative .di-elect cons. and .mu.. In the fishnet structure, a metallic mesh on both sides of the dielectric spacer is used. The overleaf capacitor SRR changes the gap capacities to small plate capacitors by making the sections of the SRR ring overlap at the gaps separated by a thin dielectric film. This technique is applicable to conventional SRR gaps but it best deploys for the 4-gap single-ring structures.
REQUIREMENTS AND GUIDELINES FOR NSLS EXPERIMENTAL BEAM LINE VACUUM SYSTEMS-REVISION B.
DOE Office of Scientific and Technical Information (OSTI.GOV)
FOERSTER,C.
Typical beam lines are comprised of an assembly of vacuum valves and shutters referred to as a ''front end'', optical elements to monochromatize, focus and split the photon beam, and an experimental area where a target sample is placed into the photon beam and data from the interaction is detected and recorded. Windows are used to separate sections of beam lines that are not compatible with storage ring ultra high vacuum. Some experimental beam lines share a common vacuum with storage rings. Sections of beam lines are only allowed to vent up to atmospheric pressure using pure nitrogen gas aftermore » a vacuum barrier is established to protect ring vacuum. The front end may only be bled up when there is no current in the machine. This is especially true on the VUV storage ring where for most experiments, windows are not used. For the shorter wavelength, more energetic photons of the x-ray ring, beryllium windows are used at various beam line locations so that the monochromator, mirror box or sample chamber may be used in a helium atmosphere or rough vacuum. The window separates ring vacuum from the environment of the downstream beam line components. The stored beam lifetime in the storage rings and the maintenance of desirable reflection properties of optical surfaces depend upon hydrocarbon-free, ultra-high vacuum systems. Storage ring vacuum systems will operate at pressures of {approximately} 1 x 10{sup {minus}10} Torr without beam and {approximately} 1 x 10{sup {minus}9} Torr with beam. Systems are free of hydrocarbons in the sense that no pumps, valves, etc. containing organics are used. Components are all-metal, chemically cleaned and bakeable. To the extent that beam lines share a common vacuum with the storage ring, the same criteria will hold for beam line components. The design philosophy for NSLS beam lines is to use all-metal, hydrocarbon-free front end components and recommend that experimenters use this approach for common vacuum hardware downstream of front ends. O-ring-sealed valves, if used, are not permitted upstream of the monochromator exit aperture. It will be the responsibility of users to demonstrate that their experiment will not degrade the pressure or quality of the storage ring vacuum. As a matter of operating policy, all beam lines will be monitored for prescribed pressure and the contribution of high mass gases to this pressure each time a beam line has been opened to ring vacuum.« less
Erny, Guillaume L; Acunha, Tanize; Simó, Carolina; Cifuentes, Alejandro; Alves, Arminda
2017-04-07
Separation techniques hyphenated with high-resolution mass spectrometry have been a true revolution in analytical separation techniques. Such instruments not only provide unmatched resolution, but they also allow measuring the peaks accurate masses that permit identifying monoisotopic formulae. However, data files can be large, with a major contribution from background noise and background ions. Such unnecessary contribution to the overall signal can hide important features as well as decrease the accuracy of the centroid determination, especially with minor features. Thus, noise and baseline correction can be a valuable pre-processing step. The methodology that is described here, unlike any other approach, is used to correct the original dataset with the MS scans recorded as profiles spectrum. Using urine metabolic studies as examples, we demonstrate that this thorough correction reduces the data complexity by more than 90%. Such correction not only permits an improved visualisation of secondary peaks in the chromatographic domain, but it also facilitates the complete assignment of each MS scan which is invaluable to detect possible comigration/coeluting species. Copyright © 2017 Elsevier B.V. All rights reserved.
Method of wavefront tilt correction for optical heterodyne detection systems under strong turbulence
NASA Astrophysics Data System (ADS)
Xiang, Jing-song; Tian, Xin; Pan, Le-chun
2014-07-01
Atmospheric turbulence decreases the heterodyne mixing efficiency of the optical heterodyne detection systems. Wavefront tilt correction is often used to improve the optical heterodyne mixing efficiency. But the performance of traditional centroid tracking tilt correction is poor under strong turbulence conditions. In this paper, a tilt correction method which tracking the peak value of laser spot on focal plane is proposed. Simulation results show that, under strong turbulence conditions, the performance of peak value tracking tilt correction is distinctly better than that of traditional centroid tracking tilt correction method, and the phenomenon of large antenna's performance inferior to small antenna's performance which may be occurred in centroid tracking tilt correction method can also be avoid in peak value tracking tilt correction method.
Shakuntala, K; Naveen, S; Lokanath, N K; Suchetan, P A
2017-05-01
The crystal structures of three isomeric compounds of formula C 14 H 13 Cl 2 NO 2 S, namely 3,5-di-chloro- N -(2,3-di-methyl-phen-yl)-benzene-sulfonamide (I), 3,5-di-chloro- N -(2,6-di-methyl-phen-yl)benzene-sulfonamide (II) and 3,5-di-chloro- N -(3,5-di-methyl-phen-yl)benzene-sulfonamide (III) are described. The mol-ecules of all the three compounds are U-shaped with the two aromatic rings inclined at 41.3 (6)° in (I), 42.1 (2)° in (II) and 54.4 (3)° in (III). The mol-ecular conformation of (II) is stabilized by intra-molecular C-H⋯O hydrogen bonds and C-H⋯π inter-actions. The crystal structure of (I) features N-H⋯O hydrogen-bonded R 2 2 (8) loops inter-connected via C (7) chains of C-H⋯O inter-actions, forming a three-dimensional architecture. The structure also features π-π inter-actions [ Cg ⋯ Cg = 3.6970 (14) Å]. In (II), N-H⋯O hydrogen-bonded R 2 2 (8) loops are inter-connected via π-π inter-actions [inter-centroid distance = 3.606 (3) Å] to form a one-dimensional architecture running parallel to the a axis. In (III), adjacent C (4) chains of N-H⋯O hydrogen-bonded mol-ecules running parallel to [010] are connected via C-H⋯π inter-actions, forming sheets parallel to the ab plane. Neighbouring sheets are linked via offset π-π inter-actions [inter-centroid distance = 3.8303 (16) Å] to form a three-dimensional architecture.
Real time, TV-based, point-image quantizer and sorter
Case, Arthur L.; Davidson, Jackson B.
1976-01-01
A device is provided for improving the vertical resolution in a television-based, two-dimensional readout for radiation detection systems such as are used to determine the location of light or nuclear radiation impinging a target area viewed by a television camera, where it is desired to store the data indicative of the centroid location of such images. In the example embodiment, impinging nuclear radiation detected in the form of a scintillation occurring in a crystal is stored as a charge image on a television camera tube target. The target is scanned in a raster and the image position is stored according to a corresponding vertical scan number and horizontal position number along the scan. To determine the centroid location of an image that may overlap a number of horizontal scan lines along the vertical axis of the raster, digital logic circuits are provided with at least four series-connected shift registers, each having 512 bit positions according to a selected 512 horizontal increment of resolutions along a scan line. The registers are shifted by clock pulses at a rate of 512 pulses per scan line. When an image or portion thereof is detected along a scan, its horizontal center location is determined and the present front bit is set in the first shift register and shifted through the registers one at a time for each horizontal scan. Each register is compared bit-by-bit with the preceding register to detect coincident set bit positions until the last scan line detecting a portion of the image is determined. Depending on the number of shift registers through which the first detection of the image is shifted, circuitry is provided to store the vertical center position of the event according to the number of shift registers through which the first detection of the event is shifted. Interpolation circuitry is provided to determine if the event centroid is between adjacent scan lines and stored in a vertical address accordingly. The horizontal location of the event is stored in a separate address memory.
A rocket observation of the far-ultraviolet spectrum of Saturn
NASA Technical Reports Server (NTRS)
Weiser, H.; Moos, H. W.
1978-01-01
Far-ultraviolet (1160-1750 A) spectra of the Saturnian disk and the ring system have been obtained by using a very sensitive rocket-borne spectrograph with a microchannel plate detector. The use of two apertures of different diameter in the telescope focal plane permitted the separation of the contribution of the planetary disk from that of the rings. H I lambda 1216 was the only atomic spectral line emission detected in the planet and the rings. A weak signal from the disk between 1300 A and 1500 A was observed. Geometric disk albedos, averaged over 50 A, were determined from 1500 A to 1700 A. Measurements of the ring reflectivity longward of 1650 A are compatible with H2O frost but not NH3 frost.
Quantifying Void Ratio in Granular Materials Using Voronoi Tessellation
NASA Technical Reports Server (NTRS)
Alshibli, Khalid A.; El-Saidany, Hany A.; Rose, M. Franklin (Technical Monitor)
2000-01-01
Voronoi technique was used to calculate the local void ratio distribution of granular materials. It was implemented in an application-oriented image processing and analysis algorithm capable of extracting object edges, separating adjacent particles, obtaining the centroid of each particle, generating Voronoi polygons, and calculating the local void ratio. Details of the algorithm capabilities and features are presented. Verification calculations included performing manual digitization of synthetic images using Oda's method and Voronoi polygon system. The developed algorithm yielded very accurate measurements of the local void ratio distribution. Voronoi tessellation has the advantage, compared to Oda's method, of offering a well-defined polygon generation criterion that can be implemented in an algorithm to automatically calculate local void ratio of particulate materials.
NASA Astrophysics Data System (ADS)
Azam, Mohammad; Dwivedi, Sourabh; Al-Resayes, Saud I.; Adil, S. F.; Islam, Mohammad Shahidul; Trzesowska-Kruszynska, Agata; Kruszynski, Rafal; Lee, Dong-Ung
2017-02-01
The catalytic property of a mononuclear Cu(II) salen complex in Chan-Lam coupling reaction with phenyl boronic acid at room temperature is reported. The studied complex is found to be potential catalyst in the preparation of carbon-heteroatom bonds with excellent yields. The studied Cu(II) salen complex is monoclinic with cell parameters, a = 9.6807(5) (α 90°), (b = 17.2504(8) (β 112.429 (2), c = 11.1403 (6) (γ = 90°), and has distorted square planar environment around Cu(II) ion. Furthermore, there is no π⋯π interactions in the reported complex due to large distance between the centroid of aromatic rings. In addition, DNA binding study of Cu(II) salen complex by fluorescence and absorption spectroscopy is also reported. Moreover, the reported Cu(II) salen complex exhibits significant anticancer activity against MCF-7 cancer cell lines, and displays potential antimicrobial biofilm activity against P. aeruginosa, suggesting antimicrobial biofilm an important tool for suppression of resistant infections caused by P. aeruginosa.
NASA Technical Reports Server (NTRS)
2006-01-01
Topics covered include: Magnetic-Field-Response Measurement-Acquisition System; Platform for Testing Robotic Vehicles on Simulated Terrain; Interferometer for Low-Uncertainty Vector Metrology; Rayleigh Scattering for Measuring Flow in a Nozzle Testing Facility; "Virtual Feel" Capaciflectors; FETs Based on Doped Polyaniline/Polyethylene Oxide Fibers; Miniature Housings for Electronics With Standard Interfaces; Integrated Modeling Environment; Modified Recursive Hierarchical Segmentation of Data; Sizing Structures and Predicting Weight of a Spacecraft; Stress Testing of Data-Communication Networks; Framework for Flexible Security in Group Communications; Software for Collaborative Use of Large Interactive Displays; Microsphere Insulation Panels; Single-Wall Carbon Nanotube Anodes for Lithium Cells; Tantalum-Based Ceramics for Refractory Composites; Integral Flexure Mounts for Metal Mirrors for Cryogenic Use; Templates for Fabricating Nanowire/Nanoconduit- Based Devices; Measuring Vapors To Monitor the State of Cure of a Resin; Partial-Vacuum-Gasketed Electrochemical Corrosion Cell; Theodolite Ring Lights; Integrating Terrain Maps Into a Reactive Navigation Strategy; Reducing Centroid Error Through Model-Based Noise Reduction; Adaptive Modeling Language and Its Derivatives; Stable Satellite Orbits for Global Coverage of the Moon; and Low-Cost Propellant Launch From a Tethered Balloon
Precision measurement of the mass of the hc(1P1) state of charmonium.
Dobbs, S; Metreveli, Z; Seth, K K; Tomaradze, A; Libby, J; Powell, A; Wilkinson, G; Ecklund, K M; Love, W; Savinov, V; Lopez, A; Mendez, H; Ramirez, J; Ge, J Y; Miller, D H; Shipsey, I P J; Xin, B; Adams, G S; Anderson, M; Cummings, J P; Danko, I; Hu, D; Moziak, B; Napolitano, J; He, Q; Insler, J; Muramatsu, H; Park, C S; Thorndike, E H; Yang, F; Artuso, M; Blusk, S; Khalil, S; Li, J; Mountain, R; Nisar, S; Randrianarivony, K; Sultana, N; Skwarnicki, T; Stone, S; Wang, J C; Zhang, L M; Bonvicini, G; Cinabro, D; Dubrovin, M; Lincoln, A; Naik, P; Rademacker, J; Asner, D M; Edwards, K W; Reed, J; Briere, R A; Ferguson, T; Tatishvili, G; Vogel, H; Watkins, M E; Rosner, J L; Alexander, J P; Cassel, D G; Duboscq, J E; Ehrlich, R; Fields, L; Galik, R S; Gibbons, L; Gray, R; Gray, S W; Hartill, D L; Heltsley, B K; Hertz, D; Hunt, J M; Kandaswamy, J; Kreinick, D L; Kuznetsov, V E; Ledoux, J; Mahlke-Krüger, H; Mohapatra, D; Onyisi, P U E; Patterson, J R; Peterson, D; Riley, D; Ryd, A; Sadoff, A J; Shi, X; Stroiney, S; Sun, W M; Wilksen, T; Athar, S B; Patel, R; Yelton, J; Rubin, P; Eisenstein, B I; Karliner, I; Mehrabyan, S; Lowrey, N; Selen, M; White, E J; Wiss, J; Mitchell, R E; Shepherd, M R; Besson, D; Pedlar, T K; Cronin-Hennessy, D; Gao, K Y; Hietala, J; Kubota, Y; Klein, T; Lang, B W; Poling, R; Scott, A W; Zweber, P
2008-10-31
A precision measurement of the mass of the h_{c}(1P1) state of charmonium has been made using a sample of 24.5x10;{6} psi(2S) events produced in e;{+}e;{-} annihilation at the Cornell Electron Storage Ring (CESR). The reaction used was psi(2S)-->pi;{0}h_{c}, pi;{0}-->gammagamma, h_{c}-->gammaeta_{c}, and the reaction products were detected in the CLEO-c detector. Data have been analyzed both for the inclusive reaction and for the exclusive reactions in which eta_{c} decays are reconstructed in 15 hadronic decay channels. Consistent results are obtained in the two analyses. The averaged results of the present measurements are M(h_{c})=3525.28+/-0.19(stat.)+/-0.12(syst.) MeV, and B(psi(2S)-->pi;{0}h_{c})xB(h_{c}-->gammaeta_{c})=(4.19+/-0.32+/-0.45)x10;{-4}. Using the ;{3}P_{J} centroid mass, DeltaM_{hf}(1P) identical withM(chi_{cJ})-M(h_{c})=+0.02+/-0.19+/-0.13 MeV.
Hou, Chen; Gan, Hong-Mei; Liu, Jia-Cheng
2015-05-01
In the title polymeric complex, {[Zn(C24H22N6O2)(H2O)4](NO3)2·2H2O} n , the Zn(II) cation, located about a twofold rotation axis, is coordinated by two imidazole groups and four water mol-ecules in a distorted N2O4 octa-hedral geometry; among the four coordinate water mol-ecules, two are located on the same twofold rotation axis. The 1,4-bis-[4-(1H-imidazol-1-yl)benzo-yl]piperazine] ligand is centro-symmetric, with the centroid of the piperazine ring located on an inversion center, and bridges the Zn(II) cations, forming polymeric chains propagating along [201]. In the crystal, O-H⋯O and weak C-H⋯O hydrogen bonds link the polymeric chains, nitrate anions and solvent water mol-ecules into a three-dimensional supra-molecular architecture. A short O⋯O contact of 2.823 (13) Å is observed between neighboring nitrate anions.
Precision Measurement of the Mass of the hc(P11) State of Charmonium
NASA Astrophysics Data System (ADS)
Dobbs, S.; Metreveli, Z.; Seth, K. K.; Tomaradze, A.; Libby, J.; Powell, A.; Wilkinson, G.; Ecklund, K. M.; Love, W.; Savinov, V.; Lopez, A.; Mendez, H.; Ramirez, J.; Ge, J. Y.; Miller, D. H.; Shipsey, I. P. J.; Xin, B.; Adams, G. S.; Anderson, M.; Cummings, J. P.; Danko, I.; Hu, D.; Moziak, B.; Napolitano, J.; He, Q.; Insler, J.; Muramatsu, H.; Park, C. S.; Thorndike, E. H.; Yang, F.; Artuso, M.; Blusk, S.; Khalil, S.; Li, J.; Mountain, R.; Nisar, S.; Randrianarivony, K.; Sultana, N.; Skwarnicki, T.; Stone, S.; Wang, J. C.; Zhang, L. M.; Bonvicini, G.; Cinabro, D.; Dubrovin, M.; Lincoln, A.; Naik, P.; Rademacker, J.; Asner, D. M.; Edwards, K. W.; Reed, J.; Briere, R. A.; Ferguson, T.; Tatishvili, G.; Vogel, H.; Watkins, M. E.; Rosner, J. L.; Alexander, J. P.; Cassel, D. G.; Duboscq, J. E.; Ehrlich, R.; Fields, L.; Galik, R. S.; Gibbons, L.; Gray, R.; Gray, S. W.; Hartill, D. L.; Heltsley, B. K.; Hertz, D.; Hunt, J. M.; Kandaswamy, J.; Kreinick, D. L.; Kuznetsov, V. E.; Ledoux, J.; Mahlke-Krüger, H.; Mohapatra, D.; Onyisi, P. U. E.; Patterson, J. R.; Peterson, D.; Riley, D.; Ryd, A.; Sadoff, A. J.; Shi, X.; Stroiney, S.; Sun, W. M.; Wilksen, T.; Athar, S. B.; Patel, R.; Yelton, J.; Rubin, P.; Eisenstein, B. I.; Karliner, I.; Mehrabyan, S.; Lowrey, N.; Selen, M.; White, E. J.; Wiss, J.; Mitchell, R. E.; Shepherd, M. R.; Besson, D.; Pedlar, T. K.; Cronin-Hennessy, D.; Gao, K. Y.; Hietala, J.; Kubota, Y.; Klein, T.; Lang, B. W.; Poling, R.; Scott, A. W.; Zweber, P.
2008-10-01
A precision measurement of the mass of the hc(P11) state of charmonium has been made using a sample of 24.5×106 ψ(2S) events produced in e+e- annihilation at the Cornell Electron Storage Ring (CESR). The reaction used was ψ(2S)→π0hc, π0→γγ, hc→γηc, and the reaction products were detected in the CLEO-c detector. Data have been analyzed both for the inclusive reaction and for the exclusive reactions in which ηc decays are reconstructed in 15 hadronic decay channels. Consistent results are obtained in the two analyses. The averaged results of the present measurements are M(hc)=3525.28±0.19(stat.)±0.12(syst.)MeV, and B(ψ(2S)→π0hc)×B(hc→γηc)=(4.19±0.32±0.45)×10-4. Using the PJ3 centroid mass, ΔMhf(1P)≡⟨M(χcJ)⟩-M(hc)=+0.02±0.19±0.13MeV.
NASA Astrophysics Data System (ADS)
Pollyea, R.; Mohammadi, N.; Taylor, J. E.
2017-12-01
The annual earthquake rate in Oklahoma increased dramatically between 2009 and 2016, owing in large part to the rapid proliferation of salt water disposal wells associated with unconventional oil and gas recovery. This study presents a geospatial analysis of earthquake occurrence and SWD injection volume within a 68,420 km2 area in north-central Oklahoma between 2011 and 2016. The spatial co-variability of earthquake occurrence and SWD injection volume is analyzed for each year of the study by calculating the geographic centroid for both earthquake epicenter and volume-weighted well location. In addition, the spatial cross correlation between earthquake occurrence and SWD volume is quantified by calculating the cross semivariogram annually for a 9.6 km × 9.6 km (6 mi × 6 mi) grid over the study area. Results from these analyses suggest that the relationship between volume-weighted well centroids and earthquake centroids generally follow pressure diffusion space-time scaling, and the volume-weighted well centroid predicts the geographic earthquake centroid within a 1σ radius of gyration. The cross semivariogram calculations show that SWD injection volume and earthquake occurrence are spatially cross correlated between 2014 and 2016. These results also show that the strength of cross correlation decreased from 2015 to 2016; however, the cross correlation length scale remains unchanged at 125 km. This suggests that earthquake mitigation efforts have been moderately successful in decreasing the strength of cross correlation between SWD volume and earthquake occurrence near-field, but the far-field contribution of SWD injection volume to earthquake occurrence remains unaffected.
NASA Astrophysics Data System (ADS)
Yuan, Ying; Li, Jicun; Li, Xin-Zheng; Wang, Feng
2018-05-01
The development of effective centroid potentials (ECPs) is explored with both the constrained-centroid and quasi-adiabatic force matching using liquid water as a test system. A trajectory integrated with the ECP is free of statistical noises that would be introduced when the centroid potential is approximated on the fly with a finite number of beads. With the reduced cost of ECP, challenging experimental properties can be studied in the spirit of centroid molecular dynamics. The experimental number density of H2O is 0.38% higher than that of D2O. With the ECP, the H2O number density is predicted to be 0.42% higher, when the dispersion term is not refit. After correction of finite size effects, the diffusion constant of H2O is found to be 21% higher than that of D2O, which is in good agreement with the 29.9% higher diffusivity for H2O observed experimentally. Although the ECP is also able to capture the redshifts of both the OH and OD stretching modes in liquid water, there are a number of properties that a classical simulation with the ECP will not be able to recover. For example, the heat capacities of H2O and D2O are predicted to be almost identical and higher than the experimental values. Such a failure is simply a result of not properly treating quantized vibrational energy levels when the trajectory is propagated with classical mechanics. Several limitations of the ECP based approach without bead population reconstruction are discussed.
Optimal Doppler centroid estimation for SAR data from a quasi-homogeneous source
NASA Technical Reports Server (NTRS)
Jin, M. Y.
1986-01-01
This correspondence briefly describes two Doppler centroid estimation (DCE) algorithms, provides a performance summary for these algorithms, and presents the experimental results. These algorithms include that of Li et al. (1985) and a newly developed one that is optimized for quasi-homogeneous sources. The performance enhancement achieved by the optimal DCE algorithm is clearly demonstrated by the experimental results.
Temporal variations in the position of the heliospheric equator
NASA Astrophysics Data System (ADS)
Obridko, V. N.; Shelting, B. D.
2008-08-01
It is shown that the centroid of the heliospheric equator undergoes quasi-periodic oscillations. During the minimum of the 11-year cycle, the centroid shifts southwards (the so-called bashful-ballerina effect). The direction of the shift reverses during the solar maximum. The solar quadrupole is responsible for this effect. The shift is compared with the tilt of the heliospheric current sheet.
Tan, Li Kuo; Liew, Yih Miin; Lim, Einly; Abdul Aziz, Yang Faridah; Chee, Kok Han; McLaughlin, Robert A
2018-06-01
In this paper, we develop and validate an open source, fully automatic algorithm to localize the left ventricular (LV) blood pool centroid in short axis cardiac cine MR images, enabling follow-on automated LV segmentation algorithms. The algorithm comprises four steps: (i) quantify motion to determine an initial region of interest surrounding the heart, (ii) identify potential 2D objects of interest using an intensity-based segmentation, (iii) assess contraction/expansion, circularity, and proximity to lung tissue to score all objects of interest in terms of their likelihood of constituting part of the LV, and (iv) aggregate the objects into connected groups and construct the final LV blood pool volume and centroid. This algorithm was tested against 1140 datasets from the Kaggle Second Annual Data Science Bowl, as well as 45 datasets from the STACOM 2009 Cardiac MR Left Ventricle Segmentation Challenge. Correct LV localization was confirmed in 97.3% of the datasets. The mean absolute error between the gold standard and localization centroids was 2.8 to 4.7 mm, or 12 to 22% of the average endocardial radius. Graphical abstract Fully automated localization of the left ventricular blood pool in short axis cardiac cine MR images.
Event Centroiding Applied to Energy-Resolved Neutron Imaging at LANSCE
Borges, Nicholas; Losko, Adrian; Vogel, Sven
2018-02-13
The energy-dependence of the neutron cross section provides vastly different contrast mechanisms than polychromatic neutron radiography if neutron energies can be selected for imaging applications. In recent years, energy-resolved neutron imaging (ERNI) with epi-thermal neutrons, utilizing neutron absorption resonances for contrast as well as for quantitative density measurements, was pioneered at the Flight Path 5 beam line at LANSCE and continues to be refined. In this work, we present event centroiding, i.e., the determination of the center-of-gravity of a detection event on an imaging detector to allow sub-pixel spatial resolution and apply it to the many frames collected for energy-resolvedmore » neutron imaging at a pulsed neutron source. While event centroiding was demonstrated at thermal neutron sources, it has not been applied to energy-resolved neutron imaging, where the energy resolution requires to be preserved, and we present a quantification of the possible resolution as a function of neutron energy. For the 55 μm pixel size of the detector used for this study, we found a resolution improvement from ~80 μm to ~22 μm using pixel centroiding while fully preserving the energy resolution.« less
Event Centroiding Applied to Energy-Resolved Neutron Imaging at LANSCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borges, Nicholas; Losko, Adrian; Vogel, Sven
The energy-dependence of the neutron cross section provides vastly different contrast mechanisms than polychromatic neutron radiography if neutron energies can be selected for imaging applications. In recent years, energy-resolved neutron imaging (ERNI) with epi-thermal neutrons, utilizing neutron absorption resonances for contrast as well as for quantitative density measurements, was pioneered at the Flight Path 5 beam line at LANSCE and continues to be refined. In this work, we present event centroiding, i.e., the determination of the center-of-gravity of a detection event on an imaging detector to allow sub-pixel spatial resolution and apply it to the many frames collected for energy-resolvedmore » neutron imaging at a pulsed neutron source. While event centroiding was demonstrated at thermal neutron sources, it has not been applied to energy-resolved neutron imaging, where the energy resolution requires to be preserved, and we present a quantification of the possible resolution as a function of neutron energy. For the 55 μm pixel size of the detector used for this study, we found a resolution improvement from ~80 μm to ~22 μm using pixel centroiding while fully preserving the energy resolution.« less
Automatic detection and quantitative analysis of cells in the mouse primary motor cortex
NASA Astrophysics Data System (ADS)
Meng, Yunlong; He, Yong; Wu, Jingpeng; Chen, Shangbin; Li, Anan; Gong, Hui
2014-09-01
Neuronal cells play very important role on metabolism regulation and mechanism control, so cell number is a fundamental determinant of brain function. Combined suitable cell-labeling approaches with recently proposed three-dimensional optical imaging techniques, whole mouse brain coronal sections can be acquired with 1-μm voxel resolution. We have developed a completely automatic pipeline to perform cell centroids detection, and provided three-dimensional quantitative information of cells in the primary motor cortex of C57BL/6 mouse. It involves four principal steps: i) preprocessing; ii) image binarization; iii) cell centroids extraction and contour segmentation; iv) laminar density estimation. Investigations on the presented method reveal promising detection accuracy in terms of recall and precision, with average recall rate 92.1% and average precision rate 86.2%. We also analyze laminar density distribution of cells from pial surface to corpus callosum from the output vectorizations of detected cell centroids in mouse primary motor cortex, and find significant cellular density distribution variations in different layers. This automatic cell centroids detection approach will be beneficial for fast cell-counting and accurate density estimation, as time-consuming and error-prone manual identification is avoided.
Star centroiding error compensation for intensified star sensors.
Jiang, Jie; Xiong, Kun; Yu, Wenbo; Yan, Jinyun; Zhang, Guangjun
2016-12-26
A star sensor provides high-precision attitude information by capturing a stellar image; however, the traditional star sensor has poor dynamic performance, which is attributed to its low sensitivity. Regarding the intensified star sensor, the image intensifier is utilized to improve the sensitivity, thereby further improving the dynamic performance of the star sensor. However, the introduction of image intensifier results in star centroiding accuracy decrease, further influencing the attitude measurement precision of the star sensor. A star centroiding error compensation method for intensified star sensors is proposed in this paper to reduce the influences. First, the imaging model of the intensified detector, which includes the deformation parameter of the optical fiber panel, is established based on the orthographic projection through the analysis of errors introduced by the image intensifier. Thereafter, the position errors at the target points based on the model are obtained by using the Levenberg-Marquardt (LM) optimization method. Last, the nearest trigonometric interpolation method is presented to compensate for the arbitrary centroiding error of the image plane. Laboratory calibration result and night sky experiment result show that the compensation method effectively eliminates the error introduced by the image intensifier, thus remarkably improving the precision of the intensified star sensors.
Fusing Image Data for Calculating Position of an Object
NASA Technical Reports Server (NTRS)
Huntsberger, Terrance; Cheng, Yang; Liebersbach, Robert; Trebi-Ollenu, Ashitey
2007-01-01
A computer program has been written for use in maintaining the calibration, with respect to the positions of imaged objects, of a stereoscopic pair of cameras on each of the Mars Explorer Rovers Spirit and Opportunity. The program identifies and locates a known object in the images. The object in question is part of a Moessbauer spectrometer located at the tip of a robot arm, the kinematics of which are known. In the program, the images are processed through a module that extracts edges, combines the edges into line segments, and then derives ellipse centroids from the line segments. The images are also processed by a feature-extraction algorithm that performs a wavelet analysis, then performs a pattern-recognition operation in the wavelet-coefficient space to determine matches to a texture feature measure derived from the horizontal, vertical, and diagonal coefficients. The centroids from the ellipse finder and the wavelet feature matcher are then fused to determine co-location. In the event that a match is found, the centroid (or centroids if multiple matches are present) is reported. If no match is found, the process reports the results of the analyses for further examination by human experts.
Needham, Amy; Cantlon, Jessica F; Ormsbee Holley, Susan M
2006-12-01
The current research investigates infants' perception of a novel object from a category that is familiar to young infants: key rings. We ask whether experiences obtained outside the lab would allow young infants to parse the visible portions of a partly occluded key ring display into one single unit, presumably as a result of having categorized it as a key ring. This categorization was marked by infants' perception of the keys and ring as a single unit that should move together, despite their attribute differences. We showed infants a novel key ring display in which the keys and ring moved together as one rigid unit (Move-together event) or the ring moved but the keys remained stationary throughout the event (Move-apart event). Our results showed that 8.5-month-old infants perceived the keys and ring as connected despite their attribute differences, and that their perception of object unity was eliminated as the distinctive attributes of the key ring were removed. When all of the distinctive attributes of the key ring were removed, the 8.5-month-old infants perceived the display as two separate units, which is how younger infants (7-month-old) perceived the key ring display with all its distinctive attributes unaltered. These results suggest that on the basis of extensive experience with an object category, infants come to identify novel members of that category and expect them to possess the attributes typical of that category.
Gao, Jiali; Major, Dan T; Fan, Yao; Lin, Yen-Lin; Ma, Shuhua; Wong, Kin-Yiu
2008-01-01
A method for incorporating quantum mechanics into enzyme kinetics modeling is presented. Three aspects are emphasized: 1) combined quantum mechanical and molecular mechanical methods are used to represent the potential energy surface for modeling bond forming and breaking processes, 2) instantaneous normal mode analyses are used to incorporate quantum vibrational free energies to the classical potential of mean force, and 3) multidimensional tunneling methods are used to estimate quantum effects on the reaction coordinate motion. Centroid path integral simulations are described to make quantum corrections to the classical potential of mean force. In this method, the nuclear quantum vibrational and tunneling contributions are not separable. An integrated centroid path integral-free energy perturbation and umbrella sampling (PI-FEP/UM) method along with a bisection sampling procedure was summarized, which provides an accurate, easily convergent method for computing kinetic isotope effects for chemical reactions in solution and in enzymes. In the ensemble-averaged variational transition state theory with multidimensional tunneling (EA-VTST/MT), these three aspects of quantum mechanical effects can be individually treated, providing useful insights into the mechanism of enzymatic reactions. These methods are illustrated by applications to a model process in the gas phase, the decarboxylation reaction of N-methyl picolinate in water, and the proton abstraction and reprotonation process catalyzed by alanine racemase. These examples show that the incorporation of quantum mechanical effects is essential for enzyme kinetics simulations.
Measurement of the $$\\Sigma \\pi$$ photoproduction line shapes near the $$\\Lambda(1405)$$
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moriya, K; Adhikari, K P; Adikaram, D
2013-03-01
The reaction {gamma} + p -> K{sup +} + {Sigma} + {p}i was used to determine the invariant mass distributions or "line shapes" of the {Sigma}{sup +} {pi}{sup -}, {Sigma}{sup -} {pi}{sup +} and {Sigma}{sup 0} {pi}{sup 0} final states, from threshold at 1328 MeV/c^2 through the mass range of the {Lambda}(1405) and the {Lambda}(1520). The measurements were made with the CLAS system at Jefferson Lab using tagged real photons, for center-of-mass energies 1.95 < W < 2.85 GeV. The three mass distributions differ strongly in the vicinity of the I=0 {Lambda}(1405), indicating the presence of substantial I=1 strength inmore » the reaction. Background contributions to the data from the {Sigma}{sup 0}(1385) and from K* {Sigma} production were studied and shown to have negligible influence. To separate the isospin amplitudes, Breit-Wigner model fits were made that included channel-coupling distortions due to the Nkbar threshold. A best fit to all the data was obtained after including a phenomenological I=1, J{sup P} = 1/2{sup -} amplitude with a centroid at 1394\\pm20 MeV/c^2 and a second I=1 amplitude at 1413\\pm10 MeV/c^2. The centroid of the I=0 {Lambda}(1405) strength was found at the {Sigma} {pi} threshold, with the observed shape determined largely by channel-coupling, leading to an apparent overall peak near 1405 MeV/c^2.« less
Lundholm, Gunnar
1983-01-01
In a Stirling cycle engine having a plurality of working gas charges separated by pistons reciprocating in cylinders, the total gas content is minimized and the mean pressure equalization among the serial cylinders is improved by using two piston rings axially spaced at least as much as the piston stroke and by providing a duct in the cylinder wall opening in the space between the two piston rings and leading to a source of minimum or maximum working gas pressure.
NASA Astrophysics Data System (ADS)
Li, Xuxu; Li, Xinyang; wang, Caixia
2018-03-01
This paper proposes an efficient approach to decrease the computational costs of correlation-based centroiding methods used for point source Shack-Hartmann wavefront sensors. Four typical similarity functions have been compared, i.e. the absolute difference function (ADF), ADF square (ADF2), square difference function (SDF), and cross-correlation function (CCF) using the Gaussian spot model. By combining them with fast search algorithms, such as three-step search (TSS), two-dimensional logarithmic search (TDL), cross search (CS), and orthogonal search (OS), computational costs can be reduced drastically without affecting the accuracy of centroid detection. Specifically, OS reduces calculation consumption by 90%. A comprehensive simulation indicates that CCF exhibits a better performance than other functions under various light-level conditions. Besides, the effectiveness of fast search algorithms has been verified.
Research of centroiding algorithms for extended and elongated spot of sodium laser guide star
NASA Astrophysics Data System (ADS)
Shao, Yayun; Zhang, Yudong; Wei, Kai
2016-10-01
Laser guide stars (LGSs) increase the sky coverage of astronomical adaptive optics systems. But spot array obtained by Shack-Hartmann wave front sensors (WFSs) turns extended and elongated, due to the thickness and size limitation of sodium LGS, which affects the accuracy of the wave front reconstruction algorithm. In this paper, we compared three different centroiding algorithms , the Center-of-Gravity (CoG), weighted CoG (WCoG) and Intensity Weighted Centroid (IWC), as well as those accuracies for various extended and elongated spots. In addition, we compared the reconstructed image data from those three algorithms with theoretical results, and proved that WCoG and IWC are the best wave front reconstruction algorithms for extended and elongated spot among all the algorithms.
Trajectory data privacy protection based on differential privacy mechanism
NASA Astrophysics Data System (ADS)
Gu, Ke; Yang, Lihao; Liu, Yongzhi; Liao, Niandong
2018-05-01
In this paper, we propose a trajectory data privacy protection scheme based on differential privacy mechanism. In the proposed scheme, the algorithm first selects the protected points from the user’s trajectory data; secondly, the algorithm forms the polygon according to the protected points and the adjacent and high frequent accessed points that are selected from the accessing point database, then the algorithm calculates the polygon centroids; finally, the noises are added to the polygon centroids by the differential privacy method, and the polygon centroids replace the protected points, and then the algorithm constructs and issues the new trajectory data. The experiments show that the running time of the proposed algorithms is fast, the privacy protection of the scheme is effective and the data usability of the scheme is higher.
NASA Astrophysics Data System (ADS)
Eiskowitz, Skylar; Ballew, Nolan; Rojas, Rubén; Lathrop, Daniel
2017-11-01
The particles in Saturn's rings exhibit complex dynamic behavior. They experience solar radiation pressure, electromagnetic forces, and granular collisions. To investigate the possibility of the Hall Effect in the dusty plasma that comprise Saturn's rings, we have built an experiment that demonstrates the Hall Effect in granular matter. We focus on the Hall Effect because the rings' grains become collisionally charged and experience Saturn's dipolar magnetic field and Lorentz forces as they orbit. The experimental setup includes a closed ring-like track where granular matter is forced to circulate driven by compressed air. The structure sits between two electromagnets so that a portion of the track experiences up to a 0.2 T magnetic field. We vary the strength of the field and the speed of the particles. We report the voltage differences between two conducting plates on opposite sides of the track. If Saturn's rings do experience the Hall Effect, the inside and outside of the rings will develop a charge separation that can lead to a radial electric field and various phenomena including orbital effects due to the additional electric forces. Observational evidence from Cassini suggests that Saturn's rings exhibit lighting, supporting the notion that they are electrically charged. TREND REU program sponsored by the National Science Foundation.
Coffee-ring effects in laser desorption/ionization mass spectrometry.
Hu, Jie-Bi; Chen, Yu-Chie; Urban, Pawel L
2013-03-05
This report focuses on the heterogeneous distribution of small molecules (e.g. metabolites) within dry deposits of suspensions and solutions of inorganic and organic compounds with implications for chemical analysis of small molecules by laser desorption/ionization (LDI) mass spectrometry (MS). Taking advantage of the imaging capabilities of a modern mass spectrometer, we have investigated the occurrence of "coffee rings" in matrix-assisted laser desorption/ionization (MALDI) and surface-assisted laser desorption/ionization (SALDI) sample spots. It is seen that the "coffee-ring effect" in MALDI/SALDI samples can be both beneficial and disadvantageous. For example, formation of the coffee rings gives rise to heterogeneous distribution of analytes and matrices, thus compromising analytical performance and reproducibility of the mass spectrometric analysis. On the other hand, the coffee-ring effect can also be advantageous because it enables partial separation of analytes from some of the interfering molecules present in the sample. We report a "hidden coffee-ring effect" where under certain conditions the sample/matrix deposit appears relatively homogeneous when inspected by optical microscopy. Even in such cases, hidden coffee rings can still be found by implementing the MALDI-MS imaging technique. We have also found that to some extent, the coffee-ring effect can be suppressed during SALDI sample preparation. Copyright © 2013 Elsevier B.V. All rights reserved.
Assembly Mechanism of the Contractile Ring for Cytokinesis by Fission Yeast
NASA Astrophysics Data System (ADS)
Vavylonis, Dimitrios; Wu, Jian-Qiu; Huang, Xiaolei; O'Shaughnessy, Ben; Pollard, Thomas
2008-03-01
Animals and fungi assemble a contractile ring of actin filaments and the motor protein myosin to separate into individual daughter cells during cytokinesis. We studied the mechanism of contractile ring assembly in fission yeast with high time resolution confocal microscopy, computational image analysis methods, and numerical simulations. Approximately 63 nodes containing myosin, broadly distributed around the cell equator, assembled into a ring through stochastic motions, making many starts, stops, and changes of direction as they condense into a ring. Estimates of node friction coefficients from the mean square displacement of stationary nodes imply forces for node movement are greater than ˜ 4 pN, similarly to forces by a few molecular motors. Skeletonization and topology analysis of images of cells expressing fluorescent actin filament markers showed transient linear elements extending in all directions from myosin nodes and establishing connections among them. We propose a model with traction between nodes depending on transient connections established by stochastic search and capture (``search, capture, pull and release''). Numerical simulations of the model using parameter values obtained from experiment succesfully condense nodes into a continuous ring.
Automatic flatness detection system for micro part
NASA Astrophysics Data System (ADS)
Luo, Yi; Wang, Xiaodong; Shan, Zhendong; Li, Kehong
2016-01-01
An automatic flatness detection system for micro rings is developed. It is made up of machine vision module, ring supporting module and control system. An industry CCD camera with the resolution of 1628×1236 pixel, a telecentric with magnification of two, and light sources are used to collect the vision information. A rotary stage with a polished silicon wafer is used to support the ring. The silicon wafer provides a mirror image and doubles the gap caused by unevenness of the ring. The control system comprise an industry computer and software written in LabVIEW Get Kernel and Convolute Function are selected to reduce noise and distortion, Laplacian Operator is used to sharp the image, and IMAQ Threshold function is used to separate the target object from the background. Based on this software, system repeating precision is 2.19 μm, less than one pixel. The designed detection system can easily identify the ring warpage larger than 5 μm, and if the warpage is less than 25 μm, it can be used in ring assembly and satisfied the final positionary and perpendicularity error requirement of the component.
NASA Astrophysics Data System (ADS)
Poojali, Jayaprakash; Ray, Shaumik; Pesala, Bala; Chitti, Krishnamurthy V.; Arunachalam, Kavitha
2016-10-01
A substrate-backed frequency selective surface (FSS) is presented for diplexing the widely separated frequency spectrum centered at 55, 89, and 183 GHz with varying bandwidth for spatial separation in the quasi-optical feed network of the millimeter wave sounder. A unit cell composed of a crossed dipole integrated with a circular ring and loaded inside a square ring is optimized for tri-band frequency response with transmission window at 89 GHz and rejection windows at 55 and 183 GHz. The reflection and transmission losses predicted for the optimized unit cell (728 μm × 728 μm) composed of dissimilar resonant shapes is less than 0.5 dB for transverse electric (TE) and transverse magnetic (TM) polarizations and wide angle of incidence (0°-45°). The FSS is fabricated on a 175-μm-thick quartz substrate using microfabrication techniques. The transmission characteristics measured with continuous wave (CW) terahertz transmit receive system are in good agreement with the numerical simulations.
The role of microtubules in contractile ring function.
Conrad, A H; Paulsen, A Q; Conrad, G W
1992-05-01
During cytokinesis, a cortical contractile ring forms around a cell, constricts to a stable tight neck and terminates in separation of the daughter cells. At first cleavage, Ilyanassa obsoleta embryos form two contractile rings simultaneously. The cleavage furrow (CF), in the animal hemisphere between the spindle poles, constricts to a stable tight neck and separates the daughter cells. The third polar lobe constriction (PLC-3), in the vegetal hemisphere below the spindle, constricts to a transient tight neck, but then relaxes, allowing the polar lobe cytoplasm to merge with one daughter cell. Eggs exposed to taxol, a drug that stabilizes microtubules, before the CF or the PLC-3 develop, fail to form CFs, but form stabilized tight PLCs. Eggs exposed to taxol at the time of PLC-3 formation develop varied numbers of constriction rings in their animal hemispheres and one PLC in their vegetal hemisphere, none of which relax. Eggs exposed to taxol after PLC-3 initiation form stabilized tight CFs and PLCs. At maximum constriction, control embryos display immunolocalization of nonextractable alpha-tubulin in their CFs, but not in their PLCs, and reveal, via electron microscopy, many microtubules extending through their CFs, but not through their PLCs. Embryos which form stabilized tightly constricted CFs and PLCs in the presence of taxol display immunolocalization of nonextractable alpha-tubulin in both constrictions and show many polymerized microtubules extending through both CFs and PLCs. These results suggest that the extension of microtubules through a tight contractile ring may be important for stabilizing that constriction and facilitating subsequent cytokinesis.
The role of microtubules in contractile ring function
NASA Technical Reports Server (NTRS)
Conrad, A. H.; Paulsen, A. Q.; Conrad, G. W.; Spooner, B. S. (Principal Investigator)
1992-01-01
During cytokinesis, a cortical contractile ring forms around a cell, constricts to a stable tight neck and terminates in separation of the daughter cells. At first cleavage, Ilyanassa obsoleta embryos form two contractile rings simultaneously. The cleavage furrow (CF), in the animal hemisphere between the spindle poles, constricts to a stable tight neck and separates the daughter cells. The third polar lobe constriction (PLC-3), in the vegetal hemisphere below the spindle, constricts to a transient tight neck, but then relaxes, allowing the polar lobe cytoplasm to merge with one daughter cell. Eggs exposed to taxol, a drug that stabilizes microtubules, before the CF or the PLC-3 develop, fail to form CFs, but form stabilized tight PLCs. Eggs exposed to taxol at the time of PLC-3 formation develop varied numbers of constriction rings in their animal hemispheres and one PLC in their vegetal hemisphere, none of which relax. Eggs exposed to taxol after PLC-3 initiation form stabilized tight CFs and PLCs. At maximum constriction, control embryos display immunolocalization of nonextractable alpha-tubulin in their CFs, but not in their PLCs, and reveal, via electron microscopy, many microtubules extending through their CFs, but not through their PLCs. Embryos which form stabilized tightly constricted CFs and PLCs in the presence of taxol display immunolocalization of nonextractable alpha-tubulin in both constrictions and show many polymerized microtubules extending through both CFs and PLCs. These results suggest that the extension of microtubules through a tight contractile ring may be important for stabilizing that constriction and facilitating subsequent cytokinesis.
Geislinger, Thomas M; Chan, Sherwin; Moll, Kirsten; Wixforth, Achim; Wahlgren, Mats; Franke, Thomas
2014-09-20
Understanding of malaria pathogenesis caused by Plasmodium falciparum has been greatly deepened since the introduction of in vitro culture system, but the lack of a method to enrich ring-stage parasites remains a technical challenge. Here, a novel way to enrich red blood cells containing parasites in the early ring stage is described and demonstrated. A simple, straight polydimethylsiloxane microchannel connected to two syringe pumps for sample injection and two height reservoirs for sample collection is used to enrich red blood cells containing parasites in the early ring stage (8-10 h p.i.). The separation is based on the non-inertial hydrodynamic lift effect, a repulsive cell-wall interaction that enables continuous and label-free separation with deformability as intrinsic marker. The possibility to enrich red blood cells containing P. falciparum parasites at ring stage with a throughput of ~12,000 cells per hour and an average enrichment factor of 4.3 ± 0.5 is demonstrated. The method allows for the enrichment of red blood cells early after the invasion by P. falciparum parasites continuously and without any need to label the cells. The approach promises new possibilities to increase the sensitivity of downstream analyses like genomic- or diagnostic tests. The device can be produced as a cheap, disposable chip with mass production technologies and works without expensive peripheral equipment. This makes the approach interesting for the development of new devices for field use in resource poor settings and environments, e.g. with the aim to increase the sensitivity of microscope malaria diagnosis.
Edge-on View of Saturn's Rings
NASA Technical Reports Server (NTRS)
1996-01-01
TOP - This is a NASA Hubble Space Telescope snapshot of Saturn with its rings barely visible. Normally, astronomers see Saturn with its rings tilted. Earth was almost in the plane of Saturn's rings, thus the rings appear edge-on.
In this view, Saturn's largest moon, Titan, is casting a shadow on Saturn. Titan's atmosphere is a dark brown haze. The other moons appear white because of their bright, icy surfaces. Four moons - from left to right, Mimas, Tethys, Janus, and Enceladus - are clustered around the edge of Saturn's rings on the right. Two other moons appear in front of the ring plane. Prometheus is on the right edge; Pandora, on the left. The rings also are casting a shadow on Saturn because the Sun was above the ring plane.BOTTOM - This photograph shows Saturn with its rings slightly tilted. The moon called Dione, on the lower right, is casting a long, thin shadow across the whole ring system due to the setting Sun on the ring plane. The moon on the upper left of Saturn is Tethys.Astronomers also are studying the unusual appearance of Saturn's rings. The bottom image displays a faint, narrow ring, the F-ring just outside the main ring, which normally is invisible from Earth. Close to the edge of Saturn's disk, the front section of rings seem brighter and more yellow than the back due to the additional lumination by yellowish Saturn.The color images were assembled from separate exposures taken August 6 (top) and November 17 (bottom), 1995 with the Wide Field Planetary Camera-2.The Wide Field/Planetary Camera 2 was developed by the Jet Propulsion Laboratory and managed by the Goddard Spaced Flight Center for NASA's Office of Space Science.This image and other images and data received from the Hubble Space Telescope are posted on the World Wide Web on the Space Telescope Science Institute home page at URL http://oposite.stsci.edu/pubinfo/An N-body Integrator for Planetary Rings
NASA Astrophysics Data System (ADS)
Hahn, Joseph M.
2011-04-01
A planetary ring that is disturbed by a satellite's resonant perturbation can respond in an organized way. When the resonance lies in the ring's interior, the ring responds via an m-armed spiral wave, while a ring whose edge is confined by the resonance exhibits an m-lobed scalloping along the ring-edge. The amplitude of these disturbances are sensitive to ring surface density and viscosity, so modelling these phenomena can provide estimates of the ring's properties. However a brute force attempt to simulate a ring's full azimuthal extent with an N-body code will likely fail because of the large number of particles needed to resolve the ring's behavior. Another impediment is the gravitational stirring that occurs among the simulated particles, which can wash out the ring's organized response. However it is possible to adapt an N-body integrator so that it can simulate a ring's collective response to resonant perturbations. The code developed here uses a few thousand massless particles to trace streamlines within the ring. Particles are close in a radial sense to these streamlines, which allows streamlines to be treated as straight wires of constant linear density. Consequently, gravity due to these streamline is a simple function of the particle's radial distance to all streamlines. And because particles are responding to smooth gravitating streamlines, rather than discrete particles, this method eliminates the stirring that ordinarily occurs in brute force N-body calculations. Note also that ring surface density is now a simple function of streamline separations, so effects due to ring pressure and viscosity are easily accounted for, too. A poster will describe this N-body method in greater detail. Simulations of spiral density waves and scalloped ring-edges are executed in typically ten minutes on a desktop PC, and results for Saturn's A and B rings will be presented at conference time.
NASA Astrophysics Data System (ADS)
Viktorovich Tchernyi, Vladimir
2018-06-01
Saturn Rings Origin: Quantum Trapping of Superconducting Iced Particles and Meissner Effect Lead to the Stable Rings System Vladimir V. Tchernyi (Cherny), Andrew Yu. Pospelov Modern Science Institute, SAIBR, Moscow, Russia. E-mail: chernyv@bk.ruAbstractIt is demonstrated how superconducting iced particles of the protoplanetary cloud of Saturn are coming to magnetic equator plane and create the stable enough rings disk. There are two steps. First, after appearance of the Saturn magnetic field due to Meissner phenomenon all particles orbits are moving to the magnetic equator plane. Finally they become distributed as rings and gaps like iron particles around magnet on laboratory table. And they are separated from each other by the magnetic field expelled from them. It takes up to few tens of thousands years with ten meters rings disk thickness. Second, due to their quantum trapping all particles become to be trapped within magnetic well at the magnetic equator plane due to Abrikosov vortex for superconductor. It works even when particles have small fraction of superconductor. During the rings evolution some contribution to the disk also could come from the collision-generated debris of the current moon and from the geysers like it happened due to magnetic coupling of Saturn and Enceladus. The rings are relict of the early days of the magnetic field of Saturn system.
Automated Slicing for a Multi-Axis Metal Deposition System (Preprint)
2006-09-01
experimented with different materials like H13 tool steel to build the part. Following the same slicing and scanning toolpath result, there is a geometric...and analysis tool -centroidal axis. Similar to medial axis, it contains geometry and topological information but is significantly computationally...geometry reasoning and analysis tool -centroidal axis. Similar to medial axis, it contains geometry and topological information but is significantly
Video image position determination
Christensen, Wynn; Anderson, Forrest L.; Kortegaard, Birchard L.
1991-01-01
An optical beam position controller in which a video camera captures an image of the beam in its video frames, and conveys those images to a processing board which calculates the centroid coordinates for the image. The image coordinates are used by motor controllers and stepper motors to position the beam in a predetermined alignment. In one embodiment, system noise, used in conjunction with Bernoulli trials, yields higher resolution centroid coordinates.
NASA Astrophysics Data System (ADS)
Ferrarello, Daniela; Mammana, Maria Flavia; Pennisi, Mario
2018-05-01
In this paper, we show some properties of centroids of geometric figures, such as triangles, quadrilaterals and tetrahedra. In particular, we will prove the properties by means of geometric transformations and by introducing extensions of triangles and quadrilaterals, i.e. by adding one, two or three new vertices to the figure. The study of these properties can be used, with profit, in a classroom activity supported by a dynamic geometry system.
SU-F-J-109: Generate Synthetic CT From Cone Beam CT for CBCT-Based Dose Calculation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, H; Barbee, D; Wang, W
Purpose: The use of CBCT for dose calculation is limited by its HU inaccuracy from increased scatter. This study presents a method to generate synthetic CT images from CBCT data by a probabilistic classification that may be robust to CBCT noise. The feasibility of using the synthetic CT for dose calculation is evaluated in IMRT for unilateral H&N cancer. Methods: In the training phase, a fuzzy c-means classification was performed on HU vectors (CBCT, CT) of planning CT and registered day-1 CBCT image pair. Using the resulting centroid CBCT and CT values for five classified “tissue” types, a synthetic CTmore » for a daily CBCT was created by classifying each CBCT voxel to obtain its probability belonging to each tissue class, then assigning a CT HU with a probability-weighted summation of the classes’ CT centroids. Two synthetic CTs from a CBCT were generated: s-CT using the centroids from classification of individual patient CBCT/CT data; s2-CT using the same centroids for all patients to investigate the applicability of group-based centroids. IMRT dose calculations for five patients were performed on the synthetic CTs and compared with CT-planning doses by dose-volume statistics. Results: DVH curves of PTVs and critical organs calculated on s-CT and s2-CT agree with those from planning-CT within 3%, while doses calculated with heterogeneity off or on raw CBCT show DVH differences up to 15%. The differences in PTV D95% and spinal cord max are 0.6±0.6% and 0.6±0.3% for s-CT, and 1.6±1.7% and 1.9±1.7% for s2-CT. Gamma analysis (2%/2mm) shows 97.5±1.6% and 97.6±1.6% pass rates for using s-CTs and s2-CTs compared with CT-based doses, respectively. Conclusion: CBCT-synthesized CTs using individual or group-based centroids resulted in dose calculations that are comparable to CT-planning dose for unilateral H&N cancer. The method may provide a tool for accurate dose calculation based on daily CBCT.« less
Independently variable phase and stroke control for a double acting Stirling engine
Berchowitz, David M.
1983-01-01
A phase and stroke control apparatus for the pistons of a Stirling engine includes a ring on the end of each piston rod in which a pair of eccentrics is arranged in series, torque transmitting relationship. The outer eccentric is rotatably mounted in the ring and is rotated by the orbiting ring; the inner eccentric is mounted on an output shaft. The two eccentrics are mounted for rotation together within the ring during normal operation. A device is provided for rotating one eccentric with respect to another to change the effective eccentricity of the pair of eccentrics. A separately controlled phase adjustment is provided to null the phase change introduced by the change in the orientation of the outer eccentric, and also to enable the phase of the pistons to be changed independently of the stroke change.
Hydrographic data from R/V endeavor cruise #90
NASA Technical Reports Server (NTRS)
Stalcup, M. D.; Joyce, T. M.; Barbour, R. L.; Dunworth, J. A.
1986-01-01
The final cruise of the NSF sponsored Warm Core Rings Program studied a Warm Core Ring (WCR) in the Fall of 1982 as it formed from a large northward meander of the Gulf Stream. This ring, known as 82-H or the eighth ring identified in 1982, formed over the New England Seamounts near 39.5 deg N, 65 deg W. Surveys using Expendable Bathythermographs, Conductivity-Temperature-Depth-Oxygen stations and Doppler Current Profiling provide a look at the genesis of a WCR. These measurements reveal that WCR 82-H separated from the Gulf Stream sometime between October 2-5. This ring was a typical WCR with a diameter of about 200 km and speeds in the high velocity core of the 175 cm/sec. Satellite imagery of 82-H following the cruise showed that it drifted WSW in the Slope Water region at almost 9 km/day, had at least one interaction with the Gulf Stream and was last observed on February 8, 1983 at 39 deg N, 72 deg W.
NASA Astrophysics Data System (ADS)
Sun, Xiaochun
The armillary sphere was perhaps the most important type of astronomical instrument in ancient China. It was first invented by Luoxia Hong in the first century BC. After Han times, the structure of the armillary sphere became increasingly sophisticated by including more and more rings representing various celestial movements as recognized by the Chinese astronomers. By the eighth century, the Chinese armillary sphere consisted of three concentric sets of rings revolving on the south-north polar axis. The relative position of the rings could be adjusted to reflect the precession of the equinoxes and the regression of the Moon's nodes along the ecliptic. To counterbalance the defect caused by too many rings, Guo Shoujing from the late thirteenth century constructed the Simplified Instruments which reorganized the rings of the armillary sphere into separate instruments for measuring equatorial coordinates and horizontal coordinates. The armillary sphere was still preserved because it was a good illustration of celestial movements. A fifteenth-century replica of Guo Shoujing's armillary sphere still exists today.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denney, K. D.; Peterson, B. M.; Horne, Keith
We use the coadded spectra of 32 epochs of Sloan Digital Sky Survey (SDSS) Reverberation Mapping Project observations of 482 quasars with z > 1.46 to highlight systematic biases in the SDSS- and Baryon Oscillation Spectroscopic Survey (BOSS)-pipeline redshifts due to the natural diversity of quasar properties. We investigate the characteristics of this bias by comparing the BOSS-pipeline redshifts to an estimate from the centroid of He ii λ 1640. He ii has a low equivalent width but is often well-defined in high-S/N spectra, does not suffer from self-absorption, and has a narrow component which, when present (the case for aboutmore » half of our sources), produces a redshift estimate that, on average, is consistent with that determined from [O ii] to within the He ii and [O ii] centroid measurement uncertainties. The large redshift differences of ∼1000 km s{sup −1}, on average, between the BOSS-pipeline and He ii-centroid redshifts, suggest there are significant biases in a portion of BOSS quasar redshift measurements. Adopting the He ii-based redshifts shows that C iv does not exhibit a ubiquitous blueshift for all quasars, given the precision probed by our measurements. Instead, we find a distribution of C iv-centroid blueshifts across our sample, with a dynamic range that (i) is wider than that previously reported for this line, and (ii) spans C iv centroids from those consistent with the systemic redshift to those with significant blueshifts of thousands of kilometers per second. These results have significant implications for measurement and use of high-redshift quasar properties and redshifts, and studies based thereon.« less
Spotting stellar activity cycles in Gaia astrometry
NASA Astrophysics Data System (ADS)
Morris, Brett M.; Agol, Eric; Davenport, James R. A.; Hawley, Suzanne L.
2018-06-01
Astrometry from Gaia will measure the positions of stellar photometric centroids to unprecedented precision. We show that the precision of Gaia astrometry is sufficient to detect starspot-induced centroid jitter for nearby stars in the Tycho-Gaia Astrometric Solution (TGAS) sample with magnetic activity similar to the young G-star KIC 7174505 or the active M4 dwarf GJ 1243, but is insufficient to measure centroid jitter for stars with Sun-like spot distributions. We simulate Gaia observations of stars with 10 year activity cycles to search for evidence of activity cycles, and find that Gaia astrometry alone likely cannot detect activity cycles for stars in the TGAS sample, even if they have spot distributions like KIC 7174505. We review the activity of the nearby low-mass stars in the TGAS sample for which we anticipate significant detections of spot-induced jitter.
Douglas, David R [Newport News, VA; Benson, Stephen V [Yorktown, VA
2007-01-23
A method of energy recovery for RF-base linear charged particle accelerators that allows energy recovery without large relative momentum spread of the particle beam involving first accelerating a waveform particle beam having a crest and a centroid with an injection energy E.sub.o with the centroid of the particle beam at a phase offset f.sub.o from the crest of the accelerating waveform to an energy E.sub.full and then recovering the beam energy centroid a phase f.sub.o+Df relative to the crest of the waveform particle beam such that (E.sub.full-E.sub.o)(1+cos(f.sub.o+Df))>dE/2 wherein dE=the full energy spread, dE/2=the full energy half spread and Df=the wave form phase distance.
Electrostatically confined quantum rings in bilayer graphene.
Zarenia, M; Pereira, J M; Peeters, F M; Farias, G A
2009-12-01
We propose a new system where electron and hole states are electrostatically confined into a quantum ring in bilayer graphene. These structures can be created by tuning the gap of the graphene bilayer using nanostructured gates or by position-dependent doping. The energy levels have a magnetic field (B(0)) dependence that is strikingly distinct from that of usual semiconductor quantum rings. In particular, the eigenvalues are not invariant under a B(0) --> -B(0) transformation and, for a fixed total angular momentum index m, their field dependence is not parabolic, but displays two minima separated by a saddle point. The spectra also display several anticrossings, which arise due to the overlap of gate-confined and magnetically confined states.
Al-khwarizmi: a new-found basin on the lunar far side.
El-Baz, F
1973-06-15
Apollo 16 and Apollo 17 photographs of the far side of the moon reveal a double-ringed basin 500 kilometers in diameter centered at 1 degrees N, 112 degrees E. The structure is very old and subdued; it is probably Pre-Nectarian in age and appears to have been filled and modified by younger events. The heights of the basin's rings are based on laser altimeter data from Apollo missions 15 through 17; these data suggest a third outer ring, approximately 1000 kilometers in diameter. Laser measurements also indicate that the filled basin separates the relatively low terrain on the eastern limb of the moon from the higher, more rugged highlands to the east.
ELECTRONIC PULSE SCALING CIRCUITS
Cooke-Yarborough, E.H.
1958-11-18
Electronic pulse scaling circults of the klnd comprlsing a serles of bi- stable elements connected ln sequence, usually in the form of a rlng so as to be cycllcally repetitive at the highest scallng factor, are described. The scaling circuit comprises a ring system of bi-stable elements each arranged on turn-off to cause, a succeeding element of the ring to be turned-on, and one being arranged on turn-off to cause a further element of the ring to be turned-on. In addition, separate means are provided for applying a turn-off pulse to all the elements simultaneously, and for resetting the elements to a starting condition at the end of each cycle.
Ipsen, Andreas
2017-02-03
Here, the mass peak centroid is a quantity that is at the core of mass spectrometry (MS). However, despite its central status in the field, models of its statistical distribution are often chosen quite arbitrarily and without attempts at establishing a proper theoretical justification for their use. Recent work has demonstrated that for mass spectrometers employing analog-to-digital converters (ADCs) and electron multipliers, the statistical distribution of the mass peak intensity can be described via a relatively simple model derived essentially from first principles. Building on this result, the following article derives the corresponding statistical distribution for the mass peak centroidsmore » of such instruments. It is found that for increasing signal strength, the centroid distribution converges to a Gaussian distribution whose mean and variance are determined by physically meaningful parameters and which in turn determine bias and variability of the m/z measurements of the instrument. Through the introduction of the concept of “pulse-peak correlation”, the model also elucidates the complicated relationship between the shape of the voltage pulses produced by the preamplifier and the mean and variance of the centroid distribution. The predictions of the model are validated with empirical data and with Monte Carlo simulations.« less
Optimum threshold selection method of centroid computation for Gaussian spot
NASA Astrophysics Data System (ADS)
Li, Xuxu; Li, Xinyang; Wang, Caixia
2015-10-01
Centroid computation of Gaussian spot is often conducted to get the exact position of a target or to measure wave-front slopes in the fields of target tracking and wave-front sensing. Center of Gravity (CoG) is the most traditional method of centroid computation, known as its low algorithmic complexity. However both electronic noise from the detector and photonic noise from the environment reduces its accuracy. In order to improve the accuracy, thresholding is unavoidable before centroid computation, and optimum threshold need to be selected. In this paper, the model of Gaussian spot is established to analyze the performance of optimum threshold under different Signal-to-Noise Ratio (SNR) conditions. Besides, two optimum threshold selection methods are introduced: TmCoG (using m % of the maximum intensity of spot as threshold), and TkCoG ( usingμn +κσ n as the threshold), μn and σn are the mean value and deviation of back noise. Firstly, their impact on the detection error under various SNR conditions is simulated respectively to find the way to decide the value of k or m. Then, a comparison between them is made. According to the simulation result, TmCoG is superior over TkCoG for the accuracy of selected threshold, and detection error is also lower.
Structure and seasonal variations of the nocturnal mesospheric K layer at Arecibo
NASA Astrophysics Data System (ADS)
Yue, Xianchang; Friedman, Jonathan S.; Wu, Xiongbin; Zhou, Qihou H.
2017-07-01
We present the seasonal variations of the nocturnal mesospheric potassium (K) layer at Arecibo, Puerto Rico (18.35°N, 66.75°W) from 160 nights of K Doppler lidar observations between December 2003 and January 2010, during which the solar activity is mostly low. The background temperature is also measured simultaneously by the lidar and shows a strong semiannual oscillation with maxima occurring during equinoxes at all altitudes. The annual mean K density profile is approximately Gaussian with a peak altitude of 91.7 km. The K column abundance and the centroid height have strong semiannual variations, with maxima at the solstices. Both parameters are negatively correlated to the mean background temperature with a correlation coefficient < -0.5. The root-mean-square (RMS) width has a distinct annual oscillation with the largest width occurring in May. The seasonal variation of the centroid height is similar to that of the Fe layer at the same site. The seasonal temperature variation indicates significant enhanced wave-induced downward transport for both species during spring and autumn. This explains the metal layer centroid height and column abundance variations at Arecibo and provides a general mechanism to account for the seasonal variations in the centroid height of all metal species measured at low-latitude and midlatitude sites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ipsen, Andreas
Here, the mass peak centroid is a quantity that is at the core of mass spectrometry (MS). However, despite its central status in the field, models of its statistical distribution are often chosen quite arbitrarily and without attempts at establishing a proper theoretical justification for their use. Recent work has demonstrated that for mass spectrometers employing analog-to-digital converters (ADCs) and electron multipliers, the statistical distribution of the mass peak intensity can be described via a relatively simple model derived essentially from first principles. Building on this result, the following article derives the corresponding statistical distribution for the mass peak centroidsmore » of such instruments. It is found that for increasing signal strength, the centroid distribution converges to a Gaussian distribution whose mean and variance are determined by physically meaningful parameters and which in turn determine bias and variability of the m/z measurements of the instrument. Through the introduction of the concept of “pulse-peak correlation”, the model also elucidates the complicated relationship between the shape of the voltage pulses produced by the preamplifier and the mean and variance of the centroid distribution. The predictions of the model are validated with empirical data and with Monte Carlo simulations.« less
Precision targeting in guided munition using IR sensor and MmW radar
NASA Astrophysics Data System (ADS)
Sreeja, S.; Hablani, H. B.; Arya, H.
2015-10-01
Conventional munitions are not guided with sensors and therefore miss the target, particularly if the target is mobile. The miss distance of these munitions can be decreased by incorporating sensors to detect the target and guide the munition during flight. This paper is concerned with a Precision Guided Munition(PGM) equipped with an infrared sensor and a millimeter wave radar [IR and MmW, for short]. Three-dimensional flight of the munition and its pitch and yaw motion models are developed and simulated. The forward and lateral motion of a target tank on the ground is modeled as two independent second-order Gauss-Markov process. To estimate the target location on the ground and the line-of-sight rate to intercept it an Extended Kalman Filter is composed whose state vector consists of cascaded state vectors of missile dynamics and target dynamics. The line-of-sight angle measurement from the infrared seeker is by centroiding the target image in 40 Hz. The centroid estimation of the images in the focal plane is at a frequency of 10 Hz. Every 10 Hz, centroids of four consecutive images are averaged, yielding a time-averaged centroid, implying some measurement delay. The miss distance achieved by including by image processing delays is 1:45m.
Precision targeting in guided munition using infrared sensor and millimeter wave radar
NASA Astrophysics Data System (ADS)
Sulochana, Sreeja; Hablani, Hari B.; Arya, Hemendra
2016-07-01
Conventional munitions are not guided with sensors and therefore miss the target, particularly if the target is mobile. The miss distance of these munitions can be decreased by incorporating sensors to detect the target and guide the munition during flight. This paper is concerned with a precision guided munition equipped with an infrared (IR) sensor and a millimeter wave radar (MmW). Three-dimensional flight of the munition and its pitch and yaw motion models are developed and simulated. The forward and lateral motion of a target tank on the ground is modeled as two independent second-order Gauss-Markov processes. To estimate the target location on the ground and the line-of-sight (LOS) rate to intercept it, an extended Kalman filter is composed whose state vector consists of cascaded state vectors of missile dynamics and target dynamics. The LOS angle measurement from the IR seeker is by centroiding the target image in 40 Hz. The centroid estimation of the images in the focal plane is at a frequency of 10 Hz. Every 10 Hz, centroids of four consecutive images are averaged, yielding a time-averaged centroid, implying some measurement delay. The miss distance achieved by including image processing delays is 1.45 m.
NASA Astrophysics Data System (ADS)
Zito, P.; Tarr, M. A.; Spencer, R. G.; Podgorski, D. C.
2017-12-01
Dissolved organic matter (DOM) is one of the most complex natural mixtures on Earth. It is generally comprised of hydrocarbons incorporating a diverse subset of oxygen-containing functional groups along with a small amount of nitrogen, sulfur and phosphorous heteroatoms all of which make it very difficult to chromatographically separate. The only way to directly characterize and quantify these structural and compositional changes is by separating the DOM continuum into defined bins of structure and chemistry. In this study, we take an alternate bottom-up approach that utilizes petroleum to work toward identifying the molecular structures of DOM. Although petroleum is the most structurally diverse mixture in nature, it is almost exclusively comprised of hydrocarbons with only trace quantities of heteroatoms, including oxygen. Here, crude oil was chromatographically separated into bins based on the number of aromatic rings to be used as a starting carbon source. Photochemically produced DOM from these aromatic ring bins provides unique opportunities to gain insight in the compositional controls associated with transport, processing and fate of DOM in natural systems. Here, we present EEMs data from individual ring fractions that were subjected to 24 hours of sunlight to use as a model to fingerprint specific aromatic regions in the DOM fraction. Results illustrate that the 1-, 2-, 3-, 4- and 5- ring fractions exhibit a wide range of structurally dependent excitation and emission spectra. A well-known red-shift in the emission and excitation occurs as the number of rings increase. In order to understand changes in the elemental composition of the data, ultra high-resolution mass spectrometry was used to obtain molecular level information. Together, these data will provide a tool to help understand the relationship of the composition and structure of DOM released into the environment in terms of aromaticity. It is well known that aromaticity is an important indicator of the chemical characteristics of DOM and can be used to explain the role of DOM in environmental processes. Thus, identifying these compounds in terms of aromaticity after photodegradation will provide information about the fate, transport and mechanisms of the photolabile and recalcitrant compounds in the environment.
Deterministic phase slips in mesoscopic superconducting rings
Petković, I.; Lollo, A.; Glazman, L. I.; Harris, J. G. E.
2016-01-01
The properties of one-dimensional superconductors are strongly influenced by topological fluctuations of the order parameter, known as phase slips, which cause the decay of persistent current in superconducting rings and the appearance of resistance in superconducting wires. Despite extensive work, quantitative studies of phase slips have been limited by uncertainty regarding the order parameter's free-energy landscape. Here we show detailed agreement between measurements of the persistent current in isolated flux-biased rings and Ginzburg–Landau theory over a wide range of temperature, magnetic field and ring size; this agreement provides a quantitative picture of the free-energy landscape. We also demonstrate that phase slips occur deterministically as the barrier separating two competing order parameter configurations vanishes. These results will enable studies of quantum and thermal phase slips in a well-characterized system and will provide access to outstanding questions regarding the nature of one-dimensional superconductivity. PMID:27882924
Deterministic phase slips in mesoscopic superconducting rings.
Petković, I; Lollo, A; Glazman, L I; Harris, J G E
2016-11-24
The properties of one-dimensional superconductors are strongly influenced by topological fluctuations of the order parameter, known as phase slips, which cause the decay of persistent current in superconducting rings and the appearance of resistance in superconducting wires. Despite extensive work, quantitative studies of phase slips have been limited by uncertainty regarding the order parameter's free-energy landscape. Here we show detailed agreement between measurements of the persistent current in isolated flux-biased rings and Ginzburg-Landau theory over a wide range of temperature, magnetic field and ring size; this agreement provides a quantitative picture of the free-energy landscape. We also demonstrate that phase slips occur deterministically as the barrier separating two competing order parameter configurations vanishes. These results will enable studies of quantum and thermal phase slips in a well-characterized system and will provide access to outstanding questions regarding the nature of one-dimensional superconductivity.
Dielectronic recombination experiments at the storage rings: From the present CSR to the future HIAF
NASA Astrophysics Data System (ADS)
Huang, Z. K.; Wen, W. Q.; Xu, X.; Wang, H. B.; Dou, L. J.; Chuai, X. Y.; Zhu, X. L.; Zhao, D. M.; Li, J.; Ma, X. M.; Mao, L. J.; Yang, J. C.; Yuan, Y. J.; Xu, W. Q.; Xie, L. Y.; Xu, T. H.; Yao, K.; Dong, C. Z.; Zhu, L. F.; Ma, X.
2017-10-01
Dielectronic recombination (DR) experiments of highly charged ions at the storage rings have been developed as a precision spectroscopic tool to investigate the atomic structure as well as nuclear properties of stable and unstable nuclei. The DR experiment on lithium-like argon ions was successfully performed at main Cooler Storage Ring (CSRm) at Heavy Ion Research Facility in Lanzhou (HIRFL) accelerator complex. The DR experiments on heavy highly charged ions and even radioactive ions are currently under preparation at the experimental Cooler Storage Ring (CSRe) at HIRFL. The current status of DR experiments at the CSRm and the preparation of the DR experiments at the CSRe are presented. In addition, an overview of DR experiments by employing an electron cooler and a separated ultra-cold electron target at the upcoming High Intensity heavy ion Accelerator Facility (HIAF) will be given.
NASA Astrophysics Data System (ADS)
Qiu, Weiqia; Zhou, Junjie; Yu, Jianhui; Xiao, Yi; Lu, Huihui; Guan, Heyuan; Zhong, Yongchun; Zhang, Jun; Chen, Zhe
2016-06-01
We established a theoretical model for a single knot-ring resonator and investigated the transmission spectrum by Jones matrix. The numerical results show that two orthogonal polarization modes of knot-ring, which are originally resonated at the same wavelength, will split into two resonant modes with different wavelengths. The mode splitting is due to the coupling between the two orthogonal polarization modes in the knot-ring when the twisted angle of the twist coupler is not exactly equal to 2mπ (m is an integer). It is also found that the separation of the mode splitting is linearly proportional to the deviation angle δθ with a high correlation coefficient of 99.6% and a slope of 3.17 nm/rad. Furthermore, a transparency phenomenon analogous to coupled-resonator-induced transparency was also predicted by the model. These findings may have potential applications in lasers and sensors.
NASA Astrophysics Data System (ADS)
Inkpen, Michael S.; Scheerer, Stefan; Linseis, Michael; White, Andrew J. P.; Winter, Rainer F.; Albrecht, Tim; Long, Nicholas J.
2016-09-01
Cyclic oligomers comprising strongly interacting redox-active monomer units represent an unknown, yet highly desirable class of nanoscale materials. Here we describe the synthesis and properties of the first family of molecules belonging to this compound category—differently sized rings comprising only 1,1‧-disubstituted ferrocene units (cyclo[n], n = 5-7, 9). Due to the close proximity and connectivity of centres (covalent Cp-Cp linkages; Cp = cyclopentadienyl) solution voltammograms exhibit well-resolved, separated 1e- waves. Theoretical interrogations into correlations based on ring size and charge state are facilitated using values of the equilibrium potentials of these transitions, as well as their relative spacing. As the interaction free energies between the redox centres scale linearly with overall ring charge and in conjunction with fast intramolecular electron transfer (˜107 s-1), these molecules can be considered as uniformly charged nanorings (diameter ˜1-2 nm).
Deterministic phase slips in mesoscopic superconducting rings
Petković, Ivana; Lollo, A.; Glazman, L. I.; ...
2016-11-24
The properties of one-dimensional superconductors are strongly influenced by topological fluctuations of the order parameter, known as phase slips, which cause the decay of persistent current in superconducting rings and the appearance of resistance in superconducting wires. Despite extensive work, quantitative studies of phase slips have been limited by uncertainty regarding the order parameter’s free-energy landscape. Here we show detailed agreement between measurements of the persistent current in isolated flux-biased rings and Ginzburg–Landau theory over a wide range of temperature, magnetic field and ring size; this agreement provides a quantitative picture of the free-energy landscape. Furthermore, we also demonstrate thatmore » phase slips occur deterministically as the barrier separating two competing order parameter configurations vanishes. These results will enable studies of quantum and thermal phase slips in a well-characterized system and will provide access to outstanding questions regarding the nature of one-dimensional superconductivity.« less
Modelling and simulation of a thermally induced optical transparency in a dual micro-ring resonator
2017-01-01
This paper introduces the simulation and modelling of a novel dual micro-ring resonator. The geometric configuration of the resonators, and the implementation of a simulated broadband excitation source, results in the realization of optical transparencies in the combined through port output spectrum. The 130 nm silicon on insulator rib fabrication process is adopted for the simulation of the dual-ring configuration. Two titanium nitride heaters are positioned over the coupling regions of the resonators, which can be operated independently, to control the spectral position of the optical transparency. A third heater, centrally located above the dual resonator rings, can be used to red shift the entire spectrum to a required reference resonant wavelength. The free spectral range with no heater currents applied is 4.29 nm. For a simulated heater current of 7 mA (55.7 mW heater power) applied to one of the through coupling heaters, the optical transparency exhibits a red shift of 1.79 nm from the reference resonant wavelength. The ring-to-ring separation of approximately 900 nm means that it can be assumed that there is a zero ring-to-ring coupling field in this model. This novel arrangement has potential applications as a gas mass airflow sensor or a gas species identification sensor. PMID:28791167
Modelling and simulation of a thermally induced optical transparency in a dual micro-ring resonator.
Lydiate, Joseph
2017-07-01
This paper introduces the simulation and modelling of a novel dual micro-ring resonator. The geometric configuration of the resonators, and the implementation of a simulated broadband excitation source, results in the realization of optical transparencies in the combined through port output spectrum. The 130 nm silicon on insulator rib fabrication process is adopted for the simulation of the dual-ring configuration. Two titanium nitride heaters are positioned over the coupling regions of the resonators, which can be operated independently, to control the spectral position of the optical transparency. A third heater, centrally located above the dual resonator rings, can be used to red shift the entire spectrum to a required reference resonant wavelength. The free spectral range with no heater currents applied is 4.29 nm. For a simulated heater current of 7 mA (55.7 mW heater power) applied to one of the through coupling heaters, the optical transparency exhibits a red shift of 1.79 nm from the reference resonant wavelength. The ring-to-ring separation of approximately 900 nm means that it can be assumed that there is a zero ring-to-ring coupling field in this model. This novel arrangement has potential applications as a gas mass airflow sensor or a gas species identification sensor.
The Abort Kicker System for the PEP-II Storage Rings at SLAC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delamare, Jeffrey E
2003-06-20
The PEP-II project has two storage rings. The HER (High Energy Ring) has up to 1.48 A of election beam at 9 GeV, and the LER (Low Energy Ring) has up to 2.14 A of positron beam at 3.1 GeV. To protect the HER and LER beam lines in the event of a ring component failure, each ring has an abort kicker system which directs the beam into a dump when a failure is detected. Due to the high current of the beams, the beam kick is tapered from 100% to 80% in 7.33 {micro}S (the beam transit time aroundmore » the ring). This taper distributes the energy evenly across the window which separates the ring from the beam dump such that the window is not damaged. The abort kicker trigger is synchronized with the ion clearing gap of the beam allowing for the kicker field to rise from 0-80% while there is no beam in the kicker magnet. Originally the kicker system was designed for a rise time of 370nS [1], but because the ion clearing gap was reduced in half, so was the rise time requirement for the kicker. This report discusses the design of the system interlocks, diagnostics, and modulator with the modifications necessary to accommodate an ion clearing gap of 185nS.« less
DEEP ATTRACTOR NETWORK FOR SINGLE-MICROPHONE SPEAKER SEPARATION.
Chen, Zhuo; Luo, Yi; Mesgarani, Nima
2017-03-01
Despite the overwhelming success of deep learning in various speech processing tasks, the problem of separating simultaneous speakers in a mixture remains challenging. Two major difficulties in such systems are the arbitrary source permutation and unknown number of sources in the mixture. We propose a novel deep learning framework for single channel speech separation by creating attractor points in high dimensional embedding space of the acoustic signals which pull together the time-frequency bins corresponding to each source. Attractor points in this study are created by finding the centroids of the sources in the embedding space, which are subsequently used to determine the similarity of each bin in the mixture to each source. The network is then trained to minimize the reconstruction error of each source by optimizing the embeddings. The proposed model is different from prior works in that it implements an end-to-end training, and it does not depend on the number of sources in the mixture. Two strategies are explored in the test time, K-means and fixed attractor points, where the latter requires no post-processing and can be implemented in real-time. We evaluated our system on Wall Street Journal dataset and show 5.49% improvement over the previous state-of-the-art methods.
Pseudo-single-bunch mode for a 100 MHz storage ring serving soft X-ray timing experiments
NASA Astrophysics Data System (ADS)
Olsson, T.; Leemann, S. C.; Georgiev, G.; Paraskaki, G.
2018-06-01
At many storage rings for synchrotron light production there is demand for serving both high-flux and timing users simultaneously. Today this is most commonly achieved by operating inhomogeneous fill patterns, but this is not preferable for rings that employ passive harmonic cavities to damp instabilities and increase Touschek lifetime. For these rings, inhomogeneous fill patterns could severely reduce the effect of the harmonic cavities. It is therefore of interest to develop methods to serve high-flux and timing users simultaneously without requiring gaps in the fill pattern. One such method is pseudo-single-bunch (PSB), where one bunch in the bunch train is kicked onto another orbit by a fast stripline kicker. The light emitted from the kicked bunch can then be separated by an aperture in the beamline. Due to recent developments in fast kicker design, PSB operation in multibunch mode is within reach for rings that operate with a 100 MHz RF system, such as the MAX IV and Solaris storage rings. This paper describes machine requirements and resulting performance for such a mode at the MAX IV 1.5 GeV storage ring. A solution for serving all beamlines is discussed as well as the consequences of beamline design and operation in the soft X-ray energy range.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prakash, Ram; Vyas, Gheesa Lal; Jain, Jalaj
In this paper, the development of large volume double ring Penning plasma discharge source for efficient light emissions is reported. The developed Penning discharge source consists of two cylindrical end cathodes of stainless steel having radius 6 cm and a gap 5.5 cm between them, which are fitted in the top and bottom flanges of the vacuum chamber. Two stainless steel anode rings with thickness 0.4 cm and inner diameters 6.45 cm having separation 2 cm are kept at the discharge centre. Neodymium (Nd{sub 2}Fe{sub 14}B) permanent magnets are physically inserted behind the cathodes for producing nearly uniform magnetic fieldmore » of {approx}0.1 T at the center. Experiments and simulations have been performed for single and double anode ring configurations using helium gas discharge, which infer that double ring configuration gives better light emissions in the large volume Penning plasma discharge arrangement. The optical emission spectroscopy measurements are used to complement the observations. The spectral line-ratio technique is utilized to determine the electron plasma density. The estimated electron plasma density in double ring plasma configuration is {approx}2 Multiplication-Sign 10{sup 11} cm{sup -3}, which is around one order of magnitude larger than that of single ring arrangement.« less
Prakash, Ram; Vyas, Gheesa Lal; Jain, Jalaj; Prajapati, Jitendra; Pal, Udit Narayan; Chowdhuri, Malay Bikas; Manchanda, Ranjana
2012-12-01
In this paper, the development of large volume double ring Penning plasma discharge source for efficient light emissions is reported. The developed Penning discharge source consists of two cylindrical end cathodes of stainless steel having radius 6 cm and a gap 5.5 cm between them, which are fitted in the top and bottom flanges of the vacuum chamber. Two stainless steel anode rings with thickness 0.4 cm and inner diameters 6.45 cm having separation 2 cm are kept at the discharge centre. Neodymium (Nd(2)Fe(14)B) permanent magnets are physically inserted behind the cathodes for producing nearly uniform magnetic field of ~0.1 T at the center. Experiments and simulations have been performed for single and double anode ring configurations using helium gas discharge, which infer that double ring configuration gives better light emissions in the large volume Penning plasma discharge arrangement. The optical emission spectroscopy measurements are used to complement the observations. The spectral line-ratio technique is utilized to determine the electron plasma density. The estimated electron plasma density in double ring plasma configuration is ~2 × 10(11) cm(-3), which is around one order of magnitude larger than that of single ring arrangement.
Trotter, R. Talbot; Cobb, Neil S.; Whitham, Thomas G.
2002-01-01
To understand climate change, dendrochronologists have used tree ring analyses to reconstruct past climates, as well as ecological processes such as herbivore population dynamics. Such reconstructions, however, have been hindered by a lack of experiments that separate the influences of confounding impacts on tree rings, such as herbivores and the interactions of multiple factors. Our long-term experiments with scale insects on resistant and susceptible pines demonstrate three major points that are important to the application of this commonly used tool. (i) Herbivory reduced tree ring growth by 25–35%. (ii) The impact on ring growth distorted climate reconstruction, resulting in the overestimation of past moisture levels by more than 2-fold. Our data suggest that, if distortion because of herbivory has been a problem in previous reconstructions, estimates of the magnitude of recent climate changes are likely to be conservative. (iii) Our studies support a detectible plant resistance × herbivore × climate interaction in the tree ring record. Because resistance and susceptibility to herbivory are known to be genetically based in many systems, the potential exists to incorporate plant genetics into the field of dendrochronology, where it may be used to screen distortions from the tree ring record. PMID:12110729
2004-01-01
Released to commemorate the 14th anniversary of NASA’s Hubble Space Telescope (HST) is the image of a galaxy cataloged as AM 0644-741. Resembling a diamond encrusted bracelet, the ring of brilliant blue star clusters wraps around a yellowish nucleus of what was once a normal spiral galaxy. Located 300 million light years away in the direction of the southern constellation Dorado, the sparkling blue ring is 150,000 light years in diameter, making it larger than our entire home galaxy, the Milky Way. Ring galaxies are a striking example of how collisions between galaxies can dramatically change their structure, while triggering the formation of new stars. Typically one galaxy plunges directly into the disk of another one. The ring that pierced through this galaxy’s ring is out of the image but is visible in larger-field images. The soft galaxy visible to the left of the ring galaxy is a coincidental background galaxy which is not interacting with the ring. Rampant star formation explains why the ring is so blue. It is continuously forming massive, young, hot stars. Another sign of robust star formation is the pink regions along the ring. These are rare clouds of glowing hydrogen gas, fluorescing because of the strong ultraviolet light from the newly formed stars. The Hubble Heritage Team used the Hubble Advanced Camera for Surveys to take this image using a combination of four separate filters that isolate blue, green, red, and near-infrared light to create the color image.
Enhanced Ligand Sampling for Relative Protein–Ligand Binding Free Energy Calculations
2016-01-01
Free energy calculations are used to study how strongly potential drug molecules interact with their target receptors. The accuracy of these calculations depends on the accuracy of the molecular dynamics (MD) force field as well as proper sampling of the major conformations of each molecule. However, proper sampling of ligand conformations can be difficult when there are large barriers separating the major ligand conformations. An example of this is for ligands with an asymmetrically substituted phenyl ring, where the presence of protein loops hinders the proper sampling of the different ring conformations. These ring conformations become more difficult to sample when the size of the functional groups attached to the ring increases. The Adaptive Integration Method (AIM) has been developed, which adaptively changes the alchemical coupling parameter λ during the MD simulation so that conformations sampled at one λ can aid sampling at the other λ values. The Accelerated Adaptive Integration Method (AcclAIM) builds on AIM by lowering potential barriers for specific degrees of freedom at intermediate λ values. However, these methods may not work when there are very large barriers separating the major ligand conformations. In this work, we describe a modification to AIM that improves sampling of the different ring conformations, even when there is a very large barrier between them. This method combines AIM with conformational Monte Carlo sampling, giving improved convergence of ring populations and the resulting free energy. This method, called AIM/MC, is applied to study the relative binding free energy for a pair of ligands that bind to thrombin and a different pair of ligands that bind to aspartyl protease β-APP cleaving enzyme 1 (BACE1). These protein–ligand binding free energy calculations illustrate the improvements in conformational sampling and the convergence of the free energy compared to both AIM and AcclAIM. PMID:25906170
PyCCF: Python Cross Correlation Function for reverberation mapping studies
NASA Astrophysics Data System (ADS)
Sun, Mouyuan; Grier, C. J.; Peterson, B. M.
2018-05-01
PyCCF emulates a Fortran program written by B. Peterson for use with reverberation mapping. The code cross correlates two light curves that are unevenly sampled using linear interpolation and measures the peak and centroid of the cross-correlation function. In addition, it is possible to run Monto Carlo iterations using flux randomization and random subset selection (RSS) to produce cross-correlation centroid distributions to estimate the uncertainties in the cross correlation results.
Immune Centroids Over-Sampling Method for Multi-Class Classification
2015-05-22
recognize to specific antigens . The response of a receptor to an antigen can activate its hosting B-cell. Activated B-cell then proliferates and...modifying N.K. Jerne’s theory. The theory states that in a pre-existing group of lympho- cytes ( specifically B cells), a specific antigen only...the clusters of each small class, which have high data density, called global immune centroids over-sampling (denoted as Global-IC). Specifically
Comparative Analysis of Document level Text Classification Algorithms using R
NASA Astrophysics Data System (ADS)
Syamala, Maganti; Nalini, N. J., Dr; Maguluri, Lakshamanaphaneendra; Ragupathy, R., Dr.
2017-08-01
From the past few decades there has been tremendous volumes of data available in Internet either in structured or unstructured form. Also, there is an exponential growth of information on Internet, so there is an emergent need of text classifiers. Text mining is an interdisciplinary field which draws attention on information retrieval, data mining, machine learning, statistics and computational linguistics. And to handle this situation, a wide range of supervised learning algorithms has been introduced. Among all these K-Nearest Neighbor(KNN) is efficient and simplest classifier in text classification family. But KNN suffers from imbalanced class distribution and noisy term features. So, to cope up with this challenge we use document based centroid dimensionality reduction(CentroidDR) using R Programming. By combining these two text classification techniques, KNN and Centroid classifiers, we propose a scalable and effective flat classifier, called MCenKNN which works well substantially better than CenKNN.
A motion detection system for AXAF X-ray ground testing
NASA Technical Reports Server (NTRS)
Arenberg, Jonathan W.; Texter, Scott C.
1993-01-01
The concept, implementation, and performance of the motion detection system (MDS) designed as a diagnostic for X-ray ground testing for AXAF are described. The purpose of the MDS is to measure the magnitude of a relative rigid body motion among the AXAF test optic, the X-ray source, and X-ray focal plane detector. The MDS consists of a point source, lens, centroid detector, transimpedance amplifier, and computer system. Measurement of the centroid position of the image of the optical point source provides a direct measure of the motions of the X-ray optical system. The outputs from the detector and filter/amplifier are digitized and processed using the calibration with a 50 Hz bandwidth to give the centroid's location on the detector. Resolution of 0.008 arcsec has been achieved by this system. Data illustrating the performance of the motion detection system are also presented.
Assessment of auditory impression of the coolness and warmness of automotive HVAC noise.
Nakagawa, Seiji; Hotehama, Takuya; Kamiya, Masaru
2017-07-01
Noise induced by a heating, ventilation and air conditioning (HVAC) system in a vehicle is an important factor that affects the comfort of the interior of a car cabin. Much effort has been devoted to reduce noise levels, however, there is a need for a new sound design that addresses the noise problem from a different point of view. In this study, focusing on the auditory impression of automotive HVAC noise concerning coolness and warmness, psychoacoustical listening tests were performed using a paired comparison technique under various conditions of room temperature. Five stimuli were synthesized by stretching the spectral envelopes of recorded automotive HVAC noise to assess the effect of the spectral centroid, and were presented to normal-hearing subjects. Results show that the spectral centroid significantly affects the auditory impression concerning coolness and warmness; a higher spectral centroid induces a cooler auditory impression regardless of the room temperature.
NASA Astrophysics Data System (ADS)
Bansal, A. R.; Anand, S. P.; Rajaram, Mita; Rao, V. K.; Dimri, V. P.
2013-09-01
The depth to the bottom of the magnetic sources (DBMS) has been estimated from the aeromagnetic data of Central India. The conventional centroid method of DBMS estimation assumes random uniform uncorrelated distribution of sources and to overcome this limitation a modified centroid method based on scaling distribution has been proposed. Shallower values of the DBMS are found for the south western region. The DBMS values are found as low as 22 km in the south west Deccan trap covered regions and as deep as 43 km in the Chhattisgarh Basin. In most of the places DBMS are much shallower than the Moho depth, earlier found from the seismic study and may be representing the thermal/compositional/petrological boundaries. The large variation in the DBMS indicates the complex nature of the Indian crust.
Dissecting the space-time structure of tree-ring datasets using the partial triadic analysis.
Rossi, Jean-Pierre; Nardin, Maxime; Godefroid, Martin; Ruiz-Diaz, Manuela; Sergent, Anne-Sophie; Martinez-Meier, Alejandro; Pâques, Luc; Rozenberg, Philippe
2014-01-01
Tree-ring datasets are used in a variety of circumstances, including archeology, climatology, forest ecology, and wood technology. These data are based on microdensity profiles and consist of a set of tree-ring descriptors, such as ring width or early/latewood density, measured for a set of individual trees. Because successive rings correspond to successive years, the resulting dataset is a ring variables × trees × time datacube. Multivariate statistical analyses, such as principal component analysis, have been widely used for extracting worthwhile information from ring datasets, but they typically address two-way matrices, such as ring variables × trees or ring variables × time. Here, we explore the potential of the partial triadic analysis (PTA), a multivariate method dedicated to the analysis of three-way datasets, to apprehend the space-time structure of tree-ring datasets. We analyzed a set of 11 tree-ring descriptors measured in 149 georeferenced individuals of European larch (Larix decidua Miller) during the period of 1967-2007. The processing of densitometry profiles led to a set of ring descriptors for each tree and for each year from 1967-2007. The resulting three-way data table was subjected to two distinct analyses in order to explore i) the temporal evolution of spatial structures and ii) the spatial structure of temporal dynamics. We report the presence of a spatial structure common to the different years, highlighting the inter-individual variability of the ring descriptors at the stand scale. We found a temporal trajectory common to the trees that could be separated into a high and low frequency signal, corresponding to inter-annual variations possibly related to defoliation events and a long-term trend possibly related to climate change. We conclude that PTA is a powerful tool to unravel and hierarchize the different sources of variation within tree-ring datasets.
Range-Separated Brueckner Coupled Cluster Doubles Theory
NASA Astrophysics Data System (ADS)
Shepherd, James J.; Henderson, Thomas M.; Scuseria, Gustavo E.
2014-04-01
We introduce a range-separation approximation to coupled cluster doubles (CCD) theory that successfully overcomes limitations of regular CCD when applied to the uniform electron gas. We combine the short-range ladder channel with the long-range ring channel in the presence of a Bruckner renormalized one-body interaction and obtain ground-state energies with an accuracy of 0.001 a.u./electron across a wide range of density regimes. Our scheme is particularly useful in the low-density and strongly correlated regimes, where regular CCD has serious drawbacks. Moreover, we cure the infamous overcorrelation of approaches based on ring diagrams (i.e., the particle-hole random phase approximation). Our energies are further shown to have appropriate basis set and thermodynamic limit convergence, and overall this scheme promises energetic properties for realistic periodic and extended systems which existing methods do not possess.
Mansfield, L; Forsythe, S
1996-02-01
Eight laboratories participated in a Salmonella detection ring-trial which compared selective enrichment by conventional broths with immunomagnetic separation (IMS) using Dynabeads Anti-Salmonella. Laboratories analyzed six types of herbs and spices that were spiked with one of six freeze-dried Salmonella species. Each herb and spice analysis comprised of 12 samples (25 g each) which had been spiked at three different levels, plus a negative control and stored for one week prior to testing. Out of a total 468 samples analyzed, 195 (41.7%) were positive by both methods. Eighteen samples were positive only by IMS enrichment, in comparison with 19 positive samples by conventional enrichment broths and not IMS. These results confirm the potential use of IMS as an alternative to enrichment broths for Salmonella isolation.
NASA Astrophysics Data System (ADS)
Singh, Mandeep; Datta, Arnab
2018-05-01
In this paper, silicon based dual ring resonator with hybrid plasmonic bus waveguides (Cu-SiO2-Si-SiO2-Cu) is investigated for achieving switching in the telecommunication C-band (λ = 1.54-1.553µm). The switch element uses vanadium oxide (VO2) as the switching medium when inserted between the rings in order to tailor transmission from one ring to the other through heating induced phase transition. In this manner, the proposed switch element uses one vanadium oxide medium instead of refractive index tailoring of the whole ring as in the prior reported works and achieves switching response. From two-dimensional finite element analysis we have found that, the proposed switch can achieve maximum extinction ratio of 2.72 dB at λ = 1.5434µm, exclusively by tailoring VO2 phase. Furthermore, impact of aperture width, and gap (separation between the bus waveguide and rings) are investigated to gain insight on the improvement of extinction ratio. From our numerical simulations, we find that free spectral range (FSR) and figure of merit (Q) for OFF and ON states are (173.36 nm, 92.63), and (173.58 nm, 65.39), respectively.
Technique to separate lidar signal and sunlight.
Sun, Wenbo; Hu, Yongxiang; MacDonnell, David G; Weimer, Carl; Baize, Rosemary R
2016-06-13
Sunlight contamination dominates the backscatter noise in space-based lidar measurements during daytime. The background scattered sunlight is highly variable and dependent upon the surface and atmospheric albedo. The scattered sunlight contribution to noise increases over land and snow surfaces where surface albedos are high and thus overwhelm lidar backscatter from optically thin atmospheric constituents like aerosols and thin clouds. In this work, we developed a novel lidar remote sensing concept that potentially can eliminate sunlight induced noise. The new lidar concept requires: (1) a transmitted laser light that carries orbital angular momentum (OAM); and (2) a photon sieve (PS) diffractive filter that separates scattered sunlight from laser light backscattered from the atmosphere, ocean and solid surfaces. The method is based on numerical modeling of the focusing of Laguerre-Gaussian (LG) laser beam and plane-wave light by a PS. The model results show that after passing through a PS, laser light that carries the OAM is focused on a ring (called "focal ring" here) on the focal plane of the PS filter, very little energy arrives at the center of the focal plane. However, scattered sunlight, as a plane wave without the OAM, focuses at the center of the focal plane and thus can be effectively blocked or ducted out. We also find that the radius of the "focal ring" increases with the increase of azimuthal mode (L) of LG laser light, thus increasing L can more effectively separate the lidar signal away from the sunlight noise.
Gravitational Lenses and the Structure and Evolution of Galaxies
NASA Technical Reports Server (NTRS)
Kochanek, Christopher
2003-01-01
The grant has supported the completion of 16 papers and 4 conference proceedings to date. During the first year of the project we completed five papers, each of which represents a new direction in the theory and interpretation of gravitational lenses. In the first paper, "The Importance of Einstein Rings", we developed the first theory for the formation and structure of the Einstein rings formed by lensing extended sources like the host galaxies of quasar and radio sources. We applied the theory to three lenses with lensed host galaxies. For the time delay lens PG 1115+080 we found that the structure of the Einstein ring ruled out models of the gravitational potential which permitted a large Hubble constant (70 km/s Mpc). In the second paper, :Cusped Mass Models Of Gravitational Lenses", we introduced a new class of lens models where the central density is characterized by a cusp ( rho proportional to tau(sup -gamma), 1 less than gamma less than 2) as in most modern models and theories of galaxies rather than a finite core radius. In the third paper, "Global Probes of the Impact of Baryons on Dark Matter Halos", we made the first globally consistent models for the separation distribution of gravitational lenses including both galaxy and cluster lenses. We show that the key physics for the origin of the sharp separation cutoff in the separation distribution near 3 arc sec is the effect of the cooling baryons in galaxies on the density structure of the system.
Optical resolution of rotenoids
Abidi, S.L.
1987-01-01
Optical resolution of selected rotenoids containing 1-3 asymmetric centers in dihydrobenzopyranofuroben-zopyranone and dihydrobisbenzopyranopyranone series has been achieved on two chiral high-performance liquid chromatographic (hplc) stationary phases. In most cases, the absolute stereochemistry at the cis-B/C ring junction of the rotenoidal antipodes can be related to their elution order. Generally, the 6aα,12aα-enantiomers were more strongly retained by the chiral substrate than their corresponding optical antipodes. The elution-configuration relationship provides potential utility for predicting the absolute configuration of related rotenoidal compounds. Chiral phase hplc on amino-acid-bonded-silica yielded results explicable in terms of Pirkle's bonding schemes for chiral recognition. Resolution data for 12a-hydroxy-, 12a-methoxy-, and 12-hydroxyiminorotenoids further corroborate the mechanistic rationale, and demonstrate that nonpolar π-π interactions appeared to be important for enantiomeric separation on helic poly-triphenylmethylacryl-ate-silica (CPOT). In the latter system, steric effects and conformational factors in association with the modification of E-ring structures might play significant roles in the chiral separation process in view of the reversal to the elution order observed for all methoxylated rotenoids and elliptone derivatives including the parent deguelin. The unique separability (α = 1.44) of 12a-hydroxyelliptone on CPOT was suggestive of structural effects of the 5-side chain on the resolution of the rotenoids having a five-membered-E-ring. The results obtained with two different types of chiral phases are complementary and useful for optical resolution of a wide variety of natural and synthetic rotenoidal compounds.
Classification of ring artifacts for their effective removal using type adaptive correction schemes.
Anas, Emran Mohammad Abu; Lee, Soo Yeol; Hasan, Kamrul
2011-06-01
High resolution tomographic images acquired with a digital X-ray detector are often degraded by the so called ring artifacts. In this paper, a detail analysis including the classification, detection and correction of these ring artifacts is presented. At first, a novel idea for classifying rings into two categories, namely type I and type II rings, is proposed based on their statistical characteristics. The defective detector elements and the dusty scintillator screens result in type I ring and the mis-calibrated detector elements lead to type II ring. Unlike conventional approaches, we emphasize here on the separate detection and correction schemes for each type of rings for their effective removal. For the detection of type I ring, the histogram of the responses of the detector elements is used and a modified fast image inpainting algorithm is adopted to correct the responses of the defective pixels. On the other hand, to detect the type II ring, first a simple filtering scheme is presented based on the fast Fourier transform (FFT) to smooth the sum curve derived form the type I ring corrected projection data. The difference between the sum curve and its smoothed version is then used to detect their positions. Then, to remove the constant bias suffered by the responses of the mis-calibrated detector elements with view angle, an estimated dc shift is subtracted from them. The performance of the proposed algorithm is evaluated using real micro-CT images and is compared with three recently reported algorithms. Simulation results demonstrate superior performance of the proposed technique as compared to the techniques reported in the literature. Copyright © 2011 Elsevier Ltd. All rights reserved.
Self-gravity and dissipation in polar rings
NASA Technical Reports Server (NTRS)
Dubinski, John; Christodoulou, Dimitris M.
1994-01-01
Studies of inclined rings inside galaxy potentials have mostly considered the influence of self-gravity and viscous dissipation separately. In this study, we construct models of highly inclined ('polar') rings in an external potential including both self-gravity and dissipation due to a drag force. We do not include pressure forces and thus ignore shock heating that dominates the evolution of gaseous rings inside strongly nonspherical potentials. We adopt an oblate spheroidal scale-free logarithmic potential with axis ratio q = 0.85 and an initial inclination of 80 deg for the self-gravitating rings. We find that stellar (dissipationless) rings suffer from mass loss during their evolution. Mass loss also drives a secular change of the mean inclination toward the poles of the potential. As much as half of the ring mass escapes in the process and forms an inner and an outer shell of precessing orbits. If the remaining mass is more than approximately 0.02 of the enclosed galaxy mass, rings remain bound and do not fall apart from differential precession. The rings precess at a constant rate for more than a precession period tau(sub p) finding the configuration predicted by Sparke in 1986 which warps at larger radii toward the poles of the potential. We model shear viscosity with a velocity-dependent drag force and find that nuclear inflow dominates over self-gravity if the characteristic viscous inflow time scale tau(sub vi) is shorter than approximately 25(tau(sub p)). Rings with (tau(sub vi))/(tau(sub p)) less than or approximately equal to 25 collapse toward the nucleus of the potential within one precession period independent of the amount of self-gravity. Our results imply that stars and gas in real polar rings exhibit markedly different dynamical evolutions.
Theory, Computation and Experiment on Criticality and Stability of Vortices Separating from Edges
2016-08-15
aerospace engineering research. These include dynamic stall in wind turbines and helicopter rotors, and flapping-wing vehicle (micro-air vehicle) design...and Robinson, M., “Blade Three-Dimensional Dynamic Stall Response to Wind Turbine Operating Condition,” Journal of Solar Energy Engineering , Vol...Snapshots of TEV shedding in vortex ring representation. . . . . . . . . . . . . . . . 57 7.3 Schematic description of separated tip flow model
Dense Seismic Recordings of Two Surface-Detonated Chemical Explosions
NASA Astrophysics Data System (ADS)
Koper, K. D.; Hale, J. M.; Burlacu, R.; Goddard, K. J.; Trow, A.; Linville, L. M.; Stein, J. R.; Drobeck, D.; Leidig, M.
2015-12-01
In the summer of 2015 two controlled chemical explosions were carried out near Dugway, Utah. The 2 June 2015 explosion consisted of 30,000 lbs of ammonium nitrate fuel oil (ANFO) and the 22 July 2015 explosion consisted of 60,000 lbs of ANFO. The explosion centroids were 1-2 m above the Earth's surface and both created significant craters in the soft desert alluvium. To better understand the seismic source associated with surface explosions, we deployed an array of wireless, three-component, short-period (5 Hz corner frequency) seismometers for several days around each shot. For the first explosion, 46 receivers were deployed in a "lollipop" geometry that had a sparse ring at a radius of 1 km, and a dense stem with 100 m spacing for distances of 0.5-4.5 km. For the second explosion, 48 receivers were deployed similarly, but with a dense ring spaced in azimuthal increments of 10 degrees at a distance of 1 km, and a sparse stem (~500 m spacing) that extended to a distance of nearly 6 km. A rich variety of phases were recorded including direct P waves, refracted and reflected P waves, nearly monochromatic air-coupled Rayleigh waves, normally dispersed fundamental mode Rayleigh waves (Rg), primary airblast arrivals, some secondary airblast arrivals, and possibly tertiary airblast arrivals. There is also evidence of converted S waves on the radial components and possibly direct S energy on the radial and transverse components, although the transverse energy does not always possess a simple, coherent move-out with distance, implying that it might have a scattering origin. To aid in the phase identification, especially of the apparent SH and Love energy, we are currently performing tau-p, f-k, and particle motion analysis.
Ben Haj Hassen, Leila; Ezzayani, Khaireddine; Rousselin, Yoann; Nasri, Habib
2014-01-01
In the title compound, [Fe(C44H24Cl4N4)(H2O)2](SO3CF3)·C8H8O3·2H2O, the FeIII cation is chelated by the four N atoms of the deprotonated tetrakis(4-chlorotetraphenyl)porphyrin (TClPP) and further coordinated by two water molecules in a distorted octahedral geometry. In the crystal, the cations, anions, 4-hydroxy-3-methoxybenzaldehyde and water molecules of crystallization are linked by classical O—H⋯O hydrogen bonds and weak C—H⋯O and C—H⋯Cl hydrogen bonds into a three-dimensional supramolecular architecture. The crystal packing is further stabilized by weak C—H⋯π interactions involving pyrrole and benzene rings. π–π stacking between parallel benzene rings of adjacent 4-hydroxy-3-methoxybenzaldehyde molecules is also observed, the centroid–centroid distance being 3.8003 (13) Å. The three F atoms of the anion are disordered over two sets of sites, with a refined occupancy ratio 0.527 (12):0.473 (12). The O atom of one water molecule of crystallization is also disordered over two positions in an occupancy ratio of 0.68 (5):0.32 (5). PMID:25249880
Multi-access laser communications transceiver system
NASA Technical Reports Server (NTRS)
Ross, Monte (Inventor); Lokerson, Donald C. (Inventor); Fitzmaurice, Michael W. (Inventor); Meyer, Daniel D. (Inventor)
1993-01-01
A satellite system for optical communications such as a multi-access laser transceiver system. Up to six low Earth orbiting satellites send satellite data to a geosynchronous satellite. The data is relayed to a ground station at the Earth's surface. The earth pointing geosynchronous satellite terminal has no gimbal but has a separate tracking mechanism for tracking each low Earth orbiting satellite. The tracking mechanism has a ring assembly rotatable about an axis coaxial with the axis of the field of view of the geosynchronous satellite and a pivotable arm mounted for pivotal movement on the ring assembly. An optical pickup mechanism at the end of each arm is positioned for optical communication with one of the orbiting satellites by rotation of the ring.
Detection of multipartite entanglement in spin rings by use of exchange energy
NASA Astrophysics Data System (ADS)
Siloi, I.; Troiani, F.
2014-10-01
We investigate multipartite entanglement in rings of arbitrary spins with antiferromagnetic interactions between nearest neighbors. In particular, we show that the nondegenerate ground state of rings formed by an even number (N ) of spins is N -partite entangled, and exchange energy can thus be used as a multipartite-entanglement witness. We develop a general approach to compute the energy minima corresponding to biseparable states, and provide numerical results for a representative set of systems. Despite its global character, exchange energy also allows a spin-selective characterization of entanglement. In particular, in the presence of a magnetic defect, one can derive separability criteria for each individual spin, and use exchange energy for detecting entanglement between this and all the other spins.
Crystal structure of 1-(3-chlorophenyl)piperazin-1-ium picrate–picric acid (2/1)
Kavitha, Channappa N.; Jasinski, Jerry P.; Kaur, Manpreet; Anderson, Brian J.; Yathirajan, H. S.
2014-01-01
The title salt {systematic name: bis[1-(3-chlorophenyl)piperazinium 2,4,6-trinitrophenolate]–picric acid (2/1)}, 2C10H14ClN2 +·2C6H5N3O7 −·C6H6N3O7, crystallized with two independent 1-(3-chlorophenyl)piperazinium cations, two picrate anions and a picric acid molecule in the asymmetric unit. The six-membered piperazine ring in each cation adopts a slightly distorted chair conformation and contains a protonated N atom. In the picric acid molecule, the mean planes of the nitro groups in the ortho-, meta-, and para-positions are twisted from the benzene ring by 31.5 (3), 7.7 (1), and 3.8 (2)°, respectively. In the anions, the dihedral angles between the benzene ring and the ortho-, meta-, and para-nitro groups are 36.7 (1), 5.0 (6), 4.8 (2)°, and 34.4 (9), 15.3 (8), 4.5 (1)°, respectively. The nitro group in one anion is disordered and was modeled with two sites for one O atom with an occupancy ratio of 0.627 (7):0.373 (7). In the crystal, the picric acid molecule interacts with the picrate anion through a trifurcated O—H⋯O four-centre hydrogen bond involving an intramolecular O—H⋯O hydrogen bond and a weak C—H⋯O interaction. Weak intermolecular C—H⋯O interactions are responsible for the formation of cation–anion–cation trimers resulting in a chain along [010]. In addition, weak C—H⋯Cl and weak π–π interactions [centroid–centroid distances of 3.532 (3), 3.756 (4) and 3.705 (3) Å] are observed and contribute to the stability of the crystal packing. PMID:25484834
Concentric scheme of monkey auditory cortex
NASA Astrophysics Data System (ADS)
Kosaki, Hiroko; Saunders, Richard C.; Mishkin, Mortimer
2003-04-01
The cytoarchitecture of the rhesus monkey's auditory cortex was examined using immunocytochemical staining with parvalbumin, calbindin-D28K, and SMI32, as well as staining for cytochrome oxidase (CO). The results suggest that Kaas and Hackett's scheme of the auditory cortices can be extended to include five concentric rings surrounding an inner core. The inner core, containing areas A1 and R, is the most densely stained with parvalbumin and CO and can be separated on the basis of laminar patterns of SMI32 staining into lateral and medial subdivisions. From the inner core to the fifth (outermost) ring, parvalbumin staining gradually decreases and calbindin staining gradually increases. The first ring corresponds to Kaas and Hackett's auditory belt, and the second, to their parabelt. SMI32 staining revealed a clear border between these two. Rings 2 through 5 extend laterally into the dorsal bank of the superior temporal sulcus. The results also suggest that the rostral tip of the outermost ring adjoins the rostroventral part of the insula (area Pro) and the temporal pole, while the caudal tip adjoins the ventral part of area 7a.
NASA Technical Reports Server (NTRS)
VanKeuls, F. W.; Romanofsky, R. R.; Bohman, D. Y.; Miranda, F. A.
1998-01-01
The performance of gold/SrTio3 /LaAlO3 conductor/ferroelectric/dielectric side-coupled, tunable ring resonators at K-band frequencies is presented. The tunability of these rings arises from the sensitivity of the relative dielectric constant (Er) of SrTiO 3 to changes in temperature and dc electric fields (E). We observed that the change in F-, which takes place by biasing the ring up to 450 V alters the effective dielectric constant (e-eff) of the circuit resulting in a 3k resonant frequency shift of nearly 12 % at 77 K. By applying a separate dc bias between the microstrip line and the ring, one can optimize their coupling to obtain bandstop resonators with unloaded quality factors (Q(sub o)) as high as 12,000. The 31 resonance was tuned from 15.75 to 17.41 GHz while keeping Q. above 768 over this range. The relevance of these results for practical microwave components will be discussed.
Detection of atmospheric infrasound with a ring laser interferometer
NASA Astrophysics Data System (ADS)
Dunn, Robert W.; Meredith, John A.; Lamb, Angela B.; Kessler, Elijah G.
2016-09-01
In this paper, the results from using a large active ring laser interferometer as an infrasound detector are presented. On April 27, 2014, an EF4 tornado struck Central Arkansas and passed within 21 km of the ring laser interferometer. The tornado resulted in 16 fatalities and millions of dollars in damage. Using the ring laser to study the tornado infrasound produced results that qualitatively agree with several findings from a long-term study of weather generated infrasound by the National Oceanic and Atmospheric Administration. A Fast Fourier Transform of the ring laser output revealed a coherent frequency of approximately 0.94 Hz that lasted during the life of the storm. The 0.94 Hz frequency was initially observed 30 min before the funnel was reported on the ground. Infrasound signatures from four separate tornadoes are presented. In each case, coherent infrasound was detected at least 30 min before the tornado was reported on the ground. Examples of the detection of distant coherent acoustic-gravity waves from volcanoes and typhoons are also presented. In addition, buoyancy waves were recorded.
2016-12-19
It may look as though Saturn's moon Mimas is crashing through the rings in this image taken by NASA's Cassini spacecraft, but Mimas is actually 28,000 miles (45,000 kilometers) away from the rings. There is a strong connection between the icy moon and Saturn's rings, though. Gravity links them together and shapes the way they both move. The gravitational pull of Mimas (246 miles or 396 kilometers across) creates waves in Saturn's rings that are visible in some Cassini images. Mimas' gravity also helps create the Cassini Division (not pictured here), which separates the A and B rings. This view looks toward the anti-Saturn hemisphere of Mimas. North on Mimas is up and rotated 15 degrees to the right. The image was taken in green light with the Cassini spacecraft narrow-angle camera on Oct. 23, 2016. The view was acquired at a distance of approximately 114,000 miles (183,000 kilometers) from Mimas and at a Sun-Mimas-spacecraft, or phase, angle of 29 degrees. Image scale is 3,300 feet (1 kilometer) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA20510
Quantum nuclear effects in water using centroid molecular dynamics
NASA Astrophysics Data System (ADS)
Kondratyuk, N. D.; Norman, G. E.; Stegailov, V. V.
2018-01-01
The quantum nuclear effects are studied in water using the method of centroid molecular dynamics (CMD). The aim is the calibration of CMD implementation in LAMMPS. The calculated intramolecular energy, atoms gyration radii and radial distribution functions are shown in comparison with previous works. The work is assumed to be the step toward to solution of the discrepancy between the simulation results and the experimental data of liquid n-alkane properties in our previous works.
Improving experimental phases for strong reflections prior to density modification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uervirojnangkoorn, Monarin; Hilgenfeld, Rolf; Terwilliger, Thomas C.
Experimental phasing of diffraction data from macromolecular crystals involves deriving phase probability distributions. These distributions are often bimodal, making their weighted average, the centroid phase, improbable, so that electron-density maps computed using centroid phases are often non-interpretable. Density modification brings in information about the characteristics of electron density in protein crystals. In successful cases, this allows a choice between the modes in the phase probability distributions, and the maps can cross the borderline between non-interpretable and interpretable. Based on the suggestions by Vekhter [Vekhter (2005), Acta Cryst. D 61, 899–902], the impact of identifying optimized phases for a small numbermore » of strong reflections prior to the density-modification process was investigated while using the centroid phase as a starting point for the remaining reflections. A genetic algorithm was developed that optimizes the quality of such phases using the skewness of the density map as a target function. Phases optimized in this way are then used in density modification. In most of the tests, the resulting maps were of higher quality than maps generated from the original centroid phases. In one of the test cases, the new method sufficiently improved a marginal set of experimental SAD phases to enable successful map interpretation. Lastly, a computer program, SISA, has been developed to apply this method for phase improvement in macromolecular crystallography.« less
Improving experimental phases for strong reflections prior to density modification
Uervirojnangkoorn, Monarin; Hilgenfeld, Rolf; Terwilliger, Thomas C.; ...
2013-09-20
Experimental phasing of diffraction data from macromolecular crystals involves deriving phase probability distributions. These distributions are often bimodal, making their weighted average, the centroid phase, improbable, so that electron-density maps computed using centroid phases are often non-interpretable. Density modification brings in information about the characteristics of electron density in protein crystals. In successful cases, this allows a choice between the modes in the phase probability distributions, and the maps can cross the borderline between non-interpretable and interpretable. Based on the suggestions by Vekhter [Vekhter (2005), Acta Cryst. D 61, 899–902], the impact of identifying optimized phases for a small numbermore » of strong reflections prior to the density-modification process was investigated while using the centroid phase as a starting point for the remaining reflections. A genetic algorithm was developed that optimizes the quality of such phases using the skewness of the density map as a target function. Phases optimized in this way are then used in density modification. In most of the tests, the resulting maps were of higher quality than maps generated from the original centroid phases. In one of the test cases, the new method sufficiently improved a marginal set of experimental SAD phases to enable successful map interpretation. Lastly, a computer program, SISA, has been developed to apply this method for phase improvement in macromolecular crystallography.« less
An adaptive tracker for ShipIR/NTCS
NASA Astrophysics Data System (ADS)
Ramaswamy, Srinivasan; Vaitekunas, David A.
2015-05-01
A key component in any image-based tracking system is the adaptive tracking algorithm used to segment the image into potential targets, rank-and-select the best candidate target, and the gating of the selected target to further improve tracker performance. This paper will describe a new adaptive tracker algorithm added to the naval threat countermeasure simulator (NTCS) of the NATO-standard ship signature model (ShipIR). The new adaptive tracking algorithm is an optional feature used with any of the existing internal NTCS or user-defined seeker algorithms (e.g., binary centroid, intensity centroid, and threshold intensity centroid). The algorithm segments the detected pixels into clusters, and the smallest set of clusters that meet the detection criterion is obtained by using a knapsack algorithm to identify the set of clusters that should not be used. The rectangular area containing the chosen clusters defines an inner boundary, from which a weighted centroid is calculated as the aim-point. A track-gate is then positioned around the clusters, taking into account the rate of change of the bounding area and compensating for any gimbal displacement. A sequence of scenarios is used to test the new tracking algorithm on a generic unclassified DDG ShipIR model, with and without flares, and demonstrate how some of the key seeker signals are impacted by both the ship and flare intrinsic signatures.
NASA Astrophysics Data System (ADS)
Bansal, A. R.; Anand, S.; Rajaram, M.; Rao, V.; Dimri, V. P.
2012-12-01
The depth to the bottom of the magnetic sources (DBMS) may be used as an estimate of the Curie - point depth. The DBMSs can also be interpreted in term of thermal structure of the crust. The thermal structure of the crust is a sensitive parameter and depends on the many properties of crust e.g. modes of deformation, depths of brittle and ductile deformation zones, regional heat flow variations, seismicity, subsidence/uplift patterns and maturity of organic matter in sedimentary basins. The conventional centroid method of DBMS estimation assumes random uniform uncorrelated distribution of sources and to overcome this limitation a modified centroid method based on fractal distribution has been proposed. We applied this modified centroid method to the aeromagnetic data of the central Indian region and selected 29 half overlapping blocks of dimension 200 km x 200 km covering different parts of the central India. Shallower values of the DBMS are found for the western and southern portion of Indian shield. The DBMSs values are found as low as close to middle crust in the south west Deccan trap and probably deeper than Moho in the Chhatisgarh basin. In few places DBMS are close to the Moho depth found from the seismic study and others places shallower than the Moho. The DBMS indicate complex nature of the Indian crust.
NASA Astrophysics Data System (ADS)
Zocchi, Fabio E.
2017-10-01
One of the approaches that is being tested for the integration of the mirror modules of the advanced telescope for high-energy astrophysics x-ray mission of the European Space Agency consists in aligning each module on an optical bench operated at an ultraviolet wavelength. The mirror module is illuminated by a plane wave and, in order to overcome diffraction effects, the centroid of the image produced by the module is used as a reference to assess the accuracy of the optical alignment of the mirror module itself. Among other sources of uncertainty, the wave-front error of the plane wave also introduces an error in the position of the centroid, thus affecting the quality of the mirror module alignment. The power spectral density of the position of the point spread function centroid is here derived from the power spectral density of the wave-front error of the plane wave in the framework of the scalar theory of Fourier diffraction. This allows the defining of a specification on the collimator quality used for generating the plane wave starting from the contribution to the error budget allocated for the uncertainty of the centroid position. The theory generally applies whenever Fourier diffraction is a valid approximation, in which case the obtained result is identical to that derived by geometrical optics considerations.
On the formation modes in vortex interaction for multiple co-axial co-rotating vortex rings
NASA Astrophysics Data System (ADS)
Qin, Suyang; Liu, Hong; Xiang, Yang
2018-01-01
Interaction among multiple vortices is of particular importance to biological locomotion. It plays an essential role in the force and energy capture. This study examines the motion and dynamics of multiple co-axial co-rotating vortex rings. The vortex rings, which have the same formation time, are successively generated in a piston-cylinder apparatus by accurately controlling the interval time. The flow fields are visualized by the finite-time Lyapunov exponent and then repelling Lagrangian coherent structures (r-LCSs) are determined. Two types of vortex interactions ("strong" and "weak") are defined by investigating the r-LCSs: a strong interaction is indicated by connected r-LCSs showing a channel for fluid transport (termed as a "flux window"); a weak interaction is indicated by disconnected r-LCSs between the vortex rings. For strong interaction, leapfrogging and merger of vortex rings can happen in the later stage of the evolution process; however, the rings are separated for weak interaction. Two distinct formation modes, the formation enhancement mode (FEM) and formation restraint mode (FRM), refer to the effect of one or multiple vortex ring(s) on the initial circulation of the subsequently formed vortex ring. In the FEM, the circulation of a vortex ring is larger than that of an isolated (without interaction) vortex ring. On the other hand, the situation is opposite in the FRM. A dimensionless number reflecting the interaction mechanism, "structure stretching number" S*, is proposed, which evaluates the induced effect of the wake vortices on the formation of a vortex ring. A limiting S* (SL*=(2 ±0.4 ) ×1 0-4) is the bifurcation point of the two formation modes. The augmentation of circulation reaches up to 10% for the FEM when S*
On the propagation and decay of North Brazil Current rings
NASA Astrophysics Data System (ADS)
Jochumsen, Kerstin; Rhein, Monika; Hüttl-Kabus, Sabine; BöNing, Claus W.
2010-10-01
Near the western boundary of the tropical North Atlantic, where the North Brazil Current (NBC) retroflects into the North Equatorial Countercurrent, large anticyclonic rings are shed. After separating from the retroflection region, the so-called NBC rings travel northwestward along the Brazilian coast, until they reach the island chain of the Lesser Antilles and disintegrate. These rings contribute substantially to the upper limb return flow of the Atlantic Meridional Overturning Circulation by carrying South Atlantic Water into the northern subtropical gyre. Their relevance for the northward transport of South Atlantic Water depends on the frequency of their generation as well as on their horizontal and vertical structure. The ring shedding and propagation and the complex interaction of the rings with the Lesser Antilles are investigated in the ? Family of Linked Atlantic Model Experiments (FLAME) model. The ring properties simulated in FLAME reach the upper limit of the observed rings in diameter and agree with recent observations on seasonal variability, which indicates a maximum shedding during the first half of the year. When the rings reach the shallow topography of the Lesser Antilles, they are trapped by the island triangle of St. Lucia, Barbados and Tobago and interact with the island chain. The model provides a resolution that is capable of resolving the complex topographic conditions at the islands and illuminates various possible fates for the water contained in the rings. It also reproduces laboratory experiments that indicate that both cyclones and anticyclones are formed after a ring passes through a topographic gap. Trajectories of artificial floats, which were inserted into the modeled velocity field, are used to investigate the pathways of the ring cores and their fate after they encounter the Lesser Antilles. The majority of the floats entered the Caribbean, while the northward Atlantic pathway was found to be of minor importance. No prominent pathway was found east of Barbados, where a ring could avoid the interaction with the islands and migrate toward the northern Lesser Antilles undisturbed.
NASA Astrophysics Data System (ADS)
Varney, Philip; Green, Itzhak
2014-11-01
Numerous methods are available to calculate rotordynamic whirl frequencies, including analytic methods, finite element analysis, and the transfer matrix method. The typical real-valued transfer matrix (RTM) suffers from several deficiencies, including lengthy computation times and the inability to distinguish forward and backward whirl. Though application of complex coordinates in rotordynamic analysis is not novel per se, specific advantages gained from using such coordinates in a transfer matrix analysis have yet to be elucidated. The present work employs a complex coordinate redefinition of the transfer matrix to obtain reduced forms of the elemental transfer matrices in inertial and rotating reference frames, including external stiffness and damping. Application of the complex-valued state variable redefinition results in a reduction of the 8×8 RTM to the 4×4 Complex Transfer Matrix (CTM). The CTM is advantageous in that it intrinsically separates forward and backward whirl, eases symbolic manipulation by halving the transfer matrices’ dimension, and provides significant improvement in computation time. A symbolic analysis is performed on a simple overhung rotor to demonstrate the mathematical motivation for whirl frequency separation. The CTM's utility is further shown by analyzing a rotordynamic system supported by viscoelastic elastomer rings. Viscoelastic elastomer ring supports can provide significant damping while reducing the cost and complexity associated with conventional components such as squeeze film dampers. The stiffness and damping of a viscoelastic damper ring are determined herein as a function of whirl frequency using the viscoelastic correspondence principle and a constitutive fractional calculus viscoelasticity model. The CTM is then employed to obtain the characteristic equation, where the whirl frequency dependent stiffness and damping of the elastomer supports are included. The Campbell diagram is shown, demonstrating the CTM's ability to intrinsically separate synchronous whirl direction for a non-trivial rotordynamic system. Good agreement is found between the CTM results and previously obtained analytic and experimental results for the elastomer ring supported rotordynamic system.
Near-infrared integral field spectroscopy of massive young stellar objects
NASA Astrophysics Data System (ADS)
Murakawa, K.; Lumsden, S. L.; Oudmaijer, R. D.; Davies, B.; Wheelwright, H. E.; Hoare, M. G.; Ilee, J. D.
2013-11-01
We present medium-resolution (R ≈ 5300) K-band integral field spectroscopy of six massive young stellar objects (MYSOs). The targets are selected from the Red MSX Source (RMS) survey, and we used the ALTAIR adaptive optics assisted Near-Infrared Integral Field Spectrometer (NIFS) mounted on the Gemini North telescope. The data show various spectral line features including Brγ, CO, H2 and He I. The Brγ line is detected in emission in all objects with vFWHM ˜ 100-200 km s-1. V645 Cyg shows a high-velocity P-Cygni profile between -800 and -300 km s-1. We performed three-dimensional spectroastrometry to diagnose the circumstellar environment in the vicinity of the central stars using the Brγ line. We measured the centroids of the velocity components with sub-mas precision. The centroids allow us to discriminate the blueshifted and redshifted components in a roughly east-west direction in both IRAS 18151-1208 and S106 in Brγ. This lies almost perpendicular to observed larger scale outflows. We conclude, given the widths of the lines and the orientation of the spectroastrometric signature, that our results trace a disc wind in both IRAS 18151-1208 and S106. The CO ν = 2-0 absorption lines at low J transitions are detected in IRAS 18151-1208 and AFGL 2136. We analysed the velocity structure of the neutral gas discs, which we find to have nearly Keplerian motions. In IRAS 18151-1208, the absorption centroids of the blueshifted and redshifted components are separated in a direction of north-east to south-west, nearly perpendicular to that of the larger scale H2 jet. The position-velocity relations of these objects can be reproduced with central masses of 30 M⊙ for IRAS 18151-1208 and 20 M⊙ for AFGL 2136. We also detect CO ν = 2-0 bandhead emission in IRAS 18151-1208, S106 and V645 Cyg. The results can be fitted reasonably with a Keplerian rotation model, with masses of 15, 20 and 20 M⊙, respectively. These results for a sample of MYSOs can be explained with disc and outflow models and support the hypothesis of massive star formation via mass accretion through discs as is the case for lower mass counterparts.
3-Aminobenzoic acid–1,2-bis(4-pyridyl)ethane (1/1)
Shen, Fwu Ming; Lush, Shie Fu
2010-01-01
The asymmetric unit of the title compound, C12H12N2·C7H7NO2, contains two 3-aminobenzoic acid molecules and two 1,2-bis(4-pyridyl)ethane molecules. In the two 1,2-bis(4-pyridyl)ethane molecules, the dihedral angles between the pyridyl rings are 2.99 (9) and 46.78 (8)°. In the crystal, the molecules associate through amine and carboxyl group N—H⋯O=C interactions between one of the 3-aminobenzoic acid molecules and one of the 1,2-bis(4-pyridyl)ethane molecules, generating R 2 2(14) dimers, which are extended head-to-tail via amine and pyridine N—H⋯N hydrogen bonds. Intermolecular O—H⋯N, N—H⋯O, N—H⋯N and C—H⋯O hydrogen bonding are observed in the crystal structure. C—H⋯π and π–π stacking interactions [centroid–centroid distance = 3.9985 (10) Å] are also present. PMID:21579186
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chantrapromma, S., E-mail: suchada.c@psu.ac.th; Ruanwas, P.; Boonnak, N.
2016-12-15
Five derivatives of curcumin analogue (R = OCH{sub 2}CH{sub 3} (1), R = N(CH{sub 3}){sub 2} (2), R = 2,4,5-OCH{sub 3} (3), R = 2,4,6-OCH{sub 3} (4), and R = 3,4,5-OCH{sub 3} (5)) were synthesized and characterized by {sup 1}H NMR, FT-IR and UV–Vis spectroscopy. The synthesized derivatives were screened for antityrosinase activity, and found that 4 and 5 possess such activity. The crystal structure of 1 was determined by single crystal X-ray diffraction: monoclinic, sp. gr. P2{sub 1}/c, a = 17.5728(15) Å, b = 5.9121(5) Å, c = 19.8269(13) Å, β = 121.155(5)°, Z = 4. The molecule 1more » is twisted with the dihedral angle between two phenyl rings being 15.68(10)°. In the crystal packing, the molecules 1 are linked into chains by C−H···π interactions and further stacked by π···π interactions with the centroid–centroid distance of 3.9311(13) Å.« less
Hou, Chen; Gan, Hong-Mei; Liu, Jia-Cheng
2015-01-01
In the title polymeric complex, {[Zn(C24H22N6O2)(H2O)4](NO3)2·2H2O}n, the ZnII cation, located about a twofold rotation axis, is coordinated by two imidazole groups and four water molecules in a distorted N2O4 octahedral geometry; among the four coordinate water molecules, two are located on the same twofold rotation axis. The 1,4-bis[4-(1H-imidazol-1-yl)benzoyl]piperazine] ligand is centro-symmetric, with the centroid of the piperazine ring located on an inversion center, and bridges the ZnII cations, forming polymeric chains propagating along [201]. In the crystal, O—H⋯O and weak C—H⋯O hydrogen bonds link the polymeric chains, nitrate anions and solvent water molecules into a three-dimensional supramolecular architecture. A short O⋯O contact of 2.823 (13) Å is observed between neighboring nitrate anions. PMID:25995894
Molecular-Scale Description of SPAN80 Desorption from a Squalane-Water Interface.
Tan, L; Pratt, L R; Chaudhari, M I
2018-04-05
Extensive all-atom molecular dynamics calculations on the water-squalane interface for nine different loadings with sorbitan monooleate (SPAN80), at T = 300 K, are analyzed for the surface tension equation of state, desorption free-energy profiles as they depend on loading, and to evaluate escape times for adsorbed SPAN80 into the bulk phases. These results suggest that loading only weakly affects accommodation of a SPAN80 molecule by this squalane-water interface. Specifically, the surface tension equation of state is simple through the range of high tension to high loading studied, and the desorption free-energy profiles are weakly dependent on loading here. The perpendicular motion of the centroid of the SPAN80 headgroup ring is well-described by a diffusional model near the minimum of the desorption free-energy profile. Lateral diffusional motion is weakly dependent on loading. Escape times evaluated on the basis of a diffusional model and the desorption free energies are 7 × 10 -2 s (into the squalane) and 3 × 10 2 h (into the water). The latter value is consistent with desorption times of related lab-scale experimental work.
Benson, Christopher R; Maffeo, Christopher; Fatila, Elisabeth M; Liu, Yun; Sheetz, Edward G; Aksimentiev, Aleksei; Singharoy, Abhishek; Flood, Amar H
2018-05-07
The coordinated motion of many individual components underpins the operation of all machines. However, despite generations of experience in engineering, understanding the motion of three or more coupled components remains a challenge, known since the time of Newton as the "three-body problem." Here, we describe, quantify, and simulate a molecular three-body problem of threading two molecular rings onto a linear molecular thread. Specifically, we use voltage-triggered reduction of a tetrazine-based thread to capture two cyanostar macrocycles and form a [3]pseudorotaxane product. As a consequence of the noncovalent coupling between the cyanostar rings, we find the threading occurs by an unexpected and rare inchworm-like motion where one ring follows the other. The mechanism was derived from controls, analysis of cyclic voltammetry (CV) traces, and Brownian dynamics simulations. CVs from two noncovalently interacting rings match that of two covalently linked rings designed to thread via the inchworm pathway, and they deviate considerably from the CV of a macrocycle designed to thread via a stepwise pathway. Time-dependent electrochemistry provides estimates of rate constants for threading. Experimentally derived parameters (energy wells, barriers, diffusion coefficients) helped determine likely pathways of motion with rate-kinetics and Brownian dynamics simulations. Simulations verified intercomponent coupling could be separated into ring-thread interactions for kinetics, and ring-ring interactions for thermodynamics to reduce the three-body problem to a two-body one. Our findings provide a basis for high-throughput design of molecular machinery with multiple components undergoing coupled motion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Avkshtol, V; Tanny, S; Reddy, K
Purpose: Stereotactic radiation therapy (SRT) provides an excellent alternative to embolization and surgical excision for the management of appropriately selected cerebral arteriovenous malformations (AVMs). The currently accepted standard for delineating AVMs is planar digital subtraction angiography (DSA). DSA can be used to acquire a 3D data set that preserves osseous structures (3D-DA) at the time of the angiography for SRT planning. Magnetic resonance imaging (MRI) provides an alternative noninvasive method of visualizing the AVM nidus with comparable spatial resolution. We utilized 3D-DA and T1 post-contrast MRI data to evaluate the differences in SRT target volumes. Methods: Four patients underwent 3D-DAmore » and high-resolution MRI. 3D T1 post-contrast images were obtained in all three reconstruction planes. A planning CT was fused with MRI and 3D-DA data sets. The AVMs were contoured utilizing one of the image sets at a time. Target volume, centroid, and maximum and minimum dimensions were analyzed for each patient. Results: Targets delineated using post-contrast MRI demonstrated a larger mean volume. AVMs >2 cc were found to have a larger difference between MRI and 3D-DA volumes. Larger AVMs also demonstrated a smaller relative uncertainty in contour centroid position (1 mm). AVM targets <2 cc had smaller absolute differences in volume, but larger differences in contour centroid position (2.5 mm). MRI targets demonstrated a more irregular shape compared to 3D-DA targets. Conclusions: Our preliminary data supports the use of MRI alone to delineate AVM targets >2 cc. The greater centroid stability for AVMs >2 cc ensures accurate target localization during image fusion. The larger MRI target volumes did not result in prohibitively greater volumes of normal brain tissue receiving the prescription dose. The larger centroid instability for AVMs <2 cc precludes the use of MRI alone for target delineation. We recommend incorporating a 3D-DA for these patients.« less
Spectrum study on unsteadiness of shock wave-vortex ring interaction
NASA Astrophysics Data System (ADS)
Dong, Xiangrui; Yan, Yonghua; Yang, Yong; Dong, Gang; Liu, Chaoqun
2018-05-01
Shock oscillation with low-frequency unsteadiness commonly occurs in supersonic flows and is a top priority for the control of flow separation caused by shock wave and boundary layer interaction. In this paper, the interaction of the shock caused by the compression ramp and the vortex rings generated by a micro-vortex generator (MVG) in a supersonic flow at Ma = 2.5 is simulated by the implicit large eddy simulation method. The analysis of observation and the frequency of both the vortex ring motion and the shock oscillation is carried out. The results show that the shock produced by a compression ramp flow at Ma = 2.5 has a dominant non-dimensional low frequency, which is around St = 0.002, while the vortex rings behind the MVG have a dominant high frequency which is around St = 0.038. The dominant low frequency of the shock, which is harmful, can be removed or weakened through the shock-vortex ring interaction by the vortex rings which generate high frequency fluctuations. In the shock and vortex ring interaction region, a dominant high frequency St = 0.037-0.038 has been detected rather than the low frequency St = 0.002, which indicates that the vortex ring is stiff enough to break or weaken the shock. This analysis could provide an effective tool to remove or weaken the low frequency pressure fluctuation below 500 Hz, which has a negative effect on the flight vehicle structures and the environmental protection, through the high frequency vortex generation.
On the formation of vortex rings in coaxial tubes
NASA Astrophysics Data System (ADS)
Gan, Lian
2011-11-01
The formation of vortex rings within coaxial tubes of different diameter is investigated experimentally and numerically. PIV measurements were carried out in a water tank equipped with a piston-cylinder apparatus used to generate vortex rings inside a series of coaxial tubes with tube to piston diameter ratios, DT / D , ranging from 4 to 1.5. In order to distinguish between the effect confinement has on the formation of isolated vortex rings from those formed with a trailing jet flow, non- dimensional stroke ratios below and above the formation number were investigated, L / D = 2 . 5 and 10 respectively. For DT / D > 2 and L / D s below the formation number the kinematics of the vortex rings follow classical inviscid theory in so much as their self-induced velocity decreases linearly with decreasing tube diameter in accordance with the image theorem. For DT / D <= 2 boundary layer separation along the tube wall begins to interfere with the vortex during its roll-up phase. For vortex rings below the formation number, the vortex core is briefly arrested upon completion of the piston stroke. On the other hand, long L / D s give rise to even more complex dynamics. When DT / D = 2 the interaction between boundary layer and the starting jet acts to suppress vortex ring formation altogether. However, as confinement is increased further to DT / D = 1 . 5 the formation of a lead vortex ring re-appears but with a circulation lower than the formation number before rapidly decaying.
NASA Astrophysics Data System (ADS)
Lee, El-Hang; Lee, Hyun S.; Lee, S. G.; O, B. H.; Park, S. G.; Kim, K. H.
2007-05-01
We report on the design of micro-ring resonator optical sensors for integration on what we call optical printed circuit boards (O-PCBs). The objective is to realize application-specific O-PCBs, either on hard board or on flexible board, by integrating micro/nano-scale optical sensors for compact, light-weight, low-energy, high-speed, intelligent, and environmentally friendly processing of information. The O-PCBs consist of two-dimensional planar arrays of micro/nano-scale optical wires, circuits and devices that are interconnected and integrated to perform the functions of sensing and then storing, transporting, processing, switching, routing and distributing optical signals that have been collected by means of sensors. For fabrication, the polymer and organic optical wires and waveguides are first fabricated on a board and are used to interconnect and integrate sensors and other micro/ nano-scale photonic devices. Here, in our study, we focus on the sensors based on the micro-ring structures. We designed bio-sensors using silicon based micro-ring resonator. We investigate the characteristics such as sensitivity and selectivity (or quality factor) of micro-ring resonator for their use in bio-sensing application. We performed simulation studies on the quality factor of micro-ring resonators by varying the radius of the ring resonators and the separation between adjacent waveguides. We introduce the effective coupling coefficient as a realistic value to describe the strength of the coupling in micro-ring resonators.
Ge, Xueping; Ye, Qiang; Song, Linyong; Misra, Anil; Spencer, Paulette
2015-04-01
The effects of polymerization kinetics and chemical miscibility on the crosslinking structure and mechanical properties of polymers cured by visible-light initiated free-radical/cationic ring-opening hybrid photopolymerization are determined. A three-component initiator system is used and the monomer system contains methacrylates and epoxides. The photopolymerization kinetics is monitored in situ by Fourier transform infrared-attenuated total reflectance. The crosslinking structure is studied by modulated differential scanning calorimetry and dynamic mechanical analysis. X-ray microcomputed tomography is used to evaluate microphase separation. The mechanical properties of polymers formed by hybrid formed by free-radical polymerization. These investigations mark the first time that the benefits of the chain transfer reaction between epoxy and hydroxyl groups of methacrylate, on the crosslinking network and microphase separation during hybrid visible-light initiated photopolymerization, have been determined.
JASMINE project Instrument design and centroiding experiment
NASA Astrophysics Data System (ADS)
Yano, Taihei; Gouda, Naoteru; Kobayashi, Yukiyasu; Yamada, Yoshiyuki
JASMINE will study the fundamental structure and evolution of the Milky Way Galaxy. To accomplish these objectives, JASMINE will measure trigonometric parallaxes, positions and proper motions of about 10 million stars with a precision of 10 μarcsec at z = 14 mag. In this paper the instrument design (optics, detectors, etc.) of JASMINE is presented. We also show a CCD centroiding experiment for estimating positions of star images. The experimental result shows that the accuracy of estimated distances has a variance of less than 0.01 pixel.
Self-aligning biaxial load frame
Ward, M.B.; Epstein, J.S.; Lloyd, W.R.
1994-01-18
An self-aligning biaxial loading apparatus for use in testing the strength of specimens while maintaining a constant specimen centroid during the loading operation. The self-aligning biaxial loading apparatus consists of a load frame and two load assemblies for imparting two independent perpendicular forces upon a test specimen. The constant test specimen centroid is maintained by providing elements for linear motion of the load frame relative to a fixed cross head, and by alignment and linear motion elements of one load assembly relative to the load frame. 3 figures.
Self-aligning biaxial load frame
Ward, Michael B.; Epstein, Jonathan S.; Lloyd, W. Randolph
1994-01-01
An self-aligning biaxial loading apparatus for use in testing the strength of specimens while maintaining a constant specimen centroid during the loading operation. The self-aligning biaxial loading apparatus consists of a load frame and two load assemblies for imparting two independent perpendicular forces upon a test specimen. The constant test specimen centroid is maintained by providing elements for linear motion of the load frame relative to a fixed crosshead, and by alignment and linear motion elements of one load assembly relative to the load frame.
Centroid — moment tensor solutions for July-September 2000
NASA Astrophysics Data System (ADS)
Dziewonski, A. M.; Ekström, G.; Maternovskaya, N. N.
2001-06-01
Centroid-moment tensor (CMT) solutions are presented for 308 earthquakes that occurred during the third quarter of 2000. The solutions are obtained using corrections for aspherical earth structure represented by a whole mantle shear velocity model SH8/U4L8 of Dziewonski and Woodward [Acoustical Imaging, Vol. 19, Plenum Press, New York, 1992, p. 785]. A model of anelastic attenuation of Durek and Ekström [Bull. Seism. Soc. Am. 86 (1996) 144] is used to predict the decay of the wave forms.
Timm, Rainer; Eisele, Holger; Lenz, Andrea; Ivanova, Lena; Vossebürger, Vivien; Warming, Till; Bimberg, Dieter; Farrer, Ian; Ritchie, David A; Dähne, Mario
2010-10-13
Combined cross-sectional scanning tunneling microscopy and spectroscopy results reveal the interplay between the atomic structure of ring-shaped GaSb quantum dots in GaAs and the corresponding electronic properties. Hole confinement energies between 0.2 and 0.3 eV and a type-II conduction band offset of 0.1 eV are directly obtained from the data. Additionally, the hole occupancy of quantum dot states and spatially separated Coulomb-bound electron states are observed in the tunneling spectra.
Self-regulating neutron coincidence counter
Baron, N.
1980-06-16
A device for accurately measuring the mass of /sup 240/Pu and /sup 239/Pu in a sample having arbitrary moderation and mixed with various contaminants. The device utilizes a thermal neutron well counter which has two concentric rings of neutron detectors separated by a moderating material surrounding the well. Neutron spectroscopic information derived by the two rings of detectors is used to measure the quantity of /sup 239/Pu and /sup 240/Pu in device which corrects for background radiation, deadtime losses of the detector and electronics and various other constants of the system.
Squeezed pulsed light from a fiber ring interferometer
NASA Technical Reports Server (NTRS)
Bergman, K.; Haus, H. A.
1992-01-01
Observation of squeezed noise, 5 +/- 0.3 dB below the shot noise level, generated with pulses in a fiber ring interferometer is reported. The interferometric geometry is used to separate the pump pulse from the squeezed vacuum radiation. A portion of the pump is reused as the local oscillator in a homodyne detection. The pump fluctuations are successfully subtracted and shot noise limited performance is achieved at low frequencies (35-85 KHz). A possible utilization of the generated squeezed vacuum in improving a fiber gyro's signal to noise ratio is discussed.
Experimental ball bearing dynamics study. [by high speed photography
NASA Technical Reports Server (NTRS)
Signer, H. R.
1973-01-01
A photographic method was employed to record the kinematic performance of rolling elements in turbo machinery ball bearings. The 110 mm split inner ring test bearings had nominal contact angles of 26 deg and 34 deg. High speed films were taken at inner ring speeds of 4,000, 8,000 and 12,000 rpm and at thrust loads of 4,448 N and 22,240 N (1,000 and 5,000 lbs). The films were measured and this data reduced to obtain separator speed, ball speed and ball spin axis orientation.
Interaction of vortex rings with multiple permeable screens
NASA Astrophysics Data System (ADS)
Musta, Mustafa N.; Krueger, Paul S.
2014-11-01
Interaction of a vortex ring impinging on multiple permeable screens orthogonal to the ring axis was studied to experimentally investigate the persistence and decay of vortical structures inside the screen array using digital particle image velocimetry in a refractive index matched environment. The permeable screens had porosities (open area ratios) of 83.8%, 69.0%, and 55.7% and were held by a transparent frame that allowed the screen spacing to be changed. Vortex rings were generated using a piston-cylinder mechanism at nominal jet Reynolds numbers of 1000, 2000, and 3000 with piston stroke length-to-diameter ratios of 2 and 3. The interaction of vortex rings with the porous medium showed a strong dependence of the overall flow evolution on the screen porosity, with a central flow being preserved and vortex ring-like structures (with smaller diameter than the primary vortex ring) being generated near the centerline. Due to the large rod size used in the screens, immediate reformation of the transmitted vortex ring with size comparable to the primary ring (as has been observed with thin screens) was not observed in most cases. Since the screens have lower complexity and high open area ratios, centerline vortex ring-like flow structures formed with comparable size to the screen pore size and penetrated through the screens. In the case of low porosity screens (55.7%) with large screen spacing, re-emergence of large scale (large separation), weak vortical structures/pairs (analogous to a transmitted vortex ring) was observed downstream of the first screen. Additional smaller scale vortical structures were generated by the interaction of the vortex ring with subsequent screens. The size distribution of the generated vortical structures were shown to be strongly affected by porosity, with smaller vortical structures playing a stronger role as porosity decreased. Finally, porosity significantly affected the decay of total energy, but the effect of screen spacing decreased as porosity decreased.
Micro-XANES Determination Fe Speciation in Natural Basalts at Mantle-Relevant fO2
NASA Astrophysics Data System (ADS)
Fischer, R.; Cottrell, E.; Lanzirotti, A.; Kelley, K. A.
2007-12-01
We demonstrate that the oxidation state of iron (Fe3+/ΣFe) can be determined with a precision of ±0.02 (10% relative) on natural basalt glasses at mantle-relevant fO2 using Fe K-edge X-ray absorption near edge structure (XANES) spectroscopy. This is equivalent to ±0.25 log unit resolution relative to the QFM buffer. Precise determination of the oxidation state over this narrow range (Fe3+/ΣFe=0.06-0.30) and at low fO2 (down to QFM-2) relies on appropriate standards, high spectral resolution, and highly reproducible methods for extracting the pre-edge centroid position. We equilibrated natural tholeiite powder in a CO/CO2 gas mixing furnace at 1350°C from QFM-3 to QFM+2 to create six glasses of known Fe3+/ΣFe, independently determined by Mössbauer spectroscopy. XANES spectra were collected at station X26A at NSLS, Brookhaven Natl. Lab, in fluorescence mode (9 element Ge array detector) using both Si(111) and Si(311) monochromators. Generally, the energy position of the 1s→3d (pre-edge) transition centroid is the most sensitive monitor of Fe oxidation state using XANES. For the mixture of Fe oxidation states in these glasses and the resulting coordination geometries, the pre-edge spectra are best defined by two multiple 3d crystal field transitions. The Si(311) monochromator, with higher energy resolution, substantially improved spectral resolution for the 1s→3d transition. Dwell times of 5s at 0.1eV intervals across the pre-edge region yielded spectra with the 1s→3d transition peaks clearly resolved. The pre-edge centroid position is highly sensitive to the background subtraction and peak fitting procedures. Differences in fitting models result in small but significant differences in the calculated peak area of each pre-edge multiplet, and the relative contribution of each peak to the calculated centroid. We assessed several schemes and obtained robust centroid positions by simultaneously fitting the background with a damped harmonic oscillator (DHO) function and pre-edge features with two Gaussians over a sub-sample of the pre-edge region (7110-7120 eV). We found that the relation between Fe3+/ΣFe and the centroid energy is non-linear over this fO2 range, which is expected if the coordination environment changes with oxidation state. ΔQFM is linearly related (R2=0.99) to the centroid position. This new calibration allows the oxidation states of natural mantle melts to be discriminated with high spatial resolution (9μm). We apply the new calibration to determination of Fe3+/ΣFe in natural basaltic glasses and olivine-hosted glass inclusions (Cottrell et al. & Kelley et al., this meeting).
DeBlase, Catherine R; Finke, Ryan T; Porras, Jonathan A; Tanski, Joseph M; Nadeau, Jocelyn M
2014-05-16
Synthesis and characterization of two diastereomeric C-shaped molecules containing cofacial thiophene-substituted quinoxaline rings are described. A previously known bis-α-diketone was condensed with an excess of 4-bromo-1,2-diaminobenzene in the presence of zinc acetate to give a mixture of two C-shaped diastereomers with cofacial bromine-substituted quinoxaline rings. After chromatographic separation, thiophene rings were installed by a microwave-assisted Suzuki coupling reaction, resulting in highly emissive diastereomeric compounds that were studied by UV-vis, fluorescence, and NMR spectroscopy, as well as X-ray crystallography. The unique symmetry of each diastereomer was confirmed by NMR spectroscopy. NMR data indicated that the syn isomer has restricted rotation about the bond connecting the thiophene and quinoxaline rings, which was also observed in the solid state. The spectroscopic properties of the C-shaped diastereomers were compared to a model compound containing only a single thiophene-substituted quinoxaline ring. Ground state intramolecular π-π interactions in solution were detected by NMR and UV-vis spectroscopy. Red-shifted emission bands, band broadening, and large Stokes shifts were observed, which collectively suggest excited state π-π interactions that produce excimer-like emissions, as well as a remarkable positive emission solvatochromism, indicating charge-transfer character in the excited state.
Turbine nozzle/nozzle support structure
Boyd, Gary L.; Shaffer, James E.
1997-01-01
An axial flow turbine's nozzle/nozzle support structure having a cantilevered nozzle outer structure including an outer shroud and airfoil vanes extending radially inwardly therefrom, an inner shroud radially adjacent the inner end of the airfoil vanes and cooperatively disposed relative to the outer shroud to provide an annular fluid flow path, an inner and an outer support ring respectively arranged radially inside the inner shroud and axially adjacent a portion of the outer shroud, and pins extending through such portion and into the outer support ring. The inner support ring or inner shroud has a groove therein bounded by end walls for receiving and being axially abuttable with a locating projection from the adjacent airfoil vane, inner shroud, or inner support ring. The nozzle outer structure may comprise segments each of which has a single protrusion which is axially engageable with the outer support ring or, alternatively, a first and second protrusion which are arcuately and axially separated and which include axial openings therein whereby first and second protrusions on respective, arcuately adjacent nozzle segments have axial openings therein which are alignable with connector openings in the outer support ring and within each of such aligned openings a pin is receivable. The inner shroud may, likewise, comprise segments which, when assembled in operating configuration, have a 360 degree expanse.
Turbine nozzle/nozzle support structure
Boyd, G.L.; Shaffer, J.E.
1997-01-07
An axial flow turbine`s nozzle/nozzle support structure is described having a cantilevered nozzle outer structure including an outer shroud and airfoil vanes extending radially inwardly therefrom, an inner shroud radially adjacent the inner end of the airfoil vanes and cooperatively disposed relative to the outer shroud to provide an annular fluid flow path, an inner and an outer support ring respectively arranged radially inside the inner shroud and axially adjacent a portion of the outer shroud, and pins extending through such portion and into the outer support ring. The inner support ring or inner shroud has a groove therein bounded by end walls for receiving and being axially abuttable with a locating projection from the adjacent airfoil vane, inner shroud, or inner support ring. The nozzle outer structure may comprise segments each of which has a single protrusion which is axially engageable with the outer support ring or, alternatively, a first and second protrusion which are arcuately and axially separated and which include axial openings therein whereby first and second protrusions on respective, arcuately adjacent nozzle segments have axial openings therein which are alignable with connector openings in the outer support ring and within each of such aligned openings a pin is receivable. The inner shroud may, likewise, comprise segments which, when assembled in operating configuration, have a 360 degree expanse. 6 figs.
Turbine nozzle/nozzle support structure
Boyd, Gary L.; Shaffer, James E.
1996-01-01
An axial flow turbine's nozzle/nozzle support structure having a cantilevered nozzle outer structure including an outer shroud and airfoil vanes extending radially inwardly therefrom, an inner shroud radially adjacent the inner end of the airfoil vanes and cooperatively disposed relative to the outer shroud to provide an annular fluid flow path, an inner and an outer support ring respectively arranged radially inside the inner shroud and axially adjacent a portion of the outer shroud, and pins extending through such portion and into the outer support ring. The inner support ring or inner shroud has a groove therein bounded by end walls for receiving and being axially abuttable with a locating projection from the adjacent airfoil vane, inner shroud, or inner support ring. The nozzle outer structure may comprise segments each of which has a single protrusion which is axially engageable with the outer support ring or, alternatively, a first and second protrusion which are arcuately and axially separated and which include axial openings therein whereby first and second protrusions on respective, arcuately adjacent nozzle segments have axial openings therein which are alignable with connector openings in the outer support ring and within each of such aligned openings a pin is receivable. The inner shroud may, likewise, comprise segments which, when assembled in operating configuration, have a 360 degree expanse.