Sample records for ring complexes regulate

  1. The Ndc80 complex bridges two Dam1 complex rings

    PubMed Central

    Kim, Jae ook; Zelter, Alex; Umbreit, Neil T; Bollozos, Athena; Riffle, Michael; Johnson, Richard; MacCoss, Michael J; Asbury, Charles L; Davis, Trisha N

    2017-01-01

    Strong kinetochore-microtubule attachments are essential for faithful segregation of sister chromatids during mitosis. The Dam1 and Ndc80 complexes are the main microtubule binding components of the Saccharomyces cerevisiae kinetochore. Cooperation between these two complexes enhances kinetochore-microtubule coupling and is regulated by Aurora B kinase. We show that the Ndc80 complex can simultaneously bind and bridge across two Dam1 complex rings through a tripartite interaction, each component of which is regulated by Aurora B kinase. Mutations in any one of the Ndc80p interaction regions abrogates the Ndc80 complex’s ability to bind two Dam1 rings in vitro, and results in kinetochore biorientation and microtubule attachment defects in vivo. We also show that an extra-long Ndc80 complex, engineered to space the two Dam1 rings further apart, does not support growth. Taken together, our work suggests that each kinetochore in vivo contains two Dam1 rings and that proper spacing between the rings is vital. DOI: http://dx.doi.org/10.7554/eLife.21069.001 PMID:28191870

  2. Structure of a BMI-1-Ring1B Polycomb Group Ubiquitin Ligase Complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li,Z.; Cao, R.; Wang, M.

    2006-01-01

    Polycomb group (PcG) proteins Bmi-1 and Ring1B are core subunits of the PRC1 complex which plays important roles in the regulation of Hox gene expression, X-chromosome inactivation, tumorigenesis and stem cell self-renewal. The RING finger protein Ring1B is an E3 ligase that participates in the ubiquitination of lysine 119 of histone H2A, and the binding of Bmi-1 stimulates the E3 ligase activity. We have mapped the regions of Bmi-1 and Ring1B required for efficient ubiquitin transfer and determined a 2.5 Angstroms structure of the Bmi-1-Ring1B core domain complex. The structure reveals that Ring1B 'hugs' Bmi-1 through extensive RING domain contactsmore » and its N-terminal tail wraps around Bmi-1. The two regions of interaction have a synergistic effect on the E3 ligase activity. Our analyses suggest a model where the Bmi-1-Ring1B complex stabilizes the interaction between the E2 enzyme and the nucleosomal substrate to allow efficient ubiquitin transfer.« less

  3. Structure of a Glomulin-RBX1-CUL1 complex: inhibition of a RING E3 ligase through masking of its E2-binding surface

    PubMed Central

    Duda, David M.; Olszewski, Jennifer L.; Tron, Adriana E.; Hammel, Michal; Lambert, Lester J.; Waddell, M. Brett; Mittag, Tanja; DeCaprio, James A.; Schulman, Brenda A.

    2012-01-01

    Summary The ~300 human Cullin-RING ligases (CRLs) are multisubunit E3s in which a RING protein, either RBX1 or RBX2, recruits an E2 to catalyze ubiquitination. RBX1-containing CRLs also can bind Glomulin (GLMN), which binds RBX1’s RING domain, regulates the RBX1-CUL1-containing SCFFBW7 complex, and is disrupted in the disease Glomuvenous Malformation. Here we report the crystal structure of a complex between GLMN, RBX1, and a fragment of CUL1. Structural and biochemical analyses reveal that GLMN adopts a HEAT-like repeat fold that tightly binds the E2-interacting surface of RBX1, inhibiting CRL-mediated chain formation by the E2 CDC34. The structure explains the basis for GLMN’s selectivity toward RBX1 over RBX2, and how disease-associated mutations disrupt GLMN-RBX1 interactions. Our study reveals a mechanism for RING E3 ligase regulation whereby an inhibitor blocks E2 access, and raises the possibility that other E3s are likewise controlled by cellular proteins that mask E2-binding surfaces to mediate inhibition. PMID:22748924

  4. Structure of a Glomulin-RBX1-CUL1 Complex: Inhibition of a RING E3 Ligase through Masking of Its E2-Binding Surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duda, David M.; Olszewski, Jennifer L.; Tron, Adriana E.

    2012-11-01

    The approximately 300 human cullin-RING ligases (CRLs) are multisubunit E3s in which a RING protein, either RBX1 or RBX2, recruits an E2 to catalyze ubiquitination. RBX1-containing CRLs also can bind Glomulin (GLMN), which binds RBX1's RING domain, regulates the RBX1-CUL1-containing SCF{sup FBW7} complex, and is disrupted in the disease Glomuvenous Malformation. Here we report the crystal structure of a complex between GLMN, RBX1, and a fragment of CUL1. Structural and biochemical analyses reveal that GLMN adopts a HEAT-like repeat fold that tightly binds the E2-interacting surface of RBX1, inhibiting CRL-mediated chain formation by the E2 CDC34. The structure explains themore » basis for GLMN's selectivity toward RBX1 over RBX2, and how disease-associated mutations disrupt GLMN-RBX1 interactions. Our study reveals a mechanism for RING E3 ligase regulation, whereby an inhibitor blocks E2 access, and raises the possibility that other E3s are likewise controlled by cellular proteins that mask E2-binding surfaces to mediate inhibition.« less

  5. Structural dynamics of the MecA-ClpC complex: a type II AAA+ protein unfolding machine.

    PubMed

    Liu, Jing; Mei, Ziqing; Li, Ningning; Qi, Yutao; Xu, Yanji; Shi, Yigong; Wang, Feng; Lei, Jianlin; Gao, Ning

    2013-06-14

    The MecA-ClpC complex is a bacterial type II AAA(+) molecular machine responsible for regulated unfolding of substrates, such as transcription factors ComK and ComS, and targeting them to ClpP for degradation. The six subunits of the MecA-ClpC complex form a closed barrel-like structure, featured with three stacked rings and a hollow passage, where substrates are threaded and translocated through successive pores. Although the general concepts of how polypeptides are unfolded and translocated by internal pore loops of AAA(+) proteins have long been conceived, the detailed mechanistic model remains elusive. With cryoelectron microscopy, we captured four different structures of the MecA-ClpC complexes. These complexes differ in the nucleotide binding states of the two AAA(+) rings and therefore might presumably reflect distinctive, representative snapshots from a dynamic unfolding cycle of this hexameric complex. Structural analysis reveals that nucleotide binding and hydrolysis modulate the hexameric complex in a number of ways, including the opening of the N-terminal ring, the axial and radial positions of pore loops, the compactness of the C-terminal ring, as well as the relative rotation between the two nucleotide-binding domain rings. More importantly, our structural and biochemical data indicate there is an active allosteric communication between the two AAA(+) rings and suggest that concerted actions of the two AAA(+) rings are required for the efficiency of the substrate unfolding and translocation. These findings provide important mechanistic insights into the dynamic cycle of the MecA-ClpC unfoldase and especially lay a foundation toward the complete understanding of the structural dynamics of the general type II AAA(+) hexamers.

  6. Structure and catalytic activation of the TRIM23 RING E3 ubiquitin ligase: DAWIDZIAK et al.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dawidziak, Daria M.; Sanchez, Jacint G.; Wagner, Jonathan M.

    Tripartite motif (TRIM) proteins comprise a large family of RING-type ubiquitin E3 ligases that regulate important biological processes. An emerging general model is that TRIMs form elongated antiparallel coiled-coil dimers that prevent interaction of the two attendant RING domains. The RING domains themselves bind E2 conjugating enzymes as dimers, implying that an active TRIM ligase requires higher-order oligomerization of the basal coiled-coil dimers. Here, we report crystal structures of the TRIM23 RING domain in isolation and in complex with an E2–ubiquitin conjugate. Our results indicate that TRIM23 enzymatic activity requires RING dimerization, consistent with the general model of TRIM activation.

  7. The conserved RNA recognition motif and C3H1 domain of the Not4 ubiquitin ligase regulate in vivo ligase function.

    PubMed

    Chen, Hongfeng; Sirupangi, Tirupataiah; Wu, Zhao-Hui; Johnson, Daniel L; Laribee, R Nicholas

    2018-05-25

    The Ccr4-Not complex controls RNA polymerase II (Pol II) dependent gene expression and proteasome function. The Not4 ubiquitin ligase is a Ccr4-Not subunit that has both a RING domain and a conserved RNA recognition motif and C3H1 domain (referred to as the RRM-C domain) with unknown function. We demonstrate that while individual Not4 RING or RRM-C mutants fail to replicate the proteasomal defects found in Not4 deficient cells, mutation of both exhibits a Not4 loss of function phenotype. Transcriptome analysis revealed that the Not4 RRM-C affects a specific subset of Pol II-regulated genes, including those involved in transcription elongation, cyclin-dependent kinase regulated nutrient responses, and ribosomal biogenesis. The Not4 RING, RRM-C, or RING/RRM-C mutations cause a generalized increase in Pol II binding at a subset of these genes, yet their impact on gene expression does not always correlate with Pol II recruitment which suggests Not4 regulates their expression through additional mechanisms. Intriguingly, we find that while the Not4 RRM-C is dispensable for Ccr4-Not association with RNA Pol II, the Not4 RING domain is required for these interactions. Collectively, these data elucidate previously unknown roles for the conserved Not4 RRM-C and RING domains in regulating Ccr4-Not dependent functions in vivo.

  8. Composition, formation, and regulation of the cytosolic c-ring, a dynamic component of the type III secretion injectisome.

    PubMed

    Diepold, Andreas; Kudryashev, Mikhail; Delalez, Nicolas J; Berry, Richard M; Armitage, Judith P

    2015-01-01

    Many gram-negative pathogens employ a type III secretion injectisome to translocate effector proteins into eukaryotic host cells. While the structure of the distal "needle complex" is well documented, the composition and role of the functionally important cytosolic complex remain less well understood. Using functional fluorescent fusions, we found that the C-ring, an essential and conserved cytosolic component of the system, is composed of ~22 copies of SctQ (YscQ in Yersinia enterocolitica), which require the presence of YscQC, the product of an internal translation initiation site in yscQ, for their cooperative assembly. Photoactivated localization microscopy (PALM) reveals that in vivo, YscQ is present in both a free-moving cytosolic and a stable injectisome-bound state. Notably, fluorescence recovery after photobleaching (FRAP) shows that YscQ exchanges between the injectisome and the cytosol, with a t½ of 68 ± 8 seconds when injectisomes are secreting. In contrast, the secretin SctC (YscC) and the major export apparatus component SctV (YscV) display minimal exchange. Under non-secreting conditions, the exchange rate of YscQ is reduced to t½ = 134 ± 16 seconds, revealing a correlation between C-ring exchange and injectisome activity, which indicates a possible role for C-ring stability in regulation of type III secretion. The stabilization of the C-ring depends on the presence of the functional ATPase SctN (YscN). These data provide new insights into the formation and composition of the injectisome and present a novel aspect of type III secretion, the exchange of C-ring subunits, which is regulated with respect to secretion.

  9. Chaperonin polymers in archaea: The cytoskeleton of prokaryotes?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trent, J.D.; Kagawa, H.K.; Zaluzec, N.J.

    Chaperonins are protein complexes that play a critical role in folding nascent polypeptides under normal conditions and refolding damaged proteins under stress conditions. In all organisms these complexes are composed of evolutionarily conserved 60-kDa proteins arranged in double-ring structures with between 7 and 9 protein subunits per ring. These double ring structures are assumed to be the functional units in vivo, although they have never been observed inside cells. Here the authors show that the purified chaperonin from the hyperthermophilic archaeon Sulfolobus shibatae, which is closely related to chaperonins in eukaryotes, has a double ring structure at low concentrations (0.1more » mg/ml), but at more physiological concentrations, the rings stack end to end to form polymers. The polymers are stable at physiological temperatures (75 C) and closely resemble structures observed inside unfixed S. shibatae cells. The authors suggest that in vivo chaperonin activity may be regulated by polymerization and that chaperonin polymers may act as a cytoskeleton-like structure in archaea and bacteria.« less

  10. Chaperonin Polymers in Archaea: The Cytoskeleton of Prokaryotes?

    DOE R&D Accomplishments Database

    Trent, J. D.; Kagawa, H. K.; Zaluzec, N. J.

    1997-07-01

    Chaperonins are protein complexes that play a critical role in folding nascent polypeptides under normal conditions and refolding damaged proteins under stress conditions. In all organisms these complexes are composed of evolutionarily conserved 60-kDa proteins arranged in double-ring structures with between 7 and 9 protein subunits per ring. These double ring structures are assumed to be the functional units in vivo, although they have never been observed inside cells. Here the authors show that the purified chaperonin from the hyperthermophilic archaeon Sulfolobus shibatae, which is closely related to chaperonins in eukaryotes, has a double ring structure at low concentrations (0.1 mg/ml), but at more physiological concentrations, the rings stack end to end to form polymers. The polymers are stable at physiological temperatures (75 C) and closely resemble structures observed inside unfixed S. shibatae cells. The authors suggest that in vivo chaperonin activity may be regulated by polymerization and that chaperonin polymers may act as a cytoskeleton-like structure in archaea and bacteria.

  11. Artificial light-regulation of an allosteric bi-enzyme complex by a photosensitive ligand.

    PubMed

    Kneuttinger, Andrea C; Winter, Martin; Simeth, Nadja A; Heyn, Kristina; Merkl, Rainer; König, Burkhard; Sterner, Reinhard

    2018-05-29

    The artificial regulation of proteins by light is an emerging sub-discipline of synthetic biology. Here, we used this concept in order to photo-control both catalysis and allostery within the heterodimeric enzyme complex imidazole glycerol phosphate synthase (ImGP-S). The ImGP-S consists of the cyclase subunit HisF and the glutaminase subunit HisH, which is allosterically stimulated by substrate binding to HisF. We show that a light-sensitive diarylethene (DTE)-based competitive inhibitor in its ring-open state binds with low micromolar affinity to the cyclase subunit and displaces its substrate from the active site. As a consequence, catalysis by HisF and allosteric stimulation of HisH are impaired. Following UV-light irradiation, the DTE-ligand adopts its ring-closed state and loses affinity for HisF, restoring activity and allostery. Our approach allows for the switching of ImGP-S activity and allostery during catalysis and appears to be generally applicable for the light-regulation of other multi-enzyme complexes. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Mechanism of Polyubiquitination by Human Anaphase-Promoting Complex: RING Repurposing for Ubiquitin Chain Assembly

    DOE PAGES

    Brown, Nicholas G.; Watson, Edmond R.; Weissmann, Florian; ...

    2014-10-09

    Polyubiquitination by E2 and E3 enzymes is a predominant mechanism regulating protein function. Some RING E3s, including anaphase-promoting complex/cyclosome (APC), catalyze polyubiquitination by sequential reactions with two different E2s. An initiating E2 ligates ubiquitin to an E3-bound substrate. Another E2 grows a polyubiquitin chain on the ubiquitin-primed substrate through poorly defined mechanisms. Here in this paper we show that human APC’s RING domain is repurposed for dual functions in polyubiquitination. The canonical RING surface activates an initiating E2-ubiquitin intermediate for substrate modification. However, APC engages and activates its specialized ubiquitin chain-elongating E2 UBE2S in ways that differ from current paradigms.more » During chain assembly, a distinct APC11 RING surface helps deliver a substrate-linked ubiquitin to accept another ubiquitin from UBE2S. Our data define mechanisms of APC/UBE2S-mediated polyubiquitination, reveal diverse functions of RING E3s and E2s, and provide a framework for understanding distinctive RING E3 features specifying ubiquitin chain elongation.« less

  13. RING-Domain E3 Ligase-Mediated Host–Virus Interactions: Orchestrating Immune Responses by the Host and Antagonizing Immune Defense by Viruses

    PubMed Central

    Zhang, Yuexiu; Li, Lian-Feng; Munir, Muhammad; Qiu, Hua-Ji

    2018-01-01

    The RING-domain E3 ligases (RING E3s), a group of E3 ligases containing one or two RING finger domains, are involved in various cellular processes such as cell proliferation, immune regulation, apoptosis, among others. In the host, a substantial number of the RING E3s have been implicated to inhibit viral replication through regulating immune responses, including activation and inhibition of retinoic acid-inducible gene I-like receptors, toll-like receptors, and DNA receptor signaling pathways, modulation of cell-surface expression of major histocompatibility complex, and co-stimulatory molecules. During the course of evolution and adaptation, viruses encode RING E3s to antagonize host immune defense, such as the infected cell protein 0 of herpes simplex virus type 1, the non-structural protein 1 of rotavirus, and the K3 and K5 of Kaposi’s sarcoma-associated herpesvirus. In addition, recent studies suggest that viruses can hijack the host RING E3s to facilitate viral replication. Based on emerging and interesting discoveries, the RING E3s present novel links among the host and viruses. Herein, we focus on the latest research progresses in the RING E3s-mediated host–virus interactions and discuss the outlooks of the RING E3s for future research. PMID:29872431

  14. RING E3 mechanism for ubiquitin ligation to a disordered substrate visualized for human anaphase-promoting complex

    DOE PAGES

    Brown, Nicholas G.; VanderLinden, Ryan; Watson, Edmond R.; ...

    2015-03-30

    For many E3 ligases, a mobile RING (Really Interesting New Gene) domain stimulates ubiquitin (Ub) transfer from a thioester-linked E2~Ub intermediate to a lysine on a remotely bound disordered substrate. One such E3 is the gigantic, multisubunit 1.2-MDa anaphase-promoting complex/cyclosome (APC), which controls cell division by ubiquitinating cell cycle regulators to drive their timely degradation. Intrinsically disordered substrates are typically recruited via their KEN-box, D-box, and/or other motifs binding to APC and a coactivator such as CDH1. On the opposite side of the APC, the dynamic catalytic core contains the cullin-like subunit APC2 and its RING partner APC11, which collaboratesmore » with the E2 UBCH10 (UBE2C) to ubiquitinate substrates. However, how dynamic RING–E2~Ub catalytic modules such as APC11–UBCH10~Ub collide with distally tethered disordered substrates remains poorly understood. In this paper, we report structural mechanisms of UBCH10 recruitment to APC CDH1 and substrate ubiquitination. Unexpectedly, in addition to binding APC11’s RING, UBCH10 is corecruited via interactions with APC2, which we visualized in a trapped complex representing an APC CDH1–UBCH10~Ub–substrate intermediate by cryo-electron microscopy, and in isolation by X-ray crystallography. To our knowledge, this is the first structural view of APC, or any cullin–RING E3, with E2 and substrate juxtaposed, and it reveals how tripartite cullin–RING–E2 interactions establish APC’s specificity for UBCH10 and harness a flexible catalytic module to drive ubiquitination of lysines within an accessible zone. Finally, we propose that multisite interactions reduce the degrees of freedom available to dynamic RING E3–E2~Ub catalytic modules, condense the search radius for target lysines, increase the chance of active-site collision with conformationally fluctuating substrates, and enable regulation.« less

  15. Parkin-phosphoubiquitin complex reveals cryptic ubiquitin-binding site required for RBR ligase activity.

    PubMed

    Kumar, Atul; Chaugule, Viduth K; Condos, Tara E C; Barber, Kathryn R; Johnson, Clare; Toth, Rachel; Sundaramoorthy, Ramasubramanian; Knebel, Axel; Shaw, Gary S; Walden, Helen

    2017-05-01

    RING-between-RING (RBR) E3 ligases are a class of ubiquitin ligases distinct from RING or HECT E3 ligases. An important RBR ligase is Parkin, mutations in which lead to early-onset hereditary Parkinsonism. Parkin and other RBR ligases share a catalytic RBR module but are usually autoinhibited and activated via distinct mechanisms. Recent insights into Parkin regulation predict large, unknown conformational changes during Parkin activation. However, current data on active RBR ligases reflect the absence of regulatory domains. Therefore, it remains unclear how individual RBR ligases are activated, and whether they share a common mechanism. We now report the crystal structure of a human Parkin-phosphoubiquitin complex, which shows that phosphoubiquitin binding induces movement in the 'in-between RING' (IBR) domain to reveal a cryptic ubiquitin-binding site. Mutation of this site negatively affects Parkin's activity. Furthermore, ubiquitin binding promotes cooperation between Parkin molecules, which suggests a role for interdomain association in the RBR ligase mechanism.

  16. Architecture of the pontin/reptin complex, essential in the assembly of several macromolecular complexes

    PubMed Central

    Torreira, Eva; Jha, Sudhakar; López-Blanco, José R.; Arias-Palomo, Ernesto; Chacón, Pablo; Cañas, Cristina; Ayora, Sylvia; Dutta, Anindya; Llorca, Oscar

    2008-01-01

    Summary Pontin and reptin belong to the AAA+ family and they are essential for the structural integrity and catalytic activity of several chromatin remodeling complexes. They are also indispensable for the assembly of several ribonucleoprotein complexes, including telomerase. Here, we propose a structural model of the yeast pontin/reptin complex based on a cryo-electron microscopy reconstruction at 13 Å. Pontin/reptin hetero-dodecamers were purified from in vivo assembled complexes forming a double ring. Two rings interact through flexible domains projecting from each hexamer, constituting an atypical asymmetric form of oligomerization. These flexible domains and the AAA+ cores reveal significant conformational changes when compared to the crystal structure of human pontin that generate enlarged channels. This structure of endogenously assembled pontin/reptin complexes is different to previously described structures, suggesting that pontin and reptin could acquire distinct structural states to regulate their broad functions as molecular motors and scaffolds for nucleic acids and proteins. PMID:18940606

  17. Cohesin and Human Disease

    PubMed Central

    Liu, Jinglan; Krantz, Ian D.

    2016-01-01

    Cornelia de Lange syndrome (CdLS) is a dominant multisystem disorder caused by a disruption of cohesin function. The cohesin ring complex is composed of four protein subunits and more than 25 additional proteins involved in its regulation. The discovery that this complex also has a fundamental role in long-range regulation of transcription in Drosophila has shed light on the mechanism likely responsible for its role in development. In addition to the three cohesin proteins involved in CdLS, a second multisystem, recessively inherited, developmental disorder, Roberts-SC phocomelia, is caused by mutations in another regulator of the cohesin complex, ESCO2. Here we review the phenotypes of these disorders, collectively termed cohesinopathies, as well as the mechanism by which cohesin disruption likely causes these diseases. PMID:18767966

  18. Growth ring formation in the starch granules of potato tubers.

    PubMed

    Pilling, Emma; Smith, Alison M

    2003-05-01

    Starch granules from higher plants contain alternating zones of semicrystalline and amorphous material known as growth rings. The regulation of growth ring formation is not understood. We provide several independent lines of evidence that growth ring formation in the starch granules of potato (Solanum tuberosum) tubers is not under diurnal control. Ring formation is not abolished by growth in constant conditions, and ring periodicity and appearance are relatively unaffected by a change from a 24-h to a 40-h photoperiod, and by alterations in substrate supply to the tuber that are known to affect the diurnal pattern of tuber starch synthesis. Some, but not all, of the features of ring formation are consistent with the involvement of a circadian rhythm. Such a rhythm might operate by changing the relative activities of starch-synthesizing enzymes: Growth ring formation is disrupted in tubers with reduced activity of a major isoform of starch synthase. We suggest that physical as well as biological mechanisms may contribute to the control of ring formation, and that a complex interplay of several factors may by involved.

  19. Growth Ring Formation in the Starch Granules of Potato Tubers1

    PubMed Central

    Pilling, Emma; Smith, Alison M.

    2003-01-01

    Starch granules from higher plants contain alternating zones of semicrystalline and amorphous material known as growth rings. The regulation of growth ring formation is not understood. We provide several independent lines of evidence that growth ring formation in the starch granules of potato (Solanum tuberosum) tubers is not under diurnal control. Ring formation is not abolished by growth in constant conditions, and ring periodicity and appearance are relatively unaffected by a change from a 24-h to a 40-h photoperiod, and by alterations in substrate supply to the tuber that are known to affect the diurnal pattern of tuber starch synthesis. Some, but not all, of the features of ring formation are consistent with the involvement of a circadian rhythm. Such a rhythm might operate by changing the relative activities of starch-synthesizing enzymes: Growth ring formation is disrupted in tubers with reduced activity of a major isoform of starch synthase. We suggest that physical as well as biological mechanisms may contribute to the control of ring formation, and that a complex interplay of several factors may by involved. PMID:12746541

  20. Molecular architecture of the ATP-dependent CodWX protease having an N-terminal serine active site

    PubMed Central

    Kang, Min Suk; Kim, Soon Rae; Kwack, Pyeongsu; Lim, Byung Kook; Ahn, Sung Won; Rho, Young Min; Seong, Ihn Sik; Park, Seong-Chul; Eom, Soo Hyun; Cheong, Gang-Won; Chung, Chin Ha

    2003-01-01

    CodWX in Bacillus subtilis is an ATP-dependent, N-terminal serine protease, consisting of CodW peptidase and CodX ATPase. Here we show that CodWX is an alkaline protease and has a distinct molecular architecture. ATP hydrolysis is required for the formation of the CodWX complex and thus for its proteolytic function. Remarkably, CodX has a ‘spool-like’ structure that is formed by interaction of the intermediate domains of two hexameric or heptameric rings. In the CodWX complex, CodW consisting of two stacked hexameric rings (WW) binds to either or both ends of a CodX double ring (XX), forming asymmetric (WWXX) or symmetric cylindrical particles (WWXXWW). CodWX can also form an elongated particle, in which an additional CodX double ring is bound to the symmetric particle (WWXXWWXX). In addition, CodWX is capable of degrading EzrA, an inhibitor of FtsZ ring formation, implicating it in the regulation of cell division. Thus, CodWX appears to constitute a new type of protease that is distinct from other ATP-dependent proteases in its structure and proteolytic mechanism. PMID:12805205

  1. UbMES and UbFluor: Novel probes for ring-between-ring (RBR) E3 ubiquitin ligase PARKIN.

    PubMed

    Park, Sungjin; Foote, Peter K; Krist, David T; Rice, Sarah E; Statsyuk, Alexander V

    2017-10-06

    Ring-between-ring (RBR) E3 ligases have been implicated in autoimmune disorders and neurodegenerative diseases. The functions of many RBR E3s are poorly defined, and their regulation is complex, involving post-translational modifications and allosteric regulation with other protein partners. The functional complexity of RBRs, coupled with the complexity of the native ubiquitination reaction that requires ATP and E1 and E2 enzymes, makes it difficult to study these ligases for basic research and therapeutic purposes. To address this challenge, we developed novel chemical probes, ubiquitin C-terminal fluorescein thioesters UbMES and UbFluor, to qualitatively and quantitatively assess the activity of the RBR E3 ligase PARKIN in a simple experimental setup and in real time using fluorescence polarization. First, we confirmed that PARKIN does not require an E2 enzyme for substrate ubiquitination, lysine selection, and polyubiquitin chain formation. Second, we confirmed that UbFluor quantitatively detects naturally occurring activation states of PARKIN caused by Ser 65 phosphorylation (pPARKIN) and phosphorylated ubiquitin (pUb). Third, we showed that both pUb and the ubiquitin-accepting substrate contribute to maximal pPARKIN ubiquitin conjugation turnover. pUb enhances the transthiolation step, whereas the substrate clears the pPARKIN∼Ub thioester intermediate. Finally, we established that UbFluor can quantify activation or inhibition of PARKIN by structural mutations. These results demonstrate the feasibility of using UbFluor for quantitative studies of the biochemistry of RBR E3s and for high-throughput screening of small-molecule activators or inhibitors of PARKIN and other RBR E3 ligases. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Self-assembly of Zn(salphen) complexes: steric regulation, stability studies and crystallographic analysis revealing an unexpected dimeric 3,3'-t-Bu-substituted Zn(salphen) complex.

    PubMed

    Martínez Belmonte, Marta; Wezenberg, Sander J; Haak, Robert M; Anselmo, Daniele; Escudero-Adán, Eduardo C; Benet-Buchholz, Jordi; Kleij, Arjan W

    2010-05-21

    The self-assembly features of a series of (non)symmetrical Zn(salphen) complexes have been studied in detail by X-ray crystallography, NMR and UV-vis techniques. The combined data demonstrate that the stability of these dimeric assemblies and the relative position of each monomeric unit within the dinuclear structure depend on the location and combination of the aromatic ring substituents.

  3. The aortic ring model of angiogenesis: a quarter century of search and discovery

    PubMed Central

    Nicosia, R F

    2009-01-01

    The aortic ring model has become one of the most widely used methods to study angiogenesis and its mechanisms. Many factors have contributed to its popularity including reproducibility, cost effectiveness, ease of use and good correlation with in vivo studies. In this system aortic rings embedded in biomatrix gels and cultured under chemically defined conditions generate arborizing vascular outgrowths which can be stimulated or inhibited with angiogenic regulators. Originally based on the rat aorta, the aortic ring model was later adapted to the mouse for the evaluation of specific molecular alterations in genetically modified animals. Viral transduction of the aortic rings has enabled investigators to overexpress genes of interest in the aortic cultures. Experiments on angiogenic mechanisms have demonstrated that formation of neovessels in aortic cultures is regulated by macrophages, pericytes and fibroblasts through a complex molecular cascade involving growth factors, inflammatory cytokines, axonal guidance cues, extracellular matrix (ECM) molecules and matrix-degrading proteolytic enzymes. These studies have shown that endothelial sprouting can be effectively blocked by depleting the aortic explants of macrophages or by interfering with the angiogenic cascade at multiple levels including growth factor signalling, cell adhesion and proteolytic degradation of the ECM. In this paper, we review the literature in this field and retrace the journey from our first morphological descriptions of the aortic outgrowths to the latest breakthroughs in the cellular and molecular regulation of aortic vessel growth and regression. PMID:19725916

  4. Targeting MUC1-C suppresses polycomb repressive complex 1 in multiple myeloma.

    PubMed

    Tagde, Ashujit; Markert, Tahireh; Rajabi, Hasan; Hiraki, Masayuki; Alam, Maroof; Bouillez, Audrey; Avigan, David; Anderson, Kenneth; Kufe, Donald

    2017-09-19

    The polycomb repressive complex 1 (PRC1) includes the BMI1, RING1 and RING2 proteins. BMI1 is required for survival of multiple myeloma (MM) cells. The MUC1-C oncoprotein is aberrantly expressed by MM cells, activates MYC and is also necessary for MM cell survival. The present studies show that targeting MUC1-C with (i) stable and inducible silencing and CRISPR/Cas9 editing and (ii) the pharmacologic inhibitor GO-203, which blocks MUC1-C function, downregulates BMI1, RING1 and RING2 expression. The results demonstrate that MUC1-C drives BMI1 transcription by a MYC-dependent mechanism. MUC1-C thus promotes MYC occupancy on the BMI1 promoter and thereby activates BMI1 expression. We also show that the MUC1-C→MYC pathway induces RING2 expression. Moreover, in contrast to BMI1 and RING2, we found that MUC1-C drives RING1 by an NF-κB p65-dependent mechanism. Targeting MUC1-C and thereby the suppression of these key PRC1 proteins was associated with downregulation of the PRC1 E3 ligase activity as evidenced by decreases in ubiquitylation of histone H2A. Targeting MUC1-C also resulted in activation of the PRC1-repressed tumor suppressor genes, PTEN, CDNK2A and BIM . These findings identify a heretofore unrecognized role for MUC1-C in the epigenetic regulation of MM cells.

  5. Parkin-phosphoubiquitin complex reveals a cryptic ubiquitin binding site required for RBR ligase activity

    PubMed Central

    Kumar, Atul; Chaugule, Viduth K; Condos, Tara E C; Barber, Kathryn R; Johnson, Clare; Toth, Rachel; Sundaramoorthy, Ramasubramanian; Knebel, Axel; Shaw, Gary S; Walden, Helen

    2017-01-01

    RING-BETWEENRING-RING (RBR) E3 ligases are a class of ubiquitin ligases distinct from RING or HECT E3 ligases. An important RBR is Parkin, mutations in which lead to early onset hereditary Parkinsonism. Parkin and other RBRs share a catalytic RBR module, but are usually autoinhibited and activated via distinct mechanisms. Recent insights into Parkin regulation predict large, unknown conformational changes during activation of Parkin. However, current data on active RBRs are in the absence of regulatory domains. Therefore, how individual RBRs are activated, and whether they share a common mechanism remains unclear. We now report the crystal structure of a human Parkin-phosphoubiquitin complex, which shows that phosphoubiquitin binding induces a movement in the IBR domain to reveal a cryptic ubiquitin binding site. Mutation of this site negatively impacts on Parkin’s activity. Furthermore, ubiquitin binding promotes cooperation between Parkin molecules, suggesting a role for interdomain association in RBR ligase mechanism. PMID:28414322

  6. Dual RING E3 Architectures Regulate Multiubiquitination and Ubiquitin Chain Elongation by APC/C.

    PubMed

    Brown, Nicholas G; VanderLinden, Ryan; Watson, Edmond R; Weissmann, Florian; Ordureau, Alban; Wu, Kuen-Phon; Zhang, Wei; Yu, Shanshan; Mercredi, Peter Y; Harrison, Joseph S; Davidson, Iain F; Qiao, Renping; Lu, Ying; Dube, Prakash; Brunner, Michael R; Grace, Christy R R; Miller, Darcie J; Haselbach, David; Jarvis, Marc A; Yamaguchi, Masaya; Yanishevski, David; Petzold, Georg; Sidhu, Sachdev S; Kuhlman, Brian; Kirschner, Marc W; Harper, J Wade; Peters, Jan-Michael; Stark, Holger; Schulman, Brenda A

    2016-06-02

    Protein ubiquitination involves E1, E2, and E3 trienzyme cascades. E2 and RING E3 enzymes often collaborate to first prime a substrate with a single ubiquitin (UB) and then achieve different forms of polyubiquitination: multiubiquitination of several sites and elongation of linkage-specific UB chains. Here, cryo-EM and biochemistry show that the human E3 anaphase-promoting complex/cyclosome (APC/C) and its two partner E2s, UBE2C (aka UBCH10) and UBE2S, adopt specialized catalytic architectures for these two distinct forms of polyubiquitination. The APC/C RING constrains UBE2C proximal to a substrate and simultaneously binds a substrate-linked UB to drive processive multiubiquitination. Alternatively, during UB chain elongation, the RING does not bind UBE2S but rather lures an evolving substrate-linked UB to UBE2S positioned through a cullin interaction to generate a Lys11-linked chain. Our findings define mechanisms of APC/C regulation, and establish principles by which specialized E3-E2-substrate-UB architectures control different forms of polyubiquitination. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. New insights into cohesin loading.

    PubMed

    Litwin, Ireneusz; Wysocki, Robert

    2018-02-01

    Cohesin is a conserved, ring-shaped protein complex that encircles sister chromatids and ensures correct chromosome segregation during mitosis and meiosis. It also plays a crucial role in the regulation of gene expression, DNA condensation, and DNA repair through both non-homologous end joining and homologous recombination. Cohesins are spatiotemporally regulated by the Scc2-Scc4 complex which facilitates cohesin loading onto chromatin at specific chromosomal sites. Over the last few years, much attention has been paid to cohesin and cohesin loader as it became clear that even minor disruptions of these complexes may lead to developmental disorders and cancers. Here we summarize recent developments in the structure of Scc2-Scc4 complex, cohesin loading process, and mediators that determine the Scc2-Scc4 binding patterns to chromatin.

  8. Inflammasome activation causes dual recruitment of NLRC4 and NLRP3 to the same macromolecular complex.

    PubMed

    Man, Si Ming; Hopkins, Lee J; Nugent, Eileen; Cox, Susan; Glück, Ivo M; Tourlomousis, Panagiotis; Wright, John A; Cicuta, Pietro; Monie, Tom P; Bryant, Clare E

    2014-05-20

    Pathogen recognition by nucleotide-binding oligomerization domain-like receptor (NLR) results in the formation of a macromolecular protein complex (inflammasome) that drives protective inflammatory responses in the host. It is thought that the number of inflammasome complexes forming in a cell is determined by the number of NLRs being activated, with each NLR initiating its own inflammasome assembly independent of one another; however, we show here that the important foodborne pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium) simultaneously activates at least two NLRs, whereas only a single inflammasome complex is formed in a macrophage. Both nucleotide-binding domain and leucine-rich repeat caspase recruitment domain 4 and nucleotide-binding domain and leucine-rich repeat pyrin domain 3 are simultaneously present in the same inflammasome, where both NLRs are required to drive IL-1β processing within the Salmonella-infected cell and to regulate the bacterial burden in mice. Superresolution imaging of Salmonella-infected macrophages revealed a macromolecular complex with an outer ring of apoptosis-associated speck-like protein containing a caspase activation and recruitment domain and an inner ring of NLRs, with active caspase effectors containing the pro-IL-1β substrate localized internal to the ring structure. Our data reveal the spatial localization of different components of the inflammasome and how different members of the NLR family cooperate to drive robust IL-1β processing during Salmonella infection.

  9. Calcium sensitive ring-like oligomers formed by synaptotagmin

    PubMed Central

    Wang, Jing; Bello, Oscar; Auclair, Sarah M.; Wang, Jing; Coleman, Jeff; Pincet, Frederic; Krishnakumar, Shyam S.; Sindelar, Charles V.; Rothman, James E.

    2014-01-01

    The synaptic vesicle protein synaptotagmin-1 (SYT) is required to couple calcium influx to the membrane fusion machinery. However, the structural mechanism underlying this process is unclear. Here we report an unexpected circular arrangement (ring) of SYT’s cytosolic domain (C2AB) formed on lipid monolayers in the absence of free calcium ions as revealed by electron microscopy. Rings vary in diameter from 18–43 nm, corresponding to 11–26 molecules of SYT. Continuous stacking of the SYT rings occasionally converts both lipid monolayers and bilayers into protein-coated tubes. Helical reconstruction of the SYT tubes shows that one of the C2 domains (most likely C2B, based on its biochemical properties) interacts with the membrane and is involved in ring formation, and the other C2 domain points radially outward. SYT rings are disrupted rapidly by physiological concentrations of free calcium but not by magnesium. Assuming that calcium-free SYT rings are physiologically relevant, these results suggest a simple and novel mechanism by which SYT regulates neurotransmitter release: The ring acts as a spacer to prevent the completion of the soluble N-ethylmaleimide–sensitive factor activating protein receptor (SNARE) complex assembly, thereby clamping fusion in the absence of calcium. When the ring disassembles in the presence of calcium, fusion proceeds unimpeded. PMID:25201968

  10. Self-assembly of InAs ring complexes on InP substrates by droplet epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noda, T.; Mano, T.; Jo, M.

    We report the self-assembly of InAs ring complexes on InP (100) substrates by droplet epitaxy. Single-ring, ring-disk complex, and concentric double-ring structures were formed by controlling the As beam flux and substrate temperature. A clear photoluminescence signal was detected in a sample where InAs rings were embedded in InGaAs.

  11. The Flagellar Hook Protein, FlgE, of Salmonella enterica Serovar Typhimurium Is Posttranscriptionally Regulated in Response to the Stage of Flagellar Assembly

    PubMed Central

    Bonifield, Heather R.; Yamaguchi, Shigeru; Hughes, Kelly T.

    2000-01-01

    We investigated the posttranscriptional regulation of flgE, a class 2 gene that encodes the hook subunit protein of the flagella. RNase protection assays demonstrated that the flgE gene was transcribed at comparable levels in numerous strains defective in known steps of flagellar assembly. However, Western analyses of these strains demonstrated substantial differences in FlgE protein levels. Although wild-type FlgE levels were observed in strains with deletions of genes encoding components of the switch complex and the flagellum-specific secretion apparatus, no protein was detected in a strain with deletions of the rod, ring, and hook-associated proteins. To determine whether FlgE levels were affected by the stage of hook–basal-body assembly, Western analysis was performed on strains with mutations at individual loci encompassed by the deletion. FlgE protein was undetectable in rod mutants, intermediate in ring mutants, and wild type in hook-associated protein mutants. The lack of negative regulation in switch complex and flagellum-specific secretion apparatus deletion mutants blocked for flagellar construction prior to rod assembly suggests that these structures play a role in the negative regulation of FlgE. Quantitative Western analyses of numerous flagellar mutants indicate that FlgE levels reflect the stage at which flagellar assembly is blocked. These data provide evidence for negative posttranscriptional regulation of FlgE in response to the stage of flagellar assembly. PMID:10869084

  12. Chromatin-Bound Cullin-Ring Ligases: Regulatory Roles in DNA Replication and Potential Targeting for Cancer Therapy

    PubMed Central

    Jang, Sang-Min; Redon, Christophe E.; Aladjem, Mirit I.

    2018-01-01

    Cullin-RING (Really Interesting New Gene) E3 ubiquitin ligases (CRLs), the largest family of E3 ubiquitin ligases, are functional multi-subunit complexes including substrate receptors, adaptors, cullin scaffolds, and RING-box proteins. CRLs are responsible for ubiquitination of ~20% of cellular proteins and are involved in diverse biological processes including cell cycle progression, genome stability, and oncogenesis. Not surprisingly, cullins are deregulated in many diseases and instances of cancer. Recent studies have highlighted the importance of CRL-mediated ubiquitination in the regulation of DNA replication/repair, including specific roles in chromatin assembly and disassembly of the replication machinery. The development of novel therapeutics targeting the CRLs that regulate the replication machinery and chromatin in cancer is now an attractive therapeutic strategy. In this review, we summarize the structure and assembly of CRLs and outline their cellular functions and their diverse roles in cancer, emphasizing the regulatory functions of nuclear CRLs in modulating the DNA replication machinery. Finally, we discuss the current strategies for targeting CRLs against cancer in the clinic. PMID:29594129

  13. The TFIIH subunit Tfb3 regulates cullin neddylation

    PubMed Central

    Rabut, Gwenaël; Le Dez, Gaëlle; Verma, Rati; Makhnevych, Taras; Knebel, Axel; Kurz, Thimo; Boone, Charles; Deshaies, Raymond J.; Peter, Matthias

    2011-01-01

    Summary Cullin proteins are scaffolds for the assembly of multi-subunit ubiquitin ligases, which ubiquitylate a large number of proteins involved in widely-varying cellular functions. Multiple mechanisms cooperate to regulate cullin activity, including neddylation of their C-terminal domain. Interestingly, we found that the yeast Cul4-type cullin Rtt101 is not only neddylated but also ubiquitylated, and both modifications promote Rtt101 function in vivo. Surprisingly, proper modification of Rtt101 neither correlated with catalytic activity of the RING-domain of Hrt1 nor did it require the Nedd8 ligase Dcn1. Instead, ubiquitylation of Rtt101 was dependent on the ubiquitin-conjugating enzyme Ubc4, while efficient neddylation involves the RING-domain protein Tfb3, a subunit of the transcription factor TFIIH. Tfb3 also controls Cul3 neddylation and activity in vivo, and physically interacts with Ubc4 and the Nedd8-conjugating enzyme Ubc12 as well as the Hrt1/Rtt101 complex. Together, these results suggest that the conserved RING-domain protein Tfb3 controls activation of a subset of cullins. PMID:21816351

  14. Selectively catalytic activity of metal–organic frameworks depending on the N-position within the pyridine ring of their building blocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Haitao, E-mail: xuhaitao@ecust.edu.cn; Gou, Yongxia; Ye, Jing

    2016-05-15

    Iron metal–organic frameworks (MOFs) [Fe(L){sub 2}(SCN){sub 2}]{sub ∝} (L1: 4-bpdh=2,5-bis(4-pyridyl)-3,4-diaza-2,4-hexadiene for 1Fe; and L2: 3-bpdh=2,5-bis(3-pyridyl)-3,4-diaza-2,4-hexadiene for 2Fe) were assembled in a MeOH–H{sub 2}O solvent system. 1Fe exhibits a two-dimensional extended-grid network, whereas 2Fe exhibits a stair-like double-chain; the N-position within the pyridine ring of the complexes was observed to regulate the MOF structure as layers or chains. Furthermore, selectively catalytic activity was observed for the layered MOF but not the chain-structured MOF; micro/nanoparticles of the layered MOF were therefore investigated for new potential applications of micro/nano MOFs. - Graphical abstract: Iron metal–organic frameworks (MOFs) [Fe(L){sub 2}(SCN){sub 2}]{sub ∝} (L1: 4-bpdh=2,5-bis(4-pyridyl)-3,4-diaza-2,4-hexadienemore » for 1Fe; and L2: 3-bpdh=2,5-bis(3-pyridyl)-3,4-diaza-2,4-hexadiene for 2Fe) were assembled in a MeOH–H{sub 2}O solvent system. The N-position within the pyridine ring of the complexes was observed to regulate the MOF structure as layers or chains. Selectively catalytic activity was observed for the layered MOF but not the chain-structured MOF. - Highlights: • Synthesis and structure of metal–organic framework [Fe(L){sub 2}(SCN){sub 2}]{sub ∝}. • Selectively catalytic activity depending on the N-position within the pyridine ring. • The degradation and conversion of methyl orange.« less

  15. Juxtaposed Polycomb complexes co-regulate vertebral identity.

    PubMed

    Kim, Se Young; Paylor, Suzanne W; Magnuson, Terry; Schumacher, Armin

    2006-12-01

    Best known as epigenetic repressors of developmental Hox gene transcription, Polycomb complexes alter chromatin structure by means of post-translational modification of histone tails. Depending on the cellular context, Polycomb complexes of diverse composition and function exhibit cooperative interaction or hierarchical interdependency at target loci. The present study interrogated the genetic, biochemical and molecular interaction of BMI1 and EED, pivotal constituents of heterologous Polycomb complexes, in the regulation of vertebral identity during mouse development. Despite a significant overlap in dosage-sensitive homeotic phenotypes and co-repression of a similar set of Hox genes, genetic analysis implicated eed and Bmi1 in parallel pathways, which converge at the level of Hox gene regulation. Whereas EED and BMI1 formed separate biochemical entities with EzH2 and Ring1B, respectively, in mid-gestation embryos, YY1 engaged in both Polycomb complexes. Strikingly, methylated lysine 27 of histone H3 (H3-K27), a mediator of Polycomb complex recruitment to target genes, stably associated with the EED complex during the maintenance phase of Hox gene repression. Juxtaposed EED and BMI1 complexes, along with YY1 and methylated H3-K27, were detected in upstream regulatory regions of Hoxc8 and Hoxa5. The combined data suggest a model wherein epigenetic and genetic elements cooperatively recruit and retain juxtaposed Polycomb complexes in mammalian Hox gene clusters toward co-regulation of vertebral identity.

  16. The RNA-mediated, asymmetric ring regulatory mechanism of the transcription termination Rho helicase decrypted by time-resolved nucleotide analog interference probing (trNAIP).

    PubMed

    Soares, Emilie; Schwartz, Annie; Nollmann, Marcello; Margeat, Emmanuel; Boudvillain, Marc

    2014-08-01

    Rho is a ring-shaped, ATP-dependent RNA helicase/translocase that dissociates transcriptional complexes in bacteria. How RNA recognition is coupled to ATP hydrolysis and translocation in Rho is unclear. Here, we develop and use a new combinatorial approach, called time-resolved Nucleotide Analog Interference Probing (trNAIP), to unmask RNA molecular determinants of catalytic Rho function. We identify a regulatory step in the translocation cycle involving recruitment of the 2'-hydroxyl group of the incoming 3'-RNA nucleotide by a Rho subunit. We propose that this step arises from the intrinsic weakness of one of the subunit interfaces caused by asymmetric, split-ring arrangement of primary RNA tethers around the Rho hexamer. Translocation is at highest stake every seventh nucleotide when the weak interface engages the incoming 3'-RNA nucleotide or breaks, depending on RNA threading constraints in the Rho pore. This substrate-governed, 'test to run' iterative mechanism offers a new perspective on how a ring-translocase may function or be regulated. It also illustrates the interest and versatility of the new trNAIP methodology to unveil the molecular mechanisms of complex RNA-based systems. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  17. Parkin, A Top Level Manager in the Cell’s Sanitation Department

    PubMed Central

    Rankin, Carolyn A; Roy, Ambrish; Zhang, Yang; Richter, Mark

    2011-01-01

    Parkin belongs to a class of multiple RING domain proteins designated as RBR (RING, in between RING, RING) proteins. In this review we examine what is known regarding the structure/function relationship of the Parkin protein. Parkin contains three RING domains plus a ubiquitin-like domain and an in-between-RING (IBR) domain. RING domains are rich in cysteine amino acids that act as ligands to bind zinc ions. RING domains may interact with DNA or with other proteins and perform a wide range of functions. Some function as E3 ubiquitin ligases, participating in attachment of ubiquitin chains to signal proteasome degradation; however, ubiquitin may be attached for purposes other than proteasome degradation. It was determined that the C-terminal most RING, RING2, is essential for Parkin to function as an E3 ubiquitin ligase and a number of substrates have been identified. However, Parkin also participates in a number of other fiunctions, such as DNA repair, microtubule stabilization, and formation of aggresomes. Some functions, such as participation in a multi-protein complex implicated in NMDA activity at the post synaptic density, do not require ubiquitination of substrate molecules. Recent observations of RING proteins suggest their function may be regulated by zinc ion binding. We have modeled the three RING domains of Parkin and have identified a new set of RING2 ligands. This set allows for binding of two rather than just one zinc ion, opening the possibility that the number of zinc ions bound acts as a molecular switch to modulate Parkin function. PMID:21633666

  18. Circadian clock protein KaiC forms ATP-dependent hexameric rings and binds DNA

    PubMed Central

    Mori, Tetsuya; Saveliev, Sergei V.; Xu, Yao; Stafford, Walter F.; Cox, Michael M.; Inman, Ross B.; Johnson, Carl H.

    2002-01-01

    KaiC from Synechococcus elongatus PCC 7942 (KaiC) is an essential circadian clock protein in cyanobacteria. Previous sequence analyses suggested its inclusion in the RecA/DnaB superfamily. A characteristic of the proteins of this superfamily is that they form homohexameric complexes that bind DNA. We show here that KaiC also forms ring complexes with a central pore that can be visualized by electron microscopy. A combination of analytical ultracentrifugation and chromatographic analyses demonstrates that these complexes are hexameric. The association of KaiC molecules into hexamers depends on the presence of ATP. The KaiC sequence does not include the obvious DNA-binding motifs found in RecA or DnaB. Nevertheless, KaiC binds forked DNA substrates. These data support the inclusion of KaiC into the RecA/DnaB superfamily and have important implications for enzymatic activity of KaiC in the circadian clock mechanism that regulates global changes in gene expression patterns. PMID:12477935

  19. Circadian clock protein KaiC forms ATP-dependent hexameric rings and binds DNA.

    PubMed

    Mori, Tetsuya; Saveliev, Sergei V; Xu, Yao; Stafford, Walter F; Cox, Michael M; Inman, Ross B; Johnson, Carl H

    2002-12-24

    KaiC from Synechococcus elongatus PCC 7942 (KaiC) is an essential circadian clock protein in cyanobacteria. Previous sequence analyses suggested its inclusion in the RecADnaB superfamily. A characteristic of the proteins of this superfamily is that they form homohexameric complexes that bind DNA. We show here that KaiC also forms ring complexes with a central pore that can be visualized by electron microscopy. A combination of analytical ultracentrifugation and chromatographic analyses demonstrates that these complexes are hexameric. The association of KaiC molecules into hexamers depends on the presence of ATP. The KaiC sequence does not include the obvious DNA-binding motifs found in RecA or DnaB. Nevertheless, KaiC binds forked DNA substrates. These data support the inclusion of KaiC into the RecADnaB superfamily and have important implications for enzymatic activity of KaiC in the circadian clock mechanism that regulates global changes in gene expression patterns.

  20. Rotavirus NSP1 Requires Casein Kinase II-Mediated Phosphorylation for Hijacking of Cullin-RING Ligases.

    PubMed

    Davis, Kaitlin A; Morelli, Marco; Patton, John T

    2017-08-29

    The rotavirus nonstructural protein NSP1 repurposes cullin-RING E3 ubiquitin ligases (CRLs) to antagonize innate immune responses. By functioning as substrate adaptors of hijacked CRLs, NSP1 causes ubiquitination and proteasomal degradation of host proteins that are essential for expression of interferon (IFN) and IFN-stimulated gene products. The target of most human and porcine rotaviruses is the β-transducin repeat-containing protein (β-TrCP), a regulator of NF-κB activation. β-TrCP recognizes a phosphorylated degron (DSGΦXS) present in the inhibitor of NF-κB (IκB); phosphorylation of the IκB degron is mediated by IκB kinase (IKK). Because NSP1 contains a C-terminal IκB-like degron (ILD; DSGXS) that recruits β-TrCP, we investigated whether the NSP1 ILD is similarly activated by phosphorylation and whether this modification is required to trigger the incorporation of NSP1 into CRLs. Based on mutagenesis and phosphatase treatment studies, we found that both serine residues of the NSP1 ILD are phosphorylated, a pattern mimicking phosphorylation of IκB. A three-pronged approach using small-molecule inhibitors, small interfering RNAs, and mutagenesis demonstrated that NSP1 phosphorylation is mediated by the constitutively active casein kinase II (CKII), rather than IKK. In coimmunoprecipitation assays, we found that this modification was essential for NSP1 recruitment of β-TrCP and induced changes involving the NSP1 N-terminal RING motif that allowed formation of Cul3-NSP1 complexes. Taken together, our results indicate a highly regulated stepwise process in the formation of NSP1-Cul3 CRLs that is initiated by CKII phosphorylation of NSP1, followed by NSP1 recruitment of β-TrCP and ending with incorporation of the NSP1-β-TrCP complex into the CRL via interactions dependent on the highly conserved NSP1 RING motif. IMPORTANCE Rotavirus is a segmented double-stranded RNA virus that causes severe diarrhea in young children. A primary mechanism used by the virus to inhibit host innate immune responses is to hijack cellular cullin-RING E3 ubiquitin ligases (CRLs) and redirect their targeting activity to the degradation of cellular proteins crucial for interferon expression. This task is accomplished through the rotavirus nonstructural protein NSP1, which incorporates itself into a CRL and serves as a substrate recognition subunit. The substrate recognized by the NSP1 of many human and porcine rotaviruses is β-TrCP, a protein that regulates the transcription factor NF-κB. In this study, we show that formation of NSP1 CRLs is a highly regulated stepwise process initiated by CKII phosphorylation of the β-TrCP recognition motif in NSP1. This modification triggers recruitment of the β-TrCP substrate and induces subsequent changes in a highly conserved NSP1 RING domain that allow anchoring of the NSP1-β-TrCP complex to a cullin scaffold. Copyright © 2017 Davis et al.

  1. Mechanism of TRIM25 Catalytic Activation in the Antiviral RIG-I Pathway

    PubMed Central

    Sanchez, Jacint G.; Chiang, Jessica J.; Sparrer, Konstantin M.J.; Alam, Steven L.; Chi, Michael; Roganowicz, Marcin D.; Sankaran, Banumathi; Gack, Michaela U.; Pornillos, Owen

    2016-01-01

    SUMMARY Antiviral response pathways induce interferon by higher-order assembly of signaling complexes called signalosomes. Assembly of the RIG-I signalosome is regulated by K63-linked polyubiquitin chains, which are synthesized by the E3 ubiquitin ligase, TRIM25. We have previously shown that the TRIM25 coiled-coil domain is a stable, antiparallel dimer that positions two catalytic RING domains on opposite ends of an elongated rod. We now show that the RING domain is a separate self-association motif that engages ubiquitin-conjugated E2 enzymes as a dimer. RING dimerization is required for catalysis, TRIM25-mediated RIG-I ubiquitination, interferon induction, and antiviral activity. We also provide evidence that RING dimerization and E3 ligase activity are promoted by binding of the TRIM25 SPRY domain to the RIG-I effector domain. These results indicate that TRIM25 actively participates in higher-order assembly of the RIG-I signalosome and helps to fine-tune the efficiency of the RIG-I-mediated antiviral response. PMID:27425606

  2. Src-like adaptor protein regulates TCR expression on thymocytes by linking the ubiquitin ligase c-Cbl to the TCR complex.

    PubMed

    Myers, Margaret D; Sosinowski, Tomasz; Dragone, Leonard L; White, Carmen; Band, Hamid; Gu, Hua; Weiss, Arthur

    2006-01-01

    The adaptor molecule SLAP and E3 ubiquitin ligase c-Cbl each regulate expression of T cell receptor (TCR)-CD3 on thymocytes. Here we provide genetic and biochemical evidence that both molecules function in the same pathway. TCR-CD3 expression was similar in the absence of SLAP and/or c-Cbl. SLAP and c-Cbl were found to interact, and their expression together downregulated CD3epsilon. This required multiple domains in SLAP and the ring finger of c-Cbl. Furthermore, expression of SLAP and c-Cbl together induced TCRzeta ubiquitination and degradation, preventing the accumulation of fully assembled recycling TCR complexes. These studies indicate that SLAP links the E3 ligase activity of c-Cbl to the TCR, allowing for stage-specific regulation of TCR expression.

  3. Inter-ring rotations of AAA ATPase p97 revealed by electron cryomicroscopy

    PubMed Central

    Yeung, Heidi O.; Förster, Andreas; Bebeacua, Cecilia; Niwa, Hajime; Ewens, Caroline; McKeown, Ciarán; Zhang, Xiaodong; Freemont, Paul S.

    2014-01-01

    The type II AAA+ protein p97 is involved in numerous cellular activities, including endoplasmic reticulum-associated degradation, transcription activation, membrane fusion and cell-cycle control. These activities are at least in part regulated by the ubiquitin system, in which p97 is thought to target ubiquitylated protein substrates within macromolecular complexes and assist in their extraction or disassembly. Although ATPase activity is essential for p97 function, little is known about how ATP binding or hydrolysis is coupled with p97 conformational changes and substrate remodelling. Here, we have used single-particle electron cryomicroscopy (cryo-EM) to study the effect of nucleotides on p97 conformation. We have identified conformational heterogeneity within the cryo-EM datasets from which we have resolved two major p97 conformations. A comparison of conformations reveals inter-ring rotations upon nucleotide binding and hydrolysis that may be linked to the remodelling of target protein complexes. PMID:24598262

  4. Saccharomyces cerevisiae Gle2/Rae1 is involved in septin organization, essential for cell cycle progression.

    PubMed

    Zander, Gesa; Kramer, Wilfried; Seel, Anika; Krebber, Heike

    2017-11-01

    Gle2/Rae1 is highly conserved from yeast to humans and has been described as an mRNA export factor. Additionally, it is implicated in the anaphase-promoting complex-mediated cell cycle regulation in higher eukaryotes. Here we identify an involvement for Saccharomyces cerevisiae Gle2 in septin organization, which is crucial for cell cycle progression and cell division. Gle2 genetically and physically interacts with components of the septin ring. Importantly, deletion of GLE2 leads to elongated buds, severe defects in septin-assembly and their cellular mislocalization. Septin-ring formation is triggered by the septin-regulating GTPase Cdc42, which establishes and maintains cell polarity. Additionally, activity of the master cell cycle regulator Cdc28 (Cdk1) is needed, which is, besides other functions, also required for G 2 /M-transition, and in yeast particularly responsible for initiating the apical-isotropic switch. We show genetic and physical interactions of Gle2 with both Cdc42 and Cdc28. Most importantly, we find that gle2∆ severely mislocalizes Cdc42, leading to defects in septin-complex formation and cell division. Thus, our findings suggest that Gle2 participates in the efficient organization of the septin assembly network, where it might act as a scaffold protein. © 2017 The Authors. Yeast published by John Wiley & Sons, Ltd. © 2017 The Authors. Yeast published by John Wiley & Sons, Ltd.

  5. LET-99 functions in the astral furrowing pathway, where it is required for myosin enrichment in the contractile ring

    PubMed Central

    Price, Kari L.; Rose, Lesilee S.

    2017-01-01

    The anaphase spindle determines the position of the cytokinesis furrow, such that the contractile ring assembles in an equatorial zone between the two spindle poles. Contractile ring formation is mediated by RhoA activation at the equator by the centralspindlin complex and midzone microtubules. Astral microtubules also inhibit RhoA accumulation at the poles. In the Caenorhabditis elegans one-cell embryo, the astral microtubule–dependent pathway requires anillin, NOP-1, and LET-99. LET-99 is well characterized for generating the asymmetric cortical localization of the Gα-dependent force-generating complex that positions the spindle during asymmetric division. However, whether the role of LET-99 in cytokinesis is specific to asymmetric division and whether it acts through Gα to promote furrowing are unclear. Here we show that LET-99 contributes to furrowing in both asymmetrically and symmetrically dividing cells, independent of its function in spindle positioning and Gα regulation. LET-99 acts in a pathway parallel to anillin and is required for myosin enrichment into the contractile ring. These and other results suggest a positive feedback model in which LET-99 localizes to the presumptive cleavage furrow in response to the spindle and myosin. Once positioned there, LET-99 enhances myosin accumulation to promote furrowing in both symmetrically and asymmetrically dividing cells. PMID:28701343

  6. AAA-ATPases in Protein Degradation

    PubMed Central

    Yedidi, Ravikiran S.; Wendler, Petra; Enenkel, Cordula

    2017-01-01

    Proteolytic machineries containing multisubunit protease complexes and AAA-ATPases play a key role in protein quality control and the regulation of protein homeostasis. In these protein degradation machineries, the proteolytically active sites are formed by either threonines or serines which are buried inside interior cavities of cylinder-shaped complexes. In eukaryotic cells, the proteasome is the most prominent protease complex harboring AAA-ATPases. To degrade protein substrates, the gates of the axial entry ports of the protease need to be open. Gate opening is accomplished by AAA-ATPases, which form a hexameric ring flanking the entry ports of the protease. Protein substrates with unstructured domains can loop into the entry ports without the assistance of AAA-ATPases. However, folded proteins require the action of AAA-ATPases to unveil an unstructured terminus or domain. Cycles of ATP binding/hydrolysis fuel the unfolding of protein substrates which are gripped by loops lining up the central pore of the AAA-ATPase ring. The AAA-ATPases pull on the unfolded polypeptide chain for translocation into the proteolytic cavity of the protease. Conformational changes within the AAA-ATPase ring and the adjacent protease chamber create a peristaltic movement for substrate degradation. The review focuses on new technologies toward the understanding of the function and structure of AAA-ATPases to achieve substrate recognition, unfolding and translocation into proteasomes in yeast and mammalian cells and into proteasome-equivalent proteases in bacteria and archaea. PMID:28676851

  7. AAA-ATPases in Protein Degradation.

    PubMed

    Yedidi, Ravikiran S; Wendler, Petra; Enenkel, Cordula

    2017-01-01

    Proteolytic machineries containing multisubunit protease complexes and AAA-ATPases play a key role in protein quality control and the regulation of protein homeostasis. In these protein degradation machineries, the proteolytically active sites are formed by either threonines or serines which are buried inside interior cavities of cylinder-shaped complexes. In eukaryotic cells, the proteasome is the most prominent protease complex harboring AAA-ATPases. To degrade protein substrates, the gates of the axial entry ports of the protease need to be open. Gate opening is accomplished by AAA-ATPases, which form a hexameric ring flanking the entry ports of the protease. Protein substrates with unstructured domains can loop into the entry ports without the assistance of AAA-ATPases. However, folded proteins require the action of AAA-ATPases to unveil an unstructured terminus or domain. Cycles of ATP binding/hydrolysis fuel the unfolding of protein substrates which are gripped by loops lining up the central pore of the AAA-ATPase ring. The AAA-ATPases pull on the unfolded polypeptide chain for translocation into the proteolytic cavity of the protease. Conformational changes within the AAA-ATPase ring and the adjacent protease chamber create a peristaltic movement for substrate degradation. The review focuses on new technologies toward the understanding of the function and structure of AAA-ATPases to achieve substrate recognition, unfolding and translocation into proteasomes in yeast and mammalian cells and into proteasome-equivalent proteases in bacteria and archaea.

  8. Activation of the DnaK-ClpB Complex is Regulated by the Properties of the Bound Substrate.

    PubMed

    Fernández-Higuero, Jose Angel; Aguado, Alejandra; Perales-Calvo, Judit; Moro, Fernando; Muga, Arturo

    2018-04-11

    The chaperone ClpB in bacteria is responsible for the reactivation of aggregated proteins in collaboration with the DnaK system. Association of these chaperones at the aggregate surface stimulates ATP hydrolysis, which mediates substrate remodeling. However, a question that remains unanswered is whether the bichaperone complex can be selectively activated by substrates that require remodeling. We find that large aggregates or bulky, native-like substrates activates the complex, whereas a smaller, permanently unfolded protein or extended, short peptides fail to stimulate it. Our data also indicate that ClpB interacts differently with DnaK in the presence of aggregates or small peptides, displaying a higher affinity for aggregate-bound DnaK, and that DnaK-ClpB collaboration requires the coupled ATPase-dependent remodeling activities of both chaperones. Complex stimulation is mediated by residues at the β subdomain of DnaK substrate binding domain, which become accessible to the disaggregase when the lid is allosterically detached from the β subdomain. Complex activation also requires an active NBD2 and the integrity of the M domain-ring of ClpB. Disruption of the M-domain ring allows the unproductive stimulation of the DnaK-ClpB complex in solution. The ability of the DnaK-ClpB complex to discrimínate different substrate proteins might allow its activation when client proteins require remodeling.

  9. RING1 is associated with the polycomb group protein complex and acts as a transcriptional repressor.

    PubMed

    Satijn, D P; Gunster, M J; van der Vlag, J; Hamer, K M; Schul, W; Alkema, M J; Saurin, A J; Freemont, P S; van Driel, R; Otte, A P

    1997-07-01

    The Polycomb (Pc) protein is a component of a multimeric, chromatin-associated Polycomb group (PcG) protein complex, which is involved in stable repression of gene activity. The identities of components of the PcG protein complex are largely unknown. In a two-hybrid screen with a vertebrate Pc homolog as a target, we identify the human RING1 protein as interacting with Pc. RING1 is a protein that contains the RING finger motif, a specific zinc-binding domain, which is found in many regulatory proteins. So far, the function of the RING1 protein has remained enigmatic. Here, we show that RING1 coimmunoprecipitates with a human Pc homolog, the vertebrate PcG protein BMI1, and HPH1, a human homolog of the PcG protein Polyhomeotic (Ph). Also, RING1 colocalizes with these vertebrate PcG proteins in nuclear domains of SW480 human colorectal adenocarcinoma and Saos-2 human osteosarcoma cells. Finally, we show that RING1, like Pc, is able to repress gene activity when targeted to a reporter gene. Our findings indicate that RING1 is associated with the human PcG protein complex and that RING1, like PcG proteins, can act as a transcriptional repressor.

  10. Mechanism of TRIM25 Catalytic Activation in the Antiviral RIG-I Pathway.

    PubMed

    Sanchez, Jacint G; Chiang, Jessica J; Sparrer, Konstantin M J; Alam, Steven L; Chi, Michael; Roganowicz, Marcin D; Sankaran, Banumathi; Gack, Michaela U; Pornillos, Owen

    2016-08-02

    Antiviral response pathways induce interferon by higher-order assembly of signaling complexes called signalosomes. Assembly of the RIG-I signalosome is regulated by K63-linked polyubiquitin chains, which are synthesized by the E3 ubiquitin ligase, TRIM25. We have previously shown that the TRIM25 coiled-coil domain is a stable, antiparallel dimer that positions two catalytic RING domains on opposite ends of an elongated rod. We now show that the RING domain is a separate self-association motif that engages ubiquitin-conjugated E2 enzymes as a dimer. RING dimerization is required for catalysis, TRIM25-mediated RIG-I ubiquitination, interferon induction, and antiviral activity. We also provide evidence that RING dimerization and E3 ligase activity are promoted by binding of the TRIM25 SPRY domain to the RIG-I effector domain. These results indicate that TRIM25 actively participates in higher-order assembly of the RIG-I signalosome and helps to fine-tune the efficiency of the RIG-I-mediated antiviral response. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Structural and kinetic analysis of the COP9-Signalosome activation and the cullin-RING ubiquitin ligase deneddylation cycle

    PubMed Central

    Mosadeghi, Ruzbeh; Reichermeier, Kurt M; Winkler, Martin; Schreiber, Anne; Reitsma, Justin M; Zhang, Yaru; Stengel, Florian; Cao, Junyue; Kim, Minsoo; Sweredoski, Michael J; Hess, Sonja; Leitner, Alexander; Aebersold, Ruedi; Peter, Matthias; Deshaies, Raymond J; Enchev, Radoslav I

    2016-01-01

    The COP9-Signalosome (CSN) regulates cullin–RING ubiquitin ligase (CRL) activity and assembly by cleaving Nedd8 from cullins. Free CSN is autoinhibited, and it remains unclear how it becomes activated. We combine structural and kinetic analyses to identify mechanisms that contribute to CSN activation and Nedd8 deconjugation. Both CSN and neddylated substrate undergo large conformational changes upon binding, with important roles played by the N-terminal domains of Csn2 and Csn4 and the RING domain of Rbx1 in enabling formation of a high affinity, fully active complex. The RING domain is crucial for deneddylation, and works in part through conformational changes involving insert-2 of Csn6. Nedd8 deconjugation and re-engagement of the active site zinc by the autoinhibitory Csn5 glutamate-104 diminish affinity for Cul1/Rbx1 by ~100-fold, resulting in its rapid ejection from the active site. Together, these mechanisms enable a dynamic deneddylation-disassembly cycle that promotes rapid remodeling of the cellular CRL network. DOI: http://dx.doi.org/10.7554/eLife.12102.001 PMID:27031283

  12. Mechanical Regulation in Cell Division and in Neurotransmitter Release

    NASA Astrophysics Data System (ADS)

    Thiyagarajan, Sathish

    During their lifecycle, cells must produce forces which play important roles in several subcellular processes. Force-producing components are organized into macromolecular assemblies of proteins that are often dynamic, and are constructed or disassembled in response to various signals. The forces themselves may directly be involved in subcellular mechanics, or they may influence mechanosensing proteins either within or outside these structures. These proteins play different roles: they may ensure the stability of the force-producing structure, or they may send signals to a coupled process. The generation and sensing of subcellular forces is an active research topic, and this thesis focusses on the roles of these forces in two key areas: cell division and neurotransmitter release. The first part of the thesis deals with the effect of force on cell wall growth regulation during division in the fission yeast Schizosaccharomyces pombe, a cigar-shaped, unicellular organism. During cytokinesis, the last stage of cell division in which the cell physically divides into two, a tense cytokinetic ring anchored to the cellular membrane assembles and constricts, accompanied by the inward centripetal growth of new cell wall, called septum, in the wake of the inward-moving membrane. The contour of the septum hole maintains its circularity as it reduces in size--an indication of regulated growth. To characterize the cell wall growth process, we performed image analysis on contours of the leading edge of the septum obtained via fluorescence microscopy in the labs of our collaborators. We quantified the deviations from circularity using the edge roughness. The roughness was spatially correlated, suggestive of regulated growth. We hypothesized that the cell wall growers are mechanosensitive and respond to the force exerted by the ring. A mathematical model based on this hypothesis then showed that this leads to corrections of roughness in a curvature-dependent fashion. Thus, one of the roles of ring tension is to communicate with the mechanosensitive septum growth processes and coordinate growth to ensure the daughter cells have a functional cell wall. The second part of the thesis deals with how ring tension is produced and sustained, using experimentally measured ultrastructure of the cytokinetic ring itself. Recent super-resolution experiments have revealed that several key proteins of the fission yeast constricting ring are organized into membrane-anchored complexes called nodes. The force producing protein myosin-II in these nodes exerts pulling forces on polymeric actin filaments that are synthesized from polymerizers residing in the nodes. How these forces are marshalled to generate ring tension, and how such an organization maintains its stability is unclear. Using a mathematical model with coarse-grained representations of actin and myosin, we showed that such a node-based organization reproduces previously measured ring tension values. The model explains the origin of experimentally observed bidirectional motion of the nodes in the ring, and showed that turnover of the nodes rescues the ring from inherent contractile instabilities that would be expected when a force-producing structure is made up of small object that effectively attract one another. Finally, the third part of the thesis deals with the role of forces produced by SNARE proteins at synapses between two neurons during neurotransmission. A key step here is synaptic release, where inside a neuron, membrane-bound compartments called vesicles filled with neurotransmitter fuse with the membrane of the neuron forming a transient fusion pore, and release their contents to the outside of the cell. These neurotransmitter molecules are sensed by another neuron that is physically separate from the neuron in question and this neuron propagates the signal henceforth. Thus, regulation of neurotransmitter release is a key step in neurotransmission. A fusion machinery consisting of several proteins facilitates membrane fusion, and pore nucleation requires the formation of a SNARE protein complex in this machinery, whose role during pore dilation is unclear. Using electrophysiological measurements, our collaborators experimentally measured the statistics of the size of single fusion pores in vitro, and observed that average pore sizes increased with the number of SNARE proteins. Using mathematical modeling, we showed that this effect was due to an entropic crowding force that expands the pore and increases with the number of SNAREs, and counteracts the energy barrier to fusion pore expansion.

  13. Dissecting the function of Cullin-RING ubiquitin ligase complex genes in planarian regeneration.

    PubMed

    Strand, Nicholas S; Allen, John M; Ghulam, Mahjoobah; Taylor, Matthew R; Munday, Roma K; Carrillo, Melissa; Movsesyan, Artem; Zayas, Ricardo M

    2018-01-15

    The ubiquitin system plays a role in nearly every aspect of eukaryotic cell biology. The enzymes responsible for transferring ubiquitin onto specific substrates are the E3 ubiquitin ligases, a large and diverse family of proteins, for which biological roles and target substrates remain largely undefined. Studies using model organisms indicate that ubiquitin signaling mediates key steps in developmental processes and tissue regeneration. Here, we used the freshwater planarian, Schmidtea mediterranea, to investigate the role of Cullin-RING ubiquitin ligase (CRL) complexes in stem cell regulation during regeneration. We identified six S. mediterranea cullin genes, and used RNAi to uncover roles for homologs of Cullin-1, -3 and -4 in planarian regeneration. The cullin-1 RNAi phenotype included defects in blastema formation, organ regeneration, lesions, and lysis. To further investigate the function of cullin-1-mediated cellular processes in planarians, we examined genes encoding the adaptor protein Skp1 and F-box substrate-recognition proteins that are predicted to partner with Cullin-1. RNAi against skp1 resulted in phenotypes similar to cullin-1 RNAi, and an RNAi screen of the F-box genes identified 19 genes that recapitulated aspects of cullin-1 RNAi, including ones that in mammals are involved in stem cell regulation and cancer biology. Our data provides evidence that CRLs play discrete roles in regenerative processes and provide a platform to investigate how CRLs regulate stem cells in vivo. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Carbonatite ring-complexes explained by caldera-style volcanism

    PubMed Central

    Andersson, Magnus; Malehmir, Alireza; Troll, Valentin R.; Dehghannejad, Mahdieh; Juhlin, Christopher; Ask, Maria

    2013-01-01

    Carbonatites are rare, carbonate-rich magmatic rocks that make up a minute portion of the crust only, yet they are of great relevance for our understanding of crustal and mantle processes. Although they occur in all continents and from Archaean to present, the deeper plumbing system of carbonatite ring-complexes is usually poorly constrained. Here, we show that carbonatite ring-complexes can be explained by caldera-style volcanism. Our geophysical investigation of the Alnö carbonatite ring-complex in central Sweden identifies a solidified saucer-shaped magma chamber at ~3 km depth that links to surface exposures through a ring fault system. Caldera subsidence during final stages of activity caused carbonatite eruptions north of the main complex, providing the crucial element to connect plutonic and eruptive features of carbonatite magmatism. The way carbonatite magmas are stored, transported and erupt at the surface is thus comparable to known emplacement styles from silicic calderas. PMID:23591904

  15. Carbonatite ring-complexes explained by caldera-style volcanism.

    PubMed

    Andersson, Magnus; Malehmir, Alireza; Troll, Valentin R; Dehghannejad, Mahdieh; Juhlin, Christopher; Ask, Maria

    2013-01-01

    Carbonatites are rare, carbonate-rich magmatic rocks that make up a minute portion of the crust only, yet they are of great relevance for our understanding of crustal and mantle processes. Although they occur in all continents and from Archaean to present, the deeper plumbing system of carbonatite ring-complexes is usually poorly constrained. Here, we show that carbonatite ring-complexes can be explained by caldera-style volcanism. Our geophysical investigation of the Alnö carbonatite ring-complex in central Sweden identifies a solidified saucer-shaped magma chamber at ~3 km depth that links to surface exposures through a ring fault system. Caldera subsidence during final stages of activity caused carbonatite eruptions north of the main complex, providing the crucial element to connect plutonic and eruptive features of carbonatite magmatism. The way carbonatite magmas are stored, transported and erupt at the surface is thus comparable to known emplacement styles from silicic calderas.

  16. Z ring as executor of bacterial cell division.

    PubMed

    Dajkovic, Alex; Lutkenhaus, Joe

    2006-01-01

    It has become apparent that bacteria possess ancestors of the major eukaryotic cytoskeletal proteins. FtsZ, the ancestral homologue of tubulin, assembles into a cytoskeletal structure associated with cell division, designated the Z ring. Formation of the Z ring represents a major point of both spatial and temporal regulation of cell division. Here we discuss findings concerning the structure and the formation of the ring as well as its spatial and temporal regulation.

  17. Myosin light chain kinase and Src control membrane dynamics in volume recovery from cell swelling

    PubMed Central

    Barfod, Elisabeth T.; Moore, Ann L.; Van de Graaf, Benjamin G.; Lidofsky, Steven D.

    2011-01-01

     The expansion of the plasma membrane, which occurs during osmotic swelling of epithelia, must be retrieved for volume recovery, but the mechanisms are unknown. Here we have identified myosin light chain kinase (MLCK) as a regulator of membrane internalization in response to osmotic swelling in a model liver cell line. On hypotonic exposure, we found that there was time-dependent phosphorylation of the MLCK substrate myosin II regulatory light chain. At the sides of the cell, MLCK and myosin II localized to swelling-induced membrane blebs with actin just before retraction, and MLCK inhibition led to persistent blebbing and attenuated cell volume recovery. At the base of the cell, MLCK also localized to dynamic actin-coated rings and patches upon swelling, which were associated with uptake of the membrane marker FM4-64X, consistent with sites of membrane internalization. Hypotonic exposure evoked increased biochemical association of the cell volume regulator Src with MLCK and with the endocytosis regulators cortactin and dynamin, which colocalized within these structures. Inhibition of either Src or MLCK led to altered patch and ring lifetimes, consistent with the concept that Src and MLCK form a swelling-induced protein complex that regulates volume recovery through membrane turnover and compensatory endocytosis under osmotic stress. PMID:21209319

  18. Functional role of TRIM E3 ligase oligomerization and regulation of catalytic activity.

    PubMed

    Koliopoulos, Marios G; Esposito, Diego; Christodoulou, Evangelos; Taylor, Ian A; Rittinger, Katrin

    2016-06-01

    TRIM E3 ubiquitin ligases regulate a wide variety of cellular processes and are particularly important during innate immune signalling events. They are characterized by a conserved tripartite motif in their N-terminal portion which comprises a canonical RING domain, one or two B-box domains and a coiled-coil region that mediates ligase dimerization. Self-association via the coiled-coil has been suggested to be crucial for catalytic activity of TRIMs; however, the precise molecular mechanism underlying this observation remains elusive. Here, we provide a detailed characterization of the TRIM ligases TRIM25 and TRIM32 and show how their oligomeric state is linked to catalytic activity. The crystal structure of a complex between the TRIM25 RING domain and an ubiquitin-loaded E2 identifies the structural and mechanistic features that promote a closed E2~Ub conformation to activate the thioester for ubiquitin transfer allowing us to propose a model for the regulation of activity in the full-length protein. Our data reveal an unexpected diversity in the self-association mechanism of TRIMs that might be crucial for their biological function. © 2016 Francis Crick Institute. Published under the terms of the CC BY 4.0 license.

  19. GRAIL gravity observations of the transition from complex crater to peak-ring basin on the Moon: Implications for crustal structure and impact basin formation

    NASA Astrophysics Data System (ADS)

    Baker, David M. H.; Head, James W.; Phillips, Roger J.; Neumann, Gregory A.; Bierson, Carver J.; Smith, David E.; Zuber, Maria T.

    2017-08-01

    High-resolution gravity data from the Gravity Recovery and Interior Laboratory (GRAIL) mission provide the opportunity to analyze the detailed gravity and crustal structure of impact features in the morphological transition from complex craters to peak-ring basins on the Moon. We calculate average radial profiles of free-air anomalies and Bouguer anomalies for peak-ring basins, protobasins, and the largest complex craters. Complex craters and protobasins have free-air anomalies that are positively correlated with surface topography, unlike the prominent lunar mascons (positive free-air anomalies in areas of low elevation) associated with large basins. The Bouguer gravity anomaly profiles of complex craters are highly irregular, with central positive anomalies that are generally absent or not clearly tied to interior morphology. In contrast, gravity profiles for peak-ring basins (∼200 km to 580 km) are much more regular and are highly correlated with surface morphology. A central positive Bouguer anomaly is confined within the peak ring and a negative Bouguer anomaly annulus extends from the edge of the positive anomaly outward to about the rim crest. A number of degraded basins lacking interior peak rings have diameters and gravity patterns similar to those of well-preserved peak-ring basins. If these structures represent degraded peak-ring basins, the number of peak-ring basins on the Moon would increase by more than a factor of two to 34. The gravity anomalies within basins are interpreted to be due to uplift of the mantle confined within the peak ring and an annulus of thickened crust between the peak ring and rim crest. We hypothesize that mantle uplift is influenced by interaction between the transient cavity and the mantle. Further, mascon formation is generally disconnected from the number of basin rings formed and occurs over a wide range of basin sizes. These observations have important implications for models of basin and mascon formation on the Moon and other planetary bodies.

  20. Sister acts: coordinating DNA replication and cohesion establishment

    PubMed Central

    Sherwood, Rebecca; Takahashi, Tatsuro S.; Jallepalli, Prasad V.

    2010-01-01

    The ring-shaped cohesin complex links sister chromatids and plays crucial roles in homologous recombination and mitotic chromosome segregation. In cycling cells, cohesin's ability to generate cohesive linkages is restricted to S phase and depends on loading and establishment factors that are intimately connected to DNA replication. Here we review how cohesin is regulated by the replication machinery, as well as recent evidence that cohesin itself influences how chromosomes are replicated. PMID:21159813

  1. A measuring tool for tree-rings analysis

    NASA Astrophysics Data System (ADS)

    Shumilov, Oleg; Kanatjev, Alexander; Kasatkina, Elena

    2013-04-01

    A special tool has been created for the annual tree-ring widths measurement and analysis. It consists of professional scanner, computer system and software. This created complex in many aspects does not yield the similar systems (LINTAB, WinDENDRO), but in comparison to manual measurement systems, it offers a number of advantages: productivity gain, possibility of archiving the results of the measurements at any stage of the processing, operator comfort. It has been developed a new software, allowing processing of samples of different types (cores, saw cuts), including those which is difficult to process, having got a complex wood structure (inhomogeneity of growing in different directions, missed, light and false rings etc.). This software can analyze pictures made with optical scanners, analog or digital cameras. The complex software program was created on programming language C++, being compatible with modern operating systems like Windows X. Annual ring widths are measured along paths traced interactively. These paths can have any orientation and can be created so that ring widths are measured perpendicular to ring boundaries. A graphic of ring-widths in function of the year is displayed on a screen during the analysis and it can be used for visual and numerical cross-dating and comparison with other series or master-chronologies. Ring widths are saved to the text files in a special format, and those files are converted to the format accepted for data conservation in the International Tree-Ring Data Bank. The created complex is universal in application that will allow its use for decision of the different problems in biology and ecology. With help of this complex it has been reconstructed a long-term juniper (1328-2004) and pine (1445-2005) tree-ring chronologies on the base of samples collected at Kola Peninsula (northwestern Russia).

  2. The TubR-centromere complex adopts a double-ring segrosome structure in Type III partition systems.

    PubMed

    Martín-García, Bárbara; Martín-González, Alejandro; Carrasco, Carolina; Hernández-Arriaga, Ana M; Ruíz-Quero, Rubén; Díaz-Orejas, Ramón; Aicart-Ramos, Clara; Moreno-Herrero, Fernando; Oliva, María A

    2018-05-14

    In prokaryotes, the centromere is a specialized segment of DNA that promotes the assembly of the segrosome upon binding of the Centromere Binding Protein (CBP). The segrosome structure exposes a specific surface for the interaction of the CBP with the motor protein that mediates DNA movement during cell division. Additionally, the CBP usually controls the transcriptional regulation of the segregation system as a cell cycle checkpoint. Correct segrosome functioning is therefore indispensable for accurate DNA segregation. Here, we combine biochemical reconstruction and structural and biophysical analysis to bring light to the architecture of the segrosome complex in Type III partition systems. We present the particular features of the centromere site, tubC, of the model system encoded in Clostridium botulinum prophage c-st. We find that the split centromere site contains two different iterons involved in the binding and spreading of the CBP, TubR. The resulting nucleoprotein complex consists of a novel double-ring structure that covers part of the predicted promoter. Single molecule data provides a mechanism for the formation of the segrosome structure based on DNA bending and unwinding upon TubR binding.

  3. Assembly and stoichiometry of the core structure of the bacterial flagellar type III export gate complex.

    PubMed

    Fukumura, Takuma; Makino, Fumiaki; Dietsche, Tobias; Kinoshita, Miki; Kato, Takayuki; Wagner, Samuel; Namba, Keiichi; Imada, Katsumi; Minamino, Tohru

    2017-08-01

    The bacterial flagellar type III export apparatus, which is required for flagellar assembly beyond the cell membranes, consists of a transmembrane export gate complex and a cytoplasmic ATPase complex. FlhA, FlhB, FliP, FliQ, and FliR form the gate complex inside the basal body MS ring, although FliO is required for efficient export gate formation in Salmonella enterica. However, it remains unknown how they form the gate complex. Here we report that FliP forms a homohexameric ring with a diameter of 10 nm. Alanine substitutions of conserved Phe-137, Phe-150, and Glu-178 residues in the periplasmic domain of FliP (FliPP) inhibited FliP6 ring formation, suppressing flagellar protein export. FliO formed a 5-nm ring structure with 3 clamp-like structures that bind to the FliP6 ring. The crystal structure of FliPP derived from Thermotoga maritia, and structure-based photo-crosslinking experiments revealed that Phe-150 and Ser-156 of FliPP are involved in the FliP-FliP interactions and that Phe-150, Arg-152, Ser-156, and Pro-158 are responsible for the FliP-FliO interactions. Overexpression of FliP restored motility of a ∆fliO mutant to the wild-type level, suggesting that the FliP6 ring is a functional unit in the export gate complex and that FliO is not part of the final gate structure. Copurification assays revealed that FlhA, FlhB, FliQ, and FliR are associated with the FliO/FliP complex. We propose that the assembly of the export gate complex begins with FliP6 ring formation with the help of the FliO scaffold, followed by FliQ, FliR, and FlhB and finally FlhA during MS ring formation.

  4. Assembly and stoichiometry of the core structure of the bacterial flagellar type III export gate complex

    PubMed Central

    Fukumura, Takuma; Makino, Fumiaki; Dietsche, Tobias; Kinoshita, Miki; Kato, Takayuki; Wagner, Samuel; Namba, Keiichi; Imada, Katsumi

    2017-01-01

    The bacterial flagellar type III export apparatus, which is required for flagellar assembly beyond the cell membranes, consists of a transmembrane export gate complex and a cytoplasmic ATPase complex. FlhA, FlhB, FliP, FliQ, and FliR form the gate complex inside the basal body MS ring, although FliO is required for efficient export gate formation in Salmonella enterica. However, it remains unknown how they form the gate complex. Here we report that FliP forms a homohexameric ring with a diameter of 10 nm. Alanine substitutions of conserved Phe-137, Phe-150, and Glu-178 residues in the periplasmic domain of FliP (FliPP) inhibited FliP6 ring formation, suppressing flagellar protein export. FliO formed a 5-nm ring structure with 3 clamp-like structures that bind to the FliP6 ring. The crystal structure of FliPP derived from Thermotoga maritia, and structure-based photo-crosslinking experiments revealed that Phe-150 and Ser-156 of FliPP are involved in the FliP–FliP interactions and that Phe-150, Arg-152, Ser-156, and Pro-158 are responsible for the FliP–FliO interactions. Overexpression of FliP restored motility of a ∆fliO mutant to the wild-type level, suggesting that the FliP6 ring is a functional unit in the export gate complex and that FliO is not part of the final gate structure. Copurification assays revealed that FlhA, FlhB, FliQ, and FliR are associated with the FliO/FliP complex. We propose that the assembly of the export gate complex begins with FliP6 ring formation with the help of the FliO scaffold, followed by FliQ, FliR, and FlhB and finally FlhA during MS ring formation. PMID:28771466

  5. Reconfiguration of the proteasome during chaperone-mediated assembly

    PubMed Central

    Park, Soyeon; Li, Xueming; Kim, Ho Min; Singh, Chingakham Ranjit; Tian, Geng; Hoyt, Martin A.; Lovell, Scott; Battaile, Kevin P.; Zolkiewski, Michal; Coffino, Philip; Roelofs, Jeroen; Cheng, Yifan; Finley, Daniel

    2013-01-01

    The proteasomal ATPase ring, comprising Rpt1-Rpt6, associates with the heptameric α ring of the proteasome core particle (CP) in the mature proteasome, with the Rpt C-terminal tails inserting into pockets of the α ring1–4. Rpt ring assembly is mediated by four chaperones, each binding a distinct Rpt subunit5–10. We report that the base subassembly of the proteasome, which includes the Rpt ring, forms a high affinity complex with the CP. This complex is subject to active dissociation by the chaperones Hsm3, Nas6, and Rpn14. Chaperone-mediated dissociation was abrogated by a nonhydrolyzable ATP analog, indicating that chaperone action is coupled to nucleotide hydrolysis by the Rpt ring. Unexpectedly, synthetic Rpt tail peptides bound α pockets with poor specificity, except for Rpt6, which uniquely bound the α2/α3 pocket. Although the Rpt6 tail is not visualized within an α pocket in mature proteasomes2–4, it inserts into the α2/α3 pocket in the base-CP complex and is important for complex formation. Thus, the Rpt-CP interface is reconfigured when the lid complex joins the nascent proteasome to form the mature holoenzyme. PMID:23644457

  6. Forging the ring: from fungal septins' divergent roles in morphology, septation and virulence to factors contributing to their assembly into higher order structures.

    PubMed

    Vargas-Muñiz, Jose M; Juvvadi, Praveen R; Steinbach, William J

    2016-09-01

    Septins are a conserved family of GTP-binding proteins that are distributed across different lineages of the eukaryotes, with the exception of plants. Septins perform a myriad of functions in fungal cells, ranging from controlling morphogenetic events to contributing to host tissue invasion and virulence. One key attribute of the septins is their ability to assemble into heterooligomeric complexes that organizse into higher order structures. In addition to the established role of septins in the model budding yeast, Saccharomyces cerevisiae, their importance in other fungi recently emerges. While newer roles for septins are being uncovered in these fungi, the mechanism of how septins assemble into a complex and their regulation is only beginning to be comprehended. In this review, we summarize recent findings on the role of septins in different fungi and focus on how the septin complexes of different fungi are organized in vitro and in vivo. Furthermore, we discuss on how phosphorylation/dephosphorylation can serve as an important mechanism of septin complex assembly and regulation.

  7. Control of intramolecular π-π stacking interaction in cationic iridium complexes via fluorination of pendant phenyl rings.

    PubMed

    He, Lei; Ma, Dongxin; Duan, Lian; Wei, Yongge; Qiao, Juan; Zhang, Deqiang; Dong, Guifang; Wang, Liduo; Qiu, Yong

    2012-04-16

    Intramolecular π-π stacking interaction in one kind of phosphorescent cationic iridium complexes has been controlled through fluorination of the pendant phenyl rings on the ancillary ligands. Two blue-green-emitting cationic iridium complexes, [Ir(ppy)(2)(F2phpzpy)]PF(6) (2) and [Ir(ppy)(2)(F5phpzpy)]PF(6) (3), with the pendant phenyl rings on the ancillary ligands substituted with two and five fluorine atoms, respectively, have been synthesized and compared to the parent complex, [Ir(ppy)(2)(phpzpy)]PF(6) (1). Here Hppy is 2-phenylpyridine, F2phpzpy is 2-(1-(3,5-difluorophenyl)-1H-pyrazol-3-yl)pyridine, F5phpzpy is 2-(1-pentafluorophenyl-1H-pyrazol-3-yl)-pyridine, and phpzpy is 2-(1-phenyl-1H-pyrazol-3-yl)pyridine. Single crystal structures reveal that the pendant phenyl rings on the ancillary ligands stack to the phenyl rings of the ppy ligands, with dihedral angles of 21°, 18°, and 5.0° between least-squares planes for complexes 1, 2, and 3, respectively, and centroid-centroid distances of 3.75, 3.65, and 3.52 Å for complexes 1, 2, and 3, respectively, indicating progressively reinforced intramolecular π-π stacking interactions from complexes 1 to 2 and 3. Compared to complex 1, complex 3 with a significantly reinforced intramolecular face-to-face π-π stacking interaction exhibits a significantly enhanced (by 1 order of magnitude) photoluminescent efficiency in solution. Theoretical calculations reveal that in complex 3 it is unfavorable in energy for the pentafluorophenyl ring to swing by a large degree and the intramolecular π-π stacking interaction remains on the lowest triplet state. © 2012 American Chemical Society

  8. The RING Finger E3 Ligase SpRing is a Positive Regulator of Salt Stress Signaling in Salt-Tolerant Wild Tomato Species.

    PubMed

    Qi, Shilian; Lin, Qingfang; Zhu, Huishan; Gao, Fenghua; Zhang, Wenhao; Hua, Xuejun

    2016-03-01

    Protein ubiquitination in plants plays critical roles in many biological processes, including adaptation to abiotic stresses. Previously, RING finger E3 ligase has been characterized during salt stress response in several plant species, but little is known about its function in tomato. Here, we report that SpRing, a stress-inducible gene, is involved in salt stress signaling in wild tomato species Solanum pimpinellifolium 'PI365967'. In vitro ubiquitination assay revealed that SpRing is an E3 ubiquitin ligase and the RING finger conserved region is required for its activity. SpRing is expressed in all tissues of wild tomato and up-regulated by salt, drought and osmotic stresses, but repressed by low temperature. Green fluorescent protein (GFP) fusion analysis showed that SpRing is localized at the endoplasmic reticulum. Silencing of SpRing through a virus-induced gene silencing approach led to increased sensitivity to salt stress in wild tomato. Overexpression of SpRing in Arabidopsis thaliana resulted in enhanced salt tolerance during seed germination and early seedling development. The expression levels of certain key stress-related genes are altered both in SpRing-overexpressing Arabidopsis plants and virus-induced gene silenced tomato seedlings. Taken together, our results indicate that SpRing is involved in salt stress and functions as a positive regulator of salt tolerance. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  9. Inositol hexakisphosphate kinase-1 mediates assembly/disassembly of the CRL4–signalosome complex to regulate DNA repair and cell death

    PubMed Central

    Rao, Feng; Xu, Jing; Khan, A. Basit; Gadalla, Moataz M.; Cha, Jiyoung Y.; Xu, Risheng; Tyagi, Richa; Dang, Yongjun; Chakraborty, Anutosh; Snyder, Solomon H.

    2014-01-01

    Inositol polyphosphates containing an energetic pyrophosphate bond are formed primarily by a family of three inositol hexakisphosphate (IP6) kinases (IP6K1–3). The Cullin-RING ubiquitin ligases (CRLs) regulate diverse biological processes through substrate ubiquitylation. CRL4, comprising the scaffold Cullin 4A/B, the E2-interacting Roc1/2, and the adaptor protein damage-specific DNA-binding protein 1, is activated by DNA damage. Basal CRL4 activity is inhibited by binding to the COP9 signalosome (CSN). UV radiation and other stressors dissociate the complex, leading to E3 ligase activation, but signaling events that trigger signalosome dissociation from CRL4 have been unclear. In the present study, we show that, under basal conditions, IP6K1 forms a ternary complex with CSN and CRL4 in which IP6K1 and CRL4 are inactive. UV dissociates IP6K1 to generate IP7, which then dissociates CSN–CRL4 to activate CRL4. Thus, IP6K1 is a novel CRL4 subunit that transduces UV signals to mediate disassembly of the CRL4–CSN complex, thereby regulating nucleotide excision repair and cell death. PMID:25349427

  10. MMSET is dynamically regulated during cell-cycle progression and promotes normal DNA replication.

    PubMed

    Evans, Debra L; Zhang, Haoxing; Ham, Hyoungjun; Pei, Huadong; Lee, SeungBaek; Kim, JungJin; Billadeau, Daniel D; Lou, Zhenkun

    2016-01-01

    The timely and precise duplication of cellular DNA is essential for maintaining genome integrity and is thus tightly-regulated. During mitosis and G1, the Origin Recognition Complex (ORC) binds to future replication origins, coordinating with multiple factors to load the minichromosome maintenance (MCM) complex onto future replication origins as part of the pre-replication complex (pre-RC). The pre-RC machinery, in turn, remains inactive until the subsequent S phase when it is required for replication fork formation, thereby initiating DNA replication. Multiple myeloma SET domain-containing protein (MMSET, a.k.a. WHSC1, NSD2) is a histone methyltransferase that is frequently overexpressed in aggressive cancers and is essential for normal human development. Several studies have suggested a role for MMSET in cell-cycle regulation; however, whether MMSET is itself regulated during cell-cycle progression has not been examined. In this study, we report that MMSET is degraded during S phase in a cullin-ring ligase 4-Cdt2 (CRL4(Cdt2)) and proteasome-dependent manner. Notably, we also report defects in DNA replication and a decreased association of pre-RC factors with chromatin in MMSET-depleted cells. Taken together, our results suggest a dynamic regulation of MMSET levels throughout the cell cycle, and further characterize the role of MMSET in DNA replication and cell-cycle progression.

  11. Rotary motions and convection as a means of regulating primary production in warm core rings. [of ocean currents

    NASA Technical Reports Server (NTRS)

    Yentsch, C. S.; Phinney, D. A.

    1985-01-01

    The term 'ring' is generally used in the case of a subdivision of ocean eddies. in the present investigation, it denotes mesoscale features which are spawned by the Gulf Stream. This investigation is concerned with the mechanism involved in the regulation of the growth of phytoplankton by the physical oceanographic features of rings. Gulf Stream rings were first observed by Parker (1971) and Fuglister (1972) as a result of extensive temperature measurements from ships in the Gulf Stream. Attention is given to changes in density boundaries associated with the rotation of rings, a synthetic model of a newly formed warm core ring, convection-stabilization, the role of light, the influence of convective overturn in adding nutrients to surface waters of warm core rings, and two major areas which require study.

  12. Axial complex and associated structures of the sea urchin Strongylocentrotus pallidus (Sars, G.O. 1871) (Echinodermata: Echinoidea).

    PubMed

    Ezhova, Olga Vladimirovna; Malakhov, Vladimir Vasil'yevich; Egorova, Ekaterina Alekseevna

    2018-06-01

    Studies of echinoid microscopic anatomy over the last two centuries have created a number of inaccuracies and mistakes that have accumulated in the descriptions of the intricate organization of the coelomic system of Echinoidea. To clarify the situation, we reconstructed the axial complex and radial complex of the echinoid Strongylocentrotus pallidus. The water ring is located between the perivisceral coelom and the perioral coelom. The oral haemal ring lies between the coelothelia of the water-vascular, perivisceral, and perioral rings. The axial part of the axial organ communicates with the oral haemal ring in interradius CD, but the axial coelom does not form the axocoelomic perihaemal ring. The ventral intestinal haemal vessel originates from the oral haemal ring in radius A, and then branches into a network of capillaries, from which the dorsal intestinal vessel starts. The pericardial coelom envelopes the pericardial part of the axial organ, the lacunae of which communicate with the haemocoel of the body wall and with the axial part of the axial organ. The genital haemal ring and the dorsal intestinal vessel communicate with the axial organ. The genital coelom passes in the CD interradius on the side opposite to the hindgut. There is a somatocoelomic perihaemal ring, which sends a pair of coelomic outgrowths into each radius, accompanied by a radial haemal vessel in the oral part. The mistakes and inaccuracies of early descriptions of the echinoid axial complex are listed. The axial complex and associated structures of sea urchins are compared with other eleutherozoans. © 2018 Wiley Periodicals, Inc.

  13. GRAIL Gravity Observations of the Transition from Complex Crater to Peak-Ring Basin on the Moon: Implications for Crustal Structure and Impact Basin Formation

    NASA Technical Reports Server (NTRS)

    Baker, David M. H.; Head, James W.; Phillips, Roger J.; Neumann, Gregory A.; Bierson, Carver J.; Smith, David E.; Zuber, Maria T.

    2017-01-01

    High-resolution gravity data from the Gravity Recovery and Interior Laboratory (GRAIL) mission provide the opportunity to analyze the detailed gravity and crustal structure of impact features in the morphological transition from complex craters to peak-ring basins on the Moon. We calculate average radial profiles for free-air anomalies and Bouguer anomalies for peak-ring basins, proto-basins, and the largest complex craters. Complex craters and proto-basins have free-air anomalies that are positively correlated with surface topography, unlike the prominent lunar mascons (positive free-air anomalies in areas of low elevation) associated with large basins. The Bouguer gravity anomaly profiles of complex craters are highly irregular, with central positive anomalies that are generally absent or not clearly tied to interior morphology. In contrast, gravity profiles for peak-ring basins (approx. 200 km to 580 km) are much more regular and are highly correlated with surface morphology. A central positive Bouguer anomaly is confined within the peak ring and a negative Bouguer anomaly annulus extends from the edge of the positive anomaly outward to about the rim crest. A number of degraded basins lacking interior peak rings have diameters and gravity patterns similar to those of well-preserved peak-ring basins. If these structures represent degraded peak-ring basins, the number of peak-ring basins on the Moon would increase by more than a factor of two to 34. The gravity anomalies within basins are interpreted to be due to uplift of the mantle confined within the peak ring and an annulus of thickened crust between the peak ring and rim crest. We hypothesize that mantle uplift is influenced by interaction between the transient cavity and the mantle. Further, mascon formation is generally disconnected from the number of basin rings formed and occurs over a wide range of basin sizes. These observations have important implications for models of basin and mascon formation on the Moon and other planetary bodies.

  14. Regulation of the Tumor-Suppressor Function of the Class III Phosphatidylinositol 3-Kinase Complex by Ubiquitin and SUMO.

    PubMed

    Reidick, Christina; El Magraoui, Fouzi; Meyer, Helmut E; Stenmark, Harald; Platta, Harald W

    2014-12-23

    The occurrence of cancer is often associated with a dysfunction in one of the three central membrane-involution processes-autophagy, endocytosis or cytokinesis. Interestingly, all three pathways are controlled by the same central signaling module: the class III phosphatidylinositol 3-kinase (PI3K-III) complex and its catalytic product, the phosphorylated lipid phosphatidylinositol 3-phosphate (PtdIns3P). The activity of the catalytic subunit of the PI3K-III complex, the lipid-kinase VPS34, requires the presence of the membrane-targeting factor VPS15 as well as the adaptor protein Beclin 1. Furthermore, a growing list of regulatory proteins associates with VPS34 via Beclin 1. These accessory factors define distinct subunit compositions and thereby guide the PI3K-III complex to its different cellular and physiological roles. Here we discuss the regulation of the PI3K-III complex components by ubiquitination and SUMOylation. Especially Beclin 1 has emerged as a highly regulated protein, which can be modified with Lys11-, Lys48- or Lys63-linked polyubiquitin chains catalyzed by distinct E3 ligases from the RING-, HECT-, RBR- or Cullin-type. We also point out other cross-links of these ligases with autophagy in order to discuss how these data might be merged into a general concept.

  15. Regulation of the Tumor-Suppressor Function of the Class III Phosphatidylinositol 3-Kinase Complex by Ubiquitin and SUMO

    PubMed Central

    Reidick, Christina; El Magraoui, Fouzi; Meyer, Helmut E.; Stenmark, Harald; Platta, Harald W.

    2014-01-01

    The occurrence of cancer is often associated with a dysfunction in one of the three central membrane-involution processes—autophagy, endocytosis or cytokinesis. Interestingly, all three pathways are controlled by the same central signaling module: the class III phosphatidylinositol 3-kinase (PI3K-III) complex and its catalytic product, the phosphorylated lipid phosphatidylinositol 3-phosphate (PtdIns3P). The activity of the catalytic subunit of the PI3K-III complex, the lipid-kinase VPS34, requires the presence of the membrane-targeting factor VPS15 as well as the adaptor protein Beclin 1. Furthermore, a growing list of regulatory proteins associates with VPS34 via Beclin 1. These accessory factors define distinct subunit compositions and thereby guide the PI3K-III complex to its different cellular and physiological roles. Here we discuss the regulation of the PI3K-III complex components by ubiquitination and SUMOylation. Especially Beclin 1 has emerged as a highly regulated protein, which can be modified with Lys11-, Lys48- or Lys63-linked polyubiquitin chains catalyzed by distinct E3 ligases from the RING-, HECT-, RBR- or Cullin-type. We also point out other cross-links of these ligases with autophagy in order to discuss how these data might be merged into a general concept. PMID:25545884

  16. Characterisation of the Cullin-3 mutation that causes a severe form of familial hypertension and hyperkalaemia

    PubMed Central

    Schumacher, Frances-Rose; Siew, Keith; Zhang, Jinwei; Johnson, Clare; Wood, Nicola; Cleary, Sarah E; Al Maskari, Raya S; Ferryman, James T; Hardege, Iris; Figg, Nichola L; Enchev, Radoslav; Knebel, Axel; O’Shaughnessy, Kevin M; Kurz, Thimo

    2015-01-01

    Deletion of exon 9 from Cullin-3 (CUL3, residues 403–459: CUL3Δ403–459) causes pseudohypoaldosteronism type IIE (PHA2E), a severe form of familial hyperkalaemia and hypertension (FHHt). CUL3 binds the RING protein RBX1 and various substrate adaptors to form Cullin-RING-ubiquitin-ligase complexes. Bound to KLHL3, CUL3-RBX1 ubiquitylates WNK kinases, promoting their ubiquitin-mediated proteasomal degradation. Since WNK kinases activate Na/Cl co-transporters to promote salt retention, CUL3 regulates blood pressure. Mutations in both KLHL3 and WNK kinases cause PHA2 by disrupting Cullin-RING-ligase formation. We report here that the PHA2E mutant, CUL3Δ403–459, is severely compromised in its ability to ubiquitylate WNKs, possibly due to altered structural flexibility. Instead, CUL3Δ403–459 auto-ubiquitylates and loses interaction with two important Cullin regulators: the COP9-signalosome and CAND1. A novel knock-in mouse model of CUL3WT/Δ403–459 closely recapitulates the human PHA2E phenotype. These mice also show changes in the arterial pulse waveform, suggesting a vascular contribution to their hypertension not reported in previous FHHt models. These findings may explain the severity of the FHHt phenotype caused by CUL3 mutations compared to those reported in KLHL3 or WNK kinases. PMID:26286618

  17. Protein Phosphatase 1ß Limits Ring Canal Constriction during Drosophila Germline Cyst Formation

    PubMed Central

    Yamamoto, Shinya; Bayat, Vafa; Bellen, Hugo J.; Tan, Change

    2013-01-01

    Germline cyst formation is essential for the propagation of many organisms including humans and flies. The cytoplasm of germline cyst cells communicate with each other directly via large intercellular bridges called ring canals. Ring canals are often derived from arrested contractile rings during incomplete cytokinesis. However how ring canal formation, maintenance and growth are regulated remains unclear. To better understand this process, we carried out an unbiased genetic screen in Drosophila melanogaster germ cells and identified multiple alleles of flapwing (flw), a conserved serine/threonine-specific protein phosphatase. Flw had previously been reported to be unnecessary for early D. melanogaster oogenesis using a hypomorphic allele. We found that loss of Flw leads to over-constricted nascent ring canals and subsequently tiny mature ring canals, through which cytoplasmic transfer from nurse cells to the oocyte is impaired, resulting in small, non-functional eggs. Flw is expressed in germ cells undergoing incomplete cytokinesis, completely colocalized with the Drosophila myosin binding subunit of myosin phosphatase (DMYPT). This colocalization, together with genetic interaction studies, suggests that Flw functions together with DMYPT to negatively regulate myosin activity during ring canal formation. The identification of two subunits of the tripartite myosin phosphatase as the first two main players required for ring canal constriction indicates that tight regulation of myosin activity is essential for germline cyst formation and reproduction in D. melanogaster and probably other species as well. PMID:23936219

  18. Regulation of hydantoin-hydrolyzing enzyme expression in Agrobacterium tumefaciens strain RU-AE01.

    PubMed

    Jiwaji, Meesbah; Dorrington, Rosemary Ann

    2009-10-01

    Optically pure D-: amino acids, like D-: hydroxyphenylglycine, are used in the semi-synthetic production of pharmaceuticals. They are synthesized industrially via the biocatalytic hydrolysis of p-hydroxyphenylhydantoin using enzymes derived from Agrobacterium tumefaciens strains. The reaction proceeds via a three-step pathway: (a) the ring-opening cleavage of the hydantoin ring by a D-: hydantoinase (encoded by hyuH), (b) conversion of the resultant D-: N-carbamylamino acid to the corresponding amino acid by a D-: N-carbamoylase (encoded by hyuC), and (c) chemical or enzymatic racemization of the un-reacted hydantoin substrate. While the structure and biochemical properties of these enzymes are well understood, little is known about their origin, their function, and their regulation in the native host. We investigated the mechanisms involved in the regulation of expression of the hydantoinase and N-carbamoylase enzyme activity in A. tumefaciens strain RU-AE01. We present evidence for a complex regulatory network that responds to the growth status of the cells, the presence of inducer, and nitrogen catabolite repression. Deletion analysis and site-directed mutagenesis were used to identify regulatory elements involved in transcriptional regulation of hyuH and hyuC expression. Finally, a comparison between the hyu gene clusters in several Agrobacterium strains provides insight into the function of D-: selective hydantoin-hydrolyzing enzyme systems in Agrobacterium species.

  19. Enantioselective Ring Opening of Epoxides with 4-Methoxyphenol Catalyzed by Gallium Heterobimetallic Complexes: An Efficient Method for the Synthesis of Optically Active 1,2-Diol Monoethers.

    PubMed

    Iida, Takehiko; Yamamoto, Noriyoshi; Matsunaga, Shigeki; Woo, Hee-Gweon; Shibasaki, Masakatsu

    1998-09-04

    Useful chiral building blocks such as 1,2-diols can be obtained by the enantioselective ring opening of achiral epoxides with oxygen nucleophiles. The ring opening is carried out effectively (up to 94 % ee) with 4-methoxyphenol and catalytic amounts of gallium complexes. The novel complex GaSO 1 displays a particularly high catalytic activity. © 1998 WILEY-VCH Verlag GmbH, Weinheim, Fed. Rep. of Germany.

  20. Crystal structure of the PRC1 ubiquitylation module bound to the nucleosome

    PubMed Central

    McGinty, Robert K.; Henrici, Ryan C.; Tan, Song

    2014-01-01

    The Polycomb group of epigenetic enzymes represses expression of developmentally regulated genes in higher eukaryotes. This group includes the Polycomb repressive complex 1 (PRC1), which ubiquitylates nucleosomal histone H2A Lys119 using its E3 ubiquitin ligase subunits, Ring1B and Bmi1, together with an E2 ubiquitin-conjugating enzyme, UbcH5c. However, the molecular mechanism of nucleosome substrate recognition by PRC1 or other chromatin enzymes is unclear. Here we present the crystal structure of the Ring1B/Bmi1/UbcH5c E3-E2 complex (the PRC1 ubiquitylation module) bound to its nucleosome core particle substrate. The structure shows how a chromatin enzyme achieves substrate specificity by interacting with multiple nucleosome surfaces spatially distinct from the site of catalysis. Our structure further reveals an unexpected role for the ubiquitin E2 enzyme in substrate recognition, and provides insight into how the related histone H2A E3 ligase, BRCA1, interacts with and ubiquitylates the nucleosome. PMID:25355358

  1. Regulation of vascular endothelial genes by dietary flavonoids: structure-expression relationship studies and the role of the transcription factor KLF-2.

    PubMed

    Martínez-Fernández, Leyre; Pons, Zara; Margalef, Maria; Arola-Arnal, Anna; Muguerza, Begoña

    2015-03-01

    Physiological concentrations (1 μM) of 15 flavonoids were evaluated in human umbilical vein endothelial cells in the presence of hydrogen peroxide (H₂O₂) for their ability to affect endothelial nitric oxide synthase (eNOS) and endothelin-1 (ET-1) expression in order to establish the structural basis of their bioactivity. Flavonoid effects on eNOS transcription factor Krüpple like factor-2 (KLF-2) expression were also evaluated. All studied flavonoids appeared to be effective compounds for counteracting the oxidative stress-induced effects on vascular gene expression, indicating that flavonoids are an excellent source of functional endothelial regulator products. Notably, the more effective flavonoids for KLF-2 up-regulation resulted in the highest values for eNOS expression, showing that the increment of eNOS expression would take place through KLF-2 induction. Structure-activity relationship studies showed that the combinations of substructures on flavonoid skeleton that regulate eNOS expression are made up of the following elements: glycosylation and hydroxylation of C-ring, double bond C2=C3 at C-ring, methoxylation and hydroxylation of B-ring, ketone group in C4 at C-ring and glycosylation in C7 of A-ring, while flavonoid features involved in the reduction of vasoconstrictor ET-1 expression are as follows: double bond C2=C3 at C-ring glycosylation in C7 of A-ring and ketone group in C4 of C-ring. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Metal complexes of substituted Gable porphyrins as oxidation catalysts

    DOEpatents

    Lyons, James E.; Ellis, Jr., Paul E.; Wagner, Richard W.

    1996-01-01

    Transition metal complexes of Gable porphyrins having two porphyrin rings connected through a linking group, and having on the porphyrin rings electron-withdrawing groups, such as halogen, nitro or cyano. These complexes are useful as catalysts for the oxidation of organic compounds, e.g. alkanes.

  3. Analysis of Immune Complex Structure by Statistical Mechanics and Light Scattering Techniques.

    NASA Astrophysics Data System (ADS)

    Busch, Nathan Adams

    1995-01-01

    The size and structure of immune complexes determine their behavior in the immune system. The chemical physics of the complex formation is not well understood; this is due in part to inadequate characterization of the proteins involved, and in part by lack of sufficiently well developed theoretical techniques. Understanding the complex formation will permit rational design of strategies for inhibiting tissue deposition of the complexes. A statistical mechanical model of the proteins based upon the theory of associating fluids was developed. The multipole electrostatic potential for each protein used in this study was characterized for net protein charge, dipole moment magnitude, and dipole moment direction. The binding sites, between the model antigen and antibodies, were characterized for their net surface area, energy, and position relative to the dipole moment of the protein. The equilibrium binding graphs generated with the protein statistical mechanical model compares favorably with experimental data obtained from radioimmunoassay results. The isothermal compressibility predicted by the model agrees with results obtained from dynamic light scattering. The statistical mechanics model was used to investigate association between the model antigen and selected pairs of antibodies. It was found that, in accordance to expectations from thermodynamic arguments, the highest total binding energy yielded complex distributions which were skewed to higher complex size. From examination of the simulated formation of ring structures from linear chain complexes, and from the joint shape probability surfaces, it was found that ring configurations were formed by the "folding" of linear chains until the ends are within binding distance. By comparing the single antigen/two antibody system which differ only in their respective binding site locations, it was found that binding site location influences complex size and shape distributions only when ring formation occurs. The internal potential energy of a ring complex is considerably less than that of the non-associating system; therefore the ring complexes are quite stable and show no evidence of breaking, and collapsing into smaller complexes. The ring formation will occur only in systems where the total free energy of each complex may be minimized. Thus, ring formation will occur even though entropically unfavorable conformations result if the total free energy can be minimized by doing so.

  4. Galactic Behavior for the Outer B Ring

    NASA Image and Video Library

    2010-11-01

    Keeping a close watch on the outer portion of Saturn B ring, NASA Cassini spacecraft records the complex inward and outward movement of the edge of the ring. This ring movement resembles the suspected behavior of spiral disk galaxies.

  5. Metal complexes of substituted Gable porphyrins as oxidation catalysts

    DOEpatents

    Lyons, J.E.; Ellis, P.E. Jr.; Wagner, R.W.

    1996-01-02

    Transition metal complexes of Gable porphyrins are disclosed having two porphyrin rings connected through a linking group, and having on the porphyrin rings electron-withdrawing groups, such as halogen, nitro or cyano. These complexes are useful as catalysts for the oxidation of organic compounds, e.g. alkanes.

  6. Mechanism of TRIM25 Catalytic Activation in the Antiviral RIG-I Pathway

    DOE PAGES

    Sanchez, Jacint G.; Chiang, Jessica J.; Sparrer, Konstantin M. J.; ...

    2016-07-14

    Antiviral response pathways induce interferon by higher-order assembly of signaling complexes called signalosomes. Assembly of the RIG-I signalosome is regulated by K63-linked polyubiquitin chains, which are synthesized by the E3 ubiquitin ligase, TRIM25. We have previously shown that the TRIM25 coiled-coil domain is a stable, antiparallel dimer that positions two catalytic RING domains on opposite ends of an elongated rod. We now show that the RING domain is a separate self-association motif that engages ubiquitin-conjugated E2 enzymes as a dimer. RING dimerization is required for catalysis, TRIM25-mediated RIG-I ubiquitination, interferon induction, and antiviral activity. We also provide evidence that RINGmore » dimerization and E3 ligase activity are promoted by binding of the TRIM25 SPRY domain to the RIG-I effector domain. These results indicate that TRIM25 actively participates in higher-order assembly of the RIG-I signalosome and helps to fine-tune the efficiency of the RIG-I-mediated antiviral response.« less

  7. The Present Status of Siam Photon Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pairsuwan, Weerapong; Ishii, Takehiko; Isoyama, Goro

    We report the technical problems encountered in commissioning and improving the performance of the accelerator complex which consists of a 1 GeV light source storage ring, a 1 GeV booster synchrotron, and a 40 MeV injector linac. Regulation work for an attached beam line with an experimental station for photoemission studies is also described. Beam instability and low injection efficiency are the major issues for the accelerator complex. In the beam line, the accurate optical alignment of the monochromator system and the modification of the measurement control software supplied by a marker are the work having been performed. The resultsmore » of the work on the accelerator complex will be helpful to the commissioning of the machine obtained secondhand and reformed to some extent.« less

  8. A theoretical investigation into the strength of N-NO2 bonds, ring strain and electrostatic potential upon formation of intermolecular H-bonds between HF and the nitro group in nitrogen heterocyclic rings C n H2n N-NO2 (n = 2-5), RDX and HMX.

    PubMed

    Wang, Bao-Guo; Ren, Fu-de; Shi, Wen-Jing

    2015-11-01

    Changes in N-NO2 bond strength, ring strain energy and electrostatic potential upon formation of intermolecular H-bonds between HF and the nitro group in nitrogen heterocyclic rings C n H2n N-NO2 (n = 2-5), RDX and HMX were investigated using DFT-B3LYP and MP2(full) methods with the 6-311++G(2df,2p) and aug-cc-pVTZ basis sets. Analysis of electron density shifts was also carried out. The results indicate that H-bonding energy correlates well with the increment of ring strain energy. Upon complex formation, the strength of the N-NO2 trigger-bond is enhanced, suggesting reduced sensitivity, while judged by the increased ring strain energy, sensitivity is increased. However, some features of the molecular surface electrostatic potential, such as a local maximum above the N-NO2 bond and ring, σ + (2) and electrostatic balance parameter ν, remain essentially unchanged upon complex formation, and only a small change in the impact sensitivity h 50 is suggested. It is not sufficient to determine sensitivity solely on the basis of trigger bond or ring strain; as a global feature of a molecule, the molecular surface electrostatic potential is available to help judge the change of sensitivity in H-bonded complexes. Graphical Abstract The strengthened N-NO2 bond suggests reduced sensitivity, while it is reverse by theincreased ring strain energy upon the complex formation. However, the molecular surfaceelectrostatic potential (V S) shows the little change of h 50. The V S should be taken into accountin the analysis of explosive sensitivity in the H-bonded complex.

  9. Connectivity among sinkholes and complex networks: The case of Ring of Cenotes in northwest Yucatan, Mexico

    NASA Astrophysics Data System (ADS)

    Gomez-Nicolas, Mariana; Rebolledo-Vieyra, Mario; Huerta-Quintanilla, Rodrigo; Canto-Lugo, Efrain

    2014-05-01

    A 180-km-diameter semicircular alignment of abundant karst sinkholes (locally known as cenotes) in northwestern Yucatán, México, coincides approximately with a concentric ring of the buried Chicxulub structure, a circular feature manifested in Cretaceous and older rocks, that has been identified as the product of the impact of a meteorite. The secondary permeability generated by the fracturing and faulting of the sedimentary sequence in the Chicxulub impact, has favored the karstification process and hence the development of genuine underground rivers that carry water from the continent to the sea. The study of the structure and morphology of the crater has allowed researchers to understand the key role of the crater in the Yucatán hydrogeology. It is generally accepted that the Ring of Cenotes, produced by the gravitational deformation of the Tertiary sedimentary sequence within the crater, controls the groundwater in northern Yucatán. However, today there is not solid evidence about the connectivity among cenotes, which is important because if established, public policies could be designed to manage sanitary infrastructure, septic control, regulation of agricultural and industrial activities and the protection of water that has not been compromised by anthropogenic pollution. All these directly affect more than half a million people whose main source of drinking water lies in the aquifer. In this contribution we investigated a set of 16 cenotes located in the vicinity of a gravimetric anomaly of Chicxulub crater ring, using complex networks to model the interconnectivity among them. Data from a geoelectrical tomography survey, collected with SuperSting R1/IP equipment, with multi-electrodes (72 electrodes), in a dipole-dipole configuration was used as input of our model. Since the total number of cenotes on the ring structure amounts to about 2000, the application of graph theoretic algorithms and Monte Carlo simulation to efficiently investigate network properties is proposed. We created a digital network model representing the observation network topology.

  10. Improving the Ionospheric Auroral Conductance in a Global Ring Current Model and the Effects on the Ionospheric Electrodynamics

    NASA Astrophysics Data System (ADS)

    Yu, Y.; Jordanova, V. K.; McGranaghan, R. M.; Solomon, S. C.

    2017-12-01

    The ionospheric conductance, height-integrated electric conductivity, can regulate both the ionospheric electrodynamics and the magnetospheric dynamics because of its key role in determining the electric field within the coupled magnetosphere-ionosphere system. State-of-the-art global magnetosphere models commonly adopt empirical conductance calculators to obtain the auroral conductance. Such specification can bypass the complexity of the ionosphere-thermosphere chemistry but on the other hand breaks the self-consistent link within the coupled system. In this study, we couple a kinetic ring current model RAM-SCB-E that solves for anisotropic particle distributions with a two-stream electron transport code (GLOW) to more self-consistently compute the height-dependent electric conductivity, provided the auroral electron precipitation from the ring current model. Comparisons with the traditional empirical formula are carried out. It is found that the newly coupled modeling framework reveals smaller Hall and Pedersen conductance, resulting in a larger electric field. As a consequence, the subauroral polarization streams demonstrate a better agreement with observations from DMSP satellites. It is further found that the commonly assumed Maxwellian spectrum of the particle precipitation is not globally appropriate. Instead, a full precipitation spectrum resulted from wave particle interactions in the ring current accounts for a more comprehensive precipitation spectrum.

  11. LET-99 functions in the astral furrowing pathway, where it is required for myosin enrichment in the contractile ring.

    PubMed

    Price, Kari L; Rose, Lesilee S

    2017-09-01

    The anaphase spindle determines the position of the cytokinesis furrow, such that the contractile ring assembles in an equatorial zone between the two spindle poles. Contractile ring formation is mediated by RhoA activation at the equator by the centralspindlin complex and midzone microtubules. Astral microtubules also inhibit RhoA accumulation at the poles. In the Caenorhabditis elegans one-cell embryo, the astral microtubule-dependent pathway requires anillin, NOP-1, and LET-99. LET-99 is well characterized for generating the asymmetric cortical localization of the Gα-dependent force-generating complex that positions the spindle during asymmetric division. However, whether the role of LET-99 in cytokinesis is specific to asymmetric division and whether it acts through Gα to promote furrowing are unclear. Here we show that LET-99 contributes to furrowing in both asymmetrically and symmetrically dividing cells, independent of its function in spindle positioning and Gα regulation. LET-99 acts in a pathway parallel to anillin and is required for myosin enrichment into the contractile ring. These and other results suggest a positive feedback model in which LET-99 localizes to the presumptive cleavage furrow in response to the spindle and myosin. Once positioned there, LET-99 enhances myosin accumulation to promote furrowing in both symmetrically and asymmetrically dividing cells. © 2017 Price and Rose. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  12. Archaeal MCM Proteins as an Analog for the Eukaryotic Mcm2–7 Helicase to Reveal Essential Features of Structure and Function

    PubMed Central

    Miller, Justin M.; Enemark, Eric J.

    2015-01-01

    In eukaryotes, the replicative helicase is the large multisubunit CMG complex consisting of the Mcm2–7 hexameric ring, Cdc45, and the tetrameric GINS complex. The Mcm2–7 ring assembles from six different, related proteins and forms the core of this complex. In archaea, a homologous MCM hexameric ring functions as the replicative helicase at the replication fork. Archaeal MCM proteins form thermostable homohexamers, facilitating their use as models of the eukaryotic Mcm2–7 helicase. Here we review archaeal MCM helicase structure and function and how the archaeal findings relate to the eukaryotic Mcm2–7 ring. PMID:26539061

  13. Structure of an E3:E2~Ub Complex Reveals an Allosteric Mechanism Shared among RING/U-box Ligases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pruneda, Jonathan N.; Littlefield, Peter J.; Soss, Sarah E.

    2012-09-28

    Despite the widespread importance of RING/U-box E3 ubiquitin ligases in ubiquitin (Ub) signaling, the mechanismby which this class of enzymes facilitates Ub transfer remains enigmatic. Here, we present a structural model for a RING/U-box E3:E2~Ub complex poised for Ub transfer. The model and additional analyses reveal that E3 binding biases dynamic E2~Ub ensembles toward closed conformations with enhanced reactivity for substrate lysines. We identify a key hydrogen bond between a highly conserved E3 side chain and an E2 backbone carbonyl, observed in all structures of active RING/ U-Box E3/E2 pairs, as the linchpin for allosteric activation of E2~Ub. The conformationalmore » biasing mechanism is generalizable across diverse E2s and RING/U-box E3s, but is not shared by HECT-type E3s. The results provide a structural model for a RING/ U-box E3:E2~Ub ligase complex and identify the long sought-after source of allostery for RING/UBox activation of E2~Ub conjugates.« less

  14. Revisiting the NaCl cotransporter regulation by with-no-lysine kinases

    PubMed Central

    Bazúa-Valenti, Silvana

    2015-01-01

    The renal thiazide-sensitive Na+-Cl− cotransporter (NCC) is the salt transporter in the distal convoluted tubule. Its activity is fundamental for defining blood pressure levels. Decreased NCC activity is associated with salt-remediable arterial hypotension with hypokalemia (Gitelman disease), while increased activity results in salt-sensitive arterial hypertension with hyperkalemia (pseudohypoaldosteronism type II; PHAII). The discovery of four different genes causing PHAII revealed a complex multiprotein system that regulates the activity of NCC. Two genes encode for with-no-lysine (K) kinases WNK1 and WNK4, while two encode for kelch-like 3 (KLHL3) and cullin 3 (CUL3) proteins that form a RING type E3 ubiquitin ligase complex. Extensive research has shown that WNK1 and WNK4 are the targets for the KLHL3-CUL3 complex and that WNKs modulate the activity of NCC by means of intermediary Ste20-type kinases known as SPAK or OSR1. The understanding of the effect of WNKs on NCC is a complex issue, but recent evidence discussed in this review suggests that we could be reaching the end of the dark ages regarding this matter. PMID:25788573

  15. The Structure of the Transcriptional Repressor KstR in Complex with CoA Thioester Cholesterol Metabolites Sheds Light on the Regulation of Cholesterol Catabolism in Mycobacterium tuberculosis*

    PubMed Central

    Ho, Ngoc Anh Thu; Dawes, Stephanie S.; Crowe, Adam M.; Casabon, Israël; Gao, Chen; Kendall, Sharon L.; Baker, Edward N.; Eltis, Lindsay D.; Lott, J. Shaun

    2016-01-01

    Cholesterol can be a major carbon source for Mycobacterium tuberculosis during infection, both at an early stage in the macrophage phagosome and later within the necrotic granuloma. KstR is a highly conserved TetR family transcriptional repressor that regulates a large set of genes responsible for cholesterol catabolism. Many genes in this regulon, including kstR, are either induced during infection or are essential for survival of M. tuberculosis in vivo. In this study, we identified two ligands for KstR, both of which are CoA thioester cholesterol metabolites with four intact steroid rings. A metabolite in which one of the rings was cleaved was not a ligand. We confirmed the ligand-protein interactions using intrinsic tryptophan fluorescence and showed that ligand binding strongly inhibited KstR-DNA binding using surface plasmon resonance (IC50 for ligand = 25 nm). Crystal structures of the ligand-free form of KstR show variability in the position of the DNA-binding domain. In contrast, structures of KstR·ligand complexes are highly similar to each other and demonstrate a position of the DNA-binding domain that is unfavorable for DNA binding. Comparison of ligand-bound and ligand-free structures identifies residues involved in ligand specificity and reveals a distinctive mechanism by which the ligand-induced conformational change mediates DNA release. PMID:26858250

  16. Regulation of microtubule nucleation mediated by γ-tubulin complexes.

    PubMed

    Sulimenko, Vadym; Hájková, Zuzana; Klebanovych, Anastasiya; Dráber, Pavel

    2017-05-01

    The microtubule cytoskeleton is critically important for spatio-temporal organization of eukaryotic cells. The nucleation of new microtubules is typically restricted to microtubule organizing centers (MTOCs) and requires γ-tubulin that assembles into multisubunit complexes of various sizes. γ-Tubulin ring complexes (TuRCs) are efficient microtubule nucleators and are associated with large number of targeting, activating and modulating proteins. γ-Tubulin-dependent nucleation of microtubules occurs both from canonical MTOCs, such as spindle pole bodies and centrosomes, and additional sites such as Golgi apparatus, nuclear envelope, plasma membrane-associated sites, chromatin and surface of pre-existing microtubules. Despite many advances in structure of γ-tubulin complexes and characterization of γTuRC interacting factors, regulatory mechanisms of microtubule nucleation are not fully understood. Here, we review recent work on the factors and regulatory mechanisms that are involved in centrosomal and non-centrosomal microtubule nucleation.

  17. Evaluation of genetic and metabolic role of SKIP11 in Arabidopsis thaliana

    NASA Astrophysics Data System (ADS)

    Hassan, Muhammad Naeem ul; Ismail, Ismanizan

    2015-09-01

    Most of the regulatory proteins are degraded by 26S proteasome complex, only when they are tagged by Ubiquitin. A complex of four proteins, SKP1-Cullin-Ring box-F box (SCF) catalyses the final step to link the Ubiquitin tag with the target proteins. SCF complex interacts with the target proteins through F-box proteins, which confer the overall substrate specificity to the complex. F-box proteins, one of the largest family of proteins in plants have an N-terminal F-box domain and variable C-terminal domains, like leucine-rich repeat, WD-40 repeat and the kelch-repeat domains. In this study, we analysed the role of SKIP11, a kelch containing F-box protein (KFB) from Arabidopsis thaliana, by using reverse genetics strategy. The results show that SKIP11 is involved in the down-regulation of oxylipin pathway, possibly through the degradation of enzymes or/ and the regulatory factors of the pathway.

  18. 77 FR 76706 - Endangered and Threatened Species; Threatened Status for the Arctic, Okhotsk, and Baltic...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-28

    ...We, NMFS, issue a final determination to list the Arctic (Phoca hispida hispida), Okhotsk (Phoca hispida ochotensis), and Baltic (Phoca hispida botnica) subspecies of the ringed seal (Phoca hispida) as threatened and the Ladoga (Phoca hispida ladogensis) subspecies of the ringed seal as endangered under the Endangered Species Act (ESA). We will propose to designate critical habitat for the Arctic ringed seal in a future rulemaking. To assist us in this effort, we solicit information that may be relevant to the designation of critical habitat for Arctic ringed seals. In light of public comments and upon further review, we are withdrawing the proposed ESA section 4(d) protective regulations for threatened subspecies of the ringed seal because we have determined that such regulations are not necessary or advisable for the conservation of the Arctic, Okhotsk, or Baltic subspecies of the ringed seal at this time. Given their current population sizes, the long-term nature of the primary threat to these subspecies (habitat alteration stemming from climate change), and the existing protections under the Marine Mammal Protection Act, it is unlikely that the proposed protective regulations would provide appreciable conservation benefits.

  19. E3 ubiquitin ligase SP1 regulates peroxisome biogenesis in Arabidopsis

    DOE PAGES

    Pan, Ronghui; Satkovich, John; Hu, Jianping

    2016-10-31

    Peroxisomes are ubiquitous eukaryotic organelles that play pivotal roles in a suite of metabolic processes and often act coordinately with other organelles, such as chloroplasts and mitochondria. Peroxisomes import proteins to the peroxisome matrix by peroxins (PEX proteins), but how the function of the PEX proteins is regulated is poorly understood. In this study, we identified the Arabidopsis RING (really interesting new gene) type E3 ubiquitin ligase SP1 [suppressor of plastid protein import locus 1 (ppi1) 1] as a peroxisome membrane protein with a regulatory role in peroxisome protein import. SP1 interacts physically with the two components of the peroxisomemore » protein docking complex PEX13–PEX14 and the (RING)-finger peroxin PEX2. Loss of SP1 function suppresses defects of the pex14-2 and pex13-1 mutants, and SP1 is involved in the degradation of PEX13 and possibly PEX14 and all three RING peroxins. An in vivo ubiquitination assay showed that SP1 has the ability to promote PEX13 ubiquitination. Our study has revealed that, in addition to its previously reported function in chloroplast biogenesis, SP1 plays a role in peroxisome biogenesis. The same E3 ubiquitin ligase promotes the destabilization of components of two distinct protein-import machineries, indicating that degradation of organelle biogenesis factors by the ubiquitin–proteasome system may constitute an important regulatory mechanism in coordinating the biogenesis of metabolically linked organelles in eukaryotes.« less

  20. Aim44p regulates phosphorylation of Hof1p to promote contractile ring closure during cytokinesis in budding yeast

    PubMed Central

    Wolken, Dana M. Alessi; McInnes, Joseph; Pon, Liza A.

    2014-01-01

    Whereas actomyosin and septin ring organization and function in cytokinesis are thoroughly described, little is known regarding the mechanisms by which the actomyosin ring interacts with septins and associated proteins to coordinate cell division. Here we show that the protein product of YPL158C, Aim44p, undergoes septin-dependent recruitment to the site of cell division. Aim44p colocalizes with Myo1p, the type II myosin of the contractile ring, throughout most of the cell cycle. The Aim44p ring does not contract when the actomyosin ring closes. Instead, it forms a double ring that associates with septin rings on mother and daughter cells after cell separation. Deletion of AIM44 results in defects in contractile ring closure. Aim44p coimmunoprecipitates with Hof1p, a conserved F-BAR protein that binds both septins and type II myosins and promotes contractile ring closure. Deletion of AIM44 results in a delay in Hof1p phosphorylation and altered Hof1p localization. Finally, overexpression of Dbf2p, a kinase that phosphorylates Hof1p and is required for relocalization of Hof1p from septin rings to the contractile ring and for Hof1p-triggered contractile ring closure, rescues the cytokinesis defect observed in aim44∆ cells. Our studies reveal a novel role for Aim44p in regulating contractile ring closure through effects on Hof1p. PMID:24451263

  1. Aromatic Ring Currents Illustrated--NMR Spectra of Tin(IV) Porphyrin Complexes. An Advanced Undergraduate Experiment.

    ERIC Educational Resources Information Center

    Arnold, Dennis P.

    1988-01-01

    Attempts to show that in the closed loops of cyclic structures the protons situated in conic regions above and below the ring will be shielded. Uses the diamagnetic and air stable octahedral tin(IV) complexes of porphyrins for study. Notes complexes crystallize easily and offer spectacular purple colors. (MVL)

  2. Dynamic assembly of Hda and the sliding clamp in the regulation of replication licensing.

    PubMed

    Kim, Jin S; Nanfara, Michael T; Chodavarapu, Sundari; Jin, Kyeong S; Babu, Vignesh M P; Ghazy, Mohamed A; Chung, Scisung; Kaguni, Jon M; Sutton, Mark D; Cho, Yunje

    2017-04-20

    Regulatory inactivation of DnaA (RIDA) is one of the major regulatory mechanisms of prokaryotic replication licensing. In RIDA, the Hda-sliding clamp complex loaded onto DNA directly interacts with adenosine triphosphate (ATP)-bound DnaA and stimulates the hydrolysis of ATP to inactivate DnaA. A prediction is that the activity of Hda is tightly controlled to ensure that replication initiation occurs only once per cell cycle. Here, we determined the crystal structure of the Hda-β clamp complex. This complex contains two pairs of Hda dimers sandwiched between two β clamp rings to form an octamer that is stabilized by three discrete interfaces. Two separate surfaces of Hda make contact with the β clamp, which is essential for Hda function in RIDA. The third interface between Hda monomers occludes the active site arginine finger, blocking its access to DnaA. Taken together, our structural and mutational analyses of the Hda-β clamp complex indicate that the interaction of the β clamp with Hda controls the ability of Hda to interact with DnaA. In the octameric Hda-β clamp complex, the inability of Hda to interact with DnaA is a novel mechanism that may regulate Hda function. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  3. Dynamic assembly of Hda and the sliding clamp in the regulation of replication licensing

    PubMed Central

    Kim, Jin S.; Nanfara, Michael T.; Chodavarapu, Sundari; Jin, Kyeong S.; Babu, Vignesh M. P.; Ghazy, Mohamed A.; Chung, Scisung

    2017-01-01

    Abstract Regulatory inactivation of DnaA (RIDA) is one of the major regulatory mechanisms of prokaryotic replication licensing. In RIDA, the Hda–sliding clamp complex loaded onto DNA directly interacts with adenosine triphosphate (ATP)-bound DnaA and stimulates the hydrolysis of ATP to inactivate DnaA. A prediction is that the activity of Hda is tightly controlled to ensure that replication initiation occurs only once per cell cycle. Here, we determined the crystal structure of the Hda–β clamp complex. This complex contains two pairs of Hda dimers sandwiched between two β clamp rings to form an octamer that is stabilized by three discrete interfaces. Two separate surfaces of Hda make contact with the β clamp, which is essential for Hda function in RIDA. The third interface between Hda monomers occludes the active site arginine finger, blocking its access to DnaA. Taken together, our structural and mutational analyses of the Hda–β clamp complex indicate that the interaction of the β clamp with Hda controls the ability of Hda to interact with DnaA. In the octameric Hda–β clamp complex, the inability of Hda to interact with DnaA is a novel mechanism that may regulate Hda function. PMID:28168278

  4. Disentangling polydispersity in the PCNA−p15PAF complex, a disordered, transient and multivalent macromolecular assembly

    PubMed Central

    Cordeiro, Tiago N.; Chen, Po-chia; De Biasio, Alfredo; Sibille, Nathalie; Blanco, Francisco J.; Hub, Jochen S.; Crehuet, Ramon

    2017-01-01

    Abstract The intrinsically disordered p15PAF regulates DNA replication and repair when interacting with the Proliferating Cell Nuclear Antigen (PCNA) sliding clamp. As many interactions between disordered proteins and globular partners involved in signaling and regulation, the complex between p15PAF and trimeric PCNA is of low affinity, forming a transient complex that is difficult to characterize at a structural level due to its inherent polydispersity. We have determined the structure, conformational fluctuations, and relative population of the five species that coexist in solution by combining small-angle X-ray scattering (SAXS) with molecular modelling. By using explicit ensemble descriptions for the individual species, built using integrative approaches and molecular dynamics (MD) simulations, we collectively interpreted multiple SAXS profiles as population-weighted thermodynamic mixtures. The analysis demonstrates that the N-terminus of p15PAF penetrates the PCNA ring and emerges on the back face. This observation substantiates the role of p15PAF as a drag regulating PCNA processivity during DNA repair. Our study reveals the power of ensemble-based approaches to decode structural, dynamic, and thermodynamic information from SAXS data. This strategy paves the way for deciphering the structural bases of flexible, transient and multivalent macromolecular assemblies involved in pivotal biological processes. PMID:28180305

  5. Robust Electrical Transfer System (RETS) for Solar Array Drive Mechanism SlipRing Assembly

    NASA Astrophysics Data System (ADS)

    Bommottet, Daniel; Bossoney, Luc; Schnyder, Ralph; Howling, Alan; Hollenstein, Christoph

    2013-09-01

    Demands for robust and reliable power transmission systems for sliprings for SADM (Solar Array Drive Mechanism) are increasing steadily. As a consequence, it is required to know their performances regarding the voltage breakdown limit.An understanding of the overall shape of the breakdown voltage versus pressure curve is established, based on experimental measurements of DC (Direct Current) gas breakdown in complex geometries compared with a numerical simulation model.In addition a detailed study was made of the functional behaviour of an entire wing of satellite in a like- operational mode, comprising the solar cells, the power transmission lines, the SRA (SlipRing Assembly), the power S3R (Sequential Serial/shunt Switching Regulators) and the satellite load to simulate the electrical power consumption.A test bench able to measure automatically the: a)breakdown voltage versus pressure curve and b)the functional switching performances, was developed and validated.

  6. Functional diversity of 2-oxoglutarate/Fe(II)-dependent dioxygenases in plant metabolism

    PubMed Central

    Farrow, Scott C.; Facchini, Peter J.

    2014-01-01

    Oxidative enzymes catalyze many different reactions in plant metabolism. Among this suite of enzymes are the 2-oxoglutarate/Fe(II)-dependent dioxygenases (2-ODDs). Cytochromes P450 (CYPs) as often considered the most versatile oxidative enzymes in nature, but the diversity and complexity of reactions catalyzed by 2-ODDs is superior to the CYPs. The list of oxidative reactions catalyzed by 2-ODDs includes hydroxylations, demethylations, desaturations, ring closure, ring cleavage, epimerization, rearrangement, halogenation, and demethylenation. Furthermore, recent work, including the discovery of 2-ODDs involved in epigenetic regulation, and others catalyzing several characteristic steps in specialized metabolic pathways, support the argument that 2-ODDs are among the most versatile and important oxidizing biological catalysts. In this review, we survey and summarize the pertinent literature with a focus on several key reactions catalyzed by 2-ODDs, and discuss the significance and impact of these enzymes in plant metabolism. PMID:25346740

  7. Degradation of Hof1 by SCFGrr1 is important for actomyosin contraction during cytokinesis in yeast

    PubMed Central

    Blondel, Marc; Bach, Stéphane; Bamps, Sophie; Dobbelaere, Jeroen; Wiget, Philippe; Longaretti, Céline; Barral, Yves; Meijer, Laurent; Peter, Matthias

    2005-01-01

    SCF-type (SCF: Skp1–Cullin–F-box protein complex) E3 ligases regulate ubiquitin-dependent degradation of many cell cycle regulators, mainly at the G1/S transition. Here, we show that SCFGrr1 functions during cytokinesis by degrading the PCH protein Hof1. While Hof1 is required early in mitosis to assemble a functional actomyosin ring, it is specifically degraded late in mitosis and remains unstable during the entire G1 phase of the cell cycle. Degradation of Hof1 depends on its PEST motif and a functional 26S proteasome. Interestingly, degradation of Hof1 is independent of APCCdh1, but instead requires the SCFGrr1 E3 ligase. Grr1 is recruited to the mother–bud neck region after activation of the mitotic-exit network, and interacts with Hof1 in a PEST motif-dependent manner. Our results also show that downregulation of Hof1 at the end of mitosis is necessary to allow efficient contraction of the actomyosin ring and cell separation during cytokinesis. SCFGrr1-mediated degradation of Hof1 may thus represent a novel mechanism to couple exit from mitosis with initiation of cytokinesis. PMID:15775961

  8. Distinct conformations of the protein complex p97-Ufd1-Npl4 revealed by electron cryomicroscopy

    PubMed Central

    Bebeacua, Cecilia; Förster, Andreas; McKeown, Ciarán; Meyer, Hemmo H.; Zhang, Xiaodong; Freemont, Paul S.

    2012-01-01

    p97 is a key regulator of numerous cellular pathways and associates with ubiquitin-binding adaptors to remodel ubiquitin-modified substrate proteins. How adaptor binding to p97 is coordinated and how adaptors contribute to substrate remodeling is unclear. Here we present the 3D electron cryomicroscopy reconstructions of the major Ufd1-Npl4 adaptor in complex with p97. Our reconstructions show that p97-Ufd1-Npl4 is highly dynamic and that Ufd1-Npl4 assumes distinct positions relative to the p97 ring upon addition of nucleotide. Our results suggest a model for substrate remodeling by p97 and also explains how p97-Ufd1-Npl4 could form other complexes in a hierarchical model of p97-cofactor assembly. PMID:22232657

  9. Put a RING on it: regulation and inhibition of RNF8 and RNF168 RING finger E3 ligases at DNA damage sites

    PubMed Central

    Bartocci, Cristina; Denchi, Eros Lazzerini

    2013-01-01

    RING (Really Interesting New Gene) domain-containing E3 ubiquitin ligases comprise a large family of enzymes that in combination with an E2 ubiquitin-conjugating enzyme, modify target proteins by attaching ubiquitin moieties. A number of RING E3s play an essential role in the cellular response to DNA damage highlighting a crucial contribution for ubiquitin-mediated signaling to the genome surveillance pathway. Among the RING E3s, RNF8 and RNF168 play a critical role in the response to double stranded breaks, one of the most deleterious types of DNA damage. These proteins act as positive regulators of the signaling cascade that initiates at DNA lesions. Inactivation of these enzymes is sufficient to severely impair the ability of cells to respond to DNA damage. Given their central role in the pathway, several layers of regulation act at this nodal signaling point. Here we will summarize current knowledge on the roles of RNF8 and RNF168 in maintaining genome integrity with particular emphasis on recent insights into the multiple layers of regulation that act on these enzymes to fine-tune the cellular response to DNA lesions. PMID:23847653

  10. Circuit variability interacts with excitatory-inhibitory diversity of interneurons to regulate network encoding capacity.

    PubMed

    Tsai, Kuo-Ting; Hu, Chin-Kun; Li, Kuan-Wei; Hwang, Wen-Liang; Chou, Ya-Hui

    2018-05-23

    Local interneurons (LNs) in the Drosophila olfactory system exhibit neuronal diversity and variability, yet it is still unknown how these features impact information encoding capacity and reliability in a complex LN network. We employed two strategies to construct a diverse excitatory-inhibitory neural network beginning with a ring network structure and then introduced distinct types of inhibitory interneurons and circuit variability to the simulated network. The continuity of activity within the node ensemble (oscillation pattern) was used as a readout to describe the temporal dynamics of network activity. We found that inhibitory interneurons enhance the encoding capacity by protecting the network from extremely short activation periods when the network wiring complexity is very high. In addition, distinct types of interneurons have differential effects on encoding capacity and reliability. Circuit variability may enhance the encoding reliability, with or without compromising encoding capacity. Therefore, we have described how circuit variability of interneurons may interact with excitatory-inhibitory diversity to enhance the encoding capacity and distinguishability of neural networks. In this work, we evaluate the effects of different types and degrees of connection diversity on a ring model, which may simulate interneuron networks in the Drosophila olfactory system or other biological systems.

  11. Linear ubiquitin assembly complex negatively regulates RIG-I and TRIM25 mediated type-I interferon induction

    PubMed Central

    Inn, Kyung-Soo; Gack, Michaela U.; Tokunaga, Fuminori; Shi, Mude; Wong, Lai-Yee; Iwai, Kazuhiro; Jung, Jae U.

    2011-01-01

    Summary Upon detection of viral RNA, retinoic acid inducible gene I (RIG-I) undergoes TRIM25-mediated Lys-63 linked ubiquitination, leading to type-I interferon (IFN) production. In this study, we demonstrate that the linear ubiquitin assembly complex (LUBAC), comprised of two RING-IBR-RING (RBR)-containing E3 ligases HOIL-1L and HOIP, independently targets TRIM25 and RIG-I to effectively suppress virus-induced IFN production. RBR E3 ligase domains of HOIL-1L and HOIP bind and induce proteosomal degradation of TRIM25, whereas the NZF domain of HOIL-1L competes with TRIM25 for RIG-I binding. Consequently, both actions by the HOIL-1L/HOIP LUBAC potently inhibit RIG-I ubiquitination and anti-viral activity, but in a mechanistically separate manner. Conversely, the genetic deletion or depletion of HOIL-1L and HOIP robustly enhances virus-induced type-I IFN production. Taken together, the HOIL-1L/HOIP LUBAC specifically suppresses RIG-I ubiquitination and activation by inducing TRIM25 degradation and inhibiting TRIM25 interaction with RIG-I, resulting in the comprehensive suppression of the IFN-mediated anti-viral signaling pathway. PMID:21292167

  12. Linear ubiquitin assembly complex negatively regulates RIG-I- and TRIM25-mediated type I interferon induction.

    PubMed

    Inn, Kyung-Soo; Gack, Michaela U; Tokunaga, Fuminori; Shi, Mude; Wong, Lai-Yee; Iwai, Kazuhiro; Jung, Jae U

    2011-02-04

    Upon detection of viral RNA, retinoic acid-inducible gene I (RIG-I) undergoes TRIM25-mediated K63-linked ubiquitination, leading to type I interferon (IFN) production. In this study, we demonstrate that the linear ubiquitin assembly complex (LUBAC), comprised of two RING-IBR-RING (RBR)-containing E3 ligases, HOIL-1L and HOIP, independently targets TRIM25 and RIG-I to effectively suppress virus-induced IFN production. RBR E3 ligase domains of HOIL-1L and HOIP bind and induce proteasomal degradation of TRIM25, whereas the NZF domain of HOIL-1L competes with TRIM25 for RIG-I binding. Consequently, both actions by the HOIL-1L/HOIP LUBAC potently inhibit RIG-I ubiquitination and antiviral activity, but in a mechanistically separate manner. Conversely, the genetic deletion or depletion of HOIL-1L and HOIP robustly enhances virus-induced type I IFN production. Taken together, the HOIL-1L/HOIP LUBAC specifically suppresses RIG-I ubiquitination and activation by inducing TRIM25 degradation and inhibiting TRIM25 interaction with RIG-I, resulting in the comprehensive suppression of the IFN-mediated antiviral signaling pathway. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Skp1 Independent Function of Cdc53/Cul1 in F-box Protein Homeostasis.

    PubMed

    Mathur, Radhika; Yen, James L; Kaiser, Peter

    2015-12-01

    Abundance of substrate receptor subunits of Cullin-RING ubiquitin ligases (CRLs) is tightly controlled to maintain the full repertoire of CRLs. Unbalanced levels can lead to sequestration of CRL core components by a few overabundant substrate receptors. Numerous diseases, including cancer, have been associated with misregulation of substrate receptor components, particularly for the largest class of CRLs, the SCF ligases. One relevant mechanism that controls abundance of their substrate receptors, the F-box proteins, is autocatalytic ubiquitylation by intact SCF complex followed by proteasome-mediated degradation. Here we describe an additional pathway for regulation of F-box proteins on the example of yeast Met30. This ubiquitylation and degradation pathway acts on Met30 that is dissociated from Skp1. Unexpectedly, this pathway required the cullin component Cdc53/Cul1 but was independent of the other central SCF component Skp1. We demonstrated that this non-canonical degradation pathway is critical for chromosome stability and effective defense against heavy metal stress. More importantly, our results assign important biological functions to a sub-complex of cullin-RING ligases that comprises Cdc53/Rbx1/Cdc34, but is independent of Skp1.

  14. Intracellular antibody signalling is regulated by phosphorylation of the Fc receptor TRIM21

    PubMed Central

    Vaysburd, Marina; Yang, Ji-Chun; Mallery, Donna L; Zeng, Jingwei; Johnson, Christopher M; McLaughlin, Stephen H; Skehel, Mark; Maslen, Sarah; Cruickshank, James; Huguenin-Dezot, Nicolas; Chin, Jason W; Neuhaus, David

    2018-01-01

    Cell surface Fc receptors activate inflammation and are tightly controlled to prevent autoimmunity. Antibodies also simulate potent immune signalling from inside the cell via the cytosolic antibody receptor TRIM21, but how this is regulated is unknown. Here we show that TRIM21 signalling is constitutively repressed by its B-Box domain and activated by phosphorylation. The B-Box occupies an E2 binding site on the catalytic RING domain by mimicking E2-E3 interactions, inhibiting TRIM21 ubiquitination and preventing immune activation. TRIM21 is derepressed by IKKβ and TBK1 phosphorylation of an LxxIS motif in the RING domain, at the interface with the B-Box. Incorporation of phosphoserine or a phosphomimetic within this motif relieves B-Box inhibition, promoting E2 binding, RING catalysis, NF-κB activation and cytokine transcription upon infection with DNA or RNA viruses. These data explain how intracellular antibody signalling is regulated and reveal that the B-Box is a critical regulator of RING E3 ligase activity. PMID:29667579

  15. Self-assembly of concentric quantum double rings.

    PubMed

    Mano, Takaaki; Kuroda, Takashi; Sanguinetti, Stefano; Ochiai, Tetsuyuki; Tateno, Takahiro; Kim, Jongsu; Noda, Takeshi; Kawabe, Mitsuo; Sakoda, Kazuaki; Kido, Giyuu; Koguchi, Nobuyuki

    2005-03-01

    We demonstrate the self-assembled formation of concentric quantum double rings with high uniformity and excellent rotational symmetry using the droplet epitaxy technique. Varying the growth process conditions can control each ring's size. Photoluminescence spectra emitted from an individual quantum ring complex show peculiar quantized levels that are specified by the carriers' orbital trajectories.

  16. Site-Specific Expression of Polycomb-Group Genes Encoding the HPC-HPH/PRC1 Complex in Clinically Defined Primary Nodal and Cutaneous Large B-Cell Lymphomas

    PubMed Central

    Raaphorst, Frank M.; Vermeer, Maarten; Fieret, Elly; Blokzijl, Tjasso; Dukers, Danny; Sewalt, Richard G.A.B.; Otte, Arie P.; Willemze, Rein; Meijer, Chris J.L.M.

    2004-01-01

    Polycomb-group (PcG) genes preserve cell identity by gene silencing, and contribute to regulation of lymphopoiesis and malignant transformation. We show that primary nodal large B-cell lymphomas (LBCLs), and secondary cutaneous deposits from such lymphomas, abnormally express the BMI-1, RING1, and HPH1 PcG genes in cycling neoplastic cells. By contrast, tumor cells in primary cutaneous LBCLs lacked BMI-1 expression, whereas RING1 was variably detected. Lack of BMI-1 expression was characteristic for primary cutaneous LBCLs, because other primary extranodal LBCLs originating from brain, testes, and stomach were BMI-1-positive. Expression of HPH1 was rarely detected in primary cutaneous LBCLs of the head or trunk and abundant in primary cutaneous LBCLs of the legs, which fits well with its earlier recognition as a distinct clinical pathological entity with different clinical behavior. We conclude that clinically defined subclasses of primary LBCLs display site-specific abnormal expression patterns of PcG genes of the HPC-HPH/PRC1 PcG complex. Some of these patterns (such as the expression profile of BMI-1) may be diagnostically relevant. We propose that distinct expression profiles of PcG genes results in abnormal formation of HPC-HPH/PRC1 PcG complexes, and that this contributes to lymphomagenesis and different clinical behavior of clinically defined LBCLs. PMID:14742259

  17. MinC/MinD copolymers are not required for Min function

    PubMed Central

    Park, Kyung-Tae; Du, Shishen; Lutkenhaus, Joe

    2015-01-01

    Summary In Escherichia coli, precise placement of the cytokinetic Z ring at midcell requires the concerted action of the three Min proteins. MinD activates MinC, an inhibitor of FtsZ, at least in part, by recruiting it to the membrane and targeting it to the Z ring, while MinE stimulates the MinD ATPase inducing an oscillation that directs MinC/MinD activity away from midcell. Recently, MinC and MinD were shown to form copolymers of alternating dimers of MinC and MinD and it was suggested that these copolymers are the active form of MinC/MinD. Here, we use MinD mutants defective in binding MinC to generate heterodimers with wild type MinD that are unable to form MinC/MinD copolymers. Similarly, MinC mutants defective in binding to MinD were used to generate heterodimers with wild type MinC that are unable to form copolymers. Such heterodimers are active and in the case of MinC were shown to mediate spatial regulation of the Z ring demonstrating that MinC/MinD copolymer formation is not required. Our results are consistent with a model in which a membrane anchored MinC/MinD complex is targeted to the Z ring through the conserved carboxy tail of FtsZ leading to breakage of FtsZ filaments. PMID:26268537

  18. Antigenic peptides containing large PEG loops designed to extend out of the HLA-A2 binding site form stable complexes with class I major histocompatibility complex molecules.

    PubMed Central

    Bouvier, M; Wiley, D C

    1996-01-01

    Recognition of peptides bound to class I major histocompatibility complex (MHC) molecules by specific receptors on T cells regulates the development and activity of the cellular immune system. We have designed and synthesized de novo cyclic peptides that incorporate PEG in the ring structure for binding to class I MHC molecules. The large PEG loops are positioned to extend out of the peptide binding site, thus creating steric effects aimed at preventing the recognition of class I MHC complexes by T-cell receptors. Peptides were synthesized and cyclized on polymer support using high molecular weight symmetrical PEG dicarboxylic acids to link the side chains of lysine residues substituted at positions 4 and 8 in the sequence of the HLA-A2-restricted human T-lymphotrophic virus type I Tax peptide. Cyclic peptides promoted the in vitro folding and assembly of HLA-A2 complexes. Thermal denaturation studies using circular dichroism spectroscopy showed that these complexes are as stable as complexes formed with antigenic peptides. Images Fig. 2 Fig. 4 PMID:8643447

  19. The Transition from Complex Crater to Peak-Ring Basin on the Moon: New Observations from the Lunar Orbiter Laser Altimeter (LOLA) Instrument

    NASA Technical Reports Server (NTRS)

    Baker, David M. H.; Head, James W.; Fassett, Caleb I.; Kadish, Seth J.; Smith, Dave E.; Zuber, Maria T.; Neumann, Gregory A.

    2012-01-01

    Impact craters on planetary bodies transition with increasing size from simple, to complex, to peak-ring basins and finally to multi-ring basins. Important to understanding the relationship between complex craters with central peaks and multi-ring basins is the analysis of protobasins (exhibiting a rim crest and interior ring plus a central peak) and peak-ring basins (exhibiting a rim crest and an interior ring). New data have permitted improved portrayal and classification of these transitional features on the Moon. We used new 128 pixel/degree gridded topographic data from the Lunar Orbiter Laser Altimeter (LOLA) instrument onboard the Lunar Reconnaissance Orbiter, combined with image mosaics, to conduct a survey of craters >50 km in diameter on the Moon and to update the existing catalogs of lunar peak-ring basins and protobasins. Our updated catalog includes 17 peak-ring basins (rim-crest diameters range from 207 km to 582 km, geometric mean = 343 km) and 3 protobasins (137-170 km, geometric mean = 157 km). Several basins inferred to be multi-ring basins in prior studies (Apollo, Moscoviense, Grimaldi, Freundlich-Sharonov, Coulomb-Sarton, and Korolev) are now classified as peak-ring basins due to their similarities with lunar peak-ring basin morphologies and absence of definitive topographic ring structures greater than two in number. We also include in our catalog 23 craters exhibiting small ring-like clusters of peaks (50-205 km, geometric mean = 81 km); one (Humboldt) exhibits a rim-crest diameter and an interior morphology that may be uniquely transitional to the process of forming peak rings. Comparisons of the predictions of models for the formation of peak-ring basins with the characteristics of the new basin catalog for the Moon suggest that formation and modification of an interior melt cavity and nonlinear scaling of impact melt volume with crater diameter provide important controls on the development of peak rings. In particular, a power-law model of growth of an interior melt cavity with increasing crater diameter is consistent with power-law fits to the peak-ring basin data for the Moon and Mercury. We suggest that the relationship between the depth of melting and depth of the transient cavity offers a plausible control on the onset diameter and subsequent development of peak-ring basins and also multi-ring basins, which is consistent with both planetary gravitational acceleration and mean impact velocity being important in determining the onset of basin morphological forms on the terrestrial planets.

  20. JFK, a Kelch domain-containing F-box protein, links the SCF complex to p53 regulation

    PubMed Central

    Sun, Luyang; Shi, Lei; Li, Wenqian; Yu, Wenhua; Liang, Jing; Zhang, Hua; Yang, Xiaohan; Wang, Yan; Li, Ruifang; Yao, Xingrong; Yi, Xia; Shang, Yongfeng

    2009-01-01

    The p53 tumor suppressor plays a central role in integrating cellular responses to various stresses. Tight regulation of p53 is thus essential for the maintenance of genome integrity and normal cell proliferation. Currently, several ubiquitin ligases, including the single-subunit RING-finger types—MDM2, Pirh2, and COP1—and the HECT-domain type—ARF-BP1—have been reported to target p53 for degradation. Here, we report the identification of a human Kelch domain-containing F-box protein, JFK. We showed that JFK promotes ubiquitination and degradation of p53. But unlike MDM2, Pirh2, COP1, and ARF-BP1, all of which possess an intrinsic ubiquitin ligase activity, JFK destabilizes p53 through the assembly of a Skp1-Cul1-F-box complex. Significantly, JFK inhibits p53-dependent transcription, and depletion of JFK stabilizes p53, promotes cell apoptosis, arrests cells in the G1 phase, and sensitizes cells to ionizing radiation-induced cell death. These data indicate that JFK is a critical negative regulator of p53 and represents a pathway for the maintenance of p53 levels in unstressed cells. Our experiments link the Skp1-Cul1-F-box system to p53 regulation. PMID:19509332

  1. JFK, a Kelch domain-containing F-box protein, links the SCF complex to p53 regulation.

    PubMed

    Sun, Luyang; Shi, Lei; Li, Wenqian; Yu, Wenhua; Liang, Jing; Zhang, Hua; Yang, Xiaohan; Wang, Yan; Li, Ruifang; Yao, Xingrong; Yi, Xia; Shang, Yongfeng

    2009-06-23

    The p53 tumor suppressor plays a central role in integrating cellular responses to various stresses. Tight regulation of p53 is thus essential for the maintenance of genome integrity and normal cell proliferation. Currently, several ubiquitin ligases, including the single-subunit RING-finger types--MDM2, Pirh2, and COP1--and the HECT-domain type--ARF-BP1--have been reported to target p53 for degradation. Here, we report the identification of a human Kelch domain-containing F-box protein, JFK. We showed that JFK promotes ubiquitination and degradation of p53. But unlike MDM2, Pirh2, COP1, and ARF-BP1, all of which possess an intrinsic ubiquitin ligase activity, JFK destabilizes p53 through the assembly of a Skp1-Cul1-F-box complex. Significantly, JFK inhibits p53-dependent transcription, and depletion of JFK stabilizes p53, promotes cell apoptosis, arrests cells in the G(1) phase, and sensitizes cells to ionizing radiation-induced cell death. These data indicate that JFK is a critical negative regulator of p53 and represents a pathway for the maintenance of p53 levels in unstressed cells. Our experiments link the Skp1-Cul1-F-box system to p53 regulation.

  2. Lys48 ubiquitination during the intraerythrocytic cycle of the rodent malaria parasite, Plasmodium chabaudi.

    PubMed

    González-López, Lorena; Carballar-Lejarazú, Rebeca; Arrevillaga Boni, Gerardo; Cortés-Martínez, Leticia; Cázares-Raga, Febe Elena; Trujillo-Ocampo, Abel; Rodríguez, Mario H; James, Anthony A; Hernández-Hernández, Fidel de la Cruz

    2017-01-01

    Ubiquitination tags proteins for different functions within the cell. One of the most abundant and studied ubiquitin modification is the Lys48 polyubiquitin chain that modifies proteins for their destruction by proteasome. In Plasmodium is proposed that post-translational regulation is fundamental for parasite development during its complex life-cycle; thus, the objective of this work was to analyze the ubiquitination during Plasmodium chabaudi intraerythrocytic stages. Ubiquitinated proteins were detected during intraerythrocytic stages of Plasmodium chabaudi by immunofluorescent microscopy, bidimensional electrophoresis (2-DE) combined with immunoblotting and mass spectrometry. All the studied stages presented protein ubiquitination and Lys48 polyubiquitination with more abundance during the schizont stage. Three ubiquitinated proteins were identified for rings, five for trophozoites and twenty for schizonts. Only proteins detected with a specific anti- Lys48 polyubiquitin antibody were selected for Mass Spectrometry analysis and two of these identified proteins were selected in order to detect the specific amino acid residues where ubiquitin is placed. Ubiquitinated proteins during the ring and trophozoite stages were related with the invasion process and in schizont proteins were related with nucleic acid metabolism, glycolysis and protein biosynthesis. Most of the ubiquitin detection was during the schizont stage and the Lys48 polyubiquitination during this stage was related to proteins that are expected to be abundant during the trophozoite stage. The evidence that these Lys48 polyubiquitinated proteins are tagged for destruction by the proteasome complex suggests that this type of post-translational modification is important in the regulation of protein abundance during the life-cycle and may also contribute to the parasite cell-cycle progression.

  3. Methods/Labor Standards Application Program - Phase IV

    DTIC Science & Technology

    1985-01-01

    Engine Platform a. Pressure switch b. Compressor motor c. Voltage regulator d. Open and clean generator exciter and main windings S3 . Main Collector...clean motors b. Slip rings Gantry #3 Annual: S2. Engine Platform a. Pressure switch b. Compressor motor Voltage regulator d. Open and clean generator...Travel Motors Open and clean motorsa. b. Slip rings Gantry #4 S2 . S3. S4 . S5 . Engine Platform a. Pressure switch b. Compressor motor Voltage regulator

  4. CH/π interactions in metal-porphyrin complexes with pyrrole and chelate rings as hydrogen acceptors.

    PubMed

    Medaković, Vesna B; Bogdanović, Goran A; Milčić, Miloš K; Janjić, Goran V; Zarić, Snežana D

    2012-12-01

    CH/π interactions in metal porphyrinato complexes were studied by analyzing data in crystal structures from the Cambridge Structural Database (CSD) and by quantum chemical calculations. The analysis of the data in the CSD shows that both five-membered pyrrole and six-membered chelate rings form CH/π interactions. The interactions occur more frequently with five-membered rings. The analysis of distances in crystal structures and calculated energies show stronger interactions with six-membered chelate rings, indicating that a larger number of interactions with five-membered rings are not the consequence of stronger interactions, but better accessibility of five-membered pyrrole rings. The calculated energies of the interactions with positions in six-membered rings are -2.09 to -2.83 kcal/mol, while the energies with five-membered rings are -2.05 to -2.26 kcal/mol. The results reveal that stronger interactions of six-membered rings are the consequence of stronger electrostatic interactions. Substituents on the porphyrin ring significantly strengthen the interactions. Substituents on the six-membered ring strengthen the interaction energy by about 20%. The results show that CH/π interactions play an important role in molecular recognition of metalloporphyrins. The significant influence of the substituents on interaction energies can be very important for the design of model systems in bioinorganic chemistry. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Planetary Rings

    NASA Astrophysics Data System (ADS)

    Gordon, M. K.; Araki, S.; Black, G. J.; Bosh, A. S.; Brahic, A.; Brooks, S. M.; Charnoz, S.; Colwell, J. E.; Cuzzi, J. N.; Dones, L.; Durisen, R. H.; Esposito, L. W.; Ferrari, C.; Festou, M.; French, R. G.; Giuliatti-Winter, S. M.; Graps, A. L.; Hamilton, D. P.; Horanyi, M.; Karjalainen, R. M.; Krivov, A. V.; Krueger, H.; Larson, S. M.; Levison, H. F.; Lewis, M. C.; Lissauer, J. J.; Murray, C. D.; Namouni, F.; Nicholson, P. D.; Olkin, C. B.; Poulet, F.; Rappaport, N. J.; Salo, H. J.; Schmidt, J.; Showalter, M. R.; Spahn, F.; Spilker, L. J.; Srama, R.; Stewart, G. R.; Yanamandra-Fisher, P.

    2002-08-01

    The past two decades have witnessed dramatic changes in our view and understanding of planetary rings. We now know that each of the giant planets in the Solar System possesses a complex and unique ring system. Recent studies have identified complex gravitational interactions between the rings and their retinues of attendant satellites. Among the four known ring systems, we see elegant examples of Lindblad and corotation resonances (first invoked in the context of galactic disks), electromagnetic resonances, spiral density waves and bending waves, narrow ringlets which exhibit internal modes due to collective instabilities, sharp-edged gaps maintained via tidal torques from embedded moonlets, and tenuous dust belts created by meteoroid impact onto, or collisions between, parent bodies. Yet, as far as we have come, our understanding is far from complete. The fundamental questions confronting ring scientists at the beginning of the twenty-first century are those regarding the origin, age and evolution of the various ring systems, in the broadest context. Understanding the origin and age requires us to know the current ring properties, and to understand the dominant evolutionary processes and how they influence ring properties. Here we discuss a prioritized list of the key questions, the answers to which would provide the greatest improvement in our understanding of planetary rings. We then outline the initiatives, missions, and other supporting activities needed to address those questions, and recommend priorities for the coming decade in planetary ring science.

  6. A Sterile 20 Family Kinase and Its Co-factor CCM-3 Regulate Contractile Ring Proteins on Germline Intercellular Bridges.

    PubMed

    Rehain-Bell, Kathryn; Love, Andrew; Werner, Michael E; MacLeod, Ian; Yates, John R; Maddox, Amy Shaub

    2017-03-20

    Germ cells in most animals are connected by intercellular bridges, actin-based rings that form stable cytoplasmic connections between cells promoting communication and coordination [1]. Moreover, these connections are required for fertility [1, 2]. Intercellular bridges are proposed to arise from stabilization of the cytokinetic ring during incomplete cytokinesis [1]. Paradoxically, proteins that promote closure of cytokinetic rings are enriched on stably open intercellular bridges [1, 3, 4]. Given this inconsistency, the mechanism of intercellular bridge stabilization is unclear. Here, we used the C. elegans germline as a model for identifying molecular mechanisms regulating intercellular bridges. We report that bridges are actually highly dynamic, changing size at precise times during germ cell development. We focused on the regulation of bridge stability by anillins, key regulators of cytokinetic rings and cytoplasmic bridges [1, 4-7]. We identified GCK-1, a conserved serine/threonine kinase [8], as a putative novel anillin interactor. GCK-1 works together with CCM-3, a known binding partner [9], to promote intercellular bridge stability and limit localization of both canonical anillin and non-muscle myosin II (NMM-II) to intercellular bridges. Additionally, we found that a shorter anillin, known to stabilize bridges [4, 7], also regulates NMM-II levels at bridges. Consistent with these results, negative regulators of NMM-II stabilize intercellular bridges in the Drosophila egg chamber [10, 11]. Together with our findings, this suggests that tuning of myosin levels is a conserved mechanism for the stabilization of intercellular bridges that can occur by diverse molecular mechanisms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. New strategies to inhibit KEAP1 and the Cul3-based E3 ubiquitin ligases

    PubMed Central

    Canning, Peter; Bullock, Alex N.

    2014-01-01

    E3 ubiquitin ligases that direct substrate proteins to the ubiquitin–proteasome system are promising, though largely unexplored drug targets both because of their function and their remarkable specificity. CRLs [Cullin–RING (really interesting new gene) ligases] are the largest group of E3 ligases and function as modular multisubunit complexes constructed around a Cullin-family scaffold protein. The Cul3-based CRLs uniquely assemble with BTB (broad complex/tramtrack/bric-à-brac) proteins that also homodimerize and perform the role of both the Cullin adapter and the substrate-recognition component of the E3. The most prominent member is the BTB–BACK (BTB and C-terminal Kelch)–Kelch protein KEAP1 (Kelch-like ECH-associated protein 1), a master regulator of the oxidative stress response and a potential drug target for common conditions such as diabetes, Alzheimer's disease and Parkinson's disease. Structural characterization of BTB–Cul3 complexes has revealed a number of critical assembly mechanisms, including the binding of an N-terminal Cullin extension to a bihelical ‘3-box’ at the C-terminus of the BTB domain. Improved understanding of the structure of these complexes should contribute significantly to the effort to develop novel therapeutics targeted to CRL3-regulated pathways. PMID:24450635

  8. The crystal structure of N-acetyl-L-glutamate synthase from Neisseria gonorrhoeae provides insights into mechanisms of catalysis and regulation.

    PubMed

    Shi, Dashuang; Sagar, Vatsala; Jin, Zhongmin; Yu, Xiaolin; Caldovic, Ljubica; Morizono, Hiroki; Allewell, Norma M; Tuchman, Mendel

    2008-03-14

    The crystal structures of N-acetylglutamate synthase (NAGS) in the arginine biosynthetic pathway of Neisseria gonorrhoeae complexed with acetyl-CoA and with CoA plus N-acetylglutamate have been determined at 2.5- and 2.6-A resolution, respectively. The monomer consists of two separately folded domains, an amino acid kinase (AAK) domain and an N-acetyltransferase (NAT) domain connected through a 10-A linker. The monomers assemble into a hexameric ring that consists of a trimer of dimers with 32-point symmetry, inner and outer ring diameters of 20 and 100A, respectively, and a height of 110A(.) Each AAK domain interacts with the cognate domains of two adjacent monomers across two 2-fold symmetry axes and with the NAT domain from a second monomer of the adjacent dimer in the ring. The catalytic sites are located within the NAT domains. Three active site residues, Arg316, Arg425, and Ser427, anchor N-acetylglutamate in a position at the active site to form hydrogen bond interactions to the main chain nitrogen atoms of Cys356 and Leu314, and hydrophobic interactions to the side chains of Leu313 and Leu314. The mode of binding of acetyl-CoA and CoA is similar to other NAT family proteins. The AAK domain, although catalytically inactive, appears to bind arginine. This is the first reported crystal structure of any NAGS, and it provides insights into the catalytic function and arginine regulation of NAGS enzymes.

  9. The Crystal Structure of N-Acetyl-L-glutamate Synthase from Neisseria gonorrhoeae Provides Insights into Mechanisms of Catalysis and Regulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Dashuang; Sagar, Vatsala; Jin, Zhongmin

    2010-01-07

    The crystal structures of N-acetylglutamate synthase (NAGS) in the arginine biosynthetic pathway of Neisseria gonorrhoeae complexed with acetyl-CoA and with CoA plus N-acetylglutamate have been determined at 2.5- and 2.6-A resolution, respectively. The monomer consists of two separately folded domains, an amino acid kinase (AAK) domain and an N-acetyltransferase (NAT) domain connected through a 10-A linker. The monomers assemble into a hexameric ring that consists of a trimer of dimers with 32-point symmetry, inner and outer ring diameters of 20 and 100A, respectively, and a height of 110A(.) Each AAK domain interacts with the cognate domains of two adjacent monomersmore » across two 2-fold symmetry axes and with the NAT domain from a second monomer of the adjacent dimer in the ring. The catalytic sites are located within the NAT domains. Three active site residues, Arg316, Arg425, and Ser427, anchor N-acetylglutamate in a position at the active site to form hydrogen bond interactions to the main chain nitrogen atoms of Cys356 and Leu314, and hydrophobic interactions to the side chains of Leu313 and Leu314. The mode of binding of acetyl-CoA and CoA is similar to other NAT family proteins. The AAK domain, although catalytically inactive, appears to bind arginine. This is the first reported crystal structure of any NAGS, and it provides insights into the catalytic function and arginine regulation of NAGS enzymes.« less

  10. Apple ring rot-responsive putative microRNAs revealed by high-throughput sequencing in Malus × domestica Borkh.

    PubMed

    Yu, Xin-Yi; Du, Bei-Bei; Gao, Zhi-Hong; Zhang, Shi-Jie; Tu, Xu-Tong; Chen, Xiao-Yun; Zhang, Zhen; Qu, Shen-Chun

    2014-08-01

    MicroRNAs (miRNAs) are small non-coding RNAs, which silence target mRNA via cleavage or translational inhibition to function in regulating gene expression. MiRNAs act as important regulators of plant development and stress response. For understanding the role of miRNAs responsive to apple ring rot stress, we identified disease-responsive miRNAs using high-throughput sequencing in Malus × domestica Borkh.. Four small RNA libraries were constructed from two control strains in M. domestica, crabapple (CKHu) and Fuji Naga-fu No. 6 (CKFu), and two disease stress strains, crabapple (DSHu) and Fuji Naga-fu No. 6 (DSFu). A total of 59 miRNA families were identified and five miRNAs might be responsive to apple ring rot infection and validated via qRT-PCR. Furthermore, we predicted 76 target genes which were regulated by conserved miRNAs potentially. Our study demonstrated that miRNAs was responsive to apple ring rot infection and may have important implications on apple disease resistance.

  11. Repetitive Protein Unfolding by the trans Ring of the GroEL-GroES Chaperonin Complex Stimulates Folding*

    PubMed Central

    Lin, Zong; Puchalla, Jason; Shoup, Daniel; Rye, Hays S.

    2013-01-01

    A key constraint on the growth of most organisms is the slow and inefficient folding of many essential proteins. To deal with this problem, several diverse families of protein folding machines, known collectively as molecular chaperones, developed early in evolutionary history. The functional role and operational steps of these remarkably complex nanomachines remain subjects of active debate. Here we present evidence that, for the GroEL-GroES chaperonin system, the non-native substrate protein enters the folding cycle on the trans ring of the double-ring GroEL-ATP-GroES complex rather than the ADP-bound complex. The properties of this ATP complex are designed to ensure that non-native substrate protein binds first, followed by ATP and finally GroES. This binding order ensures efficient occupancy of the open GroEL ring and allows for disruption of misfolded structures through two phases of multiaxis unfolding. In this model, repeated cycles of partial unfolding, followed by confinement within the GroEL-GroES chamber, provide the most effective overall mechanism for facilitating the folding of the most stringently dependent GroEL substrate proteins. PMID:24022487

  12. Lis1 regulates dynein by sterically blocking its mechanochemical cycle

    PubMed Central

    Toropova, Katerina; Zou, Sirui; Roberts, Anthony J; Redwine, William B; Goodman, Brian S; Reck-Peterson, Samara L; Leschziner, Andres E

    2014-01-01

    Regulation of cytoplasmic dynein's motor activity is essential for diverse eukaryotic functions, including cell division, intracellular transport, and brain development. The dynein regulator Lis1 is known to keep dynein bound to microtubules; however, how this is accomplished mechanistically remains unknown. We have used three-dimensional electron microscopy, single-molecule imaging, biochemistry, and in vivo assays to help establish this mechanism. The three-dimensional structure of the dynein–Lis1 complex shows that binding of Lis1 to dynein's AAA+ ring sterically prevents dynein's main mechanical element, the ‘linker’, from completing its normal conformational cycle. Single-molecule experiments show that eliminating this block by shortening the linker to a point where it can physically bypass Lis1 renders single dynein motors insensitive to regulation by Lis1. Our data reveal that Lis1 keeps dynein in a persistent microtubule-bound state by directly blocking the progression of its mechanochemical cycle. DOI: http://dx.doi.org/10.7554/eLife.03372.001 PMID:25380312

  13. Meiosis in male Drosophila

    PubMed Central

    McKee, Bruce D.; Yan, Rihui; Tsai, Jui-He

    2012-01-01

    Meiosis entails sorting and separating both homologous and sister chromatids. The mechanisms for connecting sister chromatids and homologs during meiosis are highly conserved and include specialized forms of the cohesin complex and a tightly regulated homolog synapsis/recombination pathway designed to yield regular crossovers between homologous chromatids. Drosophila male meiosis is of special interest because it dispenses with large segments of the standard meiotic script, particularly recombination, synapsis and the associated structures. Instead, Drosophila relies on a unique protein complex composed of at least two novel proteins, SNM and MNM, to provide stable connections between homologs during meiosis I. Sister chromatid cohesion in Drosophila is mediated by cohesins, ring-shaped complexes that entrap sister chromatids. However, unlike other eukaryotes Drosophila does not rely on the highly conserved Rec8 cohesin in meiosis, but instead utilizes two novel cohesion proteins, ORD and SOLO, which interact with the SMC1/3 cohesin components in providing meiotic cohesion. PMID:23087836

  14. N-alkyl functionalised expanded ring N-heterocyclic carbene complexes of rhodium(I) and iridium(I): structural investigations and preliminary catalytic evaluation.

    PubMed

    Dunsford, Jay J; Tromp, Dorette S; Cavell, Kingsley J; Elsevier, Cornelis J; Kariuki, Benson M

    2013-05-28

    A series of new N-alkyl functionalised 6- and 7-membered expanded ring N-heterocyclic carbene (NHC) pro-ligands 3-6 and their corresponding complexes of rhodium(I) and iridium(I), [M(NHC)(COD)Cl] 7-14 and [M(NHC)(CO)2Cl] 15-22 are described. The complexes have been characterised by (1)H and (13)C{(1)H} NMR, mass spectrometry, IR and X-ray diffraction. It is noted from X-ray diffraction studies that the N-alkyl substituents are found to orientate themselves away from the metal centre due to unfavourable steric interactions resulting in low percent buried volume (%V(bur)) values in the solid state. The heterocycle ring size is also found to dictate the spatial orientation of the N-alkyl substituents in the neopentyl functionalised derivatives 10 and 14. The 7-membered derivative 14 allows for a conformational 'twist' of the heterocycle ring with the N-alkyl substituents adopting a mutually trans configuration with respect to each other, while the more rigid 6-membered system 10 does not allow for this conformational 'twist' and consequently the N-alkyl substituents adopt a mutually cis configuration. The σ-donor function of this new class of expanded ring NHC ligand has also been probed by measured IR stretching frequencies of the [M(NHC)(CO)2Cl] complexes 15-22. A preliminary catalytic survey of the hydrogenation of functionalised alkenes with molecular hydrogen under mild conditions has also been undertaken with complex , affording an insight into the application of large ring NHC ancillary ligands bearing N-alkyl substituents in hydrogenation transformations.

  15. Deficiency of PHB complex impairs respiratory supercomplex formation and activates mitochondrial flashes.

    PubMed

    Jian, Chongshu; Xu, Fengli; Hou, Tingting; Sun, Tao; Li, Jinghang; Cheng, Heping; Wang, Xianhua

    2017-08-01

    Prohibitins (PHBs; prohibitin 1, PHB1 or PHB, and prohibitin 2, PHB2) are evolutionarily conserved and ubiquitously expressed mitochondrial proteins. PHBs form multimeric ring complexes acting as scaffolds in the inner mitochondrial membrane. Mitochondrial flashes (mitoflashes) are newly discovered mitochondrial signaling events that reflect electrical and chemical excitations of the organelle. Here, we investigate the possible roles of PHBs in the regulation of mitoflash signaling. Downregulation of PHBs increases mitoflash frequency by up to 5.4-fold due to elevated basal reactive oxygen species (ROS) production in the mitochondria. Mechanistically, PHB deficiency impairs the formation of mitochondrial respiratory supercomplexes (RSCs) without altering the abundance of individual respiratory complex subunits. These impairments induced by PHB deficiency are effectively rescued by co-expression of PHB1 and PHB2, indicating that the multimeric PHB complex acts as the functional unit. Furthermore, downregulating other RSC assembly factors, including SCAFI (also known as COX7A2L), RCF1a (HIGD1A), RCF1b (HIGD2A), UQCC3 and SLP2 (STOML2), all activate mitoflashes through elevating mitochondrial ROS production. Our findings identify the PHB complex as a new regulator of RSC formation and mitoflash signaling, and delineate a general relationship among RSC formation, basal ROS production and mitoflash biogenesis. © 2017. Published by The Company of Biologists Ltd.

  16. Dual Function of Phosphoubiquitin in E3 Activation of Parkin*

    PubMed Central

    Walinda, Erik; Morimoto, Daichi; Sugase, Kenji; Shirakawa, Masahiro

    2016-01-01

    Mutations in the gene encoding parkin, an auto-inhibited E3 ubiquitin ligase that functions in the clearance of damaged mitochondria, are the most common cause of autosomal recessive juvenile Parkinsonism. The mechanism regulating parkin activation remains poorly understood. Here we show, by using isothermal titration calorimetry, solution NMR, and fluorescence spectroscopy, that parkin can bind ubiquitin and phosphomimetic ubiquitin by recognizing the canonical hydrophobic patch and C terminus of ubiquitin. The affinity of parkin for both phosphomimetic and unmodified ubiquitin is markedly enhanced upon removal of the ubiquitin-like (UBL) domain of parkin. This suggests that the agonistic binding of ubiquitin to parkin in trans is counterbalanced by the antagonistic activity of the parkin UBL domain in cis. Intriguingly, UBL binding is enthalpy-driven, whereas ubiquitin binding is driven by an increase in the total entropy of the system. These thermodynamic differences are explained by different chemistry in the ubiquitin- and UBL-binding pockets of parkin and, as shown by molecular dynamics simulations, are not a consequence of changes in protein conformational entropy. Indeed, comparison of conformational fluctuations reveals that the RING1-IBR element becomes considerably more rigid upon complex formation. A model of parkin activation is proposed in which E2∼Ub binding triggers large scale diffusional motion of the RING2 domain toward the ubiquitin-stabilized RING1-IBR assembly to complete formation of the active parkin-E2∼Ub transfer complex. Thus, ubiquitin plays a dual role in parkin activation by competing with the inhibitory UBL domain and stabilizing the active form of parkin. PMID:27284007

  17. Synthesis, Structure, and Conformational Dynamics of Rhodium and Iridium Complexes of Dimethylbis(2-pyridyl)borate.

    PubMed

    Pennington-Boggio, Megan K; Conley, Brian L; Richmond, Michael G; Williams, Travis J

    2014-12-14

    Rhodium(I) and Iridium(I) borate complexes of the structure [Me 2 B(2-py) 2 ]ML 2 (L 2 = (tBuNC) 2 , (CO) 2 , (C 2 H 4 ) 2 , cod, dppe) were prepared and structurally characterized (cod = 1,5-cyclooctadiene; dppe = 1,2-diphenylphosphinoethane). Each contains a boat-configured chelate ring that participates in a boat-to-boat ring flip. Computational evidence shows that the ring flip proceeds through a transition state that is near planarity about the chelate ring. We observe an empirical, quantitative correlation between the barrier of this ring flip and the π acceptor ability of the ancillary ligand groups on the metal. The ring flip barrier correlates weakly to the Tolman and Lever ligand parameterization schemes, apparently because these combine both σ and π effects while we propose that the ring flip barrier is dominated by π bonding. This observation is consistent with metal-ligand π interactions becoming temporarily available only in the near-planar transition state of the chelate ring flip and not the boat-configured ground state. Thus, this is a first-of-class observation of metal-ligand π bonding governing conformational dynamics.

  18. Synthesis, Structure, and Conformational Dynamics of Rhodium and Iridium Complexes of Dimethylbis(2-pyridyl)borate†

    PubMed Central

    Pennington-Boggio, Megan K.; Conley, Brian L.; Richmond, Michael G.; Williams, Travis J.

    2014-01-01

    Rhodium(I) and Iridium(I) borate complexes of the structure [Me2B(2-py)2]ML2 (L2 = (tBuNC)2, (CO)2, (C2H4)2, cod, dppe) were prepared and structurally characterized (cod = 1,5-cyclooctadiene; dppe = 1,2-diphenylphosphinoethane). Each contains a boat-configured chelate ring that participates in a boat-to-boat ring flip. Computational evidence shows that the ring flip proceeds through a transition state that is near planarity about the chelate ring. We observe an empirical, quantitative correlation between the barrier of this ring flip and the π acceptor ability of the ancillary ligand groups on the metal. The ring flip barrier correlates weakly to the Tolman and Lever ligand parameterization schemes, apparently because these combine both σ and π effects while we propose that the ring flip barrier is dominated by π bonding. This observation is consistent with metal-ligand π interactions becoming temporarily available only in the near-planar transition state of the chelate ring flip and not the boat-configured ground state. Thus, this is a first-of-class observation of metal-ligand π bonding governing conformational dynamics. PMID:25435645

  19. ZapE Is a Novel Cell Division Protein Interacting with FtsZ and Modulating the Z-Ring Dynamics

    PubMed Central

    Marteyn, Benoit S.; Karimova, Gouzel; Fenton, Andrew K.; Gazi, Anastasia D.; West, Nicholas; Touqui, Lhousseine; Prevost, Marie-Christine; Betton, Jean-Michel; Poyraz, Oemer; Ladant, Daniel; Gerdes, Kenn; Sansonetti, Philippe J.; Tang, Christoph M.

    2014-01-01

    ABSTRACT Bacterial cell division requires the formation of a mature divisome complex positioned at the midcell. The localization of the divisome complex is determined by the correct positioning, assembly, and constriction of the FtsZ ring (Z-ring). Z-ring constriction control remains poorly understood and (to some extent) controversial, probably due to the fact that this phenomenon is transient and controlled by numerous factors. Here, we characterize ZapE, a novel ATPase found in Gram-negative bacteria, which is required for growth under conditions of low oxygen, while loss of zapE results in temperature-dependent elongation of cell shape. We found that ZapE is recruited to the Z-ring during late stages of the cell division process and correlates with constriction of the Z-ring. Overexpression or inactivation of zapE leads to elongation of Escherichia coli and affects the dynamics of the Z-ring during division. In vitro, ZapE destabilizes FtsZ polymers in an ATP-dependent manner. PMID:24595368

  20. Characterization of a novel RING-type ubiquitin E3 ligase GhRING2 differentially expressed in cotton fiber

    USDA-ARS?s Scientific Manuscript database

    The ubiquitin-proteasome proteolysis pathway is responsible for the degradation of abnormal and short-lived proteins to regulate many important biochemical activities in eukaryotes. By employing affymetrix microarray analysis, we have identified a novel ubiquitin ligase E3 gene GhRING2 that is diffe...

  1. The chromatin nuclear protein NUPR1L is intrinsically disordered and binds to the same proteins as its paralogue.

    PubMed

    Neira, José L; López, María Belén; Sevilla, Paz; Rizzuti, Bruno; Cámara-Artigas, Ana; Vidal, Miguel; Iovanna, Juan L

    2018-06-20

    NUPR1 is a protumoral multifunctional intrinsically disordered protein (IDP), which is activated during the acute phases of pancreatitis. It interacts with other IDPs such as prothymosin α, as well as with folded proteins such as the C-terminal region of RING1-B (C-RING1B) of the Polycomb complex; in all those interactions, residues around Ala33 and Thr68 (the "hot-spot" region) of NUPR1 intervene. Its paralogue, NUPR1L, is also expressed in response to DNA-damage, it is p53-regulated, and its expression down-regulates that of the NUPR1 gene. In this work, we characterized the conformational preferences of isolated NUPR1L and its possible interactions with the same molecular partners of NUPR1. Our results show that NUPR1L was an oligomeric IDP from pH 2.0 to 12.0, as judged by steady-state fluorescence, circular dichroism (CD), dynamic light scattering (DLS), 1D 1 H-NMR, and as indicated by structural modelling. However, in contrast to NUPR1, there was evidence of local helical- or turn-like structures; these structures were not rigid, as judged by the lack of sigmoidal behaviour in the chemical and thermal denaturation curves obtained by CD and fluorescence. Interestingly enough, NUPR1L interacted with prothymosin α and C-RING1B, and with a similar affinity to that of NUPR1 (in the low micromolar range). Moreover, NUPR1L hetero-associated with NUPR1 with an affinity of 0.4 μM, and interacted with the "hot-spot" region of NUPR1. Thus, we suggest that the regulation of NUPR1 gene by NUPR1L does not only happen at the DNA level, but it could also involve direct interactions with NUPR1 natural partners. ©2018 The Author(s).

  2. An analog RF gap voltage regulation system for the Advanced Photon Source storage ring.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horan, D.

    1999-04-13

    An analog rf gap voltage regulation system has been designed and built at Argonne National Laboratory to maintain constant total storage ring rf gap voltage, independent of beam loading and cavity tuning effects. The design uses feedback control of the klystron mod-anode voltage to vary the amount of rf power fed to the storage ring cavities. The system consists of two independent feedback loops, each regulating the combined rf gap voltages of eight storage ring cavities by varying the output power of either one or two rf stations, depending on the mode of operation. It provides full operator control andmore » permissive logic to permit feedback control of the rf system output power only if proper conditions are met. The feedback system uses envelope-detected cavity field probe outputs as the feedback signal. Two different methods of combining the individual field probe signals were used to generate a relative DC level representing one-half of the total storage ring rf voltage, an envelope-detected vector sum of the field probe rf signals, and the DC sum of individual field probe envelope detector outputs. The merits of both methods are discussed. The klystron high-voltage power supply (HVPS) units are fitted with an analog interface for external control of the mod-anode voltage level, using a four-quadrant analog multiplier to modulate the HVPS mod-anode voltage regulator set-point in response to feedback system commands.« less

  3. The Mechanism and Function of Group II Chaperonins

    DOE PAGES

    Lopez, Tom; Dalton, Kevin; Frydman, Judith

    2015-04-30

    We report protein folding in the cell requires the assistance of enzymes collectively called chaperones. Among these, the chaperonins are 1-MDa ring-shaped oligomeric complexes that bind unfolded polypeptides and promote their folding within an isolated chamber in an ATP-dependent manner. Group II chaperonins, found in archaea and eukaryotes, contain a built-in lid that opens and closes over the central chamber. In eukaryotes, the chaperonin TRiC/CCT is hetero-oligomeric, consisting of two stacked rings of eight paralogous subunits each. TRiC facilitates folding of approximately 10% of the eukaryotic proteome, including many cytoskeletal components and cell cycle regulators. Folding of many cellular substratesmore » of TRiC cannot be assisted by any other chaperone. A complete structural and mechanistic understanding of this highly conserved and essential chaperonin remains elusive. However, recent work is beginning to shed light on key aspects of chaperonin function and how their unique properties underlie their contribution to maintaining cellular proteostasis.« less

  4. Mitochondrial AAA proteases--towards a molecular understanding of membrane-bound proteolytic machines.

    PubMed

    Gerdes, Florian; Tatsuta, Takashi; Langer, Thomas

    2012-01-01

    Mitochondrial AAA proteases play an important role in the maintenance of mitochondrial proteostasis. They regulate and promote biogenesis of mitochondrial proteins by acting as processing enzymes and ensuring the selective turnover of misfolded proteins. Impairment of AAA proteases causes pleiotropic defects in various organisms including neurodegeneration in humans. AAA proteases comprise ring-like hexameric complexes in the mitochondrial inner membrane and are functionally conserved from yeast to man, but variations are evident in the subunit composition of orthologous enzymes. Recent structural and biochemical studies revealed how AAA proteases degrade their substrates in an ATP dependent manner. Intersubunit coordination of the ATP hydrolysis leads to an ordered ATP hydrolysis within the AAA ring, which ensures efficient substrate dislocation from the membrane and translocation to the proteolytic chamber. In this review, we summarize recent findings on the molecular mechanisms underlying the versatile functions of mitochondrial AAA proteases and their relevance to those of the other AAA+ machines. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Molecular complexes of alprazolam with carboxylic acids, boric acid, boronic acids, and phenols. Evaluation of supramolecular heterosynthons mediated by a triazole ring.

    PubMed

    Varughese, Sunil; Azim, Yasser; Desiraju, Gautam R

    2010-09-01

    A series of molecular complexes, both co-crystals and salts, of a triazole drug-alprazolam-with carboxylic acids, boric acid, boronic acids, and phenols have been analyzed with respect to heterosynthons present in the crystal structures. In all cases, the triazole ring behaves as an efficient hydrogen bond acceptor with the acidic coformers. The hydrogen bond patterns exhibited with aromatic carboxylic acids were found to depend on the nature and position of the substituents. Being a strong acid, 2,6-dihydroxybenzoic acid forms a salt with alprazolam. With aliphatic dicarboxylic acids alprazolam forms hydrates and the water molecules play a central role in synthon formation and crystal packing. The triazole ring makes two distinct heterosynthons in the molecular complex with boric acid. Boronic acids and phenols form consistent hydrogen bond patterns, and these are seemingly independent of the substitutional effects. Boronic acids form noncentrosymmetric cyclic synthons, while phenols form O--H...N hydrogen bonds with the triazole ring.

  6. Bub2 regulation of cytokinesis and septation in budding yeast

    PubMed Central

    Park, Su Young; Cable, Addie E; Blair, Jessica; Stockstill, Katherine E; Shannnon, Katie B

    2009-01-01

    Background The mitotic exit network (MEN) is required for events at the end of mitosis such as degradation of mitotic cyclins and cytokinesis. Bub2 and its binding partner Bfa1 act as a GTPase activating protein (GAP) to negatively regulate the MEN GTPase Tem1. The Bub2/Bfa1 checkpoint pathway is required to delay the cell cycle in response to mispositioned spindles. In addition to its role in mitotic exit, Tem1 is required for actomyosin ring contraction. Results To test the hypothesis that the Bub2 pathway prevents premature actin ring assembly, we compared the timing of actin ring formation in wild type, bub2Δ, mad2Δ, and bub2Δmad2Δ cells both with and without microtubules. There was no difference in the timing of actin ring formation between wild type and mutant cells in a synchronized cell cycle. In the presence of nocodazole, both bub2Δ and mad2Δ cells formed rings after a delay of the same duration. Double mutant bub2Δmad2Δ and bfa1Δmad2Δ cells formed rings at the same time with and without nocodazole. To determine if Bub2 has an effect on actomyosin ring contraction through its regulation of Tem1, we used live cell imaging of Myo1-GFP in a bub2Δ strain. We found a significant decrease in the total time of contraction and an increase in rate of contraction compared to wild type cells. We also examined myosin contraction using Myo1-GFP in cells overexpressing an epitope tagged Bub2. Surprisingly, overexpression of Bub2 also led to a significant increase in the rate of contraction, as well as morphological defects. The chained cell phenotype caused by Bub2 overexpression could be rescued by co-overexpression of Tem1, and was not rescued by deletion of BFA1. Conclusion Our data indicate that the Bub2 checkpoint pathway does not have a specific role in delaying actin ring formation. The observed increase in the rate of myosin contraction in the bub2Δ strain provides evidence that the MEN regulates actomyosin ring contraction. Our data suggest that the overexpression of the Bub2 fusion protein acts as a dominant negative, leading to septation defects by a mechanism that is Tem1-dependent. PMID:19490645

  7. Structural and functional changes associated with normal and abnormal fundus autofluorescence in patients with retinitis pigmentosa.

    PubMed

    Greenstein, Vivienne C; Duncker, Tobias; Holopigian, Karen; Carr, Ronald E; Greenberg, Jonathan P; Tsang, Stephen H; Hood, Donald C

    2012-02-01

    To analyze the structure and visual function of regions bordering the hyperautofluorescent ring/arcs in retinitis pigmentosa. Twenty-one retinitis pigmentosa patients (21 eyes) with rings/arcs and 21 normal individuals (21 eyes) were studied. Visual sensitivity in the central 10° was measured with microperimetry. Retinal structure was evaluated with spectral-domain optical coherence tomography. The distance from the fovea to disruption/loss of the inner outer segment (IS/OS) junction and thicknesses of the total receptor plus retinal pigment epithelial complex and outer segment plus retinal pigment epithelial complex layers were measured. Results were compared with measurements of the distance from the fovea to the inner and outer borders of the ring/arc seen on fundus autofluorescence. Disruption/loss of the inner outer segment junction occurred closer to the inner border of the ring/arc and it was closer to the fovea in eight eyes. For 19 eyes, outer segment plus and receptor plus RPE complex thicknesses were significantly decreased at locations closer to the fovea than the appearance of the inner border of hyperautofluorescence. Mean visual sensitivity was decreased inside, across, and outside the ring/arc by 3.5 ± 3.8, 8.9 ± 4.8, and 17.0 ± 2.4 dB, respectively. Structural and functional changes can occur inside the hyperfluorescent ring/arc in retinitis pigmentosa.

  8. Model-Based, Closed-Loop Control of PZT Creep for Cavity Ring-Down Spectroscopy

    PubMed Central

    McCartt, A D; Ognibene, T J; Bench, G; Turteltaub, K W

    2014-01-01

    Cavity ring-down spectrometers typically employ a PZT stack to modulate the cavity transmission spectrum. While PZTs ease instrument complexity and aid measurement sensitivity, PZT hysteresis hinders the implementation of cavity-length-stabilized, data-acquisition routines. Once the cavity length is stabilized, the cavity’s free spectral range imparts extreme linearity and precision to the measured spectrum’s wavelength axis. Methods such as frequency-stabilized cavity ring-down spectroscopy have successfully mitigated PZT hysteresis, but their complexity limits commercial applications. Described herein is a single-laser, model-based, closed-loop method for cavity length control. PMID:25395738

  9. Model-Based, Closed-Loop Control of PZT Creep for Cavity Ring-Down Spectroscopy.

    PubMed

    McCartt, A D; Ognibene, T J; Bench, G; Turteltaub, K W

    2014-09-01

    Cavity ring-down spectrometers typically employ a PZT stack to modulate the cavity transmission spectrum. While PZTs ease instrument complexity and aid measurement sensitivity, PZT hysteresis hinders the implementation of cavity-length-stabilized, data-acquisition routines. Once the cavity length is stabilized, the cavity's free spectral range imparts extreme linearity and precision to the measured spectrum's wavelength axis. Methods such as frequency-stabilized cavity ring-down spectroscopy have successfully mitigated PZT hysteresis, but their complexity limits commercial applications. Described herein is a single-laser, model-based, closed-loop method for cavity length control.

  10. Reversible photochromic system based on rhodamine B salicylaldehyde hydrazone metal complex.

    PubMed

    Li, Kai; Xiang, Yu; Wang, Xiaoyan; Li, Ji; Hu, Rongrong; Tong, Aijun; Tang, Ben Zhong

    2014-01-29

    Photochromic molecules are widely applied in chemistry, physics, biology, and materials science. Although a few photochromic systems have been developed before, their applications are still limited by complicated synthesis, low fatigue resistance, or incomplete light conversion. Rhodamine is a class of dyes with excellent optical properties including long-wavelength absorption, large absorption coefficient, and high photostability in its ring-open form. It is an ideal chromophore for the development of new photochromic systems. However, known photochromic rhodamine derivatives, such as amides, exhibit only millisecond lifetimes in their colored ring-open forms, making their application very limited and difficult. In this work, rhodamine B salicylaldehyde hydrazone metal complex was found to undergo intramolecular ring-open reactions upon UV irradiation, which led to a distinct color and fluorescence change both in solution and in solid matrix. The complex showed good fatigue resistance for the reversible photochromism and long lifetime for the ring-open state. Interestingly, the thermal bleaching rate was tunable by using different metal ions, temperatures, solvents, and chemical substitutions. It was proposed that UV light promoted isomerization of the rhodamine B derivative from enol-form to keto-form, which induced ring-opening of the rhodamine spirolactam in the complex to generate color. The photochromic system was successfully applied for photoprinting and UV strength measurement in the solid state. As compared to other reported photochromic molecules, the system in this study has its advantages of facile synthesis and tunable thermal bleaching rate, and also provides new insights into the development of photochromic materials based on metal complex and spirolactam-containing dyes.

  11. BCOR regulates myeloid cell proliferation and differentiation

    PubMed Central

    Cao, Qi; Gearhart, Micah D.; Gery, Sigal; Shojaee, Seyedmehdi; Yang, Henry; Sun, Haibo; Lin, De-chen; Bai, Jing-wen; Mead, Monica; Zhao, Zhiqiang; Chen, Qi; Chien, Wen-wen; Alkan, Serhan; Alpermann, Tamara; Haferlach, Torsten; Müschen, Markus; Bardwell, Vivian J.; Koeffler, H. Phillip

    2016-01-01

    BCOR is a component of a variant Polycomb group repressive complex 1 (PRC1). Recently, we and others reported recurrent somatic BCOR loss-of-function mutations in myelodysplastic syndrome and acute myelogenous leukaemia (AML). However, the role of BCOR in normal hematopoiesis is largely unknown. Here, we explored the function of BCOR in myeloid cells using myeloid murine models with Bcor conditional loss-of-function or overexpression alleles. Bcor mutant bone marrow cells showed significantly higher proliferation and differentiation rates with upregulated expression of Hox genes. Mutation of Bcor reduced protein levels of RING1B, an H2A ubiquitin ligase subunit of PRC1 family complexes and reduced H2AK119ub upstream of upregulated HoxA genes. Global RNA expression profiling in murine cells and AML patient samples with BCOR loss-of-function mutation suggested that loss of BCOR expression is associated with enhanced cell proliferation and myeloid differentiation. Our results strongly suggest that BCOR plays an indispensable role in hematopoiesis by inhibiting myeloid cell proliferation and differentiation and offer a mechanistic explanation for how BCOR regulates gene expression such as Hox genes. PMID:26847029

  12. A general approach to medium ring alkynes by using metathesis of cobalt hexacarbonyl containing dienes.

    PubMed

    Young, David G J; Burlison, Joseph A; Peters, Ulf

    2003-05-02

    The assembly of medium sized rings (7-9) was achieved by using the metathesis of dienes linked by a cobalt hexacarbonyl complexed alkyne with either Grubbs' or Schrock's catalysts. The products of metathesis were subjected to transformations involving the dicobalt hexacarbonyl complexes, for example, decomplexation to liberate cyclic alkynes or Pauson-Khand reaction.

  13. The AtRbx1 protein is part of plant SCF complexes, and its down-regulation causes severe growth and developmental defects.

    PubMed

    Lechner, Esther; Xie, Daoxin; Grava, Sandrine; Pigaglio, Emmanuelle; Planchais, Severine; Murray, James A H; Parmentier, Yves; Mutterer, Jerome; Dubreucq, Bertrand; Shen, Wen-Hui; Genschik, Pascal

    2002-12-20

    Recently in yeast and animal cells, one particular class of ubiquitin ligase (E3), called the SCF, was demonstrated to regulate diverse processes including cell cycle and development. In plants SCF-dependent proteolysis is also involved in different developmental and hormonal regulations. To further investigate the function of SCF, we characterized at the molecular level the Arabidopsis RING-H2 finger protein AtRbx1. We demonstrated that the plant gene is able to functionally complement a yeast knockout mutant strain and showed that AtRbx1 protein interacts physically with at least two members of the Arabidopsis cullin family (AtCul1 and AtCul4). AtRbx1 also associates with AtCul1 and the Arabidopsis SKP1-related proteins in planta, indicating that it is part of plant SCF complexes. AtRbx1 mRNAs accumulate in various tissues of the plant, but at higher levels in tissues containing actively dividing cells. Finally to study the function of the gene in planta, we either overexpressed AtRbx1 or reduced its expression by a dsRNA strategy. Down-regulation of AtRbx1 impaired seedling growth and development, indicating that the gene is essential in plants. Furthermore, the AtRbx1-silenced plants showed a reduced level of AtCul1 protein, but accumulated higher level of cyclin D3.

  14. Protein Arms in the Kinetochore-Microtubule Interface of the Yeast DASH Complex

    PubMed Central

    Miranda, JJ L.; King, David S.

    2007-01-01

    The yeast DASH complex is a heterodecameric component of the kinetochore necessary for accurate chromosome segregation. DASH forms closed rings around microtubules with a large gap between the DASH ring and the microtubule cylinder. We characterized the microtubule-binding properties of limited proteolysis products and subcomplexes of DASH, thus identifying candidate polypeptide extensions involved in establishing the DASH-microtubule interface. The acidic C-terminal extensions of tubulin subunits are not essential for DASH binding. We also measured the molecular mass of DASH rings on microtubules with scanning transmission electron microscopy and found that approximately 25 DASH heterodecamers assemble to form each ring. Dynamic association and relocation of multiple flexible appendages of DASH may allow the kinetochore to translate along the microtubule surface. PMID:17460120

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ballouz, Ronald-Louis; Richardson, Derek C.; Morishima, Ryuji

    We study the B ring’s complex optical depth structure. The source of this structure may be the complex dynamics of the Keplerian shear and the self-gravity of the ring particles. The outcome of these dynamic effects depends sensitively on the collisional and physical properties of the particles. Two mechanisms can emerge that dominate the macroscopic physical structure of the ring: self-gravity wakes and viscous overstability. Here we study the interplay between these two mechanisms by using our recently developed particle collision method that allows us to better model the inter-particle contact physics. We find that for a constant ring surfacemore » density and particle internal density, particles with rough surfaces tend to produce axisymmetric ring features associated with the viscous overstability, while particles with smoother surfaces produce self-gravity wakes.« less

  16. Non-metallocene organometallic complexes and related methods and systems

    DOEpatents

    Agapie, Theodor; Golisz, Suzanne Rose; Tofan, Daniel; Bercaw, John E.

    2010-12-07

    A non-metallocene organometallic complex comprising a tridentate ligand and a metal bonded to a tridentate ligand, wherein two substituted aryl groups in the tridentate ligand are connected to a cyclic group at the ortho position via semi-rigid ring-ring linkages, and selected so to provide the resulting non-metallocene organometallic complex with a C.sub.S geometry, a C.sub.1 geometry, a C.sub.2 geometry or a C.sub.2v geometry. Method for performing olefin polymerization with a non-metallocene organometallic complex as a catalyst, related catalytic systems, tridentate ligand and method for providing a non-metallocene organometallic complex.

  17. Nucleotide-induced asymmetry within ATPase activator ring drives σ54-RNAP interaction and ATP hydrolysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sysoeva, Tatyana A.; Chowdhury, Saikat; Guo, Liang

    2013-12-10

    It is largely unknown how the typical homomeric ring geometry of ATPases associated with various cellular activities enables them to perform mechanical work. Small-angle solution X-ray scattering, crystallography, and electron microscopy (EM) reconstructions revealed that partial ATP occupancy caused the heptameric closed ring of the bacterial enhancer-binding protein (bEBP) NtrC1 to rearrange into a hexameric split ring of striking asymmetry. The highly conserved and functionally crucial GAFTGA loops responsible for interacting with σ54–RNA polymerase formed a spiral staircase. We propose that splitting of the ensemble directs ATP hydrolysis within the oligomer, and the ring's asymmetry guides interaction between ATPase andmore » the complex of σ54 and promoter DNA. Similarity between the structure of the transcriptional activator NtrC1 and those of distantly related helicases Rho and E1 reveals a general mechanism in homomeric ATPases whereby complex allostery within the ring geometry forms asymmetric functional states that allow these biological motors to exert directional forces on their target macromolecules.« less

  18. Structural symmetry and protein function.

    PubMed

    Goodsell, D S; Olson, A J

    2000-01-01

    The majority of soluble and membrane-bound proteins in modern cells are symmetrical oligomeric complexes with two or more subunits. The evolutionary selection of symmetrical oligomeric complexes is driven by functional, genetic, and physicochemical needs. Large proteins are selected for specific morphological functions, such as formation of rings, containers, and filaments, and for cooperative functions, such as allosteric regulation and multivalent binding. Large proteins are also more stable against denaturation and have a reduced surface area exposed to solvent when compared with many individual, smaller proteins. Large proteins are constructed as oligomers for reasons of error control in synthesis, coding efficiency, and regulation of assembly. Symmetrical oligomers are favored because of stability and finite control of assembly. Several functions limit symmetry, such as interaction with DNA or membranes, and directional motion. Symmetry is broken or modified in many forms: quasisymmetry, in which identical subunits adopt similar but different conformations; pleomorphism, in which identical subunits form different complexes; pseudosymmetry, in which different molecules form approximately symmetrical complexes; and symmetry mismatch, in which oligomers of different symmetries interact along their respective symmetry axes. Asymmetry is also observed at several levels. Nearly all complexes show local asymmetry at the level of side chain conformation. Several complexes have reciprocating mechanisms in which the complex is asymmetric, but, over time, all subunits cycle through the same set of conformations. Global asymmetry is only rarely observed. Evolution of oligomeric complexes may favor the formation of dimers over complexes with higher cyclic symmetry, through a mechanism of prepositioned pairs of interacting residues. However, examples have been found for all of the crystallographic point groups, demonstrating that functional need can drive the evolution of any symmetry.

  19. 1,2,3-Triazole Rings as a Disulfide Bond Mimetic in Chimeric AGRP-Melanocortin Peptides: Design, Synthesis, and Functional Characterization.

    PubMed

    Tala, Srinivasa R; Singh, Anamika; Lensing, Cody J; Schnell, Sathya M; Freeman, Katie T; Rocca, James R; Haskell-Luevano, Carrie

    2018-05-16

    The melanocortin system is involved in the regulation of complex physiological functions, including energy and weight homeostasis, feeding behavior, inflammation, sexual function, pigmentation, and exocrine gland function. The five melanocortin receptors that belong to the superfamily of G protein-coupled receptors (GPCRs) are regulated by endogenously expressed agonists and antagonists. The aim of this study was to explore the potential of replacing the disulfide bridge in chimeric AGRP-melanocortin peptide Tyr-c[Cys-His-d-Phe-Arg-Trp-Asn-Ala-Phe-Cys]-Tyr-NH 2 (1) with 1,2,3-triazole moieties. A series of 1,2,3-triazole-bridged peptidomimetics were designed, synthesized, and pharmacologically evaluated at the mouse melanocortin receptors. The ligands possessed nanomolar to micromolar agonist cAMP signaling potency. A key finding was that the disulfide bond in peptide 1 can be replaced with the monotriazole ring with minimal effect on the functional activity at the melanocortin receptors. The 1,5-disubstituted triazole-bridged peptide 6 showed equipotent functional activity at the mMC3R and modest 5-fold decreased agonist potency at the mMC4R compared to those of 1. Interestingly, the 1,4- and 1,5-disubstituted isomers of the triazole ring resulted in different selectivities at the receptor subtypes, indicating subtle structural features that may be exploited in the generation of selective melanocortin ligands. Introducing cyclic and acyclic bis-triazole moieties into chimeric AGRP template 1 generally decreased agonist activity. These results will be useful for the further design of neuronal chemical probes for the melanocortin receptors as well as in other receptor systems.

  20. Mechanistic insights into c-di-GMP–dependent control of the biofilm regulator FleQ from Pseudomonas aeruginosa

    DOE PAGES

    Matsuyama, Bruno Y.; Krasteva, Petya V.; Baraquet, Claudine; ...

    2015-12-28

    Bacterial biofilm formation during chronic infections confers increased fitness, antibiotic tolerance, and cytotoxicity. In many pathogens, the transition from a planktonic lifestyle to collaborative, sessile biofilms represents a regulated process orchestrated by the intracellular second-messenger c-di-GMP. A main effector for c-di-GMP signaling in the opportunistic pathogen Pseudomonas aeruginosa is the transcription regulator FleQ. FleQ is a bacterial enhancer-binding protein (bEBP) with a central AAA+ ATPase σ 54-interaction domain, flanked by a C-terminal helix-turn-helix DNA-binding motif and a divergent N-terminal receiver domain. Together with a second ATPase, FleN, FleQ regulates the expression of flagellar and exopolysaccharide biosynthesis genes in response tomore » cellular c-di-GMP. Here we report structural and functional data that reveal an unexpected mode of c-di-GMP recognition that is associated with major conformational rearrangements in FleQ. Crystal structures of FleQ’s AAA+ ATPase domain in its apo-state or bound to ADP or ATP-γ-S show conformations reminiscent of the activated ring-shaped assemblies of other bEBPs. As revealed by the structure of c-di-GMP–complexed FleQ, the second messenger interacts with the AAA+ ATPase domain at a site distinct from the ATP binding pocket. c-di-GMP interaction leads to active site obstruction, hexameric ring destabilization, and discrete quaternary structure transitions. Solution and cell-based studies confirm coupling of the ATPase active site and c-di-GMP binding, as well as the functional significance of crystallographic interprotomer interfaces. Taken together, our data offer unprecedented insight into conserved regulatory mechanisms of gene expression under direct c-di-GMP control via FleQ and FleQ-like bEBPs.« less

  1. Mechanistic insights into c-di-GMP–dependent control of the biofilm regulator FleQ from Pseudomonas aeruginosa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsuyama, Bruno Y.; Krasteva, Petya V.; Baraquet, Claudine

    Bacterial biofilm formation during chronic infections confers increased fitness, antibiotic tolerance, and cytotoxicity. In many pathogens, the transition from a planktonic lifestyle to collaborative, sessile biofilms represents a regulated process orchestrated by the intracellular second-messenger c-di-GMP. A main effector for c-di-GMP signaling in the opportunistic pathogen Pseudomonas aeruginosa is the transcription regulator FleQ. FleQ is a bacterial enhancer-binding protein (bEBP) with a central AAA+ ATPase σ 54-interaction domain, flanked by a C-terminal helix-turn-helix DNA-binding motif and a divergent N-terminal receiver domain. Together with a second ATPase, FleN, FleQ regulates the expression of flagellar and exopolysaccharide biosynthesis genes in response tomore » cellular c-di-GMP. Here we report structural and functional data that reveal an unexpected mode of c-di-GMP recognition that is associated with major conformational rearrangements in FleQ. Crystal structures of FleQ’s AAA+ ATPase domain in its apo-state or bound to ADP or ATP-γ-S show conformations reminiscent of the activated ring-shaped assemblies of other bEBPs. As revealed by the structure of c-di-GMP–complexed FleQ, the second messenger interacts with the AAA+ ATPase domain at a site distinct from the ATP binding pocket. c-di-GMP interaction leads to active site obstruction, hexameric ring destabilization, and discrete quaternary structure transitions. Solution and cell-based studies confirm coupling of the ATPase active site and c-di-GMP binding, as well as the functional significance of crystallographic interprotomer interfaces. Taken together, our data offer unprecedented insight into conserved regulatory mechanisms of gene expression under direct c-di-GMP control via FleQ and FleQ-like bEBPs.« less

  2. Mechanistic insights into c-di-GMP–dependent control of the biofilm regulator FleQ from Pseudomonas aeruginosa

    PubMed Central

    Matsuyama, Bruno Y.; Krasteva, Petya V.; Baraquet, Claudine; Harwood, Caroline S.; Sondermann, Holger; Navarro, Marcos V. A. S.

    2016-01-01

    Bacterial biofilm formation during chronic infections confers increased fitness, antibiotic tolerance, and cytotoxicity. In many pathogens, the transition from a planktonic lifestyle to collaborative, sessile biofilms represents a regulated process orchestrated by the intracellular second-messenger c-di-GMP. A main effector for c-di-GMP signaling in the opportunistic pathogen Pseudomonas aeruginosa is the transcription regulator FleQ. FleQ is a bacterial enhancer-binding protein (bEBP) with a central AAA+ ATPase σ54-interaction domain, flanked by a C-terminal helix-turn-helix DNA-binding motif and a divergent N-terminal receiver domain. Together with a second ATPase, FleN, FleQ regulates the expression of flagellar and exopolysaccharide biosynthesis genes in response to cellular c-di-GMP. Here we report structural and functional data that reveal an unexpected mode of c-di-GMP recognition that is associated with major conformational rearrangements in FleQ. Crystal structures of FleQ’s AAA+ ATPase domain in its apo-state or bound to ADP or ATP-γ-S show conformations reminiscent of the activated ring-shaped assemblies of other bEBPs. As revealed by the structure of c-di-GMP–complexed FleQ, the second messenger interacts with the AAA+ ATPase domain at a site distinct from the ATP binding pocket. c-di-GMP interaction leads to active site obstruction, hexameric ring destabilization, and discrete quaternary structure transitions. Solution and cell-based studies confirm coupling of the ATPase active site and c-di-GMP binding, as well as the functional significance of crystallographic interprotomer interfaces. Taken together, our data offer unprecedented insight into conserved regulatory mechanisms of gene expression under direct c-di-GMP control via FleQ and FleQ-like bEBPs. PMID:26712005

  3. Interaction of the Saccharomyces cerevisiae RING-domain protein Nse1 with Nse3 and the Smc5/6 complex is required for chromosome replication and stability.

    PubMed

    Wani, Saima; Maharshi, Neelam; Kothiwal, Deepash; Mahendrawada, Lakshmi; Kalaivani, Raju; Laloraya, Shikha

    2018-06-01

    Genomic stability is maintained by the concerted actions of numerous protein complexes that participate in chromosomal duplication, repair, and segregation. The Smc5/6 complex is an essential multi-subunit complex crucial for repair of DNA double-strand breaks. Two of its subunits, Nse1 and Nse3, are homologous to the RING-MAGE complexes recently described in human cells. We investigated the contribution of the budding yeast Nse1 RING-domain by isolating a mutant nse1-103 bearing substitutions in conserved Zinc-coordinating residues of the RING-domain that is hypersensitive to genotoxic stress and temperature. The nse1-103 mutant protein was defective in interaction with Nse3 and other Smc5/6 complex subunits, Nse4 and Smc5. Chromosome loss was enhanced, accompanied by a delay in the completion of replication and a modest defect in sister chromatid cohesion, in nse1-103. The nse1-103 mutant was synthetic sick with rrm3∆ (defective in fork passage through pause sites), this defect was rescued by inactivation of Tof1, a subunit of the fork protection complex that enforces pausing. The temperature sensitivity of nse1-103 was partially suppressed by deletion of MPH1, encoding a DNA-helicase. Homology modeling of the structure of the budding yeast Nse1-Nse3 heterodimer based on the human Nse1-MAGEG1 structure suggests a similar organization and indicates that perturbation of the Zn-coordinating cluster has the potential to allosterically alter structural elements at the Nse1/Nse3 interaction interface that may abrogate their association. Our findings demonstrate that the budding yeast Nse1 RING-domain organization is important for interaction with Nse3, which is crucial for completion of chromosomal replication, cohesion, and maintenance of chromosome stability.

  4. Morphological evolution of Ge/Si(001) quantum dot rings formed at the rim of wet-etched pits.

    PubMed

    Grydlik, Martyna; Brehm, Moritz; Schäffler, Friedrich

    2012-10-30

    We demonstrate the formation of Ge quantum dots in ring-like arrangements around predefined {111}-faceted pits in the Si(001) substrate. We report on the complex morphological evolution of the single quantum dots contributing to the rings by means of atomic force microscopy and demonstrate that by careful adjustment of the epitaxial growth parameters, such rings containing densely squeezed islands can be grown with large spatial distances of up to 5 μm without additional nucleation of randomly distributed quantum dots between the rings.

  5. Vascular response of ruthenium tetraamines in aortic ring from normotensive rats.

    PubMed

    Conceição-Vertamatti, Ana Gabriela; Ramos, Luiz Alberto Ferreira; Calandreli, Ivy; Chiba, Aline Nunes; Franco, Douglas Wagner; Tfouni, Elia; Grassi-Kassisse, Dora Maria

    2015-03-01

    Ruthenium (Ru) tetraamines are being increasingly used as nitric oxide (NO) carriers. In this context, pharmacological studies have become highly relevant to better understand the mechanism of action involved. To evaluate the vascular response of the tetraamines trans-[Ru(II)(NH3)4(Py)(NO)](3+), trans-[Ru(II)(Cl)(NO) (cyclan)](PF6)2, and trans-[Ru(II)(NH3)4(4-acPy)(NO)](3+). Aortic rings were contracted with noradrenaline (10(-6) M). After voltage stabilization, a single concentration (10(-6) M) of the compounds was added to the assay medium. The responses were recorded during 120 min. Vascular integrity was assessed functionally using acetylcholine at 10(-6) M and sodium nitroprusside at 10(-6) M as well as by histological examination. Histological analysis confirmed the presence or absence of endothelial cells in those tissues. All tetraamine complexes altered the contractile response induced by norepinephrine, resulting in increased tone followed by relaxation. In rings with endothelium, the inhibition of endothelial NO caused a reduction of the contractile effect caused by pyridine NO. No significant responses were observed in rings with endothelium after treatment with cyclan NO. In contrast, in rings without endothelium, the inhibition of guanylate cyclase significantly reduced the contractile response caused by the pyridine NO and cyclan NO complexes, and both complexes caused a relaxing effect. The results indicate that the vascular effect of the evaluated complexes involved a decrease in the vascular tone induced by norepinephrine (10(-6) M) at the end of the incubation period in aortic rings with and without endothelium, indicating the slow release of NO from these complexes and suggesting that the ligands promoted chemical stability to the molecule. Moreover, we demonstrated that the association of Ru with NO is more stable when the ligands pyridine and cyclan are used in the formulation of the compound.

  6. Crystal structures of resorcin[4]arene and pyrogallol[4]arene complexes with DL-pipecolinic acid. Model compounds for the recognition of the pipecolinyl ring, a key fragment of FK506, through C-H⋯π interaction

    NASA Astrophysics Data System (ADS)

    Fujisawa, Ikuhide; Kitamura, Yuji; Kato, Ryo; Murayama, Kazutaka; Aoki, Katsuyuki

    2014-01-01

    Resorcin[4]arene (resorcinol cyclic tetramer, abbreviated as RCT) or pyrogallol[4]arene (pyrogallol cyclic tetramer, PCT) form host-guest 1:1 complexes with DL-pipecolinic acid (DL-pipeH), RCT·DL-pipeH·EtOH·8H2O (1), PCT DL-pipeH·EtOH·4H2O (2), and PCT·DL-pipeH·3H2O (3), whose crystal structures have been determined. In each complex, the pipeH ligand is incorporated into the bowl-shaped cavity of the RCT or PCT host molecules through C-H⋯π interactions between alkyl protons of the piperidine ring of pipeH and π-rings of RCT or PCT, forming an [(RCT/PCT)·pipeH] structural fragment. In 1 and 3, two [(RCT/PCT) pipeH] fragments self-associate across an inversion center to form a guest-mediated, obliquely declined dimeric structure [(RCT/PCT)·L-pipeH·D-pipeH (RCT/PCT)]. In 2, each PCT-capped pipeH ligand bridges to two adjacent PCT molecules to form guest-mediated, optically-discrete helical polymers [PCT·L-pipeH]n or [PCT·D-pipeH]n. An 1H NMR experiment shows that the complexation through C-H⋯π interaction between the piperidine ring of pipeH and π-rings of RCT or PCT occurs also in solution, with the binding constants of 9.7 ± 0.6 M-1 for RCT and 26.5 ± 1.5 M-1 for PCT. These complexes provide a synthetic model for the recognition of the pipecolinyl-ring moiety, a key constituent of immunosuppressant drugs such as FK506, FK520 or rapamycin, by their binding proteins through C-H⋯π interaction.

  7. Dual Function of Phosphoubiquitin in E3 Activation of Parkin.

    PubMed

    Walinda, Erik; Morimoto, Daichi; Sugase, Kenji; Shirakawa, Masahiro

    2016-08-05

    Mutations in the gene encoding parkin, an auto-inhibited E3 ubiquitin ligase that functions in the clearance of damaged mitochondria, are the most common cause of autosomal recessive juvenile Parkinsonism. The mechanism regulating parkin activation remains poorly understood. Here we show, by using isothermal titration calorimetry, solution NMR, and fluorescence spectroscopy, that parkin can bind ubiquitin and phosphomimetic ubiquitin by recognizing the canonical hydrophobic patch and C terminus of ubiquitin. The affinity of parkin for both phosphomimetic and unmodified ubiquitin is markedly enhanced upon removal of the ubiquitin-like (UBL) domain of parkin. This suggests that the agonistic binding of ubiquitin to parkin in trans is counterbalanced by the antagonistic activity of the parkin UBL domain in cis Intriguingly, UBL binding is enthalpy-driven, whereas ubiquitin binding is driven by an increase in the total entropy of the system. These thermodynamic differences are explained by different chemistry in the ubiquitin- and UBL-binding pockets of parkin and, as shown by molecular dynamics simulations, are not a consequence of changes in protein conformational entropy. Indeed, comparison of conformational fluctuations reveals that the RING1-IBR element becomes considerably more rigid upon complex formation. A model of parkin activation is proposed in which E2∼Ub binding triggers large scale diffusional motion of the RING2 domain toward the ubiquitin-stabilized RING1-IBR assembly to complete formation of the active parkin-E2∼Ub transfer complex. Thus, ubiquitin plays a dual role in parkin activation by competing with the inhibitory UBL domain and stabilizing the active form of parkin. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. On the Efficiency of Particle Injection into the Damping Ring of the Budker Institute of Nuclear Physics

    NASA Astrophysics Data System (ADS)

    Balakin, V. V.; Vorobev, N. S.; Berkaev, D. V.; Glukhov, S. A.; Gornostaev, P. B.; Dorokhov, V. L.; Chao, Ma Xiao; Meshkov, O. I.; Nikiforov, D. A.; Shashkov, E. V.; Emanov, F. A.; Astrelina, K. V.; Blinov, M. F.; Borin, V. M.

    2018-03-01

    The efficiency of injection from a linear accelerator into the damping ring of the BINP injection complex has been experimentally studied. The estimations of the injection efficiency are in good agreement with the experimental results. Our method of increasing the capture efficiency can enhance the productivity of the injection complex by a factor of 1.5-2.

  9. Versatile organoaluminium catalysts based on heteroscorpionate ligands for the preparation of polyesters.

    PubMed

    Martínez, J; Martínez de Sarasa Buchaca, M; de la Cruz-Martínez, F; Alonso-Moreno, C; Sánchez-Barba, L F; Fernandez-Baeza, J; Rodríguez, A M; Rodríguez-Diéguez, A; Castro-Osma, J A; Otero, A; Lara-Sánchez, A

    2018-05-22

    A series of alkyl aluminium complexes based on heteroscorpionate ligands were designed as catalysts for the ring-opening polymerisation of cyclic esters and ring-opening copolymerisation of epoxides and anhydrides. Treatment of AlX3 (X = Me, Et) with ligands bpzbeH [bpzbe = 1,1-bis(3,5-dimethylpyrazol-1-yl)-3,3-dimethyl-2-butoxide], bpzteH [bpzte = 2,2-bis(3,5-dimethylpyrazol-1-yl)-1-para-tolylethoxide], and (R,R)-bpzmmH [(R,R)-bpzmm = (1R)-1-{(1R)-6,6-dimethyl-bicyclo[3.1.1]-2-hepten-2-yl}-2,2-bis(3,5-dimethylpyrazol-1-yl)ethoxide] for 2 hours at 0 °C afforded the mononuclear dialkyl aluminium complexes [AlMe2{κ2-bpzbe}] (1), [AlEt2{κ2-bpzbe}] (2), [AlMe2{κ2-(R,R)-bpzmm}] (3) and [AlEt2{κ2-(R,R)-bpzmm}] (4), and the dinuclear dialkyl complexes [AlMe2{κ2-bpzte}]2 (5) and [AlEt2{κ2-bpzte}]2 (6). The molecular structures of the new complexes were determined by spectroscopic methods and confirmed by X-ray crystallography. The alkyl-containing aluminium complexes can act as highly efficient single-component initiators for the ring-opening polymerisation of ε-caprolactone and l-lactide and for the ring-opening copolymerisation of cyclohexene oxide and phthalic anhydride to give a range of biodegradable polyesters.

  10. Yeast cohesin complex embraces 2 micron plasmid sisters in a tri-linked catenane complex

    PubMed Central

    Ghosh, Santanu K.; Huang, Chu-Chun; Hajra, Sujata; Jayaram, Makkuni

    2010-01-01

    Sister chromatid cohesion, crucial for faithful segregation of replicated chromosomes in eukaryotes, is mediated by the multi-subunit protein complex cohesin. The Saccharomyces cerevisiae plasmid 2 micron circle mimics chromosomes in assembling cohesin at its partitioning locus. The plasmid is a multi-copy selfish DNA element that resides in the nucleus and propagates itself stably, presumably with assistance from cohesin. In metaphase cell lysates, or fractions enriched for their cohesed state by sedimentation, plasmid molecules are trapped topologically by the protein ring formed by cohesin. They can be released from cohesin’s embrace either by linearizing the DNA or by cleaving a cohesin subunit. Assays using two distinctly tagged cohesin molecules argue against the hand-cuff (an associated pair of monomeric cohesin rings) or the bracelet (a dimeric cohesin ring) model as responsible for establishing plasmid cohesion. Our cumulative results most easily fit a model in which a single monomeric cohesin ring, rather than a series of such rings, conjoins a pair of sister plasmids. These features of plasmid cohesion account for its sister-to-sister mode of segregation by cohesin disassembly during anaphase. The mechanistic similarities of cohesion between mini-chromosome sisters and 2 micron plasmid sisters suggest a potential kinship between the plasmid partitioning locus and centromeres. PMID:19920123

  11. 2-tert-Butyl-5-(2-pyridyl)-2H-tetrazole as a chelating ligand in the direct synthesis of novel Cu(II) and heterobimetallic Cu(II)/Mn(II) complexes.

    PubMed

    Mosalkova, Anastasiya P; Voitekhovich, Sergei V; Lyakhov, Alexander S; Ivashkevich, Ludmila S; Lach, Jochen; Kersting, Berthold; Gaponik, Pavel N; Ivashkevich, Oleg A

    2013-02-28

    For the first time, a representative of the 2,5-disubstituted tetrazoles, namely, 2-tert-butyl-5-(2-pyridyl)-2H-tetrazole (L), has been found to participate in oxidative dissolution of copper powder in homometalic systems Cu0–L–NH4X–DMSO (X = Cl, SCN, ClO4) and heterobimetallic ones Cu0–Mn(OAc)2–L–NH4OAc–Solv (Solv = DMSO, DMF), providing the formation of molecular homometallic complexes [CuL2Cl2] (1), [CuL2(SCN)2] (2), and [CuL2(H2O)](ClO4)2 (3), heterobimetallic complex [Cu2MnL2(OAc)6] (4) from DMF solution and its mixture with complex [Cu2MnL2(OAc)6]·2DMSO (5) from DMSO solution. Free ligand L and complexes 1–4 were characterized by elemental analysis, IR spectroscopy, thermal and X-ray single crystal analyses, whereas complex 5 was characterized by X-ray analysis only. Compounds 1–3 are mononuclear complexes, with chelating coordination mode of L via the tetrazole ring N4 and pyridine ring N7 atoms. Heterobimetallic complexes 4 and 5 possess trinuclear structures, with a linear Cu–Mn–Cu arrangement of the metal atoms, linked by the acetate anions; each copper(II) atom is decorated by a chelating unit of L via the tetrazole ring N1 and pyridine ring N7 atoms in complex 4, and via the N4, N7 atoms in complex 5. Temperature-dependent magnetic susceptibility measurements of complex 4 revealed a weak antiferromagnetic coupling between the paramagnetic copper(II) and manganese(II) ions (J = −2.5 cm(−1), g(Cu) = 2.25 and g(Mn) = 2.01), with magnetic exchange through the acetato bridges.

  12. Characterization of C-ring component assembly in flagellar motors from amino acid coevolution

    PubMed Central

    dos Santos, Ricardo Nascimento; Khan, Shahid

    2018-01-01

    Bacterial flagellar motility, an important virulence factor, is energized by a rotary motor localized within the flagellar basal body. The rotor module consists of a large framework (the C-ring), composed of the FliG, FliM and FliN proteins. FliN and FliM contacts the FliG torque ring to control the direction of flagellar rotation. We report that structure-based models constrained only by residue coevolution can recover the binding interface of atomic X-ray dimer complexes with remarkable accuracy (approx. 1 Å RMSD). We propose a model for FliM–FliN heterodimerization, which agrees accurately with homologous interfaces as well as in situ cross-linking experiments, and hence supports a proposed architecture for the lower portion of the C-ring. Furthermore, this approach allowed the identification of two discrete and interchangeable homodimerization interfaces between FliM middle domains that agree with experimental measurements and might be associated with C-ring directional switching dynamics triggered upon binding of CheY signal protein. Our findings provide structural details of complex formation at the C-ring that have been difficult to obtain with previous methodologies and clarify the architectural principle that underpins the ultra-sensitive allostery exhibited by this ring assembly that controls the clockwise or counterclockwise rotation of flagella. PMID:29892378

  13. Elucidation of the role of metal-to-ring charge-transfer excited states in the deactivation of photoexcited ruthenium porphyrin carbonyl complexes

    NASA Astrophysics Data System (ADS)

    Rodriguez, Juan; McDowell, Lynda; Holten, Dewey

    1988-06-01

    Deactivation of the lowest excited triplet state, 3(π, π*), of the Ru(II) porphyrins RuP(CO)(L) is more strongly dependent on temperature than decay of 3(π, π*) in Pt(II)P and H 2P (metal-free) complexes containing the same macrocycle P. This and other observations support the proposal that 3(π, π*) in the RuP(CO)(L) complexes decays in part via a metal-to-ring (d, π*) charge-transfer excited state at higher energy.

  14. Iridium Complexes with Proton-Responsive Azole-Type Ligands as Effective Catalysts for CO 2 Hydrogenation

    DOE PAGES

    Ertem, Mehmed Zahid; Suna, Yuki; Himeda, Yuichiro; ...

    2017-10-06

    Pentamethylcyclopentadienyl iridium (Cp*Ir) complexes with bidentate ligands consisting of a pyridine ring and an electron-rich diazole ring were prepared. Their catalytic activity towards CO 2 hydrogenation in 2.0 M KHCO 3 aqueous solutions (pH 8.5) at 50 °C, under 1.0 MPa CO 2/H 2 (1:1) have been reported as an alternative to photo- and electrochemical CO 2 reduction. Bidentate ligands incorporating an electron-rich diazole ring improved the catalytic performance of the Ir complexes compared to the bipyridine ligand. Complexes 2, 4 and 6, possessing both a hydroxy group and an uncoordinated NH group, which are proton-responsive and capable of generatingmore » pendent-bases in basic media, recorded high initial TOF values of 1300 h -1, 1550 h -1 and 2000 h -1, respectively. Here, spectroscopic and computational investigations revealed that the reversible deprotonation changes the electronic properties of the complexes and causes interactions between pendent base and substrate and/or solvent water molecules, resulting in the high catalytic performance in basic media.« less

  15. Developments in the use of rare earth metal complexes as efficient catalysts for ring-opening polymerization of cyclic esters used in biomedical applications

    NASA Astrophysics Data System (ADS)

    Cota, Iuliana

    2017-04-01

    Biodegradable polymers represent a class of particularly useful materials for many biomedical and pharmaceutical applications. Among these types of polyesters, poly(ɛ-caprolactone) and polylactides are considered very promising for controlled drug delivery devices. These polymers are mainly produced by ring-opening polymerization of their respective cyclic esters, since this method allows a strict control of the molecular parameters (molecular weight and distribution) of the obtained polymers. The most widely used catalysts for ring-opening polymerization of cyclic esters are tin- and aluminium-based organometallic complexes; however since the contamination of the aliphatic polyesters by potentially toxic metallic residues is particularly of concern for biomedical applications, the possibility of replacing organometallic initiators by novel less toxic or more efficient organometallic complexes has been intensively studied. Thus, in the recent years, the use of highly reactive rare earth initiators/catalysts leading to lower polymer contamination has been developed. The use of rare earth complexes is considered a valuable strategy to decrease the polyester contamination by metallic residues and represents an attractive alternative to traditional organometallic complexes.

  16. RNF41 interacts with the VPS52 subunit of the GARP and EARP complexes.

    PubMed

    Masschaele, Delphine; De Ceuninck, Leentje; Wauman, Joris; Defever, Dieter; Stenner, Frank; Lievens, Sam; Peelman, Frank; Tavernier, Jan

    2017-01-01

    RNF41 (Ring Finger Protein 41) is an E3 ubiquitin ligase involved in the intracellular sorting and function of a diverse set of substrates. Next to BRUCE and Parkin, RNF41 can directly ubiquitinate ErbB3, IL-3, EPO and RARα receptors or downstream signaling molecules such as Myd88, TBK1 and USP8. In this way it can regulate receptor signaling and routing. To further elucidate the molecular mechanism behind the role of RNF41 in intracellular transport we performed an Array MAPPIT (Mammalian Protein-Protein Interaction Trap) screen using an extensive set of proteins derived from the human ORFeome collection. This paper describes the identification of VPS52, a subunit of the GARP (Golgi-Associated Retrograde Protein) and the EARP (Endosome-Associated Recycling Protein) complexes, as a novel interaction partner of RNF41. Through interaction via their coiled coil domains, RNF41 ubiquitinates and relocates VPS52 away from VPS53, a common subunit of the GARP and EARP complexes, towards RNF41 bodies.

  17. Atomic structure of the APC/C and its mechanism of protein ubiquitination

    PubMed Central

    Yang, Jing; McLaughlin, Stephen H.; Barford, David

    2015-01-01

    The anaphase-promoting complex (APC/C) is a multimeric RING E3 ubiquitin ligase that controls chromosome segregation and mitotic exit. Its regulation by coactivator subunits, phosphorylation, the mitotic checkpoint complex, and interphase inhibitor Emi1 ensures the correct order and timing of distinct cell cycle transitions. Here, we used cryo-electron microscopy to determine atomic structures of APC/C-coactivator complexes with either Emi1 or a UbcH10-ubiquitin conjugate. These structures define the architecture of all APC/C subunits, the position of the catalytic module, and explain how Emi1 mediates inhibition of the two E2s UbcH10 and Ube2S. Definition of Cdh1 interactions with the APC/C indicates how they are antagonized by Cdh1 phosphorylation. The structure of the APC/C with UbcH10-ubiquitin reveals insights into the initiating ubiquitination reaction. Our results provide a quantitative framework for the design of experiments to further investigate APC/C functions in vivo. PMID:26083744

  18. Ynamides in Ring Forming Transformations

    PubMed Central

    WANG, XIAO-NA; YEOM, HYUN-SUK; FANG, LI-CHAO; HE, SHUZHONG; MA, ZHI-XIONG; KEDROWSKI, BRANT L.; HSUNG, RICHARD P.

    2013-01-01

    Conspectus The ynamide functional group activates carbon-carbon triple bonds through an attached nitrogen atom that bears an electron-withdrawing group. As a result, the alkyne has both electrophilic and nucleophilic properties. Through the selection of the electron-withdrawing group attached to nitrogen chemists can modulate the electronic properties and reactivity of ynamides, making these groups versatile synthetic building blocks. The reactions of ynamides also lead directly to nitrogen-containing products, which provides access to important structural motifs found in natural products and molecules of medicinal interest. Therefore, researchers have invested increasing time and research in the chemistry of ynamides in recent years. This Account surveys and assesses new organic transformations involving ynamides developed in our laboratory and in others around the world. We showcase the synthetic power of ynamides for rapid assembly of complex molecular structures. Among the recent reports of ynamide transformations, ring-forming reactions provide a powerful tool for generating molecular complexity quickly. In addition to their synthetic utility, such reactions are mechanistically interesting. Therefore, we focus primarily on the cyclization chemistry of ynamides. This Account highlights ynamide reactions that are useful in the rapid synthesis of cyclic and polycyclic structural manifolds. We discuss the mechanisms active in the ring formations and describe representative examples that demonstrate the scope of these reactions and provide mechanistic insights. In this discussion we feature examples of ynamide reactions involving radical cyclizations, ring-closing metathesis, transition metal and non-transition metal mediated cyclizations, cycloaddition reactions, and rearrangements. The transformations presented rapidly introduce structural complexity and include nitrogen within, or in close proximity to, a newly formed ring (or rings). Thus, ynamides have emerged as powerful synthons for nitrogen-containing heterocycles and nitrogen-substituted rings, and we hope this Account will promote continued interest in the chemistry of ynamides. PMID:24164363

  19. Structural comparison of complexes of methotrexate analogues with Lactobacillus casei dihydrofolate reductase by two-dimensional /sup 1/H NMR at 500 MHz

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hammond, S.J.; Birdsall, B.; Feeney, J.

    1987-12-29

    The authors have used two-dimensional (2D) NMR methods to examine complexes of Lactobacillus casei dihydrofolate reductase and methotrexate (MTX) analogues having structural modifications of the benzoyl ring and also the glutamic acid moiety. Assignments of the /sup 1/H signals in the spectra of the various complexes were made by comparison of their 2D spectra with those complexes containing methotrexate where we have previously assigned resonances from 32 of the 162 amino acid residues. In the complexes formed with the dihalomethotrexate analogues, the glutamic acid and pteridine ring moieties were shown to bind to the enzyme in a manner similar tomore » that found in the methotrexate-enzyme complex. Perturbations in /sup 1/H chemical shifts of protons in Phe-49, Leu-54, and Leu-27 and the methotrexate H7 and NMe protons were observed in the different complexes and were accounted for by changes in orientation of the benzoyl ring in the various complexes. Binding of oxidized or reduced coenzyme to the binary complexes did not result in different shifts for Leu-27, Leu-54, or Leu-19 protons, and thus, the orientation of the benzoyl ring of the methotrexate analogues is not perturbed greatly by the presence of either oxidized or reduced coenzyme. In the complex with the ..gamma..-monoamide analog, the /sup 1/H signals of assigned residues in the protein had almost identical shifts with the corresponding protons in the methotrexate-enzyme complex for all residues except His-28 and, to a lesser extent, Leu-27. This indicates that while the His-28 interaction with the MTX ..gamma..-CO/sub 2//sup -/ is no longer present in this complex with the ..gamma..-amide, there has not been a major change in the overall structure of the two complexes. This behavior contrasts to that of the ..cap alpha..-amide complex where /sup 1/H signals from protons in several amino acid residues are different compared with their values in the complex formed with methotrexate.« less

  20. On the propagation and decay of North Brazil Current rings

    NASA Astrophysics Data System (ADS)

    Jochumsen, Kerstin; Rhein, Monika; Hüttl-Kabus, Sabine; BöNing, Claus W.

    2010-10-01

    Near the western boundary of the tropical North Atlantic, where the North Brazil Current (NBC) retroflects into the North Equatorial Countercurrent, large anticyclonic rings are shed. After separating from the retroflection region, the so-called NBC rings travel northwestward along the Brazilian coast, until they reach the island chain of the Lesser Antilles and disintegrate. These rings contribute substantially to the upper limb return flow of the Atlantic Meridional Overturning Circulation by carrying South Atlantic Water into the northern subtropical gyre. Their relevance for the northward transport of South Atlantic Water depends on the frequency of their generation as well as on their horizontal and vertical structure. The ring shedding and propagation and the complex interaction of the rings with the Lesser Antilles are investigated in the ? Family of Linked Atlantic Model Experiments (FLAME) model. The ring properties simulated in FLAME reach the upper limit of the observed rings in diameter and agree with recent observations on seasonal variability, which indicates a maximum shedding during the first half of the year. When the rings reach the shallow topography of the Lesser Antilles, they are trapped by the island triangle of St. Lucia, Barbados and Tobago and interact with the island chain. The model provides a resolution that is capable of resolving the complex topographic conditions at the islands and illuminates various possible fates for the water contained in the rings. It also reproduces laboratory experiments that indicate that both cyclones and anticyclones are formed after a ring passes through a topographic gap. Trajectories of artificial floats, which were inserted into the modeled velocity field, are used to investigate the pathways of the ring cores and their fate after they encounter the Lesser Antilles. The majority of the floats entered the Caribbean, while the northward Atlantic pathway was found to be of minor importance. No prominent pathway was found east of Barbados, where a ring could avoid the interaction with the islands and migrate toward the northern Lesser Antilles undisturbed.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ertem, Mehmed Zahid; Suna, Yuki; Himeda, Yuichiro

    Pentamethylcyclopentadienyl iridium (Cp*Ir) complexes with bidentate ligands consisting of a pyridine ring and an electron-rich diazole ring were prepared. Their catalytic activity towards CO 2 hydrogenation in 2.0 M KHCO 3 aqueous solutions (pH 8.5) at 50 °C, under 1.0 MPa CO 2/H 2 (1:1) have been reported as an alternative to photo- and electrochemical CO 2 reduction. Bidentate ligands incorporating an electron-rich diazole ring improved the catalytic performance of the Ir complexes compared to the bipyridine ligand. Complexes 2, 4 and 6, possessing both a hydroxy group and an uncoordinated NH group, which are proton-responsive and capable of generatingmore » pendent-bases in basic media, recorded high initial TOF values of 1300 h -1, 1550 h -1 and 2000 h -1, respectively. Here, spectroscopic and computational investigations revealed that the reversible deprotonation changes the electronic properties of the complexes and causes interactions between pendent base and substrate and/or solvent water molecules, resulting in the high catalytic performance in basic media.« less

  2. Structure of a helicase–helicase loader complex reveals insights into the mechanism of bacterial primosome assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Bin; Eliason, William K.; Steitz, Thomas A.

    2013-09-19

    During the assembly of the bacterial loader-dependent primosome, helicase loader proteins bind to the hexameric helicase ring, deliver it onto the oriC DNA and then dissociate from the complex. Here, to provide a better understanding of this key process, we report the crystal structure of the ~570-kDa prepriming complex between the Bacillus subtilis loader protein and the Bacillus stearothermophilus helicase, as well as the helicase-binding domain of primase with a molar ratio of 6:6:3 at 7.5 Å resolution. The overall architecture of the complex exhibits a three-layered ring conformation. Moreover, the structure combined with the proposed model suggests that themore » shift from the ‘open-ring’ to the ‘open-spiral’ and then the ‘closed-spiral’ state of the helicase ring due to the binding of single-stranded DNA may be the cause of the loader release.« less

  3. Synthesis of modified cyclic and acyclic dextrins and comparison of their complexation ability

    PubMed Central

    Jicsinszky, László; Sohajda, Tamás; Puskás, István; Fenyvesi, Éva

    2014-01-01

    Summary We compared the complex forming ability of α-, β- and γ-cyclodextrins (α-CD, β-CD and γ-CD) with their open ring analogs. In addition to the native cyclodextrins also modified cyclodextrins and the corresponding maltooligomers, functionalized with neutral 2-hydroxypropyl moieties, were synthesized. A new synthetic route was worked out via bromination, benzylation, deacetylation and debenzylation to obtain the 2-hydroxypropyl maltooligomer counterparts. The complexation properties of non-modified and modified cyclic and acyclic dextrins were studied and compared by photon correlation spectroscopy (PCS) and capillary electrophoresis (CE) using model guest compounds. In some cases cyclodextrins and their open-ring analogs (acyclodextrins) show similar complexation abilities, while with other guests considerably different behavior was observed depending on the molecular dimensions and chemical characteristics of the guests. This was explained by the enhanced flexibility of the non-closed rings. Even the signs of enantiorecognition were observed for the chloropheniramine/hydroxypropyl maltohexaose system. Further studies are planned to help the deeper understanding of the interactions. PMID:25550750

  4. Decadal Survey: Planetary Rings Panel

    NASA Astrophysics Data System (ADS)

    Gordon, M. K.; Cuzzi, J. N.; Lissauer, J. J.; Poulet, F.; Brahic, A.; Charnoz, S.; Ferrari, C.; Burns, J. A.; Nicholson, P. D.; Durisen, R. H.; Rappaport, N. J.; Spilker, L. J.; Yanamandra-Fisher, P.; Bosh, A. S.; Olkin, C.; Larson, S. M.; Graps, A. L.; Krueger, H.; Black, G. J.; Festou, M.; Karjalainen, R.; Salo, H. J.; Murray, C. D.; Showalter, M. R.; Dones, L.; Levison, H. F.; Namouni, F.; Araki, S.; Lewis, M. C.; Brooks, S.; Colwell, J. E.; Esposito, L. W.; Horanyi, M.; Stewart, G. R.; Krivov, A.; Schmidt, J.; Spahn, F.; Hamilton, D. P.; Giuliatti-Winter, S.; French, R. G.

    2001-11-01

    The National Research Council's Committee on Planetary and Lunar Exploration(COMPLEX) met earlier this year to begin the organization of a major activity, "A New Strategy for Solar System Exploration." Several members of the planetary rings community formed an ad hoc panel to discuss the current state and future prospects for the study of planetary rings. In this paper we summarize fundamental questions of ring science, list the key science questions expected to occupy the planetary rings community for the decade 2003-2013, outline the initiatives, missions, and other supporting activities needed to address those questions, and recommend priorities.

  5. Resolving complex chromosome structures during meiosis: versatile deployment of Smc5/6.

    PubMed

    Verver, Dideke E; Hwang, Grace H; Jordan, Philip W; Hamer, Geert

    2016-03-01

    The Smc5/6 complex, along with cohesin and condensin, is a member of the structural maintenance of chromosome (SMC) family, large ring-like protein complexes that are essential for chromatin structure and function. Thanks to numerous studies of the mitotic cell cycle, Smc5/6 has been implicated to have roles in homologous recombination, restart of stalled replication forks, maintenance of ribosomal DNA (rDNA) and heterochromatin, telomerase-independent telomere elongation, and regulation of chromosome topology. The nature of these functions implies that the Smc5/6 complex also contributes to the profound chromatin changes, including meiotic recombination, that characterize meiosis. Only recently, studies in diverse model organisms have focused on the potential meiotic roles of the Smc5/6 complex. Indeed, Smc5/6 appears to be essential for meiotic recombination. However, due to both the complexity of the process of meiosis and the versatility of the Smc5/6 complex, many additional meiotic functions have been described. In this review, we provide a clear overview of the multiple functions found so far for the Smc5/6 complex in meiosis. Additionally, we compare these meiotic functions with the known mitotic functions in an attempt to find a common denominator and thereby create clarity in the field of Smc5/6 research.

  6. Super-resolution mapping of scaffold nucleoporins in the nuclear pore complex.

    PubMed

    Ma, Jiong; Kelich, Joseph M; Junod, Samuel L; Yang, Weidong

    2017-04-01

    The nuclear pore complex (NPC), composed of ∼30 different nucleoporins (Nups), is one of the largest supramolecular structures in eukaryotic cells. Its octagonal ring scaffold perforates the nuclear envelope and features a unique molecular machinery that regulates nucleocytoplasmic transport. However, the precise copy number and the spatial location of each Nup in the native NPC remain obscure due to the inherent difficulty of counting and localizing proteins inside of the sub-micrometer supramolecular complex. Here, we combined super-resolution single-point edge-excitation subdiffraction (SPEED) microscopy and nanobody-specific labeling to reveal the spatial distribution of scaffold Nups within three separate layers in the native NPC with a precision of ∼3 nm. Our data reveal both the radial and axial spatial distributions for Pom121, Nup37 and Nup35 and provide evidence for their copy numbers of 8, 32 and 16, respectively, per NPC. This approach can help pave the path for mapping the entirety of Nups in native NPCs and also other structural components of macromolecular complexes. © 2017. Published by The Company of Biologists Ltd.

  7. Super-resolution mapping of scaffold nucleoporins in the nuclear pore complex

    PubMed Central

    Ma, Jiong; Kelich, Joseph M.; Junod, Samuel L.

    2017-01-01

    ABSTRACT The nuclear pore complex (NPC), composed of ∼30 different nucleoporins (Nups), is one of the largest supramolecular structures in eukaryotic cells. Its octagonal ring scaffold perforates the nuclear envelope and features a unique molecular machinery that regulates nucleocytoplasmic transport. However, the precise copy number and the spatial location of each Nup in the native NPC remain obscure due to the inherent difficulty of counting and localizing proteins inside of the sub-micrometer supramolecular complex. Here, we combined super-resolution single-point edge-excitation subdiffraction (SPEED) microscopy and nanobody-specific labeling to reveal the spatial distribution of scaffold Nups within three separate layers in the native NPC with a precision of ∼3 nm. Our data reveal both the radial and axial spatial distributions for Pom121, Nup37 and Nup35 and provide evidence for their copy numbers of 8, 32 and 16, respectively, per NPC. This approach can help pave the path for mapping the entirety of Nups in native NPCs and also other structural components of macromolecular complexes. PMID:28202688

  8. Subunit Conformations and Assembly States of a DNA Translocating Motor: The Terminase of Bacteriophage P22

    PubMed Central

    Němeček, Daniel; Gilcrease, Eddie B.; Kang, Sebyung; Prevelige, Peter E.; Casjens, Sherwood; Thomas, George J.

    2007-01-01

    Bacteriophage P22, a podovirus infecting strains of Salmonella typhimurium, packages a 42 kbp genome using a headful mechanism. DNA translocation is accomplished by the phage terminase, a powerful molecular motor consisting of large and small subunits. Although many of the structural proteins of the P22 virion have been well characterized, little is known about the terminase subunits and their molecular mechanism of DNA translocation. We report here structural and assembly properties of ectopically expressed and highly purified terminase large and small subunits. The large subunit (gp2), which contains the nuclease and ATPase activities of terminase, exists as a stable monomer with an α/β fold. The small subunit (gp3), which recognizes DNA for packaging and may regulate gp2 activity, exhibits a highly α-helical secondary structure and self-associates to form a stable oligomeric ring in solution. For wildtype gp3, the ring contains nine subunits, as demonstrated by hydrodynamic measurements, electron microscopy and native mass spectrometry. We have also characterized a gp3 mutant (Ala 112 → Thr) that forms a ten subunit ring, despite a subunit fold indistinguishable from wildtype. Both the nonameric and decameric gp3 rings exhibit nonspecific DNA binding activity, and gp2 is able to bind strongly to the DNA/gp3 complex but not to DNA alone. We propose a scheme for the roles of P22 terminase large and small subunits in the recruitment and packaging of viral DNA and discuss the model in relation to proposals for terminase-driven DNA translocation in other phages. PMID:17945256

  9. Colocalization of cell division proteins FtsZ and FtsA to cytoskeletal structures in living Escherichia coli cells by using green fluorescent protein

    PubMed Central

    Ma, Xiaolan; Ehrhardt, David W.; Margolin, William

    1996-01-01

    In the current model for bacterial cell division, FtsZ protein forms a ring that marks the division plane, creating a cytoskeletal framework for the subsequent action of other proteins such as FtsA. This putative protein complex ultimately generates the division septum. Herein we report that FtsZ and FtsA proteins tagged with green fluorescent protein (GFP) colocalize to division-site ring-like structures in living bacterial cells in a visible space between the segregated nucleoids. Cells with higher levels of FtsZ–GFP or with FtsA–GFP plus excess wild-type FtsZ were inhibited for cell division and often exhibited bright fluorescent spiral tubules that spanned the length of the filamentous cells. This suggests that FtsZ may switch from a septation-competent localized ring to an unlocalized spiral under some conditions and that FtsA can bind to FtsZ in both conformations. FtsZ–GFP also formed nonproductive but localized aggregates at a higher concentration that could represent FtsZ nucleation sites. The general domain structure of FtsZ–GFP resembles that of tubulin, since the C terminus of FtsZ is not required for polymerization but may regulate polymerization state. The N-terminal portion of Rhizobium FtsZ polymerized in Escherichia coli and appeared to copolymerize with E. coli FtsZ, suggesting a degree of interspecies functional conservation. Analysis of several deletions of FtsA–GFP suggests that multiple segments of FtsA are important for its localization to the FtsZ ring. PMID:8917533

  10. Post-Transcriptional Coordination of the Arabidopsis Iron Deficiency Response is Partially Dependent on the E3 Ligases RING DOMAIN LIGASE1 (RGLG1) and RING DOMAIN LIGASE2 (RGLG2)*

    PubMed Central

    Pan, I-Chun; Tsai, Huei-Hsuan; Cheng, Ya-Tan; Wen, Tuan-Nan; Buckhout, Thomas J.; Schmidt, Wolfgang

    2015-01-01

    Acclimation to changing environmental conditions is mediated by proteins, the abundance of which is carefully tuned by an elaborate interplay of DNA-templated and post-transcriptional processes. To dissect the mechanisms that control and mediate cellular iron homeostasis, we conducted quantitative high-resolution iTRAQ proteomics and microarray-based transcriptomic profiling of iron-deficient Arabidopsis thaliana plants. A total of 13,706 and 12,124 proteins was identified with a quadrupole-Orbitrap hybrid mass spectrometer in roots and leaves, respectively. This deep proteomic coverage allowed accurate estimates of post-transcriptional regulation in response to iron deficiency. Similarly regulated transcripts were detected in only 13% (roots) and 11% (leaves) of the 886 proteins that differentially accumulated between iron-sufficient and iron-deficient plants, indicating that the majority of the iron-responsive proteins was post-transcriptionally regulated. Mutants harboring defects in the RING DOMAIN LIGASE1 (RGLG1)1 and RING DOMAIN LIGASE2 (RGLG2) showed a pleiotropic phenotype that resembled iron-deficient plants with reduced trichome density and the formation of branched root hairs. Proteomic and transcriptomic profiling of rglg1 rglg2 double mutants revealed that the functional RGLG protein is required for the regulation of a large set of iron-responsive proteins including the coordinated expression of ribosomal proteins. This integrative analysis provides a detailed catalog of post-transcriptionally regulated proteins and allows the concept of a chiefly transcriptionally regulated iron deficiency response to be revisited. Protein data are available via ProteomeXchange with identifier PXD002126. PMID:26253232

  11. Self-assembly of vertically aligned quantum ring-dot structure by Multiple Droplet Epitaxy

    NASA Astrophysics Data System (ADS)

    Elborg, Martin; Noda, Takeshi; Mano, Takaaki; Kuroda, Takashi; Yao, Yuanzhao; Sakuma, Yoshiki; Sakoda, Kazuaki

    2017-11-01

    We successfully grow vertically aligned quantum ring-dot structures by Multiple Droplet Epitaxy technique. The growth is achieved by depositing GaAs quantum rings in a first droplet epitaxy process which are subsequently covered by a thin AlGaAs barrier. In a second droplet epitaxy process, Ga droplets preferentially position in the center indentation of the ring as well as attached to the edge of the ring in [ 1 1 bar 0 ] direction. By designing the ring geometry, full selectivity for the center position of the ring is achieved where we crystallize the droplets into quantum dots. The geometry of the ring and dot as well as barrier layer can be controlled in separate growth steps. This technique offers great potential for creating complex quantum molecules for novel quantum information technologies.

  12. The sound of a mobile phone ringing affects the complex reaction time of its owner

    PubMed Central

    Zajdel, Justyna; Zwolińska, Anna; Śmigielski, Janusz; Beling, Piotr; Cegliński, Tomasz; Nowak, Dariusz

    2012-01-01

    Introduction Mobile phone conversation decreases the ability to concentrate and impairs the attention necessary to perform complex activities, such as driving a car. Does the ringing sound of a mobile phone affect the driver's ability to perform complex sensory-motor activities? We compared a subject's reaction time while performing a test either with a mobile phone ringing or without. Material and methods The examination was performed on a PC-based reaction time self-constructed system Reactor. The study group consisted of 42 healthy students. The protocol included instruction, control without phone and a proper session with subject's mobile phone ringing. The terms of the study were standardised. Results There were significant differences (p < 0.001) in reaction time in control (597 ms), mobile (633 ms) and instruction session (673 ms). The differences in female subpopulation were also significant (p < 0.01). Women revealed the longest reaction time in instruction session (707 ms), were significantly quicker in mobile (657 ms, p < 0.01) and in control session (612 ms, p < 0.001). In men, the significant difference was recorded only between instruction (622 ms) and control session (573 ms, p < 0.01). The other differences were not significant (p > 0.08). Men proofed to complete significantly quicker than women in instruction (p < 0.01) and in mobile session (p < 0.05). Differences amongst the genders in control session was not significant (p > 0.05). Conclusions The results obtained proofed the ringing of a phone exerts a significant influence on complex reaction time and quality of performed task. PMID:23185201

  13. Carbon-hydrogen activation of cycloalkanes by cyclopentadienylcarbonylrhodium--a lifetime enigma.

    PubMed

    Pitts, Amanda L; Wriglesworth, Alisdair; Sun, Xue-Zhong; Calladine, James A; Zarić, Snežana D; George, Michael W; Hall, Michael B

    2014-06-18

    Carbon-hydrogen bond activation reactions of four cycloalkanes (C5H10, C6H12, C7H14, and C8H16) by the Cp'Rh(CO) fragments (Cp' = η(5)-C5H5 (Cp) or η(5)-C5Me5 (Cp*)) were modeled theoretically by combining density functional and coupled cluster theories, and their reaction rates were measured by fast time-resolved infrared spectroscopy. The reaction has two steps, starting with the formation of a σ-complex intermediate, followed by oxidative addition of the C-H bond by the rhodium. A range of σ-complex stabilities among the electronically unique C-H bonds in a cycloalkane were calculated and are related to the individual strengths of the C-H bond's interactions with the Rh fragment and the steric repulsion that is incurred upon forming the specific σ-complex. The unexpectedly large increase in the lifetimes of the σ-complexes from cyclohexane to cycloheptane was predicted to be due to the large range of stabilities of the different σ-complexes found for cycloheptane. The reaction lifetimes were simulated with two mechanisms, with and without migrations among the different σ-complexes, to determine if ring migrations prior to C-H activation were influencing the rate. Both mechanisms predicted similar lifetimes for cyclopentane, cyclohexane, and, to a lesser extent, cycloheptane, suggesting ring migrations do not have a large impact on the rate of C-H activation for these cycloalkanes. For cyclooctane, the inclusion of ring migrations in the reaction mechanism led to a more accurate prediction of the lifetime, indicating that ring migrations did have an effect on the rate of C-H activation for this alkane, and that migration among the σ-complexes is faster than the C-H activation for this larger cycloalkane.

  14. Polo-like kinase 1 regulates Nlp, a centrosome protein involved in microtubule nucleation.

    PubMed

    Casenghi, Martina; Meraldi, Patrick; Weinhart, Ulrike; Duncan, Peter I; Körner, Roman; Nigg, Erich A

    2003-07-01

    In animal cells, most microtubules are nucleated at centrosomes. At the onset of mitosis, centrosomes undergo a structural reorganization, termed maturation, which leads to increased microtubule nucleation activity. Centrosome maturation is regulated by several kinases, including Polo-like kinase 1 (Plk1). Here, we identify a centrosomal Plk1 substrate, termed Nlp (ninein-like protein), whose properties suggest an important role in microtubule organization. Nlp interacts with two components of the gamma-tubulin ring complex and stimulates microtubule nucleation. Plk1 phosphorylates Nlp and disrupts both its centrosome association and its gamma-tubulin interaction. Overexpression of an Nlp mutant lacking Plk1 phosphorylation sites severely disturbs mitotic spindle formation. We propose that Nlp plays an important role in microtubule organization during interphase, and that the activation of Plk1 at the onset of mitosis triggers the displacement of Nlp from the centrosome, allowing the establishment of a mitotic scaffold with enhanced microtubule nucleation activity.

  15. Modified Clp Protease Complex in the ClpP3 Null Mutant and Consequences for Chloroplast Development and Function in Arabidopsis1[C][W][OA

    PubMed Central

    Kim, Jitae; Olinares, Paul Dominic; Oh, Soo-hyun; Ghisaura, Stefania; Poliakov, Anton; Ponnala, Lalit; van Wijk, Klaas J.

    2013-01-01

    The plastid ClpPRT protease consists of two heptameric rings of ClpP1/ClpR1/ClpR2/ClpR3/ClpR4 (the R-ring) and ClpP3/ClpP4/ClpP5/ClpP6 (the P-ring) and peripherally associated ClpT1/ClpT2 subunits. Here, we address the contributions of ClpP3 and ClpP4 to ClpPRT core organization and function in Arabidopsis (Arabidopsis thaliana). ClpP4 is strictly required for embryogenesis, similar to ClpP5. In contrast, loss of ClpP3 (clpp3-1) leads to arrest at the hypocotyl stage; this developmental arrest can be removed by supplementation with sucrose or glucose. Heterotrophically grown clpp3-1 can be transferred to soil and generate viable seed, which is surprising, since we previously showed that CLPR2 and CLPR4 null alleles are always sterile and die on soil. Based on native gels and mass spectrometry-based quantification, we show that despite the loss of ClpP3, modified ClpPR core(s) could be formed, albeit at strongly reduced levels. A large portion of ClpPR subunits accumulated in heptameric rings, with overaccumulation of ClpP1/ClpP5/ClpP6 and ClpR3. Remarkably, the association of ClpT1 to the modified Clp core was unchanged. Large-scale quantitative proteomics assays of clpp3-1 showed a 50% loss of photosynthetic capacity and the up-regulation of plastoglobules and all chloroplast stromal chaperone systems. Specific chloroplast proteases were significantly up-regulated, whereas the major thylakoid protease (FtsH1/FtsH2/FtsH5/FtsH8) was clearly unchanged, indicating a controlled protease network response. clpp3-1 showed a systematic decrease of chloroplast-encoded proteins that are part of the photosynthetic apparatus but not of chloroplast-encoded proteins with other functions. Candidate substrates and an explanation for the differential phenotypes between the CLPP3, CLPP4, and CLPP5 null mutants are discussed. PMID:23548781

  16. Interpreting medium ring canonical conformers by a triangular plane tessellation of the macrocycle

    NASA Astrophysics Data System (ADS)

    Khalili, Pegah; Barnett, Christopher B.; Naidoo, Kevin J.

    2013-05-01

    Cyclic conformational coordinates are essential for the distinction of molecular ring conformers as the use of Cremer-Pople coordinates have illustrated for five- and six-membered rings. Here, by tessellating medium rings into triangular planes and using the relative angles made between triangular planes we are able to assign macrocyclic pucker conformations into canonical pucker conformers such as chairs, boats, etc. We show that the definition is straightforward compared with other methods popularly used for small rings and that it is computationally simple to implement for complex macrocyclic rings. These cyclic conformational coordinates directly couple to the motion of individual nodes of a ring. Therefore, they are useful for correlating the physical properties of macrocycles with their ring pucker and measuring the dynamic ring conformational behavior. We illustrate the triangular tessellation, assignment, and pucker analysis on 7- and 8-membered rings. Sets of canonical states are given for cycloheptane and cyclooctane that have been previously experimentally analysed.

  17. A node organization in the actomyosin contractile ring generates tension and aids stability

    PubMed Central

    Thiyagarajan, Sathish; Wang, Shuyuan; O’Shaughnessy, Ben

    2017-01-01

    During cytokinesis, a contractile actomyosin ring constricts and divides the cell in two. How the ring marshals actomyosin forces to generate tension is not settled. Recently, a superresolution microscopy study of the fission yeast ring revealed that myosins and formins that nucleate actin filaments colocalize in plasma membrane-anchored complexes called nodes in the constricting ring. The nodes move bidirectionally around the ring. Here we construct and analyze a coarse-grained mathematical model of the fission yeast ring to explore essential consequences of the recently discovered ring ultrastructure. The model reproduces experimentally measured values of ring tension, explains why nodes move bidirectionally, and shows that tension is generated by myosin pulling on barbed-end-anchored actin filaments in a stochastic sliding-filament mechanism. This mechanism is not based on an ordered sarcomeric organization. We show that the ring is vulnerable to intrinsic contractile instabilities, and protection from these instabilities and organizational homeostasis require both component turnover and anchoring of components to the plasma membrane. PMID:28954859

  18. Neogenin recruitment of the WAVE regulatory complex maintains adherens junction stability and tension

    PubMed Central

    Lee, Natalie K.; Fok, Ka Wai; White, Amanda; Wilson, Nicole H.; O'Leary, Conor J.; Cox, Hayley L.; Michael, Magdalene; Yap, Alpha S.; Cooper, Helen M.

    2016-01-01

    To maintain tissue integrity during epithelial morphogenesis, adherens junctions (AJs) must resist the mechanical stresses exerted by dynamic tissue movements. Junctional stability is dependent on actomyosin contractility within the actin ring. Here we describe a novel function for the axon guidance receptor, Neogenin, as a key component of the actin nucleation machinery governing junctional stability. Loss of Neogenin perturbs AJs and attenuates junctional tension. Neogenin promotes actin nucleation at AJs by recruiting the Wave regulatory complex (WRC) and Arp2/3. A direct interaction between the Neogenin WIRS domain and the WRC is crucial for the spatially restricted recruitment of the WRC to the junction. Thus, we provide the first example of a functional WIRS–WRC interaction in epithelia. We further show that Neogenin regulates cadherin recycling at the AJ. In summary, we identify Neogenin as a pivotal component of the AJ, where it influences both cadherin dynamics and junctional tension. PMID:27029596

  19. Do substorms energise the ring current?

    NASA Astrophysics Data System (ADS)

    Sandhu, J. K.; Rae, J.; Freeman, M. P.; Forsyth, C.; Jackman, C. M.; Lam, M. M.

    2017-12-01

    The substorm phenomenon is a highly dynamic and variable process that results in the global reconfiguration and redistribution of energy within the magnetosphere. There are many open questions surrounding substorms, particularly how the energy released during a substorm is distributed throughout the magnetosphere, and how the energy loss varies from one substorm to the next. In this study, we explore whether energy lost during the substorm plays a role in energising the ring current. Using observations of the particle energy flux from RBSPICE/RBSP, we are able to quantitatively observe how the energy is distributed spatially and across the different ion species (H+, He+, and O+). Furthermore, we can observe how the total energy content of the ring current changes during the substorm process, using substorm phases defined by the SOPHIE algorithm. This analysis provides information on how the energy released from a substorm is partitioned throughout the magnetosphere, and on the processes determining the energy provided to the ring current. Overall, our results show that the substorm-ring current coupling is more complex than originally thought, and we discuss the reasons behind this complex response.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Ronghui; Satkovich, John; Hu, Jianping

    Peroxisomes are ubiquitous eukaryotic organelles that play pivotal roles in a suite of metabolic processes and often act coordinately with other organelles, such as chloroplasts and mitochondria. Peroxisomes import proteins to the peroxisome matrix by peroxins (PEX proteins), but how the function of the PEX proteins is regulated is poorly understood. In this study, we identified the Arabidopsis RING (really interesting new gene) type E3 ubiquitin ligase SP1 [suppressor of plastid protein import locus 1 (ppi1) 1] as a peroxisome membrane protein with a regulatory role in peroxisome protein import. SP1 interacts physically with the two components of the peroxisomemore » protein docking complex PEX13–PEX14 and the (RING)-finger peroxin PEX2. Loss of SP1 function suppresses defects of the pex14-2 and pex13-1 mutants, and SP1 is involved in the degradation of PEX13 and possibly PEX14 and all three RING peroxins. An in vivo ubiquitination assay showed that SP1 has the ability to promote PEX13 ubiquitination. Our study has revealed that, in addition to its previously reported function in chloroplast biogenesis, SP1 plays a role in peroxisome biogenesis. The same E3 ubiquitin ligase promotes the destabilization of components of two distinct protein-import machineries, indicating that degradation of organelle biogenesis factors by the ubiquitin–proteasome system may constitute an important regulatory mechanism in coordinating the biogenesis of metabolically linked organelles in eukaryotes.« less

  1. Prophase pathway-dependent removal of cohesin from human chromosomes requires opening of the Smc3–Scc1 gate

    PubMed Central

    Buheitel, Johannes; Stemmann, Olaf

    2013-01-01

    Faithful transmission of chromosomes during eukaryotic cell division requires sister chromatids to be paired from their generation in S phase until their separation in M phase. Cohesion is mediated by the cohesin complex, whose Smc1, Smc3 and Scc1 subunits form a tripartite ring that entraps both DNA double strands. Whereas centromeric cohesin is removed in late metaphase by Scc1 cleavage, metazoan cohesin at chromosome arms is displaced already in prophase by proteolysis-independent signalling. Which of the three gates is triggered by the prophase pathway to open has remained enigmatic. Here, we show that displacement of human cohesin from early mitotic chromosomes requires dissociation of Smc3 from Scc1 but no opening of the other two gates. In contrast, loading of human cohesin onto chromatin in telophase occurs through the Smc1–Smc3 hinge. We propose that the use of differently regulated gates for loading and release facilitates unidirectionality of DNA's entry into and exit from the cohesin ring. PMID:23361318

  2. The glomuvenous malformation protein Glomulin binds Rbx1 and regulates cullin RING ligase-mediated turnover of Fbw7.

    PubMed

    Tron, Adriana E; Arai, Takehiro; Duda, David M; Kuwabara, Hiroshi; Olszewski, Jennifer L; Fujiwara, Yuko; Bahamon, Brittany N; Signoretti, Sabina; Schulman, Brenda A; DeCaprio, James A

    2012-04-13

    Fbw7, a substrate receptor for Cul1-RING-ligase (CRL1), facilitates the ubiquitination and degradation of several proteins, including Cyclin E and c-Myc. In spite of much effort, the mechanisms underlying Fbw7 regulation are mostly unknown. Here, we show that Glomulin (Glmn), a protein found mutated in the vascular disorder glomuvenous malformation (GVM), binds directly to the RING domain of Rbx1 and inhibits its E3 ubiquitin ligase activity. Loss of Glmn in a variety of cells, tissues, and GVM lesions results in decreased levels of Fbw7 and increased levels of Cyclin E and c-Myc. The increased turnover of Fbw7 is dependent on CRL and proteasome activity, indicating that Glmn modulates the E3 activity of CRL1(Fbw7). These data reveal an unexpected functional connection between Glmn and Rbx1 and demonstrate that defective regulation of Fbw7 levels contributes to GVM. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. The Glomuvenous Malformation Protein Glomulin Binds Rbx1 and Regulates Cullin RING Ligase-Mediated Turnover of Fbw7

    PubMed Central

    Tron, Adriana E.; Arai, Takehiro; Duda, David M.; Kuwabara, Hiroshi; Olszewski, Jennifer L.; Fujiwara, Yuko; Bahamon, Brittany N.; Signoretti, Sabina; Schulman, Brenda A.; DeCaprio, James A.

    2012-01-01

    SUMMARY Fbw7, a substrate receptor for Cul1-RING-ligase (CRL1), facilitates the ubiquitination and degradation of several proteins including Cyclin E and c-Myc. In spite of much effort, the mechanisms underlying Fbw7 regulation are mostly unknown. Here we show that Glomulin (Glmn), a protein found mutated in the vascular disorder Glomuvenous Malformation (GVM), binds directly to the RING domain of Rbx1 and inhibits its E3 ubiquitin ligase activity. Loss of Glmn in a variety of cells, tissues and GVM lesions results in decreased levels of Fbw7 and increased levels of Cyclin E and c-Myc. The increased turnover of Fbw7 is dependent on CRL and proteasome activity indicating that Glmn modulates the E3 activity of CRL1Fbw7. These data reveal an unexpected functional connection between Glmn and Rbx1 and demonstrate that defective regulation of Fbw7 levels contributes to GVM. PMID:22405651

  4. Cathepsin K activity-dependent regulation of osteoclast actin ring formation and bone resorption.

    PubMed

    Wilson, Susan R; Peters, Christoph; Saftig, Paul; Brömme, Dieter

    2009-01-23

    Cathepsin K is responsible for the degradation of type I collagen in osteoclast-mediated bone resorption. Collagen fragments are known to be biologically active in a number of cell types. Here, we investigate their potential to regulate osteoclast activity. Mature murine osteoclasts were seeded on type I collagen for actin ring assays or dentine discs for resorption assays. Cells were treated with cathepsins K-, L-, or MMP-1-predigested type I collagen or soluble bone fragments for 24 h. The presence of actin rings was determined fluorescently by staining for actin. We found that the percentage of osteoclasts displaying actin rings and the area of resorbed dentine decreased significantly on addition of cathepsin K-digested type I collagen or bone fragments, but not with cathepsin L or MMP-1 digests. Counterintuitively, actin ring formation was found to decrease in the presence of the cysteine proteinase inhibitor LHVS and in cathepsin K-deficient osteoclasts. However, cathepsin L deficiency or the general MMP inhibitor GM6001 had no effect on the presence of actin rings. Predigestion of the collagen matrix with cathepsin K, but not by cathepsin L or MMP-1 resulted in an increased actin ring presence in cathepsin K-deficient osteoclasts. These studies suggest that cathepsin K interaction with type I collagen is required for 1) the release of cryptic Arg-Gly-Asp motifs during the initial attachment of osteoclasts and 2) termination of resorption via the creation of autocrine signals originating from type I collagen degradation.

  5. All-metal aromatic cationic palladium triangles can mimic aromatic donor ligands with Lewis acidic cations† †Electronic supplementary information (ESI) available: Reaction procedures, characterization of complexes, copies of all spectra and cif files, modelling details and XYZ coordinates. CCDC 1410440–1410442. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c7sc03475j Click here for additional data file. Click here for additional data file.

    PubMed Central

    Wang, Yanlan; Monfredini, Anna; Deyris, Pierre-Alexandre; Blanchard, Florent; Derat, Etienne; Malacria, Max

    2017-01-01

    We present that cationic rings can act as donor ligands thanks to suitably delocalized metal–metal bonds. This could grant parent complexes with the peculiar properties of aromatic rings that are crafted with main group elements. We assembled Pd nuclei into equilateral mono-cationic triangles with unhindered faces. Like their main group element counterparts and despite their positive charge, these noble-metal rings form stable bonding interactions with other cations, such as positively charged silver atoms, to deliver the corresponding tetranuclear dicationic complexes. Through a mix of modeling and experimental techniques we propose that this bonding mode is an original coordination-like one rather than a 4-centre–2-electron bond, which have already been observed in three dimensional aromatics. The present results thus pave the way for the use of suitable metal rings as ligands. PMID:29163890

  6. Mapping magnetoelastic response of terfenol-D ring structure

    NASA Astrophysics Data System (ADS)

    Youssef, George; Newacheck, Scott; Lopez, Mario

    2017-05-01

    The magneto-elastic response of a Terfenol-D (Tb.3Dy.7Fe1.92) ring has been experimentally investigated and analyzed. Ring structures give rise to complex behavior based on the interaction of the magnetic field with the material, which is further compounded with anisotropies associated with mechanical and magnetic properties. Discrete strain measurements were used to construct magnetostriction maps, which are used to elucidate the non-uniformity of the strain distribution due to geometrical factors and magnetic field interactions, namely, magnetic shielding and stable onion state in the ring structure.

  7. The fission yeast cytokinetic contractile ring regulates septum shape and closure

    PubMed Central

    Thiyagarajan, Sathish; Munteanu, Emilia Laura; Arasada, Rajesh; Pollard, Thomas D.; O'Shaughnessy, Ben

    2015-01-01

    ABSTRACT During cytokinesis, fission yeast and other fungi and bacteria grow a septum that divides the cell in two. In fission yeast closure of the circular septum hole by the β-glucan synthases (Bgs) and other glucan synthases in the plasma membrane is tightly coupled to constriction of an actomyosin contractile ring attached to the membrane. It is unknown how septum growth is coordinated over scales of several microns to maintain septum circularity. Here, we documented the shapes of ingrowing septum edges by measuring the roughness of the edges, a measure of the deviation from circularity. The roughness was small, with spatial correlations indicative of spatially coordinated growth. We hypothesized that Bgs-mediated septum growth is mechanosensitive and coupled to contractile ring tension. A mathematical model showed that ring tension then generates almost circular septum edges by adjusting growth rates in a curvature-dependent fashion. The model reproduced experimental roughness statistics and showed that septum synthesis sets the mean closure rate. Our results suggest that the fission yeast cytokinetic ring tension does not set the constriction rate but regulates septum closure by suppressing roughness produced by inherently stochastic molecular growth processes. PMID:26240178

  8. The fission yeast cytokinetic contractile ring regulates septum shape and closure.

    PubMed

    Thiyagarajan, Sathish; Munteanu, Emilia Laura; Arasada, Rajesh; Pollard, Thomas D; O'Shaughnessy, Ben

    2015-10-01

    During cytokinesis, fission yeast and other fungi and bacteria grow a septum that divides the cell in two. In fission yeast closure of the circular septum hole by the β-glucan synthases (Bgs) and other glucan synthases in the plasma membrane is tightly coupled to constriction of an actomyosin contractile ring attached to the membrane. It is unknown how septum growth is coordinated over scales of several microns to maintain septum circularity. Here, we documented the shapes of ingrowing septum edges by measuring the roughness of the edges, a measure of the deviation from circularity. The roughness was small, with spatial correlations indicative of spatially coordinated growth. We hypothesized that Bgs-mediated septum growth is mechanosensitive and coupled to contractile ring tension. A mathematical model showed that ring tension then generates almost circular septum edges by adjusting growth rates in a curvature-dependent fashion. The model reproduced experimental roughness statistics and showed that septum synthesis sets the mean closure rate. Our results suggest that the fission yeast cytokinetic ring tension does not set the constriction rate but regulates septum closure by suppressing roughness produced by inherently stochastic molecular growth processes. © 2015. Published by The Company of Biologists Ltd.

  9. Surgical management of spontaneous in-the-bag intraocular lens and capsular tension ring complex dislocation.

    PubMed

    Gunenc, Uzeyir; Kocak, Nilufer; Ozturk, A Taylan; Arikan, Gul

    2014-08-01

    We describe a technique to manage late spontaneous intraocular lens (IOL) and capsular tension ring (CTR) dislocation within the intact capsular bag. The subluxated IOL and CTR complex can be positioned in a closed chamber and fixed to the pars plana at both 3 and 9 o'clock quadrants with the presented ab externo direct scleral suturation technique which provides an easy, safe and effective surgical option for such cases.

  10. Interactions between 2,4-bis-pteridine-1,5-benzodiazepine and group 12 dihalides: synthesis, spectral and XRD structural studies and theoretical calculations.

    PubMed

    Illán-Cabeza, Nuria A; Jiménez-Pulido, Sonia B; Hueso-Ureña, Francisco; Peña-Ruiz, Tomás; Quirós-Olozábal, Miguel; Moreno-Carretero, Miguel N

    2016-11-28

    2,4-Bis(1,3,7-trimethyl-pteridine-2,4(1H,3H)-dione-6-yl)-2,3-dihydro-2-methyl-1H-1,5-benzodiazepine (DLMBZD) has been prepared and its molecular and crystal structures have been determined from spectral and XRD data. The benzodiazepine ligand was reacted with zinc(ii), cadmium(ii) and mercury(ii) chloride, bromide and iodide to give complexes with general formula [M(DLMBZD)X 2 ]. The complexes have been synthesized and characterized by IR, NMR and elemental analysis. The structure of seven complexes has been obtained by single crystal X-ray diffraction. In all the cases, the metal is (2 + 2 + 1)-five-coordinated by two halide ligands, two nitrogen atoms from pyrazine and diazepine rings and a carbonyl oxygen from a pteridine ring. The coordinated-metal environment is a square-based pyramid, with increasing trigonality from Hg(ii) to Zn(ii) complexes. To coordinate the metals, the ligand folds itself, establishing four intramolecular σ-π interactions with the pyrimidine and pyrazine rings. A topological analysis of the electron density using the Quantum Theory of Atoms in Molecules and the complexes stability has been performed.

  11. Fourier transformation microwave spectroscopy of the methyl glycolate-H2O complex

    NASA Astrophysics Data System (ADS)

    Fujitake, Masaharu; Tanaka, Toshihiro; Ohashi, Nobukimi

    2018-01-01

    The rotational spectrum of one conformer of the methyl glycolate-H2O complex has been measured by means of the pulsed jet Fourier transform microwave spectrometer. The observed a- and b-type transitions exhibit doublet splittings due to the internal rotation of the methyl group. On the other hand, most of the c-type transitions exhibit quartet splittings arising from the methyl internal rotation and the inversion motion between two equivalent conformations. The spectrum was analyzed using parameterized expressions of the Hamiltonian matrix elements derived by applying the tunneling matrix formalism. Based on the results obtained from ab initio calculation, the observed complex of methyl glycolate-H2O was assigned to the most stable conformer of the insertion complex, in which a non-planer seven membered-ring structure is formed by the intermolecular hydrogen bonds between methyl glycolate and H2O subunits. The inversion motion observed in the c-type transitions is therefore a kind of ring-inversion motion between two equivalent conformations. Conformational flexibility, which corresponds to the ring-inversion between two equivalent conformations and to the isomerization between two possible conformers of the insertion complex, was investigated with the help of the ab initio calculation.

  12. Ligand effects on the hydrogenation of biomass-inspired substrates with bifunctional Ru, Ir, and Rh complexes.

    PubMed

    Jansen, Eveline; Jongbloed, Linda S; Tromp, Dorette S; Lutz, Martin; de Bruin, Bas; Elsevier, Cornelis J

    2013-09-01

    We herein report on the application and structural investigation of a new set of complexes that contain bidentate N-heterocyclic carbenes (NHCs) and primary amine moieties of the type [M(arene)Cl(L)] [M=Ru, Ir, or Rh; arene=p-cymene or pentamethylcyclopentadienyl; L=1-(2-aminophenyl)-3-(n-alkyl)imidazol-2-ylidine]. These complexes were tested and compared in the hydrogenation of acetophenone with hydrogen. Structural variations in the chelate ring size of the heteroditopic ligand revealed that smaller chelate ring sizes in combination with ring conjugation in the ligand are beneficial for the activity of this type of catalyst, favoring an inner-sphere coordination pathway. Additionally, increasing the steric bulk of the alkyl substituent on the NHC aided the reaction, showing almost no induction period and formation of a more active catalyst for the n-butyl complex relative to complexes with smaller Me and Et substituents. As is common in hydrogenation reactions, the activity of the complexes decreases in the order Ru>Ir>Rh. The application of [Ru(p-cym)Cl(L)]PF6 , which outperforms its reported analogues, has been successfully extended to the hydrogenation of more challenging biomass-inspired substrates. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Ring complexes and related rocks in Africa

    NASA Astrophysics Data System (ADS)

    Vail, J. R.

    Over 625 igneous complexes throughout Africa and Arabia have been selected and classified on the basis of petrographic association and chronology into six broad age groups forming 29 provinces. The groups range from Mid-Proterozoic to Tertiary and include gabbro, granite, syenite, foid syenite and carbonatite plutonic rocks, the majority in the form of ring-dykes, cone-sheets, plugs, circular intrusions, and their associated extrusive phases. Pan-African late or post-orogenic complexes (720-490 Ma) are common in the Arabian-Nubian and Tuareg shields of north Africa originating from subduction zone derived magmatism. Anorogenic complexes in Egypt, NE and central Sudan, Niger, Nigeria, Cameroon, Zaïre-Burundi, Malawi, Mozambique, Zimbabwe, Namibia and Angola span 550 to 50 Ma and are dominantly alkali granites and foid syenites. Many groups occur as en-echelon bands within linear arrays, and show migrating centres of intrusion in variable directions. In W. Africa there was a progressive shift of emplacement southwards during early Ordovician to Mid-Cretaceous times. Distribution patterns suggest thatdeep seated features, such as shear zones associated with lithospheric plate movements,controlled melting, and the resultant location of the complexes. Economic mineralization is not widespread in the rocks of the African ring complexes and is mainly restricted to small deposits of Sn, W, F, U and Nb.

  14. RING domain is essential for the antiviral activity of TRIM25 from orange spotted grouper.

    PubMed

    Yang, Ying; Huang, Youhua; Yu, Yepin; Yang, Min; Zhou, Sheng; Qin, Qiwei; Huang, Xiaohong

    2016-08-01

    Tripartite motif-containing 25 (TRIM25) has been demonstrated to exert crucial roles in the regulation of innate immune signaling. However, the roles of fish TRIM25 in antiviral immune response still remained uncertain. Here, a novel fish TRIM25 gene from orange spotted grouper (EcTRIM25) was cloned and its roles in grouper virus infection were elucidated. EcTRIM25 encoded a 734-aa protein which shared 68% identity to large yellow croaker (Larimichthys crocea). Amino acid alignment showed that EcTRIM25 contained three conserved domains, including a RING-finger domain, a B box/coiled-coil domain and a SPRY domain. In healthy grouper, the transcript of EcTRIM25 was predominantly detected in skin, spleen and intestine. After stimulation with Singapore grouper iridovirus (SGIV) or poly I:C, the relative expression of EcTRIM25 in grouper spleen was significantly increased at the early stage of injection. Subcellular localization analysis showed that EcTRIM25 distributed throughout the cytoplasm in grouper cells. Notably, the deletion RING domain affected its accurate localization and displayed microtubule like structures or bright aggregates in GS cells. After incubation with SGIV or red spotted grouper nervous necrosis virus (RGNNV), overexpression of full length of EcTRIM25 in vitro significantly decreased the viral gene transcription of SGIV and RGNNV. Consistently, the deletion of RING domain obviously affected the inhibitory effect of EcTRIM25. Furthermore, overexpression of EcTRIM25 significantly increased the expression level of interferon related signaling molecules, including interferon regulatory factor (IRF) 3, interferon-induced 35-kDa protein (IFP35), MXI, IRF7 and myeloid differentiation factor 88 (MyD88), suggesting that the positive regulation of interferon immune response by EcTRIM25 might affected RGNNV replication directly. Meanwhile, the expression levels of pro-inflammation cytokines were differently regulated by the ectopic expression of EcTRIM25. We proposed that the regulation of IRF7, MyD88 and pro-inflammation cytokines might contribute more important roles in SGIV infection. In addition, the RING domain of EcTRIM25 also played critical roles in the regulation of interferon immune and inflammation response. Together, our results will provide new evidences that the RING domain was essential for the antiviral action of fish TRIM25 against iridovirus and nodavirus infection. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Planetary Rings

    NASA Astrophysics Data System (ADS)

    Nicholson, P. D.

    2001-11-01

    A revolution in the studies in planetary rings studies occurred in the period 1977--1981, with the serendipitous discovery of the narrow, dark rings of Uranus, the first Voyager images of the tenuous jovian ring system, and the many spectacular images returned during the twin Voyager flybys of Saturn. In subsequent years, ground-based stellar occultations, HST observations, and the Voyager flybys of Uranus (1986) and Neptune (1989), as well as a handful of Galileo images, provided much additional information. Along with the completely unsuspected wealth of detail these observations revealed came an unwelcome problem: are the rings ancient or are we privileged to live at a special time in history? The answer to this still-vexing question may lie in the complex gravitational interactions recent studies have revealed between the rings and their retinues of attendant satellites. Among the four known ring systems, we see elegant examples of Lindblad and corotation resonances (first invoked in the context of galactic disks), electromagnetic resonances, spiral density waves and bending waves, narrow ringlets which exhibit internal modes due to collective instabilities, sharp-edged gaps maintained via tidal torques from embedded moonlets, and tenuous dust belts created by meteoroid impact onto parent bodies. Perhaps most puzzling is Saturn's multi-stranded, clumpy F ring, which continues to defy a simple explanation 20 years after it was first glimpsed in grainy images taken by Pioneer 11. Voyager and HST images reveal a complex, probably chaotic, dynamical interaction between unseen parent bodies within this ring and its two shepherd satellites, Pandora and Prometheus. The work described here reflects contributions by Joe Burns, Jeff Cuzzi, Luke Dones, Dick French, Peter Goldreich, Colleen McGhee, Carolyn Porco, Mark Showalter, and Bruno Sicardy, as well as those of the author. This research has been supported by NASA's Planetary Geology and Geophysics program and the Space Telescope Science Institute.

  16. Structure, stratigraphy, and eruption chronology of the Hanauma Bay Tuff Ring, Oahu, Hawaii

    NASA Astrophysics Data System (ADS)

    Rottas, K. M.; Houghton, B. F.

    2010-12-01

    The Hanauma Bay-Koko Head Complex is one of several volcanic landforms along the Koko fissure, in southeastern Oahu, that formed during rejuvenated volcanism. The Hanauma Bay region of the complex is comprised of two nested tuff rings. The internal structure of the inner tuff ring is well exposed due to subsequent breaching and wave erosion and is described in detail here for the first time. The inner tuff ring is currently believed to have formed during a single eruption episode. However, field observations, detailed photography, structural mapping in both the vertical and horizontal planes, extensive measurements of bedding attitudes, and stratigraphic analysis suggest that there were a minimum of five distinct intervals of deposition, which also blanketed the deposits of the outer tuff ring with ejecta. These intervals of sedimentation were separated by significant collapses, generating major unconformities that cross the inner wall of the inner ring. The planes of failure are marked by smaller steep-walled channels and gullies, eroded by rainfall-induced runoff and suggesting the failures were each followed by short time breaks with erosion. Within each pyroclastic sequence there are also smaller slump scars and local unconformities. The inner tuff ring was predominately formed by pyroclastic surges, although the beds of Phase 3 are primarily fall deposits. From ballistic trajectories and bedding features, it is apparent that the eruption locus shifted a minimum of two times during tuff ring growth. Ballistic blocks in the final Phase 5 indicate that the Hanauma Bay eruption was contemporaneous with a separate eruption to the north, most likely that of the Kahauloa tuff ring 880 meters away.

  17. Structural Analysis of the Bacterial Proteasome Activator Bpa in Complex with the 20S Proteasome.

    PubMed

    Bolten, Marcel; Delley, Cyrille L; Leibundgut, Marc; Boehringer, Daniel; Ban, Nenad; Weber-Ban, Eilika

    2016-12-06

    Mycobacterium tuberculosis harbors proteasomes that recruit substrates for degradation through an ubiquitin-like modification pathway. Recently, a non-ATPase activator termed Bpa (bacterial proteasome activator) was shown to support an alternate proteasomal degradation pathway. Here, we present the cryo-electron microscopy (cryo-EM) structure of Bpa in complex with the 20S core particle (CP). For docking into the cryo-EM density, we solved the X-ray structure of Bpa, showing that it forms tight four-helix bundles arranged into a 12-membered ring with a 40 Å wide central pore and the C-terminal helix of each protomer protruding from the ring. The Bpa model was fitted into the cryo-EM map of the Bpa-CP complex, revealing its architecture and striking symmetry mismatch. The Bpa-CP interface was resolved to 3.5 Å, showing the interactions between the C-terminal GQYL motif of Bpa and the proteasome α-rings. This docking mode is related to the one observed for eukaryotic activators with features specific to the bacterial complex. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Iridium Complexes with Proton-Responsive Azole-Type Ligands as Effective Catalysts for CO2 Hydrogenation.

    PubMed

    Suna, Yuki; Himeda, Yuichiro; Fujita, Etsuko; Muckerman, James T; Ertem, Mehmed Z

    2017-11-23

    Pentamethylcyclopentadienyl iridium (Cp*Ir) complexes with bidentate ligands consisting of a pyridine ring and an electron-rich diazole ring were prepared. Their catalytic activity toward CO 2 hydrogenation in 2.0 m KHCO 3 aqueous solutions (pH 8.5) at 50 °C, under 1.0 MPa CO 2 /H 2 (1:1) have been reported as an alternative to photo- and electrochemical CO 2 reduction. Bidentate ligands incorporating an electron-rich diazole ring improved the catalytic performance of the Ir complexes compared to the bipyridine ligand. Complexes 2, 4, and 6, possessing both a hydroxy group and an uncoordinated NH group, which are proton-responsive and capable of generating pendent bases in basic media, recorded high initial turnover frequency values of 1300, 1550, and 2000 h -1 , respectively. Spectroscopic and computational investigations revealed that the reversible deprotonation changes the electronic properties of the complexes and causes interactions between pendent base and substrate and/or solvent water molecules, resulting in high catalytic performance in basic media. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Gravity profiles across the Uyaijah Ring structure, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Gettings, M.E.; Andreasen, G.E.

    1987-01-01

    The resulting structural model, based on profile fits to gravity responses of three-dimensional models and excess-mass calculations, gives a depth estimate to the base of the complex of 4.75 km. The contacts of the complex are inferred to be steeply dipping inward along the southwest margin of the structure. To the north and east, however, the basal contact of the complex dips more gently inward (about 30 degrees). The ring structure appears to be composed of three laccolith-shaped plutons; two are granitic in composition and make up about 85 percent of the volume of the complex, and one is granodioritic and comprises the remaining 15 percent. The source area for the plutons appears to be in the southwest quadrant of the Uyaijah ring structure. A northwest-trending shear zone cuts the northern half of the structure and contains mafic dikes that have a small but identifiable gravity-anomaly response. The structural model agrees with models derived from geological interpretation except that the estimated depth to which the structure extends is decreased considerably by the gravity results.

  20. Preliminary investigation of single-file diffusion in complex plasma rings

    NASA Astrophysics Data System (ADS)

    Theisen, W. L.; Sheridan, T. E.

    2010-04-01

    Particles in one-dimensional (1D) systems cannot pass each other. However, it is still possible to define a diffusion process where the mean-squared displacement (msd) of an ensemble of particles in a 1D chain increases with time t. This process is called single-file diffusion. In contrast to diffusive processes that follow Fick's law, msdt, single-file diffusion is sub-Fickean and the msd is predicted to increase as t^1/2. We have recently created 1D dusty (complex) plasma rings in the DONUT (Dusty ONU experimenT) apparatus. Particle position data from these rings will be analyzed to determine the scaling of the msd with time and results will be compared with predictions of single-file diffusion theory.

  1. Highly Sensitive and Selective Colorimetric and Off-On Fluorescent Reversible Chemosensors for Al3+ Based on the Rhodamine Fluorophore

    PubMed Central

    Mergu, Naveen; Singh, Ashok Kumar; Gupta, Vinod Kumar

    2015-01-01

    A series of rhodamine derivatives L1–L3 have been prepared and characterized by IR, 1H-NMR, 13C-NMR and ESI-MS. These compounds exhibited selective and sensitive “turn-on” fluorescent and colorimetric responses to Al3+ in methanol. Upon the addition of Al(III), the spiro ring was opened and a metal-probe complex was formed in a 1:1 stoichiometry, as was further confirmed by ESI-MS spectroscopy. The chemo-dosimeters L1–L3 exhibited good binding constants and low detection limits towards Al(III). We also successfully demonstrate the reversibility of the metal to ligand complexation (opened ring to spirolactam ring). PMID:25897498

  2. Suppression of Arabidopsis RING E3 ubiquitin ligase AtATL78 increases tolerance to cold stress and decreases tolerance to drought stress.

    PubMed

    Kim, Soo Jin; Kim, Woo Taek

    2013-08-19

    AtATL78 is an Arabidopsis RING E3 ubiquitin ligase. RT-PCR and promoter-GUS assays revealed that AtATL78 was up-regulated by cold stress and down-regulated by drought. AtATL78 was localized at the plasma-membrane. Suppression of AtATL78 increased tolerance to cold stress but decreased tolerance to drought. Our data suggests that AtATL78 is a negative regulator of cold stress response and a positive regulator of drought stress response in Arabidopsis. These results further suggest that AtATL78 plays opposing roles in cold and drought stress responses. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  3. Structure Formation in Complex Plasma

    DTIC Science & Technology

    2011-08-24

    Dewer bottle (upper figures) or in the vapor of liquid helium (lower figures). Liq. He Ring electrode Particles Green Laser RF Plasma ... Ring electrode CCD camera Prism mirror Liq. He Glass Tube Liq. N2 Glass Dewar Acrylic particles Gas Helium Green Laser CCD camera Pressure

  4. How to make a tree ring: Coupling stem water flow and cambial activity in mature Alpine conifers

    NASA Astrophysics Data System (ADS)

    Peters, Richard L.; Frank, David C.; Treydte, Kerstin; Steppe, Kathy; Kahmen, Ansgar; Fonti, Patrick

    2017-04-01

    Inter-annual tree-ring measurements are used to understand tree-growth responses to climatic variability and reconstruct past climate conditions. In parallel, mechanistic models use experimentally defined plant-atmosphere interactions to explain past growth responses and predict future environmental impact on forest productivity. Yet, substantial inconsistencies within mechanistic model ensembles and mismatches with empirical data indicate that significant progress is still needed to understand the processes occurring at an intra-annual resolution that drive annual growth. However, challenges arise due to i) few datasets describing climatic responses of high-resolution physiological processes over longer time-scales, ii) uncertainties on the main mechanistic process limiting radial stem growth and iii) complex interactions between multiple environmental factors which obscure detection of the main stem growth driver, generating a gap between our understanding of intra- and inter-annual growth mechanisms. We attempt to bridge the gap between inter-annual tree-ring width and sub-daily radial stem-growth and provide a mechanistic perspective on how environmental conditions affect physiological processes that shape tree rings in conifers. We combine sub-hourly sap flow and point dendrometer measurements performed on mature Alpine conifers (Larix decidua) into an individual-based mechanistic tree-growth model to simulate sub-hourly cambial activity. The monitored trees are located along a high elevational transect in the Swiss Alps (Lötschental) to analyse the effect of increasing temperature. The model quantifies internal tree hydraulic pathways that regulate the turgidity within the cambial zone and induce cell enlargement for radial growth. The simulations are validated against intra-annual growth patterns derived from xylogenesis data and anatomical analyses. Our efforts advance the process-based understanding of how climate shapes the annual tree-ring structures and could potentially improve our ability to reconstruct the climate of the past and predict future growth under changing climate.

  5. Synthesis and Deprotonation of Aminophosphane Complexes: First K/N(H)R Phosphinidenoid Complexes and Access to a Complex with a P2 N-Ring Ligand.

    PubMed

    Majhi, Paresh Kumar; Kyri, Andreas Wolfgang; Schmer, Alexander; Schnakenburg, Gregor; Streubel, Rainer

    2016-10-17

    Synthesis of 1,1'-bifunctional aminophosphane complexes 3 a-e was achieved by the reaction of Li/Cl phosphinidenoid complex 2 with various primary amines (R=Me, iPr, tBu, Cy, Ph). Deprotonation of complex 3 a (R=Me) with potassium hexamethyldisilazide yielded a mixture of K/NHMe phosphinidenoid complex 4 a and potassium phosphanylamido complex 4 a'. Treatment of complex 3 c (R=tBu) and e (R=Ph) with KHMDS afforded the first examples of K/NHR phosphinidenoid complexes 4 c and e. The reaction of complex 3 c with 2 molar equivalents of KHMDS followed by PhPCl 2 afforded complexes 5 c,c', which possess a P 2 N-ring ligand. All complexes were characterized by NMR, IR, MS, and microanalysis, and additionally, complexes 3 b-e and 5 c' were scrutinized by single-crystal X-ray crystallography. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Structure of an APC3–APC16 Complex: Insights into Assembly of the Anaphase-Promoting Complex/Cyclosome

    DOE PAGES

    Yamaguchi, Masaya; Yu, Shanshan; Qiao, Renping; ...

    2014-12-06

    The anaphase-promoting complex/cyclosome (APC/C) is a massive E3 ligase that controls mitosis by catalyzing ubiquitination of key cell cycle regulatory proteins. The APC/C assembly contains two subcomplexes: the “Platform” centers around a cullin-RING-like E3 ligase catalytic core; the “Arc Lamp” is a hub that mediates transient association with regulators and ubiquitination substrates. The Arc Lamp contains the small subunits APC16, CDC26, and APC13, and tetratricopeptide repeat (TPR) proteins (APC7, APC3, APC6, and APC8) that homodimerize and stack with quasi-2-fold symmetry. Within the APC/C complex, APC3 serves as center for regulation. APC3's TPR motifs recruit substrate-binding coactivators, CDC20 and CDH1, viamore » their C-terminal conserved Ile-Arg (IR) tail sequences. Human APC3 also binds APC16 and APC7 and contains a > 200-residue loop that is heavily phosphorylated during mitosis, although the basis for APC3 interactions and whether loop phosphorylation is required for ubiquitination are unclear. Here, we map the basis for human APC3 assembly with APC16 and APC7, report crystal structures of APC3Δloop alone and in complex with the C-terminal domain of APC16, and test roles of APC3's loop and IR tail binding surfaces in APC/C-catalyzed ubiquitination. The structures show how one APC16 binds asymmetrically to the symmetric APC3 dimer and, together with biochemistry and prior data, explain how APC16 recruits APC7 to APC3, show how APC3's C-terminal domain is rearranged in the full APC/C assembly, and visualize residues in the IR tail binding cleft important for coactivator-dependent ubiquitination. Overall, the results provide insights into assembly, regulation, and interactions of TPR proteins and the APC/C.« less

  7. RING-type E3 ligases: Master manipulators of E2 ubiquitin-conjugating enzymes and ubiquitination

    PubMed Central

    Metzger, Meredith B.; Pruneda, Jonathan N.; Klevit, Rachel E.; Weissman, Allan M.

    2013-01-01

    RING finger domain and RING finger-like ubiquitin ligases (E3s), such as U-box proteins, constitute the vast majority of known E3s. RING-type E3s function together with ubiquitin-conjugating enzymes (E2s) to mediate ubiquitination and are implicated in numerous cellular processes. In part because of their importance in human physiology and disease, these proteins and their cellular functions represent an intense area of study. Here we review recent advances in RING-type E3 recognition of substrates, their cellular regulation, and their varied architecture. Additionally, recent structural insights into RING-type E3 function, with a focus on important interactions with E2s and ubiquitin, are reviewed. This article is part of a Special Issue entitled: Ubiquitin-Proteasome System. PMID:23747565

  8. Dynamin Forms a Src Kinase–sensitive Complex with Cbl and Regulates Podosomes and Osteoclast Activity

    PubMed Central

    Bruzzaniti, Angela; Neff, Lynn; Sanjay, Archana; Horne, William C.; De Camilli, Pietro; Baron, Roland

    2005-01-01

    Podosomes are highly dynamic actin-containing adhesion structures found in osteoclasts, macrophages, and Rous sarcoma virus (RSV)-transformed fibroblasts. After integrin engagement, Pyk2 recruits Src and the adaptor protein Cbl, forming a molecular signaling complex that is critical for cell migration, and deletion of any molecule in this complex disrupts podosome ring formation and/or decreases osteoclast migration. Dynamin, a GTPase essential for endocytosis, is also involved in actin cytoskeleton remodeling and is localized to podosomes where it has a role in actin turnover. We found that dynamin colocalizes with Cbl in the actin-rich podosome belt of osteoclasts and that dynamin forms a complex with Cbl in osteoclasts and when overexpressed in 293VnR or SYF cells. The association of dynamin with Cbl in osteoclasts was decreased by Src tyrosine kinase activity and we found that destabilization of the dynamin-Cbl complex involves the recruitment of Src through the proline-rich domain of Cbl. Overexpression of dynamin increased osteoclast bone resorbing activity and migration, whereas overexpression of dynK44A decreased osteoclast resorption and migration. These studies suggest that dynamin, Cbl, and Src coordinately participate in signaling complexes that are important in the assembly and remodeling of the actin cytoskeleton, leading to changes in osteoclast adhesion, migration, and resorption. PMID:15872089

  9. Polymer Soft-Landing Isolation of Acetylene on Polystyrene and Poly(vinylpyridine): A Novel Approach to Probing Hydrogen Bonding in Polymers.

    PubMed

    Li, Yike; Samet, Cindy

    2015-09-17

    Hydrogen-bonded complexes of acetylene (Ac) with the polymers polystyrene (PS), poly(4-vinylpyridine) (P4VP), and poly(2-vinylpyridine) (P2VP) have been characterized for the first time at 16 K in a "polymer soft-landing isolation" experiment which is being pioneered in our research laboratory. In particular, changes in vibrational modes of Ac provide ample evidence for hydrogen-bonded complexes between Ac and the phenyl groups of PS or the pyridyl groups of P4VP and P2VP. With PS, the proton on the top Ac molecule of the classic T-shaped Ac dimer interacts with the π cloud of the benzene (Bz) ring to form a C-H---π interaction, while the π cloud of the lower Ac forms a second C-H---π interaction with a proton on the Bz ring. An analogous (ring)1-(Ac)2 double interaction occurs between an Ac dimer and the pyridine (Pyr) rings on both P2VP and P4VP, yielding a C-H---N and C-H---π interaction. With P4VP and P2VP a second bridged (ring)2-(Ac)2 product is formed, with the Ac dimer forming nearly collinear C-H---N hydrogen bonds to adjacent Pyr rings. On P2VP this bridged product is the only one after extensive annealing. These complexes in which Ac acts as both proton donor and acceptor have not previously been observed in conventional matrix isolation experiments. This study is the second from our laboratory employing this method, which represents a slight modification of the traditional matrix isolation technique.

  10. Tuning of Magnetic Anisotropy in Hexairon(III) Rings by Host-Guest Interactions: An Investigation by High-Field Torque Magnetometry.

    PubMed

    Cornia; Affronte; Jansen; Abbati; Gatteschi

    1999-08-01

    Full chemical control of magnetic anisotropy in hexairon(III) rings can be achieved by varying the size of the guest alkali metal ion. Dramatically different anisotropies characterize the Li(I) and Na(I) complexes of [Fe(6)(OMe)(12)(L)(6)] (L=1,3-propanedione derivatives; a schematic representation of the Li(I) complex is shown), as revealed by high-field torque magnetometry-Iron: (g), oxygen: o, carbon: o, Li(+): plus sign in circle.

  11. Linking heterometallic rings for quantum information processing and amusement.

    PubMed

    Timco, Grigore A; Faust, Thomas B; Tuna, Floriana; Winpenny, Richard E P

    2011-06-01

    Linking polymetallic cages can be a method for creating new structures and new properties. In this tutorial review we use heterometallic anti-ferromagnetically coupled rings (AF-rings) as exemplars for three approaches that can be used to link cage compounds. The first of three routes involves an ion-pair interaction supported by hydrogen-bonding interactions, which allows the synthesis of hybrid rotaxanes among other materials. The second route involves functionalising the exterior of the AF-ring so that it will act as a Lewis base; complexes involving coordination of pyridine to bridging monometallic and dimetallic fragments are discussed. The third route involves creating a vacancy on one site of the AF-ring, and then using the ring as a Lewis acid. Di-imine ligands can then be used to link the AF-rings into dimers. A brief discussion of the physical properties of these systems is also included.

  12. A combined experimental and DFT study of active structures and self-cycle mechanisms of mononuclear tungsten peroxo complexes in oxidation reactions

    NASA Astrophysics Data System (ADS)

    Jin, Peng; Wei, Donghui; Wen, Yiqiang; Luo, Mengfei; Wang, Xiangyu; Tang, Mingsheng

    2011-04-01

    Tungsten peroxo complexes have been widely used in olefin epoxidation, alcohol oxidation, Baeyer-Villiger oxidation and other oxidation reactions, however, there is still not a unanimous viewpoint for the active structure of mononuclear tungsten peroxo complex by now. In this paper, the catalysis of mononuclear tungsten peroxo complexes 0- 5 with or without acidic ligands for the green oxidation of cyclohexene to adipic acid in the absence of organic solvent and phase-transfer catalyst has been researched in experiment. Then we have suggested two possible kinds of active structures of mononuclear tungsten peroxo complexes including peroxo ring ( nA, n = 0-1) and hydroperoxo ( nB, n = 0-1) structures, which have been investigated using density functional theory (DFT). Moreover, the calculations on self-cycle mechanisms involving the two types of active structures of tungsten peroxo complexes with and without oxalic acid ligand have also been carried out at the B3LYP/[LANL2DZ/6-31G(d, p)] level. The highest energy barrier are 26.17 kcal/mol ( 0A, peroxo ring structure without oxalic acid ligand), 23.91 kcal/mol ( 1A, peroxo ring structure with oxalic acid ligand), 18.19 kcal/mol ( 0B, hydroperoxo structure without oxalic acid ligand) and 13.10 kcal/mol ( 1B, hydroperoxo structure with oxalic acid ligand) in the four potential energy profiles, respectively. The results indicate that both the energy barriers of active structure self-cycle processes with oxalic acid ligands are lower than those without oxalic acid ligands, so the active structures with oxalic acid ligands should be easier to recycle, which is in good agreement with our experimental results. However, due to the higher energy of product than that of the reactant, the energy profile of the self-cycle process of 1B shows that the recycle of 1B could not occur at all in theory. Moreover, the crystal data of peroxo ring structure with oxalic acid ligand could be found in some experimental references. Thus, the viewpoint that the peroxo ring active structure should be the real active structure has been proved in this paper.

  13. Ring-Opening Polymerization of rac-Lactide with Aluminum Chiral Anilido-Oxazolinate Complexes

    PubMed Central

    2015-01-01

    A series of dimethylaluminum complexes (L1a–i)AlMe2 (2a–i, where HL1a–i = 2-(2′-ArNH)phenyl-4-R1-oxazoline) bearing chiral, bidentate anilido-oxazolinate ligands have been prepared and characterized. Six of the complexes, in the presence of an alcohol cocatalyst, are shown to be active initiators for the stereoselective ring-opening polymerization of rac-lactide in toluene solution and under bulk conditions, yielding polylactides with a range of tacticity from slightly isotactic to moderately heterotactic. The reactivity and selectivity of these catalysts are discussed on the basis of the effect of their substituents. PMID:24891754

  14. Path induced coherent energy transfer in light-harvesting complexes in purple bacteria

    NASA Astrophysics Data System (ADS)

    Sun, Kewei; Ye, Jun; Zhao, Yang

    2014-09-01

    Features of path dependent energy transfer in a dual-ring light-harvesting (LH2) complexes (B850) system have been examined in detail systematically. The Frenkel-Dirac time dependent variational method with the Davydov D1 Ansatz is employed with detailed evolution of polaron dynamics in real space readily obtained. It is found that the phase of the transmission amplitude through the LH2 complexes plays an important role in constructing the coherent excitonic energy transfer. It is also found that the symmetry breaking caused by the dimerization of bacteriochlorophylls and coherence or correlation between two rings will be conducive in enhancing the exciton transfer efficiency.

  15. Study of Cryogenic Complex Plasma

    DTIC Science & Technology

    2007-04-26

    enabled us to detect the formation of the Coulomb crystals as shown in Fig. 2. Liq. He Ring electrode Particles Green Laser RF Plasma ... Ring electrode CCD camera Prism mirror Liq. He Glass Tube Liq. N2 Glass Dewar Acrylic particles Gas Helium Green Laser CCD camera Pressure

  16. An histidine covalent receptor/butenolide complex mediates strigolactone perception

    PubMed Central

    Badet-Denisot, Marie-Ange; Pillot, Jean-Paul; Cornu, David; Le Caer, Jean-Pierre; Burger, Marco; Pelissier, Frank; Retailleau, Pascal; Turnbull, Colin; Bonhomme, Sandrine; Chory, Joanne; Rameau, Catherine; Boyer, François-Didier

    2016-01-01

    Strigolactone plant hormones control plant architecture and are key players in both symbiotic and parasitic interactions. They contain an ABC tricyclic lactone connected to a butenolide group, the D-ring. The DWARF14 (D14) strigolactone receptor belongs to the superfamily of α/β-hydrolases and is known to hydrolyze the bond between the ABC lactone and the D-ring. Here we characterize the binding and catalytic functions of RAMOSUS3 (RMS3), the pea (Pisum sativum) ortholog of rice (Oryza sativa) D14 strigolactone receptor. Using novel profluorescent probes with strigolactone-like bioactivity, we show that RMS3 acts as a single-turnover enzyme that explains its apparent low enzymatic rate. We further demonstrate the formation of a covalent RMS3/D-ring complex, essential for bioactivity, in which the D-ring is attached to Histidine 247 of the catalytic triad. These results reveal an undescribed mechanism of plant hormone reception where the receptor performs an irreversible enzymatic reaction to generate its own ligand. PMID:27479744

  17. γ-Tubulin complex in Trypanosoma brucei: molecular composition, subunit interdependence and requirement for axonemal central pair protein assembly.

    PubMed

    Zhou, Qing; Li, Ziyin

    2015-11-01

    γ-Tubulin complex constitutes a key component of the microtubule-organizing center and nucleates microtubule assembly. This complex differs in complexity in different organisms: the budding yeast contains the γ-tubulin small complex (γTuSC) composed of γ-tubulin, gamma-tubulin complex protein (GCP)2 and GCP3, whereas animals contain the γ-tubulin ring complex (γTuRC) composed of γTuSC and three additional proteins, GCP4, GCP5 and GCP6. In Trypanosoma brucei, the composition of the γ-tubulin complex remains elusive, and it is not known whether it also regulates assembly of the subpellicular microtubules and the spindle microtubules. Here we report that the γ-tubulin complex in T. brucei is composed of γ-tubulin and three GCP proteins, GCP2-GCP4, and is primarily localized in the basal body throughout the cell cycle. Depletion of GCP2 and GCP3, but not GCP4, disrupted the axonemal central pair microtubules, but not the subpellicular microtubules and the spindle microtubules. Furthermore, we showed that the γTuSC is required for assembly of two central pair proteins and that γTuSC subunits are mutually required for stability. Together, these results identified an unusual γ-tubulin complex in T. brucei, uncovered an essential role of γTuSC in central pair protein assembly, and demonstrated the interdependence of individual γTuSC components for maintaining a stable complex. © 2015 John Wiley & Sons Ltd.

  18. Structural mechanisms of chaperone mediated protein disaggregation

    PubMed Central

    Sousa, Rui

    2014-01-01

    The ClpB/Hsp104 and Hsp70 classes of molecular chaperones use ATP hydrolysis to dissociate protein aggregates and complexes, and to move proteins through membranes. ClpB/Hsp104 are members of the AAA+ family of proteins which form ring-shaped hexamers. Loops lining the pore in the ring engage substrate proteins as extended polypeptides. Interdomain rotations and conformational changes in these loops coupled to ATP hydrolysis unfold and pull proteins through the pore. This provides a mechanism that progressively disrupts local secondary and tertiary structure in substrates, allowing these chaperones to dissociate stable aggregates such as β-sheet rich prions or coiled coil SNARE complexes. While the ClpB/Hsp104 mechanism appears to embody a true power-stroke in which an ATP powered conformational change in one protein is directly coupled to movement or structural change in another, the mechanism of force generation by Hsp70s is distinct and less well understood. Both active power-stroke and purely passive mechanisms in which Hsp70 captures spontaneous fluctuations in a substrate have been proposed, while a third proposed mechanism—entropic pulling—may be able to generate forces larger than seen in ATP-driven molecular motors without the conformational coupling required for a power-stroke. The disaggregase activity of these chaperones is required for thermotolerance, but unrestrained protein complex/aggregate dissociation is potentially detrimental. Disaggregating chaperones are strongly auto-repressed, and are regulated by co-chaperones which recruit them to protein substrates and activate the disaggregases via mechanisms involving either sequential transfer of substrate from one chaperone to another and/or simultaneous interaction of substrate with multiple chaperones. By effectively subjecting substrates to multiple levels of selection by multiple chaperones, this may insure that these potent disaggregases are only activated in the appropriate context. PMID:25988153

  19. Supravalvar mitral ring with a parachute mitral valve and subcoarctation of the aorta in a child with hemodynamically significant VSD. A study of the morphology, echocardiographic diagnostics and surgical therapy.

    PubMed

    Mądry, Wojciech; Karolczak, Maciej A; Grabowski, Krzysztof

    2017-09-01

    The authors present a case of echocardiographic diagnosis of supravalvar mitral ring (a fibromembranous structure that arose from the atrial surface of the mitral leaflets) in a child with a parachute mitral valve, a ventricular septal defect, and mild narrowing of the aortic isthmus. The supravalvar mitral stenosis is a typical but very infrequently detected element of the complex of anatomical abnormalities located within the left heart and the proximal aorta, called the Shone's complex (syndrome). Diagnosing an additional, hemodynamically significant anatomic defect during echocardiography was possible thanks to the detection of marked mobility limitation of the ring-adjacent part of the mitral valve mural leaflet as well as of an atypical image of turbulence occurring during the inflow from the left atrium to the left ventricle. The early diagnosis made it possible to perform complete correction of this complex congenital defect within a single operation.

  20. Simple Algorithms for Distributed Leader Election in Anonymous Synchronous Rings and Complete Networks Inspired by Neural Development in Fruit Flies.

    PubMed

    Xu, Lei; Jeavons, Peter

    2015-11-01

    Leader election in anonymous rings and complete networks is a very practical problem in distributed computing. Previous algorithms for this problem are generally designed for a classical message passing model where complex messages are exchanged. However, the need to send and receive complex messages makes such algorithms less practical for some real applications. We present some simple synchronous algorithms for distributed leader election in anonymous rings and complete networks that are inspired by the development of the neural system of the fruit fly. Our leader election algorithms all assume that only one-bit messages are broadcast by nodes in the network and processors are only able to distinguish between silence and the arrival of one or more messages. These restrictions allow implementations to use a simpler message-passing architecture. Even with these harsh restrictions our algorithms are shown to achieve good time and message complexity both analytically and experimentally.

  1. Mitochondrial heat shock protein (Hsp) 70 and Hsp10 cooperate in the formation of Hsp60 complexes.

    PubMed

    Böttinger, Lena; Oeljeklaus, Silke; Guiard, Bernard; Rospert, Sabine; Warscheid, Bettina; Becker, Thomas

    2015-05-01

    Mitochondrial Hsp70 (mtHsp70) mediates essential functions for mitochondrial biogenesis, like import and folding of proteins. In these processes, the chaperone cooperates with cochaperones, the presequence translocase, and other chaperone systems. The chaperonin Hsp60, together with its cofactor Hsp10, catalyzes folding of a subset of mtHsp70 client proteins. Hsp60 forms heptameric ring structures that provide a cavity for protein folding. How the Hsp60 rings are assembled is poorly understood. In a comprehensive interaction study, we found that mtHsp70 associates with Hsp60 and Hsp10. Surprisingly, mtHsp70 interacts with Hsp10 independently of Hsp60. The mtHsp70-Hsp10 complex binds to the unassembled Hsp60 precursor to promote its assembly into mature Hsp60 complexes. We conclude that coupling to Hsp10 recruits mtHsp70 to mediate the biogenesis of the heptameric Hsp60 rings. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Flying saucer1 is a transmembrane RING E3 ubiquitin ligase that regulates the degree of pectin methylesterification in Arabidopsis seed mucilage.

    PubMed

    Voiniciuc, Catalin; Dean, Gillian H; Griffiths, Jonathan S; Kirchsteiger, Kerstin; Hwang, Yeen Ting; Gillett, Alan; Dow, Graham; Western, Tamara L; Estelle, Mark; Haughn, George W

    2013-03-01

    Pectins are complex polysaccharides that form the gel matrix of the primary cell wall and are abundant in the middle lamella that holds plant cells together. Their degree of methylesterification (DM) impacts wall strength and cell adhesion since unesterified pectin regions can cross-link via Ca(2+) ions to form stronger gels. Here, we characterize flying saucer1 (fly1), a novel Arabidopsis thaliana seed coat mutant, which displays primary wall detachment, reduced mucilage extrusion, and increased mucilage adherence. These defects appear to result from a lower DM in mucilage and are enhanced by the addition of Ca(2+) or completely rescued using alkaline Ca(2+) chelators. FLY1 encodes a transmembrane protein with a RING-H2 domain that has in vitro E3 ubiquitin ligase activity. FLY1 is orthologous to TRANSMEMBRANE UBIQUITIN LIGASE1, a Golgi-localized E3 ligase involved in the quality control of membrane proteins in yeast. However, FLY1-yellow fluorescent protein (YFP) fusions are localized in punctae that are predominantly distinct from the Golgi and the trans-Golgi network/early endosome in the seed coat epidermis. Wortmannin treatment, which induces the fusion of late endosomes in plants, resulted in enlarged FLY1-YFP bodies. We propose that FLY1 regulates the DM of pectin in mucilage, potentially by recycling pectin methylesterase enzymes in the endomembrane system of seed coat epidermal cells.

  3. FLYING SAUCER1 Is a Transmembrane RING E3 Ubiquitin Ligase That Regulates the Degree of Pectin Methylesterification in Arabidopsis Seed Mucilage[W

    PubMed Central

    Voiniciuc, Cătălin; Dean, Gillian H.; Griffiths, Jonathan S.; Kirchsteiger, Kerstin; Hwang, Yeen Ting; Gillett, Alan; Dow, Graham; Western, Tamara L.; Estelle, Mark; Haughn, George W.

    2013-01-01

    Pectins are complex polysaccharides that form the gel matrix of the primary cell wall and are abundant in the middle lamella that holds plant cells together. Their degree of methylesterification (DM) impacts wall strength and cell adhesion since unesterified pectin regions can cross-link via Ca2+ ions to form stronger gels. Here, we characterize flying saucer1 (fly1), a novel Arabidopsis thaliana seed coat mutant, which displays primary wall detachment, reduced mucilage extrusion, and increased mucilage adherence. These defects appear to result from a lower DM in mucilage and are enhanced by the addition of Ca2+ or completely rescued using alkaline Ca2+ chelators. FLY1 encodes a transmembrane protein with a RING-H2 domain that has in vitro E3 ubiquitin ligase activity. FLY1 is orthologous to TRANSMEMBRANE UBIQUITIN LIGASE1, a Golgi-localized E3 ligase involved in the quality control of membrane proteins in yeast. However, FLY1–yellow fluorescent protein (YFP) fusions are localized in punctae that are predominantly distinct from the Golgi and the trans-Golgi network/early endosome in the seed coat epidermis. Wortmannin treatment, which induces the fusion of late endosomes in plants, resulted in enlarged FLY1-YFP bodies. We propose that FLY1 regulates the DM of pectin in mucilage, potentially by recycling pectin methylesterase enzymes in the endomembrane system of seed coat epidermal cells. PMID:23482858

  4. Initial diameter of the polar body contractile ring is minimized by the centralspindlin complex.

    PubMed

    Fabritius, Amy S; Flynn, Jonathan R; McNally, Francis J

    2011-11-01

    Polar body formation is an essential step in forming haploid eggs from diploid oocytes. This process involves completion of a highly asymmetric cytokinesis that results in a large egg and two small polar bodies. Unlike mitotic contractile rings, polar body contractile rings assemble over one spindle pole so that the spindle must move through the contractile ring before cytokinesis. During time-lapse imaging of C. elegans meiosis, the contractile ring moved downward along the length of the spindle and completed scission at the midpoint of the spindle, even when spindle length or rate of ring movement was increased. Patches of myosin heavy chain and dynamic furrowing of the plasma membrane over the entire embryo suggested that global cortical contraction forces the meiotic spindle and overlying membrane out through the contractile ring center. Consistent with this model, depletion of myosin phosphatase increased the velocity of ring movement along the length of the spindle. Global dynamic furrowing, which was restricted to anaphase I and II, was dependent on myosin II, the anaphase promoting complex and separase, but did not require cortical contact by the spindle. Large cortical patches of myosin during metaphase I and II indicated that myosin was already in the active form before activation of separase. To identify the signal at the midpoint of the anaphase spindle that induces scission, we depleted two proteins that mark the exact midpoint of the spindle during late anaphase, CYK-4 and ZEN-4. Depletion of either protein resulted in the unexpected phenotype of initial ingression of a polar body ring with twice the diameter of wild type. This phenotype revealed a novel mechanism for minimizing polar body size. Proteins at the spindle midpoint are required for initial ring ingression to occur close to the membrane-proximal spindle pole. 2011 Elsevier Inc. All rights reserved.

  5. Abscisic acid analogs as chemical probes for dissection of abscisic acid responses in Arabidopsis thaliana.

    PubMed

    Benson, Chantel L; Kepka, Michal; Wunschel, Christian; Rajagopalan, Nandhakishore; Nelson, Ken M; Christmann, Alexander; Abrams, Suzanne R; Grill, Erwin; Loewen, Michele C

    2015-05-01

    Abscisic acid (ABA) is a phytohormone known to mediate numerous plant developmental processes and responses to environmental stress. In Arabidopsis thaliana, ABA acts, through a genetically redundant family of ABA receptors entitled Regulatory Component of ABA Receptor (RCAR)/Pyrabactin Resistant 1 (PYR1)/Pyrabactin Resistant-Like (PYL) receptors comprised of thirteen homologues acting in concert with a seven-member set of phosphatases. The individual contributions of A. thaliana RCARs and their binding partners with respect to specific physiological functions are as yet poorly understood. Towards developing efficacious plant growth regulators selective for specific ABA functions and tools for elucidating ABA perception, a panel of ABA analogs altered specifically on positions around the ABA ring was assembled. These analogs have been used to probe thirteen RCARs and four type 2C protein phosphatases (PP2Cs) and were also screened against representative physiological assays in the model plant Arabidopsis. The 1'-O methyl ether of (S)-ABA was identified as selective in that, at physiologically relevant levels, it regulates stomatal aperture and improves drought tolerance, but does not inhibit germination or root growth. Analogs with the 7'- and 8'-methyl groups of the ABA ring replaced with bulkier groups generally retained the activity and stereoselectivity of (S)- and (R)-ABA, while alteration of the 9'-methyl group afforded an analog that substituted for ABA in inhibiting germination but neither root growth nor stomatal closure. Further in vitro testing indicated differences in binding of analogs to individual RCARs, as well as differences in the enzyme activity resulting from specific PP2Cs bound to RCAR-analog complexes. Ultimately, these findings highlight the potential of a broader chemical genetics approach for dissection of the complex network mediating ABA-perception, signaling and functionality within a given species and modifications in the future design of ABA agonists. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  6. The Arabidopsis COP9 SIGNALOSOME INTERACTING F-BOX KELCH 1 protein forms an SCF ubiquitin ligase and regulates hypocotyl elongation.

    PubMed

    Franciosini, Anna; Lombardi, Benedetta; Iafrate, Silvia; Pecce, Valeria; Mele, Giovanni; Lupacchini, Leonardo; Rinaldi, Gianmarco; Kondou, Youichi; Gusmaroli, Giuliana; Aki, Shiori; Tsuge, Tomohiko; Deng, Xing-Wang; Matsui, Minami; Vittorioso, Paola; Costantino, Paolo; Serino, Giovanna

    2013-09-01

    The regulation of protein turnover by the ubiquitin proteasome system (UPS) is a major posttranslational mechanism in eukaryotes. One of the key components of the UPS, the COP9 signalosome (CSN), regulates 'cullin-ring' E3 ubiquitin ligases. In plants, CSN participates in diverse cellular and developmental processes, ranging from light signaling to cell cycle control. In this work, we isolated a new plant-specific CSN-interacting F-box protein, which we denominated CFK1 (COP9 INTERACTING F-BOX KELCH 1). We show that, in Arabidopsis thaliana, CFK1 is a component of a functional ubiquitin ligase complex. We also show that CFK1 stability is regulated by CSN and by proteasome-dependent proteolysis, and that light induces accumulation of the CFK1 transcript in the hypocotyl. Analysis of CFK1 knockdown, mutant, and overexpressing seedlings indicates that CFK1 promotes hypocotyl elongation by increasing cell size. Reduction of CSN levels enhances the short hypocotyl phenotype of CFK1-depleted seedlings, while complete loss of CSN activity suppresses the long-hypocotyl phenotype of CFK1-overexpressing seedlings. We propose that CFK1 (and its regulation by CSN) is a novel component of the cellular mechanisms controlling hypocotyl elongation.

  7. Samd7 is a cell type-specific PRC1 component essential for establishing retinal rod photoreceptor identity

    PubMed Central

    Omori, Yoshihiro; Kubo, Shun; Kon, Tetsuo; Furuhashi, Mayu; Narita, Hirotaka; Kominami, Taro; Ueno, Akiko; Tsutsumi, Ryotaro; Chaya, Taro; Yamamoto, Haruka; Suetake, Isao; Ueno, Shinji; Koseki, Haruhiko; Furukawa, Takahisa

    2017-01-01

    Precise transcriptional regulation controlled by a transcription factor network is known to be crucial for establishing correct neuronal cell identities and functions in the CNS. In the retina, the expression of various cone and rod photoreceptor cell genes is regulated by multiple transcription factors; however, the role of epigenetic regulation in photoreceptor cell gene expression has been poorly understood. Here, we found that Samd7, a rod-enriched sterile alpha domain (SAM) domain protein, is essential for silencing nonrod gene expression through H3K27me3 regulation in rod photoreceptor cells. Samd7-null mutant mice showed ectopic expression of nonrod genes including S-opsin in rod photoreceptor cells and rod photoreceptor cell dysfunction. Samd7 physically interacts with Polyhomeotic homologs (Phc proteins), components of the Polycomb repressive complex 1 (PRC1), and colocalizes with Phc2 and Ring1B in Polycomb bodies. ChIP assays showed a significant decrease of H3K27me3 in the genes up-regulated in the Samd7-deficient retina, showing that Samd7 deficiency causes the derepression of nonrod gene expression in rod photoreceptor cells. The current study suggests that Samd7 is a cell type-specific PRC1 component epigenetically defining rod photoreceptor cell identity. PMID:28900001

  8. Samd7 is a cell type-specific PRC1 component essential for establishing retinal rod photoreceptor identity.

    PubMed

    Omori, Yoshihiro; Kubo, Shun; Kon, Tetsuo; Furuhashi, Mayu; Narita, Hirotaka; Kominami, Taro; Ueno, Akiko; Tsutsumi, Ryotaro; Chaya, Taro; Yamamoto, Haruka; Suetake, Isao; Ueno, Shinji; Koseki, Haruhiko; Nakagawa, Atsushi; Furukawa, Takahisa

    2017-09-26

    Precise transcriptional regulation controlled by a transcription factor network is known to be crucial for establishing correct neuronal cell identities and functions in the CNS. In the retina, the expression of various cone and rod photoreceptor cell genes is regulated by multiple transcription factors; however, the role of epigenetic regulation in photoreceptor cell gene expression has been poorly understood. Here, we found that Samd7, a rod-enriched sterile alpha domain (SAM) domain protein, is essential for silencing nonrod gene expression through H3K27me3 regulation in rod photoreceptor cells. Samd7- null mutant mice showed ectopic expression of nonrod genes including S-opsin in rod photoreceptor cells and rod photoreceptor cell dysfunction. Samd7 physically interacts with Polyhomeotic homologs (Phc proteins), components of the Polycomb repressive complex 1 (PRC1), and colocalizes with Phc2 and Ring1B in Polycomb bodies. ChIP assays showed a significant decrease of H3K27me3 in the genes up-regulated in the Samd7 -deficient retina, showing that Samd7 deficiency causes the derepression of nonrod gene expression in rod photoreceptor cells. The current study suggests that Samd7 is a cell type-specific PRC1 component epigenetically defining rod photoreceptor cell identity.

  9. An enhancer-like region regulates hrp3 promoter stage-specific gene expression in the human malaria parasite Plasmodium falciparum

    PubMed Central

    López-Estraño, Carlos; Gopalakrishnan, Anusha M.; Semblat, Jean-Philippe; Fergus, M. Ross; Mazier, Dominique; Haldar, Kasturi

    2008-01-01

    The asexual blood stage of Plasmodium falciparum is comprised of morphologically distinct ring, trophozoite and schizont stages. Each of these developmental stages possesses a distinct pattern of gene expression. Regulation of P. falciparum gene expression is thought to occur, at least in part, at the promoter level. Previously, we have found that although the RNA of the P. falciparum hrp3 gene is only seen in ring-stage parasites, deletion of a specific sequensce in the 5’ end of the promoter region decreased ring-stage expression of hrp3 and enabled detection of its transcripts in trophozoite-stage parasites. In order to investigate this stage specific regulation of gene expression, we employed a series of nested deletions of the 1.7-kb hrp3 promoter. Firefly luciferase gene was used as a reporter to evaluate the role of promoter sequences in gene regulation. Using this approach, we identified a ring-stage specific regulatory region on the hrp3 promoter located between -1.7-kb and -1.1-kb from the ATG initiation codon. Small 100–150 bp truncations on this enhancer-like region failed to uncover discrete regulatory sequences, suggesting the multipartite nature of this element. The data presented in this study demonstrates that stage specific promoter activity of the hrp3 gene in P. falciparum blood stage parasites is supported, at least in-part, by a small promoter region that can function in the absence of a larger chromosomal context. PMID:17570541

  10. RNF41 interacts with the VPS52 subunit of the GARP and EARP complexes

    PubMed Central

    Masschaele, Delphine; De Ceuninck, Leentje; Wauman, Joris; Defever, Dieter; Stenner, Frank; Lievens, Sam; Peelman, Frank; Tavernier, Jan

    2017-01-01

    RNF41 (Ring Finger Protein 41) is an E3 ubiquitin ligase involved in the intracellular sorting and function of a diverse set of substrates. Next to BRUCE and Parkin, RNF41 can directly ubiquitinate ErbB3, IL-3, EPO and RARα receptors or downstream signaling molecules such as Myd88, TBK1 and USP8. In this way it can regulate receptor signaling and routing. To further elucidate the molecular mechanism behind the role of RNF41 in intracellular transport we performed an Array MAPPIT (Mammalian Protein-Protein Interaction Trap) screen using an extensive set of proteins derived from the human ORFeome collection. This paper describes the identification of VPS52, a subunit of the GARP (Golgi-Associated Retrograde Protein) and the EARP (Endosome-Associated Recycling Protein) complexes, as a novel interaction partner of RNF41. Through interaction via their coiled coil domains, RNF41 ubiquitinates and relocates VPS52 away from VPS53, a common subunit of the GARP and EARP complexes, towards RNF41 bodies. PMID:28542518

  11. Comparison of African and North American velvet ant mimicry complexes: Another example of Africa as the 'odd man out'.

    PubMed

    Wilson, Joseph S; Pan, Aaron D; Limb, Erica S; Williams, Kevin A

    2018-01-01

    Africa has the most tropical and subtropical land of any continent, yet has relatively low species richness in several taxa. This depauperate nature of the African tropical fauna and flora has led some to call Africa the "odd man out." One exception to this pattern is velvet ants (Hymenoptera: Mutillidae), wingless wasps that are known for Müllerian mimicry. While North American velvet ants form one of the world's largest mimicry complexes, mimicry in African species has not been investigated. Here we ask do African velvet ant Müllerian mimicry rings exist, and how do they compare to the North American complex. We then explore what factors might contribute to the differences in mimetic diversity between continents. To investigate this we compared the color patterns of 304 African velvet ant taxa using nonmetric multidimensional scaling (NMDS). We then investigated distributions of each distinct mimicry ring. Finally, we compared lizard diversity and ecoregion diversity on the two continents. We found that African female velvet ants form four Müllerian rings, which is half the number of North American rings. This lower mimetic diversity could be related to the relatively lower diversity of insectivorous lizard species or to the lower number of distinct ecoregions in Africa compared to North America.

  12. A complex mechanism involving LysR and TetR/AcrR that regulates iron scavenger biosynthesis in Pseudomonas donghuensis HYS.

    PubMed

    Chen, Min; Wang, Panning; Xie, Zhixiong

    2018-04-23

    7-Hydroxytropolone (7-HT) is a symmetrical, seven-membered heteroatomic ring with a carboxyl group and two hydroxyl groups and was recently reported to be an iron scavenger of Pseudomonas donghuensis HYS. Cluster 1 encodes 12 genes related to the synthesis of 7-HT; among these genes, two regulators, ORF1 and ORF12, were predicted to regulate 7-HT biosynthesis and to be LysR-type transcriptional regulators (LTTRs) and TetR/AcrR family transcriptional regulators, respectively. Data from real-time quantitative PCR, β-galactosidase and classical siderophore assays indicated that the transcription levels of orf1 and orf12, as well as those of crucial genes orf6-orf9, were repressed under high-iron conditions. The deletion of orf1 and orf12 led to an absence of 7-HT and a decrease in orf6-orf9 expression. ORF1 and ORF12 were essential for the production of 7-HT through orf6-orf9 These two regulators are regulated by the Gac/Rsm system; ORF1 facilitates the expression of ORF12, and ORF12 concomitantly stimulates the expression of orf6-orf9 to synthesize 7-HT. Overexpression of ORF12 decreased 7-HT yields possibly through decreased orf6-orf9 expression. This work thus outlines a complex mechanism regulating the biosynthesis of the iron scavenger 7-HT in P. donghuensis HYS. The synergy between ORF1 and ORF12 ensures that 7-HT acts as an iron chelator despite being toxic to bacteria and provides new ideas for the novel regulation of dual-functional secondary metabolism and research on 7-HT and its derivates in other bacteria. IMPORTANCE A complex regulation mechanism including two regulators, LysR and TetR/AcrR, of the biosynthesis of the novel iron scavenger 7-HT was verified in Pseudomonas donghuensis HYS. The coaction of LysR ORF1 and TetR/AcrR ORF12 may balance the toxicity and iron chelation of 7-HT in P. donghuensis HYS to overcome iron deficiency, as well as improve the bacterial competitiveness in iron-scarce conditions because of the toxicity of 7-HT toward other bacteria, making the accurate regulation of 7-HT biosynthesis indispensable. This regulation mechanism may be ubiquitous in the Pseudomonas putida group but may better explain the group's strong adaptability. Copyright © 2018 American Society for Microbiology.

  13. Multipronged attenuation of macrophage-colony stimulating factor signaling by Epstein-Barr virus BARF1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shim, Ann Hye-Ryong; Chang, Rhoda Ahn; Chen, Xiaoyan

    The ubiquitous EBV causes infectious mononucleosis and is associated with several types of cancers. The EBV genome encodes an early gene product, BARF1, which contributes to pathogenesis, potentially through growth-altering and immune-modulating activities, but the mechanisms for such activities are poorly understood. We have determined the crystal structure of BARF1 in complex with human macrophage-colony stimulating factor (M-CSF), a hematopoietic cytokine with pleiotropic functions in development and immune response. BARF1 and M-CSF form a high-affinity, stable, ring-like complex in both solution and the crystal, with a BARF1 hexameric ring surrounded by three M-CSF dimers in triangular array. The binding ofmore » BARF1 to M-CSF dramatically reduces but does not completely abolish M-CSF binding and signaling through its cognate receptor FMS. A three-pronged down-regulation mechanism is proposed to explain the biological effect of BARF1 on M-CSF:FMS signaling. These prongs entail control of the circulating and effective local M-CSF concentration, perturbation of the receptor-binding surface of M-CSF, and imposition of an unfavorable global orientation of the M-CSF dimer. Each prong may reduce M-CSF:FMS signaling to a limited extent but in combination may alter M-CSF:FMS signaling dramatically. The downregulating mechanism of BARF1 underlines a viral modulation strategy, and provides a basis for understanding EBV pathogenesis.« less

  14. Cylindrical cellular geometry ensures fidelity of division site placement in fission yeast.

    PubMed

    Mishra, Mithilesh; Huang, Yinyi; Srivastava, Pragya; Srinivasan, Ramanujam; Sevugan, Mayalagu; Shlomovitz, Roie; Gov, Nir; Rao, Madan; Balasubramanian, Mohan

    2012-08-15

    Successful cytokinesis requires proper assembly of the contractile actomyosin ring, its stable positioning on the cell surface and proper constriction. Over the years, many of the key molecular components and regulators of the assembly and positioning of the actomyosin ring have been elucidated. Here we show that cell geometry and mechanics play a crucial role in the stable positioning and uniform constriction of the contractile ring. Contractile rings that assemble in locally spherical regions of cells are unstable and slip towards the poles. By contrast, actomyosin rings that assemble on locally cylindrical portions of the cell under the same conditions do not slip, but uniformly constrict the cell surface. The stability of the rings and the dynamics of ring slippage can be described by a simple mechanical model. Using fluorescence imaging, we verify some of the quantitative predictions of the model. Our study reveals an intimate interplay between geometry and actomyosin dynamics, which are likely to apply in a variety of cellular contexts.

  15. Structural and Functional Changes Associated with Normal and Abnormal Fundus Autofluorescence in Patients with Retinitis Pigmentosa

    PubMed Central

    Greenstein, Vivienne C.; Duncker, Tobias; Holopigian, Karen; Carr, Ronald E.; Greenberg, Jonathan; Tsang, Stephen H.; Hood, Donald C.

    2013-01-01

    Purpose To analyze the structure and visual function of regions bordering the hyperautofluorescent ring/arcs in retinitis pigmentosa (RP). Methods Twenty -one RP patients (21 eyes) with rings/arcs and 21 normals (21 eyes) were studied. Visual sensitivity in the central 10° was measured with microperimetry. Retinal structure was evaluated with spectral domain optical coherence tomography (SD-OCT). The distance from the fovea to disruption/loss of the inner outer segment (IS/OS) junction and thicknesses of the total receptor plus retinal pigment epithelial (RPE) complex (R+), and outer segment plus RPE complex (OS+) layers were measured. Results were compared to measurements of the distance from the fovea to the inner and outer borders of the ring/arc seen on fundus autofluorescence (FAF). Results Disruption/loss of the IS/OS junction occurred closer to the inner border of the ring/arc and it was closer to the fovea in 8 eyes. For 19 eyes, OS+ and R+ thicknesses were significantly decreased at locations closer to the fovea than the appearance of the inner border of hyperautofluorescence. Mean visual sensitivity was decreased inside, across and outside the ring/arc by 3.5 ± 3.8, 8.9 ± 4.8 and 17.0±2.4 dB respectively. Conclusions Structural and functional changes can occur inside the hyperfluorescent ring/arc in RP. PMID:21909055

  16. Investigation of sliding DNA clamp dynamics by single-molecule fluorescence, mass spectrometry and structure-based modeling

    PubMed Central

    Gadkari, Varun V; Harvey, Sophie R; Raper, Austin T; Chu, Wen-Ting; Wang, Jin; Wysocki, Vicki H; Suo, Zucai

    2018-01-01

    Abstract Proliferating cell nuclear antigen (PCNA) is a trimeric ring-shaped clamp protein that encircles DNA and interacts with many proteins involved in DNA replication and repair. Despite extensive structural work to characterize the monomeric, dimeric, and trimeric forms of PCNA alone and in complex with interacting proteins, no structure of PCNA in a ring-open conformation has been published. Here, we use a multidisciplinary approach, including single-molecule Förster resonance energy transfer (smFRET), native ion mobility-mass spectrometry (IM-MS), and structure-based computational modeling, to explore the conformational dynamics of a model PCNA from Sulfolobus solfataricus (Sso), an archaeon. We found that Sso PCNA samples ring-open and ring-closed conformations even in the absence of its clamp loader complex, replication factor C, and transition to the ring-open conformation is modulated by the ionic strength of the solution. The IM-MS results corroborate the smFRET findings suggesting that PCNA dynamics are maintained in the gas phase and further establishing IM-MS as a reliable strategy to investigate macromolecular motions. Our molecular dynamic simulations agree with the experimental data and reveal that ring-open PCNA often adopts an out-of-plane left-hand geometry. Collectively, these results implore future studies to define the roles of PCNA dynamics in DNA loading and other PCNA-mediated interactions. PMID:29529283

  17. NH NMR shifts of new structurally characterized fac-[Re(CO)3(polyamine)]n+ complexes probed via outer-sphere hydrogen-bonding interactions to anions, including the paramagnetic [Re(IV)Br6]2- anion.

    PubMed

    Perera, Theshini; Marzilli, Patricia A; Fronczek, Frank R; Marzilli, Luigi G

    2010-06-21

    fac-[Re(I)(CO)(3)L](n) complexes serve as models for short-lived fac-[(99m)Tc(I)(CO)(3)L](n) imaging tracers (L = tridentate ligands forming two five-membered chelate rings defining the L face). Dangling groups on L, needed to achieve desirable biodistribution, complicate the NMR spectra, which are not readily understood. Using less complicated L, we found that NH groups (exo-NH) projecting toward the L face sometimes showed an upfield shift attributable to steric shielding of the exo-NH group from the solvent by the chelate rings. Our goal is to advance our ability to relate these spectral features to structure and solution properties. To investigate whether exo-NH groups in six-membered rings exhibit the same effect and whether the presence of dangling groups alters the effect, we prepared new fac-[Re(CO)(3)L](n+) complexes that allow direct comparisons of exo-NH shifts for six-membered versus five-membered chelate rings. New complexes were structurally characterized with the following L: dipn [N-3-(aminopropyl)-1,3-propanediamine], N'-Medipn (3,3'-diamino-N-methyldipropylamine), N,N-Me(2)dipn (N,N-dimethyldipropylenetriamine), aepn [N-2-(aminoethyl)-1,3-propanediamine], trpn [tris-(3-aminopropyl)amine], and tren [tris-(2-aminoethyl)amine]. In DMSO-d(6), the upfield exo-NH signals were exhibited by all complexes, indicating that the rings sterically shield the exo-NH groups from bulky solvent molecules. This interpretation was supported by exo-NH signal shift changes caused by added halide and [ReBr(6)](2-) anions, consistent with outer-sphere hydrogen-bond interactions between these anions and the exo-NH groups. For fac-[Re(CO)(3)(dipn)]PF(6) in acetonitrile-d(3), the exo-NH signal shifted further downfield in the series, Cl(-) > Br(-) > I(-), and the plateau in the shift change required a lower concentration for smaller anions. These results are consistent with steric shielding of the exo-NH groups by the chelate rings. Nevertheless, despite its size, the shape and charge of [ReBr(6)](2-) allowed the dianion to induce large upfield paramagnetic shifts of the exo-NH signal of fac-[Re(CO)(3)(dipn)]PF(6). This dianion shows promise as an outer-sphere hydrogen-bonding paramagnetic shift reagent.

  18. Quantitative ROESY analysis of computational models: structural studies of citalopram and β-cyclodextrin complexes by (1) H-NMR and computational methods.

    PubMed

    Ali, Syed Mashhood; Shamim, Shazia

    2015-07-01

    Complexation of racemic citalopram with β-cyclodextrin (β-CD) in aqueous medium was investigated to determine atom-accurate structure of the inclusion complexes. (1) H-NMR chemical shift change data of β-CD cavity protons in the presence of citalopram confirmed the formation of 1 : 1 inclusion complexes. ROESY spectrum confirmed the presence of aromatic ring in the β-CD cavity but whether one of the two or both rings was not clear. Molecular mechanics and molecular dynamic calculations showed the entry of fluoro-ring from wider side of β-CD cavity as the most favored mode of inclusion. Minimum energy computational models were analyzed for their accuracy in atomic coordinates by comparison of calculated and experimental intermolecular ROESY peak intensities, which were not found in agreement. Several least energy computational models were refined and analyzed till calculated and experimental intensities were compatible. The results demonstrate that computational models of CD complexes need to be analyzed for atom-accuracy and quantitative ROESY analysis is a promising method. Moreover, the study also validates that the quantitative use of ROESY is feasible even with longer mixing times if peak intensity ratios instead of absolute intensities are used. Copyright © 2015 John Wiley & Sons, Ltd.

  19. The evolution of the storm-time ring current in response to different characteristics of the plasma source

    NASA Astrophysics Data System (ADS)

    Lemon, C.; Chen, M.; O'Brien, T. P.; Toffoletto, F.; Sazykin, S.; Wolf, R.; Kumar, V.

    2006-12-01

    We present simulation results of the Rice Convection Model-Equilibrium (RCM-E) that test and compare the effect on the storm time ring current of varying the plasma sheet source population characteristics at 6.6 Re during magnetic storms. Previous work has shown that direct injection of ionospheric plasma into the ring current is not a significant source of ring current plasma, suggesting that the plasma sheet is the only source. However, storm time processes in the plasma sheet and inner magnetosphere are very complex, due in large part to the feedback interactions between the plasma distribution, magnetic field, and electric field. We are particularly interested in understanding the role of the plasma sheet entropy parameter (PV^{5/3}, where V=\\int ds/B) in determining the strength and distribution of the ring current in both the main and recovery phases of a storm. Plasma temperature and density can be measured from geosynchrorous orbiting satellites, and these are often used to provide boundary conditions for ring current simulations. However, magnetic field measurements in this region are less commonly available, and there is a relatively poor understanding of the interplay between the plasma and the magnetic field during magnetic storms. The entropy parameter is a quantity that incorporates both the plasma and the magnetic field, and understanding its role in the ring current injection and recovery is essential to describing the processes that are occuring during magnetic storms. The RCM-E includes the physics of feedback between the plasma and both the electric and magnetic fields, and is therefore a valuable tool for understanding these complex storm-time processes. By contrasting the effects of different plasma boundary conditions at geosynchronous orbit, we shed light on the physical processes involved in ring current injection and recovery.

  20. The γ-tubulin complex in Trypanosoma brucei: molecular composition, subunit interdependence and requirement for axonemal central pair protein assembly

    PubMed Central

    Zhou, Qing; Li, Ziyin

    2015-01-01

    The γ-tubulin complex constitutes a key component of the microtubule-organizing center and nucleates microtubule assembly. This complex differs in complexity in different organisms: the budding yeast contains the γ-tubulin small complex (γTuSC) composed of γ-tubulin, GCP2 and GCP3, whereas animals contain the γ-tubulin ring complex (γTuRC) composed of γTuSC and three additional proteins, GCP4, GCP5 and GCP6. In Trypanosoma brucei, the composition of the γ-tubulin complex remains elusive, and it is not known whether it also regulates assembly of the subpellicular microtubules and the spindle microtubules. Here we report that the γ-tubulin complex in T. brucei is composed of γ-tubulin and three GCP proteins, GCP2-GCP4, and is primarily localized in the basal body throughout the cell cycle. Depletion of GCP2 and GCP3, but not GCP4, disrupted the axonemal central pair microtubules, but not the subpellicular microtubules and the spindle microtubules. Furthermore, we showed that the γTuSC is required for assembly of two central pair proteins and that γTuSC subunits are mutually required for stability. Together, these results identified an unusual γ-tubulin complex in T. brucei, uncovered an essential role of γTuSC in central pair protein assembly, and demonstrated the interdependence of individual γTuSC components for maintaining a stable complex. PMID:26224545

  1. Bunch Splitting Simulations for the JLEIC Ion Collider Ring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Satogata, Todd J.; Gamage, Randika

    2016-05-01

    We describe the bunch splitting strategies for the proposed JLEIC ion collider ring at Jefferson Lab. This complex requires an unprecedented 9:6832 bunch splitting, performed in several stages. We outline the problem and current results, optimized with ESME including general parameterization of 1:2 bunch splitting for JLEIC parameters.

  2. The Not4 E3 Ligase and CCR4 Deadenylase Play Distinct Roles in Protein Quality Control

    PubMed Central

    Halter, David; Collart, Martine A.; Panasenko, Olesya O.

    2014-01-01

    Eukaryotic cells control their proteome by regulating protein production and protein clearance. Protein production is determined to a large extent by mRNA levels, whereas protein degradation depends mostly upon the proteasome. Dysfunction of the proteasome leads to the accumulation of non-functional proteins that can aggregate, be toxic for the cell, and, in extreme cases, lead to cell death. mRNA levels are controlled by their rates of synthesis and degradation. Recent evidence indicates that these rates have oppositely co-evolved to ensure appropriate mRNA levels. This opposite co-evolution has been correlated with the mutations in the Ccr4-Not complex. Consistently, the deadenylation enzymes responsible for the rate-limiting step in eukaryotic mRNA degradation, Caf1 and Ccr4, are subunits of the Ccr4-Not complex. Another subunit of this complex is a RING E3 ligase, Not4. It is essential for cellular protein solubility and has been proposed to be involved in co-translational quality control. An open question has been whether this role of Not4 resides strictly in the regulation of the deadenylation module of the Ccr4-Not complex. However, Not4 is important for proper assembly of the proteasome, and the Ccr4-Not complex may have multiple functional modules that participate in protein quality control in different ways. In this work we studied how the functions of the Caf1/Ccr4 and Not4 modules are connected. We concluded that Not4 plays a role in protein quality control independently of the Ccr4 deadenylase, and that it is involved in clearance of aberrant proteins at least in part via the proteasome. PMID:24465968

  3. Binding of 3O2 and 1O2 to dyes used in photodynamic therapy in gas phase and aqueous media

    NASA Astrophysics Data System (ADS)

    Kushwaha, P. S.; Mishra, P. C.

    Density functional theory (DFT) was employed at the B3LYP/6-31+G* level to study complexes of 1O2 and 3O2 with the dye molecules proflavine, methylene blue, and acridine orange, which are useful in photodynamic therapy. It was found that the most stable complex between 1O2 and proflavine are formed when 1O2 is located above the central ring, while the most stable complex between 1O2 and methylene blue is formed when 1O2 is located above the molecular plane, but not above any of the rings, near the sulfur atom. 1O2 can make a stable complex with acridine orange, as it is located above the outer ring of the dye. The binding energies of the complexes of 1O2 with all three dyes are enhanced considerably in going from gas phase to aqueous media. The complexes of 3O2 with the dyes will be unstable in all cases, while those of 1O2 with the same will be quite stable and will not be dissociated due to thermal fluctuations at room temperature. In the complexes of 1O2 and 3O2 with the dyes, charge transfer occurs from the dyes to the O2 moiety, the amount of charge transfer being much more to 1O2 than to 3O2 in each case.

  4. High-resolution AFM topographs of Rubrivivax gelatinosus light-harvesting complex LH2

    PubMed Central

    Scheuring, Simon; Reiss-Husson, Francoise; Engel, Andreas; Rigaud, Jean-Louis; Ranck, Jean-Luc

    2001-01-01

    Light-harvesting complexes 2 (LH2) are the accessory antenna proteins in the bacterial photosynthetic apparatus and are built up of αβ-heterodimers containing three bacteriochlorophylls and one carotenoid each. We have used atomic force microscopy (AFM) to investigate reconstituted LH2 from Rubrivivax gelatinosus, which has a C-terminal hydrophobic extension of 21 amino acids on the α-subunit. High-resolution topographs revealed a nonameric organization of the regularly packed cylindrical complexes incorporated into the membrane in both orientations. Native LH2 showed one surface which protruded by ∼6 Å and one that protruded by ∼14 Å from the membrane. Topographs of samples reconstituted with thermolysin-digested LH2 revealed a height reduction of the strongly protruding surface to ∼9 Å, and a change of its surface appearance. These results suggested that the α-subunit of R.gelatinosus comprises a single transmembrane helix and an extrinsic C-terminus, and allowed the periplasmic surface to be assigned. Occasionally, large rings (∼120 Å diameter) surrounded by LH2 rings were observed. Their diameter and appearance suggest the large rings to be LH1 complexes. PMID:11406579

  5. Structure of a HOIP/E2~ubiquitin complex reveals RBR E3 ligase mechanism and regulation

    PubMed Central

    Lechtenberg, Bernhard C.; Rajput, Akhil; Sanishvili, Ruslan; Dobaczewska, Małgorzata K.; Ware, Carl F.; Mace, Peter D.; Riedl, Stefan J.

    2015-01-01

    Ubiquitination is a central process affecting all facets of cellular signaling and function1. A critical step in ubiquitination is the transfer of ubiquitin from an E2 ubiquitin-conjugating enzyme to a substrate or a growing ubiquitin chain, which is mediated by E3 ubiquitin ligases. RING-type E3 ligases typically facilitate the transfer of ubiquitin from the E2 directly to the substrate2,3. The RBR family of RING-type E3 ligases, however, breaks this paradigm by forming a covalent intermediate with ubiquitin similarly to HECT-type E3 ligases4–6. The RBR family includes Parkin4 and HOIP, the central catalytic factor of the linear ubiquitin chain assembly complex (LUBAC)7. While structural insights into the RBR E3 ligases Parkin and HHARI in their overall autoinhibited forms are available8–13, no structures exist of intact fully active RBR E3 ligases or any of their complexes. Thus, the RBR mechanism of action has remained largely enigmatic. Here we present the first structure of the fully active HOIP-RBR in its transfer complex with an E2~ubiquitin conjugate, which elucidates the intricate nature of RBR E3 ligases. The active HOIP-RBR adopts a conformation markedly different from that of autoinhibited RBRs. HOIP-RBR binds the E2~ubiquitin conjugate in an elongated fashion, with the E2 and E3 catalytic centers ideally aligned for ubiquitin transfer, which structurally both requires and enables a HECT-like mechanism. In addition, surprisingly, three distinct helix–IBR-fold motifs inherent to RBRs form ubiquitin-binding regions that engage the activated ubiquitin of the E2~Ub conjugate as well as an additional regulatory ubiquitin molecule. The features uncovered reveal critical states of the HOIP-RBR E3 ligase cycle, and comparison with Parkin and HHARI suggests a general mechanism for RBR E3 ligases. PMID:26789245

  6. A new quadruple hydrogen-bonding module based on five-membered heterocyclic urea structure.

    PubMed

    Hisamatsu, Yosuke; Shirai, Naohiro; Ikeda, Shin-Ichi; Odashima, Kazunori

    2010-04-16

    N,N'-Di-4-triazolylurea (DTU) has developed as a new ADDA module and DTU forms a stable ADDA*DAAD heterocomplex with 2,7-diamido-1,8-naphthyridine (DAN) (K(s) = 2.6 x 10(5) M(-1) in CHCl(3)). The K(s) value of the complex between DTU and DAN is 100-fold greater than that of the complex between N,N'-di-2-pyridylurea and DAN due to replacement of a pyridine ring with a 1,2,3-triazole ring.

  7. Formation of polycyclic lactones through a ruthenium-catalyzed ring-closing metathesis/hetero-Pauson-Khand reaction sequence.

    PubMed

    Finnegan, David F; Snapper, Marc L

    2011-05-20

    Processes that form multiple carbon-carbon bonds in one operation can generate molecular complexity quickly and therefore be used to shorten syntheses of desirable molecules. We selected the hetero-Pauson-Khand (HPK) cycloaddition and ring-closing metathesis (RCM) as two unique carbon-carbon bond-forming reactions that could be united in a tandem ruthenium-catalyzed process. In doing so, complex polycyclic products can be obtained in one reaction vessel from acyclic precursors using a single ruthenium additive that can catalyze sequentially two mechanistically distinct transformations.

  8. The visual orientation memory of Drosophila requires Foraging (PKG) upstream of Ignorant (RSK2) in ring neurons of the central complex

    PubMed Central

    Kuntz, Sara; Poeck, Burkhard; Sokolowski, Marla B.; Strauss, Roland

    2012-01-01

    Orientation and navigation in a complex environment requires path planning and recall to exert goal-driven behavior. Walking Drosophila flies possess a visual orientation memory for attractive targets which is localized in the central complex of the adult brain. Here we show that this type of working memory requires the cGMP-dependent protein kinase encoded by the foraging gene in just one type of ellipsoid-body ring neurons. Moreover, genetic and epistatic interaction studies provide evidence that Foraging functions upstream of the Ignorant Ribosomal-S6 Kinase 2, thus revealing a novel neuronal signaling pathway necessary for this type of memory in Drosophila. PMID:22815538

  9. Arabidopsis ANGUSTIFOLIA3 (AN3) is associated with the promoter of CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1) to regulate light-mediated stomatal development.

    PubMed

    Meng, Lai-Sheng; Li, Cong; Xu, Meng-Ke; Sun, Xu-Dong; Wan, Wen; Cao, Xiao-Ying; Zhang, Jin-Lin; Chen, Kun-Ming

    2018-04-12

    Light signals are perceived by multiple photoreceptors that converge to suppress the RING E3 ubiquitin ligase CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1) for the regulation of stomatal development. Thus, COP1 is a point of integration between light signaling and stomatal patterning. However, how light signaling is collected into COP1 for the production and spacing of stomata is still unknown. Here, we report that the loss-of-function mutant of ANGUSTIFOLIA3 (AN3) delays asymmetric cell division, which leads to decreased stomatal index. Furthermore, overexpression of AN3 accelerates asymmetric cell division, which results in clusters of stomata. In addition, the stomatal development through AN3 regulation is mediated by light signaling. Finally, we find that an3 is a light-signaling mutant, and that AN3 protein is light regulated. Self-activation by AN3 contributes to the control of AN3 expression. Thus, AN3 is a point of collection between light signaling and stomatal patterning. Target-gene analysis indicates that AN3 is associated with COP1 promoter for the regulation of light-controlling stomatal development. Together, these components for regulating stomatal development form an AN3-COP1-E3 ubiquitin ligase complex, allowing the integration of light signaling into the production and spacing of stomata. © 2018 John Wiley & Sons Ltd.

  10. Neurolastin, a dynamin family GTPase, regulates excitatory synapses and spine density

    PubMed Central

    Madan Lomash, Richa; Gu, Xinglong; Youle, Richard J.; Lu, Wei; Roche, Katherine W.

    2015-01-01

    SUMMARY Membrane trafficking and spinogenesis contribute significantly to changes in synaptic strength during development and in various paradigms of synaptic plasticity. GTPases of the dynamin family are key players regulating membrane trafficking. Here, we identify a brain-specific dynamin family GTPase, neurolastin (RNF112/Znf179), with closest homology to atlastin. We demonstrate that neurolastin has functional GTPase and RING domains, making it a unique protein identified with this multi-enzymatic domain organization. We also show that neurolastin is a peripheral membrane protein, which localizes to endosomes and affects endosomal membrane dynamics via its RING domain. In addition, neurolastin knockout mice have fewer dendritic spines, and rescue of the wildtype phenotype requires both the GTPase and RING domains. Furthermore, we find fewer functional synapses and reduced paired pulse facilitation in neurolastin knockout mice. Thus, we identify neurolastin as a dynamin family GTPase that affects endosome size and spine density. PMID:26212327

  11. TREE-RING INDICES AND ISOTOPE SIGNATURES OF PINUS PONDEROSA RELATED TO HISTORIC OZONE CHANGES OUTSIDE LOS ANGELES

    EPA Science Inventory

    Ozone concentrations in the Los Angeles (LA) basin were at historic highs in the late 1970s. Since that time Clean Air regulations have helped lower ozone, but little is known of the long-term vegetation responses. Extensive research has used tree-ring indices together with the...

  12. Bridged transition-metal complexes and uses thereof for hydrogen separation, storage and hydrogenation

    DOEpatents

    Lilga, Michael A.; Hallen, Richard T.

    1990-01-01

    The present invention constitutes a class of organometallic complexes which reversibly react with hydrogen to form dihydrides and processes by which these compounds can be utilized. The class includes bimetallic complexes in which two cyclopentadienyl rings are bridged together and also separately .pi.-bonded to two transition metal atoms. The transition metals are believed to bond with the hydrogen in forming the dihydride. Transition metals such as Fe, Mn or Co may be employed in the complexes although Cr constitutes the preferred metal. A multiple number of ancilliary ligands such as CO are bonded to the metal atoms in the complexes. Alkyl groups and the like may be substituted on the cyclopentadienyl rings. These organometallic compounds may be used in absorption/desorption systems and in facilitated transport membrane systems for storing and separating out H.sub.2 from mixed gas streams such as the produce gas from coal gasification processes.

  13. Bridged transition-metal complexes and uses thereof for hydrogen separation, storage and hydrogenation

    DOEpatents

    Lilga, M.A.; Hallen, R.T.

    1991-10-15

    The present invention constitutes a class of organometallic complexes which reversibly react with hydrogen to form dihydrides and processes by which these compounds can be utilized. The class includes bimetallic complexes in which two cyclopentadienyl rings are bridged together and also separately [pi]-bonded to two transition metal atoms. The transition metals are believed to bond with the hydrogen in forming the dihydride. Transition metals such as Fe, Mn or Co may be employed in the complexes although Cr constitutes the preferred metal. A multiple number of ancillary ligands such as CO are bonded to the metal atoms in the complexes. Alkyl groups and the like may be substituted on the cyclopentadienyl rings. These organometallic compounds may be used in absorption/desorption systems and in facilitated transport membrane systems for storing and separating out H[sub 2] from mixed gas streams such as the product gas from coal gasification processes. 3 figures.

  14. Bridged transition-metal complexes and uses thereof for hydrogen separation, storage and hydrogenation

    DOEpatents

    Lilga, M.A.; Hallen, R.T.

    1990-08-28

    The present invention constitutes a class of organometallic complexes which reversibly react with hydrogen to form dihydrides and processes by which these compounds can be utilized. The class includes bimetallic complexes in which two cyclopentadienyl rings are bridged together and also separately [pi]-bonded to two transition metal atoms. The transition metals are believed to bond with the hydrogen in forming the dihydride. Transition metals such as Fe, Mn or Co may be employed in the complexes although Cr constitutes the preferred metal. A multiple number of ancillary ligands such as CO are bonded to the metal atoms in the complexes. Alkyl groups and the like may be substituted on the cyclopentadienyl rings. These organometallic compounds may be used in absorption/desorption systems and in facilitated transport membrane systems for storing and separating out H[sub 2] from mixed gas streams such as the producer gas from coal gasification processes. 3 figs.

  15. Bridged transition-metal complexes and uses thereof for hydrogen separation, storage and hydrogenation

    DOEpatents

    Lilga, Michael A.; Hallen, Richard T.

    1991-01-01

    The present invention constitutes a class of organometallic complexes which reversibly react with hydrogen to form dihydrides and processes by which these compounds can be utilized. The class includes bimetallic complexes in which two cyclopentadienyl rings are bridged together and also separately .pi.-bonded to two transition metal atoms. The transition metals are believed to bond with the hydrogen in forming the dihydride. Transition metals such as Fe, Mn or Co may be employed in the complexes although Cr constitutes the preferred metal. A multiple number of ancilliary ligands such as CO are bonded to the metal atoms in the complexes. Alkyl groups and the like may be substituted on the cyclopentadienyl rings. These organometallic compounds may be used in absorption/desorption systems and in facilitated transport membrane systems for storing and separating out H.sub.2 from mixed gas streams such as the product gas from coal gasification processes.

  16. Improvement in Titanium Complexes Bearing Schiff Base Ligands in the Ring-Opening Polymerization of L-Lactide: A Dinuclear System with Hydrazine-Bridging Schiff Base Ligands.

    PubMed

    Tseng, Hsi-Ching; Chen, Hsing-Yin; Huang, Yen-Tzu; Lu, Wei-Yi; Chang, Yu-Lun; Chiang, Michael Y; Lai, Yi-Chun; Chen, Hsuan-Ying

    2016-02-15

    A series of titanium (Ti) complexes bearing hydrazine-bridging Schiff base ligands were synthesized and investigated as catalysts for the ring-opening polymerization (ROP) of L-lactide (LA). Complexes with electron withdrawing or steric bulky groups reduced the catalytic activity. In addition, the steric bulky substituent on the imine groups reduced the space around the Ti atom and then reduced LA coordination with Ti atom, thereby reducing catalytic activity. All the dinuclear Ti complexes exhibited higher catalytic activity (approximately 10-60-fold) than mononuclear L(Cl-H)-TiOPr2 did. The strategy of bridging dinuclear Ti complexes with isopropoxide groups in the ROP of LA was successful, and adjusting the crowded heptacoordinated transition state by the bridging isopropoxide groups may be the key to our successful strategy.

  17. ALIX and ESCRT-III Coordinately Control Cytokinetic Abscission during Germline Stem Cell Division In Vivo

    PubMed Central

    Eikenes, Åsmund H.; Malerød, Lene; Christensen, Anette Lie; Steen, Chloé B.; Mathieu, Juliette; Nezis, Ioannis P.; Liestøl, Knut; Huynh, Jean-René; Stenmark, Harald; Haglund, Kaisa

    2015-01-01

    Abscission is the final step of cytokinesis that involves the cleavage of the intercellular bridge connecting the two daughter cells. Recent studies have given novel insight into the spatiotemporal regulation and molecular mechanisms controlling abscission in cultured yeast and human cells. The mechanisms of abscission in living metazoan tissues are however not well understood. Here we show that ALIX and the ESCRT-III component Shrub are required for completion of abscission during Drosophila female germline stem cell (fGSC) division. Loss of ALIX or Shrub function in fGSCs leads to delayed abscission and the consequent formation of stem cysts in which chains of daughter cells remain interconnected to the fGSC via midbody rings and fusome. We demonstrate that ALIX and Shrub interact and that they co-localize at midbody rings and midbodies during cytokinetic abscission in fGSCs. Mechanistically, we show that the direct interaction between ALIX and Shrub is required to ensure cytokinesis completion with normal kinetics in fGSCs. We conclude that ALIX and ESCRT-III coordinately control abscission in Drosophila fGSCs and that their complex formation is required for accurate abscission timing in GSCs in vivo. PMID:25635693

  18. Surface microtopography modulates sealing zone development in osteoclasts cultured on bone

    PubMed Central

    Addadi, Lia; Geiger, Benjamin

    2017-01-01

    Bone homeostasis is continuously regulated by the coordinated action of bone-resorbing osteoclasts and bone-forming osteoblasts. Imbalance between these two cell populations leads to pathological bone diseases such as osteoporosis and osteopetrosis. Osteoclast functionality relies on the formation of sealing zone (SZ) rings that define the resorption lacuna. It is commonly assumed that the structure and dynamic properties of the SZ depend on the physical and chemical properties of the substrate. Considering the unique complex structure of native bone, elucidation of the relevant parameters affecting SZ formation and stability is challenging. In this study, we examined in detail the dynamic response of the SZ to the microtopography of devitalized bone surfaces, taken from the same area in cattle femur. We show that there is a significant enrichment in large and stable SZs (diameter larger than 14 µm; lifespan of hours) in cells cultured on rough bone surfaces, compared with small and fast turning over SZ rings (diameter below 7 µm; lifespan approx. 7 min) formed on smooth bone surfaces. Based on these results, we propose that the surface roughness of the physiologically relevant substrate of osteoclasts, namely bone, affects primarily the local stability of growing SZs. PMID:28202594

  19. A compartmentalized signaling network mediates crossover control in meiosis

    PubMed Central

    Zhang, Liangyu; Köhler, Simone; Rillo-Bohn, Regina

    2018-01-01

    During meiosis, each pair of homologous chromosomes typically undergoes at least one crossover (crossover assurance), but these exchanges are strictly limited in number and widely spaced along chromosomes (crossover interference). The molecular basis for this chromosome-wide regulation remains mysterious. A family of meiotic RING finger proteins has been implicated in crossover regulation across eukaryotes. Caenorhabditis elegans expresses four such proteins, of which one (ZHP-3) is known to be required for crossovers. Here we investigate the functions of ZHP-1, ZHP-2, and ZHP-4. We find that all four ZHP proteins, like their homologs in other species, localize to the synaptonemal complex, an unusual, liquid crystalline compartment that assembles between paired homologs. Together they promote accumulation of pro-crossover factors, including ZHP-3 and ZHP-4, at a single recombination intermediate, thereby patterning exchanges along paired chromosomes. These proteins also act at the top of a hierarchical, symmetry-breaking process that enables crossovers to direct accurate chromosome segregation. PMID:29521627

  20. Particle–hole ring diagrams for fermions in two dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaiser, N., E-mail: nkaiser@ph.tum.de

    2014-11-15

    The set of particle–hole ring diagrams for a many-fermion system in two dimensions is studied. The complex-valued polarization function is derived in detail and shown to be expressible in terms of square-root functions. For a contact-interaction the perturbative contributions to the energy per particle Ē(k{sub f}) are calculated in a closed analytical form from third up to twelfth order. The resummation of the particle–hole ring diagrams to all orders is studied and a pronounced dependence on the dimensionless coupling parameter α is found. There is a substantial difference between the complete ring-sum with all exchange-type diagrams included and the standardmore » resummation of the leading n-ring diagrams only. The spin factor S{sub n}(g) associated to the nth order ring diagrams is derived for arbitrary spin-degeneracy g.« less

  1. Universal size properties of a star-ring polymer structure in disordered environments

    NASA Astrophysics Data System (ADS)

    Haydukivska, K.; Blavatska, V.

    2018-03-01

    We consider the complex polymer system, consisting of a ring polymer connected to the f1-branched starlike structure, in a good solvent in the presence of structural inhomogeneities. In particular cases f1=1 and f1=2 , such a system restores the synthesized tadpole-shaped polystyrenes [Doi et al., Macromolecules 46, 1075 (2013), 10.1021/ma302511j]. We assume that structural defects are correlated at large distances x according to a power law x-a. Applying the direct polymer renormalization approach, we evaluate the universal size characteristics such as the ratio of the radii of gyration of star-ring and star topologies, and compare the effective sizes of single arms in complex structures and isolated polymers of the same total molecular weight. The nontrivial impact of disorder on these quantities is analyzed.

  2. Energy spectra of quantum rings.

    PubMed

    Fuhrer, A; Lüscher, S; Ihn, T; Heinzel, T; Ensslin, K; Wegscheider, W; Bichler, M

    2001-10-25

    Quantum mechanical experiments in ring geometries have long fascinated physicists. Open rings connected to leads, for example, allow the observation of the Aharonov-Bohm effect, one of the best examples of quantum mechanical phase coherence. The phase coherence of electrons travelling through a quantum dot embedded in one arm of an open ring has also been demonstrated. The energy spectra of closed rings have only recently been studied by optical spectroscopy. The prediction that they allow persistent current has been explored in various experiments. Here we report magnetotransport experiments on closed rings in the Coulomb blockade regime. Our experiments show that a microscopic understanding of energy levels, so far limited to few-electron quantum dots, can be extended to a many-electron system. A semiclassical interpretation of our results indicates that electron motion in the rings is governed by regular rather than chaotic motion, an unexplored regime in many-electron quantum dots. This opens a way to experiments where even more complex structures can be investigated at a quantum mechanical level.

  3. RNF11 is a multifunctional modulator of growth factor receptor signalling and transcriptional regulation.

    PubMed

    Azmi, Peter; Seth, Arun

    2005-11-01

    Our laboratory has found that the 154aa RING finger protein 11 (RNF11), has modular domains and motifs including a RING-H2 finger domain, a PY motif, an ubiquitin interacting motif (UIM), a 14-3-3 binding sequence and an AKT phosphorylation site. RNF11 represents a unique protein with no other known immediate family members yet described. Comparative genetic analysis has shown that RNF11 is highly conserved throughout evolution. This may indicate a conserved and non-redundant role for the RNF11 protein. Molecular binding assays using RNF11 have shown that RNF11 has important roles in growth factor signalling, ubiquitination and transcriptional regulation. RNF11 has been shown to interact with HECT-type E3 ubiquitin ligases Nedd4, AIP4, Smurf1 and Smurf2, as well as with Cullin1, the core protein in the multi-subunit SCF E3 ubiquitin ligase complex. Work done in our laboratory has shown that RNF11 is capable of antagonizing Smurf2-mediated inhibition of TGFbeta signalling. Furthermore, RNF11 is capable of degrading AMSH, a positive regulator of both TGFbeta and EGFR signalling pathways. Recently, we have found that RNF11 can directly enhance TGFbeta signalling through a direct association with Smad4, the common signal transducer and transcription factor in the TGFbeta, BMP, and Activin pathways. Through its association with Smad4 and other transcription factors, RNF11 may have a role in direct transcriptional regulation. Our laboratory and others have found nearly 80 protein interactions for RNF11, placing RNF11 at the cross-roads of cell signalling and transcriptional regulation. RNF11 is highly expressed in breast tumours. Deregulation of RNF11 function may prove to be harmful to patient therapeutic outcomes. RNF11 may therefore provide a novel target for cancer therapeutics. The purpose of this review is to discuss the role of RNF11 in cell signalling and transcription factor modulation with special attention given to the ubiquitin-proteasomal pathway, TGFbeta pathway and EGFR pathway.

  4. Role of Securin, Separase and Cohesins in female meiosis and polar body formation in Drosophila.

    PubMed

    Guo, Zhihao; Batiha, Osamah; Bourouh, Mohammed; Fifield, Eric; Swan, Andrew

    2016-02-01

    Chromosome segregation in meiosis is controlled by a conserved pathway that culminates in Separase-mediated cleavage of the α-kleisin Rec8, leading to dissolution of cohesin rings. Drosophila has no gene encoding Rec8, and the absence of a known Separase target raises the question of whether Separase and its regulator Securin (Pim in Drosophila) are important in Drosophila meiosis. Here, we investigate the role of Securin, Separase and the cohesin complex in female meiosis using fluorescence in situ hybridization against centromeric and arm-specific sequences to monitor cohesion. We show that Securin destruction and Separase activity are required for timely release of arm cohesion in anaphase I and centromere-proximal cohesion in anaphase II. They are also required for release of arm cohesion on polar body chromosomes. Cohesion on polar body chromosomes depends on the cohesin components SMC3 and the mitotic α-kleisin Rad21 (also called Vtd in Drosophila). We provide cytological evidence that SMC3 is required for arm cohesion in female meiosis, whereas Rad21, in agreement with recent findings, is not. We conclude that in Drosophila meiosis, cohesion is regulated by a conserved Securin-Separase pathway that targets a diverged Separase target, possibly within the cohesin complex. © 2016. Published by The Company of Biologists Ltd.

  5. Fermilab | Tevatron | Accelerator

    Science.gov Websites

    Leading accelerator technology Accelerator complex Illinois Accelerator Research Center Fermilab temperature. They were used to transfer particles from one part of the Fermilab accelerator complex to another center ring of Fermilab's accelerator complex. Before the Tevatron shut down, it had three primary

  6. Structure, stratigraphy, and eruption dynamics of a young tuff ring: Hanauma Bay, O'ahu, Hawai'i

    NASA Astrophysics Data System (ADS)

    Rottas, K. M.; Houghton, B. F.

    2012-09-01

    The Hanauma Bay-Koko Head complex is one of several young volcanic landforms along the Koko fissure, in southeastern O'ahu. The Hanauma Bay region of the complex comprises two nested tuff rings, inner and outer Hanauma Bay, and multiple smaller vents. The internal structure of the inner tuff ring, well exposed due to subsequent breaching by the ocean and wave erosion, indicates that it formed during a minimum of five distinct phases of deposition that produced five mappable units. Significant inward collapses generated major unconformities that separate the units exposed in the inner wall. The planes of failure are cut by narrow steep-walled, locally overhung channels and gullies, suggesting that the collapse events were each followed by short time breaks during which the deposits were eroded by rainfall runoff. Within each pyroclastic unit, there are many local slump scars and unconformities, suggesting that minor instability of the inner wall was a near-constant feature. From bedding sags and surge bed forms, it is apparent that the vent shifted at least twice during tuff ring growth. Ballistic blocks in the youngest unit indicate that the eruption overlapped in time with a separate eruption to the north, most likely to be that of the Kahauloa tuff ring 880 m away.

  7. Rotordynamic analysis using the Complex Transfer Matrix: An application to elastomer supports using the viscoelastic correspondence principle

    NASA Astrophysics Data System (ADS)

    Varney, Philip; Green, Itzhak

    2014-11-01

    Numerous methods are available to calculate rotordynamic whirl frequencies, including analytic methods, finite element analysis, and the transfer matrix method. The typical real-valued transfer matrix (RTM) suffers from several deficiencies, including lengthy computation times and the inability to distinguish forward and backward whirl. Though application of complex coordinates in rotordynamic analysis is not novel per se, specific advantages gained from using such coordinates in a transfer matrix analysis have yet to be elucidated. The present work employs a complex coordinate redefinition of the transfer matrix to obtain reduced forms of the elemental transfer matrices in inertial and rotating reference frames, including external stiffness and damping. Application of the complex-valued state variable redefinition results in a reduction of the 8×8 RTM to the 4×4 Complex Transfer Matrix (CTM). The CTM is advantageous in that it intrinsically separates forward and backward whirl, eases symbolic manipulation by halving the transfer matrices’ dimension, and provides significant improvement in computation time. A symbolic analysis is performed on a simple overhung rotor to demonstrate the mathematical motivation for whirl frequency separation. The CTM's utility is further shown by analyzing a rotordynamic system supported by viscoelastic elastomer rings. Viscoelastic elastomer ring supports can provide significant damping while reducing the cost and complexity associated with conventional components such as squeeze film dampers. The stiffness and damping of a viscoelastic damper ring are determined herein as a function of whirl frequency using the viscoelastic correspondence principle and a constitutive fractional calculus viscoelasticity model. The CTM is then employed to obtain the characteristic equation, where the whirl frequency dependent stiffness and damping of the elastomer supports are included. The Campbell diagram is shown, demonstrating the CTM's ability to intrinsically separate synchronous whirl direction for a non-trivial rotordynamic system. Good agreement is found between the CTM results and previously obtained analytic and experimental results for the elastomer ring supported rotordynamic system.

  8. Binding of Alkali Metal Ions with 1,3,5-Tri(phenyl)benzene and 1,3,5-Tri(naphthyl)benzene: The Effect of Phenyl and Naphthyl Ring Substitution on Cation-π Interactions Revealed by DFT Study.

    PubMed

    Mirchi, Ali; Sizochenko, Natalia; Dinadayalane, Tandabany; Leszczynski, Jerzy

    2017-11-22

    The effect of substitution of phenyl and naphthyl rings to benzene was examined to elucidate the cation-π interactions involving alkali metal ions with 1,3,5-tri(phenyl)benzene (TPB) and 1,3,5-tri(naphthyl)benzene (TNB). Benzene, TPB, and four TNB isomers (with ααα, ααβ, αββ, and βββ types of fusion) and their complexes with Li + , Na + , K + , Rb + , and Cs + were optimized using DFT approach with B3LYP and M06-2X functionals in conjunction with the def2-QZVP basis set. Higher relative stability of β,β,β-TNB over α,α,α-TNB can be attributed to peri repulsion, which is defined as the nonbonding repulsive interaction between substituents in the 1- and the 8-positions on the naphthalene core. Binding energies, distances between ring centroid and the metal ions, and the distance to metal ions from the center of other six-membered rings were compared for all complexes. Our computational study reveals that the binding affinity of alkali metal cations increases significantly with the 1,3,5-trisubstitution of phenyl and naphthyl rings to benzene. The detailed computational analyses of geometries, partial charges, binding energies, and ligand organization energies reveal the possibility of favorable C-H···M + interactions when a α-naphthyl group exists in complexes of TNB structures. Like benzene-alkali metal ion complexes, the binding affinity of metal ions follows the order: Li + > Na + > K + > Rb + > Cs + for any considered 1,3,5-trisubstituted benzene systems. In case of TNB, we found that the strength of interactions increases as the fusion point changes from α to β position of naphthalene.

  9. Structure and mechanism of the ATP synthase membrane motor inferred from quantitative integrative modeling.

    PubMed

    Leone, Vanessa; Faraldo-Gómez, José D

    2016-12-01

    Two subunits within the transmembrane domain of the ATP synthase-the c-ring and subunit a-energize the production of 90% of cellular ATP by transducing an electrochemical gradient of H + or Na + into rotational motion. The nature of this turbine-like energy conversion mechanism has been elusive for decades, owing to the lack of definitive structural information on subunit a or its c-ring interface. In a recent breakthrough, several structures of this complex were resolved by cryo-electron microscopy (cryo-EM), but the modest resolution of the data has led to divergent interpretations. Moreover, the unexpected architecture of the complex has cast doubts on a wealth of earlier biochemical analyses conducted to probe this structure. Here, we use quantitative molecular-modeling methods to derive a structure of the a-c complex that is not only objectively consistent with the cryo-EM data, but also with correlated mutation analyses of both subunits and with prior cross-linking and cysteine accessibility measurements. This systematic, integrative approach reveals unambiguously the topology of subunit a and its relationship with the c-ring. Mapping of known Cd 2+ block sites and conserved protonatable residues onto the structure delineates two noncontiguous pathways across the complex, connecting two adjacent proton-binding sites in the c-ring to the space on either side of the membrane. The location of these binding sites and of a strictly conserved arginine on subunit a, which serves to prevent protons from hopping between them, explains the directionality of the rotary mechanism and its strict coupling to the proton-motive force. Additionally, mapping of mutations conferring resistance to oligomycin unexpectedly reveals that this prototypical inhibitor may bind to two distinct sites at the a-c interface, explaining its ability to block the mechanism of the enzyme irrespective of the direction of rotation of the c-ring. In summary, this study is a stepping stone toward establishing the mechanism of the ATP synthase at the atomic level.

  10. TANGO1 builds a machine for collagen export by recruiting and spatially organizing COPII, tethers and membranes

    PubMed Central

    Santos, António JM; Foresti, Ombretta; Zhang, Chong; Garcia-Parajo, Maria F; Campelo, Felix

    2018-01-01

    Collagen export from the endoplasmic reticulum (ER) requires TANGO1, COPII coats, and retrograde fusion of ERGIC membranes. How do these components come together to produce a transport carrier commensurate with the bulky cargo collagen? TANGO1 is known to form a ring that corrals COPII coats, and we show here how this ring or fence is assembled. Our data reveal that a TANGO1 ring is organized by its radial interaction with COPII, and lateral interactions with cTAGE5, TANGO1-short or itself. Of particular interest is the finding that TANGO1 recruits ERGIC membranes for collagen export via the NRZ (NBAS/RINT1/ZW10) tether complex. Therefore, TANGO1 couples retrograde membrane flow to anterograde cargo transport. Without the NRZ complex, the TANGO1 ring does not assemble, suggesting its role in nucleating or stabilising this process. Thus, coordinated capture of COPII coats, cTAGE5, TANGO1-short, and tethers by TANGO1 assembles a collagen export machine at the ER. PMID:29513218

  11. Binding Modes of Teixobactin to Lipid II: Molecular Dynamics Study.

    PubMed

    Liu, Yang; Liu, Yaxin; Chan-Park, Mary B; Mu, Yuguang

    2017-12-08

    Teixobactin (TXB) is a newly discovered antibiotic targeting the bacterial cell wall precursor Lipid II (L II ). In the present work, four binding modes of TXB on L II were identified by a contact-map based clustering method. The highly flexible binary complex ensemble was generated by parallel tempering metadynamics simulation in a well-tempered ensemble (PTMetaD-WTE). In agreement with experimental findings, the pyrophosphate group and the attached first sugar subunit of L II are found to be the minimal motif for stable TXB binding. Three of the four binding modes involve the ring structure of TXB and have relatively higher binding affinities, indicating the importance of the ring motif of TXB in L II recognition. TXB-L II complexes with a ratio of 2:1 are also predicted with configurations such that the ring motif of two TXB molecules bound to the pyrophosphate-MurNAc moiety and the glutamic acid residue of one L II , respectively. Our findings disclose that the ring motif of TXB is critical to L II binding and novel antibiotics can be designed based on its mimetics.

  12. Expression and regulation of ATL9, an E3 ubiquitin ligase involved in plant defense

    PubMed Central

    Lefebvre, Mitchell; Scaglione, Steven; Antico, Christopher J.; Jing, Tao; Yang, Xin; Shan, Weixing

    2017-01-01

    Plants are continually exposed to a variety of pathogenic organisms, including bacteria, fungi and viruses. In response to these assaults, plants have developed various defense pathways to protect themselves from pathogen invasion. An understanding of the expression and regulation of genes involved in defense signaling is essential to controlling plant disease. ATL9, an Arabidopsis RING zinc finger protein, is an E3 ubiquitin ligase that is induced by chitin and involved in basal resistance to the biotrophic fungal pathogen, Golovinomyces cichoracearum (G. cichoracearum). To better understand the expression and regulation of ATL9, we studied its expression pattern and the functions of its different protein domains. Using pATL9:GUS transgenic Arabidopsis lines we found that ATL9 is expressed in numerous tissues at various developmental stages and that GUS activity was induced rapidly upon wounding. Using a GFP control protein, we showed that ATL9 is a short-lived protein within plant cells and it is degraded via the ubiquitin-proteasome pathway. ATL9 contains two transmembrane domains (TM), a RING zinc-finger domain, and a PEST domain. Using a series of deletion mutants, we found that the PEST domain and the RING domain have effects on ATL9 degradation. Further infection assays with G. cichoracearum showed that both the RING domain and the TM domains are important for ATL9’s resistance phenotype. Interestingly, the PEST domain was also shown to be significant for resistance to fungal pathogens. This study demonstrates that the PEST domain is directly coupled to plant defense regulation and the importance of protein degradation in plant immunity. PMID:29161311

  13. A close look at Saturn's rings with Cassini VIMS

    USGS Publications Warehouse

    Nicholson, P.D.; Hedman, M.M.; Clark, R.N.; Showalter, M.R.; Cruikshank, D.P.; Cuzzi, J.N.; Filacchione, G.; Capaccioni, F.; Cerroni, P.; Hansen, G.B.; Sicardy, B.; Drossart, P.; Brown, R.H.; Buratti, B.J.; Baines, K.H.; Coradini, A.

    2008-01-01

    Soon after the Cassini-Huygens spacecraft entered orbit about Saturn on 1 July 2004, its Visual and Infrared Mapping Spectrometer obtained two continuous spectral scans across the rings, covering the wavelength range 0.35-5.1 ??m, at a spatial resolution of 15-25 km. The first scan covers the outer C and inner B rings, while the second covers the Cassini Division and the entire A ring. Comparisons of the VIMS radial reflectance profile at 1.08 ??m with similar profiles at a wavelength of 0.45 ??m assembled from Voyager images show very little change in ring structure over the intervening 24 years, with the exception of a few features already known to be noncircular. A model for single-scattering by a classical, many-particle-thick slab of material with normal optical depths derived from the Voyager photopolarimeter stellar occultation is found to provide an excellent fit to the observed VIMS reflectance profiles for the C ring and Cassini Division, and an acceptable fit for the inner B ring. The A ring deviates significantly from such a model, consistent with previous suggestions that this region may be closer to a monolayer. An additional complication here is the azimuthally-variable average optical depth associated with "self-gravity wakes" in this region and the fact that much of the A ring may be a mixture of almost opaque wakes and relatively transparent interwake zones. Consistently with previous studies, we find that the near-infrared spectra of all main ring regions are dominated by water ice, with a typical regolith grain radius of 5-20 ??m, while the steep decrease in visual reflectance shortward of 0.6 ??m is suggestive of an organic contaminant, perhaps tholin-like. Although no materials other than H2O ice have been identified with any certainty in the VIMS spectra of the rings, significant radial variations are seen in the strength of the water-ice absorption bands. Across the boundary between the C and B rings, over a radial range of ???7000 km, the near-IR band depths strengthen considerably. A very similar pattern is seen across the outer half of the Cassini Division and into the inner A ring, accompanied by a steepening of the red slope in the visible spectrum shortward of 0.55 ??m. We attribute these trends-as well as smaller-scale variations associated with strong density waves in the A ring-to differing grain sizes in the tholin-contaminated icy regolith that covers the surfaces of the decimeter-to-meter sized ring particles. On the largest scale, the spectral variations seen by VIMS suggest that the rings may be divided into two larger 'ring complexes,' with similar internal variations in structure, optical depth, particle size, regolith texture and composition. The inner complex comprises the C and B rings, while the outer comprises the Cassini Division and A ring. ?? 2007 Elsevier Inc. All rights reserved.

  14. Protein export through the bacterial flagellar type III export pathway.

    PubMed

    Minamino, Tohru

    2014-08-01

    For construction of the bacterial flagellum, which is responsible for bacterial motility, the flagellar type III export apparatus utilizes both ATP and proton motive force across the cytoplasmic membrane and exports flagellar proteins from the cytoplasm to the distal end of the nascent structure. The export apparatus consists of a membrane-embedded export gate made of FlhA, FlhB, FliO, FliP, FliQ, and FliR and a water-soluble ATPase ring complex consisting of FliH, FliI, and FliJ. FlgN, FliS, and FliT act as substrate-specific chaperones that do not only protect their cognate substrates from degradation and aggregation in the cytoplasm but also efficiently transfer the substrates to the export apparatus. The ATPase ring complex facilitates the initial entry of the substrates into the narrow pore of the export gate. The export gate by itself is a proton-protein antiporter that uses the two components of proton motive force, the electric potential difference and the proton concentration difference, for different steps of the export process. A specific interaction of FlhA with FliJ located in the center of the ATPase ring complex allows the export gate to efficiently use proton motive force to drive protein export. The ATPase ring complex couples ATP binding and hydrolysis to its assembly-disassembly cycle for rapid and efficient protein export cycle. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey. © 2013 Elsevier B.V. All rights reserved.

  15. Synthesis and structural studies of heterobimetallic alkoxide complexes supported by bis(phenolate) ligands: efficient catalysts for ring-opening polymerization of L-lactide.

    PubMed

    Chen, Hsuan-Ying; Liu, Mei-Yu; Sutar, Alekha Kumar; Lin, Chu-Chieh

    2010-01-18

    A series of heterobimetallic titanium(IV) complexes [LTi(O(i)Pr)(mu-O(i)Pr)(2)Li(THF)(2)], [LTi(O(i)Pr)(mu-O(i)Pr)(2)Na(THF)(2)], [LTi(mu-O(i)Pr)(2)Zn(O(i)Pr)(2)], and [LTi(mu-O(i)Pr)(2)Mg(O(i)Pr)(2)] (where L = bidentate bisphenol ligands) have been synthesized and characterized including a structural determination of [L(1)Ti(mu(2)-O(i)Pr)(2)(O(i)Pr)Li(THF)(2)] (1a). These complexes were investigated for their utility in the ring-opening polymerization (ROP) of l-lactide (LA). Polymerization activities have been shown to correlate with the electronic properties of the substituent within the bisphenol ligand. In contrast to monometallic titanium initiator 1e, all the heterobimetallic titanium initiators (Ti-Li, Ti-Na, Ti-Zn, and Ti-Mg) show enhanced catalytic activity toward ring-opening polymerization (ROP) of l-LA. In addition, the use of electron-donating methoxy or methylphenylsulfonyl functional ligands reveals the highest activity. The bisphenol bimetallic complexes give rise to controlled ring-opening polymerization, as shown by the linear relationship between the percentage conversion and the number-average molecular weight. The polymerization kinetics using 2c as an initiator were also studied, and the experimental results indicate that the reaction rate is first-order with respect to both monomer and catalyst concentration with a polymerization rate constant, k = 81.64 M(-1) min(-1).

  16. DDB2 promotes chromatin decondensation at UV-induced DNA damage

    PubMed Central

    Lindh, Michael; Acs, Klara; Vrouwe, Mischa G.; Pines, Alex; van Attikum, Haico; Mullenders, Leon H.

    2012-01-01

    Nucleotide excision repair (NER) is the principal pathway that removes helix-distorting deoxyribonucleic acid (DNA) damage from the mammalian genome. Recognition of DNA lesions by xeroderma pigmentosum group C (XPC) protein in chromatin is stimulated by the damaged DNA-binding protein 2 (DDB2), which is part of a CUL4A–RING ubiquitin ligase (CRL4) complex. In this paper, we report a new function of DDB2 in modulating chromatin structure at DNA lesions. We show that DDB2 elicits unfolding of large-scale chromatin structure independently of the CRL4 ubiquitin ligase complex. Our data reveal a marked adenosine triphosphate (ATP)–dependent reduction in the density of core histones in chromatin containing UV-induced DNA lesions, which strictly required functional DDB2 and involved the activity of poly(adenosine diphosphate [ADP]–ribose) polymerase 1. Finally, we show that lesion recognition by XPC, but not DDB2, was strongly reduced in ATP-depleted cells and was regulated by the steady-state levels of poly(ADP-ribose) chains. PMID:22492724

  17. Comparison of African and North American velvet ant mimicry complexes: Another example of Africa as the ‘odd man out’

    PubMed Central

    Limb, Erica S.; Williams, Kevin A.

    2018-01-01

    Africa has the most tropical and subtropical land of any continent, yet has relatively low species richness in several taxa. This depauperate nature of the African tropical fauna and flora has led some to call Africa the “odd man out.” One exception to this pattern is velvet ants (Hymenoptera: Mutillidae), wingless wasps that are known for Müllerian mimicry. While North American velvet ants form one of the world’s largest mimicry complexes, mimicry in African species has not been investigated. Here we ask do African velvet ant Müllerian mimicry rings exist, and how do they compare to the North American complex. We then explore what factors might contribute to the differences in mimetic diversity between continents. To investigate this we compared the color patterns of 304 African velvet ant taxa using nonmetric multidimensional scaling (NMDS). We then investigated distributions of each distinct mimicry ring. Finally, we compared lizard diversity and ecoregion diversity on the two continents. We found that African female velvet ants form four Müllerian rings, which is half the number of North American rings. This lower mimetic diversity could be related to the relatively lower diversity of insectivorous lizard species or to the lower number of distinct ecoregions in Africa compared to North America. PMID:29298332

  18. Aniline-containing guests recognized by α,α',δ,δ'-tetramethyl-cucurbit[6]uril host.

    PubMed

    Lin, Rui-Lian; Fang, Guo-Sheng; Sun, Wen-Qi; Liu, Jing-Xin

    2016-12-13

    The host-guest complexation of symmetrical α,α',δ,δ'-tetramethyl-cucurbit[6]uril (TMeQ[6]) and cucurbit[7]uril (Q[7]) with a series of aniline-containing guests has been investigated by various experimental techniques including NMR, ITC, and X-ray crystallography. Experimental results indicate that both TMeQ[6] and Q[7] hosts can encapsulate aniline-containing guests to form stable inclusion complexes. However, the oval cavity of TMeQ[6] is more complementary in size and shape to the aromatic ring of the guests than the spherical cavity of Q[7]. Shielding and deshielding effects of the aromatic ring on guests lead to the remarkable chemical shifts of the TMeQ[6] host protons. The rotational restriction of the guests in the oval cavity of TMeQ[6] results in the large negative values of entropy. The X-ray crystal structure of the 1:1 inclusion complex between TMeQ[6] and N,N'-diethyl-benzene-1,4-diamine unambiguously reveals that the aromatic ring of the guest resides in the oval cavity of TMeQ[6].

  19. Density functional theory study on the influence of pyrrolidine substituent of C60 bisadduct on its supramolecular interaction with porphine

    NASA Astrophysics Data System (ADS)

    Zhao, Li-Hong; Weng, Jun-Ying; Zhao, Wei; Ruan, Wen-Juan; Xin, Fei; Zhang, Ying-Hui

    2013-09-01

    Calculation using three kinds of density functional theory (DFT) methods revealed that the nonbonded interaction of pyrrolidine-functionalized C60 bisadducts with porphine derivatives (MP: M = Zn, 2H) was significantly affected by pyrrolidine substituents. Several types of the stable interaction configurations of trans-3 C60 bisadduct/ZnP complex (abbreviated as tran-3/ZnP) were compared. The association energy predicted by the wB97XD method was larger than that predicted by CAM-B3LYP and BHandH functionals. The results showed that the closer approach of porphine ring to the two pyrrolidine substituents, the larger the association energy of the complex. This trend was ascribed to the additional C-H⋯π interaction between the pyrrolidine and porphine rings. The natural bond orbital analysis proved the existence of an additional charge transfer process between the porphine and pyrrolidine rings for the t-I type of trans-3/porphine complexes. The red shift of absorption peaks of porphine were predicted in consistent with general experimental results.

  20. Exploring hydride-π interactions and their tuning by σ-hole bonds: an ab initio study

    NASA Astrophysics Data System (ADS)

    Esrafili, Mehdi D.; Asadollahi, Soheila; Mousavian, Parisasadat

    2018-01-01

    In the present work, ab initio calculations are performed to investigate the geometry, interaction energy and bonding properties of binary complexes formed between metal-hydrides HMX (M = Be, Mg, Zn and X = H, F, CH3) and a series of π-acidic heteroaromatic rings. In all the resulting complexes, the heteroaromatic ring acts as a Lewis acid (electron acceptor), while the H atom of the HMX molecule acts as a Lewis base (electron donor). The nature of this interaction, called 'hydride-π' interaction, is explored in terms of molecular electrostatic potential, non-covalent interaction, quantum theory of atoms in molecules and natural bond orbital analyses. The results show that the interaction energies of these hydride-π interactions are between -1.24 and -2.72 kcal/mol. Furthermore, mutual influence between the hydride-π and halogen- or pnicogen-bonding interactions is studied in complexes in which these interactions coexist. For a given π-acidic ring, the formation of the pnicogen-bonding induces a larger enhancing effect on the strength of hydride-π bond than the halogen-bonding.

  1. Rings of membrane sterols surround the openings of vesicles and fenestrae, in capillary endothelium.

    PubMed

    Simionescu, N; Lupu, F; Simionescu, M

    1983-11-01

    We investigated the distribution of sterols in the cell membrane of microvascular endothelium (mouse pancreas, diaphragm, brain, heart, lung, kidney, thyroid, adrenal, and liver) with the polyene antibiotic filipin, which reportedly has binding specificity for free 3-beta-hydroxysterols. In some experiments, concomitantly, cell-surface anionic sites were detected with cationized ferritin. Vessels were perfused in situ with PBS, followed by light fixation and filipin administration for 10 to 60 min. Tissues were further processed for thin-section and freeze-fracture electron microscopy. Short exposure (10 min) to filipin-glutaraldehyde solution resulted in the initial appearance, on many areas, of rings of characteristic filipin-sterol complexes within the rim surrounding stomata of most plasmalemmal vesicles, transendothelial channels, and fenestrae. Such rings were absent from the rims of the large openings of the sinusoid endothelium (liver, adrenal), coated pits and phagocytic vacuoles. After longer exposure (30-60 min), filipin-sterol complexes labeled randomly the rest of plasma membrane (except for coated pits, and partially the interstrand areas of junctions), and also marked most plasmalemmal vesicles. These peristomal rings of sterols were displayed mostly on the P face, and, at their full development, consisted of 6-8 units around a vesicle stoma, and 10-12 units around a fenestra. At their level, the intramembranous particles and the cell surface anionic sites were virtually excluded. Peristomal rings of sterols were also detected on the plasma membrane of pericytes and smooth muscle cells of the microvascular wall, which otherwise were poorly labeled with filipin-sterol complexes as compared to endothelial plasmalemma. It is presumed that the peristomal rings of cholesterol may represent important contributors to the local transient stabilization of plasma membrane and to the phase separation between cell membrane and vesicle membrane at a certain stage of their fusion/fission process.

  2. Arene-chromium tricarbonyl complexes in the Pauson-Khand reaction.

    PubMed

    Rosillo, Marta; Domínguez, Gema; Casarrubios, Luis; Pérez-Castells, Javier

    2005-12-09

    [reactions: see text] We show the use of arene-chromium tricarbonyl complexes in intra- and intermolecular Pauson-Khand reactions. Both styrene and ethynylbenzene complexes react with alkynes and olefins. The synthesis of enynes connected through chromium-complexed aromatic rings is developed. The intramolecular Pauson-Khand reaction occurs in a totally diastereoselective manner.

  3. Reactions catalyzed by haloporphyrins

    DOEpatents

    Ellis, P.E. Jr.; Lyons, J.E.

    1996-02-06

    The invention provides novel methods for the oxidation of hydrocarbons with oxygen-containing gas to form hydroxy-group containing compounds and for the decomposition of hydroperoxides to form hydroxy-group containing compounds. The catalysts used in the methods of the invention comprise transition metal complexes of a porphyrin ring having 1 to 12 halogen substituents on the porphyrin ring, at least one of said halogens being in a meso position and/or the catalyst containing no aryl group in a meso position. The catalyst compositions are prepared by halogenating a transition metal complex of a porphyrin. In one embodiment, a complex of a porphyrin with a metal whose porphyrin complexes are not active for oxidation of alkanes is halogenated, thereby to obtain a haloporphyrin complex of that metal, the metal is removed from the haloporphyrin complex to obtain the free base form of the haloporphyrin, and a metal such as iron whose porphyrin complexes are active for oxidation of alkanes and for the decomposition of alkyl hydroperoxides is complexed with the free base to obtain an active catalyst for oxidation of alkanes and decomposition of alkyl hydroperoxides.

  4. Haloporphyrins and their preparation and use as catalysts

    DOEpatents

    Ellis, Jr., Paul E.; Lyons, James E.

    1997-01-01

    The invention provides novel catalyst compositions, useful in the oxidation of hydrocarbons with air or oxygen to form hydroxy-group containing compounds and in the decomposition of hydroperoxides to form hydroxy-group containing compounds. The catalysts comprise transition metal complexes of a porphyrin ring having 1 to 12 halogen substituents on the porphyrin ring, at least one of said halogens being in a meso position and/or the catalyst containing no aryl group in a meso position. The compositions are prepared by halogenating a transition metal complex of a porphyrin. In one embodiment, a complex of a porphyrin with a metal whose porphyrin complexes are not active for oxidation of hydrocarbons is halogenated, thereby to obtain a haloporphyrin complex of that metal, the metal is removed from the haloporphyrin complex to obtain the free base form of the haloporphyrin, and a metal such as iron whose porphyrin complexes are active for oxidation of hydrocarbons and for the decomposition of alkyl hydroperoxides is complexed with the free base to obtain an active catalyst for oxidation of hydrocarbons and decomposition of alkyl hydroperoxides.

  5. Reactions catalyzed by haloporphyrins

    DOEpatents

    Ellis, Jr., Paul E.; Lyons, James E.

    1996-01-01

    The invention provides novel methods for the oxidation of hydrocarbons with oxygen-containing gas to form hydroxy-group containing compounds and for the decomposition of hydroperoxides to form hydroxygroup containing compounds. The catalysts used in the methods of the invention comprise transition metal complexes of a porphyrin ring having 1 to 12 halogen substituents on the porphyrin ring, at least one of said halogens being in a meso position and/or the catalyst containing no aryl group in a meso position. The catalyst compositions are prepared by halogenating a transition metal complex of a porphyrin. In one embodiment, a complex of a porphyrin with a metal whose porphyrin complexes are not active for oxidation of alkanes is halogenated, thereby to obtain a haloporphyrin complex of that metal, the metal is removed from the haloporphyrin complex to obtain the free base form of the haloporphyrin, and a metal such as iron whose porphyrin complexes are active for oxidation of alkanes and for the decomposition of alkyl hydroperoxides is complexed with the free base to obtain an active catalyst for oxidation of alkanes and decomposition of alkyl hydroperoxides.

  6. Haloporphyrins and their preparation and use as catalysts

    DOEpatents

    Ellis, P.E. Jr.; Lyons, J.E.

    1997-09-02

    The invention provides novel catalyst compositions, useful in the oxidation of hydrocarbons with air or oxygen to form hydroxy-group containing compounds and in the decomposition of hydroperoxides to form hydroxy-group containing compounds. The catalysts comprise transition metal complexes of a porphyrin ring having 1 to 12 halogen substituents on the porphyrin ring, at least one of said halogens being in a meso position and/or the catalyst containing no aryl group in a meso position. The compositions are prepared by halogenating a transition metal complex of a porphyrin. In one embodiment, a complex of a porphyrin with a metal whose porphyrin complexes are not active for oxidation of hydrocarbons is halogenated, thereby to obtain a haloporphyrin complex of that metal, the metal is removed from the haloporphyrin complex to obtain the free base form of the haloporphyrin, and a metal such as iron whose porphyrin complexes are active for oxidation of hydrocarbons and for the decomposition of alkyl hydroperoxides is complexed with the free base to obtain an active catalyst for oxidation of hydrocarbons and decomposition of alkyl hydroperoxides.

  7. Two molecular wheels 12-MC-6 complexes: Synthesis, structure and magnetic property of [Co(μ{sub 2}-SEt){sub 2}]{sub 6} and [Fe(μ{sub 2}-SEt){sub 2}]{sub 6}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jing; Jian, Fangfang, E-mail: ffj2003@163169.net; Huang, Baoxin

    2013-08-15

    The syntheses and structures of two ethyl mercaptan molecular wheels complexes, [M(μ{sub 2}-SCH{sub 2}CH{sub 3}){sub 2}]{sub 6} (M=Fe, Co), have been reported. Each metal atom is surrounded by four S atoms of the μ{sub 2}-SCH{sub 2}CH{sub 3} ligands in a distorted square plane fashion. The edge-sharing S{sub 4} square planes connect with each other to form a ring. Six metal atoms are located at the vertices of an almost hexagon, with M···M separations in the range of 2.903(1)∼2.936(2) Å for Fe and 2.889(2)∼2.962(2) Å for Co. The diameter of the ring, defined as the average distance between two opposing metalmore » atoms, is 5.850(1) Å for Fe and 5.780(1) Å for Co, respectively. The magnetic property behaves of cobalt(II) cluster complex is studied. Highlights: • Two new ethyl mercaptan cyclic hexanuclear complexes were reported. • The crystal structures shown center formation of M{sub 6}S{sub 12} molecular wheels. • The Co{sub 6} ring cluster complex represents as weak ferromagnet.« less

  8. E3 ligase Hei10: a multifaceted structure-based signaling molecule with roles within and beyond meiosis

    PubMed Central

    De Muyt, Arnaud; Zhang, Liangran; Piolot, Tristan; Kleckner, Nancy; Espagne, Eric; Zickler, Denise

    2014-01-01

    Human enhancer of invasion-10 (Hei10) mediates meiotic recombination and also plays roles in cell proliferation. Here we explore Hei10’s roles throughout the sexual cycle of the fungus Sordaria with respect to localization and effects of null, RING-binding, and putative cyclin-binding (RXL) domain mutations. Hei10 makes three successive types of foci. Early foci form along synaptonemal complex (SC) central regions. At some of these positions, depending on its RING and RXL domains, Hei10 mediates development and turnover of two sequential types of recombination complexes, each demarked by characteristic amplified Hei10 foci. Integration with ultrastructural data for recombination nodules further reveals that recombination complexes differentiate into three types, one of which corresponds to crossover recombination events during or prior to SC formation. Finally, Hei10 positively and negatively modulates SUMO localization along SCs by its RING and RXL domains, respectively. The presented findings suggest that Hei10 integrates signals from the SC, associated recombination complexes, and the cell cycle to mediate both the development and programmed turnover/evolution of recombination complexes via SUMOylation/ubiquitination. Analogous cell cycle-linked assembly/disassembly switching could underlie localization and roles for Hei10 in centrosome/spindle pole body dynamics and associated nuclear trafficking. We suggest that Hei10 is a unique type of structure-based signal transduction protein. PMID:24831702

  9. The two nerve rings of the hypostomal nervous system of Hydra vulgaris-an immunohistochemical analysis.

    PubMed

    Hufnagel, L A; Kass-Simon, G

    2016-11-01

    In Hydra vulgaris, physiological and pharmacological evidence exists for a hypostomal circumferential neuro-effector pathway that initiates ectodermal pacemaker activity at tentacular-hypostomal loci coordinating body and tentacle contractions. Here, we describe an ectodermal nerve ring that runs below and between the tentacles, and an anti-GABA B receptor antibody-labeled ring coincident with it. The location of this ring is consistent with the physiology of the hypostomal pacemaker systems of hydra. We also describe a distally located, ectodermal ring of nerve fibers that is not associated with anti-GABA B receptor antibody labeling. The neurites and cell bodies of sensory cells contribute to both rings. The location of the distal ring and its sensory cell neurites suggests an involvement in the behavior of the mouth. Between the two rings is a network of anastomosing sensory and ganglion cell bodies and their neurites. Phase contrast, darkfield, and antibody-labeled images reveal that the mouth of hydra comprises five or six epithelial folds whose endoderm extensively labels with anti-GABA B receptor antibody, suggesting that endodermal metabotrobic GABA receptors are also involved in regulating mouth behavior.

  10. Distinct domains within the NITROGEN LIMITATION ADAPTATION protein mediate its subcellular localization and function in the nitrate-dependent phosphate homeostasis pathway

    USDA-ARS?s Scientific Manuscript database

    The NITROGEN LIMITATION ADAPTATION (NLA) protein is a RING-type E3 ubiquitin ligase that plays an essential role in the regulation of nitrogen and phosphate homeostasis. NLA is localized to two distinct subcellular sites, the plasma membrane and nucleus, and contains four distinct domains: i) a RING...

  11. NEUTRONIC REACTOR SYSTEM

    DOEpatents

    Treshow, M.

    1959-02-10

    A reactor system incorporating a reactor of the heterogeneous boiling water type is described. The reactor is comprised essentially of a core submerged adwater in the lower half of a pressure vessel and two distribution rings connected to a source of water are disposed within the pressure vessel above the reactor core, the lower distribution ring being submerged adjacent to the uppcr end of the reactor core and the other distribution ring being located adjacent to the top of the pressure vessel. A feed-water control valve, responsive to the steam demand of the load, is provided in the feedwater line to the distribution rings and regulates the amount of feed water flowing to each distribution ring, the proportion of water flowing to the submerged distribution ring being proportional to the steam demand of the load. This invention provides an automatic means exterior to the reactor to control the reactivity of the reactor over relatively long periods of time without relying upon movement of control rods or of other moving parts within the reactor structure.

  12. Thermodynamics and binding mode of novel structurally related 1,2,4-thiadiazole derivatives with native and modified cyclodextrins

    NASA Astrophysics Data System (ADS)

    Terekhova, Irina V.; Chislov, Mikhail V.; Brusnikina, Maria A.; Chibunova, Ekaterina S.; Volkova, Tatyana V.; Zvereva, Irina A.; Proshin, Alexey N.

    2017-03-01

    Study of complex formation of cyclodextrins with 1,2,4-thiadiazole derivatives intended for Alzheimer's disease treatment was carried out using 1H NMR, ITC and phase solubility methods. Structure of cyclodextrins and thiadiazoles affects the binding mode and thermodynamics of complexation. The larger cavity of β- and γ-cyclodextrins is more appropriate for deeper insertion of 1,2,4-thiadiazole derivatives which is accompanied by intensive dehydration and solvent reorganization. Benzene ring of the thiadiazoles is located inside macrocyclic cavity while piperidine ring is placed outside the cavity and can form H-bonds with cyclodextrin exterior. Complexation with cyclodextrins induces the enhancement of aqueous solubility of 1,2,4-thiadiazole derivatives.

  13. Voyager to the giant planets

    NASA Astrophysics Data System (ADS)

    Smith, B. A.

    The exploration of Jupiter and Saturn by the Pioneer and Voyager probes is reviewed chronologically. Consideration is given to the launching techniques and probe designs; the complex convection patterns in the Jovian atmosphere; the lightning and auroras seen on Jupiter's dark side; the faint Jovian ring; the surfaces of Ganymede, Callisto, and Europa; and the discovery of volcanic activity on Io. The features of Saturn discussed include the earth-like atmospheric jets, the surface and atmosphere of Titan, the orbits of the other satellites, the surface characteristics of Iapetus and Enceladus, the 10,000 ringlets comprising the ring system, the apparent 'spokes' in the rings, and the narrow, knotted F ring. Voyager images of the most significant features are provided.

  14. Total Synthesis of Bryostatins. Development of Methodology for Atom-Economic and Stereoselective Synthesis of the C-ring Subunit

    PubMed Central

    Trost, Barry M.; Frontier, Alison J.; Thiel, Oliver R.; Yang, Hanbiao; Dong, Guangbin

    2012-01-01

    Bryostatins, a family of structurally complicated macrolides, exhibit an exceptional range of biological activities. The limited availability and structural complexity of these molecules makes development of an efficient total synthesis particularly important. This article describes our initial efforts towards the total synthesis of bryostatins, in which chemoselective and atom-economical methods for stereoselective assembly of the C-ring subunit were developed. A Pd-catalyzed tandem alkyne-alkyne coupling/6-endo-dig cyclization sequence was explored and successfully pursued in the synthesis of a dihydropyran ring system. Elaboration of this methodology ultimately led to a concise synthesis of the C-ring subunit of bryostatins. PMID:21793057

  15. 1,1'-Bis[bis-(4-meth-oxy-phen-yl)phosphan-yl]ferrocene.

    PubMed

    Ren, Xinfeng; Wang, Le; Li, Ya

    2012-07-01

    In the crystal structure of the title substituted ferrocene complex, [Fe(C₁₉H₁₈O₂P)₂], the Fe(II) atom lies on a twofold rotation axis, giving an eclipsed cyclo-penta-dienyl conformation with a ring centroid separation of 3.292 (7) Å and an Fe-C bond-length range of 2.0239 (15)-2.0521 (15) Å. In the ligand, the cyclo-penta-dienyl ring forms dihedral angles of 60.36 (6) and 82.93 (6)° with the two benzene rings of the diphenyl-phosphine group, while the dihedral angle between the benzene rings is 67.4 (5)°.

  16. Effect of B-ring substitution pattern on binding mode of propionamide selective androgen receptor modulators.

    PubMed

    Bohl, Casey E; Wu, Zengru; Chen, Jiyun; Mohler, Michael L; Yang, Jun; Hwang, Dong Jin; Mustafa, Suni; Miller, Duane D; Bell, Charles E; Dalton, James T

    2008-10-15

    Selective androgen receptor modulators (SARMs) are essentially prostate sparing androgens, which provide therapeutic potential in osteoporosis, male hormone replacement, and muscle wasting. Herein we report crystal structures of the androgen receptor (AR) ligand-binding domain (LBD) complexed to a series of potent synthetic nonsteroidal SARMs with a substituted pendant arene referred to as the B-ring. We found that hydrophilic B-ring para-substituted analogs exhibit an additional region of hydrogen bonding not seen with steroidal compounds and that multiple halogen substitutions affect the B-ring conformation and aromatic interactions with Trp741. This information elucidates interactions important for high AR binding affinity and provides new insight for structure-based drug design.

  17. Ring-opening of {sigma}-thienyl and {sigma}-furyl ligands at ditungsten (M=M) centers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chisholm, M.H.; Haubrich, S.T.; Huffman, J.C.

    1997-02-19

    A series of compounds of formula 1,2-M{sub 2}({sigma}-Th){sub 2}(NMe{sub 2}){sub 4}, 1,has been prepared, where M = Mo and/or W and Th = 2-thienyl[2-Th], 3-thienyl[3-Th], 5-methyl-2-thienyl[2,5-MeTh], and 2-benzothienyl[2-BTh]. Addition of {sup t}BuOH or CF{sub 3}Me{sub 2}COH to hydrocarbon solutions of 1, where M = W, lead to ring-opened products, 2, when the thienyl ligand is attached via the 2-carbon position. No ring-opening occurs for 3-thienyl derivatives. W{sub 2}(OR){sub 5}({mu}-CCH{sub 2}CHCHS)({sigma}-2-Th), 2, where one of the 2-thienyl rings has been opened, has been fully characterized and shown to be derived from a ring-opened {mu}-vinylidene intermediate W{sub 24}/(O{sup t}Bu){sub 4}({mu}-CCHCHCHS)({sigma}-2-Th). The compoundmore » W{sub 2}({sigma}-2-Fu){sub 2}(NMe{sub 2}){sub 4} was prepared and characterized (2-Fu = 2-furyl) and shown to undergo ring-opening in its reaction with {sup t}BuOH to give W{sub 2}(O{sup t}Bu){sub 5}({mu}-CCH{sub 2}CHCHO)({sigma}-2-Fu), 4, in an analogous manner to the 2-Th complex. The complexes 1 (M = W, 2-Th), 2, 3, and 4 have been characterized by single crystal X-ray studies. The results described herein are compared to other ring-opening reactions of S, N, and O organic heterocyclic compounds as models for the activation of S, N, and O containing fossil fuels in hydrodesulfurization (HDS), hydrodenitrogenation (HDN), and hydrodeoxygenation (HDO) processes. 36 refs., 7 figs., 5 tabs.« less

  18. Releasing the cohesin ring: A rigid scaffold model for opening the DNA exit gate by Pds5 and Wapl.

    PubMed

    Ouyang, Zhuqing; Yu, Hongtao

    2017-04-01

    The ring-shaped ATPase machine, cohesin, regulates sister chromatid cohesion, transcription, and DNA repair by topologically entrapping DNA. Here, we propose a rigid scaffold model to explain how the cohesin regulators Pds5 and Wapl release cohesin from chromosomes. Recent studies have established the Smc3-Scc1 interface as the DNA exit gate of cohesin, revealed a requirement for ATP hydrolysis in ring opening, suggested regulation of the cohesin ATPase activity by DNA and Smc3 acetylation, and provided insights into how Pds5 and Wapl open this exit gate. We hypothesize that Pds5, Wapl, and SA1/2 form a rigid scaffold that docks on Scc1 and anchors the N-terminal domain of Scc1 (Scc1N) to the Smc1 ATPase head. Relative movements between the Smc1-3 ATPase heads driven by ATP and Wapl disrupt the Smc3-Scc1 interface. Pds5 binds the dissociated Scc1N and prolongs this open state of cohesin, releasing DNA. We review the evidence supporting this model and suggest experiments that can further test its key principles. © 2017 WILEY Periodicals, Inc.

  19. Configuration and energy landscape of the benzonitrile anion

    NASA Astrophysics Data System (ADS)

    Kirnosov, Nikita; Adamowicz, Ludwik

    2017-05-01

    Quantum chemical calculations are employed to study the configurational isomers of the anion formed by benzene substituted with a cyano group. It is found that an excess electron can form dipole-bound (DB) states with benzonitrile and phenyl-isocyanide isomers. It can also attach to the cyano group, if this group is separated from the benzene ring by some distance, forming a covalent CN- anion. There are four positions at peripherals of the benzene ring where this anion can localize and form stable complexes with the benzene radical. In these complexes CN- is connected to the benzene radical via non-covalent interactions.

  20. Highly Z- and Enantioselective Ring-Opening/Cross-Metathesis Reactions Catalyzed by Stereogenic-at-Mo Adamantylimido Complexes

    PubMed Central

    Ibrahem, Ismail; Yu, Miao; Schrock, Richard R.; Hoveyda, Amir H.

    2009-01-01

    The first highly Z- and enantioselective class of ring-opening/cross-metathesis (ROCM) reactions is presented. Transformations are promoted in the presence of <2 mol % of chiral stereogenic-at-Mo monoaryloxide complexes, which bear an adamantylimido ligand and are prepared and used in situ. Reactions involve meso oxabicyclic substrates and afford the desired pyrans in 50–85% yield and in up to >98:<2 enantiomer ratio (er). Importantly, the desired chiral pyrans are thus obtained bearing a Z olefin either exclusively (>98:<2 Z:E) or predominantly (≥87:13 Z:E). PMID:19249833

  1. Toward a detailed description of the pathways of allosteric communication in the GroEL chaperonin through atomistic simulation.

    PubMed

    Piggot, Thomas J; Sessions, Richard B; Burston, Steven G

    2012-02-28

    GroEL, along with its coprotein GroES, is essential for ensuring the correct folding of unfolded or newly synthesized proteins in bacteria. GroEL is a complex, allosteric molecule, composed of two heptameric rings stacked back to back, that undergoes large structural changes during its reaction cycle. These structural changes are driven by the cooperative binding and subsequent hydrolysis of ATP, by GroEL. Despite numerous previous studies, the precise mechanisms of allosteric communication and the associated structural changes remain elusive. In this paper, we describe a series of all-atom, unbiased, molecular dynamics simulations over relatively long (50-100 ns) time scales of a single, isolated GroEL subunit and also a heptameric GroEL ring, in the presence and absence of ATP. Combined with results from a distance restraint-biased simulation of the single ring, the atomistic details of the earliest stages of ATP-driven structural changes within this complex molecule are illuminated. Our results are in broad agreement with previous modeling studies of isolated subunits and with a coarse-grained, forcing simulation of the single ring. These are the first reported all-atom simulations of the GroEL single-ring complex and provide a unique insight into the role of charged residues K80, K277, R284, R285, and E388 at the subunit interface in transmission of the allosteric signal. These simulations also demonstrate the feasibility of performing all-atom simulations of very large systems on sufficiently long time scales on typical high performance computing facilities to show the origins of the earliest events in biologically relevant processes.

  2. I-BIEM calculations of the frequency dispersion and ac current distribution at disk and ring-disk electrodes

    NASA Technical Reports Server (NTRS)

    Cahan, Boris D.

    1991-01-01

    The Iterative Boundary Integral Equation Method (I-BIEM) has been applied to the problem of frequency dispersion at a disk electrode in a finite geometry. The I-BIEM permits the direct evaluation of the AC potential (a complex variable) using complex boundary conditions. The point spacing was made highly nonuniform, to give extremely high resolution in those regions where the variables change most rapidly, i.e., in the vicinity of the edge of the disk. Results are analyzed with respect to IR correction, equipotential surfaces, and reference electrode placement. The current distribution is also examined for a ring-disk configuration, with the ring and the disk at the same AC potential. It is shown that the apparent impedance of the disk is inductive at higher frequencies. The results are compared to analytic calculations from the literature, and usually agree to better than 0.001 percent.

  3. I-BIEM calculations of the frequency dispersion and AC current distribution at disk and ring-disk electrodes

    NASA Technical Reports Server (NTRS)

    Cahan, Boris D.

    1991-01-01

    The Iterative Boundary Integral Equation Method (I-BIEM) has been applied to the problem of frequency dispersion at a disk electrode in a finite geometry. The I-BIEM permits the direct evaluation of the AC potential (a complex variable) using complex boundary conditions. The point spacing was made highly nonuniform, to give extremely high resolution in those regions where the variables change most rapidly, i.e., in the vicinity of the edge of the disk. Results are analyzed with respect to IR correction, equipotential surfaces, and reference electrode placement. The current distribution is also examined for a ring-disk configuration, with the ring and the disk at the same AC potential. It is shown that the apparent impedance of the disk is inductive at higher frequencies. The results are compared to analytic calculations from the literature, and usually agree to better than 0.001 percent.

  4. Spectroscopic study of the charge-transfer complexes TiCl4/styrene and TiCl4/polystyrene

    NASA Astrophysics Data System (ADS)

    Gonçalves, Norberto S.; Noda, Lúcia. K.

    2017-10-01

    In this work, solutions of TiCl4/styrene and TiCl4/polystyrene charge-transfer complexes in CHCl3 or CDCl3 were investigated by UV-vis, resonance Raman and 1H NMR spectroscopies in order to study their molecular and electronic structures. Both show a yellow colour due to absorption in the 400 nm region, related to a charge-transfer transition. In Raman spectra, as the excitation approaches the resonance region, the primary enhancement of aromatic ring modes was mainly observed, rather than intensification of the vinylic double-bond stretch. Under the experimental conditions it was observed that formation of polystyrene takes place, as showed by 1H NMR spectra, and the most significant interaction occurs at the aromatic ring, as supported by the results from interaction of TiCl4 with polystyrene, as indicated by the charge-transfer band and resonant intensification of the aromatic ring modes.

  5. Different mechanisms at different temperatures for the ring-opening polymerization of lactide catalyzed by binuclear magnesium and zinc alkoxides.

    PubMed

    Sun, Yangyang; Cui, Yaqin; Xiong, Jiao; Dai, Zhongran; Tang, Ning; Wu, Jincai

    2015-10-07

    Two binuclear magnesium and zinc alkoxides supported by a bis-salalen type dinucleating heptadentate Schiff base ligand were synthesized and fully characterized. The two complexes are efficient initiators for the ring-opening polymerization (ROP) of L-lactide, affording polymers with narrow polydispersities and desirable molecular weights. Interestingly, the mechanisms for the ROP of lactide are different at different temperatures. At a high temperature of 130 °C, a coordination-insertion mechanism is reasonable for the bulk melt polymerization of lactide. At a low temperature, the alkoxide cannot initiate the ROP reaction; however, upon the addition of external benzyl alcohol into the system, the ROP of lactide can smoothly proceed via an "activated monomer" mechanism. In addition, these complexes display slight stereo-selectivity for the ring-opening polymerization of rac-lactide, affording partially isotactic polylactide in toluene with a Pm value of 0.59.

  6. Electrically conducting porphyrin and porphyrin-fullerene electropolymers

    DOEpatents

    Gust, Jr., John Devens; Liddell, Paul Anthony; Gervaldo, Miguel Andres; Bridgewater, James Ward; Brennan, Bradley James; Moore, Thomas Andrew; Moore, Ana Lorenzelli

    2014-03-11

    Compounds with aryl ring(s) at porphyrin meso position(s) bearing an amino group in position 4 relative to the porphyrin macrocycle, and at least one unsubstituted 5 (hydrogen-bearing) meso position with the 10-, 15-, and/or 20-relationship to the aryl ring bearing the amino group, and metal complexes thereof, feature broad spectral absorption throughout the visible region. These compounds are electropolymerized to form electrically conducting porphyrin and porphyrin-fullerene polymers that are useful in photovoltaic applications. The structure of one such electrically conducting porphyrin polymer is shown below. ##STR00001##

  7. Unraveling the Pore-Forming Steps of Pneumolysin from Streptococcus pneumoniae.

    PubMed

    van Pee, Katharina; Mulvihill, Estefania; Müller, Daniel J; Yildiz, Özkan

    2016-12-14

    Pneumolysin (PLY) is the main virulence factor of Streptococcus pneumoniae that causes pneumonia, meningitis, and invasive pneumococcal infection. PLY is produced as monomers, which bind to cholesterol-containing membranes, where they oligomerize into large pores. To investigate the pore-forming mechanism, we determined the crystal structure of PLY at 2.4 Å and used it to design mutants on the surface of monomers. Electron microscopy of liposomes incubated with PLY mutants revealed that several mutations interfered with ring formation. Mutants that formed incomplete rings or linear arrays had strongly reduced hemolytic activity. By high-resolution time-lapse atomic force microscopy of wild-type PLY, we observed two different ring-shaped complexes. Most of the complexes protruded ∼8 nm above the membrane surface, while a smaller number protruded ∼11 nm or more. The lower complexes were identified as pores or prepores by the presence or absence of a lipid bilayer in their center. The taller complexes were side-by-side assemblies of monomers of soluble PLY that represent an early form of the prepore. Our observations suggest a four-step mechanism of membrane attachment and pore formation by PLY, which is discussed in the context of recent structural models. The functional separation of these steps is necessary for the understanding how cholesterol-dependent cytolysins form pores and lyse cells.

  8. Structures of NADH and CH[subscript 3]-H[subscript 4] Folate Complexes of Escherichia coli Methylenetetrahydrofolate Reductase Reveal a Spartan Strategy for a Ping-Pong Reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pejchal, Robert; Sargeant, Ryan; Ludwig, Martha L.

    Methylenetetrahydrofolate reductases (MTHFRs; EC 1.7.99.5) catalyze the NAD(P)H-dependent reduction of 5,10-methylenetetrahydrofolate (CH{sub 2}-H{sub 4}folate) to 5-methyltetrahydrofolate (CH{sub 3}-H{sub 4}folate) using flavin adenine dinucleotide (FAD) as a cofactor. The initial X-ray structure of Escherichia coli MTHFR revealed that this 33-kDa polypeptide is a ({beta}{alpha}){sub 8} barrel that aggregates to form an unusual tetramer with only 2-fold symmetry. Structures of reduced enzyme complexed with NADH and of oxidized Glu28Gln enzyme complexed with CH{sub 3}-H{sub 4}folate have now been determined at resolutions of 1.95 and 1.85 {angstrom}, respectively. The NADH complex reveals a rare mode of dinucleotide binding; NADH adopts a hairpin conformationmore » and is sandwiched between a conserved phenylalanine, Phe223, and the isoalloxazine ring of FAD. The nicotinamide of the bound pyridine nucleotide is stacked against the si face of the flavin ring with C4 adjoining the N5 of FAD, implying that this structure models a complex that is competent for hydride transfer. In the complex with CH{sub 3}-H{sub 4}folate, the pterin ring is also stacked against FAD in an orientation that is favorable for hydride transfer. Thus, the binding sites for the two substrates overlap, as expected for many enzymes that catalyze ping-pong reactions, and several invariant residues interact with both folate and pyridine nucleotide substrates. Comparisons of liganded and substrate-free structures reveal multiple conformations for the loops {beta}2-{alpha}2 (L2), {beta}3-{alpha}3 (L3), and {beta}4-{alpha}4 (L4) and suggest that motions of these loops facilitate the ping-pong reaction. In particular, the L4 loop adopts a 'closed' conformation that allows Asp120 to hydrogen bond to the pterin ring in the folate complex but must move to an 'open' conformation to allow NADH to bind.« less

  9. Ocean plankton. Environmental characteristics of Agulhas rings affect interocean plankton transport.

    PubMed

    Villar, Emilie; Farrant, Gregory K; Follows, Michael; Garczarek, Laurence; Speich, Sabrina; Audic, Stéphane; Bittner, Lucie; Blanke, Bruno; Brum, Jennifer R; Brunet, Christophe; Casotti, Raffaella; Chase, Alison; Dolan, John R; d'Ortenzio, Fabrizio; Gattuso, Jean-Pierre; Grima, Nicolas; Guidi, Lionel; Hill, Christopher N; Jahn, Oliver; Jamet, Jean-Louis; Le Goff, Hervé; Lepoivre, Cyrille; Malviya, Shruti; Pelletier, Eric; Romagnan, Jean-Baptiste; Roux, Simon; Santini, Sébastien; Scalco, Eleonora; Schwenck, Sarah M; Tanaka, Atsuko; Testor, Pierre; Vannier, Thomas; Vincent, Flora; Zingone, Adriana; Dimier, Céline; Picheral, Marc; Searson, Sarah; Kandels-Lewis, Stefanie; Acinas, Silvia G; Bork, Peer; Boss, Emmanuel; de Vargas, Colomban; Gorsky, Gabriel; Ogata, Hiroyuki; Pesant, Stéphane; Sullivan, Matthew B; Sunagawa, Shinichi; Wincker, Patrick; Karsenti, Eric; Bowler, Chris; Not, Fabrice; Hingamp, Pascal; Iudicone, Daniele

    2015-05-22

    Agulhas rings provide the principal route for ocean waters to circulate from the Indo-Pacific to the Atlantic basin. Their influence on global ocean circulation is well known, but their role in plankton transport is largely unexplored. We show that, although the coarse taxonomic structure of plankton communities is continuous across the Agulhas choke point, South Atlantic plankton diversity is altered compared with Indian Ocean source populations. Modeling and in situ sampling of a young Agulhas ring indicate that strong vertical mixing drives complex nitrogen cycling, shaping community metabolism and biogeochemical signatures as the ring and associated plankton transit westward. The peculiar local environment inside Agulhas rings may provide a selective mechanism contributing to the limited dispersal of Indian Ocean plankton populations into the Atlantic. Copyright © 2015, American Association for the Advancement of Science.

  10. Dust Charging in Saturn's Rings: Observations and Theory

    NASA Astrophysics Data System (ADS)

    Horanyi, M.

    2008-12-01

    Saturn's rings show a variety of dusty plasma processes. The electrostatic charging and subsequent orbital dynamics of small grains can establish their size and spatial distributions, for example. Simultaneously, dust can alter the composition, density and temperature of the plasma surrounding it. The dynamics of charged dust particles can be surprisingly complex and fundamentally different from the well understood limits of gravitationally dominated motions of neutral particles or the adiabatic motion of electrons and ions in electromagnetic fields that dominate gravity. This talk will focus on recent Cassini observations at Saturn that are best explained by theories describing the effects of the magnetospheric fields and plasmas on the rings. As our best examples, we will discuss the physics describing the large-scale structure of the E-ring, and the formation of 'spokes' over the dense rings of Saturn.

  11. EM structure of a helicase-loader complex depicting a 6:2 binding sub-stoichiometry from Geobacillus kaustophilus HTA426

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Yen-Chen; Naveen, Vankadari; Molecular Cell Biology, Taiwan International Graduate Program, Institute of Molecular Biology, Academia Sinica, and Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan

    During DNA replication, bacterial helicase is recruited as a complex in association with loader proteins to unwind the parental duplex. Previous structural studies have reported saturated 6:6 helicase-loader complexes with different conformations. However, structural information on the sub-stoichiometric conformations of these previously-documented helicase-loader complexes remains elusive. Here, with the aid of single particle electron-microscopy (EM) image reconstruction, we present the Geobacillus kaustophilus HTA426 helicase-loader (DnaC-DnaI) complex with a 6:2 binding stoichiometry in the presence of ATPγS. In the 19 Å resolution EM map, the undistorted and unopened helicase ring holds a robust loader density above the C-terminal RecA-like domain. Meanwhile, themore » path of the central DNA binding channel appears to be obstructed by the reconstructed loader density, implying its potential role as a checkpoint conformation to prevent the loading of immature complex onto DNA. Our data also reveals that the bound nucleotides and the consequently induced conformational changes in the helicase hexamer are essential for active association with loader proteins. These observations provide fundamental insights into the formation of the helicase-loader complex in bacteria that regulates the DNA replication process. - Highlights: • Helicase-loader complex structure with 6:2 sub-stoichiometry is resolved by EM. • Helicase hexamer in 6:2 sub-stoichiometry is constricted and un-opened. • 6:2 binding ratio of helicase-loader complex could act as a DNA loading checkpoint. • Nucleotides stabilize helicase-loader complex at low protein concentrations.« less

  12. The Human Polycomb Group Complex Associates with Pericentromeric Heterochromatin to Form a Novel Nuclear Domain

    PubMed Central

    Saurin, Andrew J.; Shiels, Carol; Williamson, Jill; Satijn, David P.E.; Otte, Arie P.; Sheer, Denise; Freemont, Paul S.

    1998-01-01

    The Polycomb group (PcG) complex is a chromatin-associated multiprotein complex, involved in the stable repression of homeotic gene activity in Drosophila. Recently, a mammalian PcG complex has been identified with several PcG proteins implicated in the regulation of Hox gene expression. Although the mammalian PcG complex appears analogous to the complex in Drosophila, the molecular mechanisms and functions for the mammalian PcG complex remain unknown. Here we describe a detailed characterization of the human PcG complex in terms of cellular localization and chromosomal association. By using antibodies that specifically recognize three human PcG proteins— RING1, BMI1, and hPc2—we demonstrate in a number of human cell lines that the PcG complex forms a unique discrete nuclear structure that we term PcG bodies. PcG bodies are prominent novel nuclear structures with the larger PcG foci generally localized near the centromeres, as visualized with a kinetochore antibody marker. In both normal fetal and adult fibroblasts, PcG bodies are not randomly dispersed, but appear clustered into defined areas within the nucleus. We show in three different human cell lines that the PcG complex can tightly associate with large pericentromeric heterochromatin regions (1q12) on chromosome 1, and with related pericentromeric sequences on different chromosomes, providing evidence for a mammalian PcG–heterochromatin association. Furthermore, these heterochromatin-bound PcG complexes remain stably associated throughout mitosis, thereby allowing the potential inheritance of the PcG complex through successive cell divisions. We discuss these results in terms of the known function of the PcG complex as a transcriptional repression complex. PMID:9722603

  13. Structure of the transcriptional regulator LmrR and its mechanism of multidrug recognition.

    PubMed

    Madoori, Pramod Kumar; Agustiandari, Herfita; Driessen, Arnold J M; Thunnissen, Andy-Mark W H

    2009-01-21

    LmrR is a PadR-related transcriptional repressor that regulates the production of LmrCD, a major multidrug ABC transporter in Lactococcus lactis. Transcriptional regulation is presumed to follow a drug-sensitive induction mechanism involving the direct binding of transporter ligands to LmrR. Here, we present crystal structures of LmrR in an apo state and in two drug-bound states complexed with Hoechst 33342 and daunomycin. LmrR shows a common topology containing a typical beta-winged helix-turn-helix domain with an additional C-terminal helix involved in dimerization. Its dimeric organization is highly unusual with a flat-shaped hydrophobic pore at the dimer centre serving as a multidrug-binding site. The drugs bind in a similar manner with their aromatic rings sandwiched in between the indole groups of two dimer-related tryptophan residues. Multidrug recognition is facilitated by conformational plasticity and the absence of drug-specific hydrogen bonds. Combined analyses using site-directed mutagenesis, fluorescence-based drug binding and protein-DNA gel shift assays reveal an allosteric coupling between the multidrug- and DNA-binding sites of LmrR that most likely has a function in the induction mechanism.

  14. Long noncoding RNA UPAT promotes colon tumorigenesis by inhibiting degradation of UHRF1

    PubMed Central

    Taniue, Kenzui; Kurimoto, Akiko; Sugimasa, Hironobu; Nasu, Emiko; Takeda, Yasuko; Iwasaki, Kei; Nagashima, Takeshi; Okada-Hatakeyama, Mariko; Oyama, Masaaki; Kozuka-Hata, Hiroko; Hiyoshi, Masaya; Kitayama, Joji; Negishi, Lumi; Kawasaki, Yoshihiro; Akiyama, Tetsu

    2016-01-01

    Many long noncoding RNAs (lncRNAs) are reported to be dysregulated in human cancers and play critical roles in tumor development and progression. Furthermore, it has been reported that many lncRNAs regulate gene expression by recruiting chromatin remodeling complexes to specific genomic loci or by controlling transcriptional or posttranscriptional processes. Here we show that an lncRNA termed UPAT [ubiquitin-like plant homeodomain (PHD) and really interesting new gene (RING) finger domain-containing protein 1 (UHRF1) Protein Associated Transcript] is required for the survival and tumorigenicity of colorectal cancer cells. UPAT interacts with and stabilizes the epigenetic factor UHRF1 by interfering with its β-transducin repeat-containing protein (TrCP)–mediated ubiquitination. Furthermore, we demonstrate that UHRF1 up-regulates Stearoyl-CoA desaturase 1 and Sprouty 4, which are required for the survival of colon tumor cells. Our study provides evidence for an lncRNA that regulates protein ubiquitination and degradation and thereby plays a critical role in the survival and tumorigenicity of tumor cells. Our results suggest that UPAT and UHRF1 may be promising molecular targets for the therapy of colon cancer. PMID:26768845

  15. The commercial harvest of ice-associated seals in the Sea of Okhotsk, 1972-1994

    PubMed Central

    Somov, Aleksandr G.; Burkanov, Vladimir N.; Laidre, Kristin L.; Boveng, Peter L.

    2017-01-01

    Sealing log books from 75 out of 79 commercial harvest cruises carried out between 1972 and 1994 in the Sea of Okhotsk, Russia, were analyzed to describe spatial and temporal allocation of ice-associated seal harvest effort, species composition of catches, total harvest rates, and related parameters for species including ringed (Pusa hispida), ribbon (Histriophoca fasciata), bearded (Erignathus barbatus) and spotted (Phoca largha) seal. Variations in catch per unit effort were explored in relation to year, sea ice conditions, day of the year, and geographic location. In most years, the harvest was predominantly represented by ringed seals (mean = 0.43, range 0.25–0.67), followed by ribbon (mean = 0.31, range 0.15–0.43), spotted (mean = 0.19, range 0.11–0.35) and bearded seals (mean = 0.07, range 0.03–0.14). The struck-and-lost percentages were as high as 30–35% for ringed, bearded and spotted seals and 15–20% for ribbon seals. Catch per unit effort (number of seals/skiff*day) for ringed, ribbon, and spotted seals had a similar seasonal pattern with a distinct spike in catches for spotted seals in the first week of May, for ribbon seals in the last week of May, and for ringed seals in the second week of June. Catches of bearded seals showed a less pronounced temporal structure with a gradual increase toward the end of the harvest season in the majority of years. Spatial distribution of harvest effort followed closely with seal distribution obtained from aerial surveys. These data could be used as a source of information on seal herd location throughout the breeding and molting seasons and for more complex demographic or life-table models. We did not find any evidence of the decline of catch per unit effort over the study period. Timely introduction of state regulations and efficient harvest management apparently prevented severe depletion of ice-associated seal populations in the Sea of Okhotsk during the periods of their intense exploitation. PMID:28796843

  16. The commercial harvest of ice-associated seals in the Sea of Okhotsk, 1972-1994.

    PubMed

    Trukhanova, Irina S; Grachev, Aleksey I; Somov, Aleksandr G; Burkanov, Vladimir N; Laidre, Kristin L; Boveng, Peter L

    2017-01-01

    Sealing log books from 75 out of 79 commercial harvest cruises carried out between 1972 and 1994 in the Sea of Okhotsk, Russia, were analyzed to describe spatial and temporal allocation of ice-associated seal harvest effort, species composition of catches, total harvest rates, and related parameters for species including ringed (Pusa hispida), ribbon (Histriophoca fasciata), bearded (Erignathus barbatus) and spotted (Phoca largha) seal. Variations in catch per unit effort were explored in relation to year, sea ice conditions, day of the year, and geographic location. In most years, the harvest was predominantly represented by ringed seals (mean = 0.43, range 0.25-0.67), followed by ribbon (mean = 0.31, range 0.15-0.43), spotted (mean = 0.19, range 0.11-0.35) and bearded seals (mean = 0.07, range 0.03-0.14). The struck-and-lost percentages were as high as 30-35% for ringed, bearded and spotted seals and 15-20% for ribbon seals. Catch per unit effort (number of seals/skiff*day) for ringed, ribbon, and spotted seals had a similar seasonal pattern with a distinct spike in catches for spotted seals in the first week of May, for ribbon seals in the last week of May, and for ringed seals in the second week of June. Catches of bearded seals showed a less pronounced temporal structure with a gradual increase toward the end of the harvest season in the majority of years. Spatial distribution of harvest effort followed closely with seal distribution obtained from aerial surveys. These data could be used as a source of information on seal herd location throughout the breeding and molting seasons and for more complex demographic or life-table models. We did not find any evidence of the decline of catch per unit effort over the study period. Timely introduction of state regulations and efficient harvest management apparently prevented severe depletion of ice-associated seal populations in the Sea of Okhotsk during the periods of their intense exploitation.

  17. In vivo structure of the E. coli FtsZ-ring revealed by photoactivated localization microscopy (PALM).

    PubMed

    Fu, Guo; Huang, Tao; Buss, Jackson; Coltharp, Carla; Hensel, Zach; Xiao, Jie

    2010-09-13

    The FtsZ protein, a tubulin-like GTPase, plays a pivotal role in prokaryotic cell division. In vivo it localizes to the midcell and assembles into a ring-like structure-the Z-ring. The Z-ring serves as an essential scaffold to recruit all other division proteins and generates contractile force for cytokinesis, but its supramolecular structure remains unknown. Electron microscopy (EM) has been unsuccessful in detecting the Z-ring due to the dense cytoplasm of bacterial cells, and conventional fluorescence light microscopy (FLM) has only provided images with limited spatial resolution (200-300 nm) due to the diffraction of light. Hence, given the small sizes of bacteria cells, identifying the in vivo structure of the Z-ring presents a substantial challenge. Here, we used photoactivated localization microscopy (PALM), a single molecule-based super-resolution imaging technique, to characterize the in vivo structure of the Z-ring in E. coli. We achieved a spatial resolution of ∼35 nm and discovered that in addition to the expected ring-like conformation, the Z-ring of E. coli adopts a novel compressed helical conformation with variable helical length and pitch. We measured the thickness of the Z-ring to be ∼110 nm and the packing density of FtsZ molecules inside the Z-ring to be greater than what is expected for a single-layered flat ribbon configuration. Our results strongly suggest that the Z-ring is composed of a loose bundle of FtsZ protofilaments that randomly overlap with each other in both longitudinal and radial directions of the cell. Our results provide significant insight into the spatial organization of the Z-ring and open the door for further investigations of structure-function relationships and cell cycle-dependent regulation of the Z-ring.

  18. Beam-based compensation of extracted-beam displacement caused by field ringing of pulsed kicker magnets in the 3 GeV rapid cycling synchrotron of the Japan Proton Accelerator Research Complex

    NASA Astrophysics Data System (ADS)

    Harada, Hiroyuki; Saha, Pranab Kumar; Tamura, Fumihiko; Meigo, Shin-ichiro; Hotchi, Hideaki; Hayashi, Naoki; Kinsho, Michikazu; Hasegawa, Kazuo

    2017-09-01

    Commissioned in October 2007, the 3 GeV rapid cycling synchrotron (RCS) of the Japan Proton Accelerator Research Complex was designed for a high-intensity output beam power of 1 MW. The RCS extracts 3 GeV proton beams of two bunches by using eight pulsed kicker magnets and three DC septum magnets with 25 Hz repetition. These beams are delivered to a materials and life science experimental facility (MLF) and a 50 GeV main ring synchrotron (MR). However, the flat-top fields of the kicker magnets experience ringing that displaces the position of the extracted beam. This displacement is a major issue from the viewpoint of target integrity at the MLF and emittance growth at MR injection. To understand the flat-top uniformity of the total field of all the kickers, the uniformity was measured as the displacement of the extracted beams by using a shorter bunched beam and scanning the entire trigger timing of the kickers. The beam displacement of the first bunch exceeded the required range. Therefore, we performed beam-based measurements kicker by kicker to understand each field-ringing effect, and then we understood the characteristics (strength and temporal structure) of each ringing field. We managed to cancel out the ringing by using all the beam-based measurement data and optimizing each trigger timing. As a result, the field-ringing effect of the kickers was successfully compensated by optimizing the trigger timing of each kicker without hardware upgrades or improvements to the kicker system. By developing an automatic monitoring and correction system, we now have a higher stability of extracted beams during routine user operation. In this paper, we report our procedure for ringing compensation and present supporting experimental results.

  19. Complex Fluids at Interfaces and Interfaces of Complex Fluids

    NASA Astrophysics Data System (ADS)

    Nouri, Mariam

    The present thesis deals with two independent projects and is consequently divided into two parts. The first part details a computational study of the fluid structure of ring-shaped molecules and their positional and orientational molecular organizations in different degrees of confinement, while the second part concerns an experimental study of phase behavior and interfacial phenomena in confined colloid-polymer systems. In the first part, ring-shaped molecules are studied using Monte Carlo simulation techniques in one, two and three dimensions. The model used to describe ring-shaped molecules is composed of hard-spheres linked together to form planar rigid rings. For rings of various sizes and for a wide range of densities, positional and orientational orderings are reported in forms of pair distribution functions of the ring centers and correlation functions of the ring normal orientations. Special emphasis is given to understand structural formation at interfaces, i.e., the structure and orderings of these molecules when they are confined to two dimensions. In a plane but the rings themselves are free to rotate around all axes, nematic ordering is observed at sufficiently high densities. In the second part, phase equilibria of confined aqueous colloid-polymer systems are studied experimentally using fluorescence microscopy. Aqueous mixtures of fluorescent polystyrene spheres and polyacrylamide are confined between a glass slide and a coverslip. The phase diagram is determined as a function of the colloidal and polymer concentrations. Liquid-liquid phase coexistence between a colloid-rich phase and a polymer-rich phase occurs at intermediate polymer concentrations, while liquid-solid phase coexistence between a polymer-rich liquid and a colloid-rich solid is observed at high polymer concentrations. Interfacial thickness and tension of the interface between these coexisting phases are measured using image analysis techniques. It is also observed that the colloid-rich solid and liquid domains coarsen mainly by Ostwald ripening.

  20. Superelasticity of NiTi Ring-Shaped Springs Induced by Aging for Cranioplasty Applications

    NASA Astrophysics Data System (ADS)

    Morawiec, Henryk Z.; Lekston, Zdzisław H.; Kobus, Kazimierz F.; Węgrzyn, Marek C.; Drugacz, Jan T.

    2009-08-01

    This paper concerns the application of titanium-nickel rings in modeling the cranium. After being fixed to the osseous margins, the ring’s expansion at the same time broadens and shortens the cranium vault. The rings formed from a straight superelastic wire, flattened to an ellipse, do not show the presence of a typical force plateau but rather a pseudoelastic loop during loading-unloading in the relationship between the force and the deflection. Based on the idea that superelasticity in more complex shape-springs may be induced by the precipitation hardening process, the further studies were carried out on alloys with higher nickel contents (51.06 at.% Ni). The rings that had been formed were welded and aged at an optimal temperature and time. The improved superelastic behavior during compression and unloading the rings was obtained by introducing small deformation by drawing the quenched wires before forming the rings and aging. Very positive clinical reshaping by long-term distraction with the superelastic ring-shaped springs was achieved in young children under one year and a less spectacular effect was observed in the group of older children.

  1. Contractile ring stability in S. pombe depends on F-BAR protein Cdc15p and Bgs1p transport from the Golgi complex.

    PubMed

    Arasada, Rajesh; Pollard, Thomas D

    2014-09-11

    Cdc15p is known to contribute to cytokinesis in fission yeast; however, the protein is not required to assemble the contractile ring of actin and myosin, but it helps to anchor the ring to the plasma membrane. Cdc15p has a lipid-binding F-BAR domain, suggesting that it provides a physical link between the plasma membrane and contractile ring proteins. However, we find that a more important function of Cdc15p during cytokinesis is to help deliver a transmembrane enzyme, Bgs1p (also called Cps1p), from the Golgi apparatus to the plasma membrane, where it appears to anchor the contractile ring. Bgs1p synthesizes the cell wall in the cleavage furrow, but its enzyme activity is not required to anchor the contractile ring. We estimate that ∼ 2,000 Bgs1p molecules are required to anchor the ring. Without Bgs1p anchors, contractile rings slide along the plasma membrane, a phenomenon that depends on an unconventional type II myosin called Myp2p. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Ring finger protein 145 (RNF145) is a ubiquitin ligase for sterol-induced degradation of HMG-CoA reductase.

    PubMed

    Jiang, Lu-Yi; Jiang, Wei; Tian, Na; Xiong, Yan-Ni; Liu, Jie; Wei, Jian; Wu, Kai-Yue; Luo, Jie; Shi, Xiong-Jie; Song, Bao-Liang

    2018-03-16

    Cholesterol biosynthesis is tightly regulated in the cell. For example, high sterol concentrations can stimulate degradation of the rate-limiting cholesterol biosynthetic enzyme 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMG-CoA reductase, HMGCR). HMGCR is broken down by the endoplasmic reticulum membrane-associated protein complexes consisting of insulin-induced genes (Insigs) and the E3 ubiquitin ligase gp78. Here we found that HMGCR degradation is partially blunted in Chinese hamster ovary (CHO) cells lacking gp78 ( gp78 -KO). To identify other ubiquitin ligase(s) that may function together with gp78 in triggering HMGCR degradation, we performed a small-scale short hairpin RNA-based screening targeting endoplasmic reticulum-localized E3s. We found that knockdown of both ring finger protein 145 ( Rnf145 ) and gp78 genes abrogates sterol-induced degradation of HMGCR in CHO cells. We also observed that RNF145 interacts with Insig-1 and -2 proteins and ubiquitinates HMGCR. Moreover, the tetrapeptide sequence YLYF in the sterol-sensing domain and the Cys-537 residue in the RING finger domain were essential for RNF145 binding to Insigs and RNF145 E3 activity, respectively. Of note, amino acid substitutions in the YLYF or of Cys-537 completely abolished RNF145-mediated HMGCR degradation. In summary, our study reveals that RNF145, along with gp78, promotes HMGCR degradation in response to elevated sterol levels and identifies residues essential for RNF145 function. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Oligomeric Properties of Adeno-Associated Virus Rep68 Reflect Its Multifunctionality

    PubMed Central

    Zarate-Perez, Francisco; Mansilla-Soto, Jorge; Bardelli, Martino; Burgner, John W.; Villamil-Jarauta, Maria; Kekilli, Demet; Samso, Monserrat

    2013-01-01

    The adeno-associated virus (AAV) encodes four regulatory proteins called Rep. The large AAV Rep proteins Rep68 and Rep78 are essential factors required in almost every step of the viral life cycle. Structurally, they share two domains: a modified version of the AAA+ domain that characterizes the SF3 family of helicases and an N-terminal domain that binds DNA specifically. The combination of these two domains imparts extraordinary multifunctionality to work as initiators of DNA replication and regulators of transcription, in addition to their essential role during site-specific integration. Although most members of the SF3 family form hexameric rings in vitro, the oligomeric nature of Rep68 is unclear due to its propensity to aggregate in solution. We report here a comprehensive study to determine the oligomeric character of Rep68 using a combination of methods that includes sedimentation velocity ultracentrifugation, electron microscopy, and hydrodynamic modeling. We have determined that residue Cys151 induces Rep68 to aggregate in vitro. We show that Rep68 displays a concentration-dependent dynamic oligomeric behavior characterized by the presence of two populations: one with monomers and dimers in slow equilibrium and a second one consisting of a mixture of multiple-ring structures of seven and eight members. The presence of either ATP or ADP induces formation of larger complexes formed by the stacking of multiple rings. Taken together, our results support the idea of a Rep68 molecule that exhibits the flexible oligomeric behavior needed to perform the wide range of functions occurring during the AAV life cycle. PMID:23152528

  4. Electron microscopy and in vitro deneddylation reveal similar architectures and biochemistry of isolated human and Flag-mouse COP9 signalosome complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rockel, Beate; Schmaler, Tilo; Huang, Xiaohua

    2014-07-25

    Highlights: • Deneddylation rates of human erythrocyte and mouse fibroblast CSN are very similar. • 3D models of native human and mouse CSN reveal common architectures. • The cryo-structure of native mammalian CSN shows a horseshoe subunit arrangement. - Abstract: The COP9 signalosome (CSN) is a regulator of the ubiquitin (Ub) proteasome system (UPS). In the UPS, proteins are Ub-labeled for degradation by Ub ligases conferring substrate specificity. The CSN controls a large family of Ub ligases called cullin-RING ligases (CRLs), which ubiquitinate cell cycle regulators, transcription factors and DNA damage response proteins. The CSN possesses structural similarities with themore » 26S proteasome Lid complex and the translation initiation complex 3 (eIF3) indicating similar ancestry and function. Initial structures were obtained 14 years ago by 2D electron microscopy (EM). Recently, first 3D molecular models of the CSN were created on the basis of negative-stain EM and single-particle analysis, mostly with recombinant complexes. Here, we compare deneddylating activity and structural features of CSN complexes purified in an elaborate procedure from human erythrocytes and efficiently pulled down from mouse Flag-CSN2 B8 fibroblasts. In an in vitro deneddylation assay both the human and the mouse CSN complexes deneddylated Nedd8-Cul1 with comparable rates. 3D structural models of the erythrocyte CSN as well as of the mouse Flag-CSN were generated by negative stain EM and by cryo-EM. Both complexes show a central U-shaped segment from which several arms emanate. This structure, called the horseshoe, is formed by the PCI domain subunits. CSN5 and CSN6 point away from the horseshoe. Compared to 3D models of negatively stained CSN complexes, densities assigned to CSN2 and CSN4 are better defined in the cryo-map. Because biochemical and structural results obtained with CSN complexes isolated from human erythrocytes and purified by Flag-CSN pulldown from mouse B8 fibroblasts are very similar, Flag-CSN pulldowns are a proper alternative to CSN preparation from erythrocytes.« less

  5. Physically elastic analysis of a cylindrical ring as a unit cell of a complete composite under applied stress in the complex plane using cubic polynomials

    NASA Astrophysics Data System (ADS)

    Monfared, Vahid

    2018-03-01

    Elastic analysis is analytically presented to predict the behaviors of the stress and displacement components in the cylindrical ring as a unit cell of a complete composite under applied stress in the complex plane using cubic polynomials. This analysis is based on the complex computation of the stress functions in the complex plane and polar coordinates. Also, suitable boundary conditions are considered and assumed to analyze along with the equilibrium equations and bi-harmonic equation. This method has some important applications in many fields of engineering such as mechanical, civil and material engineering generally. One of the applications of this research work is in composite design and designing the cylindrical devices under various loadings. Finally, it is founded that the convergence and accuracy of the results are suitable and acceptable through comparing the results.

  6. TssA forms a gp6-like ring attached to the type VI secretion sheath.

    PubMed

    Planamente, Sara; Salih, Osman; Manoli, Eleni; Albesa-Jové, David; Freemont, Paul S; Filloux, Alain

    2016-08-01

    The type VI secretion system (T6SS) is a supra-molecular bacterial complex that resembles phage tails. It is a killing machine which fires toxins into target cells upon contraction of its TssBC sheath. Here, we show that TssA1 is a T6SS component forming dodecameric ring structures whose dimensions match those of the TssBC sheath and which can accommodate the inner Hcp tube. The TssA1 ring complex binds the T6SS sheath and impacts its behaviour in vivo In the phage, the first disc of the gp18 sheath sits on a baseplate wherein gp6 is a dodecameric ring. We found remarkable sequence and structural similarities between TssA1 and gp6 C-termini, and propose that TssA1 could be a baseplate component of the T6SS Furthermore, we identified similarities between TssK1 and gp8, the former interacting with TssA1 while the latter is found in the outer radius of the gp6 ring. These observations, combined with similarities between TssF and gp6N-terminus or TssG and gp53, lead us to propose a comparative model between the phage baseplate and the T6SS. © 2016 The Authors. Published under the terms of the CC BY 4.0 license.

  7. Real-time track-less Cherenkov ring fitting trigger system based on Graphics Processing Units

    NASA Astrophysics Data System (ADS)

    Ammendola, R.; Biagioni, A.; Chiozzi, S.; Cretaro, P.; Cotta Ramusino, A.; Di Lorenzo, S.; Fantechi, R.; Fiorini, M.; Frezza, O.; Gianoli, A.; Lamanna, G.; Lo Cicero, F.; Lonardo, A.; Martinelli, M.; Neri, I.; Paolucci, P. S.; Pastorelli, E.; Piandani, R.; Piccini, M.; Pontisso, L.; Rossetti, D.; Simula, F.; Sozzi, M.; Vicini, P.

    2017-12-01

    The parallel computing power of commercial Graphics Processing Units (GPUs) is exploited to perform real-time ring fitting at the lowest trigger level using information coming from the Ring Imaging Cherenkov (RICH) detector of the NA62 experiment at CERN. To this purpose, direct GPU communication with a custom FPGA-based board has been used to reduce the data transmission latency. The GPU-based trigger system is currently integrated in the experimental setup of the RICH detector of the NA62 experiment, in order to reconstruct ring-shaped hit patterns. The ring-fitting algorithm running on GPU is fed with raw RICH data only, with no information coming from other detectors, and is able to provide more complex trigger primitives with respect to the simple photodetector hit multiplicity, resulting in a higher selection efficiency. The performance of the system for multi-ring Cherenkov online reconstruction obtained during the NA62 physics run is presented.

  8. KSC-2009-1624

    NASA Image and Video Library

    2009-02-04

    VANDENBERG AIR FORCE BASE, Calif. -- Inside the Astrotech payload processing facility at Vandenberg Air Force Base in California, Orbital Sciences technicians conduct an ultraviolet light cleanliness inspection on the payload load isolators of the Taurus XL launch vehicle for the Orbiting Carbon Observatory, or OCO, before installation on the ballast ring. From left are Dana Frederic, Bill Nelson and Randy Bone. The OCO is an Earth-orbiting mission sponsored by NASA's Earth System Science Pathfinder Program. The observatory will collect precise global measurements of carbon dioxide in the Earth's atmosphere. Scientists will analyze the data returned to better understand the natural processes and human activities that regulate the abundance and distribution of this important greenhouse gas. Launch is targeted for Feb. 24 from Space Launch Complex 576-E at Vandenberg. Photo credit: NASA/Richard Nielsen, KSC

  9. MinCD cell division proteins form alternating co-polymeric cytomotive filaments

    PubMed Central

    Ghosal, Debnath; Trambaiolo, Daniel; Amos, Linda A.; Löwe, Jan

    2014-01-01

    Summary During bacterial cell division, filaments of the tubulin-like protein FtsZ assemble at midcell to form the cytokinetic Z-ring. Its positioning is regulated by the oscillation of MinCDE proteins. MinC is activated by MinD through an unknown mechanism and prevents Z-ring assembly anywhere but midcell. Here, using X-ray crystallography, electron microscopy and in vivo analyses we show that MinD activates MinC by forming a new class of alternating copolymeric filaments that show similarity to eukaryotic septin filaments A non-polymerising mutation in MinD causes aberrant cell division in E. coli. MinCD copolymers bind to membrane, interact with FtsZ, and are disassembled by MinE. Imaging a functional msfGFP-MinC fusion protein in MinE deleted cells reveals filamentous structures. EM imaging of our reconstitution of the MinCD-FtsZ interaction on liposome surfaces reveals a plausible mechanism for regulation of FtsZ ring assembly by MinCD copolymers. PMID:25500731

  10. Intranuclear binding in space and time of exon junction complex and NXF1 to premRNPs/mRNPs in vivo

    PubMed Central

    Björk, Petra; Persson, Jan-Olov

    2015-01-01

    Eukaryotic gene expression requires the ordered association of numerous factors with precursor messenger RNAs (premRNAs)/messenger RNAs (mRNAs) to achieve efficiency and regulation. Here, we use the Balbiani ring (BR) genes to demonstrate the temporal and spatial association of the exon junction complex (EJC) core with gene-specific endogenous premRNAs and mRNAs. The EJC core components bind cotranscriptionally to BR premRNAs during or very rapidly after splicing. The EJC core does not recruit the nonsense-mediated decay mediaters UPF2 and UPF3 until the BR messenger RNA protein complexes (mRNPs) enter the interchromatin. Even though several known adapters for the export factor NXF1 become part of BR mRNPs already at the gene, NXF1 binds to BR mRNPs only in the interchromatin. In steady state, a subset of the BR mRNPs in the interchromatin binds NXF1, UPF2, and UPF3. This binding appears to occur stochastically, and the efficiency approximately equals synthesis and export of the BR mRNPs. Our data provide unique in vivo information on how export competent eukaryotic mRNPs are formed. PMID:26459599

  11. Structure of the heterotrimeric complex that regulates type III secretion needle formation

    PubMed Central

    Quinaud, Manuelle; Plé, Sophie; Job, Viviana; Contreras-Martel, Carlos; Simorre, Jean-Pierre; Attree, Ina; Dessen, Andréa

    2007-01-01

    Type III secretion systems (T3SS), found in several Gram-negative pathogens, are nanomachines involved in the transport of virulence effectors directly into the cytoplasm of target cells. T3SS are essentially composed of basal membrane-embedded ring-like structures and a hollow needle formed by a single polymerized protein. Within the bacterial cytoplasm, the T3SS needle protein requires two distinct chaperones for stabilization before its secretion, without which the entire T3SS is nonfunctional. The 2.0-Å x-ray crystal structure of the PscE-PscF55–85-PscG heterotrimeric complex from Pseudomonas aeruginosa reveals that the C terminus of the needle protein PscF is engulfed within the hydrophobic groove of the tetratricopeptide-like molecule PscG, indicating that the macromolecular scaffold necessary to stabilize the T3SS needle is totally distinct from chaperoned complexes between pilus- or flagellum-forming molecules. Disruption of specific PscG–PscF interactions leads to impairment of bacterial cytotoxicity toward macrophages, indicating that this essential heterotrimer, which possesses homologs in a wide variety of pathogens, is a unique attractive target for the development of novel antibacterials. PMID:17470796

  12. In silico predictions of LH2 ring sizes from the crystal structure of a single subunit using molecular dynamics simulations.

    PubMed

    Janosi, Lorant; Keer, Harindar; Cogdell, Richard J; Ritz, Thorsten; Kosztin, Ioan

    2011-07-01

    Most of the currently known light-harvesting complexes 2 (LH2) rings are formed by 8 or 9 subunits. As of now, questions like "what factors govern the LH2 ring size?" and "are there other ring sizes possible?" remain largely unanswered. Here, we investigate by means of molecular dynamics (MD) simulations and stochastic modeling the possibility of predicting the size of an LH2 ring from the sole knowledge of the high resolution crystal structure of a single subunit. Starting with single subunits of two LH2 rings with known size, that is, an 8-ring from Rs. moliscianum (MOLI) and a 9-ring from Rps. acidophila (ACI), and one with unknown size (referred to as X), we build atomic models of subunit dimers corresponding to assumed 8-, 9-, and 10-ring geometries. After inserting each of the dimers into a lipid-water environment, we determine the preferred angle between the corresponding subunits by three methods: (1) energy minimization, (2) free MD simulations, and (3) potential of mean force calculations. We find that the results from all three methods are consistent with each other, and when taken together, it allows one to predict with reasonable level of confidence the sizes of the corresponding ring structures. One finds that X and ACI very likely form a 9-ring, while MOLI is more likely to form an 8-ring than a 9-ring. Finally, we discuss both the merits and limitations of all three prediction methods. Copyright © 2011 Wiley-Liss, Inc.

  13. DFsn collaborates with Highwire to down-regulate the Wallenda/DLK kinase and restrain synaptic terminal growth

    PubMed Central

    Wu, Chunlai; Daniels, Richard W; DiAntonio, Aaron

    2007-01-01

    Background The growth of new synapses shapes the initial formation and subsequent rearrangement of neural circuitry. Genetic studies have demonstrated that the ubiquitin ligase Highwire restrains synaptic terminal growth by down-regulating the MAP kinase kinase kinase Wallenda/dual leucine zipper kinase (DLK). To investigate the mechanism of Highwire action, we have identified DFsn as a binding partner of Highwire and characterized the roles of DFsn in synapse development, synaptic transmission, and the regulation of Wallenda/DLK kinase abundance. Results We identified DFsn as an F-box protein that binds to the RING-domain ubiquitin ligase Highwire and that can localize to the Drosophila neuromuscular junction. Loss-of-function mutants for DFsn have a phenotype that is very similar to highwire mutants – there is a dramatic overgrowth of synaptic termini, with a large increase in the number of synaptic boutons and branches. In addition, synaptic transmission is impaired in DFsn mutants. Genetic interactions between DFsn and highwire mutants indicate that DFsn and Highwire collaborate to restrain synaptic terminal growth. Finally, DFsn regulates the levels of the Wallenda/DLK kinase, and wallenda is necessary for DFsn-dependent synaptic terminal overgrowth. Conclusion The F-box protein DFsn binds the ubiquitin ligase Highwire and is required to down-regulate the levels of the Wallenda/DLK kinase and restrain synaptic terminal growth. We propose that DFsn and Highwire participate in an evolutionarily conserved ubiquitin ligase complex whose substrates regulate the structure and function of synapses. PMID:17697379

  14. Solution structure of a DNA complex with the fluorescent bis-intercalator TOTO determined by NMR spectroscopy.

    PubMed

    Spielmann, H P; Wemmer, D E; Jacobsen, J P

    1995-07-11

    We have used two-dimensional 1H NMR spectroscopy to determine the solution structure of the DNA oligonucleotide d(5'-CGCTAGCG-3')2 complexed with the bis-intercalating dye 1,1'-(4,4,8,8-tetramethyl-4,8-diazaundecamethylene)bis[4-(3-methyl -2,3- dihydrobenzo-1,3-thiazolyl-2-methylidene)qui nolinium] tetraiodide (TOTO). The determination of the structure was based on total relaxation matrix analysis of the NOESY cross-peak intensities using the program MARDIGRAS. Improved procedures to consider the experimental "noise" in NOESY spectra during these calculations have been employed. The NOE-derived distance restraints were applied in restrained molecular dynamics calculations. Twenty final structures each were generated for the TOTO complex from both A-form and B-form dsDNA starting structures. The root-mean-square (rms) deviation of the coordinates for the 40 structures of the complex was 1.45 A. The local DNA structure is distorted in the complex. The helix is unwound by 60 degrees and has an overall helical repeat of 12 base pairs, caused by bis-intercalation of TOTO. The poly(propylenamine) linker chain is located in the minor groove of dsDNA. Calculations indicate that the benzothiazole ring system is twisted relative to the quinoline in the uncomplexed TOTO molecule. The site selectivity of TOTO for the CTAG-CTAG site is explained by its ability to adapt to the base pair propeller twist of dsDNA to optimize stacking and the hydrophobic interaction between the thymidine methyl group and the benzothiazole ring. There is a 3000-fold fluorescence enhancement upon binding of TOTO to dsDNA. Rotation about the cyanine methine bonds is possible in free TOTO, allowing relaxation nonradiatively. When bound to dsDNA, the benzothiazole ring and the quinolinium ring are clamped by the nucleobases preventing this rotation, and the chromophore loses excitation energy by fluorescence instead.

  15. Atomic-Resolution Structures of Horse Liver Alcohol Dehydrogenase with NAD[superscript +] and Fluoroalcohols Define Strained Michaelis Complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plapp, Bryce V.; Ramaswamy, S.; Iowa)

    2013-01-16

    Structures of horse liver alcohol dehydrogenase complexed with NAD{sup +} and unreactive substrate analogues, 2,2,2-trifluoroethanol or 2,3,4,5,6-pentafluorobenzyl alcohol, were determined at 100 K at 1.12 or 1.14 {angstrom} resolution, providing estimates of atomic positions with overall errors of 0.02 {angstrom}, the geometry of ligand binding, descriptions of alternative conformations of amino acid residues and waters, and evidence of a strained nicotinamide ring. The four independent subunits from the two homodimeric structures differ only slightly in the peptide backbone conformation. Alternative conformations for amino acid side chains were identified for 50 of the 748 residues in each complex, and Leu-57 andmore » Leu-116 adopt different conformations to accommodate the different alcohols at the active site. Each fluoroalcohol occupies one position, and the fluorines of the alcohols are well-resolved. These structures closely resemble the expected Michaelis complexes with the pro-R hydrogens of the methylene carbons of the alcohols directed toward the re face of C4N of the nicotinamide rings with a C-C distance of 3.40 {angstrom}. The oxygens of the alcohols are ligated to the catalytic zinc at a distance expected for a zinc alkoxide (1.96 {angstrom}) and participate in a low-barrier hydrogen bond (2.52 {angstrom}) with the hydroxyl group of Ser-48 in a proton relay system. As determined by X-ray refinement with no restraints on bond distances and planarity, the nicotinamide rings in the two complexes are slightly puckered (quasi-boat conformation, with torsion angles of 5.9{sup o} for C4N and 4.8{sup o} for N1N relative to the plane of the other atoms) and have bond distances that are somewhat different compared to those found for NAD(P){sup +}. It appears that the nicotinamide ring is strained toward the transition state on the path to alcohol oxidation.« less

  16. fac-Re(CO)3L complexes containing tridentate monoanionic ligands (L-) with a seldom-studied sulfonamido group as one terminal ligating group.

    PubMed

    Christoforou, Anna Maria; Fronczek, Frank R; Marzilli, Patricia A; Marzilli, Luigi G

    2007-08-20

    To achieve a net-neutral coordination unit in radiopharmaceuticals with a fac-M(CO)3+ core (M = Tc, Re), facially coordinated monoanionic tridentate ligands are needed. New neutral fac-Re(CO)3L complexes were obtained by treating fac-[Re(CO)3(H2O)3]+ with unsymmetrical tridentate NNN donor ligands (LH) based primarily on a diethylenetriamine (dien) moiety with an aromatic group linked to a terminal nitrogen through a sulfonamide. LHs contain 2,4,6-trimethylbenzenesulfonyl (tmbSO2) and 5-(dimethylamino)naphthalene-1-sulfonyl (DNS) groups. X-ray crystallographic and NMR analyses confirm that in both the solid and the solution states all L- in fac-Re(CO)3L complexes are bound in a tridentate fashion with one donor being nitrogen from a deprotonated sulfonamido group. Another fundamental property that is important in radiopharmaceuticals is shape, which in turn depends on ring pucker. For L- = tmbSO2-dien-, tmbSO2-N'-Medien-, and tmbSO2-N,N-Me2dien-, the two chelate rings have a different pucker chirality, as is commonly found for a broad range of metal complexes. However, for fac-Re(CO)3(DNS-dien), both chelate rings have the same pucker chirality because the sulfonamido ring has an unusual pucker for the absolute configuration at Re; a finding that is attributable to intramolecular and intermolecular hydrogen bonds from the sulfonamido oxygens to the NH2 groups. Averaging of tmb NMR signals, even at -90 degrees C for Re(CO)3(tmbSO2-N,N-Me2dien), indicates rapid dynamic motion in the complexes with this group. However, examination of the structures suggests that free rotation about the S-C(tmb) bond is not possible but that concerted coupled rotations about the N-S and the S-C bonds can explain the NMR data.

  17. Bifunctional Asymmetric Catalysis with Hydrogen Chloride: Enantioselective Ring-Opening of Aziridines Catalyzed by a Phosphinothiourea

    PubMed Central

    Mita, Tsuyoshi; Jacobsen, Eric N.

    2009-01-01

    Ring-opening of aziridines with hydrogen chloride to form β-chloroamine derivatives is catalyzed by a chiral phosphinothiourea derivative in high yields and with high enantioselectivities. On the basis of 31P NMR studies, activation of HCl appears to proceed via quantitative protonation of the catalyst to afford a phosphonium chloride complex. PMID:20161432

  18. FT-Raman and FT-IR spectra of some heterobimetallic complexes with phenylcyclopentadienyl ligands

    NASA Astrophysics Data System (ADS)

    Nie, Chong-Shi; Guo, Jianhua; Qian, Changtao; Tan, Ying

    1996-11-01

    The FT-Raman and selected IR spectra of 14 heterobimetallic complexes of (CO) 3CrC 6H 5-C 5H 4M(CO) n(NO) mX (M = transition metal, X = other ligands) are reported. FT-Raman exhibits distinct strong characteristic bands of coordinated C 6H 5-C 5H 4 ligand ring deformation near 1540, 1490 and 1280 cm -1 and the coordinated phenyl ring deformation mode near 1000 cm -1, which are negligible in IR spectra. It is also easy to find the M-CO stretching and M-C-O bending as well as phenyl-M stretching bands in the FT-Raman spectra. The v(CO) IR absorptions in THF solution were reasonably assigned according to the local symmetry of the complexes.

  19. Techniques for computing the discrete Fourier transform using the quadratic residue Fermat number systems

    NASA Technical Reports Server (NTRS)

    Truong, T. K.; Chang, J. J.; Hsu, I. S.; Pei, D. Y.; Reed, I. S.

    1986-01-01

    The complex integer multiplier and adder over the direct sum of two copies of finite field developed by Cozzens and Finkelstein (1985) is specialized to the direct sum of the rings of integers modulo Fermat numbers. Such multiplication over the rings of integers modulo Fermat numbers can be performed by means of two integer multiplications, whereas the complex integer multiplication requires three integer multiplications. Such multiplications and additions can be used in the implementation of a discrete Fourier transform (DFT) of a sequence of complex numbers. The advantage of the present approach is that the number of multiplications needed to compute a systolic array of the DFT can be reduced substantially. The architectural designs using this approach are regular, simple, expandable and, therefore, naturally suitable for VLSI implementation.

  20. A node organization in the actomyosin contractile ring generates tension and aids stability.

    PubMed

    Thiyagarajan, Sathish; Wang, Shuyuan; O'Shaughnessy, Ben

    2017-11-07

    During cytokinesis, a contractile actomyosin ring constricts and divides the cell in two. How the ring marshals actomyosin forces to generate tension is not settled. Recently, a superresolution microscopy study of the fission yeast ring revealed that myosins and formins that nucleate actin filaments colocalize in plasma membrane-anchored complexes called nodes in the constricting ring. The nodes move bidirectionally around the ring. Here we construct and analyze a coarse-grained mathematical model of the fission yeast ring to explore essential consequences of the recently discovered ring ultrastructure. The model reproduces experimentally measured values of ring tension, explains why nodes move bidirectionally, and shows that tension is generated by myosin pulling on barbed-end-anchored actin filaments in a stochastic sliding-filament mechanism. This mechanism is not based on an ordered sarcomeric organization. We show that the ring is vulnerable to intrinsic contractile instabilities, and protection from these instabilities and organizational homeostasis require both component turnover and anchoring of components to the plasma membrane. © 2017 Thiyagarajan, Wang, and O’Shaughnessy. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  1. Stable carbon isotopic composition of tree rings from a pine tree from Augustów Wilderness, Poland, as a temperature and local environment conditions indicator.

    PubMed

    Pawelczyk, Slawomira; Pazdur, Anna; Halas, Stanislaw

    2004-06-01

    Tree rings can be used as archives of climatic and environmental data with annual resolution. Tree rings widths, maximum late wood density and other parameters as stable composition in tree rings can be used for the reconstruction of past climatic and environmental changes. Stable carbon isotope ratios in tree rings may provide valuable information on past climatic conditions. 13C/12C ratios of plant organic matter can reflect corresponding 13C/12C ratio of atmospheric CO2 during formation of the rings. Investigations of isotopic carbon composition in tree rings from in the ecologically clean the Augustów Wilderness region in the north-eastern part of Poland (22 degrees 58'E, 53 degrees 51'N) (nowadays a sanctuary) were undertaken. Series of delta13C in alpha-cellulose and in wholewood were acquired. Those measurements constituted a part of more complex investigations of carbon isotope composition in tree rings including the measurements of radiocarbon concentration and tree ring widths. This article presents preliminary results. It is argued that contrary to the tree ring widths and delta13C in wholewood that do not reveal significant correlation with temperature, the variation of delta13C in the latewood alpha-cellulose is correlated with combined July and August temperatures. Copyright 2004 Taylor and Francis Ltd.

  2. New self-limiting assembly model for Si quantum rings on Si(100).

    PubMed

    Yu, L W; Chen, K J; Song, J; Xu, J; Li, W; Li, X F; Wang, J M; Huang, X F

    2007-04-20

    We propose a new self-limiting assembly model for Si quantum rings on Si(100) where the ring's formation and evolution are driven by a growth-etching competition mechanism. The as-grown ring structure in a plasma enhanced chemical vapor deposition system has excellent rotational symmetry and superior morphology with a typical diameter, edge width, and height of 150-300, 10, and 5 nm, respectively. Based on this model, the size and morphology can be controlled well by simply tuning the timing procedure. We suggest that this growth model is not limited to certain material system, but provides a general scheme to control and tailor the self-assembly nanostructures into the desired size, shape, and complexity.

  3. Identification and preliminary characterization of a protein motif related to the zinc finger.

    PubMed Central

    Lovering, R; Hanson, I M; Borden, K L; Martin, S; O'Reilly, N J; Evan, G I; Rahman, D; Pappin, D J; Trowsdale, J; Freemont, P S

    1993-01-01

    We have identified a protein motif, related to the zinc finger, which defines a newly discovered family of proteins. The motif was found in the sequence of the human RING1 gene, which is proximal to the major histocompatibility complex region on chromosome six. We propose naming this motif the "RING finger" and it is found in 27 proteins, all of which have putative DNA binding functions. We have synthesized a peptide corresponding to the RING1 motif and examined a number of properties, including metal and DNA binding. We provide evidence to support the suggestion that the RING finger motif is the DNA binding domain of this newly defined family of proteins. Images Fig. 1 Fig. 4 PMID:7681583

  4. The origin of the split B800 absorption peak in the LH2 complexes from Allochromatium vinosum.

    PubMed

    Löhner, Alexander; Carey, Anne-Marie; Hacking, Kirsty; Picken, Nichola; Kelly, Sharon; Cogdell, Richard; Köhler, Jürgen

    2015-01-01

    The absorption spectrum of the high-light peripheral light-harvesting (LH) complex from the photosynthetic purple bacterium Allochromatium vinosum features two strong absorptions around 800 and 850 nm. For the LH2 complexes from the species Rhodopseudomonas acidophila and Rhodospirillum molischianum, where high-resolution X-ray structures are available, similar bands have been observed and were assigned to two pigment pools of BChl a molecules that are arranged in two concentric rings (B800 and B850) with nine (acidophila) or eight (molischianum) repeat units, respectively. However, for the high-light peripheral LH complex from Alc. vinosum, the intruiging feature is that the B800 band is split into two components. We have studied this pigment-protein complex by ensemble CD spectroscopy and polarisation-resolved single-molecule spectroscopy. Assuming that the high-light peripheral LH complex in Alc. vinosum is constructed on the same modular principle as described for LH2 from Rps. acidophila and Rsp. molischianum, we used those repeat units as a starting point for simulating the spectra. We find the best agreement between simulation and experiment for a ring-like oligomer of 12 repeat units, where the mutual arrangement of the B800 and B850 rings resembles those from Rsp. molischianum. The splitting of the B800 band can be reproduced if both an excitonic coupling between dimers of B800 molecules and their interaction with the B850 manifold are taken into account. Such dimers predict an interesting apoprotein organisation as discussed below.

  5. Investigation of the effect of cucurbit[7]uril complexation on the photophysical and acid-base properties of the antimalarial drug quinine.

    PubMed

    Mallick, Suman; Pal, Kaushik; Chandra, Falguni; Koner, Apurba L

    2016-11-09

    Host-guest complexation of mono and dicationic quinine with cucurbit[7]uril (CB7), a water-soluble macrocyclic host molecule, has been investigated. Job's plot, time-resolved anisotropy as well as concentration dependent NMR titration confirm the binding of two CB7 macrocycles with one quinine molecule. The binding affinity of dicationic quinine with CB7 is one order of magnitude higher than the binding constant of mono-cationic quinine. Such preferential binding results in one unit pK a shift in the ground-state of the quinoline ring. However, using fluorescence spectroscopy we have obtained two acid-dissociation constants, one for quinoline ring nitrogen and the other for the nitrogen of the quinuclidine moiety. In the excited state, CB7 complexation causes one unit pK a shift for the quinoline ring and 1.9 unit shift for the quinuclidine moiety. Interestingly, a large enhancement of fluorescence lifetime and anisotropy of quinine at pH 2.7 and pH 9.0 upon CB7 complexation was observed due to the restriction of conformational flexibility. Moreover, at pH 3.0, a large fluorescence enhancement of quinine due to CB7 complexation was observed and it was quite significant as compared to that of quinine in 0.1 (M) HCl without CB7. We believe that this study of quinine complexation with CB7 will reduce phototoxicity, increase bioavailability and offer an alternative standard for quantum yield measurements in an amiable condition.

  6. Advanced Ring-Shaped Microelectrode Assay Combined with Small Rectangular Electrode for Quasi-In vivo Measurement of Cell-to-Cell Conductance in Cardiomyocyte Network

    NASA Astrophysics Data System (ADS)

    Nomura, Fumimasa; Kaneko, Tomoyuki; Hamada, Tomoyo; Hattori, Akihiro; Yasuda, Kenji

    2013-06-01

    To predict the risk of fatal arrhythmia induced by cardiotoxicity in the highly complex human heart system, we have developed a novel quasi-in vivo electrophysiological measurement assay, which combines a ring-shaped human cardiomyocyte network and a set of two electrodes that form a large single ring-shaped electrode for the direct measurement of irregular cell-to-cell conductance occurrence in a cardiomyocyte network, and a small rectangular microelectrode for forced pacing of cardiomyocyte beating and for acquiring the field potential waveforms of cardiomyocytes. The advantages of this assay are as follows. The electrophysiological signals of cardiomyocytes in the ring-shaped network are superimposed directly on a single loop-shaped electrode, in which the information of asynchronous behavior of cell-to-cell conductance are included, without requiring a set of huge numbers of microelectrode arrays, a set of fast data conversion circuits, or a complex analysis in a computer. Another advantage is that the small rectangular electrode can control the position and timing of forced beating in a ring-shaped human induced pluripotent stem cell (hiPS)-derived cardiomyocyte network and can also acquire the field potentials of cardiomyocytes. First, we constructed the human iPS-derived cardiomyocyte ring-shaped network on the set of two electrodes, and acquired the field potential signals of particular cardiomyocytes in the ring-shaped cardiomyocyte network during simultaneous acquisition of the superimposed signals of whole-cardiomyocyte networks representing cell-to-cell conduction. Using the small rectangular electrode, we have also evaluated the response of the cell network to electrical stimulation. The mean and SD of the minimum stimulation voltage required for pacing (VMin) at the small rectangular electrode was 166+/-74 mV, which is the same as the magnitude of amplitude for the pacing using the ring-shaped electrode (179+/-33 mV). The results showed that the addition of a small rectangular electrode into the ring-shaped electrode was effective for the simultaneous measurement of whole-cell-network signals and single-cell/small-cluster signals on a local site in the cell network, and for the pacing by electrical stimulation of cardiomyocyte networks.

  7. Identification and molecular characterization of Parkin in Clonorchis sinensis.

    PubMed

    Bai, Xuelian; Kim, Tae Im; Lee, Ji-Yun; Dai, Fuhong; Hong, Sung-Jong

    2015-02-01

    Clonorchis sinensis habitating in the bile duct of mammals causes clonorchiasis endemic in East Asian countries. Parkin is a RING-between-RING protein and has E3-ubiquitin ligase activity catalyzing ubiquitination and degradation of substrate proteins. A cDNA clone of C. sinensis was predicted to encode a polypeptide homologous to parkin (CsParkin) including 5 domains (Ubl, RING0, RING1, IBR, and RING2). The cysteine and histidine residues binding to Zn(2+) were all conserved and participated in formation of tertiary structural RINGs. Conserved residues were also an E2-binding site in RING1 domain and a catalytic cysteine residue in the RING2 domain. Native CsParkin was determined to have an estimated molecular weight of 45.7 kDa from C. sinensis adults by immunoblotting. CsParkin revealed E3-ubiquitin ligase activity and higher expression in metacercariae than in adults. CsParkin was localized in the locomotive and male reproductive organs of C. sinensis adults, and extensively in metacercariae. Parkin has been found to participate in regulating mitochondrial function and energy metabolism in mammalian cells. From these results, it is suggested that CsParkin play roles in energy metabolism of the locomotive organs, and possibly in protein metabolism of the reproductive organs of C. sinensis.

  8. The contractile ring coordinates curvature-dependent septum assembly during fission yeast cytokinesis

    PubMed Central

    Zhou, Zhou; Munteanu, Emilia Laura; He, Jun; Ursell, Tristan; Bathe, Mark; Huang, Kerwyn Casey; Chang, Fred

    2015-01-01

    The functions of the actin-myosin–based contractile ring in cytokinesis remain to be elucidated. Recent findings show that in the fission yeast Schizosaccharomyces pombe, cleavage furrow ingression is driven by polymerization of cell wall fibers outside the plasma membrane, not by the contractile ring. Here we show that one function of the ring is to spatially coordinate septum cell wall assembly. We develop an improved method for live-cell imaging of the division apparatus by orienting the rod-shaped cells vertically using microfabricated wells. We observe that the septum hole and ring are circular and centered in wild-type cells and that in the absence of a functional ring, the septum continues to ingress but in a disorganized and asymmetric manner. By manipulating the cleavage furrow into different shapes, we show that the ring promotes local septum growth in a curvature-dependent manner, allowing even a misshapen septum to grow into a more regular shape. This curvature-dependent growth suggests a model in which contractile forces of the ring shape the septum cell wall by stimulating the cell wall machinery in a mechanosensitive manner. Mechanical regulation of the cell wall assembly may have general relevance to the morphogenesis of walled cells. PMID:25355954

  9. On the buckling of elastic rings by external confinement.

    PubMed

    Hazel, Andrew L; Mullin, Tom

    2017-05-13

    We report the results of an experimental and numerical investigation into the buckling of thin elastic rings confined within containers of circular or regular polygonal cross section. The rings float on the surface of water held in the container and controlled removal of the fluid increases the confinement of the ring. The increased compressive forces can cause the ring to buckle into a variety of shapes. For the circular container, finite perturbations are required to induce buckling, whereas in polygonal containers the buckling occurs through a linear instability that is closely related to the canonical Euler column buckling. A model based on Kirchhoff-Love beam theory is developed and solved numerically, showing good agreement with the experiments and revealing that in polygons increasing the number of sides means that buckling occurs at reduced levels of confinement.This article is part of the themed issue 'Patterning through instabilities in complex media: theory and applications.' © 2017 The Author(s).

  10. On the buckling of elastic rings by external confinement

    PubMed Central

    Hazel, Andrew L.

    2017-01-01

    We report the results of an experimental and numerical investigation into the buckling of thin elastic rings confined within containers of circular or regular polygonal cross section. The rings float on the surface of water held in the container and controlled removal of the fluid increases the confinement of the ring. The increased compressive forces can cause the ring to buckle into a variety of shapes. For the circular container, finite perturbations are required to induce buckling, whereas in polygonal containers the buckling occurs through a linear instability that is closely related to the canonical Euler column buckling. A model based on Kirchhoff–Love beam theory is developed and solved numerically, showing good agreement with the experiments and revealing that in polygons increasing the number of sides means that buckling occurs at reduced levels of confinement. This article is part of the themed issue ‘Patterning through instabilities in complex media: theory and applications.’ PMID:28373386

  11. Arginase reciprocally regulates nitric oxide synthase activity and contributes to endothelial dysfunction in aging blood vessels

    NASA Technical Reports Server (NTRS)

    Berkowitz, Dan E.; White, Ron; Li, Dechun; Minhas, Khalid M.; Cernetich, Amy; Kim, Soonyul; Burke, Sean; Shoukas, Artin A.; Nyhan, Daniel; Champion, Hunter C.; hide

    2003-01-01

    BACKGROUND: Although abnormal L-arginine NO signaling contributes to endothelial dysfunction in the aging cardiovascular system, the biochemical mechanisms remain controversial. L-arginine, the NO synthase (NOS) precursor, is also a substrate for arginase. We tested the hypotheses that arginase reciprocally regulates NOS by modulating L-arginine bioavailability and that arginase is upregulated in aging vasculature, contributing to depressed endothelial function. METHODS AND RESULTS: Inhibition of arginase with (S)-(2-boronoethyl)-L-cysteine, HCl (BEC) produced vasodilation in aortic rings from young (Y) adult rats (maximum effect, 46.4+/-9.4% at 10(-5) mol/L, P<0.01). Similar vasorelaxation was elicited with the additional arginase inhibitors N-hydroxy-nor-L-arginine (nor-NOHA) and difluoromethylornithine (DFMO). This effect required intact endothelium and was prevented by 1H-oxadiazole quinoxalin-1-one (P<0.05 and P<0.001, respectively), a soluble guanylyl cyclase inhibitor. DFMO-elicited vasodilation was greater in old (O) compared with Y rat aortic rings (60+/-6% versus 39+/-6%, P<0.05). In addition, BEC restored depressed L-arginine (10(-4) mol/L)-dependent vasorelaxant responses in O rings to those of Y. Arginase activity and expression were increased in O rings, whereas NOS activity and cyclic GMP levels were decreased. BEC and DFMO suppressed arginase activity and restored NOS activity and cyclic GMP levels in O vessels to those of Y. CONCLUSIONS: These findings demonstrate that arginase modulates NOS activity, likely by regulating intracellular L-arginine availability. Arginase upregulation contributes to endothelial dysfunction of aging and may therefore be a therapeutic target.

  12. [Effects of Surgically Treated Pelvic Ring and Acetabular Fractures on Postural Control].

    PubMed

    Lang, P; Schnegelberger, A; Riesner, H-J; Stuby, F; Friemert, B; Palm, H-G

    2016-04-01

    The aim of surgical treatment of pelvic ring and acetabular fractures is to allow rapid mobilisation of patients in order to restore stance and gait stability (postural control), as this significantly correlates with a positive outcome. The regulation of postural stability is mainly controlled by transmission of proprioceptive stimuli. In addition, the pelvis serves as a connection between the legs and the spine and thus is also of great importance for mechanical stabilisation. It remains unclear whether surgical treatment of pelvic ring and acetabular fractures affects the regulation of postural control. Therefore, the aim of this study was to examine the impact of surgically treated pelvic ring and acetabular fractures on postural stability by means of computerised dynamic posturography (CDP) after a mean of 35 months and to compare the results with a healthy control group. A retrospective case control study of 38 patients with surgically treated pelvic ring and acetabular fractures and 38 healthy volunteers was carried out using CDP. The average time of follow-up was 35 (12-78) months. The most important outcome parameter in this investigation was the overall stability index (OSI). Hip joint mobility, the health-related quality of life (SF-12) and pain were supplementary outcome parameters. It was found that surgically treated pelvic ring and acetabular fractures had no influence on postural stability. The OSI was 2.1 ° in the patient group and 1.9 ° in the control group. There was no significant difference between the groups in hip joint mobility. A total of 52 % of patients showed no or only mild pain. Mean health-related quality of life was the same as in the total population. Surgically treated pelvic ring and acetabular fractures do not lead to deterioration in postural control in the mid term. This is of high prognostic importance for rapid mobilisation of the patients. Therefore no increase in the risk of falling is expected after successfully treatment of fractures. Georg Thieme Verlag KG Stuttgart · New York.

  13. Mutant Analysis Reveals Allosteric Regulation of ClpB Disaggregase

    PubMed Central

    Franke, Kamila B.; Bukau, Bernd; Mogk, Axel

    2017-01-01

    The members of the hexameric AAA+ disaggregase of E. coli and S. cerevisiae, ClpB, and Hsp104, cooperate with the Hsp70 chaperone system in the solubilization of aggregated proteins. Aggregate solubilization relies on a substrate threading activity of ClpB/Hsp104 fueled by ATP hydrolysis in both ATPase rings (AAA-1, AAA-2). ClpB/Hsp104 ATPase activity is controlled by the M-domains, which associate to the AAA-1 ring to downregulate ATP hydrolysis. Keeping M-domains displaced from the AAA-1 ring by association with Hsp70 increases ATPase activity due to enhanced communication between protomers. This communication involves conserved arginine fingers. The control of ClpB/Hsp104 activity is crucial, as hyperactive mutants with permanently dissociated M-domains exhibit cellular toxicity. Here, we analyzed AAA-1 inter-ring communication in relation to the M-domain mediated ATPase regulation, by subjecting a conserved residue of the AAA-1 domain subunit interface of ClpB (A328) to mutational analysis. While all A328X mutants have reduced disaggregation activities, their ATPase activities strongly differed. ClpB-A328I/L mutants have reduced ATPase activity and when combined with the hyperactive ClpB-K476C M-domain mutation, suppress cellular toxicity. This underlines that ClpB ATPase activation by M-domain dissociation relies on increased subunit communication. The ClpB-A328V mutant in contrast has very high ATPase activity and exhibits cellular toxicity on its own, qualifying it as novel hyperactive ClpB mutant. ClpB-A328V hyperactivity is however, different from that of M-domain mutants as M-domains stay associated with the AAA-1 ring. The high ATPase activity of ClpB-A328V primarily relies on the AAA-2 ring and correlates with distinct conformational changes in the AAA-2 catalytic site. These findings characterize the subunit interface residue A328 as crucial regulatory element to control ATP hydrolysis in both AAA rings. PMID:28275610

  14. CYK-4 regulates Rac, but not Rho, during cytokinesis

    PubMed Central

    Zhuravlev, Yelena; Hirsch, Sophia M.; Jordan, Shawn N.; Dumont, Julien; Shirasu-Hiza, Mimi; Canman, Julie C.

    2017-01-01

    Cytokinesis is driven by constriction of an actomyosin contractile ring that is controlled by Rho-family small GTPases. Rho, activated by the guanine-nucleotide exchange factor ECT-2, is upstream of both myosin-II activation and diaphanous formin-mediated filamentous actin (f-actin) assembly, which drive ring constriction. The role for Rac and its regulators is more controversial, but, based on the finding that Rac inactivation can rescue cytokinesis failure when the GTPase-activating protein (GAP) CYK-4 is disrupted, Rac activity was proposed to be inhibitory to contractile ring constriction and thus specifically inactivated by CYK-4 at the division plane. An alternative model proposes that Rac inactivation generally rescues cytokinesis failure by reducing cortical tension, thus making it easier for the cell to divide when ring constriction is compromised. In this alternative model, CYK-4 was instead proposed to activate Rho by binding ECT-2. Using a combination of time-lapse in vivo single-cell analysis and Caenorhabditis elegans genetics, our evidence does not support this alternative model. First, we found that Rac disruption does not generally rescue cytokinesis failure: inhibition of Rac specifically rescues cytokinesis failure due to disruption of CYK-4 or ECT-2 but does not rescue cytokinesis failure due to disruption of two other contractile ring components, the Rho effectors diaphanous formin and myosin-II. Second, if CYK-4 regulates cytokinesis through Rho rather than Rac, then CYK-4 inhibition should decrease levels of downstream targets of Rho. Inconsistent with this, we found no change in the levels of f-actin or myosin-II at the division plane when CYK-4 GAP activity was reduced, suggesting that CYK-4 is not upstream of ECT-2/Rho activation. Instead, we found that the rescue of cytokinesis in CYK-4 mutants by Rac inactivation was Cdc42 dependent. Together our data suggest that CYK-4 GAP activity opposes Rac (and perhaps Cdc42) during cytokinesis. PMID:28298491

  15. Highly Active N,O Zinc Guanidine Catalysts for the Ring-Opening Polymerization of Lactide.

    PubMed

    Schäfer, Pascal M; Fuchs, Martin; Ohligschläger, Andreas; Rittinghaus, Ruth; McKeown, Paul; Akin, Enver; Schmidt, Maximilian; Hoffmann, Alexander; Liauw, Marcel A; Jones, Matthew D; Herres-Pawlis, Sonja

    2017-09-22

    New zinc guanidine complexes with N,O donor functionalities were prepared, characterized by X-Ray crystallography, and examined for their catalytic activity in the solvent-free ring-opening polymerization (ROP) of technical-grade rac-lactide at 150 °C. All complexes showed a high activity. The fastest complex [ZnCl 2 (DMEGasme)] (C1) produced colorless poly(lactide) (PLA) after 90 min with a conversion of 52 % and high molar masses (M w =69 100, polydispersity=1.4). The complexes were tested with different monomer-to-initiator ratios to determine the rate constant k p . Furthermore, a polymerization with the most active complex C1 was monitored by in situ Raman spectroscopy. Overall, conversion of up to 90 % can be obtained. End-group analysis was performed to clarify the mechanism. All four complexes combine robustness against impurities in the lactide with high polymerization rates, and they represent the fastest robust lactide ROP catalysts to date, opening new avenues to a sustainable ROP catalyst family for industrial use. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Five chiral Cd(II) complexes with dual chiral components: Effect of positional isomerism, luminescence and SHG response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Lin, E-mail: lcheng@seu.edu.cn; Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, Southeast University, Nanjing 211189; Wang, Jun

    2015-01-15

    Five chiral Cd(II) complexes with dual chiral components have been synthesized by using a series of (1R,2R)–N{sup 1},N{sup 2}-bis(pyridinylmethyl)cyclohexane-1,2-diamine ligands with different N-positions of pyridyl rings and Cd(NO{sub 3}){sub 2}. The circular dichroism (CD) spectra and second-harmonic generation (SHG) efficiency measurements confirmed that they are of structural chirality in the bulk samples. The luminescent properties indicated that they may have potential applications as optical materials. The formation of discrete mononuclear and binuclear complexes, and one-dimensional chains may be attributed to positional isomerism of the ligands. - Graphical abstract: Five chiral Cd(II) complexes with dual chiral components have been synthesized bymore » using a series of chiral ligands with different N-positions of pyridyl rings. - Highlights: • Five chiral Cd(II) complexes with dual chiral components have been synthesized. • CD spectra and SHG efficiency of the bulk samples have been measured. • The complexes display luminescent properties.« less

  17. Distinct Temporal-Spatial Roles for Rho Kinase and Myosin Light Chain Kinase in Epithelial Purse-String Wound Closure

    PubMed Central

    RUSSO, JOHN M.; FLORIAN, PETER; SHEN, LE; GRAHAM, W. VALLEN; TRETIAKOVA, MARIA S.; GITTER, ALFRED H.; MRSNY, RANDALL J.; TURNER, JERROLD R.

    2005-01-01

    Background & Aims Small epithelial wounds heal by purse-string contraction of an actomyosin ring that is regulated by myosin light chain (MLC) kinase (MLCK) and rho kinase (ROCK). These studies aimed to define the roles of these kinases in purse-string wound closure. Methods Oligocellular and single-cell wounds were created in intestinal epithelial monolayers. Fluorescence imaging and electrophysiologic data were collected during wound closure. Human biopsies were studied immunohistochemically. Results Live-cell imaging of enhanced green fluorescent protein-β-actin defined rapid actin ring assembly within 2 minutes after wounding. This progressed to a circumferential ring within 8 minutes that subsequently contracted and closed the wound. We therefore divided this process into 2 phases: ring assembly and wound contraction. Activated rho and ROCK localized to the wound edge during ring assembly. Consistent with a primary role in the assembly phase, ROCK inhibition prevented actin ring assembly and wound closure. ROCK inhibition after ring assembly was complete had no effect. Recruitment and activation of MLCK occurred after ring assembly was complete and coincided with ring contraction. MLCK inhibition slowed and then stopped contraction but did not prevent ring assembly. MLCK inhibition also delayed barrier function recovery. Studies of human colonic biopsy specimens suggest that purse-string wound closure also occurs in vivo, because MLC phosphorylation was enhanced surrounding oligocellular wounds. Conclusions These results suggest complementary roles for these kinases in purse-string closure of experimental and in vivo oligocellular epithelial wounds; rho and ROCK are critical for actin ring assembly, while the activity of MLCK drives contraction. PMID:15825080

  18. Influence of constitution and charge on radical pairing interactions in tris-radical tricationic complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Chuyang; Cheng, Tao; Xiao, Hai

    The results of a systematic investigation of trisradical tricationic complexes formed between cyclobis-(paraquat-p-phenylene) bisradical dicationic (CBPQT 2 (•+)) rings and a series of 18 dumbbells, containing centrally located 4,4'-bipyridinium radical cationic (BIPY •+) units within oligomethylene chains terminated for the most part by charged 3,5-dimethylpyridinium (PY +) and/or neutral 3,5- dimethylphenyl (PH) groups, are reported. The complexes were obtained by treating equimolar amounts of the CBPQT 4+ ring and the dumbbells containing BIPY 2+ units with zinc dust in acetonitrile solutions. Whereas UV–Vis–NIR spectra revealed absorption bands centered on ca. 1100 nm with quite different intensities for the 1:1 complexesmore » depending on the constitutions and charges on the dumbbells, titration experiments showed that the association constants (K a) for complex formation vary over a wide range, from 800 M–1 for the weakest to 180 000 M –1 for the strongest. While Coulombic repulsions emanating from PY + groups located at the ends of some of the dumbbells undoubtedly contribute to the destabilization of the trisradical tricationic complexes, solid-state superstructures support the contention that those dumbbells with neutral PH groups at the ends of flexible and appropriately constituted links to the BIPY •+ units stand to gain some additional stabilization from C–H···π interactions between the CBPQT 2(•+) rings and the PH termini on the dumbbells. The findings reported in this Article demonstrate how structural changes implemented remotely from the BIPY •+ units influence their non-covalent bonding interactions with CBPQT 2(•+) rings. Different secondary effects (Coulombic repulsions versus C–H···π interactions) are uncovered, and their contributions to both binding strengths associated with trisradical interactions and the kinetics of associations and dissociations are discussed at some length, supported by extensive DFT calculations at the M06-D3 level. Lastly, a fundamental understanding of molecular recognition in radical complexes has relevance when it comes to the design and synthesis of non-equilibrium systems.« less

  19. Influence of constitution and charge on radical pairing interactions in tris-radical tricationic complexes

    DOE PAGES

    Cheng, Chuyang; Cheng, Tao; Xiao, Hai; ...

    2016-07-06

    The results of a systematic investigation of trisradical tricationic complexes formed between cyclobis-(paraquat-p-phenylene) bisradical dicationic (CBPQT 2 (•+)) rings and a series of 18 dumbbells, containing centrally located 4,4'-bipyridinium radical cationic (BIPY •+) units within oligomethylene chains terminated for the most part by charged 3,5-dimethylpyridinium (PY +) and/or neutral 3,5- dimethylphenyl (PH) groups, are reported. The complexes were obtained by treating equimolar amounts of the CBPQT 4+ ring and the dumbbells containing BIPY 2+ units with zinc dust in acetonitrile solutions. Whereas UV–Vis–NIR spectra revealed absorption bands centered on ca. 1100 nm with quite different intensities for the 1:1 complexesmore » depending on the constitutions and charges on the dumbbells, titration experiments showed that the association constants (K a) for complex formation vary over a wide range, from 800 M–1 for the weakest to 180 000 M –1 for the strongest. While Coulombic repulsions emanating from PY + groups located at the ends of some of the dumbbells undoubtedly contribute to the destabilization of the trisradical tricationic complexes, solid-state superstructures support the contention that those dumbbells with neutral PH groups at the ends of flexible and appropriately constituted links to the BIPY •+ units stand to gain some additional stabilization from C–H···π interactions between the CBPQT 2(•+) rings and the PH termini on the dumbbells. The findings reported in this Article demonstrate how structural changes implemented remotely from the BIPY •+ units influence their non-covalent bonding interactions with CBPQT 2(•+) rings. Different secondary effects (Coulombic repulsions versus C–H···π interactions) are uncovered, and their contributions to both binding strengths associated with trisradical interactions and the kinetics of associations and dissociations are discussed at some length, supported by extensive DFT calculations at the M06-D3 level. Lastly, a fundamental understanding of molecular recognition in radical complexes has relevance when it comes to the design and synthesis of non-equilibrium systems.« less

  20. Breakup magmatism on the Vøring Margin, mid-Norway: New insight from interpretation of high-quality 2D and 3D seismic reflection data

    NASA Astrophysics Data System (ADS)

    Abdelmalak, M. M.; Planke, S.; Millett, J.; Jerram, D. A.; Maharjan, D.; Zastrozhnov, D.; Schmid, D. W.; Faleide, J. I.; Svensen, H.; Myklebust, R.

    2017-12-01

    The Vøring Margin offshore mid-Norway is a classic volcanic rifted margin, characterized by voluminous Paleogene igneous rocks present on both sides of the continent-ocean boundary. The margin displays (1) thickened transitional crust with a well-defined lower crustal high-velocity body and prominent deep crustal reflections, the so-called T-Reflection, (2) seaward dipping reflector (SDR) wedges and a prominent northeast-trending escarpment on the Vøring Marginal High, and (3) extensive sill complexes in the adjacent Cretaceous Vøring Basin. During the last decade, new 2D and 3D industry seismic data along with improved processing techniques, such as broadband processing and noise reduction processing sequences, have made it possible to image and map the breakup igneous complex in much greater detail than previously possible. Our interpretation includes a combination of (1) seismic horizon picking, (2) integrated seismic-gravity-magnetic (SGM) interpretation, (3) seismic volcanostratigraphy, and (4) igneous seismic geomorphology. The results are integrated with published wide-angle seismic data, re-analyzed borehole data including new geochronology, and new geodynamic modeling of the effects of magmatism on the thermal history and subsidence of the margin. The extensive sill complexes and associated hydrothermal vent complexes in the Vøring Basin have a Paleocene-Eocene boundary age based on high-precision U/Pb dating combined with seismic mapping constraints. On the marginal high, our results show a highly variable crustal structure, with a pre-breakup configuration consisting of large-scale structural highs and sedimentary basins. These structures were in-filled and covered by basalt flows and volcanogenic sediments during the early stages of continental breakup in the earliest Eocene. Subsequently, rift basins developed along the continent-ocean boundary and where infilled by up to ca. 6 km thick basalt sequences, currently imaged as SDRs fed by a dike swarm imaged on seismic data. The addition of magma within the crust had a prominent effect on the thermal history and hydrocarbon maturation of the sedimentary basin, causing uplift, delayed subsidence, and possibly contributing to the triggering of global warming during the Paleocene-Eocene Thermal Maximum (PETM).

  1. Loss of Polycomb Group Protein Pcgf1 Severely Compromises Proper Differentiation of Embryonic Stem Cells

    PubMed Central

    Yan, Yun; Zhao, Wukui; Huang, Yikai; Tong, Huan; Xia, Yin; Jiang, Qing; Qin, Jinzhong

    2017-01-01

    The Polycomb repressive complex 1 (PRC1) is essential for fate decisions of embryonic stem (ES) cells. Emerging evidence suggests that six major variants of PRC1 complex, defined by the mutually exclusive presence of Pcgf subunit, regulate distinct biological processes, yet very little is known about the mechanism by which each version of PRC1 instructs and maintains cell fate. Here, we disrupted the Pcgf1, also known as Nspc1 and one of six Pcgf paralogs, in mouse ES cells by the CRISPR/Cas9 technology. We showed that although these mutant cells were viable and retained normal self-renewal, they displayed severe defects in differentiation in vitro. To gain a better understanding of the role of Pcgf1 in transcriptional control of differentiation, we analysed mRNA profiles from Pcgf1 deficient cells using RNA-seq. Interestingly, we found that Pcgf1 positively regulated expression of essential transcription factors involved in ectoderm and mesoderm differentiation, revealing an unexpected function of Pcgf1 in gene activation during ES cell lineage specification. Chromatin immunoprecipitation experiments demonstrated that Pcgf1 deletion caused a decrease in Ring1B and its associated H2AK119ub1 mark binding to target genes. Altogether, our results suggested an unexpected function of Pcgf1 in gene activation during ES cell maintenance. PMID:28393894

  2. SAS6-like protein in Plasmodium indicates that conoid-associated apical complex proteins persist in invasive stages within the mosquito vector.

    PubMed

    Wall, Richard J; Roques, Magali; Katris, Nicholas J; Koreny, Ludek; Stanway, Rebecca R; Brady, Declan; Waller, Ross F; Tewari, Rita

    2016-06-24

    The SAS6-like (SAS6L) protein, a truncated paralogue of the ubiquitous basal body/centriole protein SAS6, has been characterised recently as a flagellum protein in trypanosomatids, but associated with the conoid in apicomplexan Toxoplasma. The conoid has been suggested to derive from flagella parts, but is thought to have been lost from some apicomplexans including the malaria-causing genus Plasmodium. Presence of SAS6L in Plasmodium, therefore, suggested a possible role in flagella assembly in male gametes, the only flagellated stage. Here, we have studied the expression and role of SAS6L throughout the Plasmodium life cycle using the rodent malaria model P. berghei. Contrary to a hypothesised role in flagella, SAS6L was absent during gamete flagellum formation. Instead, SAS6L was restricted to the apical complex in ookinetes and sporozoites, the extracellular invasive stages that develop within the mosquito vector. In these stages SAS6L forms an apical ring, as we show is also the case in Toxoplasma tachyzoites. The SAS6L ring was not apparent in blood-stage invasive merozoites, indicating that the apical complex is differentiated between the different invasive forms. Overall this study indicates that a conoid-associated apical complex protein and ring structure is persistent in Plasmodium in a stage-specific manner.

  3. The Fanconi Anemia DNA Repair Pathway Is Regulated by an Interaction between Ubiquitin and the E2-like Fold Domain of FANCL*

    PubMed Central

    Miles, Jennifer A.; Frost, Mark G.; Carroll, Eilis; Rowe, Michelle L.; Howard, Mark J.; Sidhu, Ateesh; Chaugule, Viduth K.; Alpi, Arno F.; Walden, Helen

    2015-01-01

    The Fanconi Anemia (FA) DNA repair pathway is essential for the recognition and repair of DNA interstrand crosslinks (ICL). Inefficient repair of these ICL can lead to leukemia and bone marrow failure. A critical step in the pathway is the monoubiquitination of FANCD2 by the RING E3 ligase FANCL. FANCL comprises 3 domains, a RING domain that interacts with E2 conjugating enzymes, a central domain required for substrate interaction, and an N-terminal E2-like fold (ELF) domain. The ELF domain is found in all FANCL homologues, yet the function of the domain remains unknown. We report here that the ELF domain of FANCL is required to mediate a non-covalent interaction between FANCL and ubiquitin. The interaction involves the canonical Ile44 patch on ubiquitin, and a functionally conserved patch on FANCL. We show that the interaction is not necessary for the recognition of the core complex, it does not enhance the interaction between FANCL and Ube2T, and is not required for FANCD2 monoubiquitination in vitro. However, we demonstrate that the ELF domain is required to promote efficient DNA damage-induced FANCD2 monoubiquitination in vertebrate cells, suggesting an important function of ubiquitin binding by FANCL in vivo. PMID:26149689

  4. Comprehensively Surveying Structure and Function of RING Domains from Drosophila melanogaster

    PubMed Central

    Wu, Yuehao; Wan, Fusheng; Huang, Chunhong; Jie, Kemin

    2011-01-01

    Using a complete set of RING domains from Drosophila melanogaster, all the solved RING domains and cocrystal structures of RING-containing ubiquitin-ligases (RING-E3) and ubiquitin-conjugating enzyme (E2) pairs, we analyzed RING domains structures from their primary to quarternary structures. The results showed that: i) putative orthologs of RING domains between Drosophila melanogaster and the human largely occur (118/139, 84.9%); ii) of the 118 orthologous pairs from Drosophila melanogaster and the human, 117 pairs (117/118, 99.2%) were found to retain entirely uniform domain architectures, only Iap2/Diap2 experienced evolutionary expansion of domain architecture; iii) 4 evolutionary structurally conserved regions (SCRs) are responsible for homologous folding of RING domains at the superfamily level; iv) besides the conserved Cys/His chelating zinc ions, 6 equivalent residues (4 hydrophobic and 2 polar residues) in the SCRs possess good-consensus and conservation- these 4 SCRs function in the structural positioning of 6 equivalent residues as determinants for RING-E3 catalysis; v) members of these RING proteins located nucleus, multiple subcellular compartments, membrane protein and mitochondrion are respectively 42 (42/139, 30.2%), 71 (71/139, 51.1%), 22 (22/139, 15.8%) and 4 (4/139, 2.9%); vi) CG15104 (Topors) and CG1134 (Mul1) in C3HC4, and CG3929 (Deltex) in C3H2C3 seem to display broader E2s binding profiles than other RING-E3s; vii) analyzing intermolecular interfaces of E2/RING-E3 complexes indicate that residues directly interacting with E2s are all from the SCRs in RING domains. Of the 6 residues, 2 hydrophobic ones contribute to constructing the conserved hydrophobic core, while the 2 hydrophobic and 2 polar residues directly participate in E2/RING-E3 interactions. Based on sequence and structural data, SCRs, conserved equivalent residues and features of intermolecular interfaces were extracted, highlighting the presence of a nucleus for RING domain fold and formation of catalytic core in which related residues and regions exhibit preferential evolutionary conservation. PMID:21912646

  5. [Ultrastructure and cytochemistry of the pellicle and apical complexes of the kinete of Babesia bigemina and Babesia ovis in the hemolymph and oavry of the tick].

    PubMed

    Weber, G

    1980-02-01

    The term kinete is used in this paper for the cigar-shaped, motile development stages (VERMICULE") OF Babesia occurring intra- and extracellularly in hemolymph and overy (including oocytes) of vectors, hard ticks (Ixodoidea). The structure of, and cytochemical activities of hydrolases (acid phosphatase, nonspecific esterase) in the pellicle and the apical complex was studied at the fine-structural level in kinetes of Babesia bigemina Smith & Kilborne, in hemolympho of female Boophilus microplus Canestrini. The cytochemistry of acid hydrolases was studied also in kinetes of Babesia ovis (Babès) Starcovici, in hemolymph and ovary of Rhipicephalus bursa Canestrini & Fanzago. The pellicle of the B. bigemina kinetes is composted of 3 membranes (pellicular complex): an outer membrane, approximately 8 nm thick (the plasmalemma) and 2 innder ones, each approximately nm thick, lying closely together. The outer membrane appears to be covered by a structureless coat, 3 nm thick. The space between the inner double membrane and the plasmalemma is 7.5 nm. The whole pellicular complex is 30 nm in diameter. The 2 inner pellicular membranes appear to be derived from the endoplasmic reticulum (ER) for the following reasons: (a) a layer of hydrolase-active material is enclosed by these membranes; (b) in the spheroid parasite stages which transform from kinetes inside hemocytes, the inner double membrane is apparently replaced by an ER cisterna; (c) the thickness of each of the inner pellicular membranes is approximately the same as that of the ER membrane. There are circular openings in the pellicular double membrane with average diameters of 100 nm; despite some similarity to micropores, they have a specific structure. The term Intrapellikularfenster (IPF) (intrapellicular windows) or pseudomicropores is proposed for these pellicular differentiations. The margin of an IPF is formed by the 2 inner membranes folding into each other; cytoplasmic, electron-dense material is accumulated alongside this edge. Unlike that of micropores, the plasmalemma of the IPF is not invaginated. The IPF appears as a single, dark ring in tangential sections. At times, rhoptry-like bodies are associated with the openings. The function of the IPF is not known. An intrapellicular opening similar to the IPF, although wider, is present at the apex of the parasite. Its margin coincides with the inners edge of the apical ring. Typical subpellicular microtubuli were not observed in the Babesia kinetes. The apical complex of the B. bigemina kinetes consists of an Apikalschirm (apical umbrella), a crown of microtubuli beneath it, and rhoptries: micronemes are also present in large numbers. The Apikalschirm is located beneath the pellicle of the apical pole of the parasite. It is a wheel-like structure composed of spokes radiating from a wide, hub=like central ring (apical ring). It should be stressed that the apical ring is not identical with the polar ring described as an integral part of the pellicular complex in other Apicomplexa...

  6. CryoEM and Molecular Dynamics of the Circadian KaiB-KaiC Complex Indicates That KaiB Monomers Interact with KaiC and Block ATP Binding Clefts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Villarreal, Seth A.; Pattanayek, Rekha; Williams, Dewight R.

    The circadian control of cellular processes in cyanobacteria is regulated by a posttranslational oscillator formed by three Kai proteins. During the oscillator cycle, KaiA serves to promote autophosphorylation of KaiC while KaiB counteracts this effect. Here, we present a crystallographic structure of the wild-type Synechococcus elongatus KaiB and a cryo-electron microscopy (cryoEM) structure of a KaiBC complex. The crystal structure shows the expected dimer core structure and significant conformational variations of the KaiB C-terminal region, which is functionally important in maintaining rhythmicity. The KaiBC sample was formed with a C-terminally truncated form of KaiC, KaiC-Δ489, which is persistently phosphorylated. Themore » KaiB–KaiC-Δ489 structure reveals that the KaiC hexamer can bind six monomers of KaiB, which form a continuous ring of density in the KaiBC complex. We performed cryoEM-guided molecular dynamics flexible fitting simulations with crystal structures of KaiB and KaiC to probe the KaiBC protein–protein interface. This analysis indicated a favorable binding mode for the KaiB monomer on the CII end of KaiC, involving two adjacent KaiC subunits and spanning an ATP binding cleft. A KaiC mutation, R468C, which has been shown to affect the affinity of KaiB for KaiC and lengthen the period in a bioluminescence rhythm assay, is found within the middle of the predicted KaiBC interface. The proposed KaiB binding mode blocks access to the ATP binding cleft in the CII ring of KaiC, which provides insight into how KaiB might influence the phosphorylation status of KaiC.« less

  7. Cassini RSS occultation observations of density waves in Saturn's rings

    NASA Astrophysics Data System (ADS)

    McGhee, C. A.; French, R. G.; Marouf, E. A.; Rappaport, N. J.; Schinder, P. J.; Anabtawi, A.; Asmar, S.; Barbinis, E.; Fleischman, D.; Goltz, G.; Johnston, D.; Rochblatt, D.

    2005-08-01

    On May 3, 2005, the first of a series of eight nearly diametric occultations by Saturn's rings and atmosphere took place, observed by the Cassini Radio Science (RSS) team. Simultaneous high SNR measurements at the Deep Space Network (DSN) at S, X, and Ka bands (λ = 13, 3.6, and 0.9 cm) have provided a remarkably detailed look at the radial structure and particle scattering behavior of the rings. By virtue of the relatively large ring opening angle (B=-23.6o), the slant path optical depth of the rings was much lower than during the Voyager epoch (B=5.9o), making it possible to detect many density waves and other ring features in the Cassini RSS data that were lost in the noise in the Voyager RSS experiment. Ultimately, diffraction correction of the ring optical depth profiles will yield radial resolution as small as tens of meters for the highest SNR data. At Ka band, the Fresnel scale is only 1--1.5 km, and thus even without diffraction correction, the ring profiles show a stunning array of density waves. The A ring is replete with dozens of Pandora and Prometheus inner Lindblad resonance features, and the Janus 2:1 density wave in the B ring is revealed with exceptional clarity for the first time at radio wavelengths. Weaker waves are abundant as well, and multiple occultation chords sample a variety of wave phases. We estimate the surface mass density of the rings from linear density wave models of the weaker waves. For stronger waves, non-linear models are required, providing more accurate estimates of the wave dispersion relation, the ring surface mass density, and the angular momentum exchange between the rings and satellite. We thank the DSN staff for their superb support of these complex observations.

  8. Controlled Ring-Opening Metathesis Polymerization by Molybdenum and Tungsten Alkylidene Complexes

    DTIC Science & Technology

    1988-07-29

    weights and low polydispersities (as low as 1.03) consistent with a living catalyst system employing 50, 100, 200, and 400 eq of monomer. The reactions are...secondary metathesis of polymer chains Bulky alkoxide ligands Wittig-like reaction Ring-opening metathesis polymerization (ROMP) Feast monomer Cyclic...olefins Retro Diels-Alder reaction Norbornene (NBE) Low temperature column chromatography Endo-,endo-5,6-dicarbomethoxynorbornene Discrete, soluble

  9. Saturn's Ring: Pre-Cassini Status and Mission Goals

    NASA Astrophysics Data System (ADS)

    Cuzzi, Jeff N.

    1999-01-01

    In November 1980, and again in August 1981, identical Voyager spacecraft flew through the Saturn system, changing forever the way we think about planetary rings. Although Saturn's rings had been the only known ring system for three centuries, a ring system around Uranus had been discovered by stellar occultations from Earth in 1977, and the nearly transparent ring of Jupiter was imaged by Voyager in 1979 (the presence of material there had been inferred from charged particle experiments on Pioneer 10 and 11 several years earlier). While Saturn had thus temporarily lost its uniqueness as having the only ring system, with Voyager it handily recaptured the role of having the most fascinating one. The Voyager breakthroughs included spiral density and bending waves such as cause galactic structure; ubiquitous fine-scale radial 'irregular' structure, with the appearance of record-grooves; regional and local variations in particle color; complex, azimuthally variable ring structure; empty gaps in the rings, some containing very regular, sharp-edged, elliptical rings and one containing both a small moonlet and incomplete arcs of dusty material; and shadowy 'spokes' that flicker across the main rings. One of the paradigm shifts of this period was the realization that many aspects of planetary rings, and even the ring systems themselves, could be 'recent' on geological timescales. These early results are reviewed and summarized in the Arizona Space Science series volumes 'Saturn'. (An excellent review of ring dynamics at a formative stage is by Goldreich and Tremaine.) From the mid 1980's to the time of this writing, progress has been steady, while at a less heady pace, and some of the novel ring properties revealed by Voyager 1 and 2 are beginning to be better understood. It is clearly impossible to cite, much less review, every advance over the last decade; however, below we summarize the main advances in understanding of Saturn's rings since the mid 1980's, in the context of the Cassini Science Objectives.

  10. First Observation of a Hall Effect in a Dusty Plasma: A Charged Granular Flow with Relevance to Planetary Rings

    NASA Astrophysics Data System (ADS)

    Eiskowitz, Skylar; Ballew, Nolan; Rojas, Rubén; Lathrop, Daniel

    2017-11-01

    The particles in Saturn's rings exhibit complex dynamic behavior. They experience solar radiation pressure, electromagnetic forces, and granular collisions. To investigate the possibility of the Hall Effect in the dusty plasma that comprise Saturn's rings, we have built an experiment that demonstrates the Hall Effect in granular matter. We focus on the Hall Effect because the rings' grains become collisionally charged and experience Saturn's dipolar magnetic field and Lorentz forces as they orbit. The experimental setup includes a closed ring-like track where granular matter is forced to circulate driven by compressed air. The structure sits between two electromagnets so that a portion of the track experiences up to a 0.2 T magnetic field. We vary the strength of the field and the speed of the particles. We report the voltage differences between two conducting plates on opposite sides of the track. If Saturn's rings do experience the Hall Effect, the inside and outside of the rings will develop a charge separation that can lead to a radial electric field and various phenomena including orbital effects due to the additional electric forces. Observational evidence from Cassini suggests that Saturn's rings exhibit lighting, supporting the notion that they are electrically charged. TREND REU program sponsored by the National Science Foundation.

  11. The RING 2.0 web server for high quality residue interaction networks.

    PubMed

    Piovesan, Damiano; Minervini, Giovanni; Tosatto, Silvio C E

    2016-07-08

    Residue interaction networks (RINs) are an alternative way of representing protein structures where nodes are residues and arcs physico-chemical interactions. RINs have been extensively and successfully used for analysing mutation effects, protein folding, domain-domain communication and catalytic activity. Here we present RING 2.0, a new version of the RING software for the identification of covalent and non-covalent bonds in protein structures, including π-π stacking and π-cation interactions. RING 2.0 is extremely fast and generates both intra and inter-chain interactions including solvent and ligand atoms. The generated networks are very accurate and reliable thanks to a complex empirical re-parameterization of distance thresholds performed on the entire Protein Data Bank. By default, RING output is generated with optimal parameters but the web server provides an exhaustive interface to customize the calculation. The network can be visualized directly in the browser or in Cytoscape. Alternatively, the RING-Viz script for Pymol allows visualizing the interactions at atomic level in the structure. The web server and RING-Viz, together with an extensive help and tutorial, are available from URL: http://protein.bio.unipd.it/ring. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  12. The E3 ligase HOIP specifies linear ubiquitin chain assembly through its RING-IBR-RING domain and the unique LDD extension

    PubMed Central

    Smit, Judith J; Monteferrario, Davide; Noordermeer, Sylvie M; van Dijk, Willem J; van der Reijden, Bert A; Sixma, Titia K

    2012-01-01

    Activation of the NF-κB pathway requires the formation of Met1-linked ‘linear' ubiquitin chains on NEMO, which is catalysed by the Linear Ubiquitin Chain Assembly Complex (LUBAC) E3 consisting of HOIP, HOIL-1L and Sharpin. Here, we show that both LUBAC catalytic activity and LUBAC specificity for linear ubiquitin chain formation are embedded within the RING-IBR-RING (RBR) ubiquitin ligase subunit HOIP. Linear ubiquitin chain formation by HOIP proceeds via a two-step mechanism involving both RING and HECT E3-type activities. RING1-IBR catalyses the transfer of ubiquitin from the E2 onto RING2, to transiently form a HECT-like covalent thioester intermediate. Next, the ubiquitin is transferred from HOIP onto the N-terminus of a target ubiquitin. This transfer is facilitated by a unique region in the C-terminus of HOIP that we termed ‘Linear ubiquitin chain Determining Domain' (LDD), which may coordinate the acceptor ubiquitin. Consistent with this mechanism, the RING2-LDD region was found to be important for NF-κB activation in cellular assays. These data show how HOIP combines a general RBR ubiquitin ligase mechanism with unique, LDD-dependent specificity for producing linear ubiquitin chains. PMID:22863777

  13. Planetary Rings

    NASA Technical Reports Server (NTRS)

    Cuzzi, Jeffrey N.

    1994-01-01

    Just over two decades ago, Jim Pollack made a critical contribution to our understanding of planetary ring particle properties, and resolved a major apparent paradox between radar reflection and radio emission observations. At the time, particle properties were about all there were to study about planetary rings, and the fundamental questions were, why is Saturn the only planet with rings, how big are the particles, and what are they made of? Since then, we have received an avalanche of observations of planetary ring systems, both from spacecraft and from Earth. Meanwhile, we have seen steady progress in our understanding of the myriad ways in which gravity, fluid and statistical mechanics, and electromagnetism can combine to shape the distribution of the submicron-to-several-meter size particles which comprise ring systems into the complex webs of structure that we now know them to display. Insights gained from studies of these giant dynamical analogs have carried over into improved understanding of the formation of the planets themselves from particle disks, a subject very close to Jim's heart. The now-complete reconnaissance of the gas giant planets by spacecraft has revealed that ring systems are invariably found in association with families of regular satellites, and there is ark emerging perspective that they are not only physically but causally linked. There is also mounting evidence that many features or aspects of all planetary ring systems, if not the ring systems themselves, are considerably younger than the solar system

  14. Sub-Fickean Diffusion in a One-Dimensional Plasma Ring

    NASA Astrophysics Data System (ADS)

    Theisen, W. L.

    2013-12-01

    A one-dimensional dusty plasma ring is formed in a strongly-coupled complex plasma. The dust particles in the ring can be characterized as a one-dimensional system where the particles cannot pass each other. The particles perform random walks due to thermal motions. This single-file self diffusion is characterized by the mean-squared displacement (msd) of the individual particles which increases with time t. Diffusive processes that follow Ficks law predict that the msd increases as t, however, single-file diffusion is sub-Fickean meaning that the msd is predicted to increase as t^(1/2). Particle position data from the dusty plasma ring is analyzed to determine the scaling of the msd with time. Results are compared with predictions of single-file diffusion theory.

  15. Total synthesis of bryostatins: the development of methodology for the atom-economic and stereoselective synthesis of the ring C subunit.

    PubMed

    Trost, Barry M; Frontier, Alison J; Thiel, Oliver R; Yang, Hanbiao; Dong, Guangbin

    2011-08-22

    Bryostatins, a family of structurally complicated macrolides, exhibit an exceptional range of biological activities. The limited availability and structural complexity of these molecules makes development of an efficient total synthesis particularly important. This article describes our initial efforts towards the total synthesis of bryostatins, in which chemoselective and atom-economical methods for the stereoselective assembly of the ring C subunit were developed. A Pd-catalyzed tandem alkyne-alkyne coupling/6-endo-dig cyclization sequence was explored and successfully pursued in the synthesis of a dihydropyran ring system. Elaboration of this methodology ultimately led to a concise synthesis of the ring C subunit of bryostatins. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. 1,1′-Bis[bis­(4-meth­oxy­phen­yl)phosphan­yl]ferrocene

    PubMed Central

    Ren, Xinfeng; Wang, Le; Li, Ya

    2012-01-01

    In the crystal structure of the title substituted ferrocene complex, [Fe(C19H18O2P)2], the FeII atom lies on a twofold rotation axis, giving an eclipsed cyclo­penta­dienyl conformation with a ring centroid separation of 3.292 (7) Å and an Fe—C bond-length range of 2.0239 (15)–2.0521 (15) Å. In the ligand, the cyclo­penta­dienyl ring forms dihedral angles of 60.36 (6) and 82.93 (6)° with the two benzene rings of the diphenyl­phosphine group, while the dihedral angle between the benzene rings is 67.4 (5)°. PMID:22807756

  17. Enriching screening libraries with bioactive fragment space.

    PubMed

    Zhang, Na; Zhao, Hongtao

    2016-08-01

    By deconvoluting 238,073 bioactive molecules in the ChEMBL library into extended Murcko ring systems, we identified a set of 2245 ring systems present in at least 10 molecules. These ring systems belong to 2221 clusters by ECFP4 fingerprints with a minimum intracluster similarity of 0.8. Their overlap with ring systems in commercial libraries was further quantified. Our findings suggest that success of a small fragment library is driven by the convergence of effective coverage of bioactive ring systems (e.g., 10% coverage by 1000 fragments vs. 40% by 2million HTS compounds), high enrichment of bioactive ring systems, and low molecular complexity enhancing the probability of a match with the protein targets. Reconciling with the previous studies, bioactive ring systems are underrepresented in screening libraries. As such, we propose a library of virtual fragments with key functionalities via fragmentation of bioactive molecules. Its utility is exemplified by a prospective application on protein kinase CK2, resulting in the discovery of a series of novel inhibitors with the most potent compound having an IC50 of 0.5μM and a ligand efficiency of 0.41kcal/mol per heavy atom. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Assembly interdependence among the S. cerevisiae bud neck ring proteins Elm1p, Hsl1p and Cdc12p.

    PubMed

    Thomas, Courtney L; Blacketer, Melissa J; Edgington, Nicholas P; Myers, Alan M

    2003-07-15

    In Saccharomyces cerevisiae, a complex comprising more than 20 different polypeptides assembles in a ring at the neck between the mother cell and the bud. This complex functions to coordinate cell morphology with cell division. Relatively little is known about this control system, including the physical relationships between the components of the neck ring. This study addressed the assembly interactions of three components of the ring, specifically the protein kinases Elm1p and Hsl1p and the septin Cdc12p. Specific amino acid substitutions in each of these three proteins were identified that either cause or suppress a characteristic phenotype of abnormally elongated cells and delay in the G(2)-M transition. Each protein was fused to green fluorescent protein, and its ability to localize at the neck was monitored in vivo in cells of various genotypes. Localization of Hsl1p to the neck requires Elm1p function. Elm1p localized normally in the absence of Hsl1p, although a specific point mutation in Hsl1p clearly affected Elm1p localization. The cdc12-122 mutation prevented assembly of Elm1p or Hsl1p into the neck ring. Normal assembly of Cdc12p at the neck was dependent upon Elm1p and also, to a smaller extent, on Hsl1p. Ectopic localization of Cdc12p at the bud tip was observed frequently in elm1 mutants and also, to a lesser extent, in hsl1 mutants. Thus, Elm1p is a key factor in the assembly and/or maintenance of Hsl1p, as well as at least one septin, into the bud neck ring. Copyright 2003 John Wiley & Sons, Ltd.

  19. Curcumin-β-cyclodextrin inclusion complex: stability, solubility, characterisation by FT-IR, FT-Raman, X-ray diffraction and photoacoustic spectroscopy, and food application.

    PubMed

    Mangolim, Camila Sampaio; Moriwaki, Cristiane; Nogueira, Ana Claudia; Sato, Francielle; Baesso, Mauro Luciano; Neto, Antônio Medina; Matioli, Graciette

    2014-06-15

    Curcumin was complexed with β-CD using co-precipitation, freeze-drying and solvent evaporation methods. Co-precipitation enabled complex formation, as indicated by the FT-IR and FT-Raman techniques via the shifts in the peaks that were assigned to the aromatic rings of curcumin. In addition, photoacoustic spectroscopy and X-ray diffraction, with the disappearance of the band related to aromatic rings, by Gaussian fitting, and modifications in the spectral lines, respectively, also suggested complex formation. The possible complexation had an efficiency of 74% and increased the solubility of the pure colourant 31-fold. Curcumin-β-CD complex exhibited a sunlight stability 18% higher than the pure colourant. This material was stable to pH variations and storage at -15 and 4°C. With an isothermal heating at 100 and 150°C for 2h, the material exhibited a colour retention of approximately 99%. The application of curcumin-β-CD complex in vanilla ice creams intensified the colour of the products and produced a great sensorial acceptance. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. A primary microcephaly protein complex forms a ring around parental centrioles.

    PubMed

    Sir, Joo-Hee; Barr, Alexis R; Nicholas, Adeline K; Carvalho, Ofelia P; Khurshid, Maryam; Sossick, Alex; Reichelt, Stefanie; D'Santos, Clive; Woods, C Geoffrey; Gergely, Fanni

    2011-10-09

    Autosomal recessive primary microcephaly (MCPH) is characterized by a substantial reduction in prenatal human brain growth without alteration of the cerebral architecture and is caused by biallelic mutations in genes coding for a subset of centrosomal proteins. Although at least three of these proteins have been implicated in centrosome duplication, the nature of the centrosome dysfunction that underlies the neurodevelopmental defect in MCPH is unclear. Here we report a homozygous MCPH-causing mutation in human CEP63. CEP63 forms a complex with another MCPH protein, CEP152, a conserved centrosome duplication factor. Together, these two proteins are essential for maintaining normal centrosome numbers in cells. Using super-resolution microscopy, we found that CEP63 and CEP152 co-localize in a discrete ring around the proximal end of the parental centriole, a pattern specifically disrupted in CEP63-deficient cells derived from patients with MCPH. This work suggests that the CEP152-CEP63 ring-like structure ensures normal neurodevelopment and that its impairment particularly affects human cerebral cortex growth.

  1. Cu-free 1,3-dipolar cycloaddition click reactions to form isoxazole linkers in chelating ligands for fac-[M(I)(CO)3]+ centers (M = Re, 99mTc).

    PubMed

    Bottorff, Shalina C; Kasten, Benjamin B; Stojakovic, Jelena; Moore, Adam L; MacGillivray, Leonard R; Benny, Paul D

    2014-02-17

    Isoxazole ring formation was examined as a potential Cu-free alternative click reaction to Cu(I)-catalyzed alkyne/azide cycloaddition. The isoxazole reaction was explored at macroscopic and radiotracer concentrations with the fac-[M(I)(CO)3](+) (M = Re, (99m)Tc) core for use as a noncoordinating linker strategy between covalently linked molecules. Two click assembly methods (click, then chelate and chelate, then click) were examined to determine the feasibility of isoxazole ring formation with either alkyne-functionalized tridentate chelates or their respective fac-[M(I)(CO)3](+) complexes with a model nitrile oxide generator. Macroscale experiments, alkyne-functionalized chelates, or Re complexes indicate facile formation of the isoxazole ring. (99m)Tc experiments demonstrate efficient radiolabeling with click, then chelate; however, the chelate, then click approach led to faster product formation, but lower yields compared to the Re analogues.

  2. Photo-activation of Single Molecule Magnet Behavior in a Manganese-based Complex

    NASA Astrophysics Data System (ADS)

    Fetoh, Ahmed; Cosquer, Goulven; Morimoto, Masakazu; Irie, Masahiro; El-Gammal, Ola; El-Reash, Gaber Abu; Breedlove, Brian K.; Yamashita, Masahiro

    2016-03-01

    A major roadblock to fully realizing molecular electronic devices is the ability to control the properties of each molecule in the device. Herein we report the control of the magnetic properties of single-molecule magnets (SMMs), which can be used in memory devices, by using a photo-isomerizable diarthylenthene ligand. Photo-isomerization of the diarylethene ligand bridging two manganese salen complexes with visible light caused a significant change in the SMM behavior due to opening of the six-membered ring of diarylethene ligand, accompanied by reorganization of the entire molecule. The ring-opening activated the frequency-dependent magnetization of the complex. Our results are a major step towards the realization of molecular memory devices composed of SMMs because the SMM behaviour can be turned on and off simply by irradiating the molecule.

  3. Discovering amino acid patterns on binding sites in protein complexes

    PubMed Central

    Kuo, Huang-Cheng; Ong, Ping-Lin; Lin, Jung-Chang; Huang, Jen-Peng

    2011-01-01

    Discovering amino acid (AA) patterns on protein binding sites has recently become popular. We propose a method to discover the association relationship among AAs on binding sites. Such knowledge of binding sites is very helpful in predicting protein-protein interactions. In this paper, we focus on protein complexes which have protein-protein recognition. The association rule mining technique is used to discover geographically adjacent amino acids on a binding site of a protein complex. When mining, instead of treating all AAs of binding sites as a transaction, we geographically partition AAs of binding sites in a protein complex. AAs in a partition are treated as a transaction. For the partition process, AAs on a binding site are projected from three-dimensional to two-dimensional. And then, assisted with a circular grid, AAs on the binding site are placed into grid cells. A circular grid has ten rings: a central ring, the second ring with 6 sectors, the third ring with 12 sectors, and later rings are added to four sectors in order. As for the radius of each ring, we examined the complexes and found that 10Å is a suitable range, which can be set by the user. After placing these recognition complexes on the circular grid, we obtain mining records (i.e. transactions) from each sector. A sector is regarded as a record. Finally, we use the association rule to mine these records for frequent AA patterns. If the support of an AA pattern is larger than the predetermined minimum support (i.e. threshold), it is called a frequent pattern. With these discovered patterns, we offer the biologists a novel point of view, which will improve the prediction accuracy of protein-protein recognition. In our experiments, we produced the AA patterns by data mining. As a result, we found that arginine (arg) most frequently appears on the binding sites of two proteins in the recognition protein complexes, while cysteine (cys) appears the fewest. In addition, if we discriminate the shape of binding sites between concave and convex further, we discover that patterns {arg, glu, asp} and {arg, ser, asp} on the concave shape of binding sites in a protein more frequently (i.e. higher probability) make contact with {lys} or {arg} on the convex shape of binding sites in another protein. Thus, we can confidently achieve a rate of at least 78%. On the other hand {val, gly, lys} on the convex surface of binding sites in proteins is more frequently in contact with {asp} on the concave site of another protein, and the confidence achieved is over 81%. Applying data mining in biology can reveal more facts that may otherwise be ignored or not easily discovered by the naked eye. Furthermore, we can discover more relationships among AAs on binding sites by appropriately rotating these residues on binding sites from a three-dimension to two-dimension perspective. We designed a circular grid to deposit the data, which total to 463 records consisting of AAs. Then we used the association rules to mine these records for discovering relationships. The proposed method in this paper provides an insight into the characteristics of binding sites for recognition complexes. PMID:21464838

  4. The Min Oscillator Uses MinD-Dependent Conformational Changes in MinE to Spatially Regulate Cytokinesis.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Kyung-Tase; Wu, Wei; Battaile, Kevin P.

    In E. coli, MinD recruits MinE to the membrane, leading to a coupled oscillation required for spatial regulation of the cytokinetic Z ring. How these proteins interact, however, is not clear because the MinD-binding regions of MinE are sequestered within a six-stranded {beta} sheet and masked by N-terminal helices. minE mutations that restore interaction between some MinD and MinE mutants were isolated. These mutations alter the MinE structure leading to release of the MinD-binding regions and the N-terminal helices that bind the membrane. Crystallization of MinD-MinE complexes revealed a four-stranded {beta} sheet MinE dimer with the released {beta} strands (MinD-bindingmore » regions) converted to {alpha} helices bound to MinD dimers. These results identify the MinD-dependent conformational changes in MinE that convert it from a latent to an active form and lead to a model of how MinE persists at the MinD-membrane surface.« less

  5. Lon in maintaining mitochondrial and endoplasmic reticulum homeostasis.

    PubMed

    Yang, Jieyeqi; Chen, Wenying; Zhang, Boyang; Tian, Fengli; Zhou, Zheng; Liao, Xin; Li, Chen; Zhang, Yi; Han, Yanyan; Wang, Yan; Li, Yuzhe; Wang, Guo-Qing; Shen, Xiao Li

    2018-06-01

    As a vital member of AAA+ (ATPase associated with diverse cellular activities) protein superfamily, Lon, a homo-hexameric ring-shaped protein complex with a serine-lysine catalytic dyad, is highly conserved throughout almost all prokaryotic and eukaryotic organisms. Lon protease (LONP) plays an important role in maintaining mitoproteostasis through selectively recognizing and degrading oxidatively modified mitoproteins within mitochondrial matrix, such as oxidized aconitase, phosphorylated mitochondrial transcription factor A, etc. Furthermore, the up-regulated LONP increased mitochondrial ROS generation to promote cell survival, cell proliferation, epithelial-mesenchymal transition, and cell migration, which was attributed to the up-regulation of NADH:ubiquinone oxidoreductase core subunit S8 via interaction with chaperone Lon under hypoxic or oxidative stress in tumorigenesis. In addition, Lon also participated in protein kinase RNA (PKR)-like endoplasmic reticulum kinase signaling pathway under endoplasmic reticulum (ER) stress. In short, Lon, as a pivotal stress-responsive protein that involved in the crosstalks among mitochondria, ER and nucleus, participated in multifarious important cellular processes crucial for cell survival, such as the mitochondrial protein quality control system, the mitochondrial unfolded protein response, the mtDNA maintenance, and the ER unfolded protein response.

  6. The laminar organization of the Drosophila ellipsoid body is semaphorin-dependent and prevents the formation of ectopic synaptic connections

    PubMed Central

    Xie, Xiaojun; Tabuchi, Masashi; Brown, Matthew P; Mitchell, Sarah P; Wu, Mark N; Kolodkin, Alex L

    2017-01-01

    The ellipsoid body (EB) in the Drosophila brain is a central complex (CX) substructure that harbors circumferentially laminated ring (R) neuron axons and mediates multifaceted sensory integration and motor coordination functions. However, what regulates R axon lamination and how lamination affects R neuron function remain unknown. We show here that the EB is sequentially innervated by small-field and large-field neurons and that early developing EB neurons play an important regulatory role in EB laminae formation. The transmembrane proteins semaphorin-1a (Sema-1a) and plexin A function together to regulate R axon lamination. R neurons recruit both GABA and GABA-A receptors to their axon terminals in the EB, and optogenetic stimulation coupled with electrophysiological recordings show that Sema-1a-dependent R axon lamination is required for preventing the spread of synaptic inhibition between adjacent EB lamina. These results provide direct evidence that EB lamination is critical for local pre-synaptic inhibitory circuit organization. DOI: http://dx.doi.org/10.7554/eLife.25328.001 PMID:28632130

  7. Regiospecificity of Human UDP-glucuronosyltransferase Isoforms in Chalcone and Flavanone Glucuronidation Determined by Metal Complexation and Tandem Mass Spectrometry

    PubMed Central

    Niemeyer, Emily D.; Brodbelt, Jennifer S.

    2013-01-01

    The glucuronidation of a series of chalcones (2'-hydroxychalcone, 2',4'-dihydroxychalcone, 3,2'-dihydroxychalcone, 4,2'-dihydroxychalcone, and cardamonin) and their corresponding cyclized flavanones (7-hydroxyflavanone, 3'-hydroxyflavanone, 4'-hydroxyflavanone, and alpinetin) by nine human UDP-glucuronosyltransferase (UGT) 1A enzymes was evaluated. A post-column metal complexation LC-MS/MS strategy was used successfully to produce characteristic mass spectrometric product ions that were utilized in combination with elution order trends to identify chalcone and flavanone monoglucuronides unambiguously, thus allowing determination of the regioselectivities of the UGT1A isoforms. The presence of hydroxy groups on the A or B-ring had a significant effect on the glucuronide product yield and the site where glucuronidation occurred. For example, for reaction with UGT1A9, formation of the 2'-O-glucuronide was increased for dihydroxychalcones with A-ring hydroxy substituents. In contrast, although UGT1A8 reacted with 3,2'-dihydroxychalcone and 4,2'-dihydroxychalcone to yield 2'-O-glucuronide products, the presence of a B-ring hydroxy group at the 4' position on cardamonin and 2',4'-dihydroxychalcone quenched the reaction at the OH-2' position. Moreover, the A-ring OH-4 group promoted glucuronidation at the 2' position for the reaction of 4,2'-dihydroxychalcone with UGT1A1 and 1A3. For UGT1A7, hydroxy group substituents on the chalcone A-ring also promoted cyclization and formation of the corresponding flavanone glucuronide. PMID:23713759

  8. Regiospecificity of human UDP-glucuronosyltransferase isoforms in chalcone and flavanone glucuronidation determined by metal complexation and tandem mass spectrometry.

    PubMed

    Niemeyer, Emily D; Brodbelt, Jennifer S

    2013-06-28

    The glucuronidation of a series of chalcones (2'-hydroxychalcone, 2',4'-dihydroxychalcone, 3,2'-dihydroxychalcone, 4,2'-dihydroxychalcone, and cardamonin) and their corresponding cyclized flavanones (7-hydroxyflavanone, 3'-hydroxyflavanone, 4'-hydroxyflavanone, and alpinetin) by eight human UDP-glucuronosyltransferase (UGT) 1A enzymes was evaluated. A postcolumn metal complexation LC-MS/MS strategy was used successfully to produce characteristic mass spectrometric product ions that were utilized in combination with elution order trends to identify chalcone and flavanone monoglucuronides unambiguously, thus allowing determination of the regioselectivities of the UGT1A isoforms. The presence of hydroxy groups on the A- or B-ring had a significant effect on the glucuronide product yield and the site where glucuronidation occurred. For example, for reaction with UGT1A9, formation of the 2'-O-glucuronide was increased for dihydroxychalcones with A-ring hydroxy substituents. In contrast, although UGT1A8 reacted with 3,2'-dihydroxychalcone and 4,2'-dihydroxychalcone to yield 2'-O-glucuronide products, the presence of a B-ring hydroxy group at the 4' position on cardamonin and 2',4'-dihydroxychalcone quenched the reaction at the OH-2' position. Moreover, the A-ring OH-4 group promoted glucuronidation at the 2' position for the reaction of 4,2'-dihydroxychalcone with UGT1A1 and 1A3. For UGT1A7, hydroxy group substituents on the chalcone A-ring also promoted cyclization and formation of the corresponding flavanone glucuronide.

  9. 50 CFR 600.746 - Observers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... USCG regulations: (1) Personal flotation devices/ immersion suits; (2) Ring buoys; (3) Distress signals; (4) Fire extinguishing equipment; (5) Emergency position indicating radio beacon (EPIRB), when...

  10. 50 CFR 600.746 - Observers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... USCG regulations: (1) Personal flotation devices/ immersion suits; (2) Ring buoys; (3) Distress signals; (4) Fire extinguishing equipment; (5) Emergency position indicating radio beacon (EPIRB), when...

  11. Crystal Structures of Covalent Complexes of [beta]-Lactam Antibiotics with Escherichia coli Penicillin-Binding Protein 5: Toward an Understanding of Antibiotic Specificity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nicola, George; Tomberg, Joshua; Pratt, R.F.

    Penicillin-binding proteins (PBPs) are the molecular targets for the widely used {beta}-lactam class of antibiotics, but how these compounds act at the molecular level is not fully understood. We have determined crystal structures of Escherichia coli PBP 5 as covalent complexes with imipenem, cloxacillin, and cefoxitin. These antibiotics exhibit very different second-order rates of acylation for the enzyme. In all three structures, there is excellent electron density for the central portion of the {beta}-lactam, but weak or absent density for the R1 or R2 side chains. Areas of contact between the antibiotics and PBP 5 do not correlate with themore » rates of acylation. The same is true for conformational changes, because although a shift of a loop leading to an electrostatic interaction between Arg248 and the {beta}-lactam carboxylate, which occurs completely with cefoxitin and partially with imipenem and is absent with cloxacillin, is consistent with the different rates of acylation, mutagenesis of Arg248 decreased the level of cefoxitin acylation only 2-fold. Together, these data suggest that structures of postcovalent complexes of PBP 5 are unlikely to be useful vehicles for the design of new covalent inhibitors of PBPs. Finally, superimposition of the imipenem-acylated complex with PBP 5 in complex with a boronic acid peptidomimetic shows that the position corresponding to the hydrolytic water molecule is occluded by the ring nitrogen of the {beta}-lactam. Because the ring nitrogen occupies a similar position in all three complexes, this supports the hypothesis that deacylation is blocked by the continued presence of the leaving group after opening of the {beta}-lactam ring.« less

  12. Multiheteromacrocycles that Complex Metal Ions. Second Progress Report, 1 May 1975 -- 30 April 1976

    DOE R&D Accomplishments Database

    Cram, D. J.

    1976-01-15

    Objective is to develop cyclic and polycyclic host organic compounds to complex and lipophilize metal ions. Macrorings were synthesized: (OCH{sub 2} CH{sub 2} O CH{sub 2}COCH{sub 2} COCH{sub 2}){sub 2} and (OCH{sub 2} CH{sub 2} O CH{sub 2} COCH{sub 2} COCH{sub 2}){sub 3}. The smaller ring complexes divalent metals 10{sup 1+9} times better than the open-chain model CH{sub 3} O CH{sub 2} CO CH{sub 2} COCH{sub 2} O CH{sub 3}, and the order in which metal ions are complexed is Cu{sup 2+}, UO{sub 2}{sup 2+} greater than Ni{sup 2+} greater than Fe{sup 2+}, Co{sup 2+}, Zn{sup 2+}, Cd{sup 2+} greater than Mn{sup 2+}. The UO{sub 2}{sup 2+} and Cu{sup 2+} complexes were isolated and characterized. The larger ring complexes trivalent metals 10{sup 0.9-1.7} times better than the open- chain model compound, and the order is La{sup 3+}, Ce{sup 3+} greater than Cr{sup 3+}. Five other macrocycles were also synthesized, and their binding constants with Na, K, NH{sub 4}, and Cs picrates were measured. Six compounds containing one macroring and two inward-pointing ArOH or ArOCH{sub 3} groups were also prepared and tested for binding of Li, Na, K, Rb, and NH{sub 4} picrates. Racemic compounds containing two binaphthyls and its sulfur analog were prepared. Cage-shaped multiheteromacrocycles containing ten O ligand sites or four S and six O ligand sites were prepared and the binding capability of the first compound for picrates studied. Two ring systems with phosphonate ester groups were also prepared. (DLC)

  13. Embedding the dynamics of a single delay system into a feed-forward ring.

    PubMed

    Klinshov, Vladimir; Shchapin, Dmitry; Yanchuk, Serhiy; Wolfrum, Matthias; D'Huys, Otti; Nekorkin, Vladimir

    2017-10-01

    We investigate the relation between the dynamics of a single oscillator with delayed self-feedback and a feed-forward ring of such oscillators, where each unit is coupled to its next neighbor in the same way as in the self-feedback case. We show that periodic solutions of the delayed oscillator give rise to families of rotating waves with different wave numbers in the corresponding ring. In particular, if for the single oscillator the periodic solution is resonant to the delay, it can be embedded into a ring with instantaneous couplings. We discover several cases where the stability of a periodic solution for the single unit can be related to the stability of the corresponding rotating wave in the ring. As a specific example, we demonstrate how the complex bifurcation scenario of simultaneously emerging multijittering solutions can be transferred from a single oscillator with delayed pulse feedback to multijittering rotating waves in a sufficiently large ring of oscillators with instantaneous pulse coupling. Finally, we present an experimental realization of this dynamical phenomenon in a system of coupled electronic circuits of FitzHugh-Nagumo type.

  14. Ring modulator small-signal response analysis based on pole-zero representation.

    PubMed

    Karimelahi, Samira; Sheikholeslami, Ali

    2016-04-04

    We present a closed-form expression for the small-signal response of a depletion-mode ring modulator and verify it by measurement results. Both electrical and optical behavior of micro-ring modulator as well as the loss variation due to the index modulation is considered in the derivation. This expression suggests that a ring modulator is a third-order system with one real pole, one zero and a pair of complex-conjugate poles. The exact positions of the poles/zero are given and shown to be dependent upon parameters such as electrical bandwidth, coupling condition, optical loss, and sign/value of laser detunings. We show that the location of zero is different for positive and negative detuning, and therefore, the ring modulator frequency response is asymmetric. We use the gain-bandwidth product as a figure of merit and calculate it for various pole/zero locations. We show that gain-bandwidth for the over-coupled ring modulator is superior compared to other coupling conditions. Also, we show that the gain-bandwidth product can be increased to a limit by increasing the electrical bandwidth.

  15. Nanoscale architecture of the Schizosaccharomyces pombe contractile ring.

    PubMed

    McDonald, Nathan A; Lind, Abigail L; Smith, Sarah E; Li, Rong; Gould, Kathleen L

    2017-09-15

    The contractile ring is a complex molecular apparatus which physically divides many eukaryotic cells. Despite knowledge of its protein composition, the molecular architecture of the ring is not known. Here we have applied super-resolution microscopy and FRET to determine the nanoscale spatial organization of Schizosaccharomyces pombe contractile ring components relative to the plasma membrane. Similar to other membrane-tethered actin structures, we find proteins localize in specific layers relative to the membrane. The most membrane-proximal layer (0-80 nm) is composed of membrane-binding scaffolds, formin, and the tail of the essential myosin-II. An intermediate layer (80-160 nm) consists of a network of cytokinesis accessory proteins as well as multiple signaling components which influence cell division. Farthest from the membrane (160-350 nm) we find F-actin, the motor domains of myosins, and a major F-actin crosslinker. Circumferentially within the ring, multiple proteins proximal to the membrane form clusters of different sizes, while components farther from the membrane are uniformly distributed. This comprehensive organizational map provides a framework for understanding contractile ring function.

  16. Nanoscale architecture of the Schizosaccharomyces pombe contractile ring

    PubMed Central

    McDonald, Nathan A; Lind, Abigail L; Smith, Sarah E; Li, Rong

    2017-01-01

    The contractile ring is a complex molecular apparatus which physically divides many eukaryotic cells. Despite knowledge of its protein composition, the molecular architecture of the ring is not known. Here we have applied super-resolution microscopy and FRET to determine the nanoscale spatial organization of Schizosaccharomyces pombe contractile ring components relative to the plasma membrane. Similar to other membrane-tethered actin structures, we find proteins localize in specific layers relative to the membrane. The most membrane-proximal layer (0–80 nm) is composed of membrane-binding scaffolds, formin, and the tail of the essential myosin-II. An intermediate layer (80–160 nm) consists of a network of cytokinesis accessory proteins as well as multiple signaling components which influence cell division. Farthest from the membrane (160–350 nm) we find F-actin, the motor domains of myosins, and a major F-actin crosslinker. Circumferentially within the ring, multiple proteins proximal to the membrane form clusters of different sizes, while components farther from the membrane are uniformly distributed. This comprehensive organizational map provides a framework for understanding contractile ring function. PMID:28914606

  17. The midbody ring scaffolds the abscission machinery in the absence of midbody microtubules

    PubMed Central

    Green, Rebecca A.; Mayers, Jonathan R.; Wang, Shaohe; Lewellyn, Lindsay; Desai, Arshad; Audhya, Anjon

    2013-01-01

    Abscission completes cytokinesis to form the two daughter cells. Although abscission could be organized from the inside out by the microtubule-based midbody or from the outside in by the contractile ring–derived midbody ring, it is assumed that midbody microtubules scaffold the abscission machinery. In this paper, we assess the contribution of midbody microtubules versus the midbody ring in the Caenorhabditis elegans embryo. We show that abscission occurs in two stages. First, the cytoplasm in the daughter cells becomes isolated, coincident with formation of the intercellular bridge; proper progression through this stage required the septins (a midbody ring component) but not the membrane-remodeling endosomal sorting complex required for transport (ESCRT) machinery. Second, the midbody and midbody ring are released into a specific daughter cell during the subsequent cell division; this stage required the septins and the ESCRT machinery. Surprisingly, midbody microtubules were dispensable for both stages. These results delineate distinct steps during abscission and highlight the central role of the midbody ring, rather than midbody microtubules, in their execution. PMID:24217623

  18. One ring to rule them all: storm time ring current and its influence on radiation belts, plasmasphere and global magnetosphere electrodynamics

    NASA Astrophysics Data System (ADS)

    Buzulukova, Natalia; Fok, Mei-Ching; Glocer, Alex; Moore, Thomas E.

    2013-04-01

    We report studies of the storm time ring current and its influence on the radiation belts, plasmasphere and global magnetospheric dynamics. The near-Earth space environment is described by multiscale physics that reflects a variety of processes and conditions that occur in magnetospheric plasma. For a successful description of such a plasma, a complex solution is needed which allows multiple physics domains to be described using multiple physical models. A key population of the inner magnetosphere is ring current plasma. Ring current dynamics affects magnetic and electric fields in the entire magnetosphere, the distribution of cold ionospheric plasma (plasmasphere), and radiation belts particles. To study electrodynamics of the inner magnetosphere, we present a MHD model (BATSRUS code) coupled with ionospheric solver for electric field and with ring current-radiation belt model (CIMI code). The model will be used as a tool to reveal details of coupling between different regions of the Earth's magnetosphere. A model validation will be also presented based on comparison with data from THEMIS, POLAR, GOES, and TWINS missions. INVITED TALK

  19. Electronic distributions within protein phenylalanine aromatic rings are reflected by the three-dimensional oxygen atom environments.

    PubMed Central

    Thomas, K A; Smith, G M; Thomas, T B; Feldmann, R J

    1982-01-01

    The atomic environments of 170 phenylalanine-residue aromatic rings from 28 protein crystal structures are transformed into a common orientation and combined to calculate an average three-dimensional environment. The spatial distribution of atom types in this environment reveals a preferred interaction between oxygen atoms and the edge of the planar aromatic rings. From the difference in frequency of interaction of oxygen atoms with the edge and the top of the ring, an apparent net free energy difference of interaction favoring the edge of the ring is estimated to be about -1 kcal/mol (1 cal = 4.184 J). Ab initio quantum mechanical calculations, performed on a model consisting of benzene and formamide, indicate that the observed geometry is stabilized by a favorable enthalpic interaction. Although benzene rings are considered to be nonpolar, the electron distribution is a complex multipole with no net dipole moment. The observed interaction orientation frequencies demonstrate that these multipolar electron distributions, when occurring at the short distances encountered in densely packed protein molecules, are significant determinants of internal packing geometries. PMID:6956896

  20. Mega-rings Surrounding Timber Mountain Nested Calderas, Geophysical Anomalies: Rethinking Structure and Volcanism Near Yucca Mountain (YM), Nevada

    NASA Astrophysics Data System (ADS)

    Tynan, M. C.; Smith, K. D.; Savino, J. M.; Vogt, T. J.

    2004-12-01

    Observed regional mega-rings define a zone ˜80-100 km in diameter centered on Timber Mountain (TM). The mega-rings encompass known smaller rhyolitic nested Miocene calderas ( ˜11-15 my, < 10 km circular to elliptical small "rings") and later stage basaltic features (< 11 my, small flows, cones, dikes) in the Southwest Nevada Volcanic Field. Miocene rhyolitic calderas cluster within the central area and on the outer margin of the interpreted larger mega-ring complex. The mega-ring interpretation is consistent with observations of regional physiography, tomographic images, seismicity patterns, and structural relationships. Mega-rings consist of arcuate faulted blocks with deformation (some remain active structures) patterns showing a genetic relationship to the TM volcanic system; they appear to be spatially associated and temporally correlated with Miocene volcanism and two geophysically identified crustal/upper mantle features. A 50+ km diameter pipe-like high velocity anomaly extends from crustal depth to over 200 km beneath TM (evidence for 400km depth to NE). The pipe is located between two ˜100 km sub-parallel N/S linear trends of small-magnitude earthquake activity, one extending through the central NV Test Site, and a second located near Beatty, NV. Neither the kinematics nor relational mechanism of 100km seismically active N/S linear zones, pipe, and mega-rings are understood. Interpreted mega-rings are: 1) Similar in size to larger terrestrial volcanic complexes (e.g., Yellowstone, Indonesia's Toba system); 2) Located in the region of structural transition from the Mohave block to the south, N/S Basin and Range features to the north, Walker Lane to the NW, and the Las Vegas Valley shear zone to the SE; 3) Associated with the two seismically active zones (similar to other caldera fault-bounded sags), the mantle high velocity feature, and possibly a regional bouguer gravity anomaly; 4) Nearly coincident with area hydrologic basins and sub-basins; 5) Similar to features described from terrestrial and planetary caldera-collapse studies, and as modeled in laboratory scaled investigations (ice melt, balloon/sand). Post Mid-Miocene basalts commonly occur within or adjacent to the older rhyolitic caldera moats; other basaltic material occurs marginal to both the outer rings of the interpreted mega-ring system and high velocity pipe. The YM repository may be situated in an isolated structural setting within the mega-ring system; basaltic materials are absent in the block for over 11my for geologic reasons. The mega-ring model may better explain YM area structures (Highway 95 fault), tectonism, and volcanism. Coincident physiographic, geologic, and geophysical features associated with the mega-rings feature, and temporal characteristics of regional seismicity and volcanism suggest the need to critically re-assess regional scale and YM tectonic, seismotectonic, and volcanic models.

  1. CTLs, a new class of RING-H2 ubiquitin ligases uncovered by YEELL, a motif close to the RING domain that is present across eukaryotes.

    PubMed

    Jiménez-López, Domingo; Aguilar-Henonin, Laura; González-Prieto, Juan Manuel; Aguilar-Hernández, Victor; Guzmán, Plinio

    2018-01-01

    RING ubiquitin E3 ligases enclose a RING domain for ubiquitin ligase activity and associated domains and/or conserved motifs outside the RING domain that collectively facilitate their classification and usually reveal some of key information related to mechanism of action. Here we describe a new family of E3 ligases that encodes a RING-H2 domain related in sequence to the ATL and BTL RING-H2 domains. This family, named CTL, encodes a motif designed as YEELL that expands 21 amino acids next to the RING-H2 domain that is present across most eukaryotic lineages. E3 ubiquitin ligase BIG BROTHER is a plant CTL that regulates organ size, and SUMO-targeted ubiquitin E3 ligase RNF111/ARKADIA is a vertebrate CTL. Basal animal and vertebrate, as well as fungi species, encode a single CTL gene that constraints the number of paralogs observed in vertebrates. Conversely, as previously described in ATL and BTL families in plants, CTL genes range from a single copy in green algae and 3 to 5 copies in basal species to 9 to 35 copies in angiosperms. Our analysis describes key structural features of a novel family of E3 ubiquitin ligases as an integral component of the set of core eukaryotic genes.

  2. CTLs, a new class of RING-H2 ubiquitin ligases uncovered by YEELL, a motif close to the RING domain that is present across eukaryotes

    PubMed Central

    Jiménez-López, Domingo; Aguilar-Henonin, Laura; González-Prieto, Juan Manuel; Aguilar-Hernández, Victor

    2018-01-01

    RING ubiquitin E3 ligases enclose a RING domain for ubiquitin ligase activity and associated domains and/or conserved motifs outside the RING domain that collectively facilitate their classification and usually reveal some of key information related to mechanism of action. Here we describe a new family of E3 ligases that encodes a RING-H2 domain related in sequence to the ATL and BTL RING-H2 domains. This family, named CTL, encodes a motif designed as YEELL that expands 21 amino acids next to the RING-H2 domain that is present across most eukaryotic lineages. E3 ubiquitin ligase BIG BROTHER is a plant CTL that regulates organ size, and SUMO-targeted ubiquitin E3 ligase RNF111/ARKADIA is a vertebrate CTL. Basal animal and vertebrate, as well as fungi species, encode a single CTL gene that constraints the number of paralogs observed in vertebrates. Conversely, as previously described in ATL and BTL families in plants, CTL genes range from a single copy in green algae and 3 to 5 copies in basal species to 9 to 35 copies in angiosperms. Our analysis describes key structural features of a novel family of E3 ubiquitin ligases as an integral component of the set of core eukaryotic genes. PMID:29324855

  3. OPHIDIAN L-AMINO ACID OXIDASE. THE NATURE OF THE ENZYME-SUBSTRATE COMPLEXES.

    PubMed

    ZELLER, E A; RAMACHANDER, G; FLEISHER, G A; ISHIMARU, T; ZELLER, V

    1965-04-01

    1. To investigate the kinetics of ophidian l-amino acid oxidase, V and K(m) were determined for phenylalanines that were substituted in every ring position with groups of various size and reactivity, and for a few ring-substituted tryptophans and histidines. The venom of one representative from each of three major classes of poisonous snakes, Naja melanoleuca, Vipera russelli and Crotalus adamanteus, served as a source of the ophidian l-amino acid oxidase. Both crude and crystalline enzyme from the venom of C. adamanteus were tested. 2. The introduction of a benzene ring into glycine and alanine caused some increase of V and a very marked depression of K(m). 3. With the exception of fluorine, residues in the ortho position of phenylalanine led to a decrease of V. The rates induced by various substitutions follow the pattern: meta >/= para >/= ortho. Within the halogen series, the effects become more pronounced with increasing atomic number. 4. Ring substitution in heterocyclic amino acids also affected the V values markedly. For methyl-substituted tryptophans the pattern was: 5-methyl >/= 6-methyl >/= 4-methyl. In a few instances ring substitution accounts for a considerable elevation of V, as shown for beta-quinol-4-ylalanine and its 6-methoxy derivative. 5. The kinetic constants appear to be unaffected by relatively high concentrations of the corresponding d-amino acids. 6. A general principle that permits a uniform interpretation of a vast body of information is suggested. It is based on the assumption that most substrates form not only eutopic but also dystopic complexes with the enzyme. The latter, in contrast with the former, do not permit the formation of reaction products. K values for eutopic and dystopic complexes are computed. Similar concepts have been presented to elucidate the action of alpha-chymotrypsin (Hein & Niemann, 1962) and of monoamine oxidase.

  4. Ring chromosome 18 in combination with 18q12.1 (DTNA) interstitial microdeletion in a patient with multiple congenital defects.

    PubMed

    Zlotina, Anna; Nikulina, Tatiana; Yany, Natalia; Moiseeva, Olga; Pervunina, Tatiana; Grekhov, Eugeny; Kostareva, Anna

    2016-01-01

    Ring chromosome 18 [r(18)] syndrome represents a relatively rare condition with a complex clinical picture including multiple congenital dysmorphia and varying degrees of mental retardation. The condition is cytogenetically characterized by a complete or mosaic form of ring chromosome 18, with ring formation being usually accompanied by the partial loss of both chromosomal arms. Here we observed a 20-year-old male patient who along with the features typical for r(18) carriers additionally manifested a severe congenital subaortic stenosis. To define the genetic basis of such a compound phenotype, standard cytogenetic and high-resolution molecular-cytogenetic analysis of the patient was performed. Standard chromosome analysis of cultured lymphocytes confirmed 46, XY, r(18) karyotype. Array-based comparative genomic hybridization (array-CGH) allowed to define precisely the breakpoints of 18p and 18q terminal deletions, thus identifying the hemizygosity extent, and to reveal an additional duplication adjoining the breakpoint of the 18p deletion. Apart from the terminal imbalances, we found an interstitial microdeletion of 442 kb in size (18q12.1) that encompassed DTNA gene encoding α-dystrobrevin, a member of dystrophin-associated glycoprotein complex. While limited data on the role of DTNA missense mutations in pathogenesis of human cardiac abnormalities exist, a microdeletion corresponding to whole DTNA sequence and not involving other genes has not been earlier described. A detailed molecular-cytogenetic characterization of the patient with multiple congenital abnormalities enabled to unravel a combination of genetic defects, namely, a ring chromosome 18 with terminal imbalances and DTNA whole-gene deletion. We suggest that such combination could contribute to the complex phenotype. The findings obtained allow to extend the knowledge of the role of DTNA haploinsufficiency in congenital heart malformation, though further comprehensive functional studies are required.

  5. Mononuclear late first row transition metal complexes of ONO donor hydrazone ligand: Synthesis, characterization, crystallographic insight, in vivo and in vitro anti-inflammatory activity

    NASA Astrophysics Data System (ADS)

    Kendur, Umashri; Chimmalagi, Geeta H.; Patil, Sunil M.; Gudasi, Kalagouda B.; Frampton, Christopher S.; Mangannavar, Chandrashekhar V.; Muchchandi, Iranna S.

    2018-02-01

    Air and moisture stable coordination compounds of late first row transition metal ions, viz., Co(II), Ni(II), Cu(II) and Zn(II) with a newly designed ligand, (E)-2-amino-N'-(1-(2-hydroxy-6-methyl-4-oxo-4H-pyran-3-yl)ethylidene)benzohydrazide (H2L) were prepared and extensively characterized using various spectro-analytical techniques. The ligand acts both in mono as well as doubly deprotonated manner. The ligand to metal stoichiometry was found to be 1:2 in case of complexes using chloride salts, whereas 1:1 in case of copper (II) complex using its acetate salt. The molecular structures of H2L, nickel and copper complexes were unambiguously determined by single-crystal X-ray diffraction studies reveal that H2L exists in a zwitterionic form while copper complex has copper centre in a distorted square planar environment. On the other hand, cobalt, nickel and zinc complexes display distorted octahedral coordination around the metal ion. In case of [Ni(HL)2].H2O, intramolecular Csbnd H⋯π stacking interaction were observed between the centroid of five membered chelate ring and phenyl proton C5sbnd H5 and intermolecular Csbnd H⋯π stacking interaction between the centroid of phenyl ring, dehydroacetic acid (DHA) ring and phenyl protons. The [Cu(L)DMF] complex is stabilized by intramolecular hydrogen bonding N1H⋯N2 and by intermolecular hydrogen bonding N1H⋯O4. Intermolecular interactions were investigated by Hirshfeld surfaces. Further, H2L and its metal complexes were screened for their in vivo and in vitro anti-inflammatory activities. The activity of the ligand has enhanced on coordination with transition metals. The tested compounds have shown excellent activity, which is almost equipotent to the standard used in the study.

  6. Selective polymerization catalysis: controlling the metal chain end group to prepare block copolyesters.

    PubMed

    Zhu, Yunqing; Romain, Charles; Williams, Charlotte K

    2015-09-30

    Selective catalysis is used to prepare block copolyesters by combining ring-opening polymerization of lactones and ring-opening copolymerization of epoxides/anhydrides. By using a dizinc complex with mixtures of up to three different monomers and controlling the chemistry of the Zn-O(polymer chain) it is possible to select for a particular polymerization route and thereby control the composition of block copolyesters.

  7. Efficient synthesis of isochromanones and isoquinolines via Yb(OTf)3-catalyzed tandem oxirane/aziridine ring opening/Friedel-Crafts cyclization.

    PubMed

    Wei, Lai; Zhang, Junliang

    2012-03-07

    The first example of Yb(OTf)(3)-catalyzed tandem ring opening/Friedel-Crafts cyclization of oxiranyl and aziridinyl ketones via selective C-C bond cleavage under mild conditions was developed. Isochromanones and isoquinolines are formed in reasonable yields, which often serve as building blocks for complex chemical synthesis. This journal is © The Royal Society of Chemistry 2012

  8. The effects of drought and disturbance on the growth and developmental instability of loblolly pine (Pinus taeda L.)

    USGS Publications Warehouse

    Graham, John H.; Duda, Jeffrey J.; Brown, Michelle L.; Kitchen, Stanley G.; Emlen, John M.; Malol, Jagadish; Bankstahl, Elizabeth; Krzysik, Anthony J.; Balbach, Harold E.; Freeman, D. Carl

    2012-01-01

    Ecological indicators provide early warning of adverse environmental change, helping land managers adaptively manage their resources while minimizing costly remediation. In 1999 and 2000, we studied two such indicators, growth and developmental instability, of loblolly pine (Pinus taeda L.) influenced by mechanized infantry training at Fort Benning, Georgia. Disturbed areas were used for military training; tracked and wheeled vehicles damaged vegetation and soils. Highly disturbed sites had fewer trees, diminished ground cover, warmer soils in the summer, and more compacted soils with a shallower A-horizon. We hypothesized that disturbance would decrease the growth of needles, branches, and tree rings, increase the complexity of tree rings, and increase the developmental instability of needles. Contrary to our expectations, however, disturbance enhanced growth in the first year of the study, possibly by reducing competition. In the second year, a drought reduced growth of branches and needles, eliminating the stimulatory effect of disturbance. Growth-ring widths increased with growing-season precipitation, and decreased with growing-season temperature over the last 40 years. Disturbance had no effect on tree-ring complexity, as measured by the Hurst exponent. Within-fascicle variation of current-year needle length, a measure of developmental instability, differed among the study populations, but appeared unrelated to mechanical disturbance or drought.

  9. SWI/SNF Associates with Nascent Pre-mRNPs and Regulates Alternative Pre-mRNA Processing

    PubMed Central

    Tyagi, Anu; Ryme, Jessica; Brodin, David; Östlund Farrants, Ann Kristin; Visa, Neus

    2009-01-01

    The SWI/SNF chromatin remodeling complexes regulate the transcription of many genes by remodeling nucleosomes at promoter regions. In Drosophila, SWI/SNF plays an important role in ecdysone-dependent transcription regulation. Studies in human cells suggest that Brahma (Brm), the ATPase subunit of SWI/SNF, regulates alternative pre-mRNA splicing by modulating transcription elongation rates. We describe, here, experiments that study the association of Brm with transcribed genes in Chironomus tentans and Drosophila melanogaster, the purpose of which was to further elucidate the mechanisms by which Brm regulates pre-mRNA processing. We show that Brm becomes incorporated into nascent Balbiani ring pre-mRNPs co-transcriptionally and that the human Brm and Brg1 proteins are associated with RNPs. We have analyzed the expression profiles of D. melanogaster S2 cells in which the levels of individual SWI/SNF subunits have been reduced by RNA interference, and we show that depletion of SWI/SNF core subunits changes the relative abundance of alternative transcripts from a subset of genes. This observation, and the fact that a fraction of Brm is not associated with chromatin but with nascent pre-mRNPs, suggest that SWI/SNF affects pre-mRNA processing by acting at the RNA level. Ontology enrichment tests indicate that the genes that are regulated post-transcriptionally by SWI/SNF are mostly enzymes and transcription factors that regulate postembryonic developmental processes. In summary, the data suggest that SWI/SNF becomes incorporated into nascent pre-mRNPs and acts post-transcriptionally to regulate not only the amount of mRNA synthesized from a given promoter but also the type of alternative transcript produced. PMID:19424417

  10. Strong CH/O interactions between polycyclic aromatic hydrocarbons and water: Influence of aromatic system size.

    PubMed

    Veljković, Dušan Ž

    2018-03-01

    Energies of CH/O interactions between water molecule and polycyclic aromatic hydrocarbons with a different number of aromatic rings were calculated using ab initio calculations at MP2/cc-PVTZ level. Results show that an additional aromatic ring in structure of polycyclic aromatic hydrocarbons significantly strengthens CH/O interactions. Calculated interaction energies in optimized structures of the most stable tetracene/water complex is -2.27 kcal/mol, anthracene/water is -2.13 kcal/mol and naphthalene/water is -1.97 kcal/mol. These interactions are stronger than CH/O contacts in benzene/water complex (-1.44 kcal/mol) while CH/O contacts in tetracene/water complex are even stronger than CH/O contacts in pyridine/water complexes (-2.21 kcal/mol). Electrostatic potential maps for different polycyclic aromatic hydrocarbons were calculated and used to explain trends in the energies of interactions. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Reconstitution and structure of a bacterial Pnkp1RnlHen1 RNA repair complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Pei; Selvadurai, Kiruthika; Huang, Raven H.

    Ribotoxins cleave essential RNAs for cell killing, and RNA repair neutralizes the damage inflicted by ribotoxins for cell survival. We report a new bacterial RNA repair complex that performs RNA repair linked to immunity. This new RNA repair complex is a 270-kDa heterohexamer composed of three proteins—Pnkp1, Rnl and Hen1—that are required to repair ribotoxin-cleaved RNA in vitro. The crystal structure of the complex reveals the molecular architecture of the heterohexamer as two rhomboid-shaped ring structures of Pnkp1–Rnl–Hen1 heterotrimer fused at the Pnkp1 dimer interface. The four active sites required for RNA repair are located on the inner rim ofmore » each ring. Furthermore, the architecture and the locations of the active sites of the Pnkp1–Rnl–Hen1 heterohexamer suggest an ordered series of repair reactions at the broken RNA ends that confer immunity to recurrent damage.« less

  12. Well-defined Ti 4 pre-catalysts for the ring-opening polymerisation of lactide

    DOE PAGES

    Cols, Jean-Marie E. P.; Taylor, Cameron E.; Gagnon, Kevin J.; ...

    2016-10-17

    Here, the synthesis and full characterisation of four discrete tetrametallic titanium complexes is reported. These well-defined compounds are isostructural in the solid state and share the same general formula: Ti 4(μ-O) 2L 4 (L = 1, 2, 3 or 4). Using a combination of NMR techniques the complexes are found to be stable in solution, even at elevated temperatures. Further studies show that the carboxylate moieties of the supporting amine bis(phenolate) ligands can be displaced by a more strongly coordinating solvent. This reversible process causes the coordinatively saturated Ti 4(μ-O) 2L 4 complexes to separate into two Ti 2(μ-O)L 2more » subunits which we envisaged would be catalytically active. Proof-of-concept experiments establish that all four of these complexes display catalytic activity in the ring-opening polymerisation of rac-lactide. These aggregates can therefore be viewed as air and moisture stable pre-catalysts for a range of reactions.« less

  13. Frequency comb generation in a silicon ring resonator modulator.

    PubMed

    Demirtzioglou, Iosif; Lacava, Cosimo; Bottrill, Kyle R H; Thomson, David J; Reed, Graham T; Richardson, David J; Petropoulos, Periklis

    2018-01-22

    We report on the generation of an optical comb of highly uniform in power frequency lines (variation less than 0.7 dB) using a silicon ring resonator modulator. A characterization involving the measurement of the complex transfer function of the ring is presented and five frequency tones with a 10-GHz spacing are produced using a dual-frequency electrical input at 10 and 20 GHz. A comb shape comparison is conducted for different modulator bias voltages, indicating optimum operation at a small forward-bias voltage. A time-domain measurement confirmed that the comb signal was highly coherent, forming 20.3-ps-long pulses.

  14. Synthesis and spectroscopic studies on the new Schiff base derived from the 1:2 condensation of 2,6-diformyl-4-methylphenol with 5-aminouracil (BDF5AU) and its transition metal complexes. Influence on biologically active peptides-regulating aminopeptidases.

    PubMed

    Hueso-Ureña, Francisco; Illán-Cabeza, Nuria A; Moreno-Carretero, Miguel N; Martínez-Martos, José M; Ramírez-Expósito, María J

    2003-04-01

    The synthesis, spectroscopic (IR, 1H and 13C NMR, UV-Vis-NIR, EPR), magnetic measurements and biological studies of a number of complexes of Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Au(III) and Hg(II) of the Schiff base derived from the 1:2 condensation of 2,6-diformyl-4-methylphenol and 5-aminouracil, ((5-[[(3-[[(2,4-dioxopyrimidin-5(1H,3H)-yl)imino]methyl]-2-hydroxy-5-methylphenyl)methylene]amino]pyrimidine-2,4(1H,3H)-dione, hereafter denoted as BDF5AU) are reported. In all cases, the complexes appear to be monomeric. The deprotonated ligand in the phenolic oxygen atom shows a tridentate coordination mode through the two azomethine nitrogen atoms and the phenolic oxygen atom. The coordination of the neutral ligand takes place through the phenolic oxygen atom and one azomethine nitrogen atom and the carbonylic oxygen atom in fourth position of one uracil ring. The biological properties of some perchlorate complexes on the activity of some neutral, acid, basic and omega aminopeptidases (AP) are assayed, demonstrating a general inhibitory effect. Neutral and basic AP are mainly inhibited by Cu(II), Ni(II) and Cd(II) complexes, although tyrosyl-AP is activated by Zn(II) complex. Glutamyl-AP but not aspartyl-AP is inhibited by all the complexes assayed excepting Zn(II) complex. Finally, omega AP is inhibited by Ni(II) and Cd(II) complexes. Copyright 2003 Elsevier Science Inc.

  15. 1-(2-biphenyl)-3-methyltriazenide-N-oxide as a template for intramolecular copper(II)⋯arene-π interactions

    NASA Astrophysics Data System (ADS)

    Paraginski, Gustavo Luiz; Hörner, Manfredo; Back, Davi Fernando; Wohlmuth Alves dos Santos, Aline Joana Rolina; Beck, Johannes

    2016-01-01

    Deprotonated triazene N-oxides are able to chelate metal ions resulting in five-membered rings without carbon atoms. A new ligand 1-(2-biphenyl)-3-methyltriazenide-N-oxide (1) and its mononuclear Cu(II) complex (2) were synthesized to verify the capability of this ligand to promote Cu(II)⋯arene-π interactions. Ligand 1 and complex 2 have been characterized by elemental analysis, mass spectrometry (ESI(+)-TOF), IR, and UV-Vis spectroscopy. In addition, ligand 1 was characterized by 1H and 13C NMR and complex 2 by X-ray diffraction on single crystal. The crystal structure of complex 2 reveals a distorted tetrahedral geometry of Cu(II) in the first coordination sphere, which expands to a distorted octahedral environment by two symmetrically independent intramolecular metal⋯arene-π interactions. These interactions are provided by ortho-phenyl rings of both triazene N-oxide ligands 1. The aim of this work was to contribute to the architecture of new Cu(II)⋯arene-π complexes based on the synthesis of appropriated ligand for intramolecular interactions

  16. Complexation of imidazopyridine-based cations with a 24-crown-8 ether host: [2]pseudorotaxane and partially threaded structures.

    PubMed

    Moreno-Olivares, Surisadai I; Cervantes, Ruy; Tiburcio, Jorge

    2013-11-01

    A new series of linear molecules derived from 1,2-bis(imidazopyridin-2-yl)ethane can fully or partially penetrate the cavity of the dibenzo-24-crown-8 macrocycle to produce a new family of host-guest complexes. Protonation or alkylation of the nitrogen atoms on the pyridine rings led to an increase in the guest total positive charge up to 4+ and simultaneously generated two new recognition sites (pyridinium motifs) that are in competition with the 1,2-bis(benzimidazole)ethane motif for the crown ether. The relative position of the pyridine ring and the chemical nature of the N-substituent determined the preferred motif and the host-guest complex geometry: (i) for linear guests with relatively bulky groups (i.e., a benzyl substituent), the 1,2-bis(benzimidazole)ethane motif is favored, leading to a fully threaded complex with a [2]pseudorotaxane geometry; (ii) for small substituents, such as -H and -CH3 groups, regardless of the guest shape, the pyridinium motifs are preferred, leading to external partially threaded complexes in a 2:1 host to guest stoichiometry.

  17. Microwave spectroscopy of 2-(trifluoromethyl)pyridine⋯water complex: Molecular structure and hydrogen bond

    NASA Astrophysics Data System (ADS)

    Li, Xiaolong; Zheng, Yang; Gou, Qian; Feng, Gang; Xia, Zhining

    2018-01-01

    In order to explore the -CF3 substitution effect on the complexation of pyridine, we investigated the 2-(trifluoromethyl)pyridine⋯water complex by using pulsed jet Fourier transform microwave spectroscopy complemented with quantum chemical calculations. Experimental assignment and ab initio calculations confirmed that the observed complex is stabilized through N⋯H-O and O⋯H-C hydrogen bonds forming a five-membered ring structure. The bonding distance in N⋯H-O is determined to be 2.027(2) Å, whilst that in O⋯H-C interaction is 2.728(2) Å. The quantum theory of atoms in molecules analysis indicates that the interaction energy of N⋯H-O hydrogen bond is ˜22 kJ mol-1 and that for O⋯H-C hydrogen bond is ˜5 kJ mol-1. The water molecule lies almost in the plane of the aromatic ring in the complex. The -CF3 substitution to pyridine quenches the tunneling splitting path of the internal motion of water molecule.

  18. Activation of Src kinase by protein-tyrosine phosphatase-PEST in osteoclasts: comparative analysis of the effects of bisphosphonate and protein-tyrosine phosphatase inhibitor on Src activation in vitro.

    PubMed

    Chellaiah, Meenakshi A; Schaller, Michael D

    2009-08-01

    PTP-PEST is involved in the regulation of sealing ring formation in osteoclasts. In this article, we have shown a regulatory role for PTP-PEST on dephosphorylation of c-Src at Y527 and phosphorylation at Y418 in the catalytic site. Activation of Src in osteoclasts by over-expression of PTP-PEST resulted in the phosphorylation of cortactin at Y421 and WASP at Y294. Also enhanced as a result, is the interaction of Src, cortactin, and Arp2 with WASP. Moreover, the number of osteoclasts displaying sealing ring and bone resorbing activity was increased in response to PTP-PEST over-expression as compared with control osteoclasts. Cells expressing constitutively active-Src (527YDeltaF) simulate the effects mediated by PTP-PEST. Treatment of osteoclasts with a bisphosphonate alendronate or a potent PTP inhibitor PAO decreased the activity and phosphorylation of Src at Y418 due to reduced dephosphorylation state at Y527. Therefore, Src-mediated phosphorylation of cortactin and WASP as well as the formation of WASP.cortactin.Arp2 complex and sealing ring were reduced in these osteoclasts. Similar effects were observed in osteoclasts treated with an Src inhibitor PP2. We have shown that bisphosphonates could modulate the function of osteoclasts by inhibiting downstream signaling mediated by PTP-PEST/Src, in addition to its effect on the inhibition of the post-translational modification of small GTP-binding proteins such as Rab, Rho, and Rac as shown by others. The promising effects of the inhibitors PP2 and PAO on osteoclast function suggest a therapeutic approach for patients with bone metastases and osteoporosis as an alternative to bisphosphonates.

  19. Tunable Broadband Radiation Generated Via Ultrafast Laser Illumination of an Inductively Charged Superconducting Ring

    PubMed Central

    Bulmer, John; Bullard, Thomas; Dolasinski, Brian; Murphy, John; Sparkes, Martin; Pangovski, Krste; O’Neill, William; Powers, Peter; Haugan, Timothy

    2015-01-01

    An electromagnetic transmitter typically consists of individual components such as a waveguide, antenna, power supply, and an oscillator. In this communication we circumvent complications associated with connecting these individual components and instead combine them into a non-traditional, photonic enabled, compact transmitter device for tunable, ultrawide band (UWB) radiation. This device is a centimeter scale, continuous, thin film superconducting ring supporting a persistent super-current. An ultrafast laser pulse (required) illuminates the ring (either at a point or uniformly around the ring) and perturbs the super-current by the de-pairing and recombination of Cooper pairs. This generates a microwave pulse where both ring and laser pulse geometry dictates the radiated spectrum’s shape. The transmitting device is self contained and completely isolated from conductive components that are observed to interfere with the generated signal. A rich spectrum is observed that extends beyond 30 GHz (equipment limited) and illustrates the complex super-current dynamics bridging optical, THz, and microwave wavelengths. PMID:26659022

  20. Does switching contraceptive from oral to a patch or vaginal ring change the likelihood of timely prescription refill?

    PubMed

    Law, Amy; Lee, Yi-Chien; Gorritz, Magdaliz; Plouffe, Leo

    2014-08-01

    This study evaluated contraceptive refill patterns of women insured commercially in the US who switched from oral contraceptives (OCs) to the patch or vaginal ring and assessed if switching contraceptive methods changes refill patterns. Women aged 15-44 with ≥2 patch or ring prescriptions and ≥2 OC prescriptions before the first patch/ring prescription were identified from the MarketScan® Commercial database (1/1/2002-6/30/2011). Refill patterns 1-year pre- and postindex date (first patch/ring prescription) were evaluated, and women were categorized as timely or delayed refillers on OCs and patch/ring. Regression modeling was used to investigate the association between refill patterns and contraceptive methods and switching effects on refill patterns. Of 17,814 women identified, 7901 switched to the patch, and 9913 switched to the ring. Among timely OC refillers, the percentage of timely refills decreased (patch: 95.6% to 79.4%, p<.001; ring: 96.5% to 74.3%, p<.001). However, among delayed OC refillers, the percentage of timely refills improved (patch: 47.9% to 72.2%, p<.001; ring: 50.4% to 64.0%, p<.001) during patch/ring use. Nonetheless, compared to timely OC refillers, women who were delayed OC refillers had 1.68-fold [95% confidence interval (CI): 1.52-1.84, p<.001] and 1.85-fold greater odds (CI: 1.69-2.02, p<.001) of being a delayed refiller while on the patch and ring, respectively. Switching to the patch or ring may improve refill behavior for women who have problems refilling OCs timely; however, the magnitude of the improvement may fail to improve ultimate contraceptive efficacy by simply switching to the patch or ring. The impact on timely refills of switching from OCs to either the patch or ring is complex and varies depending on the pattern of timely refills on OCs. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Three Dimensional Energetics of Left Ventricle Flows Using Time-Resolved DPIV

    NASA Astrophysics Data System (ADS)

    Pierrakos, Olga; Vlachos, Pavlos

    2006-11-01

    Left ventricular (LV) flows in the human heart are very complex and in the presence of unhealthy or prosthetic heart valves (HV), the complexity of the flow is further increased. Yet to date, no study has documented the complex 3D hemodynamic characteristics and energetics of LV flows. We present high sampling frequency Time Resolved DPIV results obtained in a flexible, transparent LV documenting the evolution of eddies and turbulence. The purpose is to characterize the energetics of the LV flow field in the presence of four orientations of the most commonly implanted mechanical bileaflet HV and a porcine valve. By decomposing the energy scales of the flow field, the ultimate goal is to quantify the total energy losses associated with vortex ring formation and turbulence dissipation. The energies associated to vortex ring formation give a measure of the energy trapped within the structure while estimations of the turbulence dissipation rate (TDR) give a measure of the energy dissipated at the smaller scales. For the first time in cardiovascular applications, an LES-based PIV method, which overcomes the limitations of conventional TDR estimation methods that assume homogeneous isotropic turbulence, was employed. We observed that energy lost at the larger scales (vortex ring) is much higher than the energy lost at the smaller scales due to turbulence dissipation.

  2. NMR studies of multiple conformations in complexes of Lactobacillus casei dihydrofolate reductase with analogues of pyrimethamine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Birdsall, B.; Tendler, S.J.B.; Feeney, J.

    1990-10-01

    {sup 1}H and {sup 19}F NMR signals from bound ligands have been assigned in one- and two-dimensional NMR spectra of complexes of Lactobacillus casei dihydrofolate reductase with various pyrimethamine analogues. The signals were identified mainly by correlating signals from bound and free ligands by using 2D exchange experiments. Analogues with symmetrically substituted phenyl rings give rise to {sup 1}H signals from four nonequivalent aromatic protons, clearly indicating the presence of hindered rotation about the pyrimidine-phenyl bond. Analogues with symmetrically substituted phenyl rings give rise to {sup 1}H signals from four nonequivalent aromatic protons, clearly indicating the presence of hindered rotationmore » about the pyrimidine-phenyl bond. Analogues containing asymmetrically substituted aromatic rings exist as mixtures of two rotational isomers (an enantiomeric pair) because of this hindered rotation and the NMR spectra revealed that both isomers (forms A and B) bind to the enzyme with comparable, though unequal, binding energies. In this case two complete sets of bound proton signals were observed. The relative orientations of the two forms have been determined from NOE through-space connections between protons on the ligand and protein. Ternary complexes with NADP{sup {plus}} were also examined.« less

  3. Initial Reductive Reactions in Aerobic Microbial Metabolism of 2,4,6-Trinitrotoluene

    PubMed Central

    Vorbeck, Claudia; Lenke, Hiltrud; Fischer, Peter; Spain, Jim C.; Knackmuss, Hans-Joachim

    1998-01-01

    Because of its high electron deficiency, initial microbial transformations of 2,4,6-trinitrotoluene (TNT) are characterized by reductive rather than oxidation reactions. The reduction of the nitro groups seems to be the dominating mechanism, whereas hydrogenation of the aromatic ring, as described for picric acid, appears to be of minor importance. Thus, two bacterial strains enriched with TNT as a sole source of nitrogen under aerobic conditions, a gram-negative strain called TNT-8 and a gram-positive strain called TNT-32, carried out nitro-group reduction. In contrast, both a picric acid-utilizing Rhodococcus erythropolis strain, HL PM-1, and a 4-nitrotoluene-utilizing Mycobacterium sp. strain, HL 4-NT-1, possessed reductive enzyme systems, which catalyze ring hydrogenation, i.e., the addition of a hydride ion to the aromatic ring of TNT. The hydride-Meisenheimer complex thus formed (H−-TNT) was further converted to a yellow metabolite, which by electrospray mass and nuclear magnetic resonance spectral analyses was established as the protonated dihydride-Meisenheimer complex of TNT (2H−-TNT). Formation of hydride complexes could not be identified with the TNT-enriched strains TNT-8 and TNT-32, or with Pseudomonas sp. clone A (2NT−), for which such a mechanism has been proposed. Correspondingly, reductive denitration of TNT did not occur. PMID:16349484

  4. Targeting Cullin–RING E3 ubiquitin ligases for drug discovery: structure, assembly and small-molecule modulation

    PubMed Central

    Bulatov, Emil; Ciulli, Alessio

    2015-01-01

    In the last decade, the ubiquitin–proteasome system has emerged as a valid target for the development of novel therapeutics. E3 ubiquitin ligases are particularly attractive targets because they confer substrate specificity on the ubiquitin system. CRLs [Cullin–RING (really interesting new gene) E3 ubiquitin ligases] draw particular attention, being the largest family of E3s. The CRLs assemble into functional multisubunit complexes using a repertoire of substrate receptors, adaptors, Cullin scaffolds and RING-box proteins. Drug discovery targeting CRLs is growing in importance due to mounting evidence pointing to significant roles of these enzymes in diverse biological processes and human diseases, including cancer, where CRLs and their substrates often function as tumour suppressors or oncogenes. In the present review, we provide an account of the assembly and structure of CRL complexes, and outline the current state of the field in terms of available knowledge of small-molecule inhibitors and modulators of CRL activity. A comprehensive overview of the reported crystal structures of CRL subunits, components and full-size complexes, alone or with bound small molecules and substrate peptides, is included. This information is providing increasing opportunities to aid the rational structure-based design of chemical probes and potential small-molecule therapeutics targeting CRLs. PMID:25886174

  5. Preparation, characterization and molecular modeling studies of the inclusion complex of Caffeine with Beta-cyclodextrin

    NASA Astrophysics Data System (ADS)

    Prabu, Samikannu; Swaminathan, Meenakshisundaram; Sivakumar, Krishnamoorthy; Rajamohan, Rajaram

    2015-11-01

    The formation through supramolecular interaction of a host-guest inclusion complex of caffeine (CA) with nano-hydrophobic cavity beta-cyclodextrin (β-CD) is achieved by a physical mixture, a kneading method and a co-precipitation method. The formation of the inclusion complex of CA with β-CD in solution state is confirmed by UV-visible spectrophotometer, fluorescence spectrophotometer and time-resolved fluorescence spectrophotometer. The stoichiometry of the inclusion complex is 1:1; the imidazole ring and pyrimidine ring of caffeine is deeply entrapped in the beta-cyclodextrin as confirmed by spectral shifts. The Benesi-Hildebrand plot is used to calculate the binding constant of the inclusion complex of CA with β-CD at room temperature. The Gibbs free energy change of the inclusion complex process is calculated and the process is found to be spontaneous. The thermal stability of the inclusion complex of CA with β-CD is analyzed using differential scanning calorimetry. The crystal structure modification of a solid inclusion complex is confirmed by scanning electron microscopy image analysis. The formation of the inclusion complex of CA with β-CD in the solid phase is also confirmed by FT-IR and XRD. The formation of the inclusion complex between CA and β-CD, as confirmed by molecular docking studies, is in good relationship with the results obtained through different experimental methods.

  6. ICBP90 Regulation of DNA Methylation, Histone Ubiquitination, and Tumor Suppressor Gene Expression in Breast Cancer Cells

    DTIC Science & Technology

    2011-07-01

    type and mutant plants via chromatin immunoprecipitation (ChIP). Additionally, differences in centromere structure between wild-type and VIM1 RING...contexts. The proposed work is ongoing, and so far the major accomplishments include creation of relevant plant lines and development of in vitro assays...a comparative proteomics approach in wild-type plants and RING domain mutants (Months 1 - 18) This work is in early stages, with the main

  7. Interactions of divalent cations with calcium binding sites of BK channels reveal independent motions within the gating ring.

    PubMed

    Miranda, Pablo; Giraldez, Teresa; Holmgren, Miguel

    2016-12-06

    Large-conductance voltage- and calcium-activated K + (BK) channels are key physiological players in muscle, nerve, and endocrine function by integrating intracellular Ca 2+ and membrane voltage signals. The open probability of BK channels is regulated by the intracellular concentration of divalent cations sensed by a large structure in the BK channel called the "gating ring," which is formed by four tandems of regulator of conductance for K + (RCK1 and RCK2) domains. In contrast to Ca 2+ that binds to both RCK domains, Mg 2+ , Cd 2+ , or Ba 2+ interact preferentially with either one or the other. Interaction of cations with their binding sites causes molecular rearrangements of the gating ring, but how these motions occur remains elusive. We have assessed the separate contributions of each RCK domain to the cation-induced gating-ring structural rearrangements, using patch-clamp fluorometry. Here we show that Mg 2+ and Ba 2+ selectively induce structural movement of the RCK2 domain, whereas Cd 2+ causes motions of RCK1, in all cases substantially smaller than those elicited by Ca 2+ By combining divalent species interacting with unique sites, we demonstrate that RCK1 and RCK2 domains move independently when their specific binding sites are occupied. Moreover, binding of chemically distinct cations to both RCK domains is additive, emulating the effect of fully occupied Ca 2+ binding sites.

  8. The Polycomb proteins RING1B and EZH2 repress the tumoral pro-inflammatory function in metastasizing primary cutaneous squamous cell carcinoma.

    PubMed

    Hernández-Ruiz, Eugenia; Toll, Agustí; García-Diez, Irene; Andrades, Evelyn; Ferrandiz-Pulido, Carla; Masferrer, Emili; Yébenes, Mireia; Jaka, Ane; Gimeno, Javier; Gimeno, Ramón; García-Patos, Vicenç; Pujol, Ramón M; Hernández-Muñoz, Inmaculada

    2018-03-08

    Cutaneous squamous cell carcinoma (cSCC) is the second most common malignancy in humans and approximately 5% metastasize, usually to regional lymph nodes. Epigenetic regulation of gene expression may allow tumoral cells to acquire new functions in order to escape from the primary tumor. The aim of this study was to investigate the expression and function of proteins of the Polycomb family of epigenetic regulators in the metastatic process of cSCC. A higher expression of RING1B and EZH2 was detected by immunohistochemistry in a series of primary cSCC tumors that metastasized (MSCCs) when compared with non-metastasizing cSCCs (non-MSCCs). Stable downregulation of RING1B and EZH2 in cSCC cells results in enhanced expression of inflammatory cytokines and activation of the NF-κB signaling pathway. Accordingly, non-MSCCs display higher levels of membranous pS176-inhibitor of NF-kB kinase, and their stroma is enriched in neutrophils and eosinophils when compared with MSCCs. In vitro, hematopoietic cells exhibit a substantial migratory response to supernatants from Polycomb-depleted cSCC cells. Altogether, these data indicate that RING1B and EZH2 repress the innate inflammatory cSCC function and impair tumor immunosurveillance and suggest that patients with high-risk cSCCs could benefit from clinical therapies addressed to harness the immune response.

  9. Convergent solid-phase and solution approaches in the synthesis of the cysteine-rich Mdm2 RING finger domain.

    PubMed

    Vasileiou, Zoe; Barlos, Kostas; Gatos, Dimitrios

    2009-12-01

    The RING finger domain of the Mdm2, located at the C-terminus of the protein, is necessary for regulation of p53, a tumor suppressor protein. The 48-residues long Mdm2 peptide is an important target for studying its interaction with small anticancer drug candidates. For the chemical synthesis of the Mdm2 RING finger domain, the fragment condensation on solid-phase and the fragment condensation in solution were studied. The latter method was performed using either protected or free peptides at the C-terminus as the amino component. Best results were achieved using solution condensation where the N-component was applied with the C-terminal carboxyl group left unprotected. The developed method is well suited for large-scale synthesis of Mdm2 RING finger domain, combining the advantages of both solid-phase and solution synthesis. (c) 2009 European Peptide Society and John Wiley & Sons, Ltd.

  10. A design multifunctional plasmonic optical device by micro ring system

    NASA Astrophysics Data System (ADS)

    Pornsuwancharoen, N.; Youplao, P.; Amiri, I. S.; Ali, J.; Yupapin, P.

    2018-03-01

    A multi-function electronic device based on the plasmonic circuit is designed and simulated by using the micro-ring system. From which a nonlinear micro-ring resonator is employed and the selected electronic devices such as rectifier, amplifier, regulator and filter are investigated. A system consists of a nonlinear micro-ring resonator, which is known as a modified add-drop filter and made of an InGaAsP/InP material. The stacked waveguide of an InGaAsP/InP - graphene -gold/silver is formed as a part of the device, the required output signals are formed by the specific control of input signals via the input and add ports. The material and device aspects are reviewed. The simulation results are obtained using the Opti-wave and MATLAB software programs, all device parameters are based on the fabrication technology capability.

  11. Organometallic chemistry of heterobimetallic compounds: Final report for the period August 1, 1985-June 30, 1988

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casey, C.P.

    1988-03-01

    Work is reported on the following: formyl compounds, cyclopentadienyl ring slippage, ..mu..-hydrocarbyl diiron complexes, heterobimetallic compounds linked by heterodifunctional ligands, heterobimetallic dihydrides, reactions of heterobimetallic dihydrides, early-late transition metal bimetallic compounds, and heterobimetallic ..mu..-alkylidene complexes. (DLC)

  12. Modular assembly of chimeric phi29 packaging RNAs that support DNA packaging.

    PubMed

    Fang, Yun; Shu, Dan; Xiao, Feng; Guo, Peixuan; Qin, Peter Z

    2008-08-08

    The bacteriophage phi29 DNA packaging motor is a protein/RNA complex that can produce strong force to condense the linear-double-stranded DNA genome into a pre-formed protein capsid. The RNA component, called the packaging RNA (pRNA), utilizes magnesium-dependent inter-molecular base-pairing interactions to form ring-shaped complexes. The pRNA is a class of non-coding RNA, interacting with phi29 motor proteins to enable DNA packaging. Here, we report a two-piece chimeric pRNA construct that is fully competent in interacting with partner pRNA to form ring-shaped complexes, in packaging DNA via the motor, and in assembling infectious phi29 virions in vitro. This is the first example of a fully functional pRNA assembled using two non-covalently interacting fragments. The results support the notion of modular pRNA architecture in the phi29 packaging motor.

  13. Modular assembly of chimeric phi29 packaging RNAs that support DNA packaging

    PubMed Central

    Fang, Yun; Shu, Dan; Xiao, Feng; Guo, Peixuan; Qin, Peter Z.

    2008-01-01

    The bacteriophage phi29 DNA packaging motor is a protein/RNA complex that can produce strong force to condense the linear-double stranded DNA genome into a pre-formed protein capsid. The RNA component, called the packaging RNA (pRNA), utilizes magnesium-dependent intermolecular base-pairing interactions to form ring-shaped complexes. The pRNA is a class of non-coding RNA, interacting with phi29 motor proteins to enable DNA packaging. Here, we report a 2-piece chimeric pRNA construct that is fully competent in interacting with partner pRNA to form ring-shaped complexes, in packaging DNA via the motor, and in assembling infectious phi29 virions in vitro. This is the first example of a fully functional pRNA assembled using two non-covalently interacting fragments. The results support the notion of modular pRNA architecture in the phi29 packaging motor. PMID:18514064

  14. Synthesis, characterization and catalytic oxidation properties of multi-wall carbon nanotubes with a covalently attached copper(II) salen complex

    NASA Astrophysics Data System (ADS)

    Salavati-Niasari, Masoud; Bazarganipour, Mehdi

    2009-06-01

    Hydroxyl functionalized copper(II) Schiff-base, N,N'-bis(4-hydroxysalicylidene)-ethylene-1,2-diaminecopper(II), [Cu((OH) 2-salen)], has been covalently anchored on modified MWCNTs. The new modified MWCNTs ([Cu((OH) 2-salen)]-MWCNTs) have been characterized by TEM, thermal analysis, XRD, XPS, UV-vis, DRS, FT-IR spectroscopy and elemental analysis. The modified copper(II) MWCNTs solid was used to affect the catalytic oxidation of ethylbenzene with tert-butylhydroperoxide as the oxidant at 333 K. The system is truly heterogeneous (no leaching observed) and reusable (no decrease in activity) in three consecutive runs. Acetophenone was the major product though small amounts of o- and p-hydroxyacetophenones were also formed revealing that C-H bond activation takes place both at benzylic and aromatic ring carbon atoms. Ring hydroxylation was more over the "neat" complexes than over the encapsulated complexes.

  15. Model of myosin node aggregation into a contractile ring: the effect of local alignment

    NASA Astrophysics Data System (ADS)

    Ojkic, Nikola; Wu, Jian-Qiu; Vavylonis, Dimitrios

    2011-09-01

    Actomyosin bundles frequently form through aggregation of membrane-bound myosin clusters. One such example is the formation of the contractile ring in fission yeast from a broad band of cortical nodes. Nodes are macromolecular complexes containing several dozens of myosin-II molecules and a few formin dimers. The condensation of a broad band of nodes into the contractile ring has been previously described by a search, capture, pull and release (SCPR) model. In SCPR, a random search process mediated by actin filaments nucleated by formins leads to transient actomyosin connections among nodes that pull one another into a ring. The SCPR model reproduces the transport of nodes over long distances and predicts observed clump-formation instabilities in mutants. However, the model does not generate transient linear elements and meshwork structures as observed in some wild-type and mutant cells during ring assembly. As a minimal model of node alignment, we added short-range aligning forces to the SCPR model representing currently unresolved mechanisms that may involve structural components, cross-linking and bundling proteins. We studied the effect of the local node alignment mechanism on ring formation numerically. We varied the new parameters and found viable rings for a realistic range of values. Morphologically, transient structures that form during ring assembly resemble those observed in experiments with wild-type and cdc25-22 cells. Our work supports a hierarchical process of ring self-organization involving components drawn together from distant parts of the cell followed by progressive stabilization.

  16. Structure of an Rrp6-RNA exosome complex bound to poly(A) RNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wasmuth, Elizabeth V.; Januszyk, Kurt; Lima, Christopher D.

    The eukaryotic RNA exosome processes and degrades RNA by directing substrates to the distributive or processive 3' to 5' exoribonuclease activities of Rrp6 or Rrp44, respectively. The non-catalytic nine-subunit exosome core (Exo9) features a prominent central channel. Although RNA can pass through the channel to engage Rrp44, it is not clear how RNA is directed to Rrp6 or whether Rrp6 uses the central channel. Here we report a 3.3 Å crystal structure of a ten-subunit RNA exosome complex from Saccharomyces cerevisiae composed of the Exo9 core and Rrp6 bound to single-stranded poly(A) RNA. The Rrp6 catalytic domain rests on topmore » of the Exo9 S1/KH ring above the central channel, the RNA 3' end is anchored in the Rrp6 active site, and the remaining RNA traverses the S1/KH ring in an opposite orientation to that observed in a structure of a Rrp44-containing exosome complex. Solution studies with human and yeast RNA exosome complexes suggest that the RNA path to Rrp6 is conserved and dependent on the integrity of the S1/KH ring. Although path selection to Rrp6 or Rrp44 is stochastic in vitro, the fate of a particular RNA may be determined in vivo by the manner in which cofactors present RNA to the RNA exosome.« less

  17. The Hexamer Structure of the Rift Valley Fever Virus Nucleoprotein Suggests a Mechanism for its Assembly into Ribonucleoprotein Complexes

    PubMed Central

    Ferron, François; Li, Zongli; Danek, Eric I.; Luo, Dahai; Wong, Yeehwa; Coutard, Bruno; Lantez, Violaine; Charrel, Rémi; Canard, Bruno; Walz, Thomas; Lescar, Julien

    2011-01-01

    Rift Valley fever virus (RVFV), a Phlebovirus with a genome consisting of three single-stranded RNA segments, is spread by infected mosquitoes and causes large viral outbreaks in Africa. RVFV encodes a nucleoprotein (N) that encapsidates the viral RNA. The N protein is the major component of the ribonucleoprotein complex and is also required for genomic RNA replication and transcription by the viral polymerase. Here we present the 1.6 Å crystal structure of the RVFV N protein in hexameric form. The ring-shaped hexamers form a functional RNA binding site, as assessed by mutagenesis experiments. Electron microscopy (EM) demonstrates that N in complex with RNA also forms rings in solution, and a single-particle EM reconstruction of a hexameric N-RNA complex is consistent with the crystallographic N hexamers. The ring-like organization of the hexamers in the crystal is stabilized by circular interactions of the N terminus of RVFV N, which forms an extended arm that binds to a hydrophobic pocket in the core domain of an adjacent subunit. The conformation of the N-terminal arm differs from that seen in a previous crystal structure of RVFV, in which it was bound to the hydrophobic pocket in its own core domain. The switch from an intra- to an inter-molecular interaction mode of the N-terminal arm may be a general principle that underlies multimerization and RNA encapsidation by N proteins from Bunyaviridae. Furthermore, slight structural adjustments of the N-terminal arm would allow RVFV N to form smaller or larger ring-shaped oligomers and potentially even a multimer with a super-helical subunit arrangement. Thus, the interaction mode between subunits seen in the crystal structure would allow the formation of filamentous ribonucleocapsids in vivo. Both the RNA binding cleft and the multimerization site of the N protein are promising targets for the development of antiviral drugs. PMID:21589902

  18. Stellar Occultations by Saturn's Rings

    NASA Astrophysics Data System (ADS)

    Nicholson, Philip; Hedman, Matthew; French, Richard G.; Ansty, Todd

    2018-04-01

    On 15 September 2017 the Cassini mission came to an end when the spacecraft made a controlled entry into the planet's atmosphere. Over the preceding 13 years the Visual and Infrared Mapping Spectrometer (VIMS) instrument successfully observed over 170 stellar occultations by Saturn's rings, greatly increasing the available data set for high-resolution studies of the rings' structure and dynamics. Ring opening angles, B_\\ast ranged from 1.06° to 74.18°, while spacecraft ranges varied from 220,000 to 3,014,000 km. The effective radial resolution of the data is determined by a combination of Fresnel diffraction, stellar diameter and sampling rate, but is typically 150-300~m. We will briefly review the overall data set, before looking at examples of dynamical studies carried out with it over the past decade. These include modeling the geometry of self-gravity wakes in the A and B rings, evidence for viscous over-stability in the inner A ring, studies of eccentric, inclined and more complex orbital perturbations on the edges of isolated ringlets and narrow gaps, identification of density and bending waves in the C ring driven by both internal oscillations and gravity anomalies in Saturn, and the first reliable estimates of surface mass density in the central B ring.{\\bf References:} French \\etal\\ (2016a, 2016b, 2017), Hedman \\etal\\ (2007, 2010, 2014), Hedman \\& Nicholson (2013, 2014, 2016), Nicholson \\& Hedman (2010, 2016), Nicholson \\etal\\ (2014a, 2014b).

  19. Detection and direction discrimination of single vortex rings by harbour seals (Phoca vitulina).

    PubMed

    Krüger, Yvonne; Hanke, Wolf; Miersch, Lars; Dehnhardt, Guido

    2018-04-25

    Harbour seals possess highly sensitive vibrissae that enable them to track hydrodynamic trails left behind by a swimming fish. Most of these trails contain vortex rings as a main hydrodynamic component. They may reveal information about their generator as the trails differ depending on the fish species, the fish's body shape, size and swimming style. In addition, fish generate single vortex rings in diverse natural situations. In this study, the ability of blindfolded stationary harbour seals to detect and analyse single vortex rings regarding directional information has been investigated. In three different behavioural experiments, the animals were trained to respond to single artificially generated vortex rings. The results show that harbour seals are able to respond to a variety of different vortex rings upon vibrissal stimulation. The investigation of the minimum hydrodynamically perceivable angle revealed that it is at least as small as 5.7 deg, which was the smallest adjustable angle. Moreover, harbour seals are capable of analysing the travel direction of a vortex ring perceived by the mystacial vibrissae irrespective of whether the vibrissae were stimulated ipsilaterally or contralaterally. In situations in which no complex hydrodynamic trail is available, it is advantageous for a hunting seal to be able to extract information from a single vortex ring. © 2018. Published by The Company of Biologists Ltd.

  20. Thermal Modeling of the Main Rings of Saturn through random distribution particle arrays and ray-tracing simulations

    NASA Astrophysics Data System (ADS)

    Flandes, Alberto; Spilker, Linda; Déau, Estelle

    2016-10-01

    Saturn's rings are a complex collection of icy particles with diameters from 1 m to few meters. Their natural window of study is the infrared because its temperatures are between 40K and 120K. The main driver of the temperature of these rings is the direct solar radiation as well as the solar radiation reflected off Saturn's atmosphere. The second most important energy source is the infrared radiation coming from Saturn itself. The study of the variations of temperatures of the rings, or, in general, their thermal behavior, may provide important information on their composition, their structure and their dynamics. Models that consider these and other energy sources are able to explain, to a first approximation, the observed temperature variations of the rings. The challenge for these models is to accurately describe the variation of illumination on the rings, i. e., how the illuminated and non-illuminated regions of the ring particles change at the different observation geometries. This shadowing mainly depends on the optical depth, as well as the general structure of the rings.In this work, We show a semi-analytical model that considers the main energy sources of the rings and their average properties (e.g., optical depth, particle size range and vertical distribution). In order to deal with the shadowing at specific geometries, the model uses the ray-tracing technique. The goal is to describe the ring temperatures observed by the Composite Infrared Spectrometer, CIRS, onboard the Cassini spacecraft, which is in orbit around Saturn since 2004. So far, the model is able to reproduce some of the general features of specific regions of the A, B and C rings.

  1. Gravitational resonance: Saturn's rings

    NASA Astrophysics Data System (ADS)

    Bell, Peter M.

    Perhaps no one thought much more would need to be known about Saturn's rings 100 or so years ago, when Daniel Kirkwood explained the various features. The main rings, within the three so-called Cassini divisions, were due to gravitational resonance conditions between small orbiting particles and the satellite Mimas. Now, after several spacecraft—especially Voyager—have shown the rings' close-up characteristics, there has been a great deal of activity in the planetary geophysics community to try to explain the origin of the numerous features of the rings of solar system bodies that were far beyond the resolution of telescopes in Kirkwood s day. A pretty good sample of that activity was reported recently by R.A. Kerr (Science, Oct. 8, 1982), who stated ‘Resonance theory still stands after the onslaught of spacecraft observations, but its new applications have yielded a greater variety of ring features than Kirkwood ever dreamed.’ One has only to have an inkling of the levels of gravitational mechanics to appreciate the complexities of the theories that have yielded resonance variations such as spiral density waves and bending waves in the past few years. As theories unfold, however, and are tested against Voyager's results, it has become evident that most of the actually observed ring structure of the major planets remains unexplained.

  2. Numerical Simulations of Silverpit Crater Collapse

    NASA Technical Reports Server (NTRS)

    Collins, G. S.; Turtle, E. P.; Melosh, H. J.

    2003-01-01

    The Silverpit crater is a recently discovered, 60-65 Myr old complex crater, which lies buried beneath the North Sea, about 150 km east of Britain. High-resolution images of Silverpit's subsurface structure, provided by three-dimensional seismic reflection data, reveal an inner-crater morphology similar to that expected for a 5-8 km diameter terrestrial crater. The crater walls show evidence of terracestyle slumping and there is a distinct central uplift, which may have produced a central peak in the pristine crater morphology. However, Silverpit is not a typical 5-km diameter terrestrial crater, because it exhibits multiple, concentric rings outside the main cavity. External concentric rings are normally associated with much larger impact structures, for example Chicxulub on Earth, or Orientale on the Moon. Furthermore, external rings associated with large impacts on the terrestrial planets and moons are widely-spaced, predominantly inwardly-facing, asymmetric scarps. However, the seismic data show that the external rings at Silverpit represent closely-spaced, concentric fault-bound graben, with both inwardly and outwardly facing faults-carps. This type of multi-ring structure is directly analogous to the Valhalla-type multi-ring basins found on the icy satellites. Thus, the presence and style of the multiple rings at Silverpit is surprising given both the size of the crater and its planetary setting.

  3. Studies of lysine cyclodeaminase from Streptomyces pristinaespiralis: Insights into the complex transition NAD+ state.

    PubMed

    Ying, Hanxiao; Wang, Jing; Shi, Ting; Zhao, Yilei; Wang, Xin; Ouyang, Pingkai; Chen, Kequan

    2018-01-01

    Lysine cyclodeaminase (LCD) catalyzes the piperidine ring formation in macrolide-pipecolate natural products metabolic pathways from a lysine substrate through a combination of cyclization and deamination. This enzyme belongs to a unique enzyme class, which uses NAD + as the catalytic prosthetic group instead of as the co-substrate. To understand the molecular details of NAD + functions in lysine cyclodeaminase, we have determined four ternary crystal structure complexes of LCD-NAD + with pipecolic acid (LCD-PA), lysine (LCD-LYS), and an intermediate (LCD-INT) as ligands at 2.26-, 2.00-, 2.17- and 1.80 Å resolutions, respectively. By combining computational studies, a NAD + -mediated "gate keeper" function involving NAD + /NADH and Arg49 that control the binding and entry of the ligand lysine was revealed, confirming the critical roles of NAD + in the substrate access process. Further, in the gate opening form, a substrate delivery tunnel between ε-carboxyl moiety of Glu264 and the α-carboxyl moiety of Asp236 was observed through a comparison of four structure complexes. The LCD structure details including NAD + -mediated "gate keeper" and substrate tunnel may assist in the exploration the NAD + function in this unique enzyme class, and in regulation of macrolide-pipecolate natural product synthesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Functional roles of the pepper RING finger protein gene, CaRING1, in abscisic acid signaling and dehydration tolerance.

    PubMed

    Lim, Chae Woo; Hwang, Byung Kook; Lee, Sung Chul

    2015-09-01

    Plants are constantly exposed to a variety of biotic and abiotic stresses, which include pathogens and conditions of high salinity, low temperature, and drought. Abscisic acid (ABA) is a major plant hormone involved in signal transduction pathways that mediate the defense response of plants to abiotic stress. Previously, we isolated Ring finger protein gene (CaRING1) from pepper (Capsicum annuum), which is associated with resistance to bacterial pathogens, accompanied by hypersensitive cell death. Here, we report a new function of the CaRING1 gene product in the ABA-mediated defense responses of plants to dehydration stress. The expression of the CaRING1 gene was induced in pepper leaves treated with ABA or exposed to dehydration or NaCl. Virus-induced gene silencing of CaRING1 in pepper plants exhibited low degree of ABA-induced stomatal closure and high levels of transpirational water loss in dehydrated leaves. These led to be more vulnerable to dehydration stress in CaRING1-silenced pepper than in the control pepper, accompanied by reduction of ABA-regulated gene expression and low accumulation of ABA and H2O2. In contrast, CaRING1-overexpressing transgenic plants showed enhanced sensitivity to ABA during the seedling growth and establishment. These plants were also more tolerant to dehydration stress than the wild-type plants because of high ABA accumulation, enhanced stomatal closure and increased expression of stress-responsive genes. Together, these results suggest that the CaRING1 acts as positive factor for dehydration tolerance in Arabidopsis by modulating ABA biosynthesis and ABA-mediated stomatal closing and gene expression.

  5. Allosteric Regulation of Mammalian Pantothenate Kinase*

    PubMed Central

    Subramanian, Chitra; Yun, Mi-Kyung; Yao, Jiangwei; Sharma, Lalit Kumar; Lee, Richard E.; White, Stephen W.; Jackowski, Suzanne; Rock, Charles O.

    2016-01-01

    Pantothenate kinase is the master regulator of CoA biosynthesis and is feedback-inhibited by acetyl-CoA. Comparison of the human PANK3·acetyl-CoA complex to the structures of PANK3 in four catalytically relevant complexes, 5′-adenylyl-β,γ-imidodiphosphate (AMPPNP)·Mg2+, AMPPNP·Mg2+·pantothenate, ADP·Mg2+·phosphopantothenate, and AMP phosphoramidate (AMPPN)·Mg2+, revealed a large conformational change in the dimeric enzyme. The amino-terminal nucleotide binding domain rotates to close the active site, and this allows the P-loop to engage ATP and facilitates required substrate/product interactions at the active site. Biochemical analyses showed that the transition between the inactive and active conformations, as assessed by the binding of either ATP·Mg2+ or acyl-CoA to PANK3, is highly cooperative indicating that both protomers move in concert. PANK3(G19V) cannot bind ATP, and biochemical analyses of an engineered PANK3/PANK3(G19V) heterodimer confirmed that the two active sites are functionally coupled. The communication between the two protomers is mediated by an α-helix that interacts with the ATP-binding site at its amino terminus and with the substrate/inhibitor-binding site of the opposite protomer at its carboxyl terminus. The two α-helices within the dimer together with the bound ligands create a ring that stabilizes the assembly in either the active closed conformation or the inactive open conformation. Thus, both active sites of the dimeric mammalian pantothenate kinases coordinately switch between the on and off states in response to intracellular concentrations of ATP and its key negative regulators, acetyl(acyl)-CoA. PMID:27555321

  6. Organo-Lewis acid as cocatalyst for cationic homogeneous Ziegler-Natta olefin polymerizations

    DOEpatents

    Marks, Tobin J.; Chen, You-Xian

    2001-01-01

    Organo-Lewis acids of the formula BR'R".sub.2 wherein B is boron, R' is fluorinated biphenyl, and R" is a fluorinated phenyl, fluorinated biphenyl, or fluorinated polycyclic fused ring group, and cationic metallocene complexes formed therewith. Such complexes are useful as polymerization catalysts.

  7. Organo-Lewis acid as cocatalyst for cationic homogeneous Ziegler-Natta olefin polymerizations

    DOEpatents

    Marks, Tobin J.; Chen, You-Xian

    2002-01-01

    Organo-Lewis acids of the formula BR'R".sub.2 wherein B is boron, R' is fluorinated biphenyl, and R" is a fluorinated phenyl, fluorinated biphenyl, or fluorinated polycyclic fused ring group, and cationic metallocene complexes formed therewith. Such complexes are useful as polymerization catalysts.

  8. Synthesis, Characterization and Antifertility Activity of New Unsymmetrical Macrocyclic Complexes of Tin(II)

    PubMed Central

    Sharma, Kripa; Joshi, S. C.

    2000-01-01

    A new series of unsymmetrical macrocyclic complexes of tin(ll) has been prepared by the template process using bis(3-oxo-2-butylidene)propane-1,3-diamine as precursor. This affords a method to synthesize these complexes with various ring sizes. The tetradentate macrocyclic precursor [N4mL] reacts with SnCl2 and different diamines in a 1:1:1 molar ratio in refluxing methanol to give complexes of the type [Sn(N4mL)Cl2]. The ring expansion has been achieved by varying the diamine between the two diacetyl amino nitrogen atoms. The macrocyclic precursor and its metal complexes have been characterized on the basis of elemental analysis, molar conductance, molecular weight determinations, IR, 1H NMR,13C NMR, 119Sn NMR and electronic spectral studies. An octahedral geometry around the metal ion is suggested for these complexes. On the basis of molecular weights and conductivity measurements, their monomeric and non-electrolytic nature has been confirmed. The precursor and complexes have been screened in vitro against a number of pathogenic fungi and bacteria to assess their growth inhibiting potential. The testicular sperm density and testicular sperm morphology, sperm motility, density of cauda epididymal spermatozoa and fertility in mating trails and biochemicals parameters of reproductive organs have been examined and discussed. PMID:18475951

  9. Ring opening polymerisation of lactide with uranium(iv) and cerium(iv) phosphinoaryloxide complexes.

    PubMed

    Sinclair, Fern; Hlina, Johann A; Wells, Jordann A L; Shaver, Michael P; Arnold, Polly L

    2017-08-22

    The C 3 -symmetric uranium(iv) and cerium(iv) complexes Me 3 SiOM(OAr P ) 3 , M = U (1), Ce (2), OAr P = OC 6 H 2 -6- t Bu-4-Me-2-PPh 2 , have been prepared and the difference between these 4f and 5f congeners as initiators for the ring opening polymerisation (ROP) of l-lactide is compared. The poorly controlled reactivity of the homoleptic analogue U(OAr P ) 4 (3) demonstrates the importance of the M-OSiMe 3 initiating group. The incorporation of a nickel atom in 1 to form the U-Ni heterobimetallic complex Me 3 SiOU(OAr P ) 3 Ni (4) may be the first example of the use of the inverse trans influence to switch the reactivity of a complex. This would imply the formation of the U-Ni bond strengthens the U-OSiMe 3 bond to such an extent that the ROP catalysis is switched off. Changing the conditions to immortal polymerisation dramatically increases polymerisation rates, and switches the order, with the Ce complex now faster than the U analogue, suggesting ligand protonolysis to afford a more open coordination sphere. For the ROP of rac-lactide, uranium complex 1 promotes heterotacticity at the highest levels of stereocontrol yet reported for an actinide complex.

  10. A C2HC zinc finger is essential for the RING-E2 interaction of the ubiquitin ligase RNF125

    PubMed Central

    Bijlmakers, Marie-José; Teixeira, João M. C.; Boer, Roeland; Mayzel, Maxim; Puig-Sàrries, Pilar; Karlsson, Göran; Coll, Miquel; Pons, Miquel; Crosas, Bernat

    2016-01-01

    The activity of RING ubiquitin ligases (E3s) depends on an interaction between the RING domain and ubiquitin conjugating enzymes (E2), but posttranslational events or additional structural elements, yet largely undefined, are frequently required to enhance or regulate activity. Here, we show for the ubiquitin ligase RNF125 that, in addition to the RING domain, a C2HC Zn finger (ZnF) is crucial for activity, and a short linker sequence (Li2120-128) enhances activity. The contribution of these regions was first shown with truncated proteins, and the essential role of the ZnF was confirmed with mutations at the Zn chelating Cys residues. Using NMR, we established that the C2HC ZnF/Li2120-128 region is crucial for binding of the RING domain to the E2 UbcH5a. The partial X-ray structure of RNF125 revealed the presence of extensive intramolecular interactions between the RING and C2HC ZnF. A mutation at one of the contact residues in the C2HC ZnF, a highly conserved M112, resulted in the loss of ubiquitin ligase activity. Thus, we identified the structural basis for an essential role of the C2HC ZnF and conclude that this domain stabilizes the RING domain, and is therefore required for binding of RNF125 to an E2. PMID:27411375

  11. Ring-like oligomers of Synaptotagmins and related C2 domain proteins

    PubMed Central

    Zanetti, Maria N; Bello, Oscar D; Wang, Jing; Coleman, Jeff; Cai, Yiying; Sindelar, Charles V; Rothman, James E; Krishnakumar, Shyam S

    2016-01-01

    We recently reported that the C2AB portion of Synaptotagmin 1 (Syt1) could self-assemble into Ca2+-sensitive ring-like oligomers on membranes, which could potentially regulate neurotransmitter release. Here we report that analogous ring-like oligomers assemble from the C2AB domains of other Syt isoforms (Syt2, Syt7, Syt9) as well as related C2 domain containing protein, Doc2B and extended Synaptotagmins (E-Syts). Evidently, circular oligomerization is a general and conserved structural aspect of many C2 domain proteins, including Synaptotagmins. Further, using electron microscopy combined with targeted mutations, we show that under physiologically relevant conditions, both the Syt1 ring assembly and its rapid disruption by Ca2+ involve the well-established functional surfaces on the C2B domain that are important for synaptic transmission. Our data suggests that ring formation may be triggered at an early step in synaptic vesicle docking and positions Syt1 to synchronize neurotransmitter release to Ca2+ influx. DOI: http://dx.doi.org/10.7554/eLife.17262.001 PMID:27434670

  12. Functional characterization of EI24-induced autophagy in the degradation of RING-domain E3 ligases

    PubMed Central

    Devkota, Sushil; Jeong, Hyobin; Kim, Yunmi; Ali, Muhammad; Roh, Jae-il; Hwang, Daehee; Lee, Han-Woong

    2016-01-01

    ABSTRACT Historically, the ubiquitin-proteasome system (UPS) and autophagy pathways were believed to be independent; however, recent data indicate that these pathways engage in crosstalk. To date, the players mediating this crosstalk have been elusive. Here, we show experimentally that EI24 (EI24, autophagy associated transmembrane protein), a key component of basal macroautophagy/autophagy, degrades 14 physiologically important E3 ligases with a RING (really interesting new gene) domain, whereas 5 other ligases were not degraded. Based on the degradation results, we built a statistical model that predicts the RING E3 ligases targeted by EI24 using partial least squares discriminant analysis. Of 381 RING E3 ligases examined computationally, our model predicted 161 EI24 targets. Those targets are primarily involved in transcription, proteolysis, cellular bioenergetics, and apoptosis and regulated by TP53 and MTOR signaling. Collectively, our work demonstrates that EI24 is an essential player in UPS-autophagy crosstalk via degradation of RING E3 ligases. These results indicate a paradigm shift regarding the fate of E3 ligases. PMID:27541728

  13. Theoretical characterization and design of highly efficient iridium (III) complexes bearing guanidinate ancillary ligand.

    PubMed

    Ren, Xin-Yao; Wu, Yong; Wang, Li; Zhao, Liang; Zhang, Min; Geng, Yun; Su, Zhong-Min

    2014-06-01

    A density functional theory/time-depended density functional theory was used to investigate the synthesized guanidinate-based iridium(III) complex [(ppy)2Ir{(N(i)Pr)2C(NPh2)}] (1) and two designed derivatives (2 and 3) to determine the influences of different cyclometalated ligands on photophysical properties. Except the conventional discussions on geometric relaxations, absorption and emission properties, many relevant parameters, including spin-orbital coupling (SOC) matrix elements, zero-field-splitting parameters, radiative rate constants (kr) and so on were quantitatively evaluated. The results reveal that the replacement of the pyridine ring in the 2-phenylpyridine ligand with different diazole rings cannot only enlarge the frontier molecular orbital energy gaps, resulting in a blue-shift of the absorption spectra for 2 and 3, but also enhance the absorption intensity of 3 in the lower-energy region. Furthermore, it is intriguing to note that the photoluminescence quantum efficiency (ΦPL) of 3 is significantly higher than that of 1. This can be explained by its large SOC value(n=3-4) and large transition electric dipole moment (μS3), which could significantly contribute to a larger kr. Besides, compared with 1, the higher emitting energy (ET1) and smaller (2) value for 3 may lead to a smaller non-radiative decay rate. Additionally, the detailed results also indicate that compared to 1 with pyridine ring, 3 with imidazole ring performs a better hole injection ability. Therefore, the designed complex 3 can be expected as a promising candidate for highly efficient guanidinate-based phosphorescence emitter for OLEDs applications. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Biosynthesis of ketomycin. (II) biomimetic model for beta-lactamase catalysis: host-guest interactions in cyclodextrin-penicillin inclusion complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mak, H.W.

    The antibiotic ketomycin is formed from shikimic acid via chorismic acid and prephenic acid. Phenylalanine and 2',5'-dihydrophenylalanine derived from shikimic acid are not intermediates in the biosynthesis. Degradation of ketomycin derived from (1,6-/sup 14/C)shikimic acid showed that prephenic acid is converted into ketomycin with stereospecific discrimination between the two enantiotopic edges of the ring, the pro-S-R edge giving rise to the C-2', C-3' side of the cyclohexane ring of ketomycin. The resistance of pathogenic bacteria to the action of ..beta..-lactam antibiotics is mainly ascribed to their ability to produce ..beta..-lactamase to cleave the ..beta..-lactam ring. It is essential to understandmore » the molecular nature of ..beta..-lactamase-penicillin recognition for designing and formulating more effective ..beta..-lactam antibiotics. A biomimetic study of ..beta..-lactamase is therefore initiated. To meet the requirements of hydrophobic and serine protease characteristics of ..beta..-lactamase, ..cap alpha..-cyclodextrin is chosen as a biomimetic model for ..beta..-lactamase. The structural specificity and the chemical dynamics of ..cap alpha..-cyclodextrin-phenoxymethyl penicillin inclusion complex in solid state and in solution have been determined by IR and NMR spectroscopy. The spectral results strongly indicate that the phenyl portion of the phenoxymethyl penicillin forms a stable inclusion complex with the hydrophobic cavity of ..cap alpha..-cyclodextrin in solution as well as in the solid state. Kinetic studies followed by /sup 1/HNMR and HPLC analyses under alkaline condition have shown that the ..cap alpha..-cyclodextrin mimics the catalytic function of serine of ..beta..-lactamase in the stereospecific hydrolysis of the ..beta..-lactam ring of phenoxymethyl penicillin.« less

  15. Regulation of Split Linear Systems Over Rings: Coefficient-Assignment and Observers,

    DTIC Science & Technology

    1980-02-22

    we give for the first time , a method to obtain an observer for a finite -free strongly observable The K-linear map irQ is defined as system 5" ( F. G...NAME a ADORESS~if dif!ttrent from Controlling Office) IS1 SECURITY CLASS . (of this report) SIS.. DE CL ASSI ’I CATION/ODOWNGRADING SCHEDULE 16...Entered) IEEE rRANSACTIONS ON AUTOMATIC CONTROL . VOL. Ac-27 . No. 1. FEaRUAay 1982 Regutlation of Split Linear Systems Over Rings: Coefficient

  16. Planetary astronomy: Rings, satellites, and asteroids

    NASA Technical Reports Server (NTRS)

    Greenberg, Richard

    1988-01-01

    Studies of planetary rings focus on the dynamical processes that govern astronomically observable ring properties and structure. These investigations thus help reveal properties of the rings as well as probe the gravity fields of the planets. Satellite studies involve interpretation of orbital motion to extract information regarding the gravity fields of the outer planets and the physical properties of the satellites themselves. Asteroid lightcurve work is designed to investigate the large-scale shapes of the asteroids, as well as to reveal anomalous features such as major topography, possible satellites, or albedo variations. Work on the nature of viscous transport in planetary rings, emphasizing the role of individual particles' physical properties, has yielded a method for estimating both angular momentum and mass transport given an optical-thickness gradient. This result offers the prospect of ringlet instability, which may explain the square-profile ringlets in Saturn's C Ring. Thermal and reflected lightcurves of 532 Herculina have been interpreted to show that albedo variations cannot be the primary cause of variations. A lightcurve simulation has been developed to model complex asteroidal figures. Bamberga was observed during the December occultation as part of the joint LPL-Lowell program.

  17. Compressible Vortex Ring

    NASA Astrophysics Data System (ADS)

    Elavarasan, Ramasamy; Arakeri, Jayawant; Krothapalli, Anjaneyulu

    1999-11-01

    The interaction of a high-speed vortex ring with a shock wave is one of the fundamental issues as it is a source of sound in supersonic jets. The complex flow field induced by the vortex alters the propagation of the shock wave greatly. In order to understand the process, a compressible vortex ring is studied in detail using Particle Image Velocimetry (PIV) and shadowgraphic techniques. The high-speed vortex ring is generated from a shock tube and the shock wave, which precedes the vortex, is reflected back by a plate and made to interact with the vortex. The shadowgraph images indicate that the reflected shock front is influenced by the non-uniform flow induced by the vortex and is decelerated while passing through the vortex. It appears that after the interaction the shock is "split" into two. The PIV measurements provided clear picture about the evolution of the vortex at different time interval. The centerline velocity traces show the maximum velocity to be around 350 m/s. The velocity field, unlike in incompressible rings, contains contributions from both the shock and the vortex ring. The velocity distribution across the vortex core, core diameter and circulation are also calculated from the PIV data.

  18. Static and Dynamic Disorder in Bacterial Light-Harvesting Complex LH2: A 2DES Simulation Study.

    PubMed

    Rancova, Olga; Abramavicius, Darius

    2014-07-10

    Two-dimensional coherent electronic spectroscopy (2DES) is a powerful technique in distinguishing homogeneous and inhomogeneous broadening contributions to the spectral line shapes of molecular transitions induced by environment fluctuations. Using an excitonic model of a double-ring LH2 aggregate, we perform simulations of its 2DES spectra and find that the model of a harmonic environment cannot provide a consistent set of parameters for two temperatures: 77 K and room temperature. This indicates the highly anharmonic nature of protein fluctuations for the pigments of the B850 ring. However, the fluctuations of B800 ring pigments can be assumed as harmonic in this temperature range.

  19. Binding site size limit of the 2:1 pyrrole-imidazole polyamide-DNA motif.

    PubMed Central

    Kelly, J J; Baird, E E; Dervan, P B

    1996-01-01

    Polyamides containing N-methylimidazole (Im) and N-methylpyrrole (Py) amino acids can be combined in antiparallel side-by-side dimeric complexes for sequence-specific recognition in the minor groove of DNA. Six polyamides containing three to eight rings bind DNA sites 5-10 bp in length, respectively. Quantitative DNase I footprint titration experiments demonstrate that affinity maximizes and is similar at ring sizes of five, six, and seven. Sequence specificity decreases as the length of the polyamides increases beyond five rings. These results provide useful guidelines for the design of new polyamides that bind longer DNA sites with enhanced affinity and specificity. Images Fig. 4 PMID:8692930

  20. Synthesis, characterization, thermal and antimicrobial studies of diabetic drug models: Complexes of vanadyl(II) sulfate with ascorbic acid (vitamin C), riboflavin (vitamin B2) and nicotinamide (vitamin B3)

    NASA Astrophysics Data System (ADS)

    Refat, Moamen S.

    2010-04-01

    The oxovanadium(II) complexes of the different vitamins like ascorbic acid (vitamin C; Vit. C), riboflavin (vitamin B2; Vit. B2) and nicotinamide (vitamin B3; Vit. B3) were synthesized and characterized by elemental analysis, molar conductance, IR, electronic, magnetic measurements, thermal studies, XRD and SEM. Conductance measurements indicated that the vanadyl(II) complexes of Vit. B2 and Vit. B3 are 1:2 electrolytes except for [VO(Vit. C) 2(H 2O) 2] complex is non-electrolyte. IR data show that Vit. B2 is bidentate ligand against azomethine nitrogen of pyrazine ring and C dbnd O of pyrimidine-2,4-dione but Vit. B3 and Vit. C acts as a monodentate ligand through pyridine nitrogen and hydroxo oxygen of furan ring, respectively. Electronic spectral measurements indicated that all VO(II) complexes have a square-pyramidal geometry. Magnetic measurements for the new vanadyl(II) complexes are in a good agreement with the proposed formula. Thermal analyses (TG/DSC) of the studied complexes show that the decomposition process takes place in more than two steps. XRD refer that VO(II) complexes have an amorphous behavior. The surface morphology of the complexes was studied by SEM. The antimicrobial activities of the ligands and its complexes indicate that the vanadyl(II) complexes possess high antibacterial and antifungal activities towards the bacterial species and the fungal species than start ligands.

  1. Synthesis and structural characterization of lithium, sodium and potassium complexes supported by a tridentate amino-bisphenolate ligand

    NASA Astrophysics Data System (ADS)

    Durango-García, Clara J.; Rufino-Felipe, Ernesto; López-Cardoso, Marcela; Muñoz-Hernández, Miguel-Ángel; Montiel-Palma, Virginia

    2018-07-01

    Reactions of methylamino-N,N-bis(2-methylene-4,6-di-tert-butylphenol) (1) with one or two equivalents of bulk Li, Na or K metals in THF or DMSO render mono or dialkali metal complexes depending on the stoichiometric ratio of the reactants. The metal-methylamino-N-(2-methylene-4,6-tert-butylphenol)sbnd N-(2-methylene-4,6-tert-butylphenolate) complexes, 2Li, 2Na and 2K, are generated upon the substitution of a single phenol hydrogen of 1. In the solid state, complex 2Na is a dimer due to the establishment of two symmetric hydrogen bonds between two adjacent molecules. The Na center also engages into the formation of a ten-membered metallacycle ring with a butterfly-like structure. Due to dimerization, an intermolecular six-membered core is formed involving two sodium and four oxygen atoms. The weakly coordinated nitrogen atom from the ligand is nearly perpendicular to the hexagonal core. The dimetal-methylamino-N,N‧-bis(2-methylene-4,6-di-tert-butylphenolate) complexes, 3Li, 3Na and 3K result from metal substitution of the two phenol hydrogens from ligand 1. The SC-XRD structures of 3Li and 3Na are discreet, each incorporating two metal atoms in different coordination environments. Ten-membered rings with boat-boat conformations are also observed as are rhombic central M2O2 cores. The molecular structure of 3K in DMSO shows a higher degree of aggregation. It effectively comprises four K atoms, two ligand backbones and seven solvent molecules forming a central four-membered K2O2 ring perpendicular to an eight-membered structure formed also by K and O atoms spanning over the two ligand moieties.

  2. The Visual Orientation Memory of "Drosophila" Requires Foraging (PKG) Upstream of Ignorant (RSK2) in Ring Neurons of the Central Complex

    ERIC Educational Resources Information Center

    Kuntz, Sara; Poeck, Burkhard; Sokolowski, Marla B.; Strauss, Roland

    2012-01-01

    Orientation and navigation in a complex environment requires path planning and recall to exert goal-driven behavior. Walking "Drosophila" flies possess a visual orientation memory for attractive targets which is localized in the central complex of the adult brain. Here we show that this type of working memory requires the cGMP-dependent protein…

  3. Synthesis and characterization of 5-bis(benzyl thio)-1, 3, 4-thiadiazole complexes with fac-ReBr3(CO) 32-

    USDA-ARS?s Scientific Manuscript database

    Reactions of 2,5-bis(benzylthio)-1,3,4-thiadiazole (Compound 1) with a common organometallic rhenium starting material [NEt4]2[fac-[Re(I)Br3(CO)3] yielded two distinct types of complexes. Both complexes coordinate only through the nitrogen of the thiadiazole ring. Reaction of Compound 1 with the rhe...

  4. Synthesis and structural studies of lithium and sodium complexes with OOO-tridentate bis(phenolate) ligands: effective catalysts for the ring-opening polymerization of L-lactide.

    PubMed

    Huang, Yong; Tsai, Yueh-Hsuan; Hung, Wen-Chou; Lin, Chieh-Shen; Wang, Wei; Huang, Jui-Hsien; Dutta, Saikat; Lin, Chu-Chieh

    2010-10-18

    A series of lithium and sodium complexes with OOO-tridentate bis(phenolate) ligands have been synthesized and fully characterized. The reaction of 2,2'-dihydroxy-3,3',5,5'-tetrakis[(1-methyl-1-phenyl)ethyl]dibenzyl ether (L(1)-H(2)) with different ratios of (n)BuLi in toluene or tetrahydrofuran (THF) gave [Li(2)(L(1)-H)(2)] (1), [Li(4)L(1)(2)] (2), and [Li(2)L(1)(THF)(3)] (3), respectively. Similarly, [Na(L(1)-H)(THF)] (4), [Na(2)(L(1)-H)](2) (5), and [Na(4)L(1)(2)] (6) were prepared by the reaction of L(1)-H(2) and NaN[Si(CH(3))(3)](2) or sodium metal. In addition, the reaction of 2,2'-dihydroxy-3,3',5,5'-tetra-tert-butyldibenzyl ether (L(2)-H(2)) with (n)BuLi in toluene or THF yields Li(2)(L(2)-H)(2)] (7) and [Li(2)(L(2)-H)(2)(THF)(2)] (8), respectively. Further treatment of 7 with 2 mol equiv of benzyl alcohol provides [Li(2)(L(2)-H)(2)(BnOH)(2)] (9). Complexes 1-4 and 6-9 have been structurally characterized by single-crystal X-ray analysis. The dinuclear nature of complexes 1 and 3 was confirmed from their molecular structure. Complexes 2 and 6 illustrate tetranuclear species; however, complex 4 shows a mononuclear feature. A p-π interaction exists from the phenyl ring of the 2-(methyl-1-phenylethyl) groups to the central metal in complexes 2, 4, and 6, which could effectively stabilize the metal center. Among them, complexes 1, 2, and 5-9 displayed efficient catalytic behavior for the ring-opening polymerization of L-lactide in the presence of benzyl alcohol. Experimental results indicate that among these alkali-metal complexes, the sodium compound 6 displays a rapid catalytic polymerization of L-lactide in "living" fashion, yielding poly(L-lactide) with a controlled molecular weight and narrow polydispersity indices for a wide range of monomer-to-initiator ratios.

  5. Effects of topology on the adsorption of singly tethered ring polymers to attractive surfaces.

    PubMed

    Li, Bing; Sun, Zhao-Yan; An, Li-Jia

    2015-07-14

    We investigate the effect of topology on the equilibrium behavior of singly tethered ring polymers adsorbed on an attractive surface. We focus on the change of square radius of gyration Rg(2), the perpendicular component Rg⊥(2) and the parallel component Rg‖(2) to the adsorbing surface, the mean contacting number of monomers with the surface , and the monomer distribution along z-direction during transition from desorption to adsorption. We find that both of the critical point of adsorption εc and the crossover exponent ϕ depend on the knot type when the chain length of ring ranges from 48 to 400. The behaviors of Rg(2), Rg⊥(2), and Rg‖(2) are found to be dependent on the topology and the monomer-surface attractive strength. At weak adsorption, the polymer chains with more complex topology are more adsorbable than those with simple topology. However, at strong adsorption, the polymer chains with complex topology are less adsorbable. By analyzing the distribution of monomer along z-direction, we give a possible mechanism for the effect of topology on the adsorption behavior.

  6. Theoretical study of structure, bonding, and electronic behavior of novel sandwich complexes Os3(C6H6) n ( n = 1, 2)

    NASA Astrophysics Data System (ADS)

    Zhou, K.; Zhao, C. B.; Huang, W. D.

    2017-11-01

    The correlations between structural and electronic properties of the monolayer cluster Os3 and sandwich complexes of Os3(C6H6) n ( n = 1, 2) were studied with density functional theory. Every Os adopts η2 fashion to coordinate with C6H6 in Os3(C6H6), while every Os adopts η2 and η1 fashion to coordinate with below and above C6H6 rings in Os3(C6H6)2. η2 fashion is σ donation and π back bond, and η1 fashion belong to σ bond. The first binding energy between Os3 and below C6H6 ring is-114.23 kJ/mol, which is weaker than the second binding energy with-174.16 kJ/mol between Os3(C6H6) and above C6H6 ring. The reason is that the change of spin multiplicity is different, which leads the symmetry of Os3(C6H6)2 to be broken.

  7. Spontaneous polarization and dielectric relaxation dynamics of ferroelectric liquid crystals derived from 2(S)-[2(S)-ethylhexyolxy] propionic acid and its (S, R)-diastereomer

    NASA Astrophysics Data System (ADS)

    Huang, Lei-Ching; Fu, Chao-Ming

    2015-09-01

    The spontaneous polarization and molecular dynamics of four ferroelectric liquid crystals (FLCs) with two different kinds of core rings and two types of diastereomeric structures were investigated in this study. The FLCs with a biphenyl ring core structure showed higher spontaneous polarization than the FLCs with a naphthalene ring core structure. The complex dielectric spectra exhibited the Goldstone mode in the ferroelectric (SmC*) phase for all FLCs. The complex dielectric spectra of the four FLCs can be optimally fitted by the Debye model and the Cole-Cole model. Moreover, the Goldstone mode was enhanced under low DC bias fields for the FLCs with the (S, R)- diastereomeric structure, whereas the mode was suppressed for the FLCs with the (S, S)- diastereomeric structure. A microscopic molecular dynamic model is proposed to describe the underlying mechanism of the particular enhancement of the Goldstone mode. The experimental results of dielectric spectra and spontaneous polarization are explained in the discussion of the mesomorphic properties related to the FLC molecular structure.

  8. Alkali metal cation complexation by 1,3-alternate, mono-ionisable calix[4]arene-benzocrown-6 compounds

    DOE PAGES

    Surowiec, Malgorzata A.; Custelcean, Radu; Surowiec, Kazimierz; ...

    2014-04-23

    Alkali metal cation extraction behavior for two series of 1,3-alternate, mono-ionizable calix[4]arene-benzocrown-6 compounds is examined. In Series 1, the proton-ionizable group is a substituent on the benzo group of the polyether ring that directs it away from the crown ether cavity. In Series 2, the proton-ionizable group is attached to one para position in the calixarene framework, thus positioning it over the crown ether ring. Competitive solvent extraction of alkali metal cations from aqueous solutions into chloroform shows high Cs+ efficiency and selectivity. Single-species extraction pH profiles of Cs+ for Series 1 and 2 ligands with the same proton-ionizable groupmore » are very similar. Thus, association of Cs+ with the calixcrown ring is more important than the the proton-ionizable group’s position in relation to the crown ether cavity. Solid-state structures are presented for two unionized ligands from Series 2, as is a crystal containing two different ionized ligand–Cs+ complexes.« less

  9. Nonannual tree rings in a climate-sensitive Prioria copaifera chronology in the Atrato River, Colombia.

    PubMed

    Herrera-Ramirez, David; Andreu-Hayles, Laia; Del Valle, Jorge I; Santos, Guaciara M; Gonzalez, Paula L M

    2017-08-01

    In temperate climates, tree growth dormancy usually ensures the annual nature of tree rings, but in tropical environments, determination of annual periodicity can be more complex. The purposes of the work are as follows: (1) to generate a reliable tree-ring width chronology for Prioria copaifera Griseb. (Leguminoceae), a tropical tree species dwelling in the Atrato River floodplains, Colombia; (2) to assess the climate signal recorded by the tree-ring records; and (3) to validate the annual periodicity of the tree rings using independent methods. We used standard dendrochronological procedures to generate the P. copaifera tree-ring chronology. We used Pearson correlations to evaluate the relationship of the chronology with the meteorological records, climate regional indices, and gridded precipitation/sea surface temperature products. We also evaluated 24 high-precision 14 C measurements spread over a range of preselected tree rings, with assigned calendar years by dendrochronological techniques, before and after the bomb spike in order to validate the annual nature of the tree rings. The tree-ring width chronology was statistically reliable, and it correlated significantly with local records of annual and October-December (OND) streamflow and precipitation across the upper river watershed (positive), and OND temperature (negative). It was also significantly related to the Oceanic Niño Index, Pacific Decadal Oscillation, and the Southern Oscillation Index, as well as sea surface temperatures over the Caribbean and the Pacific region. However, 14 C high-precision measurements over the tree rings demonstrated offsets of up to 40 years that indicate that P. copaifera can produce more than one ring in certain years. Results derived from the strongest climate-growth relationship during the most recent years of the record suggest that the climatic signal reported may be due to the presence of annual rings in some of those trees in recent years. Our study alerts about the risk of applying dendrochronology in species with challenging anatomical features defining tree rings, commonly found in the tropics, without an independent validation of annual periodicity of tree rings. High-precision 14 C measurements in multiple trees are a useful method to validate the identification of annual tree rings.

  10. Dielectronic recombination experiments at the storage rings: From the present CSR to the future HIAF

    NASA Astrophysics Data System (ADS)

    Huang, Z. K.; Wen, W. Q.; Xu, X.; Wang, H. B.; Dou, L. J.; Chuai, X. Y.; Zhu, X. L.; Zhao, D. M.; Li, J.; Ma, X. M.; Mao, L. J.; Yang, J. C.; Yuan, Y. J.; Xu, W. Q.; Xie, L. Y.; Xu, T. H.; Yao, K.; Dong, C. Z.; Zhu, L. F.; Ma, X.

    2017-10-01

    Dielectronic recombination (DR) experiments of highly charged ions at the storage rings have been developed as a precision spectroscopic tool to investigate the atomic structure as well as nuclear properties of stable and unstable nuclei. The DR experiment on lithium-like argon ions was successfully performed at main Cooler Storage Ring (CSRm) at Heavy Ion Research Facility in Lanzhou (HIRFL) accelerator complex. The DR experiments on heavy highly charged ions and even radioactive ions are currently under preparation at the experimental Cooler Storage Ring (CSRe) at HIRFL. The current status of DR experiments at the CSRm and the preparation of the DR experiments at the CSRe are presented. In addition, an overview of DR experiments by employing an electron cooler and a separated ultra-cold electron target at the upcoming High Intensity heavy ion Accelerator Facility (HIAF) will be given.

  11. Andreev reflection, a tool to investigate vortex dynamics and quantum turbulence in 3He-B.

    PubMed

    Fisher, Shaun Neil; Jackson, Martin James; Sergeev, Yuri A; Tsepelin, Viktor

    2014-03-25

    Andreev reflection of quasiparticle excitations provides a sensitive and passive probe of flow in superfluid (3)He-B. It is particularly useful for studying complex flows generated by vortex rings and vortex tangles (quantum turbulence). We describe the reflection process and discuss the results of numerical simulations of Andreev reflection from vortex rings and from quantum turbulence. We present measurements of vortices generated by a vibrating grid resonator at very low temperatures. The Andreev reflection is measured using an array of vibrating wire sensors. At low grid velocities, ballistic vortex rings are produced. At higher grid velocities, the rings collide and reconnect to produce quantum turbulence. We discuss spatial correlations of the fluctuating vortex signals measured by the different sensor wires. These reveal detailed information about the formation of quantum turbulence and about the underlying vortex dynamics.

  12. Split-Ring Springback Simulations with the Non-associated Flow Rule and Evolutionary Elastic-Plasticity Models

    NASA Astrophysics Data System (ADS)

    Lee, K. J.; Choi, Y.; Choi, H. J.; Lee, J. Y.; Lee, M. G.

    2018-03-01

    Finite element simulations and experiments for the split-ring test were conducted to investigate the effect of anisotropic constitutive models on the predictive capability of sheet springback. As an alternative to the commonly employed associated flow rule, a non-associated flow rule for Hill1948 yield function was implemented in the simulations. Moreover, the evolution of anisotropy with plastic deformation was efficiently modeled by identifying equivalent plastic strain-dependent anisotropic coefficients. Comparative study with different yield surfaces and elasticity models showed that the split-ring springback could be best predicted when the anisotropy in both the R value and yield stress, their evolution and variable apparent elastic modulus were taken into account in the simulations. Detailed analyses based on deformation paths superimposed on the anisotropic yield functions predicted by different constitutive models were provided to understand the complex springback response in the split-ring test.

  13. Split-Ring Springback Simulations with the Non-associated Flow Rule and Evolutionary Elastic-Plasticity Models

    NASA Astrophysics Data System (ADS)

    Lee, K. J.; Choi, Y.; Choi, H. J.; Lee, J. Y.; Lee, M. G.

    2018-06-01

    Finite element simulations and experiments for the split-ring test were conducted to investigate the effect of anisotropic constitutive models on the predictive capability of sheet springback. As an alternative to the commonly employed associated flow rule, a non-associated flow rule for Hill1948 yield function was implemented in the simulations. Moreover, the evolution of anisotropy with plastic deformation was efficiently modeled by identifying equivalent plastic strain-dependent anisotropic coefficients. Comparative study with different yield surfaces and elasticity models showed that the split-ring springback could be best predicted when the anisotropy in both the R value and yield stress, their evolution and variable apparent elastic modulus were taken into account in the simulations. Detailed analyses based on deformation paths superimposed on the anisotropic yield functions predicted by different constitutive models were provided to understand the complex springback response in the split-ring test.

  14. Polycyclic aromatic hydrocarbons in the atmospheres of Titan and Jupiter

    NASA Technical Reports Server (NTRS)

    Sagan, Carl; Khare, B. N.; Thompson, W. R.; Mcdonald, G. D.; Wing, Michael R.; Bada, Jeffrey L.; Vo-Dinh, Tuan; Arakawa, E. T.

    1993-01-01

    PAHs are important components of the interstellar medium and carbonaceous chondrites, but have never been identified in the reducing atmospheres of the outer solar system. Incompletely characterized complex organic solids (tholins) produced by irradiating simulated Titan atmospheres reproduce well the observed UV/visible/IR optical constants of the Titan stratospheric haze. Titan tholin and a tholin generated in a crude simulation of the atmosphere of Jupiter are examined by two-step laser desorption/multiphoton ionization mass spectrometry. A range of two- to four-ring PAHs, some with one to four alkylation sites, are identified, with a net abundance of about 0.0001 g/g (grams per gram) of tholins produced. Synchronous fluorescence techniques confirm this detection. Titan tholins have proportionately more one- and two-ring PAHs than do Jupiter tholins, which in turn have more four-ring and larger PAHs. The four-ringed PAH chrysene, prominent in some discussions of interstellar grains, is found in Jupiter tholins.

  15. Andreev reflection, a tool to investigate vortex dynamics and quantum turbulence in 3He-B

    PubMed Central

    Fisher, Shaun Neil; Jackson, Martin James; Sergeev, Yuri A.; Tsepelin, Viktor

    2014-01-01

    Andreev reflection of quasiparticle excitations provides a sensitive and passive probe of flow in superfluid 3He-B. It is particularly useful for studying complex flows generated by vortex rings and vortex tangles (quantum turbulence). We describe the reflection process and discuss the results of numerical simulations of Andreev reflection from vortex rings and from quantum turbulence. We present measurements of vortices generated by a vibrating grid resonator at very low temperatures. The Andreev reflection is measured using an array of vibrating wire sensors. At low grid velocities, ballistic vortex rings are produced. At higher grid velocities, the rings collide and reconnect to produce quantum turbulence. We discuss spatial correlations of the fluctuating vortex signals measured by the different sensor wires. These reveal detailed information about the formation of quantum turbulence and about the underlying vortex dynamics. PMID:24704872

  16. RNF4-mediated polyubiquitination regulates the Fanconi anemia/BRCA pathway.

    PubMed

    Xie, Jenny; Kim, Hyungjin; Moreau, Lisa A; Puhalla, Shannon; Garber, Judy; Al Abo, Muthana; Takeda, Shunichi; D'Andrea, Alan D

    2015-04-01

    The Fanconi anemia/BRCA (FA/BRCA) pathway is a DNA repair pathway that is required for excision of DNA interstrand cross-links. The 17 known FA proteins, along with several FA-associated proteins (FAAPs), cooperate in this pathway to detect, unhook, and excise DNA cross-links and to subsequently repair the double-strand breaks generated in the process. In the current study, we identified a patient with FA with a point mutation in FANCA, which encodes a mutant FANCA protein (FANCAI939S). FANCAI939S failed to bind to the FAAP20 subunit of the FA core complex, leading to decreased stability. Loss of FAAP20 binding exposed a SUMOylation site on FANCA at amino acid residue K921, resulting in E2 SUMO-conjugating enzyme UBC9-mediated SUMOylation, RING finger protein 4-mediated (RNF4-mediated) polyubiquitination, and proteasome-mediated degradation of FANCA. Mutation of the SUMOylation site of FANCA rescued the expression of the mutant protein. Wild-type FANCA was also subject to SUMOylation, RNF4-mediated polyubiquitination, and degradation, suggesting that regulated release of FAAP20 from FANCA is a critical step in the normal FA pathway. Consistent with this model, cells lacking RNF4 exhibited interstrand cross-linker hypersensitivity, and the gene encoding RNF4 was epistatic with the other genes encoding members of the FA/BRCA pathway. Together, the results from our study underscore the importance of analyzing unique patient-derived mutations for dissecting complex DNA repair processes.

  17. RNF4-mediated polyubiquitination regulates the Fanconi anemia/BRCA pathway

    PubMed Central

    Xie, Jenny; Kim, Hyungjin; Moreau, Lisa A.; Puhalla, Shannon; Garber, Judy; Al Abo, Muthana; Takeda, Shunichi; D’Andrea, Alan D.

    2015-01-01

    The Fanconi anemia/BRCA (FA/BRCA) pathway is a DNA repair pathway that is required for excision of DNA interstrand cross-links. The 17 known FA proteins, along with several FA-associated proteins (FAAPs), cooperate in this pathway to detect, unhook, and excise DNA cross-links and to subsequently repair the double-strand breaks generated in the process. In the current study, we identified a patient with FA with a point mutation in FANCA, which encodes a mutant FANCA protein (FANCAI939S). FANCAI939S failed to bind to the FAAP20 subunit of the FA core complex, leading to decreased stability. Loss of FAAP20 binding exposed a SUMOylation site on FANCA at amino acid residue K921, resulting in E2 SUMO-conjugating enzyme UBC9-mediated SUMOylation, RING finger protein 4–mediated (RNF4-mediated) polyubiquitination, and proteasome-mediated degradation of FANCA. Mutation of the SUMOylation site of FANCA rescued the expression of the mutant protein. Wild-type FANCA was also subject to SUMOylation, RNF4-mediated polyubiquitination, and degradation, suggesting that regulated release of FAAP20 from FANCA is a critical step in the normal FA pathway. Consistent with this model, cells lacking RNF4 exhibited interstrand cross-linker hypersensitivity, and the gene encoding RNF4 was epistatic with the other genes encoding members of the FA/BRCA pathway. Together, the results from our study underscore the importance of analyzing unique patient-derived mutations for dissecting complex DNA repair processes. PMID:25751062

  18. MITD1 is recruited to midbodies by ESCRT-III and participates in cytokinesis

    PubMed Central

    Lee, Seongju; Chang, Jaerak; Renvoisé, Benoît; Tipirneni, Anita; Yang, Sarah; Blackstone, Craig

    2012-01-01

    Diverse cellular processes, including multivesicular body formation, cytokinesis, and viral budding, require the sequential functions of endosomal sorting complexes required for transport (ESCRTs) 0 to III. Of these multiprotein complexes, ESCRT-III in particular plays a key role in mediating membrane fission events by forming large, ring-like helical arrays. A number of proteins playing key effector roles, most notably the ATPase associated with diverse cellular activities protein VPS4, harbor present in microtubule-interacting and trafficking molecules (MIT) domains comprising asymmetric three-helical bundles, which interact with helical MIT-interacting motifs in ESCRT-III subunits. Here we assess comprehensively the ESCRT-III interactions of the MIT-domain family member MITD1 and identify strong interactions with charged multivesicular body protein 1B (CHMP1B), CHMP2A, and increased sodium tolerance-1 (IST1). We show that these ESCRT-III subunits are important for the recruitment of MITD1 to the midbody and that MITD1 participates in the abscission phase of cytokinesis. MITD1 also dimerizes through its C-terminal domain. Both types of interactions appear important for the role of MITD1 in negatively regulating the interaction of IST1 with VPS4. Because IST1 binding in turn regulates VPS4, MITD1 may function through downstream effects on the activity of VPS4, which plays a critical role in the processing and remodeling of ESCRT filaments in abscission. PMID:23015756

  19. The COP9 Signalosome regulates seed germination by facilitating protein degradation of RGL2 and ABI5

    PubMed Central

    Li, Bosheng; Bücker, Birte; Keil, Philipp; Zhang, Shaoman; Li, Jigang; Kang, Dingming; Liu, Jie; Dong, Jie; Deng, Xing Wang; Irish, Vivian

    2018-01-01

    The control of seed germination and seed dormancy are critical for the successful propagation of plant species, and are important agricultural traits. Seed germination is tightly controlled by the balance of gibberellin (GA) and abscisic acid (ABA), and is influenced by environmental factors. The COP9 Signalosome (CSN) is a conserved multi-subunit protein complex that is best known as a regulator of the Cullin-RING family of ubiquitin E3 ligases (CRLs). Multiple viable mutants of the CSN showed poor germination, except for csn5b-1. Detailed analyses showed that csn1-10 has a stronger seed dormancy, while csn5a-1 mutants exhibit retarded seed germination in addition to hyperdormancy. Both csn5a-1 and csn1-10 plants show defects in the timely removal of the germination inhibitors: RGL2, a repressor of GA signaling, and ABI5, an effector of ABA responses. We provide genetic evidence to demonstrate that the germination phenotype of csn1-10 is caused by over-accumulation of RGL2, a substrate of the SCF (CRL1) ubiquitin E3 ligase, while the csn5a-1 phenotype is caused by over-accumulation of RGL2 as well as ABI5. The genetic data are consistent with the hypothesis that CSN5A regulates ABI5 by a mechanism that may not involve CSN1. Transcriptome analyses suggest that CSN1 has a more prominent role than CSN5A during seed maturation, but CSN5A plays a more important role than CSN1 during seed germination, further supporting the functional distinction of these two CSN genes. Our study delineates the molecular targets of the CSN complex in seed germination, and reveals that CSN5 has additional functions in regulating ABI5, thus the ABA signaling pathway. PMID:29462139

  20. Application of Ring-Closing Metathesis to Grb2 SH3 Domain-Binding Peptides | Center for Cancer Research

    Cancer.gov

    In silico-generated hypothetical interactions of a ring-closing metathesis-macrocylized peptide bound to the amino terminal SH3 domain of the growth factor receptor bound protein 2 (Grb2). The complex was derived from the NMR solution structure of the bound parent peptide, Ac-V-P-P-P-V-P-P-R-R-R-amide (Protein Data Bank: 3GBQ). The protein surface is shown as electrostatic

Top