Science.gov

Sample records for ring cross-linked high

  1. Highly cross-linked nanoporous polymers

    DOEpatents

    Steckle, Jr., Warren P.; Apen, Paul G.; Mitchell, Michael A.

    1997-01-01

    Condensation polymerization followed by a supercritical extraction step can be used to obtain highly cross-linked nanoporous polymers with high surface area, controlled pore sizes and rigid structural integrity. The invention polymers are useful for applications requiring separation membranes.

  2. Highly cross-linked nanoporous polymers

    DOEpatents

    Steckle, Jr., Warren P.; Apen, Paul G.; Mitchell, Michael A.

    1998-01-01

    Condensation polymerization followed by a supercritical extraction step can be used to obtain highly cross-linked nanoporous polymers with high surface area, controlled pore sizes and rigid structural integrity. The invention polymers are useful for applications requiring separation membranes.

  3. Catalytic trimerization of aromatic nitriles and triaryl-s-triazine ring cross-linked high temperature resistant polymers and copolymers made thereby

    NASA Technical Reports Server (NTRS)

    Hsu, L. C. (Inventor)

    1979-01-01

    Triazine compounds and cross-linked polymer compositions are made by heating aromatic nitriles to a temperature in the range of from about 100 C to about 700 C, and preferably in the range of from about 200 C to about 350 C, in the presence of a catalyst or mixture of catalysts selected from one or more of the following groups: (1) organic sulfonic and sulfinic acids, (2) organic phosphonic and phosphinic acids, and (3)metallic acetylacetonates, at a pressure in the range of from about atmospheric pressure to about 10,000 psi and preferably in the range of from about 200 psi to about 750 psi. Aromatic nitrile-modified (terminated and/or appended) imide, benzimidazole, imidazopyrrolone, quinoxaline, and other condensation type prepolymers or their precopolymers are made which are trimerized with or without a filler by the aforementioned catalytic trimerization process into triaryl-s-triazine ring containing or cross-linked polymeric or copolymeric products useful in applications requiring high thermal-oxidative stability and high performance structural properties at elevated temperatures.

  4. Highly cross-linked nanoporous polymers

    DOEpatents

    Steckle, W.P. Jr.; Apen, P.G.; Mitchell, M.A.

    1998-01-20

    Condensation polymerization followed by a supercritical extraction step can be used to obtain highly cross-linked nanoporous polymers with high surface area, controlled pore sizes and rigid structural integrity. The invention polymers are useful for applications requiring separation membranes. 1 fig.

  5. [Cross-linking and intrastromal corneal ring segment].

    PubMed

    Renesto, Adimara da Candelaria; Sartori, Marta; Campos, Mauro

    2011-01-01

    Corneal cross-linking is a procedure used for stabilizing the cornea in patients with progressive keratoconus by increasing corneal rigidity, and it is also used in corneal inflammatory melting process. The intrastromal corneal ring segments act by flattening the center of the cornea. Originally designed for the correction of mild myopia, the segments are now being used for reduction of keratoconus in order to improve the uncorrected visual acuity, the best spectacle corrected visual acuity, to allow good tolerance to the use of contact lenses and delay the need for corneal grafting procedures. The present text presents a review of corneal cross-linking and insertion of intrastromal corneal ring segments, emphasizing their indications, results and complications related until now. PMID:21670914

  6. Autoclavable highly cross-linked polyurethane networks in ophthalmology.

    PubMed

    Bruin, P; Meeuwsen, E A; van Andel, M V; Worst, J G; Pennings, A J

    1993-11-01

    Highly cross-linked aliphatic polyurethane networks have been prepared by the bulk step reaction of low molecular weight polyols and hexamethylenediisocyanate (HDI). These polyurethane networks are optically transparent, colourless and autoclavable amorphous glassy thermosets, which are suited for use in ophthalmic applications such as intraocular lenses and keratoprostheses. The properties of these glassy polyurethanes, obtained from the reaction of the low molecular weight polyols triisopropanolamine (TIPA) or tetrakis (2-hydroxypropyl)ethylenediamine (Quadrol) and HDI in stoichiometric proportions, have been investigated in more detail. The glassy Quadrol/HDI-based polyurethane exhibits a reduction in ultimate glass transition temperature from 85 to 48 degrees C by uptake of 1% of water, and good ultimate mechanical properties (tensile strength 80-85 MPa, elongation at break ca 15%, modulus ca 1.5 GPa). IR spectra of these hydrophobic polyurethane networks revealed the absence of an isocyanate absorption, indicating that all isocyanates, apparently, had reacted during the cross-linking reaction. The biocompatibility could be increased by grafting tethered polyacrylamide chains onto the surface during network formation. These transparent cross-linked polyurethanes did not transmit UV light up to 400 nm, by incorporation of a small amount of the UV absorbing chromophore Coumarin 102, and could be sterilized simply by autoclaving. They were implanted in rabbit eyes, either in the form of small circular disks or in the form of a keratoprosthesis (artificial cornea). It was shown that the material was well tolerated by the rabbit eyes. Serious opacification of the cornea, a direct result of an adverse reaction to the implant, was never seen. Even 1 yr after implantation of a polyurethane keratoprosthesis the eye was still 'quiet'. PMID:7508760

  7. Tunable high performance cross-linked alkaline anion exchange membranes for fuel cell applications.

    PubMed

    Robertson, Nicholas J; Kostalik, Henry A; Clark, Timothy J; Mutolo, Paul F; Abruña, Héctor D; Coates, Geoffrey W

    2010-03-17

    Fuel cells are energy conversion devices that show great potential in numerous applications ranging from automobiles to portable electronics. However, further development of fuel cell components is necessary for them to become commercially viable. One component critical to their performance is the polymer electrolyte membrane, which is an ion conductive medium separating the two electrodes. While proton conducting membranes are well established (e.g., Nafion), hydroxide conducting membranes (alkaline anion exchange membranes, AAEMs) have been relatively unexplored by comparison. Operating under alkaline conditions offers significant efficiency benefits, especially for the oxygen reduction reaction; therefore, effective AAEMs could significantly advance fuel cell technologies. Here we demonstrate the use of ring-opening metathesis polymerization to generate new cross-linked membrane materials exhibiting high hydroxide ion conductivity and good mechanical properties. Cross-linking allows for increased ion incorporation, which, in turn supports high conductivities. This facile synthetic approach enables the preparation of cross-linked materials with the potential to meet the demands of hydrogen-powered fuel cells as well as direct methanol fuel cells. PMID:20178312

  8. Tunable High Performance Cross-Linked Alkaline Anion Exchange Membranes for Fuel Cell Applications

    SciTech Connect

    Robertson, Nicholas J.; Kostalik, IV, Henry A.; Clark, Timothy J.; Mutolo, Paul F.; Abruña, Héctor D.; Coates, Geoffrey W.

    2010-02-23

    Fuel cells are energy conversion devices that show great potential in numerous applications ranging from automobiles to portable electronics. However, further development of fuel cell components is necessary for them to become commercially viable. One component critical to their performance is the polymer electrolyte membrane, which is an ion conductive medium separating the two electrodes. While proton conducting membranes are well established (e.g., Nafion), hydroxide conducting membranes (alkaline anion exchange membranes, AAEMs) have been relatively unexplored by comparison. Operating under alkaline conditions offers significant efficiency benefits, especially for the oxygen reduction reaction; therefore, effective AAEMs could significantly advance fuel cell technologies. Here we demonstrate the use of ring-opening metathesis polymerization to generate new cross-linked membrane materials exhibiting high hydroxide ion conductivity and good mechanical properties. Cross-linking allows for increased ion incorporation, which, in turn supports high conductivities. This facile synthetic approach enables the preparation of cross-linked materials with the potential to meet the demands of hydrogen-powered fuel cells as well as direct methanol fuel cells.

  9. In Vivo Oxidative Stability Changes of Highly Cross-Linked Polyethylene Bearings: An Ex Vivo Investigation.

    PubMed

    Rowell, Shannon L; Reyes, Christopher R; Malchau, Henrik; Muratoglu, Orhun K

    2015-10-01

    The development of highly cross-linked UHMWPEs focused on stabilizing radiation-induced free radicals as the sole precursor to oxidative degradation. However, secondary in vivo oxidation mechanisms have been discovered. After a preliminary post-operative analysis, we subjected highly cross-linked retrievals with 1-4 years in vivo durations and never-implanted controls to accelerated aging to predict the extent to which their oxidative stability was compromised in vivo. Lipid absorption, oxidation, and hydroperoxides were measured using infrared spectroscopy. Gravimetric swelling was used to measure cross-link density. After aging, all retrievals, except vitamin E-stabilized components, regardless of initial lipid levels or oxidation, showed significant oxidative degradation, demonstrated by subsurface oxidative peaks, increased hydroperoxides and decreased cross-link density, compared to their post-operative material properties and never-implanted counterparts, confirming oxidative stability changes.

  10. Acute Corneal Hydrops 3 Years after Intra-corneal Ring Segments and Corneal Collagen Cross-linking

    PubMed Central

    Antonios, Rafic; Dirani, Ali; Fadlallah, Ali; Chelala, Elias; Hamadeh, Adib; Jarade, Elias

    2016-01-01

    This case report describes a 15-year-old male with allergic conjunctivitis and keratoconus, who underwent uneventful intra-corneal ring segment (ICRS) implantation and corneal collagen cross-linking (CXL) in the right eye. During the follow-up periods, the patient was noted to have several episodes of allergic conjunctivitis that were treated accordingly. At the 2 years postoperatively, he presented with another episode of allergic conjunctivitis and progression of keratoconus was suspected on topography. However, the patient was lost to follow-up, until he presented with acute hydrops at 3 years postoperatively. There are no reported cases of acute corneal hydrops in cross-linked corneas. We suspect the young age, allergic conjunctivitis and eye rubbing may be a risk factors associated with possible progression of keratoconus after CXL. Prolonged follow-up and aggressive control of the allergy might be necessary in similar cases. PMID:26957859

  11. Curing system for high voltage cross linked cables

    DOEpatents

    Bahder, George; Katz, Carlos; Bopp, Louis A.

    1978-01-01

    This invention makes extruded, vulcanized, high voltage cables insulated with thermosetting compounds at much higher rates of production and with superior insulation of reduced thickness and with reduced cavities or voids in the insulation. As the cable comes from an extruder, it passes into a curing chamber with a heat booster that quickly raises the insulation to a temperature at which it is cured much more quickly than with steam heating of the prior art. A high temperature liquid in contact with the insulation maintains the high temperature; and because of the greater curing heat, the cable can travel through the curing chamber at a faster rate and into a cooling tube where it contacts with a cooling liquid under high pressure. The insulation compound is treated to reduce the size of cavities; and the high pressure maintained by the curing and cooling mediums prevent expansion of cavities before the insulation is set.

  12. Vitamin E-diffused highly cross-linked UHMWPE particles induce less osteolysis compared to highly cross-linked virgin UHMWPE particles in vivo.

    PubMed

    Bichara, David A; Malchau, Erik; Sillesen, Nanna H; Cakmak, Selami; Nielsen, G Petur; Muratoglu, Orhun K

    2014-09-01

    Recent in vitro findings suggest that UHMWPE wear particles containing vitamin E (VE) may have reduced biologic activity and decreased osteolytic potential. We hypothesized that particles from VE-stabilized, radiation cross-linked UHMWPE would cause less osteolysis in a murine calvarial bone model when compared to virgin gamma irradiated cross-linked UHMWPE. Groups received equal amount of particulate debris overlaying the calvarium for 10 days. Calvarial bone was examined using high resolution micro-CT and histomorphometric analyses. There was a statistically significant difference between virgin (12.2%±8%) and VE-UHMWPE (3%±1.4%) groups in regards to bone resorption (P=0.005) and inflammatory fibrous tissue overlaying the calvaria (0.48 vs. 0.20, P<0.0001). These results suggest that VE-UHMWPE particles have reduced osteolytic potential in vivo when compared to virgin UHMWPE.

  13. Comparison of Wear and Oxidation in Retrieved Conventional and Highly Cross-Linked UHMWPE Tibial Inserts.

    PubMed

    Currier, Barbara H; Currier, John H; Franklin, Katherine J; Mayor, Michael B; Reinitz, Steven D; Van Citters, Douglas W

    2015-12-01

    Two groups of retrieved tibial inserts from one manufacturer's knee system were analyzed to evaluate the effect of a highly cross-linked bearing surface on wear and in vivo oxidation. The two groups ((1) conventional gamma-inert sterilized and (2) highly cross-linked, coupled with the same rough (Ra=0.25) Ti-6Al-4V tray) were matched with statistically similar in vivo duration and patient variables. The retrieved inserts were analyzed for ketone oxidation and wear in the form of dimensional change. The difference in oxidation rate between highly cross-linked and conventional gamma-inert sterilized inserts did not reach statistical significance. Observations suggest that the majority of wear can be accounted for by the backside interface with the rough Ti-6Al-4V tray; however, wear measured by thickness-change rate was statistically indistinguishable between the two bearing materials.

  14. Physical properties of pectin-high amylose starch mixtures cross-linked with sodium trimetaphosphate.

    PubMed

    Carbinatto, Fernanda M; de Castro, Ana Dóris; Cury, Beatriz S F; Magalhães, Alviclér; Evangelista, Raul C

    2012-02-28

    Pectin-high amylose starch mixtures (1:4; 1:1; 4:1) were cross-linked at different degrees and characterized by rheological, thermal, X-ray diffraction and NMR analyses. For comparison, samples without cross-linker addition were also prepared and characterized. Although all samples behaved as gels, the results evidenced that the phosphorylation reaction promotes the network strengthening, resulting in covalent gels (highest critical stress, G' and recovery %). Likewise, cross-linked samples presented the highest thermal stability. However, alkaline treatment without cross-linker allowed a structural reorganization of samples, as they also behaved as covalent gels, but weaker than those gels from cross-linked samples, and presented higher thermal stability than the physical mixtures. X-ray diffractograms also evidenced the occurrence of physical and chemical modifications due to the cross-linking process and indicated that samples without cross-linker underwent some structural reorganization, resulting in a decrease of crystallinity. The chemical shift of resonance signals corroborates the occurrence of structural modifications by both alkaline treatment and cross-linking reaction. PMID:22178896

  15. Cross-linked block copolymer templated assembly of nanoparticle arrays with high density and position selectivity

    NASA Astrophysics Data System (ADS)

    Liu, Zhicheng; Chang, Tongxin; Huang, Haiying; Bai, Lu

    2016-10-01

    Patterning ordered nanoparticle arrays is crucial for the fascinating collective properties of nanoparticles. Block copolymer template provides us a platform for the simple and efficient assembly of nanoparticle arrays. In this work, cylinder-forming poly(styrene-block-2-vinylpyridine) thin film was firstly plasma-etched to expose poly(2-vinylpyridine) cylinders. Then the templates were cross-linked by small molecules so as to access gold nanoparticle arrays with both high density and excellent position selectivity. The cross-linking process significantly restrains the unfavorable surface reconstruction of the thin film. It is demonstrated that the quality of the nanoparticle array was affected by the degree of the cross-linking and the immersion time in nanoparticle solution. The highly ordered gold nanoparticle arrays are promising in several fields such as optics and surface enhanced Raman scattering (SERS).

  16. Durability of highly cross-linked polyethylene in total hip and total knee arthroplasty.

    PubMed

    Dion, Neil T; Bragdon, Charles; Muratoglu, Orhun; Freiberg, Andrew A

    2015-07-01

    This article reviews the history of the development of highly cross-linked polyethylene and provides an in-depth review of the clinical results regarding the durability of highly cross-linked polyethylene (HXLPE) used in total hip arthroplasty (THA) and total knee arthroplasty (TKA). The use of polyethylene as a bearing surface has contributed to the success of THA and TKA; however, polyethylene wear and osteolysis can lead to failure. Ongoing clinical and retrieval studies are required to analyze outcomes at longer-term follow-up.

  17. Durability of highly cross-linked polyethylene in total hip and total knee arthroplasty.

    PubMed

    Dion, Neil T; Bragdon, Charles; Muratoglu, Orhun; Freiberg, Andrew A

    2015-07-01

    This article reviews the history of the development of highly cross-linked polyethylene and provides an in-depth review of the clinical results regarding the durability of highly cross-linked polyethylene (HXLPE) used in total hip arthroplasty (THA) and total knee arthroplasty (TKA). The use of polyethylene as a bearing surface has contributed to the success of THA and TKA; however, polyethylene wear and osteolysis can lead to failure. Ongoing clinical and retrieval studies are required to analyze outcomes at longer-term follow-up. PMID:26043046

  18. Dynamic Heterogeneity in Highly Cross-linked Epoxy in the Vicinity of Glass Transition

    NASA Astrophysics Data System (ADS)

    Lin, Po-Han; Khare, Rajesh

    2010-03-01

    Cross-linked epoxy has been widely used in aerospace and electronics industries. The highly cross-linked nature of these systems leads to different chain dynamics as compared to the linear polymeric systems. In this work, we have used molecular dynamics (MD) simulations to study the dynamic heterogeneity in cross-linked epoxy near the glass transition temperature. Well-relaxed atomistic models of cross-linked epoxy were first created by employing the simulated annealing polymerization approach. The specific epoxy system studied consisted of diglycidyl ether of bisphenol-A (DGEBA) as the epoxy monomer and trimethylene glycol di-p-aminobenzoate (TMAB) as the cross-linker. The glass transition temperature of these model structures was determined from MD simulation by monitoring their volume-temperature behaviour in a stepwise cooling run. The chain dynamics of these systems were characterized by their local translational and orientational mobility. Furthermore, dynamic heterogeneity was studied by analyzing the spatial distribution of the mobile and immobile atoms in the system near the glass transition temperature.

  19. Wear measurement of highly cross-linked UHMWPE using a 7Be tracer implantation technique.

    PubMed

    Wimmer, Markus A; Laurent, Michel P; Dwiwedi, Yasha; Gallardo, Luis A; Chipps, Kelly A; Blackmon, Jeffery C; Kozub, Raymond L; Bardayan, Daniel W; Gross, Carl J; Stracener, Daniel W; Smith, Michael S; Nesaraja, Caroline D; Erikson, Luke; Patel, Nidhi; Rehm, Karl E; Ahmad, Irshad; Greene, John P; Greife, Uwe

    2013-04-01

    The very low wear rates achieved with the current highly cross-linked ultrahigh molecular weight polyethylenes (UHMWPE) used in joint prostheses have proven to be difficult to measure accurately by gravimetry. Tracer methods are therefore being explored. The purpose of this study was to perform a proof-of-concept experiment on the use of the radioactive tracer beryllium-7 ((7)Be) for the determination of in vitro wear in a highly cross-linked orthopedic UHMWPE. Three cross-linked and four conventional UHMWPE pins made from compression-molded GUR 1050, were activated with 10(9) to 10(10) (7)Be nuclei using a new implantation setup that produced a homogenous distribution of implanted nuclei up to 8.5 μm below the surface. The pins were tested for wear in a six-station pin-on-flat apparatus for up to 7.1 million cycles (178 km). A Germanium gamma detector was employed to determine activity loss of the UHMWPE pins at preset intervals during the wear test. The wear of the cross-linked UHMWPE pins was readily detected and estimated to be 17 ± 3 μg per million cycles. The conventional-to-cross-linked ratio of the wear rates was 13.1 ± 0.8, in the expected range for these materials. Oxidative degradation damage from implantation was negligible; however, a weak dependence of wear on implantation dose was observed limiting the number of radioactive tracer atoms that can be introduced. Future applications of this tracer technology may include the analysis of location-specific wear, such as loss of material in the post or backside of a tibial insert.

  20. Probabilistic cross-link analysis and experiment planning for high-throughput elucidation of protein structure.

    PubMed

    Ye, Xiaoduan; O'Neil, Patrick K; Foster, Adrienne N; Gajda, Michal J; Kosinski, Jan; Kurowski, Michal A; Bujnicki, Janusz M; Friedman, Alan M; Bailey-Kellogg, Chris

    2004-12-01

    Emerging high-throughput techniques for the characterization of protein and protein-complex structures yield noisy data with sparse information content, placing a significant burden on computation to properly interpret the experimental data. One such technique uses cross-linking (chemical or by cysteine oxidation) to confirm or select among proposed structural models (e.g., from fold recognition, ab initio prediction, or docking) by testing the consistency between cross-linking data and model geometry. This paper develops a probabilistic framework for analyzing the information content in cross-linking experiments, accounting for anticipated experimental error. This framework supports a mechanism for planning experiments to optimize the information gained. We evaluate potential experiment plans using explicit trade-offs among key properties of practical importance: discriminability, coverage, balance, ambiguity, and cost. We devise a greedy algorithm that considers those properties and, from a large number of combinatorial possibilities, rapidly selects sets of experiments expected to discriminate pairs of models efficiently. In an application to residue-specific chemical cross-linking, we demonstrate the ability of our approach to plan experiments effectively involving combinations of cross-linkers and introduced mutations. We also describe an experiment plan for the bacteriophage lambda Tfa chaperone protein in which we plan dicysteine mutants for discriminating threading models by disulfide formation. Preliminary results from a subset of the planned experiments are consistent and demonstrate the practicality of planning. Our methods provide the experimenter with a valuable tool (available from the authors) for understanding and optimizing cross-linking experiments. PMID:15557270

  1. Minimum 10-Year Wear Analysis of Highly Cross-Linked Polyethylene in Cementless Total Hip Arthroplasty.

    PubMed

    So, Kazutaka; Goto, Koji; Kuroda, Yutaka; Matsuda, Shuichi

    2015-12-01

    Fifty-four patients (64 hips) underwent cementless total hip arthroplasty between 2000 and 2003 with a 22-mm zirconia ceramic bearing on highly cross-linked polyethylene, and were evaluated with a mean 11.9-year postoperative follow-up (range, 10-14 years). Linear wear was measured on the anteroposterior radiograph of the hip. No evidence of osteolysis and loosening was found on the final radiograph in any of the cases, and the steady-state linear wear rate was 0.017±0.018 mm/year. No significant correlation was found between the linear wear rate and age, body weight, cup inclination angle, or polyethylene thickness. Highly cross-linked polyethylene showed excellent wear resistance for >10 years when used in combination with 22-mm zirconia heads.

  2. Comparative wear tests of ultra-high molecular weight polyethylene and cross-linked polyethylene.

    PubMed

    Harsha, A P; Joyce, Tom J

    2013-05-01

    Wear particle-induced osteolysis is a major concern in hip implant failure. Therefore, recent research work has focussed on wear-resistant materials, one of the most important of which is cross-linked polyethylene. In view of this, the objective of this study was to compare the in vitro wear performance of cross-linked polyethylene to traditional ultra-high molecular weight polyethylene. In order to mimic appropriate in vivo conditions, a novel high-capacity wear tester called a circularly translating pin-on-disc was used. The results of this in vitro study demonstrated that the wear rate for cross-linked polyethylene was about 80% lower than that of conventional ultra-high molecular weight polyethylene. This difference closely matches in vivo results reported in the literature for total hip replacements that use the two biopolymers. The in vitro results were also verified against ASTM F732-00 (standard test method for wear testing of polymeric materials for use in total joint prostheses). The 50-station circularly translating pin-on-disc proved to be a reliable device for in vitro wear studies of orthopaedic biopolymers.

  3. Crosslink density, oxidation and chain scission in retrieved, highly cross-linked UHMWPE tibial bearings.

    PubMed

    Reinitz, Steven D; Currier, Barbara H; Levine, Rayna A; Van Citters, Douglas W

    2014-05-01

    Irradiated, thermally stabilized, highly cross-linked UHMWPE bearings have demonstrated superior wear performance and improved in vitro oxidation resistance compared with terminally gamma-sterilized bearings, yet retrieval analysis reveals unanticipated in vivo oxidation in these materials despite fewer or no measurable free radicals. There has been little evidence to date that the oxidation mechanism in thermally stabilized materials is the same as that in conventional materials, and so it is unknown whether oxidation in these materials is leading to chain scission and a degradation of mechanical properties, molecular weight, and crosslink density. The aim of this study was to determine whether measured in vivo oxidation in retrieved, highly cross-linked tibial bearings corresponds with a decreasing crosslink density. Analysis of three tibial bearing materials revealed that crosslink density decreased following in vivo duration, and that the change in crosslink density was strongly correlated with oxidation. The results suggest that oxidation in highly cross-linked materials is causing chain scissions that may, in time, impact the material properties. If in vivo oxidation continues over longer durations, there is potential for a clinically significant degradation of mechanical properties.

  4. Characterization of radiation-cross-linked, high-density polyethylene for thermal energy storage

    SciTech Connect

    Whitaker, R.B.; Craven, S.M.; Etter, D.E.; Jendrek, E.F.; Nease, A.B.

    1983-01-01

    Electron beam cross-linked high-density polyethylene (HDPE) pellets (DuPont Alathon, 0.93 MI) have been characterized for potential utility in thermal energy storage applications, before and after up to 500 melt-freeze cycles in ethylene glycol. Up to 95% of the HDPE's initial DSC differential scanning calorimetry ..delta.. H/sub f/ value (44.7 cal/g) (at 1.25/sup 0/C/min cooling rates) was retained up to 9.0 Mrad radiation dosage. Form-stability after 500 melt-freeze cycles was very good at this dosage level. X-ray diffraction measurements showed little difference between irradiated HDPE's and the unirradiated control, indicating that cross-linking occurred primarily in the amorphous regions. FTIR spectroscopy showed the pellets to be uniformly reacted. The ratios of the 965-cm/sup -1/ absorption band (trans RCH=CRH') to the 909-cm/sup -1/ band (RCH=CH/sub 2/) increased with increasing radiation dosage, up to 18 Mrad. Gel contents reached a maximum of 75% at the 13.5 Mrad dosage, indicating that other reactions, in addition to cross-linking, occurred at the highest (18 Mrad) dosage level. 15 references, 5 figures, 4 tables.

  5. Preparation and characterization of free films of high amylose/pectin mixtures cross-linked with sodium trimetaphosphate.

    PubMed

    Prezotti, Fabíola Garavello; Meneguin, Andréia Bagliotti; Evangelista, Raul Cesar; Cury, Beatriz Stringhetti Ferreira

    2012-11-01

    High amylose and pectin were mixed at 1:1 mass ratio and cross-linked with sodium trimetaphosphate (STMP) in alkaline medium. Films were prepared from aqueous dispersions of these cross-linked polymer blend at three different concentrations (3, 4 and 5%), by solvent casting method. Characterization of the films included thickness, surface morphology, water uptake, water vapor permeability (WVP), tensile strength measurements and enzymatic digestion. The cross-linking allowed to obtain films with improved mechanical properties and reduced WVP. The high resistance to enzymatic digestion exhibited by these films represents a promising approach to their application in the development of colon drug delivery systems. PMID:22251099

  6. THE EFFECTS OF HIGH DOSE IRRADIATION ON THE CROSS-LINKING OF VITAMIN E-BLENDED ULTRAHIGH MOLECULAR WEIGHT POLYETHYLENE

    PubMed Central

    Oral, Ebru; Beckos, Christine Godleski; Malhi, Arnaz S.; Muratoglu, Orhun K.

    2008-01-01

    Vitamin E-stabilized, highly cross-linked ultrahigh molecular weight polyethylene (UHMWPE) is a promising oxidation and wear resistant UHMWPE with improved mechanical strength in comparison with the first generation, irradiated and melted UHMWPE. One approach of incorporating vitamin E in UHMWPE is through blending of vitamin E in UHMWPE powder followed by consolidation and radiation crosslinking. However radiation crosslinking efficiency of UHMWPE decreases in the presence of vitamin E. Therefore an optimum vitamin E concentration and radiation dose level needs to be determined to achieve a cross-link density comparable to 100-kGy irradiated and melted UHMWPE, which has shown excellent wear properties in vivo. We investigated the cross-link density and mechanical properties of vitamin E-blended UHMWPEs as a function of vitamin E concentration in the blend and gamma irradiation doses up to 200 kGy. We found that 0.3 wt% vitamin E-blended UHMWPE could not be cross-linked above a cross-link density achieved at a radiation dose of 65 kGy for virgin UHMWPE and 1.0 wt% vitamin E-blended UHMWPE could not be cross-linked above a cross-link density achieved at a radiation dose of 25 kGy for virgin UHMWPE even when the former were irradiated to a radiation dose of 200 kGy. In addition, higher plasticity at vitamin E concentrations at and above 0.3 wt% indicated that increased chain scissioning may be prevalent. Since the wear resistance of this irradiated UHMWPE would be expected to be low, vitamin E concentrations equal to or above 0.3 wt% are not recommended for subsequent irradiation to achieve a wear resistant cross-linked UHMWPE. The long–term oxidative stability of irradiated blends with low vitamin E concentrations has yet to be studied to determine an optimum between cross-link density and long-term oxidative stability. PMID:18514813

  7. Study the adsorption of sulfates by high cross-linked polystyrene divinylbenzene anion-exchange resin

    NASA Astrophysics Data System (ADS)

    Fathy, Mahmoud; Moghny, Th. Abdel; Awadallah, Ahmed E.; El-Bellihi, Abdel-Hameed A.-A.

    2014-11-01

    In response to rising concerns about the effect of sulfate on water quality, human health, and agriculture, many jurisdictions around the world are imposing tighter regulations for sulfate discharge. This is driving the need for environmental compliance in industries like mining, metal processing, pulp and paper, sewage treatment, and chemical manufacturing. The sulfate removal from synthetic water by high cross-linked polystyrene divinylbenzene resin was studied at batch experiments in this study. The effect of pH, contact time, sulfates concentration, and adsorbent dose on the sulfate sequestration was investigated. The optimum conditions were studied on Saline water as a case study. The results showed that with increasing of the absorbent amount; contact time, and pH improve the efficiency of sulfate removal. The maximum sulfates uptake was obtained in pH and contact time 3.0 and 120 min, respectively. Also, with increasing initial concentration of sulfates in water, the efficiency of sulfate removal decreased. The obtained results in this study were matched with Freundlich isotherm and pseudo-second-order kinetic. The maximum adsorption capacity (Qm) and constant rate were found 0.318 (mg/g) and 0.21 (mg/g.min), respectively. This study also showed that in the optimum conditions, the sulfate removal efficiency from Saline water by 0.1 mg/L sulfates was 65.64 %. Eventually, high cross-linked polystyrene divinylbenzene resin is recommended as a suitable and low cost absorbent to sulfate removal from aqueous solutions.

  8. Combined femtosecond laser-assisted intracorneal ring segment implantation and corneal collagen cross-linking for correction of keratoconus

    PubMed Central

    Ibrahim, Osama; Elmassry, Ahmed; Said, Amr; Abdalla, Moones; El Hennawi, Hazem; Osman, Ihab

    2016-01-01

    Purpose To assess the safety, predictability, and effectiveness of Keraring intrastromal corneal ring segments (ICRS) insertion assisted by femtosecond laser and corneal collagen cross-linking (CXL) for keratoconus correction. Patients and methods In this prospective, noncomparative, and interventional case series, 160 eyes of 100 adult keratoconus patients with poor best-corrected visual acuity (BCVA) (less than 0.7) and intolerance to contact lens wear were included. Patients underwent femtosecond laser-assisted placement of ICRS and CXL. All patients were examined for a complete ophthalmological test: uncorrected visual acuity (UCVA), BCVA, spherical equivalent, keratometry (K1-flat and K2-steep), pachymetry, and Scheimpflug imaging with the Pentacam at 1 week and at 1, 3, and 6 months postoperatively. Results At 6 months, a significant difference was observed (P<0.001) in mean UCVA and BCVA from 0.92±0.677 and 0.42±0.600 logMAR preoperatively to 0.20±0.568 and 0.119±0.619 logMAR, respectively. Mean spherical equivalent refractions were significantly lower (P<0.001) at 6 months. Mean keratometry (K) also significantly reduced (P<0.001) from 50.93±5.53 D (K1-flat) and 55.37±5.76 D (K2-steep) to 47.32±4.61 and 51.08±5.38 D, respectively. In terms of pachymetry, no significant difference was observed preoperatively versus postoperatively (P=1.000). Conclusion Keraring ICRS insertion assisted by femtosecond laser and corneal CXL provided significant improvement in visual acuity, spherical equivalent, and keratometry, which suggests that it may be effective, safe, and predictable for keratoconus correction. PMID:27041991

  9. Remelting of highly cross-linked polyethylene worn under laboratory conditions.

    PubMed

    Lazzarini, Adam M; Cottrell, Jocelyn M; Padgett, Douglas E; Wright, Timothy M

    2007-12-01

    It has been suggested that apparent wear damage in highly cross-linked polyethylene acetabular liners can be removed with subsequent remelting of retrieved liners. To test this hypothesis, we remelted liners that had been previously tested under controlled laboratory conditions and that had experienced nonzero wear rates and visible wear damage. Five liner groups were examined: three with a range of irradiation doses without heat treatment, and two irradiated to 100 kGys, one with remelting, and the other annealing. All groups had been worn in a hip simulator under impingement conditions that produced nonzero wear rates and loss of machining marks. Each liner was cut into quadrants that were graded for wear damage before and after posttest remelting. Cross-linked liners not previously heat-treated lost all prior damage and all machining marks. Remelted liners and three of six annealed liners experienced only a slight return of machining marks at the interface of the burnished area and the remaining intact machining marks. Our experiments represent a severe wear case but demonstrate removal of material from the surface through measurable wear prevents the return of identifiable machining marks despite remelting. PMID:18090470

  10. Once Annealed Highly Cross-Linked Polyethylene Exhibits Low Wear at 9 to 15 Years.

    PubMed

    D'Antonio, James; Capello, William N; Ramakrishnan, Rama

    2016-05-01

    A once annealed highly cross-linked polyethylene (HXLPE) was introduced in 1998. Concerns regarding its long-term performance and oxidative resistance exist because of the presence of retained free radicals. The authors studied 48 patients with 50 hip implants having an average age of 62 years. They were followed for 9 to 15 years. The purpose of this study was to determine linear wear rate and the incidence of osteolysis and/or mechanical failure. At an average follow-up of 12.2 years, the annual linear wear rate was 0.018 mm (SD, 0.024 mm). No mechanical failures or osteolysis have been found to date. The clinical performance of this HXLPE continues to meet expectations despite the presence of free radicals. [Orthopedics. 2016; 39(3):e565-e571.]. PMID:27088350

  11. Wear of PEEK-OPTIMA® and PEEK-OPTIMA®-Wear Performance articulating against highly cross-linked polyethylene.

    PubMed

    East, Rebecca H; Briscoe, Adam; Unsworth, Anthony

    2015-03-01

    The idea of all polymer artificial joints, particularly for the knee and finger, has been raised several times in the past 20 years. This is partly because of weight but also to reduce stress shielding in the bone when stiffer materials such as metals or ceramics are used. With this in mind, pin-on-plate studies of various polyetheretherketone preparations against highly cross-linked polyethylene were conducted to investigate the possibility of using such a combination in the design of a new generation of artificial joints. PEEK-OPTIMA(®) (no fibre) against highly cross-linked polyethylene gave very low wear factors of 0.0384 × 10(-6) mm(3)/N m for the polyetheretherketone pins and -0.025 × 10(-6) mm(3)/N m for the highly cross-linked polyethylene plates. The carbon-fibre-reinforced polyetheretherketone (PEEK-OPTIMA(®)-Wear Performance) also produced very low wear rates in the polyetheretherketone pins but produced very high wear in the highly cross-linked polyethylene, as might have been predicted since the carbon fibres are quite abrasive. When the fibres were predominantly tangential to the sliding plane, the mean wear factor was 0.052 × 10(-6) mm(3)/N m for the pins and 49.3 × 10(-6) mm(3)/N m for the highly cross-linked polyethylene plates; a half of that when the fibres ran axially in the pins (0.138 × 10(-6) mm(3)/N m for the pins and 97.5 × 10(-6) mm/ N m for the cross-linked polyethylene plates). PEEK-OPTIMA(®) against highly cross-linked polyethylene merits further investigation.

  12. Wear of PEEK-OPTIMA® and PEEK-OPTIMA®-Wear Performance articulating against highly cross-linked polyethylene.

    PubMed

    East, Rebecca H; Briscoe, Adam; Unsworth, Anthony

    2015-03-01

    The idea of all polymer artificial joints, particularly for the knee and finger, has been raised several times in the past 20 years. This is partly because of weight but also to reduce stress shielding in the bone when stiffer materials such as metals or ceramics are used. With this in mind, pin-on-plate studies of various polyetheretherketone preparations against highly cross-linked polyethylene were conducted to investigate the possibility of using such a combination in the design of a new generation of artificial joints. PEEK-OPTIMA(®) (no fibre) against highly cross-linked polyethylene gave very low wear factors of 0.0384 × 10(-6) mm(3)/N m for the polyetheretherketone pins and -0.025 × 10(-6) mm(3)/N m for the highly cross-linked polyethylene plates. The carbon-fibre-reinforced polyetheretherketone (PEEK-OPTIMA(®)-Wear Performance) also produced very low wear rates in the polyetheretherketone pins but produced very high wear in the highly cross-linked polyethylene, as might have been predicted since the carbon fibres are quite abrasive. When the fibres were predominantly tangential to the sliding plane, the mean wear factor was 0.052 × 10(-6) mm(3)/N m for the pins and 49.3 × 10(-6) mm(3)/N m for the highly cross-linked polyethylene plates; a half of that when the fibres ran axially in the pins (0.138 × 10(-6) mm(3)/N m for the pins and 97.5 × 10(-6) mm/ N m for the cross-linked polyethylene plates). PEEK-OPTIMA(®) against highly cross-linked polyethylene merits further investigation. PMID:25833994

  13. Coarse-Grained Molecular Dynamics Study of the Curing and Properties of Highly Cross-Linked Epoxy Polymers.

    PubMed

    Aramoon, Amin; Breitzman, Timothy D; Woodward, Christopher; El-Awady, Jaafar A

    2016-09-01

    In this work, a coarse-grained model is developed for highly cross-linked bisphenol A diglycidyl ether epoxy resin with diaminobutane hardener. In this model, all conformationally relevant coarse-grained degrees of freedom are accounted for by sampling over the free-energy surfaces of the atomic structures using quantum mechanical simulations. The interaction potentials between nonbonded coarse-grained particles are optimized to accurately predict the experimentally measured density and glass-transition temperature of the system. In addition, a new curing algorithm is also developed to model the creation of highly cross-linked epoxy networks. In this algorithm, to create a highly cross-linked network, the reactants are redistributed from regions with an excessive number of reactive molecules to regions with a lower number of reactants to increase the chances of cross-linking. This new algorithm also dynamically controls the rate of cross-linking at each local region to ensure uniformity of the resulting network. The curing simulation conducted using this algorithm is able to develop polymeric networks having a higher average degree of cross-linking, which is more uniform throughout the simulation cell as compared to that in the networks cured using other curing algorithms. The predicted gel point from the current curing algorithm is in the acceptable theoretical and experimental range of measured values. Also, the resulting cross-linked microstructure shows a volume shrinkage of 5%, which is close to the experimentally measured volume shrinkage of the cured epoxy. Finally, the thermal expansion coefficients of materials in the glassy and rubbery states show good agreement with the experimental values.

  14. Coarse-Grained Molecular Dynamics Study of the Curing and Properties of Highly Cross-Linked Epoxy Polymers.

    PubMed

    Aramoon, Amin; Breitzman, Timothy D; Woodward, Christopher; El-Awady, Jaafar A

    2016-09-01

    In this work, a coarse-grained model is developed for highly cross-linked bisphenol A diglycidyl ether epoxy resin with diaminobutane hardener. In this model, all conformationally relevant coarse-grained degrees of freedom are accounted for by sampling over the free-energy surfaces of the atomic structures using quantum mechanical simulations. The interaction potentials between nonbonded coarse-grained particles are optimized to accurately predict the experimentally measured density and glass-transition temperature of the system. In addition, a new curing algorithm is also developed to model the creation of highly cross-linked epoxy networks. In this algorithm, to create a highly cross-linked network, the reactants are redistributed from regions with an excessive number of reactive molecules to regions with a lower number of reactants to increase the chances of cross-linking. This new algorithm also dynamically controls the rate of cross-linking at each local region to ensure uniformity of the resulting network. The curing simulation conducted using this algorithm is able to develop polymeric networks having a higher average degree of cross-linking, which is more uniform throughout the simulation cell as compared to that in the networks cured using other curing algorithms. The predicted gel point from the current curing algorithm is in the acceptable theoretical and experimental range of measured values. Also, the resulting cross-linked microstructure shows a volume shrinkage of 5%, which is close to the experimentally measured volume shrinkage of the cured epoxy. Finally, the thermal expansion coefficients of materials in the glassy and rubbery states show good agreement with the experimental values. PMID:27504803

  15. Oxidative degradation in highly cross-linked and conventional polyethylene after 2 years of real-time shelf aging.

    PubMed

    Willie, Bettina M; Bloebaum, Roy D; Ashrafi, Shadi; Dearden, Colette; Steffensen, Trina; Hofmann, Aaron A

    2006-04-01

    Previous studies have reported oxidative degradation of conventional polyethylene (PE) components during shelf aging, following radiation. However, no studies have yet reported data concerning the effect of real-time shelf aging in the manufacturer's packaging on the oxidative degradation of commercially available highly cross-linking PE components. The null hypothesis tested was that in either highly cross-linked or conventional PE acetabular components there would be no significant difference in the amount of oxidative degradation between time zero PE liners and PE liners that had been real-time shelf aged for 2 years in their respective packaging. The results of the study indicated that after 2 years of real-time shelf aging, negligible oxidative degradation occurred with minimal changes in oxidation index, density, and percent crystallinity in commercially available highly cross-linked and conventional PE acetabular liners. These data suggested that oxidative degradation was not a clinical issue in the highly cross-linked and conventional PE components examined after 2 years of real-time shelf aging. It is likely that current manufacturing and packaging technologies have limited the previous clinical concerns related to oxidative degradation during shelf aging of highly cross-linked and conventional PE components.

  16. The creep and wear of highly cross-linked polyethylene: a three-year randomised, controlled trial using radiostereometric analysis.

    PubMed

    Glyn-Jones, S; McLardy-Smith, P; Gill, H S; Murray, D W

    2008-05-01

    The creep and wear behaviour of highly cross-linked polyethylene and standard polyethylene liners were examined in a prospective, double-blind randomised, controlled trial using radiostereometric analysis. We randomised 54 patients to receive hip replacements with either highly cross-linked polyethylene or standard liners and determined the three-dimensional penetration of the liners over three years. After three years the mean total penetration was 0.35 mm (SD 0.14) for the highly cross-linked polyethylene group and 0.45 mm (SD 0.19) for the standard group. The difference was statistically significant (p = 0.0184). From the pattern of penetration it was possible to discriminate creep from wear. Most (95%) of the creep occurred within six months of implantation and nearly all within the first year. There was no difference in the mean degree of creep between the two types of polyethylene (highly cross-linked polyethylene 0.26 mm, SD 0.17; standard 0.27 mm, SD 0.2; p = 0.83). There was, however, a significant difference (p = 0.012) in the mean wear rate (highly cross-linked polyethylene 0.03 mm/yr, SD 0.06; standard 0.07 mm/yr, SD 0.05). Creep and wear occurred in significantly different directions (p = 0.01); creep was predominantly proximal whereas wear was anterior, proximal and medial. We conclude that penetration in the first six months is creep-dominated, but after one year virtually all penetration is due to wear. Highly cross-linked polyethylene has a 60% lower rate of wear than standard polyethylene and therefore will probably perform better in the long term.

  17. Total Hip Arthroplasty Using Metal Head on a Highly Cross-linked Polyethylene Liner

    PubMed Central

    Kim, Min-Yook; Park, Ji-Hoon; Lee, Jung-Ho

    2015-01-01

    Purpose This retrospective study was performed to evaluate the clinical results and measure polyethylene liner wear in total hip arthroplasty (THA) with highly cross-linked polyethylene. Materials and Methods Except for patients who had died or were unable to have follow-up at least 2 years, 60 of 78 hips that underwent THA were included this study. The mean age was 64.5 years (range, 25-81 years) and the mean body mass index (BMI) was 23.0 kg/m2 (18.1-32.3 kg/m2). Diagnosis at the time of the operation was osteonecrois of the femoral head in 28 hips, primary osteoarthritis in 14, hip fracture in 13, and other diseases in 5. The mean follow-up period was 3.8 years (2.1-7.1 years). Harris hip score (HHS) was reviewed before THA and at the last follow-up. On the anteroposterior pelvic radiographs, acetabular cup inclination and ante-version were also measured. The annual linear wear rate was measured using Livermore's method on the radiographs. Results The mean HHS was 60.1 (28-94) before operation and 90.4 (47-100) at the last follow-up. In the immediate post-operation, the average inclination and anteversion angles of the acetabular cups were 46.3° (standard deviation, ±6.7°) and, 21.4°(±10.1°) respectively. The mean of the annual linear polyethylene wear was 0.079 mm/year (0.001-0.291 mm/year). Age, gender and BMI were not statistically related to linear polyethylene wear but the period of follow-up and the acetabular cup's inclination showed significant negative and positive correlation respectively. Conclusion The wear rate of a highly cross-linked polyethylene was shown to correlate negatively with duration of follow-up. However, our study was based on a short-term follow-up, so a long-term follow-up study is necessary in the future. PMID:27536629

  18. Highly Stable and Porous Cross-Linked Polymers for Efficient Photocatalysis

    SciTech Connect

    Xie, Zhigang; Wang, Cheng; deKrafft, Kathryn E.; Lin, Wenbin

    2011-02-23

    Porous cross-linked polymers (PCPs) with phosphorescent [Ru(bpy)₃]{sup 2+} and [Ir(ppy)₂(bpy)]{sup +} building blocks were obtained via octacarbonyldicobalt (Co₂(CO)₈)-catalyzed alkyne trimerization reactions. The resultant Ru- and Ir-PCPs exhibited high porosity with specific surface areas of 1348 and 1547 m²/g, respectively. They are thermally stable at up to 350 °C in air and do not dissolve or decompose in all solvents tested, including concentrated hydrochloric acid. The photoactive PCPs were shown to be highly effective, recyclable, and reusable heterogeneous photocatalysts for aza-Henry reactions, α-arylation of bromomalonate, and oxyamination of an aldehyde, with catalytic activities comparable to those of the homogeneous [Ru(bpy)₃]{sup 2+} and [Ir(ppy)₂(bpy)]{sup +} photocatalysts. This work highlights the potential of developing photoactive PCPs as highly stable, molecularly tunable, and recyclable and reusable heterogeneous photocatalysts for a variety of important organic transformations.

  19. Polymorphism of highly cross-linked F-actin networks: Probing multiple length scales

    NASA Astrophysics Data System (ADS)

    Nguyen, Lam T.; Hirst, Linda S.

    2011-03-01

    The assembly properties of F-actin filaments in the presence of different biological cross-linker concentrations and types have been investigated using a combined approach of fluorescence confocal microscopy and coarse-grained molecular dynamics simulation. In particular for highly cross-linked regimes, new network morphologies are observed. Complex network formation and the details of the resulting structure are strongly dependent on the ratio of cross-linkers to actin monomers and cross-linker shape but only weakly dependent on overall actin concentration and filament length. The work presented here may help to provide some fundamental understanding of how excessive cross-linkers interact with the actin filament solution, creating different structures in the cell under high cross-linker concentrations. F-actin is not only of biological importance but also, as an example of a semiflexible polymer, has attracted significant interest in its physical behavior. In combination with different cross-linkers semiflexible filaments may provide new routes to bio-materials development and act as the inspiration for new hierarchical network-based materials.

  20. Cross-linked lysozyme crystal templated synthesis of Au nanoparticles as high-performance recyclable catalysts.

    PubMed

    Liang, Miao; Wang, Libing; Liu, Xia; Qi, Wei; Su, Rongxin; Huang, Renliang; Yu, Yanjun; He, Zhimin

    2013-06-21

    Bio-nanomaterials fabricated using a bioinspired templating technique represent a novel class of composite materials with diverse applications in biomedical, electronic devices, drug delivery, and catalysis. In this study, Au nanoparticles (NPs) are synthesized within the solvent channels of cross-linked lysozyme crystals (CLLCs) in situ without the introduction of extra chemical reagents or physical treatments. The as-prepared AuNPs-in-protein crystal hybrid materials are characterized by light microscopy, transmission electron microscopy, x-ray diffraction, and Fourier-transform infrared spectroscopy analyses. Small AuNPs with narrow size distribution reveal the restriction effects of the porous structure in the lysozyme crystals. These composite materials are proven to be active heterogeneous catalysts for the reduction of 4-nitrophenol to 4-aminophenol. These catalysts can be easily recovered and reused at least 20 times because of the physical stability and macro-dimension of CLLCs. This work is the first to use CLLCs as a solid biotemplate for the preparation of recyclable high-performance catalysts.

  1. Cross-linked lysozyme crystal templated synthesis of Au nanoparticles as high-performance recyclable catalysts

    NASA Astrophysics Data System (ADS)

    Liang, Miao; Wang, Libing; Liu, Xia; Qi, Wei; Su, Rongxin; Huang, Renliang; Yu, Yanjun; He, Zhimin

    2013-06-01

    Bio-nanomaterials fabricated using a bioinspired templating technique represent a novel class of composite materials with diverse applications in biomedical, electronic devices, drug delivery, and catalysis. In this study, Au nanoparticles (NPs) are synthesized within the solvent channels of cross-linked lysozyme crystals (CLLCs) in situ without the introduction of extra chemical reagents or physical treatments. The as-prepared AuNPs-in-protein crystal hybrid materials are characterized by light microscopy, transmission electron microscopy, x-ray diffraction, and Fourier-transform infrared spectroscopy analyses. Small AuNPs with narrow size distribution reveal the restriction effects of the porous structure in the lysozyme crystals. These composite materials are proven to be active heterogeneous catalysts for the reduction of 4-nitrophenol to 4-aminophenol. These catalysts can be easily recovered and reused at least 20 times because of the physical stability and macro-dimension of CLLCs. This work is the first to use CLLCs as a solid biotemplate for the preparation of recyclable high-performance catalysts.

  2. Fracture Behavior of High-Toughness, Ionically Cross-linked Triblock Copolymer Hydrogels

    NASA Astrophysics Data System (ADS)

    Henderson, Kevin; Otim, Kathryn; Shull, Kenneth

    2011-03-01

    Mechanisms for enhancing energy dissipation and hence toughness are important for the generation of robust synthetic soft materials for biomedical applications. Ionic cross-linking in particular has been explored in triblock copolymer hydrogels and affords a remarkable change in mechanical performance comparable to non-cross-linked analogs. Here we employ a physically associated base triblock copolymer network composed of hydrophobic poly(methyl methacrylate) endblocks and a hydrophilic poly(methacrylic acid) midblock capable of complexing with divalent cations. Increases in stiffness and strength have previously been reported, with the extent dependent upon the identity, concentration, and pH of a cross-linking cation solution. We delineate the measured toughness in such systems using tensile tear tests and relate the mechanical performance to a damage zone model reminiscent of loading behavior observed in double network hydrogels.

  3. Temperature dependence of creep compliance of highly cross-linked epoxy: A molecular simulation study

    SciTech Connect

    Khabaz, Fardin Khare, Ketan S. Khare, Rajesh

    2014-05-15

    We have used molecular dynamics (MD) simulations to study the effect of temperature on the creep compliance of neat cross-linked epoxy. Experimental studies of mechanical behavior of cross-linked epoxy in literature commonly report creep compliance values, whereas molecular simulations of these systems have primarily focused on the Young’s modulus. In this work, in order to obtain a more direct comparison between experiments and simulations, atomistically detailed models of the cross-linked epoxy are used to study their creep compliance as a function of temperature using MD simulations. The creep tests are performed by applying a constant tensile stress and monitoring the resulting strain in the system. Our results show that simulated values of creep compliance increase with an increase in both time and temperature. We believe that such calculations of the creep compliance, along with the use of time temperature superposition, hold great promise in connecting the molecular insight obtained from molecular simulation at small length- and time-scales with the experimental behavior of such materials. To the best of our knowledge, this work is the first reported effort that investigates the creep compliance behavior of cross-linked epoxy using MD simulations.

  4. Highly conductive carbon nanotube buckypapers with improved doping stability via conjugational cross-linking

    NASA Astrophysics Data System (ADS)

    Chen, I.-Wen Peter; Liang, Richard; Zhao, Haibo; Wang, Ben; Zhang, Chuck

    2011-12-01

    Carbon nanotube (CNT) sheets or buckypapers have demonstrated promising electrical conductivity and mechanical performance. However, their electrical conductivity is still far below the requirements for engineering applications, such as using as a substitute for copper mesh, which is currently used in composite aircraft structures for lightning strike protection. In this study, different CNT buckypapers were stretched to increase their alignment, and then subjected to conjugational cross-linking via chemical functionalization. The conjugationally cross-linked buckypapers (CCL-BPs) demonstrated higher electrical conductivity of up to 6200 S cm - 1, which is more than one order increase compared to the pristine buckypapers. The CCL-BPs also showed excellent doping stability in over 300 h in atmosphere and were resistant to degradation at elevated temperatures. The tensile strength of the stretched CCL-BPs reached 220 MPa, which is about three times that of pristine buckypapers. We attribute these property improvements to the effective and stable conjugational cross-links of CNTs, which can simultaneously improve the electrical conductivity, doping stability and mechanical properties. Specifically, the electrical conductivity increase resulted from improving the CNT alignment and inter-tube electron transport capability. The conjugational cross-links provide effective 3D conductive paths to increase the mobility of electrons among individual nanotubes. The stable covalent bonding also enhances the thermal stability and load transfer. The significant electrical and mechanical property improvement renders buckypaper a multifunctional material for various applications, such as conducting composites, battery electrodes, capacitors, etc.

  5. Biomechanical Properties of Human Corneas Following Low- and High-Intensity Collagen Cross-Linking Determined With Scanning Acoustic Microscopy

    PubMed Central

    Beshtawi, Ithar M.; Akhtar, Riaz; Hillarby, M. Chantal; O'Donnell, Clare; Zhao, Xuegen; Brahma, Arun; Carley, Fiona; Derby, Brian; Radhakrishnan, Hema

    2013-01-01

    Purpose. To assess and compare changes in the biomechanical properties of the cornea following different corneal collagen cross-linking protocols using scanning acoustic microscopy (SAM). Methods. Ten donor human corneal pairs were divided into two groups consisting of five corneal pairs in each group. In group A, five corneas were treated with low-fluence (370 nm, 3 mW/cm2) cross-linking (CXL) for 30 minutes. In group B, five corneas were treated with high-fluence (370 nm, 9 mW/cm2) CXL for 10 minutes. The contralateral control corneas in both groups had similar treatment but without ultraviolet A. The biomechanical properties of all corneas were tested using SAM. Results. In group A, the mean speed of sound in the treated corneas was 1677.38 ± 10.70 ms−1 anteriorly and 1603.90 ± 9.82 ms−1 posteriorly, while it was 1595.23 ± 9.66 ms−1 anteriorly and 1577.13 ± 8.16 ms−1 posteriorly in the control corneas. In group B, the mean speed of sound of the treated corneas was 1665.06 ± 9.54 ms−1 anteriorly and 1589.89 ± 9.73 ms−1 posteriorly, while it was 1583.55 ± 8.22 ms−1 anteriorly and 1565.46 ± 8.13 ms−1 posteriorly in the untreated control corneas. The increase in stiffness between the cross-linked and control corneas in both groups was by a factor of 1.051×. Conclusions. SAM successfully detected changes in the corneal stiffness after application of collagen cross-linking. A higher speed-of-sound value was found in the treated corneas when compared with the controls. No significant difference was found in corneal stiffness between the corneas cross-linked with low- and high-intensity protocols. PMID:23847309

  6. Oxidation of Second Generation Sequentially Irradiated and Annealed Highly Cross-Linked X3™ Polyethylene Tibial Bearings.

    PubMed

    Kop, Alan M; Pabbruwe, Moreica B; Keogh, Catherine; Swarts, Eric

    2015-10-01

    Since the first use of ultra-high-molecular-weight polyethylene as a bearing material, research and development efforts have sought to improve wear resistance, increase longevity and lessen the potential for debris mediated adverse tissue responses. A series of second generation sequentially cross-linked and annealed tibial bearings were analysed after several bearings sent for routine retrieval analysis showed oxidative degradation including subsurface whitening, cracking and gross material loss. Evaluation incorporated visual and white banding assessment, mechanical testing and spectroscopy analysis. Whilst visual observation and white banding assessment confirmed oxidative changes, a decrease in mechanical properties and increasing ketone oxidation index as a function of time in vivo suggest time dependent oxidative degradation. Clinically relevant degradation of the sequentially cross-linked and annealed tibial bearings was observed.

  7. Highly Cross-Linked Polyethylene in Total Hip and Knee Replacement: Spatial Distribution of Molecular Orientation and Shape Recovery Behavior

    PubMed Central

    Masaoka, Toshinori; Pezzotti, Giuseppe; Shishido, Takaaki; Tateiwa, Toshiyuki; Kubo, Kosuke

    2014-01-01

    The present study investigated effects of processing procedures on morphology of highly cross-linked and re-melted UHMWPE (XLPE) in total hip and knee arthroplasty (THA, TKA). The shape recovery behavior was also monitored via uniaxial compression test at room temperature after non-destructive characterizations of the in-depth microstructure by confocal/polarized Raman spectroscopy. The goal of this study was to relate the manufacturing-induced morphology to the in vivo micromechanical performance, and ultimately to explore an optimal structure in each alternative joint bearing. It was clearly confirmed that the investigated XLPE hip and knee implants, which were produced from different orthopaedic grade resins (GUR 1050 and GUR 1020), consisted of two structural regions in the as-received states: the near-surface transitional anisotropic layer (≈100 μm thickness) and the bulk isotropic structural region. These XLPEs exhibited a different crystalline anisotropy and molecular texture within the near-surface layers. In addition, the knee insert showed a slightly higher efficiency of shape recovery against the applied strain over the hip liner owing to a markedly higher percentage of the bulk amorphous phase with intermolecular cross-linking. The quantitative data presented in this study might contribute to construct manufacturing strategies for further rationalized structures as alternative bearings in THA and TKA. PMID:25243183

  8. Highly stable pyridinium-functionalized cross-linked anion exchange membranes for all vanadium redox flow batteries

    NASA Astrophysics Data System (ADS)

    Zeng, L.; Zhao, T. S.; Wei, L.; Zeng, Y. K.; Zhang, Z. H.

    2016-11-01

    It has recently been demonstrated that the use of anion exchange membranes (AEMs) in vanadium redox flow batteries (VRFBs) can reduce the migration of vanadium ions through the membrane due to the Donnan exclusion effect among the positively charged functional groups and vanadium ions. However, AEMs are plagued by low chemical stability in harsh chemical environments. Here we propose and fabricate a pyridinium-functionalized cross-linked AEM for VRFBs. The pyridinium-functionalized bromomethylated poly (2,6-dimethyl-1,4-phenylene oxide) exhibits a superior chemical stability as a result of the strengthened internal cross-linking networks and the chemical inertness of the polymer backbone. Therefore, the membrane exhibits littler decay in a harsh environment for 20 days during the course of an ex situ immersion test. A cycling test also demonstrates that the VRFB assembled with the membrane enable to retain 80% of the initial discharge capacity over 537 cycles with a capacity decay rate of 0.037% cycle-1. Meanwhile, the membrane also shows a low vanadium permeability and a reasonably high conductivity in supporting electrolytes. Hence, all the measurements and performance tests reported in this work suggest that the membrane is a promising AEM for redox flow batteries to achieve excellent cycling stability and superior cell performance.

  9. Radiographic and retrieval wear analyses of the first generation highly cross-linked polyethylene cup against a ceramic femoral head.

    PubMed

    Oonishi, Hiroyuki; Kyomoto, Masayuki; Iwamoto, Mikio; Ueno, Masaru; Oonishi, Hironobu

    2013-11-01

    In this study, the in vivo wear of highly cross-linked polyethylene (CLPE) cups against alumina ceramic femoral heads was evaluated by radiographic and retrieval analysis. The radiographic wear of six ethylene oxide gas-sterilized (i.e., non-cross-linked) conventional polyethylene (PE) cups with the mean follow-up of 20.9 years and 60 CLPE cups with the mean follow-up of 7.4 years was measured. The retrieved 16 PE cups with clinical use for mean 21.5 years and 10 CLPE cups with clinical use for mean 2.9 years was evaluated as a retrieval analysis. In the radiographic analysis, the linear wear of CLPE cups was significantly lower (99% reduction) compared to conventional polyethylene cups. The results of retrieval analyses for both cups were similar to those of radiographic analyses. Even when third-body wear occurred during clinical use, no surface damage was observed on the surface of ceramic femoral heads. The surface is not sensitive to third-body wear, and hence, the ceramic femoral head has a great advantage in terms of the wear of CLPE under third-body wear conditions. In conclusion, CLPE cups used with alumina ceramic femoral heads in total hip arthroplasty should have favorable wear resistance in several in vivo situations.

  10. Graphene oxide-immobilized NH₂-terminated silicon nanoparticles by cross-linked interactions for highly stable silicon negative electrodes.

    PubMed

    Sun, Cheng; Deng, Yuanfu; Wan, Lina; Qin, Xusong; Chen, Guohua

    2014-07-23

    There is a great interest in the utilization of silicon-based anodes for lithium-ion batteries. However, its poor cycling stability, which is caused by a dramatic volume change during lithium-ion intercalation, and intrinsic low electric conductivity hamper its industrial applications. A facile strategy is reported here to fabricate graphene oxide-immobilized NH2-terminated silicon nanoparticles (NPs) negative electrode (Si@NH2/GO) directed by hydrogen bonding and cross-linked interactions to enhance the capacity retention of the anode. The NH2-modified Si NPs first form strong hydrogen bonds and covalent bonds with GO. The Si@NH2/GO composite further forms hydrogen bonds and covalent bonds with sodium alginate, which acts as a binder, to yield a stable composite negative electrode. These two chemical cross-linked/hydrogen bonding interactions-one between NH2-modified Si NPs and GO, and another between the GO and sodium alginate-along with highly mechanically flexible graphene oxide, produced a robust network in the negative electrode system to stabilize the electrode during discharge and charge cycles. The as-prepared Si@NH2/GO electrode exhibits an outstanding capacity retention capability and good rate performance, delivering a reversible capacity of 1000 mAh g(-1) after 400 cycles at a current of 420 mA g(-1) with almost 100% capacity retention. The results indicated the importance of system-level strategy for fabricating stable electrodes with improved electrochemical performance.

  11. A versatile, highly reactive, cross-linking reagent: 2,2'-sulfonylbis[3-methoxy-(E,E)-2-propenenitrile].

    PubMed

    Hosmane, R S; Bertha, C M

    1990-01-30

    Adequate aqueous stability and cross-linking ability of the novel title reagent, recently discovered in this laboratory, have been demonstrated by comparison of its rate of hydrolysis with the rate of reaction with an amine nucleophile and by cross-linking deoxy- and oxyhemoglobins, as an example.

  12. The effect of real-time aging on the oxidation and wear of highly cross-linked UHMWPE acetabular liners.

    PubMed

    Wannomae, Keith K; Christensen, Steven D; Freiberg, Andrew A; Bhattacharyya, Shayan; Harris, William H; Muratoglu, Orhun Kamil

    2006-03-01

    Irradiation decreases the wear of ultra-high molecular weight polyethylene (UHMWPE) but generates residual free radicals, precursors to long-term oxidation. Melting or annealing is used in quenching free radicals. We hypothesized that irradiated and once-annealed UHMWPE would oxidize while irradiated and melted UHMWPE would not, and that the oxidation in the former would increase wear. Acetabular liners were real-time aged by immersion in an aqueous environment that closely mimicked the temperature and oxygen concentration of synovial fluid. After 95 weeks of real-time aging, once-annealed components were oxidized; the melted components were not. The wear rate of the real-time aged irradiated and once-annealed components was higher than the literature reported values of other contemporary highly cross-linked UHMWPEs. Single annealing after irradiation used with terminal gamma sterilization may adversely affect the long-term oxidative stability of UHMWPE components.

  13. Cross-linked carbon network with hierarchical porous structure for high performance solid-state electrochemical capacitor

    NASA Astrophysics Data System (ADS)

    Cheng, Yongliang; Huang, Liang; Xiao, Xu; Yao, Bin; Hu, Zhimi; Li, Tianqi; Liu, Kang; Zhou, Jun

    2016-09-01

    The development of portable electronics strongly requires flexible, lightweight, and inexpensive energy-storage devices with high power density, long cycling stability, and high reliability. In this work, we prepare a flexible solid-state electrochemical capacitor using cross-linked hierarchical porous carbon network as electrode material via electrospinning and carbonization process. This device can reversibly deliver a maximum energy density of 10.18 W h/kg with excellent cycling stability which achieves 95% capacitance retention after 20000 charge/discharge cycles. Moreover, it also demonstrates outstanding mechanical flexibility and excellent capacitance retention even when the device is repeatedly bended 10000 cycles under 90°. All of these results suggest its promising perspective in flexible energy storage device.

  14. Mechanisms of plastic deformation in highly cross-linked UHMWPE for total hip components--the molecular physics viewpoint.

    PubMed

    Takahashi, Yasuhito; Shishido, Takaaki; Yamamoto, Kengo; Masaoka, Toshinori; Kubo, Kosuke; Tateiwa, Toshiyuki; Pezzotti, Giuseppe

    2015-02-01

    Plastic deformation is an unavoidable event in biomedical polymeric implants for load-bearing application during long-term in-vivo service life, which involves a mass transfer process, irreversible chain motion, and molecular reorganization. Deformation-induced microstructural alterations greatly affect mechanical properties and durability of implant devices. The present research focused on evaluating, from a molecular physics viewpoint, the impact of externally applied strain (or stress) in ultra-high molecular weight polyethylene (UHMWPE) prostheses, subjected to radiation cross-linking and subsequent remelting for application in total hip arthroplasty (THA). Two different types of commercial acetabular liners, which belong to the first-generation highly cross-linked UHMWPE (HXLPE), were investigated by means of confocal/polarized Raman microprobe spectroscopy. The amount of crystalline region and the spatial distribution of molecular chain orientation were quantitatively analyzed according to a combined theory including Raman selection rules for the polyethylene orthorhombic structure and the orientation distribution function (ODF) statistical approach. The structurally important finding was that pronounced recrystallization and molecular reorientation increasingly appeared in the near-surface regions of HXLPE liners with increasing the amount of plastic (compressive) deformation stored in the microstructure. Such molecular rearrangements, occurred in response to external strains, locally increase surface cross-shear (CS) stresses, which in turn trigger microscopic wear processes in HXLPE acetabular liners. Thus, on the basis of the results obtained at the molecular scale, we emphasize here the importance of minimizing the development of irrecoverable deformation strain in order to retain the pristine and intrinsically high wear performance of HXLPE components. PMID:25460925

  15. Mechanisms of plastic deformation in highly cross-linked UHMWPE for total hip components--the molecular physics viewpoint.

    PubMed

    Takahashi, Yasuhito; Shishido, Takaaki; Yamamoto, Kengo; Masaoka, Toshinori; Kubo, Kosuke; Tateiwa, Toshiyuki; Pezzotti, Giuseppe

    2015-02-01

    Plastic deformation is an unavoidable event in biomedical polymeric implants for load-bearing application during long-term in-vivo service life, which involves a mass transfer process, irreversible chain motion, and molecular reorganization. Deformation-induced microstructural alterations greatly affect mechanical properties and durability of implant devices. The present research focused on evaluating, from a molecular physics viewpoint, the impact of externally applied strain (or stress) in ultra-high molecular weight polyethylene (UHMWPE) prostheses, subjected to radiation cross-linking and subsequent remelting for application in total hip arthroplasty (THA). Two different types of commercial acetabular liners, which belong to the first-generation highly cross-linked UHMWPE (HXLPE), were investigated by means of confocal/polarized Raman microprobe spectroscopy. The amount of crystalline region and the spatial distribution of molecular chain orientation were quantitatively analyzed according to a combined theory including Raman selection rules for the polyethylene orthorhombic structure and the orientation distribution function (ODF) statistical approach. The structurally important finding was that pronounced recrystallization and molecular reorientation increasingly appeared in the near-surface regions of HXLPE liners with increasing the amount of plastic (compressive) deformation stored in the microstructure. Such molecular rearrangements, occurred in response to external strains, locally increase surface cross-shear (CS) stresses, which in turn trigger microscopic wear processes in HXLPE acetabular liners. Thus, on the basis of the results obtained at the molecular scale, we emphasize here the importance of minimizing the development of irrecoverable deformation strain in order to retain the pristine and intrinsically high wear performance of HXLPE components.

  16. Three Year RSA Evaluation of Vitamin E Diffused Highly Cross-linked Polyethylene Liners and Cup Stability.

    PubMed

    Sillesen, Nanna H; Greene, Meridith E; Nebergall, Audrey K; Nielsen, Poul T; Laursen, Mogens B; Troelsen, Anders; Malchau, Henrik

    2015-07-01

    Vitamin E diffusion into highly cross-linked polyethylene (E-XLPE) is a method for enhancing oxidative stability of acetabular liners. The purpose of this study was to evaluate in vivo penetration of E-XLPE using radiostereometric analysis (RSA). Eighty-four hips were recruited into a prospective 10-year RSA. This is the first evaluation of the multicenter cohort after 3-years. All patients received E-XLPE liners (E1, Biomet) and porous-titanium coated cups (Regenerex, Biomet). There was no difference (P=0.450) in median femoral head penetration into the E-XLPE liners at 3-years comparing cobalt-chrome heads (-0.028mm; inter-quartile range (IQR) - 0.065 to 0.047) with ceramic heads (-0.043mm, IQR - 0.143to0.042). The 3-year follow-up indicates minimal E-XLPE liner penetration regardless of head material and minimal early cup movement.

  17. Facial Synthesis of Three-Dimensional Cross-Linked Cage for High-Performance Lithium Storage.

    PubMed

    Sun, Zixu; Wang, Xinghui; Ying, Hangjun; Wang, Guangjin; Han, Wei-Qiang

    2016-06-22

    Silicon/C composite is a promising anode material for high-energy Li-ion batteries. However, synthesizing high-performance Si-based materials at large scale and low cost remains a huge challenge. Here, we for the first time report the preparation of an interconnected three-dimensional (3D) porous Si-hybrid architecture by using a spray drying method. In this unique structure, the highly robust C-CNT-RGO cages not only can improve the conductivity of the electrode and buffer the volume expansion but also suppress the Si nanoparticles aggregation. As a result, the 3D Si@po-C/CNT/RGO electrode achieves long-life cycling stability at high rates (a reversible capacity of 854.9 mA h g(-1) at 2 A g(-1) after 500 cycles and capacity decay less than 0.013% per cycle) and good rate capability (1454.7, 1198.8, 949.2, 597.8, and 150 mA h g(-1) at current densities of 1, 2, 4, 10, and 20 A g(-1), respectively). Moreover, this novel electrode could deliver high reversible capacities and long-life stabilities even with high mass loading density (764.9 mA h g(-1) at 1.0 mg cm(-2) after 500 cycles and 472.2 mA h g(-1) at 1.5 mg cm(-2) after 400 cycles, respectively). This cheap and scalable strategy can be extended to fabricate other materials with large volume expansion (Sn, Ge, transition-metal oxides) and 3D porous carbon for other potential applications. PMID:27236924

  18. Cross-Linking Amine-Rich Compounds into High Performing Selective CO2 Absorbents

    PubMed Central

    Andreoli, Enrico; Dillon, Eoghan P.; Cullum, Laurie; Alemany, Lawrence B.; Barron, Andrew R.

    2014-01-01

    Amine-based absorbents play a central role in CO2 sequestration and utilization. Amines react selectively with CO2, but a drawback is the unproductive weight of solvent or support in the absorbent. Efforts have focused on metal organic frameworks (MOFs) reaching extremely high CO2 capacity, but limited selectivity to N2 and CH4, and decreased uptake at higher temperatures. A desirable system would have selectivity (cf. amine) and high capacity (cf. MOF), but also increased adsorption at higher temperatures. Here, we demonstrate a proof-of-concept where polyethyleneimine (PEI) is converted to a high capacity and highly selective CO2 absorbent using buckminsterfullerene (C60) as a cross-linker. PEI-C60 (CO2 absorption of 0.14 g/g at 0.1 bar/90°C) is compared to one of the best MOFs, Mg-MOF-74 (0.06 g/g at 0.1 bar/90°C), and does not absorb any measurable amount of CH4 at 50 bar. Thus, PEI-C60 can perform better than MOFs in the sweetening of natural gas. PMID:25467054

  19. Cross-linking amine-rich compounds into high performing selective CO2 absorbents.

    PubMed

    Andreoli, Enrico; Dillon, Eoghan P; Cullum, Laurie; Alemany, Lawrence B; Barron, Andrew R

    2014-12-03

    Amine-based absorbents play a central role in CO2 sequestration and utilization. Amines react selectively with CO2, but a drawback is the unproductive weight of solvent or support in the absorbent. Efforts have focused on metal organic frameworks (MOFs) reaching extremely high CO2 capacity, but limited selectivity to N2 and CH4, and decreased uptake at higher temperatures. A desirable system would have selectivity (cf. amine) and high capacity (cf. MOF), but also increased adsorption at higher temperatures. Here, we demonstrate a proof-of-concept where polyethyleneimine (PEI) is converted to a high capacity and highly selective CO2 absorbent using buckminsterfullerene (C(60)) as a cross-linker. PEI-C(60) (CO2 absorption of 0.14 g/g at 0.1 bar/90 °C) is compared to one of the best MOFs, Mg-MOF-74 (0.06 g/g at 0.1 bar/90 °C), and does not absorb any measurable amount of CH4 at 50 bar. Thus, PEI-C(60) can perform better than MOFs in the sweetening of natural gas.

  20. High-Temperature Cross-Linking of Carbon Nanotube Multi-Yarn Using Polyvinylpyrrolidone as a Binding Agent.

    PubMed

    Misak, H; Asmatulu, R; Whitman, J; Mall, S

    2015-03-01

    Carbon nanotube (CNT) multi-yarn was cross-linked together at elevated temperatures using a poly- mer, with the intent of improving their strength and electrical conductivity. They were functionalized using an acid treatment and immersed in a bath of different concentrations (0.5%, 0.1%, and 0.2%) of polyvinylpyrrolidone (PVP). Then they were placed in an oven at various temperatures (180 °C, 200 °C, and 220 °C) in order to cause cross-linking among the carbon nanotube yarns. The phys- ical, chemical, electrical, and mechanical properties of the cross-linked yarns were investigated. The yarns cross-linked at higher temperatures and greater concentrations of PVP had a greater increase in linear mass density, indicating that the cross-linking process had worked as expected. Yarns that were cross-linked at lower temperatures had greater tensile strength and better spe- cific electrical conductivity. Those that were treated with a greater concentration of polymer had a greater ultimate tensile strength. All these results are encouraging first step, but still need further development if CNT yarn is to replace copper wire. PMID:26413653

  1. New high temperature cross linking monomers. [for polymer matrix composite materials

    NASA Technical Reports Server (NTRS)

    Scola, D. A.

    1978-01-01

    Several PMR-polyimide resins capable of being processed at a maximum temperature of 232 C to 288 C without sacrifice of high temperature capability were developed. Four monomethyl esters were synthesized and characterized for use in the crosslinking studies. The infrared and DSC studies of each crosslinker suggested that curing could be accomplished at 288 C. However, fabrication of dense, void free polymer specimens required a temperature of 316 C and a pressure of 0.69 MPa (100 psi). Crosslinkers were evaluated in Celion 6000/PMR polyimide composites. These composites were characterized at RT, 288 C and 316 C initially and after isothermal aging at 288 C and 316 C for several hundred hours. The results suggest that both PMR systems are promising candidates as matrices for addition type polyimide composites. It is demonstrated that alternate crosslinkers are feasible, but mechanisms to lower the crosslinking temperature must be developed to provide lower temperature processing PMR-type polyimides.

  2. Borate cross-linked graphene oxide-chitosan as robust and high gas barrier films

    NASA Astrophysics Data System (ADS)

    Yan, Ning; Capezzuto, Filomena; Lavorgna, Marino; Buonocore, Giovanna G.; Tescione, Fabiana; Xia, Hesheng; Ambrosio, Luigi

    2016-05-01

    Chitosan (CS) is one of the most promising polymers due to its biocompatibility, biodegradability, and natural abundance. However, its poor mechanical and barrier properties make it difficult to satisfy a wide range of applications. Herein, borate ions, originating from the hydrolysis of sodium tetraborate decahydrate (borax), have been used to crosslink chitosan and graphene oxide (GO) nanocomposites. Chitosan films consisting of 1.0 wt% boron and 1.0 wt% GO exhibit a significant improvement in both the toughness and oxygen barrier properties compared to pristine chitosan. In particular the tensile strength of the samples after thermal treatment increases by ~160% compared to pristine chitosan, whereas their oxygen permeability reduces by ~90%. This is ascribed to the chemical crosslinking between chitosan and GO nanoplatelets through borate ions, as well as the formation of a layered morphology with graphene nanoplatelets oriented parallel to the sample surface. The exceptional robust and high gas barrier film has promising application in the packaging industry. The borate-crosslinking chemistry represents the potential strategy for improving properties of other polymer nanocomposites.Chitosan (CS) is one of the most promising polymers due to its biocompatibility, biodegradability, and natural abundance. However, its poor mechanical and barrier properties make it difficult to satisfy a wide range of applications. Herein, borate ions, originating from the hydrolysis of sodium tetraborate decahydrate (borax), have been used to crosslink chitosan and graphene oxide (GO) nanocomposites. Chitosan films consisting of 1.0 wt% boron and 1.0 wt% GO exhibit a significant improvement in both the toughness and oxygen barrier properties compared to pristine chitosan. In particular the tensile strength of the samples after thermal treatment increases by ~160% compared to pristine chitosan, whereas their oxygen permeability reduces by ~90%. This is ascribed to the chemical

  3. Borate cross-linked graphene oxide-chitosan as robust and high gas barrier films.

    PubMed

    Yan, Ning; Capezzuto, Filomena; Lavorgna, Marino; Buonocore, Giovanna G; Tescione, Fabiana; Xia, Hesheng; Ambrosio, Luigi

    2016-05-19

    Chitosan (CS) is one of the most promising polymers due to its biocompatibility, biodegradability, and natural abundance. However, its poor mechanical and barrier properties make it difficult to satisfy a wide range of applications. Herein, borate ions, originating from the hydrolysis of sodium tetraborate decahydrate (borax), have been used to crosslink chitosan and graphene oxide (GO) nanocomposites. Chitosan films consisting of 1.0 wt% boron and 1.0 wt% GO exhibit a significant improvement in both the toughness and oxygen barrier properties compared to pristine chitosan. In particular the tensile strength of the samples after thermal treatment increases by ∼160% compared to pristine chitosan, whereas their oxygen permeability reduces by ∼90%. This is ascribed to the chemical crosslinking between chitosan and GO nanoplatelets through borate ions, as well as the formation of a layered morphology with graphene nanoplatelets oriented parallel to the sample surface. The exceptional robust and high gas barrier film has promising application in the packaging industry. The borate-crosslinking chemistry represents the potential strategy for improving properties of other polymer nanocomposites. PMID:27168418

  4. "Fastening" porphyrin in highly cross-linked polyphosphazene hybrid nanoparticles: powerful red fluorescent probe for detecting mercury ion.

    PubMed

    Hu, Ying; Meng, Lingjie; Lu, Qinghua

    2014-04-22

    It is a significant issue to overcome the concentration-quenching effect of the small fluorescent probes and maintain the high fluorescent efficiency at high concentration for sensitive and selective fluorescent mark or detection. We developed a new strategy to "isolate" and "fasten" porphyrin moieties in a highly cross-linked poly(tetraphenylporphyrin-co-cyclotriphosphazene) (TPP-PZS) by the polycondensation of hexachlorocyclotriphosphazene (HCCP) and 5,10,15,20-tetrakis(4-hydroxyphenyl)porphyrin (TPP-(OH)4) in a suitable solvent. The resulting TPP-PZS particles were characterized with transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier transform infrared (FTIR), (31)P nuclear magnetic resonance (NMR), and ultraviolet and visible (UV-vis) absorption spectra. Remarkably, TPP-PZS particles obtained in acetone emitted a bright red fluorescence both in powder state and in solution because the aggregation of porphyrin moieties in "H-type" (face-to-face) and "J-type" (edge-to-edge) was effectively blocked. The fluorescent TPP-PZS particles also showed superior resistance to photobleaching, and had a high sensitivity and selectivity for the detection of Hg(2+) ions. The TPP-PZS particles were therefore used as an ideal material for preparing test strips to quickly detect/monitor the Hg(2+) ions in a facile way.

  5. Preparation and characterization of highly cross-linked polyimide aerogels based on polyimide containing trimethoxysilane side groups.

    PubMed

    Pei, Xueliang; Zhai, Wentao; Zheng, Wenge

    2014-11-11

    In this study, highly cross-linked and completely imidized polyimide aerogels were prepared from polyimide containing trimethoxysilane side groups, which was obtained as the condensation product of polyimide containing acid chloride side groups and 3-aminopropyltrimethoxysilane. After adding water and acid catalyst, the trimethoxysilane side groups hydrolyzed and condensed one another, and a continuous increase in the complex viscosities of the polyimide solutions with time was observed. The formed polyimide gels were dried by freeze-drying from tert-butyl alcohol to obtain polyimide aerogels, which consisted of a three-dimensional network of polyimide fibers tangled together. By varying the solution concentration of the polyimide containing trimethoxysilane side groups, polyimide aerogels with different densities (ranging from 0.19 to 0.42 g/cm(3)) were obtained. The resulting polyimide aerogels had small pore diameter (ranging from 20.7 to 58.3 nm), high surface area (ranging from 310 to 344 m(2)/g), high 5% weight loss temperature in air (at about 440 °C), and an excellent mechanical property. In addition, the glass transition temperature (349 °C) of the polyimide aerogels was much higher than that (210 °C) of the corresponding linear polyimide. So, even after being heated at 300 °C for 30 min, the porous structure of the polyimide aerogels was not completely destroyed. PMID:25340747

  6. Long-term Results of a First-Generation Annealed Highly Cross-Linked Polyethylene in Young, Active Patients.

    PubMed

    Ranawat, Chitranjan S; Ranawat, Amar S; Ramteke, Alankar A; Nawabi, Danyal; Meftah, Morteza

    2016-01-01

    The survivorship of total hip arthroplasty in younger patients is dependent on the wear characteristics of the bearing surfaces. Long-term results with conventional polyethylene in young patients show a high failure rate. This study assessed the long-term results of a first-generation annealed highly cross-linked polyethylene (HCLPE) in uncemented total hip arthroplasty in young, active patients. Between 1999 and 2003, 112 total hip arthroplasty procedures performed in 91 patients with an average University of California Los Angeles activity score of 8 and mean age of 53 years (range, 24-65 years) were included from a prospective database. In all patients, a 28-mm metal femoral head on annealed HCLPE (Crossfire; Stryker, Mahwah, New Jersey) was used. At minimum 10-year follow-up (11.5±0.94 years), Kaplan-Meier survivorship was 97% for all failures (1 periprosthetic infection and 1 late dislocation) and 100% for mechanical failure (no revisions for osteolysis or loosening). This study showed low revision rates for wear-related failure and superior survivorship in young, active patients. Oxidation causing failure of the locking mechanism has not been a problem with Crossfire for up to 10 years. PMID:26811959

  7. High-Strength, Tough, Fatigue Resistant, and Self-Healing Hydrogel Based on Dual Physically Cross-Linked Network.

    PubMed

    Gong, Zhengyu; Zhang, Guoping; Zeng, Xiaoliang; Li, Jinhui; Li, Gang; Huang, Wangping; Sun, Rong; Wong, Chingping

    2016-09-14

    Hydrogels usually suffer from low mechanical strength, which largely limit their application in many fields. In this Research Article, we prepared a dual physically cross-linked hydrogel composed of poly(acrylamide-co-acrylic acid) (PAM-co-PAA) and poly(vinyl alcohol) (PVA) by simple two-steps methods of copolymerization and freezing/thawing. The hydrogen bond-associated entanglement of copolymer chains formed as cross-linking points to construct the first network. After being subjected to the freezing/thawing treatment, PVA crystalline domains were formed to serve as knots of the second network. The hydrogels were demonstrated to integrate strength and toughness (1230 ± 90 kPa and 1250 ± 50 kJ/m(3)) by the introduction of second physically cross-linked network. What̀s more, the hydrogels exhibited rapid recovery, excellent fatigue resistance, and self-healing property. The dynamic property of the dual physically cross-linked network contributes to the excellent energy dissipation and self-healing property. Therefore, this work provides a new route to understand the toughness mechanism of dual physically cross-linked hydrogels, hopefully promoting current hydrogel research and expanding their applications. PMID:27548327

  8. Cross-linking high-k fluoropolymer gate dielectrics enhances the charge mobility in rubrene field effect transistors

    NASA Astrophysics Data System (ADS)

    Adhikari, Jwala; Gadinski, Matthew; Wang, Qing; Gomez, Enrique

    2015-03-01

    Polymer dielectrics are promising materials where the chemical flexibility enables gate insulators with desired properties. For example, polar groups can be introduced to enhance the dielectric constant, although fluctuations in chain conformations at the semiconductor-dielectric interface can introduce energetic disorder and limit charge mobilities in thin-film transistors. Here, we demonstrate a photopatternable high-K fluoropolymer, poly(vinylidene fluoride-bromotrifluoroethylene) P(VDF-BTFE), with a dielectric constant between 8 and 11. The bromotrifluoroethylene moiety enables photo-crosslinking and stabilization of gate insulator films while also significantly enhancing the population of trans torsional conformations of the chains. Using rubrene single crystals as the active layer, charge mobilities exceeding 10 cm2/Vs are achieved in thin film transistors with cross-linked P(VDF-BTFE) gate dielectrics. We hypothesize that crosslinking reduces energetic disorder at the dielectric-semiconductor interface by suppressing segmental motion and controlling chain conformations of P(VDF-BTFE), thereby leading to approximately a three-fold enhancement in the charge mobility of rubrene thin-film transistors over devices incorporating uncross-linked dielectrics or silicon oxide. Center for Flexible Electronic, Penn State; The Dow Chemical Company.

  9. A New Dry Etching Method with the High Etching Rate for Patterning Cross-Linked SU-8 Thick Films

    NASA Astrophysics Data System (ADS)

    Han, Jingning; Yin, Zhifu; Zou, Helin; Wang, Wenqiang; Feng, Jianbo

    2016-05-01

    Photo sensitive polymer SU-8, owing to its excellent mechanical properties and dielectric properties on polymerization, is widely used in MEMS device fabrications. However, the removing, stripping or re-patterning of the cross-linked SU-8 is a difficult issue. In this paper, CF4/O2 gas mixture provided by a plasma asher equipment was used for the patterning of cross-linked SU-8 material. The RF power, the temperature of the substrate holder, chamber pressure and gas concentration were optimized for the cross-linked SU-8 etching process. When the CF4/O2 mixture contains about 5%CF4 by volume, the etching rate can be reached at 5.2 μm/min.

  10. Highly stable CO2/N2 and CO2/CH4 selectivity in hyper-cross-linked heterocyclic porous polymers.

    PubMed

    Saleh, Muhammad; Lee, Han Myoung; Kemp, K Christian; Kim, Kwang S

    2014-05-28

    The largest obstacles for landfill/flue gas separation using microporous materials are small adsorption values and low selectivity ratios. This study demonstrates that these adsorption and selectivity challenges can be overcome by utilizing a series of hyper-cross-linked heterocyclic polymer networks. These microporous organic polymers (MOPs) were synthesized in a single step by inexpensive Friedel-Crafts-catalyzed reactions using dimethoxymethane as an external linker. The amorphous networks show moderate Brunauer-Emmett-Teller surface areas up to 1022 m(2) g(-1), a narrow pore size distribution in the range from 6 to 8 Å, and high physicochemical stability. Owing to the presence of the heteroatomic pore surfaces in the networks, they exhibit maximum storage capacities for CO2 of 11.4 wt % at 273 K and 1 atm. Additionally, remarkable selectivity ratios for CO2 adsorption over N2 (100) and CH4 (15) at 273 K were obtained. More importantly, as compared with any other porous materials, much higher selectivity for CO2/N2 (80) and CO2/CH4 (15) was observed at 298 K, showing that these selectivity ratios remain high at elevated temperature. The very high CO2/N2 selectivity values are ascribed to the binding affinity of abundantly available electron-rich basic heteroatoms, high CO2 isoteric heats of adsorption (49-38 kJ mol(-1)), and the predominantly microporous nature of the MOPs. Binding energies calculated using the high level of ab initio theory showed that the selectivity is indeed attributed to the heteroatom-CO2 interactions. By employing an easy and economical synthesis procedure these MOPs with high thermochemical stability are believed to be a promising candidate for selective CO2 capture.

  11. High-efficiency loading and controlled release of highly water-soluble drug, pravastatin sodium by use of cross-linked β-cyclodextrin

    PubMed Central

    Kumar, Yatendra; Philip, Betty; Pathak, Kamla

    2011-01-01

    Aim: The aim of the project was to develop cross-linked b-cyclodextrin (CL β-CD) microparticles for controlled delivery of a highly water-soluble drug. Materials and Methods: CL β-CD microparticles were prepared by emulsification phase separation technique using epichlorohydrin as a cross-linking reagent. The developed microparticles were compared with β-CD for their pharmacotechnical properties. A highly water-soluble model drug, pravastatin sodium (PS) was loaded within these hydrophobic microparticles by active drug loading method using nonionic surfactant Tween 80 as the loading facilitator. Results: Maximal drug fixation (216.8 mg/g beads) was observed in pH 4 at 20°C. In vitro release studies of PS-loaded CL β-CD microparticles in simulated gastric fluid and simulated intestinal fluid resulted in modified dissolution profiles. Modeling of release profiles confirmed controlled release (r2 = 0.9910) of PS from the cross-linked system. Conclusion: Controlled release CL β-CD microparticles PS that have the potential to enhance its therapeutic properties by offering the advantage of less frequent dosing and decreased fluctuations in the blood levels during the dosing interval were successfully developed. PMID:23071914

  12. Wear resistance and mechanical properties of highly cross-linked, ultrahigh-molecular weight polyethylene doped with vitamin E.

    PubMed

    Oral, Ebru; Christensen, Steven D; Malhi, Arnaz S; Wannomae, Keith K; Muratoglu, Orhun K

    2006-06-01

    Our hypothesis was that cross-linked, ultrahigh-molecular weight polyethylene (UHMWPE) stabilized with vitamin E (alpha-tocopherol) would be wear-resistant and fatigue-resistant. Acetabular liners were radiation cross-linked, doped with vitamin E, and gamma-sterilized. Hip simulator wear rate of vitamin E-stabilized UHMWPE was approximately 1 and 6 mg/million-cycles in clean serum and in serum with third-body particles, respectively, a 4-fold to 10-fold decrease from that of conventional UHMWPE. The ultimate strength, yield strength, elongation at break, and fatigue resistance of vitamin E-stabilized UHMWPE were significantly higher than that of 100 kGy-irradiated and melted UHMWPE, and were unaffected by accelerated aging. Rim impingement testing with 3.7-mm-thick acetabular liners up to 2 million-cycles showed no significant damage of the cross-linked liners compared with conventional, gamma-sterilized in inert UHMWPE, vitamin E-stabilized liners. The data indicate good in vitro wear properties and improved mechanical and fatigue properties for vitamin E-stabilized, cross-linked UHMWPE.

  13. Wear resistant performance of highly cross-linked and annealed ultra-high molecular weight polyethylene against ceramic heads in total hip arthroplasty.

    PubMed

    Sato, Taishi; Nakashima, Yasuharu; Akiyama, Mio; Yamamoto, Takuaki; Mawatari, Taro; Itokawa, Takashi; Ohishi, Masanobu; Motomura, Goro; Hirata, Masanobu; Iwamoto, Yukihide

    2012-12-01

    The purpose of this study was to examine the effects of ceramic femoral head material, size, and implantation periods on the wear of annealed, cross-linked ultra-high molecular weight polyethylene (UHMWPE) (XLPE) in total hip arthroplasty compared to non-cross-linked conventional UHMWPE (CPE). XLPE was fabricated by cross-linking with 60 kGy irradiation and annealing. Femoral heads made from zirconia and alumina ceramics and cobalt-chrome (CoCr) of 22 or 26 mm diameter were used. In this retrospective cohort study, the femoral head penetration into the cup was measured digitally on radiographs of 367 hips with XLPE and 64 hips with CPE. The average follow-up periods were 6.3 and 11.9 years, respectively. Both XLPE creep and wear rates were significantly lower than those of CPE (0.19 mm vs. 0.44 mm, 0.0001 mm/year vs. 0.09 mm/year, respectively). Zirconia displayed increased wear rates compared to alumina in CPE; however, there was no difference among head materials in XLPE (0.0008, 0.00007, and -0.009 mm/year for zirconia, alumina, and CoCr, respectively). Neither head size or implantation period impacted XLPE wear. In contrast to CPE, XLPE displayed low wear rates surpassing the effects of varying femoral head material, size, implantation period, and patient demographics. Further follow-up is required to determine the long-term clinical performance of the annealed XLPE.

  14. Wear and migration of highly cross-linked and conventional cemented polyethylene cups with cobalt chrome or Oxinium femoral heads: a randomized radiostereometric study of 150 patients.

    PubMed

    Kadar, Thomas; Hallan, Geir; Aamodt, Arild; Indrekvam, Kari; Badawy, Mona; Skredderstuen, Arne; Havelin, Leif Ivar; Stokke, Terje; Haugan, Kristin; Espehaug, Birgitte; Furnes, Ove

    2011-08-01

    This randomized study was performed to compare wear and migration of five different cemented total hip joint articulations in 150 patients. The patients received either a Charnley femoral stem with a 22.2 mm head or a Spectron EF femoral stem with a 28 mm head. The Charnley articulated with a γ-sterilized Charnley Ogee acetabular cup. The Spectron EF was used with either EtO-sterilized non-cross-linked polyethylene (Reflection All-Poly) or highly cross-linked (Reflection All-Poly XLPE) cups, combined with either cobalt chrome (CoCr) or Oxinium femoral heads. The patients were followed with repeated RSA measurements for 2 years. After 2 years, the EtO-sterilized non-cross-linked Reflection All-Poly cups had more than four times higher proximal penetration than its highly cross-linked counterpart. Use of Oxinium femoral heads did not affect penetration at 2 years compared to heads made of CoCr. Further follow-up is needed to evaluate the benefits, if any, of Oxinium femoral heads in the clinical setting. The Charnley Ogee was not outperformed by the more recently introduced implants in our study. We conclude that this prostheses still represents a standard against which new implants can be measured.

  15. Cross-linked biopolymer bundles: Cross-link reversibility leads to cooperative binding/unbinding phenomena

    NASA Astrophysics Data System (ADS)

    Vink, Richard L. C.; Heussinger, Claus

    2012-01-01

    We consider a biopolymer bundle consisting of filaments that are cross-linked together. The cross-links are reversible: they can dynamically bind and unbind adjacent filament pairs as controlled by a binding enthalpy. The bundle is subjected to a bending deformation and the corresponding distribution of cross-links is measured. For a bundle consisting of two filaments, upon increasing the bending amplitude, a first-order transition is observed. The transition is from a state where the filaments are tightly coupled by many bound cross-links, to a state of nearly independent filaments with only a few bound cross-links. For a bundle consisting of more than two filaments, a series of first-order transitions is observed. The transitions are connected with the formation of an interface between regions of low and high cross-link densities. Combining umbrella sampling Monte Carlo simulations with analytical calculations, we present a detailed picture of how the competition between cross-link shearing and filament stretching drives the transitions. We also find that, when the cross-links become soft, collective behavior is not observed: the cross-links then unbind one after the other leading to a smooth decrease of the average cross-link density.

  16. 3D Bi2S3/TiO2 cross-linked heterostructure: An efficient strategy to improve charge transport and separation for high photoelectrochemical performance

    NASA Astrophysics Data System (ADS)

    Han, Minmin; Jia, Junhong

    2016-10-01

    A novel 3D cross-linked heterostructure of TiO2 nanorods connecting with each other via ultrathin Bi2S3 nanosheets is constructed by a facile and effective strategy. The growth mechanism has been investigated and proposed based on the evolution of microstructure by changing the reaction parameters. Benefiting from the unique cross-linked heterostructure, the as-prepared Bi2S3 nanosheets modified TiO2 nanorods arrays could achieve a high energy conversion efficiency of 3.29% which is the highest value to date for Bi2S3-only sensitized solar cells as the reported highest value is 2.23% and other reported values are less than 1%. Furthermore, the photoelectrochemical studies clearly reveal that the novel cross-linked heterostructure exhibits much better activity than 0D nanoparticles decorated TiO2 nanorods under visible light irradiation, which may be primarily ascribed to the efficient electron transfer from 2D ultrathin Bi2S3 nanosheets to 1D TiO2 nanorod arrays. The promising results in this work confirm the advantages of cross-linked heterostructure and also undoubtedly offer an attractive synthesis strategy to fabricate other nanorod-based hierarchical architecture as well as nano-devices for solar energy conversion.

  17. [Riboflavin UVA cross-linking for keratoconus].

    PubMed

    Maier, P; Reinhard, T

    2013-09-01

    Keratoconus is a progressive, ectatic disease of the cornea leading to thinning and highly irregular astigmatism. Until recently all treatment options, such as prescription of glasses or contact lenses were symptomatic and neither keratoplasty nor the implantation of intracorneal rings can heal the disease. Riboflavin ultraviolet A (UVA) collagen cross-linking (CXL) cannot heal keratoconus either but promises to halt the progression. The therapeutic principle is a photochemical reaction of riboflavin and UVA light leading to free oxygen radicals in the corneal stroma that induce covalent linking of the collagen fibrils. This stiffening effect should stop the progression. After the first reports at the end of the 1990s the treatment was widely used and many case series show that CXL can be effective in stopping disease progression in some patients. However, randomized, controlled multicenter trials showing high evidence of the treatment effectiveness are rare. This report includes a review of the literature regarding treatment effectiveness, indications and new developments. PMID:23760423

  18. In situ thermally cross-linked polyacrylonitrile as binder for high-performance silicon as lithium ion battery anode.

    PubMed

    Shen, Lanyao; Shen, Lian; Wang, Zhaoxiang; Chen, Liquan

    2014-07-01

    Electrode integrity and electric contact between particles and between particle and current collector are critical for electrochemical performance, especially for that of electrode materials with large volume change during cycling and with poor electric conductivity. We report on the in situ thermally cross-linked polyacrylonitrile (PAN) as a binder for silicon-based anodes of lithium-ion batteries. The electrode delivers excellent cycle life and rate capability with a reversible capacity of about 1450 mA h g(-1) even after 100 cycles. The improved electrochemical performance of such silicon electrodes is attributed to heat-treatment-induced cross-linking and the formation of conjugated PAN. These findings open new avenues to explore other polymers for both anode and cathode electrodes of rechargeable batteries.

  19. In situ thermally cross-linked polyacrylonitrile as binder for high-performance silicon as lithium ion battery anode.

    PubMed

    Shen, Lanyao; Shen, Lian; Wang, Zhaoxiang; Chen, Liquan

    2014-07-01

    Electrode integrity and electric contact between particles and between particle and current collector are critical for electrochemical performance, especially for that of electrode materials with large volume change during cycling and with poor electric conductivity. We report on the in situ thermally cross-linked polyacrylonitrile (PAN) as a binder for silicon-based anodes of lithium-ion batteries. The electrode delivers excellent cycle life and rate capability with a reversible capacity of about 1450 mA h g(-1) even after 100 cycles. The improved electrochemical performance of such silicon electrodes is attributed to heat-treatment-induced cross-linking and the formation of conjugated PAN. These findings open new avenues to explore other polymers for both anode and cathode electrodes of rechargeable batteries. PMID:24782265

  20. Fabrication and characterization of polycaprolactone cross- linked and highly-aligned 3-D artificial scaffolds for bone tissue regeneration via electrospinning technology

    NASA Astrophysics Data System (ADS)

    Gorodzha, S. N.; Surmeneva, M. A.; Surmenev, R. A.

    2015-11-01

    Novel technologies allowed the scientific community to develop scaffolds for regeneration of bone tissue. A successful scaffold should possess specific macroscopic geometry and internal architecture to perform biological and biophysical functions. In this study the process of polycaprolactone microfibrous development with either cross-linked or highly-aligned three-dimensional artificial mats via electrospinning technology for potential application in tissue engineering is described. The morphology and size of electrospun fibers were assessed systematically by varying the rotation speed of grounded collector. It was found that the diameter of the fibers decreased by increasing the rotation speed of collector. The morphology of the fibers changed from cross-linked to highly-aligned at appr. 1000-1100 rpm.

  1. Medium-term results of cementation of a highly cross-linked polyethylene liner into a well-fixed acetabular shell in revision hip arthroplasty.

    PubMed

    Lim, Seung-Jae; Lee, Keun-Ho; Park, Shin-Hyung; Park, Youn-Soo

    2014-03-01

    The present study was undertaken to document outcomes of cementation of a highly cross-linked polyethylene (PE) liner into a well-fixed acetabular metal shell in 36 hips. All operations were performed by a single surgeon using only one type of liner. Patients were followed for a mean of 6.1 years (range, 3-8 years). Mean Harris hip score improved from 58 points preoperatively to 91 points postoperatively. There were no cases of PE liner dislodgement or progressive osteolysis. 1 hip (2.8%) required revision surgery for acetabular cup loosening with greater trochanteric fracture. Complications included 1 peroneal nerve palsy and 1 dislocation. The results of this study and previous reports demonstrated that cementation of highly cross-linked PE liner into well-fixed metal shell could provide good midterm durability.

  2. Highly Cross-Linked Versus Conventional Polyethylene in Posterior-Stabilized Total Knee Arthroplasty at a Mean 5-Year Follow-up.

    PubMed

    Meneghini, R Michael; Lovro, Luke R; Smits, Shelly A; Ireland, Philip H

    2015-10-01

    Concerns of highly cross-linked polyethylene (XLPE) in total knee arthroplasty (TKA) exist regarding fatigue resistance and oxidation, particularly in posterior-stabilized (PS) designs. A prospective cohort study of 114 consecutive PS TKAs utilized conventional polyethylene in 50 knees and second-generation annealed XLPE in 64 TKAs. Clinical (Short-Form 36, Knee Society Scores, and LEAS) and radiographic outcomes were evaluated at a mean of 5 years in 103 TKAs. Mean KSS scores were 12 points higher (P=0.01) and SF-36 physical function subset 14 points higher (P=0.005) in the XLPE group. There was no radiographic osteolysis or mechanical failure related to the tibial polyethylene in either group. At 5-year follow-up, no deleterious effects related to highly cross-linked posterior stabilized tibial polyethylene inserts were observed.

  3. A Liner Breakage in Total Hip Arthroplasty after Using 1st Generation Highly Cross Linked Polyethylene Mated against 36-mm Metal Head: A Case Report

    PubMed Central

    Choi, Won-Kee; Chae, Seung-Bum; Kim, Dong-Young

    2015-01-01

    It has been known the highly cross linked polyethylene (HXLPE) has an advantage of improved wear rate. However, the alteration in mechanical properties such as decreased tensile yield and fatigue strength make concerns about fragility of HXLPE. We experienced a case of HXLPE breakage. But, this case of liner breakage happened although patient belonged to normal BMI and proper acetabular cup position so called "safe zone" on radiographs. So, we report this case with reference review. PMID:27536625

  4. Effect of cross-link density on carbon dioxide separation in polydimethylsiloxane-norbornene membranes

    DOE PAGESBeta

    Hong, Tao; Niu, Zhenbin; Hu, Xunxiang; Gmernicki, Kevin; Cheng, Shiwang; Fan, Fei; Johnson, J. Casey; Hong, Eunice; Mahurin, Shannon; Jiang, De -en; et al

    2015-01-01

    The development of high performance materials for CO2 separation and capture will significantly contribute to a solution for climate change. In this work, (bicycloheptenyl) ethyl terminated polydimethylsiloxane (PDMSPNB) membranes with varied cross-link densities were synthesized via ring-opening metathesis polymerization. The developed polymer membranes show higher permeability and better selectivity than those of conventional cross-linked PDMS membrane. The achieved performance (CO2 permeability ~ 6800 Barrer and CO2/N2 selectivity ~ 14) is very promising for practical applications. The key to achieving this high performance is the use of an in-situ cross-linking method of the difunctional PDMS macromonomers, which provides lightly cross-linked membranes.more » By combining positron annihilation lifetime spectroscopy, broadband dielectric spectroscopy and gas solubility measurements, we have elucidated the key parameters necessary for achieving their excellent performance.« less

  5. Effect of cross-link density on carbon dioxide separation in polydimethylsiloxane-norbornene membranes

    SciTech Connect

    Hong, Tao; Niu, Zhenbin; Hu, Xunxiang; Gmernicki, Kevin; Cheng, Shiwang; Fan, Fei; Johnson, J. Casey; Hong, Eunice; Mahurin, Shannon; Jiang, De -en; Long, Brian; Mays, Jimmy; Sokolov, Alexei; Saito, Tomonori

    2015-01-01

    The development of high performance materials for CO2 separation and capture will significantly contribute to a solution for climate change. In this work, (bicycloheptenyl) ethyl terminated polydimethylsiloxane (PDMSPNB) membranes with varied cross-link densities were synthesized via ring-opening metathesis polymerization. The developed polymer membranes show higher permeability and better selectivity than those of conventional cross-linked PDMS membrane. The achieved performance (CO2 permeability ~ 6800 Barrer and CO2/N2 selectivity ~ 14) is very promising for practical applications. The key to achieving this high performance is the use of an in-situ cross-linking method of the difunctional PDMS macromonomers, which provides lightly cross-linked membranes. By combining positron annihilation lifetime spectroscopy, broadband dielectric spectroscopy and gas solubility measurements, we have elucidated the key parameters necessary for achieving their excellent performance.

  6. Effect of Cross-Link Density on Carbon Dioxide Separation in Polydimethylsiloxane-Norbornene Membranes.

    PubMed

    Hong, Tao; Niu, Zhenbin; Hu, Xunxiang; Gmernicki, Kevin; Cheng, Shiwang; Fan, Fei; Johnson, J Casey; Hong, Eunice; Mahurin, Shannon; Jiang, De-en; Long, Brian; Mays, Jimmy; Sokolov, Alexei; Saito, Tomonori

    2015-11-01

    The development of high-performance materials for carbon dioxide separation and capture will significantly contribute to a solution for climate change. Herein, (bicycloheptenyl)ethyl-terminated polydimethylsiloxane (PDMSPNB) membranes with varied cross-link densities were synthesized via ring-opening metathesis polymerization. The developed polymer membranes show higher permeability and better selectivity than those of conventional cross-linked PDMS membrane. The achieved performance (CO2 permeability≈6800 Barrer; CO2 /N2 selectivity≈14) is very promising for practical applications. The key to achieving this high performance is the use of an in situ cross-linking method for difunctional PDMS macromonomers, which provides lightly cross-linked membranes. By combining positron annihilation lifetime spectroscopy, broadband dielectric spectroscopy, and gas solubility measurements, key parameters necessary for achieving excellent performance have been elucidated.

  7. Correlation of in Situ Oxazolidine Formation with Highly Synergistic Cytotoxicity and DNA Cross-Linking in Cancer Cells from Combinations of Doxorubicin and Formaldehyde.

    PubMed

    Barthel, Benjamin L; Mooz, Erin L; Wiener, Laura Elizabeth; Koch, Gary G; Koch, Tad H

    2016-03-10

    Anthracyclines are a class of antitumor compounds that are successful and widely used but suffer from cardiotoxicity and acquired tumor resistance. Formaldehyde interacts with anthracyclines to enhance antitumor efficacy, bypass resistance mechanisms, improve the therapeutic profile, and change the mechanism of action from a topoisomerase II poison to a DNA cross-linker. Contrary to current dogma, we show that both efficient DNA cross-linking and potent synergy in combination with formaldehyde correlate with the anthracycline's ability to form cyclic formaldehyde conjugates as oxazolidine moieties and that the cyclic conjugates are better cross-linking agents and cytotoxins than acyclic conjugates. We also provide evidence that suggests that the oxazolidine forms in situ, since cotreatment with doxorubicin and formaldehyde is highly cytotoxic to dox-resistant tumor cell lines, and that this benefit is absent in combinations of formaldehyde and epirubicin, which cannot form stable oxazolidines. These results have potential clinical implications in the active field of anthracycline prodrug design and development.

  8. Highly efficient copper(II) ion sorbents obtained by calcium carbonate mineralization on functionalized cross-linked copolymers.

    PubMed

    Mihai, Marcela; Bunia, Ion; Doroftei, Florica; Varganici, Cristian-Dragos; Simionescu, Bogdan C

    2015-03-23

    A new type of Cu(II) ion sorbents is presented. These are obtained by CaCO3 mineralization from supersaturated solutions on gel-like cross-linked polymeric beads as insoluble templates. A divinylbenzene-ethylacrylate-acrylonitrile cross-linked copolymer functionalized with weakly acidic, basic, or amphoteric functional groups has been used, as well as different initial inorganic concentrations and addition procedures for CaCO3 crystal growth. The morphology of the new composites was investigated by SEM and compared to that of the unmodified beads, and the polymorph content was established by X-ray diffraction. The beads, before and after CaCO3 mineralization, were tested as sorbents for Cu(II) ions. The newly formed patterns on the bead surface after Cu(II) sorption were observed by SEM, and the elemental distribution on the composites and the chemical structure of crystals after interaction with Cu(II) were investigated by EDAX elemental mapping and by FTIR-ATR spectroscopy, respectively. The sorption capacity increased significantly after CaCO3 crystals growth on the weak anionic bead surface (up to 1041.5 mg Cu(II) /g sample) compared to that of unmodified beads (491.5 mg Cu(II) /g sample). PMID:25675892

  9. Optimisation of the reaction conditions for the production of cross-linked starch with high resistant starch content.

    PubMed

    Kahraman, Kevser; Koksel, Hamit; Ng, Perry K W

    2015-05-01

    The optimum reaction conditions (temperature and pH) for the preparation of cross-linked (CL) corn and wheat starches with maximum resistant starch (RS) content were investigated by using response surface methodology (RSM). According to the preliminary results, five levels were selected for reaction temperature (38-70 °C) and pH (10-12) in the main study. RS contents of the CL corn and wheat starch samples increased with increasing temperature and pH, and pH had a greater influence on RS content than had temperature. The maximum RS content (with a maximum p value of 0.4%) was obtained in wheat starch cross-linked at 38 °C and pH 12. In the case of CL corn starch, the optimum condition was 70 °C and pH 12. CL corn and wheat starch samples were also produced separately under the optimum conditions and their RS contents were 80.4% and 83.9%, respectively. These results were also in agreement with the values predicted by RSM.

  10. Heat transfer performance of a phase-change thermal energy storage water heater using cross-linked high density polyethylene pellets

    SciTech Connect

    Jotshi, C.K.; Klausner, J.F.; Goswami, D.Y.; Hsieh, C.K.; Santhosh, M.K.; Colacino, F.

    1996-12-31

    The objective of this investigation was to develop an efficient water heater that stores thermal energy in a mixture of cross-linked high density polyethylene (HDPE) pellets and propylene glycol. Properties of cross-linked HDPE, such as melting and crystallization temperatures, heat of fusion and crystallization, and volume change were measured in the laboratory. The heat transfer coefficient for the mixture was also measured in a laboratory test. A prototype model of a storage water heater using a mixture of cross-linked HDPE pellets and propylene glycol was designed and fabricated. A copper finned heat transfer coil was used to extract the heat from the storage tank by passing water through it. The heat transfer efficiency (heat extracted by water/heat stored) was measured to be about 70%. To increase the efficiency, the storage unit was modified. In the modified unit, the length of the heat transfer coil was increased and coil spacing optimized. With the modification, the heat transfer efficiency was measured to be about 90%. In addition, a variable heat flux heating element, having high heat flux at the bottom and low heat flux at top, was used to reduce thermal stratification of the propylene glycol/HDPE pellet mixture.

  11. Heat shrinkable behavior, physico-mechanical and structure properties of electron beam cross-linked blends of high-density polyethylene with acrylonitrile-butadiene rubber

    NASA Astrophysics Data System (ADS)

    Reinholds, Ingars; Kalkis, Valdis; Merijs-Meri, Remo; Zicans, Janis; Grigalovica, Agnese

    2016-03-01

    In this study, heat-shrinkable composites of electron beam irradiated high-density polyethylene (HDPE) composites with acrylonitrile-butadiene rubber (NBR) were investigated. HDPE/NBR blends at a ratio of components 100/0, 90/10, 80/20, 50/50 and 20/80 wt% were prepared using a two-roll mill. The compression molded films were irradiated high-energy (5 MeV) accelerated electrons up to irradiation absorbed doses of 100-300 kGy. The effect of electron beam induced cross-linking was evaluated by the changes of mechanical properties, gel content and by the differences of thermal properties, detected by differential scanning calorimetry. The thermo-shrinkage forces were determined as the kinetics of thermorelaxation and the residual shrinkage stresses of previously oriented (stretched up to 100% at above melting temperature of HDPE and followed by cooling to room temperature) specimens of irradiated HDPE/NBR blends under isometric heating-cooling mode. The compatibility between the both components was enhanced due to the formation of cross-linked sites at amorphous interphase. The results showed increase of mechanical stiffness of composites with increase of irradiation dose. The values of gel fraction compared to thermorelaxation stresses increased with the growth of irradiation dose level, as a result of formation cross-linked sites in amorphous PP/NBR interphase.

  12. Measurement of cross-linked elastin synthesis in bleomycin-induced pulmonary fibrosis using a highly sensitive assay for desmosine and isodesmosine

    SciTech Connect

    Cantor, J.O.; Osman, M.; Keller, S.; Cerreta, J.M.; Mandl, I.; Turino, G.M.

    1984-03-01

    Cross-linked elastin synthesis was measured in the intratracheal bleomycin model of interstitial pulmonary fibrosis by incorporation of 14C-lysine into the elastin-specific crosslinks, desmosine and isodesmosine. Detection of the labeled crosslinks was facilitated by development of a highly sensitive assay utilizing thin-layer electrophoresis. The results indicate that crosslinked elastin synthesis is significantly elevated from controls (p less than 0.05) at 1 to 3 weeks after exposure to bleomycin and returns to normal by 5 weeks. The increases in labeled elastin synthesis are not directly related to changes in either total lung protein synthesis or the pool size of the 14C-lysine. In comparison with collagen and glycosaminoglycan synthesis in this model of lung injury, maximal increases in cross-linked elastin formation occur later, but overlap with the elevated synthesis of these other connective tissue components. The marked increase from normal in cross-linked elastin synthesis in this model suggests that this tissue component is an important part of the fibrotic response of the pulmonary parenchyma and may play a role in the observed alterations in lung structure and function.

  13. Highly cross-linked Cu/a-Si core-shell nanowires for ultra-long cycle life and high rate lithium batteries

    NASA Astrophysics Data System (ADS)

    Wang, Hongxiang; Song, Hucheng; Lin, Zixia; Jiang, Xiaofan; Zhang, Xiaowei; Yu, Linwei; Xu, Jun; Pan, Lijia; Wang, Junzhuan; Zheng, Mingbo; Shi, Yi; Chen, Kunji

    2016-01-01

    Seeking long cycle lifetime and high rate performance are still challenging aspects to promote the application of silicon-loaded lithium ion batteries (LIBs), where optimal structural and compositional design are critical to maximize a synergistic effect in composite core-shell nanowire anode structures. We here propose and demonstrate a high quality conformal coating of an amorphous Si (a-Si) thin film over a matrix of highly cross-linked CuO nanowires (NWs). The conformal a-Si coating can serve as both a high capacity storage medium and a high quality binder that joins crossing CuO NWs into a continuous network. And the CuO NWs can be reduced into highly conductive Cu cores in low temperature H2 annealing. In this way, we have demonstrated an excellent cycling stability that lasts more than 700 (or 1000) charge/discharge cycles at a current density of 3.6 A g-1 (or 1 A g-1), with a high capacity retention rate of 80%. Remarkably, these Cu/a-Si core-shell anode structures can survive an extremely high charging current density of 64 A g-1 for 25 runs, and then recover 75% initial capacity when returning to 1 A g-1. We also present the first and straightforward experimental proof that these robust highly-cross-linked core-shell networks can preserve the structural integrity even after 1000 runs of cycling. All these results indicate a new and convenient strategy towards a high performance Si-loaded battery application.Seeking long cycle lifetime and high rate performance are still challenging aspects to promote the application of silicon-loaded lithium ion batteries (LIBs), where optimal structural and compositional design are critical to maximize a synergistic effect in composite core-shell nanowire anode structures. We here propose and demonstrate a high quality conformal coating of an amorphous Si (a-Si) thin film over a matrix of highly cross-linked CuO nanowires (NWs). The conformal a-Si coating can serve as both a high capacity storage medium and a high

  14. Corneal Collagen Cross-Linking

    PubMed Central

    Jankov II, Mirko R.; Jovanovic, Vesna; Nikolic, Ljubisa; Lake, Jonathan C.; Kymionis, Georgos; Coskunseven, Efekan

    2010-01-01

    Corneal collagen cross-linking (CXL) with riboflavin and ultraviolet-A (UVA) is a new technique of corneal tissue strengthening by using riboflavin as a photosensitizer and UVA to increase the formation of intra and interfibrillar covalent bonds by photosensitized oxidation. Keratocyte apoptosis in the anterior segment of the corneal stroma all the way down to a depth of about 300 microns has been described and a demarcation line between the treated and untreated cornea has been clearly shown. It is important to ensure that the cytotoxic threshold for the endothelium has not been exceeded by strictly respecting the minimal corneal thickness. Confocal microscopy studies show that repopulation of keratocytes is already visible 1 month after the treatment, reaching its pre-operative quantity and quality in terms of functional morphology within 6 months after the treatment. The major indication for the use of CXL is to inhibit the progression of corneal ectasias, such as keratoconus and pellucid marginal degeneration. CXL may also be effective in the treatment and prophylaxis of iatrogenic keratectasia, resulting from excessively aggressive photoablation. This treatment has also been used to treat infectious corneal ulcers with apparent favorable results. Combination with other treatments, such as intracorneal ring segment implantation, limited topography-guided photoablation and conductive keratoplasty have been used with different levels of success. PMID:20543933

  15. Cross-linking of epidermal growth factor receptors in intact cells: detection of initial stages of receptor clustering and determination of molecular weight of high-affinity receptors

    SciTech Connect

    Fanger, B.O.; Austin, K.S.; Earp, H.S.; Cidlowski, J.A.

    1986-10-21

    A method was developed to label epidermal growth factor (EGF) receptors with /sup 125/I-EGF in whole cells using chemical cross-linking reagents. Polyacrylamide gel electrophoresis resolved an M/sub r/ approx. 180,000 EGF-receptor complex and larger M/sub r/ greater than or equal to 360,000 aggregates. The formation of the larger complexes was timed and temperature dependent and appeared to represent the initial events of EGF receptor clustering. Alteration of the ratio of /sup 125/I-EGF-labeled high- and low- affinity complexes by competition with unlabeled EGF or by induction of additional high-affinity sites with dexamethasone suggested that both sites were represented by the M/sub r/ approx. 180,000 /sup 125/I-EGF-receptor complexes. Digestion of cells before cross-linking detected a small population of trypsin-resistant M/sub r/ approx. 180,000 receptors, which could represent previously described cryptic and/or high-affinity receptors. Few of the M/sub r/ approx. 360,000 receptors were trypsin resistant. Glucocorticoid induction of high-affinity EGF receptors failed to induce detectable changes in the microclustering of EGF receptors but did result in a 50% increase in EGF-induced receptor phosphorylation in HeLa S/sub 3/ cell membranes at 4/sup 0/C. Thus, glucocorticoids increase high-affinity EGF binding sites, EGF-induced receptor phosphorylation, and cell growth.

  16. Initiated Chemical Vapor Deposition (iCVD) of Highly Cross-Linked Polymer Films for Advanced Lithium-Ion Battery Separators.

    PubMed

    Yoo, Youngmin; Kim, Byung Gon; Pak, Kwanyong; Han, Sung Jae; Song, Heon-Sik; Choi, Jang Wook; Im, Sung Gap

    2015-08-26

    We report an initiated chemical vapor deposition (iCVD) process to coat polyethylene (PE) separators in Li-ion batteries with a highly cross-linked, mechanically strong polymer, namely, polyhexavinyldisiloxane (pHVDS). The highly cross-linked but ultrathin pHVDS films can only be obtained by a vapor-phase process, because the pHVDS is insoluble in most solvents and thus infeasible with conventional solution-based methods. Moreover, even after the pHVDS coating, the initial porous structure of the separator is well preserved owing to the conformal vapor-phase deposition. The coating thickness is delicately controlled by deposition time to the level that the pore size decreases to below 7% compared to the original dimension. The pHVDS-coated PE shows substantially improved thermal stability and electrolyte wettability. After incubation at 140 °C for 30 min, the pHVDS-coated PE causes only a 12% areal shrinkage (versus 90% of the pristine separator). The superior wettability results in increased electrolyte uptake and ionic conductivity, leading to significantly improved rate performance. The current approach is applicable to a wide range of porous polymeric separators that suffer from thermal shrinkage and poor electrolyte wetting.

  17. Correlation of in Situ Oxazolidine Formation with Highly Synergistic Cytotoxicity and DNA Cross-Linking in Cancer Cells from Combinations of Doxorubicin and Formaldehyde.

    PubMed

    Barthel, Benjamin L; Mooz, Erin L; Wiener, Laura Elizabeth; Koch, Gary G; Koch, Tad H

    2016-03-10

    Anthracyclines are a class of antitumor compounds that are successful and widely used but suffer from cardiotoxicity and acquired tumor resistance. Formaldehyde interacts with anthracyclines to enhance antitumor efficacy, bypass resistance mechanisms, improve the therapeutic profile, and change the mechanism of action from a topoisomerase II poison to a DNA cross-linker. Contrary to current dogma, we show that both efficient DNA cross-linking and potent synergy in combination with formaldehyde correlate with the anthracycline's ability to form cyclic formaldehyde conjugates as oxazolidine moieties and that the cyclic conjugates are better cross-linking agents and cytotoxins than acyclic conjugates. We also provide evidence that suggests that the oxazolidine forms in situ, since cotreatment with doxorubicin and formaldehyde is highly cytotoxic to dox-resistant tumor cell lines, and that this benefit is absent in combinations of formaldehyde and epirubicin, which cannot form stable oxazolidines. These results have potential clinical implications in the active field of anthracycline prodrug design and development. PMID:26881291

  18. High Dielectric and Mechanical Properties Achieved in Cross-Linked PVDF/α-SiC Nanocomposites with Elevated Compatibility and Induced Polarization at the Interface.

    PubMed

    Feng, Yefeng; Miao, Bei; Gong, Honghong; Xie, Yunchuan; Wei, Xiaoyong; Zhang, Zhicheng

    2016-07-27

    Remarkably improved dielectric properties including high-k, low loss, and high breakdown strength combined with promising mechanical performance such as high flexibility, good heat, and chemical resistivity are hard to be achieved in high-k dielectric composites based on the current composite fabrication strategy. In this work, a family of high-k polymer nanocomposites has been fabricated from a facile suspension cast process followed by chemical cross-linking at elevated temperature. Internal double bonds bearing poly(vinylidene fluoride-chlorotrifluoroethylene) (P(VDF-CTFE-DB)) in total amorphous phase are employed as cross-linkable polymer matrix. α-SiC particles with a diameter of 500 nm are surface modified with 3-aminpropyltriethoxysilane (KH-550) as fillers for their comparable dielectric performance with PVDF polymer matrix, low conductivity, and high breakdown strength. The interface between SiC particles and PVDF matrix has been finely tailored, which leads to the significantly elevated dielectric constant from 10 to over 120 in SiC particles due to the strong induced polarization. As a result, a remarkably improved dielectric constant (ca. 70) has been observed in c-PVDF/m-SiC composites bearing 36 vol % SiC, which could be perfectly predicted by the effective medium approximation (EMA) model. The optimized interface and enhanced compatibility between two components are also responsible for the depressed conductivity and dielectric loss in the resultant composites. Chemical cross-linking constructed in the composites results in promising mechanical flexibility, good heat and chemical stability, and elevated tensile performance of the composites. Therefore, excellent dielectric and mechanical properties are finely balanced in the PVDF/α-SiC composites. This work might provide a facile and effective strategy to fabricate high-k dielectric composites with promising comprehensive performance. PMID:27377185

  19. High Dielectric and Mechanical Properties Achieved in Cross-Linked PVDF/α-SiC Nanocomposites with Elevated Compatibility and Induced Polarization at the Interface.

    PubMed

    Feng, Yefeng; Miao, Bei; Gong, Honghong; Xie, Yunchuan; Wei, Xiaoyong; Zhang, Zhicheng

    2016-07-27

    Remarkably improved dielectric properties including high-k, low loss, and high breakdown strength combined with promising mechanical performance such as high flexibility, good heat, and chemical resistivity are hard to be achieved in high-k dielectric composites based on the current composite fabrication strategy. In this work, a family of high-k polymer nanocomposites has been fabricated from a facile suspension cast process followed by chemical cross-linking at elevated temperature. Internal double bonds bearing poly(vinylidene fluoride-chlorotrifluoroethylene) (P(VDF-CTFE-DB)) in total amorphous phase are employed as cross-linkable polymer matrix. α-SiC particles with a diameter of 500 nm are surface modified with 3-aminpropyltriethoxysilane (KH-550) as fillers for their comparable dielectric performance with PVDF polymer matrix, low conductivity, and high breakdown strength. The interface between SiC particles and PVDF matrix has been finely tailored, which leads to the significantly elevated dielectric constant from 10 to over 120 in SiC particles due to the strong induced polarization. As a result, a remarkably improved dielectric constant (ca. 70) has been observed in c-PVDF/m-SiC composites bearing 36 vol % SiC, which could be perfectly predicted by the effective medium approximation (EMA) model. The optimized interface and enhanced compatibility between two components are also responsible for the depressed conductivity and dielectric loss in the resultant composites. Chemical cross-linking constructed in the composites results in promising mechanical flexibility, good heat and chemical stability, and elevated tensile performance of the composites. Therefore, excellent dielectric and mechanical properties are finely balanced in the PVDF/α-SiC composites. This work might provide a facile and effective strategy to fabricate high-k dielectric composites with promising comprehensive performance.

  20. Can Sequentially-irradiated and Annealed Highly Cross-linked Polyethylene Inserts Thinner than Eight-millimeters Be Utilized in Total Knee Arthroplasty?

    PubMed

    Sayeed, Siraj A; Jauregui, Julio J; Korduba, Laryssa A; Essner, Aaron; Harwin, Steven F; Delanois, Ronald E; Mont, Michael A

    2015-05-01

    The routine use of highly cross-linked ultra-high molecular weight polyethylene (UHMWPE) has remained controversial secondary to the possibility of decreased material properties when compared to conventional UHMWPE. The aim of the present study was to evaluate if thin, sequentially-irradiated, and annealed highly cross-linked UHMWPE tibial inserts would have improved wear properties, while maintaining mechanical integrity, compared to conventional UHMWPE during biomechanical testing under aligned and malaligned conditions. Polyethylene inserts (4.27 and 6.27 mm) manufactured from GUR 1020-UHMWPE were cyclically loaded to analyze for wear. All wear scars were visually examined after loading using scanning electron microscopy (SEM). Volume loss was plotted versus cycle count with linear regression analysis yielding wear rates. There was no statistical difference in wear between both thicknesses for all testing conditions. During aligned condition testing, the volumetric wear rate for sequentially-irradiated and annealed polyethylene thicknesses of 4.27 and 6.27 mm was 4.0 and 4.4 mm3/million cycles; and during malaligned conditions, it was 13.9 and 15.1 mm3/million cycles. For conventional polyethylene during aligned conditions, the volumetric wear rate was 33.0 and 22.8 mm3/million cycles; and during malaligned conditions it was 50.0 and 50.8 mm3/million cycles. By SEM evaluation, condylar wear surfaces for conventional and sequentially-irradiated and annealed polyethylene displayed surface ripples typical of adhesive wear. There were no observed visible differences between the wear scars for conventional compared to sequentially-irradiated and annealed polyethylene with no evidence of fatigue failure. This study demonstrated no differences between polyethylenes with thicknesses of 4.27 and 6.27 mm. This strengthens the conclusion that sequentially-irradiated and annealed highly cross-linked UHMWPE can be utilized in total knee arthroplasty. The successful wear

  1. Visual rehabilitation in low-moderate keratoconus: intracorneal ring segment implantation followed by same-day topography-guided photorefractive keratectomy and collagen cross linking

    PubMed Central

    Zeraid, Ferial M; Jawkhab, Asma A; Al-Tuwairqi, Waleed S; Osuagwu, Uchechukwu L

    2014-01-01

    AIM To present the results of same-day topography-guided photorefractive keratectomy (TG-PRK) and corneal collagen crosslinking (CXL) after previous intrastromal corneal ring segment (ISCR) implantation for keratoconus. METHODS An experimental clinical study on twenty-one eyes of 19 patients aged 27.1±6.6y (range 19-43y), with low to moderate keratoconus who were selected to undergo customized TG-PRK immediately followed by same-day CXL, 9mo after ISCR implantation in a university ophthalmology clinic. Refraction, uncorrected distance visual acuities (UDVA) and corrected distance visual acuities (CDVA), keratometry (K) values, central corneal thickness (CCT) and coma were assessed 3mo after TG-PRK and CXL. RESULTS After TG-PRK/CXL: the mean UDVA (logMAR) improved significantly from 0.66±0.41 to 0.20±0.25 (P<0.05); Kflat value decreased from: 48.44±3.66 D to 43.71±1.95 D; Ksteep value decreased from 45.61±2.40 D to 41.56±2.05 D; Kaverage also decreased from 47.00±2.66 D to 42.42±2.07 D (P<0.05 for all). The mean sphere and cylinder decreased significantly post-surgery from, -3.10±2.99 D to -0.11±0.93 D and from -3.68±1.53 to -1.11±0.75 D respectively, while the CDVA, CCT and coma showed no significant changes. Compared to post-ISCR, significant reductions (P<0.05 or all) in all K values, sphere and cylinder were observed after TG-PRK/CXL. CONCLUSION Same-day combined topography-guided PRK and corneal crosslinking following placement of ISCR is a safe and potentially effective option in treating low-moderate keratoconus. It significantly improves all visual acuity, reduced keratometry, sphere and astigmatism, but causes no change in central corneal thickness and coma. PMID:25349796

  2. Redox-Responsive, Core Cross-Linked Polyester Micelles

    PubMed Central

    Zhang, Zhonghai; Yin, Lichen; Tu, Chunlai; Song, Ziyuan; Zhang, Yanfeng; Xu, Yunxiang; Tong, Rong; Zhou, Qin; Ren, Jie; Cheng, Jianjun

    2013-01-01

    Monomethoxy poly(ethylene glycol)-b-poly(Tyr(alkynyl)-OCA), a biodegradable amphiphilic block copolymer, was synthesized by means of ring-opening polymerization of 5-(4-(prop-2-yn-1-yloxy)benzyl)-1,3-dioxolane-2,4-dione (Tyr(alkynyl)-OCA) and used to prepare core cross-linked polyester micelles via click chemistry. Core cross-linking not only improved the structural stability of the micelles but also allowed controlled release of cargo molecules in response to the reducing reagent. This new class of core cross-linked micelles can potentially be used in controlled release and drug delivery applications. PMID:23536920

  3. Cross-Linking Aromatic Polymers With Ionizing Radiation

    NASA Technical Reports Server (NTRS)

    Bell, Vernon L.; Havens, Stephen J.

    1987-01-01

    Resistance to heat and solvents increased. Certain aromatic polymers containing radiation-sensitive methylene groups cross-linked through methylene groups upon exposure to ionizing radiation. Cross-linked polymers resistant to most organic solvents and generally more resistant to high temperatures, with less tendency to creep under load. No significant embrittlement of parts fabricated from these polymers when degree of cross-linking, as controlled by irradiation dose, kept at moderate level.

  4. Long-Term Results of Total Hip Arthroplasty with 28-Millimeter Cobalt-Chromium Femoral Heads on Highly Cross-Linked Polyethylene in Patients 50 Years and Less.

    PubMed

    Stambough, Jeffrey B; Pashos, Gail; Bohnenkamp, Frank C; Maloney, William J; Martell, John M; Clohisy, John C

    2016-01-01

    Highly cross-linked polyethylene (HXLPE) is the most commonly used bearing surface in total hip arthroplasty (THA) because of its superior wear properties, but long-term results in young patients are limited. We report on the clinical outcome, radiographic wear patterns and survivorship of 72 patients ≤50 years old who had a 28-millimeter cobalt-chromium femoral head on HXLPE acetabular liner. Mean and median true linear wear rates at average ten-year follow-up were 0.0104 and 0.01 mm per year ± 0.07 mm. Mean and median two-dimensional volumetric wear rates were 12.79 mm(3) and 5.834 mm(3) per year ± 26.1mm(3) as determined by Martell analysis. As a result of the minimal wear profile, there was no evidence of radiographic osteolysis and no wear-related revisions.

  5. Highly cross-linked ultrahigh molecular weight polyethylene with improved fatigue resistance for total joint arthroplasty: recipient of the 2006 Hap Paul Award.

    PubMed

    Oral, Ebru; Malhi, Arnaz S; Wannomae, Keith K; Muratoglu, Orhun K

    2008-10-01

    Eliminating postirradiation melting and stabilizing the residual free radicals of radiation cross-linked ultrahigh molecular weight polyethylene (UHMWPE) with vitamin E resulted in improved fatigue crack propagation resistance without compromising wear resistance. We designed a cantilever postbending test to determine the bending fatigue resistance of alpha-tocopherol-doped, irradiated UHMWPE (alpha-TPE) in comparison to conventional UHMWPE. The bending fatigue behavior of alpha-TPE was comparable to conventional UHMWPE. Upon accelerated aging, the fatigue resistance of alpha-TPE was substantially better than that of conventional UHMWPE. alpha-TPE has shown improved wear and oxidation resistance, migration stability of vitamin E, and improved mechanical properties. The use of this material may be beneficial in total knee arthroplasty where its improved fatigue properties may be an advantage under high stresses.

  6. Long-Term Results of Total Hip Arthroplasty with 28-Millimeter Cobalt-Chromium Femoral Heads on Highly Cross-Linked Polyethylene in Patients 50 Years and Less.

    PubMed

    Stambough, Jeffrey B; Pashos, Gail; Bohnenkamp, Frank C; Maloney, William J; Martell, John M; Clohisy, John C

    2016-01-01

    Highly cross-linked polyethylene (HXLPE) is the most commonly used bearing surface in total hip arthroplasty (THA) because of its superior wear properties, but long-term results in young patients are limited. We report on the clinical outcome, radiographic wear patterns and survivorship of 72 patients ≤50 years old who had a 28-millimeter cobalt-chromium femoral head on HXLPE acetabular liner. Mean and median true linear wear rates at average ten-year follow-up were 0.0104 and 0.01 mm per year ± 0.07 mm. Mean and median two-dimensional volumetric wear rates were 12.79 mm(3) and 5.834 mm(3) per year ± 26.1mm(3) as determined by Martell analysis. As a result of the minimal wear profile, there was no evidence of radiographic osteolysis and no wear-related revisions. PMID:26260785

  7. Collagen cross-linking and resorption: effect of glutaraldehyde concentration.

    PubMed

    Roe, S C; Milthorpe, B K; Schindhelm, K

    1990-12-01

    Cross-linked collagen bioprostheses usually are designed to be inert and nonresorbable, resulting in fatigue and wear failure in high-stress environments. Eventual replacement of the implant, although minimizing strength loss during resorption, would result in a graft with reparative ability. Kangaroo tail tendon (KTT) partially cross-linked with glutaraldehyde (GA) was evaluated in vitro for resistance to bacterial collagenase digestion and in vivo for biocompatibility and resorbability in an intramuscular implant assay. Cross-linking was quantified by thermal denaturation studies. Incomplete cross-linking was achieved with concentrations of GA less than 0.1% (w/v). KTT cross-linked in greater than or equal to 0.05% GA were collagenase resistant being incompletely digested after 240 h. Cross-linking of KTT with low concentrations of GA resulted in partial collagenase resistance and slowed resorption. PMID:2126427

  8. The rates of wear of X3 highly cross-linked polyethylene at five years when coupled with a 36 mm diameter ceramic femoral head in young patients.

    PubMed

    Selvarajah, E; Hooper, G; Grabowski, K; Frampton, C; Woodfield, T B F; Inglis, G

    2015-11-01

    Polyethylene wear debris can cause osteolysis and the failure of total hip arthroplasty. We present the five-year wear rates of a highly cross-linked polyethylene (X3) bearing surface when used in conjunction with a 36 mm ceramic femoral head. This was a prospective study of a cohort of 100 THAs in 93 patients. Pain and activity scores were measured pre- and post-operatively. Femoral head penetration was measured at two months, one year, two years and at five years using validated edge-detecting software (PolyWare Auto). At a mean of 5.08 years (3.93 to 6.01), 85 hips in 78 patients were available for study. The mean age of these patients was 59.08 years (42 to 73, the mean age of males (n = 34) was 59.15 years, and females (n = 44) was 59.02 years). All patients had significant improvement in their functional scores (p < 0.001). The steady state two-dimensional linear wear rate was 0.109 mm/year. The steady state volumetric wear rate was 29.61 mm(3)/year. No significant correlation was found between rate of wear and age (p = 0.34), acetabular component size (p = 0.12) or clinical score (p = 0.74). Our study shows low steady state wear rates at five years in X3 highly cross-linked polyethylene in conjunction with a 36 mm ceramic femoral head. The linear wear rate was almost identical to the osteolysis threshold of 0.1 mm/year recommended in the literature.

  9. Interfacial Bioorthogonal Cross-Linking

    PubMed Central

    2015-01-01

    Described herein is interfacial bioorthogonal cross-linking, the use of bioorthogonal chemistry to create and pattern biomaterials through diffusion-controlled gelation at the liquid-gel interface. The basis is a rapid (k2 284000 M–1 s–1) reaction between strained trans-cyclooctene (TCO) and tetrazine (Tz) derivatives. Syringe delivery of Tz-functionalized hyaluronic acid (HA-Tz) to a bath of bis-TCO cross-linker instantly creates microspheres with a cross-linked shell through which bis-TCO diffuses freely to introduce further cross-linking at the interface. Tags can be introduced with 3D resolution without external triggers or templates. Water-filled hydrogel channels were prepared by simply reversing the order of addition. Prostate cancer cells encapsulated in the microspheres have 99% viability, proliferate readily, and form aggregated clusters. This process is projected to be useful in the fabrication of cell-instructive matrices for in vitro tissue models. PMID:25177528

  10. Can nature's design be improved upon? High strength, transparent nacre-like nanocomposites with double network of sacrificial cross links.

    PubMed

    Podsiadlo, Paul; Kaushik, Amit K; Shim, Bong Sup; Agarwal, Ashish; Tang, Zhiyong; Waas, Anthony M; Arruda, Ellen M; Kotov, Nicholas A

    2008-11-20

    The preparation of a high-strength and highly transparent nacre-like nanocomposite via layer-by-layer assembly technique from poly(vinyl alcohol) (PVA) and Na+-montmorillonite clay nanosheets is reported in this article. We show that a high density of weak bonding interactions between the polymer and the clay particles: hydrogen, dipole-induced dipole, and van der Waals undergoing break-reform deformations, can lead to high strength nanocomposites: sigmaUTS approximately 150 MPa and E' approximately 13 GPa. Further introduction of ionic bonds into the polymeric matrix creates a double network of sacrificial bonds which dramatically increases the mechanical properties: sigmaUTS approximately 320 MPa and E' approximately 60 GPa. PMID:18590319

  11. Cross linking molecular systems to form ultrathin dielectric layers

    NASA Astrophysics Data System (ADS)

    Feng, Danqin

    Dehydrogenation leads to cross linking of polymer or polymer like formation in very different systems: self-assembled monolayers and in closo -carboranes leading to the formation of semiconducting and dielectric boron carbide. We find evidence of intermolecular interactions for a self-assembled monolayer (SAM) formed from a large molecular adsorbate, [1,1';4',1"-terphenyl]-4,4"-dimethanethiol, from the dispersion of the molecular orbitals with changing the wave vector k and from the changes with temperature. With the formation self assembled molecular (SAM) layer, the molecular orbitals hybridize to electronic bands, with indications of significant band dispersion of the unoccupied molecular orbitals. Although organic adsorbates and thin films are generally regarded as "soft" materials, the effective Debye temperature, indicative of the dynamic motion of the lattice normal to the surface, can be very high, e.g. in the multilayer film formed from [1,1'-biphenyl]-4,4'-dimethanethiol (BPDMT). Depending on molecular orientation, the effective Debye temperature can be comparable to that of graphite due to the 'stiffness' of the benzene rings, but follows the expected Debye-Waller behavior for the core level photoemission intensities with temperature. This is not always the case. We find that a monomolecular film formed from [1,1';4',1"-terphenyl]-4,4"-dimethanethiol deviates from Debye-Waller temperature behavior and is likely caused by temperature dependent changes in molecular orientation. We also find evidence for the increase in dielectric character with polymerization (cross-linking) in spite of the decrease in the HOMO-LUMO gap upon irradiation of TPDMT. The changes in the HOMO-LUMO gap, with cross-linking, are roughly consistent with the band dispersion. The decomposition and cross-linking processes are also accompanied by changes in molecular orientation. The energetics of the three isomeric carborane cage compounds [ closo-1,2-orthocarborane, closo-1

  12. Highly Cross-Linked Epoxy Nanofiltration Membranes for the Separation of Organic Chemicals and Fish Oil Ethyl Esters.

    PubMed

    Gilmer, Chad M; Bowden, Ned B

    2016-09-14

    Membrane separations are highly desired for the chemical industry because they are inexpensive, avoid the use of heat, can be applied to the purification of a wide range of chemicals, and can be scaled to industrial levels. Separating chemicals with molecular weights between 100 and 300 g mol(-1) remains a significant challenge in the field of organic solvent nanofiltration (OSN) due to their similar sizes and rotational flexibility. In this work, we report the fabrication of poly(epoxy) membranes that show excellent selectivity of over 100:1 for chemicals in this range. The membranes are easily tuned to obtain different flux and selectivity by using interchangeable amine and epoxide monomers. These membranes were used to separate the important nutritional omega-3 fatty acid ethyl esters eicosapentaenoic ethyl ester (EPA-EE) and docosahexaenoic acid ethyl ester (DHA-EE) from each other, despite a small difference in molecular weight (26 g mol(-1)). This is the first example of a separation of EPA-EE and DHA-EE using a membrane process.

  13. Highly Cross-Linked Epoxy Nanofiltration Membranes for the Separation of Organic Chemicals and Fish Oil Ethyl Esters.

    PubMed

    Gilmer, Chad M; Bowden, Ned B

    2016-09-14

    Membrane separations are highly desired for the chemical industry because they are inexpensive, avoid the use of heat, can be applied to the purification of a wide range of chemicals, and can be scaled to industrial levels. Separating chemicals with molecular weights between 100 and 300 g mol(-1) remains a significant challenge in the field of organic solvent nanofiltration (OSN) due to their similar sizes and rotational flexibility. In this work, we report the fabrication of poly(epoxy) membranes that show excellent selectivity of over 100:1 for chemicals in this range. The membranes are easily tuned to obtain different flux and selectivity by using interchangeable amine and epoxide monomers. These membranes were used to separate the important nutritional omega-3 fatty acid ethyl esters eicosapentaenoic ethyl ester (EPA-EE) and docosahexaenoic acid ethyl ester (DHA-EE) from each other, despite a small difference in molecular weight (26 g mol(-1)). This is the first example of a separation of EPA-EE and DHA-EE using a membrane process. PMID:27552234

  14. Cross-linking of Thy-1 glycoproteins or high-affinity IgE receptors induces mast cell activation via different mechanisms.

    PubMed Central

    Dráberová, L; Dráber, P

    1993-01-01

    Rat peritoneal and pleural mast cells and rat basophilic leukemia cells, RBL-2H3, have been previously shown to be activated by Thy-1-specific monoclonal antibodies (mAb). In the present study we investigated the mechanism of Thy-1-mediated activation and compared it with activation induced by cross-linking of the high-affinity IgE receptor. Binding of an IgG Thy-1 x 1-specific mAb, MRCOX7 (OX7), to RBL-2H3 cells and mast cells, and activation of RBL-2H3 by the OX7 were abrogated by pretreatment of the cells with phosphatidyl inositol-specific phospholipase C (PI-PLC). The F(ab')2 fragment of OX7, in contrast to the Fab' fragment, induced cell activation as well as intact OX7 mAb. Cells sensitized with IgE exhibited an increased responsiveness to anti-Thy-1 antibodies suggesting formation of functional complexes of IgE receptor/IgE/Thy-1/anti-Thy-1. Pretreatment of RBL-2H3 cells with cholera toxin potentiated activation induced by IgE+antigen (Ag) and IgE+OX7, but had no effect on activation induced by OX7 antibody alone. Similarly, dexamethasone had no effect on OX7-induced activation but inhibited IgE+Ag- and IgE+OX7-induced activation. Analysis of phosphotyrosine-containing proteins in RBL-2H3 cell lysates revealed that IgE+Ag and IgE+OX7 induced a marked increase in tyrosine phosphorylation of several proteins that were not tyrosine phosphorylated in cells exposed to OX7 mAb alone. Similar results were obtained when RBL-2H3-derived cells, expressing transfected mouse Thy-1.2, were activated with Thy-1.2-specific IgM antibody. The combined data suggest that Thy-1-specific antibodies activate cells by a mechanism that is different from activation induced by cross-linking of high-affinity IgE receptor. Images Figure 5 Figure 6 PMID:7902332

  15. Cross-linked branching nanohybrid polymer electrolyte with monodispersed TiO2 nanoparticles for high performance lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Ma, Cheng; Zhang, Jinfang; Xu, Mingquan; Xia, Qingbing; Liu, Jiatu; Zhao, Shuai; Chen, Libao; Pan, Anqiang; Ivey, Douglas G.; Wei, Weifeng

    2016-06-01

    Nanohybrid polymer electrolytes (NHPE) with ceramic particles have attracted significant attention owing to their improvement in electrochemical performance. However, particle aggregation and weak nanoparticle/polymer matrix interaction restrict their further application in lithium-ion batteries (LIBs). We demonstrate a facile in-situ polymerization/crystallization method to synthesize a homogeneous TiO2-grafted NHPE with a cross-linked branching structure, comprised of ion-conducting poly(ethylene glycol) methyl ether methacrylate (PEGMEM) and non-polar stearyl methacrylate (SMA). This technique is different from existing methods of blending functionalized ceramic particles into the polymer matrix. Highly monodispersed TiO2 nanocrystals enhance the effective interfacial interactions between particles and polymer matrix, which suppress the crystallization of ethylene oxide (EO) groups and facilitate forming continuously interconnected ion-conducting channels. Moreover, an increased dissociation degree of Li salt can also be achieved. The TiO2-grafted NHPE exhibits superior electrochemical properties with an ionic conductivity of 1.1 × 10-4 S cm-1 at 30 °C, a high lithium ion transference number and excellent interfacial compatibility with the lithium electrode. In particular, a lithium-ion battery based on TiO2-grafted NHPE demonstrates good C-rate performance, as well as excellent cycling stability with an initial discharge capacity of 153.5 mAh g-1 and a capacity retention of 96% after 300 cycles at 1 C (80 °C).

  16. Cross-linked enzyme aggregates of Mung bean epoxide hydrolases: a highly active, stable and recyclable biocatalyst for asymmetric hydrolysis of epoxides.

    PubMed

    Yu, Chun-Yang; Li, Xiao-Feng; Lou, Wen-Yong; Zong, Min-Hua

    2013-06-20

    A highly active and stable cross-linked enzyme aggregates (CLEAs) of epoxide hydrolases (EHs) from Mung bean, which plays a crucial role in synthesis of valuable enantiopure diols, were successfully prepared and characterized. Under the optimum preparation conditions, the activity recovery of CLEAs recorded 92%. The CLEAs were more efficient than the free enzyme in catalyzing asymmetric hydrolysis of styrene oxide to (R)-1-phenyl-1,2-ethanediol in organic solvent-containing biphasic system. The biocatalytic reaction performed in n-hexane/buffer biphasic system had a clearly faster initial reaction rate, much higher product yield and product e.e. value than that in aqueous medium. Moreover, the optimal volume ratio of n-hexane to buffer, reaction temperature, buffer pH value and substrate concentration for the enzymatic hydrolysis were found to be 1:1, 40 °C, 7.5 and 30 mM, respectively, under which the initial reaction rate, product yield and product e.e. value were 13.26 mM/h, 46% and 93.5%, respectively. The CLEAs retained more than 50% of their initial activity after 8 batches of re-use in phosphate buffer and maintained 53% of their original activity after 8 reaction cycle in biphasic system. The efficient biocatalytic process with CLEAs proved to be feasible on a 250-mL preparative scale, exhibiting great potential for asymmetric synthesis of chiral diols.

  17. Intra- and Inter-Molecular Cross-Linking of Peptide Ions in the Gas Phase: Reagents and Conditions

    NASA Astrophysics Data System (ADS)

    Mentinova, Marija; McLuckey, Scott A.

    2011-05-01

    Intra-molecular and inter-molecular cross-linking of protonated polypeptide ions in the gas phase via ion/ion reactions have been demonstrated using N-hydroxysulfosuccinimide (sulfo-NHS)- based reagent anions. The initial step in the ion/ion reaction involves the formation of a long-lived complex between the peptide and reagent, which is a prerequisite for the covalent bioconjugation chemistry. The sulfonate groups on the NHS rings of the homo-bifunctional cross-linking reagents have high affinity for the protonated sites in the peptide and, therefore, facilitate the long-lived complex formation. In addition to the formation of a long-lived chemical complex, intra-molecular cross-linking also requires two unprotonated primary amine sites within a molecule where the covalent modification takes place. Alternatively, inter-molecular cross-linking demands the availability of one neutral primary amine site in each of the two peptides that are being cross-linked. Nucleophilic displacement of two sulfo-NHS groups by the amine functionalities in the peptide is a signature of the covalent cross-linking chemistry in the gas phase. Upon removal of the two sulfo-NHS groups, two amide bonds are formed between an unprotonated, primary amine group of a lysine side chain in the peptide and the carboxyl group in the reagent.

  18. Vitamin-E blended and infused highly cross-linked polyethylene for total hip arthroplasty: a comparison of three-dimensional crystalline morphology and strain recovery behavior.

    PubMed

    Takahashi, Yasuhito; Masaoka, Toshinori; Yamamoto, Kengo; Shishido, Takaaki; Tateiwa, Toshiyuki; Kubo, Kosuke; Pezzotti, Giuseppe

    2014-08-01

    Vitamin-E (α-tocopherol) is now recognized worldwide as one of the most promising antioxidant agents for highly cross-linked polyethylene (HXLPE) used in total joint replacements. In the contemporary manufacturing processes, two alternative methods are currently accepted to incorporate this antioxidant into polyethylene microstructure: (i) blending vitamin-E before consolidation and radiation crosslinking; (ii) infusing vitamin-E via a homogenizing heat treatment after radiation crosslinking. However, the effects of these technological differences on crystalline morphology and mechanical behavior of polyethylene remains to be fully elucidated. The aim of this paper is to quantitatively evaluate the microstructural differences of commercially available vitamin-E blended and infused HXLPE liner (referred to as Liner BL and IF, respectively). For this purpose, confocal/polarized Raman spectroscopy was used to systematically examine the three-phase percentages (amorphous (αa), crystalline (αc), and intermediate third phase (αt)), preferential molecular orientation (θp), and degree of crystalline anisotropy (〈P2(cosβ)〉). Additionally, we compared the time-dependent deformation of Liner BL and IF as obtained by uniaxial stress relaxation tests followed by strain recovery. Distinctive features of the near-surface αc, θp, and〈P2(cosβ)〉 were clearly observed within the first 35μm in the two studied liners. Despite the equivalent level of the bulk αc and 〈P2(cosβ)〉, higher restoring force against a uniaxial strain was observed in Liner IF, which reflects a higher crosslink density in its amorphous phase. On the other hands, a higher degree of surface orientational randomness was detected in Liner BL, which is structurally more beneficial for minimizing the in-vivo occurrence of strain-softening-assisted wear.

  19. 2500 high-quality genomes reveal that the biogeochemical cycles of C, N, S and H are cross-linked by metabolic handoffs in the terrestrial subsurface

    NASA Astrophysics Data System (ADS)

    Anantharaman, K.; Brown, C. T.; Hug, L. A.; Sharon, I.; Castelle, C. J.; Shelton, A.; Bonet, B.; Probst, A. J.; Thomas, B. C.; Singh, A.; Wilkins, M.; Williams, K. H.; Tringe, S. G.; Beller, H. R.; Brodie, E.; Hubbard, S. S.; Banfield, J. F.

    2015-12-01

    Microorganisms drive the transformations of carbon compounds in the terrestrial subsurface, a key reservoir of carbon on earth, and impact other linked biogeochemical cycles. Our current knowledge of the microbial ecology in this environment is primarily based on 16S rRNA gene sequences that paint a biased picture of microbial community composition and provide no reliable information on microbial metabolism. Consequently, little is known about the identity and metabolic roles of the uncultivated microbial majority in the subsurface. In turn, this lack of understanding of the microbial processes that impact the turnover of carbon in the subsurface has restricted the scope and ability of biogeochemical models to capture key aspects of the carbon cycle. In this study, we used a culture-independent, genome-resolved metagenomic approach to decipher the metabolic capabilities of microorganisms in an aquifer adjacent to the Colorado River, near Rifle, CO, USA. We sequenced groundwater and sediment samples collected across fifteen different geochemical regimes. Sequence assembly, binning and manual curation resulted in the recovery of 2,542 high-quality genomes, 27 of which are complete. These genomes represent 1,300 non-redundant organisms comprising both abundant and rare community members. Phylogenetic analyses involving ribosomal proteins and 16S rRNA genes revealed the presence of up to 34 new phyla that were hitherto unknown. Less than 11% of all genomes belonged to the 4 most commonly represented phyla that constitute 93% of all currently available genomes. Genome-specific analyses of metabolic potential revealed the co-occurrence of important functional traits such as carbon fixation, nitrogen fixation and use of electron donors and electron acceptors. Finally, we predict that multiple organisms are often required to complete redox pathways through a complex network of metabolic handoffs that extensively cross-link subsurface biogeochemical cycles.

  20. Electrospinning formaldehyde cross-linked zein solutions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In order to develop zein fibers with improved physical properties and solvent resistance, formaldehyde was used as the cross-linking reagent before spinning. The cross-linking reaction was carried out in either acetic acid or ethanolic-HCl where the amount of cross-linking reagent was between 1 and...

  1. Spectral Library Searching To Identify Cross-Linked Peptides.

    PubMed

    Schweppe, Devin K; Chavez, Juan D; Navare, Arti T; Wu, Xia; Ruiz, Bianca; Eng, Jimmy K; Lam, Henry; Bruce, James E

    2016-05-01

    Methods harnessing protein cross-linking and mass spectrometry (XL-MS) offer high-throughput means to identify protein-protein interactions (PPIs) and structural interfaces of protein complexes. Yet, specialized data dependent methods and search algorithms are often required to confidently assign peptide identifications to spectra. To improve the efficiency of matching high confidence spectra, we developed a spectral library based approach to search cross-linked peptide data derived from Protein Interaction Reporter (PIR) methods using the spectral library search algorithm, SpectraST. Spectral library matching of cross-linked peptide data from query spectra increased the absolute number of confident peptide relationships matched to spectra and thereby the number of PPIs identified. By matching library spectra from bona fide, previously established PIR-cross-linked peptide relationships, spectral library searching reduces the need for continued, complex mass spectrometric methods to identify peptide relationships, increases coverage of relationship identifications, and improves the accessibility of XL-MS technologies.

  2. Proton conducting sulfonated poly (imide-benzimidazole) with tunable density of covalent/ionic cross-linking for fuel cell membranes

    NASA Astrophysics Data System (ADS)

    Yue, Zhouying; Cai, Yang-Ben; Xu, Shiai

    2015-07-01

    Ionic cross-linked sulfonated polyimides containing bis-benzimidazole rings have been prepared from 1,4,5,8-naphthalenetetracarboxylic dianhydride (NTDA), 6,6‧-bis[2-(4-aminophenyl)benzimidazole] (BAPBI) and 3,3‧-bis(4-sulfophenoxy)- benzidine (BSPOB). A new cross-linker, 4,4‧-bibromomethenyl diphenyl ether, is used to induce covalent cross-linking between halogen and imidazole groups in SPIBI chains via a facile thermally activated reaction. The resulted covalent and ionic cross-linked membranes show an improved resistance to hydrolytic attack in deionized water at 80 °C (more than two months) and free radical attack in Fenton's solution (more than 690 min) as compared to non-cross-linked SPIBIs (less than two days and 270 min, respectively). Cross-linking also results in a reduction in proton conductivity due to the blockage of a hydrophilic channel. However, all the prepared CBr-ySPIBI-x membranes show a proton conductivity higher than 10-2 S cm-1 under hydrous condition. This could be attributed to the fact that more cross-linking sites are contained in each repeating unit, which ensures enough cross-linking degree at high sulfonation level. All these results suggest that CBr-ySPIBI-x membranes have a great potential for applications in the proton exchange membrane fuel cells.

  3. Thermogelling and Chemoselectively Cross-Linked Hydrogels with Controlled Mechanical Properties and Degradation Behavior.

    PubMed

    Boere, Kristel W M; van den Dikkenberg, Joep; Gao, Yuan; Visser, Jetze; Hennink, Wim E; Vermonden, Tina

    2015-09-14

    Chemoselectively cross-linked hydrogels have recently gained increasing attention for the development of novel, injectable biomaterials given their limited side reactions. In this study, we compared the properties of hydrogels obtained by native chemical ligation (NCL) and its recently described variation termed oxo-ester-mediated native chemical ligation (OMNCL) in combination with temperature-induced physical gelation. Triblock copolymers consisting of cysteine functionalities, thermoresponsive N-isopropylacrylamide (NIPAAm) units and degradable moieties were mixed with functionalized poly(ethylene glycol) (PEG) cross-linkers. Thioester or N-hydroxysuccinimide (NHS) functionalities attached to PEG reacted with cysteine residues of the triblock copolymers via either an NCL or OMNCL pathway. The combined physical and chemical cross-linking resulted in rapid network formation and mechanically strong hydrogels. Stiffness of the hydrogels was highest for thermogels that were covalently linked via OMNCL. Specifically, the storage modulus after 4 h reached a value of 26 kPa, which was over a 100 times higher than hydrogels formed by solely thermal physical interactions. Endothelial cells showed high cell viability of 98 ± 2% in the presence of OMNCL cross-linked hydrogels after 16 h of incubation, in contrast to a low cell viability (13 ± 7%) for hydrogels obtained by NCL cross-linking. Lysozyme was loaded in the gels and after 2 days more than 90% was released, indicating that the cross-linking reaction was indeed chemoselective as the protein was not covalently grafted to the hydrogel network. Moreover, the degradation rates of these hydrogels under physiological conditions could be tailored from 12 days up to 6 months by incorporation of a monomer containing a hydrolyzable lactone ring in the thermosensitive triblock copolymer. These results demonstrate a high tunability of mechanical properties and degradation rates of these in situ forming hydrogels that could be

  4. Large Scale Chemical Cross-linking Mass Spectrometry Perspectives.

    PubMed

    Zybailov, Boris L; Glazko, Galina V; Jaiswal, Mihir; Raney, Kevin D

    2013-02-01

    The spectacular heterogeneity of a complex protein mixture from biological samples becomes even more difficult to tackle when one's attention is shifted towards different protein complex topologies, transient interactions, or localization of PPIs. Meticulous protein-by-protein affinity pull-downs and yeast-two-hybrid screens are the two approaches currently used to decipher proteome-wide interaction networks. Another method is to employ chemical cross-linking, which gives not only identities of interactors, but could also provide information on the sites of interactions and interaction interfaces. Despite significant advances in mass spectrometry instrumentation over the last decade, mapping Protein-Protein Interactions (PPIs) using chemical cross-linking remains time consuming and requires substantial expertise, even in the simplest of systems. While robust methodologies and software exist for the analysis of binary PPIs and also for the single protein structure refinement using cross-linking-derived constraints, undertaking a proteome-wide cross-linking study is highly complex. Difficulties include i) identifying cross-linkers of the right length and selectivity that could capture interactions of interest; ii) enrichment of the cross-linked species; iii) identification and validation of the cross-linked peptides and cross-linked sites. In this review we examine existing literature aimed at the large-scale protein cross-linking and discuss possible paths for improvement. We also discuss short-length cross-linkers of broad specificity such as formaldehyde and diazirine-based photo-cross-linkers. These cross-linkers could potentially capture many types of interactions, without strict requirement for a particular amino-acid to be present at a given protein-protein interface. How these shortlength, broad specificity cross-linkers be applied to proteome-wide studies? We will suggest specific advances in methodology, instrumentation and software that are needed to make

  5. Thermo-cross-linked elastomeric opal films.

    PubMed

    Schäfer, Christian G; Viel, Benjamin; Hellmann, Goetz P; Rehahn, Matthias; Gallei, Markus

    2013-11-13

    An efficient and convenient thermal cross-linking protocol in elastomeric opal films leading to fully reversible and stretch-tunable optical materials is reported. In this study, functional monodisperse core-shell particles were arranged in a face-centered cubic (fcc) lattice structure by a melt flow process. A problem up to now was that un-cross-linked films could not be drawn fully reversibly and hence lost their optical and mechanical performance. After thermal cross-linking reaction, the obtained films can be drawn like rubbers and the color of their Bragg reflection changes because of controlled lattice deformation, which makes the cross-linked films mechanochromic sensors. Different techniques were developed for the cross-linking of the films a posteriori, after their preparation in the melt flow process. A photo-cross-linking approach was reported earlier. This study now deals with a very efficient thermo-cross-linking approach based on the chemistry of hydroxyl- and isocyanate-functionalities that form urethane bridges. The focus of the present work is the mechanism and efficiency of this cross-linking process for elastomeric opal films with excellent mechanical and optical properties. PMID:24134322

  6. DC conduction and breakdown characteristics of Al2O3/cross-linked polyethylene nanocomposites for high voltage direct current transmission cable insulation

    NASA Astrophysics Data System (ADS)

    Park, Yong-Jun; Kwon, Jung-Hun; Sim, Jae-Yong; Hwang, Ju-Na; Seo, Cheong-Won; Kim, Ji-Ho; Lim, Kee-Joe

    2014-08-01

    We have discussed a cross-linked polyethylene (XLPE) nanocomposite insulating material that is able to DC voltage applications. Nanocomposites, which are composed in polymer matrix mixed with nano-fillers, have received considerable attention because of their potential benefits as dielectrics. The nano-sized alumina oxide (Al2O3)/XLPE nanocomposite was prepared, and three kinds of test, such as DC breakdown, DC polarity reversal breakdown, and volume resistivity were performed. By the addition of nano-sized Al2O3 filler, both the DC breakdown strength and the volume resistivity of XLPE were increased. A little homogeneous space charge was observed in Al2O3/XLPE nanocomposite material in the vicinity of electrode through the polarity reversal breakdown test. From these results, it is thought that the addition of Al2O3 nano-filler is effective for the improvement of DC electrical insulating properties of XLPE.

  7. Porous Cross-Linked Polyimide Networks

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B. (Inventor); Guo, Haiquan (Inventor)

    2015-01-01

    Porous cross-linked polyimide networks are provided. The networks comprise an anhydride end-capped polyamic acid oligomer. The oligomer (i) comprises a repeating unit of a dianhydride and a diamine and terminal anhydride groups, (ii) has an average degree of polymerization of 10 to 50, (iii) has been cross-linked via a cross-linking agent, comprising three or more amine groups, at a balanced stoichiometry of the amine groups to the terminal anhydride groups, and (iv) has been chemically imidized to yield the porous cross-linked polyimide network. Also provided are porous cross-linked polyimide aerogels comprising a cross-linked and imidized anhydride end-capped polyamic acid oligomer, wherein the oligomer comprises a repeating unit of a dianhydride and a diamine, and the aerogel has a density of 0.10 to 0.333 g/cm.sup.3 and a Young's modulus of 1.7 to 102 MPa. Also provided are thin films comprising aerogels, and methods of making porous cross-linked polyimide networks.

  8. Tailoring ultraresins based on the cross-linking of polyethylene imines. Comparative investigation of the chemical composition, the swelling, the mobility, the chemical accessibility, and the performance in solid-phase synthesis of very high loaded resins.

    PubMed

    Barth, Michael; Rademann, Jörg

    2004-01-01

    Ultraresins have been prepared from polyethyleneimines and cross-linking molecules and have been provided with various degrees of cross-linking. The total nitrogen loading and the loading with secondary and with tertiary amines have been determined in all products. Nitrogen loadings of the novel resins were up to 15 mmol/g, reactive secondary amines up to 13.8 mmol/g. In addition to the exceptionally high loading, the novel resins displayed efficient swelling volumes in polar and nonpolar solvents. The mobility of resin-bound species as determined by EPR-spectroscopy, depending on the amount of cross-linker, indicated good flexibility and reactivity of this resin type. The novel, high-loaded resins have been investigated subsequently in solid-phase synthesis. The Rink amide linker and two different hydroxy linkers (hydroxyacetamide, HMPB) have been attached to the resin. Despite the high loadings, the secondary amines were easily accessible and could be functionalized exhaustively. Reactivity of the linker-coupled resins was found to be closely related to the resin composition. Increased resin cross-linking led to reduced swelling, reduced mobility, and reduced reactivity in the synthesis of a medium-sized model peptide. As the result of the systematic investigation of structure-property relations in Ultraresins, a support material was identified that combined high reactivity and a mobility in the range of the extremely flexible Tentagel supports. In the optimized Ultraresin, >95% of all available secondary nitrogens could be coupled with Rink linker or with the small 2-hydroxyacetamide anchor, resulting in loadings from 2.7 to 6.8 mmol/g, respectively. A resin with an attached HMPB linker and spacer delivered analytically pure peptides in solid-phase synthesis, fully exploiting the exceptionally high loadings.

  9. The effect of cross-link distributions in axially-ordered, cross-linked networks

    PubMed Central

    Bennett, C. Brad; Kruczek, James; Rabson, D. A.; Matthews, W. Garrett; Pandit, Sagar A.

    2013-01-01

    Cross-linking between the constituent chains of biopolymers has a marked effect on their materials properties. In certain of these materials, such as fibrillar collagen, increases in cross-linking lead to an increase in the melting temperature. Fibrillar collagen is an axially-ordered network of cross-linked polymer chains exhibiting a broadened denaturation transition, which has been explained in terms of the successive denaturation with temperature of multiple species. We model axially-ordered cross-linked materials as stiff chains with distinct arrangements of cross-link-forming sites. Simulations suggest that systems composed of chains with identical arrangements of cross-link-forming sites exhibit critical behavior. In contrast, systems composed of non-identical chains undergo a crossover. This model suggests that the arrangement of cross-link-forming sites may contribute to the broadening of the denaturation transition in fibrillar collagen. PMID:23751928

  10. Distributed Analysis of Hip Implants Using Six National and Regional Registries: Comparing Metal-on-Metal with Metal-on-Highly Cross-Linked Polyethylene Bearings in Cementless Total Hip Arthroplasty in Young Patients

    PubMed Central

    Furnes, Ove; Paxton, Elizabeth; Cafri, Guy; Graves, Stephen; Bordini, Barbara; Comfort, Thomas; Rivas, Moises Coll; Banerjee, Samprit; Sedrakyan, Art

    2014-01-01

    Background: The regulation of medical devices has attracted controversy recently because of problems related to metal-on-metal hip implants. There is growing evidence that metal-on-metal implants fail early and cause local and systemic complications. However, the failure associated with metal-on-metal head size is not consistently documented and needs to be communicated to patients and surgeons. The purpose of this study is to compare implant survival of metal on metal with that of metal on highly cross-linked polyethylene. Methods: Using a distributed health data network, primary total hip arthroplasties were identified from six national and regional total joint arthroplasty registries (2001 to 2010). Inclusion criteria were patient age of forty-five to sixty-four years, cementless total hip arthroplasties, primary osteoarthritis diagnosis, and exclusion of the well-known outlier implant ASR (articular surface replacement). The primary outcome was revision for any reason. A meta-analysis of survival probabilities was performed with use of a fixed-effects model. Metal-on-metal implants with a large head size of >36 mm were compared with metal-on-highly cross-linked polyethylene implants. Results: Metal-on-metal implants with a large head size of >36 mm were used in 5172 hips and metal-on-highly cross-linked polyethylene implants were used in 14,372 hips. Metal-on-metal total hip replacements with a large head size of >36 mm had an increased risk of revision compared with metal-on-highly cross-linked polyethylene total hip replacements with more than two years of follow-up, with no difference during the first two years after implantation. The results of the hazard ratios (and 95% confidence intervals) from the multivariable model at various durations of follow-up were 0.95 (0.74 to 1.23) at zero to two years (p = 0.698), 1.42 (1.16 to 1.75) at more than two years to four years (p = 0.001), 1.78 (1.45 to 2.19) at more than four years to six years (p < 0.001), and 2

  11. Cross-linking multiwall carbon nanotubes using PFPA to build robust, flexible and highly aligned large-scale sheets and yarns.

    PubMed

    Inoue, Yoku; Nakamura, Kazumichi; Miyasaka, Yuta; Nakano, Takayuki; Kletetschka, Gunther

    2016-03-18

    Multi-walled carbon nanotube (CNT) structures, including unidirectionally aligned sheets and spun yarns, were fabricated by direct dry-spinning methods from spinnable CNT arrays. We improved the mechanical properties of the CNT structures. CNTs were tailored in sheets and yarns using perfluorophenyl azide (PFPA) as a binding agent. The azide group of PFPA bonds to graphene crystal surfaces under UV radiation exposed for 1 h. For the CNT sheet, Young's modulus increased from 1.6 to 32.9 GPa and tensile strength increased from 35.9 MPa to 144.5 MPa. For the CNT yarns Young's modulus increased from 29.5 to 78.0 GPa and tensile strength increased from 639.1 to 675.6 MPa. With this treatment, the CNT sheets became more robust and more flexible materials. Since cross-linking of CNTs by PFPA is a simple and rapid process, it is suitable for fabrication of enhanced CNT materials. PMID:26871413

  12. Cross-linking multiwall carbon nanotubes using PFPA to build robust, flexible and highly aligned large-scale sheets and yarns

    NASA Astrophysics Data System (ADS)

    Inoue, Yoku; Nakamura, Kazumichi; Miyasaka, Yuta; Nakano, Takayuki; Kletetschka, Gunther

    2016-03-01

    Multi-walled carbon nanotube (CNT) structures, including unidirectionally aligned sheets and spun yarns, were fabricated by direct dry-spinning methods from spinnable CNT arrays. We improved the mechanical properties of the CNT structures. CNTs were tailored in sheets and yarns using perfluorophenyl azide (PFPA) as a binding agent. The azide group of PFPA bonds to graphene crystal surfaces under UV radiation exposed for 1 h. For the CNT sheet, Young’s modulus increased from 1.6 to 32.9 GPa and tensile strength increased from 35.9 MPa to 144.5 MPa. For the CNT yarns Young’s modulus increased from 29.5 to 78.0 GPa and tensile strength increased from 639.1 to 675.6 MPa. With this treatment, the CNT sheets became more robust and more flexible materials. Since cross-linking of CNTs by PFPA is a simple and rapid process, it is suitable for fabrication of enhanced CNT materials.

  13. High-Speed Ring Bus

    NASA Technical Reports Server (NTRS)

    Wysocky, Terry; Kopf, Edward, Jr.; Katanyoutananti, Sunant; Steiner, Carl; Balian, Harry

    2010-01-01

    The high-speed ring bus at the Jet Propulsion Laboratory (JPL) allows for future growth trends in spacecraft seen with future scientific missions. This innovation constitutes an enhancement of the 1393 bus as documented in the Institute of Electrical and Electronics Engineers (IEEE) 1393-1999 standard for a spaceborne fiber-optic data bus. It allows for high-bandwidth and time synchronization of all nodes on the ring. The JPL ring bus allows for interconnection of active units with autonomous operation and increased fault handling at high bandwidths. It minimizes the flight software interface with an intelligent physical layer design that has few states to manage as well as simplified testability. The design will soon be documented in the AS-1393 standard (Serial Hi-Rel Ring Network for Aerospace Applications). The framework is designed for "Class A" spacecraft operation and provides redundant data paths. It is based on "fault containment regions" and "redundant functional regions (RFR)" and has a method for allocating cables that completely supports the redundancy in spacecraft design, allowing for a complete RFR to fail. This design reduces the mass of the bus by incorporating both the Control Unit and the Data Unit in the same hardware. The standard uses ATM (asynchronous transfer mode) packets, standardized by ITU-T, ANSI, ETSI, and the ATM Forum. The IEEE-1393 standard uses the UNI form of the packet and provides no protection for the data portion of the cell. The JPL design adds optional formatting to this data portion. This design extends fault protection beyond that of the interconnect. This includes adding protection to the data portion that is contained within the Bus Interface Units (BIUs) and by adding to the signal interface between the Data Host and the JPL 1393 Ring Bus. Data transfer on the ring bus does not involve a master or initiator. Following bus protocol, any BIU may transmit data on the ring whenever it has data received from its host. There

  14. Wear performance of neat and vitamin E blended highly cross-linked PE under severe conditions: The combined effect of accelerated ageing and third body particles during wear test.

    PubMed

    Affatato, Saverio; De Mattia, Jonathan Salvatore; Bracco, Pierangiola; Pavoni, Eleonora; Taddei, Paola

    2016-12-01

    The objective of this study is to evaluate the effects of third-body particles on the in vitro wear behaviour of three different sets of polyethylene acetabular cups after prolonged testing in a hip simulator and accelerated ageing. Vitamin E-blended, cross-linked polyethylene (XLPE_VE), cross-linked polyethylene (XLPE) and conventional polyethylene (STD_PE) acetabular cups were simulator tested for two million cycles under severe conditions (i.e. by adding third-body particles to the bovine calf serum lubricant). Micro-Fourier Transform Infrared and micro-Raman spectroscopic analyses, differential scanning calorimetry, and crosslink density measurements were used to characterize the samples at a molecular level. The STD_PE cups had twice mass loss than the XLPE_VE components and four times than the XLPE samples; statistically significant differences were found between the mass losses of the three sets of cups. The observed wear trend was justified on the basis of the differences in cross-link density among the samples (XLPE>XLPE_VE>STD_PE). FTIR crystallinity profiles, bulk DSC crystallinity and surface micro-Raman crystallinity seemed to have a similar behaviour upon testing: all of them (as well as the all-trans and ortho-trans contents) revealed the most significant changes in XLPE and XLPE_VE samples. The more severe third-body wear testing conditions determined more noticeable changes in all spectroscopic markers with respect to previous tests. Unexpectedly, traces of bulk oxidation were found in both STD_PE (unirradiated) and XLPE (remelting-stabilized), which were expected to be stable to oxidation; on the contrary, XLPE_VE demonstrated a high oxidative stability in the present, highly demanding conditions.

  15. Cross-linking of fibrinogen and fibrin by fibrin-stablizing factor (factor XIIIa).

    PubMed

    Kanaide, H; Shainoff, J R

    1975-04-01

    Factor XIIIa catalyzed intermolecular cross-linking of fibrinogen at initial rates that varied in direct (first order) proportion to the fibrinogen concentration, which differed from the well known zero order relationship in fibrin cross-linking. Preferential cross-linking of gamma-chains occurred with both substrates. The differences in rates and order of reaction were attributed mainly to effect of self-alignment of the gamma-chains in fibrin which enabled the cross-linking enzyme to interact with paired chains as a single rather than two independent entities. Studies on mixtures of fibrinogen and fibrin indicated factor XIIIa had near equal affinities for the two substrates. At low concentrations with which cross-linking of fibrinogen proceeded sluggishly compared to fibrin, fibrinogen inhibited stabilization of fibrin clots by competitively partitioning factor XIIIa away from the fribin. Additional inhibition arose from cross-linking of fibrin in soluble combination with fibrinogen in mixtures containing fibrinogen in large excess over fibrin. The observations demonstrate ways in which fibrinogen normally helps to suppress both polymerization and cross-linking of small amounts of fibrin produced within the circulation. At very high concentrations above 30 mg. per milliliter, fibrinogen underwent cross-linking at faster initial rates than the cross-linking of fibrin. Rapid cross-linking of concentrated fibrogen raises the possibility that filtration enrichment may be a factor contributing to abnormal formation of the highly insoluble fibrinogen deposits occurring in atheromatous tissue.

  16. Proton-conducting membranes with high selectivity from cross-linked poly(vinyl alcohol) and poly(vinyl pyrrolidone) for direct methanol fuel cell applications

    NASA Astrophysics Data System (ADS)

    Huang, Y. F.; Chuang, L. C.; Kannan, A. M.; Lin, C. W.

    A series of hydrocarbon membranes consisting of poly(vinyl alcohol) (PVA), sulfosuccinic acid (SSA) and poly(vinyl pyrrolidone) (PVP) were synthesized and characterized for direct methanol fuel cell (DMFC) applications. Fourier transform infrared (FT-IR) spectra confirm a semi-interpenetrating (SIPN) structure based on a cross-linked PVA/SSA network and penetrating PVP molecular chains. A SIPN membrane with 20% PVP (SIPN-20) exhibits a proton conductivity value comparable to Nafion ® 115 (1.0 × 10 -2 S cm -1 for SIPN-20 and 1.4 × 10 -2 S cm -1 for Nafion ® 115). Specifically, SIPN membranes reveal excellent methanol resistance for both sorption and transport properties. The methanol self-diffusion coefficient through a SIPN-20 membrane conducted by pulsed field-gradient nuclear magnetic resonance (PFG-NMR) technology measures 7.67 × 10 -7 cm 2 s -1, which is about one order of magnitude lower than that of Nafion ® 115. The methanol permeability of SIPN-20 membrane is 5.57 × 10 -8 cm 2 s -1, which is about one and a half order of magnitude lower than Nafion ® 115. The methanol transport behaviors of SIPN-20 and Nafion ® 115 membranes correlate well with their sorption characteristics. Methanol uptake in a SIPN-20 membrane is only half that of Nafion ® 115. An extended study shows that a membrane-electrode assembly (MEA) made of SIPN-20 membrane exhibits a power density comparable to Nafion ® 115 with a significantly higher open current voltage. Accordingly, SIPN membranes with a suitable PVP content are considered good methanol barriers, and suitable for DMFC applications.

  17. Betanin reduces the accumulation and cross-links of collagen in high-fructose-fed rat heart through inhibiting non-enzymatic glycation.

    PubMed

    Han, Junyan; Tan, Chang; Wang, Yiheng; Yang, Shaobin; Tan, Dehong

    2015-02-01

    We attempted to determine whether betanin (from natural pigments) that has antioxidant properties would be protective against fructose-induced diabetic cardiac fibrosis in Sprague-Dawley rats. Fructose water solution (30%) was accessed freely, and betanin (25 and 100 mg/kg/d) was administered by intra-gastric gavage continuously for 60 d. Rats were sacrificed after overnight fast. The rat blood and left ventricle were collected. In vitro antiglycation assay in bovine serum albumin/fructose system was also performed. In rats treated only with fructose, levels of plasma markers: glucose, insulin, HOMA and glycated hemoglobin rised, left ventricle collagen accumulated and cross-linked, profibrotic factor-transforming growth factor (TGF)-β1 and connective tissue growth factor (CTGF) protein expression increased, and soluble collagen decreased, compared with those in normal rats, showing fructose induces diabetic cardiac fibrosis. Treatment with betanin antagonized the changes of these parameters, demonstrating the antifibrotic role of betanin in the selected diabetic models. In further mechanistic study, betanin decreased protein glycation indicated by the decreased levels of protein glycation reactive intermediate (methylglyoxal), advanced glycation end product (N(ε)-(carboxymethyl) lysine) and receptors for advanced glycation end products (AGEs), antagonized oxidative stress and nuclear factor-κB activation elicited by fructose feeding, suggesting inhibition of glycation, oxidative stress and nuclear factor-κB activation may be involved in the antifibrotic mechanisms. Betanin also showed anitglycative effect in BSA/fructose system, which supported that anitglycation was involved in betanin's protective roles in vivo. Taken together, the potential for using betanin as an auxillary therapy for diabetic cardiomyopathy deserves to be explored further.

  18. FTIR Spectroscopic Studies on Cross Linking of SU-8 Photoresist

    NASA Astrophysics Data System (ADS)

    Kalaiselvi, S. M. P.; Tan, T. L.; Rawat, R. S.; Lee, P.; Heussler, S. P.; Breese, M. B. H.

    2013-11-01

    The usage of chemically-amplified, negative tone SU-8 photoresist is numerous, spanning industrial, scientific and medical fields. Hence, in this study, some preliminary studies were conducted to understand the dosage and heat treatment requirements of the SU-8 photoresist essential for pattern generation using X-ray lithography. In this work, using Synchrotron as the X-ray source, SU-8 photoresist was characterized for X-ray lithography in terms of its process parameters such as X-ray exposure dose, post exposure bake (PEB) time and temperature for various photoresist thicknesses which is considered worthwhile in view of applications of SU-8 for the fabrication of very high aspect ratio micro structures. The process parameters were varied and the resultant cross linking of the molecular chains of the photoresist was accurately monitored using a Fourier Transform Infra-Red (FTIR) spectrometer and the results are discussed. The infrared absorption peak at 914 cm-1 in the spectrum of the SU-8 photoresist was found to be a useful indicator for the completion of cross linking in the SU-8 photoresist. Results show that the cross linking of the SU-8 photoresist is at a higher rate from 0 J/cm3 to 30 J/cm3 after which the peak almost saturates regardless of the PEB time. It is a good evidence for the validation of dosage requirement of SU-8 photoresist for effective completion of cross linking, which in turn is a requirement for efficient fabrication of micro and nano structures. An analogous behavior was also observed between the extent of cross linking and the PEB time and temperature. The rate of cross linking declines after a certain period of PEB time regardless of PEB temperature. The obtained results also show a definite relation between variation of the absorbance area of the peak at 914 cm-1 and the X-ray exposure dose.

  19. Cross-linking reconsidered: binding and cross-linking fields and the cellular response.

    PubMed Central

    Sulzer, B; De Boer, R J; Perelson, A S

    1996-01-01

    We analyze a model for the reversible cross-linking of cell surface receptors by a collection of bivalent ligands with different affinities for the receptor as would be found in a polyclonal anti-receptor serum. We assume that the amount of cross-linking determines, via a monotonic function, the rate at which cells become activated and divide. In addition to the density of receptors on the cell surface, two quantities, the binding field and the cross-linking field, are needed to characterize the cross-linking curve, i.e., the equilibrium concentration of cross-linked receptors plotted as a function of the total ligand site concentration. The binding field is the sum of all ligand site concentrations weighted by their respective binding affinities, and the cross-linking field is the sum of all ligand site concentrations weighted by the product of their respective binding and cross-linking affinity and the total receptor density. Assuming that the cross-linking affinity decreases if the binding affinity decreases, we find that the height of the cross-linking curve decreases, its width narrows, and its center shifts to higher ligand site concentrations as the affinities decrease. Moreover, when we consider cross-linking-induced proliferation, we find that there is a minimum cross-linking affinity that must be surpassed before a clone can expand. We also show that under many circumstances a polyclonal antiserum would be more likely than a monoclonal antibody to lead to cross-linking-induced proliferation. Images FIGURE 1 FIGURE 2 FIGURE 5 PMID:8785275

  20. Effect of radiation cross-linking on the abrasive wear behaviour of polyethylenes

    NASA Astrophysics Data System (ADS)

    Gul, Rizwan M.; Khan, Tahir I.

    2014-06-01

    This study explores the differences in the dry abrasive wear behavior of different polyethylenes, and compares the effect of radiation cross-linking on the wear behavior. Four different types of polyethylenes: LDPE, LLDPE, HDPE and UHMWPE were studied. Cross-linking was carried out by high energy electron beam with radiation dose of 200 kGy. The results show that in unirradiated state UHMWPE has excellent wear resistance, with HDPE showing comparable wear properties; both LDPE and LLDPE exhibit high wear rate. Cross-linking improves wear rate of LDPE and UHMWPE, however, the wear rate of HDPE and LLDPE increases with cross-linking.

  1. Cross-linked structure of network evolution

    SciTech Connect

    Bassett, Danielle S.; Wymbs, Nicholas F.; Grafton, Scott T.; Porter, Mason A.; Mucha, Peter J.

    2014-03-15

    We study the temporal co-variation of network co-evolution via the cross-link structure of networks, for which we take advantage of the formalism of hypergraphs to map cross-link structures back to network nodes. We investigate two sets of temporal network data in detail. In a network of coupled nonlinear oscillators, hyperedges that consist of network edges with temporally co-varying weights uncover the driving co-evolution patterns of edge weight dynamics both within and between oscillator communities. In the human brain, networks that represent temporal changes in brain activity during learning exhibit early co-evolution that then settles down with practice. Subsequent decreases in hyperedge size are consistent with emergence of an autonomous subgraph whose dynamics no longer depends on other parts of the network. Our results on real and synthetic networks give a poignant demonstration of the ability of cross-link structure to uncover unexpected co-evolution attributes in both real and synthetic dynamical systems. This, in turn, illustrates the utility of analyzing cross-links for investigating the structure of temporal networks.

  2. pH-induced inversion of water-in-oil emulsions to oil-in-water high internal phase emulsions (HIPEs) using core cross-linked star (CCS) polymer as interfacial stabilizer.

    PubMed

    Chen, Qijing; Deng, Xiaoyong; An, Zesheng

    2014-06-01

    A pH-responsive core cross-linked star (CCS) polymer containing poly(N,N-dimethylaminoethyl methacrylate) (PDMAEMA) arms was used as an interfacial stabilizer for emulsions containing toluene (80 v%) and water (20 v%). In the pH range of 12.1-9.3, ordinary water-in-oil emulsions were formed. Intermediate multiple emulsions of oil-in-water-in-oil and water-in-oil-in-water were formed at pH 8.6 and 7.5, respectively. Further lowering the pH resulted in the formation of gelled high internal phase emulsions of oil-in-water type in the pH range of 6.4-0.6. The emulsion behavior was correlated with interfacial tension, conductivity and configuration of the CCS polymer at different pH.

  3. Cross-Linking Studies of Lysozyme Nucleation

    NASA Technical Reports Server (NTRS)

    Forsythe, Elizabeth; Pusey, Marc

    2000-01-01

    Tetragonal chicken egg white crystals consist of 4(sub 3) helices running in alternating directions, the helix rows having a two fold symmetry with each other. The unit cell consists of one complete tetrameric turn from each of two adjacent helices (an octamer). PBC analysis indicates that the helix intermolecular bonds are the strongest in the crystal, therefore likely formed first. AFM analysis of the (110) surface shows only complete helices, no half steps or bisected helices being found, while AFM line scans to measure the growth step increments show that they are multiples of the 4(sub 3) helix tetramer dimensions. This supports our thesis that the growth units are in fact multiples of the four molecule 4(sub 3) helix unit, the "average" growth unit size for the (110) face being an octamer (two turns about the helix) and the (101) growth unit averaging about the size of a hexamer. In an effort to better understand the species involved in the crystal nucleation and growth process, we have initiated an experimental program to study the species formed in solution compared to what is found in the crystal through covalent cross-linking studies. These experiments use the heterobifunctional cross-linking agent aminoethyl-4-azidonitroanaline (AEANA). An aliphatic amine at one end is covalently attached to the protein by a carbodiimide-mediated reaction, and a photo reactive group at the other can be used to initiate crosslinking. Modifications to the parent structure can be used to alter the distance between the two reactive groups and thus the cross-linking agents "reach". In practice, the cross-linking agent is first coupled to the asp101 side chain through the amine group. Asp101 lies within the active site cleft, and previous work with fluorescent probes had shown that derivatives at this site still crystallize in the tetragonal space group. This was also found to be the case with the AEANA derivative, which gave red tetragonal crystals. The protein now has a

  4. Model selection for athermal cross-linked fiber networks.

    PubMed

    Shahsavari, A; Picu, R C

    2012-07-01

    Athermal random fiber networks are usually modeled by representing each fiber as a truss, a Euler-Bernoulli or a Timoshenko beam, and, in the case of cross-linked networks, each cross-link as a pinned, rotating, or welded joint. In this work we study the effect of these various modeling options on the dependence of the overall network stiffness on system parameters. We conclude that Timoshenko beams can be used for the entire range of density and beam stiffness parameters, while the Euler-Bernoulli model can be used only at relatively low network densities. In the high density-high bending stiffness range, strain energy is stored predominantly in the axial and shear deformation modes, while in the other extreme range of parameters, the energy is stored in the bending mode. The effect of the model size on the network stiffness is also discussed. PMID:23005468

  5. Development of a novel cross-linking strategy for fast and accurate identification of cross-linked peptides of protein complexes.

    PubMed

    Kao, Athit; Chiu, Chi-li; Vellucci, Danielle; Yang, Yingying; Patel, Vishal R; Guan, Shenheng; Randall, Arlo; Baldi, Pierre; Rychnovsky, Scott D; Huang, Lan

    2011-01-01

    Knowledge of elaborate structures of protein complexes is fundamental for understanding their functions and regulations. Although cross-linking coupled with mass spectrometry (MS) has been presented as a feasible strategy for structural elucidation of large multisubunit protein complexes, this method has proven challenging because of technical difficulties in unambiguous identification of cross-linked peptides and determination of cross-linked sites by MS analysis. In this work, we developed a novel cross-linking strategy using a newly designed MS-cleavable cross-linker, disuccinimidyl sulfoxide (DSSO). DSSO contains two symmetric collision-induced dissociation (CID)-cleavable sites that allow effective identification of DSSO-cross-linked peptides based on their distinct fragmentation patterns unique to cross-linking types (i.e. interlink, intralink, and dead end). The CID-induced separation of interlinked peptides in MS/MS permits MS(3) analysis of single peptide chain fragment ions with defined modifications (due to DSSO remnants) for easy interpretation and unambiguous identification using existing database searching tools. Integration of data analyses from three generated data sets (MS, MS/MS, and MS(3)) allows high confidence identification of DSSO cross-linked peptides. The efficacy of the newly developed DSSO-based cross-linking strategy was demonstrated using model peptides and proteins. In addition, this method was successfully used for structural characterization of the yeast 20 S proteasome complex. In total, 13 non-redundant interlinked peptides of the 20 S proteasome were identified, representing the first application of an MS-cleavable cross-linker for the characterization of a multisubunit protein complex. Given its effectiveness and simplicity, this cross-linking strategy can find a broad range of applications in elucidating the structural topology of proteins and protein complexes.

  6. Complications of Corneal Collagen Cross-Linking

    PubMed Central

    Dhawan, Shikha; Rao, Kavita; Natrajan, Sundaram

    2011-01-01

    Cross-linking of corneal collagen (CXL) is a promising approach for the treatment of keratoconus and secondary ectasia. Several long-term and short-term complications of CXL have been studied and documented. The possibility of a secondary infection after the procedure exists because the patient is subjected to epithelial debridement and the application of a soft contact lens. Formation of temporary corneal haze, permanent scars, endothelial damage, treatment failure, sterile infiltrates, and herpes reactivation are the other reported complications of this procedure. Cross-linking is a low-invasive procedure with low complication and failure rate but it may have direct or primary complications due to incorrect technique application or incorrect patient's inclusion and indirect or secondary complications related to therapeutic soft contact lens, patient's poor hygiene, and undiagnosed concomitant ocular surface diseases. PMID:22254130

  7. Positive tone cross-linked resists based on photoacid inhibition of cross linking

    NASA Astrophysics Data System (ADS)

    Lawson, Richard A.; Chun, Jun Sung; Neisser, Mark; Tolbert, Laren M.; Henderson, Clifford L.

    2014-03-01

    A resist imaging design that utilizes photoacid inhibition of cationic polymerization and cross-linking during a postexposure bake step has been studied. The key to the design approach is the use of two different polymerization catalysts/initiators: (1) a photoacid produced from a photoacid generator (PAG) upon exposure of the resist that can result in polymerization and cross-linking of the resist matrix and (2) a thermal cross-linking catalyst (TCC) designed to thermally catalyze epoxide-phenol cross-linking. The TCC can be chosen from a variety of compounds such as triphenylphosphine (TPP) or imidazole. When only one of these catalysts (e.g TPP or photoacid) is present in an epoxide and phenol containing resist matrix, it will individually catalyze cross-linking. When they are present together, they effectively quench one another and little to no cross-linking occurs. This approach can be used to switch the tone of a resist from negative (photoacid catalyzed) to positive (TCC catalyzed and photoacid inhibited). The effect of the ratio of TCC:PAG was examined and the optimal ratio for positive tone behavior was determined. Resist contrast can be modified by optimization of epoxide:phenol ratio in the formulation. Dual tone behavior with positive tone at low dose and negative tone at higher doses can be observed in certain formulation conditions. Initial EUV patterning shows poor results, but the source of the poor imaging is not yet understood.

  8. Collagen cross-linking in thin corneas

    PubMed Central

    Padmanabhan, Prema; Dave, Abhishek

    2013-01-01

    Collagen cross-linking (CXL) has become the standard of care for progressive keratoconus, after numerous clinical studies have established its efficacy and safety in suitably selected eyes. The standard protocol is applicable in eyes which have a minimum corneal thickness of 400 μm after epithelial debridement. This prerequisite was stipulated to protect the corneal endothelium and intraocular tissues from the deleterious effect of ultraviolet-A (UVA) radiation. However, patients with keratoconus often present with corneal thickness of less than 400 μm and could have otherwise benefited from this procedure. A few modifications of the standard procedure have been suggested to benefit these patients without a compromise in safety. Transepithelial cross-linking, pachymetry-guided epithelial debridement before cross-linking, and the use of hypoosmolar riboflavin are some of the techniques that have been attempted. Although clinical data is limited at the present time, these techniques are worth considering in patients with thin corneas. Further studies are needed to scientifically establish their efficacy and safety. PMID:23925328

  9. Development of a 3'-amino linker with high conjugation activity and its application to conveniently cross-link blunt ends of a duplex.

    PubMed

    Kowata, Keiko; Kojima, Naoshi; Komatsu, Yasuo

    2016-05-01

    The 2-aminoethyl carbamate linker (ssH linker) exhibits high activity in modifying the 5'-termini of oligonucleotides; however, the ssH linker is not appropriate for 3'-terminal modification because it undergoes intramolecular trans-acylation under heat-aqueous ammonia conditions. We developed an N-(2-aminoethyl)carbamate linker (revH linker), in which the carbamate is oriented in the reverse direction relative to that in 2-aminoethyl carbamate. The revH linker was tolerant to heat-alkaline conditions and retained its high reactivity in conjugation with exogenous molecules. The 3'-revH linker was efficiently linked with the 5'-ssH linker at the termini of complementary double strands with a bifunctional molecule, producing a synthetic loop structure. An anti-microRNA oligonucleotide (AMO) was prepared from the chemical ligation of three-stranded 2'-O-methyl RNAs, and the AMO with two alkyl loops exhibited high inhibition activity toward miRNA function. The revH linker is not only useful for 3'-terminal modification of oligonucleotides but also expands the utility range in combination with the 5'-ssH linker.

  10. Cross-linked hybrid nanofiltration membrane with antibiofouling properties and self-assembled layered morphology.

    PubMed

    Singh, Ajay K; Prakash, S; Kulshrestha, Vaibhav; Shahi, Vinod K

    2012-03-01

    A new siloxane monomer, 3-(3-(diethoxy(2-(5-(4-(10-ethoxy-4-hydroxy-2,2-dimethyl-11-oxa-2-ammonio-6-aza-10-silatridecan-10-yl)phenyl)-1,3,4-oxadi azol-2-ylthio)ethyl)silyl)propylamino)-2-hydroxy-N,N,N-trimethylpropan-1-aminium chloride (OA), was synthesized by reported 3-((4-(5-(2-((3-aminopropyl) diethoxysilyl)ethylthio)-1,3,4-oxadiazol-2-yl)phenyl) diethoxysilyl)propan-1-amine (APDSMO) and glycidyltrimethylammonium chloride (GDTMAC) by epoxide ring-opening reaction. OA-poly(vinyl alcohol) (PVA) hybrid antibiofouling nanofilter (NF) membranes were prepared by acid-catalyzed sol-gel followed by formal cross-linking. Membranes showed wormlike arrangement and self-assembled layered morphology with varying OA content. Hybrid NF membrane, especially OA-6, showed low surface roughness, high hydrophilic nature, low biofouling, high cross-linking density, thermal and mechanical stablility, solvent- and chlorine-tolerant nature, along with good permeability and salt rejection. Prepared OA-6 hybrid NF membrane can be used efficiently for desalting and purification of water with about 2.0 g/L salt content (groundwater in major part of India). The described method provides novel route for producing antibiofouling membranes of diversified applications. PMID:22360398

  11. Effect of Plasma Treatment and Cross-Linking on the Over Voltage Positive Temperature Coefficient of High Density Polyethylene/carbon Black/magnesium Hydroxide Nano Composites

    NASA Astrophysics Data System (ADS)

    Huang, C. Y.; Tsai, C. S.

    2008-08-01

    The Argon (Ar) plasma pretreated high-density polyethylene (PHDPE) was blended with the nano-degree conductive carbon black (CB) and magnesium hydroxide (Mg(OH)2) to formed the over-voltage positive temperature coefficient (PTC) composite. Effect of the CB content, plasma treatment time, power of plasma, initiator (dicumyl peroxide, DCP), and dosage of 60Co Y-ray irradiation on PTC behaviors of composites were studied. The results showed that the CB dispersion could be increased with increasing the amount free radicals of PHDPE and then not only the room-temperature volume resistivity of composite decreased, but also the PTC intensity of composite increased. The best plasma treatment condition was 20W, 1min. As the initiator was added into PHDPE composites and passed the 60Co Y-ray radiation, the negative temperature coefficient (NTC) effect of composites was eliminated, the PTC intensity of composite markedly increased and composite passes over-voltage resistance test.

  12. Preliminary In Vitro Assessment of Stem Cell Compatibility with Cross-Linked Poly(ε-caprolactone urethane) Scaffolds Designed through High Internal Phase Emulsions

    PubMed Central

    Changotade, Sylvie; Radu Bostan, Gabriela; Consalus, Anne; Poirier, Florence; Peltzer, Juliette; Lataillade, Jean-Jacques; Lutomski, Didier; Rohman, Géraldine

    2015-01-01

    By using a high internal phase emulsion process, elastomeric poly(ε-caprolactone urethane) (PCLU) scaffolds were designed with pores size ranging from below 150 μm to 1800 μm and a porosity of 86% making them suitable for bone tissue engineering applications. Moreover, the pores appeared to be excellently interconnected, promoting cellularization and future bone ingrowth. This study evaluated the in vitro cytotoxicity of the PCLU scaffolds towards human mesenchymal stem cells (hMSCs) through the evaluation of cell viability and metabolic activity during extract test and indirect contact test at the beginning of the scaffold lifetime. Both tests demonstrated that PCLU scaffolds did not induce any cytotoxic response. Finally, direct interaction of hMSCs and PCLU scaffolds showed that PCLU scaffolds were suitable for supporting the hMSCs adhesion and that the cells were well spread over the pore walls. We conclude that PCLU scaffolds may be a good candidate for bone tissue regeneration applications using hMSCs. PMID:26161094

  13. Characterization of the Enzymatic Activity of the Actin Cross-Linking Domain from the Vibrio cholerae MARTXVc Toxin

    PubMed Central

    Kudryashov, Dmitri S.; Cordero, Christina L.; Reisler, Emil; Fullner Satchell, Karla J.

    2008-01-01

    Vibrio cholerae is a Gram-negative bacterial pathogen that exports enterotoxins which alter host cells through a number of mechanisms resulting in diarrheal disease. Among the secreted toxins is the multifunctional, autoprocessing RTX toxin (MARTXVc), which disrupts actin cytoskeleton by covalently cross-linking actin monomers into oligomers. The region of the toxin responsible for cross-linking activity is the actin cross-linking domain (ACD). In this study, we demonstrate unambiguously that ACD utilizes G- and not F-actin as a substrate for the cross-linking reaction and hydrolyzes one molecule of ATP per cross-linking event. Furthermore, major actin binding proteins that regulate actin cytoskeleton in vivo do not block the cross-linking reaction in vitro. Cofilin inhibits the cross-linking of G- and F-actin at high mole ratio to actin, but accelerates F-actin cross-linking at low mole ratios. DNase I blocks completely the cross-linking of actin, likely due to steric hindrance with one of the cross-linking sites on actin. In the context of the holotoxin, the inhibition of Rho by the Rho-inactivating domain of MARTXVc (Sheahan, K.L., Satchell, K.J.F. 2007 Cellular Microbiology 9:1324-1335) would accelerate F-actin depolymerization and provide G-actin, alone or in complex with actin binding proteins, for cross-linking by ACD, ultimately leading to the observed rapid cell rounding. PMID:17951576

  14. Synchrotron Small-Angle X-ray Scattering Study of Cross-Linked Polymeric Micelles.

    PubMed

    Kim, Hyun-Chul; Jin, Kyeong Sik; Lee, Se Guen; Kim, Eunjoo; Lee, Sung Jun; Jeong, Sang Won; Lee, Seung Woo; Kim, Kwang-Woo

    2016-06-01

    Polymeric micelles of methoxypoly(ethylene glycol)-b-poly(lactide) containing lysine units (mPEG-PLA-Lys4) were cross-linked by reacting of lysine moieties with a bifunctional bis(N-hydroxy-succinimide ester). The micelles were characterized in aqueous solution using dynamic light scattering, transmission electron microscopy, and synchrotron small-angle X-ray scattering. The mPEG-PLA-Lys4 was synthesized through the ring-opening polymerization of N6-carbobenzyloxy-L-lysine N-carboxyanhydride with amine-terminated mPEG-PLA and subsequent deprotection. The polymeric micelles showed enhanced micelle stability after cross-linking, which was confirmed by adding sodium dodecyl sulfate as a destabilizing agent. The average diameters measured via dynamic light scattering were 19.1 nm and 29.2 nm for non-cross-linked polymeric micelles (NCPMs) and cross-linked polymeric micelles (CPMs), respectively. The transmission electron microscopy images showed that the size of the polymeric micelles increased slightly due to cross-linking, which was in good agreement with the DLS measurements. The overall structures and internal structural changes of NCPMs and CPMs in aqueous solution were studied in detail using synchrotron X-ray scattering method. According to the structural parameters of X-ray scattering analysis, CPMs with a more densely packed core structure were formed by reacting bifunctional cross-linking agents with lysine amino groups located in the innermost core of the polymeric micelles. PMID:27427731

  15. Homogeneous UVA system for corneal cross-linking treatment

    NASA Astrophysics Data System (ADS)

    Ayres Pereira, Fernando R.; Stefani, Mario A.; Otoboni, José A.; Richter, Eduardo H.; Ventura, Liliane

    2010-02-01

    The treatment of keratoconus and corneal ulcers by collagen cross-linking using ultraviolet type A irradiation, combined with photo-sensitizer Riboflavin (vitamin B2), is a promising technique. The standard protocol suggests instilling Riboflavin in the pre-scratched cornea every 5min for 30min, during the UVA irradiation of the cornea at 3mW/cm2 for 30 min. This process leads to an increase of the biomechanical strength of the cornea, stopping the progression, or sometimes, even reversing Keratoconus. The collagen cross-linking can be achieved by many methods, but the utilization of UVA light, for this purpose, is ideal because of its possibility of a homogeneous treatment leading to an equal result along the treated area. We have developed a system, to be clinically used for treatment of unhealthy corneas using the cross-linking technique, which consists of an UVA emitting delivery device controlled by a closed loop system with high homogeneity. The system is tunable and delivers 3-5 mW/cm2, at 365nm, for three spots (6mm, 8mm and 10mm in diameter). The electronics close loop presents 1% of precision, leading to an overall error, after the calibration, of less than 10% and approximately 96% of homogeneity.

  16. A Study into the Collision-induced Dissociation (CID) Behavior of Cross-Linked Peptides*

    PubMed Central

    Giese, Sven H.; Fischer, Lutz; Rappsilber, Juri

    2016-01-01

    Cross-linking/mass spectrometry resolves protein–protein interactions or protein folds by help of distance constraints. Cross-linkers with specific properties such as isotope-labeled or collision-induced dissociation (CID)-cleavable cross-linkers are in frequent use to simplify the identification of cross-linked peptides. Here, we analyzed the mass spectrometric behavior of 910 unique cross-linked peptides in high-resolution MS1 and MS2 from published data and validate the observation by a ninefold larger set from currently unpublished data to explore if detailed understanding of their fragmentation behavior would allow computational delivery of information that otherwise would be obtained via isotope labels or CID cleavage of cross-linkers. Isotope-labeled cross-linkers reveal cross-linked and linear fragments in fragmentation spectra. We show that fragment mass and charge alone provide this information, alleviating the need for isotope-labeling for this purpose. Isotope-labeled cross-linkers also indicate cross-linker-containing, albeit not specifically cross-linked, peptides in MS1. We observed that acquisition can be guided to better than twofold enrich cross-linked peptides with minimal losses based on peptide mass and charge alone. By help of CID-cleavable cross-linkers, individual spectra with only linear fragments can be recorded for each peptide in a cross-link. We show that cross-linked fragments of ordinary cross-linked peptides can be linearized computationally and that a simplified subspectrum can be extracted that is enriched in information on one of the two linked peptides. This allows identifying candidates for this peptide in a simplified database search as we propose in a search strategy here. We conclude that the specific behavior of cross-linked peptides in mass spectrometers can be exploited to relax the requirements on cross-linkers. PMID:26719564

  17. Poly(arlyene ether sulfone) based semi-interpenetrating polymer network membranes containing cross-linked poly(vinyl phosphonic acid) chains for fuel cell applications at high temperature and low humidity conditions

    NASA Astrophysics Data System (ADS)

    Kim, Kihyun; Heo, Pilwon; Ko, Taeyun; Kim, Ki-hyun; Kim, Sung-Kon; Pak, Chanho; Lee, Jong-Chan

    2015-10-01

    Semi-interpenetrating polymer network (semi-IPN) membranes are prepared by in-situ casting and thermal-initiated radical polymerization of vinyl phosphonic acid (VPA) and bis(2-(methacryloyloxy)ethyl) phosphate (BMAEP) in N,N-dimethylacetamide solutions of sulfonated poly(arylene ether sulfone) (SPAES). The incorporation of VPA units into the SPAES membranes improves proton conductivity especially at high temperature and low humidity conditions. In addition the cross-linker, BMAEP, prevents the decrease of the mechanical and chemical stabilities by the aliphatic linear poly(vinyl phosphonic acid) chains in the semi-IPN membranes, and furthermore the phosphonic acid group in BMAEP can prevent the decrease of the proton conductivity by the formation of cross-linked structures. Therefore, the resulting semi-IPN membranes show high proton conductivities up to 15 mS cm-1 at 120 °C and 40% RH. The fuel cell performance (187 mW cm-2 at 120 °C and 40% RH) of membrane-electrode assembly (MEA) from the semi-IPN membrane is found to be superior to that (145 mW cm-2 at 120 °C and 40% RH) of MEA from the SPAES membrane. The durability test result at the operating conditions indicates that the semi-IPN membrane is electrochemically very stable maintaining the low hydrogen cross-over and high power densities.

  18. Determination of protein conformation by isotopically labelled cross-linking and dedicated software

    NASA Astrophysics Data System (ADS)

    Nielsen, Tina; Thaysen-Andersen, Morten; Larsen, Nanna; Jørgensen, Flemming S.; Houen, Gunnar; Højrup, Peter

    2007-12-01

    Chemical cross-linking in conjunction with mass spectrometry (MS) can be used for sensitive and rapid investigation of the three-dimensional structure of proteins at low resolution. However, the resulting data are very complex, and on the bioinformatic side, there still exists an urgent need for improving computer software for (semi-) automated cross-linking data analysis. In this study, we have developed dedicated software for rapid and confident identification and validation of cross-linked species using an isotopic labelled cross-linker approach in combination with MS. Deuterated (+4 Da) and non-deuterated (+0 Da) bis(sulfosuccinimidyl)suberate, BS3, was used as homobifunctional cross-linker to tag the cross-linked regions. Peptides generated from proteolysis were separated using high performance liquid chromatography, and peptide mass fingerprinting was obtained for the individual fractions using matrix-assisted laser-desorption ionisation time-of-flight (MALDI TOF) MS. The resulting peptide mass lists were combined and transferred to the program, ProteinXXX, which generated the theoretical mass values of all combinations of cross-linked peptides and dead-end cross-links and compared this to the obtained mass lists. In addition, screening for 4 Da-separated signals aided the identification of potential cross-linked species. Sequence information of these candidates was then obtained using MALDI TOF TOF. The cross-linked peptides could then be validated based on the match of the fragmentation pattern and the theoretical values produced by ProteinXXX. This semi-automated interpretation provided a high analysis speed of cross-linking data, with efficient and confident identification of cross-linked species. Four experiments using different conditions showed a high degree of reproducibility as only 1 and 2 cross-links out of 36 identified was not observed in two experiments. The method was tested using human placenta calreticulin (CRT). Based on the identified cross-links

  19. Contraction of cross-linked actomyosin bundles

    NASA Astrophysics Data System (ADS)

    Yoshinaga, Natsuhiko; Marcq, Philippe

    2012-08-01

    Cross-linked actomyosin bundles retract when severed in vivo by laser ablation, or when isolated from the cell and micromanipulated in vitro in the presence of ATP. We identify the timescale for contraction as a viscoelastic time τ, where the viscosity is due to (internal) protein friction. We obtain an estimate of the order of magnitude of the contraction time τ ≈ 10-100 s, consistent with available experimental data for circumferential microfilament bundles and stress fibers. Our results are supported by an exactly solvable, hydrodynamic model of a retracting bundle as a cylinder of isotropic, active matter, from which the order of magnitude of the active stress is estimated.

  20. High-throughput sequencing of RNA isolated by cross-linking and immunoprecipitation (HITS-CLIP) to determine sites of binding of CstF-64 on nascent RNAs.

    PubMed

    Grozdanov, Petar N; Macdonald, Clinton C

    2014-01-01

    Genome-wide analysis of gene expression has changed the RNA world. Recent techniques leading to this revolution have been the use of cross-linking and immunoprecipitation (CLIP) combined with high-throughput sequencing (HITS-CLIP) to determine sites on nascent mRNAs to which RNA-binding proteins bind. Several researchers (including us) have been examining the role of RNA-binding proteins in polyadenylation, including the role of the 64,000 Mr component of the cleavage stimulation factor, CstF-64. In this chapter, we present our optimizations of the CLIP procedure for examination of CstF-64 binding to nascent pre-mRNAs expressed in testis. For CstF-64 CLIP, we use a well-characterized monoclonal antibody (3A7) that recognizes CstF-64. Rather than optimizing tricky but essential RNA fragment cloning schemes, we illustrate the use of the proprietary Illumina TruSeq Small RNA Sample Preparation kit for this step. Other techniques such as SDS-PAGE and the transfer to the nitrocellulose membrane techniques follow the original Illumina protocol (though we point out potential pitfalls). Finally, we discuss the options for high-throughput sequencing and some general suggestions for bioinformatic analysis of the data.

  1. A randomised controlled trial comparing highly cross-linked and contemporary annealed polyethylene after a minimal eight-year follow-up in total hip arthroplasty using cemented acetabular components.

    PubMed

    Langlois, J; Atlan, F; Scemama, C; Courpied, J P; Hamadouche, M

    2015-11-01

    Most published randomised controlled trials which compare the rates of wear of conventional and cross-linked (XL) polyethylene (PE) in total hip arthroplasty (THA) have described their use with a cementless acetabular component. We conducted a prospective randomised study to assess the rates of penetration of two distinct types of PE in otherwise identical cemented all-PE acetabular components. A total of 100 consecutive patients for THA were randomised to receive an acetabular component which had been either highly XL then remelted or moderately XL then annealed. After a minimum of eight years follow-up, 38 hips in the XL group and 30 hips in the annealed group had complete data (mean follow-up of 9.1 years (7.6 to 10.7) and 8.7 years (7.2 to 10.2), respectively). In the XL group, the steady state rate of penetration from one year onwards was -0.0002 mm/year (sd 0.108): in the annealed group it was 0.1382 mm/year (sd 0.129) (Mann-Whitney U test, p < 0.001). No complication specific to either material was recorded. These results show that the yearly linear rate of femoral head penetration can be significantly reduced by using a highly XLPE cemented acetabular component.

  2. Collagen Cross-Linking Using Riboflavin and Ultraviolet-A for Corneal Thinning Disorders

    PubMed Central

    Pron, G; Ieraci, L; Kaulback, K

    2011-01-01

    Executive Summary Objective The main objectives for this evidence-based analysis were to determine the safety and effectiveness of photochemical corneal collagen cross-linking with riboflavin (vitamin B2) and ultraviolet-A radiation, referred to as CXL, for the management of corneal thinning disease conditions. The comparative safety and effectiveness of corneal cross-linking with other minimally invasive treatments such as intrastromal corneal rings was also reviewed. The Medical Advisory Secretariat (MAS) evidence-based analysis was performed to support public financing decisions. Subject of the Evidence-Based Analysis The primary treatment objective for corneal cross-linking is to increase the strength of the corneal stroma, thereby stabilizing the underlying disease process. At the present time, it is the only procedure that treats the underlying disease condition. The proposed advantages for corneal cross-linking are that the procedure is minimally invasive, safe and effective, and it can potentially delay or defer the need for a corneal transplant. In addition, corneal cross-linking does not adversely affect subsequent surgical approaches, if they are necessary, or interfere with corneal transplants. The evidence for these claims for corneal cross-linking in the management of corneal thinning disorders such as keratoconus will be the focus of this review. The specific research questions for the evidence review were as follows: Technical: How technically demanding is corneal cross-linking and what are the operative risks? Safety: What is known about the broader safety profile of corneal cross-linking? Effectiveness - Corneal Surface Topographic Affects: What are the corneal surface remodeling effects of corneal cross-linking? Do these changes interfere with subsequent interventions, particularly corneal transplant known as penetrating keratoplasty (PKP)? Effectiveness -Visual Acuity: What impacts does the remodeling have on visual acuity? Are these impacts

  3. SU-8-Induced Strong Bonding of Polymer Ligands to Flexible Substrates via in Situ Cross-Linked Reaction for Improved Surface Metallization and Fast Fabrication of High-Quality Flexible Circuits.

    PubMed

    Hu, Mingjun; Guo, Qiuquan; Zhang, Tengyuan; Zhou, Shaolin; Yang, Jun

    2016-02-01

    On account of in situ cross-linked reaction of epoxy SU-8 with poly(4-vinylpyridine) (P4VP) and its strong reactive bonding ability with different pretreated substrates, we developed a simple universal one-step solution-based coating method for fast surface modification of various objects. Through this method, a layer of P4VP molecules with controllable thickness can be tethered tightly onto substrates with the assistance of SU-8. P4VP molecules possess a lot of pyridine ligands to immobilize transitional metal ions that can behave as the catalyst of electroless copper plating for surface metallization while functioning as the adhesion-promoting layer between the substrate and deposited metal. Attributed to interpenetrated entanglement of P4VP molecules and as-deposited metal, ultrathick (>7 μm) strongly adhesive high-quality copper layer can be formed on flexible substrates without any delamination. Then through laser printer to print toner mask, a variety of designed circuits can be easily fabricated on modified flexible PET substrate.

  4. SU-8-Induced Strong Bonding of Polymer Ligands to Flexible Substrates via in Situ Cross-Linked Reaction for Improved Surface Metallization and Fast Fabrication of High-Quality Flexible Circuits.

    PubMed

    Hu, Mingjun; Guo, Qiuquan; Zhang, Tengyuan; Zhou, Shaolin; Yang, Jun

    2016-02-01

    On account of in situ cross-linked reaction of epoxy SU-8 with poly(4-vinylpyridine) (P4VP) and its strong reactive bonding ability with different pretreated substrates, we developed a simple universal one-step solution-based coating method for fast surface modification of various objects. Through this method, a layer of P4VP molecules with controllable thickness can be tethered tightly onto substrates with the assistance of SU-8. P4VP molecules possess a lot of pyridine ligands to immobilize transitional metal ions that can behave as the catalyst of electroless copper plating for surface metallization while functioning as the adhesion-promoting layer between the substrate and deposited metal. Attributed to interpenetrated entanglement of P4VP molecules and as-deposited metal, ultrathick (>7 μm) strongly adhesive high-quality copper layer can be formed on flexible substrates without any delamination. Then through laser printer to print toner mask, a variety of designed circuits can be easily fabricated on modified flexible PET substrate. PMID:26844943

  5. Corneal collagen cross-linking: A review

    PubMed Central

    O’Brart, David P.S.

    2014-01-01

    The aim was to review the published literature on corneal collagen cross-linking. The emphasis was on the seminal publications, systemic reviews, meta-analyses and randomized controlled trials. Where such an evidence did not exist, selective large series cohort studies, case controlled studies and case series with follow-up preferably greater than 12 months were included. Riboflavin/Ultraviolet A (UVA) corneal collagen cross-linking appears to be the first treatment modality to halt the progression of keratoconus and other corneal ectatic disorders with improvement in visual, keratometric and topographic parameters documented by most investigators. Its precise mechanism of action at a molecular level is as yet not fully determined. Follow-up is limited to 4–6 years at present but suggests continued stability and improvement in corneal shape with time. Most published data are with epithelium-off techniques. Epithelium-on studies suggest some efficacy but less than with the epithelium-off procedures and long-term data are not currently available. The use of Riboflavin/UVA CXL for the management of infectious and non-infectious keratitis appears very promising. Its use in the management of bullous keratopathy is equivocal. Investigation of other methodologies for CXL are under investigation. PMID:25000866

  6. Lysyl hydroxylase 2 induces a collagen cross-link switch in tumor stroma.

    PubMed

    Chen, Yulong; Terajima, Masahiko; Yang, Yanan; Sun, Li; Ahn, Young-Ho; Pankova, Daniela; Puperi, Daniel S; Watanabe, Takeshi; Kim, Min P; Blackmon, Shanda H; Rodriguez, Jaime; Liu, Hui; Behrens, Carmen; Wistuba, Ignacio I; Minelli, Rosalba; Scott, Kenneth L; Sanchez-Adams, Johannah; Guilak, Farshid; Pati, Debananda; Thilaganathan, Nishan; Burns, Alan R; Creighton, Chad J; Martinez, Elisabeth D; Zal, Tomasz; Grande-Allen, K Jane; Yamauchi, Mitsuo; Kurie, Jonathan M

    2015-03-01

    Epithelial tumor metastasis is preceded by an accumulation of collagen cross-links that heighten stromal stiffness and stimulate the invasive properties of tumor cells. However, the biochemical nature of collagen cross-links in cancer is still unclear. Here, we postulated that epithelial tumorigenesis is accompanied by changes in the biochemical type of collagen cross-links. Utilizing resected human lung cancer tissues and a p21CIP1/WAF1-deficient, K-rasG12D-expressing murine metastatic lung cancer model, we showed that, relative to normal lung tissues, tumor stroma contains higher levels of hydroxylysine aldehyde-derived collagen cross-links (HLCCs) and lower levels of lysine aldehyde-derived cross-links (LCCs), which are the predominant types of collagen cross-links in skeletal tissues and soft tissues, respectively. Gain- and loss-of-function studies in tumor cells showed that lysyl hydroxylase 2 (LH2), which hydroxylates telopeptidyl lysine residues on collagen, shifted the tumor stroma toward a high-HLCC, low-LCC state, increased tumor stiffness, and enhanced tumor cell invasion and metastasis. Together, our data indicate that LH2 enhances the metastatic properties of tumor cells and functions as a regulatory switch that controls the relative abundance of biochemically distinct types of collagen cross-links in the tumor stroma. PMID:25664850

  7. Lysyl hydroxylase 2 induces a collagen cross-link switch in tumor stroma.

    PubMed

    Chen, Yulong; Terajima, Masahiko; Yang, Yanan; Sun, Li; Ahn, Young-Ho; Pankova, Daniela; Puperi, Daniel S; Watanabe, Takeshi; Kim, Min P; Blackmon, Shanda H; Rodriguez, Jaime; Liu, Hui; Behrens, Carmen; Wistuba, Ignacio I; Minelli, Rosalba; Scott, Kenneth L; Sanchez-Adams, Johannah; Guilak, Farshid; Pati, Debananda; Thilaganathan, Nishan; Burns, Alan R; Creighton, Chad J; Martinez, Elisabeth D; Zal, Tomasz; Grande-Allen, K Jane; Yamauchi, Mitsuo; Kurie, Jonathan M

    2015-03-01

    Epithelial tumor metastasis is preceded by an accumulation of collagen cross-links that heighten stromal stiffness and stimulate the invasive properties of tumor cells. However, the biochemical nature of collagen cross-links in cancer is still unclear. Here, we postulated that epithelial tumorigenesis is accompanied by changes in the biochemical type of collagen cross-links. Utilizing resected human lung cancer tissues and a p21CIP1/WAF1-deficient, K-rasG12D-expressing murine metastatic lung cancer model, we showed that, relative to normal lung tissues, tumor stroma contains higher levels of hydroxylysine aldehyde-derived collagen cross-links (HLCCs) and lower levels of lysine aldehyde-derived cross-links (LCCs), which are the predominant types of collagen cross-links in skeletal tissues and soft tissues, respectively. Gain- and loss-of-function studies in tumor cells showed that lysyl hydroxylase 2 (LH2), which hydroxylates telopeptidyl lysine residues on collagen, shifted the tumor stroma toward a high-HLCC, low-LCC state, increased tumor stiffness, and enhanced tumor cell invasion and metastasis. Together, our data indicate that LH2 enhances the metastatic properties of tumor cells and functions as a regulatory switch that controls the relative abundance of biochemically distinct types of collagen cross-links in the tumor stroma.

  8. Lysyl hydroxylase 2 induces a collagen cross-link switch in tumor stroma

    PubMed Central

    Chen, Yulong; Terajima, Masahiko; Yang, Yanan; Sun, Li; Ahn, Young-Ho; Pankova, Daniela; Puperi, Daniel S.; Watanabe, Takeshi; Kim, Min P.; Blackmon, Shanda H.; Rodriguez, Jaime; Liu, Hui; Behrens, Carmen; Wistuba, Ignacio I.; Minelli, Rosalba; Scott, Kenneth L.; Sanchez-Adams, Johannah; Guilak, Farshid; Pati, Debananda; Thilaganathan, Nishan; Burns, Alan R.; Creighton, Chad J.; Martinez, Elisabeth D.; Zal, Tomasz; Grande-Allen, K. Jane; Yamauchi, Mitsuo; Kurie, Jonathan M.

    2015-01-01

    Epithelial tumor metastasis is preceded by an accumulation of collagen cross-links that heighten stromal stiffness and stimulate the invasive properties of tumor cells. However, the biochemical nature of collagen cross-links in cancer is still unclear. Here, we postulated that epithelial tumorigenesis is accompanied by changes in the biochemical type of collagen cross-links. Utilizing resected human lung cancer tissues and a p21CIP1/WAF1-deficient, K-rasG12D-expressing murine metastatic lung cancer model, we showed that, relative to normal lung tissues, tumor stroma contains higher levels of hydroxylysine aldehyde–derived collagen cross-links (HLCCs) and lower levels of lysine aldehyde–derived cross-links (LCCs), which are the predominant types of collagen cross-links in skeletal tissues and soft tissues, respectively. Gain- and loss-of-function studies in tumor cells showed that lysyl hydroxylase 2 (LH2), which hydroxylates telopeptidyl lysine residues on collagen, shifted the tumor stroma toward a high-HLCC, low-LCC state, increased tumor stiffness, and enhanced tumor cell invasion and metastasis. Together, our data indicate that LH2 enhances the metastatic properties of tumor cells and functions as a regulatory switch that controls the relative abundance of biochemically distinct types of collagen cross-links in the tumor stroma. PMID:25664850

  9. Arabinosylation Plays a Crucial Role in Extensin Cross-linking In Vitro

    PubMed Central

    Chen, Yuning; Dong, Wen; Tan, Li; Held, Michael A; Kieliszewski, Marcia J

    2015-01-01

    Extensins (EXTs) are hydroxyproline-rich glycoproteins (HRGPs) that are structural components of the plant primary cell wall. They are basic proteins and are highly glycosylated with carbohydrate accounting for >50% of their dry weight. Carbohydrate occurs as monogalactosyl serine and arabinosyl hydroxyproline, with arabinosides ranging in size from ~1 to 4 or 5 residues. Proposed functions of EXT arabinosylation include stabilizing the polyproline II helix structure and facilitating EXT cross-linking. Here, the involvement of arabinosylation in EXT cross-linking was investigated by assaying the initial cross-linking rate and degree of cross-linking of partially or fully de-arabinosylated EXTs using an in vitro cross-linking assay followed by gel permeation chromatography. Our results indicate that EXT arabinosylation is required for EXT cross-linking in vitro and the fourth arabinosyl residue in the tetraarabinoside chain, which is uniquely α-linked, may determine the initial cross-linking rate. Our results also confirm the conserved structure of the oligoarabinosides across species, indicating an evolutionary significance for EXT arabinosylation. PMID:26568683

  10. Corneal cross-linking treatment of keratoconus

    PubMed Central

    Farjadnia, Mahgol; Naderan, Mohammad

    2015-01-01

    Keratoconus as the most common cause of ectasia is one of the leading cause of corneal transplants worldwide. The current available therapies do not modify the underlying pathogenesis of the disease, and none of the available approaches but corneal transplant hinder the ongoing ectasia. Several studies document Crosslink defect between collagen fibrils in the pathogenesis of keratoconus. Collagen cross link is a relatively new approach that with the application of the riboflavin and ultraviolet A, new covalent bands reform. Subjective and objective results following this method seem to be promising. Endothelial damage besides other deep structural injury, which is the major concern of this technique have not yet been reported, when applying the standard method. PMID:26622134

  11. Riboflavin for corneal cross-linking.

    PubMed

    O'Brart, D P S

    2016-06-01

    Corneal collagen cross-linking (CXL) with riboflavin and ultraviolet A (UVA) radiation is the first therapeutic modality that appears to arrest the progression of keratoconus and other corneal ectasias. Riboflavin is central to the process, acting as a photosensitizer for the production of oxygen singlets and riboflavin triplets. These free radicals drive the CXL process within the proteins of the corneal stroma, altering its biomechanical properties. Riboflavin also absorbs the majority of the UVA radiation, which is potentially cytotoxic and mutagenic, within the anterior stroma, preventing damage to internal ocular structures, such as the corneal endothelium, lens and retina. Clinical studies report cessation of ectatic progression in over 90% of cases and the majority document significant improvements in visual, keratometric and topographic parameters. Clinical follow-up is limited to 5-10 years, but suggests sustained stability and enhancement in corneal shape. Sight-threatening complications are rare. The optimal stromal riboflavin dosage for CXL is as yet undetermined. PMID:27458610

  12. Determination of the cross-linking effect of adipic acid dihydrazide on glycoconjugate preparation.

    PubMed

    Bystrický, S; Machová, E; Malovíková, A; Kogan, G

    1999-11-01

    The cross-linking effect of adipic acid dihydrazide (ADH) on polysaccharide derivatization can be evaluated by applying combination of elemental analysis and colorimetric assay. Elemental analysis is used for estimation of total ADH bound to polysaccharide and a colorimetric trinitrobenzene sulfonic acid assay is used to determine the part of ADH not involved in cross-linking. The difference of values expressed as molar ratios (per repeating unit) provides information on the amount of ADH involved in cross-linking the polysaccharides. Carboxymethylated polysaccharides were derivatized with different amounts of ADH to test the procedure. Analytical results showed that excess of ADH in the reaction only slightly decreased the cross-linking. The number of carboxyl groups remained unmodified even at high excess of ADH and high concentration of carbodiimide (EDC) coupling reagent. PMID:11003553

  13. Use of Proteinase K Nonspecific Digestion for Selective and Comprehensive Identification of Interpeptide Cross-links: Application to Prion Proteins*

    PubMed Central

    Petrotchenko, Evgeniy V.; Serpa, Jason J.; Hardie, Darryl B.; Berjanskii, Mark; Suriyamongkol, Bow P.; Wishart, David S.; Borchers, Christoph H.

    2012-01-01

    Chemical cross-linking combined with mass spectrometry is a rapidly developing technique for structural proteomics. Cross-linked proteins are usually digested with trypsin to generate cross-linked peptides, which are then analyzed by mass spectrometry. The most informative cross-links, the interpeptide cross-links, are often large in size, because they consist of two peptides that are connected by a cross-linker. In addition, trypsin targets the same residues as amino-reactive cross-linkers, and cleavage will not occur at these cross-linker-modified residues. This produces high molecular weight cross-linked peptides, which complicates their mass spectrometric analysis and identification. In this paper, we examine a nonspecific protease, proteinase K, as an alternative to trypsin for cross-linking studies. Initial tests on a model peptide that was digested by proteinase K resulted in a “family” of related cross-linked peptides, all of which contained the same cross-linking sites, thus providing additional verification of the cross-linking results, as was previously noted for other post-translational modification studies. The procedure was next applied to the native (PrPC) and oligomeric form of prion protein (PrPβ). Using proteinase K, the affinity-purifiable CID-cleavable and isotopically coded cross-linker cyanurbiotindipropionylsuccinimide and MALDI-MS cross-links were found for all of the possible cross-linking sites. After digestion with proteinase K, we obtained a mass distribution of the cross-linked peptides that is very suitable for MALDI-MS analysis. Using this new method, we were able to detect over 60 interpeptide cross-links in the native PrPC and PrPβ prion protein. The set of cross-links for the native form was used as distance constraints in developing a model of the native prion protein structure, which includes the 90–124-amino acid N-terminal portion of the protein. Several cross-links were unique to each form of the prion protein

  14. Use of proteinase K nonspecific digestion for selective and comprehensive identification of interpeptide cross-links: application to prion proteins.

    PubMed

    Petrotchenko, Evgeniy V; Serpa, Jason J; Hardie, Darryl B; Berjanskii, Mark; Suriyamongkol, Bow P; Wishart, David S; Borchers, Christoph H

    2012-07-01

    Chemical cross-linking combined with mass spectrometry is a rapidly developing technique for structural proteomics. Cross-linked proteins are usually digested with trypsin to generate cross-linked peptides, which are then analyzed by mass spectrometry. The most informative cross-links, the interpeptide cross-links, are often large in size, because they consist of two peptides that are connected by a cross-linker. In addition, trypsin targets the same residues as amino-reactive cross-linkers, and cleavage will not occur at these cross-linker-modified residues. This produces high molecular weight cross-linked peptides, which complicates their mass spectrometric analysis and identification. In this paper, we examine a nonspecific protease, proteinase K, as an alternative to trypsin for cross-linking studies. Initial tests on a model peptide that was digested by proteinase K resulted in a "family" of related cross-linked peptides, all of which contained the same cross-linking sites, thus providing additional verification of the cross-linking results, as was previously noted for other post-translational modification studies. The procedure was next applied to the native (PrP(C)) and oligomeric form of prion protein (PrPβ). Using proteinase K, the affinity-purifiable CID-cleavable and isotopically coded cross-linker cyanurbiotindipropionylsuccinimide and MALDI-MS cross-links were found for all of the possible cross-linking sites. After digestion with proteinase K, we obtained a mass distribution of the cross-linked peptides that is very suitable for MALDI-MS analysis. Using this new method, we were able to detect over 60 interpeptide cross-links in the native PrP(C) and PrPβ prion protein. The set of cross-links for the native form was used as distance constraints in developing a model of the native prion protein structure, which includes the 90-124-amino acid N-terminal portion of the protein. Several cross-links were unique to each form of the prion protein, including

  15. Enzymatic characterization of transglutaminase from Streptomyces mobaraensis DSM 40587 in high salt and effect of enzymatic cross-linking of yak milk proteins on functional properties of stirred yogurt.

    PubMed

    Zhang, L; Zhang, L; Yi, H; Du, M; Ma, C; Han, X; Feng, Z; Jiao, Y; Zhang, Y

    2012-07-01

    Streptomyces transglutaminase (TGase) purified from high-salt medium was characterized and applied into yak yogurts. The purified enzyme presented a Michaelis constant of 40.47 mmol and a maximum velocity of 44.44 U/mg of protein for N-carboxybenzoyl-l-glutaminyl-glycine in the hydroxamate procedure. The purified TGase exhibited optimum activity at 55°C and pH 6.0. The enzyme was not stable above 50°C and was stable within a pH range of 5.0 to 10.0 at 4°C for 12h and pH 5.0 to 9.0 at 37°C for 30 min. The TGase activity was not affected by Ca(2+), K(+), Ba(2+), or Na(+), but slightly inhibited by Fe(2+), Mg(2+), and Mn(2+), and strongly by Cu(2+) and Zn(2+). To explore yak milk products, it was used to produce yogurt and TGase was used. It was found that TGase-catalyzed cross-linking was effective in improving functional properties of stirred yak yogurt. Treated yogurt produced a strong acid gel, higher consistency, cohesiveness, index of viscosity, and creamier mouth feel than the untreated product. Furthermore, yak yogurt treated with TGase presented lower wet yak hair or sweat odor, or both. Therefore, TGase can be used to pave the way for exploration of novel yak products to overcome the issues of peculiar wet yak hair or sweat odor, or both.

  16. Results of Primary Total Hip Arthroplasty Using 36 mm Femoral Heads on 1st Generation Highly Cross Linked Polyethylene in Patients 50 Years and Less with Minimum Five Year Follow-up

    PubMed Central

    Choi, Won-Kee; Kim, Hee-soo; Nam, Jun-Ho; Chae, Seung-Bum

    2016-01-01

    Purpose We evaluated the clinical and radiographic midterm results of primary total hip arthroplasty (THA) using a 36 mm diameter femoral head on 1st generation highly cross-linked polyethylene (HXLPE) in patients 50 years and less with minimum five year follow-up. Materials and Methods We retrospectively reviewed 31 patients (41 hips) aged 50 years and less underwent primary THA with a 36 mm diameter femoral head on HXLPE between 2004 and 2010. Clinical follow-ups included specific measurements like modified Harris hip scores (HHS) and Merle d'Aubigne and Postel score. For radiologic evaluations, together with position of acetabular cup at six weeks later of postoperation, we separately calculated the penentrations of femoral head into polyethylene liners during postoperation and one year later check-ups, and during one year later check-ups and final check-ups. Results There were no major complications except for one case of dislocation. Average modified HHS at final follow-up was 88 (81-98), and Merle d'Aubigne and Postel scores were more than 15. Mean acetabular cup inclination and anteversion were 45.81°(36.33°-54.91°) and 13.26°(6.72°-27.71°), respectively. Average femoral head penetration of steady-state wear rate determined using radiographs taken at one-year postoperatively and at latest follow-up was 0.042±0.001 mm/year. Conclusion Based on minimum 5 years clinical results, we think 36 mm metal head coupling with HXLPE as the good alternate articulation surface when planning THA for patients aged 50 years and less. PMID:27536648

  17. Elucidation of protein-protein interactions using chemical cross-linking or label transfer techniques.

    PubMed

    Fancy, D A

    2000-02-01

    Understanding the architectures of multiprotein complexes is a central problem in biology. Of the many chemical methods available, label transfer and cross-linking are becoming more popular. Recently, label transfer has been applied to very large protein complexes with great success, and new oxidative methods for protein cross-linking have been developed that are fast and highly efficient. Advances in these techniques should increase the understanding of biological structures and mechanisms.

  18. Cross-linking of Newcastle disease virus (NDV) proteins.

    PubMed

    Nagai, Y; Yoshida, T; Hamaguchi, M; Iinuma, M; Maeno, K; Matsumoto, T

    1978-01-01

    The proxomity and spatial relationships of the structural proteins of Newcastle disease virus (NDV) were studied by chemical cross-linking with a series of imidoesters. When the virions were reacted by the cross-linker with a distance 6.1A or longer between the functional groups and analyzed by polyacrylamide gel electrophoresis, remarkable changes were observed in the migration patterns of the viral proteins. The most striking one was the extensive decrease in the intensity of the M protein band, and although not so strikingly, glycoprotein and nucleocapsid protein bands were reduced significantly. Instead, several protein complexes appeared at and near the top of the gels. The protein complexes formed by a reversible cross-linker, dimethyl-3,3'-dithiobispropionimidate (DTBP), were analyzed by two dimensional electrophoresis; the complexes on the first-dimension cylindrical gels were cleaved by reduction with 2-mercaptoethanol and electrophoresed laterally on the second-dimension slab gels. The results indicated that homodimers of glycoprotein, nucleocapsid protein and M protein were generated under the condition of the most gentle cross-linking employed. At the same time, however, trimer and higher homopolymers of M protein were already detectable. Under the more extensive conditions, the bulk of M protein was cross-linked to form a large protein complex with very high molecular weight. Further, small but significant amounts of glycoprotein and nucleocapsid protein were always detected in this complex. These results suggest that M protein may be present in the virion in close enough proximity to interact with each other and may further have some interactions with glycoprotein and nucleocapsid protein. On the basis of these findings possible roles of M protein in virus assembly were discussed.

  19. Cross-link guided molecular modeling with ROSETTA.

    PubMed

    Kahraman, Abdullah; Herzog, Franz; Leitner, Alexander; Rosenberger, George; Aebersold, Ruedi; Malmström, Lars

    2013-01-01

    Chemical cross-links identified by mass spectrometry generate distance restraints that reveal low-resolution structural information on proteins and protein complexes. The technology to reliably generate such data has become mature and robust enough to shift the focus to the question of how these distance restraints can be best integrated into molecular modeling calculations. Here, we introduce three workflows for incorporating distance restraints generated by chemical cross-linking and mass spectrometry into ROSETTA protocols for comparative and de novo modeling and protein-protein docking. We demonstrate that the cross-link validation and visualization software Xwalk facilitates successful cross-link data integration. Besides the protocols we introduce XLdb, a database of chemical cross-links from 14 different publications with 506 intra-protein and 62 inter-protein cross-links, where each cross-link can be mapped on an experimental structure from the Protein Data Bank. Finally, we demonstrate on a protein-protein docking reference data set the impact of virtual cross-links on protein docking calculations and show that an inter-protein cross-link can reduce on average the RMSD of a docking prediction by 5.0 Å. The methods and results presented here provide guidelines for the effective integration of chemical cross-link data in molecular modeling calculations and should advance the structural analysis of particularly large and transient protein complexes via hybrid structural biology methods. PMID:24069194

  20. Activation energies control the macroscopic properties of physically cross-linked materials.

    PubMed

    Appel, Eric A; Forster, Rebecca A; Koutsioubas, Alexandros; Toprakcioglu, Chris; Scherman, Oren A

    2014-09-15

    Here we show the preparation of a series of water-based physically cross-linked polymeric materials utilizing cucurbit[8]uril (CB[8]) ternary complexes displaying a range of binding, and therefore cross-linking, dynamics. We determined that the mechanical strength of these materials is correlated directly with a high energetic barrier for the dissociation of the CB[8] ternary complex cross-links, whereas facile and rapid self-healing requires a low energetic barrier to ternary complex association. The versatile CB[8] ternary complex has, therefore, proven to be a powerful asset for improving our understanding of challenging property-structure relationships in supramolecular systems and their associated influence on the bulk behavior of dynamically cross-linked materials.

  1. Corneal Cross-Linking and Safety Issues

    PubMed Central

    Spoerl, Eberhard; Hoyer, Anne; Pillunat, Lutz E; Raiskup, Frederik

    2011-01-01

    Purpose: To compile the safety aspects of the corneal collagen cross-linking (CXL) by means of the riboflavin/UVA (370 nm) approach. Materials and Methodology: Analysis of the current treatment protocol with respect to safety during CXL. Results: The currently used UVA dose density of 5.4 J/cm2 and the corresponding irradiance of 3 mW/cm2 are below the known damage thresholds of UVA for the corneal endothelium, lens, and retina. Regarding the photochemical damages due to the free radicals the damage threshold for endothelial cells is 0.35 mW/cm2. In a 400μm thick corneal stroma saturated with riboflavin, the irradiance at the endothelial level is about 0.18 mW/cm2, which is a factor of 2 smaller than the damage threshold. Conclusion: As long as the corneal stroma treated has a minimal thickness of 400 microns (as recommended), neither corneal endothelium nor deeper structures such as lens and retina will suffer any damages. The light source should provide a homogenous irradiance avoiding hot spots. PMID:21399770

  2. DNA-protein cross-links produced by various chemicals in cultured human lymphoma cells.

    PubMed

    Costa, M; Zhitkovich, A; Harris, M; Paustenbach, D; Gargas, M

    1997-04-11

    Chemicals such as cis-platinum, formaldehyde, chromate, copper, and certain arsenic compounds have been shown to produce DNA-protein cross-links in human in vitro cell systems at high doses, such as those in the cytotoxic range. Thus far there have only been a limited number of other chemicals evaluated for their ability to produce cross-links. The purpose of the work described here was to evaluate whether select industrial chemicals can form DNA-protein cross-links in human cells in vitro. We evaluated acetaldehyde, acrolein, diepoxybutane, paraformaldehyde, 2-furaldehyde, propionaldehyde, chloroacetaldehyde, sodium arsenite, and a deodorant tablet [Mega Blue; hazardous component listed as tris(hydroxymethyl)nitromethane]. Short- and long-term cytotoxicity was evaluated and used to select appropriate doses for in vitro testing. DNA-protein cross-linking was evaluated at no fewer than three doses and two cell lysate washing temperatures (45 and 65 degrees C) in Epstein-Barr virus (EBV) human Burkitt's lymphoma cells. The two washing temperatures were used to assess the heat stability of the DNA-protein cross-link, 2-Furaldehyde, acetaldehyde, and propionaldehyde produced statistically significant increases in DNA-protein cross-links at washing temperatures of 45 degrees C, but not 65 degrees C, and at or above concentrations of 5, 17.5, and 75 mM, respectively. Acrolein, diepoxybutane, paraformaldehyde, and Mega Blue produced statistically significant increases in DNA-protein cross-links washed at 45 and 65 degrees C at or above concentrations of 0.15 mM, 12.5 mM, 0.003%, and 0.1%, respectively. Sodium arsenite and chloroacetaldehyde did not produce significantly increased DNA-protein cross-links at either temperature nor at any dose tested. Excluding paraformaldehyde and 2-furaldehyde treatments, significant increases in DNA-protein cross-links were observed only at doses that resulted in complete cell death within 4 d following dosing. This work demonstrates that

  3. Computational exploration of polymer nanocomposite mechanical property modification via cross-linking topology

    SciTech Connect

    Lacevic, N; Gee, R; Saab, A; Maxwell, R

    2008-04-24

    Molecular dynamics simulations have been performed in order to study the effects of nanoscale filler cross-linking topologies and loading levels on the mechanical properties of a model elastomeric nanocomposite. The model system considered here is constructed from octa-functional polyhedral oligomeric silsesquioxane (POSS) dispersed in a poly(dimethylsiloxane) (PDMS) matrix. Shear moduli, G, have been computed for pure and for filled and unfilled PDMS as a function of cross-linking density, POSS fill loading level, and polymer network topology. The results reported here show that G increases as the cross-linking (covalent bonds formed between the POSS and the PDMS network) density increases. Further, G is found to have a strong dependence on cross-linking topology. The increase in shear modulus, G, for POSS filled PDMS is significantly higher than that for unfilled PDMS cross-linked with standard molecular species, suggesting an enhanced reinforcement mechanism for POSS. In contrast, in blended systems (POSS/PDMS mixture with no cross-linking) G was not observed to significantly increase with POSS loading. Finally, we find intriguing differences in the structural arrangement of bond strains between the cross-linked and the blended systems. In the unfilled PDMS the distribution of highly strained bonds appears to be random, while in the POSS filled system, the strained bonds form a net-like distribution that spans the network. Such a distribution may form a structural network 'holding' the composite together and resulting in increases in G compared to an unfilled, cross-linked system. These results are of importance for engineering of new POSS-based multifunctional materials with tailor-made mechanical properties.

  4. Computational exploration of polymer nanocomposite mechanical property modification via cross-linking topology.

    PubMed

    Lacevic, Naida; Gee, Richard H; Saab, Andrew; Maxwell, Robert

    2008-09-28

    Molecular dynamics simulations have been performed in order to study the effects of nanoscale filler cross-linking topologies and loading levels on the mechanical properties of a model elastomeric nanocomposite. The model system considered here is constructed from octafunctional polyhedral oligomeric silsesquioxane (POSS) dispersed in a poly(dimethylsiloxane) (PDMS) matrix. Shear moduli, G, have been computed for pure and for filled and unfilled PDMS as a function of cross-linking density, POSS fill loading level, and polymer network topology. The results reported here show that G increases as the cross-linking (covalent bonds formed between the POSS and the PDMS network) density increases. Further, G is found to have a strong dependence on cross-linking topology. The increase in shear modulus, G, for POSS filled PDMS is significantly higher than that for unfilled PDMS cross-linked with standard molecular species, suggesting an enhanced reinforcement mechanism for POSS. In contrast, in blended systems (POSS/PDMS mixture with no cross-linking) G was not observed to significantly increase with POSS loading. Finally, we find intriguing differences in the structural arrangement of bond strains between the cross-linked and the blended systems. In the unfilled PDMS the distribution of highly strained bonds appears to be random, while in the POSS filled system, the strained bonds form a netlike distribution that spans the network. Such a distribution may form a structural network "holding" the composite together and resulting in increases in G compared to an unfilled, cross-linked system. These results are of importance for engineering of new POSS-based multifunctional materials with tailor-made mechanical properties. PMID:19045061

  5. A Combination of Actin Treadmilling and Cross-Linking Drives Contraction of Random Actomyosin Arrays.

    PubMed

    Oelz, Dietmar B; Rubinstein, Boris Y; Mogilner, Alex

    2015-11-01

    We investigate computationally the self-organization and contraction of an initially random actomyosin ring. In the framework of a detailed physical model for a ring of cross-linked actin filaments and myosin-II clusters, we derive the force balance equations and solve them numerically. We find that to contract, actin filaments have to treadmill and to be sufficiently cross linked, and myosin has to be processive. The simulations reveal how contraction scales with mechanochemical parameters. For example, they show that the ring made of longer filaments generates greater force but contracts slower. The model predicts that the ring contracts with a constant rate proportional to the initial ring radius if either myosin is released from the ring during contraction and actin filaments shorten, or if myosin is retained in the ring, while the actin filament number decreases. We demonstrate that a balance of actin nucleation and compression-dependent disassembly can also sustain contraction. Finally, the model demonstrates that with time pattern formation takes place in the ring, worsening the contractile process. The more random the actin dynamics are, the higher the contractility will be. PMID:26536259

  6. Curcumin cross-linked collagen aerogels with controlled anti-proteolytic and pro-angiogenic efficacy.

    PubMed

    Dharunya, G; Duraipandy, N; Lakra, Rachita; Korapatti, Purna Sai; Jayavel, R; Kiran, Manikantan Syamala

    2016-01-01

    This paper elucidates the development of a curcumin cross-linked collagen aerogel system with controlled anti-proteolytic activity and pro-angiogenic efficacy. The results of this study showed that in situ cross-linking of curcumin with collagen leads to the development of aerogels with enhanced physical and mechanical properties. The integrity of collagen after cross-linking with curcumin was studied via FTIR spectroscopy. The results confirmed that the cross-linking with curcumin did not induce any structural changes in the collagen. The curcumin cross-linked collagen aerogels exhibited potent anti-proteolytic and anti-microbial activity. Scanning electron and atomic force microscopic analysis of curcumin cross-linked collagen aerogels showed a 3D microstructure that enhanced the adhesion and proliferation of cells. The highly organized geometry of collagen-curcumin aerogels enhanced the permeability and water-retaining ability required for the diffusion of nutrients that aid cellular growth. The pro-angiogenic properties of collagen-curcumin aerogels were ascribed to the cumulative effect of the nutraceutical and the collagen molecule, which augmented the restoration of damaged tissue. Further, these aerogels exhibited controlled anti-proteolytic activity, which makes them suitable 3D scaffolds for biomedical applications. This study provides scope for the development of biocompatible and bioresorbable collagen aerogel systems that use a nutraceutical as a cross-linker for biomedical applications. PMID:27509047

  7. Fibromodulin Interacts with Collagen Cross-linking Sites and Activates Lysyl Oxidase*

    PubMed Central

    Bihan, Dominique; Bonna, Arkadiusz; Rubin, Kristofer; Farndale, Richard W.

    2016-01-01

    The hallmark of fibrotic disorders is a highly cross-linked and dense collagen matrix, a property driven by the oxidative action of lysyl oxidase. Other fibrosis-associated proteins also contribute to the final collagen matrix properties, one of which is fibromodulin. Its interactions with collagen affect collagen cross-linking, packing, and fibril diameter. We investigated the possibility that a specific relationship exists between fibromodulin and lysyl oxidase, potentially imparting a specific collagen matrix phenotype. We mapped the fibromodulin-collagen interaction sites using the collagen II and III Toolkit peptide libraries. Fibromodulin interacted with the peptides containing the known collagen cross-linking sites and the MMP-1 cleavage site in collagens I and II. Interestingly, the interaction sites are closely aligned within the quarter-staggered collagen fibril, suggesting a multivalent interaction between fibromodulin and several collagen helices. Furthermore, we detected an interaction between fibromodulin and lysyl oxidase (a major collagen cross-linking enzyme) and mapped the interaction site to 12 N-terminal amino acids on fibromodulin. This interaction also increases the activity of lysyl oxidase. Together, the data suggest a fibromodulin-modulated collagen cross-linking mechanism where fibromodulin binds to a specific part of the collagen domain and also forms a complex with lysyl oxidase, targeting the enzyme toward specific cross-linking sites. PMID:26893379

  8. Fibromodulin Interacts with Collagen Cross-linking Sites and Activates Lysyl Oxidase.

    PubMed

    Kalamajski, Sebastian; Bihan, Dominique; Bonna, Arkadiusz; Rubin, Kristofer; Farndale, Richard W

    2016-04-01

    The hallmark of fibrotic disorders is a highly cross-linked and dense collagen matrix, a property driven by the oxidative action of lysyl oxidase. Other fibrosis-associated proteins also contribute to the final collagen matrix properties, one of which is fibromodulin. Its interactions with collagen affect collagen cross-linking, packing, and fibril diameter. We investigated the possibility that a specific relationship exists between fibromodulin and lysyl oxidase, potentially imparting a specific collagen matrix phenotype. We mapped the fibromodulin-collagen interaction sites using the collagen II and III Toolkit peptide libraries. Fibromodulin interacted with the peptides containing the known collagen cross-linking sites and the MMP-1 cleavage site in collagens I and II. Interestingly, the interaction sites are closely aligned within the quarter-staggered collagen fibril, suggesting a multivalent interaction between fibromodulin and several collagen helices. Furthermore, we detected an interaction between fibromodulin and lysyl oxidase (a major collagen cross-linking enzyme) and mapped the interaction site to 12 N-terminal amino acids on fibromodulin. This interaction also increases the activity of lysyl oxidase. Together, the data suggest a fibromodulin-modulated collagen cross-linking mechanism where fibromodulin binds to a specific part of the collagen domain and also forms a complex with lysyl oxidase, targeting the enzyme toward specific cross-linking sites.

  9. Cross-linked chitosan improves the mechanical properties of calcium phosphate-chitosan cement

    PubMed Central

    Aryaei, Ashkan; Liu, Jason; Jayatissa, Ahalapitiya. H.; Jayasuriya, A. Champa

    2015-01-01

    Calcium phosphate (CaP) cements are highly applicable and valuable materials for filling bone defects by minimally invasive procedures. Chitosan (CS) biopolymer is also considered as one of the promising biomaterial candidates in bone tissue engineering. In the present study, some key features of CaP-CS were significantly improved by developing a novel CaP-CS composite. For this purpose, CS was the first cross-linked with tripolyphosphate (TPP) and then mixed with CaP matrix. A group of CaP-CS samples without cross-linking was also prepared. Samples were fabricated and tested based on the known standards. Additionally, the effect of different powder (P) to liquid (L) ratios was also investigated. Both cross-linked and uncross-linked CaP-CS samples showed excellent washout resistance. The most significant effects were observed on Young's modulus and compressive strength in wet condition as well as surface hardness. In dry conditions, the Young's modulus of cross-linked samples were slightly improved. Based on the presented results, cross-linking does not have significant effect on porosity. As expected, by increasing the P/L ratio of sample, ductility and injectabilty were decreased. However, in the most cases, mechanical properties were enhanced. The results have shown that cross-linking can be improved the mechanical properties of CaP-CS and hence it can be used for bone tissue engineering applications. PMID:26046262

  10. Directing the oligomer size distribution of peroxidase-mediated cross-linked bovine alpha-lactalbumin.

    PubMed

    Heijnis, Walter H; Wierenga, Peter A; van Berkel, Willem J H; Gruppen, Harry

    2010-05-12

    Enzymatic protein cross-linking is a powerful tool to change protein functionality. For optimal functionality in gel formation, the size of the cross-linked proteins needs to be controlled, prior to heating. In the current study, we addressed the optimization of the horseradish peroxidase-mediated cross-linking of calcium-depleted bovine alpha-lactalbumin. To characterize the formed products, the molecular weight distribution of the cross-linked protein was determined by size exclusion chromatography. At low ionic strength, more dimers of alpha-lactalbumin are formed than at high ionic strength, while the same conversion of monomers is observed. Similarly, at pH 5.9 more higher oligomers are formed than at pH 6.8. This is proposed to be caused by local changes in apo alpha-lactalbumin conformation as indicated by circular dichroism spectroscopy. A gradual supply of hydrogen peroxide improves the yield of cross-linked products and increases the proportion of higher oligomers. In conclusion, this study shows that the size distribution of peroxidase-mediated cross-linked alpha-lactalbumin can be directed toward the protein oligomers desired.

  11. One-step electrospinning of cross-linked chitosan fibers.

    PubMed

    Schiffman, Jessica D; Schauer, Caroline L

    2007-09-01

    Chitin is a nitrogen-rich polysaccharide that is abundant in crustaceans, mollusks, insects, and fungi and is the second most abundant organic material found in nature next to cellulose. Chitosan, the N-deacetylated derivative of chitin, is environmentally friendly, nontoxic, biodegradable, and antibacterial. Fibrous mats are typically used in industries for filter media, catalysis, and sensors. Decreasing fiber diameters within these mats causes many beneficial effects such as increased specific surface area to volume ratios. When the intrinsically beneficial effects of chitosan are combined with the enhanced properties of nanofibrous mats, applications arise in a wide range of fields, including medical, packaging, agricultural, and automotive. This is particularly important as innovative technologies that focus around bio-based materials are currently of high urgency, as they can decrease dependencies on fossil fuels. We have demonstrated that Schiff base cross-linked chitosan fibrous mats can be produced utilizing a one-step electrospinning process that is 25 times faster and, therefore, more economical than a previously reported two-step vapor-cross-linking method. These fibrous mats are insoluble in acidic, basic, and aqueous solutions for 72 h. Additionally, this improved production method results in a decreased average fiber diameter, which measures 128 +/- 40 nm. Chemical and structural analyses were conducted utilizing Fourier transform infrared spectroscopy, solubility studies, and scanning electron microscopy. PMID:17696400

  12. Thermoset-cross-linked lignocellulose: a moldable plant biomass.

    PubMed

    Karumuri, Sriharsha; Hiziroglu, Salim; Kalkan, A Kaan

    2015-04-01

    The present work demonstrates a high biomass content (i.e., up to 90% by weight) and moldable material by controlled covalent cross-linking of lignocellulosic particles by a thermoset through epoxide-hydroxyl reactions. As an example for lignocellulosic biomass, Eastern redcedar was employed. Using scanning fluorescence microscopy and vibrational spectroscopy, macroscopic to molecular scale interactions of the thermoset with the lignocellulose have been revealed. Impregnation of the polymer resin into the biomass cellular network by capillary action as well as applied pressure results in a self-organizing structure in the form of thermoset microrods in a matrix of lignocellulose. We also infer permeation of the thermoset into the cell walls from the reaction of epoxides with the hydroxyls of the lignin. Compression tests reveal, at 30% thermoset content, thermoset-cross-linked lignocellulose has superior mechanical properties over a commercial wood plastic composite while comparable stiffness and strength to bulk epoxy and wood, respectively. The failure mechanism is understood to be crack propagation along the particle-thermoset interface and/or interparticle thermoset network. PMID:25734539

  13. Collagen Cross-Linking Using Riboflavin and Ultraviolet-A for Corneal Thinning Disorders

    PubMed Central

    Pron, G; Ieraci, L; Kaulback, K

    2011-01-01

    Executive Summary Objective The main objectives for this evidence-based analysis were to determine the safety and effectiveness of photochemical corneal collagen cross-linking with riboflavin (vitamin B2) and ultraviolet-A radiation, referred to as CXL, for the management of corneal thinning disease conditions. The comparative safety and effectiveness of corneal cross-linking with other minimally invasive treatments such as intrastromal corneal rings was also reviewed. The Medical Advisory Secretariat (MAS) evidence-based analysis was performed to support public financing decisions. Subject of the Evidence-Based Analysis The primary treatment objective for corneal cross-linking is to increase the strength of the corneal stroma, thereby stabilizing the underlying disease process. At the present time, it is the only procedure that treats the underlying disease condition. The proposed advantages for corneal cross-linking are that the procedure is minimally invasive, safe and effective, and it can potentially delay or defer the need for a corneal transplant. In addition, corneal cross-linking does not adversely affect subsequent surgical approaches, if they are necessary, or interfere with corneal transplants. The evidence for these claims for corneal cross-linking in the management of corneal thinning disorders such as keratoconus will be the focus of this review. The specific research questions for the evidence review were as follows: Technical: How technically demanding is corneal cross-linking and what are the operative risks? Safety: What is known about the broader safety profile of corneal cross-linking? Effectiveness - Corneal Surface Topographic Affects: What are the corneal surface remodeling effects of corneal cross-linking? Do these changes interfere with subsequent interventions, particularly corneal transplant known as penetrating keratoplasty (PKP)? Effectiveness -Visual Acuity: What impacts does the remodeling have on visual acuity? Are these impacts

  14. Modulation by propranolol of the lysyl cross-links in aortic elastin and collagen of the aneurysm-prone turkey.

    PubMed

    Boucek, R J; Gunja-Smith, Z; Noble, N L; Simpson, C F

    1983-01-15

    dl-Propranolol (propranolol) fed to immature and mature aneurysm-prone turkeys (Broad-Breasted White, BBW) for 6 weeks significantly raised the tensile strength of tissue rings from the abdominal aorta. The drug-mediated increase in tensile strength values was dose-related and independent of its heart rate- and arterial pressure-lowering effects. Propranolol acts, in part, by (a) stimulating lysyl oxidase to produce greater amounts of reactive aldehydes for intermolecular cross-links, (b) enhancing the progression of chemically unstable to stable forms of intermolecular elastin cross-links (lysinonorleucine and the desmosines), and (c) reducing the density of the age-related intermolecular cross-linking of collagen (pyridinoline). These propranolol effects on the lysyl cross-links were demonstrated in both the immature and mature animals and suggest a heretofore unrecognized potential for this widely used cardiovascular drug. PMID:6409122

  15. Modulation by propranolol of the lysyl cross-links in aortic elastin and collagen of the aneurysm-prone turkey.

    PubMed

    Boucek, R J; Gunja-Smith, Z; Noble, N L; Simpson, C F

    1983-01-15

    dl-Propranolol (propranolol) fed to immature and mature aneurysm-prone turkeys (Broad-Breasted White, BBW) for 6 weeks significantly raised the tensile strength of tissue rings from the abdominal aorta. The drug-mediated increase in tensile strength values was dose-related and independent of its heart rate- and arterial pressure-lowering effects. Propranolol acts, in part, by (a) stimulating lysyl oxidase to produce greater amounts of reactive aldehydes for intermolecular cross-links, (b) enhancing the progression of chemically unstable to stable forms of intermolecular elastin cross-links (lysinonorleucine and the desmosines), and (c) reducing the density of the age-related intermolecular cross-linking of collagen (pyridinoline). These propranolol effects on the lysyl cross-links were demonstrated in both the immature and mature animals and suggest a heretofore unrecognized potential for this widely used cardiovascular drug.

  16. X-Ray Diffraction Studies of Cross Linked Chitosan With Different Cross Linking Agents For Waste Water Treatment Application

    NASA Astrophysics Data System (ADS)

    Julkapli, Nurhidayatullaili Muhd; Ahmad, Zulkifli; Akil, Hazizan Md

    2010-01-01

    Chitosan is a polysaccharide derived from N-deacetylation of chitin and receiving increased attention as metal ion absorbent in wastewater treatment application. To improve the performance of chitosan as an absorbent, the cross linking approach was applied. Introduction of cross-linking agent would break the crystal zone in chitosan system, making it less crystal and consequently enhanced the absorption area. Therefore, in this study, cross-linked chitosan were prepared using different of cross-linking agents. The chitosan powder was weighed, dissolved in acetic acid (0.1 M), and dropped slowly into absolute N-methyl pyyrolidone solvent containing cross-linking agent. The cross linking reaction was carried out in N2 environment at 150° C for 6 hours. X-ray diffraction (XRD) analysis was applied to characterize the crystallinity of native and cross linked chitosan. Generally, the XRD patterns of all types of chitosan show two crystalline peaks approximately at 10° and 20° (2θ). However, the cross linked chitosan with longer length of cross linking agents show lower and broader crystalline peaks as compare to those with shorter length. Similarly, the calculated crystalline index (Cr I) also showed this decreasing tendency.

  17. Cross-linking with diimidates of glutamine synthetase from Bacillus stearothermophilus.

    PubMed

    Sekiguchi, T; Oshiro, S; Goingo, E M; Nosoh, Y

    1979-08-01

    Glutamine synthetase [EC 6.3.2.1] from Bacillus stearothermophilus was modified with diethyl malonimidate (DEM), dimethyl adipimidate (DMA), and dimethyl suberimidate (DMS). DMA modified most epsilon-amino groups. On modification with DMA, formation of 3 to 4 cross-links/subunit resulted in a large increase in thermostability. The activity, allosteric properties and fluorescence spectrum of the enzyme were not changed on cross-linking. The SDS-polyacrylamide gel electrophoretic profiles of DEM-, DMA-, and DMS-modified enzymes suggested that the interaction berween six subunits in each of the two hexagonal rings of the protein are heterologous and are different from those between the piled subunits on different rings. PMID:39071

  18. Dually cross-linked single network poly(acrylic acid) hydrogels with superior mechanical properties and water absorbency.

    PubMed

    Zhong, Ming; Liu, Yi-Tao; Liu, Xiao-Ying; Shi, Fu-Kuan; Zhang, Li-Qin; Zhu, Mei-Fang; Xie, Xu-Ming

    2016-06-28

    Poly(acrylic acid) (PAA) hydrogels with superior mechanical properties, based on a single network structure with dual cross-linking, are prepared by one-pot free radical polymerization. The network structure of the PAA hydrogels is composed of dual cross-linking: a dynamic and reversible ionic cross-linking among the PAA chains enabled by Fe(3+) ions, and a sparse covalent cross-linking enabled by a covalent cross-linker (Bis). Under deformation, the covalently cross-linked PAA chains remain intact to maintain their original configuration, while the Fe(3+)-enabled ionic cross-linking among the PAA chains is broken to dissipate energy and then recombined. It is found that the mechanical properties of the PAA hydrogels are significantly influenced by the contents of covalent cross-linkers, Fe(3+) ions and water, which can be adjusted within a substantial range and thus broaden the applications of the hydrogels. Meanwhile, the PAA hydrogels have excellent recoverability based on the dynamic and reversible ionic cross-linking enabled by Fe(3+) ions. Moreover, the swelling capacity of the PAA hydrogels is as high as 1800 times in deionized water due to the synergistic effects of ionic and covalent cross-linkings. The combination of balanced mechanical properties, efficient recoverability, high swelling capacity and facile preparation provides a new method to obtain high-performance hydrogels. PMID:27230478

  19. Static and dynamic properties of model elastomer with various cross-linking densities: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Liu, Jun; Cao, Dapeng; Zhang, Liqun

    2009-07-01

    The effects of the cross-linking density on the static and dynamic properties of polymer networks are examined by using a molecular dynamics simulation based on a simple elastomer model. Simulation results indicate that the introduced cross-linking junctions show almost no effect on the static structure factor. The glass transition temperature Tg increases slightly with the cross-linking density. By analyzing the mean square displacement of the monomers, the chain diffusion, and the incoherent intermediate dynamic structure factor ϕqs(t) at the chain and segmental length scales, it is found that the mobilities of the monomers and chains are retarded and the relaxation behavior is hindered by the cross linking of polymers. Furthermore, the spatial localization of the monomers is also observed at a long time period for a highly cross-linked system. For the cross-linked system, the time-temperature superposition principle is valid at the segmental length scale but breaks down at the chain length scale. The effect of the cross-linking density on the terminal relaxation is investigated by the end-to-end vector correlation, which is well fitted to the Kohlrauch-William-Watts (KWW) or modified KWW functions. The characteristic relaxation time shows an approximately linear relationship with the cross-linking density. It is demonstrated that the relaxation behavior tends to broaden, attributed to the stronger intermolecular coupling or cooperativity induced by the cross linking, suggesting that the system with a higher cross-linking degree becomes more fragile. For the dynamic properties, the bond orientation and the end-to-end distance along the deformed direction, which is an indicator of the entropic change, and the nonbonded energy are examined during the deformation and relaxation processes, respectively. The results explore the molecular mechanism accounting for the residual stress in the stress relaxation of cross-linked elastomer networks.

  20. Static and dynamic properties of model elastomer with various cross-linking densities: a molecular dynamics study.

    PubMed

    Liu, Jun; Cao, Dapeng; Zhang, Liqun

    2009-07-21

    The effects of the cross-linking density on the static and dynamic properties of polymer networks are examined by using a molecular dynamics simulation based on a simple elastomer model. Simulation results indicate that the introduced cross-linking junctions show almost no effect on the static structure factor. The glass transition temperature T(g) increases slightly with the cross-linking density. By analyzing the mean square displacement of the monomers, the chain diffusion, and the incoherent intermediate dynamic structure factor phi(q)(s)(t) at the chain and segmental length scales, it is found that the mobilities of the monomers and chains are retarded and the relaxation behavior is hindered by the cross linking of polymers. Furthermore, the spatial localization of the monomers is also observed at a long time period for a highly cross-linked system. For the cross-linked system, the time-temperature superposition principle is valid at the segmental length scale but breaks down at the chain length scale. The effect of the cross-linking density on the terminal relaxation is investigated by the end-to-end vector correlation, which is well fitted to the Kohlrauch-William-Watts (KWW) or modified KWW functions. The characteristic relaxation time shows an approximately linear relationship with the cross-linking density. It is demonstrated that the relaxation behavior tends to broaden, attributed to the stronger intermolecular coupling or cooperativity induced by the cross linking, suggesting that the system with a higher cross-linking degree becomes more fragile. For the dynamic properties, the bond orientation and the end-to-end distance along the deformed direction, which is an indicator of the entropic change, and the nonbonded energy are examined during the deformation and relaxation processes, respectively. The results explore the molecular mechanism accounting for the residual stress in the stress relaxation of cross-linked elastomer networks. PMID:19624229

  1. Radiation cross-linked polyolefin-insulated wire

    NASA Astrophysics Data System (ADS)

    Sano, K.; Ishitani, H.

    Because radiation cross-linked polyolefin has excellent mechanical heat resistance, its application limit can be expanded extremely by improving the resistance against heat oxidation and flame. This paper is concerning a halogen free radiation cross-linked polyolefin-insulated wire having excellent heat resistance and flameretardant property, which is used for appliances.

  2. Multi-Scale Modeling of Cross-Linked Nanotube Materials

    NASA Technical Reports Server (NTRS)

    Frankland, S. J. V.; Odegard, G. M.; Herzog, M. N.; Gates, T. S.; Fay, C. C.

    2005-01-01

    The effect of cross-linking single-walled carbon nanotubes on the Young's modulus of a nanotube-reinforced composite is modeled with a multi-scale method. The Young's modulus is predicted as a function of nanotube volume fraction and cross-link density. In this method, the constitutive properties of molecular representative volume elements are determined using molecular dynamics simulation and equivalent-continuum modeling. The Young's modulus is subsequently calculated for cross-linked nanotubes in a matrix which consists of the unreacted cross-linking agent. Two different cross-linking agents are used in this study, one that is short and rigid (Molecule A), and one that is long and flexible (Molecule B). Direct comparisons between the predicted elastic constants are made for the models in which the nanotubes are either covalently bonded or not chemically bonded to the cross-linking agent. At a nanotube volume fraction of 10%, the Young's modulus of Material A is not affected by nanotube crosslinking, while the Young's modulus of Material B is reduced by 64% when the nanotubes are cross-linked relative to the non-cross-linked material with the same matrix.

  3. Ring current development during high speed streams

    NASA Astrophysics Data System (ADS)

    Jordanova, V. K.; Matsui, H.; Puhl-Quinn, P. A.; Thomsen, M. F.; Mursula, K.; Holappa, L.

    2009-07-01

    Episodes of southward (Bz<0) interplanetary magnetic field (IMF) which lead to disturbed geomagnetic conditions are associated either with coronal mass ejections (CMEs) and possess long and continuous negative IMF Bz excursions, or with high speed solar wind streams (HSS) whose geoeffectiveness is due to IMF Bz profiles fluctuating about zero with various amplitudes and duration. We simulate ring current evolution during a HSS-driven storm that occurred during 24-26 October 2002 and compare its dynamics with a CME-driven storm of similar strength during 22-23 April 2001. We use our kinetic ring current-atmosphere interactions model (RAM), and investigate the mechanisms responsible for trapping particles and for causing their loss. Ring current evolution depends on the interplay of time-dependent inflow of plasma from the magnetotail, particle acceleration and loss (mainly due to charge exchange) along adiabatic drift paths, and outflow of plasma from the dayside magnetopause; all of these processes are incorporated in our model. We compare results from simulations using a newly developed, Cluster data based, University of New Hampshire inner magnetospheric electric field (UNH-IMEF) convection model with simulations using a Volland-Stern (V-S) type convection model. We find that, first, periods of increased magnetospheric convection coinciding with enhancements of plasma sheet density are needed for strong ring current buildup. Second, during the HSS-driven storm the convection potential from UNH-IMEF model is highly variable and causes sporadic shallow injections resulting in a weak ring current. The long period of enhanced convection during the CME-driven storm causes a continuous ion injection penetrating to lower L shells and stronger ring current buildup. V-S model predicts larger ring current injection during both storms. Third, the RAM driven by either convection model underestimates the total ring current energy during the recovery phase of the HSS storm

  4. Immunofluoresence of rabbit corneas following collagen cross-linking treatment with Riboflavin and Ultraviolet A

    PubMed Central

    Esquenazi, Salomon; He, Jiucheng; Li, Na; Bazan, Haydee E.P.

    2009-01-01

    Purpose To assess ultrastructural modifications in keratocytes and inflammatory cell response in rabbit corneas after riboflavin and ultraviolet A (UVA) exposure using immunoflurescence microscopy. Methods Twenty adult New Zealand albino rabbits weighing 2.0 to 3.0 kg were used in this study. Two rabbits served as controls. The animals had their epithelia removed and were cross-linked with riboflavin 0.1% solution (10mgs riboflavin-5-phosphate in 10ml 20% dextran-T-500) applied every 3 minutes for 30 minutes, and exposed to UVA (360 nm, 3 mW/cm2) for 30 minutes. Four rabbits were humanely euthanized at each time point of 1, 3 and 11 days and at 3 and 5 weeks after the procedure. Immunohistochemestry studies of thin sections of each cornea were performed using TUNEL staining, Alpha smooth muscle actin (α-SMA), CD-3, myeloperoxidase (MPO) antibodies and DAPI counterstaining. In another experiment six additional rabbits were treated as above, and after 10 days of cross-linking, 5 μl of lipopolysaccharide (LPS) endotoxin (1μg/ml) was injected in the mid stroma. Results Cross-linked corneas showed early stromal edema. By 5 weeks, complete resolution of the edema and a pronounced highly organized anterior 200 μm fluorescent zone was observed. TUNEL staining showed keratocyte death by both necrosis and apoptosis between day 1 and 3 after cross-linking. At day 1 the limbal area close to the cross linking zone showed some inflammatory cells as well as α-SMA positive cells, indicative of the presence of myofibroblasts. By day 3 some myofibroblasts had migrated to the area beneath the cross linked stroma. Between day 3 and 5 weeks there was an increase in α-SMA staining in the area surrounding the cross linked stroma. The area of cross linking remained acellular up to 5 weeks. Conclusions Collagen cross-linking results in early edema, keratocyte apoptosis and necrosis, appearance of inflammatory cells in the surrounding area of treatment and transformation of

  5. Cross-linked polyvinyl alcohol films as alkaline battery separators

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.; Manzo, M. A.; Gonzalez-Sanabria, O. D.

    1982-01-01

    Cross-linking methods were investigated to determine their effect on the performance of polyvinyl alcohol (PVA) films as alkaline battery separators. The following types of cross-linked PVA films are discussed: (1) PVA-dialdehyde blends post-treated with an acid or acid periodate solution (two-step method) and (2) PVA-dialdehyde blends cross-linked during film formation (drying) by using a reagent with both aldehyde and acid functionality (one-step method). Laboratory samples of each cross-linked type of film were prepared and evaluated in standard separator screening tests. The pilot-plant batches of films were prepared and compared to measure differences due to the cross-linking method. The pilot-plant materials were then tested in nickel oxide - zinc cells to compare the two methods with respect to performance characteristics and cycle life. Cell test results are compared with those from tests with Celgard.

  6. Cross-linked polyvinyl alcohol films as alkaline battery separators

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.; Manzo, M. A.; Gonzalez-Sanabria, O. D.

    1983-01-01

    Cross-linking methods have been investigated to determine their effect on the performance of polyvinyl alcohol (PVA) films as alkaline battery separators. The following types of cross-linked PVA films are discussed: (1) PVA-dialdehyde blends post-treated with an acid or acid periodate solution (two-step method) and (2) PVA-dialdehyde blends cross-linked during film formation (drying) by using a reagent with both aldehyde and acid functionality (one-step method). Laboratory samples of each cross-linked type of film were prepared and evaluated in standard separator screening tests. Then pilot-plant batches of films were prepared and compared to measure differences due to the cross-linking method. The pilot-plant materials were then tested in nickel oxide-zinc cells to compare the two methods with respect to performance characteristics and cycle life. Cell test results are compared with those from tests with Celgard.

  7. Cross-linked polyvinyl alcohol and method of making same

    NASA Technical Reports Server (NTRS)

    Hsu, L. C.; Sheibley, D. W.; Philipp, W. H. (Inventor)

    1981-01-01

    A film-forming polyvinyl alcohol polymer is mixed with a polyaldehyde-polysaccharide cross-linking agent having at least two monosaccharide units and a plurality of aldehyde groups per molecule, perferably an average of at least one aldehyde group per monosaccharide units. The cross-linking agent, such as a polydialdehyde starch, is used in an amount of about 2.5 to 20% of the theoretical amount required to cross-link all of the available hydroxyl groups of the polyvinyl alcohol polymer. Reaction between the polymer and cross-linking agent is effected in aqueous acidic solution to produce the cross-linked polymer. The polymer product has low electrical resistivity and other properties rendering it suitable for making separators for alkaline batteries.

  8. Knee-simulator testing of conventional and cross-linked polyethylene tibial inserts.

    PubMed

    Muratoglu, Orhun K; Bragdon, Charles R; Jasty, Murali; O'Connor, Daniel O; Von Knoch, Rebecca S; Harris, William H

    2004-10-01

    We compared the resistance to delamination and to adhesive/abrasive wear of conventional and highly cross-linked polyethylene tibial inserts of a cruciate-retaining total knee design using a knee simulator. Both groups were tested after aggressive, accelerated aging, and 1 set of conventional inserts was studied without aging. Aging oxidized the conventional, but not the highly cross-linked, inserts. The simulated normal gait testing lasted for 5 and 10 million cycles for the conventional and highly cross-linked inserts, respectively. Aged conventional inserts showed delaminations, whereas none were observed in the unaged conventional and aged cross-linked inserts. Wear rates measured by the gravimetric method were 9 +/- 2 mm3, 10 +/- 4 mm3, and 1 +/- 0 mm3 per million cycles; by the metrologic method, they were 8 +/- 1 mm3, 9 +/- 2 mm3, and 3 +/- 0 mm3 for the unaged conventional, aged conventional, and aged highly crosslinked inserts, respectively. In the test model used, oxidation led to delamination, whereas increased cross-link density resulted in reduced adhesive/abrasive wear of tibial inserts.

  9. Gauging and Tuning Cross-Linking Kinetics of Catechol-PEG Adhesives via Catecholamine Functionalization.

    PubMed

    Paez, Julieta I; Ustahüseyin, Oya; Serrano, Cristina; Ton, Xuan-Anh; Shafiq, Zahid; Auernhammer, Günter K; d'Ischia, Marco; del Campo, Aránzazu

    2015-12-14

    The curing time of an adhesive material is determined by the polymerization and cross-linking kinetics of the adhesive formulation and needs to be optimized for the particular application. Here, we explore the possibility of tuning the polymerization kinetics and final mechanical properties of tissue-adhesive PEG gels formed by polymerization of end-functionalized star-PEGs with catecholamines with varying substituents. We show strong differences in cross-linking time and cohesiveness of the final gels among the catecholamine-PEG variants. Installation of an electron-withdrawing but π-electron donating chloro substituent on the catechol ring resulted in faster and more efficient cross-linking, while opposite effects were observed with the strongly electron-withdrawing nitro group. Chain substitution slowed down the kinetics and hindered cross-linking due either to chain breakdown (β-OH group, in norepinephrine) or intramolecular cyclization (α-carboxyl group, in DOPA). Interesting perspectives derive from use of mixtures of catecholamine-PEG precursors offering further opportunities for fine-tuning of the curing parameters. These are interesting properties for the application of catecholamine-PEG gels as tissue glues or biomaterials for cell encapsulation. PMID:26583428

  10. ROMP-based thermosetting polymers from modified castor oil with various cross-linking agents

    NASA Astrophysics Data System (ADS)

    Ding, Rui

    Polymers derived from bio-renewable resources are finding an increase in global demand. In addition, polymers with distinctive functionalities are required in certain advanced fields, such as aerospace and civil engineering. In an attempt to meet both these needs, the goal of this work aims to develop a range of bio-based thermosetting matrix polymers for potential applications in multifunctional composites. Ring-opening metathesis polymerization (ROMP), which recently has been explored as a powerful method in polymer chemistry, was employed as a unique pathway to polymerize agricultural oil-based reactants. Specifically, a novel norbornyl-functionalized castor oil alcohol (NCA) was investigated to polymerize different cross-linking agents using ROMP. The effects of incorporating dicyclopentadiene (DCPD) and a norbornene-based crosslinker (CL) were systematically evaluated with respect to curing behavior and thermal mechanical properties of the polymers. Isothermal differential scanning calorimetry (DSC) was used to investigate the conversion during cure. Dynamic DSC scans at multiple heating rates revealed conversion-dependent activation energy by Ozawa-Flynn-Wall analysis. The glass transition temperature, storage modulus, and loss modulus for NCA/DCPD and NCA/CL copolymers with different cross-linking agent loading were compared using dynamic mechanical analysis. Cross-link density was examined to explain the very different dynamic mechanical behavior. Mechanical stress-strain curves were developed through tensile test, and thermal stability of the cross-linked polymers was evaluated by thermogravimetric analysis to further investigate the structure-property relationships in these systems.

  11. Cross-Linked Nanoporous Materials from Reactive and Multifunctional Block Polymers

    SciTech Connect

    Seo, Myungeun; Amendt, Mark A.; Hillmyer, Marc A.

    2012-10-10

    Polylactide-b-poly(styrene-co-2-hydroxyethylmethacrylate) (PLA-b-P(S-co-HEMA)) and polylactide-b-poly(styrene-co-2-hydroxyethylacrylate) (PLA-b-P(S-co-HEA)) were synthesized by combination of ring-opening polymerization and reversible addition-fragmentation chain transfer polymerization. {sup 1}H nuclear magnetic resonance spectroscopy and size exclusion chromatography data indicated that the polymerizations were controlled and that hydroxyl groups were successfully incorporated into the block polymers. The polymers were reacted with 4,4{prime}-methylenebis(phenyl isocyanate) (MDI) to form the corresponding cross-linked materials. The materials were annealed at 150 C to complete the coupling reaction. Robust nanoporous materials were obtained from the cross-linked polymers by treatment with aqueous base to hydrolyze the PLA phase. Small-angle X-ray scattering study combined with scanning electron microscopy showed that MDI-cross-linked PLA-b-P(S-co-HEMA)/PLA-b-P(S-co-HEA) can adopt lamellar, hexagonally perforated lamellar, and hexagonally packed cylindrical morphologies after annealing. In particular, the HPL morphology was found to evolve from lamellae due to increase in volume fraction of PS phase as MDI reacted with hydroxyl groups. The reaction also kinetically trapped the morphology by cross-linking. Bicontinuous morphologies were also observed when dibutyltin dilaurate was added to accelerate reaction between the polymer and MDI.

  12. Polymer-additive extraction via pressurized fluids and organic solvents of variously cross-linked poly(methylmethacrylates).

    PubMed

    Nazem, N; Taylor, L T

    2002-04-01

    Variously cross-linked poly(methylmethacrylates) (PMMAs) are synthesized with three additives incorporated at theoretically 1000 microg of the additive per gram of prepared polymer. The additives are Irganox 1010, Irganox 1076, and Irgafos 168. The in-house" synthesized polyacrylates are then subjected to supercritical fluid extraction (SFE) to determine if additive recovery is a function of percent cross-linking. Although considerable work in this regard has been performed with non-cross-linked polyolefins, the literature is lacking regarding polyacrylates. Some additive degradation apparently occurs during the synthesis, as judged by the increased complexity of the extract high-performance liquid chromatographic trace and the low percent recoveries observed especially for the Irganoxes. For low polymer cross-linking (1%), it appears that both PMMA synthetic reproducibility and readily observed polymer swelling during SFE are serious issues that adversely affect additive percent recovery and precision of results. Higher percent cross-linking yields more consistent analytical data than low percent cross-linking, even though the amount of additive extracted in all PMMA samples (regardless of cross-linking percentage) is essentially the same whether the extraction is via SFE or liquid-solid extraction with methylene chloride. Results for comparably cross-linked poly(ethylmethacrylate) and poly(butylmethacrylate) are similar to PMMA.

  13. Dehydration of an ethanol/water azeotrope through alginate-DNA membranes cross-linked with metal ions by pervaporation.

    PubMed

    Uragami, Tadashi; Banno, Masashi; Miyata, Takashi

    2015-12-10

    To obtain high dehydration membranes for an ethanol/water azeotrope, dried blend membranes prepared from mixtures of sodium alginate (Alg-Na) and sodium deoxyribonucleate (DNA-Na) were cross-linked by immersing in a methanol solution of CaCl2 or MaCl2. In the dehydration of an ethanol/water azeotropic mixture by pervaporation, the effects of immersion time in methanol solution of CaCl2 or MaCl2 on the permeation rate and water/ethanol selectivity through Alg-DNA/Ca(2+) and Alg-DNA/Mg(2+) cross-linked membranes were investigated. Alg-DNA/Mg(2+) cross-linked membrane immersed for 12h in methanol solution of MaCl2 exhibited the highest water/ethanol selectivity. This results from depressed swelling of the membranes by formation of a cross-linked structure. However, excess immersion in solution containing cross-linker led to an increase in the hydrophobicity of cross-linked membrane. Therefore, the water/ethanol selectivity of Alg-DNA/Mg(2+) cross-linked membranes with an excess immersion in cross-linking solution was lowered. The relationship between the structure of Alg-DNA/Ca(2+) and Alg-DNA/Mg(2+) cross-linked membranes and their permeation and separation characteristics during pervaporation of an ethanol/water azeotropic mixture is discussed in detail.

  14. Mesoscopic simulations of hydrophilic cross-linked polycarbonate polyurethane networks: structure and morphology.

    PubMed

    Iype, E; Esteves, A C C; de With, G

    2016-06-14

    Polyurethane (PU) cross-linked networks are frequently used in biomedical and marine applications, e.g., as hydrophilic polymer coatings with antifouling or low-friction properties and have been reported to exhibit characteristic phase separation between soft and hard segments. Understanding this phase-separation behavior is critical to design novel hydrophilic polymer coatings. However, most of the studies on the structure and morphology of cross-linked coatings are experimental, which only assess the phase separation via indirect methods. Herein we present a mesoscopic simulation study of the network characteristics of model hydrophilic polymer networks, consisting of PU with and without methyl-polyethylene glycol (mPEG) dangling chains. The systems are analyzed using a number of tools, such as the radial distribution function, the cross-link point density distribution and the Voronoi volume distribution (of the cross-linking points). The combined results show that the cross-linked networks without dangling chains are rather homogeneous but contain a small amount of clustering of cross-linker molecules. A clear phase separation is observed when introducing the dangling chains. In spite of that, the amount of cross-linker molecules connected to dangling chains only, i.e., not connected to the main network, is relatively small, leading to about 3 wt% extractables. Thus, these cross-linked polymers consist of a phase-separated, yet highly connected network. This study provides valuable guidelines towards new self-healing hydrophilic coatings based on the molecular design of cross-linked networks in direct contact with water or aqueous fluids, e.g., as anti-fouling self-repairing coatings for marine applications. PMID:27174657

  15. Mesoscopic simulations of hydrophilic cross-linked polycarbonate polyurethane networks: structure and morphology.

    PubMed

    Iype, E; Esteves, A C C; de With, G

    2016-06-14

    Polyurethane (PU) cross-linked networks are frequently used in biomedical and marine applications, e.g., as hydrophilic polymer coatings with antifouling or low-friction properties and have been reported to exhibit characteristic phase separation between soft and hard segments. Understanding this phase-separation behavior is critical to design novel hydrophilic polymer coatings. However, most of the studies on the structure and morphology of cross-linked coatings are experimental, which only assess the phase separation via indirect methods. Herein we present a mesoscopic simulation study of the network characteristics of model hydrophilic polymer networks, consisting of PU with and without methyl-polyethylene glycol (mPEG) dangling chains. The systems are analyzed using a number of tools, such as the radial distribution function, the cross-link point density distribution and the Voronoi volume distribution (of the cross-linking points). The combined results show that the cross-linked networks without dangling chains are rather homogeneous but contain a small amount of clustering of cross-linker molecules. A clear phase separation is observed when introducing the dangling chains. In spite of that, the amount of cross-linker molecules connected to dangling chains only, i.e., not connected to the main network, is relatively small, leading to about 3 wt% extractables. Thus, these cross-linked polymers consist of a phase-separated, yet highly connected network. This study provides valuable guidelines towards new self-healing hydrophilic coatings based on the molecular design of cross-linked networks in direct contact with water or aqueous fluids, e.g., as anti-fouling self-repairing coatings for marine applications.

  16. Tough Stretchable Physically-Cross-linked Electrospun Hydrogel Fiber Mats.

    PubMed

    Yang, Yiming; Wang, Chao; Wiener, Clinton G; Hao, Jinkun; Shatas, Sophia; Weiss, R A; Vogt, Bryan D

    2016-09-01

    Nature uses supramolecular interactions and hierarchical structures to produce water-rich materials with combinations of properties that are challenging to obtain in synthetic systems. Here, we demonstrate hierarchical supramolecular hydrogels from electrospun, self-associated copolymers with unprecedented elongation and toughness for high porosity hydrogels. Hydrophobic association of perfluoronated comonomers provides the physical cross-links for these hydrogels based on copolymers of dimethyl acrylamide and 2-(N-ethylperfluorooctane sulfonamido)ethyl methacrylate (FOSM). Intriguingly, the hydrogel fiber mats show an enhancement in toughness in comparison to compression molded bulk hydrogels. This difference is attributed to the size distribution of the hydrophobic aggregates where narrowing the distribution in the electrospun material enhances the toughness of the hydrogel. These hydrogel fiber mats exhibit extensibility more than double that of the bulk hydrogel and a comparable modulus despite the porosity of the fiber mat leading to >25 wt % increase in water content. PMID:27548013

  17. Protein cross-linking tools for the construction of nanomaterials.

    PubMed

    Domeradzka, Natalia E; Werten, Marc Wt; Wolf, Frits A de; de Vries, Renko

    2016-06-01

    Across bioengineering there is a need to couple proteins to other proteins, or to peptides. Although traditional chemical conjugations have dominated in the past, more and more highly specific coupling strategies are becoming available that are based on protein engineering. Here we review the use of protein modification approaches such as enzymatic and autocatalytic protein-protein coupling, as well as the use of hetero-dimerizing (or hetero-oligomerizing) modules, applied to the specific case of linking together de novo designed recombinant polypeptides into precisely structured nanomaterials. Such polypeptides are increasingly being investigated for biomedical and other applications. In this review, we describe the protein-engineering based cross-linking strategies that dramatically expand the repertoire of possible molecular structures and, hence, the range of materials that can be produced from them. PMID:26871735

  18. An ultraviolet-inducible adenosine-adenosine cross-link reflects the catalytic structure of the Tetrahymena ribozyme

    SciTech Connect

    Downs, W.D.; Cech, T.R. )

    1990-06-12

    When a shortened enzymatic version of the Tetrahymena self-splicing intervening sequence (IVS) RNA is placed under catalytic conditions and irradiated at 254 nm, a covalent cross-link forms with high efficiency. The position of the cross-link was mapped by using three independent methods: RNase H digestion, primer extension with reverse transcriptase, and partial hydrolysis of end-labeled RNA. The cross-link is chemically unusual in that it joins two adenosines, A57 and A95. Formation of this cross-link depends upon the identity and concentration of divalent cations present and upon heat-cool renaturation of the IVS in a manner that parallels conditions required for optimal catalytic activity. Furthermore, cross-linking requires the presence of sequences within the core structure, which is conserved among group I intervening sequences and necessary for catalytic activity. Together these correlations suggest that a common folded structure permits cross-linking and catalytic activity. The core can form this structure independent of the presence of P1 and elements at the 3' end of the IVS. The cross-linked RNA loses catalytic activity under destabilizing conditions, presumably due to disruption of the folded structure by the cross-link. One of the nucleotides participating in this cross-link is highly conserved (86%) within the secondary structure of group I intervening sequences. We conclude that A57 and A95 are precisely aligned in a catalytically active conformation of the RNA. A model is presented for the tertiary arrangement in the vicinity of the cross-link.

  19. Elasticity of cross-linked semiflexible biopolymers under tension.

    PubMed

    von der Heydt, Alice; Wilkin, Daniel; Benetatos, Panayotis; Zippelius, Annette

    2013-09-01

    Aiming at the mechanical properties of cross-linked biopolymers, we set up and analyze a model of two weakly bending wormlike chains subjected to a tensile force, with regularly spaced inter-chain bonds (cross-links) represented by harmonic springs. Within this model, we compute the force-extension curve and the differential stiffness exactly and discuss several limiting cases. Cross-links effectively stiffen the chain pair by reducing thermal fluctuations transverse to the force and alignment direction. The extra alignment due to cross-links increases both with growing number and with growing strength of the cross-links, and is most prominent for small force f. For large f, the additional, cross-link-induced extension is subdominant except for the case of linking the chains rigidly and continuously along their contour. In this combined limit, we recover asymptotically the elasticity of a weakly bending wormlike chain without constraints, stiffened by a factor of 4. The increase in differential stiffness can be as large as 100% for small f or large numbers of cross-links.

  20. An Evaluation of Lysyl Oxidase–Derived Cross-Linking in Keratoconus by Liquid Chromatography/Mass Spectrometry

    PubMed Central

    Takaoka, Anna; Babar, Natasha; Hogan, Julia; Kim, MiJung; Price, Marianne O.; Price, Francis W.; Trokel, Stephen L.; Paik, David C.

    2016-01-01

    Purpose Current literature contains scant information regarding the extent of enzymatic collagen cross-linking in the keratoconus (KC) cornea. The aim of the present study was to examine levels of enzymatic lysyl oxidase–derived cross-links in stromal collagen in KC tissue, and to correlate the cross-link levels with collagen fibril stability as determined by thermal denaturation temperature (Tm). Methods Surgical KC samples (n = 17) and Eye-Bank control (n = 11) corneas of age 18 to 68 years were analyzed. The samples were defatted, reduced (NaBH4), hydrolyzed (6N HCl at 110°C for 18 hours), and cellulose enriched before analysis by C8 high-performance liquid chromatography equipped with parallel fluorescent and mass detectors in selective ion monitoring mode (20 mM heptafluorobutyric acid/methanol 70:30 isocratic at 1 mL/min). Nine different cross-links were measured, and the cross-link density was determined relative to collagen content (determined colorimetrically). The Tm was determined by differential scanning calorimetry. Results Cross-links detected were dihydroxylysinonorleucine (DHLNL), hydroxylysinonorleucine, lysinonorleucine (LNL), and histidinohydroxylysinonorleucine in both control and KC samples. Higher DHLNL levels were detected in KC, whereas the dominant cross-link, LNL, was decreased in KC samples. Decreased LNL levels were observed among KC ≤ 40 corneas. There was no difference in total cross-link density between KC samples and the controls. Pyridinolines, desmosines, and pentosidine were not detected. There was no notable correlation between cross-link levels with fibril instability as determined by Tm. Conclusions Lower levels of LNL in the KC cornea suggest that there might be a cross-linking defect either in fibrillar collagen or the microfibrillar elastic network composed of fibrillin. PMID:26780316

  1. Effects of Ultraviolet-A and Riboflavin on the Interaction of Collagen and Proteoglycans during Corneal Cross-linking*

    PubMed Central

    Zhang, Yuntao; Conrad, Abigail H.; Conrad, Gary W.

    2011-01-01

    Corneal cross-linking using riboflavin and ultraviolet-A (RFUVA) is a clinical treatment targeting the stroma in progressive keratoconus. The stroma contains keratocan, lumican, mimecan, and decorin, core proteins of major proteoglycans (PGs) that bind collagen fibrils, playing important roles in stromal transparency. Here, a model reaction system using purified, non-glycosylated PG core proteins in solution in vitro has been compared with reactions inside an intact cornea, ex vivo, revealing effects of RFUVA on interactions between PGs and collagen cross-linking. Irradiation with UVA and riboflavin cross-links collagen α and β chains into larger polymers. In addition, RFUVA cross-links PG core proteins, forming higher molecular weight polymers. When collagen type I is mixed with individual purified, non-glycosylated PG core proteins in solution in vitro and subjected to RFUVA, both keratocan and lumican strongly inhibit collagen cross-linking. However, mimecan and decorin do not inhibit but instead form cross-links with collagen, forming new high molecular weight polymers. In contrast, corneal glycosaminoglycans, keratan sulfate and chondroitin sulfate, in isolation from their core proteins, are not cross-linked by RFUVA and do not form cross-links with collagen. Significantly, when RFUVA is conducted on intact corneas ex vivo, both keratocan and lumican, in their natively glycosylated form, do form cross-links with collagen. Thus, RFUVA causes cross-linking of collagen molecules among themselves and PG core proteins among themselves, together with limited linkages between collagen and keratocan, lumican, mimecan, and decorin. RFUVA as a diagnostic tool reveals that keratocan and lumican core proteins interact with collagen very differently than do mimecan and decorin. PMID:21335557

  2. Effects of partial hydrolysis and subsequent cross-linking on wheat gluten physicochemical properties and structure.

    PubMed

    Wang, Kaiqiang; Luo, Shuizhong; Cai, Jing; Sun, Qiaoqiao; Zhao, Yanyan; Zhong, Xiyang; Jiang, Shaotong; Zheng, Zhi

    2016-04-15

    The rheological behavior and thermal properties of wheat gluten following partial hydrolysis using Alcalase and subsequent microbial transglutaminase (MTGase) cross-linking were investigated. The wheat gluten storage modulus (G') and thermal denaturation temperature (Tg) were significantly increased from 2.26 kPa and 54.43°C to 7.76 kPa and 57.69°C, respectively, by the combined action of partial hydrolysis (DH 0.187%) and cross-linking. The free SH content, surface hydrophobicity, and secondary structure analysis suggested that an appropriate degree of Alcalase-based hydrolysis allowed the compact wheat gluten structure to unfold, increasing the β-sheet content and surface hydrophobicity. This improved its molecular flexibility and exposed additional glutamine sites for MTGase cross-linking. SEM images showed that a compact 3D network formed, while SDS-PAGE profiles revealed that excessive hydrolysis resulted in high-molecular-weight subunits degrading to smaller peptides, unsuitable for cross-linking. It was also demonstrated that the combination of Alcalase-based partial hydrolysis with MTGase cross-linking might be an effective method for modifying wheat gluten rheological behavior and thermal properties.

  3. Cross-Linking Poly(lactic acid) Film Surface by Neutral Hyperthermal Hydrogen Molecule Bombardment.

    PubMed

    Du, Wangli; Shao, Hong; He, Zhoukun; Tang, Changyu; Liu, Yu; Shen, Tao; Zhu, Yan; Lau, Woon-ming; Hui, David

    2015-12-16

    Constructing a dense cross-linking layer on a polymer film surface is a good way to improve the water resistance of poly(lactic acid) (PLA). However, conventional plasma treatments have failed to achieve the aim as a result of the unavoidable surface damage arising from the charged species caused by the uncontrolled high energy coming from colliding ions and electrons. In this work, we report a modified plasma method called hyperthermal hydrogen-induced cross-linking (HHIC) technology to construct a dense cross-linking layer on PLA film surfaces. This method produces energy-controlled neutral hyperthermal hydrogen, which selectively cleaves C-H bonds by molecule collision from the PLA film without breaking other bonds (e.g., C-C bonds in the polymer backbone), and results in subsequent cross-linking of the carbon radicals generated from the organic molecules. The formation of a dense cross-linking layer can serve as a barrier layer to significantly improve both the hydrophobicity and water vapor barrier property of the PLA film. Because of the advantage of selective cleavage of C-H bonds by HHIC treatment, the original physical properties (e.g., mechanical strength and light transmittance) of the PLA films are well-preserved. PMID:26594874

  4. Synthesis, Characterization, and Antibacterial Activity of Cross-Linked Chitosan-Glutaraldehyde

    PubMed Central

    Li, Bin; Shan, Chang-Lin; Zhou, Qing; Fang, Yuan; Wang, Yang-Li; Xu, Fei; Han, Li-Rong; Ibrahim, Muhammad; Guo, Long-Biao; Xie, Guan-Lin; Sun, Guo-Chang

    2013-01-01

    This present study deals with synthesis, characterization and antibacterial activity of cross-linked chitosan-glutaraldehyde. Results from this study indicated that cross-linked chitosan-glutaraldehyde markedly inhibited the growth of antibiotic-resistant Burkholderia cepacia complex regardless of bacterial species and incubation time while bacterial growth was unaffected by solid chitosan. Furthermore, high temperature treated cross-linked chitosan-glutaraldehyde showed strong antibacterial activity against the selected strain 0901 although the inhibitory effects varied with different temperatures. In addition, physical-chemical and structural characterization revealed that the cross-linking of chitosan with glutaraldehyde resulted in a rougher surface morphology, a characteristic Fourier transform infrared (FTIR) band at 1559 cm−1, a specific X-ray diffraction peak centered at 2θ = 15°, a lower contents of carbon, hydrogen and nitrogen, and a higher stability of glucose units compared to chitosan based on scanning electron microscopic observation, FTIR spectra, X-ray diffraction pattern, as well as elemental and thermo gravimetric analysis. Overall, this study indicated that cross-linked chitosan-glutaraldehyde is promising to be developed as a new antibacterial drug. PMID:23670533

  5. Surface characteristics determining the cell compatibility of ionically cross-linked alginate gels.

    PubMed

    Machida-Sano, Ikuko; Hirakawa, Makoto; Matsumoto, Hiroki; Kamada, Mitsuki; Ogawa, Sakito; Satoh, Nao; Namiki, Hideo

    2014-04-01

    In this study we investigated differences in the characteristics determining the suitability of five types of ion (Fe(3+), Al(3+), Ca(2+), Ba(2+) and Sr(2+))-cross-linked alginate films as culture substrates for cells. Human dermal fibroblasts were cultured on each alginate film to examine the cell affinity of the alginates. Since cell behavior on the surface of a material is dependent on the proteins adsorbed to it, we investigated the protein adsorption ability and surface features (wettability, morphology and charge) related to the protein adsorption abilities of alginate films. We observed that ferric, aluminum and barium ion-cross-linked alginate films supported better cell growth and adsorbed higher amounts of serum proteins than other types. Surface wettability analysis demonstrated that ferric and aluminum ion-cross-linked alginates had moderate hydrophilic surfaces, while other types showed highly hydrophilic surfaces. The roughness was exhibited only on barium ion-cross-linked alginate surface. Surface charge measurements revealed that alginate films had negatively charged surfaces, and showed little difference among the five types of gel. These results indicate that the critical factors of ionically cross-linked alginate films determining the protein adsorption ability required for their cell compatibility may be surface wettability and morphology. PMID:24496019

  6. Cross-Linking Poly(lactic acid) Film Surface by Neutral Hyperthermal Hydrogen Molecule Bombardment.

    PubMed

    Du, Wangli; Shao, Hong; He, Zhoukun; Tang, Changyu; Liu, Yu; Shen, Tao; Zhu, Yan; Lau, Woon-ming; Hui, David

    2015-12-16

    Constructing a dense cross-linking layer on a polymer film surface is a good way to improve the water resistance of poly(lactic acid) (PLA). However, conventional plasma treatments have failed to achieve the aim as a result of the unavoidable surface damage arising from the charged species caused by the uncontrolled high energy coming from colliding ions and electrons. In this work, we report a modified plasma method called hyperthermal hydrogen-induced cross-linking (HHIC) technology to construct a dense cross-linking layer on PLA film surfaces. This method produces energy-controlled neutral hyperthermal hydrogen, which selectively cleaves C-H bonds by molecule collision from the PLA film without breaking other bonds (e.g., C-C bonds in the polymer backbone), and results in subsequent cross-linking of the carbon radicals generated from the organic molecules. The formation of a dense cross-linking layer can serve as a barrier layer to significantly improve both the hydrophobicity and water vapor barrier property of the PLA film. Because of the advantage of selective cleavage of C-H bonds by HHIC treatment, the original physical properties (e.g., mechanical strength and light transmittance) of the PLA films are well-preserved.

  7. Carbon Nanofiber Incorporated Silica Based Aerogels with Di-Isocyanate Cross-Linking

    NASA Technical Reports Server (NTRS)

    Vivod, Stephanie L.; Meador, Mary Ann B.; Capadona, Lynn A.; Sullivan, Roy M.; Ghosn, Louis J.; Clark, Nicholas; McCorkle, Linda

    2008-01-01

    Lightweight materials with excellent thermal insulating properties are highly sought after for a variety of aerospace and aeronautic applications. (1) Silica based aerogels with their high surface area and low relative densities are ideal for applications in extreme environments such as insulators for the Mars Rover battery. (2) However, the fragile nature of aerogel monoliths prevents their widespread use in more down to earth applications. We have shown that the fragile aerogel network can be cross-linked with a di-isocyanate via amine decorated surfaces to form a conformal coating. (3) This coating reinforces the neck regions between secondary silica particles and significantly strengthens the aerogels with only a small effect on density or porosity. Scheme 1 depicts the cross-linking reaction with the di-isocyanate and exhibits the stages that result in polymer cross-linked aerogel monoliths.

  8. 21 CFR 177.2420 - Polyester resins, cross-linked.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... following prescribed conditions: (a) The cross-linked polyester resins are produced by the condensation of... fiber Polyester fiber produced by the condensation of one or more of the acids listed in paragraph...

  9. Localization of the dominant non-enzymatic intermolecular cross-linking sites on fibrous collagen.

    PubMed

    Chiue, Hiroko; Yamazoye, Tsutako; Matsumura, Sueo

    2015-06-01

    Previous studies have shown that fibrous collagen undergoes intermolecular cross-linking at multiple sites of the elongated triple-helical regions among adjacent juxtaposed collagen molecules on incubation with a very high concentration of reducing sugar such as 200 mM ribose, and the similarity of the changes in its physicochemical properties to that of senescent collagen aged in vivo has been emphasized. In the present study, however, it was found that when incubated with less than 30 mM ribose, fibrous collagen underwent intermolecular cross-linking primarily between the telopeptide region of a collagen molecule and the triple-helical region of another adjacent collagen molecule, and intermolecular cross-linking between the triple-helical regions of adjacent collagen molecules was very small. Physiological significance of the previous studies thus needs to be reevaluated.

  10. Cross-linking and the molecular packing of corneal collagen

    NASA Technical Reports Server (NTRS)

    Yamauchi, M.; Chandler, G. S.; Tanzawa, H.; Katz, E. P.

    1996-01-01

    We have quantitatively characterized, for the first time, the cross-linking in bovine cornea collagen as a function of age. The major iminium reducible cross-links were dehydro-hydroxylysinonorleucine (deH-HLNL) and dehydro-histidinohydroxymerodesmosine (deH-HHMD). The former rapidly diminished after birth; however, the latter persisted in mature animals at a level of 0.3 - 0.4 moles/mole of collagen. A nonreducible cross-link, histidinohydroxylysinonorleucine (HHL), previously found only in skin, was also found to be a major mature cross-link in cornea. The presence of HHL indicates that cornea fibrils have a molecular packing similar to skin collagen. However, like deH-HHMD, the HHL content in corneal fibrils only reaches a maximum value with time about half that of skin. These data suggest that the corneal fibrils are comprised of discrete filaments that are internally stabilized by HHL and deH-HHMD cross-links. This pattern of intermolecular cross-linking would facilitate the special collagen swelling property required for corneal transparency.

  11. Proteomic analysis of DNA-protein cross-linking by antitumor nitrogen mustards.

    PubMed

    Loeber, Rachel L; Michaelson-Richie, Erin D; Codreanu, Simona G; Liebler, Daniel C; Campbell, Colin R; Tretyakova, Natalia Y

    2009-06-01

    Nitrogen mustards are antitumor agents used clinically for the treatment of a variety of neoplastic conditions. The biological activity of these compounds is typically attributed to their ability to induce DNA-DNA cross-links. However, nitrogen mustards are able to produce a variety of other lesions, including DNA-protein cross-links (DPCs). DPCs induced by nitrogen mustards are not well-characterized because of their structural complexity and the insufficient specificity and sensitivity of previously available experimental methodologies. In the present work, affinity capture methodology in combination with mass spectrometry-based proteomics was employed to identify mammalian proteins that form covalent cross-links to DNA in the presence of a simple nitrogen mustard, mechlorethamine. Following incubation of 5'-biotinylated DNA duplexes with nuclear protein extracts, DPCs were isolated by affinity capture on streptavidin beads, and the cross-linked proteins were identified by high-performance liquid chromatography-electrospray tandem mass spectrometry of tryptic peptides. Mechlorethamine treatment resulted in the formation of DPCs with nuclear proteins involved in chromatin regulation, DNA replication and repair, cell cycle control, transcriptional regulation, and cell architecture. Western blot analysis was employed to confirm protein identification and to quantify the extent of drug-mediated cross-linking. Mass spectrometry of amino acid-nucleobase conjugates found in total proteolytic digests revealed that mechlorethamine-induced DPCs are formed via alkylation of the N7 position of guanine in duplex DNA and cysteine thiols within the proteins to give N-[2-[S-cysteinyl]ethyl]-N-[2-(guan-7-yl)ethyl]methylamine lesions. The results described herein suggest that cellular exposure to nitrogen mustards leads to cross-linking of a large spectrum of nuclear proteins to chromosomal DNA, potentially contributing to the cytotoxic and mutagenic effects of these drugs.

  12. Aggressive wear testing of a cross-linked polyethylene in total knee arthroplasty.

    PubMed

    Muratoglu, Orhun K; Bragdon, Charles R; O'Connor, Daniel O; Perinchief, Rebecca S; Jasty, Murali; Harris, William H

    2002-11-01

    Recently, highly cross-linked polyethylenes with high wear and oxidation resistance have been developed. These materials may improve the in vivo performance of polyethylene components used in total knee arthroplasty. To date, the in vitro knee wear testing of these new polyethylenes has been done under conditions of normal gait. However, their critical assessment also must include aggressive in vitro fatigue and wear testing. In the current study, an aggressive in vitro knee wear and device fatigue model simulating a tight posterior cruciate ligament balance during stair climbing was developed and used to assess the performance of one type of highly cross-linked polyethylene tibial knee insert in comparison with conventional polyethylene. The highly cross-linked inserts and one group of conventional inserts were tested after sterilization. One additional group of conventional inserts was subjected to accelerated aging before testing. The articular surfaces of the inserts were inspected visually for surface delamination, cracking, and pitting at regular intervals during the test. The aged conventional polyethylene inserts showed extensive delamination and cracking as early as 50,000 cycles. In contrast, the unaged conventional and highly cross-linked polyethylene inserts did not show any subsurface cracking or delamination at 0.5 million cycles. The appearance and location of delamination that occurred in the aged conventional inserts tested with the current model previously have been observed in vivo with posterior cruciate-sparing design knee arthroplasties with a tight posterior cruciate ligament.

  13. Probing Protein 3D Structures and Conformational Changes Using Electrochemistry-Assisted Isotope Labeling Cross-Linking Mass Spectrometry.

    PubMed

    Zheng, Qiuling; Zhang, Hao; Wu, Shiyong; Chen, Hao

    2016-05-01

    This study presents a new chemical cross-linking mass spectrometry (MS) method in combination with electrochemistry and isotope labeling strategy for probing both protein three-dimensional (3D) structures and conformational changes. For the former purpose, the target protein/protein complex is cross-linked with equal mole of premixed light and heavy isotope labeled cross-linkers carrying electrochemically reducible disulfide bonds (i.e., DSP-d0 and DSP-d8 in this study, DSP = dithiobis[succinimidyl propionate]), digested and then electrochemically reduced followed with online MS analysis. Cross-links can be quickly identified because of their reduced intensities upon electrolysis and the presence of doublet isotopic peak characteristics. In addition, electroreduction converts cross-links into linear peptides, facilitating MS/MS analysis to gain increased information about their sequences and modification sites. For the latter purpose of probing protein conformational changes, an altered procedure is adopted, in which the protein in two different conformations is cross-linked using DSP-d0 and DSP-d8 separately, and then the two protein samples are mixed in 1:1 molar ratio. The merged sample is subjected to digestion and electrochemical mass spectrometric analysis. In such a comparative cross-linking experiment, cross-links could still be rapidly recognized based on their responses to electrolysis. More importantly, the ion intensity ratios of light and heavy isotope labeled cross-links reveal the conformational changes of the protein, as exemplified by examining the effect of Ca(2+) on calmodulin conformation alternation. This new cross-linking MS method is fast and would have high value in structural biology. Graphical Abstract ᅟ. PMID:26902947

  14. Probing Protein 3D Structures and Conformational Changes Using Electrochemistry-Assisted Isotope Labeling Cross-Linking Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Zheng, Qiuling; Zhang, Hao; Wu, Shiyong; Chen, Hao

    2016-05-01

    This study presents a new chemical cross-linking mass spectrometry (MS) method in combination with electrochemistry and isotope labeling strategy for probing both protein three-dimensional (3D) structures and conformational changes. For the former purpose, the target protein/protein complex is cross-linked with equal mole of premixed light and heavy isotope labeled cross-linkers carrying electrochemically reducible disulfide bonds (i.e., DSP-d0 and DSP-d8 in this study, DSP = dithiobis[succinimidyl propionate]), digested and then electrochemically reduced followed with online MS analysis. Cross-links can be quickly identified because of their reduced intensities upon electrolysis and the presence of doublet isotopic peak characteristics. In addition, electroreduction converts cross-links into linear peptides, facilitating MS/MS analysis to gain increased information about their sequences and modification sites. For the latter purpose of probing protein conformational changes, an altered procedure is adopted, in which the protein in two different conformations is cross-linked using DSP-d0 and DSP-d8 separately, and then the two protein samples are mixed in 1:1 molar ratio. The merged sample is subjected to digestion and electrochemical mass spectrometric analysis. In such a comparative cross-linking experiment, cross-links could still be rapidly recognized based on their responses to electrolysis. More importantly, the ion intensity ratios of light and heavy isotope labeled cross-links reveal the conformational changes of the protein, as exemplified by examining the effect of Ca2+ on calmodulin conformation alternation. This new cross-linking MS method is fast and would have high value in structural biology.

  15. Influence of cross-link structure, density and mechanical properties in the mesoscale deformation mechanisms of collagen fibrils.

    PubMed

    Depalle, Baptiste; Qin, Zhao; Shefelbine, Sandra J; Buehler, Markus J

    2015-12-01

    Collagen is a ubiquitous protein with remarkable mechanical properties. It is highly elastic, shows large fracture strength and enables substantial energy dissipation during deformation. Most of the connective tissue in humans consists of collagen fibrils composed of a staggered array of tropocollagen molecules, which are connected by intermolecular cross-links. In this study, we report a three-dimensional coarse-grained model of collagen and analyze the influence of enzymatic cross-links on the mechanics of collagen fibrils. Two representatives immature and mature cross-links are implemented in the mesoscale model using a bottom-up approach. By varying the number, type and mechanical properties of cross-links in the fibrils and performing tensile test on the models, we systematically investigate the deformation mechanisms of cross-linked collagen fibrils. We find that cross-linked fibrils exhibit a three phase behavior, which agrees closer with experimental results than what was obtained using previous models. The fibril mechanical response is characterized by: (i) an initial elastic deformation corresponding to the collagen molecule uncoiling, (ii) a linear regime dominated by molecule sliding and (iii) the second stiffer elastic regime related to the stretching of the backbone of the tropocollagen molecules until the fibril ruptures. Our results suggest that both cross-link density and type dictate the stiffness of large deformation regime by increasing the number of interconnected molecules while cross-links mechanical properties determine the failure strain and strength of the fibril. These findings reveal that cross-links play an essential role in creating an interconnected fibrillar material of tunable toughness and strength.

  16. Probing Protein 3D Structures and Conformational Changes Using Electrochemistry-Assisted Isotope Labeling Cross-Linking Mass Spectrometry.

    PubMed

    Zheng, Qiuling; Zhang, Hao; Wu, Shiyong; Chen, Hao

    2016-05-01

    This study presents a new chemical cross-linking mass spectrometry (MS) method in combination with electrochemistry and isotope labeling strategy for probing both protein three-dimensional (3D) structures and conformational changes. For the former purpose, the target protein/protein complex is cross-linked with equal mole of premixed light and heavy isotope labeled cross-linkers carrying electrochemically reducible disulfide bonds (i.e., DSP-d0 and DSP-d8 in this study, DSP = dithiobis[succinimidyl propionate]), digested and then electrochemically reduced followed with online MS analysis. Cross-links can be quickly identified because of their reduced intensities upon electrolysis and the presence of doublet isotopic peak characteristics. In addition, electroreduction converts cross-links into linear peptides, facilitating MS/MS analysis to gain increased information about their sequences and modification sites. For the latter purpose of probing protein conformational changes, an altered procedure is adopted, in which the protein in two different conformations is cross-linked using DSP-d0 and DSP-d8 separately, and then the two protein samples are mixed in 1:1 molar ratio. The merged sample is subjected to digestion and electrochemical mass spectrometric analysis. In such a comparative cross-linking experiment, cross-links could still be rapidly recognized based on their responses to electrolysis. More importantly, the ion intensity ratios of light and heavy isotope labeled cross-links reveal the conformational changes of the protein, as exemplified by examining the effect of Ca(2+) on calmodulin conformation alternation. This new cross-linking MS method is fast and would have high value in structural biology. Graphical Abstract ᅟ.

  17. Influence of cross-link structure, density and mechanical properties in the mesoscale deformation mechanisms of collagen fibrils

    PubMed Central

    Depalle, Baptiste; Qin, Zhao; Shefelbine, Sandra J.; Buehler, Markus J.

    2015-01-01

    Collagen is a ubiquitous protein with remarkable mechanical properties. It is highly elastic, shows large fracture strength and enables substantial energy dissipation during deformation. Most of the connective tissue in humans consists of collagen fibrils composed of a staggered array of tropocollagen molecules, which are connected by intermolecular cross-links. In this study, we report a three-dimensional coarse-grained model of collagen and analyze the influence of enzymatic cross-links on the mechanics of collagen fibrils. Two representatives immature and mature cross-links are implemented in the mesoscale model using a bottom-up approach. By varying the number, type and mechanical properties of cross-links in the fibrils and performing tensile test on the models, we systematically investigate the deformation mechanisms of cross-linked collagen fibrils. We find that cross-linked fibrils exhibit a three phase behavior, which agrees closer with experimental results than what was obtained using previous models. The fibril mechanical response is characterized by: (i) an initial elastic deformation corresponding to the collagen molecule uncoiling, (ii) a linear regime dominated by molecule sliding and (iii) the second stiffer elastic regime related to the stretching of the backbone of the tropocollagen molecules until the fibril ruptures. Our results suggest that both cross-link density and type dictate the stiffness of large deformation regime by increasing the number of interconnected molecules while cross-links mechanical properties determine the failure strain and strength of the fibril. These findings reveal that cross-links play an essential role in creating an interconnected fibrillar material of tunable toughness and strength. PMID:25153614

  18. Light-scattering thermal cross-linking material using morphology of nanoparticle free polymer blends

    NASA Astrophysics Data System (ADS)

    Takei, Satoshi

    2015-03-01

    A newly light-scattering thermal cross-linking material based on self-assembly for forming the morphology of nanoparticle free polymer blends was reported. The material design concept to use light-scattering thermal cross-linking material with high uniformity of light on display panel from LED for high quality such as brightness and evenness, mechanical properties, and gas and water barrier properties. The high light scattering rate of 8 % at 350-450 nm of wavelength, fast cure film at 140 ºC and 120 s, and thermal stability at 190 ºC in bake condition for high productivity were indicated in the light-scattering thermal cross-linking material using the nanoparticle free polymers with carboxylic acid functional groups. These novel system using morphology of nanoparticle free polymer blends in light-scattering package material for a LCD using LED was a valuable approach to the design of material formulations for newly light-scattering thermal cross-linking material.

  19. Spectroscopic characterization of collagen cross-links in bone

    NASA Technical Reports Server (NTRS)

    Paschalis, E. P.; Verdelis, K.; Doty, S. B.; Boskey, A. L.; Mendelsohn, R.; Yamauchi, M.

    2001-01-01

    Collagen is the most abundant protein of the organic matrix in mineralizing tissues. One of its most critical properties is its cross-linking pattern. The intermolecular cross-linking provides the fibrillar matrices with mechanical properties such as tensile strength and viscoelasticity. In this study, Fourier transform infrared (FTIR) spectroscopy and FTIR imaging (FTIRI) analyses were performed in a series of biochemically characterized samples including purified collagen cross-linked peptides, demineralized bovine bone collagen from animals of different ages, collagen from vitamin B6-deficient chick homogenized bone and their age- and sex-matched controls, and histologically stained thin sections from normal human iliac crest biopsy specimens. One region of the FTIR spectrum of particular interest (the amide I spectral region) was resolved into its underlying components. Of these components, the relative percent area ratio of two subbands at approximately 1660 cm(-1) and approximately 1690 cm(-1) was related to collagen cross-links that are abundant in mineralized tissues (i.e., pyridinoline [Pyr] and dehydrodihydroxylysinonorleucine [deH-DHLNL]). This study shows that it is feasible to monitor Pyr and DHLNL collagen cross-links spatial distribution in mineralized tissues. The spectroscopic parameter established in this study may be used in FTIRI analyses, thus enabling the calculation of relative Pyr/DHLNL amounts in thin (approximately 5 microm) calcified tissue sections with a spatial resolution of approximately 7 microm.

  20. Collagen/elastin hydrogels cross-linked by squaric acid.

    PubMed

    Skopinska-Wisniewska, J; Kuderko, J; Bajek, A; Maj, M; Sionkowska, A; Ziegler-Borowska, M

    2016-03-01

    Hydrogels based on collagen and elastin are very valuable materials for medicine and tissue engineering. They are biocompatible; however their mechanical properties and resistance for enzymatic degradation need to be improved by cross-linking. Up to this point many reagents have been tested but more secure reactants are still sought. Squaric acid (SqAc), 3,4-dihydroxy 3-cyclobutene 1,2-dione, is a strong, cyclic acid, which reacts easily with amine groups. The properties of hydrogels based on collagen/elastin mixtures (95/5, 90/10) containing 5%, 10% and 20% of SqAc and neutralized via dialysis against deionized water were tested. Cross-linked, 3-D, transparent hydrogels were created. The cross-linked materials are stiffer and more resistant to enzymatic degradation than those that are unmodified. The pore size, swelling ability and surface polarity are reduced due to 5% and 10% of SqAc addition. At the same time, the cellular response is not significantly affected by the cross-linking. Therefore, squaric acid would be regarded as a safe, effective cross-linking agent.

  1. Cross-links between stereocilia in the guinea pig cochlea.

    PubMed

    Furness, D N; Hackney, C M

    1985-05-01

    Cross-links between stereocilia on guinea pig cochlear hair cells have been examined using high resolution scanning (SEM) and transmission electron microscopy (TEM), confirming recent descriptions of these structures. Links from the tips of shorter stereocilia to the sides of the adjacent taller stereocilia (upward-pointing links), between stereocilia of the same row (side-to-side links) and between adjacent rows (row-to-row links), have been observed on inner and outer hair cells. These links have been seen in material fixed using (1) glutaraldehyde only, (2) glutaraldehyde/osmium and (3) glutaraldehyde/osmium/thiocarbohydrazide (a technique which makes gold coating unnecessary). Upward-pointing links were seen less frequently, and the surfaces of stereocilia and microvilli were smoother after fixation (3) compared with fixations (1) and (2) in which they were usually roughened in appearance. In TEM, side-to-side and row-to-row links form a regular lattice between stereocilia, and consist of a number of strands. Upward-pointing links consist of a single strand, the ends of which are associated with electron-dense material. This lies between the stereociliary membrane and the actin filament bundle, at the tip of the shorter stereocilium and the side of the taller stereocilium.

  2. Synthesis and Properties of Cross-Linked Polyamide Aerogels

    NASA Technical Reports Server (NTRS)

    Williams, Jarrod C.; Meador, Mary Ann; McCorkle, Linda

    2015-01-01

    We report the first synthesis of cross-linked polyamide aerogels through step growth polymerization using a combination of diamines, diacid chloride and triacid chloride. Polyamide oligomers endcapped with amines are prepared as stable solutions in N-methylpyrrolidinone from several different diamine precursors and 1,3-benzenedicarbonyl dichloride. Addition of 1,3,5-benzenetricarbonyl trichloride yields gels which form in under five minutes according to the scheme shown. Solvent exchange of the gels into ethanol, followed by drying using supercritical CO2 extraction gives colorless aerogels with densities around 0.1 to 0.2 gcm3. Thicker monolithes of the polyamide aerogels are stiff and strong, while thin films of certain formulations are highly flexible, durable, and even translucent. These materials may have use as insulation for deployable space structures, rovers, habitats or extravehicular activity suits as well as in many terrestrial applications. Strucure property relationships of the aerogels, including surface area, mechanical properties, and thermal conductivity will be discussed.

  3. Extreme dryness and DNA-protein cross-links

    NASA Astrophysics Data System (ADS)

    Bieger-Dose, A.; Dose, K.; Meffert, R.; Mehler, M.; Risi, S.

    Exposure of fungal conidia (Aspergillus ochraceus) or spores of Bacillus subtilis to extreme dryness or vacuum induces DNA lesions, including strand breaks and the formation of DNA-protein cross-links. In wet cells only a small amount of protein is bound to DNA, but exposure to conditions of lowered water activity results in an increasing number of cross-links between DNA and proteins. In fungal conidia these cross-links are detected after selective iodination (125J) of the DNA-bound proteins followed by gel electrophoresis and subsequent autoradiography. Another approach is the labelling of DNA with 32p by means of nick translation and the detection of differences in the electrophoretic mobility of DNA before and after digestion with proteinase K of proteins bound to DNA.

  4. Enhanced retention of encapsulated ions in cross-linked polymersomes.

    PubMed

    Wang, Guanglin; Hoornweg, Arentien; Wolterbeek, Hubert T; Franken, Linda E; Mendes, Eduardo; Denkova, Antonia G

    2015-03-19

    Polymer vesicles (polymersomes) composed of poly(butadiene-b-poly(ethylene oxide)) (PB-b-PEO) are known for their stability and limited permeability. However, when these vesicles are diluted, substances, such as ions, encapsulated in the aqueous cavity can be released due to vesicle disruption. In previous studies, we have shown that these vesicles can be loaded efficiently with sufficient quantities of radionuclides to allow application in radionuclide therapy and pharmacokinetics evaluation, provided that there is no loss of the encapsulated radionuclides when diluted in the bloodstream. In this paper, in order to stabilize the carriers, we propose to cross-link the hydrophobic part of the polymersome membrane and to investigate whether such cross-linking induced by γ radiation can enhance the retention of ions (radionuclides). Retention of ions encapsulated in the lumen in such cross-linked carriers has not been previously quantitatively evaluated, although it is of ultimate importance in any medical application. Here, we also investigate how cross-linking affects the transport of radionuclides (loading) through the membrane of the vesicles. The integrity of the vesicles as a function of the radiation dose is also investigated, including morphological changes. The results show that cross-linking hinders the transport of ions through the membrane, which also leads to higher retention of ions encapsulated prior to cross-linking in the vesicles. Electron micrographs show that the shape of the polymersomes is not greatly affected by γ radiation when left in the original solvent (phosphate buffered saline (PBS) or Milli-Q water), but when diluted in a good solvent for both blocks, i.e., tetrahydrofuran (THF), disintegration of the vesicles and the appearance of droplet-like structures is observed, which had not been reported previously. The results of the present study help to formulate polymersomes as carriers for radionuclide therapy, demonstrating a way to

  5. Swelling of cross-linked polystyrene spheres in toluene vapor

    SciTech Connect

    Zhang, R.; Graf, K.; Berger, R.

    2006-11-27

    The swelling behavior of individual micron-sized polystyrene (PS) spheres in toluene vapor was studied via mass loading by means of micromechanical cantilever sensors. For 4%-8% cross-linked PS a mass increase of 180% in saturated toluene vapor was measured. The mass of the swollen PS sphere decreases with increasing exposure time to ultraviolet light. In addition, the swelling response is significantly different between the first and the second exposure to toluene vapor. This is attributed to the formation of a cross-linked shell at the surface of the PS spheres. Shape persistent parts were observed for locally irradiated PS spheres.

  6. Cross-Linked Nanotube Materials with Variable Stiffness Tethers

    NASA Technical Reports Server (NTRS)

    Frankland, Sarah-Jane V.; Odegard, Gregory M.; Herzog, Matthew N.; Gates, Thomas S.; Fay, Catherine C.

    2004-01-01

    The constitutive properties of a cross-linked single-walled carbon nanotube material are predicted with a multi-scale model. The material is modeled as a transversely isotropic solid using concepts from equivalent-continuum modeling. The elastic constants are determined using molecular dynamics simulation. Some parameters of the molecular force field are determined specifically for the cross-linker from ab initio calculations. A demonstration of how the cross-linked nanotubes may affect the properties of a nanotube/polyimide composite is included using a micromechanical analysis.

  7. Effect of dual modification with hydroxypropylation and cross-linking on physicochemical properties of taro starch.

    PubMed

    Hazarika, Bidyut Jyoti; Sit, Nandan

    2016-04-20

    Dual modification of taro starch by hydroxypropylation and cross-linking was carried out and the properties of the modified starches were investigated. Two different levels of hydroxypropylation (5 and 10%) and cross-linking (0.05 and 0.10%) were used in different sequences. The amylose contents of the starch decreased due to single and dual modification. For the dual-modified starches, the swelling, solubility and clarity was found to increase with level of hydroxypropylation and decrease with level of cross-linking. The freeze-thaw stability of the dual-modified starches was also affected by the sequence of modification. The viscosities of the cross-linked and dual-modified starches were more than native and hydroxypropylated starches. The firmness of the dual-modified starches was also higher than native and single modified starches. The dual-modified starches have benefits of both type of modifications and could be used for specific purposes e.g. food products requiring high viscosity as well as freeze-thaw stability. PMID:26876854

  8. Vitamin C hinders radiation cross-linking in aqueous poly(vinyl alcohol) solutions

    NASA Astrophysics Data System (ADS)

    Oral, Ebru; Bodugoz-Senturk, Hatice; Macias, Celia; Muratoglu, Orhun K.

    2007-12-01

    Poly(vinyl alcohol) (PVA) is a promising semi-crystalline material for biomedical applications. It is soluble in water and can be formed into hydrogels by freezing and thawing or crystallizing from an aqueous theta solution such as that of polyethylene glycol (PEG). Radiation cross-linking caused by sterilization or high dose irradiation of concentrated PVA solutions could compromise some properties of these hydrogels. Therefore, we hypothesized that radiation cross-linking of PVA solutions and PVA-PEG theta gels could be prevented by using the antioxidant vitamin C as an anticross-linking agent. Our hypothesis tested positive. Vitamin C concentrations of 0.75 and 4.5 mol/mol of PVA repeating unit could prevent cross-linking in 17.5 wt/v% PVA solutions made with PVA molecular weight of 115,000 g/mol irradiated to 25 and 100 kGy, respectively. Vitamin C also prevented cross-linking in 25 kGy irradiated PVA-PEG theta gels containing up to 5 wt% PEG and decreased the viscosity of those up to 39 wt%.

  9. Effect of dual modification with hydroxypropylation and cross-linking on physicochemical properties of taro starch.

    PubMed

    Hazarika, Bidyut Jyoti; Sit, Nandan

    2016-04-20

    Dual modification of taro starch by hydroxypropylation and cross-linking was carried out and the properties of the modified starches were investigated. Two different levels of hydroxypropylation (5 and 10%) and cross-linking (0.05 and 0.10%) were used in different sequences. The amylose contents of the starch decreased due to single and dual modification. For the dual-modified starches, the swelling, solubility and clarity was found to increase with level of hydroxypropylation and decrease with level of cross-linking. The freeze-thaw stability of the dual-modified starches was also affected by the sequence of modification. The viscosities of the cross-linked and dual-modified starches were more than native and hydroxypropylated starches. The firmness of the dual-modified starches was also higher than native and single modified starches. The dual-modified starches have benefits of both type of modifications and could be used for specific purposes e.g. food products requiring high viscosity as well as freeze-thaw stability.

  10. 1,2,3,4-Diepoxybutane-Induced DNA-Protein Cross-Linking in Human Fibrosarcoma (HT1080) Cells

    PubMed Central

    Gherezghiher, Teshome B.; Ming, Xun; Villalta, Peter; Campbell, Colin; Tretyakova, Natalia Y.

    2013-01-01

    1,2,3,4-diepoxybutane (DEB) is the key carcinogenic metabolite of 1,3-butadiene (BD), an important industrial and environmental chemical present in urban air and in cigarette smoke. DEB is a genotoxic bis-electrophile capable of cross-linking cellular biomolecules to form DNA-DNA and DNA-protein cross-links (DPCs). In the present work, mass spectrometry-based proteomics was employed to characterize DEB-mediated DNA-protein cross-linking in human fibrosarcoma (HT1080) cells. Over 150 proteins including histones, high mobility group proteins, transcription factors, splicing factors, and tubulins were found among those covalently cross-linked to chromosomal DNA in the presence of DEB. A large portion of the cross-linked proteins are known factors involved in DNA binding, transcriptional regulation, cell signaling, DNA repair, and DNA damage response. HPLC-ESI+-MS/MS analysis of total proteolytic digests revealed the presence of 1-(S-cysteinyl)-4-(guan-7-yl)-2,3-butanediol conjugates, confirming that DEB forms DPCs between cysteine thiols within proteins and the N-7 guanine positions within DNA. However, relatively high concentrations of DEB were required to achieve significant DPC formation, indicating that it is a poor cross-linking agent as compared to antitumor nitrogen mustards and platinum compounds. PMID:23506368

  11. Preliminary characterization of genipin-cross-linked silk sericin/poly(vinyl alcohol) films as two-dimensional wound dressings for the healing of superficial wounds.

    PubMed

    Siritientong, Tippawan; Ratanavaraporn, Juthamas; Srichana, Teerapol; Aramwit, Pornanong

    2013-01-01

    The genipin-cross-linked silk sericin/poly(vinyl alcohol) (PVA) films were developed aiming to be applied as two-dimensional wound dressings for the treatment of superficial wounds. The effects of genipin cross-linking concentration on the physical and biological properties of the films were investigated. The genipin-cross-linked silk sericin/PVA films showed the increased surface density, tensile strength, and percentage of elongation, but decreased percentage of light transmission, water vapor transmission rate, and water swelling, compared to the non-cross-linked films. This explained that the cross-linking bonds between genipin and silk sericin would reduce the mobility of molecular chains within the films, resulting in the more rigid molecular structure. Silk sericin was released from the genipin-cross-linked films in a sustained manner. In addition, either L929 mouse fibroblast or HaCat keratinocyte cells showed high percentage of viability when cultured on the silk sericin/PVA films cross-linked with 0.075 and 0.1% w/v genipin. The in vivo safety test performed according to ISO 10993-6 confirmed that the genipin-cross-linked silk sericin/PVA films were safe for the medical usages. The efficacy of the films for the treatment of superficial skin wounds will be further investigated in vivo and clinically. The genipin-cross-linked silk sericin/PVA films would be promising choices of two-dimensional wound dressings for the treatment of superficial wounds.

  12. Tissue-specific distribution of cross-linked somatostatin receptor proteins in the rat.

    PubMed

    Srikant, C B; Murthy, K K; Patel, Y C

    1992-03-01

    Pharmacological studies have suggested that the somatostatin (SS) receptor is heterogeneous and exhibits SS-14-and SS-28-selective subtypes. Whether such subtypes arise from molecular heterogeneity of the receptor protein has not been definitively established. Previous reports characterizing the molecular properties of the SS receptor by the cross-linking approach have yielded divergent size estimates ranging from 27 kDa to 200 kDa. In order to resolve this discrepancy, as well as to determine whether SS-14 and SS-28 interact with specific receptor proteins, we have cross-linked radioiodinated derivatives of [125I-Tyr11]SS-14 (T*-SS-14) and [Leu8,D-Trp22,125I-Tyr25]SS-28 (LTT*-SS-28) to membrane SS receptors in rat brain, pituitary, exocrine pancreas and adrenal cortex using a number of chemical and photoaffinity cross-linking agents. The labelled cross-linked receptor proteins were analysed by SDS/PAGE under reducing conditions followed by autoradiography. Our findings indicate that the pattern of specifically labelled cross-linked SS receptor proteins is sensitive to the concentration of chemical cross-linking agents such as disuccinimidyl suberate and dithiobis-(succinimidyl propionate). Labelled high-molecular-mass complexes of cross-linked receptor-ligand proteins were observed only when high concentrations of these cross-linkers were employed. Using optimized low concentrations of cross-linkers, however, two major labelled bands of 58 +/- 3 kDa and 27 +/- 2 kDa were detected. These two bands were identified as specifically labelled SS receptor proteins subsequent to cross-linking with a number of photoaffinity cross-linking agents as well. We demonstrate here that the 58 kDa protein is the major SS receptor protein in the rat pituitary, adrenal and exocrine pancreas, whereas the 27 kDa moiety represents the principal form in the brain. Additionally, the presence of a minor specifically labelled band of 32 kDa was detected uniquely in the brain, and a minor

  13. Tissue-specific distribution of cross-linked somatostatin receptor proteins in the rat.

    PubMed Central

    Srikant, C B; Murthy, K K; Patel, Y C

    1992-01-01

    Pharmacological studies have suggested that the somatostatin (SS) receptor is heterogeneous and exhibits SS-14-and SS-28-selective subtypes. Whether such subtypes arise from molecular heterogeneity of the receptor protein has not been definitively established. Previous reports characterizing the molecular properties of the SS receptor by the cross-linking approach have yielded divergent size estimates ranging from 27 kDa to 200 kDa. In order to resolve this discrepancy, as well as to determine whether SS-14 and SS-28 interact with specific receptor proteins, we have cross-linked radioiodinated derivatives of [125I-Tyr11]SS-14 (T*-SS-14) and [Leu8,D-Trp22,125I-Tyr25]SS-28 (LTT*-SS-28) to membrane SS receptors in rat brain, pituitary, exocrine pancreas and adrenal cortex using a number of chemical and photoaffinity cross-linking agents. The labelled cross-linked receptor proteins were analysed by SDS/PAGE under reducing conditions followed by autoradiography. Our findings indicate that the pattern of specifically labelled cross-linked SS receptor proteins is sensitive to the concentration of chemical cross-linking agents such as disuccinimidyl suberate and dithiobis-(succinimidyl propionate). Labelled high-molecular-mass complexes of cross-linked receptor-ligand proteins were observed only when high concentrations of these cross-linkers were employed. Using optimized low concentrations of cross-linkers, however, two major labelled bands of 58 +/- 3 kDa and 27 +/- 2 kDa were detected. These two bands were identified as specifically labelled SS receptor proteins subsequent to cross-linking with a number of photoaffinity cross-linking agents as well. We demonstrate here that the 58 kDa protein is the major SS receptor protein in the rat pituitary, adrenal and exocrine pancreas, whereas the 27 kDa moiety represents the principal form in the brain. Additionally, the presence of a minor specifically labelled band of 32 kDa was detected uniquely in the brain, and a minor

  14. Characterization of a novel cross-linked lipase: impact of cross-linking on solubility and release from drug product.

    PubMed

    Hetrick, Evan M; Sperry, David C; Nguyen, Hung K; Strege, Mark A

    2014-04-01

    Liprotamase is a novel non-porcine pancreatic enzyme replacement therapy containing purified biotechnology-derived lipase, protease, and amylase together with excipients in a capsule formulation. To preserve the structural integrity and biological activity of lipase (the primary drug substance) through exposure of the drug product to the low-pH gastric environment, the enzyme was processed through the use of cross-linked enzyme crystal (CLEC) technology, making the lipase-CLEC drug substance insoluble under acidic conditions but fully soluble at neutral pH and in alkaline environments. In this report we characterize the degree of cross-linking for lipase-CLEC and demonstrate its impact on lipase-CLEC solubility and release from the drug product under relevant physiological pH conditions. Cross-linked lipase-CLEC was characterized via size exclusion chromatography (SEC) and capillary electrophoresis sodium dodecyl sulfate polyacrylamide gel electrophoresis (CE-SDS-PAGE). A combination of methodologies was developed to understand the impact of cross-linking on drug product release. Dissolution evaluation using USP Apparatus 2 at pH 5.0 with an enzyme activity-based end point demonstrated solubility discrimination based on degree of cross-linking, while full release was demonstrated at pH 6.5. The dissolution of the drug product was also evaluated using a dual-stage test employing a USP Apparatus 4 flow-through system to mimic the changing pH environments experienced in the stomach and intestine to understand the impact of cross-linking on drug product performance. Use of USP Apparatus 4 to characterize the pH-dependent release of lipase-CLEC represents a novel approach compared to the Apparatus 1 test employing an acid-challenge stage outlined in the USP for delayed-release pancrelipase, and the advantages of this approach may prove useful for understanding the pH-dependence of release for other drug products. Collectively, these studies confirmed that degree of

  15. Integrated Cryogenic Satellite Communications Cross-Link Receiver Experiment

    NASA Technical Reports Server (NTRS)

    Romanofsky, R. R.; Bhasin, K. B.; Downey, A. N.; Jackson, C. J.; Silver, A. H.; Javadi, H. H. S.

    1995-01-01

    An experiment has been devised which will validate, in space, a miniature, high-performance receiver. The receiver blends three complementary technologies; high temperature superconductivity (HTS), pseudomorphic high electron mobility transistor (PHEMT) monolithic microwave integrated circuits (MMIC), and a miniature pulse tube cryogenic cooler. Specifically, an HTS band pass filter, InP MMIC low noise amplifier, HTS-sapphire resonator stabilized local oscillator (LO), and a miniature pulse tube cooler will be integrated into a complete 20 GHz receiver downconverter. This cooled downconverter will be interfaced with customized signal processing electronics and integrated onto the space shuttle's 'HitchHiker' carrier. A pseudorandom data sequence will be transmitted to the receiver, which is in low Earth orbit (LEO), via the Advanced Communication Technology Satellite (ACTS) on a 20 GHz carrier. The modulation format is QPSK and the data rate is 2.048 Mbps. The bit error rate (BER) will be measured in situ. The receiver is also equipped with a radiometer mode so that experiment success is not totally contingent upon the BER measurement. In this mode, the receiver uses the Earth and deep space as a hot and cold calibration source, respectively. The experiment closely simulates an actual cross-link scenario. Since the receiver performance depends on channel conditions, its true characteristics would be masked in a terrestrial measurement by atmospheric absorption and background radiation. Furthermore, the receiver's performance depends on its physical temperature, which is a sensitive function of platform environment, thermal design, and cryocooler performance. This empirical data is important for building confidence in the technology.

  16. Vitamin C status and collagen cross-link ratios in Gambian children.

    PubMed

    Munday, K; Fulford, A; Bates, C J

    2005-04-01

    Vitamin C (ascorbate) is essential for hydroxylation of prolyl and lysyl residues in nascent collagen, the failure of which leads to connective tissue lesions of scurvy. Of the pyridinium-type cross-links in mature collagen, pyridinoline requires more hydroxylysyl residues than does deoxypyridinoline. Our study tested the hypothesis that pyridinoline:deoxypyridinoline ratios in urinary degradation products may vary with ascorbate status in man. These ratios were compared between British and Gambian prepubertal boys, mean age 8.3 years, and in Gambian boys between two seasons with contrasting ascorbate availability. The mean cross-links ratio in 216 British boys was 4.36 (SD 0.71), significantly greater (P<0.0001) than in sixty-two Gambian boys: 3.83 (SD 0.52). In the Gambians the cross-links ratio was significantly higher in the dry season (with high ascorbate intake and status) than in the rains (with low intake and status). A 7-week controlled intervention was carried out in Gambian boys during the rainy season (the 'hungry' season, when vitamin C-containing foods are virtually unavailable): 100 mg ascorbate/d was given to one group of thirty-two Gambian boys and placebo to another group. The intervention did not, however, significantly alter the cross-link ratio, possibly because the response time and/or intervention-response delay is >7 weeks. If confirmed, the putative association between ascorbate and collagen cross-link ratios in man could become the basis for a functional test for adequacy of ascorbate status.

  17. Specific covalent immobilization of proteins through dityrosine cross-links.

    PubMed

    Endrizzi, Betsy J; Huang, Gang; Kiser, Patrick F; Stewart, Russell J

    2006-12-19

    Dityrosine cross-links are widely observed in nature in structural proteins such as elastin and silk. Natural oxidative cross-linking between tyrosine residues is catalyzed by a diverse group of metalloenzymes. Dityrosine formation is also catalyzed in vitro by metal-peptide complexes such as Gly-Gly-His-Ni(II). On the basis of these observations, a system was developed to specifically and covalently surface immobilize proteins through dityrosine cross-links. Methacrylate monomers of the catalytic peptide Gly-Gly-His-Tyr-OH (GGHY) and the Ni(II)-chelating group nitrilotriacetic acid (NTA) were copolymerized with acrylamide into microbeads. Green fluorescent protein (GFP), as a model protein, was genetically tagged with a tyrosine-modified His6 peptide on its carboxy terminus. GFP-YGH6, specifically associated with the NTA-Ni(II) groups, was covalently coupled to the bead surface through dityrosine bond formation catalyzed by the colocalized GGHY-Ni(II) complex. After extensive washing with EDTA to disrupt metal coordination bonds, we observed that up to 75% of the initially bound GFP-YGH6 remained covalently bound to the bead while retaining its structure and activity. Dityrosine cross-linking was confirmed by quenching the reaction with free tyrosine. The method may find particular utility in the construction and optimization of protein microarrays. PMID:17154619

  18. Potential Effects of Corneal Cross-Linking upon the Limbus

    PubMed Central

    2016-01-01

    Corneal cross-linking is nowadays the most used strategy for the treatment of keratoconus and recently it has been exploited for an increasing number of different corneal pathologies, from other ectatic disorders to keratitis. The safety of this technique has been widely assessed, but clinical complications still occur. The potential effects of cross-linking treatment upon the limbus are incompletely understood; it is important therefore to investigate the effect of UV exposure upon the limbal niche, particularly as UV is known to be mutagenic to cellular DNA and the limbus is where ocular surface tumors can develop. The risk of early induction of ocular surface cancer is undoubtedly rare and has to date not been published other than in one case after cross-linking. Nevertheless it is important to further assess, understand, and reduce where possible any potential risk. The aim of this review is to summarize all the reported cases of a pathological consequence for the limbal cells, possibly induced by cross-linking UV exposure, the studies done in vitro or ex vivo, the theoretical bases for the risks due to UV exposure, and which aspects of the clinical treatment may produce higher risk, along with what possible mechanisms could be utilized to protect the limbus and the delicate stem cells present within it. PMID:27689081

  19. Cross-linking of dithiols by mitomycin C.

    PubMed

    Paz, Manuel M

    2010-08-16

    Upon reduction, the antitumor drug mitomycin C undergoes a cascade of reactions to give a bis-electrophile that alkylates cellular nucleophiles. We recently reported that dithiols activate mitomycin C by reduction, and we report here that dithiols, after executing the reductive activation of mitomycin C, are bis-alkylated by the activated drug to form S,S'-cross-links as the predominant end products. The diastereomeric pair of adducts formed by 1,3-propanedithiol has been fully characterized by UV, HRMS, CD, and NMR experiments. Racemic dithiol (+/-)-dithiothreitol gave four diastereomeric cross-links, and (+/-)-dihydrolipoic acid gave eight cross-links (two regioisomers with four diastereomers each) that were partially characterized by UV and MS. The observed dependence of cross-link formation on dithiol concentration indicated the requirement of a second reduction step by dithiol, prior to the alkylation of the second arm of the dithiol. The existence of unidentified reaction pathways was manifested by the formation of unexpected intermediates during the course of the reaction of mitomycin C with dithiols and by the formation of unsoluble mitosene derivatives in the reaction between equimolar amounts of dithiol and mitomycin C. Mechanistic details of the reaction are addressed in light of these results. Finally, we discuss the potential relevance of our findings for the interaction of mitomycin C with dithiol-containing proteins.

  20. Porous Cross-Linked Polyimide-Urea Networks

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B. (Inventor); Nguyen, Baochau N. (Inventor)

    2015-01-01

    Porous cross-linked polyimide-urea networks are provided. The networks comprise a subunit comprising two anhydride end-capped polyamic acid oligomers in direct connection via a urea linkage. The oligomers (a) each comprise a repeating unit of a dianhydride and a diamine and a terminal anhydride group and (b) are formulated with 2 to 15 of the repeating units. The subunit was formed by reaction of the diamine and a diisocyanate to form a diamine-urea linkage-diamine group, followed by reaction of the diamine-urea linkage-diamine group with the dianhydride and the diamine to form the subunit. The subunit has been cross-linked via a cross-linking agent, comprising three or more amine groups, at a balanced stoichiometry of the amine groups to the terminal anhydride groups. The subunit has been chemically imidized to yield the porous cross-linked polyimide-urea network. Also provided are wet gels, aerogels, and thin films comprising the networks, and methods of making the networks.

  1. Femtosecond laser collagen cross-linking without traditional photosensitizers

    NASA Astrophysics Data System (ADS)

    Guo, Yizang; Wang, Chao; Celi, Nicola; Vukelic, Sinisa

    2015-03-01

    Collagen cross-linking in cornea has the capability of enhancing its mechanical properties and thereby providing an alternative treatment for eye diseases such as keratoconus. Currently, riboflavin assisted UVA light irradiation is a method of choice for cross-link induction in eyes. However, ultrafast pulsed laser interactions may be a powerful alternative enabling in-depth treatment while simultaneously diminishing harmful side effects such as, keratocyte apoptosis. In this study, femtosecond laser is utilized for treatment of bovine cornea slices. It is hypothesized that nonlinear absorption of femtosecond laser pulses plays a major role in the maturation of immature cross-links and the promotion of their growth. Targeted irradiation with tightly focused laser pulses allows for the absence of a photosensitizing agent. Inflation test was conducted on half treated porcine cornea to identify the changes of mechanical properties due to laser treatment. Raman spectroscopy was utilized to study subtle changes in the chemical composition of treated cornea. The effects of treatment are analyzed by observing shifts in Amide I and Amide III bands, which suggest deformation of the collagen structure in cornea due to presence of newly formed cross-links.

  2. Citric-acid-derived photo-cross-linked biodegradable elastomers.

    PubMed

    Gyawali, Dipendra; Tran, Richard T; Guleserian, Kristine J; Tang, Liping; Yang, Jian

    2010-01-01

    Citric-acid-derived thermally cross-linked biodegradable elastomers (CABEs) have recently received significant attention in various biomedical applications, including tissue-engineering orthopedic devices, bioimaging and implant coatings. However, citric-acid-derived photo-cross-linked biodegradable elastomers are rarely reported. Herein, we report a novel photo-cross-linked biodegradable elastomer, referred to as poly(octamethylene maleate citrate) (POMC), which preserves pendant hydroxyl and carboxylic functionalities after cross-linking for the potential conjugation of biologically active molecules. Pre-POMC is a low-molecular-mass pre-polymer with an average molecular mass between 701 and 1291 Da. POMC networks are soft and elastic with an initial modulus of 0.07 to 1.3 MPa and an elongation-at-break between 38 and 382%. FT-IR-ATR results confirmed the successful surface immobilization of type-I collagen onto POMC films, which enhanced in vitro cellular attachment and proliferation. Photo-polymerized POMC films implanted subcutaneously into Sprague-Dawley rats demonstrated minimal in vivo inflammatory responses. The development of POMC enriches the family of citric-acid-derived biodegradable elastomers and expands the available biodegradable polymers for versatile needs in biomedical applications.

  3. Citric-Acid-Derived Photo-cross-Linked Biodegradable Elastomers

    PubMed Central

    Gyawali, Dipendra; Tran, Richard T.; Guleserian, Kristine J.; Tang, Liping; Yang, Jian

    2010-01-01

    Citric-acid-derived thermally cross-linked biodegradable elastomers (CABEs) have recently received significant attention in various biomedical applications, including tissue-engineering orthopedic devices, bioimaging and implant coatings. However, citric-acid-derived photo-cross-linked biodegradable elastomers are rarely reported. Herein, we report a novel photo-cross-linked biodegradable elastomer, referred to as poly(octamethylene maleate citrate) (POMC), which preserves pendant hydroxyl and carboxylic functionalities after cross-linking for the potential conjugation of biologically active molecules. POMC is a low-molecular-mass pre-polymer with a molecular mass average between 701 and 1291 Da. POMC networks are soft and elastic with an initial modulus of 0.07 to 1.3 MPa and an elongation at break between 38 and 382%. FT-IR–ATR results confirmed the successful surface immobilization of type-I collagen onto POMC films, which enhanced in vitro cellular attachment and proliferation. Photo-polymerized POMC films implanted subcutaneously into Sprague–Dawley rats demonstrated minimal in vivo inflammatory responses. The development of POMC enriches the family of citric-acid-derived biodegradable elastomers and expands the available biodegradable polymers for versatile needs in biomedical applications. PMID:20557687

  4. Potential Effects of Corneal Cross-Linking upon the Limbus

    PubMed Central

    2016-01-01

    Corneal cross-linking is nowadays the most used strategy for the treatment of keratoconus and recently it has been exploited for an increasing number of different corneal pathologies, from other ectatic disorders to keratitis. The safety of this technique has been widely assessed, but clinical complications still occur. The potential effects of cross-linking treatment upon the limbus are incompletely understood; it is important therefore to investigate the effect of UV exposure upon the limbal niche, particularly as UV is known to be mutagenic to cellular DNA and the limbus is where ocular surface tumors can develop. The risk of early induction of ocular surface cancer is undoubtedly rare and has to date not been published other than in one case after cross-linking. Nevertheless it is important to further assess, understand, and reduce where possible any potential risk. The aim of this review is to summarize all the reported cases of a pathological consequence for the limbal cells, possibly induced by cross-linking UV exposure, the studies done in vitro or ex vivo, the theoretical bases for the risks due to UV exposure, and which aspects of the clinical treatment may produce higher risk, along with what possible mechanisms could be utilized to protect the limbus and the delicate stem cells present within it.

  5. Polyimide Aerogels with Three-Dimensional Cross-Linked Structure

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B. (Inventor)

    2016-01-01

    A method for creating a three dimensional cross-linked polyimide structure includes dissolving a diamine, a dianhydride, and a triamine in a solvent, imidizing a polyamic acid gel by heating the gel, extracting the gel in a second solvent, supercritically drying the gel, and removing the solvent to create a polyimide aerogel.

  6. Thermoreversible Changes in Aligned and Cross-Linked Block Copolymer Melts Studied by Two Color Depolarized Light Scattering

    SciTech Connect

    Wilbur, Jeffrey D.; Gomez, Enrique D.; Ellsworth, Mark W.; Garetz, Bruce A.; Balsara, Nitash P.

    2012-09-04

    A procedure for creating samples that can be repeatedly cycled between weakly aligned and strongly aligned states is described. Poly(styrene-b-isoprene) block copolymer samples were first shear-aligned and then cross-linked using a high energy electron beam. Samples with more than 1.0 cross-links per chain on average showed almost complete recovery of their initial alignment state even after 20 cycles of heating above the order–disorder transition temperature of the un-cross-linked block copolymer. Samples with 1.1 cross-links per chain, which showed over 90% loss of alignment on heating and almost 100% recovery of alignment on cooling, provided the best example of a reversible aligned-to-unaligned transition. Samples with lower cross-linking densities exhibited irreversible loss of alignment upon heating, while those with higher cross-linking densities exhibited less than 90% loss of alignment upon heating. Alignment was quantified by a technique that we call two color depolarized light scattering (TCDLS), an extension of the traditional depolarized light scattering experiment used to determine the state of order in block copolymers. Qualitative confirmation of our interpretation of TCDLS data was obtained by small-angle X-ray scattering and transmission electron microscopy.

  7. Degradation Characteristics of O-rings on Highly Aged GIS

    NASA Astrophysics Data System (ADS)

    Minagawa, Tadao; Nagao, Eiichi; Tsuchie, Ei; Yonezawa, Hiroshi; Takayama, Daisuke; Yamakawa, Yutaka

    Owing to increasing number of highly aged GIS, the investigation of the remaining lifetimes of those systems are becoming more important. Because a lot of O-rings are used in GIS, the study of degradation mechanism and lifetime estimation method of O-ring is essential. In this paper, the information about O-ring degradation mechanism is described, and the statistical method for estimating the remaining lifetime of O-ring is proposed. The degradation of O-ring is mainly subject to chemical reactions triggered by oxygen. Because there are many factors influencing those chemical reactions, the dispersion of degradation rates of O-rings in GIS is very large. Consequently the statistical analysis is one of the effective techniques for lifetime estimation of O-rings in GIS.

  8. Synthesis of borate cross-linked rhamnogalacturonan II.

    PubMed

    Funakawa, Hiroya; Miwa, Kyoko

    2015-01-01

    In the present review, we describe current knowledge about synthesis of borate crosslinked rhamnogalacturonan II (RG-II) and it physiological roles. RG-II is a portion of pectic polysaccharide with high complexity, present in primary cell wall. It is composed of homogalacturonan backbone and four distinct side chains (A-D). Borate forms ester bonds with the apiosyl residues of side chain A of two RG-II monomers to generate borate dimerized RG-II, contributing for the formation of networks of pectic polysaccharides. In plant cell walls, more than 90% of RG-II are dimerized by borate under boron (B) sufficient conditions. Borate crosslinking of RG-II in primary cell walls, to our knowledge, is the only experimentally proven molecular function of B, an essential trace-element. Although abundance of RG-II and B is quite small in cell wall polysaccharides, increasing evidence supports that RG-II and its borate crosslinking are critical for plant growth and development. Significant advancement was made recently on the location and the mechanisms of RG-II synthesis and borate cross-linking. Molecular genetic studies have successfully identified key enzymes for RG-II synthesis and regulators including B transporters required for efficient formation of RG-II crosslinking and consequent normal plant growth. The present article focuses recent advances on (i) RG-II polysaccharide synthesis, (ii) occurrence of borate crosslinking and (iii) B transport for borate supply to RG-II. Molecular mechanisms underlying formation of borate RG-II crosslinking and the physiological impacts are discussed. PMID:25954281

  9. Nanomechanics of layer-by-layer polyelectrolyte complexes: a manifestation of ionic cross-links and fixed charges.

    PubMed

    Han, Biao; Chery, Daphney R; Yin, Jie; Lu, X Lucas; Lee, Daeyeon; Han, Lin

    2016-01-28

    This study investigates the roles of two distinct features of ionically cross-linked polyelectrolyte networks - ionic cross-links and fixed charges - in determining their nanomechanical properties. The layer-by-layer assembled poly(allylamine hydrochloride)/poly(acrylic acid) (PAH/PAA) network is used as the model material. The densities of ionic cross-links and fixed charges are modulated through solution pH and ionic strength (IS), and the swelling ratio, elastic and viscoelastic properties are quantified via an array of atomic force microscopy (AFM)-based nanomechanical tools. The roles of ionic cross-links are underscored by the distinctive elastic and viscoelastic nanomechanical characters observed here. First, as ionic cross-links are highly sensitive to solution conditions, the instantaneous modulus, E0, exhibits orders-of-magnitude changes upon pH- and IS-governed swelling, distinctive from the rubber elasticity prediction based on permanent covalent cross-links. Second, ionic cross-links can break and self-re-form, and this mechanism dominates force relaxation of PAH/PAA under a constant indentation depth. In most states, the degree of relaxation is >90%, independent of ionic cross-link density. The importance of fixed charges is highlighted by the unexpectedly more elastic nature of the network despite low ionic cross-link density at pH 2.0, IS 0.01 M. Here, the complex is a net charged, loosely cross-linked, where the degree of relaxation is attenuated to ≈50% due to increased elastic contribution arising from fixed charge-induced Donnan osmotic pressure. In addition, this study develops a new method for quantifying the thickness of highly swollen polymer hydrogel films. It also underscores important technical considerations when performing nanomechanical tests on highly rate-dependent polymer hydrogel networks. These results provide new insights into the nanomechanical characters of ionic polyelectrolyte complexes, and lay the ground for further

  10. Water dispersible, non-cytotoxic, cross-linked luminescent AIE dots: Facile preparation and bioimaging applications

    NASA Astrophysics Data System (ADS)

    Liu, Meiying; Zhang, Xiqi; Yang, Bin; Deng, Fengjie; Li, Zhen; Wei, Junchao; Zhang, Xiaoyong; Wei, Yen

    2014-12-01

    Fluorescent organic nanoparticles have attracted great current research interest due to their superior properties as compared with small organic dyes and fluorescent inorganic nanoparticles. However, fluorescent organic nanoparticles based on conventional organic dyes often result in significant fluorescence decrease due to the notorious aggregation-caused quenching effect. On the other hand, these fluorescent organic nanoparticles obtained from self-assembly are normally not stable in diluted solution. Therefore, the development of novel fluorescent organic nanoparticles which could overcome these limitations is highly desirable for their practical biomedical applications. In this work, water dispersible, non-cytotoxic and cross-linked luminescent polymeric nanoparticles based on aggregation induced emission dyes were prepared via one pot emulsion polymerization. These cross-linked luminescent polymeric nanoparticles emitted strong red fluorescence and were highly stable in diluted aqueous solution, making them highly potential for various biomedical applications.

  11. Photo-induced cross-linking of unmodified proteins (PICUP) applied to amyloidogenic peptides.

    PubMed

    Rahimi, Farid; Maiti, Panchanan; Bitan, Gal

    2009-01-01

    The assembly of amyloidogenic proteins into toxic oligomers is a seminal event in the pathogenesis of protein misfolding diseases, including Alzheimer's, Parkinson's, and Huntington's diseases, hereditary amyotrophic lateral sclerosis, and type 2 diabetes. Owing to the metastable nature of these protein assemblies, it is difficult to assess their oligomer size distribution quantitatively using classical methods, such as electrophoresis, chromatography, fluorescence, or dynamic light scattering. Oligomers of amyloidogenic proteins exist as metastable mixtures, in which the oligomers dissociate into monomers and associate into larger assemblies simultaneously. PICUP stabilizes oligomer populations by covalent cross-linking and when combined with fractionation methods, such as sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) or size-exclusion chromatography (SEC), PICUP provides snapshots of the oligomer size distributions that existed before cross-linking. Hence, PICUP enables visualization and quantitative analysis of metastable protein populations and can be used to monitor assembly and decipher relationships between sequence modifications and oligomerization(1). Mechanistically, PICUP involves photo-oxidation of Ru(2+) in a tris(bipyridyl)Ru(II) complex (RuBpy) to Ru(3+) by irradiation with visible light in the presence of an electron acceptor. Ru(3+) is a strong one-electron oxidizer capable of abstracting an electron from a neighboring protein molecule, generating a protein radical(1,2). Radicals are unstable, highly-reactive species and therefore disappear rapidly through a variety of intra- and intermolecular reactions. A radical may utilize the high energy of an unpaired electron to react with another protein monomer forming a dimeric radical, which subsequently loses a hydrogen atom and forms a stable, covalently-linked dimer. The dimer may then react further through a similar mechanism with monomers or other dimers to form higher

  12. Oxidation increases mucin polymer cross-links to stiffen airway mucus gels.

    PubMed

    Yuan, Shaopeng; Hollinger, Martin; Lachowicz-Scroggins, Marrah E; Kerr, Sheena C; Dunican, Eleanor M; Daniel, Brian M; Ghosh, Sudakshina; Erzurum, Serpel C; Willard, Belinda; Hazen, Stanley L; Huang, Xiaozhu; Carrington, Stephen D; Oscarson, Stefan; Fahy, John V

    2015-02-25

    Airway mucus in cystic fibrosis (CF) is highly elastic, but the mechanism behind this pathology is unclear. We hypothesized that the biophysical properties of CF mucus are altered because of neutrophilic oxidative stress. Using confocal imaging, rheology, and biochemical measures of inflammation and oxidation, we found that CF airway mucus gels have a molecular architecture characterized by a core of mucin covered by a web of DNA and a rheological profile characterized by high elasticity that can be normalized by chemical reduction. We also found that high levels of reactive oxygen species in CF mucus correlated positively and significantly with high concentrations of the oxidized products of cysteine (disulfide cross-links). To directly determine whether oxidation can cross-link mucins to increase mucus elasticity, we exposed induced sputum from healthy subjects to oxidizing stimuli and found a marked and thiol-dependent increase in sputum elasticity. Targeting mucin disulfide cross-links using current thiol-amino structures such as N-acetylcysteine (NAC) requires high drug concentrations to have mucolytic effects. We therefore synthesized a thiol-carbohydrate structure (methyl 6-thio-6-deoxy-α-D-galactopyranoside) and found that it had stronger reducing activity than NAC and more potent and fast-acting mucolytic activity in CF sputum. Thus, oxidation arising from airway inflammation or environmental exposure contributes to pathologic mucus gel formation in the lung, which suggests that it can be targeted by thiol-modified carbohydrates. PMID:25717100

  13. Oxidation increases mucin polymer cross-links to stiffen airway mucus gels.

    PubMed

    Yuan, Shaopeng; Hollinger, Martin; Lachowicz-Scroggins, Marrah E; Kerr, Sheena C; Dunican, Eleanor M; Daniel, Brian M; Ghosh, Sudakshina; Erzurum, Serpel C; Willard, Belinda; Hazen, Stanley L; Huang, Xiaozhu; Carrington, Stephen D; Oscarson, Stefan; Fahy, John V

    2015-02-25

    Airway mucus in cystic fibrosis (CF) is highly elastic, but the mechanism behind this pathology is unclear. We hypothesized that the biophysical properties of CF mucus are altered because of neutrophilic oxidative stress. Using confocal imaging, rheology, and biochemical measures of inflammation and oxidation, we found that CF airway mucus gels have a molecular architecture characterized by a core of mucin covered by a web of DNA and a rheological profile characterized by high elasticity that can be normalized by chemical reduction. We also found that high levels of reactive oxygen species in CF mucus correlated positively and significantly with high concentrations of the oxidized products of cysteine (disulfide cross-links). To directly determine whether oxidation can cross-link mucins to increase mucus elasticity, we exposed induced sputum from healthy subjects to oxidizing stimuli and found a marked and thiol-dependent increase in sputum elasticity. Targeting mucin disulfide cross-links using current thiol-amino structures such as N-acetylcysteine (NAC) requires high drug concentrations to have mucolytic effects. We therefore synthesized a thiol-carbohydrate structure (methyl 6-thio-6-deoxy-α-D-galactopyranoside) and found that it had stronger reducing activity than NAC and more potent and fast-acting mucolytic activity in CF sputum. Thus, oxidation arising from airway inflammation or environmental exposure contributes to pathologic mucus gel formation in the lung, which suggests that it can be targeted by thiol-modified carbohydrates.

  14. Fabrication of cross-linked alginate beads using electrospraying for adenovirus delivery.

    PubMed

    Park, Hongkwan; Kim, Pyung-Hwan; Hwang, Taewon; Kwon, Oh-Joon; Park, Tae-Joon; Choi, Sung-Wook; Yun, Chae-Ok; Kim, Jung Hyun

    2012-05-10

    Cross-linked alginate beads containing adenovirus (Ad) were successfully fabricated using an electrospraying method to achieve the protection and release of Ad in a controlled manner. An aqueous alginate solution containing Ad was electrosprayed into an aqueous phase containing a cross-linking agent (calcium chloride) at different process variables (voltages, alginate concentrations, and flow rates). Alginate beads containing Ad were used for transduction of U343 glioma cells and the transduction efficiency of the alginate beads was measured by quantification of gene expression using a fluorescence-activated cell sorter at different time points. In vitro results of gene expression revealed that the Ad encapsulated in the alginate beads with 0.5 wt% of alginate concentration exhibited a high activity for a long period (over 7 days) and was released in a sustained manner from the alginate beads. The Ad-encapsulating alginate beads could be promising materials for local delivery of Ad at a high concentration into target sites.

  15. Thermally Cross-Linked Anion Exchange Membranes from Solvent Processable Isoprene Containing Ionomers

    SciTech Connect

    Tsai, Tsung-Han; Ertem, S. Piril; Maes, Ashley M.; Seifert, Soenke; Herring, Andrew M; Coughlin, E. Bryan

    2015-01-28

    Random copolymers of isoprene and 4-vinylbenzyl chloride (VBCl) with varying compositions were synthesized via nitroxide-mediated polymerization. Subsequent quaternization afforded solvent processable and cross-linkable ionomers with a wide range of ion exchange capacities (IECs). Solution cast membranes were thermally cross-linked to form anion exchange membranes. Cross-linking was achieved by taking advantage of the unsaturations on the polyisoprene backbone, without added cross-linkers. A strong correlation was found between water uptake and ion conductivity of the membranes: conductivities of the membranes with IECs beyond a critical value were found to be constant related to their high water absorption. Environmentally controlled small-angle X-ray scattering experiments revealed a correlation between the average distance between ionic clusters and the ion conductivity, indicating that a well-connected network of ion clusters is necessary for efficient ion conduction and high ion conductivity.

  16. Collagen cross-linking: Strengthening the unstable cornea

    PubMed Central

    Tomkins, Oren; Garzozi, Hanna J

    2008-01-01

    Corneal ectasia, a weakening of corneal integrity, occurs both due to acquired and congenital conditions such as keratoconus. It is a progressing condition that affects both visual acuity, and corneal stability. Various methods exist for correcting this impairment, however none address the inherit pathology, an increase laxity of the corneal stroma. Collagen cross-linking, a new, minimally invasive method, aims to strengthen the stroma by inducing cross links between neighboring collagen fibers. This method results in an increase in corneal tensile strength, with no medium term adverse effects on its normal architecture. Clinically, treated patients display improvement in both visual acuity and keratometric readings. This method may provide clinicians with easily accessible tools to stop the progression, and even correct visual deterioration due to corneal ectasia. Here we review the current information regarding this new method, as well as discuss its potential benefits and downfalls. PMID:19668440

  17. Influence of Cross-Linker Concentration on the Functionality of Carbodiimide Cross-Linked Gelatin Membranes for Retinal Sheet Carriers.

    PubMed

    Lai, Jui-Yang; Li, Ya-Ting

    2011-01-01

    Carbodiimide cross-linking can easily regulate the functionality of gelatin carriers used for retinal sheet delivery. This paper investigates the effect of cross-linker concentrations (0-0.4 mmol EDC/mg gelatin membrane (GM)) on the properties of the chemically-modified GMs. ATR-FT-IR and ninhydrin analyses results consistently indicated that the EDC cross-linking reaction approaches saturation at concentrations around 0.02 mmol EDC/mg GM. The thermal stability and resistance to water dissolution and collagenase digestion were significantly enhanced with increasing cross-linker concentration from 0.001 to 0.02 mmol EDC/mg GM. In addition, the chemical cross-linking did not affect the ability to form a tissue-encapsulating structure at 37°C. Irrespective of their cross-linking degree, the GMs had an appropriate degradation rate sufficient to allow tissue integration. It was noted that, although high cross-linker concentrations can be used to improve the delivery efficiency of gelatin samples, the treatment with 0.1-0.4 mmol EDC/mg GM may lead to poor biocompatibility. Results of Live/Dead and pro-inflammatory cytokine expression analyses showed that the exposure of ARPE-19 cultures to the test materials cross-linked with a concentration ≥0.1 mmol EDC/mg GM induces significant cytotoxicity and high levels of interleukin-1β and interleukin-6. However, the presence of EDC cross-linked gelatin membranes in the culture medium had no effect on the glutamate uptake capacity. It is concluded that among the cross-linked gelatin samples studied, 0.02 mmol EDC/mg GM is the best cross-linker concentration for preparation of retinal sheet delivery carriers.

  18. Cytokines and growth factors cross-link heparan sulfate

    PubMed Central

    Migliorini, Elisa; Thakar, Dhruv; Kühnle, Jens; Sadir, Rabia; Dyer, Douglas P.; Li, Yong; Sun, Changye; Volkman, Brian F.; Handel, Tracy M.; Coche-Guerente, Liliane; Fernig, David G.; Lortat-Jacob, Hugues; Richter, Ralf P.

    2015-01-01

    The glycosaminoglycan heparan sulfate (HS), present at the surface of most cells and ubiquitous in extracellular matrix, binds many soluble extracellular signalling molecules such as chemokines and growth factors, and regulates their transport and effector functions. It is, however, unknown whether upon binding HS these proteins can affect the long-range structure of HS. To test this idea, we interrogated a supramolecular model system, in which HS chains grafted to streptavidin-functionalized oligoethylene glycol monolayers or supported lipid bilayers mimic the HS-rich pericellular or extracellular matrix, with the biophysical techniques quartz crystal microbalance (QCM-D) and fluorescence recovery after photobleaching (FRAP). We were able to control and characterize the supramolecular presentation of HS chains—their local density, orientation, conformation and lateral mobility—and their interaction with proteins. The chemokine CXCL12α (or SDF-1α) rigidified the HS film, and this effect was due to protein-mediated cross-linking of HS chains. Complementary measurements with CXCL12α mutants and the CXCL12γ isoform provided insight into the molecular mechanism underlying cross-linking. Fibroblast growth factor 2 (FGF-2), which has three HS binding sites, was also found to cross-link HS, but FGF-9, which has just one binding site, did not. Based on these data, we propose that the ability to cross-link HS is a generic feature of many cytokines and growth factors, which depends on the architecture of their HS binding sites. The ability to change matrix organization and physico-chemical properties (e.g. permeability and rigidification) implies that the functions of cytokines and growth factors may not simply be confined to the activation of cognate cellular receptors. PMID:26269427

  19. Estimating the Degree of Cross-Linking in Rubber

    NASA Technical Reports Server (NTRS)

    Fedors, R. F.

    1983-01-01

    Degree of cross-linking or network chain concentration of rubber estimated with aid of new method. Quantity is needed in studies of mechanical behavior of rubber. New method is based on finding rubber follows different stress/ strain relationships in extension and retraction. When rubber specimen is stretched to given extension ration and released. Stress-vs-strain curve follows two paths: one for extension and other for retraction.

  20. Optimized Fragmentation Regime for Diazirine Photo-Cross-Linked Peptides

    PubMed Central

    2016-01-01

    Cross-linking/mass spectrometry has evolved into a robust technology that reveals structural insights into proteins and protein complexes. We leverage a new tribrid instrument with improved fragmentation capacities in a systematic comparison to identify which fragmentation method would be best for the identification of cross-linked peptides. Specifically, we explored three fragmentation methods and two combinations: collision-induced dissociation (CID), beam-type CID (HCD), electron-transfer dissociation (ETD), ETciD, and EThcD. Trypsin-digested, SDA-cross-linked human serum albumin (HSA) served as a test sample, yielding over all methods and in triplicate analysis in total 2602 matched PSMs and 1390 linked residue pairs at 5% false discovery rate, as confirmed by the crystal structure. HCD wins in number of matched peptide-spectrum-matches (958 PSMs) and identified links (446). CID is most complementary, increasing the number of identified links by 13% (58 links). HCD wins together with EThcD in cross-link site calling precision, with approximately 62% of sites having adjacent backbone cleavages that unambiguously locate the link in both peptides, without assuming any cross-linker preference for amino acids. Overall quality of spectra, as judged by sequence coverage of both peptides, is best for EThcD for the majority of peptides. Sequence coverage might be of particular importance for complex samples, for which we propose a data dependent decision tree, else HCD is the method of choice. The mass spectrometric raw data has been deposited in PRIDE (PXD003737). PMID:27454319

  1. Newer protocols and future in collagen cross-linking.

    PubMed

    Cummings, Arthur B; McQuaid, Rebecca; Mrochen, Michael

    2013-08-01

    Corneal Cross-Linking (CXL) is an established surgical procedure for the treatment of corneal disorders such as corneal ectasia and keratoconus. This method of treatment stabilises the corneal structure and increases rigidity, reducing the requirement for corneal transplantation. Since its development, many scientific studies have been conducted to investigate ways of improving the procedure. Biomechanical stability of the cornea after exposure to UV-A light, and the effect of shortening procedure time has been some of the many topics explored.

  2. Optimized Fragmentation Regime for Diazirine Photo-Cross-Linked Peptides.

    PubMed

    Giese, Sven H; Belsom, Adam; Rappsilber, Juri

    2016-08-16

    Cross-linking/mass spectrometry has evolved into a robust technology that reveals structural insights into proteins and protein complexes. We leverage a new tribrid instrument with improved fragmentation capacities in a systematic comparison to identify which fragmentation method would be best for the identification of cross-linked peptides. Specifically, we explored three fragmentation methods and two combinations: collision-induced dissociation (CID), beam-type CID (HCD), electron-transfer dissociation (ETD), ETciD, and EThcD. Trypsin-digested, SDA-cross-linked human serum albumin (HSA) served as a test sample, yielding over all methods and in triplicate analysis in total 2602 matched PSMs and 1390 linked residue pairs at 5% false discovery rate, as confirmed by the crystal structure. HCD wins in number of matched peptide-spectrum-matches (958 PSMs) and identified links (446). CID is most complementary, increasing the number of identified links by 13% (58 links). HCD wins together with EThcD in cross-link site calling precision, with approximately 62% of sites having adjacent backbone cleavages that unambiguously locate the link in both peptides, without assuming any cross-linker preference for amino acids. Overall quality of spectra, as judged by sequence coverage of both peptides, is best for EThcD for the majority of peptides. Sequence coverage might be of particular importance for complex samples, for which we propose a data dependent decision tree, else HCD is the method of choice. The mass spectrometric raw data has been deposited in PRIDE (PXD003737). PMID:27454319

  3. Reversible PH Lability of Cross-Linked Vault Nanocapsules

    SciTech Connect

    Yu, M.; Ng, B.C.; Rome, L.H.; Tolbert, S.H.; Monbouquette, H.G.

    2009-05-28

    Vaults are ubiquitous, self-assembled protein nanocapsules with dimension in the sub-100 nm range that are conserved across diverse phyla from worms to humans. Their normal presence in humans at a copy number of over 10 000/cell makes them attractive as potential drug delivery vehicles. Toward this goal, bifunctional amine-reactive reagents are shown to be useful for the reversible cross-linking of recombinant vaults such that they may be closed and opened in a controllable manner.

  4. Light-harvesting cross-linked polymers for efficient heterogeneous photocatalysis.

    PubMed

    Wang, Cheng; Xie, Zhigang; deKrafft, Kathryn E; Lin, Wenbin

    2012-04-01

    Nonporous, phosphorescent cross-linked polymers (Ru-CP and Ir-CP) were synthesized via Pd-catalyzed Sonogashira cross-coupling reactions between tetra(p-ethynylphenyl)methane and dibrominated Ru(bpy)(3)(2+) or Ir(ppy)(2)(bpy)(+), respectively. The resultant particulate cross-linked polymer (CP) materials have very high catalyst loadings (76.3 wt % for Ru-CP and 71.6 wt % for Ir-CP), and are nonporous with negligibly small surface areas (2.9 m(2)/g for Ru-CP and 2.7 m(2)/g for Ir-CP). Despite their nonporous nature, the insoluble CP materials serve as highly active and recyclable heterogeneous photocatalysts for a range of organic transformations such as aza-Henry reaction, aerobic amine coupling, and dehalogenation of benzyl bromoacetate. An efficient light-harvesting mechanism, which involves collection of photons by exciting the (3)MLCT states of the phosphors and migration of the excited states to the particle surface, is proposed to account for the very high catalytic activities of these nonporous CPs. Steady-state and time-resolved emission data, as well as the reduced catalytic activity of Os(bpy)(3)(2+)-doped Ru-CPs supports efficient excited state migration for the CP frameworks. This work uncovers a new strategy in designing highly efficient photocatalysts based on light-harvesting cross-linked polymers.

  5. Design Considerations for High Energy Electron -- Positron Storage Rings

    DOE R&D Accomplishments Database

    Richter, B.

    1966-11-01

    High energy electron-positron storage rings give a way of making a new attack on the most important problems of elementary particle physics. All of us who have worked in the storage ring field designing, building, or using storage rings know this. The importance of that part of storage ring work concerning tests of quantum electrodynamics and mu meson physics is also generally appreciated by the larger physics community. However, I do not think that most of the physicists working tin the elementary particle physics field realize the importance of the contribution that storage ring experiments can make to our understanding of the strongly interacting particles. I would therefore like to spend the next few minutes discussing the sort of things that one can do with storage rings in the strongly interacting particle field.

  6. Electrochemical Characterization of Ultrathin Cross-Linked Metal Nanoparticle Films.

    PubMed

    Han, Chu; Percival, Stephen J; Zhang, Bo

    2016-09-01

    Here we report the preparation, characterization, and electrochemical study of conductive, ultrathin films of cross-linked metal nanoparticles (NPs). Nanoporous films ranging from 40 to 200 nm in thickness composed of gold and platinum NPs of ∼5 nm were fabricated via a powerful layer-by-layer spin coating process. This process allows preparation of uniform NP films as large as 2 × 2 cm(2) with precise control over thickness, structure, and electrochemical and electrocatalytic properties. Gold, platinum, and bimetallic NP films were fabricated and characterized using cyclic voltammetry, scanning electron microscopy, and conductance measurements. Their electrocatalytic activity toward the oxygen reduction reaction (ORR) was investigated. Our results show that the electrochemical activity of such NP films is initially hindered by the presence of dense thiolate cross-linking ligands. Both electrochemical cycling and oxygen plasma cleaning are effective means in restoring their electrochemical activity. Gold NP films have higher electric conductivity than platinum possibly due to more uniform film structure and closer particle-particle distance. The electrochemical and electrocatalytic performance of platinum NP films can be greatly enhanced by the incorporation of gold NPs. This work focuses on electrochemical characterization of cross-linked NP films and demonstrates several unique properties. These include quick and easy preparation, ultrathin and uniform film thickness, tunable structure and composition, and transferability to many other substrates.

  7. Magnetic macromolecular cross linked enzyme aggregates (CLEAs) of glucoamylase.

    PubMed

    Nadar, Shamraja S; Rathod, Virendra K

    2016-02-01

    This work illustrates the preparation of magnetic macromolecular glucoamylase CLEAs using dialdehydic pectin, as a cross linker instead of traditional glutaraldehyde. The effect of precipitators type and amount, cross linker concentration, cross linking time and amount of amino functionalized magnetic nanoparticles (AFMNs) on glucoamylase activity was studied. Glucoamylase magnetic macromolecular CLEAs prepared by precipitation in presence of AFMNs by ammonium sulfate were subsequently cross linked by dialdehydic pectin. After cross-linked by pectin, 95.4% activity recovery was achieved in magnetic macromolecular CLEAs, whereas in case of glutaraldehyde cross linker, 85.3% activity recovery was achieved. Magnetic macromolecular CLEAs showed 2.91 and 1.27 folds higher thermal stability as compared to free and magnetic glutaraldehyde CLEAs. In kinetics study, magnetic macromolecular CLEAs retained same Km values, whereas magnetic glutaraldehyde CLEAs showed higher Km value than free enzyme. The porous structure of magnetic macromolecular CLEAs was not only enhanced mass transfer toward macromolecular substrates, but also showed compression resistance for 5 consecutive cycles which was checked in terms of effectiveness factor. At the end, in reusability study; magnetic macromolecular CLEAs were retained 84% activity after 10(th) cycle without leaching of enzyme which is 22% higher than traditional magnetic CLEAs.

  8. Ion exchange selectivity for cross-linked polyacrylic acid

    NASA Technical Reports Server (NTRS)

    May, C. E.; Philipp, W. H.

    1983-01-01

    The ion separation factors for 21 common metal ions with cross-linked polyacrylic acid were determined as a function of pH and the percent of the cross-linked polyacrylic acid neutralized. The calcium ion was used as a reference. At a pH of 5 the decreasing order of affinity of the ions for the cross-linked polyacrylic acid was found to be: Hg++, Fe+++, Pb++, Cr+++, Cu++, Cd++, Al+++, Ag+, Zn++, Ni++, Mn++, Co++, Ca++, Sr++, Ba++, Mg++, K+, Rb+, Cs+, Na+, and Li+. Members of a chemical family exhibited similar selectivities. The Hg++ ion appeared to be about a million times more strongly bound than the alkali metal ions. The relative binding of most of the metal ions varied with pH; the very tightly and very weakly bound ions showed the largest variations with pH. The calcium ion-hydrogen ion equilibrium was perturbed very little by the presence of the other ions. The separation factors and selectivity coefficients are discussed in terms of equilibrium and thermodynamic significance.

  9. Fiber optic immunosensor for cross-linked fibrin concentration

    NASA Astrophysics Data System (ADS)

    Moskowitz, Samuel E.

    2000-08-01

    Working with calcium ions in the blood, platelets produce thromboplastin which transforms prothrombin into thrombin. Removing peptides, thrombin changes fibrinogen into fibrin. Cross-linked insoluble fibrin polymers are solubilized by enzyme plasmin found in blood plasma. Resulting D-dimers are elevated in patients with intravascular coagulation, deep venous thrombosis, pulmonary embolism, myocardial infarction, multiple trauma, cancer, impaired renal and liver functions, and sepsis. Consisting principally of a NIR 780 nm GaAlAs laser diode and a 800 nm avalanche photodiode (APD), the fiber-optic immunosensor can determined D-dimer concentration to levels <0.1 ng/ml. A capture monoclonal antibody to the antigen soluble cross-linked fibrin is employed. Immobilized at the tip of an optical fiber by avidin-biotin, the captured antigen is detected by a second antibody which is labeled with NN 382 fluorescent dye. An evanescent wave traveling on an excitation optical fiber excites the antibody-antigen fluorophore complex. Concentration of cross-linked fibrin is directly proportional to the APD measured intensity of fluorescence. NIR fluorescence has advantages of low background interference, short fluorescence lifetime, and large difference between excitation and emission peaks. Competitive ELISA test for D-dimer concentration requires trained personnel performing a time consuming operation.

  10. Blind testing of cross-linking/mass spectrometry hybrid methods in CASP11.

    PubMed

    Schneider, Michael; Belsom, Adam; Rappsilber, Juri; Brock, Oliver

    2016-09-01

    Hybrid approaches combine computational methods with experimental data. The information contained in the experimental data can be leveraged to probe the structure of proteins otherwise elusive to computational methods. Compared with computational methods, the structures produced by hybrid methods exhibit some degree of experimental validation. In spite of these advantages, most hybrid methods have not yet been validated in blind tests, hampering their development. Here, we describe the first blind test of a specific cross-link based hybrid method in CASP. This blind test was coordinated by the CASP organizers and utilized a novel, high-density cross-linking/mass-spectrometry (CLMS) approach that is able to collect high-density CLMS data in a matter of days. This experimental protocol was developed in the Rappsilber laboratory. This approach exploits the chemistry of a highly reactive, photoactivatable cross-linker to produce an order of magnitude more cross-links than homobifunctional cross-linkers. The Rappsilber laboratory generated experimental CLMS data based on this protocol, submitted the data to the CASP organizers which then released this data to the CASP11 prediction groups in a separate, CLMS assisted modeling experiment. We did not observe a clear improvement of assisted models, presumably because the properties of the CLMS data-uncertainty in cross-link identification and residue-residue assignment, and uneven distribution over the protein-were largely unknown to the prediction groups and their approaches were not yet tailored to this kind of data. We also suggest modifications to the CLMS-CASP experiment and discuss the importance of rigorous blind testing in the development of hybrid methods. Proteins 2016; 84(Suppl 1):152-163. © 2016 The Authors Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc.

  11. Cross-Linked Chitosan as an Efficient Binder for Si Anode of Li-ion Batteries.

    PubMed

    Chen, Chao; Lee, Sang Ha; Cho, Misuk; Kim, Jaehoon; Lee, Youngkwan

    2016-02-01

    We investigate the use of chitosan (CS) as a new cross-linkable and water-soluble binder for the Si anode of Li-ion batteries. In contrast to the traditional binder utilizing a hydrogen bond and/or van der Waals force-linked anode electrodes, CS can easily form a 3D network to limit the movement of Si particles through the cross-linking between the amino groups of CS and the dialdehyde of glutaraldehyde (GA). Chemical, mechanical, and morphological analyses are conducted by Fourier transform infrared spectroscopy, tensile testing, and scanning electron microscopy. The cross-linked Si/CS-GA anode exhibits an initial discharge capacity of 2782 mAh g(-1) with a high initial Coulombic efficiency of 89% and maintained a capacity of 1969 mAh g(-1) at the current density of 500 mA g(-1) over 100 cycles. PMID:26745390

  12. Preparation of superhydrophobic cross-linked syndiotactic 1,2-polybutadiene membranes by electrospinning.

    PubMed

    Hao, Xiu-Feng; Du, Li-Ping; Cai, Hong-Guang; Zhang, Chun-Yu; Zhang, Xue-Quan; Zhang, He-Xin

    2012-10-01

    In this study, syndiotactic 1,2-polybutadiene (s-PB)/azobisisobutyronitrile (AIBN) membranes were prepared via electrospinning. The obtained membranes were intensively investigated by contact angle analyzer, differential scanning calorimetry (DSC) and environmental scanning electron microscope (ESEM). With increasing the concentration of spinning solution, the obtained membranes were changed from hydrophobic to surperhydrophobic and the contact angle (CA) as high as 157 degrees at higher s-PB concentration. In addition, the s-PB/AIBN membrane cross-linked completely through heat treatment and superhydrophobic property of s-PB/AIBN membrane has not changed. The diameter of cross-linked fiber-based membrane was much thinner than that of the uncross-linked fibers. PMID:23421181

  13. Yeast cells immobilized in spherical gellan particles cross-linked with magnesium acetate.

    PubMed

    Iurciuc Tincu, Camelia Elena; Alupei, Liana; Savin, Alexandru; Ibănescu, Constanța; Martin, Patrick; Popa, Marcel

    2016-10-20

    In this paper we report on the production of microbioreactors using ionically cross-linked gellan containing immobilized yeast cells with potential application in glucose fermentation. Cross-linking was achieved through a novel extrusion process in capillary by ionotropic gelation under the action of magnesium acetate. Compared to commonly used methods, this provides a host of practical advantages. The particles were physico-chemically and morphologically characterized as their mechanical stability, behavior in aqueous media, and bio-catalytic activity are influenced by the amount of cross-linker used. This demonstrated their ability to be reused in a large number of fermentation cycles without losing their bio-catalytic activity. Our results are wholly comparable with the behavior of free yeast. We show that fermentation cycles can succeed either immediately or at variable intervals, ensuring high yields of glucose transformation, comparable-if not superior-to results currently obtained using free yeast. PMID:27497758

  14. Physically and chemically cross-linked cellulose cryogels: Structure, properties and application for controlled release.

    PubMed

    Ciolacu, Diana; Rudaz, Cyrielle; Vasilescu, Mihai; Budtova, Tatiana

    2016-10-20

    Porous cellulose matrices were prepared via cellulose dissolution in 8wt% NaOH-water, physical gelation and chemical cross-linking with epichlorohydrin (ECH), coagulation in water and lyophilisation. Cellulose and cross-linker concentration were varied. The behaviour of gels upon coagulation and the swelling of cryogels in water were analysed. An anomalous high swelling at cross-linker concentration around stoichiometric molar ratio with cellulose was observed. Cellulose cryogel morphology, crystallinity and density were studied. The influence of chemical cross-linking on cellulose swelling was explained by suggesting that ECH acts as a spacer preventing cellulose chains tight packing during coagulation. Cellulose was loaded with a model drug, procaine hydrochloride, and the kinetics of its release was investigated. PMID:27474581

  15. Stabilisation of self-assembled DNA crystals by triplex-directed photo-cross-linking.

    PubMed

    Abdallah, Hatem O; Ohayon, Yoel P; Chandrasekaran, Arun Richard; Sha, Ruojie; Fox, Keith R; Brown, Tom; Rusling, David A; Mao, Chengde; Seeman, Nadrian C

    2016-06-28

    The tensegrity triangle is a robust DNA motif that can self-assemble to generate macroscopic three-dimensional crystals. However, the stability of these crystals is dependent on the high ionic conditions used for crystal growth. Here we demonstrate that a triplex-forming oligonucleotide can be used to direct the specific intercalation, and subsequent photo-cross-linking, of 4,5',8-trimethylpsoralen to single or multiple loci within or between the tiles of the crystal. Cross-linking between the tiles of the crystal improves their thermal stability. Such an approach is likely to facilitate the removal of crystals from their mother liquor and may prove useful for applications that require greater crystal stability. PMID:27265774

  16. Cross-Linked Chitosan as an Efficient Binder for Si Anode of Li-ion Batteries.

    PubMed

    Chen, Chao; Lee, Sang Ha; Cho, Misuk; Kim, Jaehoon; Lee, Youngkwan

    2016-02-01

    We investigate the use of chitosan (CS) as a new cross-linkable and water-soluble binder for the Si anode of Li-ion batteries. In contrast to the traditional binder utilizing a hydrogen bond and/or van der Waals force-linked anode electrodes, CS can easily form a 3D network to limit the movement of Si particles through the cross-linking between the amino groups of CS and the dialdehyde of glutaraldehyde (GA). Chemical, mechanical, and morphological analyses are conducted by Fourier transform infrared spectroscopy, tensile testing, and scanning electron microscopy. The cross-linked Si/CS-GA anode exhibits an initial discharge capacity of 2782 mAh g(-1) with a high initial Coulombic efficiency of 89% and maintained a capacity of 1969 mAh g(-1) at the current density of 500 mA g(-1) over 100 cycles.

  17. Monitoring human lymphocytic DNA-protein cross-links as biomarkers of biologically active doses of chromate.

    PubMed

    Costa, M; Zhitkovich, A; Toniolo, P; Taioli, E; Popov, T; Lukanova, A

    1996-10-01

    A simple and sensitive assay for DNA-protein cross-links has been used as a biomarker of chromate exposure and early carcinogenic effects. Pilot studies of DNA-protein cross-links in peripheral blood lymphocytes have been conducted with individuals who had higher exposure to chromate, including welders, and with individuals who had lower levels of exposure such as residents living in a chromium-contaminated area in Jersey City, New Jersey. Studies were also conducted in two Bulgarian cities (Jambol and Burgas) with different levels of air pollution and Cr(VI) exposure and in chrome platers in Bulgaria who had high exposure to chromate. DNA-protein cross-links in U.S. welders and in individuals living in Hudson County, New Jersey around chromium-contaminated areas were significantly higher compared to matched controls. Although blood and urinary levels of chromium were not extensively studied in these populations, we were able to obtain these measurements in the Bulgarian population. Chromium levels in red blood cells of controls living in Burgas were in the order of 1 to 2 ppb chromium, and these individuals had the lowest levels of DNA-protein cross-links. However, the chromium levels in Jambol ranged from about 2 to 7 ppb in red blood cells of city residents to about 22 ppb in chrome platers. DNA-protein cross-links were saturated at about 7 to 8 ppb chromium in the red blood cells, and cross-links correlated well only with chromium levels in red blood cells. Urinary chromium levels did not correlate well with either DNA-protein cross-links or chromium levels in with red blood cells.

  18. Monitoring human lymphocytic DNA-protein cross-links as biomarkers of biologically active doses of chromate.

    PubMed Central

    Costa, M; Zhitkovich, A; Toniolo, P; Taioli, E; Popov, T; Lukanova, A

    1996-01-01

    A simple and sensitive assay for DNA-protein cross-links has been used as a biomarker of chromate exposure and early carcinogenic effects. Pilot studies of DNA-protein cross-links in peripheral blood lymphocytes have been conducted with individuals who had higher exposure to chromate, including welders, and with individuals who had lower levels of exposure such as residents living in a chromium-contaminated area in Jersey City, New Jersey. Studies were also conducted in two Bulgarian cities (Jambol and Burgas) with different levels of air pollution and Cr(VI) exposure and in chrome platers in Bulgaria who had high exposure to chromate. DNA-protein cross-links in U.S. welders and in individuals living in Hudson County, New Jersey around chromium-contaminated areas were significantly higher compared to matched controls. Although blood and urinary levels of chromium were not extensively studied in these populations, we were able to obtain these measurements in the Bulgarian population. Chromium levels in red blood cells of controls living in Burgas were in the order of 1 to 2 ppb chromium, and these individuals had the lowest levels of DNA-protein cross-links. However, the chromium levels in Jambol ranged from about 2 to 7 ppb in red blood cells of city residents to about 22 ppb in chrome platers. DNA-protein cross-links were saturated at about 7 to 8 ppb chromium in the red blood cells, and cross-links correlated well only with chromium levels in red blood cells. Urinary chromium levels did not correlate well with either DNA-protein cross-links or chromium levels in with red blood cells. PMID:8933034

  19. Influence of curing lights and modes on cross-link density of dental composites.

    PubMed

    Yap, Adrian U J; Soh, M S; Han, Tarian T S; Siow, K S

    2004-01-01

    This study investigated the influence of curing lights and modes on the cross-link density of dental composites. Four LED/halogen curing lights (LED-Elipar Freelight [FL], 3M-ESPE and GC e-light [EL], GC; high intensity halogen-Elipar Trilight [TL], 3M-ESPE; very high intensity halogen-Astralis 10 [AS], Ivoclar Vivadent) were selected for this study. Pulse (EL1), continuous (FL1, EL2, TL1), turbo (EL3, AS) and soft-start (FL2, EL4, TL2) curing modes of the various lights were examined. A conventional, continuous cure halogen light (Max [MX], Dentsply-Caulk) was used for comparison. Six composite (Z100, 3M-ESPE) specimens were made for each light-curing mode combination. After polymerization, the specimens were stored in air at 37 degrees C for 24 hours and subjected to hardness testing using a digital microhardness tester (load=500 g; dwell time=15 seconds). The specimens were then placed in 75% ethanol-water solution at 37 degrees C for 24 hours and post-conditioning hardness was determined. Mean hardness (HK)/change in hardness (deltaHK) was computed and the data subjected to analysis using one-way ANOVA/Scheffe's test and Independent Samples t-test (p<0.05). Softening upon storage in ethanol (deltaHK) was used as a relative indication of cross-link density. Specimens polymerized with AS, TL2 and all modes of both LED lights were significantly more susceptible to softening in ethanol than specimens cured with MX. No significant difference in cross-link density was observed among the various modes of EL and FL. For TL, curing with continuous mode resulted in specimens with significantly higher cross-link density than curing with the soft-start mode.

  20. Protein cross-linking by chlorinated polyamines and transglutamylation stabilizes neutrophil extracellular traps.

    PubMed

    Csomós, Krisztián; Kristóf, Endre; Jakob, Bernadett; Csomós, István; Kovács, György; Rotem, Omri; Hodrea, Judit; Bagoly, Zsuzsa; Muszbek, Laszlo; Balajthy, Zoltán; Csősz, Éva; Fésüs, László

    2016-01-01

    Neutrophil extracellular trap (NET) ejected from activated dying neutrophils is a highly ordered structure of DNA and selected proteins capable to eliminate pathogenic microorganisms. Biochemical determinants of the non-randomly formed stable NETs have not been revealed so far. Studying the formation of human NETs we have observed that polyamines were incorporated into the NET. Inhibition of myeloperoxidase, which is essential for NET formation and can generate reactive chlorinated polyamines through hypochlorous acid, decreased polyamine incorporation. Addition of exogenous primary amines that similarly to polyamines inhibit reactions catalyzed by the protein cross-linker transglutaminases (TGases) has similar effect. Proteomic analysis of the highly reproducible pattern of NET components revealed cross-linking of NET proteins through chlorinated polyamines and ɛ(γ-glutamyl)lysine as well as bis-γ-glutamyl polyamine bonds catalyzed by the TGases detected in neutrophils. Competitive inhibition of protein cross-linking by monoamines disturbed the cross-linking pattern of NET proteins, which resulted in the loss of the ordered structure of the NET and significantly reduced capacity to trap bacteria. Our findings provide explanation of how NETs are formed in a reproducible and ordered manner to efficiently neutralize microorganisms at the first defense line of the innate immune system. PMID:27512953

  1. Improving the creep resistance and tensile property of UHMWPE sheet by radiation cross-linking and annealing

    NASA Astrophysics Data System (ADS)

    Wang, Honglong; Xu, Lu; Li, Rong; Hu, Jiangtao; Wang, Mouhua; Wu, Guozhong

    2016-08-01

    Ultra-high molecular weight polyethylene (UHMWPE) sheet was cross-linked by γ irradiation in air with a dose of up to 300 kGy at a dose rate of 5 kGy/h and further treated by post-annealing at 120 °C for 4 h in vacuum. Variations in chemical structure, thermostability, crystallinity, creep resistance, and tensile properties were investigated and compared mainly by gel content, TGA, DSC, and creep and tensile measurements. Gel content measurements indicated that cross-linking was predominant over chain scission during irradiation and post-annealing. Radiation cross-linking resulted in an obvious improvement in the creep resistance and tensile properties of UHMWPE. Through cross-linking, the operational temperature and yield strength of the irradiated and subsequently annealed UHMWPE sheet were improved by more than 100 °C and 14%, respectively, at a dose of 300 kGy. Simultaneously, Young's modulus was increased to 1413 MPa, compared with 398 MPa of pristine UHMWPE. Annealing after irradiation further improved the creep resistance and Young's modulus. Highly cross-linked UHMWPE can even be maintained at 250 °C for a long time without any obvious deformation.

  2. Thermodynamic, kinetic, and electron microscopy studies of concanavalin A and Dioclea grandiflora lectin cross-linked with synthetic divalent carbohydrates.

    PubMed

    Dam, Tarun K; Oscarson, Stefan; Roy, René; Das, Sanjoy K; Pagé, Daniel; Macaluso, Frank; Brewer, C Fred

    2005-03-11

    The jack bean lectin concanavalin A (ConA) and the Dioclea grandiflora lectin (DGL) are highly homologous Man/Glc-specific members of the Diocleinae subtribe. Both lectins bind, cross-link, and precipitate with carbohydrates possessing multiple terminal nonreducing Man residues. The present study investigates the binding and cross-linking interactions of ConA and DGL with a series of synthetic divalent carbohydrates that possess spacer groups with increasing flexibility and length between terminal alpha-mannopyranoside residues. Isothermal titration microcalorimetry was used to determine the thermodynamics of binding of the two lectins to the divalent analogs, and kinetic light scattering and electron microscopy studies were used to characterize the cross-linking interactions of the lectins with the carbohydrates. The results demonstrated that divalent analogs with flexible spacer groups between the two terminal Man residues possess higher affinities for the two lectins as compared with those with inflexible spacer groups. Furthermore, despite their high degree of homology, ConA and DGL exhibit differences in their kinetics of cross-linking and precipitation with the divalent analogs. Electron microscopy shows the loss of organized cross-linked lattices of the two lectins with analogs possessing increased distance between the terminal Man residues. The loss of lattice patterns with the analogs is distinct for each lectin. These results have important implications for the interactions of lectins with multivalent carbohydrate receptors in biological systems.

  3. Self-Healing and Thermoresponsive Dual-Cross-Linked Alginate Hydrogels Based on Supramolecular Inclusion Complexes.

    PubMed

    Miao, Tianxin; Fenn, Spencer L; Charron, Patrick N; Oldinski, Rachael A

    2015-12-14

    β-Cyclodextrin (β-CD), with a lipophilic inner cavity and hydrophilic outer surface, interacts with a large variety of nonpolar guest molecules to form noncovalent inclusion complexes. Conjugation of β-CD onto biomacromolecules can form physically cross-linked hydrogel networks upon mixing with a guest molecule. Herein, the development and characterization of self-healing, thermoresponsive hydrogels, based on host-guest inclusion complexes between alginate-graft-β-CD and Pluronic F108 (poly(ethylene glycol)-b-poly(propylene glycol)-b-poly(ethylene glycol)), are described. The mechanics, flow characteristics, and thermal response were contingent on the polymer concentration and the host-guest molar ratio. Transient and reversible physical cross-linking between host and guest polymers governed self-assembly, allowing flow to occur under shear stress and facilitating complete recovery of the material's properties within a few seconds of unloading. The mechanical properties of the dual-cross-linked, multi-stimuli-responsive hydrogels were tuned as high as 30 kPa at body temperature and are advantageous for biomedical applications such as drug delivery and cell transplantation. PMID:26509214

  4. Investigation of Phycobilisome Subunit Interaction Interfaces by Coupled Cross-linking and Mass Spectrometry*

    PubMed Central

    Tal, Ofir; Trabelcy, Beny; Gerchman, Yoram; Adir, Noam

    2014-01-01

    The phycobilisome (PBS) is an extremely large light-harvesting complex, common in cyanobacteria and red algae, composed of rods and core substructures. These substructures are assembled from chromophore-bearing phycocyanin and allophycocyanin subunits, nonpigmented linker proteins and in some cases additional subunits. To date, despite the determination of crystal structures of isolated PBS components, critical questions regarding the interaction and energy flow between rods and core are still unresolved. Additionally, the arrangement of minor PBS components located inside the core cylinders is unknown. Different models of the general architecture of the PBS have been proposed, based on low resolution images from electron microscopy or high resolution crystal structures of isolated components. This work presents a model of the assembly of the rods onto the core arrangement and for the positions of inner core components, based on cross-linking and mass spectrometry analysis of isolated, functional intact Thermosynechococcus vulcanus PBS, as well as functional cross-linked adducts. The experimental results were utilized to predict potential docking interactions of different protein pairs. Combining modeling and cross-linking results, we identify specific interactions within the PBS subcomponents that enable us to suggest possible functional interactions between the chromophores of the rods and the core and improve our understanding of the assembly, structure, and function of PBS. PMID:25296757

  5. Mechanism of Shear Thickening in Reversibly Cross-linked Supramolecular Polymer Networks

    PubMed Central

    Xu, Donghua; Hawk, Jennifer L.; Loveless, David M.; Jeon, Sung Lan; Craig, Stephen L.

    2010-01-01

    We report here the nonlinear rheological properties of metallo-supramolecular networks formed by the reversible cross-linking of semi-dilute unentangled solutions of poly(4-vinylpyridine) (PVP) in dimethyl sulfoxide (DMSO). The reversible cross-linkers are bis-Pd(II) or bis-Pt(II) complexes that coordinate to the pyridine functional groups on the PVP. Under steady shear, shear thickening is observed above a critical shear rate, and that critical shear rate is experimentally correlated with the lifetime of the metal-ligand bond. The onset and magnitude of the shear thickening depend on the amount of cross-linkers added. In contrast to the behavior observed in most transient networks, the time scale of network relaxation is found to increase during shear thickening. The primary mechanism of shear thickening is ascribed to the shear-induced transformation of intrachain cross-linking to interchain cross-linking, rather than nonlinear high tension along polymer chains that are stretched beyond the Gaussian range. PMID:20479956

  6. Immobilization of Cross-Linked Phenylalanine Ammonia Lyase Aggregates in Microporous Silica Gel

    PubMed Central

    Cui, Jian Dong; Li, Lian Lian; Bian, Hong Jie

    2013-01-01

    A separable and highly-stable enzyme system was developed by adsorption of phenylalanine ammonia lyase (PAL) from Rhodotorula glutinis in amino-functionalized macroporous silica gel and subsequent enzyme crosslinking. This resulted in the formation of cross-linked enzyme aggregates (PAL-CLEAs) into macroporous silica gel (MSG-CLEAs). The effect of adsorptive conditions, type of aggregating agent, its concentration as well as that of cross-linking agent was studied. MSG-CLEAs production was most effective using ammonium sulfate (40%-saturation), followed by cross-linking for 1 h with 1.5% (v/v) glutaraldehyde. The resulting MSG-CLEAs extended the optimal temperature and pH range compared to free PAL and PAL-CLEAs. Moreover, MSG-CLEAs exhibited the excellent stability of the enzyme against various deactivating conditions such as temperature and denaturants, and showed higher storage stability compared to the free PAL and the conventional PAL-CLEAs. Such as, after 6 h incubation at 60°C, the MSG-CLEAs still retained more than 47% of the initial activity whereas PAL-CLEAs only retained 7% of the initial activity. Especially, the MSG-CLEAs exhibited good reusability due to its suitable size and active properties. These results indicated that PAL-CLEAs on MSG might be used as a feasible and efficient solution for improving properties of immobilized enzyme in industrial application. PMID:24260425

  7. Two-photon induced collagen cross-linking in bioartificial cardiac tissue

    NASA Astrophysics Data System (ADS)

    Kuetemeyer, Kai; Kensah, George; Heidrich, Marko; Meyer, Heiko; Martin, Ulrich; Gruh, Ina; Heisterkamp, Alexander

    2011-08-01

    Cardiac tissue engineering is a promising strategy for regenerative therapies to overcome the shortage of donor organs for transplantation. Besides contractile function, the stiffness of tissue engineered constructs is crucial to generate transplantable tissue surrogates with sufficient mechanical stability to withstand the high pressure present in the heart. Although several collagen cross-linking techniques have proven to be efficient in stabilizing biomaterials, they cannot be applied to cardiac tissue engineering, as cell death occurs in the treated area. Here, we present a novel method using femtosecond (fs) laser pulses to increase the stiffness of collagen-based tissue constructs without impairing cell viability. Raster scanning of the fs laser beam over riboflavin-treated tissue induced collagen cross-linking by two-photon photosensitized singlet oxygen production. One day post-irradiation, stress-strain measurements revealed increased tissue stiffness by around 40% being dependent on the fibroblast content in the tissue. At the same time, cells remained viable and fully functional as demonstrated by fluorescence imaging of cardiomyocyte mitochondrial activity and preservation of active contraction force. Our results indicate that two-photon induced collagen cross-linking has great potential for studying and improving artificially engineered tissue for regenerative therapies.

  8. Application of cross-linked and hydrolyzed arabinoxylans in baking of model rye bread.

    PubMed

    Buksa, Krzysztof; Nowotna, Anna; Ziobro, Rafał

    2016-02-01

    The role of water extractable arabinoxylan with varying molar mass and structure (cross-linked vs. hydrolyzed) in the structure formation of rye bread was examined using a model bread. Instead of the normal flour, the dough contained starch, arabinoxylan and protein, which were isolated from rye wholemeal. It was observed that the applied mixes of these constituents result in a product closely resembling typical rye bread, even if arabinoxylan was modified (by cross-linking or hydrolysis). The levels of arabinoxylan required for bread preparation depended on its modification and mix composition. At 3% protein, the maximum applicable level of poorly soluble cross-linked arabinoxylan was 3%, as higher amounts of this preparation resulted in an extensively viscous dough and diminished bread volume. On the other hand highly soluble, hydrolyzed arabinoxylan could be used at a higher level (6%) together with larger amounts of rye protein (3% or 6%). Further addition of arabinoxylan leads to excessive water absorption, resulting in a decreased viscosity of the dough during baking and insufficient gas retention. PMID:26304439

  9. Cross-links in carbon nanotube assembly introduced by using polyacrylonitrile as precursor.

    PubMed

    Cui, Yanbin; Zhang, Mei

    2013-08-28

    Individual carbon nanotube (CNT) exhibits extraordinary mechanics. However, the properties of the macroscopic CNT-based structure, such as CNT fibers and films, are far lower than that of individual CNT. One of the main reasons is the weak interaction between tubes and bundles in the CNT assemblies. It is understood that the cross-links in CNT assembly play a key role to improve the performance of CNT-based structure. Different approaches have been taken to create CNT joints. Most of these approaches focus on connecting CNTs by generating new covalent bonding between tubes. In this work, we intend to reinforce the CNT network by locking the contacted CNTs. Polyacrylonitrile (PAN) was used as precursor because PAN can form graphitic structures after carbonization. The freestanding superthin CNT sheet and CNT yarn were used to evaluate the effects of the PAN precursor to form cross-links between CNTs. The tensile strength of CNT yarn is improved when the yarn is partially infiltrated with PAN and consequently carbonated. High-resolution transmission electron microscopy observation of the sheets shows that graphite structures are formed and cross-link CNTs in CNT assembly.

  10. Application of cross-linked and hydrolyzed arabinoxylans in baking of model rye bread.

    PubMed

    Buksa, Krzysztof; Nowotna, Anna; Ziobro, Rafał

    2016-02-01

    The role of water extractable arabinoxylan with varying molar mass and structure (cross-linked vs. hydrolyzed) in the structure formation of rye bread was examined using a model bread. Instead of the normal flour, the dough contained starch, arabinoxylan and protein, which were isolated from rye wholemeal. It was observed that the applied mixes of these constituents result in a product closely resembling typical rye bread, even if arabinoxylan was modified (by cross-linking or hydrolysis). The levels of arabinoxylan required for bread preparation depended on its modification and mix composition. At 3% protein, the maximum applicable level of poorly soluble cross-linked arabinoxylan was 3%, as higher amounts of this preparation resulted in an extensively viscous dough and diminished bread volume. On the other hand highly soluble, hydrolyzed arabinoxylan could be used at a higher level (6%) together with larger amounts of rye protein (3% or 6%). Further addition of arabinoxylan leads to excessive water absorption, resulting in a decreased viscosity of the dough during baking and insufficient gas retention.

  11. Targeted cross-linking-mass spectrometry determines vicinal interactomes within heterogeneous RNP complexes

    PubMed Central

    Trahan, Christian; Oeffinger, Marlene

    2016-01-01

    Proteomic and RNomic approaches have identified many components of different ribonucleoprotein particles (RNPs), yet still little is known about the organization and protein proximities within these heterogeneous and highly dynamic complexes. Here we describe a targeted cross-linking approach, which combines cross-linking from a known anchor site with affinity purification and mass spectrometry (MS) to identify the changing vicinity interactomes along RNP maturation pathways. Our method confines the reaction radius of a heterobifunctional cross-linker to a specific interaction surface, increasing the probability to capture low abundance conformations and transient vicinal interactors too infrequent for identification by traditional cross-linking-MS approaches, and determine protein proximities within RNPs. Applying the method to two conserved RNA-associated complexes in Saccharomyces cerevisae, the mRNA export receptor Mex67:Mtr2 and the pre-ribosomal Nop7 subcomplex, we identified dynamic vicinal interactomes within those complexes and along their changing pathway milieu. Our results therefore show that this method provides a new tool to study the changing spatial organization of heterogeneous dynamic RNP complexes. PMID:26657640

  12. Silicification of genipin-cross-linked polypeptide hydrogels toward biohybrid materials and mesoporous oxides.

    PubMed

    Jan, Jeng-Shiung; Chen, Pei-Shan; Hsieh, Ping-Lun; Chen, Bo-Yu

    2012-12-01

    A simple and versatile approach is proposed to use cross-linked polypeptide hydrogels as templates for silica mineralization, allowing the synthesis of polypeptide-silica hybrid hydrogels and mesoporous silica (meso-SiO(2)) by subsequent calcination. The experimental data revealed that the cross-linked polypeptide hydrogels comprised of interconnected, membranous network served as templates for the high-fidelity transcription of silica replicas spanning from nanoscale to microscale, resulting in hybrid network comprised of interpenetrated polypeptide nanodomains and silica. The mechanical properties of these as-prepared polypeptide-silica hybrid hydrogels were found to vary with polypeptide chain length and composition. The synergy between cross-link, hydrophobic interaction, and silica deposition can lead to the enhancement of their mechanical properties. The polypeptide-silica hybrid hydrogel with polypeptide and silica content as low as 1.1 wt% can achieve 114 kN/m(2) of compressive strength. By removing the polypeptide nanodomains, mesoporous silicas with average pore sizes ranged between 2 nm and 6 nm can be obtained, depending on polypeptide chain length and composition. The polypeptide-silica hybrid hydrogels demonstrated good cell compatibility and can support cell attachment/proliferation. With the versatility of polymer chemistry and feasibility of amine-catalyzed sol-gel chemistry, the present method is facile for the synthesis of green nanocomposites and biomaterials.

  13. Ozone-induced formation of O,O'-dityrosine cross-linked in proteins.

    PubMed

    Verweij, H; Christianse, K; Van Steveninck, J

    1982-02-18

    Treatment of spectrin, insulin, glucagon and ribonuclease with ozone results in covalent cross-linking of these proteins. This cross-linking is not reversed by treatment with dithiothreitol and thus can not be ascribed to -S-S- bond formation. A concomitant O,O'-dityrosine formation is observed by spectrofluorometric analysis of the protein and by amino acid analysis and thin-layer chromatography of hydrolyzed protein samples. It is highly probable that the observed protein cross-linking should be attributed to interpeptide O,O'-dityrosine bonds. Several authors have shown before that oxidation of proteins with horseradish peroxidase and H2O2 also leads to O,O'-dityrosine formation. Peroxidase-induced O,O'-dityrosine formation in galactose oxidase (d-galactose:oxygen 6-oxidoreductase, EC 1.1.3.9) causes a strong increase of enzyme activity. In accordance with these observations ozone treatment of galactose oxidase also leads to O,O'-dityrosine formation with a concomitant 8-fold increase of enzyme activity.

  14. Cross-links in carbon nanotube assembly introduced by using polyacrylonitrile as precursor.

    PubMed

    Cui, Yanbin; Zhang, Mei

    2013-08-28

    Individual carbon nanotube (CNT) exhibits extraordinary mechanics. However, the properties of the macroscopic CNT-based structure, such as CNT fibers and films, are far lower than that of individual CNT. One of the main reasons is the weak interaction between tubes and bundles in the CNT assemblies. It is understood that the cross-links in CNT assembly play a key role to improve the performance of CNT-based structure. Different approaches have been taken to create CNT joints. Most of these approaches focus on connecting CNTs by generating new covalent bonding between tubes. In this work, we intend to reinforce the CNT network by locking the contacted CNTs. Polyacrylonitrile (PAN) was used as precursor because PAN can form graphitic structures after carbonization. The freestanding superthin CNT sheet and CNT yarn were used to evaluate the effects of the PAN precursor to form cross-links between CNTs. The tensile strength of CNT yarn is improved when the yarn is partially infiltrated with PAN and consequently carbonated. High-resolution transmission electron microscopy observation of the sheets shows that graphite structures are formed and cross-link CNTs in CNT assembly. PMID:23901778

  15. DNA Polymerase POLN Participates in Cross-Link Repair and Homologous Recombination ▿ †

    PubMed Central

    Moldovan, George-Lucian; Madhavan, Mahesh V.; Mirchandani, Kanchan D.; McCaffrey, Ryan M.; Vinciguerra, Patrizia; D'Andrea, Alan D.

    2010-01-01

    All cells rely on DNA polymerases to duplicate their genetic material and to repair or bypass DNA lesions. In humans, 16 polymerases have been identified, and each bears specific functions in genome maintenance. We identified here the recently discovered polymerase POLN to be involved in repair of DNA cross-links. Such DNA lesions are highly toxic and are believed to be repaired by the sequential activity of nucleotide excision repair, translesion synthesis, and homologous recombination mechanisms. By functionally assaying its role in these processes, we unraveled an unexpected involvement of POLN in homologous recombination. Moreover, we obtained evidence for physical and functional interaction of POLN with factors belonging to the Fanconi anemia pathway, a master regulator of cross-link repair. Finally, we show that POLN interacts and cooperates in DNA repair with the helicase HEL308, which shares a common origin with POLN in the Drosophila mus308 gene. Our data indicate that this novel polymerase-helicase complex participates in homologous recombination repair and is essential for cellular protection against DNA cross-links. PMID:19995904

  16. Structural Analysis and Mechanical Characterization of Hyaluronic Acid-Based Doubly Cross-Linked Networks

    PubMed Central

    Jha, Amit K.; Hule, Rohan A.; Jiao, Tong; Teller, Sean S.; Clifton, Rodney J.; Duncan, Randall L.; Pochan, Darrin J.; Jia, Xinqiao

    2009-01-01

    We have created a new class of hyaluronic acid (HA)-based hydrogel materials with HA hydrogel particles (HGPs) embedded in and covalently cross-linked to a secondary network. HA HGPs with an average diameter of ∼900 nm and narrow particle size distribution were synthesized using a refined reverse micelle polymerization technique. The average mesh size of the HGPs was estimated to be approximately 5.5 to 7.0 nm by a protein uptake experiment. Sodium periodate oxidation not only introduced aldehyde groups to the particles but also reduced the average particle size. The aldehyde groups generated were used as reactive handles for subsequent cross-linking with an HA derivative containing hydrazide groups. The resulting macroscopic gels contain two distinct hierarchical networks (doubly cross-linked networks, DXNs): one within individual particles and another among different particles. Bulk gels (BGs) formed by direct mixing of HA derivatives with mutually reactive groups were included for comparison. The hydrogel microstructures were collectively characterized by microscopy and neutron scattering techniques. Their viscoelasticity was quantified at low frequencies (0.1−10 Hz) using a controlled stress rheometer and at high frequencies (up to 200 Hz) with a home-built torsional wave apparatus. Both BGs and DXNs are stable elastic gels that become stiffer at higher frequencies. The HA-based DXN offers unique structural hierarchy and mechanical properties that are suitable for soft tissue regeneration. PMID:20046226

  17. Characterization of lysine-guanine cross-links upon one-electron oxidation of a guanine-containing oligonucleotide in the presence of a trilysine peptide.

    PubMed

    Perrier, Sandrine; Hau, Jörg; Gasparutto, Didier; Cadet, Jean; Favier, Alain; Ravanat, Jean-Luc

    2006-05-01

    Formation of DNA-protein cross-links involving the initial formation of a guanine radical cation was investigated. For this purpose, riboflavin-mediated photosensitization of a TGT oligonucleotide in aerated aqueous solution in the presence of the KKK tripeptide was performed. We have shown that the nucleophilic addition of the epsilon-amino group of the central lysine residue of KKK to the C8 atom of either the guanine radical cation or its deprotonated form gives rise to the efficient formation of a Nepsilon-(guanin-8-yl)-lysine cross-link. Interestingly, the time course of formation of the above-mentioned cross-link was found to be not linear with the time of irradiation, and its formation rapidly reached a plateau. This is explained by secondary decomposition of the initially generated cross-link which could be further oxidized more efficiently than starting TGT oligonucleotide. One-electron oxidation of the initially generated cross-link was found to produce mainly two diastereomeric cross-links exhibiting a spiroimino-trilysine-dihydantoin structure as inferred from enzymatic digestion, CD, UV, NMR and mass spectrometry measurements. In addition, other minor cross-links, for which formation was favored at acidic pH, were assigned as lysine-guanine adducts in which the modified guanine base exhibits a guanidino-trilysine-iminohydantoin structure. A proposed mechanism for the formation of the different detected oligonucleotide-peptide cross-links is given. The high yield of formation of the detected cross-links strongly suggests that a DNA-protein cross-link involving a lysine residue linked to the C8 position of guanine could be generated in cellular systems if a lysine is located in the close vicinity of a guanine radical cation.

  18. Photo-cross-linked poly(ethylene carbonate) elastomers: synthesis, in vivo degradation, and determination of in vivo degradation mechanism.

    PubMed

    Cornacchione, L A; Qi, B; Bianco, J; Zhou, Z; Amsden, B G

    2012-10-01

    Low-molecular-weight poly(ethylene carbonate) diols of varying molecular weight were generated through catalyzed thermal degradation of high-molecular-weight poly(ethylene carbonate). These polymers were then end functionalized with acrylate groups. The resulting α,ω-diacrylates were effectively photo-cross-linked upon exposure to long-wave UV light in the presence of a photoinitiator to yield rubbery networks of low sol content. The degree of cross-linking effectively controlled the in vivo degradation rate of the networks by adherent macrophages; higher cross-link densities yielded slower degradation rates. The cross-link density did not affect the number of adherent macrophages at the elastomer/tissue interface, indicating that cross-linking affected the susceptibility of the elastomer to degradative species released by the macrophages. The reactive species likely responsible for in vivo degradation appears to be superoxide anion, as the in vivo results were in agreement with in vitro degradation via superoxide anion, while cholesterol esterase, known to degrade similar poly(alkylene carbonate)s, had no affect on elastomer degradation.

  19. Controlled delivery of valsartan by cross-linked polymeric matrices: Synthesis, in vitro and in vivo evaluation.

    PubMed

    Sohail, Muhammad; Ahmad, Mahmood; Minhas, Muhammad Usman; Ali, Liaqat; Khalid, Ikrima; Rashid, Haroon

    2015-06-20

    The purpose of study was to develop chemically cross-linked chitosan-co-poly(AMPS) hydrogel based on low molecular weight chitosan for pH-responsive and controlled drug delivery of a model drug. Cross-linking was achieved chemically, by using free radical polymerization technique. Polymer (low molecular weight chitosan) was chemically cross-linked with monomer (2-acrylamido-2-methylpropane sulfonic acid) in aqueous medium. N, N'-Methylenebisacrylamide (MBA) was used as cross-linking agent. Sodium hydrogen sulfite (SHS) and ammonium peroxodisulphate (APS) were used as initiators in a chemical reaction. Hydrogels were characterized by FT-IR, SEM and DSC. Swelling studies and pH-sensitivity of hydrogels were studies at pH 1.2 and 7.4. Chitosan-co-poly(AMPS) hydrogels were administered to rabbits orally to evaluate its pharmacokinetic behavior. As a result of successful cross-linking of polymer and monomer, novel co-polymer has been developed, having suitable characteristics as desired for controlled release drug delivery system. Maximum swelling, drug loading and release have been observed at pH 7.4. In vivo results exhibited significant drug release and absorption at pH 7.4 in rabbits. It is concluded that highly swelling chitosan-AMPS based hydrogels were developed having pH independent swelling and pH dependent drug release properties. These hydrogels have great potential to be used for loading and controlled release of various therapeutic agents. PMID:25865571

  20. Photo-cross-linked poly(ethylene carbonate) elastomers: synthesis, in vivo degradation, and determination of in vivo degradation mechanism.

    PubMed

    Cornacchione, L A; Qi, B; Bianco, J; Zhou, Z; Amsden, B G

    2012-10-01

    Low-molecular-weight poly(ethylene carbonate) diols of varying molecular weight were generated through catalyzed thermal degradation of high-molecular-weight poly(ethylene carbonate). These polymers were then end functionalized with acrylate groups. The resulting α,ω-diacrylates were effectively photo-cross-linked upon exposure to long-wave UV light in the presence of a photoinitiator to yield rubbery networks of low sol content. The degree of cross-linking effectively controlled the in vivo degradation rate of the networks by adherent macrophages; higher cross-link densities yielded slower degradation rates. The cross-link density did not affect the number of adherent macrophages at the elastomer/tissue interface, indicating that cross-linking affected the susceptibility of the elastomer to degradative species released by the macrophages. The reactive species likely responsible for in vivo degradation appears to be superoxide anion, as the in vivo results were in agreement with in vitro degradation via superoxide anion, while cholesterol esterase, known to degrade similar poly(alkylene carbonate)s, had no affect on elastomer degradation. PMID:22920572

  1. Cross-linked polyelectrolyte for direct methanol fuel cells applications based on a novel sulfonated cross-linker

    NASA Astrophysics Data System (ADS)

    Li, Mingyu; Zhang, Gang; Xu, Shuai; Zhao, Chengji; Han, Miaomiao; Zhang, Liyuan; Jiang, Hao; Liu, Zhongguo; Na, Hui

    2014-06-01

    A novel type of cross-linked proton exchange membrane of lower methanol permeation and high proton conductivity is prepared, based on a newly synthesized sulfonated cross-linker: carboxyl terminated benzimidazole trimer bearing sulfonic acid groups (s-BI). Compared to membranes cross-linked with non-sulfonated cross-linker (BI), SPEEK/s-BI-n membranes show higher IEC values and proton conductivities. Meanwhile, oxidative stability and mechanical property of SPEEK/s-BI-n membranes are obviously improved. Among SPEEK/s-BI-n membranes, SPEEK/s-BI-2 exhibits high proton conductivity, low swelling ratio (0.122 S cm-1 and 15.2% at 60 °C, respectively) and low methanol permeability coefficient. These results imply that the cross-linked membranes prepared with the newly sulfonated cross-linker are promising for the direct methanol fuel cells (DMFCs) application.

  2. Cross-linked polymers: Chemistry, properties, and applications; Proceedings of the Symposium, Denver, CO, Apr. 5-10, 1987

    SciTech Connect

    Dickie, R.A.; Labana, S.S.; Bauer, R.S.

    1988-01-01

    This symposium presents papers on the molecular architecture, degradation properties, and mechanical properties of cross-linked polymers, together with examples of high-performance polymer networks. Consideration is given to the effects of intramolecular reaction on network formation and properties, the effects of branching and cross-linking on polymer properties of star-branched Nylon 6, the effect of ionizing radiation on an epoxy structural adhesive, the performance characteristics of the fluorescence optrode cure sensor, the deformation kinetics of cross-linked polymers, and the fatigue behavior of acrylic interpenetrating polymer networks. Other papers are on thermal stress development in thick epoxy coatings, semiinterpenetrating networks based on triazine thermoset and N-alkylamide thermoplastics, liquid crystalline oligoester diols as thermoset coating binders, and the characterization of bisbenzocyclobutene high-temperature resin and bisbenzocyclobutene blended with a compatible bismaleimide resin.

  3. Short-range and long-range cross-linking effects of polygenipin on gelatin-based composite materials.

    PubMed

    Ge, Liming; Xu, Yongbin; Liang, Weijie; Li, Xinying; Li, Defu; Mu, Changdao

    2016-11-01

    Genipin is an ideal cross-linking agent in biomedical applications, which can undergo ring-opening polymerization in alkaline condition. The polygenipin can create short-range and long-range intermolecular cross-linking between protein chains. In this article, the polygenipin with different degree of polymerization was successfully prepared and used to fix gelatin composite materials. The short-range and long-range cross-linking effects of polygenipin were systematically studied. The results show that the composite materials present porous structure with tunable pore sizes in the gel state, which can be easily controlled by adjusting the degree of polymerization of polygenipin. Long-range cross-linking can increase the pore size of the gel. However, during the drying process, the composite films cross-linked by polygenipin with higher degree of polymerization shrank to smaller size to create more compact structure, resulting in the improvement of water resistance properties, thermal stability, tensile strength, and darker color for the composite films. It is interesting that the composite films can partly swell to the original gel structure when in contact with water and saturated water vapor. All the composite films have excellent barrier properties against UV light. However, the compatibility of gelatin and polygenipin is reduced when the degree of polymerization of polygenipin increases to a certain extent, which will result in the formation of phase separation structure. The obtained composite films are ideal candidates for food and pharmaceutical packaging materials. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2712-2722, 2016.

  4. Polyimide Aerogels with Three-Dimensional Cross-Linked Structure

    NASA Technical Reports Server (NTRS)

    Panek, John

    2010-01-01

    Polyimide aerogels with three-dimensional cross-linked structure are made using linear oligomeric segments of polyimide, and linked with one of the following into a 3D structure: trifunctional aliphatic or aromatic amines, latent reactive end caps such as nadic anhydride or phenylethynylphenyl amine, and silica or silsesquioxane cage structures decorated with amine. Drying the gels supercritically maintains the solid structure of the gel, creating a polyimide aerogel with improved mechanical properties over linear polyimide aerogels. Lightweight, low-density structures are desired for acoustic and thermal insulation for aerospace structures, habitats, astronaut equipment, and aeronautic applications. Aerogels are a unique material for providing such properties because of their extremely low density and small pore sizes. However, plain silica aerogels are brittle. Reinforcing the aerogel structure with a polymer (X-Aerogel) provides vast improvements in strength while maintaining low density and pore structure. However, degradation of polymers used in cross-linking tends to limit use temperatures to below 150 C. Organic aerogels made from linear polyimide have been demonstrated, but gels shrink substantially during supercritical fluid extraction and may have lower use temperature due to lower glass transition temperatures. The purpose of this innovation is to raise the glass transition temperature of all organic polyimide aerogel by use of tri-, tetra-, or poly-functional units in the structure to create a 3D covalently bonded network. Such cross-linked polyimides typically have higher glass transition temperatures in excess of 300 400 C. In addition, the reinforcement provided by a 3D network should improve mechanical stability, and prevent shrinkage on supercritical fluid extraction. The use of tri-functional aromatic or aliphatic amine groups in the polyimide backbone will provide such a 3D structure.

  5. Newer protocols and future in collagen cross-linking

    PubMed Central

    Cummings, Arthur B; McQuaid, Rebecca; Mrochen, Michael

    2013-01-01

    Corneal Cross-Linking (CXL) is an established surgical procedure for the treatment of corneal disorders such as corneal ectasia and keratoconus. This method of treatment stabilises the corneal structure and increases rigidity, reducing the requirement for corneal transplantation. Since its development, many scientific studies have been conducted to investigate ways of improving the procedure. Biomechanical stability of the cornea after exposure to UV-A light, and the effect of shortening procedure time has been some of the many topics explored PMID:23925329

  6. LET dependence of DNA-protein cross-links

    SciTech Connect

    Blakely, E.A.; Chang, P.Y.; Bjornstad, K.A.

    1995-08-01

    We have preliminary data indicating a fluence-dependent yield of particle-induced protein cross-links (DPC`s) with a dependency on LET and particle residual energy. Our data indicate that the DPC yield for hamster fibroblasts in vitro irradiated at 32 keV/{mu}m is similar to that reported for hamster cells irradiated with cobalt-60 gamma rays. At 100-120 keV/{mu}m there is some evidence for an enhanced DPC yield with increasing particle fluence, but there are differences in the yields that are dependent on particle track structure.

  7. Enhanced rates of electrolytic styrene epoxidation catalyzed by cross-linked myoglobin-poly(L-lysine) films in bicontinuous microemulsions.

    PubMed

    Vaze, Abhay; Parizo, Michael; Rusling, James F

    2004-12-01

    Redox proteins attached to surfaces designed for biocatalysis hold promise for future clean synthetic routes. It is advantageous for these biocatalysts to operate in low-toxicity fluids with a high capacity to dissolve reactants. Here we report cross-linked films of myoglobin (Mb) and poly(L-lysine) (PLL) chemically attached to oxidized carbon cloth cathodes that in microemulsions feature the protein in a water-rich film environment with reactant in an oil-rich environment. These cross-linked Mb/PLL films were the most stable in microemuslions and had the largest turnover rates for epoxidation of styrene compared to lightly cross-linked or uncross-linked Mb/poly(styrene sulfonate) films. Up to 40-fold larger turnover rates were found in bicontinuous microemulsions compared to oil-in-water microemulsions and micelles. Enhanced turnover rates are correlated with up to 10-fold faster mass transport of solutes in the oil phases of the bicontinuous fluids.

  8. Preparation of Intrastrand {G}O(6) -Alkylene-O(6) {G} Cross-Linked Oligonucleotides.

    PubMed

    O'Flaherty, Derek K; Wilds, Christopher J

    2016-01-01

    This unit describes the preparation O(6) -2'-deoxyguanosine-butylene-O(6) -2'-deoxyguanosine dimer phosphoramidites and precursors for incorporation of site-specific intrastrand cross-links (IaCL) into DNA oligonucleotides. Protected 2'-deoxyguanosine dimers are produced using the Mitsunobu reaction. IaCL DNA containing the intradimer phosphodiester are first chemically phosphorylated, followed by a ring-closing reaction using the condensing reagent 1-(2-mesitylenesulfonyl)-3-nitro-1H-1,2,4-triazole. Phosphoramidites are incorporated into oligonucleotides by solid-phase synthesis and standard deprotection and cleavage protocols are employed. This approach allows for the preparation of IaCL DNA substrates in amounts and purity amenable for biophysical characterization, and biochemical studies as substrates to investigate DNA repair and bypass pathways. © 2016 by John Wiley & Sons, Inc. PMID:27584704

  9. ProXL (Protein Cross-Linking Database): A Platform for Analysis, Visualization, and Sharing of Protein Cross-Linking Mass Spectrometry Data

    PubMed Central

    2016-01-01

    ProXL is a Web application and accompanying database designed for sharing, visualizing, and analyzing bottom-up protein cross-linking mass spectrometry data with an emphasis on structural analysis and quality control. ProXL is designed to be independent of any particular software pipeline. The import process is simplified by the use of the ProXL XML data format, which shields developers of data importers from the relative complexity of the relational database schema. The database and Web interfaces function equally well for any software pipeline and allow data from disparate pipelines to be merged and contrasted. ProXL includes robust public and private data sharing capabilities, including a project-based interface designed to ensure security and facilitate collaboration among multiple researchers. ProXL provides multiple interactive and highly dynamic data visualizations that facilitate structural-based analysis of the observed cross-links as well as quality control. ProXL is open-source, well-documented, and freely available at https://github.com/yeastrc/proxl-web-app. PMID:27302480

  10. ProXL (Protein Cross-Linking Database): A Platform for Analysis, Visualization, and Sharing of Protein Cross-Linking Mass Spectrometry Data.

    PubMed

    Riffle, Michael; Jaschob, Daniel; Zelter, Alex; Davis, Trisha N

    2016-08-01

    ProXL is a Web application and accompanying database designed for sharing, visualizing, and analyzing bottom-up protein cross-linking mass spectrometry data with an emphasis on structural analysis and quality control. ProXL is designed to be independent of any particular software pipeline. The import process is simplified by the use of the ProXL XML data format, which shields developers of data importers from the relative complexity of the relational database schema. The database and Web interfaces function equally well for any software pipeline and allow data from disparate pipelines to be merged and contrasted. ProXL includes robust public and private data sharing capabilities, including a project-based interface designed to ensure security and facilitate collaboration among multiple researchers. ProXL provides multiple interactive and highly dynamic data visualizations that facilitate structural-based analysis of the observed cross-links as well as quality control. ProXL is open-source, well-documented, and freely available at https://github.com/yeastrc/proxl-web-app . PMID:27302480

  11. Development of optimum process for electron beam cross-linking of high density polyethylene thermal energy storage pellets, process scale-up and production of application qualities of material

    NASA Technical Reports Server (NTRS)

    Salyer, I. O.

    1980-01-01

    The electron irradiation conditions required to prepare thermally from stable high density polyethylene (HDPE) were defined. The conditions were defined by evaluating the heat of fusion and the melting temperature of several HDPE specimens. The performance tests conducted on the specimens, including the thermal cycling tests in the thermal energy storage unit are described. The electron beam irradiation tests performed on the specimens, in which the total radiation dose received by the pellets, the electron beam current, the accelerating potential, and the atmospheres were varied, are discussed.

  12. Collagen Cross-Linking: Current Status and Future Directions

    PubMed Central

    Hovakimyan, Marine; Guthoff, Rudolf F.; Stachs, Oliver

    2012-01-01

    Collagen cross-linking (CXL) using UVA light and riboflavin (vitamin B2) was introduced as a clinical application to stabilize the cornea by inducing cross-links within and between collagen fibers. CXL has been investigated extensively and has been shown clinically to arrest the progression of keratoconic or post-LASIK ectasia. With its minimal cost, simplicity, and proven positive clinical outcome, CXL can be regarded as a useful approach to reduce the number of penetrating keratoplasties performed. Small case series have also indicated that CXL is beneficial in corneal edema by reducing stromal swelling behavior and in keratitis by inhibiting pathogen growth. Despite these encouraging results, CXL remains a relatively new method that is potentially associated with complications. Aspects such as side effects and recurrence rates have still to be elucidated. In light of the growing interest in CXL, our paper summarizes present knowledge about this promising approach. We have intentionally endeavored to include the more relevant studies from the recent literature to provide an overview of the current status of CXL. PMID:22288005

  13. Covalently Cross-Linked Arabinoxylans Films for Debaryomyces hansenii Entrapment.

    PubMed

    González-Estrada, Ramsés; Calderón-Santoyo, Montserrat; Carvajal-Millan, Elizabeth; Ascencio Valle, Felipe de Jesús; Ragazzo-Sánchez, Juan Arturo; Brown-Bojorquez, Francisco; Rascón-Chu, Agustín

    2015-01-01

    In the present study, wheat water extractable arabinoxylans (WEAX) were isolated and characterized, and their capability to form covalently cross-linked films in presence of Debaryomyces hansenii was evaluated. WEAX presented an arabinose to xylose ratio of 0.60, a ferulic acid and diferulic acid content of 2.1 and 0.04 µg∙mg(-1) WEAX, respectively and a Fourier Transform Infra-Red (FT-IR) spectrum typical of WEAX. The intrinsic viscosity and viscosimetric molecular weight values for WEAX were 3.6 dL∙g(-1) and 440 kDa, respectively. The gelation of WEAX (1% w/v) with and without D. hansenii (1 × 10(7) CFU∙cm(-2)) was rheologically investigated by small amplitude oscillatory shear. The entrapment of D. hansenii decreased gel elasticity from 1.4 to 0.3 Pa, probably by affecting the physical interactions between WEAX chains. Covalently cross-linked WEAX films containing D. hansenii were prepared by casting. Scanning electron microscopy images show that WEAX films containing D. hansenii were porous and consisted of granular-like and fibre microstructures. Average tensile strength, elongation at break and Young's modulus values dropped when D. hansenii was present in the film. Covalently cross-lined WEAX containing D. hansenii could be a suitable as a functional entrapping film. PMID:26102070

  14. Optimization model for UV-Riboflavin corneal cross-linking

    NASA Astrophysics Data System (ADS)

    Schumacher, S.; Wernli, J.; Scherrer, S.; Bueehler, M.; Seiler, T.; Mrochen, M.

    2011-03-01

    Nowadays UV-cross-linking is an established method for the treatment of keraectasia. Currently a standardized protocol is used for the cross-linking treatment. We will now present a theoretical model which predicts the number of induced crosslinks in the corneal tissue, in dependence of the Riboflavin concentration, the radiation intensity, the pre-treatment time and the treatment time. The model is developed by merging the difussion equation, the equation for the light distribution in dependence on the absorbers in the tissue and a rate equation for the polymerization process. A higher concentration of Riboflavin solution as well as a higher irradiation intensity will increase the number of induced crosslinks. However, performed stress-strain experiments which support the model showed that higher Riboflavin concentrations (> 0.125%) do not result in a further increase in stability of the corneal tissue. This is caused by the inhomogeneous distribution of induced crosslinks throughout the cornea due to the uneven absorption of the UV-light. The new model offers the possibility to optimize the treatment individually for every patient depending on their corneal thickness in terms of efficiency, saftey and treatment time.

  15. Pyrolysis of simple coal model compounds containing aromatic carboxylic acids: Does decarboxylation lead to cross-linking?

    SciTech Connect

    Eskay, T.P.; Britt, P.F.; Buchanan, A.C. III

    1996-02-01

    The thermolysis of two aromatic carboxylic acids 1,2-(3,3`-dicarboxyphenyl)ethane (2) have been investigated at 400{degree} C as models of carboxylic acids in low rank coals. The major decomposition pathway observed is decarboxylation, which mainly occurs by an ionic pathway. This decarboxylation route does not lead to any significant amount of coupling or high molecular weight products that would be indicative of cross-linking products in coal. The pyrolysis of 1 and 2 will be investigated under a variety of conditions that better mimic the enviromment found in coal to further delineate the role that decarboxylation plays in coal cross-linking chemistry.

  16. Porous silicon ring resonator for compact, high sensitivity biosensing applications

    DOE PAGESBeta

    Rodriguez, Gilberto A.; Hu, Shuren; Weiss, Sharon M.

    2015-01-01

    A ring resonator is patterned on a porous silicon slab waveguide to produce a compact, high quality factor biosensor with a large internal surface area available for enhanced recognition of biological and chemical molecules. The porous nature of the ring resonator allows molecules to directly interact with the guided mode. Quality factors near 10,000 were measured for porous silicon ring resonators with a radius of 25 μm. A bulk detection sensitivity of 380 nm/RIU was measured upon exposure to salt water solutions. Specific detection of nucleic acid molecules was demonstrated with a surface detection sensitivity of 4 pm/nM.

  17. Effects of processing conditions on the reliability of cross-linked polyethylene cable insulation. Progress report

    SciTech Connect

    Phillips, P.J.

    1981-03-01

    Crystallization and morphology were investigated in cross-linked PE. /sup 13/C NMR was used to quantify the cross-links. Production of cable is being studied. Dielectric constant and loss of cross-linked PE are being measured. (DLC)

  18. 21 CFR 177.2710 - Styrene-divinylbenzene resins, cross-linked.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Styrene-divinylbenzene resins, cross-linked. 177... resins, cross-linked. Styrene-divinylbenzene cross-linked copolymer resins may be safely used as articles... conditions: (a) The resins are produced by the copolymerization of styrene with divinylbenzene. (b)...

  19. Chemical cross-linking/mass spectrometry targeting acidic residues in proteins and protein complexes.

    PubMed

    Leitner, Alexander; Joachimiak, Lukasz A; Unverdorben, Pia; Walzthoeni, Thomas; Frydman, Judith; Förster, Friedrich; Aebersold, Ruedi

    2014-07-01

    The study of proteins and protein complexes using chemical cross-linking followed by the MS identification of the cross-linked peptides has found increasingly widespread use in recent years. Thus far, such analyses have used almost exclusively homobifunctional, amine-reactive cross-linking reagents. Here we report the development and application of an orthogonal cross-linking chemistry specific for carboxyl groups. Chemical cross-linking of acidic residues is achieved using homobifunctional dihydrazides as cross-linking reagents and a coupling chemistry at neutral pH that is compatible with the structural integrity of most protein complexes. In addition to cross-links formed through insertion of the dihydrazides with different spacer lengths, zero-length cross-link products are also obtained, thereby providing additional structural information. We demonstrate the application of the reaction and the MS identification of the resulting cross-linked peptides for the chaperonin TRiC/CCT and the 26S proteasome. The results indicate that the targeting of acidic residues for cross-linking provides distance restraints that are complementary and orthogonal to those obtained from lysine cross-linking, thereby expanding the yield of structural information that can be obtained from cross-linking studies and used in hybrid modeling approaches. PMID:24938783

  20. Chemical cross-linking/mass spectrometry targeting acidic residues in proteins and protein complexes

    PubMed Central

    Leitner, Alexander; Joachimiak, Lukasz A.; Unverdorben, Pia; Walzthoeni, Thomas; Frydman, Judith; Förster, Friedrich; Aebersold, Ruedi

    2014-01-01

    The study of proteins and protein complexes using chemical cross-linking followed by the MS identification of the cross-linked peptides has found increasingly widespread use in recent years. Thus far, such analyses have used almost exclusively homobifunctional, amine-reactive cross-linking reagents. Here we report the development and application of an orthogonal cross-linking chemistry specific for carboxyl groups. Chemical cross-linking of acidic residues is achieved using homobifunctional dihydrazides as cross-linking reagents and a coupling chemistry at neutral pH that is compatible with the structural integrity of most protein complexes. In addition to cross-links formed through insertion of the dihydrazides with different spacer lengths, zero-length cross-link products are also obtained, thereby providing additional structural information. We demonstrate the application of the reaction and the MS identification of the resulting cross-linked peptides for the chaperonin TRiC/CCT and the 26S proteasome. The results indicate that the targeting of acidic residues for cross-linking provides distance restraints that are complementary and orthogonal to those obtained from lysine cross-linking, thereby expanding the yield of structural information that can be obtained from cross-linking studies and used in hybrid modeling approaches. PMID:24938783

  1. 21 CFR 177.2710 - Styrene-divinylbenzene resins, cross-linked.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Styrene-divinylbenzene resins, cross-linked. 177... resins, cross-linked. Styrene-divinylbenzene cross-linked copolymer resins may be safely used as articles... conditions: (a) The resins are produced by the copolymerization of styrene with divinylbenzene. (b)...

  2. PULSED POWER APPLICATIONS IN HIGH INTENSITY PROTON RINGS.

    SciTech Connect

    ZHANG, S.Y.; SANDBERG, J.; ET AL.

    2005-05-16

    Pulsed power technology has been applied in particle accelerators and storage rings for over four decades. It is most commonly used in injection, extraction, beam manipulation, source, and focusing systems. These systems belong to the class of repetitive pulsed power. In this presentation, we review and discuss the history, present status, and future challenge of pulsed power applications in high intensity proton accelerators and storage rings.

  3. High intensity muon storage rings for neutrino production: Lattice design

    SciTech Connect

    Johnstone, C>

    1998-05-01

    Five energies, 250, 100, 50, 20, and 10 GeV, have been explored in the design of a muon storage ring for neutrino-beam production. The ring design incorporates exceptionally long straight sections with large beta functions in order to produce an intense, parallel neutrino beam via muon decay. To emphasize compactness and reduce the number of muon decays in the arcs, high-field superconducting dipoles are used in the arc design.

  4. Biocompatibility of Genipin and Glutaraldehyde Cross-Linked Chitosan Materials in the Anterior Chamber of the Eye

    PubMed Central

    Lai, Jui-Yang

    2012-01-01

    Chitosan is a naturally occurring cationic polysaccharide and has attracted much attention in the past decade as an important ophthalmic biomaterial. We recently demonstrated that the genipin (GP) cross-linked chitosan is compatible with human retinal pigment epithelial cells. The present work aims to further investigate the in vivo biocompatibility of GP-treated chitosan (GP-chi group) by adopting the anterior chamber of a rabbit eye model. The glutaraldehyde (GTA) cross-linked samples (GTA-chi group) were used for comparison. The 7-mm-diameter membrane implants made from either non-cross-linked chitosan or chemically modified materials with a cross-linking degree of around 80% were inserted in the ocular anterior chamber for 24 weeks and characterized by slit-lamp and specular microscopic examinations, intraocular pressure measurements, and corneal thickness measurements. The interleukin-6 expressions at mRNA level were also detected by quantitative real-time reverse transcription polymerase chain reaction. Results of clinical observations showed that the overall ocular scores in the GTA-chi groups were relatively high. In contrast, the rabbits bearing GP-chi implants in the anterior chamber of the eye exhibited no signs of ocular inflammation. As compared to the non-cross-linked counterparts, the GP-chi samples improved the preservation of corneal endothelial cell density and possessed better anti-inflammatory activities, indicating the benefit action of the GP cross-linker. In summary, the intracameral tissue response to the chemically modified chitosan materials strongly depends on the selection of cross-linking agents. PMID:23109832

  5. Surface-gradient cross-linked polyethylene acetabular cups: oxidation resistance and wear against smooth and rough femoral balls.

    PubMed

    Shen, Fu-Wen; McKellop, Harry

    2005-01-01

    Two methods were developed and evaluated for cross-linking the bearing surface of a polyethylene acetabular cup to a limited depth, in order to improve its resistance to wear without degrading the mechanical properties of the bulk of the component. In the first method, low-energy electron beams were used to cross-link only the bearing surface of the cups to a maximum depth of about 2 mm. The cups then were annealed at 100 degrees C in vacuum for 3 or 6 days to reduce the residual free radicals, and the resultant resistance to oxidation was compared by artificially aging the cups at 80 degrees C in air. Chemically cross-linked surface layers were produced by coating the bearing surfaces of the cups with a thin layer of polyethylene powder mixed with 1% weight peroxide, and compressing them at 6.9 MPa (1000 psi) and 170 degrees C. This resulted in a cross-linked surface layer that extended about 3 mm deep, with a gradual transition to conventional (noncross-linked) polyethylene in the bulk of the implant. In hip simulator wear tests with highly polished (implant quality) femoral balls, both types of surface cross-linking were found to improve markedly the wear resistance of the acetabular cups. In tests with roughened femoral balls, the wear rates were much higher and were comparable to those obtained with similarly roughened balls against noncross-linked polyethylene cups in a previous study, indicating that the full benefit of cross-linking may not be realized under conditions of severe third-body abrasion. Nevertheless, these results show a promising approach for optimizing the wear resistance and the bulk mechanical properties of polyethylene components in total joint arthroplasty.

  6. Does vitamin E-stabilized ultrahigh-molecular-weight polyethylene address concerns of cross-linked polyethylene in total knee arthroplasty?

    PubMed

    Haider, Hani; Weisenburger, Joel N; Kurtz, Steven M; Rimnac, Clare M; Freedman, Jordan; Schroeder, David W; Garvin, Kevin L

    2012-03-01

    Concerns about reduced strength, fatigue resistance, and oxidative stability of highly cross-linked and remelted ultrahigh-molecular-weight polyethylene (UHMWPE) have limited its clinical acceptance for total knee arthroplasty. We hypothesized that a highly cross-linked UHMWPE stabilized with vitamin E would have less oxidation and loss of mechanical properties. We compared the oxidation, in vitro strength, fatigue-crack propagation resistance, and wear of highly cross-linked UHMWPE doped with vitamin E to γ-inert-sterilized direct compression-molded UHMWPE (control). After accelerated aging, the control material showed elevated oxidation, loss of small-punch mechanical properties, and loss of fatigue-crack propagation resistance. In contrast, the vitamin E-stabilized material had minimal changes and exhibited 73% to 86% reduction in wear for both cruciate-retaining and posterior-stabilized total knee arthroplasty designs. Highly cross-linked vitamin E-stabilized UHMWPE performed well in vitro.

  7. Preliminary Characterization of Genipin-Cross-Linked Silk Sericin/Poly(vinyl alcohol) Films as Two-Dimensional Wound Dressings for the Healing of Superficial Wounds

    PubMed Central

    Siritientong, Tippawan; Ratanavaraporn, Juthamas; Srichana, Teerapol; Aramwit, Pornanong

    2013-01-01

    The genipin-cross-linked silk sericin/poly(vinyl alcohol) (PVA) films were developed aiming to be applied as two-dimensional wound dressings for the treatment of superficial wounds. The effects of genipin cross-linking concentration on the physical and biological properties of the films were investigated. The genipin-cross-linked silk sericin/PVA films showed the increased surface density, tensile strength, and percentage of elongation, but decreased percentage of light transmission, water vapor transmission rate, and water swelling, compared to the non-cross-linked films. This explained that the cross-linking bonds between genipin and silk sericin would reduce the mobility of molecular chains within the films, resulting in the more rigid molecular structure. Silk sericin was released from the genipin-cross-linked films in a sustained manner. In addition, either L929 mouse fibroblast or HaCat keratinocyte cells showed high percentage of viability when cultured on the silk sericin/PVA films cross-linked with 0.075 and 0.1% w/v genipin. The in vivo safety test performed according to ISO 10993-6 confirmed that the genipin-cross-linked silk sericin/PVA films were safe for the medical usages. The efficacy of the films for the treatment of superficial skin wounds will be further investigated in vivo and clinically. The genipin-cross-linked silk sericin/PVA films would be promising choices of two-dimensional wound dressings for the treatment of superficial wounds. PMID:24106722

  8. Induction and repair of DNA cross-links induced by sulfur mustard in the A-549 cell line followed by a comet assay.

    PubMed

    Jost, Petr; Svobodova, Hana; Stetina, Rudolf

    2015-07-25

    Sulfur mustard is a highly toxic chemical warfare agent with devastating impact on intoxicated tissues. DNA cross-links are probably the most toxic DNA lesions induced in the cell by sulfur mustard. The comet assay is a very sensitive method for measuring DNA damage. In the present study using the A-549 lung cell line, the comet assay protocol was optimized for indirect detection of DNA cross-links induced by sulfur mustard. The method is based on the additional treatment of the assayed cells containing cross-links with the chemical mutagen, styrene oxide. Alkali-labile adducts of styrene oxide cause DNA breaks leading to the formation of comets. A significant dose-dependent reduction of DNA migration of the comet's tail was found after exposing cells to sulfur mustard, indicative of the amount of sulfur mustard induced cross-links. The remarkable decrease of % tail DNA could be observed as early as 5min following exposure to sulfur mustard and the maximal effect was found after 30min, when DNA migration was reduced to the minimum. Sulfur mustard preincubated in culture medium without cells lost its ability to induce cross-links and had a half-life of about 15min. Pre-incubation longer than 30min does not lead to a significant increase in cross-links when applied to cells. However, the amount of cross-links is decreased during further incubation due to repair. The current modification of the comet assay provides a useful tool for detecting DNA cross-links induced by sulfur mustard and could be used for detection of other DNA cross-linking agents such as chemotherapeutic drugs. PMID:25986970

  9. Induction and repair of DNA cross-links induced by sulfur mustard in the A-549 cell line followed by a comet assay.

    PubMed

    Jost, Petr; Svobodova, Hana; Stetina, Rudolf

    2015-07-25

    Sulfur mustard is a highly toxic chemical warfare agent with devastating impact on intoxicated tissues. DNA cross-links are probably the most toxic DNA lesions induced in the cell by sulfur mustard. The comet assay is a very sensitive method for measuring DNA damage. In the present study using the A-549 lung cell line, the comet assay protocol was optimized for indirect detection of DNA cross-links induced by sulfur mustard. The method is based on the additional treatment of the assayed cells containing cross-links with the chemical mutagen, styrene oxide. Alkali-labile adducts of styrene oxide cause DNA breaks leading to the formation of comets. A significant dose-dependent reduction of DNA migration of the comet's tail was found after exposing cells to sulfur mustard, indicative of the amount of sulfur mustard induced cross-links. The remarkable decrease of % tail DNA could be observed as early as 5min following exposure to sulfur mustard and the maximal effect was found after 30min, when DNA migration was reduced to the minimum. Sulfur mustard preincubated in culture medium without cells lost its ability to induce cross-links and had a half-life of about 15min. Pre-incubation longer than 30min does not lead to a significant increase in cross-links when applied to cells. However, the amount of cross-links is decreased during further incubation due to repair. The current modification of the comet assay provides a useful tool for detecting DNA cross-links induced by sulfur mustard and could be used for detection of other DNA cross-linking agents such as chemotherapeutic drugs.

  10. Cross-linked polyvinyl pyridine coated glass particle catalyst support and aqueous composition or polyvinyl pyridine adducted microspheres

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Gupta, Amitava (Inventor); Volksen, Willi (Inventor)

    1981-01-01

    Microspheres are produced by cobalt gamma radiation initiated polymerization of a dilute aqueous vinyl pyridine solution. Addition of cross-linking agent provides higher surface area beads. Addition of monomers such as hydroxyethylmethacrylate acrylamide or methacrylamide increases hydrophilic properties and surface area of the beads. High surface area catalytic supports are formed in the presence of controlled pore glass substrate.

  11. Self-Powered Electrochemistry for the Oxidation of Organic Molecules by a Cross-Linked Triboelectric Nanogenerator.

    PubMed

    Zheng, Xin; Su, Jingzhen; Wei, Xianjun; Jiang, Tao; Gao, Shuyan; Wang, Zhong Lin

    2016-07-01

    A cross-linked triboelectric nanogenerator with high performance is designed for the first time, which harvests vibrational energy to self-power the electrochemical oxidation of organic molecules. This system lays the groundwork for applications to an environmentally friendly production of important organic molecules and the waste treatment of organic pollutants. PMID:27145038

  12. Non-cross-linked polystyrene-supported 2-imidazolidinone chiral auxiliary: synthesis and application in asymmetric alkylation reactions

    PubMed Central

    Nguyen, Quynh Pham Bao

    2013-01-01

    Summary Asymmetric alkylation reactions using non-cross-linked polystyrene (NCPS)-supported 2-imidazolidinone chiral auxiliaries were successfully investigated with excellent diastereocontrol (>99% de). The recovery and the recycling of this soluble polymer-supported chiral auxiliary were achieved in order to produce highly optical pure carboxylic acids. PMID:24204423

  13. Studies on N-vinylformamide cross-linked copolymers

    NASA Astrophysics Data System (ADS)

    Świder, Joanna; Tąta, Agnieszka; Sokołowska, Katarzyna; Witek, Ewa; Proniewicz, Edyta

    2015-12-01

    Copolymers of N-vinylformamide (NVF) cross-linked with three multifunctional monomers, including divinylbenzene (DVB), ethylene glycol dimethacrylate (EGDMA), and N,N‧-methylenebisacrylamide (MBA) were synthetized by a three-dimensional free radical polymerization in inverse suspension using 2,2‧-azobis(2-methylpropionamide) dihydrochloride (AIBA) as an initiator. Methyl silicon oil was used as the continuous phase during the polymerization processes. Fourier-transform adsorption infrared (FT-IR) spectra revealed the presence of silicone oil traces and suggested that silicone oil strongly interacted with the copolymers surface. Purification procedure allowed to completely remove the silicon oil traces from P(NVF-co-DVB) only. The morphology and the structure of the investigated copolymers were examined by optical microscopy, FT-IR, and FT-Raman (Fourier-transform Raman spectroscopy) methods.

  14. Conventional Versus Cross-Linked Polyethylene for Total Hip Arthroplasty.

    PubMed

    Surace, Michele F; Monestier, Luca; Vulcano, Ettore; Harwin, Steven F; Cherubino, Paolo

    2015-09-01

    The clinical and radiographic outcomes of 88 patients who underwent primary total hip arthroplasty with either conventional polyethylene or cross-linked polyethylene (XLPE) from the same manufacturer were compared. There were no significant differences between the 2 subpopulations regarding average age, gender, side affected, or prosthetic stem and cup size. The average follow-up was 104 months (range, 55 to 131 months). To the authors' knowledge, this is the longest follow-up for this particular insert. Clinical and radiographic evaluations were performed at 1, 3, 6, and 12 months and then annually. Results showed that XLPE has a significantly greater wear reduction than that of standard polyethylene in primary total hip arthroplasty. At the longest available follow-up for these specific inserts, XLPE proved to be effective in reducing wear. PMID:26375527

  15. Theoretical Basis, Laboratory Evidence, and Clinical Research of Chemical Surgery of the Cornea: Cross-Linking

    PubMed Central

    da Paz, Amanda C.; Bersanetti, Patrícia A.; Salomão, Marcella Q.; Ambrósio, Renato; Schor, Paulo

    2014-01-01

    Corneal cross-linking (CXL) is increasingly performed in ophthalmology with high success rates for progressive keratoconus and other types of ectasia. Despite being an established procedure, some molecular and clinical aspects still require additional studies. This review presents a critical analysis of some established topics and others that are still controversial. In addition, this review examines new technologies and techniques (transepithelial and ultrafast CXL), uses of corneal CXL including natural products and biomolecules as CXL promoters, and evidence for in vitro and in vivo indirect effectiveness. PMID:25215226

  16. A strong integrated strength and toughness artificial nacre based on dopamine cross-linked graphene oxide.

    PubMed

    Cui, Wei; Li, Mingzhu; Liu, Jiyang; Wang, Ben; Zhang, Chuck; Jiang, Lei; Cheng, Qunfeng

    2014-09-23

    Demands of the strong integrated materials have substantially increased across various industries. Inspired by the relationship of excellent integration of mechanical properties and hierarchical nano/microscale structure of the natural nacre, we have developed a strategy for fabricating the strong integrated artificial nacre based on graphene oxide (GO) sheets by dopamine cross-linking via evaporation-induced assembly process. The tensile strength and toughness simultaneously show 1.5 and 2 times higher than that of natural nacre. Meanwhile, the artificial nacre shows high electrical conductivity. This type of strong integrated artificial nacre has great potential applications in aerospace, flexible supercapacitor electrodes, artificial muscle, and tissue engineering. PMID:25106494

  17. Beam diagnostics at high-intensity storage rings

    SciTech Connect

    Plum, M. )

    1994-10-10

    Beam diagnostics at high-intensity facilities feature their own special set of problems and characteristics, issues peculiar to high-intensity storage rings include beam loss, beam halos, extraction efficiency, beam in the gap, clearing electrodes, and beam-profile measurement. The Los Alamos Proton Storage Ring (PSR) is a nice example of a high-intensity storage ring. I will discuss in some detail three diagnostic systems currently in use at the PSR: the beam-loss-monitor system, the electron-clearing system, and the beam-in-the-gap monitor. Much of our discussion is inspired by the problems we have encountered and the useful things we have learned while commissioning and developing the PSR. Another inspiration is our work on the next-generation neutron-spallation source, also known as the National Center for Neutron Research (NCNR).

  18. Beam diagnostics at high-intensity storage rings

    SciTech Connect

    Plum, M.

    1993-11-01

    Beam diagnostics at high-intensity facilities feature their own special set of problems and characteristics. Issues peculiar to high-intensity storage rings include beam loss, beam halos, extraction efficiency, beam in the gap, clearing electrodes, and beam-profile measurement. The Los Alamos Proton Storage Ring (PSR) is a nice example of a high-intensity storage ring. The author discusses in some detail three diagnostic systems currently in use at the PSR: the beam-loss-monitor system, the electron-clearing system, and the beam-in-the-gap monitor. Much of the discussion is inspired by the problems that were encountered and the useful things learned while commissioning and developing the PSR. Another inspiration is the work on the next-generation neutron-spallation source, also known as the National Center for Neutron Research (NCNR).

  19. In vivo degradation behavior of photo-cross-linked star-poly(epsilon-caprolactone-co-D,L-lactide) elastomers.

    PubMed

    Amsden, Brian G; Tse, M Yat; Turner, Norma D; Knight, Darryl K; Pang, Stephen C

    2006-01-01

    We have recently reported on the preparation of biodegradable elastomers through photo-cross-linking acrylated star-poly(epsilon-caprolactone-co-D,L-lactide). In this paper we assess the change in their physical properties during in vivo degradation in rats after subcutaneous implantation over a 12 week period. These parameter changes were compared to those observed in vitro. Two different cross-link densities were examined, representing the range from a high Young's modulus to a low Young modulus. Elastomers having a high cross-link density exhibited degradation behavior consistent with a surface erosion mechanism, and degraded at the same rate in vivo as observed in vitro. Young's modulus and the stress at break of these elastomers decreased linearly with the degradation time, while the strain at break decreased slowly. Elastomers having a low cross-link density exhibited a degradation mechanism consistent with bulk erosion. Young's modulus and the stress at break of these elastomers decreased slowly initially, followed by a marked increase in mechanical strength loss after 4 weeks. The elastomers were well tolerated by the rats over the 12 week period in vivo.

  20. Standard versus trans-epithelial collagen cross-linking in keratoconus patients suitable for standard collagen cross-linking

    PubMed Central

    Rossi, S; Orrico, A; Santamaria, C; Romano, V; De Rosa, L; Simonelli, F; De Rosa, G

    2015-01-01

    Purpose Evaluating the clinical results of trans-epithelial collagen cross-linking (CXL) and standard CXL in patients with progressive keratoconus. Methods This prospective study comprised 20 eyes of 20 patients with progressive keratoconus. Ten eyes were treated by standard CXL and ten by trans-epithelial cross-linking (TE-CXL, epithelium on) with 1 year of follow-up. All patients underwent complete ophthalmologic testing that included pre- and postoperative uncorrected visual acuity, corrected visual acuity, spherical error, spherical equivalent, corneal astigmatism, simulated maximum, minimum, and average keratometry, coma and spherical aberration, optical pachymetry, and endothelial cell density. Intra-and postoperative complications were recorded. The solution used for standard CXL comprised riboflavin 0.1% and dextran 20.0% (Ricrolin), while the solution for TE-CXL (Ricrolin, TE) comprised riboflavin 0.1%, dextran 15.0%, trometamol (Tris), and ethylenediaminetetraacetic acid. Ultraviolet-A treatment was performed with UV-X System at 3 mW/cm2. Results In both the standard CXL group (ten patients, ten eyes; mean age, 30.4±7.3 years) and the TE-CXL group (ten patients, ten eyes; mean age, 28±3.8 years), uncorrected visual acuity and corrected visual acuity improved significantly after treatment. Furthermore, a significant improvement in topographic outcomes, spherical error, and spherical equivalent was observed in both groups at month 12 posttreatment. No significant variations were recorded in other parameters. No complications were noted. Conclusion A 1-year follow-up showed stability of clinical and refractive outcomes after standard CXL and TE-CXL. PMID:25834386

  1. Utilization of DNA-protein cross-links as a biomarker of chromium exposure.

    PubMed Central

    Zhitkovich, A; Voitkun, V; Kluz, T; Costa, M

    1998-01-01

    Human exposure to carcinogenic Cr(VI) compounds is found among workers in a large number of professional groups, and it can also occur through environmental pollution. A significant number of toxic waste sites contain Cr as a major contaminant. In this paper we summarize our efforts to apply measurements of DNA-protein cross-links (DPC) as test for biologically active doses of Cr(VI). DPC were found at elevated levels in lymphocytes in several human populations with low to medium Cr exposures. At high exposure to Cr(VI), exemplified by a group of Bulgarian chromeplaters, DPC plateaued and adducts' levels were similar to those found in environmentally exposed individuals. Lymphocytic DPC correlated strongly with Cr levels in erythrocytes that are indicative of Cr(VI) exposure. DPC in lymphocytes were not confounded by such variables as smoking, age, body weight, gender, or ethnicity. A new version of the cross-link assay offers improved sensitivity and requires a small amount of biologic material. Preliminary results indicate that the ability of DPC to reach detectable levels at low levels of Cr exposure could be related to a lack of repair of these lesions in lymphoid cells. Cr(III)-mediated cross-links of DNA with peptide glutathione or single amino acids were mutagenic in human cells, with a relationship of higher molecular weight of the peptide/amino acid correlating with a more potent mutagenic response. We speculate that bulky DPC could also have a significant promutagenic effect. The current methodology does not allow specific determination of Cr-induced DPC; however, demonstrated sensitivity of DPC measurements and the assay's large sample capacity may allow this assay to be used as the initial screening test for the occurrence of DNA damage in Cr(VI)-exposed populations. PMID:9703480

  2. The preparation and characterization of linear and cross-linked poly(fluorenyl)

    SciTech Connect

    Hagaman, E.W.; Lee, S.K.

    1997-03-01

    Retrogressive reactions in coal processing are that class of reactions that lead to the formation of high molecular weight materials that are more intractable than those present in the coal prior to processing. This outcome almost always is regarded as deleterious. The present work focuses on the characterization of the acid-catalyzed polymerization of benzylic fluorides, and in particular the synthesis of poly(fluorenyl), as an example of the type of chemistry that may occur in the cross-linked organic matrix of coals when in contact with strong acids. Solution and solid state {sup 13}C NMR spectroscopy was used to characterize the soluble and insoluble polymers. The change in the value of the fraction of aromatic carbon that is protonated is the criterion used to monitor the extent of cross-linking in these polymer preparations. Benzylic fluorides are sensitive substances, prone to further reaction via acid catalyzed heterolytic scission of the C-F bond. The electron deficient reactive intermediate formed in this reaction undergoes electrophilic aromatic substitution. This reaction can be started with catalytic traces of acid and is self-sustaining as HF is generated in equivalent concentrations as the reaction proceeds. The relevance of this naturally non-occurring functional group in coal processing stems from the similar reaction pathway followed by both benzylic fluorides and benzylic alcohols. In the coal matrix, the operation of two exogenous processes--air oxidation and strong acid treatment of the coal (demineralization) creates a situation in which the polymerization discussed herein may occur in the coal. In addition to the polymerization reactions that produce poly(fluorenyl), the subsequent cross-linking of the linear polymer is also reported. In subsequent work, similar chemistry will be applied to soluble lignin as a model more similar to low rank coals.

  3. A Robust Cross-Linking Strategy for Block Copolymer Worms Prepared via Polymerization-Induced Self-Assembly

    PubMed Central

    2016-01-01

    A poly(glycerol monomethacrylate) (PGMA) chain transfer agent is chain-extended by reversible addition–fragmentation chain transfer (RAFT) statistical copolymerization of 2-hydroxypropyl methacrylate (HPMA) with glycidyl methacrylate (GlyMA) in concentrated aqueous solution via polymerization-induced self-assembly (PISA). A series of five free-standing worm gels is prepared by fixing the overall degree of polymerization of the core-forming block at 144 while varying its GlyMA content from 0 to 20 mol %. 1H NMR kinetics indicated that GlyMA is consumed much faster than HPMA, producing a GlyMA-rich sequence close to the PGMA stabilizer block. Temperature-dependent oscillatory rheological studies indicate that increasing the GlyMA content leads to progressively less thermoresponsive worm gels, with no degelation on cooling being observed for worms containing 20 mol % GlyMA. The epoxy groups in the GlyMA residues can be ring-opened using 3-aminopropyltriethoxysilane (APTES) in order to prepare core cross-linked worms via hydrolysis-condensation with the siloxane groups and/or hydroxyl groups on the HPMA residues. Perhaps surprisingly, 1H NMR analysis indicates that the epoxy–amine reaction and the intermolecular cross-linking occur on similar time scales. Cross-linking leads to stiffer worm gels that do not undergo degelation upon cooling. Dynamic light scattering studies and TEM analyses conducted on linear worms exposed to either methanol (a good solvent for both blocks) or anionic surfactant result in immediate worm dissociation. In contrast, cross-linked worms remain intact under such conditions, provided that the worm cores comprise at least 10 mol % GlyMA. PMID:27134311

  4. Tuning nanoscale viscoelasticity of polyelectrolyte complexes with multiple types of cross-links

    NASA Astrophysics Data System (ADS)

    Ma, Tianzhu; Han, Biao; Lee, Daeyeon; Han, Lin

    Mechanical properties of hydrogels are manifestation of cross-link type and density, fixed charges and water-polymer interactions. In this study, we revealed how different types of cross-links regulate the nanoscale viscoelasticity of polyelectrolyte networks. Ionically cross-linked PAH/PAA layer-by-layer complexes were modified to include covalent cross-links using EDC. AFM-nanoindentation and force relaxation were performed at various ionic strength (0.01-1M) and pH (1.5-5.5). As-assembled networks, held only by ionic cross-links, underwent >95% relaxation, dominated by cross-link breaking and re-formation. Addition of covalent cross-links increased the instantaneous modulus by 1.6-fold and attenuated relaxation to ~80% of net neutral states (pH >=3.5), as covalent cross-links provide additional elastic components. The network remained stabilized when all ionic cross-links were dissociated at pH <=1.5, whereby further attenuation to 31% in relaxation could be due to viscoelastic polymer conformational changes and fluid flow-induced poroelasticity. Taken together, this study demonstrates the potential of using multiple cross-linking types to tune the viscoelastic mechanisms in polyelectrolyte complexes.

  5. Reactive electrospinning and biodegradation of cross-linked methacrylated polycarbonate nanofibers.

    PubMed

    Wu, Ruizhi; Zhang, Jian-Feng; Fan, Yuwei; Stoute, Diana; Lallier, Thomas; Xu, Xiaoming

    2011-06-01

    The objectives of this study were to fabricate cross-linked biodegradable polycarbonate nanofibers and to investigate their biodegradability by different enzymes. Poly(2,3-dihydroxycarbonate) was synthesized from naturally occurring l-tartaric acid. The hydroxyl groups on the functional polycarbonate were converted to methacrylate groups to enable the polymer to cross-link under UV irradiation. Smooth cross-linked methacrylated polycarbonate nanofibers (300-1800 nm) were fabricated by a reactive electrospinning process with in situ UV radiation from a mixed solution of linear methacrylated polycarbonate (MPC) and poly(ethylene oxide) (PEO) (MPC:PEO = 9:1) in methanol/chloroform (50/50). These cross-linked nanofibers have shown excellent solvent resistance and their solubility decreases with increasing degree of cross-linking. The thermal properties of linear and cross-linked polycarbonate nanofibers were investigated by differential scanning calorimetry and thermogravimetric analysis. The cross-linked polycarbonate nanofibers show no melting point below 200 °C and their decomposition temperature increases with increasing cross-linking degree. Their biodegradation products by five different enzymes were analyzed using liquid chromatography-mass spectrometry (LC-MS). The biodegradability of the polycarbonate nanofibers decreases with increasing cross-linking degree. These nanofibers were found to support human fibroblast survival and to promote cell attachment. This study demonstrates that cross-linked biodegradable polycarbonate nanofibers with different chemical properties and biodegradability can be fabricated using the novel reactive electrospinning technology to meet the needs of different biomedical applications.

  6. Evaluation of the wear performance of a polycarbonate-urethane acetabular component in a hip joint simulator and comparison with UHMWPE and cross-linked UHMWPE.

    PubMed

    St John, Kenneth; Gupta, Minakshi

    2012-07-01

    Acetabular hip joint components manufactured from gamma-sterilized ultra high molecular weight polyethylene (UHMWPE), gamma cross-linked UHMWPE, or polycarbonate-urethane (PCU) polymers were evaluated in a hip joint simulator, using cobalt alloy femoral components, for at least 5 million cycles. The volume of material losses due to wear was calculated for each type of sample, based upon mass loss measurements, every 500,000 cycles. The loss of material for the conventional UHMWPE was much higher than for the cross-linked UHMWPE, showing about a 70% reduction in wear due to cross-linking. The material loss for the PCU samples appears to have been at least 24% lower than for the cross-linked UHMWPE. Based upon these results, the PCU material seems to have potential for use as an alternative bearing material to UHMWPE for total hip replacement surgeries.

  7. Characterization of Interstrand DNA-DNA Cross-Links Using the α-Hemolysin Protein Nanopore.

    PubMed

    Zhang, Xinyue; Price, Nathan E; Fang, Xi; Yang, Zhiyu; Gu, Li-Qun; Gates, Kent S

    2015-12-22

    Nanopore-based sensors have been studied extensively as potential tools for DNA sequencing, characterization of epigenetic modifications such as 5-methylcytosine, and detection of microRNA biomarkers. In the studies described here, the α-hemolysin protein nanopore embedded in a lipid bilayer was used for the detection and characterization of interstrand cross-links in duplex DNA. Interstrand cross-links are important lesions in medicinal chemistry and toxicology because they prevent the strand separation that is required for read-out of genetic information from DNA in cells. In addition, interstrand cross-links are used for the stabilization of duplex DNA in structural biology and materials science. Cross-linked DNA fragments produced unmistakable current signatures in the nanopore experiment. Some cross-linked substrates gave irreversible current blocks of >10 min, while others produced long current blocks (10-100 s) before the double-stranded DNA cross-link translocated through the α-hemolysin channel in a voltage-driven manner. The duration of the current block for the different cross-linked substrates examined here may be dictated by the stability of the duplex region left in the vestibule of the nanopore following partial unzipping of the cross-linked DNA. Construction of calibration curves measuring the frequency of cross-link blocking events (1/τon) as a function of cross-link concentration enabled quantitative determination of the amounts of cross-linked DNA present in samples. The unique current signatures generated by cross-linked DNA in the α-HL nanopore may enable the detection and characterization of DNA cross-links that are important in toxicology, medicine, and materials science.

  8. Chemical cross-linking and mass spectrometry to determine the subunit interaction network in a recombinant human SAGA HAT subcomplex.

    PubMed

    Nguyen-Huynh, Nha-Thi; Sharov, Grigory; Potel, Clément; Fichter, Pélagie; Trowitzsch, Simon; Berger, Imre; Lamour, Valérie; Schultz, Patrick; Potier, Noëlle; Leize-Wagner, Emmanuelle

    2015-08-01

    Understanding the way how proteins interact with each other to form transient or stable protein complexes is a key aspect in structural biology. In this study, we combined chemical cross-linking with mass spectrometry to determine the binding stoichiometry and map the protein-protein interaction network of a human SAGA HAT subcomplex. MALDI-MS equipped with high mass detection was used to follow the cross-linking reaction using bis[sulfosuccinimidyl] suberate (BS3) and confirm the heterotetrameric stoichiometry of the specific stabilized subcomplex. Cross-linking with isotopically labeled BS3 d0-d4 followed by trypsin digestion allowed the identification of intra- and intercross-linked peptides using two dedicated search engines: pLink and xQuest. The identified interlinked peptides suggest a strong network of interaction between GCN5, ADA2B and ADA3 subunits; SGF29 is interacting with GCN5 and ADA3 but not with ADA2B. These restraint data were combined to molecular modeling and a low-resolution interacting model for the human SAGA HAT subcomplex could be proposed, illustrating the potential of an integrative strategy using cross-linking and mass spectrometry for addressing the structural architecture of multiprotein complexes.

  9. Stable Bioactive Enzyme-Containing Multilayer Films Based on Covalent Cross-Linking from Mussel-Inspired Adhesives.

    PubMed

    Longo, Johan; Garnier, Tony; Mateescu, Mihaela; Ponzio, Florian; Schaaf, Pierre; Jierry, Loïc; Ball, Vincent

    2015-11-17

    The use of immobilized enzymes is mandatory for the easy separation of the enzyme, the unreacted substrates, and the obtained products to allow repeated enzymatic assays without cumbersome purification steps. The immobilization procedure is however critical to obtain a high fraction of active enzyme. In this article, we present an enzyme immobilization strategy based on a catechol functionalized alginate. We demonstrate that alkaline phosphatase (ALP) remains active in multilayered films made with alginate modified with catechol moieties (AlgCat) for long duration, that is, up to 7 weeks, provided the multilayered architecture is cross-linked with sodium periodate. This cross-linking reaction allows to create covalent bonds between the amino groups of ALP and the quinone group carried by the modified alginate. In the absence of cross-linking, the enzymatic activity is rapidly lost and this reduction is mainly due to enzyme desorption. We also show that NaIO4 cross-linked (AlgCat-Alp)n films can be freeze-dried and reused at least 3 weeks later without lost in enzymatic activity. PMID:26509712

  10. Structure of the Dispase Autolysis-inducing Protein from Streptomyces mobaraensis and Glutamine Cross-linking Sites for Transglutaminase.

    PubMed

    Fiebig, David; Schmelz, Stefan; Zindel, Stephan; Ehret, Vera; Beck, Jan; Ebenig, Aileen; Ehret, Marina; Fröls, Sabrina; Pfeifer, Felicitas; Kolmar, Harald; Fuchsbauer, Hans-Lothar; Scrima, Andrea

    2016-09-23

    Transglutaminase from Streptomyces mobaraensis (MTG) is an important enzyme for cross-linking and modifying proteins. An intrinsic substrate of MTG is the dispase autolysis-inducing protein (DAIP). The amino acid sequence of DAIP contains 5 potential glutamines and 10 lysines for MTG-mediated cross-linking. The aim of the study was to determine the structure and glutamine cross-linking sites of the first physiological MTG substrate. A production procedure was established in Escherichia coli BL21 (DE3) to obtain high yields of recombinant DAIP. DAIP variants were prepared by replacing four of five glutamines for asparagines in various combinations via site-directed mutagenesis. Incorporation of biotin cadaverine revealed a preference of MTG for the DAIP glutamines in the order of Gln-39 ≫ Gln-298 > Gln-345 ∼ Gln-65 ≫ Gln-144. In the structure of DAIP the preferred glutamines do cluster at the top of the seven-bladed β-propeller. This suggests a targeted cross-linking of DAIP by MTG that may occur after self-assembly in the bacterial cell wall. Based on our biochemical and structural data of the first physiological MTG substrate, we further provide novel insight into determinants of MTG-mediated modification, specificity, and efficiency. PMID:27493205

  11. Stable Bioactive Enzyme-Containing Multilayer Films Based on Covalent Cross-Linking from Mussel-Inspired Adhesives.

    PubMed

    Longo, Johan; Garnier, Tony; Mateescu, Mihaela; Ponzio, Florian; Schaaf, Pierre; Jierry, Loïc; Ball, Vincent

    2015-11-17

    The use of immobilized enzymes is mandatory for the easy separation of the enzyme, the unreacted substrates, and the obtained products to allow repeated enzymatic assays without cumbersome purification steps. The immobilization procedure is however critical to obtain a high fraction of active enzyme. In this article, we present an enzyme immobilization strategy based on a catechol functionalized alginate. We demonstrate that alkaline phosphatase (ALP) remains active in multilayered films made with alginate modified with catechol moieties (AlgCat) for long duration, that is, up to 7 weeks, provided the multilayered architecture is cross-linked with sodium periodate. This cross-linking reaction allows to create covalent bonds between the amino groups of ALP and the quinone group carried by the modified alginate. In the absence of cross-linking, the enzymatic activity is rapidly lost and this reduction is mainly due to enzyme desorption. We also show that NaIO4 cross-linked (AlgCat-Alp)n films can be freeze-dried and reused at least 3 weeks later without lost in enzymatic activity.

  12. Improved stability and cell response by intrinsic cross-linking of multilayers from collagen I and oxidized glycosaminoglycans.

    PubMed

    Zhao, Mingyan; Li, Lihua; Zhou, Changren; Heyroth, Frank; Fuhrmann, Bodo; Maeder, Karsten; Groth, Thomas

    2014-11-10

    Stability of surface coatings against environmental stress, such as pH, high ionic strength, mechanical forces, and so forth, is crucial for biomedical application of implants. Here, a novel extracellular-matrix-like polyelectrolyte multilayer (PEM) system composed of collagen I (Col I) and oxidized glycosaminoglycans (oGAGs) was stabilized by intrinsic cross-linking due to formation of imine bonds between aldehydes of oxidized chondroitin sulfate (oCS) or hyaluronan (oHA) and amino groups of Col I. It was also found that Col I contributed significantly more to overall mass in CS-Col I than in HA-Col I multilayer systems and fibrillized particularly in the presence of native and oxidized CS. Adhesion and proliferation studies with murine C3H10T1/2 embryonic fibroblasts demonstrated that covalent cross-linking of oGAG with Col I had no adverse effects on cell behavior. By contrast, it was found that cell size and polarization was more pronounced on oGAG-based multilayer systems, which corresponded also to the higher stiffness of cross-linked multilayers as observed by studies with quartz crystal microbalance (QCM). Overall, PEMs prepared from oGAG and Col I give rise to stable PEM constructs due to intrinsic cross-linking that may be useful for making bioactive coatings of implants and tissue engineering scaffolds.

  13. Structure of the Dispase Autolysis-inducing Protein from Streptomyces mobaraensis and Glutamine Cross-linking Sites for Transglutaminase.

    PubMed

    Fiebig, David; Schmelz, Stefan; Zindel, Stephan; Ehret, Vera; Beck, Jan; Ebenig, Aileen; Ehret, Marina; Fröls, Sabrina; Pfeifer, Felicitas; Kolmar, Harald; Fuchsbauer, Hans-Lothar; Scrima, Andrea

    2016-09-23

    Transglutaminase from Streptomyces mobaraensis (MTG) is an important enzyme for cross-linking and modifying proteins. An intrinsic substrate of MTG is the dispase autolysis-inducing protein (DAIP). The amino acid sequence of DAIP contains 5 potential glutamines and 10 lysines for MTG-mediated cross-linking. The aim of the study was to determine the structure and glutamine cross-linking sites of the first physiological MTG substrate. A production procedure was established in Escherichia coli BL21 (DE3) to obtain high yields of recombinant DAIP. DAIP variants were prepared by replacing four of five glutamines for asparagines in various combinations via site-directed mutagenesis. Incorporation of biotin cadaverine revealed a preference of MTG for the DAIP glutamines in the order of Gln-39 ≫ Gln-298 > Gln-345 ∼ Gln-65 ≫ Gln-144. In the structure of DAIP the preferred glutamines do cluster at the top of the seven-bladed β-propeller. This suggests a targeted cross-linking of DAIP by MTG that may occur after self-assembly in the bacterial cell wall. Based on our biochemical and structural data of the first physiological MTG substrate, we further provide novel insight into determinants of MTG-mediated modification, specificity, and efficiency.

  14. Enzymatic cross-linking of α-lactalbumin to produce nanoparticles with increased foam stability.

    PubMed

    Dhayal, Surender K; Delahaije, Roy J B M; de Vries, Renko J; Gruppen, Harry; Wierenga, Peter A

    2015-10-28

    Hard colloidal nanoparticles (e.g. partly hydrophobised silica), are known to make foams with very high foam-stability. Nanoparticles can also be produced from proteins by enzymatic cross-linking. Such protein based particles are more suitable for food applications, but it is not known if they provide Pickering foam stabilisation to the same extent as hard colloidal particles. α-Lactalbumin (α-LA) was cross-linked with either microbial transglutaminase (mTG) or horseradish peroxidase (HRP) to produce α-LA/mTG and α-LA/HRP nanoparticles. With both enzymes a range of nanoparticles were produced with hydrodynamic radii ranging from 20-100 nm. The adsorption of nanoparticles to the air-water interface was probed by increase in surface pressure (Π) with time. In the beginning of the Π versus time curves, there was a lag time of 10-200 s, for nanoparticles with Rh of 30-100 nm, respectively. A faster increase of Π with time was observed by increasing the ionic strength (I = 0-125 mM). The foam-ability of the nanoparticles was also found to increase with increasing ionic strength. At a fixed I, the foam-ability of the nanoparticles decreased with increasing size while their foam-stability increased. Foams produced by low-shear whipping were found to be 2 to 6 times more stable for nanoparticles than for monomeric α-LA (Rh≈ 2 nm). At an ionic strength of 125 mM ionic strength and protein concentration ≥ 10 g L(-1), the foam-stability of α-LA/mTG nanoparticles (Rh = 100 nm, ρapp = 21.6 kg m(-3)) was 2-4 times higher than α-LA/HRP nanoparticles (Rh = 90 nm, ρapp = 10.6 kg m(-3)). This indicated that foam-stablity of nanoparticles is determined not only by size but also by differences in mesoscale structure. So, indeed enzymatic cross-linking of proteins to make nanoparticles is moving a step towards particle like behavior e.g. slower adsorption and higher foam stability. However, the cross-link density should be further increased to obtain hard particle

  15. Enzymatic cross-linking of α-lactalbumin to produce nanoparticles with increased foam stability.

    PubMed

    Dhayal, Surender K; Delahaije, Roy J B M; de Vries, Renko J; Gruppen, Harry; Wierenga, Peter A

    2015-10-28

    Hard colloidal nanoparticles (e.g. partly hydrophobised silica), are known to make foams with very high foam-stability. Nanoparticles can also be produced from proteins by enzymatic cross-linking. Such protein based particles are more suitable for food applications, but it is not known if they provide Pickering foam stabilisation to the same extent as hard colloidal particles. α-Lactalbumin (α-LA) was cross-linked with either microbial transglutaminase (mTG) or horseradish peroxidase (HRP) to produce α-LA/mTG and α-LA/HRP nanoparticles. With both enzymes a range of nanoparticles were produced with hydrodynamic radii ranging from 20-100 nm. The adsorption of nanoparticles to the air-water interface was probed by increase in surface pressure (Π) with time. In the beginning of the Π versus time curves, there was a lag time of 10-200 s, for nanoparticles with Rh of 30-100 nm, respectively. A faster increase of Π with time was observed by increasing the ionic strength (I = 0-125 mM). The foam-ability of the nanoparticles was also found to increase with increasing ionic strength. At a fixed I, the foam-ability of the nanoparticles decreased with increasing size while their foam-stability increased. Foams produced by low-shear whipping were found to be 2 to 6 times more stable for nanoparticles than for monomeric α-LA (Rh≈ 2 nm). At an ionic strength of 125 mM ionic strength and protein concentration ≥ 10 g L(-1), the foam-stability of α-LA/mTG nanoparticles (Rh = 100 nm, ρapp = 21.6 kg m(-3)) was 2-4 times higher than α-LA/HRP nanoparticles (Rh = 90 nm, ρapp = 10.6 kg m(-3)). This indicated that foam-stablity of nanoparticles is determined not only by size but also by differences in mesoscale structure. So, indeed enzymatic cross-linking of proteins to make nanoparticles is moving a step towards particle like behavior e.g. slower adsorption and higher foam stability. However, the cross-link density should be further increased to obtain hard particle

  16. Core cross-linked micelle-based nanoreactors for efficient photocatalysis.

    PubMed

    Zheng, Min; Sun, Zaicheng; Xie, Zhigang; Jing, Xiabin

    2013-11-01

    Stable nanoscale cross-linked polymer micelles containing Ru complexes (Ru-CMs) were prepared from monomethoxy[poly(ethylene glycol)]-block-poly(L-lysine) (MPEG-PLys) and [(bpy)2Ru(fmbpy)](PF6)2 (bpy=bipyridine, fmbpy=5-formy-5'-methyl-2,2'-bipyridine). To stabilize the micelles, bifunctional glutaraldehyde was used as a cross-linker to react with the free amino groups of the PLys block. After that, the Ru-CMs showed very good stability in common solvents. The Ru-CMs showed photocatalytic activity and selectivity in the oxidation of sulfides that were as high as those of the well-known [Ru(bpy)3(PF6)2] complex, because the micelles were swollen in the methanol-sulfide mixture. Moreover, because of the nanoscale size of the particles and their high stability, the Ru-CM photocatalysts can be readily recovered by ultrafiltration and reused without loss of photocatalytic activity. This work highlights the potential of using cross-linked micelles as a platform for developing highly efficient heterogeneous photocatalysts for a number of important organic transformations.

  17. Riboflavin-Ultraviolet A Corneal Cross-linking for Keratoconus

    PubMed Central

    El-Raggal, Tamer M.

    2009-01-01

    Purpose: To evaluate the safety, efficacy of riboflavin-ultraviolet A irradiation (UVA) corneal cross-linking and present refractive changes induced by the treatment in cases of keratoconus. Materials and Methods: The study includes 15 eyes of 9 patients with keratoconus with an average keratometric (K) reading less than 54 D and minimal corneal thickness greater than 420 microns. The corneal epithelium was removed manually within the central 8.5 mm diameter area and the cornea was soaked with riboflavin eye drops (0.1% in 20% dextran τ-500) for 30 minutes followed by exposure to UVA radiation (365 nm, 3 mW/cm2) for 30 minutes. During the follow-up period, uncorrected visual acuity (UCVA), best spectacle-corrected visual acuity (BSCVA), manifest refraction, slit lamp examination and topographic changes were recorded at the first week, first month, 3 and 6 months. Results: There was statistically significant improvement of UCVA from a preoperative mean of 0.11 ± 0.07 (range 0.05–0.3) to a postoperative mean of 0.15 ± 0.06 (range 0.1–0.3) (P < 0.05). None of the eyes lost lines of preoperative UCVA but 1 eye lost 1 line of preoperative BSCVA. The preoperative mean K of 49.97 ± 2.81 D (range 47.20–51.75) changed to 48.34 ± 2.64 D (range 45.75–50.40). This decrease in K readings was statistically significant (P < 0.05). All eyes developed minimal faint stromal haze that cleared in 14 eyes within 1 month. In only 1 eye, this resulted in a very faint corneal scar. Other sight threatening complications were not encountered in this series. Progression of the original disease was not seen in any of the treated eyes within 6 months of follow-up. Conclusion: Riboflavin-UVA corneal cross-linking is a safe and promising method for keratoconus. Larger studies with longer follow up are recommended. PMID:20404993

  18. Design of High Luminosity Ring-Ring Electron- Light Ion Collider at CEBAF

    SciTech Connect

    Slawomir Bogacz; Antje Bruell; Jean Delayen; Yaroslav Derbenev; Rolf Ent; Joseph Grames; Andrew Hutton; Geoffrey Krafft; Rui Li; Nikolitsa Merminga; Benard Poelker; Bogdan Wojtsekhowski; Byung Yunn; Yuhong Zhang; C Montag

    2007-06-25

    Experimental studies of fundamental structure of nucleons require an electron-ion collider of a center-of-mass energy up to 90 GeV at luminosity up to 1035 cm-2s-1 with both beams polarized. A CEBAF-based collider of 9 GeV electrons/positrons and 225 GeV ions is envisioned to meet this science need and as a next step for CEBAF after the planned 12 GeV energy upgrade of the fixed target program. A ring-ring scheme of this collider developed recently takes advantage of the existing polarized electron CW beam from the CEBAF and a green-field design of an ion complex with electron cooling. We present a conceptual design and report design studies of this high-luminosity collider.

  19. High heat-load absorbers for the APS storage ring

    SciTech Connect

    Sharma, S.; Rotela, E.; Barcikowski, A.

    2000-07-21

    The power density of the dipole x-rays in the 7-GeV APS storage ring is 261 watts/mrad at 300 mA of beam current. An array of absorbers is used in the ring to shield its vacuum chambers and diagnostics components in the path of these intense x-rays. This paper describes some of the unique absorber designs that were developed to handle the requirements of high power density and UHV compatibility with no water-to-vacuum joints.

  20. HIGH LEVEL RF FOR THE SNS RING.

    SciTech Connect

    ZALTSMAN,A.; BLASKIEWICZ,M.; BRENNAN,J.; BRODOWSKI,J.; METH,M.; SPITZ,R.; SEVERINO,F.

    2002-06-03

    A high level RF system (HLRF) consisting of power amplifiers (PA's) and ferrite loaded cavities is being designed and built by Brookhaven National Laboratory (BNL) for the Spallation Neutron Source (SNS) project. It is a fixed frequency, two harmonic system whose main function is to maintain a gap for the kicker rise time. Three cavities running at the fundamental harmonic (h=l) will provide 40 kV and one cavity at the second harmonic (h=2) will provide 20 kV. Each cavity has two gaps with a design voltage of 10 kV per gap and will be driven by a power amplifier (PA) directly adjacent to it. The PA uses a 600kW tetrode to provide the necessary drive current. The anode of the tetrode is magnetically coupled to the downstream cell of the cavity. Drive to the PA will be provided by a wide band, solid state amplifier located remotely. A dynamic tuning scheme will be implemented to help compensate for the effect of beam loading.

  1. Bioorthogonally cross-linked hydrogel network with precisely controlled disintegration time over a broad range.

    PubMed

    Xu, Jianwen; Feng, Ellva; Song, Jie

    2014-03-19

    Hydrogels with predictable degradation are highly desired for biomedical applications where timely disintegration of the hydrogel (e.g., drug delivery, guided tissue regeneration) is required. However, precisely controlling hydrogel degradation over a broad range in a predictable manner is challenging due to limited intrinsic variability in the degradation rate of liable bonds and difficulties in modeling degradation kinetics for complex polymer networks. More often than not, empirical tuning of the degradation profile results in undesired changes in other properties. Here we report a simple but versatile hydrogel platform that allows us to formulate hydrogels with predictable disintegration time from 2 to >250 days yet comparable macroscopic physical properties. This platform is based on a well-defined network formed by two pairs of four-armed polyethylene glycol macromers terminated with azide and dibenzocyclooctyl groups, respectively, via labile or stable linkages. The high-fidelity bioorthogonal reaction between the symmetric hydrophilic macromers enables robust cross-linking in water, phosphate-buffered saline, and cell culture medium to afford tough hydrogels capable of withstanding >90% compressive strain. Strategic placement of labile ester linkages near the cross-linking site within this superhydrophilic network, accomplished by adjustments of the ratio of the macromers used, enables broad tuning of the disintegration rates precisely matching with the theoretical predictions based on first-order linkage cleavage kinetics. This platform can be exploited for applications where a precise degradation rate is targeted.

  2. Robust Self-Healing Hydrogels Assisted by Cross-Linked Nanofiber Networks

    PubMed Central

    Fang, Yuan; Wang, Cai-Feng; Zhang, Zhi-Hong; Shao, Huan; Chen, Su

    2013-01-01

    Given increasing environmental and energy issues, mimicking nature to confer synthetic materials with self-healing property to expand their lifespan is highly desirable. Just like human skin recovers itself upon damage with the aid of nutrient-laden blood vascularization, designing smart materials with microvascular network to accelerate self-healing is workable but continues to be a challenge. Here we report a new strategy to prepare robust self-healing hydrogels assisted by a healing layer composed of electrospun cross-linked nanofiber networks containing redox agents. The hydrogels process high healing rate ranging from seconds to days and great mechanical strengths with storage modulus up to 0.1 MPa. More interestingly, when the healing layer is embedded into the crack of the hydrogel, accelerated self-healing is observed and the healing efficiency is about 80%. The healing layer encourages molecular diffusion as well as further cross-linking in the crack region of the hydrogel, responsible for enhanced healing efficiency. PMID:24091865

  3. Removal of textile dye, direct red 23, with glutaraldehyde cross-linked magnetic chitosan beads.

    PubMed

    Sanlier, Senay Hamarat; Ak, Güliz; Yilmaz, Habibe; Ozbakir, Gizem; Cagliyan, Oguzhan

    2013-01-01

    One of the most important classes of pollutants is dyes, and today there are more than 100,000 commercial dyes. Conventional treatment processes are very expensive, so it is essential to develop low-cost sorbent materials with high adsorption capacities. The aim of this study is to prepare magnetic microsized adsorbents that have high adsorption capacity for removal of direct red 23. Through this objective, glutaraldehyde cross-linked magnetic chitosan beads were formed in order to remove the textile dye direct red 23. Barium ferrite was used to give a magnetic property so that the beads could easily be separated from the water after treatment. The effects of barium ferrite, pH, incubation time, dye concentration, and glutaraldehyde amounts were investigated. The Langmuir and Freundlich adsorption models were applied to describe the equilibrium isotherms. The adsorption capacity had a very large value: 1250 mg/g at pH 4.0, at room temperature. Compared with activated carbon, magnetic cross-linked chitosan exhibits excellent performance in the adsorption of anionic dyes and the magnetic properties of beads enable us to remove the beads from the water after treatment. Pseudo-second-order and intraparticle diffusion kinetic models were applied.

  4. Cross-links between ribosomal proteins of 30S subunits in 70S tight couples and in 30S subunits.

    PubMed

    Lambert, J M; Boileau, G; Cover, J A; Traut, R R

    1983-08-01

    Ribosome 70S tight couples and 30S subunits derived from them were modified with 2-iminothiolane under conditions where about two sulfhydryl groups per protein were added to the ribosomal particles. The 70S and 30S particles were not treated with elevated concentrations of NH4Cl, in contrast to those used in earlier studies. The modified particles were oxidized to promote disulfide bond formation. Proteins were extracted from the cross-linked particles by using conditions to preclude disulfide interchange. Disulfide-linked protein complexes were fractionated on the basis of charge by electrophoresis in polyacrylamide/urea gels at pH 5.5. The proteins from sequential slices of the urea gels were analyzed by two-dimensional diagonal polyacrylamide/sodium dodecyl sulfate gel electrophoresis. Final identification of proteins in cross-linked complexes was made by radioiodination of the proteins, followed by two-dimensional polyacrylamide/urea gel electrophoresis. Attention was focused on cross-links between 30S proteins. We report the identification of 27 cross-linked dimers and 2 trimers of 30S proteins, all but one of which were found in both 70S ribosomes and free 30S subunits in similar yield. Seven of the cross-links, S3-S13, S13-S21, S14-S19, S7-S12, S9-S13, S11-S21, and S6-S18-S21, have not been reported previously when 2-iminothiolane was used. Cross-links S3-S13, S13-S21, S7-S12, S11-S21, and S6-S18-S21 are reported for the first time. The identification of the seven new cross-links is illustrated and discussed in detail. Ten of the dimers reported in the earlier studies of Sommer & Traut (1976) [Sommer, A., & Traut, R. R. (1976) J. Mol. Biol. 106, 995-1015], using 30S subunits treated with high salt concentrations, were not found in the experiments reported here.

  5. Zinc cross-linked hydroxamated alginates for pulsed drug release

    PubMed Central

    Raut, Neha S; Deshmukh, Prasad R; Umekar, Milind J; Kotagale, Nandkishor R

    2013-01-01

    Introduction: Alginates can be tailored chemically to improve solubility, physicochemical, and biological properties and its complexation with metal ion is useful for controlling the drug release. Materials And Methods: Synthesized N,O-dimethyl, N-methyl, or N-Benzyl hydroxylamine derivatives of sodium alginate were subsequently complexed with zinc to form beads. Hydroxamation of sodium alginate was confirmed by Fourier transform infra-red spectroscopy (FTIR) and differential scanning calorimetry (DSC). Results: The synthesized polymeric material exhibited reduced aqueous, HCl and NaOH solubility. The hydroxamated derivatives demonstrated pulsed release where change in pH of the dissolution medium stimulated the atenolol release. Conclusion: Atenolol loaded Zn cross-linked polymeric beads demonstrated the sustained the plasma drug levels with increased half-life. Although the synthesized derivatives greatly altered the aqueous solubility of sodium alginate, no significant differences in in vitro and in vivo atenolol release behavior amongst the N,O-dimethyl, N-methyl, or N-Benzyl hydroxylamine derivatives of sodium alginate were observed. PMID:24350039

  6. Pyridinium cross-links in heritable disorders of collagen

    SciTech Connect

    Pasquali, M.; Still, M.J.; Dembure, P.P.

    1995-12-01

    Ehlers-Danlos syndrome (EDS) is a heterogeneous group of inherited disorders of collagen that is characterized by skin fragility, skin hyperextensibility, and joint hypermobility. EDS type VI is caused by impaired collagen lysyl hydroxylase (procollagen-lysine, 2-oxoglutarate 5-dioxygenase; E.C.1.14.11.4), the ascorbate-dependent enzyme that hydroxylates lysyl residues on collagen neopeptides. Different alterations in the gene for collagen lysyl hydroxylase have been reported in families with EDS type VI. In EDS type VI, impairment of collagen lysyl hydroxylase results in a low hydroxylysine content in mature collagen. Hydroxylysine is a precursor of the stable, covalent, intermolecular cross-links of collagen, pyridinoline (Pyr), and deoxypyridinoline (Dpyr). Elsewhere we reported in preliminary form that patients with EDS type VI had a distinctive alteration in the urinary excretion of Pyr and Dpyr. In the present study, we confirm that the increased Dpyr/Pyr ratio is specific for EDS type VI and is not observed in other inherited or acquired collagen disorders. In addition, we find that skin from patients with EDS type VI has reduced Pyr and increased Dpyr, which could account for the organ pathology. 19 refs., 1 tab.

  7. Enzymatic cross-linking of carboxymethylpullulan grafted with ferulic acid.

    PubMed

    Dulong, Virginie; Hadrich, Ahdi; Picton, Luc; Le Cerf, Didier

    2016-10-20

    Carboxymethylpullulan (CMP) has been modified in a two-step grafting reaction of ferulic acid (FA). Acid adipic dihydrazyde (ADH) was first reacted with FA activated with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC). Then the product of this first reaction was reacted with CMP (activated with EDC). Grafted polysaccharides structure was confirmed by FTIR and (1)H NMR spectroscopy. Analyses by size-exclusion chromatography (SEC) coupling on-line with a multi-angle light scattering detector (MALS), a viscometer and a differential refractive index detector (DRI) (SEC/MALS/DRI/Visco) showed that associations between FA moieties occurred due to hydrophobic interactions. The grafting rates of FA were determined by the Folin-Ciocalteu method and were found between 1.0% and 11.2% (mol/mol anhydroglucose unit). The CMP-FA were then enzymatically cross-linked with laccase from Pleurotus ostreatus. The crosslinking reactions were followed by rheological measurements, demonstrating the influence of laccase concentration on kinetics. Elastic modulus and swelling rates of hydrogels depends on FA content only for low values. PMID:27474545

  8. Energy harvesting from vibration with cross-linked polypropylene piezoelectrets

    SciTech Connect

    Zhang, Xiaoqing; Wu, Liming; Sessler, Gerhard M.

    2015-07-15

    Piezoelectret films are prepared by modification of the microstructure of polypropylene foam sheets cross-linked by electronic irradiation (IXPP), followed by proper corona charging. Young’s modulus, relative permittivity, and electromechanical coupling coefficient of the fabricated films, determined by dielectric resonance spectra, are about 0.7 MPa, 1.6, and 0.08, respectively. Dynamic piezoelectric d{sub 33} coefficients up to 650 pC/N at 200 Hz are achieved. The figure of merit (FOM, d{sub 33} ⋅ g{sub 33}) for a more typical d{sub 33} value of 400 pC/N is about 11.2 GPa{sup −1}. Vibration-based energy harvesting with one-layer and two-layer stacks of these films is investigated at various frequencies and load resistances. At an optimum load resistance of 9 MΩ and a resonance frequency of 800 Hz, a maximum output power of 120 μW, referred to the acceleration g due to gravity, is obtained for an energy harvester consisting of a one-layer IXPP film with an area of 3.14 cm{sup 2} and a seismic mass of 33.7 g. The output power can be further improved by using two-layer stacks of IXPP films in electric series. IXPP energy harvesters could be used to energize low-power electronic devices, such as wireless sensors and LED lights.

  9. Energy harvesting from vibration with cross-linked polypropylene piezoelectrets

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoqing; Wu, Liming; Sessler, Gerhard M.

    2015-07-01

    Piezoelectret films are prepared by modification of the microstructure of polypropylene foam sheets cross-linked by electronic irradiation (IXPP), followed by proper corona charging. Young's modulus, relative permittivity, and electromechanical coupling coefficient of the fabricated films, determined by dielectric resonance spectra, are about 0.7 MPa, 1.6, and 0.08, respectively. Dynamic piezoelectric d33 coefficients up to 650 pC/N at 200 Hz are achieved. The figure of merit (FOM, d33 ṡ g33) for a more typical d33 value of 400 pC/N is about 11.2 GPa-1. Vibration-based energy harvesting with one-layer and two-layer stacks of these films is investigated at various frequencies and load resistances. At an optimum load resistance of 9 MΩ and a resonance frequency of 800 Hz, a maximum output power of 120 μW, referred to the acceleration g due to gravity, is obtained for an energy harvester consisting of a one-layer IXPP film with an area of 3.14 cm2 and a seismic mass of 33.7 g. The output power can be further improved by using two-layer stacks of IXPP films in electric series. IXPP energy harvesters could be used to energize low-power electronic devices, such as wireless sensors and LED lights.

  10. An Open Data Format for Visualization and Analysis of Cross-Linked Mass Spectrometry Results

    NASA Astrophysics Data System (ADS)

    Hoopmann, Michael R.; Mendoza, Luis; Deutsch, Eric W.; Shteynberg, David; Moritz, Robert L.

    2016-11-01

    Protein-protein interactions are an important element in the understanding of protein function, and chemical cross-linking shotgun mass spectrometry is rapidly becoming a routine approach to identify these specific interfaces and topographical interactions. Protein cross-link data analysis is aided by dozens of algorithm choices, but hindered by a lack of a common format for representing results. Consequently, interoperability between algorithms and pipelines utilizing chemical cross-linking remains a challenge. pepXML is an open, widely-used format for representing spectral search algorithm results that has facilitated information exchange and pipeline development for typical shotgun mass spectrometry analyses. We describe an extension of this format to incorporate cross-linking spectral search results. We demonstrate application of the extension by representing results of multiple cross-linking search algorithms. In addition, we demonstrate adapting existing pepXML-supporting software pipelines to analyze protein cross-linking results formatted in pepXML.

  11. Effect of glucose content on thermally cross-linked fibrous gelatin scaffolds for tissue engineering.

    PubMed

    Siimon, Kaido; Reemann, Paula; Põder, Annika; Pook, Martin; Kangur, Triin; Kingo, Külli; Jaks, Viljar; Mäeorg, Uno; Järvekülg, Martin

    2014-09-01

    Thermally cross-linked glucose-containing electrospun gelatin meshes were studied as possible cell substrate materials. FTIR analysis was used to study the effect of glucose on cross-linking reactions. It was found that the presence of glucose increases the extent of cross-linking of fibrous gelatin scaffolds, which in return determines scaffold properties and their usability in tissue engineering applications. Easy to handle fabric-like scaffolds were obtained from blends containing up to 15% glucose. Maximum extent of cross-linking was reached at nearly 20% glucose content. Cross-linking effectively resulted in decreased solubility and increased resistance to enzymatic degradation. Preliminary short-term cell culture experiments indicate that such thermally cross-linked gelatin-glucose scaffolds are suitable for tissue engineering applications. PMID:25063151

  12. Characterization of the Deoxyguanosine–Lysine Cross-Link of Methylglyoxal

    PubMed Central

    2015-01-01

    Methylglyoxal is a mutagenic bis-electrophile that is produced endogenously from carbohydrate precursors. Methylglyoxal has been reported to induce DNA–protein cross-links (DPCs) in vitro and in cultured cells. Previous work suggests that these cross-links are formed between guanine and either lysine or cysteine side chains. However, the chemical nature of the methylglyoxal induced DPC have not been determined. We have examined the reaction of methylglyoxal, deoxyguanosine (dGuo), and Nα-acetyllysine (AcLys) and determined the structure of the cross-link to be the N2-ethyl-1-carboxamide with the lysine side chain amino group (1). The cross-link was identified by mass spectrometry and the structure confirmed by comparison to a synthetic sample. Further, the cross-link between methylglyoxal, dGuo, and a peptide (AcAVAGKAGAR) was also characterized. The mechanism of cross-link formation is likely to involve an Amadori rearrangement. PMID:24801980

  13. Cross Linking and Degradation Mechanisms in Model Sealant Candidates

    NASA Technical Reports Server (NTRS)

    Paciorek, K. L.; Kaufman, J.; Ito, T. I.; Nakahara, J. H.; Kratzer, R. H.

    1977-01-01

    Model compounds were investigated as to which type of heterocyclic ring is the most advantageous for curing sealants based on perfluoroalkylether chains. The relative thermal, thermal oxidative, hydrolytic, and fuel stability of potential crosslinks were determined. Specifically substituted materials were synthesized and evaluation of their stabilities in air, inert atmosphere, water, and Jet-A fuel at 235 and 325 C was made. Three heterocyclic ring systems were considered, namely, triazine, 1,2,4- and 1,3,4-oxadiazoles.

  14. pH-Triggered Magnetic-Chitosan Nanogels (MCNs) For Doxorubicin Delivery: Physically vs. Chemically Cross Linking Approach

    PubMed Central

    Sadighian, Somayeh; Hosseini-Monfared, Hassan; Rostamizadeh, Kobra; Hamidi, Mehrdad

    2015-01-01

    Purpose: This paper evaluates the impact of cross linking strategy on the characteristics of magnetic chitosan nanogels (MCNs) as targeted drug delivery system for doxorubicin. Methods: Sodium tripolyphosphate (TPP) and glutaraldehyde were used as physical (electrostatic) and chemical (covalent binding) cross-linker agents, respectively. MCNs were characterized by means of X-ray diffraction (XRD), Scanning electron microscopy (SEM), fourier transform infrared (FT-IR) spectroscopy and vibrating sample magnetometer (VSM). Scanning electron microscopy (SEM) indicated the formation of spherical nanostructures with the final average particle size of around 35-40 nm. Results: The finding proved the superparamagnetic properties of the MCNs with relatively high-magnetization values which indicate that the MCNs were enough sensitive to external magnetic fields as a magnetic drug carrier. To understand the differences between the drug delivery properties of chemically and physically cross linked MCNs, the drug release studies were also conducted. Altogether, the results of this study clearly indicate that, however, both MCNs exhibited sustained drug release behaviour, the chemically cross linked MCNs provided enhanced controlled drug release characteristics in comparison to physically cross linked MCNs. Besides, according to the drug release behaviour of MCNs in buffer solutions in two different medium with the pH values of 5.3 and 7.4, it was clear that both nanoparticles exhibited pH sensitivity where the extent of drug release in the acidic media was significantly higher than neutral media. Conclusion: It can be concluded that chemically cross linked MCNs may serve as an ideal carrier for stimuli-triggered and controlled anticancer drug delivery. PMID:25789228

  15. Peroxidase induced oligo-tyrosine cross-links during polymerization of α-lactalbumin.

    PubMed

    Dhayal, Surender Kumar; Sforza, Stefano; Wierenga, Peter A; Gruppen, Harry

    2015-12-01

    Horseradish peroxidase (HRP) induced cross-linking of proteins has been reported to proceed through formation of di-tyrosine cross-links. In the case of low molar mass phenolic substrates, the enzymatic oxidation is reported to lead to polymerization of the phenols. The aim of this work was to investigate if during oxidative cross-linking of proteins oligo-tyrosine cross-links are formed in addition to dityrosine. To this end, α-lactalbumin (α-LA) was cross-linked using horseradish peroxidase (HRP) and hydrogen peroxide (H₂O₂). The reaction products were acid hydrolysed, after which the cross-linked amino acids were investigated by LC-MS and MALDI-MS. To test the effect of the size of the substrate, the cross-linking reaction was also performed with L-tyrosine, N-acetyl L-tyrosinamide and angiotensin. These products were analyzed by LC-MS directly, as well as after acid hydrolysis. In the acid hydrolysates of all samples oligo-tyrosine (Yn, n=3-8) was found in addition to di-tyrosine (Y2). Two stages of cross-linking of α-LA were identified: a) 1-2 cross-links were formed per monomer until the monomers were converted into oligomers, and b) subsequent cross-linking of oligomers formed in the first stage to form nanoparticles containing 3-4 cross-links per monomer. The transition from first stage to the second stage coincided with the point where di-tyrosine started to decrease and more oligo-tyrosines were formed. In conclusion, extensive polymerization of α-LA using HRP via oligo-tyrosine cross-links is possible, as is the case for low molar mass tyrosine containing substrates. PMID:26282909

  16. Self-beating artificial cells: design of cross-linked polymersomes showing self-oscillating motion.

    PubMed

    Tamate, Ryota; Ueki, Takeshi; Yoshida, Ryo

    2015-02-01

    Biomimetic cross-linked polymersomes that exhibit a self-beating motion without any on-off switching are developed. The polymersomes are made from a well-defined synthetic thermoresponsive diblock copolymer, and the thermoresponsive segment includes ruthenium catalysts for the oscillatory chemical reaction and vinylidene groups to cross-link the polymersomes. Autonomous volume and shape oscillations of the cross-linked polymersomes are realized following redox changes of the catalysts.

  17. Recent Progress on Design Studies of High-Luminosity Ring-Ring Electron-Ion Collider at CEBAF

    SciTech Connect

    Zhang, Y; Bruell, A; Chevtsov, P; Derbenev, Y S; Ent, R; Krafft, G A; Li, R; Merminga, L; Yunn, B C

    2009-05-01

    The conceptual design of a ring-ring electron-ion collider based on CEBAF has been continuously optimized to cover a wide center-of-mass energy region and to achieve high luminosity and polarization to support next generation nuclear science programs. Here, we summarize the recent design improvements and R&D progress on interaction region optics with chromatic aberration compensation, matching and tracking of electron polarization in the Figure-8 ring, beam-beam simulations and ion beam cooling studies.

  18. Covalent cross-links in oxygen free radical altered human immunoglobulin G.

    PubMed

    Kleinveld, H A; Hack, C E; Swaak, A J; van Noort, W L; van Eijk, H G; Koster, J F

    1988-01-01

    The damaging effect of an oxygen free radical generating system, i.e. ultraviolet irradiation, on human immunoglobulin G (IgG) was studied. The free radical altered IgG was analysed by a high performance liquid chromatograph equipped with a TSK G 3000 SW-column. Gel filtration of 120 min UV-irradiated IgG resulted in three clearly distinguished peaks corresponding to polymer IgG (MW greater than 500 kD), dimer IgG (MW 300 kD) and monomer IgG (MW 150 kD). Analysis of oxygen free radical altered and aggregated IgG by SDS-PAGE and subsequent silver-staining revealed inter- and intra-molecular reduction (by beta-mercaptoethanol)-resistant cross-links between IgG-molecules were formed. Comparison of amino acid analyses of native IgG with oxygen free radical aggregated polymer IgG showed significant reductions in tyrosine- (7.0%) and histidine- (6.5%) content. These findings suggest that tyrosine and histidine are involved in covalent cross-linking between IgG-molecules caused by oxygen free radicals. These alterations on IgG induced by free radical-activity might render it antigenic, and could initiate the production of rheumatoid factors (RF).

  19. Electrostatic modulation and enzymatic cross-linking of interfacial layers impacts gastrointestinal fate of multilayer emulsions.

    PubMed

    Zeeb, Benjamin; Weiss, Jochen; McClements, David Julian

    2015-08-01

    In this study, membrane properties were modulated using layer-by-layer electrostatic depositioning in combination with salt and/or enzyme treatment to control the gastrointestinal fate of emulsified oils. Lipid droplets coated by a single-layer of biopolymers (gelatin) were prepared by high pressure homogenization. Lipid droplets coated by a double-layer of biopolymers (gelatin-pectin) were prepared by electrostatically depositing sugar beet pectin on the gelatin-coated droplets. Laccase was added to the double-layer emulsions to covalently crosslink the adsorbed pectin molecules, whereas sodium chloride was added to modulate interfacial properties through electrostatic screening effects. Non-cross-linked and cross-linked double-layer emulsions (with and without salt) were then passed through a simulated gastrointestinal tract (GIT) that included mouth, gastric and intestinal phases. Free fatty acid release profiles suggested that the stability of the emulsified droplets within the GIT played a more important role in determining the rate and extent of lipid digestion than the initial interfacial layer properties.

  20. A covalently cross-linked gel derived from the epidermis of the pilot whale Globicephala melas.

    PubMed

    Baum, C; Fleischer, L-G; Roessner, D; Meyer, W; Siebers, D

    2002-01-01

    The rheological properties of the stratum corneum of the pilot whale (Globicephala melas) were investigated with emphasis on their significance to the self-cleaning abilities of the skin surface smoothed by a jelly material enriched with various hydrolytic enzymes. The gel formation of the collected fluid was monitored by applying periodic-harmonic oscillating loads using a stress-controlled rheometer. In the mechanical spectrum of the gel, the plateau region of the storage modulus G' (<1200 Pa) and the loss modulus G" (>120 Pa) were independent of frequency (omega = 43.98 to 0.13 rad x s(-1), tau = 15 Pa, T = 20 degrees C), indicating high elastic performance of a covalently cross-linked viscoelastic solid. In addition, multi-angle laser light scattering experiments (MALLS) were performed to analyse the potential time-dependent changes in the weight-average molar mass of the samples. The observed increase showed that the gel formation is based on the assembly of covalently cross-linked aggregates. The viscoelastic properties and the shear resistance of the gel assure that the enzyme-containing jelly material smoothing the skin surface is not removed from the stratum corneum by shear regimes during dolphin jumping. The even skin surface is considered to be most important for the self-cleaning abilities of the dolphin skin against biofouling.

  1. A covalently cross-linked gel derived from the epidermis of the pilot whale Globicephala melas.

    PubMed

    Baum, C; Fleischer, L-G; Roessner, D; Meyer, W; Siebers, D

    2002-01-01

    The rheological properties of the stratum corneum of the pilot whale (Globicephala melas) were investigated with emphasis on their significance to the self-cleaning abilities of the skin surface smoothed by a jelly material enriched with various hydrolytic enzymes. The gel formation of the collected fluid was monitored by applying periodic-harmonic oscillating loads using a stress-controlled rheometer. In the mechanical spectrum of the gel, the plateau region of the storage modulus G' (<1200 Pa) and the loss modulus G" (>120 Pa) were independent of frequency (omega = 43.98 to 0.13 rad x s(-1), tau = 15 Pa, T = 20 degrees C), indicating high elastic performance of a covalently cross-linked viscoelastic solid. In addition, multi-angle laser light scattering experiments (MALLS) were performed to analyse the potential time-dependent changes in the weight-average molar mass of the samples. The observed increase showed that the gel formation is based on the assembly of covalently cross-linked aggregates. The viscoelastic properties and the shear resistance of the gel assure that the enzyme-containing jelly material smoothing the skin surface is not removed from the stratum corneum by shear regimes during dolphin jumping. The even skin surface is considered to be most important for the self-cleaning abilities of the dolphin skin against biofouling. PMID:12454437

  2. Electrostatic modulation and enzymatic cross-linking of interfacial layers impacts gastrointestinal fate of multilayer emulsions.

    PubMed

    Zeeb, Benjamin; Weiss, Jochen; McClements, David Julian

    2015-08-01

    In this study, membrane properties were modulated using layer-by-layer electrostatic depositioning in combination with salt and/or enzyme treatment to control the gastrointestinal fate of emulsified oils. Lipid droplets coated by a single-layer of biopolymers (gelatin) were prepared by high pressure homogenization. Lipid droplets coated by a double-layer of biopolymers (gelatin-pectin) were prepared by electrostatically depositing sugar beet pectin on the gelatin-coated droplets. Laccase was added to the double-layer emulsions to covalently crosslink the adsorbed pectin molecules, whereas sodium chloride was added to modulate interfacial properties through electrostatic screening effects. Non-cross-linked and cross-linked double-layer emulsions (with and without salt) were then passed through a simulated gastrointestinal tract (GIT) that included mouth, gastric and intestinal phases. Free fatty acid release profiles suggested that the stability of the emulsified droplets within the GIT played a more important role in determining the rate and extent of lipid digestion than the initial interfacial layer properties. PMID:25766826

  3. Alkaline membrane fuel cells with in-situ cross-linked ionomers

    SciTech Connect

    Leng, YJ; Wang, LZ; Hickner, MA; Wang, CY

    2015-01-10

    Improving cell performance and durability through both new materials and membrane electrode processing optimization is needed for the commercialization of alkaline membrane fuel cell (AMFC) technologies. In this work, we adopted an in-situ cross-linking strategy of an anion-conducting block copolymer to prepare durable ionomers for use in alkaline membrane fuel cells (AMFCs). Our goal was to use new ionomers and binders with an aim at improving long-term stability of AMFCs, especially at high operation temperatures. At 80 degrees C, AMFCs with in-situ cross-linked ionomers showed promising stability with an operating life time of more than 350 hours at 100 mA/cm(2). We found that the optimized electrode fabrication process and operating conditions can significantly improve the durability performance of AMFCs. For example, a suitable electrode binder in addition to the ion-conducting ionomer can greatly enhance the durability performance of AMFCs. Operating fuel cells under a cathode over-humification condition can also enhance the long-term stability of AMFCs. (C) 2014 Elsevier Ltd. All rights reserved.

  4. Enzymatically cross-linked alginic-hyaluronic acid composite hydrogels as cell delivery vehicles.

    PubMed

    Ganesh, Nitya; Hanna, Craig; Nair, Shantikumar V; Nair, Lakshmi S

    2013-04-01

    An injectable composite gel was developed from alginic and hyaluronic acid. The enzymatically cross-linked injectable gels were prepared via the oxidative coupling of tyramine modified sodium algiante and sodium hyaluronate in the presence of horse radish peroxidase (HRP) and hydrogen peroxide (H2O2). The composite gels were prepared by mixing equal parts of the two tyraminated polymer solutions in 10U HRP and treating with 1.0% H2O2. The properties of the alginate gels were significantly affected by the addition of hyaluronic acid. The percentage water absorption and storage modulus of the composite gels were found to be lower than the alginate gels. The alginate and composite gels showed lower protein release compared to hyaluronate gels in the absence of hyaluronidase. Even hyaluronate gels showed only approximately 10% protein release after 14 days incubation in phosphate buffer solution. ATDC-5 cells encapsulated in the injectable gels showed high cell viability. The composite gels showed the presence of enlarged spherical cells with significantly higher metabolic activity compared to cells in hyaluronic and alginic acid gels. The results suggest the potential of the composite approach to develop covalently cross-linked hydrogels with tuneable physical, mechanical, and biological properties. PMID:23357799

  5. Enzymatically Cross-linked Alginic-Hyaluronic acid Composite Hydrogels As Cell Delivery Vehicles

    PubMed Central

    Ganesh, Nitya; Hanna, Craig; Nair, Shantikumar V.; Nair, Lakshmi S.

    2013-01-01

    An injectable composite gel was developed from alginic and hyaluronic acid. The ezymatically cross-linked injectable gels were prepared via the oxidative coupling of tyramine modified sodium algiante and sodium hyaluronate in the presence of horse radish peroxidase (HRP) and hydrogen peroxide (H2O2). The composite gels were prepared by mixing equal parts of the two tryaminated polymer solutions in 10U HRP and treating with 1.0% H2O2. The properties of the alginate gels were significanly affected by the addition of hyaluronic acid. The percentage water absorption and storage modulus of the composite gels were found to be lower than the alginate gels. The alginate and composite gels showed lower protein release compared to hyaluronate gels in the absence of hyaluronidase. Even hyaluronate gels showed only approximately 10% protein release after 14 days incubation in phosphate buffer solution. ATDC-5 cells encapsulated in the injectable gels showed high cell viability. The composite gels showed the presence of enlarged spherical cells with significantly higher metabolic activity compared to cells in hyaluronic and alginic acid gels. The results suggest the potential of the composite approach to develop covalently cross-linked hydrogels with tuneable physical, mechanical, and biological properties. PMID:23357799

  6. Entrapment of cross-linked cellulase colloids in alginate beads for hydrolysis of cellulose.

    PubMed

    Nguyen, Le Truc; Lau, Yun Song; Yang, Kun-Lin

    2016-09-01

    Entrapment of enzymes in calcium alginate beads is a popular enzyme immobilization method. However, leaching of immobilized enzymes from the alginate beads is a common problem because enzyme molecules are much smaller than the pore size of alginate beads (∼200nm). To address this issue, we employ a millifluidic reactor to prepare cross-linked cellulase aggregate (XCA) colloids with a uniform size (∼300nm). Subsequently, these colloids are immobilized in calcium alginate beads as biocatalysts to hydrolyze cellulose substrates. By using fluorescent microscopy, we conclude that the immobilized XCA colloids distribute uniformly inside the beads and do not leach out from the beads after long-term incubation. Meanwhile, the pore size of the alginate beads is big enough for the cellulose substrates and fibers to diffuse into the beads for hydrolysis. For example, palm oil fiber and microcrystalline cellulose can be hydrolyzed within 48h and release reducing sugar concentrations up to 2.48±0.08g/l and 4.99±0.09g/l, respectively. Moreover, after 10 cycles of hydrolysis, 96.4% of the XCA colloids remain inside the alginate beads and retain 67% of the original activity. In contrast, free cellulase immobilized in the alginate beads loses its activity completely after 10 cycles. The strategy can also be used to prepare other types of cross-linked enzyme aggregates with high uniformity.

  7. Entrapment of cross-linked cellulase colloids in alginate beads for hydrolysis of cellulose.

    PubMed

    Nguyen, Le Truc; Lau, Yun Song; Yang, Kun-Lin

    2016-09-01

    Entrapment of enzymes in calcium alginate beads is a popular enzyme immobilization method. However, leaching of immobilized enzymes from the alginate beads is a common problem because enzyme molecules are much smaller than the pore size of alginate beads (∼200nm). To address this issue, we employ a millifluidic reactor to prepare cross-linked cellulase aggregate (XCA) colloids with a uniform size (∼300nm). Subsequently, these colloids are immobilized in calcium alginate beads as biocatalysts to hydrolyze cellulose substrates. By using fluorescent microscopy, we conclude that the immobilized XCA colloids distribute uniformly inside the beads and do not leach out from the beads after long-term incubation. Meanwhile, the pore size of the alginate beads is big enough for the cellulose substrates and fibers to diffuse into the beads for hydrolysis. For example, palm oil fiber and microcrystalline cellulose can be hydrolyzed within 48h and release reducing sugar concentrations up to 2.48±0.08g/l and 4.99±0.09g/l, respectively. Moreover, after 10 cycles of hydrolysis, 96.4% of the XCA colloids remain inside the alginate beads and retain 67% of the original activity. In contrast, free cellulase immobilized in the alginate beads loses its activity completely after 10 cycles. The strategy can also be used to prepare other types of cross-linked enzyme aggregates with high uniformity. PMID:27318817

  8. Method for the manufacture of cross-linked and optionally foamed polypropylene

    SciTech Connect

    Lohmar, E.; Wenneis, W.

    1984-04-10

    Disclosed herein is a process for producing cross-linked polypropylene by subjecting a homogenous mixture of a polypropylene with from about 2 to about 20 weight percent, based upon the weight of the polypropylene, of polybutadiene with a molecular weight of from about 500 to about 10,000 to conditions sufficient to effect cross-linking, for example, through the use of cross-linking agents and/or irradiation. In addition, the process disclosed herein may be utilized to produce cross-linked and foamed polypropylenes.

  9. Methylglyoxal-induced DNA-protein cross-links and cytotoxicity in Chinese hamster ovary cells.

    PubMed

    Brambilla, G; Sciabà, L; Faggin, P; Finollo, R; Bassi, A M; Ferro, M; Marinari, U M

    1985-05-01

    The technique of alkaline elution was applied to study the capacity of methylglyoxal to induce DNA damage and repair in Chinese hamster ovary cells. DNA cross-linking was observed after a 90-min exposure to a subtoxic dose (1.5 mM), and the cross-links were fully repaired by 24 h. The cross-linking appeared to be DNA-protein in nature, since proteinase treatment removed the effect. When the same cells were exposed to methylglyoxal in the presence of a rat liver metabolic system, both cytotoxicity and cross-linking frequency were significantly reduced.

  10. Covalent cross-links in polyampholytic chitosan fibers enhances bone regeneration in a rabbit model.

    PubMed

    Ghosh, Paulomi; Rameshbabu, Arun Prabhu; Das, Dipankar; Francis, Nimmy K; Pawar, Harpreet Singh; Subramanian, Bhuvaneshwaran; Pal, Sagar; Dhara, Santanu

    2015-01-01

    Chitosan fibers were prepared in citric acid bath, pH 7.4 and NaOH solution at pH 13, to form ionotropically cross-linked and uncross-linked fibers, respectively. The fibers formed in citric acid bath were further cross-linked via carbodiimide chemistry; wherein the pendant carboxyl moieties of citric acid were used for new amide bond formation. Moreover, upon covalent cross-linking in the ionically gelled citrate-chitosan fibers, incomplete conversion of the ion pairs to amide linkages took place resulting in the formation of a dual network structure. The dual cross-linked fibers displayed improved mechanical property, higher stability against enzymatic degradation, hydrophobicity and superior bio-mineralization compared to the uncross-linked and native citrate cross-linked fibers. Additionally, upon cyclic loading, the ion pairs in the dual cross-linked fibers dissociated by dissipating energy and reformed during the relaxation period. The twin property of elasticity and energy dissipation mechanism makes the dual cross-linked fiber unique under dynamic mechanical conditions. The differences in the physico-chemical characteristics were reflected in protein adsorption, which in turn influenced the cellular activities on the fibers. Compared to the uncross-linked and ionotropically cross-linked fibers, the dual cross-linked fibers demonstrated higher proliferation and osteogenic differentiation of the MSCs in vitro as well as better osseous tissue regeneration in a rabbit model. PMID:25483844

  11. Controlled sparse and percolating cross-linking in waterborne soft adhesives.

    PubMed

    Deplace, F; Carelli, C; Langenfeld, A; Rabjohns, M A; Foster, A B; Lovell, P A; Creton, C

    2009-09-01

    The effect of low levels of cross-linking on the adhesive and mechanical properties of waterborne pressure-sensitive adhesives was investigated. We have taken advantage of a core-shell latex particle morphology obtained by emulsion polymerization to create a heterogeneous structure of cross-links without major modification of the monomer composition. The latex particles comprise a shell containing cross-linkable diacetone acrylamide (DAAM) repeat units localized on the periphery of a slightly softer core copolymer of very similar composition. Adipic acid dihydrazide was added to the latex prior to film formation to react with DAAM repeat units and affect interfacial cross-linking between particles in the adhesive films. The honeycomb-like structure obtained after drying of the latex results in a good balance between the dissipative properties required for adhesion and the resistance to creep. The characterization of the mechanical properties of the films shows that the chosen cross-linking method creates a percolating lightly cross-linked network, swollen with a nearly un-cross-linked component. With this cross-linking method, the linear viscoelastic properties of the soft films are nearly unaffected by the cross-linking while the nonlinear tensile properties are greatly modified. As a result, the long-term shear resistance of the adhesive film improves very significantly while the peel force remains nearly the same. A simple rheological model is used to interpret qualitatively the changes in the material parameters induced by cross-linking. PMID:20355828

  12. Relationship between gravimetric wear and particle generation in hip simulators: conventional compared with cross-linked polyethylene.

    PubMed

    Ries, M D; Scott, M L; Jani, S

    2001-01-01

    Hip-simulator studies have shown reduced gravimetric wear rates for inert-gas gamma-irradiated ultra-high molecular weight polyethylene when compared with conventional ethylene-oxide-sterilized ultra-high molecular weight polyethylene. Analysis shows a greater number of particles generated from inert-gas gamma-irradiated ultra-high molecular weight polyethylene. This study was undertaken to examine particle-generation rates of polyethylene with different levels of cross-linking and to correlate them with gravimetric wear data. Particle-generation rates did not correlate with gravimetric wear rates. Particle analysis should be performed to predict the in vivo behavior of bearing surface materials. Cross-linked ultra-high molecular weight polyethylene subjected to 10 Mrad (100,000 Gy) of gamma irradiation generated significantly fewer particles than ethylene-oxide-sterilized ultra-high molecular weight polyethylene; it also demonstrated a 96% reduction in the volume of particles.

  13. Alkaline battery containing a separator of a cross-linked copolymer of vinyl alcohol and unsaturated carboxylic acid

    NASA Technical Reports Server (NTRS)

    Hsu, L. C.; Philipp, W. H.; Sheibley, D. W.; Gonzalez-Sanabria, O. D. (Inventor)

    1985-01-01

    A battery separator for an alkaline battery is described. The separator comprises a cross linked copolymer of vinyl alcohol units and unsaturated carboxylic acid units. The cross linked copolymer is insoluble in water, has excellent zincate diffusion and oxygen gas barrier properties and a low electrical resistivity. Cross linking with a polyaldehyde cross linking agent is preferred.

  14. The theory and art of corneal cross-linking.

    PubMed

    McQuaid, Rebecca; Cummings, Arthur B; Mrochen, Michael

    2013-08-01

    Before the discovery of corneal cross-linking (CXL), patients with keratoconus would have had to undergo corneal transplantation, or wear rigid gas permeable lenses (RGPs) that would temporarily flatten the cone, thereby improving the vision. The RGP contact lens (CL) would not however alter the corneal stability and if the keratoconus was progressive, the continued steepening of the cone would occur under the RGP CL. To date, the Siena Eye has been the largest study to investigate long term effects of standard CXL. Three hundred and sixty-three eyes were treated and monitored over 4 years, producing reliable long-term results proving long-term stability of the cornea by halting the progression of keratoconus, and proving the safety of the procedure. Traditionally, CXL requires epithelial removal prior to corneal soakage of a dextran-based 0.1% riboflavin solution, followed by exposure of ultraviolet-A (UV-A) light for 30 min with an intensity of 3 mW/cm2. A series of in vitro investigations on human and porcine corneas examined the best treatment parameters for standard CXL, such as riboflavin concentration, intensity, wavelength of UV-A light, and duration of treatment. Photochemically, CXL is achieved by the generation of chemical bonds within the corneal stroma through localized photopolymerization, strengthening the cornea whilst minimizing exposure to the surrounding structures of the eye. In vitro studies have shown that CXL has an effect on the biomechanical properties of the cornea, with an increased corneal rigidity of approximately 70%. This is a result of the creation of new chemical bonds within the stroma. PMID:23925326

  15. Corneal cross-linking in 9 horses with ulcerative keratitis

    PubMed Central

    2013-01-01

    Background Corneal ulcers are one of the most common eye problems in the horse and can cause varying degrees of visual impairment. Secondary infection and protease activity causing melting of the corneal stroma are always concerns in patients with corneal ulcers. Corneal collagen cross-linking (CXL), induced by illumination of the corneal stroma with ultraviolet light (UVA) after instillation of riboflavin (vitamin B2) eye drops, introduces crosslinks which stabilize melting corneas, and has been used to successfully treat infectious ulcerative keratitis in human patients. Therefore we decided to study if CXL can be performed in sedated, standing horses with ulcerative keratitis with or without stromal melting. Results Nine horses, aged 1 month to 16 years (median 5 years) were treated with a combination of CXL and medical therapy. Two horses were diagnosed with mycotic, 5 with bacterial and 2 with aseptic ulcerative keratitis. A modified Dresden-protocol for CXL could readily be performed in all 9 horses after sedation. Stromal melting, diagnosed in 4 horses, stopped within 24 h. Eight of nine eyes became fluorescein negative in 13.5 days (median time; range 4–26 days) days after CXL. One horse developed a bacterial conjunctivitis the day after CXL, which was successfully treated with topical antibiotics. One horse with fungal ulcerative keratitis and severe uveitis was enucleated 4 days after treatment due to panophthalmitis. Conclusions CXL can be performed in standing, sedated horses. We did not observe any deleterious effects attributed to riboflavin or UVA irradiation per se during the follow-up, neither in horses with infectious nor aseptic ulcerative keratitis. These data support that CXL can be performed in the standing horse, but further studies are required to compare CXL to conventional medical treatment in equine keratitis and to optimize the CXL protocol in this species. PMID:23803176

  16. Transepithelial corneal collagen cross-linking in ultrathin keratoconic corneas

    PubMed Central

    Spadea, Leopoldo; Mencucci, Rita

    2012-01-01

    Background The purpose of this paper was to report the results of transepithelial corneal collagen cross-linking (CXL) with modified riboflavin and ultraviolet A irradiation in patients affected by keratoconus, each with thinnest pachymetry values of less than 400 μm (with epithelium) and not treatable using standard de-epithelialization techniques. Methods Sixteen patients affected by progressive keratoconus with thinnest pachymetry values ranging from 331 μm to 389 μm underwent transepithelial CXL in one eye using a riboflavin 0.1% solution in 15% Dextran T500 containing ethylenediamine tetra-acetic acid 0.01% and trometamol to enhance epithelial penetration. The patients underwent complete ophthalmological examination, including endothelial cell density measurements and computerized videokeratography, before CXL and at one day, one week, and one, 6, and 12 months thereafter. Results Epithelial healing was complete in all patients after one day of use of a soft bandage contact lens. No side effects or damage to the limbal region was observed during the follow-up period. All patients showed slightly improved uncorrected and spectacle-corrected visual acuity; keratometric astigmatism showed reductions (up to 5.3 D) and apical ectasia power decreased (Kmax values reduced up to 4.3 D). Endothelial cell density was unchanged. Conclusion Application of transepithelial CXL using riboflavin with substances added to enhance epithelial permeability was safe, seemed to be moderately effective in keratoconic eyes with ultrathin corneas, and applications of the procedure could be extended to patients with advanced keratoconus. PMID:23152657

  17. The theory and art of corneal cross-linking.

    PubMed

    McQuaid, Rebecca; Cummings, Arthur B; Mrochen, Michael

    2013-08-01

    Before the discovery of corneal cross-linking (CXL), patients with keratoconus would have had to undergo corneal transplantation, or wear rigid gas permeable lenses (RGPs) that would temporarily flatten the cone, thereby improving the vision. The RGP contact lens (CL) would not however alter the corneal stability and if the keratoconus was progressive, the continued steepening of the cone would occur under the RGP CL. To date, the Siena Eye has been the largest study to investigate long term effects of standard CXL. Three hundred and sixty-three eyes were treated and monitored over 4 years, producing reliable long-term results proving long-term stability of the cornea by halting the progression of keratoconus, and proving the safety of the procedure. Traditionally, CXL requires epithelial removal prior to corneal soakage of a dextran-based 0.1% riboflavin solution, followed by exposure of ultraviolet-A (UV-A) light for 30 min with an intensity of 3 mW/cm2. A series of in vitro investigations on human and porcine corneas examined the best treatment parameters for standard CXL, such as riboflavin concentration, intensity, wavelength of UV-A light, and duration of treatment. Photochemically, CXL is achieved by the generation of chemical bonds within the corneal stroma through localized photopolymerization, strengthening the cornea whilst minimizing exposure to the surrounding structures of the eye. In vitro studies have shown that CXL has an effect on the biomechanical properties of the cornea, with an increased corneal rigidity of approximately 70%. This is a result of the creation of new chemical bonds within the stroma.

  18. Transglutaminases: Widespread Cross-linking Enzymes in Plants

    PubMed Central

    Serafini-Fracassini, Donatella; Del Duca, Stefano

    2008-01-01

    Background Transglutaminases have been studied in plants since 1987 in investigations aimed at interpreting some of the molecular mechanisms by which polyamines affect growth and differentiation. Transglutaminases are a widely distributed enzyme family catalysing a myriad of biological reactions in animals. In plants, the post-translational modification of proteins by polyamines forming inter- or intra-molecular cross-links has been the main transglutaminase reaction studied. Characteristics of Plant Transglutaminases The few plant transglutaminases sequenced so far have little sequence homology with the best-known animal enzymes, except for the catalytic triad; however, they share a possible structural homology. Proofs of their catalytic activity are: (a) their ability to produce glutamyl-polyamine derivatives; (b) their recognition by animal transglutaminase antibodies; and (c) biochemical features such as calcium-dependency, etc. However, many of their fundamental biochemical and physiological properties still remain elusive. Transglutaminase Activity is Ubiquitous It has been detected in algae and in angiosperms in different organs and sub-cellular compartments, chloroplasts being the best-studied organelles. Possible Roles Possible roles concern the structural modification of specific protein substrates. In chloroplasts, transglutaminases appear to stabilize the photosynthetic complexes and Rubisco, being regulated by light and other factors, and possibly exerting a positive effect on photosynthesis and photo-protection. In the cytosol, they modify cytoskeletal proteins. Preliminary reports suggest an involvement in the cell wall construction/organization. Other roles appear to be related to fertilization, abiotic and biotic stresses, senescence and programmed cell death, including the hypersensitive reaction. Conclusions The widespread occurrence of transglutaminases activity in all organs and cell compartments studied suggests a relevance for their still

  19. The theory and art of corneal cross-linking

    PubMed Central

    McQuaid, Rebecca; Cummings, Arthur B; Mrochen, Michael

    2013-01-01

    Before the discovery of corneal cross-linking (CXL), patients with keratoconus would have had to undergo corneal transplantation, or wear rigid gas permeable lenses (RGPs) that would temporarily flatten the cone, thereby improving the vision. The RGP contact lens (CL) would not however alter the corneal stability and if the keratoconus was progressive, the continued steepening of the cone would occur under the RGP CL. To date, the Siena Eye has been the largest study to investigate long term effects of standard CXL. Three hundred and sixty-three eyes were treated and monitored over 4 years, producing reliable long-term results proving long-term stability of the cornea by halting the progression of keratoconus, and proving the safety of the procedure. Traditionally, CXL requires epithelial removal prior to corneal soakage of a dextran-based 0.1% riboflavin solution, followed by exposure of ultraviolet-A (UV-A) light for 30 min with an intensity of 3 mW/cm2. A series of in vitro investigations on human and porcine corneas examined the best treatment parameters for standard CXL, such as riboflavin concentration, intensity, wavelength of UV-A light, and duration of treatment. Photochemically, CXL is achieved by the generation of chemical bonds within the corneal stroma through localized photopolymerization, strengthening the cornea whilst minimizing exposure to the surrounding structures of the eye. In vitro studies have shown that CXL has an effect on the biomechanical properties of the cornea, with an increased corneal rigidity of approximately 70%. This is a result of the creation of new chemical bonds within the stroma. PMID:23925326

  20. High-Power Ka-Band Window and Resonant Ring

    SciTech Connect

    Jay L. Hirshfield

    2006-11-29

    A stand-alone 200 MW rf test station is needed for carrying out development of accelerator structures and components for a future high-gradient multi-TeV collider, such as CLIC. A high-power rf window is needed to isolate the test station from a structure element under test. This project aimed to develop such a window for use at a frequency in the range 30-35 GHz, and to also develop a high-power resonant ring for testing the window. During Phase I, successful conceptual designs were completed for the window and the resonant ring, and cold tests of each were carried out that confirmed the designs.

  1. Matching cross-linked peptide spectra: only as good as the worse identification.

    PubMed

    Trnka, Michael J; Baker, Peter R; Robinson, Philip J J; Burlingame, A L; Chalkley, Robert J

    2014-02-01

    Chemical cross-linking mass spectrometry identifies interacting surfaces within a protein assembly through labeling with bifunctional reagents and identifying the covalently modified peptides. These yield distance constraints that provide a powerful means to model the three-dimensional structure of the assembly. Bioinformatic analysis of cross-linked data resulting from large protein assemblies is challenging because each cross-linked product contains two covalently linked peptides, each of which must be correctly identified from a complex matrix of potential confounders. Protein Prospector addresses these issues through a complementary mass modification strategy in which each peptide is searched and identified separately. We demonstrate this strategy with an analysis of RNA polymerase II. False discovery rates (FDRs) are assessed via comparison of cross-linking data to crystal structure, as well as by using a decoy database strategy. Parameters that are most useful for positive identification of cross-linked spectra are explored. We find that fragmentation spectra generally contain more product ions from one of the two peptides constituting the cross-link. Hence, metrics reflecting the quality of the spectral match to the less confident peptide provide the most discriminatory power between correct and incorrect matches. A support vector machine model was built to further improve classification of cross-linked peptide hits. Furthermore, the frequency with which peptides cross-linked via common acylating reagents fragment to produce diagnostic, cross-linker-specific ions is assessed. The threshold for successful identification of the cross-linked peptide product depends upon the complexity of the sample under investigation. Protein Prospector, by focusing the reliability assessment on the least confident peptide, is better able to control the FDR for results as larger complexes and databases are analyzed. In addition, when FDR thresholds are calculated separately

  2. High spectral purity silicon ring resonator photon-pair source

    NASA Astrophysics Data System (ADS)

    Steidle, Jeffrey A.; Fanto, Michael L.; Tison, Christopher C.; Wang, Zihao; Preble, Stefan F.; Alsing, Paul M.

    2015-05-01

    Here we present the experimental demonstration of a Silicon ring resonator photon-pair source. The crystalline Silicon ring resonator (radius of 18.5μm) was designed to realize low dispersion across multiple resonances, which allows for operation with a high quality factor of Q~50k. In turn, the source exhibits very high brightness of >3x105 photons/s/mW2/GHz since the produced photon pairs have a very narrow bandwidth. Furthermore, the waveguidefiber coupling loss was minimized to <1.5dB using an inverse tapered waveguide (tip width of ~150nm over a 300μm length) that is butt-coupled to a high-NA fiber (Nufern UHNA-7). This ensured minimal loss of photon pairs to the detectors, which enabled very high purity photon pairs with minimal noise, as exhibited by a very high Coincidental-Accidental Ratio of >1900. The low coupling loss (3dB fiber-fiber) also allowed for operation with very low off-chip pump power of <200μW. In addition, the zero dispersion of the ring resonator resulted in the production of a photon-pair comb across multiple resonances symmetric about the pump resonance (every ~5nm spanning >20nm), which could be used in future wavelength division multiplexed quantum networks.

  3. Ring-Constraint High-Pressure Torsion Process

    NASA Astrophysics Data System (ADS)

    Joo, Soo-Hyun; Kim, Hyoung Seop

    2016-07-01

    In this study, a constraint ring around a workpiece was employed in order to develop back pressure in addition to a compressive die pressure in high-pressure torsion (HPT) process. The influence of the constraint ring during the HPT process was analyzed using the finite element method and experimental analyses. Greater back pressure was developed when a ring of a stronger material enveloped the workpiece. In the experiments, fracture of a brittle material [ e.g., La-based bulk metallic glass (BMG)], was limited even at large shear strain (~315) during the ring-constraint HPT (RC-HPT) process due to reduced tensile stress at the edge of the deforming BMG workpiece. Furthermore, the RC-HPT process had beneficial effects on powder consolidation and bonding. The RC-HPT process exhibited smaller loss of material than did the conventional semi-constrained HPT process. The Cu disk produced by the powder RC-HPT had smaller grain sizes because back pressure generated more dislocations and finer grain size in the Cu workpiece.

  4. Two Allergen Model Reveals Complex Relationship Between IgE Cross-Linking and Degranulation

    PubMed Central

    Handlogten, Michael W.; Deak, Peter E.; Bilgicer, Basar

    2014-01-01

    Summary Allergy is an immune response to complex mixtures of multiple allergens yet current models use a single synthetic allergen. Multiple allergens were modeled using two well-defined tetravalent allergens each specific for a distinct IgE thus enabling a systematic approach to evaluate the effect of each allergen and percent of allergen specific IgE on mast cell degranulation. We found the overall degranulation response caused by two allergens is additive for low allergen concentrations or low percent specific IgE, does not change for moderate allergen concentrations with moderate to high percent specific IgE, and is reduced for high allergen concentrations with moderate to high percent specific IgE. These results provide further evidence that supra-optimal IgE cross-linking decreases the degranulation response and establishes the two allergen model as a relevant experimental system to elucidate mast cell degranulation mechanisms. PMID:25308278

  5. An In Vitro Intact Globe Expansion Method for Evaluation of Cross-linking Treatments

    PubMed Central

    Mattson, Matthew S.; Huynh, Joyce; Wiseman, Meredith; Coassin, Marco; Kornfield, Julia A.; Schwartz, Daniel M.

    2010-01-01

    Purpose. To measure the tissue mechanical response to elevated intraocular pressure (IOP) using intact globe expansion of rabbit eyes. This method examined rabbit kit (2–3 weeks old) eyes as a model for weakened tissue and evaluated riboflavin/UVA and glyceraldehyde cross-linking treatments. Methods. The ocular shape of enucleated eyes was photographed during a 24-hour period while a controlled IOP was imposed (either low IOP = 22 mm Hg or high IOP = 85 mm Hg). Untreated controls consisted of kit eyes tested at both low- and high IOP and adult eyes tested at high IOP. Treated kit eyes (dextran controls, riboflavin/UVA treatment of the cornea, and glyceraldehyde treatment of the entire globe) were tested at high IOP. Results. Low IOP elicited negligible creep of the sclera and very gradual creep of the cornea. In contrast, high IOP induced up to an 8% strain in the sclera and a 15% strain in the cornea of rabbit kit eyes. The expansion of adult eyes was less than one third that of kit eyes at the same, high IOP. Riboflavin/UVA treatment of corneas reduced expansion compared with that in both dextran-treated and untreated control corneas. Glyceraldehyde treatment prevented expansion of the cornea and sclera. Conclusions. The intact globe expansion method (GEM) imposes a loading geometry comparable to in vivo conditions and can quantify changes in mechanical stability as a function of testing conditions (e.g., IOP, tissue maturation, and therapeutic cross-linking) with small sample sizes and small variability. Rabbit kit eyes provide a model of weak tissue suitable for screening treatments that strengthen the cornea and sclera. PMID:20071684

  6. Stabilization of collagen nanofibers with L-lysine improves the ability of carbodiimide cross-linked amniotic membranes to preserve limbal epithelial progenitor cells.

    PubMed

    Lai, Jui-Yang; Wang, Pei-Ran; Luo, Li-Jyuan; Chen, Si-Tan

    2014-01-01

    To overcome the drawbacks associated with limited cross-linking efficiency of carbodiimide modified amniotic membrane, this study investigated the use of L-lysine as an additional amino acid bridge to enhance the stability of a nanofibrous tissue matrix for a limbal epithelial cell culture platform. Results of ninhydrin assays and zeta potential measurements showed that the amount of positively charged amino acid residues incorporated into the tissue collagen chains is highly correlated with the L-lysine-pretreated concentration. The cross-linked structure and hydrophilicity of amniotic membrane scaffolding materials affected by the lysine molecular bridging effects were determined. With an increase in the L-lysine-pretreated concentration from 1 to 30 mM, the cross-linking density was significantly increased and water content was markedly decreased. The variations in resistance to thermal denaturation and enzymatic degradation were in accordance with the number of cross-links per unit mass of amniotic membrane, indicating L-lysine-modulated stabilization of collagen molecules. It was also noteworthy that the carbodiimide cross-linked tissue samples prepared using a relatively high L-lysine-pretreated concentration (ie, 30 mM) appeared to have decreased light transmittance and biocompatibility, probably due to the influence of a large nanofiber size and a high charge density. The rise in stemness gene and protein expression levels was dependent on improved cross-link formation, suggesting the crucial role of amino acid bridges in constructing suitable scaffolds to preserve limbal progenitor cells. It is concluded that mild to moderate pretreatment conditions (ie, 3-10 mM L-lysine) can provide a useful strategy to assist in the development of carbodiimide cross-linked amniotic membrane as a stable stem cell niche for corneal epithelial tissue engineering. PMID:25395849

  7. Stabilization of collagen nanofibers with L-lysine improves the ability of carbodiimide cross-linked amniotic membranes to preserve limbal epithelial progenitor cells.

    PubMed

    Lai, Jui-Yang; Wang, Pei-Ran; Luo, Li-Jyuan; Chen, Si-Tan

    2014-01-01

    To overcome the drawbacks associated with limited cross-linking efficiency of carbodiimide modified amniotic membrane, this study investigated the use of L-lysine as an additional amino acid bridge to enhance the stability of a nanofibrous tissue matrix for a limbal epithelial cell culture platform. Results of ninhydrin assays and zeta potential measurements showed that the amount of positively charged amino acid residues incorporated into the tissue collagen chains is highly correlated with the L-lysine-pretreated concentration. The cross-linked structure and hydrophilicity of amniotic membrane scaffolding materials affected by the lysine molecular bridging effects were determined. With an increase in the L-lysine-pretreated concentration from 1 to 30 mM, the cross-linking density was significantly increased and water content was markedly decreased. The variations in resistance to thermal denaturation and enzymatic degradation were in accordance with the number of cross-links per unit mass of amniotic membrane, indicating L-lysine-modulated stabilization of collagen molecules. It was also noteworthy that the carbodiimide cross-linked tissue samples prepared using a relatively high L-lysine-pretreated concentration (ie, 30 mM) appeared to have decreased light transmittance and biocompatibility, probably due to the influence of a large nanofiber size and a high charge density. The rise in stemness gene and protein expression levels was dependent on improved cross-link formation, suggesting the crucial role of amino acid bridges in constructing suitable scaffolds to preserve limbal progenitor cells. It is concluded that mild to moderate pretreatment conditions (ie, 3-10 mM L-lysine) can provide a useful strategy to assist in the development of carbodiimide cross-linked amniotic membrane as a stable stem cell niche for corneal epithelial tissue engineering.

  8. A Structural Approach to Establishing a Platform Chemistry for the Tunable, Bulk Electron Beam Cross-Linking of Shape Memory Polymer Systems

    PubMed Central

    Hearon, Keith; Besset, Celine J.; Lonnecker, Alexander T.; Ware, Taylor; Voit, Walter E.; Wilson, Thomas S.; Wooley, Karen L.; Maitland, Duncan J.

    2014-01-01

    The synthetic design and thermomechanical characterization of shape memory polymers (SMPs) built from a new polyurethane chemistry that enables facile, bulk and tunable cross-linking of low-molecular weight thermoplastics by electron beam irradiation is reported in this study. SMPs exhibit stimuli-induced geometry changes and are being proposed for applications in numerous fields. We have previously reported a polyurethane SMP system that exhibits the complex processing capabilities of thermoplastic polymers and the mechanical robustness and tunability of thermomechanical properties that are often characteristic of thermoset materials. These previously reported polyurethanes suffer practically because the thermoplastic molecular weights needed to achieve target cross-link densities severely limit high-throughput thermoplastic processing and because thermally unstable radiation-sensitizing additives must be used to achieve high enough cross-link densities to enable desired tunable shape memory behavior. In this study, we demonstrate the ability to manipulate cross-link density in low-molecular weight aliphatic thermoplastic polyurethane SMPs (Mw as low as ~1.5 kDa) without radiation-sensitizing additives by incorporating specific structural motifs into the thermoplastic polymer side chains that we hypothesized would significantly enhance susceptibility to e-beam cross-linking. A custom diol monomer was first synthesized and then implemented in the synthesis of neat thermoplastic polyurethane SMPs that were irradiated at doses ranging from 1 to 500 kGy. Dynamic mechanical analysis (DMA) demonstrated rubbery moduli to be tailorable between 0.1 and 55 MPa, and both DMA and sol/gel analysis results provided fundamental insight into our hypothesized mechanism of electron beam cross-linking, which enables controllable bulk cross-linking to be achieved in highly processable, low-molecular weight thermoplastic shape memory polymers without sensitizing additives. PMID

  9. Stabilization of collagen nanofibers with l-lysine improves the ability of carbodiimide cross-linked amniotic membranes to preserve limbal epithelial progenitor cells

    PubMed Central

    Lai, Jui-Yang; Wang, Pei-Ran; Luo, Li-Jyuan; Chen, Si-Tan

    2014-01-01

    To overcome the drawbacks associated with limited cross-linking efficiency of carbodiimide modified amniotic membrane, this study investigated the use of l-lysine as an additional amino acid bridge to enhance the stability of a nanofibrous tissue matrix for a limbal epithelial cell culture platform. Results of ninhydrin assays and zeta potential measurements showed that the amount of positively charged amino acid residues incorporated into the tissue collagen chains is highly correlated with the l-lysine-pretreated concentration. The cross-linked structure and hydrophilicity of amniotic membrane scaffolding materials affected by the lysine molecular bridging effects were determined. With an increase in the l-lysine-pretreated concentration from 1 to 30 mM, the cross-linking density was significantly increased and water content was markedly decreased. The variations in resistance to thermal denaturation and enzymatic degradation were in accordance with the number of cross-links per unit mass of amniotic membrane, indicating l-lysine-modulated stabilization of collagen molecules. It was also noteworthy that the carbodiimide cross-linked tissue samples prepared using a relatively high l-lysine-pretreated concentration (ie, 30 mM) appeared to have decreased light transmittance and biocompatibility, probably due to the influence of a large nanofiber size and a high charge density. The rise in stemness gene and protein expression levels was dependent on improved cross-link formation, suggesting the crucial role of amino acid bridges in constructing suitable scaffolds to preserve limbal progenitor cells. It is concluded that mild to moderate pretreatment conditions (ie, 3–10 mM l-lysine) can provide a useful strategy to assist in the development of carbodiimide cross-linked amniotic membrane as a stable stem cell niche for corneal epithelial tissue engineering. PMID:25395849

  10. NOVEL METALLIC AND BIMETALLIC CROSS-LINKED POLY (VINYL ALCOHOL) NANOCOMPOSITES PREPARED UNDER MICROWAVE IRRADIATION

    EPA Science Inventory

    A facile microwave irradiation approach that results in a cross-linking reaction of poly (vinyl alcohol) (PVA) with metallic and bimetallic systems is described. Nanocomposites of PVA cross-linked metallic systems such as Pt, Cu, and In and bimetallic systems such as Pt-In, Ag-P...

  11. PREPARATION OF NOVEL METALLIC AND BIMETALLIC CROSS-LINKED POLY (VINYL ALCOHOL) NANOCOMPOSITES UNDER MICROWAVE IRRADIATION

    EPA Science Inventory

    A facile method utilizing microwave irradiation is described that accomplishes the cross-linking reaction of PVA with metallic and bimetallic systems. Nanocomposites of PVA-cross-linked metallic systems such as Pt, Cu, and In and bimetallic systems such as Pt-In, Ag-Pt, Pt-Fe, Cu...

  12. Thermally cross-linked superparamagnetic iron oxide nanoparticles: synthesis and application as a dual imaging probe for cancer in vivo.

    PubMed

    Lee, Haerim; Yu, Mi Kyung; Park, Sangjin; Moon, Sungmin; Min, Jung Jun; Jeong, Yong Yeon; Kang, Hae-Won; Jon, Sangyong

    2007-10-24

    We report the fabrication and characterization of thermally cross-linked superparamagnetic iron oxide nanoparticles (TCL-SPION) and their application to the dual imaging of cancer in vivo. Unlike dextran-coated cross-linked iron oxide nanoparticles, which are prepared by a chemical cross-linking method, TCL-SPION are prepared by a simple, thermal cross-linking method using a Si-OH-containing copolymer. The copolymer, poly(3-(trimethoxysilyl)propyl methacrylate-r-PEG methyl ether methacrylate-r-N-acryloxysuccinimide), was synthesized by radical polymerization and used as a coating material for as-synthesized magnetite (Fe3O4) SPION. The polymer-coated SPION was further heated at 80 degrees C to induce cross-linking between the -Si(OH)3 groups in the polymer chains, which finally generated TCL-SPION bearing a carboxyl group as a surface functional group. The particle size, surface charge, presence of polymer-coating layers, and the extent of thermal cross-linking were characterized and confirmed by various measurements, including dynamic light scattering, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. The carboxyl TCL-SPION was converted to amine-modified TCL-SPION and then finally to Cy5.5 dye-conjugated TCL-SPION for use in dual (magnetic resonance/optical) in vivo cancer imaging. When the Cy5.5 TCL-SPION was administered to Lewis lung carcinoma tumor allograft mice by intravenous injection, the tumor was unambiguously detected in T2-weighted magnetic resonance images as a 68% signal drop as well as in optical fluorescence images within 4 h, indicating a high level of accumulation of the nanomagnets within the tumor site. In addition, ex vivo fluorescence images of the harvested tumor and other major organs further confirmed the highest accumulation of the Cy5.5 TCL-SPION within the tumor. It is noteworthy that, despite the fact that TCL-SPION does not bear any targeting ligands on its surface, it was highly effective for tumor

  13. Investigation of anisotropic thermal transport in cross-linked polymers

    NASA Astrophysics Data System (ADS)

    Simavilla, David Nieto

    Thermal transport in lightly cross-linked polyisoprene and polybutadine subjected to uniaxial elongation is investigated experimentally. We employ two experimental techniques to assess the effect that deformation has on this class of materials. The first technique, which is based on Forced Rayleigh Scattering (FRS), allows us to measure the two independent components of the thermal diffusivity tensor as a function of deformation. These measurements along with independent measurements of the tensile stress and birefringence are used to evaluate the stress-thermal and stress-optic rules. The stress-thermal rule is found to be valid for the entire range of elongations applied. In contrast, the stress-optic rule fails for moderate to large stretch ratios. This suggests that the degree of anisotropy in thermal conductivity depends on both orientation and tension in polymer chain segments. The second technique, which is based on infrared thermography (IRT), allows us to measure anisotropy in thermal conductivity and strain induced changes in heat capacity. We validate this method measurements of anisotropic thermal conductivity by comparing them with those obtained using FRS. We find excellent agreement between the two techniques. Uncertainty in the infrared thermography method measurements is estimated to be about 2-5 %. The accuracy of the method and its potential application to non-transparent materials makes it a good alternative to extend current research on anisotropic thermal transport in polymeric materials. A second IRT application allows us to investigate the dependence of heat capacity on deformation. We find that heat capacity increases with stretch ratio in polyisoprene specimens under uniaxial extension. The deviation from the equilibrium value of heat capacity is consistent with an independent set of experiments comparing anisotropy in thermal diffusivity and conductivity employing FRS and IRT techniques. We identify finite extensibility and strain

  14. Greatly enhanced energy density and patterned films induced by photo cross-linking of poly(vinylidene fluoride-chlorotrifluoroethylene).

    PubMed

    Chen, Xiang-Zhong; Li, Zhi-Wei; Cheng, Zhao-Xi; Zhang, Ji-Zong; Shen, Qun-Dong; Ge, Hai-Xiong; Li, Hai-Tao

    2011-01-01

    Greatly enhanced energy density in poly(vinylidene fluoride-chlorotrifluoroethylene) [P(VDF-CTFE)] is realized through interface effects induced by a photo cross-linking method. Being different from nanocomposites with lowered dielectric strength, the cross-linked P(VDF-CTFE)s possess a high breakdown field as well as remarkably elevated polarization, both of which contribute to the enhanced energy density as high as 22.5 J · cm(-3). Moreover, patterned thin films with various shapes and sizes are fabricated by photolithography, which sheds new light on the integration of PVDF-based electroactive polymers into organic microelectronic devices such as flexible pyroelectric/piezoelectric sensor arrays or non-volatile ferroelectric memory devices. PMID:21432976

  15. Preferential DNA-protein cross-linking by NiCl2 in magnesium-insoluble regions of fractionated Chinese hamster ovary cell chromatin.

    PubMed

    Patierno, S R; Sugiyama, M; Basilion, J P; Costa, M

    1985-11-01

    Intracellular nickel ions (Ni2+) have been shown to cause single-strand breaks in DNA, that were rapidly repaired, and DNA-protein cross-links, that persisted for at least 24 h following removal of extracellular ionic nickel. In this study, we have used the techniques of alkaline elution, chromatin fractionation, and sodium dodecyl sulfate:polyacrylamide gel electrophoresis to examine the DNA-protein cross-linking induced by NiCl2 in Chinese hamster ovary cells. Continuous treatment of logarithmically growing Chinese hamster ovary cells with 2.5 mM NiCl2 in complete medium resulted in DNA single-strand breaks within 1 h, followed by a time-dependent increase in the induction of DNA-protein cross-links at 2, 3, and 6 h. Since the entry of nickel into cells was maximal within 2 h of exposure, the time delay for the formation of DNA-protein cross-links was not limited by metal uptake. The nickel-induced DNA-protein cross-linking appeared to require active cell cycling, since single-strand breaks but no cross-linking could be detected in confluent cells treated with 1, 2.5, or 5 mM NiCl2 for 3 h. DNA-protein cross-linking induced by nickel occurred in late S phase of the cell cycle. High-molecular-weight nonhistone chromatin proteins and possibly histone H1 migrating at the Mr 30,000 range became cross-linked to DNA after treatment of cells with NiCl2. All nickel-cross-linked proteins were concentrated in the magnesium-insoluble regions of fractionated chromatin and were stable to urea, 2-mercaptoethanol, and Nonidet P-40. Some proteins (Mr 48,000, 52,000, 55,000, 70,000, and 95,000), the association of which with DNA was also stable to Sarkosyl, salt, and EDTA, were detectable in DNA rigorously fractionated from untreated cells. Nickel therefore appeared to cause the cross-linking of proteins that normally reside in close association with DNA. Alterations of the normal association of these proteins with DNA by nickel may be an early event in the nickel transformation

  16. FTIR spectroscopy and thermodynamics of hydrogen adsorbed in a cross-linked polymer.

    PubMed

    Spoto, Giuseppe; Vitillo, Jenny G; Cocina, Donato; Damin, Alessandro; Bonino, Francesca; Zecchina, Adriano

    2007-09-28

    The adsorption of H(2) in a cross-linked poly(styrene-co-divinylbenzene) (St-DVB) microporous polymer (BET surface area 920 m(2) g(-1)) is studied by volumetric and gravimetric methods, FTIR spectroscopy at variable temperature (300-14 K) and ab initio calculations. At 77 K the polymer reversibly stores up to 1.3 mass% H(2) at a pressure of 1 bar and 1.8 mass% at 10 bar. The adsorption process involves the specific interaction of H(2) with the structural phenyl rings through weak dispersive forces. The interacting molecules become IR active and give rise to vibrational and rotational-vibrational manifestations which are affected by the temperature, the contact time and the H(2) equilibrium pressure. The spectra of the H(2)/St-DVB system reported here represent the first IR evidence of the adsorption of hydrogen on unsaturated molecules. The adsorption enthalpy is evaluated by the VTIR (variable temperature IR spectroscopy) method (C. Otero Areán et al., Phys. Chem. Chem. Phys., 2007, DOI: 10.1039/b615535a) and compared with the results of ab initio calculations for the H(2)/benzene interaction and with literature data.

  17. Modified gum arabic cross-linked gelatin scaffold for biomedical applications.

    PubMed

    Sarika, P R; Cinthya, Kuriakose; Jayakrishnan, A; Anilkumar, P R; James, Nirmala Rachel

    2014-10-01

    The present work deals with development of modified gum arabic cross-linked gelatin scaffold for cell culture. A new biocompatible scaffold was developed by cross-linking gelatin (Gel) with gum arabic, a polysaccharide. Gum arabic was subjected to periodate oxidation to obtain gum arabic aldehyde (GAA). GAA was reacted with gelatin under appropriate pH to prepare the cross-linked hydrogel. Cross-linking occurred due to Schiff's base reaction between aldehyde groups of oxidized gum arabic and amino groups of gelatin. The scaffold prepared from the hydrogel was characterized by swelling properties, degree of cross-linking, in vitro degradation and scanning electron microscopy (SEM). Cytocompatibility evaluation using L-929 and HepG2 cells confirmed non-cytotoxic and non-adherent nature of the scaffold. These properties are essential for generating multicellular spheroids and hence the scaffold is proposed to be a suitable candidate for spheroid cell culture. PMID:25175214

  18. Collagen cross-linking of skin in patients with amyotrophic lateral sclerosis

    NASA Technical Reports Server (NTRS)

    Ono, S.; Yamauchi, M.

    1992-01-01

    Collagen cross-links of skin tissue (left upper arm) from 11 patients with amyotrophic lateral sclerosis (ALS) and 9 age-matched control subjects were quantified. It was found that patients with ALS had a significant reduction in the content of an age-related, stable cross-link, histidinohydroxylysinonorleucine, that was negatively correlated with the duration of illness. The contents of sodium borohydride-reducible labile cross-links, dehydro-hydroxylysinonorleucine and dehydro-histidinohydroxymerodesmosine, were significantly increased and were positively associated with the duration of illness (r = 0.703, p less than 0.05 and r = 0.684, p less than 0.05, respectively). The results clearly indicate that during the course of ALS, the cross-linking pathway of skin collagen runs counter to its normal aging, resulting in a "rejuvenation" phenomenon of skin collagen. Thus, cross-linking of skin collagen is affected in ALS.

  19. Chemically cross-linked silk fibroin hydrogel with enhanced elastic properties, biodegradability, and biocompatibility

    PubMed Central

    Kim, Min Hee; Park, Won Ho

    2016-01-01

    In this study, the synthesis of silk fibroin (SF) hydrogel via chemical cross-linking reactions of SF due to gamma-ray (γ-ray) irradiation was investigated, as were the resultant hydrogel’s properties. Two different hydrogels were investigated: physically cross-linked SF hydrogel and chemically cross-linked SF hydrogel irradiated at different doses of γ-rays. The effects of the irradiation dose and SF concentration on the hydrogelation of SF were examined. The chemically cross-linked SF hydrogel was compared with the physically cross-linked one with regard to secondary structure and gel strength. Furthermore, the swelling behavior, crystallinity, and biodegradation of the SF hydrogels were characterized. To assay cell proliferation, the cell viability of human mesenchymal stem cells on the lyophilized SF hydrogel scaffolds was evaluated, and no significant cytotoxicity against human mesenchymal stem cells was observed. PMID:27382283

  20. High-quality-factor photonic crystal ring resonator.

    PubMed

    Zhang, Yong; Zeng, Cheng; Li, Danping; Gao, Ge; Huang, Zengzhi; Yu, Jinzhong; Xia, Jinsong

    2014-03-01

    A design for enhancing the quality (Q) factor of a photonic crystal ring resonator (PCRR) is introduced. The highest Q factor based on simulations is 121,000. The analysis of momentum space distributions of the electric field profile for PCRR resonance shows that a high Q factor of a PCRR is attributed to the reduction of tangential k-vector component inside the leaky region. A high Q factor of 75,200 is experimentally demonstrated for a modified PCRR on a silicon-on-insulator wafer. The high-Q-factor PCRR demonstrated here will be beneficial for channel drop filters, lasers, sensors, and other applications. PMID:24690727

  1. Characterization of the bombesin receptor on mouse pancreatic acini by chemical cross-linking

    SciTech Connect

    Huang, S.C.; Yu, D.H.; Wank, S.A.; Gardner, J.D.; Jensen, R.T. )

    1990-11-01

    Bombesin (BN), gastrin-releasing peptide (GRP) and GRP(18-27) (neuromedin C) were equipotent and 30-fold more potent than neuromedin B (NMB) in inhibiting binding of {sup 125}I-GRP to and in stimulating amylase release from mouse pancreatic acini. In the present study we used {sup 125}I-GRP and chemical cross-linking techniques to characterize the mouse pancreatic BN receptor. After binding of {sup 125}I-GRP to membranes, and incubation with various chemical cross-linking agents, cross-linked radioactivity was analyzed by SDS-PAG electrophoresis and autoradiography. With each of 4 different chemical cross-linking agents, there was a single broad polypeptide band of Mr 80,000. Cross-linking did not occur in the absence of the cross-linking agent. Cross-linking was inhibited only by peptides that interact with the BN receptor such as GRP, NMB, GRP(18-27) or BN. Dose-inhibition curves for the ability of BN or NMB to inhibit binding of {sup 125}I-GRP to membranes or cross-linking to the 80,000 polypeptide demonstrated for both that BN was 15-fold more potent than NMB. The apparent molecular weight of the cross-linked polypeptide was unchanged by adding dithiothreitol. N-Glycanase treatment reduced the molecular weight of the cross-linked peptide to 40,000. The present results indicate that the BN receptor on mouse pancreatic acinar cell membranes resembles that recently described on various tumor cells in being a single glycoprotein with a molecular weight of 76,000. Because dithiothreitol had no effect, this glycoprotein is not a subunit of a larger disulfide-linked structure.

  2. Robust Cross-Linked Stereocomplexes and C60 Inclusion Complexes of Vinyl-Functionalized Stereoregular Polymers Derived from Chemo/Stereoselective Coordination Polymerization.

    PubMed

    Vidal, Fernando; Falivene, Laura; Caporaso, Lucia; Cavallo, Luigi; Chen, Eugene Y-X

    2016-08-01

    The successful synthesis of highly syndiotactic polar vinyl polymers bearing the reactive pendant vinyl group on each repeat unit, which is enabled by perfectly chemoselective and highly syndiospecific coordination polymerization of divinyl polar monomers developed through this work, has allowed the construction of robust cross-linked supramolecular stereocomplexes and C60 inclusion complexes. The metal-mediated coordination polymerization of three representative polar divinyl monomers, including vinyl methacrylate (VMA), allyl methacrylate (AMA), and N,N-diallyl acrylamide (DAA) by Cs-ligated zirconocenium ester enolate catalysts under ambient conditions exhibits complete chemoselectivity and high stereoselectivity, thus producing the corresponding vinyl-functionalized polymers with high (92% rr) to quantitative (>99% rr) syndiotacticity. A combined experimental (synthetic, kinetic, and mechanistic) and theoretical (DFT) investigation has yielded a unimetallic, enantiomorphic-site-controlled propagation mechanism. Postfunctionalization of the obtained syndiotactic vinyl-functionalized polymers via the thiol-ene click and photocuring reactions readily produced the corresponding thiolated polymers and flexible cross-linked thin-film materials, respectively. Complexation of such syndiotactic vinyl-functionalized polymers with isotactic poly(methyl methacrylate) and fullerene C60 generates supramolecular crystalline helical stereocomplexes and inclusion complexes, respectively. Cross-linking of such complexes affords robust cross-linked stereocomplexes that are solvent-resistant and also exhibit considerably enhanced thermal and mechanical properties compared with the un-cross-linked stereocomplexes. PMID:27388024

  3. Characterization of the somatogenic receptor in rat liver. Hydrodynamic properties and affinity cross-linking

    SciTech Connect

    Husman, B.; Haldosen, L.A.; Andersson, G.; Gustafsson, J.A.

    1988-03-15

    Rat liver somatogenic receptors have been characterized by gel permeation chromatography, sucrose density gradients in H/sub 2/O and D/sub 2/O, and affinity cross-linking using /sup 125/I-bovine growth hormone (bGH) as a specific somatogenic receptor ligand. Cross-linking of /sup 125/I-bovine growth hormone to a Triton X-100-treated low density fraction isolated from livers of late pregnant rats followed by sodium dodecylsulfate-polyacrylamide gel electrophoresis under reducing conditions showed three major binders with Mr 95,000, 86,000, and 43,000 and a minor binder of Mr 55,000, after correction for bound ligand assuming a 1:1 binding ratio of ligand-receptor. The Mr 86,000, 55,000, and 43,000 species were recovered in the detergent-soluble supernatant after high-speed centrifugation, whereas the Mr 95,000 species remained Triton X-100 insoluble. Detergent-soluble /sup 125/I-bGH-receptor complexes were further analyzed by sedimentation into sucrose density gradients. The sedimentation coefficient was S20,w = 5.2 S and the partial specific volume v = 0.72 ml/g. Gel permeation chromatography on a Sepharose S-400 column indicated a Stokes radius of 61 A for the /sup 125/I-bGH-receptor-Triton X-100 complex. Based on these figures, the molecular weight of the complex was calculated as 131,100. The molecular weight of the ligand-free receptor-Triton X-100 complex was calculated as Mr 109,100. Affinity cross-linking and sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the 61 A peak from Sephacryl S-400 chromatography (cf. above) showed two binding entities, one major and one minor with Mr values 86,000 and 43,000, respectively, in the absence of reductant. When electrophoresis was run in the presence of reductant the Mr 43,000 species was the major binding entity.

  4. Computational Modeling of Laminin N-Terminal Domains Using Sparse Distance Constraints from Disulfide Bonds and Chemical Cross-Linking

    PubMed Central

    Kalkhof, Stefan; Haehn, Sebastian; Paulsson, Mats; Smyth, Neil; Meiler, Jens; Sinz, Andrea

    2016-01-01

    Basement membranes are thin extracellular protein layers, which separate endothelial and epithelial cells from the underlying connecting tissue. The main non-collagenous components of basement membranes are laminins, trimeric glycoproteins, which form polymeric networks by interactions of their N-terminal (LN) domains; however, no high-resolution structure of laminin LN domains exists so far. To construct models for laminin β1 and γ1 LN domains 14 potentially suited template structures were determined using fold recognition methods. For each target/template-combination comparative models were created with Rosetta. Final models were selected based on their agreement with experimentally obtained distance constraints from natural cross-links, i.e., disulfide bonds as well as chemical cross-links obtained from reactions with two amine-reactive cross-linkers. We predict that laminin β1 and γ1 LN domains share the galactose-binding domain-like fold. PMID:20939100

  5. Antioxidant films based on cross-linked methyl cellulose and native Chilean berry for food packaging applications.

    PubMed

    López de Dicastillo, Carol; Rodríguez, Francisco; Guarda, Abel; Galotto, Maria José

    2016-01-20

    Development of antioxidant and antimicrobial active food packaging materials based on biodegradable polymer and natural plant extracts has numerous advantages as reduction of synthetic additives into the food, reduction of plastic waste, and food protection against microorganisms and oxidation reactions. In this way, active films based on methylcellulose (MC) and maqui (Aristotelia chilensis) berry fruit extract, as a source of antioxidants agents, were studied. On the other hand, due to the high water affinity of MC, this polymer was firstly cross-linked with glutaraldehyde (GA) at different concentrations. The results showed that the addition of GA decreased water solubility, swelling, water vapor permeability of MC films, and the release of antioxidant substances from the active materials increased with the concentration of GA. Natural extract and active cross-linked films were characterized in order to obtain the optimal formulation with the highest antioxidant activity and the best physical properties for latter active food packaging application.

  6. Cross-linking effect on dielectric properties of polypropylene thin films and applications in electric energy storage

    NASA Astrophysics Data System (ADS)

    Yuan, Xuepei; Chung, T. C. Mike

    2011-02-01

    A family of cross-linked polypropylene (x-PP) thin film dielectrics is systematically studied to understand the cross-linking effect on the dielectric properties. Evidently, the butylstyrene (BSt) cross-linkers increase both the dielectric constant (ɛ) and breakdown strength (E), without increasing energy loss. An x-PP dielectric, with 3.65 mol % BSt cross-linkers, exhibits a ɛ ˜3, which is independent of a wide range of temperatures and frequencies, slim D-E hysteresis loops, high breakdown strength (E=650 MV/m), narrow breakdown distribution, and reliable energy storage capacity >5 J/cm3 (double that of state-of-the-art biaxially oriented polypropylene capacitors), without showing any increase in energy loss.

  7. UV cross-linking identifies four polypeptides that require the TATA box to bind to the Drosophila hsp70 promoter

    SciTech Connect

    Gilmour, D.S.; Dietz, T.J.; Elgin, S.C. )

    1990-08-01

    A protein fraction that requires the TATA sequence to bind to the hsp70 promoter has been partially purified from nuclear extracts of Drosophila embryos. This TATA factor produces a large DNase I footprint that extends from -44 to +35 on the promoter. A mutation that changes TATA to TATG interferes both with the binding of this complex and with the transcription of the hsp70 promoter in vitro, indicating that this interaction is important for transcriptional activity. Using a highly specific protein-DNA cross-linking assay, we have identified four polypeptides that require the TATA sequence to bind to the hsp70 promoter. Polypeptides of 26 and 42 kilodaltons are in intimate contact with the TATA sequence. Polypeptides of 150 and 60 kilodaltons interact within the region from +24 to +47 in a TATA-dependent manner. Both the extended footprint and the polypeptides identified by UV cross-linking indicate that the Drosophila TATA factor is a multicomponent complex.

  8. Antioxidant films based on cross-linked methyl cellulose and native Chilean berry for food packaging applications.

    PubMed

    López de Dicastillo, Carol; Rodríguez, Francisco; Guarda, Abel; Galotto, Maria José

    2016-01-20

    Development of antioxidant and antimicrobial active food packaging materials based on biodegradable polymer and natural plant extracts has numerous advantages as reduction of synthetic additives into the food, reduction of plastic waste, and food protection against microorganisms and oxidation reactions. In this way, active films based on methylcellulose (MC) and maqui (Aristotelia chilensis) berry fruit extract, as a source of antioxidants agents, were studied. On the other hand, due to the high water affinity of MC, this polymer was firstly cross-linked with glutaraldehyde (GA) at different concentrations. The results showed that the addition of GA decreased water solubility, swelling, water vapor permeability of MC films, and the release of antioxidant substances from the active materials increased with the concentration of GA. Natural extract and active cross-linked films were characterized in order to obtain the optimal formulation with the highest antioxidant activity and the best physical properties for latter active food packaging application. PMID:26572446

  9. New iron pyridylamino-bis(phenolate) catalyst for converting CO2 into cyclic carbonates and cross-linked polycarbonates.

    PubMed

    Taherimehr, Masoumeh; Sertã, João Paulo Cardoso Costa; Kleij, Arjan W; Whiteoak, Christopher J; Pescarmona, Paolo P

    2015-03-01

    The atom-efficient reaction of CO2 with a variety of epoxides has been efficiently achieved employing iron pyridylamino-bis(phenolate) complexes as bifunctional catalysts. The addition of a Lewis base co-catalyst allowed significant reduction in the amount of iron complex needed to achieve high epoxide conversions. The possibility of controlling the selectivity of the reaction towards either cyclic carbonate or polycarbonate was evaluated. An efficient switch in selectivity could be achieved when cyclic epoxides such as cyclohexene oxide and the seldom explored 1,2-epoxy-4-vinylcyclohexane were used as substrates. The obtained poly(vinylcyclohexene carbonate) presents pending vinyl groups, which allowed post-synthetic cross-linking by reaction with 1,3-propanedithiol. The cross-linked polycarbonate displayed a substantial increase in the glass transition temperature and chemical resistance, thus opening new opportunities for the application of these green polymers. PMID:25688870

  10. New iron pyridylamino-bis(phenolate) catalyst for converting CO2 into cyclic carbonates and cross-linked polycarbonates.

    PubMed

    Taherimehr, Masoumeh; Sertã, João Paulo Cardoso Costa; Kleij, Arjan W; Whiteoak, Christopher J; Pescarmona, Paolo P

    2015-03-01

    The atom-efficient reaction of CO2 with a variety of epoxides has been efficiently achieved employing iron pyridylamino-bis(phenolate) complexes as bifunctional catalysts. The addition of a Lewis base co-catalyst allowed significant reduction in the amount of iron complex needed to achieve high epoxide conversions. The possibility of controlling the selectivity of the reaction towards either cyclic carbonate or polycarbonate was evaluated. An efficient switch in selectivity could be achieved when cyclic epoxides such as cyclohexene oxide and the seldom explored 1,2-epoxy-4-vinylcyclohexane were used as substrates. The obtained poly(vinylcyclohexene carbonate) presents pending vinyl groups, which allowed post-synthetic cross-linking by reaction with 1,3-propanedithiol. The cross-linked polycarbonate displayed a substantial increase in the glass transition temperature and chemical resistance, thus opening new opportunities for the application of these green polymers.

  11. Stabilization of porcine pancreatic elastase crystals by glutaraldehyde cross-linking.

    PubMed

    Hofbauer, Stefan; Brito, José A; Mulchande, Jalmira; Nogly, Przemyslaw; Pessanha, Miguel; Moreira, Rui; Archer, Margarida

    2015-10-01

    Elastase is a serine protease from the chymotrypsin family of enzymes with the ability to degrade elastin, an important component of connective tissues. Excessive elastin proteolysis leads to a number of pathological diseases. Porcine pancreatic elastase (PPE) is often used for drug development as a model for human leukocyte elastase (HLE), with which it shares high sequence identity. Crystals of PPE were grown overnight using sodium sulfate and sodium acetate at acidic pH. Cross-linking the crystals with glutaraldehyde was needed to resist the soaking procedure with a diethyl N-(methyl)pyridinyl-substituted oxo-β-lactam inhibitor. Crystals of PPE bound to the inhibitor belonged to the orthorhombic space group P2₁2₁2₁, with unit-cell parameters a = 51.0, b = 58.3, c = 74.9 Å, and diffracted to 1.8 Å resolution using an in-house X-ray source.

  12. Cooperative assembly of Zn cross-linked artificial tripeptides with pendant hydroxyquinoline ligands.

    PubMed

    Zhang, Meng; Gallagher, Joy A; Coppock, Matthew B; Pantzar, Lisa M; Williams, Mary Elizabeth

    2012-11-01

    An artificial peptide with three pendant hydroxyquinoline (hq) ligands on a palindromic backbone was designed and used to form multimetallic assemblies. Reaction of the tripeptide with zinc acetate led to a highly fluorescent tripeptide duplex with three Zn(II) coordinative cross-links. The binding process was monitored using spectrophotometric absorbance and emission titrations; NMR spectroscopy and mass spectrometry confirmed the identity and stoichiometry of the product structure. Titrations monitoring duplex formation of the zinc-tripeptide structure had a sigmoidal shape, equilibrium constant larger than the monomeric analogue, and a Hill coefficient >1, all of which indicate positive cooperativity. Photophysical characterization of the quantum yield, excited state lifetime, and polarization anisotropy are compared with the monometallic zinc-hq analogue. A higher than expected quantum yield for the trimetallic complex suggests a structure in which the central chromophore is shielded from solvent by π-stacking with neighboring Zn(II) complexes.

  13. Krebs cycle metabolon: structural evidence of substrate channeling revealed by cross-linking and mass spectrometry.

    PubMed

    Wu, Fei; Minteer, Shelley

    2015-02-01

    It has been hypothesized that the high metabolic flux in the mitochondria is due to the self-assembly of enzyme supercomplexes (called metabolons) that channel substrates from one enzyme to another, but there has been no experimental confirmation of this structure or the channeling. A structural investigation of enzyme organization within the Krebs cycle metabolon was accomplished by in vivo cross-linking and mass spectrometry. Eight Krebs cycle enzyme components were isolated upon chemical fixation, and interfacial residues between mitochondrial malate dehydrogenase, citrate synthase, and aconitase were identified. Using constraint protein docking, a low-resolution structure for the three-enzyme complex was achieved, as well as the two-fold symmetric octamer. Surface analysis showed formation of electrostatic channeling upon protein-protein association, which is the first structural evidence of substrate channeling in the Krebs cycle metabolon.

  14. Stabilization of porcine pancreatic elastase crystals by glutaraldehyde cross-linking.

    PubMed

    Hofbauer, Stefan; Brito, José A; Mulchande, Jalmira; Nogly, Przemyslaw; Pessanha, Miguel; Moreira, Rui; Archer, Margarida

    2015-10-01

    Elastase is a serine protease from the chymotrypsin family of enzymes with the ability to degrade elastin, an important component of connective tissues. Excessive elastin proteolysis leads to a number of pathological diseases. Porcine pancreatic elastase (PPE) is often used for drug development as a model for human leukocyte elastase (HLE), with which it shares high sequence identity. Crystals of PPE were grown overnight using sodium sulfate and sodium acetate at acidic pH. Cross-linking the crystals with glutaraldehyde was needed to resist the soaking procedure with a diethyl N-(methyl)pyridinyl-substituted oxo-β-lactam inhibitor. Crystals of PPE bound to the inhibitor belonged to the orthorhombic space group P2₁2₁2₁, with unit-cell parameters a = 51.0, b = 58.3, c = 74.9 Å, and diffracted to 1.8 Å resolution using an in-house X-ray source. PMID:26457529

  15. Why the Mechanical Properties of Cross-linked Polydimethylsiloxane Surface Enhance? - A First Principles Study

    NASA Astrophysics Data System (ADS)

    Wang, Zhifan; Jin, Mengting; Zhang, Yanning; Beijing Computational Science Research Center Collaboration

    Polydimethylsiloxane (PDMS) has been widely used in various areas due to its high flexibility, controllable mechanical properties, brilliant biocompatibility and low cost. Now more work on PDMS focus on tuning its surface physical and chemical properties. Our experimental group has shown that the top surface stiffness of PDMS is significantly enhanced after a surface treatment of hyperthermal hydrogen induced cross-linking (HHIC), without losing its inherent hydrophobicity. To understand why this, we investigated how the HHIC treatment changes the structure of PDMS molecules and chains, by using density functional theory (DFT) calculations with the nonlocal van der Waals interaction. The elastic and hydrophobic properties of PDMS, before and after the surface treatment, will be discussed then, providing deep understandings on the experimental observations. Our theoretical studies could give insights in the new development of HHIC tuning technology.

  16. Stabilization of human prostate acid phosphatase by cross-linking with diimidoesters.

    PubMed

    Wasylewska, E; Dulińska, J; Trubetskoy, V S; Torchilin, V P; Ostrowski, W S

    1987-01-01

    1. Modification of dimeric human prostate acid phosphatase (EC 3.1.3.2) by diimidoesters leads to the formation of water-soluble preparations of high enzymatic activity, resistant to denaturing agents. 2. Monomeric, dimeric, trimeric and tetrameric species were found in SDS-polyacrylamide gel electrophoresis of the phosphatase cross-linked with dimethyl-suberimidate, and dimeric, trimeric and tetrameric enzymatically active species on thin-layer Sephadex 200 gel filtration. This molecular pattern evidenced formation of the inter-subunit covalent linkages. All molecular forms are immunoreactive against the polyclonal rabbit anti-phosphatase antibodies. 3. The catalytic properties of the modified phosphatase are almost the same as those of the native enzyme. Differences in the optical properties between the modified and the native enzymes point to slight conformational transitions in the modified enzyme.

  17. Prestressed F-actin networks cross-linked by hinged filamins replicate mechanical properties of cells

    NASA Astrophysics Data System (ADS)

    Gardel, M. L.; Nakamura, F.; Hartwig, J. H.; Crocker, J. C.; Stossel, T. P.; Weitz, D. A.

    2006-02-01

    We show that actin filaments, shortened to physiological lengths by gelsolin and cross-linked with recombinant human filamins (FLNs), exhibit dynamic elastic properties similar to those reported for live cells. To achieve elasticity values of comparable magnitude to those of cells, the in vitro network must be subjected to external prestress, which directly controls network elasticity. A molecular requirement for the strain-related behavior at physiological conditionsis a flexible hinge found in FLNa and some FLNb molecules. Basic physical properties of the in vitro filamin-F-actin network replicate the essential mechanical properties of living cells. This physical behavior could accommodate passive deformation and internal organelle trafficking at low strains yet resist externally or internally generated high shear forces. cytoskeleton | cell mechanics | nonlinear rheology

  18. Characterization of a Cross-Linked Protein-Nucleic Acid Substrate Radical in the Reaction Catalyzed by RlmN

    SciTech Connect

    Silakov, Alexey; Grove, Tyler L.; Radle, Matthew I.; Bauerle, Matthew R.; Green, Michael T.; Rosenzweig, Amy C.; Boal, Amie K.; Booker, Squire J.

    2014-08-14

    RlmN and Cfr are methyltransferases/methylsynthases that belong to the radical S-adenosylmethionine superfamily of enzymes. RlmN catalyzes C2 methylation of adenosine 2503 (A2503) of 23S rRNA, while Cfr catalyzes C8 methylation of the exact same nucleotide, and will subsequently catalyze C2 methylation if the site is unmethylated. A key feature of the unusual mechanisms of catalysis proposed for these enzymes is the attack of a methylene radical, derived from a methylcysteine residue, onto the carbon center undergoing methylation to generate a paramagnetic protein–nucleic acid cross-linked species. This species has been thoroughly characterized during Cfr-dependent C8 methylation, but does not accumulate to detectible levels in RlmN-dependent C2 methylation. Herein, we show that inactive C118S/A variants of RlmN accumulate a substrate-derived paramagnetic species. Characterization of this species by electron paramagnetic resonance spectroscopy in concert with strategic isotopic labeling shows that the radical is delocalized throughout the adenine ring of A2503, although predominant spin density is on N1 and N3. Moreover, 13C hyperfine interactions between the radical and the methylene carbon of the formerly [methyl-13C]Cys355 residue show that the radical species exists in a covalent cross-link between the protein and the nucleic acid substrate. X-ray structures of RlmN C118A show that, in the presence of SAM, the substitution does not alter the active site structure compared to that of the wild-type enzyme. Together, these findings have new mechanistic implications for the role(s) of C118 and its counterpart in Cfr (C105) in catalysis, and suggest involvement of the residue in resolution of the cross-linked species via a radical mediated process

  19. High resolution upgrade of the ATF damping ring BPM system

    SciTech Connect

    Terunuma, N.; Urakawa, J.; Frisch, J.; May, J.; McCormick, D.; Nelson, J.; Seryi, A.; Smith, T.; Woodley, M.; Briegel, C.; Dysert, R.; /Fermilab

    2008-05-01

    A beam position monitor (BPM) upgrade at the KEK Accelerator Test Facility (ATF) damping ring has been accomplished in its first stage, carried out by a KEK/FNAL/SLAC collaboration under the umbrella of the global ILC R&D effort. The upgrade consists of a high resolution, high reproducibility read-out system, based on analog and digital downconversion techniques, digital signal processing, and also tests a new automatic gain error correction schema. The technical concept and realization, as well as preliminary results of beam studies are presented.

  20. Incorporation of Pentraxin 3 into Hyaluronan Matrices Is Tightly Regulated and Promotes Matrix Cross-linking

    PubMed Central

    Baranova, Natalia S.; Inforzato, Antonio; Briggs, David C.; Tilakaratna, Viranga; Enghild, Jan J.; Thakar, Dhruv; Milner, Caroline M.; Day, Anthony J.; Richter, Ralf P.

    2014-01-01

    Mammalian oocytes are surrounded by a highly hydrated hyaluronan (HA)-rich extracellular matrix with embedded cumulus cells, forming the cumulus cell·oocyte complex (COC) matrix. The correct assembly, stability, and mechanical properties of this matrix, which are crucial for successful ovulation, transport of the COC to the oviduct, and its fertilization, depend on the interaction between HA and specific HA-organizing proteins. Although the proteins inter-α-inhibitor (IαI), pentraxin 3 (PTX3), and TNF-stimulated gene-6 (TSG-6) have been identified as being critical for COC matrix formation, its supramolecular organization and the molecular mechanism of COC matrix stabilization remain unknown. Here we used films of end-grafted HA as a model system to investigate the molecular interactions involved in the formation and stabilization of HA matrices containing TSG-6, IαI, and PTX3. We found that PTX3 binds neither to HA alone nor to HA films containing TSG-6. This long pentraxin also failed to bind to products of the interaction between IαI, TSG-6, and HA, among which are the covalent heavy chain (HC)·HA and HC·TSG-6 complexes, despite the fact that both IαI and TSG-6 are ligands of PTX3. Interestingly, prior encounter with IαI was required for effective incorporation of PTX3 into TSG-6-loaded HA films. Moreover, we demonstrated that this ternary protein mixture made of IαI, PTX3, and TSG-6 is sufficient to promote formation of a stable (i.e. cross-linked) yet highly hydrated HA matrix. We propose that this mechanism is essential for correct assembly of the COC matrix and may also have general implications in other inflammatory processes that are associated with HA cross-linking. PMID:25190808

  1. Killing mechanism of stable N-halamine cross-linked polymethacrylamide nanoparticles that selectively target bacteria.

    PubMed

    Natan, Michal; Gutman, Ori; Lavi, Ronit; Margel, Shlomo; Banin, Ehud

    2015-02-24

    Increased resistance of bacteria to disinfection and antimicrobial treatment poses a serious public health threat worldwide. This has prompted the search for agents that can inhibit both bacterial growth and withstand harsh conditions (e.g., high organic loads). In the current study, N-halamine-derivatized cross-linked polymethacrylamide nanoparticles (NPs) were synthesized by copolymerization of the monomer methacrylamide (MAA) and the cross-linker monomer N,N-methylenebis(acrylamide) (MBAA) and were subsequently loaded with oxidative chlorine using sodium hypochlorite (NaOCl). The chlorinated NPs demonstrated remarkable stability and durability to organic reagents and to repetitive bacterial loading cycles as compared with the common disinfectant NaOCl (bleach), which was extremely labile under these conditions. The antibacterial mechanism of the cross-linked P(MAA-MBAA)-Cl NPs was found to involve generation of reactive oxygen species (ROS) only upon exposure to organic media. Importantly, ROS were not generated upon suspension in water, revealing that the mode of action is target-specific. Further, a unique and specific interaction of the chlorinated NPs with Staphylococcus aureus was discovered, whereby these microorganisms were all specifically targeted and marked for destruction. This bacterial encircling was achieved without using a targeting module (e.g., an antibody or a ligand) and represents a highly beneficial, natural property of the P(MAA-MBAA)-Cl nanostructures. Our findings provide insights into the mechanism of action of P(MAA-MBAA)-Cl NPs and demonstrate the superior efficacy of the NPs over bleach (i.e., stability, specificity, and targeting). This work underscores the potential of developing sustainable P(MAA-MBAA)-Cl NP-based devices for inhibiting bacterial colonization and growth.

  2. A doubly cross-linked nano-adhesive for the reliable sealing of flexible microfluidic devices.

    PubMed

    You, Jae Bem; Min, Kyoung-Ik; Lee, Bora; Kim, Dong-Pyo; Im, Sung Gap

    2013-04-01

    Along with the expansion of microfluidics into many areas of applications such as sensors, microreactors and analytical tools, many other materials besides poly(dimethylsiloxane) (PDMS) have been suggested such as poly(imide) (PI) or poly(ethylene terephthalate) (PET). However, the sealing methods for these materials are not reliable in that many of the methods are specific to the substrate materials. Here, we report a novel robust doubly cross-linked nano-adhesive (DCNA) for bonding of various heterogeneous substrates. By depositing 200 nm of epoxy-containing polymer, poly(glycidyl methacrylate), via initiated chemical vapour deposition (iCVD) onto various substrates and cross-linking them with ethylenediamine, a strong adhesion was obtained between the substrates. This adhesive system was not only able to bond various difficult-to-bond substrates, such as PET or PI, but it could also preserve the complicated morphology of the surfaces owing to the thin nature of the DCNA system. The DCNA allowed fabrication of microfluidic devices using both rigid substrates, such as silicon wafer and glass, and flexible substrates, such as PDMS, PET and PI. The burst pressure of the devices sealed with DCNA exceeded 2.5 MPa, with a maximum burst pressure of 11.7 MPa. Furthermore, the adhesive system demonstrated an exceptional chemical and thermal resistance. The adhesion strength of the adhesive sandwiched between glass substrates remained the same even after a 10 day exposure to strong organic solvents such as toluene, acetone, and tetrahydrofuran (THF). Also, exposure to 200 °C for 15 h was not able to damage the adhesion strength. Using the high adhesive strength and flexibility of DCNA, flexible microfluidic devices that can be completely folded or rolled without any delamination during the operation were fabricated. The DCNA bonding is highly versatile in the sealing of microfluidic systems, and is compatible with a wide selection of materials, including flexible and

  3. The elucidation of the structure of Thermotoga maritima peptidoglycan reveals two novel types of cross-link.

    PubMed

    Boniface, Audrey; Parquet, Claudine; Arthur, Michel; Mengin-Lecreulx, Dominique; Blanot, Didier

    2009-08-14

    Thermotoga maritima is a Gram-negative, hyperthermophilic bacterium whose peptidoglycan contains comparable amounts of L- and D-lysine. We have determined the fine structure of this cell-wall polymer. The muropeptides resulting from the digestion of peptidoglycan by mutanolysin were separated by high-performance liquid chromatography and identified by amino acid analysis after acid hydrolysis, dinitrophenylation, enzymatic determination of the configuration of the chiral amino acids, and mass spectrometry. The high-performance liquid chromatography profile contained four main peaks, two monomers, and two dimers, plus a few minor peaks corresponding to anhydro forms. The first monomer was the d-lysine-containing disaccharide-tripeptide in which the D-Glu-D-Lys bond had the unusual gamma-->epsilon arrangement (GlcNAc-MurNAc-L-Ala-gamma-D-Glu-epsilon-D-Lys). The second monomer was the conventional disaccharide-tetrapeptide (GlcNAc-MurNAc-L-Ala-gamma-D-Glu-L-Lys-D-Ala). The first dimer contained a disaccharide-L-Ala as the acyl donor cross-linked to the alpha-amine of D-Lys in a tripeptide acceptor stem with the sequence of the first monomer. In the second dimer, donor and acceptor stems with the sequences of the second and first monomers, respectively, were connected by a D-Ala4-alpha-D-Lys3 cross-link. The cross-linking index was 10 with an average chain length of 30 disaccharide units. The structure of the peptidoglycan of T. maritima revealed for the first time the key role of D-Lys in peptidoglycan synthesis, both as a surrogate of L-Lys or meso-diaminopimelic acid at the third position of peptide stems and in the formation of novel cross-links of the L-Ala1(alpha-->alpha)D-Lys3 and D-Ala4(alpha-->alpha)D-Lys3 types.

  4. Polysiloxane Functionalized Carbon Dots and Their Cross-Linked Flexible Silicone Rubbers for Color Conversion and Encapsulation of White LEDs.

    PubMed

    Wang, Yunfeng; Yin, Zhengmao; Xie, Zheng; Zhao, Xinxin; Zhou, Chuanjian; Zhou, Shuyun; Chen, Ping

    2016-04-20

    In this work, aminopropylmethylpolysiloxane (AMS) functionalized luminescent carbon dots (AMS-CDs) were prepared via a one-step solvothermal method. AMS-CDs could be self- or co-cross-linking with AMS to form 3D flexible transparent silicone rubbers (SRs) where CDs acted as cross-linking points, so the loading fraction of AMS-CDs could be adjusted from 10 to 100 wt %, thus modulating fluorescence properties and flexibility of silicone rubbers. Because of the self-curing property and high thermal stability, AMS-CDs were also studied in white LEDs (WLEDs), serving as a color conversion and encapsulation layer of GaN based blue LEDs simultaneously that would avoid the traditional problem of poor compatibility between emitting and packaging materials. And the color coordinate of AMS-CDs based WLEDs (0.33, 0.28) was very close to the pure white light. In addition, the obtained CDs cross-linked SRs had good transparency (T > 80%) at 510-1400 nm and high refractive indexes (1.33-1.54) that could meet the need of commercial packaging materials and optical application. AMS-CDs were also promising to be used in the UV LEDs based WLEDs according to their wide wavelength emission and flexible optoelectronic device. PMID:27035213

  5. Facile Self-Cross-Linking Synthesis of 3D Nanoporous Co3O4/Carbon Hybrid Electrode Materials for Supercapacitors.

    PubMed

    Wang, Ning; Liu, Qinglei; Kang, Danmiao; Gu, Jiajun; Zhang, Wang; Zhang, Di

    2016-06-29

    A hybrid electrode material with ultrafine Co3O4 nanoparticles embedded throughout a hierarchically nanoporous graphitic carbon matrix has been obtained via a facile self-cross-linking route. Sodium alginate, a biopolymer with an ability of cross-linking with multivalent cobalt cations to form ordered microcrystalline zones, is used as a carbon source to produce nanoporous carbon frameworks of the hybrids. Ultrafine Co3O4 nanoparticles with tunable particle size (3-30 nm) are in situ grown within the nanoporous graphitic carbon frameworks by a simple carbonization of Co-cross-linked alginate. The obtained hybrid electrodes exhibit high specific capacitance of 645, 548, 486, and 347 F/g at scan rates of 5, 10, 20, and 50 mV/s, respectively, and excellent cycle performance with only 1% fading in capacitance after 10 000 cycles at a high current density of 20 A/g. Such excellent capacitive performance is ascribed to the collaborative contributions of well-dispersed ultrafine Co3O4 nanoparticles and conductive nanoporous carbon frameworks. PMID:27266717

  6. Epichlorohydrin-Cross-linked Hydroxyethyl Cellulose/Soy Protein Isolate Composite Films as Biocompatible and Biodegradable Implants for Tissue Engineering.

    PubMed

    Zhao, Yanteng; He, Meng; Zhao, Lei; Wang, Shiqun; Li, Yinping; Gan, Li; Li, Mingming; Xu, Li; Chang, Peter R; Anderson, Debbie P; Chen, Yun

    2016-02-01

    A series of epichlorohydrin-cross-linked hydroxyethyl cellulose/soy protein isolate composite films (EHSF) was fabricated from hydroxyethyl cellulose (HEC) and soy protein isolate (SPI) using a process involving blending, cross-linking, solution casting, and evaporation. The films were characterized with FTIR, solid-state (13)C NMR, UV-vis spectroscopy, and mechanical testing. The results indicated that cross-linking interactions occurred in the inter- and intramolecules of HEC and SPI during the fabrication process. The EHSF films exhibited homogeneous structure and relative high light transmittance, indicating there was a certain degree of miscibility between HEC and SPI. The EHSF films exhibited a relative high mechanical strength in humid state and an adjustable water uptake ratio and moisture absorption ratio. Cytocompatibility, hemocompatibility and biodegradability were evaluated by a series of in vitro and in vivo experiments. These results showed that the EHSF films had good biocompatibility, hemocompatibility, and anticoagulant effect. Furthermore, EHSF films could be degraded in vitro and in vivo, and the degradation rate could be controlled by adjusting the SPI content. Hence, EHSF films might have a great potential for use in the biomedical field.

  7. One-pot preparation of cross-linked amphiphilic fluorescent polymer based on aggregation induced emission dyes.

    PubMed

    Wang, Ke; Zhang, Xiaoyong; Zhang, Xiqi; Yang, Bin; Li, Zhen; Zhang, Qingsong; Huang, Zengfang; Wei, Yen

    2015-02-01

    Facile one-pot preparation of cross-linked amphiphilic fluorescent polymer based on aggregation induced emission (AIE) dyes and 2-isocyanatoethyl methacrylate (IM) has been developed. This was carried out first by free radical polymerization between AIE monomer (PhE) and IM, and then polyethyleneimine (PEI) was introduced to obtain the cross-linked fluorescent polymer. The resulted cross-linked amphiphilic polymer was prone to self-assemble into stable nanoparticles in aqueous solution with surplus amino groups on the surface which made them highly water dispersible and can be further functionalized. The as-prepared fluorescent polymer nanoparticles (PhE-IM-PEI FPNs) were fully characterized by a series of techniques including (1)H NMR spectrum, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, transmission electron microscopy, dynamic light scattering, UV-vis absorption spectrum, and fluorescence spectra. Such FPNs demonstrated intense orange fluorescence with a high quantum yield of about 40%. Biocompatibility evaluation and cell uptake behavior of the nanoparticles were further investigated to explore their potential biomedical applications; the demonstrated excellent biocompatibility made them promising for cell imaging.

  8. Existence of G-quadruplex structures in promoter region of oncogenes confirmed by G-quadruplex DNA cross-linking strategy

    PubMed Central

    Yuan, Libo; Tian, Tian; Chen, Yuqi; Yan, Shengyong; Xing, Xiwen; Zhang, Zhengan; Zhai, Qianqian; Xu, Liang; Wang, Shaoru; Weng, Xiaocheng; Yuan, Bifeng; Feng, Yuqi; Zhou, Xiang

    2013-01-01

    Existence of G-quadruplex DNA in vivo always attract widespread interest in the field of biology and biological chemistry. We reported our findings for the existence of G-quadruplex structures in promoter region of oncogenes confirmed by G-quadruplex DNA cross-linking strategy. Probes for selective G-quadruplex cross-linking was designed and synthesized that show high selectivity for G-quadruplex cross-linking. Further biological studies demonstrated its good inhibition activity against murine melanoma cells. To further investigate if G-quadruplex DNA was formed in vivo and as the target, a derivative was synthesized and pull-down process toward chromosome DNAs combined with circular dichroism and high throughput deep sequencing were performed. Several simulated intracellular conditions, including X. laevis oocytes, Ficoll 70 and PEG, was used to investigate the compound's pure cross-linking ability upon preformed G-quadruplex. Thus, as a potent G-quadruplex cross-linking agent, our strategy provided both valuable evidence of G-quadruplex structures in vivo and intense potential in anti-cancer therapy. PMID:23657205

  9. Cross-Linked Quaternized Poly(styrene-b-(ethylene-co-butylene)-b-styrene) for Anion Exchange Membrane: Synthesis, Characterization and Properties.

    PubMed

    Dai, Pei; Mo, Zhao-Hua; Xu, Ri-Wei; Zhang, Shu; Wu, Yi-Xian

    2016-08-10

    Poly(styrene-b-(ethylene-co-butylene)-b-styrene) triblock copolymer (SEBS) was selected for functionalization and cross-linking reaction to prepare the anion exchange membrane. The cross-linked quaternized SEBS (QSEBS-Cn) membranes were synthesized by simultaneous of quaternization and cross-linking of chloromethylated SEBS with α,ω-difunctional tertiary amines. The spacer groups of (-CH2-)n in diamines did affect the functionalization, micromorphology and properties of the resulting QSEBS-Cn membranes. The ionic conductivity of QSEBS-Cn membranes greatly increased and methanol resistance slightly decreased with increasing the length of spacer groups in the cross-linked structures from -(CH2)- to -(CH2)6-. Compared to the un-cross-linked QSEBS, the QSEBS-Cn membranes behaved much higher mechanical property, service temperature, chemical stability and thermal stability. Moreover, the hybrid composite membrane of QSEBS-C6 with 0.5% of graphene oxide could also be in situ prepared. This hybrid membrane had both relatively high ionic conductivity of 2.0 × 10(-2) S·cm(-1) and high selectivity of 7.6 × 10(4) S·s·cm(-3) at 60 °C due to its low methanol permeability. PMID:27459593

  10. Novel antimicrobial superporous cross-linked chitosan/pyromellitimide benzoyl thiourea hydrogels.

    PubMed

    Mohamed, Nadia A; Abd El-Ghany, Nahed A; Fahmy, Mona M

    2016-01-01

    In this work, chitosan (CS) was cross-linked with different amounts of pyromellitimide benzoyl thiourea moieties. The structure of the cross-linked CS was confirmed by elemental analyses, FTIR and (1)H- NMR spectroscopy. The cross-linking process proceeds via reacting of the amino groups of CS with the isothiocyanate groups of the N,N'-bis [4-(isothiocyanate carbonyl)phenyl] pyromellitimide cross-linker. The amount of the cross-linker was varied with respect to CS to produce four new pyromellitimide benzoyl thiourea cross-linked CS (PIBTU-CS) hydrogels designated as PIBTU-CS-1, PIBTU-CS-2, PIBTU-CS-3, and PIBTU-CS-4 of increasing cross-linking degree percent of 11, 22, 44 and 88%, respectively. The scanning electron microscopy observation indicates the extremely porous structure of the hydrogels. XRD results showed that the crystallinity of CS was decreased upon cross-linking. The four hydrogels exhibit a higher antibacterial activity on Bacillus subtilis and Streptococcus pneumoniae as Gram positive bacteria and against Escherichia coli as Gram negative bacteria and higher antifungal activity on Aspergillus fumigatus, Syncephalastrum racemosum and Geotricum candidum than that of the parent CS as shown from their higher inhibition zone diameters and their lower MIC values. The swell ability of the hydrogel as well as their antimicrobial activity increased with increasing cross-linking density. PMID:26388182

  11. Electrospun gelatin nanofibers: a facile cross-linking approach using oxidized sucrose.

    PubMed

    Jalaja, K; James, Nirmala R

    2015-02-01

    Gelatin nanofibers were fabricated via electrospinning with minimal toxicity from solvents and cross-linking agents. Electrospinning was carried out using a solvent system based on water and acetic acid (8:2, v/v). Acetic acid concentration was kept as minimum as possible to reduce the toxic effects. Electrospun gelatin nanofibers were cross-linked with oxidized sucrose. Sucrose was oxidized by periodate oxidation to introduce aldehyde functionality. Cross-linking with oxidized sucrose could be achieved without compromising the nanofibrous architecture. Cross-linked gelatin nanofibers maintained the fibrous morphology even after keeping in contact with aqueous medium. The morphology of the cross-linked nanofibrous mats was examined by scanning electron microscopy (SEM). Oxidized sucrose cross-linked gelatin nanofibers exhibited improved thermal and mechanical properties. The nanofibrous mats were evaluated for cytotoxicity and cell viability using L-929 fibroblast cells. The results confirmed that oxidized sucrose cross-linked gelatin nanofibers were non-cytotoxic towards L-929 cells with good cell viability.

  12. Chemical and thermal cross-linking of collagen and elastin hydrolysates.

    PubMed

    Sionkowska, A; Skopinska-Wisniewska, J; Gawron, M; Kozlowska, J; Planecka, A

    2010-11-01

    Chemical and thermal cross-linking of collagen soluble in acetic acid and elastin hydrolysates soluble in water have been studied. Solutions of collagen and elastin hydrolysates were treated using variable concentrations of 1-ethyl-3(3-dimethyl aminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS). Moreover, diepoxypropylether (DEPE) has been used as cross-linking agent. Films made of collagen and elastin hydrolysates were also treated with temperature at 60°C and 100°C to get additional cross-links. The effect of cross-linking has been studied using FTIR spectroscopy, thermal analysis, AFM and SEM microscopy. Mechanical and surface properties of materials have been studied after cross-linking. It was found that thermal and mechanical properties of collagen and elastin materials have been altered after thermal treatment and after the reactions with EDC/NHS and/or DEPE. Surface properties of collagen materials after chemical cross-linking have been modified. Thermal and chemical cross-linking of collagen films lead to alteration of polarity of the surface.

  13. FT-IR study for hydroxyapatite/collagen nanocomposite cross-linked by glutaraldehyde.

    PubMed

    Chang, Myung Chul; Tanaka, Junzo

    2002-12-01

    FT-IR analysis was performed for the hydroxyapatite (HAp)/collagen (COL) nanocomposite cross-linked by glutaraldehyde (GA). The amide bands I, II and III from COL matrix, and phosphate and carbonate bands from HAp were identified. The amide B band arising from C-H stretching mode showed a sensitive conformation by the degree of cross-linking. The amide I band showed a complicate conformational change by the degree of cross-linking. The characteristic amide I band at 1685 cm(-1), which is known as an aging parameter in the biological bone, did not show a monotonous tendency by the degree of cross-linking. The relative contents of the organics in the cross-linked HAp/COL nanocomposite were evaluated as an integration ratio between the amide I band at 1600-1700 cm(-1) and PO(4)(3-) band at 900-1200 cm(-1). The increase of the organics content by the cross-linking is enabled by the further organization of Ca(2+) ions of HAp crystals in HAp/COL nanocomposite. The complicate conformational behavior in the amide I, II and III bands seems to be affected by the cross-linking induced directional arrangement of HAp/COL nanocomposite fibrils.

  14. Genipin cross-linked nanocomposite films for the immobilization of antimicrobial agent.

    PubMed

    Khan, Avik; Salmieri, Stéphane; Fraschini, Carole; Bouchard, Jean; Riedl, Bernard; Lacroix, Monique

    2014-09-10

    Cellulose nanocrystal (CNC) reinforced chitosan based antimicrobial films were prepared by immobilizing nisin on the surface of the films. Nanocomposite films containing 18.65 μg/cm(2) of nisin reduced the count of L. monocytogenes by 6.73 log CFU/g, compared to the control meat samples (8.54 log CFU/g) during storage at 4 °C in a Ready-To-Eat (RTE) meat system. Film formulations containing 9.33 μg/cm(2) of nisin increased the lag phase of L. monocytogenes on meat by more than 21 days, whereas formulations with 18.65 μg/cm(2) completely inhibited the growth of L. monocytogenes during storage. Genipin was used to cross-link and protect the activity of nisin during storage. Nanocomposite films cross-linked with 0.05% w/v genipin exhibited the highest bioactivity (10.89 μg/cm(2)) during the storage experiment, as compared to that of the un-cross-linked films (7.23 μg/cm(2)). Genipin cross-linked films were able to reduce the growth rate of L. monocytogenes on ham samples by 21% as compared to the un-cross-linked films. Spectroscopic analysis confirmed the formation of genipin-nisin-chitosan heterocyclic cross-linked network. Genipin cross-linked films also improved the swelling, water solubility, and mechanical properties of the nanocomposite films. PMID:25140839

  15. Novel antimicrobial superporous cross-linked chitosan/pyromellitimide benzoyl thiourea hydrogels.

    PubMed

    Mohamed, Nadia A; Abd El-Ghany, Nahed A; Fahmy, Mona M

    2016-01-01

    In this work, chitosan (CS) was cross-linked with different amounts of pyromellitimide benzoyl thiourea moieties. The structure of the cross-linked CS was confirmed by elemental analyses, FTIR and (1)H- NMR spectroscopy. The cross-linking process proceeds via reacting of the amino groups of CS with the isothiocyanate groups of the N,N'-bis [4-(isothiocyanate carbonyl)phenyl] pyromellitimide cross-linker. The amount of the cross-linker was varied with respect to CS to produce four new pyromellitimide benzoyl thiourea cross-linked CS (PIBTU-CS) hydrogels designated as PIBTU-CS-1, PIBTU-CS-2, PIBTU-CS-3, and PIBTU-CS-4 of increasing cross-linking degree percent of 11, 22, 44 and 88%, respectively. The scanning electron microscopy observation indicates the extremely porous structure of the hydrogels. XRD results showed that the crystallinity of CS was decreased upon cross-linking. The four hydrogels exhibit a higher antibacterial activity on Bacillus subtilis and Streptococcus pneumoniae as Gram positive bacteria and against Escherichia coli as Gram negative bacteria and higher antifungal activity on Aspergillus fumigatus, Syncephalastrum racemosum and Geotricum candidum than that of the parent CS as shown from their higher inhibition zone diameters and their lower MIC values. The swell ability of the hydrogel as well as their antimicrobial activity increased with increasing cross-linking density.

  16. Controlled degradation of hydrogels using multi-functional cross-linking molecules.

    PubMed

    Lee, Kuen Yong; Bouhadir, Kamal H; Mooney, David J

    2004-06-01

    Hydrogels, chemically cross-linked or physically entangled, have found a number of applications as novel delivery vehicles of drugs and cells. However, the narrow ranges of degradation rates and mechanical strength currently available from many hydrogels limits their applications. We have hypothesized that utilization of multi-functional cross-linking molecules to form hydrogels could provide a wider range and tighter control over the degradation rates and mechanical stiffness of gels than bi-functional cross-linking molecules. To address the possibility, we isolated alpha-L-guluronate residues of sodium alginate, and oxidized them to prepare poly(aldehyde guluronate) (PAG). Hydrogels were formed with either poly(acrylamide-co-hydrazide) (PAH) as a multi-functional cross-linking molecule or adipic acid dihydrazide (AAD) as a bi-functional cross-linking molecule. The initial properties and degradation behavior of both PAG gel types were monitored. PAG/PAH hydrogels showed higher mechanical stiffness before degradation and degraded more slowly than PAG/AAD gels, at the same concentration of cross-linking functional groups. The enhanced mechanical stiffness and prolonged degradation behavior could be attributed to the multiple attachment points of PAH in the gel at the same concentration of functional groups. This approach to regulating gel properties with multifunctional cross-linking molecules could be broadly used in hydrogels. PMID:14751730

  17. XLSearch: a Probabilistic Database Search Algorithm for Identifying Cross-Linked Peptides.

    PubMed

    Ji, Chao; Li, Sujun; Reilly, James P; Radivojac, Predrag; Tang, Haixu

    2016-06-01

    Chemical cross-linking combined with mass spectrometric analysis has become an important technique for probing protein three-dimensional structure and protein-protein interactions. A key step in this process is the accurate identification and validation of cross-linked peptides from tandem mass spectra. The identification of cross-linked peptides, however, presents challenges related to the expanded nature of the search space (all pairs of peptides in a sequence database) and the fact that some peptide-spectrum matches (PSMs) contain one correct and one incorrect peptide but often receive scores that are comparable to those in which both peptides are correctly identified. To address these problems and improve detection of cross-linked peptides, we propose a new database search algorithm, XLSearch, for identifying cross-linked peptides. Our approach is based on a data-driven scoring scheme that independently estimates the probability of correctly identifying each individual peptide in the cross-link given knowledge of the correct or incorrect identification of the other peptide. These conditional probabilities are subsequently used to estimate the joint posterior probability that both peptides are correctly identified. Using the data from two previous cross-link studies, we show the effectiveness of this scoring scheme, particularly in distinguishing between true identifications and those containing one incorrect peptide. We also provide evidence that XLSearch achieves more identifications than two alternative methods at the same false discovery rate (availability: https://github.com/COL-IU/XLSearch ). PMID:27068484

  18. Sulfhydryl site-specific cross-linking and labeling of monoclonal antibodies by a fluorescent equilibrium transfer alkylation cross-link reagent.

    PubMed

    del Rosario, R B; Wahl, R L; Brocchini, S J; Lawton, R G; Smith, R H

    1990-01-01

    The site-specific intramolecular cross-linking of sulfhydryls of monoclonal antibodies via a new class of "equilibrium transfer alkylation cross-link (ETAC) reagents" is described. Following complete or partial reduction of interchain disulfides with dithiothreitol (DTT), two murine IgG2a monoclonal antibodies, 225.28S and 5G6.4, were reacted with alpha,alpha-bis[(p-tolylsulfonyl)methyl]-m-aminoacetophenone (ETAC 1a) and a fluorescent conjugated derivative, sulforhodamine B m-(alpha,alpha-bis(p-tolysulfonylmethyl)acetyl)anilide derivative (ETAC 1b). Reducing SDS-polyacrylamide gel electrophoresis analysis of the products from 1b indicated the formation of S-ETAC-S interchain heavy and light chain cross-links (approximately 23-34% overall yield by video-camera densitometry) which do not undergo disulfide-thiol exchange with DTT at 100 degrees C. In contrast, no interchain cross-links were observed upon reaction of unreduced or reduced antibody wherein the thiols have been previously alkylated with iodoacetamide. These results indicated site-specific cross-linking of interchain sulfhydryls and places their distance within 3-4 A. Flow cytometry of the ETAC 1b 5G6.4 cross-linked product using 77 IP3 human ovarian carcinoma target cells showed positive binding and retention of immunoreactivity. The in vivo biodistributions of 131I-labeled intact 5G6.4 and 125I-labeled reduced 5G6.4 + ETAC 1a product in rats were essentially identical over a period of 24 h. The present study illustrates the potential applications of labelable ETAC reagents as thiol-specific probes for a wide variety of immunological studies. PMID:2128870

  19. Filler reinforcement in cross-linked elastomer nanocomposites: insights from fully atomistic molecular dynamics simulation.

    PubMed

    Pavlov, Alexander S; Khalatur, Pavel G

    2016-06-28

    Using a fully atomistic model, we perform large-scale molecular dynamics simulations of sulfur-cured polybutadiene (PB) and nanosilica-filled PB composites. A well-integrated network without sol fraction is built dynamically by cross-linking the coarse-grained precursor chains in the presence of embedded silica nanoparticles. Initial configurations for subsequent atomistic simulations are obtained by reverse mapping of the well-equilibrated coarse-grained systems. Based on the concept of "maximally inflated knot" introduced by Grosberg et al., we show that the networks simulated in this study behave as mechanically isotropic systems. Analysis of the network topology in terms of graph theory reveals that mechanically inactive tree-like structures are the dominant structural components of the weakly cross-linked elastomer, while cycles are mainly responsible for the transmission of mechanical forces through the network. We demonstrate that quantities such as the system density, thermal expansion coefficient, glass transition temperature and initial Young's modulus can be predicted in qualitative and sometimes even in quantitative agreement with experiments. The nano-filled system demonstrates a notable increase in the glass transition temperature and an approximately two-fold increase in the nearly equilibrium value of elastic modulus relative to the unfilled elastomer even at relatively small amounts of filler particles. We also examine the structural rearrangement of the nanocomposite subjected to tensile deformation. Under high strain-rate loading, the formation of structural defects (microcavities) within the polymer bulk is observed. The nucleation and growth of cavities in the post-yielding strain hardening regime mainly take place at the elastomer/nanoparticle interfaces. As a result, the cavities are concentrated just near the embedded nanoparticles. Therefore, while the silica nanofiller increases the elastic modulus of the elastomer, it also creates a more

  20. Cross-Linked Hyaluronan Gel Reduces the Acute Rectal Toxicity of Radiotherapy for Prostate Cancer

    SciTech Connect

    Wilder, Richard B.; Barme, Greg A.; Gilbert, Ronald F.; Holevas, Richard E.; Kobashi, Luis I.; Reed, Richard R.; Solomon, Ronald S.; Walter, Nancy L.; Chittenden, Lucy; Mesa, Albert V.; Agustin, Jeffrey; Lizarde, Jessica; Macedo, Jorge; Ravera, John; Tokita, Kenneth M.

    2010-07-01

    Purpose: To prospectively analyze whether cross-linked hyaluronan gel reduces the mean rectal dose and acute rectal toxicity of radiotherapy for prostate cancer. Methods and Materials: Between September 2008 and March 2009, we transperitoneally injected 9mL of cross-linked hyaluronan gel (Hylaform; Genzyme Corporation, Cambridge, MA) into the anterior perirectal fat of 10 early-stage prostate cancer patients to increase the separation between the prostate and rectum by 8 to 18mm at the start of radiotherapy. Patients then underwent high-dose rate brachytherapy to 2,200cGy followed by intensity-modulated radiation therapy to 5,040cGy. We assessed acute rectal toxicity using the National Cancer Institute Common Terminology Criteria for Adverse Events v3.0 grading scheme. Results: Median follow-up was 3 months. The anteroposterior dimensions of Hylaform at the start and end of radiotherapy were 13 {+-} 3mm (mean {+-} SD) and 10 {+-} 4mm, respectively. At the start of intensity-modulated radiation therapy, daily mean rectal doses were 73 {+-} 13cGy with Hylaform vs. 106 {+-} 20cGy without Hylaform (p = 0.005). There was a 0% incidence of National Cancer Institute Common Terminology Criteria for Adverse Events v3.0 Grade 1, 2, or 3 acute diarrhea in 10 patients who received Hylaform vs. a 29.7% incidence (n = 71) in 239 historical controls who did not receive Hylaform (p = 0.04). Conclusions: By increasing the separation between the prostate and rectum, Hylaform decreased the mean rectal dose. This led to a significant reduction in the acute rectal toxicity of radiotherapy for prostate cancer.

  1. Filler reinforcement in cross-linked elastomer nanocomposites: insights from fully atomistic molecular dynamics simulation.

    PubMed

    Pavlov, Alexander S; Khalatur, Pavel G

    2016-06-28

    Using a fully atomistic model, we perform large-scale molecular dynamics simulations of sulfur-cured polybutadiene (PB) and nanosilica-filled PB composites. A well-integrated network without sol fraction is built dynamically by cross-linking the coarse-grained precursor chains in the presence of embedded silica nanoparticles. Initial configurations for subsequent atomistic simulations are obtained by reverse mapping of the well-equilibrated coarse-grained systems. Based on the concept of "maximally inflated knot" introduced by Grosberg et al., we show that the networks simulated in this study behave as mechanically isotropic systems. Analysis of the network topology in terms of graph theory reveals that mechanically inactive tree-like structures are the dominant structural components of the weakly cross-linked elastomer, while cycles are mainly responsible for the transmission of mechanical forces through the network. We demonstrate that quantities such as the system density, thermal expansion coefficient, glass transition temperature and initial Young's modulus can be predicted in qualitative and sometimes even in quantitative agreement with experiments. The nano-filled system demonstrates a notable increase in the glass transition temperature and an approximately two-fold increase in the nearly equilibrium value of elastic modulus relative to the unfilled elastomer even at relatively small amounts of filler particles. We also examine the structural rearrangement of the nanocomposite subjected to tensile deformation. Under high strain-rate loading, the formation of structural defects (microcavities) within the polymer bulk is observed. The nucleation and growth of cavities in the post-yielding strain hardening regime mainly take place at the elastomer/nanoparticle interfaces. As a result, the cavities are concentrated just near the embedded nanoparticles. Therefore, while the silica nanofiller increases the elastic modulus of the elastomer, it also creates a more

  2. Pickering emulsions stabilized by whey protein nanoparticles prepared by thermal cross-linking.

    PubMed

    Wu, Jiande; Shi, Mengxuan; Li, Wei; Zhao, Luhai; Wang, Ze; Yan, Xinzhong; Norde, Willem; Li, Yuan

    2015-03-01

    A Pickering (o/w) emulsion was formed and stabilized by whey protein isolate nanoparticles (WPI NPs). Those WPI NPs were prepared by thermal cross-linking of denatured WPI proteins within w/o emulsion droplets at 80°C for 15 min. During heating of w/o emulsions containing 10% (w/v) WPI proteins in the water phase, the emulsions displayed turbid-transparent-turbid phase transitions, which is ascribed to the change in the size of the protein-containing water droplets caused by thermal cross-linking between denatured protein molecules. The transparent stage indicated the formation of WPI NPs. WPI NPs of different sizes were obtained by varying the mixing speed. WPI NPs of 200-500 nm were selected to prepare o/w Pickering emulsions because of their good stability against coalescence. By Confocal Laser Scanning Microscopy, it was observed that WPI NPs were closely packed and distributed at the surface of the emulsion droplets. By measuring water contact angles of WPI NPs films, it was found that under most conditions WPI NPs present good partial wetting properties, but that at the isoelectric point (pI) and high ionic strength the particles become more hydrophobic, resulting in less stable Pickering emulsion. Thus, at pH above and below the pI of WPI NPs and low to moderate ionic strengths (1-10 mM), and with a WPI NPs concentration of 2% (w/v), a stable Pickering emulsion can be obtained. The results may provide useful information for applications of WPI NPs in environmentally friendly and food grade applications, notably in food, pharmaceutical and cosmetic products.

  3. Riboflavin/UVA Collagen Cross-Linking-Induced Changes in Normal and Keratoconus Corneal Stroma

    PubMed Central

    Hayes, Sally; Boote, Craig; Kamma-Lorger, Christina S.; Rajan, Madhavan S.; Harris, Jonathan; Dooley, Erin; Hawksworth, Nicholas; Hiller, Jennifer; Terill, Nick J.; Hafezi, Farhad; Brahma, Arun K.; Quantock, Andrew J.; Meek, Keith M.

    2011-01-01

    Purpose To determine the effect of Ultraviolet-A collagen cross-linking with hypo-osmolar and iso-osmolar riboflavin solutions on stromal collagen ultrastructure in normal and keratoconus ex vivo human corneas. Methods Using small-angle X-ray scattering, measurements of collagen D-periodicity, fibril diameter and interfibrillar spacing were made at 1 mm intervals across six normal post-mortem corneas (two above physiological hydration (swollen) and four below (unswollen)) and two post-transplant keratoconus corneal buttons (one swollen; one unswollen), before and after hypo-osmolar cross-linking. The same parameters were measured in three other unswollen normal corneas before and after iso-osmolar cross-linking and in three pairs of swollen normal corneas, in which only the left was cross-linked (with iso-osmolar riboflavin). Results Hypo-osmolar cross-linking resulted in an increase in corneal hydration in all corneas. In the keratoconus corneas and unswollen normal corneas, this was accompanied by an increase in collagen interfibrillar spacing (p<0.001); an increase in fibril diameter was also seen in two out of four unswollen normal corneas and one unswollen keratoconus cornea (p<0.001). Iso-osmolar cross-linking resulted in a decrease in tissue hydration in the swollen normal corneas only. Although there was no consistent treatment-induced change in hydration in the unswollen normal samples, iso-osmolar cross-linking of these corneas did result in a compaction of collagen fibrils and a reduced fibril diameter (p<0.001); these changes were not seen in the swollen normal corneas. Collagen D-periodicity was not affected by either treatment. Conclusion The observed structural changes following Ultraviolet-A cross-linking with hypo-osmolar or iso-osmolar riboflavin solutions are more likely a consequence of treatment-induced changes in tissue hydration rather than cross-linking. PMID:21850225

  4. Computer-assisted mass spectrometric analysis of naturally occurring and artificially introduced cross-links in proteins and protein complexes.

    PubMed

    de Koning, Leo J; Kasper, Piotr T; Back, Jaap Willem; Nessen, Merel A; Vanrobaeys, Frank; Van Beeumen, Jozef; Gherardi, Ermanno; de Koster, Chris G; de Jong, Luitzen

    2006-01-01

    A versatile software tool, VIRTUALMSLAB, is presented that can perform advanced complex virtual proteomic experiments with mass spectrometric analyses to assist in the characterization of proteins. The virtual experimental results allow rapid, flexible and convenient exploration of sample preparation strategies and are used to generate MS reference databases that can be matched with the real MS data obtained from the equivalent real experiments. Matches between virtual and acquired data reveal the identity and nature of reaction products that may lead to characterization of post-translational modification patterns, disulfide bond structures, and cross-linking in proteins or protein complexes. The most important unique feature of this program is the ability to perform multistage experiments in any user-defined order, thus allowing the researcher to vary experimental approaches that can be conducted in the laboratory. Several features of VIRTUALMSLAB are demonstrated by mapping both disulfide bonds and artificially introduced protein cross-links. It is shown that chemical cleavage at aspartate residues in the protease resistant RNase A, followed by tryptic digestion can be optimized so that the rigid protein breaks up into MALDI-MS detectable fragments, leaving the disulfide bonds intact. We also show the mapping of a number of chemically introduced cross-links in the NK1 domain of hepatocyte growth factor/scatter factor. The VIRTUALMSLAB program was used to explore the limitation and potential of mass spectrometry for cross-link studies of more complex biological assemblies, showing the value of high performance instruments such as a Fourier transform mass spectrometer. The program is freely available upon request.

  5. Synthetic cinchonidine receptors obtained by cross-linking linear poly(methacrylic acid) derivatives as an alternative molecular imprinting technique.

    PubMed

    Matsui, Jun; Minamimura, Norihito; Nishimoto, Kenji; Tamaki, Katsuyuki; Sugimoto, Naoki

    2004-05-01

    A molecular imprinting approach to construct synthetic receptors was examined, wherein a linear pre-polymer bearing functional groups for intermolecular interaction with a given molecule is cross-linked in the presence of the molecule as a template, and subsequent removal of the template from the resultant network-polymer is expected to leave a complementary binding site. Poly(methacrylic acid) (PMAA) derivatized with a vinylbenzyl group as a cross-linkable side chain was utilized as the pre-polymer for the molecular imprinting of a model template, (-)-cinchonidine. Selectivity of the imprinted polymer was evaluated by comparing the retentions of the original template, (-)-cinchonidine and its antipode (+)-cinchonine in chromatographic tests, exhibiting a selectivity factor up to 2.4. By assessment of the imprinted polymers in a batch mode, a dissociation constant at 20 degrees C for (-)-cinchonidine was estimated to be K (d) = 2.35 x 10(-6) M (the number of binding sites: 4.54 x 10(-6) mol/g-dry polymer). The displayed affinity and selectivity appeared comparable to those of an imprinted polymer prepared by a conventional monomer-based protocol, thus showing that the pre-polymer, which can be densely cross-linked, is an alternative imprinter for developing template-selective materials. (-)-Cinchonidine-imprinted polymers were prepared and assessed using the pre-polymers bearing different densities of the vinylbenzyl group and different amounts of the cross-linking agent to examine the appropriate density of the cross-linking side chain that was crucial for developing the high affinity and selectivity of the imprinted polymers.

  6. Bifunctional alkylating agent-mediated MGMT-DNA cross-linking and its proteolytic cleavage in 16HBE cells.

    PubMed

    Cheng, Jin; Ye, Feng; Dan, Guorong; Zhao, Yuanpeng; Wang, Bin; Zhao, Jiqing; Sai, Yan; Zou, Zhongmin

    2016-08-15

    Nitrogen mustard (NM), a bifunctional alkylating agent (BAA), contains two alkyl arms and can act as a cross-linking bridge between DNA and protein to form a DNA-protein cross-link (DPC). O(6)-methylguanine-DNA methyltransferase (MGMT), a DNA repair enzyme for alkyl adducts removal, is found to enhance cell sensitivity to BAAs and to promote damage, possibly due to its stable covalent cross-linking with DNA mediated by BAAs. To investigate MGMT-DNA cross-link (mDPC) formation and its possible dual roles in NM exposure, human bronchial epithelial cell line 16HBE was subjected to different concentrations of HN2, a kind of NM, and we found mDPC was induced by HN2 in a concentration-dependent manner, but the mRNA and total protein of MGMT were suppressed. As early as 1h after HN2 treatment, high mDPC was achieved and the level maintained for up to 24h. Quick total DPC (tDPC) and γ-H2AX accumulation were observed. To evaluate the effect of newly predicted protease DVC1 on DPC cleavage, we applied siRNA of MGMT and DVC1, MG132 (proteasome inhibitor), and NMS-873 (p97 inhibitor) and found that proteolysis plays a role. DVC1 was proven to be more important in the cleavage of mDPC than tDPC in a p97-dependent manner. HN2 exposure induced DVC1 upregulation, which was at least partially contributed to MGMT cleavage by proteolysis because HN2-induced mDPC level and DNA damage was closely related with DVC1 expression. Homologous recombination (HR) was also activated. Our findings demonstrated that MGMT might turn into a DNA damage promoter by forming DPC when exposed to HN2. Proteolysis, especially DVC1, plays a crucial role in mDPC repair. PMID:27342729

  7. Structural and spectral characteristics of the cross-linked dimer derived from electrooxidation of cyclic 1,N2-propanoguanosine.

    PubMed

    Murakami, Hiroya; Esaka, Yukihiro; Uno, Bunji

    2011-01-01

    The acetaldehyde-derived cyclic propano adduct of 2'-deoxyguanosine was easily oxidized electrochemically into the cross-linked dimer as an oxidative product. The structural and spectroscopic characteristics of the dimer were investigated by MS, (1)H and (13)C-NMR, UV, and DFT calculations. The dimer formation was inferred from a molecular ionic peak of m/z 705 ([(2M-2H)+H](+), M being the molecular weight of the monomer) on the ESI-MS spectra and the chemical formula as C(28)H(36)N(10)O(12) provided by the high-resolution ESI-MS results. The C2-N5 linkage between the two monomers in the dimer was deduced from the (1)H- and (13)C-NMR spectral results. In addition, the correlations in the 2-dimensional NMR spectra (DQF-COSY and HMBC) were consistently explained by the structure of the C2-N5 cross-linked dimer. UV spectral measurements also support the C2-N5 linking in the dimer formation. The formation of the cross-link dimer as an oxidative lesion of the acetaldehyde-derived cyclic propano adduct of guanosine is expected to interfere with DNA replication and to contribute to acetaldehyde-mediated genotoxicity.

  8. Enhancement of irradiation effects on cancer cells by cross-linked dextran-coated iron oxide (CLIO) nanoparticles

    NASA Astrophysics Data System (ADS)

    Huang, Fu-Kuo; Chen, Wen-Chang; Lai, Sheng-Feng; Liu, Chi-Jen; Wang, Cheng-Liang; Wang, Chang-Hai; Chen, Hsiang-Hsin; Hua, Tzu-En; Cheng, Yi-Yun; Wu, M. K.; Hwu, Y.; Yang, Chung-Shi; Margaritondo, G.

    2010-01-01

    We investigated iron oxide nanoparticles with two different surface modifications, dextran coating and cross-linked dextran coating, showing that their different internalization affects their capability to enhance radiation damage to cancer cells. The internalization was monitored with an ultrahigh resolution transmission x-ray microscope (TXM), indicating that the differences in the particle surface charge play an essential role and dominate the particle-cell interaction. We found that dextran-coated iron oxide nanoparticles cannot be internalized by HeLa and EMT-6 cells without being functionalized with amino groups (the cross-linked dextran coating) that modify the surface potential from -18 mV to 13.4 mV. The amount of cross-linked dextran-coated iron oxide nanoparticles uptaken by cancer cells reached its maximum, 1.33 × 109 per HeLa cell, when the co-culture concentration was 40 µg Fe mL-1 or more. Standard tests indicated that these internalized nanoparticles increased the damaging effects of x-ray irradiation, whereas they are by themselves biocompatible. These results could lead to interesting therapy applications; furthermore, iron oxide also produces high contrast for magnetic resonance imaging (MRI) in the diagnosis and therapy stages.

  9. Enhancement of irradiation effects on cancer cells by cross-linked dextran-coated iron oxide (CLIO) nanoparticles.

    PubMed

    Huang, Fu-Kuo; Chen, Wen-Chang; Lai, Sheng-Feng; Liu, Chi-Jen; Wang, Cheng-Liang; Wang, Chang-Hai; Chen, Hsiang-Hsin; Hua, Tzu-En; Cheng, Yi-Yun; Wu, M K; Hwu, Y; Yang, Chung-Shi; Margaritondo, G

    2010-01-21

    We investigated iron oxide nanoparticles with two different surface modifications, dextran coating and cross-linked dextran coating, showing that their different internalization affects their capability to enhance radiation damage to cancer cells. The internalization was monitored with an ultrahigh resolution transmission x-ray microscope (TXM), indicating that the differences in the particle surface charge play an essential role and dominate the particle-cell interaction. We found that dextran-coated iron oxide nanoparticles cannot be internalized by HeLa and EMT-6 cells without being functionalized with amino groups (the cross-linked dextran coating) that modify the surface potential from -18 mV to 13.4 mV. The amount of cross-linked dextran-coated iron oxide nanoparticles uptaken by cancer cells reached its maximum, 1.33 x 10(9) per HeLa cell, when the co-culture concentration was 40 microg Fe mL(-1) or more. Standard tests indicated that these internalized nanoparticles increased the damaging effects of x-ray irradiation, whereas they are by themselves biocompatible. These results could lead to interesting therapy applications; furthermore, iron oxide also produces high contrast for magnetic resonance imaging (MRI) in the diagnosis and therapy stages. PMID:20023329

  10. Comparative cross-linking and mass spectrometry of an intact F-type ATPase suggest a role for phosphorylation

    PubMed Central

    Schmidt, Carla; Zhou, Min; Marriott, Hazel; Morgner, Nina; Politis, Argyris; Robinson, Carol V.

    2013-01-01

    F-type ATPases are highly conserved enzymes used primarily for the synthesis of ATP. Here we apply mass spectrometry to the F1FO-ATPase, isolated from spinach chloroplasts, and uncover multiple modifications in soluble and membrane subunits. Mass spectra of the intact ATPase define a stable lipid ‘plug’ in the FO complex and reveal the stoichiometry of nucleotide binding in the F1 head. Comparing complexes formed in solution from an untreated ATPase with one incubated with a phosphatase reveals that the dephosphorylated enzyme has reduced nucleotide occupancy and decreased stability. By contrasting chemical cross-linking of untreated and dephosphorylated forms we show that cross-links are retained between the head and base, but are significantly reduced in the head, stators and stalk. Conformational changes at the catalytic interface, evidenced by changes in cross-linking, provide a rationale for reduced nucleotide occupancy and highlight a role for phosphorylation in regulating nucleotide binding and stability of the chloroplast ATPase. PMID:23756419

  11. Control of dehydrodiferulate cross-linking in pectins from sugar-beet tissues.

    PubMed

    Baydoun, Elias A -H; Pavlencheva, Natalie; Cumming, Carol M; Waldron, Keith W; Brett, Christopher T

    2004-04-01

    Pectins were extracted from roots, petioles and leaves of sugar beet, and cross-linked using hydrogen peroxide and peroxidase. The effects on dehydrodiferulate formation were monitored by HPLC and TLC. Dehydrodimers were formed in different proportions to those found in vivo. There was a net loss of around 50% of the phenolic groups (monomers plus dimers) during dimerisation. Gel filtration showed that root and petiole pectin, but not leaf pectin, increased in molecular weight during cross-linking. The effects of varying the cross-linking conditions were investigated, and it was found that hydrogen peroxide concentration was the most important factor in controlling both the type and amount of dehydrodiferulate formed.

  12. Chitosan-cross-linked osmium polymer composites as an efficient platform for electrochemical biosensors.

    PubMed

    Jirimali, Harishchandra Digambar; Nagarale, Rajaram Krishna; Lee, Jong Myung; Saravanakumar, Durai; Shin, Woonsup

    2013-07-22

    A new family of chitosan-cross-linked osmium polymer composites was prepared and its electrochemical properties were examined. The composites were prepared by quaternization of the poly(4-vinylpyridine) osmium bipyridyl polymer (PVP-Os) which was then cross-linked with chitosan, yielding PVP-Os/chitosan. Films made of the composites showed improved mass and electron transport owing to the porous and hydrophilic structure which is derived from the cross-links between the Os polymer and chitosan. The rate for glucose oxidation was enhanced four times when glucose oxidase (GOx) was immobilized on PVP-Os/chitosan compared immobilization on PVP-Os.

  13. Structure-Property Relationships in Porous 3-D Nanostructures as a Function of Preparation Conditions: Isocyanate Cross-Linked Silica Aerogels

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B.; Capadona, Lynn A.; McCorkle, Linda; Padadopoulos, Demetrios S.; Leventis, Nicholas

    2007-01-01

    Sol-gel derived silica aeroge