Sample records for ring current injection

  1. Can Steady Magnetospheric Convection Events Inject Plasma into the Ring Current?

    NASA Astrophysics Data System (ADS)

    Lemon, C.; Chen, M. W.; Guild, T. B.

    2009-12-01

    Steady Magnetospheric Convection (SMC) events are characterized by several-hour periods of enhanced convection that are devoid of substorm signatures. There has long been a debate about whether substorms are necessary to inject plasma into the ring current, or whether enhanced convection is sufficient. If ring current injections occur during SMC intervals, this would suggest that substorms are unnecessary. We use a combination of simulations and data observations to examine this topic. Our simulation model computes the energy-dependent plasma drift in a self-consistent electric and magnetic field, which allows us to accurately model the transport of plasma from the plasma sheet (where the plasma pressure is much larger than the magnetic pressure) into the inner magnetosphere (where plasma pressure is much less than the magnetic pressure). In regions where the two pressures are comparable (i.e. the inner plasma sheet), feedback between the plasma and magnetic field is critical for accurately modeling the physical evolution of the system. Our previous work has suggested that entropy losses in the plasma sheet (such as caused by substorms) may be necessary to inject a ring current. However, it is not yet clear whether other small-scale processes (e.g. bursty bulk flows) can provide sufficient entropy loss in the plasma sheet to allow for the penetration of plasma into the ring current. We combine our simulation results with data observations in order to better understand the physical processes required to inject a ring current.

  2. BEAM DIAGNOSTICS USING BPM SIGNALS FROM INJECTED AND STORED BEAMS IN A STORAGE RING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, G.M.; Shaftan; T.

    2011-03-28

    Many modern light sources are operating in top-off injection mode or are being upgraded to top-off injection mode. The storage ring always has the stored beam and injected beam for top-off injection mode. So the BPM data is the mixture of both beam positions and the injected beam position cannot be measured directly. We propose to use dedicated wide band BPM electronics in the NSLS II storage ring to retrieve the injected beam trajectory with the singular value decomposition (SVD) method. The beam position monitor (BPM) has the capability to measure bunch-by-bunch beam position. Similar electronics can be used tomore » measure the bunch-by-bunch beam current which is necessary to get the injection beam position. The measurement precision of current needs to be evaluated since button BPM sum signal has position dependence. The injected beam trajectory can be measured and monitored all the time without dumping the stored beam. We can adjust and optimize the injected beam trajectory to maximize the injection efficiency. We can also measure the storage ring acceptance by mapping the injected beam trajectory.« less

  3. Ring Current Pressure Estimation withRAM-SCB using Data Assimilation and VanAllen Probe Flux Data

    NASA Astrophysics Data System (ADS)

    Godinez, H. C.; Yu, Y.; Henderson, M. G.; Larsen, B.; Jordanova, V.

    2015-12-01

    Capturing and subsequently modeling the influence of tail plasma injections on the inner magnetosphere is particularly important for understanding the formation and evolution of Earth's ring current. In this study, the ring current distribution is estimated with the Ring Current-Atmosphere Interactions Model with Self-Consistent Magnetic field (RAM-SCB) using, for the first time, data assimilation techniques and particle flux data from the Van Allen Probes. The state of the ring current within the RAM-SCB is corrected via an ensemble based data assimilation technique by using proton flux from one of the Van Allen Probes, to capture the enhancement of ring current following an isolated substorm event on July 18 2013. The results show significant improvement in the estimation of the ring current particle distributions in the RAM-SCB model, leading to better agreement with observations. This newly implemented data assimilation technique in the global modeling of the ring current thus provides a promising tool to better characterize the effect of substorm injections in the near-Earth regions. The work is part of the Space Hazards Induced near Earth by Large, Dynamic Storms (SHIELDS) project in Los Alamos National Laboratory.

  4. Ring current electron dynamics during geomagnetic storms based on the Van Allen Probes measurements: Ring Current Electrons

    DOE PAGES

    Zhao, H.; Li, X.; Baker, D. N.; ...

    2016-04-16

    Based on comprehensive measurements from Helium, Oxygen, Proton, and Electron Mass Spectrometer Ion Spectrometer, Relativistic Electron-Proton Telescope, and Radiation Belt Storm Probes Ion Composition Experiment instruments on the Van Allen Probes, comparative studies of ring current electrons and ions are performed and the role of energetic electrons in the ring current dynamics is investigated. The deep injections of tens to hundreds of keV electrons and tens of keV protons into the inner magnetosphere occur frequently; after the injections the electrons decay slowly in the inner belt but protons in the low L region decay very fast. Intriguing similarities between lowermore » energy protons and higher-energy electrons are also found. The evolution of ring current electron and ion energy densities and energy content are examined in detail during two geomagnetic storms, one moderate and one intense. Here, the results show that the contribution of ring current electrons to the ring current energy content is much smaller than that of ring current ions (up to ~12% for the moderate storm and ~7% for the intense storm), and <35 keV electrons dominate the ring current electron energy content at the storm main phases. Though the electron energy content is usually much smaller than that of ions, the enhancement of ring current electron energy content during the moderate storm can get to ~30% of that of ring current ions, indicating a more dynamic feature of ring current electrons and important role of electrons in the ring current buildup. Lastly, the ring current electron energy density is also shown to be higher at midnight and dawn while lower at noon and dusk.« less

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, H.; Li, X.; Baker, D. N.

    Based on comprehensive measurements from Helium, Oxygen, Proton, and Electron Mass Spectrometer Ion Spectrometer, Relativistic Electron-Proton Telescope, and Radiation Belt Storm Probes Ion Composition Experiment instruments on the Van Allen Probes, comparative studies of ring current electrons and ions are performed and the role of energetic electrons in the ring current dynamics is investigated. The deep injections of tens to hundreds of keV electrons and tens of keV protons into the inner magnetosphere occur frequently; after the injections the electrons decay slowly in the inner belt but protons in the low L region decay very fast. Intriguing similarities between lowermore » energy protons and higher-energy electrons are also found. The evolution of ring current electron and ion energy densities and energy content are examined in detail during two geomagnetic storms, one moderate and one intense. Here, the results show that the contribution of ring current electrons to the ring current energy content is much smaller than that of ring current ions (up to ~12% for the moderate storm and ~7% for the intense storm), and <35 keV electrons dominate the ring current electron energy content at the storm main phases. Though the electron energy content is usually much smaller than that of ions, the enhancement of ring current electron energy content during the moderate storm can get to ~30% of that of ring current ions, indicating a more dynamic feature of ring current electrons and important role of electrons in the ring current buildup. Lastly, the ring current electron energy density is also shown to be higher at midnight and dawn while lower at noon and dusk.« less

  6. Top-Off Injection and Higher Currents at the Stanford Synchrotron Radiation Lightsource

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauer, Johannes M.; Liu, James C.; Prinz, Alyssa A.

    2011-04-05

    The Stanford Synchrotron Radiation Lightsource (SSRL) at the SLAC National Accelerator Laboratory is a 234 m circumference storage ring for 3 GeV electrons with its synchrotron radiation serving currently 13 beamlines with about 27 experimental stations. It operated for long time with 100 mA peak current provided by usually three injections per day. In July 2009, the maximum beam current was raised to 200 mA. Over the period from June 2009 to March 2010, Top-Off operation started at every beamline. Top-Off, i.e., the injection of electrons into the storage ring with injection stoppers open, is necessary for SSRL to reachmore » its design current of 500 mA. In the future, the maximal power of the injection current will also soon be raised from currently 1.5 W to 5 W. The Radiation Protection Department at SLAC worked with SSRL on the specifications for the safety systems for operation with Top-Off injection and higher beam currents.« less

  7. Dynamics of Ring Current and Electric Fields in the Inner Magnetosphere During Disturbed Periods: CRCM-BATS-R-US Coupled Model

    NASA Technical Reports Server (NTRS)

    Buzulukova, N.; Fok, M.-C.; Pulkkinen, A.; Kuznetsova, M.; Moore, T. E.; Glocer, A.; Brandt, P. C.; Toth, G.; Rastaetter, L.

    2010-01-01

    We present simulation results from a one-way coupled global MHD model (Block-Adaptive-Tree Solar-Wind Roe-Type Upwind Scheme, BATS-R-US) and kinetic ring current models (Comprehensive Ring Current Model, CRCM, and Fok Ring Current, FokRC). The BATS-R-US provides the CRCM/FokRC with magnetic field information and plasma density/temperature at the polar CRCM/FokRC boundary. The CRCM uses an electric potential from the BATS-R-US ionospheric solver at the polar CRCM boundary in order to calculate the electric field pattern consistent with the CRCM pressure distribution. The FokRC electric field potential is taken from BATS-R-US ionospheric solver everywhere in the modeled region, and the effect of Region II currents is neglected. We show that for an idealized case with southward-northward-southward Bz IMF turning, CRCM-BATS-R-US reproduces well known features of inner magnetosphere electrodynamics: strong/weak convection under the southward/northward Bz; electric field shielding/overshielding/penetration effects; an injection during the substorm development; Subauroral Ion Drift or Polarization Jet (SAID/PJ) signature in the dusk sector. Furthermore, we find for the idealized case that SAID/PJ forms during the substorm growth phase, and that substorm injection has its own structure of field-aligned currents which resembles a substorm current wedge. For an actual event (12 August 2000 storm), we calculate ENA emissions and compare with Imager for Magnetopause-to-Aurora Global Exploration/High Energy Neutral Atom data. The CRCM-BATS-R-US reproduces both the global morphology of ring current and the fine structure of ring current injection. The FokRC-BATS-R-US shows the effect of a realistic description of Region II currents in ring current-MHD coupled models.

  8. The evolution of the storm-time ring current in response to different characteristics of the plasma source

    NASA Astrophysics Data System (ADS)

    Lemon, C.; Chen, M.; O'Brien, T. P.; Toffoletto, F.; Sazykin, S.; Wolf, R.; Kumar, V.

    2006-12-01

    We present simulation results of the Rice Convection Model-Equilibrium (RCM-E) that test and compare the effect on the storm time ring current of varying the plasma sheet source population characteristics at 6.6 Re during magnetic storms. Previous work has shown that direct injection of ionospheric plasma into the ring current is not a significant source of ring current plasma, suggesting that the plasma sheet is the only source. However, storm time processes in the plasma sheet and inner magnetosphere are very complex, due in large part to the feedback interactions between the plasma distribution, magnetic field, and electric field. We are particularly interested in understanding the role of the plasma sheet entropy parameter (PV^{5/3}, where V=\\int ds/B) in determining the strength and distribution of the ring current in both the main and recovery phases of a storm. Plasma temperature and density can be measured from geosynchrorous orbiting satellites, and these are often used to provide boundary conditions for ring current simulations. However, magnetic field measurements in this region are less commonly available, and there is a relatively poor understanding of the interplay between the plasma and the magnetic field during magnetic storms. The entropy parameter is a quantity that incorporates both the plasma and the magnetic field, and understanding its role in the ring current injection and recovery is essential to describing the processes that are occuring during magnetic storms. The RCM-E includes the physics of feedback between the plasma and both the electric and magnetic fields, and is therefore a valuable tool for understanding these complex storm-time processes. By contrasting the effects of different plasma boundary conditions at geosynchronous orbit, we shed light on the physical processes involved in ring current injection and recovery.

  9. Global Magnetospheric Evolution Effected by Sudden Ring Current Injection

    NASA Astrophysics Data System (ADS)

    Park, Geunseok; No, Jincheol; Kim, Kap-Sung; Choe, Gwangson; Lee, Junggi

    2016-04-01

    The dynamical evolution of the Earth's magnetosphere loaded with a transiently enhanced ring current is investigated by global magnetohydrodynamic simulations. Two cases with different values of the primitive ring current are considered. In one case, the initial ring current is strong enough to create a magnetic island in the magnetosphere. The magnetic island readily reconnects with the earth-connected ambient field and is destroyed as the system approaches a steady equilibrium. In the other case, the initial ring current is not so strong, and the initial magnetic field configuration bears no magnetic island, but features a wake of bent field lines, which is smoothed out through the relaxing evolution of the magnetosphere. The relaxation time of the magnetosphere is found to be about five to six minutes, over which the ring current is reduced to about a quarter of its initial value. Before reaching a quasi-steady state, the magnetosphere is found to undergo an overshooting expansion and a subsequent contraction. Fast and slow magnetosonic waves are identified to play an important role in the relaxation toward equilibrium. Our study suggests that a sudden injection of the ring current can generate an appreciable global pulsation of the magnetosphere.

  10. Global Evolution of the Earth's Magnetosphere in Response to a Sudden Ring Current Injection

    NASA Astrophysics Data System (ADS)

    No, Jincheol; Choe, Gwangson; Park, Geunseok

    2014-05-01

    The dynamical evolution of the Earth's magnetosphere loaded with a transiently enhanced ring current is investigated by global magnetohydrodynamic simulations. Two cases with different values of the primitive ring current are considered. In one case, the initial ring current is strong enough to create a magnetic island in the magnetosphere. The magnetic island readily reconnects with the earth-connected ambient field and is destroyed as the system approaches a steady equilibrium. In the other case, the initial ring current is not so strong, and the initial magnetic field configuration bears no magnetic island, but features a wake of bent field lines, which is smoothed out through the relaxing evolution of the magnetosphere. The relaxation time of the magnetosphere is found to be about five to six minutes, over which the ring current is reduced to about a quarter of its initial value. Before reaching a steady state, the magnetosphere is found to undergo an overshooting expansion and a subsequent contraction. Fast and slow magnetosonic waves are identified to play an important role in the relaxation toward equilibrium. Our study suggests that a sudden injection of the ring current can generate an appreciable global pulsation of the magnetosphere.

  11. Magnetic forces and localized resonances in electron transfer through quantum rings.

    PubMed

    Poniedziałek, M R; Szafran, B

    2010-11-24

    We study the current flow through semiconductor quantum rings. In high magnetic fields the current is usually injected into the arm of the ring preferred by classical magnetic forces. However, for narrow magnetic field intervals that appear periodically on the magnetic field scale the current is injected into the other arm of the ring. We indicate that the appearance of the anomalous-non-classical-current circulation results from Fano interference involving localized resonant states. The identification of the Fano interference is based on the comparison of the solution of the scattering problem with the results of the stabilization method. The latter employs the bound-state type calculations and allows us to extract both the energy of metastable states localized within the ring and the width of resonances by analysis of the energy spectrum of a finite size system as a function of its length. The Fano resonances involving states of anomalous current circulation become extremely narrow on both the magnetic field and energy scales. This is consistent with the orientation of the Lorentz force that tends to keep the electron within the ring and thus increases the lifetime of the electron localization within the ring. Absence of periodic Fano resonances in electron transfer probability through a quantum ring containing an elastic scatterer is also explained.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jordanova, Vania K

    Understanding the response at Earth of the Sun's varying energy output and forecasting geomagnetic activity is of central interest to space science, since intense geomagnetic storms may cause severe damages on technological systems and affect communications. Episodes of southward (Bz

  13. New Way of Characterizing the State of the Ring Current

    NASA Astrophysics Data System (ADS)

    Wolf, R.; Bao, S.; Gkioulidou, M.; Yang, J.; Toffoletto, F.

    2017-12-01

    The flux tube entropy S is invariant in ideal MHD and is a good way to characterize the degree to which a closed flux tube is loaded with particle energy. Flux tube entropy generally increases with increasing geocentric distance. A flux tube that is injected from the plasma sheet into the ring current tends to be a bubble that has a lower S value than typical plasma sheet flux tubes, and it tends to penetrate to a position where the surroundings matches its S. From this point of view, a good way to characterize the state of the ring current is through the function dF/dS, which specifies how much magnetic flux is occupied by tubes with different degrees of loading. By displaying dF/dS curves before and during storm main phases simulated with the RCM-E code, we determine that, in the model, the injection of the stormtime ring current consists of replacing pre-storm low-S flux tubes with tubes from the plasma sheet that have a certain limited range of S, which is well below typical plasma-sheet values. We also display dF/dS curves for passes by the Van Allen Probes before and during storm main phases, and compare with the RCM-E-derived curves, to gain insight into the nature of the flux tubes that are injected to form the real storm-time ring current.

  14. Plasma Sheet Injections into the Inner Magnetosphere: Two-way Coupled OpenGGCM-RCM model results

    NASA Astrophysics Data System (ADS)

    Raeder, J.; Cramer, W. D.; Toffoletto, F.; Gilson, M. L.; Hu, B.

    2017-12-01

    Plasma sheet injections associated with low flux tube entropy bubbles have been found to be the primary means of mass transport from the plasma sheet to the inner magnetosphere. A two-way coupled global magnetosphere-ring current model, where the magnetosphere is modeled by the OpenGGCM MHD model and the ring current is modeled by the Rice Convection Model (RCM), is used to determine the frequency of association of bubbles with injections and inward plasma transport, as well as typical injection characteristics. Multiple geomagnetic storms and quiet periods are simulated to track and characterize inward flow behavior. Dependence on geomagnetic activity levels or drivers is also examined.

  15. CLEARING MAGNET DESIGN FOR APS-U

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abliz, M.; Grimmer, J.; Jaski, Y.

    2017-06-25

    The Advanced Photon Source is in the process of developing an upgrade (APS-U) of the storage ring. The upgrade will be converting the current double bend achromat (DBA) lattice to a multi-bend achromat (MBA) lattice. In addition, the storage ring will be operated at 6 GeV and 200 mA with regular swap-out injection to keep the stored beam current constant [1]. The swap-out injection will take place with beamline shutters open. For radiation safety to ensure that no electrons can exit the storage ring, a passive method of protecting the beamline and containing the electrons inside the storage ring ismore » proposed. A clearing magnet will be located in all beamline front ends inside the storage ring tunnel. This article will discuss the features and design of the clearing magnet scheme for APS-U.« less

  16. Diagnostic Systems Plan for the Advanced Light Source Top-OffUpgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barry, Walter; Chin, Mike; Robin, David

    2005-05-10

    The Advanced Light Source (ALS) will soon be upgraded to enable top-off operations [1], in which electrons are quasi-continuously injected to produce constant stored beam current. The upgrade is structured in two phases. First, we will upgrade our injector from 1.5 GeV to 1.9 GeV to allow full energy injection and will start top-off operations. In the second phase, we will upgrade the Booster Ring (BR) with a bunch cleaning system to allow high bunch purity top-off injection. A diagnostics upgrade will be crucial for success in both phases of the top-off project, and our plan for it is describedmore » in this paper. New booster ring diagnostics will include updated beam position monitor (BPM) electronics, a tune monitoring system, and a new scraper. Two new synchrotron light monitors and a beam stop will be added to the booster-to-storage ring transfer line (BTS), and all the existing beam current monitors along the accelerator chain will be integrated into a single injection efficiency monitoring application. A dedicated bunch purity monitor will be installed in the storage ring (SR). Together, these diagnostic upgrades will enable smooth commissioning of the full energy injector and a quick transition to high quality top-off operation at the ALS.« less

  17. Electrostatic instability of ring current protons beyond the plasmapause during injection events

    NASA Technical Reports Server (NTRS)

    Coroniti, F. V.; Fredricks, R. W.; White, R.

    1972-01-01

    The stability of ring current protons with an injection spectrum modeled by an m = 2 mirror distribution function was examined for typical ring current parameters. It was found that the high frequency loss cone mode can be excited at wave numbers K lambda sub Di about = to 0.1 to 0.5, at frequencies omega about = to (0.2 to 0.6) omega sub pi and with growth rates up to gamma/omega about = to 0.03. These waves interact with the main body of the proton distribution and propagate nearly perpendicular to the local magnetic field. Cold particle partial densities tend to reduce the growth rate so that the waves are quenched at or near to the plasmapause boundary. Wave e-folding lengths are comparable to 0.1 R sub e, compared to the value of about 4 R sub e found for ion cyclotron waves at the same plasma conditions.

  18. Ring Current Response to Different Storm Drivers. Van Allen Probes and Cluster Observations.

    NASA Astrophysics Data System (ADS)

    Bingham, S.; Mouikis, C.; Kistler, L. M.; Spence, H. E.; Gkioulidou, M.; Claudepierre, S. G.; Farrugia, C. J.

    2015-12-01

    The ring current responds differently to the different solar and interplanetary storm drivers such as coronal mass injections, (CME's), co-rotating interaction regions (CIR's), high-speed streamers and other structures. The resulting changes in the ring current particle pressure change the global magnetic field, which affects the transport of the radiation belts. In order to determine the field changes during a storm it is necessary to understand the transport, sources and losses of the particles that contribute to the ring current. The source population of the storm time ring current is the night side plasma sheet. However, it is not clear how these convecting particles affect the storm time ring current pressure development. We use Van Allen Probes and Cluster observations together with the Volland-Stern and dipole magnetic field models to determine the contribution in the ring current pressure of the plasma sheet particles convecting from the night side that are on open drift paths, during the storm evolution. We compare storms that are related to different interplanetary drivers, CME and CIR, as observed at different local times.

  19. Engineering and Design of the Steady Inductive Helicity Injected Torus (HIT--SI)

    NASA Astrophysics Data System (ADS)

    Sieck, P. E.; Jarboe, T. R.; Nelson, B. A.; Rogers, J. A.; Shumlak, U.

    1999-11-01

    Steady Inductive Helicity Injection (SIHI) is an inductive helicity injection method that injects helicity at a nearly constant rate, without open field lines, and without removing any helicity or magnetic energy from the plasma.(T.R. Jarboe, Fusion Technology, 36) (1), p. 85, 1999 SIHI directly produces a rotating magnetic field structure, and in the frame of the rotating field the current profile is nearly time independent. The Steady Inductive Helicity Injected Torus (HIT--SI) is a spheromak designed to implement SIHI so that the current profile in the rotating frame is optimized. The geometry of HIT--SI will be presented, including the manufacturing techniques and metallurgical processes planned for construction of the close-fitting flux conserver. The flux conserver is made of aged chromium copper with 80% the conductivity of pure copper. The detailed electrical insulation requirements in the helicity injector design lead to a complex o-ring seal and a plasma-sprayed alumina insulation coating. This has prompted the construction of an o-ring prototype test fixture having the main features of the o-ring design and the alumina coating. The design and evaluation of this fixture will also be presented with vacuum and voltage test results.

  20. Ring current proton decay by charge exchange

    NASA Technical Reports Server (NTRS)

    Smith, P. H.; Hoffman, R. A.; Fritz, T.

    1975-01-01

    Explorer 45 measurements during the recovery phase of a moderate magnetic storm have confirmed that the charge exchange decay mechanism can account for the decay of the storm-time proton ring current. Data from the moderate magnetic storm of 24 February 1972 was selected for study since a symmetrical ring current had developed and effects due to asymmetric ring current losses could be eliminated. It was found that after the initial rapid decay of the proton flux, the equatorially mirroring protons in the energy range 5 to 30 keV decayed throughout the L-value range of 3.5 to 5.0 at the charge exchange decay rate calculated by Liemohn. After several days of decay, the proton fluxes reached a lower limit where an apparent equilibrium was maintained, between weak particle source mechanisms and the loss mechanisms, until fresh protons were injected into the ring current region during substorms. While other proton loss mechanisms may also be operating, the results indicate that charge exchange can entirely account for the storm-time proton ring current decay, and that this mechanism must be considered in all studies involving the loss of proton ring current particles.

  1. Subauroral polarization stream on the outer boundary of the ring current during an energetic ion injection event

    NASA Astrophysics Data System (ADS)

    Yuan, Zhigang; Qiao, Zheng; Li, Haimeng; Huang, Shiyong; Wang, Dedong; Yu, Xiongdong; Yu, Tao

    2017-04-01

    Subauroral polarization stream (SAPS) electric field can play an important role in the coupling between the inner magnetosphere and ionosphere; however, the production mechanism of SAPS has not been yet solved. During an energetic ion injection event on 26 March 2004, at latitudes lower than the equatorward boundaries of precipitating plasma sheet electrons and ions, the Defense Meteorological Satellite Program (DMSP) F13 satellite simultaneously observed a strong SAPS with the peak velocity of 1294 m/s and downward flowing field-aligned currents (FACs). Conjugate observations of DMSP F13 and NOAA 15 satellites have shown that FACs flowing into the ionosphere just lie in the outer boundary of the ring current (RC). The downward flowing FACs were observed in a region of positive latitudinal gradients of the ion energy density, implying that the downward flowing FACs are more likely linked to the azimuthal gradient than the radial gradient of the RC ion pressure. Our result demonstrates that RC ion pressure gradients on the outer boundary of the RC in the evening sector during energetic ion injection events can lead to downward flowing FACs so as to cause strong SAPS in condition of low ionospheric conductivities.Plain Language SummaryThis paper provides a good case that the SAPS and FAC occurred in the outer boundary of the ring current during an energetic ion injection event. Our result demonstrates that RC ion pressure gradients on the outer boundary of the RC in the evening sector during energetic ion injection events can lead to downward flowing FACs so as to cause strong SAPS in condition of low ionospheric conductivities.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMSM11A2139B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMSM11A2139B"><span>The Storm Time Ring Current Dynamics and Response to CMEs and CIRs Using Van Allen Probes Observations and CIMI Simulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bingham, S.; Mouikis, C.; Kistler, L. M.; Fok, M. C. H.; Glocer, A.; Farrugia, C. J.; Gkioulidou, M.; Spence, H. E.</p> <p>2016-12-01</p> <p>The ring current responds differently to the different solar and interplanetary storm drivers such as coronal mass injections, (CMEs), and co-rotating interaction regions (CIRs). Delineating the differences in the ring current development between these two drivers will aid our understanding of the ring current dynamics. Using Van Allen Probes observations, we develop an empirical ring current model of the ring current pressure, the pressure anisotropy and the current density development during the storm phases for both types of storm drivers and for all MLTs inside L 6. In addition, we identify the populations (energy and species) responsible. We find that during the storm main phase and the early recovery phase the plasma sheet particles (10-80 keV) convecting from the nightside contribute the most on the ring current pressure and current density. However, during these phases, the main difference between CMEs and CIRs is in the O+ contribution. This empirical model is compared to the results of CIMI simulations of CMEs and CIRs where the model input is comprised of the superposed epoch solar wind conditions of the storms that comprise the empirical model, while different inner magnetosphere boundary conditions will be tested in order to match the empirical model results. Comparing the model and simulation results will fill our understanding of the ring current dynamics as part of the highly coupled inner magnetosphere system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22085988-simulation-current-filament-dynamics-relaxation-pegasus-spherical-tokamak','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22085988-simulation-current-filament-dynamics-relaxation-pegasus-spherical-tokamak"><span>Simulation of current-filament dynamics and relaxation in the Pegasus Spherical Tokamak</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>O'Bryan, J. B.; Sovinec, C. R.; Bird, T. M.</p> <p></p> <p>Nonlinear numerical computation is used to investigate the relaxation of non-axisymmetric current-channels from washer-gun plasma sources into 'tokamak-like' plasmas in the Pegasus toroidal experiment [Eidietis et al. J. Fusion Energy 26, 43 (2007)]. Resistive MHD simulations with the NIMROD code [Sovinec et al. Phys. Plasmas 10(5), 1727-1732 (2003)] utilize ohmic heating, temperature-dependent resistivity, and anisotropic, temperature-dependent thermal conduction corrected for regions of low magnetization to reproduce critical transport effects. Adjacent passes of the simulated current-channel attract and generate strong reversed current sheets that suggest magnetic reconnection. With sufficient injected current, adjacent passes merge periodically, releasing axisymmetric current rings from themore » driven channel. The current rings have not been previously observed in helicity injection for spherical tokamaks, and as such, provide a new phenomenological understanding for filament relaxation in Pegasus. After large-scale poloidal-field reversal, a hollow current profile and significant poloidal flux amplification accumulate over many reconnection cycles.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMSM33C2527M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMSM33C2527M"><span>The O+ contribution and role on the ring current pressure development for CMEs and CIRs using Van Allen Probes observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mouikis, C.; Bingham, S.; Kistler, L. M.; Farrugia, C. J.; Spence, H. E.; Gkioulidou, M.</p> <p>2016-12-01</p> <p>The ring current responds differently to the different solar and interplanetary storm drivers such as coronal mass injections, (CME's), co-rotating interaction regions (CIR's), high-speed streamers and other structures. The resulting changes in the ring current particle pressure change the global magnetic field, which affects the transport of the radiation belts. In order to determine the field changes during a storm, it is necessary to understand the transport, sources and losses of the particles that contribute to the ring current. The source population of the storm time ring current is the night side plasma sheet. We use Van Allen Probes observations to determine the ring current pressure contribution of the convecting plasma sheet H+ and O+ particles in the storm time development of the ring current. We compare storms that are related to different interplanetary drivers, CMEs and CIRs, as observed at different local times. We find that during the storm main phase most of the ring current pressure in the pre-midnight inner magnetosphere is contributed by particles on open drift paths that cause the development of a strong partial ring current that causes most of the main phase Dst drop. These particles can reach as deep as L 2 and their pressure compares to the local magnetic field pressure as deep as L 3. During the recovery phase, if these particles are not lost at the magnetopause, will become trapped and will contribute to the symmetric ring current. However, the largest difference between the CME and CIR ring current responses during the storm main and early recovery phases is caused by how the 15 - 60 keV O+ responds to these drivers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005AIPC..773..188S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005AIPC..773..188S"><span>Beam Loss Measurements at the Los Alamos Proton Storage Ring</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Spickermann, Thomas</p> <p>2005-06-01</p> <p>During normal operation the Los Alamos Proton Storage Ring (PSR) accumulates up to 4ṡ1013 protons over 625μs with a repetition rate of 20 Hz, corresponding to a current of 125μA to the Lujan Neutron Science Center. Beam losses in the ring as well as in the extraction beam line and the subsequent activation of material are a limiting factor at these currents. Careful tuning of injection, ring and extraction line is paramount to limiting losses to acceptable levels. Losses are typically not uniform around the ring, but occur in significantly higher levels in certain "hot spots". Here I will report on losses related to the stripper foil which are the dominant source of losses in the ring. First results of a comparison with simulations will also be presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006AnGeo..24..355Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006AnGeo..24..355Y"><span>Sub-keV ring current ions as the tracer of substorm injection</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yamauchi, M.; Lundin, R.</p> <p>2006-03-01</p> <p>The dynamics of the energy-latitude dispersed sub-keV trapped ions inside the ring current region, the so-called wedge-like dispersions structure, were statistically studied using Viking satellite data. Probabilities with/without these signatures at various local times in the dayside are obtained in terms of different time-lags from the substorm activity monitored by the AE index. The structure appears in the early morning sector within a few hours after the substorm, and it slowly propagates eastward while decaying with a time scale of several hours. The result qualitatively confirmed the previous model that the wedge-like dispersions are originated from past substorm-related plasma injections into the nightside ring current region, and that the dispersion is formed when these injected plasma slowly moves eastward to the dayside by the drift motion (E×B (eastward), grad-<|B| (westward), and curvature (westward) drifts). However, the appearance of the structure is twice or three times faster than the model prediction, and some structure reaches even to the evening sector. The results indicate that the start location of the drift is not as far as midnight and that the drift speed is slightly faster than the model prediction. The former means that the substorm-related increase of hot plasma in the ring current region shifts or extends to the early morning sector for large substorms, and the latter means that the substantial electric field driving the sub-keV ion drift is slightly different from the model field. We also detected the evacuating effect starting right after the substorm (or storm) onset. The electric field imposed in the dayside magnetosphere seems to remove the remainder of trapped ions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMSM31D4239M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMSM31D4239M"><span>The Ring Current Response to Solar and Interplanetary Storm Drivers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mouikis, C.; Kistler, L. M.; Bingham, S.; Kronberg, E. A.; Gkioulidou, M.; Huang, C. L.; Farrugia, C. J.</p> <p>2014-12-01</p> <p>The ring current responds differently to the different solar and interplanetary storm drivers such as coronal mass injections, (CME's), corotating interaction regions (CIR's), high-speed streamers and other structures. The resulting changes in the ring current particle pressure, in turn, change the global magnetic field, controlling the transport of the radiation belts. To quantitatively determine the field changes during a storm throughout the magnetosphere, it is necessary to understand the transport, sources and losses of the particles that contribute to the ring current. Because the measured ring current energy spectra depend not only on local processes, but also on the history of the ions along their entire drift path, measurements of ring current energy spectra at two or more locations can be used to strongly constrain the time dependent magnetic and electric fields. In this study we use data predominantly from the Cluster and the Van Allen Probes, covering more than a full solar cycle (from 2001 to 2014). For the period 2001-2012, the Cluster CODIF and RAPID measurements of the inner magnetosphere are the primary data set used to monitor the storm time ring current variability. After 2012, the Cluster data set complements the data from the Van Allen Probes HOPE and RBSPICE instruments, providing additional measurements from different MLT and L shells. Selected storms from this periods, allow us to study the ring current dynamics and pressure changes, as a function of L shell, magnetic local time, and the type of interplanetary disturbances.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/12508','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/12508"><span>Efficacy of basal soil injection at different water volumes and landscape settings for Asian longhorn beetle control</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Phillip A. Lewis</p> <p>2007-01-01</p> <p>The Asian longhorn beetle eradication program currently treats at-risk trees by soil injection with a high volume solution of pesticide placed in concentric rings expanding out from the trunk to the dripline of the tree. Using this method in wooded habitats has previously resulted in no detectable residue in treated trees. Basal soil injection (BSI) uses a high...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70034993','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70034993"><span>Characterizing near-surface CO2 conditions before injection - Perspectives from a CCS project in the Illinois Basin, USA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Locke, R.A.; Krapac, I.G.; Lewicki, J.L.; Curtis-Robinson, E.</p> <p>2011-01-01</p> <p>The Midwest Geological Sequestration Consortium is conducting a large-scale carbon capture and storage (CCS) project in Decatur, Illinois, USA to demonstrate the ability of a deep saline formation to store one million tonnes of carbon dioxide (CO2) from an ethanol facility. Beginning in early 2011, CO2 will be injected at a rate of 1,000 tonnes/day for three years into the Mount Simon Sandstone at a depth of approximately 2,100 meters. An extensive Monitoring, Verification, and Accounting (MVA) program has been undertaken for the Illinois Basin Decatur Project (IBDP) and is focused on the 0.65 km2 project site. Goals include establishing baseline conditions to evaluate potential impacts from CO2 injection, demonstrating that project activities are protective of human health and the environment, and providing an accurate accounting of stored CO2. MVA efforts are being conducted pre-, during, and post- CO2 injection. Soil and net CO2 flux monitoring has been conducted for more than one year to characterize near-surface CO2 conditions. More than 2,200 soil CO2 flux measurements have been manually collected from a network of 118 soil rings since June 2009. Three ring types have been evaluated to determine which type may be the most effective in detecting potential CO 2 leakage. Bare soil, shallow-depth rings were driven 8 cm into the ground and were prepared to minimize surface vegetation in and near the rings. Bare soil, deep-depth rings were prepared similarly, but were driven 46 cm. Natural-vegetation, shallow-depth rings were driven 8 cm and are most representative of typical vegetation conditions. Bare-soil, shallow-depth rings had the smallest observed mean flux (1.78 ??mol m-2 s-1) versus natural-vegetation, shallow-depth rings (3.38 ??mol m-2 s-1). Current data suggest bare ring types would be more sensitive to small CO2 leak signatures than natural ring types because of higher signal to noise ratios. An eddy covariance (EC) system has been in use since June 2009. Baseline data from EC monitoring is being used to characterize pre-injection conditions, and may then be used to detect changes in net exchange CO2 fluxes (Fc) that could be the result of CO2 leakage into the near-surface environment during or following injection. When injection at IBDP begins, soil and net CO2 monitoring efforts will have established a baseline of near-surface conditions that will be important to help demonstrate the effectiveness of storage activities. ?? 2011 Published by Elsevier Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1917228M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1917228M"><span>The storm time ring current dynamics and response to CMEs and CIRs using Van Allen Probes observations and CIMI simulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mouikis, Christopher; Bingham, Samuel; Kistler, Lynn; Spence, Harlan; Gkioulidou, Matina</p> <p>2017-04-01</p> <p>The ring current responds differently to the different solar and interplanetary storm drivers such as coronal mass injections, (CME's), and co-rotating interaction regions (CIR's). Using Van Allen Probes observations, we develop an empirical ring current model of the ring current pressure, the pressure anisotropy and the current density development during the storm phases for both types of storm drivers and for all MLTs inside L 6. Delineating the differences in the ring current development between these two drivers will aid our understanding of the ring current dynamics. We find that during the storm main phase most of the ring current pressure in the pre-midnight inner magnetosphere is contributed by particles on open drift paths that cause the development of a strong partial ring current that causes most of the main phase Dst drop. These particles can reach as deep as L 2 and their pressure compares to the local magnetic field pressure as deep as L 3. During the recovery phase, if these particles are not lost at the magnetopause, will become trapped and will contribute to the symmetric ring current. However, the largest difference between the CME and CIR ring current responses during the storm main and early recovery phases is caused by how the 15 - 60 keV O+ responds to these drivers. This empirical model is compared to the results of CIMI simulations of a CMEs and a CIRs where the model input is comprised of the superposed epoch solar wind conditions of the storms that comprise the empirical model. Different inner magnetosphere boundary conditions are tested in order to match the empirical model results. Comparing the model and simulation results improves our understanding of the ring current dynamics as part of the highly coupled inner magnetosphere system. In addition, within the framework of this empirical model, the prediction of the EMIC wave generation linear theory is tested using the observed plasma parameters and comparing with the observations of EMIC waves.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110015188','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110015188"><span>Kinetic Simulation and Energetic Neutral Atom Imaging of the Magnetosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Fok, Mei-Ching H.</p> <p>2011-01-01</p> <p>Advanced simulation tools and measurement techniques have been developed to study the dynamic magnetosphere and its response to drivers in the solar wind. The Comprehensive Ring Current Model (CRCM) is a kinetic code that solves the 3D distribution in space, energy and pitch-angle information of energetic ions and electrons. Energetic Neutral Atom (ENA) imagers have been carried in past and current satellite missions. Global morphology of energetic ions were revealed by the observed ENA images. We have combined simulation and ENA analysis techniques to study the development of ring current ions during magnetic storms and substorms. We identify the timing and location of particle injection and loss. We examine the evolution of ion energy and pitch-angle distribution during different phases of a storm. In this talk we will discuss the findings from our ring current studies and how our simulation and ENA analysis tools can be applied to the upcoming TRIO-CINAMA mission.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20070032060','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20070032060"><span>Impact of Ring Current Ions on Electromagnetic Ion Cyclotron Wave Dispersion Relation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Khazanov, G. V.; Gamayunov, K. V.</p> <p>2007-01-01</p> <p>Effect of the ring current ions in the real part of electromagnetic ion Cyclotron wave dispersion relation is studied on global scale. Recent Cluster observations by Engebretson et al. showed that although the temperature anisotropy of is energetic (> 10 keV) ring current protons was high during the entire 22 November 2003 perigee pass, electromagnetic ion cyclotron waves were observed only in conjunction with intensification of the ion fluxes below 1 keV by over an order of magnitude. To study the effect of the ring current ions on the wave dispersive properties and the corresponding global wave redistribution, we use a self-consistent model of interacting ring current and electromagnetic ion cyclotron waves, and simulate the May 1998 storm. The main findings of our simulation can be summarized as follows: First, the plasma density enhancement in the night MLT sector during the main and recovery storm phases is mostly caused by injection of suprathermal plasma sheet H + (approximately < 1 keV), which dominate the thermal plasma density. Second, during the recovery storm phases, the ring current modification of the wave dispersion relation leads to a qualitative change of the wave patterns in the postmidnight-dawn sector for L > 4.75. This "new" wave activity is well organized by outward edges of dense suprathermal ring current spots, and the waves are not observed if the ring current ions are not included in the real part of dispersion relation. Third, the most intense wave-induced ring current precipitation is located in the night MLT sector and caused by modification of the wave dispersion relation. The strongest precipitating fluxes of about 8 X 10(exp 6)/ (cm(exp 2) - s X st) are found near L=5.75, MLT=2 during the early recovery phase on 4 May. Finally, the nightside precipitation is more intense than the dayside fluxes, even if there are less intense waves, because the convection field moves ring current ions into the loss cone on the nightside, but drives them out of the loss cone on the dayside. So convection and wave scattering reinforce each other in the nightside, but interfere in the dayside sector.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRA..122.8516M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRA..122.8516M"><span>SAPS/SAID revisited: A causal relation to the substorm current wedge</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mishin, Evgeny; Nishimura, Yukitoshi; Foster, John</p> <p>2017-08-01</p> <p>We present multispacecraft observations of enhanced flow/electric field channels in the inner magnetosphere and conjugate subauroral ionosphere, i.e., subauroral polarization streams (SAPS) near dusk and subauroral ion drifts (SAID) near midnight. The channels collocate with ring current (RC) injections lagging the onset of substorms by a few to ˜20 min, i.e., significantly shorter than the gradient-curvature drift time of tens of keV ions. The time lag is of the order of the propagation time of reconnection-injected hot plasma jets to the premidnight plasmasphere and the substorm current wedge (SCW) to dusk. The observations confirm and expand on the previous results on the SAID features that negate the paradigm of voltage and current generators. Fast-time duskside SAPS/RC injections appear intimately related to a two-loop circuit of the substorm current wedge (SCW2L). We suggest that the poleward electric field inherent in the SCW2L circuit, which demands closure of the Region 1 and Region 2 sense field-aligned currents via meridional currents, is the ultimate cause of fast RC injections and SAPS on the duskside.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSA41C..02M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSA41C..02M"><span>SAID/SAPS Revisited: A Causal Relation to the Substorm Current Wedge</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mishin, E. V.</p> <p>2017-12-01</p> <p>We present multi-spacecraft observations of enhanced flow/electric field channels in the inner magnetosphere and conjugate subauroral ionosphere, i.e., subauroral polarization streams (SAPS) near dusk and subauroral ion drifts (SAID) near midnight. The channels collocate with ring current (RC) injections lagging the onset of substorms by a few to ˜20 minutes, i.e., significantly shorter than the gradient-curvature drift time of tens of keV ions. The time lag is of the order of the propagation time of reconnection-injected hot plasma jets to the premidnight plasmasphere and the substorm current wedge (SCW) to dusk. The observations confirm and expand on the previous results on the SAID features that negate the paradigm of voltage and current generators. Fast-time duskside SAPS/RC injections appear intimately related to a two-loop circuit of the substorm current wedge (SCW2L). We suggest that the poleward electric field inherent in the SCW2L circuit, which demands closure of the Region 1- and Region 2-sense field-aligned currents via meridional currents, is the ultimate cause of fast RC injections and SAPS on the duskside.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1392808-pic-simulations-wave-particle-interactions-initial-electron-velocity-distribution-from-kinetic-ring-current-model','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1392808-pic-simulations-wave-particle-interactions-initial-electron-velocity-distribution-from-kinetic-ring-current-model"><span>PIC simulations of wave-particle interactions with an initial electron velocity distribution from a kinetic ring current model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Yu, Yiqun; Delzanno, Gian Luca; Jordanova, Vania Koleva; ...</p> <p>2017-07-15</p> <p>Whistler wave-particle interactions play an important role in the Earth inner magnetospheric dynamics and have been the subject of numerous investigations. By running a global kinetic ring current model (RAM-SCB) in a storm event occurred on Oct 23–24 2002, we obtain the ring current electron distribution at a selected location at MLT of 9 and L of 6 where the electron distribution is composed of a warm population in the form of a partial ring in the velocity space (with energy around 15 keV) in addition to a cool population with a Maxwellian-like distribution. The warm population is likely frommore » the injected plasma sheet electrons during substorm injections that supply fresh source to the inner magnetosphere. These electron distributions are then used as input in an implicit particle-in-cell code (iPIC3D) to study whistler-wave generation and the subsequent wave-particle interactions. Here, we find that whistler waves are excited and propagate in the quasi-parallel direction along the background magnetic field. Several different wave modes are instantaneously generated with different growth rates and frequencies. The wave mode at the maximum growth rate has a frequency around 0.62ω ce, which corresponds to a parallel resonant energy of 2.5 keV. Linear theory analysis of wave growth is in excellent agreement with the simulation results. These waves grow initially due to the injected warm electrons and are later damped due to cyclotron absorption by electrons whose energy is close to the resonant energy and can effectively attenuate waves. The warm electron population overall experiences net energy loss and anisotropy drop while moving along the diffusion surfaces towards regions of lower phase space density, while the cool electron population undergoes heating when the waves grow, suggesting the cross-population interactions.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1392808-pic-simulations-wave-particle-interactions-initial-electron-velocity-distribution-from-kinetic-ring-current-model','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1392808-pic-simulations-wave-particle-interactions-initial-electron-velocity-distribution-from-kinetic-ring-current-model"><span>PIC simulations of wave-particle interactions with an initial electron velocity distribution from a kinetic ring current model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Yu, Yiqun; Delzanno, Gian Luca; Jordanova, Vania Koleva</p> <p></p> <p>Whistler wave-particle interactions play an important role in the Earth inner magnetospheric dynamics and have been the subject of numerous investigations. By running a global kinetic ring current model (RAM-SCB) in a storm event occurred on Oct 23–24 2002, we obtain the ring current electron distribution at a selected location at MLT of 9 and L of 6 where the electron distribution is composed of a warm population in the form of a partial ring in the velocity space (with energy around 15 keV) in addition to a cool population with a Maxwellian-like distribution. The warm population is likely frommore » the injected plasma sheet electrons during substorm injections that supply fresh source to the inner magnetosphere. These electron distributions are then used as input in an implicit particle-in-cell code (iPIC3D) to study whistler-wave generation and the subsequent wave-particle interactions. Here, we find that whistler waves are excited and propagate in the quasi-parallel direction along the background magnetic field. Several different wave modes are instantaneously generated with different growth rates and frequencies. The wave mode at the maximum growth rate has a frequency around 0.62ω ce, which corresponds to a parallel resonant energy of 2.5 keV. Linear theory analysis of wave growth is in excellent agreement with the simulation results. These waves grow initially due to the injected warm electrons and are later damped due to cyclotron absorption by electrons whose energy is close to the resonant energy and can effectively attenuate waves. The warm electron population overall experiences net energy loss and anisotropy drop while moving along the diffusion surfaces towards regions of lower phase space density, while the cool electron population undergoes heating when the waves grow, suggesting the cross-population interactions.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoRL..45..585L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoRL..45..585L"><span>Prompt Disappearance and Emergence of Radiation Belt Magnetosonic Waves Induced by Solar Wind Dynamic Pressure Variations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, Nigang; Su, Zhenpeng; Zheng, Huinan; Wang, Yuming; Wang, Shui</p> <p>2018-01-01</p> <p>Magnetosonic waves are highly oblique whistler mode emissions transferring energy from the ring current protons to the radiation belt electrons in the inner magnetosphere. Here we present the first report of prompt disappearance and emergence of magnetosonic waves induced by the solar wind dynamic pressure variations. The solar wind dynamic pressure reduction caused the magnetosphere expansion, adiabatically decelerated the ring current protons for the Bernstein mode instability, and produced the prompt disappearance of magnetosonic waves. On the contrary, because of the adiabatic acceleration of the ring current protons by the solar wind dynamic pressure enhancement, magnetosonic waves emerged suddenly. In the absence of impulsive injections of hot protons, magnetosonic waves were observable even only during the time period with the enhanced solar wind dynamic pressure. Our results demonstrate that the solar wind dynamic pressure is an essential parameter for modeling of magnetosonic waves and their effect on the radiation belt electrons.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/64157','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/64157"><span>Injection envelope matching in storage rings</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Minty, M.G.; Spence, W.L.</p> <p>1995-05-01</p> <p>The shape and size of the transverse phase space injected into a storage ring can be deduced from turn-by-turn measurements of the transient behavior of the beam envelope in the ring. Envelope oscillations at 2 x the {beta}-tron frequency indicate the presence of a {beta}-mismatch, while envelope oscillations at the {beta}-tron frequency are the signature of a dispersion function mismatch. Experiments in injection optimization using synchrotron radiation imaging of the beam and a fast-gated camera at the SLC damping rings are reported.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1995paac.confS...1M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1995paac.confS...1M"><span>Injection envelope matching in storage rings</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Minty, M. G.; Spence, W. L.</p> <p>1995-05-01</p> <p>The shape and size of the transverse phase space injected into a storage ring can be deduced from turn-by-turn measurements of the transient behavior of the beam envelope in the ring. Envelope oscillations at 2 x the beta-tron frequency indicate the presence of a beta-mismatch, while envelope oscillations at the beta-tron frequency are the signature of a dispersion function mismatch. Experiments in injection optimization using synchrotron radiation imaging of the beam and a fast-gated camera at the SLC damping rings are reported.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1985ITNS...32.....S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1985ITNS...32.....S"><span>1985 Particle Accelerator Conference: Accelerator Engineering and Technology, 11th, Vancouver, Canada, May 13-16, 1985, Proceedings</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Strathdee, A.</p> <p>1985-10-01</p> <p>The topics discussed are related to high-energy accelerators and colliders, particle sources and electrostatic accelerators, controls, instrumentation and feedback, beam dynamics, low- and intermediate-energy circular accelerators and rings, RF and other acceleration systems, beam injection, extraction and transport, operations and safety, linear accelerators, applications of accelerators, radiation sources, superconducting supercolliders, new acceleration techniques, superconducting components, cryogenics, and vacuum. Accelerator and storage ring control systems are considered along with linear and nonlinear orbit theory, transverse and longitudinal instabilities and cures, beam cooling, injection and extraction orbit theory, high current dynamics, general beam dynamics, and medical and radioisotope applications. Attention is given to superconducting RF structures, magnet technology, superconducting magnets, and physics opportunities with relativistic heavy ion accelerators.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_1");'>1</a></li> <li class="active"><span>2</span></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_2 --> <div id="page_3" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_1");'>1</a></li> <li><a href="#" onclick='return showDiv("page_2");'>2</a></li> <li class="active"><span>3</span></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="41"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1050270-tracking-stripped-proton-particles-sns-ring-injection-momentum-dump-line','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1050270-tracking-stripped-proton-particles-sns-ring-injection-momentum-dump-line"><span>Tracking Stripped Proton Particles in SNS Ring Injection Momentum Dump Line</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Wang, Jian-Guang</p> <p></p> <p>3D computer simulations are performed to study magnetic field distributions and particle trajectories along the SNS ring injection momentum dump line. Optical properties and transfer maps along the dump line are calculated. The stripped proton particle distributions on the dump window are analyzed. The study has provided useful information for the redesign of the SNS ring injection beam dump.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/15263597','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/15263597"><span>Single-pass BPM system of the Photon Factory storage ring.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Honda, T; Katoh, M; Mitsuhashi, T; Ueda, A; Tadano, M; Kobayashi, Y</p> <p>1998-05-01</p> <p>At the 2.5 GeV ring of the Photon Factory, a single-pass beam-position monitor (BPM) system is being prepared for the storage ring and the beam transport line. In the storage ring, the injected beam position during the first several turns can be measured with a single injection pulse. The BPM system has an adequate performance, useful for the commissioning of the new low-emittance lattice. Several stripline BPMs are being installed in the beam transport line. The continuous monitoring of the orbit in the beam transport line will be useful for the stabilization of the injection energy as well as the injection beam orbit.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1408839-particle-tracing-modeling-ion-fluxes-geosynchronous-orbit','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1408839-particle-tracing-modeling-ion-fluxes-geosynchronous-orbit"><span>Particle tracing modeling of ion fluxes at geosynchronous orbit</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Brito, Thiago V.; Woodroffe, Jesse; Jordanova, Vania K.; ...</p> <p>2017-10-31</p> <p>The initial results of a coupled MHD/particle tracing method to evaluate particle fluxes in the inner magnetosphere are presented. This setup is capable of capturing the earthward particle acceleration process resulting from dipolarization events in the tail region of the magnetosphere. On the period of study, the MHD code was able to capture a dipolarization event and the particle tracing algorithm was able to capture our results of these disturbances and calculate proton fluxes in the night side geosynchronous orbit region. The simulation captured dispersionless injections as well as the energy dispersion signatures that are frequently observed by satellites atmore » geosynchronous orbit. Currently, ring current models rely on Maxwellian-type distributions based on either empirical flux values or sparse satellite data for their boundary conditions close to geosynchronous orbit. In spite of some differences in intensity and timing, the setup presented here is able to capture substorm injections, which represents an improvement regarding a reverse way of coupling these ring current models with MHD codes through the use of boundary conditions.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1408839-particle-tracing-modeling-ion-fluxes-geosynchronous-orbit','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1408839-particle-tracing-modeling-ion-fluxes-geosynchronous-orbit"><span>Particle tracing modeling of ion fluxes at geosynchronous orbit</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Brito, Thiago V.; Woodroffe, Jesse; Jordanova, Vania K.</p> <p></p> <p>The initial results of a coupled MHD/particle tracing method to evaluate particle fluxes in the inner magnetosphere are presented. This setup is capable of capturing the earthward particle acceleration process resulting from dipolarization events in the tail region of the magnetosphere. On the period of study, the MHD code was able to capture a dipolarization event and the particle tracing algorithm was able to capture our results of these disturbances and calculate proton fluxes in the night side geosynchronous orbit region. The simulation captured dispersionless injections as well as the energy dispersion signatures that are frequently observed by satellites atmore » geosynchronous orbit. Currently, ring current models rely on Maxwellian-type distributions based on either empirical flux values or sparse satellite data for their boundary conditions close to geosynchronous orbit. In spite of some differences in intensity and timing, the setup presented here is able to capture substorm injections, which represents an improvement regarding a reverse way of coupling these ring current models with MHD codes through the use of boundary conditions.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23736506','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23736506"><span>Tunable single frequency fiber laser based on FP-LD injection locking.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhang, Aiqin; Feng, Xinhuan; Wan, Minggui; Li, Zhaohui; Guan, Bai-ou</p> <p>2013-05-20</p> <p>We propose and demonstrate a tunable single frequency fiber laser based on Fabry Pérot laser diode (FP-LD) injection locking. The single frequency operation principle is based on the fact that the output from a FP-LD injection locked by a multi-longitudinal-mode (MLM) light can have fewer longitudinal-modes number and narrower linewidth. By inserting a FP-LD in a fiber ring laser cavity, single frequency operation can be possibly achieved when stable laser oscillation established after many roundtrips through the FP-LD. Wavelength switchable single frequency lasing can be achieved by adjusting the tunable optical filter (TOF) in the cavity to coincide with different mode of the FP-LD. By adjustment of the drive current of the FP-LD, the lasing modes would shift and wavelength tunable operation can be obtained. In experiment, a wavelength tunable range of 32.4 nm has been obtained by adjustment of the drive current of the FP-LD and a tunable filter in the ring cavity. Each wavelength has a side-mode suppression ratio (SMSR) of at least 41 dB and a linewidth of about 13 kHz.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/865165','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/865165"><span>Resonant circuit which provides dual frequency excitation for rapid cycling of an electromagnet</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Praeg, Walter F.</p> <p>1984-01-01</p> <p>Disclosed is a ring magnet control circuit that permits synchrotron repetition rates much higher than the frequency of the cosinusoidal guide field of the ring magnet during particle acceleration. the control circuit generates cosinusoidal excitation currents of different frequencies in the half waves. During radio frequency acceleration of the particles in the synchrotron, the control circuit operates with a lower frequency cosine wave and thereafter the electromagnets are reset with a higher frequency half cosine wave. Flat-bottom and flat-top wave shaping circuits maintain the magnetic guide field in a relatively time-invariant mode during times when the particles are being injected into the ring magnets and when the particles are being ejected from the ring magnets.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1437385','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1437385"><span>Polarization Studies for the eRHIC Electron Storage Ring</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Gianfelice-Wendt, Eliana; Tepikian, S.</p> <p></p> <p>A hadron/lepton collider with polarized beams has been under consideration by the scientific community since some years, in the U.S. and Europe. Among the various proposals, those by JLAB and BNL with polarized electron and proton beams are currently under closer study in the U.S. Experimenters call for the simultaneous storage of electron bunches with both spin helicity. In the BNL based Ring-Ring design, electrons are stored at top energy in a ring to be accommodated in the existing RHIC tunnel. The transversely polarized electron beam is injected into the storage ring at variable energies, between 5 and 18 GeV.more » Polarization is brought into the longitudinal direction at the IP by a couple of spin rotators. In this paper results of first studies of the attainable beam polarization level and lifetime in the storage ring at 18 GeV are presented.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950011849&hterms=Rule+thumb&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DRule%2Bthumb','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950011849&hterms=Rule+thumb&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DRule%2Bthumb"><span>Energy dissipation in substorms</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Weiss, Loretta A.; Reiff, P. H.; Moses, J. J.; Heelis, R. A.; Moore, B. D.</p> <p>1992-01-01</p> <p>The energy dissipated by substorms manifested in several ways is discussed: the Joule dissipation in the ionosphere; the energization of the ring current by the injection of plasma sheet particles; auroral election and ion acceleration; plasmoid ejection; and plasma sheet ion heating during the recovery phase. For each of these energy dissipation mechanisms, a 'rule of thumb' formula is given, and a typical dissipation rate and total energy expenditure is estimated. The total energy dissipated as Joule heat (approximately) 2 x 10(exp 15) is found about twice the ring current injection term, and may be even larger if small scale effects are included. The energy expended in auroral electron precipitation, on the other hand, is smaller than the Joule heating by a factor of five. The energy expended in refilling and heating the plasma sheets is estimated to be approximately 5 x 10(exp 14)J, while the energy lost due to plasmoid ejection is between (approximately) (10 exp 13)(exp 14)J.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PPNL...15..164B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PPNL...15..164B"><span>On the Efficiency of Particle Injection into the Damping Ring of the Budker Institute of Nuclear Physics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Balakin, V. V.; Vorobev, N. S.; Berkaev, D. V.; Glukhov, S. A.; Gornostaev, P. B.; Dorokhov, V. L.; Chao, Ma Xiao; Meshkov, O. I.; Nikiforov, D. A.; Shashkov, E. V.; Emanov, F. A.; Astrelina, K. V.; Blinov, M. F.; Borin, V. M.</p> <p>2018-03-01</p> <p>The efficiency of injection from a linear accelerator into the damping ring of the BINP injection complex has been experimentally studied. The estimations of the injection efficiency are in good agreement with the experimental results. Our method of increasing the capture efficiency can enhance the productivity of the injection complex by a factor of 1.5-2.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19730054151&hterms=distribution+time&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Ddistribution%2Btime','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19730054151&hterms=distribution+time&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Ddistribution%2Btime"><span>Energy spectra and pitch angle distributions of storm-time and substorm injected protons.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Konradi, A.; Williams, D. J.; Fritz, T. A.</p> <p>1973-01-01</p> <p>Discussion of the energy spectra and pitch angle distributions of ring current protons observed with the solid-state proton detector of Explorer 45 during the main and fast recovery phases of a storm on Dec. 17, 1971. Appearances of characteristic changes in the pitch angle distributions of roughly 100-eV protons are interpreted as pitch angle dispersion of rapidly injected protons during their azimuthal drift at L values above 5.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..APR.L1033C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..APR.L1033C"><span>Kicker field simulation and measurement for the muon g-2 experiment at FNAL</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chang, Seung Pyo; Kim, Young Im; Choi, Jihoon; Semertzidis, Yannis; muon g-2 experiment Collaboration</p> <p>2017-01-01</p> <p>In the Muon g-2 experiment, muon beam is injected to the storage ring in a slightly tilted orbit whose center is 77 mm away from the center of the ring. The kicker is needed to send the muon beam to the central orbit. The magnetic kicker is designed for the experiment and about 0.1 Tm field integral is needed. The peak current pulse is 4200 A to make this field integral. This strong kicker pulse could make unwanted eddy current occur. This eddy current could spoil the main magnetic field of the storage ring. This could be a critical threat to the precision of experiment. The kicker field simulation has done using OPERA to estimate the effects. Also the kicker field should be measured based on Faraday effect. The measurement has tested in the lab before install the experiment area. In this presentation, the simulation and measurement results will be discussed. This work was supported by IBS-R017-D1-2016-a00.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19960014063','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19960014063"><span>Three-dimensional ring current decay model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Fok, Mei-Ching; Moore, Thomas E.; Kozyra, Janet U.; Ho, George C.; Hamilton, Douglas C.</p> <p>1995-01-01</p> <p>This work is an extension of a previous ring current decay model. In the previous work, a two-dimensional kinetic model was constructed to study the temporal variations of the equatorially mirroring ring current ions, considering charge exchange and Coulomb drag losses along drift paths in a magnetic dipole field. In this work, particles with arbitrary pitch angle are considered. By bounce averaging the kinetic equation of the phase space density, information along magnetic field lines can be inferred from the equator. The three-dimensional model is used to simulate the recovery phase of a model great magnetic storm, similar to that which occurred in early February 1986. The initial distribution of ring current ions (at the minimum Dst) is extrapolated to all local times from AMPTE/CCE spacecraft observations on the dawnside and duskside of the inner magnetosphere spanning the L value range L = 2.25 to 6.75. Observations by AMPTE/CCE of ring current distributions over subsequent orbits during the storm recovery phase are compared to model outputs. In general, the calculated ion fluxes are consistent with observations, except for H(+) fluxes at tens of keV, which are always overestimated. A newly invented visualization idea, designated as a chromogram, is used to display the spatial and energy dependence of the ring current ion differential flux. Important features of storm time ring current, such as day-night asymmetry during injection and drift hole on the dayside at low energies (less than 10 keV), are manifested in the chromogram representation. The pitch angle distribution is well fit by the function, J(sub o)(1 + Ay(sup n)), where y is sine of the equatorial pitch angle. The evolution of the index n is a combined effect of charge exchange loss and particle drift. At low energies (less than 30 keV), both drift dispersion and charge exchange are important in determining n.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19960007718','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19960007718"><span>A three-dimensional ring current decay model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Fok, Mei-Ching; Moore, Thomas E.; Kozyra, Janet U.; Ho, George C.; Hamilton, Douglas C.</p> <p>1994-01-01</p> <p>This work is an extension of a previous ring current decay model. In the previous work, a two-dimensional kinetic model was constructed to study the temporal variations of the equatorially mirroring ring current ions, considering charge exchange and Coulomb drag losses along drift paths in a magnetic dipole field. In this work, particles with arbitrary pitch angle are considered. By bounce averaging the kinetic equation of the phase space density, information along magnetic field lines can be inferred from the equator. The three-dimensional model is used to simulate the recovery phase of a model great magnetic storm, similar to that which occurred in early February 1986. The initial distribution of ring current ions (at the minimum Dst) is extrapolated to all local times from AMPTE/CCE spacecraft observations on the dawn and dusk sides of the inner magnetosphere spanning the L value range L = 2.25 to 6.75. Observations by AMPTE/CCE of ring current distributions over subsequent orbits during the storm recovery phase are compared to model outputs. In general, the calculated ion fluxes are consistent with observations, except for H+ fluxes at tens of keV, which are always over-estimated. A newly-invented visualization idea, designated as a chromogram, is used to display the spatial and energy dependence of the ring current ion differential flux. Important features of storm-time ring current, such as day-night asymmetry during injection and drift hole on the dayside at low energies (less than 10 keV), are manifested in the chromogram representation. The pitch angle distribution is well fit by the function, j(sub o)(1+Ay(exp n)), where y is sine of the equatorial pitch angle. The evolution of the index n is a combined effect of charge exchange loss and particle drift. At low energies (less than 30 keV), both drift dispersion and charge exchange are important in determining n.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/6873338-tarn-ii-project','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/6873338-tarn-ii-project"><span>TARN II project</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Katayama, T.</p> <p></p> <p>On the basis of the achievement of the accelerator studies at present TARN, it is decided to construct the new ring TARN II which will be operated as an accumulator, accelerator, cooler and stretcher. It has the maximum magnetic rigidity of 7 Txm corresponding to the proton energy 1.3 GeV and the ring diameter is around 23 m. Light and heavy ions from the SF cyclotron will be injected and accelerated to the working energy where the ring will be operated as a desired mode, for example a cooler ring mode. At the cooler ring operation, the strong cooling devicesmore » such as stochastic and electron beam coolings will work together with the internal gas jet target for the precise nuclear experiments. TARN II is currently under the contruction with the schedule of completion in 1986. In this paper general features of the project are presented.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19770034043&hterms=pitch+change+mechanism&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dpitch%2Bchange%2Bmechanism','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19770034043&hterms=pitch+change+mechanism&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dpitch%2Bchange%2Bmechanism"><span>Simultaneous equatorial observations of 1- to 30-Hz waves and pitch angle distributions of ring current ions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Taylor, W. W. L.; Lyons, L. R.</p> <p>1976-01-01</p> <p>Eighteen events of large-amplitude (0.4-6 gammas) waves which may be propagating in the ion cyclotron mode have een observed by Explorer 45. Comparison with simultaneously measured proton distributions has allowed the events to be divided into two categories. The first category consists of waves accompanied by enhanced ion fluxes apparently injected into the plasmasphere with anisotropic pitch-angle distributions. This simultaneity suggests that these waves may be generated by the observed ring-current ions. Waves in the second category were found near or outside the plasmapause and were not correlated with any identifiable changes in the observed proton distribution. The generation mechanism for these waves remains unknown.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1985lse..conf..377L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1985lse..conf..377L"><span>Ring discharge on the backsurface of a composite skin with ohmic anisotropy in response to frontal high current injection</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lee, T. S.; Robb, J. D.</p> <p></p> <p>The ring discharge hazard to a carbon-reinforced-composites fuel tank skin under lightning strike conditions is investigated. A model of anisotropy in electric conductivity is adopted whereby longitudinal conductivity and transverse conductivity are considered separately. It is concluded that the current flow pattern contains a stagnation-dominated near-field region and a geometry-dominated far-field decaying region. While this pattern is unaltered by anisotropy in conductivity, the accompanying nonliner electrical field pattern is greatly distorted. It is noted that conclusions applicable to the ignition hazard which were derived from the model of a uniform scalar conductivity for the skin still remain intact.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1389073','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1389073"><span>MULTI-OBJECTIVE ONLINE OPTIMIZATION OF BEAM LIFETIME AT APS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Sun, Yipeng</p> <p></p> <p>In this paper, online optimization of beam lifetime at the APS (Advanced Photon Source) storage ring is presented. A general genetic algorithm (GA) is developed and employed for some online optimizations in the APS storage ring. Sextupole magnets in 40 sectors of the APS storage ring are employed as variables for the online nonlinear beam dynamics optimization. The algorithm employs several optimization objectives and is designed to run with topup mode or beam current decay mode. Up to 50\\% improvement of beam lifetime is demonstrated, without affecting the transverse beam sizes and other relevant parameters. In some cases, the top-upmore » injection efficiency is also improved.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/3006286','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/3006286"><span>Lack of effect of tetrodotoxin and of an extract from the posterior salivary gland of the blue-ringed octopus following injection into the octopus and following application to its brachial nerve.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Flachsenberger, W; Kerr, D I</p> <p>1985-01-01</p> <p>Lack of effect of tetrodotoxin and of an extract from the posterior salivary gland of the blue-ringed octopus following injection into the octopus and following application to its brachial nerve. Toxicon 23, 997-999, 1985. Injections of the blue-ringed octopus salivary gland extract and tetrodotoxin into the blue-ringed octopus have no ill-effect on the animals. Similarly, in vitro nerve preparations from the animal were not affected by these materials although they are both extremely potent on bioelectrically excitable preparations from other species.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19850049655&hterms=ionospheric+modification&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dionospheric%2Bmodification','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19850049655&hterms=ionospheric+modification&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dionospheric%2Bmodification"><span>Modification of planetary atmospheres by material from the rings</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Atreya, S. K.</p> <p>1984-01-01</p> <p>The modification of the atmospheres and ionospheres of ringed planets by the injection of ionized and neutral material from the rings is discussed, on the basis of Pioneer and Voyager observations. It is shown that although no direct evidence exists for the injection of material from the rings into the atmosphere, such an interaction could account for the observed thermal structure and ionospheric properties of Jupiter, Saturn, Uranus, and the Jovian satellite Io.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017OptLT..94..228L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017OptLT..94..228L"><span>Optical arbitrary waveform generation based on multi-wavelength semiconductor fiber ring laser</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Peili; Ma, Xiaolu; Shi, Weihua; Xu, Enming</p> <p>2017-09-01</p> <p>A new scheme of generating optical arbitrary waveforms based on multi-wavelength semiconductor fiber ring laser (SFRL) is proposed. In this novel scheme, a wide and flat optical frequency comb (OFC) is provided directly by multi-wavelength SFRL, whose central frequency and comb spacing are tunable. OFC generation, de-multiplexing, amplitude and phase modulation, and multiplexing are implementing in an intensity and phase tunable comb filter, as induces the merits of high spectral coherence, satisfactory waveform control and low system loss. By using the mode couple theory and the transfer matrix method, the theoretical model of the scheme is established. The impacts of amplitude control, phase control, number of spectral line, and injection current of semiconductor optical amplifier (SOA) on the waveform similarity are studied using the theoretical model. The results show that, amplitude control and phase control error should be smaller than 1% and 0.64% respectively to achieve high similarity. The similarity of the waveform is improved with the increase of the number of spectral line. When the injection current of SOA is in a certain range, the optical arbitrary waveform reaches a high similarity.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_1");'>1</a></li> <li><a href="#" onclick='return showDiv("page_2");'>2</a></li> <li class="active"><span>3</span></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_3 --> <div id="page_4" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_2");'>2</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li class="active"><span>4</span></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="61"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2901406','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2901406"><span>A Robust Current Pattern for the Detection of Intraventricular Hemorrhage in Neonates Using Electrical Impedance Tomography</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Tang, T.; Oh, Sungho; Sadleir, R. J.</p> <p>2010-01-01</p> <p>We compared two 16-electrode electrical impedance tomography (EIT) current patterns on their ability to reconstruct and quantify small amounts of bleeding inside a neonatal human head using both simulated and phantom data. The current patterns used were an adjacent injection RING pattern (with electrodes located equidistantly on the equator of a sphere) and an EEG current pattern based on the 10–20 EEG electrode layout. Structures mimicking electrically important structures in the infant skull were included in a spherical numerical forward model and their effects on reconstructions were determined. The EEG pattern was found to be a better topology to localize and quantify anomalies within lateral ventricular regions. The RING electrode pattern could not reconstruct anomaly location well, as it could not distinguish different axial positions. The quantification accuracy of the RING pattern was as good as the EEG pattern in noise-free environments. However, the EEG pattern showed better quantification ability than the RING pattern when noise was added. The performance of the EEG pattern improved further with respect to the RING pattern when a fontanel was included in forward models. Significantly better resolution and contrast of reconstructed anomalies was achieved when generated from a model containing such an opening and 50 dB added noise. The EEG method was further applied to reconstruct data from a realistic neonatal head model. Overall, acceptable reconstructions and quantification results were obtained using this model and the homogeneous spherical forward model. PMID:20238166</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1997APS..PAC..9W21F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1997APS..PAC..9W21F"><span>Overview and Status of the Los Alamos PSR Injection Upgrade Project</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fitzgerald, D. H.; Ahn, H.; Blind, B.; Borden, M. J.; Macek, R. J.; Neri, F.; Rose, C. R.; Thiessen, H. A.; Wilkinson, C. A.; Zumbro, M. V.</p> <p>1997-05-01</p> <p>An upgrade is in progress to the Los Alamos Proton Storage Ring (PSR) to allow direct injection of the H^- beam into the ring and provide a beam bump system to move the circulating beam off the stripper foil. The primary benefits of this upgrade are matching the transverse phase space of the injected beam to the PSR acceptance and reduction of foil hits by the circulating beam by a factor of ten. Foil thickness is optimized to minimize the combination of circulating-beam losses plus losses due to excited H^0 states produced at injection. An overall factor of four reduction in losses is expected. The project comprises extensive modifications of the injection line, the injection section of the ring, and the waste-beam transport line. We will discuss the goals of the project, present an overview of the technical design, and describe the status of the implementation plan.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA093928','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA093928"><span>Study of Magnetospheric Currents and Resultant Surface Magnetic Variations.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1980-04-17</p> <p>compressed as indicated by solar -wind data, automatically injected a ring current with a strength consistent with the observed Dst. The computed inner...Fig!ire 2?; bottoim panal of Figure 5_. Agreement is very acceptahle. The model overestimated the maximum depression of RX, but by a factor that is well...Contributed Papers Presented at the Solar -Terrestrial Physics Symposium, Innsbruck, 1978. Harel, M., R. A. Wolf, P. H. Reiff and M. Siiddy, Computer</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19890013929','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19890013929"><span>Development and simulation study of a new inverse-pinch high Coulomb transfer switch</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Choi, Sang H.</p> <p>1989-01-01</p> <p>The inverse-pinch plasma switch was studied using a computer simulation code. The code was based on a 2-D, 2-temperature magnetohydrodynamic (MHD) model. The application of this code was limited to the disk-type inverse-pinch plasma switch. The results of the computer analysis appear to be in agreement with the experimental results when the same parameters are used. An inverse-pinch plasma switch for closing has been designed and tested for high-power switching requirements. An azimuthally uniform initiation of breakdown is a key factor in achieving an inverse-pinch current path in the switch. Thus, various types of triggers, such as trigger pins, wire-brush, ring trigger, and hypocycloidal-pinch (HCP) devices have been tested for uniform breakdown. Recently, triggering was achieved by injection of a plasma-ring (plasma puff) that is produced separately with hypocycloidal-pinch electrodes placed under the cathode of the main gap. The current paths at switch closing, initiated by the injection of a plasma-ring from the HCP trigger are azimuthally uniform, and the local current density is significantly reduced, so that damage to the electrodes and the insulator surfaces is minimized. The test results indicate that electron bombardment on the electrodes and the insulator surfaces is minimized. The test results indicate that electron bombardment on the electrodes is four orders of magnitude less than that of a spark-gap switch for the same switching power. Indeed, a few thousand shots with peak current exceeding a mega-ampere and with hold-off voltage up to 20 kV have been conducted without showing measurable damage to the electrodes and insulators.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19880060136&hterms=Internal+controls&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DTitle%26N%3D0%26No%3D40%26Ntt%3DInternal%2Bcontrols','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19880060136&hterms=Internal+controls&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DTitle%26N%3D0%26No%3D40%26Ntt%3DInternal%2Bcontrols"><span>Demonstration of frequency control and CW diode laser injection control of a titanium-doped sapphire ring laser with no internal optical elements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bair, Clayton H.; Brockman, Philip; Hess, Robert V.; Modlin, Edward A.</p> <p>1988-01-01</p> <p>Theoretical and experimental frequency narrowing studies of a Ti:sapphire ring laser with no intracavity optical elements are reported. Frequency narrowing has been achieved using a birefringent filter between a partially reflecting reverse wave suppressor mirror and the ring cavity output mirror. Results of CW diode laser injection seeding are reported.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006APS..DFD.GI005J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006APS..DFD.GI005J"><span>Modification of vortex ring formation using dilute polymer solution</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jordan, Daniel; Krane, Michael; Peltier, Joel; Patterson, Eric; Fontaine, Arnold</p> <p>2006-11-01</p> <p>This talk will present the results of an experimental study to determine the effect of dilute polymer solution on the formation of a vortex ring. Experiments were conducted in a large, glass tank, filled with water. Vortex rings were produced by injecting a slug of dilute polymer solution into the tank through a nozzle. The injection was controlled by a prescribed piston motion in the nozzle. For the same piston motion, vortex rings were produced for 3 concentrations of the polymer solution, including one with no polymer. The vortex ring flowfield was measured using DPIV. Differences between the 3 cases of polymer concentration in vortex ring formation time, circulation, size, and convection speed are presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSM32B..01K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSM32B..01K"><span>The Role of Ionospheric O+ in Forming the Storm-time Ring Current</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kistler, L. M.; Mouikis, C.; Menz, A.; Bingham, S.</p> <p>2017-12-01</p> <p>During storm times, the particle pressure that creates the storm-time ring current in the inner magnetosphere can be dominated by O+. This is surprising, as the immediate source for the ring current is the nightside plasma sheet, and O+ is usually not the dominant species in the plasma sheet. In this talk we examine the many factors that lead to this result. The O+ outflow is enhanced during geomagnetically active times. The transport paths of O+ and H+ are different, such that the O+ that reaches the near-earth plasma sheet is more energetic than H+. The source spectrum in the near-earth plasma sheet can be harder for O+ than for H+, perhaps due to substorm injections, so that the more energetic plasma has a higher O+/H+ ratio. And finally the plasma sheet O+ can be more abundant towards the beginning of the storm, when the convection is largest, so the enhanced O+ is brought the deepest into the inner magnetosphere. We will discuss the interrelationships between these different effects as well as the ways in which O+ itself may influence the system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSM31A2603M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSM31A2603M"><span>Energization of the Ring Current through Convection of Substorm Enhancements of the Plasma Sheet Source.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Menz, A.; Kistler, L. M.; Mouikis, C.; Spence, H. E.; Henderson, M. G.; Matsui, H.</p> <p>2017-12-01</p> <p>It has been shown that electric field strength and night-side plasma sheet density are the two best predictors of the adiabatic energy gain of the ring current during geomagnetic storms (Liemohn and Khazanov, 2005). While H+ dominates the ring current during quiet times, O+ can contribute substantially during geomagnetic storms. Substorm activity provides a mechanism to enhance the energy density of O+ in the plasma sheet during geomagnetic storms, which is then convected adiabatically into the inner-magnetosphere. Using the Van Allen Probes data in the the plasma sheet source region (defined as L>5.5 during storms) and the inner magnetosphere, along with LANL-GEO data to identify substorm injection times, we show that adiabatic convection of O+ enhancements in the source region can explain the observed enhancements in the inner magnetosphere. We use the UNH-IMEF electric field model to calculate drift times from the source region to the inner magnetosphere to test whether enhancements in the inner-magnetosphere can be explained by dipolarization driven enhancements in the plasma sheet source hours before.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950029536&hterms=major+depression&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dmajor%2Bdepression','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950029536&hterms=major+depression&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dmajor%2Bdepression"><span>Simulations of phase space distributions of storm time proton ring current</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Chen, Margaret W.; Lyons, Larry R.; Schulz, Michael</p> <p>1994-01-01</p> <p>We use results of guiding-center simulations of ion transport to map phase space densities of the stormtime proton ring current. We model a storm as a sequence of substorm-associated enhancements in the convection electric field. Our pre-storm phase space distribution is an analytical solution to a steady-state transport model in which quiet-time radial diffusion balances charge exchange. This pre-storm phase space spectra at L approximately 2 to 4 reproduce many of the features found in observed quiet-time spectra. Using results from simulations of ion transport during model storms having main phases of 3, 6, and 12 hr, we map phase space distributions from the pre-storm distribution in accordance with Liouville's theorem. We find stormtime enhancements in the phase space densities at energies E approximately 30-160 keV for L approximately 2.5 to 4. These enhancements agree well with the observed stormtime ring current. For storms with shorter main phases (approximately 3 hr), the enhancements are caused mainly by the trapping of ions injected from open night side trajectories, and diffusive transport of higher-energy (greater than or approximately 160 keV) ions contributes little to the stormtime ring current. However, the stormtime ring current is augmented also by the diffusive transport of higher-energy ions (E greater than or approximately 160 keV) durinng stroms having longer main phases (greater than or approximately 6 hr). In order to account for the increase in Dst associated with the formation of the stormtime ring current, we estimate the enhancement in particle-energy content that results from stormtime ion transport in the equatorial magnetosphere. We find that transport alone cannot account for the entire increase in absolute value of Dst typical of a major storm. However, we can account for the entire increase in absolute value of Dst by realistically increasing the stormtime outer boundary value of the phase space density relative to the quiet-time value. We compute the magnetic field produced by the ring current itself and find that radial profiles of the magnetic field depression resemble those obtained from observational data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22145947','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22145947"><span>Complications of penile augmentation by use of nonmedical industrial silicone.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Shamsodini, Ahmad; Al-Ansari, Abdulla A; Talib, Raidh A; Alkhafaji, Haidar M; Shokeir, Ahmed A; Toth, Csaba</p> <p>2012-12-01</p> <p>Penile augmentation has been reported in the literature by injecting various materials by nonmedical persons. This study aims to present our experience in management of penile augmentation complications associated with injection or implantation of industrial silicone by lay persons. Early surgical intervention can lead to faster recovery and better cosmetic and functional outcome. Two patients had injection of industrial silicone paste, and the other two had industrial silicone ring implantation. All the patients except one were presented after 13 months of the procedure. Patients with industrial silicone ring presented with multiple sinuses of penile skin in one, and abscess discharge pus from the site of implanted ring in the other. Both patients with injected silicone paste presented with swelling and deformity of the penis that interfered with their intercourse. Silicone ring patients underwent skin incision and drainage of the infected materials and extraction of the implants with delayed skin closure. The two patients with silicone paste injection underwent two-stage penile reconstructions using scrotal flap. Patients with extracted rings had smooth recovery with acceptable cosmetic outcome. One of them was not initially satisfied with the length of his penis that was overcome by short-term use of vacuum device. One of the patients with silicone paste injection had wound infection that was successfully treated with local wound care. Both had satisfactory penile length and acceptable cosmetic outcome. All patients had normal erectile function postoperatively. Complications of using industrial silicone injection can be drastic, and awareness of the public can avoid using of this material for penile augmentation. © 2011 International Society for Sexual Medicine.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSM11B2315M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSM11B2315M"><span>Time-lag and Correlation between ACE and RBSPICE Injection Event Observations during Storm Times</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Madanian, H.; Patterson, J. D.; Manweiler, J. W.; Soto-chavez, A. R.; Gerrard, A. J.; Lanzerotti, L. J.</p> <p>2017-12-01</p> <p>The Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE) on the Van Allen Probes mission measures energetic charged particles [ 20 keV to 1 MeV] in the inner magnetosphere and ring current. During geomagnetic storms, injections of energetic ions into the ring current change the ion population and produce geomagnetic field depressions on Earth's surface. We analyzed the magnetic field strength and particle composition in the interplanetary medium measured by instruments on the Advanced Composition Explorer (ACE) spacecraft near the inner Lagrangian point. The Electron, Proton, and Alpha Monitor-Low Energy Magnetic Spectrometer (EPAM-LEMS) sensor on ACE measures energetic particles [ 50 keV to 5 MeV] in the interplanetary space. The SYM-H index is utilized to classify the storm events by magnitude and to select more than 60 storm events between 2013 and 2017. We cross-compared ACE observations at storm times, with the RBSPICE ion measurements at dusk to midnight magnetic local time and over the 3-6 L-shell range. We report on the relative composition of the solar particles and the relative composition of the inner magnetospheric hot plasma during storm times. The data correlation is accomplished by shifting the observation time from ACE to RBSPICE using the solar wind velocity at the time of the observation. We will discuss time lags between storm onset at the magnetopause and injection events measured for each storm.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19850059830&hterms=Electric+current&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3DElectric%2Bcurrent','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19850059830&hterms=Electric+current&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3DElectric%2Bcurrent"><span>Transport of ions in presence of induced electric field and electrostatic turbulence - Source of ions injected into ring current</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Cladis, J. B.; Francis, W. E.</p> <p>1985-01-01</p> <p>The transport of ions from the polar ionosphere to the inner magnetosphere during stormtime conditions has been computed using a Monte Carlo diffusion code. The effect of the electrostatic turbulence assumed to be present during the substorm expansion phase was simulated by a process that accelerated the ions stochastically perpendicular to the magnetic field with a diffusion coefficient proportional to the energization rate of the ions by the induced electric field. This diffusion process was continued as the ions were convected from the plasma sheet boundary layer to the double-spiral injection boundary. Inward of the injection boundary, the ions were convected adiabatically. By using as input an O(+) flux of 2.8 x 10 to the 8th per sq cm per s (w greater than 10 eV) and an H(+) flux of 5.5 x 10 to the 8th per sq cm per s (w greater than 0.63 eV), the computed distribution functions of the ions in the ring current were found to be in good agreement, over a wide range in L (4 to 8), with measurements made with the ISEE-1 satellite during a storm. This O(+) flux and a large part of the H(+) flux are consistent with the DE satellite measurements of the polar ionospheric outflow during disturbed times.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018NIMPA.886....7A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018NIMPA.886....7A"><span>A concept for canceling the leakage field inside the stored beam chamber of a septum magnet</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Abliz, M.; Jaski, M.; Xiao, A.; Jain, A.; Wienands, U.; Cease, H.; Borland, M.; Decker, G.; Kerby, J.</p> <p>2018-04-01</p> <p>The Advanced Photon Source (APS) is planning to upgrade its storage ring from a double-bend achromat to a multi-bend achromat lattice as part of the APS Upgrade Project (APS-U). A swap-out injection scheme is planned for the APS-U in order to keep the beam current constant and to reduce the dynamic aperture requirements. The injection scheme, combined with the constraints in the booster to storage ring transfer region of the APS-U, results in requiring a septum magnet which deflects the injected 6 GeV electron beam by 89 mrad, while not appreciably disturbing the stored beam. The proposed magnet is straight; however, it is rotated in yaw, roll, and pitch from the stored beam chamber to meet the on-axis swap-out injection requirements for the APS-U lattice. The concept utilizes cancellation of the leakage field inside the 8 mm x 6 mm super-ellipsoidal stored beam chamber. As a result, the horizontal deflection angle of the 6 GeV stored beam is reduced to less than 1 μrad with only a 2-mm-thick septum separating the stored beam and the 1.06 T field seen by the injected beam. This design also helps to minimize the integrated skew quadrupole and normal sextupole fields inside the stored beam chamber.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JPhCS.874a2060C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JPhCS.874a2060C"><span>Preliminary study of injection transients in the TPS storage ring</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, C. H.; Liu, Y. C.; Y Chen, J.; Chiu, M. S.; Tseng, F. H.; Fann, S.; Liang, C. C.; Huang, C. S.; Y Lee, T.; Y Chen, B.; Tsai, H. J.; Luo, G. H.; Kuo, C. C.</p> <p>2017-07-01</p> <p>An optimized injection efficiency is related to a perfect match between the pulsed magnetic fields in the storage ring and transfer line extraction in the TPS. However, misalignment errors, hardware output errors and leakage fields are unavoidable. We study the influence of injection transients on the stored TPS beam and discuss solutions to compensate these. Related simulations and measurements will be presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1394615','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1394615"><span>SEPTUM MAGNET DESIGN FOR THE APS-U</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Abliz, M.; Jaski, M.; Xiao, A.</p> <p>2017-06-25</p> <p>The Advanced Photon Source is in the process of upgrading its storage ring from a double-bend to a multi-bend lattice as part of the APS Upgrade Project (APS-U). A swap-out injection scheme is planned for the APS-U to keep a constant beam current and to enable a small dynamic aperture. A septum magnet with a minimum thickness of 2 mm and an injection field of 1.06 T has been designed, delivering the required total deflecting angle is 89 mrad with a ring energy of 6 GeV. The stored beam chamber has an 8 mm x 6 mm super-ellipsoidal aperture. Themore » magnet is straight; however, it is tilted in yaw, roll, and pitch from the stored beam chamber to meet the on axis swap out injection requirements for the APS-U lattice. In order to minimize the leakage field inside the stored beam chamber, four different techniques were utilized in the design. As a result, the horizontal deflecting angle of the stored beam was held to only 5 µrad, and the integrated skew quadrupole inside the stored beam chamber was held to 0.09 T. The detailed techniques that were applied to the design, field multipoles, and resulting trajectories of the injected and stored beams are reported.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JPhCS.941a2096O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JPhCS.941a2096O"><span>Compact Storage Ring for an X-Ray Source</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ovchinnikova, L.; Shvedunov, V.; Ivanov, K.</p> <p>2017-12-01</p> <p>We propose a new design of a compact storage ring for a source of X-ray radiation on the basis of reverse Thomson scattering of laser radiation by electrons with the energy of 35-50 MeV, which has small number of optical elements and a significant clear space for the placement of a beam injection-extraction system and a RF cavity. The original laser cavity layout has been considered. The ring dynamic aperture after correction of chromaticity and a second-order dispersion function is sufficient for the injection and stable circulation of an electron bunch in the ring.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/867222','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/867222"><span>Leak detection aid</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Steeper, Timothy J.</p> <p>1989-01-01</p> <p>A leak detection apparatus and method for detecting leaks across an O-ring sealing a flanged surface to a mating surface is an improvement in a flanged surface comprising a shallow groove following O-ring in communication with an entrance and exit port intersecting the shallow groove for injecting and withdrawing, respectively, a leak detection fluid, such as helium. A small quantity of helium injected into the entrance port will flow to the shallow groove, past the O-ring and to the exit port.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMSM41C2496C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMSM41C2496C"><span>Modeling Earth's Ring Current Using The CIMI Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Craven, J. D., II; Perez, J. D.; Buzulukova, N.; Fok, M. C. H.</p> <p>2015-12-01</p> <p>Earth's ring current is a result of the injection of charged particles trapped in the magnetosphere from solar storms. The enhancement of the ring current particles produces magnetic depressions and disturbances to the Earth's magnetic field known as geomagnetic storms, which have been modeled using the comprehensive inner magnetosphere-ionosphere (CIMI) model. The purpose of this model is to identify and understand the physical processes that control the dynamics of the geomagnetic storms. The basic procedure was to use the CIMI model for the simulation of 15 storms since 2009. Some of the storms were run multiple times, but with varying parameters relating to the dynamics of the Earth's magnetic field, particle fluxes, and boundary conditions of the inner-magnetosphere. Results and images were placed in the TWINS online catalog page for further analysis and discussion. Particular areas of interest were extreme storm events. A majority of storms simulated had average DST values of -100 nT; these extreme storms exceeded DST values of -200 nT. The continued use of the CIMI model will increase knowledge of the interactions and processes of the inner-magnetosphere as well as lead to a better understanding of extreme solar storm events for the future advancement of space weather physics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/7018161','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/biblio/7018161"><span>Leak detection aid</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Steeper, T.J.</p> <p>1989-12-26</p> <p>A leak detection apparatus and method for detecting leaks across an O-ring sealing a flanged surface to a mating surface is an improvement in a flanged surface comprising a shallow groove following O-ring in communication with an entrance and exit port intersecting the shallow groove for injecting and withdrawing, respectively, a leak detection fluid, such as helium. A small quantity of helium injected into the entrance port will flow to the shallow groove, past the O-ring and to the exit port. 2 figs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1164912','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1164912"><span>Effects of CSR Generated from Upstream Bends in a Laser Plasma Storage Ring</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Mitchell, C.; Qiang, J.; Venturini, M.</p> <p></p> <p>The recent proposal [1] of a Laser Plasma Storage Ring (LPSR) envisions the use of a laser-plasma (LP) acceleration module to inject an electron beam into a compact 500 MeV storage ring. Electron bunches generated by LP methods are naturally very short (tens of femtoseconds), presenting peak currents on the order of 10 kA or higher. Of obvious concern is the impact of collective effects and in particular Coherent Synchrotron Radiation (CSR) on the beam dynamics in the storage ring. Available simulation codes (e.g. Elegant [2]) usually include transient CSR effects but neglect the contribution of radiation emitted from trailingmore » magnets. In a compact storage ring, with dipole magnets close to each other, cross talking between different magnets could in principle be important.In this note we investigate this effect for the proposed LPSR and show that, in fact, this effect is relatively small. However our analysis also indicates that CSR effects in general would be quite strong and deserve a a careful study.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_2");'>2</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li class="active"><span>4</span></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_4 --> <div id="page_5" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li class="active"><span>5</span></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="81"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29546474','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29546474"><span>Effects of subtenon-injected autologous platelet-rich plasma on visual functions in eyes with retinitis pigmentosa: preliminary clinical results.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Arslan, Umut; Özmert, Emin; Demirel, Sibel; Örnek, Firdevs; Şermet, Figen</p> <p>2018-05-01</p> <p>One of the main reasons for apoptosis and dormant cell phases in degenerative retinal diseases such as retinitis pigmentosa (RP) is growth factor withdrawal in the cellular microenvironment. Growth factors and neurotrophins can significantly slow down retinal degeneration and cell death in animal models. One possible source of autologous growth factors is platelet-rich plasma. The purpose of this study was to determine if subtenon injections of autologous platelet-rich plasma (aPRP) can have beneficial effects on visual function in RP patients by reactivating dormant photoreceptors. This prospective open-label clinical trial, conducted between September 2016 and February 2017, involved 71 eyes belonging to 48 RP patients with various degrees of narrowed visual field. Forty-nine eyes belonging to 37 patients were injected with aPRP. A comparison group was made up of 11 patients who had symmetrical bilateral narrowed visual field (VF) of both eyes. Among these 11 patients, one eye was injected with aPRP, while the other eye was injected with autologous platelet-poor plasma (aPPP) to serve as a control. The total duration of the study was 9 weeks: the aPRP or aPPP subtenon injections were applied three times, with 3-week intervals between injections, and the patients were followed for three more weeks after the third injection. Visual acuity (VA) tests were conducted on all patients, and VF, microperimetry (MP), and multifocal electroretinography (mfERG) tests were conducted on suitable patients to evaluate the visual function changes before and after the aPRP or aPPP injections. The best-corrected visual acuity values in the ETDRS chart improved by 11.6 letters (from 70 to 81.6 letters) in 19 of 48 eyes following aPRP application; this result, however, was not statistically significant (p = 0.056). Following aPRP injections in 48 eyes, the mean deviation of the VF values improved from - 25.3 to - 23.1 dB (p = 0.0001). Results regarding the mfERG P1 amplitudes improved in ring 1 from 24.4 to 38.5 nv/deg 2 (p = 0.0001), in ring 2 from 6.7 to 9.3 nv/deg 2 (p = 0.0301), and in ring 3 from 3.5 to 4.5 nv/deg 2 (p = 0.0329). The mfERG P1 implicit times improved in ring 1 from 40.0 to 34.4 ms (p = 0.01), in ring 2 from 42.5 to 33.2 ms (p = 0.01), and in ring 3 from 42.1 to 37.9 ms (p = 0.04). The mfERG N1 amplitudes improved in ring 1 from 0.18 to 0.25 nv/deg 2 (p = 0.011) and in ring 2 from 0.05 to 0.08 nv/deg 2 (p = 0.014). The mfERG N1 implicit time also improved in ring 1 from 18.9 to 16.2 ms (p = 0.040) and in ring 2 from 20.9 to 15.5 ms (p = 0.002). No improvement was seen in the 11 control eyes into which aPPP was injected. In the 23 RP patients with macular involvement, the MP average threshold values improved with aPRP injections from 15.0 to 16.4 dB (p = 0.0001). No ocular or systemic adverse events related to the injections or aPRP were observed during the follow-up period. Preliminary clinical results are encouraging in terms of statistically significant improvements in VF, mfERG values, and MP. The subtenon injection of aPRP seems to be a therapeutic option for treatment and might lead to positive results in the vision of RP patients. Long-term results regarding adverse events are unknown. There have not been any serious adverse events and any ophthalmic or systemic side effects for 1 year follow-up. Further studies with long-term follow-up are needed to determine the duration of efficacy and the frequency of application.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016APS..DPPN10055B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016APS..DPPN10055B"><span>MHD and Reconnection Activity During Local Helicity Injection</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Barr, J. L.; Bongard, M. W.; Burke, M. G.; Fonck, R. J.; Reusch, J. A.; Richner, N. J.</p> <p>2016-10-01</p> <p>Scaling local helicity injection (LHI) to larger devices requires a validated, predictive model of its current drive mechanism. NIMROD simulations predict the injected helical current streams persist in the edge and periodically reconnect to form axisymmetric current rings that travel into the bulk plasma to grow Ip and poloidal flux. In simulation, these events result in discrete bursts of Alfvénic-frequency MHD activity and jumps in Ip of order ΔIp Iinj , in qualitative agreement with large n = 1 activity found in experiment. Fast imaging prior to tokamak formation supports the instability of, and apparent reconnection between, adjacent helical streams. The bursts exhibit toroidal amplitude asymmetries consistent with a kink structure singly line-tied to the injectors. Internal measurements localize this activity to the injector radial location. Pairwise correlations of poloidal Mirnov coil amplitude and phase match expectations of an edge-localized current stream carrying Iinj. Prior to tokamak formation, reconnection from both adjacent helical windings and co-injected current streams are shown to strongly heat impurity ions. After tokamak formation, strong anomalous ion heating in the plasma edge is attributed to continuous reconnection between colinear streams. The n = 1 bursts occur less frequently as Ip rises, likely caused by increased stream stability as Bv rises and qedge drops. This evidence supports the general NIMROD model of LHI, confirms the persistence and role of the edge current streams, and motivates experiments at higher Iinj and BT. Supported by US DOE Grants DE-FG02-96ER54375, DE-SC0006928.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27155868','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27155868"><span>Does the position of the electron-donating nitrogen atom in the ring system influence the efficiency of a dye-sensitized solar cell? A computational study.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Biswas, Abul Kalam; Barik, Sunirmal; Das, Amitava; Ganguly, Bishwajit</p> <p>2016-06-01</p> <p>We have reported a number of new metal-free organic dyes (2-6) that have cyclic asymmetric benzotripyrrole derivatives as donor groups with peripheral nitrogen atoms in the ring, fluorine and thiophene groups as π-spacers, and a cyanoacrylic acid acceptor group. Density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations were employed to examine the influence of the position of the donor nitrogen atom and π-conjugation on solar cell performance. The calculated electron-injection driving force (ΔG inject), electron-regeneration driving force (ΔG regen), light-harvesting efficiency (LHE), dipole moment (μ normal), and number of electrons transferred (∆q) indicate that dyes 3, 4, and 6 have significantly higher efficiencies than reference dye 1, which exhibits high efficiency. We also extended our comparison to some other reported dyes, 7-9, which have a donor nitrogen atom in the middle of the ring system. The computed results suggest that dye 6 possesses a higher incident photon to current conversion efficiency (IPCE) than reported dyes 7-9. Thus, the use of donor groups with peripheral nitrogen atoms appears to lead to more efficient dyes than those in which the nitrogen atom is present in the middle of the donor ring system. Graphical Abstract The locations of the nitrogen atoms in the donor groups in the designed dye molecules have an important influence on DSSC efficiency.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20080004807','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20080004807"><span>FDDI network test adaptor error injection circuit</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Eckenrode, Thomas (Inventor); Stauffer, David R. (Inventor); Stempski, Rebecca (Inventor)</p> <p>1994-01-01</p> <p>An apparatus for injecting errors into a FDDI token ring network is disclosed. The error injection scheme operates by fooling a FORMAC into thinking it sent a real frame of data. This is done by using two RAM buffers. The RAM buffer normally accessed by the RBC/DPC becomes a SHADOW RAM during error injection operation. A dummy frame is loaded into the shadow RAM in order to fool the FORMAC. This data is just like the data that would be used if sending a normal frame, with the restriction that it must be shorter than the error injection data. The other buffer, the error injection RAM, contains the error injection frame. The error injection data is sent out to the media by switching a multiplexor. When the FORMAC is done transmitting the data, the multiplexor is switched back to the normal mode. Thus, the FORMAC is unaware of what happened and the token ring remains operational.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMGP31A3664Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMGP31A3664Y"><span>EM Diffusion for a Time-Domain Airborne EM System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yin, C.; Qiu, C.; Liu, Y.; Cai, J.</p> <p>2014-12-01</p> <p>Visualization of EM diffusion for an airborne EM (AEM) system is important for understanding the transient procedure of EM diffusion. The current distribution and diffusion features also provide effective means to evaluate EM footprint, depth of exploration and further help AEM system design and data interpretation. Most previous studies on EM diffusion (or "smoke ring" effect) are based on the static presentation of EM field, where the dynamic features of EM diffusion were not visible. For visualizing the dynamic feature of EM diffusion, we first calculate in this paper the frequency-domain EM field by downward continuation of the EM field at the EM receiver to the deep earth. After that, we transform the results to time-domain via a Fourier transform. We take a homogeneous half-space and a two-layered earth induced by a step pulse to calculate the EM fields and display the EM diffusion in the earth as 3D animated vectors or time-varying contours. The "smoke ring" effect of EM diffusion, dominated by the resistivity distribution of the earth, is clearly observed. The numerical results for an HCP (vertical magnetic dipole) and a VCX (horizontal magnetic dipole) transmitting coil above a homogeneous half-space of 100 ohm-m are shown in Fig.1. We display as example only the distribution of EM field inside the earth for the diffusion time of 0.05ms. The detailed EM diffusion will be shown in our future presentation. From the numerical experiments for different models, we find that 1) the current for either an HCP or a VCX transmitting dipole propagates downward and outward with time, becoming wider and more diffuse, forming a "smoke ring"; 2) for a VCX transmitter, the underground current forms two ellipses, corresponding to the two polarities of the magnetic flux of a horizontal magnetic dipole, injecting into or ejected from the earth; 3) for a HCP transmitter, however, the underground current forms only one circle, corresponding to the polarity of the magnetic flux for a vertical magnetic dipole, injecting into the earth; 4) there exists no vertical current in an isotropic homogeneous half-space. The currents for both HCP and VCX transmitting dipole flow horizontally.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JGRA..12111729H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JGRA..12111729H"><span>Contributions of substorm injections to SYM-H depressions in the main phase of storms</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>He, Zhaohai; Dai, Lei; Wang, Chi; Duan, Suping; Zhang, Lingqian; Chen, Tao; Roth, I.</p> <p>2016-12-01</p> <p>Substorm injections bring energetic particles to the inner magnetosphere. But the role of the injected population in building up the storm time ring current is not well understood. By surveying Los Alamos National Laboratory geosynchronous data during 34 storm main phases, we show evidence that at least some substorm injections can contribute to substorm-time scale SYM-H/Dst depressions in the main phase of storms. For event studies, we analyze two typical events in which the main-phase SYM-H index exhibited stepwise depressions that are correlated with particle flux enhancement due to injections and with AL index. A statistical study is performed based on 95 storm time injection events. The flux increases of the injected population (50-400 keV) are found proportional to the sharp SYM-H depressions during the injection interval. By identifying dispersionless and dispersive injection signals, we estimate the azimuthal extent of the substorm injection. Statistical results show that the injection regions of these storm time substorms are characterized with an azimuthal extent larger than 06:00 magnetic local time. These results suggest that at least some substorm injections may mimic the large-scale enhanced convection and contribute to sharp decreases of Dst in the storm main phase.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1997APS..PAC..9V38G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1997APS..PAC..9V38G"><span>Injector Design for a Model Electron Ring at the University of Maryland</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Godlove, T.; Bernal, S.; Deng, J. J.; Li, Y.; Reiser, M.; Wang, J. G.; Zou, Y.</p> <p>1997-05-01</p> <p>A model electron recirculator is being developed at the University of Maryland. It employs a 10-keV, space-charge-dominated beam injected into a 1.8-m radius ring equipped with a strong-focusing lattice based on printed-circuit quadrupoles and dipoles. The motivation and general features are described in separate papers. Here we describe the design for injecting a single-turn bunch into the ring. The system includes a low-emittance e-gun, matching section, pulsed dipole and Panofsky quadrupole. The dipole at the injection point must deflect the beam -10^circ during entry and +10^circ after entry, with about 25 ns transition time. The Panofsky quadrupole must be off during entry and on for subsequent laps, with a similar rise time.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1215473','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1215473"><span>Study of ultra-low emittance design for SPEAR3</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Wang, M. -H.; Huang, X.; Safranek, J.</p> <p>2015-09-17</p> <p>Since its 2003 construction, the SPEAR3 synchrotron light source at SLAC has continuously improved its performance by raising beam current, top-off injection, and smaller emittance. This makes SPEAR3 one of the most productive light sources in the world. Now, to further enhance the performance of SPEAR3, we are looking into the possibility of converting SPEAR3 to an ultra-low emittance storage ring within its site constraint.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1375757','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1375757"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Bogacz, Alex</p> <p></p> <p>Baseline design of the JLEIC booster synchrotron is presented. Its aim is to inject and accumulate heavy ions and protons at 285 MeV, to accelerate them to about 7 GeV, and finally to extract the beam into the ion collider ring. The Figure-8 ring features two 2600 achromatic arcs configured with negative momentum compaction optics, designed to avoid transition crossing for all ion species during the course of acceleration. The lattice also features a specialized high dispersion injection insert optimized to facilitate the transverse phase-space painting in both planes for multi-turn ion injection. Furthermore, the lattice has been optimized tomore » ease chromaticity correction with two families of sextupoles in each plane. The booster ring is configured with super-ferric, 3 Tesla bends. We are presently launching optimization of the booster synchrotron design to operate in the extreme space-charge dominated regime.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19850052842&hterms=Experiments+Plasma+Rings&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DExperiments%2Bwith%2BPlasma%2BRings','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19850052842&hterms=Experiments+Plasma+Rings&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DExperiments%2Bwith%2BPlasma%2BRings"><span>AMPTE/CCE observations of the plasma composition below 17 keV during the September 4, 1984 magnetic storm</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Shelley, E. G.; Klumpar, D. M.; Peterson, W. K.; Ghielmetti, A.; Balsiger, H.; Geiss, J.; Rosenbauer, H.</p> <p>1985-01-01</p> <p>Observations from the Hot Plasma Composition Experiment on the AMPTE/CCE spacecraft during the magnetic storm of 4-5 September 1984 reveal that significant injection of ions of terrestrial origin accompanied the storm development. The compression of the magnetosphere at storm sudden commencement carried the magnetopause inside the CCE orbit clearly revealing the shocked solar wind plasma. A build up of suprathermal ions is observed near the plasmapause during the storm main phase and recovery phase. Pitch angle distributions in the ring current during the main phase show differences between H(+) and O(+) that suggest mass dependent injection, transport and/or loss processes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014E%26ES...22e2024R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014E%26ES...22e2024R"><span>Mitigation of tip vortex cavitation by means of air injection on a Kaplan turbine scale model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rivetti, A.; Angulo, M.; Lucino, C.; Liscia, S.</p> <p>2014-03-01</p> <p>Kaplan turbines operating at full-load conditions may undergo excessive vibration, noise and cavitation. In such cases, damage by erosion associated to tip vortex cavitation can be observed at the discharge ring. This phenomenon involves design features such as (1) overhang of guide vanes; (2) blade profile; (3) gap increasing size with blade opening; (4) suction head; (5) operation point; and (6) discharge ring stiffness, among others. Tip vortex cavitation may cause erosion at the discharge ring and draft tube inlet following a wavy pattern, in which the number of vanes can be clearly identified. Injection of pressurized air above the runner blade centerline was tested as a mean to mitigate discharge ring cavitation damage on a scale model. Air entrance was observed by means of a high-speed camera in order to track the air trajectory toward its mergence with the tip vortex cavitation core. Post-processing of acceleration signals shows that the level of vibration and the RSI frequency amplitude decrease proportionally with air flow rate injected. These findings reveal the potential mitigating effect of air injection in preventing cavitation damage and will be useful in further tests to be performed on prototype, aiming at determining the optimum air flow rate, size and distribution of the injectors.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29446927','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29446927"><span>Gasoline Particulate Filters as an Effective Tool to Reduce Particulate and Polycyclic Aromatic Hydrocarbon Emissions from Gasoline Direct Injection (GDI) Vehicles: A Case Study with Two GDI Vehicles.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yang, Jiacheng; Roth, Patrick; Durbin, Thomas D; Johnson, Kent C; Cocker, David R; Asa-Awuku, Akua; Brezny, Rasto; Geller, Michael; Karavalakis, Georgios</p> <p>2018-03-06</p> <p>We assessed the gaseous, particulate, and genotoxic pollutants from two current technology gasoline direct injection vehicles when tested in their original configuration and with a catalyzed gasoline particulate filter (GPF). Testing was conducted over the LA92 and US06 Supplemental Federal Test Procedure (US06) driving cycles on typical California E10 fuel. The use of a GPF did not show any fuel economy and carbon dioxide (CO 2 ) emission penalties, while the emissions of total hydrocarbons (THC), carbon monoxide (CO), and nitrogen oxides (NOx) were generally reduced. Our results showed dramatic reductions in particulate matter (PM) mass, black carbon, and total and solid particle number emissions with the use of GPFs for both vehicles over the LA92 and US06 cycles. Particle size distributions were primarily bimodal in nature, with accumulation mode particles dominating the distribution profile and their concentrations being higher during the cold-start period of the cycle. Polycyclic aromatic hydrocarbons (PAHs) and nitrated PAHs were quantified in both the vapor and particle phases of the PM, with the GPF-equipped vehicles practically eliminating most of these species in the exhaust. For the stock vehicles, 2-3 ring compounds and heavier 5-6 ring compounds were observed in the PM, whereas the vapor phase was dominated mostly by 2-3 ring aromatic compounds.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4497452','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4497452"><span>Initial measurements of O-ion and He-ion decay rates observed from the Van Allen probes RBSPICE instrument</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Gerrard, Andrew; Lanzerotti, Louis; Gkioulidou, Matina; Mitchell, Donald; Manweiler, Jerry; Bortnik, Jacob; Keika, Kunihiro</p> <p>2014-01-01</p> <p>H-ion (∼45 keV to ∼600 keV), He-ion (∼65 keV to ∼520 keV), and O-ion (∼140 keV to ∼1130 keV) integral flux measurements, from the Radiation Belt Storm Probe Ion Composition Experiment (RBSPICE) instrument aboard the Van Allan Probes spacecraft B, are reported. These abundance data form a cohesive picture of ring current ions during the first 9 months of measurements. Furthermore, the data presented herein are used to show injection characteristics via the He-ion/H-ion abundance ratio and the O-ion/H-ion abundance ratio. Of unique interest to ring current dynamics are the spatial-temporal decay characteristics of the two injected populations. We observe that He-ions decay more quickly at lower L shells, on the order of ∼0.8 day at L shells of 3–4, and decay more slowly with higher L shell, on the order of ∼1.7 days at L shells of 5–6. Conversely, O-ions decay very rapidly (∼1.5 h) across all L shells. The He-ion decay time are consistent with previously measured and calculated lifetimes associated with charge exchange. The O-ion decay time is much faster than predicted and is attributed to the inclusion of higher-energy (> 500 keV) O-ions in our decay rate estimation. We note that these measurements demonstrate a compelling need for calculation of high-energy O-ion loss rates, which have not been adequately studied in the literature to date. Key Points We report initial observations of ring current ions We show that He-ion decay rates are consistent with theory We show that O-ions with energies greater than 500 keV decay very rapidly PMID:26167435</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018NIMPA.880...98A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018NIMPA.880...98A"><span>Top-up injection schemes for future circular lepton collider</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Aiba, M.; Goddard, B.; Oide, K.; Papaphilippou, Y.; Saá Hernández, Á.; Shwartz, D.; White, S.; Zimmermann, F.</p> <p>2018-02-01</p> <p>Top-up injection is an essential ingredient for the future circular lepton collider (FCC-ee) to maximize the integrated luminosity and it determines the design performance. In ttbar operation mode, with a beam energy of 175 GeV, the design lifetime of ∼1 h is the shortest of the four anticipated operational modes, and the beam lifetime may be even shorter in actual operation. A highly robust top-up injection scheme is consequently imperative. Various top-up methods are investigated and a number of suitable schemes are considered in developing alternative designs for the injection straight section of the collider ring. For the first time, we consider multipole-kicker off-energy injection, for minimizing detector background in top-up operation, and the use of a thin wire septum in a lepton storage ring, for maximizing the luminosity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1030528-crab-waist-collision-dafne','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1030528-crab-waist-collision-dafne"><span>Crab Waist Collision at DAFNE</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Milardi, C.; Alesini, D.; Biagini, M.E.</p> <p></p> <p>DAFNE is an accelerator complex consisting of a double ring lepton collider working at the c.m. energy of the {Phi}-resonance (1.02 GeV) and an injection system. In its original configuration the collider consisted of two independent rings, each {approx}97 m long, sharing two 10 m long interaction regions (IR1 and IR2) where the KLOE and FINUDA or DEAR detectors were respectively installed. A full energy injection system, including an S-band linac, 180 m long transfer lines and an accumulator/damping ring, provides fast and high efficiency electron positron injection also in topping-up mode during collisions. Recently the DAFNE collider has beenmore » upgraded in order to implement a new collision scheme based on large Piwinski angle and cancellation of the synchro-betatron resonances by means of electromagnetic sextupoles (Crab-Waist compensation). The novel approach has proved to be effective in improving beam-beam interaction and collider luminosity.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19970040330&hterms=estado&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Destado','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19970040330&hterms=estado&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Destado"><span>Moderate Geomagnetic Storms: Interplanetary Origins and Coupling Functions (ISEE3 Data)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mendes, Odim, Jr.; Gonzalez, W. D.; Gonzalez, A. L. C.; Pinto, O., Jr.; Tsurutani, B. T.</p> <p>1996-01-01</p> <p>Geomagnetic storms are related to the ring current intensification, which is driven by energy injection primarily during energetic solar wind-magnetosphere coupling due to reconnection at the magnetopause. This work identified the interplanetary origins of moderate geomagnetic storms (-100nT is less or equal to Dst(sub peak) is less than or equal to -50 nT) and analyzed the coupling processes during the storm main phase at solar maximum (1978-1979).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1221590','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1221590"><span>Study of ultra-low emittance design for Spear3 using longitudinal gradient dipole</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Wang, M. -H.; Huang, X.; Safranek, J.</p> <p>2015-09-24</p> <p>Since its 2003 construction, the SPEAR3 synchrotron light source at SLAC has continuously improved its performance by raising beam current, top-off injection, and smaller emittance. This makes SPEAR3 one of the most productive light sources in the world. Now to further enhance the performance of SPEAR3, we are looking into the possibility of converting SPEAR3 to an ultra-low emittance storage ring within its site constraint.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/23666','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/23666"><span>Injection of benomyl into elm, oak & maple</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Garold F. Gregory; Thomas W. Jones; Percy McWain; Percy McWain</p> <p>1971-01-01</p> <p>A newly devised apparatus using pressure to inject fluids into trees was used to inject solubilized benomyl into elms, oaks, and maples. In October and November, injections were made into the outer two annual rings of sapwood at points 2 to 3 feet above ground line. One to 3 weeks after injection, the trees were sampled; and positive bioassays were obtained from branch...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ChPhC..41h7002H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ChPhC..41h7002H"><span>Analysis and correction of linear optics errors, and operational improvements in the Indus-2 storage ring</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Husain, Riyasat; Ghodke, A. D.</p> <p>2017-08-01</p> <p>Estimation and correction of the optics errors in an operational storage ring is always vital to achieve the design performance. To achieve this task, the most suitable and widely used technique, called linear optics from closed orbit (LOCO) is used in almost all storage ring based synchrotron radiation sources. In this technique, based on the response matrix fit, errors in the quadrupole strengths, beam position monitor (BPM) gains, orbit corrector calibration factors etc. can be obtained. For correction of the optics, suitable changes in the quadrupole strengths can be applied through the driving currents of the quadrupole power supplies to achieve the desired optics. The LOCO code has been used at the Indus-2 storage ring for the first time. The estimation of linear beam optics errors and their correction to minimize the distortion of linear beam dynamical parameters by using the installed number of quadrupole power supplies is discussed. After the optics correction, the performance of the storage ring is improved in terms of better beam injection/accumulation, reduced beam loss during energy ramping, and improvement in beam lifetime. It is also useful in controlling the leakage in the orbit bump required for machine studies or for commissioning of new beamlines.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1285960','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1285960"><span>INJECTION OPTICS FOR THE JLEIC ION COLLIDER RING</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Morozov, Vasiliy; Derbenev, Yaroslav; Lin, Fanglei</p> <p>2016-05-01</p> <p>The Jefferson Lab Electron-Ion Collider (JLEIC) will accelerate protons and ions from 8 GeV to 100 GeV. A very low beta function at the Interaction Point (IP) is needed to achieve the required luminosity. One consequence of the low beta optics is that the beta function in the final focusing (FF) quadrupoles is extremely high. This leads to a large beam size in these magnets as well as strong sensitivity to errors which limits the dynamic aperture. These effects are stronger at injection energy where the beam size is maximum, and therefore very large aperture FF magnets are required tomore » allow a large dynamic aperture. A standard solution is a relaxed injection optics with IP beta function large enough to provide a reasonable FF aperture. This also reduces the effects of FF errors resulting in a larger dynamic aperture at injection. We describe the ion ring injection optics design as well as a beta-squeeze transition from the injection to collision optics.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li class="active"><span>5</span></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_5 --> <div id="page_6" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li class="active"><span>6</span></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="101"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930011109','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930011109"><span>Injection seeded, diode pumped regenerative ring Nd:YAG amplifier for spaceborne laser ranging technology development</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Coyle, D. Barry; Kay, Richard B.; Degnan, John J.; Krebs, Danny J.; Seery, Bernard D.</p> <p>1992-01-01</p> <p>A small, all solid state, regenerative ring amplifier designed as a prototype for space application is discussed. Novel features include dual side pumping of the Nd:YAG crystal and a triangular ring cavity design which minimizes the number of optical components and losses. The amplifier is relatively small (3 ns round trip time) even though standard optical elements are employed. The ring regeneratively amplifies a 100 ps single pulse by approximately 10(exp 5) at a repetition rate of 10 to 100 Hz. The amplifier is designed to be injection seeded with a pulsed, 100 ps laser diode at 1.06 microns, but another Nd:YAG laser system supplying higher pulse energies was employed for laboratory experiment. This system is a prototype laser oscillator for the Geoscience Laser Ranging System (GLRS) platform. Results on measurements of beam quality, astigmatism, and gain are given.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16912784','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16912784"><span>Measuring optical fiber length by use of a short-pulse optical fiber ring laser in a self-injection seeding scheme.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, Yi-Ping; Wang, Dong Ning; Jin, Wei</p> <p>2006-09-01</p> <p>A method for measuring the length of an optical fiber by use of an optical fiber ring laser pulse source is proposed and demonstrated. The key element of the optical fiber ring laser is a gain-switched Fabry-Perot laser diode operated in a self-injection seeding scheme. This method is especially suitable for measuring a medium or long fiber, and a resolution of 0.1 m is experimentally achieved. The measurement is implemented by accurately determining the pulse frequency that can maximize the output power of the fiber ring laser. The measurement results depend only on the refractive index of the fiber corresponding to this single wavelength, instead of the group index of the fiber, which represents a great advantage over both optical time-domain reflectometry and optical low-coherence reflectometry methods.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1995SPIE.2393...85C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1995SPIE.2393...85C"><span>Measuring ocular characteristics after gel injection adjustable keratoplasty (GIAK) in the rabbit</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Comander, Jason I.; Parel, Jean-Marie A.; Simon, Gabriel; Takesue, Yoshiko; Villain, Franck L.</p> <p>1995-05-01</p> <p>Gel Injection Adjustable Keratoplasty (GIAK) is a refractive surgery procedure which uses an ocular ring implant made of a polyethylene oxide hydrogel to cause a refractive change in the cornea. Unlike laser photo refractive keratectomy, GIAK does not interfere with the central cornea because the ring lies around the optical axis. Thus, vision can be assessed immediately after surgery. Our in vivo study was designed to quantify GIAK's effects on tissues, the biocompatibility of the polymer and in the process investigate which ocular changes in the rabbit model can be monitored with precision using current technology. Thirty-two young rabbits underwent a delamination in one eye, 22 of which were injected with a new polymeric gel. Corneal topography, keratometry, pachymetry, and tonometry were performed on both eyes for up to 105 days. All corneas flattened with growth. In GIAK animals, we found an average flattening of 6.51 +/- 1.23 diopters (p < 0.0001) relative to the fellow eye. No statistically significant regression over the 102 days was observed. Intraocular pressure dropped slightly by 0.69 +/- 1.21 mmHg (p equals 0.025), a clinically insignificant value, while no significant change was detected in corneal thickness. Keratometry can be tracked in rabbits after GIAK surgery from POD 1. Measuring unoperated fellow eyes allows for the effects of surgery to be assessed without bias from growth. Using this protocol, GIAK was shown to be stable. It was more difficult to draw conclusions from pachymetry, tonometry, and topography data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PPCF...59l4003M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PPCF...59l4003M"><span>The turbulent plasmasphere boundary layer and the outer radiation belt boundary</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mishin, Evgeny; Sotnikov, Vladimir</p> <p>2017-12-01</p> <p>We report on observations of enhanced plasma turbulence and hot particle distributions in the plasmasphere boundary layer formed by reconnection-injected hot plasma jets entering the plasmasphere. The data confirm that the electron pressure peak is formed just outward of the plasmapause in the premidnight sector. Free energy for plasma wave excitation comes from diamagnetic ion currents near the inner edge of the boundary layer due to the ion pressure gradient, electron diamagnetic currents in the entry layer near the electron plasma sheet boundary, and anisotropic (sometimes ring-like) ion distributions revealed inside, and further inward of, the inner boundary. We also show that nonlinear parametric coupling between lower oblique resonance and fast magnetosonic waves significantly contributes to the VLF whistler wave spectrum in the plasmasphere boundary layer. These emissions represent a distinctive subset of substorm/storm-related VLF activity in the region devoid of substorm injected tens keV electrons and could be responsible for the alteration of the outer radiation belt boundary during (sub)storms.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/908613','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/908613"><span>Self-seeding ring optical parametric oscillator</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Smith, Arlee V [Albuquerque, NM; Armstrong, Darrell J [Albuquerque, NM</p> <p>2005-12-27</p> <p>An optical parametric oscillator apparatus utilizing self-seeding with an external nanosecond-duration pump source to generate a seed pulse resulting in increased conversion efficiency. An optical parametric oscillator with a ring configuration are combined with a pump that injection seeds the optical parametric oscillator with a nanosecond duration, mJ pulse in the reverse direction as the main pulse. A retroreflecting means outside the cavity injects the seed pulse back into the cavity in the direction of the main pulse to seed the main pulse, resulting in higher conversion efficiency.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19820034041&hterms=LOCKING+LASER+OSCILLATORS+LIGHT+INJECTION&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3DLOCKING%2BOF%2BLASER%2BOSCILLATORS%2BBY%2BLIGHT%2BINJECTION','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19820034041&hterms=LOCKING+LASER+OSCILLATORS+LIGHT+INJECTION&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3DLOCKING%2BOF%2BLASER%2BOSCILLATORS%2BBY%2BLIGHT%2BINJECTION"><span>A wavelength scannable XeCl oscillator-ring amplifier laser system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Pacala, T. J.; Mcdermid, I. S.; Laudenslager, J. B.</p> <p>1982-01-01</p> <p>A holographic grating at grazing angle of incidence was used to achieve tunable, narrow bandwidth (0.005 nm) operation of a XeCl oscillator for injection locking of a ring amplifier. The amplifier's narrow bandwidth output energy was constant and equal to the untuned, broadband output (approximately 15 mJ) in regions where injection locking was achieved. Scanning was provided by use of a stepping motor-driven differential micrometer on the tuning mirror. This system was used to produce a laser excitation spectrum of hydroxyl radicals (OH) in a flame.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008APS..DFD.GU004M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008APS..DFD.GU004M"><span>Dynamics of collision of a vortex ring and a planar surface</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>McErlean, Michael; Krane, Michael; Fontaine, Arnold</p> <p>2008-11-01</p> <p>The dynamics of the impact between a vortex ring and a planar surface is presented. The vortex rings, generated by piston injection of a slug of water into a quiescent water tank, collide with a surface oriented normally to the ring's direction of travel. The time evolution of both the force imparted to a planar surface and the wall pressure are presented. These are supplemented by DPIV measurements of the evolution of ring strength and structure, before and during impact. The relation between changes in ring structure during collision and the waveforms of impact force and wall pressure will be discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001CoTPh..35...87L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001CoTPh..35...87L"><span>Statistical Properties of a Ring Laser with Injected Signal and Backscattering</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Leng, Feng; Zhu, Shi-Qun</p> <p>2001-01-01</p> <p>The statistical properties of a homogeneously broadened ring laser with an injected signal are investigated and the normalized two-mode intensity auto- and cross-correlation functions are calculated by a full saturation laser theory with backscattering. The theoretical predictions are in good agreement with the experimental measurements. Further investigation reveals that the backscattering can reduce the fluctuations in the system while the full saturation effect plays a major role when the laser is operated above threshold. It is also quite important to notice that the injected signal can drive the weak mode from incoherent light to coherent light. The project supported by National Natural Science Foundation of China (Grant No. 19874046) and Natural Science Foundation of Jiangsu Education Commission of China</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JChPh.147v4301M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JChPh.147v4301M"><span>Quantum control of coherent π -electron ring currents in polycyclic aromatic hydrocarbons</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mineo, Hirobumi; Fujimura, Yuichi</p> <p>2017-12-01</p> <p>We present results for quantum optimal control (QOC) of the coherent π electron ring currents in polycyclic aromatic hydrocarbons (PAHs). Since PAHs consist of a number of condensed benzene rings, in principle, there exist various coherent ring patterns. These include the ring current localized to a designated benzene ring, the perimeter ring current that flows along the edge of the PAH, and the middle ring current of PAHs having an odd number of benzene rings such as anthracene. In the present QOC treatment, the best target wavefunction for generation of the ring current through a designated path is determined by a Lagrange multiplier method. The target function is integrated into the ordinary QOC theory. To demonstrate the applicability of the QOC procedure, we took naphthalene and anthracene as the simplest examples of linear PAHs. The mechanisms of ring current generation were clarified by analyzing the temporal evolutions of the electronic excited states after coherent excitation by UV pulses or (UV+IR) pulses as well as those of electric fields of the optimal laser pulses. Time-dependent simulations of the perimeter ring current and middle ring current of anthracene, which are induced by analytical electric fields of UV pulsed lasers, were performed to reproduce the QOC results.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1338401-compact-silicon-photonic-resonance-assisted-variable-optical-attenuator','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1338401-compact-silicon-photonic-resonance-assisted-variable-optical-attenuator"><span>Compact silicon photonic resonance-assisted variable optical attenuator</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Wang, Xiaoxi; Aguinaldo, Ryan; Lentine, Anthony; ...</p> <p>2016-11-17</p> <p>Here, a two-part silicon photonic variable optical attenuator is demonstrated in a compact footprint which can provide a high extinction ratio at wavelengths between 1520 nm and 1620 nm. The device was made by following the conventional p-i-n waveguide section by a high-extinction-ratio second-order microring filter section. The rings provide additional on-off contrast by utilizing a thermal resonance shift, which harvested the heat dissipated by current injection in the p-i-n junction. Finally, we derive and discuss a simple thermal-resistance model in explanation of these effects.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27906331','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27906331"><span>Compact silicon photonic resonance-sssisted variable optical attenuator.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, Xiaoxi; Aguinaldo, Ryan; Lentine, Anthony; DeRose, Christopher; Starbuck, Andrew L; Trotter, Douglas; Pomerene, Andrew; Mookherjea, Shayan</p> <p>2016-11-28</p> <p>A two-part silicon photonic variable optical attenuator is demonstrated in a compact footprint which can provide a high extinction ratio at wavelengths between 1520 nm and 1620 nm. The device was made by following the conventional p-i-n waveguide section by a high-extinction-ratio second-order microring filter section. The rings provide additional on-off contrast by utilizing a thermal resonance shift, which harvested the heat dissipated by current injection in the p-i-n junction. We derive and discuss a simple thermal-resistance model in explanation of these effects.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26698762','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26698762"><span>High-power actively Q-switched single-mode 1342 nm Nd:YVO<sub>4</sub> ring laser, injection-locked by a cw single-frequency microchip laser.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Koch, Peter; Bartschke, Juergen; L'huillier, Johannes A</p> <p>2015-11-30</p> <p>In this paper we report on the realization of a single-mode Q-switched Nd:YVO<sub>4</sub> ring laser at 1342 nm. Unidirectional and single-mode operation of the ring laser is achieved by injection-locking with a continuous wave Nd:YVO<sub>4</sub> microchip laser, emitting a single-frequency power of up to 40 mW. The ring laser provides a single-mode power of 13.9 W at 10 kHz pulse repetition frequency with a pulse duration of 18.2 ns and an excellent beam quality (M<sup>2</sup> < 1.05). By frequency doubling of the fundamental 1342 nm laser, a power of 8.7 W at 671 nm with a pulse duration of 14.8 ns and a beam propagation factor of M<sup>2</sup> < 1.1 is obtained. The 671 nm radiation features a long-term spectral width of 75 MHz.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/7129175','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/biblio/7129175"><span>Reflex ring laser amplifier system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Summers, M.A.</p> <p>1983-08-31</p> <p>The invention is a method and apparatus for providing a reflex ring laser system for amplifying an input laser pulse. The invention is particularly useful in laser fusion experiments where efficient production of high-energy and high power laser pulses is required. The invention comprises a large aperture laser amplifier in an unstable ring resonator which includes a combination spatial filter and beam expander having a magnification greater than unity. An input pulse is injected into the resonator, e.g., through an aperture in an input mirror. The injected pulse passes through the amplifier and spatial filter/expander components on each pass around the ring. The unstable resonator is designed to permit only a predetermined number of passes before the amplified pulse exits the resonator. On the first pass through the amplifier, the beam fills only a small central region of the gain medium. On each successive pass, the beam has been expanded to fill the next concentric non-overlapping region of the gain medium.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRA..12212055T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRA..12212055T"><span>Ring/Shell Ion Distributions at Geosynchronous Orbit</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Thomsen, M. F.; Denton, M. H.; Gary, S. P.; Liu, Kaijun; Min, Kyungguk</p> <p>2017-12-01</p> <p>One year's worth of plasma observations from geosynchronous orbit is examined for ion distributions that may simultaneously be subject to the ion Bernstein (IB) instability (generating fast magnetosonic waves) and the Alfvén cyclotron (AC) instability (generating electromagnetic ion cyclotron waves). Confirming past analyses, distributions with robust ∂fp(v⊥)/∂v⊥ > 0 near v|| = 0, which we denote as "ring/shell" distributions, are commonly found primarily on the dayside of the magnetosphere. A new approach to high-fidelity representation of the observed ring/shell distribution functions in a form readily suited to both analytical moment calculation and linear dispersion analysis is presented, which allows statistical analysis of the ring/shell properties. The ring/shell temperature anisotropy is found to have a clear upper limit that depends on the parallel beta of the ring/shell (β||r) in a manner that is diagnostic of the operation of the AC instability. This upper limit is only reached in the postnoon events, which are primarily produced by the energy- and pitch angle-dependent magnetic drifts of substorm-injected ions. Further, it is primarily the leading edge of such injections, where the distribution is strongly ring-like, that the AC instability appears to be operating. By contrast, the ratio of the ring energy to the Alfvén energy remains well within the range of 0.25-4.0 suitable for IB instability throughout essentially all of the events, except those that occur in denser cold plasma of the outer plasmasphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3304008','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3304008"><span>Micro-Ring Structures Stabilize Microdroplets to Enable Long Term Spheroid Culture in 384 Hanging Drop Array Plates</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Hsiao, Amy Y.; Tung, Yi-Chung; Kuo, Chuan-Hsien; Mosadegh, Bobak; Bedenis, Rachel; Pienta, Kenneth J.; Takayama, Shuichi</p> <p>2012-01-01</p> <p>Using stereolithography, 20 different structural variations comprised of millimeter diameter holes surrounded by trenches, plateaus, or micro-ring structures were prepared and tested for their ability to stably hold arrays of microliter sized droplets within the structures over an extended period of time. The micro-ring structures were the most effective in stabilizing droplets against mechanical and chemical perturbations. After confirming the importance of micro-ring structures using rapid prototyping, we developed an injection molding tool for mass production of polystyrene 3D cell culture plates with an array of 384 such micro-ring surrounded through-hole structures. These newly designed and injection molded polystyrene 384 hanging drop array plates with micro-rings were stable and robust against mechanical perturbations as well as surface fouling-facilitated droplet spreading making them capable of long term cell spheroid culture of up to 22 days within the droplet array. This is a significant improvement over previously reported 384 hanging drop array plates which are susceptible to small mechanical shocks and could not reliably maintain hanging drops for longer than a few days. With enhanced droplet stability, the hanging drop array plates with micro-ring structures provide better platforms and open up new opportunities for high-throughput preparation of microscale 3D cell constructs for drug screening and cell analysis. PMID:22057945</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22057945','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22057945"><span>Micro-ring structures stabilize microdroplets to enable long term spheroid culture in 384 hanging drop array plates.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hsiao, Amy Y; Tung, Yi-Chung; Kuo, Chuan-Hsien; Mosadegh, Bobak; Bedenis, Rachel; Pienta, Kenneth J; Takayama, Shuichi</p> <p>2012-04-01</p> <p>Using stereolithography, 20 different structural variations comprised of millimeter diameter holes surrounded by trenches, plateaus, or micro-ring structures were prepared and tested for their ability to stably hold arrays of microliter sized droplets within the structures over an extended period of time. The micro-ring structures were the most effective in stabilizing droplets against mechanical and chemical perturbations. After confirming the importance of micro-ring structures using rapid prototyping, we developed an injection molding tool for mass production of polystyrene 3D cell culture plates with an array of 384 such micro-ring surrounded through-hole structures. These newly designed and injection molded polystyrene 384 hanging drop array plates with micro-rings were stable and robust against mechanical perturbations as well as surface fouling-facilitated droplet spreading making them capable of long term cell spheroid culture of up to 22 days within the droplet array. This is a significant improvement over previously reported 384 hanging drop array plates which are susceptible to small mechanical shocks and could not reliably maintain hanging drops for longer than a few days. With enhanced droplet stability, the hanging drop array plates with micro-ring structures provide better platforms and open up new opportunities for high-throughput preparation of microscale 3D cell constructs for drug screening and cell analysis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009APS..DFD.BT008M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009APS..DFD.BT008M"><span>Dynamics of collision of a vortex ring and a planar surface</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>McErlean, Michael; Krane, Michael; Fontaine, Arnold</p> <p>2009-11-01</p> <p>The dynamics of the impact between a vortex ring and a planar surface orientated perpendicular to the direction of travel are presented. High Reynolds number vortex rings are injected into a quiescent tank of water using a piston-cylinder generator before colliding with a target at a long distance. Both the pressure at the stagnation point on the surface and the force imparted to the target by the ring impact are measured directly. The changes in both are related to the ring motion and deformation captured by high speed digital video, and DPIV measurements. These relations are used to develop a scaling law relation between impact force and vortex ring circulation, speed, and size.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20080039434&hterms=Plasma+Ring&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DPlasma%2BRing','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20080039434&hterms=Plasma+Ring&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DPlasma%2BRing"><span>Magnetic Field Observations of Partial Ring Current during Storm Recovery Phase</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Le, Guan; Russell, C. T.; Slavin, J. A.; Lucek, E. A.</p> <p>2007-01-01</p> <p>We present results of an extensive survey of the magnetic field observations in the inner magnetosphere using 30 years of magnetospheric magnetic field data from Polar, Cluster, ISEE, and AMPTE/CCE missions. The purpose of this study is to understand the magnetic field evolution during the recovery phase of geomagnetic storms, and its implication to the ring current recovery and loss mechanisms of ring current particles. Our previous work on global ring current distribution [Le et al., 2004] has shown that a significant partial ring current is always present at all Dst levels (regardless of storm phases) even for quiet time ring current. The total current carried by the partial ring current is much stronger than (during stormtime) or at least comparable to (during quiet time) the symmetric ring current. It is now commonly believed that a strong partial ring current is formed during the storm main phase due to the enhanced earthward convection of energetic ions from nightside plasma sheet. But the presence of a strong partial ring current throughout the recovery phase remains controversial. The magnetic field generated by the ring current inflates the inner magnetosphere and causes magnetic field depressions in the equatorial magnetosphere. During the storm recovery phase, we find that the distribution of the equatorial magnetic field depression exhibits similar local time dependence as the ring current distribution obtained from the combined dataset in the earlier study. It shows that a strong partial ring current is a permanent feature throughout the recovery phase. In the early recovery phase, the partial ring current peaks near the dusk terminator as indicated by the peak of the magnetic field depression. As the recovery phase progresses, the partial ring current decays most quickly near the dusk and results in a dusk-to-midnight moving of the peak of the partial ring current. Thus the loss mechanisms work most effectively near the dusk. The magnetic field depression increases the gyroradius of ring current protons to a scale greater or comparable to the thickness of the magnetopause, which increases the chance of ion drift loss near the dusk magnetopause at larger L-shell (L>5). But the drift loss mechanism alone cannot explain the loss of ring current ions especially in the smaller L-shell (L<5). The precipitation loss due to wave-particle interaction is most likely the dominant loss mechanism in the small L-shell as it works most effectively at the same local time.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20080036840','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20080036840"><span>Laboratory-Model Integrated-System FARAD Thruster</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Polzin, K.A.; Best, S.; Miller, R.; Rose, M.F.; Owens, T.</p> <p>2008-01-01</p> <p>Pulsed inductive plasma accelerators are spacecraft propulsion devices in which energy is stored in a capacitor and then discharged through an inductive coil. The device is electrodeless, inducing a plasma current sheet in propellant located near the face of the coil. The propellant is accelerated and expelled at a high exhaust velocity (order of 10 km/s) through the interaction of the plasma current with an induced magnetic field. The Faraday Accelerator with RF-Assisted Discharge (FARAD) thruster [1,2] is a type of pulsed inductive plasma accelerator in which the plasma is preionized by a mechanism separate from that used to form the current sheet and accelerate the gas. Employing a separate preionization mechanism in this manner allows for the formation of an inductive current sheet at much lower discharge energies and voltages than those found in previous pulsed inductive accelerators like the Pulsed Inductive Thruster (PIT). In a previous paper [3], the authors presented a basic design for a 100 J/pulse FARAD laboratory-version thruster. The design was based upon guidelines and performance scaling parameters presented in Refs. [4, 5]. In this paper, we expand upon the design presented in Ref. [3] by presenting a fully-assembled and operational FARAD laboratory-model thruster and addressing system and subsystem-integration issues (concerning mass injection, preionization, and acceleration) that arose during assembly. Experimental data quantifying the operation of this thruster, including detailed internal plasma measurements, are presented by the authors in a companion paper [6]. The thruster operates by first injecting neutral gas over the face of a flat, inductive acceleration coil and at some later time preionizing the gas. Once the gas is preionized current is passed through the acceleration coil, inducing a plasma current sheet in the propellant that is accelerated away from the coil through electromagnetic interaction with the time-varying magnetic field. Neutral gas is injected over the face of the acceleration coil through a fast-acting valve that feeds a central distribution manifold. The thruster is designed to preionize the gas using an RF-frequency ringing signal produced by a discharging Vector Inversion Generator (VIG). The acceleration stage consists of a multiple-turn, multiple-strand spiral induction coil (see Fig. 1, left panel) and is designed for operation at discharge energies on the order of 100 J/pulse. Several different pulsed power train modules can be used to drive current through the acceleration coil. One such power train is based upon the Bernardes and Merryman circuit topology, which restricts voltage reversal on the capacitor banks and can be clamped to eliminate current reversal in the coil. A second option is a pulse-compression-ring power train (see Fig. 1, right panel), which takesa temporally broad, low current pulse and transforms it into a short, high current pulse.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1378577','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1378577"><span>Beam Loss Simulation and Collimator System Configurations for the Advanced Photon Source Upgrade</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Xiao, A.; Borland, M.</p> <p></p> <p>The proposed multi-bend achromat lattice for the Advanced Photon Source upgrade (APS-U) has a design emittance of less than 70 pm. The Touschek loss rate is high: compared with the current APS ring, which has an average beam lifetime ~ 10 h, the simulated beam lifetime for APS-U is only ~2 h when operated in the high flux mode (I=200 mA in 48 bunches). An additional consequence of the short lifetime is that injection must be more frequent, which provides another potential source of particle loss. In order to provide information for the radiation shielding system evaluation and to avoidmore » particle loss in sensitive locations around the ring (for example, insertion device straight sections), simulations of the detailed beam loss distribution have been performed. Several possible collimation configurations have been simulated and compared.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li class="active"><span>6</span></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_6 --> <div id="page_7" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li class="active"><span>7</span></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="121"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JSemi..37i5004W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JSemi..37i5004W"><span>Low-noise sub-harmonic injection locked multiloop ring oscillator</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Weilin, Xu; Di, Wu; Xueming, Wei; Baolin, Wei; Jihai, Duan; Fadi, Gui</p> <p>2016-09-01</p> <p>A three-stage differential voltage-controlled ring oscillator is presented for wide-tuning and low-phase noise requirement of clock and data recovery circuit in ultra wideband (UWB) wireless body area network. To improve the performance of phase noise of delay cell with coarse and fine frequency tuning, injection locked technology together with pseudo differential architecture are adopted. In addition, a multiloop is employed for frequency boosting. Two RVCOs, the standard RVCO without the IL block and the proposed IL RVCO, were fabricated in SMIC 0.18 μm 1P6M Salicide CMOS process. The proposed IL RVCO exhibits a measured phase noise of -112.37 dBc/Hz at 1 MHz offset from the center frequency of 1 GHz, while dissipating a current of 8 mA excluding the buffer from a 1.8-V supply voltage. It shows a 16.07 dB phase noise improvement at 1 MHz offset compared to the standard topology. Project supported by the National Natural Science Foundation of China (No. 61264001), the Guangxi Natural Science Foundation (Nos. 2013GXNSFAA019333, 2015GXNSFAA139301, 2014GXNSFAA118386), the Graduate Education Innovation Program of GUET (No. GDYCSZ201457), the Project of Guangxi Education Department (No. LD14066B) and the High-Level-Innovation Team and Outstanding Scholar Project of Guangxi Higher Education Institutes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120011655','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120011655"><span>The Magnetic and Shielding Effects of Ring Current on Radiation Belt Dynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Fok, Mei-Ching</p> <p>2012-01-01</p> <p>The ring current plays many key roles in controlling magnetospheric dynamics. A well-known example is the magnetic depression produced by the ring current, which alters the drift paths of radiation belt electrons and may cause significant electron flux dropout. Little attention is paid to the ring current shielding effect on radiation belt dynamics. A recent simulation study that combines the Comprehensive Ring Current Model (CRCM) with the Radiation Belt Environment (RBE) model has revealed that the ring current-associated shielding field directly and/or indirectly weakens the relativistic electron flux increase during magnetic storms. In this talk, we will discuss how ring current magnetic field and electric shielding moderate the radiation belt enhancement.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017OptCo.405..253K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017OptCo.405..253K"><span>Self-injection-locking linewidth narrowing in a semiconductor laser coupled to an external fiber-optic ring resonator</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Korobko, Dmitry A.; Zolotovskii, Igor O.; Panajotov, Krassimir; Spirin, Vasily V.; Fotiadi, Andrei A.</p> <p>2017-12-01</p> <p>We develop a theoretical framework for modeling of semiconductor laser coupled to an external fiber-optic ring resonator. The developed approach has shown good qualitative agreement between theoretical predictions and experimental results for particular configuration of a self-injection locked DFB laser delivering narrow-band radiation. The model is capable of describing the main features of the experimentally measured laser outputs such as laser line narrowing, spectral shape of generated radiation, mode-hoping instabilities and makes possible exploring the key physical mechanisms responsible for the laser operation stability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28542081','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28542081"><span>Brief Report: Dapivirine Vaginal Ring Use Does Not Diminish the Effectiveness of Hormonal Contraception.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Balkus, Jennifer E; Palanee-Phillips, Thesla; Reddy, Krishnaveni; Siva, Samantha; Harkoo, Ishana; Nakabiito, Clemensia; Kintu, Kenneth; Nair, Gonasangrie; Chappell, Catherine; Kiweewa, Flavia Matovu; Kabwigu, Samuel; Naidoo, Logashvari; Jeenarain, Nitesha; Marzinke, Mark; Soto-Torres, Lydia; Brown, Elizabeth R; Baeten, Jared M</p> <p>2017-10-01</p> <p>To evaluate the potential for a clinically relevant drug-drug interaction with concomitant use of a dapivirine vaginal ring, a novel antiretroviral-based HIV-1 prevention strategy, and hormonal contraception by examining contraceptive efficacies with and without dapivirine ring use. A secondary analysis of women participating in MTN-020/ASPIRE, a randomized, double-blind, placebo-controlled trial of the dapivirine vaginal ring for HIV-1 prevention. Use of a highly effective method of contraception was an eligibility criterion for study participation. Urine pregnancy tests were performed monthly. Pregnancy incidence by arm was calculated separately for each hormonal contraceptive method and compared using an Andersen-Gill proportional hazards model stratified by site and censored at HIV-1 infection. Of 2629 women enrolled, 2310 women returned for follow-up and reported using a hormonal contraceptive method at any point during study participation (1139 in the dapivirine arm and 1171 in the placebo arm). Pregnancy incidence in the dapivirine arm versus placebo among women using injectable depot medroxyprogesterone acetate was 0.43% vs. 0.54%, among women using injectable norethisterone enanthate was 1.15% vs. 0%, among women using hormonal implants was 0.22% vs. 0.69%, and among women using oral contraceptive pills was 32.26% vs. 28.01%. Pregnancy incidence did not differ by study arm for any of the hormonal contraceptive methods. Use of the dapivirine ring does not reduce the effectiveness of hormonal contraceptives for pregnancy prevention. Oral contraceptive pill use was associated with high pregnancy incidence, potentially because of poor pill adherence. Injectable and implantable methods were highly effective in preventing pregnancy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22714491','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22714491"><span>Tunable ring laser with internal injection seeding and an optically-driven photonic crystal reflector.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zheng, Jie; Ge, Chun; Wagner, Clark J; Lu, Meng; Cunningham, Brian T; Hewitt, J Darby; Eden, J Gary</p> <p>2012-06-18</p> <p>Continuous tuning over a 1.6 THz region in the near-infrared (842.5-848.6 nm) has been achieved with a hybrid ring/external cavity laser having a single, optically-driven grating reflector and gain provided by an injection-seeded semiconductor amplifier. Driven at 532 nm and incorporating a photonic crystal with an azobenzene overlayer, the reflector has a peak reflectivity of ~80% and tunes at the rate of 0.024 nm per mW of incident green power. In a departure from conventional ring or external cavity lasers, the frequency selectivity for this system is provided by the passband of the tunable photonic crystal reflector and line narrowing in a high gain amplifier. Sub - 0.1 nm linewidths and amplifier extraction efficiencies above 97% are observed with the reflector tuned to 842.5 nm.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/880419','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/880419"><span>Efg Crystal Growth Apparatus And Method</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Mackintosh, Brian H.; Ouellette, Marc</p> <p>2003-05-13</p> <p>An improved mechanical arrangement controls the introduction of silicon particles into an EFG (Edge-defined Film-fed Growth) crucible/die unit for melt replenishment during a crystal growth run. A feeder unit injects silicon particles upwardly through a center hub of the crucible/die unit and the mechanical arrangement intercepts the injected particles and directs them so that they drop into the melt in a selected region of the crucible and at velocity which reduces splashing, whereby to reduce the likelihood of interruption of the growth process due to formation of a solid mass of silicon on the center hub and adjoining components. The invention also comprises use of a Faraday ring to alter the ratio of the electrical currents flowing through primary and secondary induction heating coils that heat the crucible die unit and the mechanical arrangement.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26836563','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26836563"><span>5.7  W cw single-frequency laser at 671  nm by single-pass second harmonic generation of a 17.2  W injection-locked 1342  nm Nd : YVO4 ring laser using periodically poled MgO : LiNbO3.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Koch, Peter; Ruebel, Felix; Bartschke, Juergen; L'huillier, Johannes A</p> <p>2015-11-20</p> <p>We demonstrate a continuous wave single-frequency laser at 671.1 nm based on a high-power 888 nm pumped Nd:YVO4 ring laser at 1342.2 nm. Unidirectional operation of the fundamental ring laser is achieved with the injection-locking technique. A Nd:YVO4 microchip laser serves as the injecting seed source, providing a tunable single-frequency power of up to 40 mW. The ring laser emits a single-frequency power of 17.2 W with a Gaussian beam profile and a beam propagation factor of M2<1.1. A 60-mm-long periodically poled MgO-doped LiNbO3 crystal is used to generate the second harmonic in a single-pass scheme. Up to 5.7 W at 671.1 nm with a Gaussian shaped beam profile and a beam propagation factor of M2<1.2 are obtained, which is approximately twice the power of previously reported lasers. This work opens possibilities in cold atoms experiments with lithium, allowing the use of larger ensembles in magneto-optical traps or higher diffraction orders in atomic beam interferometers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/10846615','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/10846615"><span>Effect of aspirin on the contractility of aortic smooth muscle and the course of blood pressure development in male spontaneously hypertensive rats.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Rahmani, M A; David, V; Huang, M; DeGray, G</p> <p>1998-01-01</p> <p>The effects of acetylsalicylic acid (ASA) on aortic smooth muscle contractility were studied in aortic rings of male SHR and WKY rats. The rats were administered two intraperitoneal injections of 10 mg/kg of ASA per week for ten weeks. Blood pressure of each rat was monitored twice weekly prior to the i.p. injections. Twenty four hours after the last injection the aortic smooth muscles were evaluated for generation of active tension in response to KCl, Phenylephrine (PE), Clonidine and Norepinephrine (NE). In another set of experiments calcium conductance was evaluated in the presence or absence of endothelium both in ASA treated and non treated animals. We report that aortic rings from ASA-treated SHR animals were more responsive to contractile agents than rings from non-treated SHR male rats. Also, the Ca2+ conductance in vitro was enhanced appreciably in SHR aortic rings denuded of their monolayer of endothelium in response to ASA treatment. No decrease in systolic blood pressure was observed in response to ASA treatment in SHR male rats. These results suggest that acetylsalicylic acid not only may modulate aortic smooth muscle contractility through the metabolites of arachidonic acid but may repair to a great extent the hypertension associated plasma membrane permeability defect of vascular myocytes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1213213','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1213213"><span>Design and Evaluation of a Clock Multiplexing Circuit for the SSRL Booster Accelerator Timing System - Oral Presentation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Araya, Million</p> <p>2015-08-25</p> <p>SPEAR3 is a 234 m circular storage ring at SLAC’s synchrotron radiation facility (SSRL) in which a 3 GeV electron beam is stored for user access. Typically the electron beam decays with a time constant of approximately 10hr due to electron lose. In order to replenish the lost electrons, a booster synchrotron is used to accelerate fresh electrons up to 3GeV for injection into SPEAR3. In order to maintain a constant electron beam current of 500mA, the injection process occurs at 5 minute intervals. At these times the booster synchrotron accelerates electrons for injection at a 10Hz rate. A 10Hzmore » 'injection ready' clock pulse train is generated when the booster synchrotron is operating. Between injection intervalswhere the booster is not running and hence the 10 Hz ‘injection ready’ signal is not present-a 10Hz clock is derived from the power line supplied by Pacific Gas and Electric (PG&E) to keep track of the injection timing. For this project I constructed a multiplexing circuit to 'switch' between the booster synchrotron 'injection ready' clock signal and PG&E based clock signal. The circuit uses digital IC components and is capable of making glitch-free transitions between the two clocks. This report details construction of a prototype multiplexing circuit including test results and suggests improvement opportunities for the final design.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1213210','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1213210"><span>Design and Evaluation of a Clock Multiplexing Circuit for the SSRL Booster Accelerator Timing System - Final Paper</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Araya, Million</p> <p>2015-08-21</p> <p>SPEAR3 is a 234 m circular storage ring at SLAC’s synchrotron radiation facility (SSRL) in which a 3 GeV electron beam is stored for user access. Typically the electron beam decays with a time constant of approximately 10hr due to electron lose. In order to replenish the lost electrons, a booster synchrotron is used to accelerate fresh electrons up to 3GeV for injection into SPEAR3. In order to maintain a constant electron beam current of 500mA, the injection process occurs at 5 minute intervals. At these times the booster synchrotron accelerates electrons for injection at a 10Hz rate. A 10Hzmore » 'injection ready' clock pulse train is generated when the booster synchrotron is operating. Between injection intervals-where the booster is not running and hence the 10 Hz ‘injection ready’ signal is not present-a 10Hz clock is derived from the power line supplied by Pacific Gas and Electric (PG&E) to keep track of the injection timing. For this project I constructed a multiplexing circuit to 'switch' between the booster synchrotron 'injection ready' clock signal and PG&E based clock signal. The circuit uses digital IC components and is capable of making glitch-free transitions between the two clocks. This report details construction of a prototype multiplexing circuit including test results and suggests improvement opportunities for the final design.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JGRA..119.2494N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JGRA..119.2494N"><span>Magnetospheric conditions for sawtooth event development</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Noah, M. A.; Burke, W. J.</p> <p>2014-04-01</p> <p>This paper addresses two topics concerning the magnetospheric conditions that allow sawtooth events (STEs) to develop during "nonstorm" intervals yet fail to yield them during many intense/super storms. A statistical analysis by Cai et al. (2011) reported that while only 5.4% of STEs occurred outside the context of magnetic storms, their occurrence rate during intense storms was just 63.5%. They concluded that (1) STEs are not necessarily storm time phenomena and (2) particular interplanetary conditions are needed to drive the class of storms in which STEs are generated. Traces of Sym-H indices and cross polar cap potentials during "nonstorm" STEs indicate that ring current energy remained above normal, quiet time values and open flux was continually being transferred to the magnetotail. We combined two independently generated lists of intense/super storms from the 1996 to 2007 period and found that 46 of them did not appear on the STE list of Cai et al. (2011). They divide three categories of storms in which (1) information needed to establish the presence/absence of STEs is insufficient, (2) STE signatures were present but overlooked, and (3) the magnetopause moved earthward of 6.6 RE so that energetic particles cannot gradient-curvature drift to geosynchronous satellites in the magnetosheath near local noon. We conclude that STE identification criteria be expanded to include compressed cases in which quasiperiodic nightside injections occur. Super storms with no nightside injections are attributed to episodes of severe ring current inflation of the inner magnetosphere that inhibited the formation of sustained near-Earth neutral lines.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19880033414&hterms=current+situation&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dcurrent%2Bsituation','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19880033414&hterms=current+situation&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dcurrent%2Bsituation"><span>The earth's ring current - Present situation and future thrusts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Williams, D. J.</p> <p>1987-01-01</p> <p>Particle distributions, currents, and the ring current situation prior to the August 1984 launch of the AMPTE Charge Composition Explorer (CCE) are discussed. CCE results which demonstrate the capability of these new measurements to pursue questions of ring current sources, energization, and transport are presented. Consideration is given to various ring current generation mechanisms which have been discussed in the literature, and a two-step generation process which to a certain extent unifies the previous mechanisms is presented. The first in-situ global observations of ring current decay as obtained through the detection of energetic neutral atoms generated by charge exchange interactions between the ring current and hydrogen geocorona are discussed, as well as the possibility of using the detection of energetic neutral atoms to obtain global images of the earth's ring current.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SSRv..212.1315G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SSRv..212.1315G"><span>Space Weather Effects Produced by the Ring Current Particles</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ganushkina, Natalia; Jaynes, Allison; Liemohn, Michael</p> <p>2017-11-01</p> <p>One of the definitions of space weather describes it as the time-varying space environment that may be hazardous to technological systems in space and/or on the ground and/or endanger human health or life. The ring current has its contributions to space weather effects, both in terms of particles, ions and electrons, which constitute it, and magnetic and electric fields produced and modified by it at the ground and in space. We address the main aspects of the space weather effects from the ring current starting with brief review of ring current discovery and physical processes and the Dst-index and predictions of the ring current and storm occurrence based on it. Special attention is paid to the effects on satellites produced by the ring current electrons. The ring current is responsible for several processes in the other inner magnetosphere populations, such as the plasmasphere and radiation belts which is also described. Finally, we discuss the ring current influence on the ionosphere and the generation of geomagnetically induced currents (GIC).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19980219385','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19980219385"><span>The Human Mars Mission: Transportation Assessment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kos, Larry</p> <p>1998-01-01</p> <p>If funding is available, and for NASA planning purposes, the Human Mars Mission (HMM) is baselined to take place during the 2011 and 2013/2014 Mars opportunities. Two cargo flights will leave for Mars during the first opportunity, one to Mars orbit and the second to the surface, in preparation for the crew during the following opportunity. Each trans-Mars injection (TMI) stack will consist of a cargo / payload portion (currently coming in at between 65 and 78 mt) and a nuclear thermal propulsion (NTP) stage (currently coming in at between 69 and 77 mt loaded with propellant) for performing the departure (Delta)Vs to get on to the appropriate Mars trajectories. Three 66,700 N thrust NTP engines comprise the TMI stage for each stack and perform a (Delta)V ringing from 3580 to 3890 m/s is required by the trajectory (with gravity losses and various performance margins to this for the total TMI (Delta)V performed). This paper will discuss the current application of this NTP stage to a Human Mars mission, and project what implications a nuclear trans-Earth injection (TEI) stage as well as a bi-modal NTP stage could mean to a human visit to Mars.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSA41C..03W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSA41C..03W"><span>Relation between the Sub-Auroral Polarization Stream and Energetic Particle Injection during Substorms</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Z.; Zou, S.; Gjerloev, J. W.; Wygant, J. R.; Ruohoniemi, J. M.; Kunduri, B.</p> <p>2017-12-01</p> <p>Sub-Auroral Polarization Streams (SAPS) refer to regions with intense radial electric fields in the inner magnetosphere and poleward electric fields in the conjugate subauroral ionosphere. These large electric fields lead to westward convection flows and sometimes reduce electron density in the ionosphere. SAPS play an important role in the magnetosphere-ionosphere-thermosphere coupling process. However, their relationship with energetic particle injections during substorms are still not well understood. In this study, we report two conjugate observations of SAPS during substorms from the Van Allen Probes (VAP) and the Super Dual Auroral Radar Network (SuperDARN) on May 18, 2013 and Jun 29, 2013. In both cases, a large SAPS electric field ( 10 mV/m) pointing radially outward and a magnetic field depression are observed near the inner edge of the ring current. The first event is associated with a single short-lived injection, while the second one with a series of injections. The SuperDARN observations of these SAPS events reveal quite different lifetime ( 10 min for the first event and 40 min for the second one). Using the Assimilative Mapping of Ionospheric Electrodynamics (AMIE) model and ground-based magnetometer observations as input, we show the distribution of field-aligned currents (FACs) associated with the SAPS. The above-described complex signatures can be explained by the closure of the FACs associated with the dispersionless particle injection. We conclude that particle injections during substorm can lead to localized enhanced pressure and pressure gradient, and thus the formation of SAPS through FAC closure in the ionosphere. In addition, the lifetime of SAPS depends on the injection lifetime, i.e., a series of injections can give rise to a longer lifetime of SAPS. We also run the SWMF with anisotropic feature to simulate this case and compare results with observations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/6087678-memory-characteristics-ring-shaped-ceramic-superconductors','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/6087678-memory-characteristics-ring-shaped-ceramic-superconductors"><span>Memory characteristics of ring-shaped ceramic superconductors</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Takeoka, A.; Hasunuma, M.; Sakaiya, S.</p> <p>1989-03-01</p> <p>For the practical application of ceramic superconductors, the authors investigated the residual magnetic field characteristics of ring-shaped ceramic superconductors in a Y-Ba-Cu-O system with high Tc. The residual magnetic field of a ring with asymmetric current paths, supplied by external currents, appeared when one of the branch currents was above the critical current. The residual magnetic field saturated when both brach currents exceeded the critical current of the ring and showed hysteresis-like characteristics. The saturated magnetic field is subject to the critical current of the ring. A superconducting ring with asymmetric current paths suggests a simple and quite new persistent-currentmore » type memory device.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA800112','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA800112"><span>Measurement of Droplet Sizes by the Diffraction Ring Method</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1948-07-27</p> <p>for measuring the droplet size distribution in sprays ob- tained by pressure injection of a liquid through an orifice «roby air- stream atomization...Diameter vs Injection Pressure 10 6. Distribution Curves for Spray Sample of Water Injected into Air Stream .... 11 Page ii Page Hi i^ujJa-je jii...tion in sprays obtained by pressure injection of a liquid through an orifice or by air- stream atomization. Perhaps the most widely used method</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/4159372','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/4159372"><span>PARTICLE ACCELERATOR DIVISION SUMMARY REPORT FOR NOVEMBER 1958 THROUGH MAY 1959</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>None</p> <p></p> <p>Work in the division is summarized in the areas of theoretical studies, model magnet studies, ring magnet vacuum chamber, vacuum pumping system, ring magnet power supply, radio-frequency system, injection system, theoretical studies on radial motion through the linac, outgassing, and ferrite bonding. (For preceding period see ANL-5956.) (W.D.M.)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930069060&hterms=John+Kay&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DJohn%2BKay','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930069060&hterms=John+Kay&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DJohn%2BKay"><span>Diode pumped, regenerative Nd:YAG ring amplifier for space application</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Coyle, D. B.; Kay, Richard B.; Degnan, John J.; Krebs, Danny J.; Seery, Bernard D.</p> <p>1992-01-01</p> <p>The study reviews the research and development of a prototype laser used to study one possible method of short-pulse production and amplification, in particular, a pulsed Nd:YAG ring laser pumped by laser diode arrays and injected seeded by a 100-ps source. The diode array pumped, regenerative amplifier consists of only five optical elements, two mirrors, one thin film polarizer, one Nd:YAG crystal, and one pockels cell. The pockels cell performed both as a Q-switch and a cavity dumper for amplified pulse ejection through the thin film polarizer. The total optical efficiency was low principally due to the low gain provided by the 2-bar pumped laser head. After comparison with a computer model, a real seed threshold of about 10 exp -15 J was achieved because only about 0.1 percent of the injected energy mode-matched with the ring.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22599069-acceleration-evolution-hollow-electron-beam-wakefields-driven-laguerre-gaussian-laser-pulse','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22599069-acceleration-evolution-hollow-electron-beam-wakefields-driven-laguerre-gaussian-laser-pulse"><span>Acceleration and evolution of a hollow electron beam in wakefields driven by a Laguerre-Gaussian laser pulse</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Zhang, Guo-Bo; College of Science, National University of Defense Technology, Changsha 410073; Chen, Min, E-mail: minchen@sjtu.edu.cn, E-mail: yanyunma@126.com</p> <p>2016-03-15</p> <p>We show that a ring-shaped hollow electron beam can be injected and accelerated by using a Laguerre-Gaussian laser pulse and ionization-induced injection in a laser wakefield accelerator. The acceleration and evolution of such a hollow, relativistic electron beam are investigated through three-dimensional particle-in-cell simulations. We find that both the ring size and the beam thickness oscillate during the acceleration. The beam azimuthal shape is angularly dependent and evolves during the acceleration. The beam ellipticity changes resulting from the electron angular momenta obtained from the drive laser pulse and the focusing forces from the wakefield. The dependence of beam ring radiusmore » on the laser-plasma parameters (e.g., laser intensity, focal size, and plasma density) is studied. Such a hollow electron beam may have potential applications for accelerating and collimating positively charged particles.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li class="active"><span>7</span></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_7 --> <div id="page_8" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li class="active"><span>8</span></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="141"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1331994','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1331994"><span>TRANSIENT BEAM LOADING EFFECTS IN RF SYSTEMS IN JLEIC</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Wang, Haipeng; Guo, Jiquan; Rimmer, Robert A.</p> <p>2016-05-01</p> <p>The pulsed electron bunch trains generated from the Continuous Electron Beam Accelerator Facility (CEBAF) linac to inject into the proposed Jefferson Lab Electron Ion Collider (JLEIC) e-ring will produce transient beam loading effects in the Superconducting Radio Frequency (SRF) systems that, if not mitigated, could cause unacceptably large beam energy deviation in the injection capture, or exceed the energy acceptance of CEBAF’s recirculating arcs. In the electron storage ring, the beam abort or ion clearing gaps or uneven bucket filling can cause large beam phase transients in the (S)RF cavity control systems and even beam loss due to Robinson instability.more » We have first analysed the beam stability criteria in steady state and estimated the transient effect in Feedforward and Feedback RF controls. Initial analytical models for these effects are shown for the design of the JLEIC e-ring from 3GeV to 12GeV.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ApPhB.124..114Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ApPhB.124..114Z"><span>High-power all-fiber ultra-low noise laser</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhao, Jian; Guiraud, Germain; Pierre, Christophe; Floissat, Florian; Casanova, Alexis; Hreibi, Ali; Chaibi, Walid; Traynor, Nicholas; Boullet, Johan; Santarelli, Giorgio</p> <p>2018-06-01</p> <p>High-power ultra-low noise single-mode single-frequency lasers are in great demand for interferometric metrology. Robust, compact all-fiber lasers represent one of the most promising technologies to replace the current laser sources in use based on injection-locked ring resonators or multi-stage solid-state amplifiers. Here, a linearly polarized high-power ultra-low noise all-fiber laser is demonstrated at a power level of 100 W. Special care has been taken in the study of relative intensity noise (RIN) and its reduction. Using an optimized servo actuator to directly control the driving current of the pump laser diode, we obtain a large feedback bandwidth of up to 1.3 MHz. The RIN reaches - 160 dBc/Hz between 3 and 20 kHz.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012ApPhL.100y1114C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012ApPhL.100y1114C"><span>Semiconductor ring lasers coupled by a single waveguide</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Coomans, W.; Gelens, L.; Van der Sande, G.; Mezosi, G.; Sorel, M.; Danckaert, J.; Verschaffelt, G.</p> <p>2012-06-01</p> <p>We experimentally and theoretically study the characteristics of semiconductor ring lasers bidirectionally coupled by a single bus waveguide. This configuration has, e.g., been suggested for use as an optical memory and as an optical neural network motif. The main results are that the coupling can destabilize the state in which both rings lase in the same direction, and it brings to life a state with equal powers at both outputs. These are both undesirable for optical memory operation. Although the coupling between the rings is bidirectional, the destabilization occurs due to behavior similar to an optically injected laser system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21805991','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21805991"><span>Charge injection engineering of ambipolar field-effect transistors for high-performance organic complementary circuits.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Baeg, Kang-Jun; Kim, Juhwan; Khim, Dongyoon; Caironi, Mario; Kim, Dong-Yu; You, In-Kyu; Quinn, Jordan R; Facchetti, Antonio; Noh, Yong-Young</p> <p>2011-08-01</p> <p>Ambipolar π-conjugated polymers may provide inexpensive large-area manufacturing of complementary integrated circuits (CICs) without requiring micro-patterning of the individual p- and n-channel semiconductors. However, current-generation ambipolar semiconductor-based CICs suffer from higher static power consumption, low operation frequencies, and degraded noise margins compared to complementary logics based on unipolar p- and n-channel organic field-effect transistors (OFETs). Here, we demonstrate a simple methodology to control charge injection and transport in ambipolar OFETs via engineering of the electrical contacts. Solution-processed caesium (Cs) salts, as electron-injection and hole-blocking layers at the interface between semiconductors and charge injection electrodes, significantly decrease the gold (Au) work function (∼4.1 eV) compared to that of a pristine Au electrode (∼4.7 eV). By controlling the electrode surface chemistry, excellent p-channel (hole mobility ∼0.1-0.6 cm(2)/(Vs)) and n-channel (electron mobility ∼0.1-0.3 cm(2)/(Vs)) OFET characteristics with the same semiconductor are demonstrated. Most importantly, in these OFETs the counterpart charge carrier currents are highly suppressed for depletion mode operation (I(off) < 70 nA when I(on) > 0.1-0.2 mA). Thus, high-performance, truly complementary inverters (high gain >50 and high noise margin >75% of ideal value) and ring oscillators (oscillation frequency ∼12 kHz) based on a solution-processed ambipolar polymer are demonstrated.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1997APS..PAC..8P20B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1997APS..PAC..8P20B"><span>PSR Injection Line Upgrade</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Blind, Barbara; Jason, Andrew J.</p> <p>1997-05-01</p> <p>We describe the new injection line to be implemented for the Los Alamos Proton Storage Ring in the change from a two-step process to direct H- injection. While obeying all geometrical constraints imposed by the existing structures, the new line has properties not found in the present injection line. In particular, it features decoupled transverse phase spaces downstream of the skew bend and a high degree of tunability of the beam at the injection foil. A comprehensive set of error studies has dictated the component tolerances imposed and has indicated the expected performance of the system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20050169213','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20050169213"><span>Energetic Electron Transport in the Inner Magnetosphere During Geomagnetic Storms and Substorms</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>McKenzie, D. L.; Anderson, P. C.</p> <p>2005-01-01</p> <p>We propose to examine the relationship of geomagnetic storms and substorms and the transport of energetic particles in the inner magnetosphere using measurements of the auroral X-ray emissions by PIXIE. PIXIE provides a global view of the auroral oval for the extended periods of time required to study stormtime phenomena. Its unique energy response and global view allow separation of stormtime particle transport driven by strong magnetospheric electric fields from substorm particle transport driven by magnetic-field dipolarization and subsequent particle injection. The relative importance of substorms in releasing stored magnetospheric energy during storms and injecting particles into the inner magnetosphere and the ring current is currently hotly debated. The distribution of particles in the inner magnetosphere is often inferred from measurements of the precipitating auroral particles. Thus, the global distributions of the characteristics of energetic precipitating particles during storms and substorms are extremely important inputs to any description or model of the geospace environment and the Sun-Earth connection. We propose to use PIXIE observations and modeling of the transport of energetic electrons to examine the relationship between storms and substorms.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23742597','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23742597"><span>First storage of ion beams in the Double Electrostatic Ion-Ring Experiment: DESIREE.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Schmidt, H T; Thomas, R D; Gatchell, M; Rosén, S; Reinhed, P; Löfgren, P; Brännholm, L; Blom, M; Björkhage, M; Bäckström, E; Alexander, J D; Leontein, S; Hanstorp, D; Zettergren, H; Liljeby, L; Källberg, A; Simonsson, A; Hellberg, F; Mannervik, S; Larsson, M; Geppert, W D; Rensfelt, K G; Danared, H; Paál, A; Masuda, M; Halldén, P; Andler, G; Stockett, M H; Chen, T; Källersjö, G; Weimer, J; Hansen, K; Hartman, H; Cederquist, H</p> <p>2013-05-01</p> <p>We report on the first storage of ion beams in the Double ElectroStatic Ion Ring ExpEriment, DESIREE, at Stockholm University. We have produced beams of atomic carbon anions and small carbon anion molecules (C(n)(-), n = 1, 2, 3, 4) in a sputter ion source. The ion beams were accelerated to 10 keV kinetic energy and stored in an electrostatic ion storage ring enclosed in a vacuum chamber at 13 K. For 10 keV C2 (-) molecular anions we measure the residual-gas limited beam storage lifetime to be 448 s ± 18 s with two independent detector systems. Using the measured storage lifetimes we estimate that the residual gas pressure is in the 10(-14) mbar range. When high current ion beams are injected, the number of stored particles does not follow a single exponential decay law as would be expected for stored particles lost solely due to electron detachment in collision with the residual-gas. Instead, we observe a faster initial decay rate, which we ascribe to the effect of the space charge of the ion beam on the storage capacity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1437276-concept-canceling-leakage-field-inside-stored-beam-chamber-septum-magnet','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1437276-concept-canceling-leakage-field-inside-stored-beam-chamber-septum-magnet"><span>A concept for canceling the leakage field inside the stored beam chamber of a septum magnet</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Abliz, M.; Jaski, M.; Xiao, A.</p> <p></p> <p>Here, the Advanced Photon Source is in the process of upgrading its storage ring from a double-bend to a multi-bend lattice as part of the APS Upgrade Project (APS-U). A swap-out injection scheme is planned for the APS-U to keep a constant beam current and to enable a small dynamic aperture. A novel concept that cancels out the effect of leakage field inside the stored beam chamber was introduced in the design of the septum magnet. As a result, the horizontal deflecting angle of the stored beam was reduced to below 1 µrad with a 2 mm septum thickness andmore » 1.06 T normal injection field. The concept helped to minimize the integrated skew quadrupole field and normal sextupole fields inside stored beam chamber as well.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1437276-concept-canceling-leakage-field-inside-stored-beam-chamber-septum-magnet','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1437276-concept-canceling-leakage-field-inside-stored-beam-chamber-septum-magnet"><span>A concept for canceling the leakage field inside the stored beam chamber of a septum magnet</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Abliz, M.; Jaski, M.; Xiao, A.; ...</p> <p>2017-12-20</p> <p>Here, the Advanced Photon Source is in the process of upgrading its storage ring from a double-bend to a multi-bend lattice as part of the APS Upgrade Project (APS-U). A swap-out injection scheme is planned for the APS-U to keep a constant beam current and to enable a small dynamic aperture. A novel concept that cancels out the effect of leakage field inside the stored beam chamber was introduced in the design of the septum magnet. As a result, the horizontal deflecting angle of the stored beam was reduced to below 1 µrad with a 2 mm septum thickness andmore » 1.06 T normal injection field. The concept helped to minimize the integrated skew quadrupole field and normal sextupole fields inside stored beam chamber as well.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1422964-integration-ram-scb-space-weather-modeling-framework','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1422964-integration-ram-scb-space-weather-modeling-framework"><span>Integration of RAM-SCB into the Space Weather Modeling Framework</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Welling, Daniel; Toth, Gabor; Jordanova, Vania Koleva; ...</p> <p>2018-02-07</p> <p>We present that numerical simulations of the ring current are a challenging endeavor. They require a large set of inputs, including electric and magnetic fields and plasma sheet fluxes. Because the ring current broadly affects the magnetosphere-ionosphere system, the input set is dependent on the ring current region itself. This makes obtaining a set of inputs that are self-consistent with the ring current difficult. To overcome this challenge, researchers have begun coupling ring current models to global models of the magnetosphere-ionosphere system. This paper describes the coupling between the Ring current Atmosphere interaction Model with Self-Consistent Magnetic field (RAM-SCB) tomore » the models within the Space Weather Modeling Framework. Full details on both previously introduced and new coupling mechanisms are defined. Finally, the impact of self-consistently including the ring current on the magnetosphere-ionosphere system is illustrated via a set of example simulations.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1422964-integration-ram-scb-space-weather-modeling-framework','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1422964-integration-ram-scb-space-weather-modeling-framework"><span>Integration of RAM-SCB into the Space Weather Modeling Framework</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Welling, Daniel; Toth, Gabor; Jordanova, Vania Koleva</p> <p></p> <p>We present that numerical simulations of the ring current are a challenging endeavor. They require a large set of inputs, including electric and magnetic fields and plasma sheet fluxes. Because the ring current broadly affects the magnetosphere-ionosphere system, the input set is dependent on the ring current region itself. This makes obtaining a set of inputs that are self-consistent with the ring current difficult. To overcome this challenge, researchers have begun coupling ring current models to global models of the magnetosphere-ionosphere system. This paper describes the coupling between the Ring current Atmosphere interaction Model with Self-Consistent Magnetic field (RAM-SCB) tomore » the models within the Space Weather Modeling Framework. Full details on both previously introduced and new coupling mechanisms are defined. Finally, the impact of self-consistently including the ring current on the magnetosphere-ionosphere system is illustrated via a set of example simulations.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29560175','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29560175"><span>Exploring the ring current of carbon nanotubes by first-principles calculations.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ren, Pengju; Zheng, Anmin; Xiao, Jianping; Pan, Xiulian; Bao, Xinhe</p> <p>2015-02-01</p> <p>Ring current is a fundamental concept to understand the nuclear magnetic resonance (NMR) properties and aromaticity for conjugated systems, such as carbon nanotubes (CNTs). Employing the recently developed gauge including projector augmented wave (GIPAW) method, we studied the ring currents of CNTs systematically and visualized their distribution. The ring current patterns are determined by the semiconducting or metallic properties of CNTs. The discrepancy is mainly caused by the axial component of external magnetic fields, whereas the radial component induced ring currents are almost independent of the electronic structures of CNTs, where the intensities of the ring currents are linearly related to the diameters of the CNTs. Although the ring currents induced by the radial component are more intense than those by the axial component, only the latter determines the overall NMR responses and aromaticity of the CNTs as well. Furthermore, the semiconducting CNTs are more aromatic than their metallic counterparts due to the existence of delocalized ring currents on the semiconducting CNTs. These fundamental features are of vital importance for the development of CNT-based nanoelectronics and applications in magnetic fields.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5811143','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5811143"><span>Exploring the ring current of carbon nanotubes by first-principles calculations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Ren, Pengju; Zheng, Anmin; Xiao, Jianping; Pan, Xiulian</p> <p>2015-01-01</p> <p>Ring current is a fundamental concept to understand the nuclear magnetic resonance (NMR) properties and aromaticity for conjugated systems, such as carbon nanotubes (CNTs). Employing the recently developed gauge including projector augmented wave (GIPAW) method, we studied the ring currents of CNTs systematically and visualized their distribution. The ring current patterns are determined by the semiconducting or metallic properties of CNTs. The discrepancy is mainly caused by the axial component of external magnetic fields, whereas the radial component induced ring currents are almost independent of the electronic structures of CNTs, where the intensities of the ring currents are linearly related to the diameters of the CNTs. Although the ring currents induced by the radial component are more intense than those by the axial component, only the latter determines the overall NMR responses and aromaticity of the CNTs as well. Furthermore, the semiconducting CNTs are more aromatic than their metallic counterparts due to the existence of delocalized ring currents on the semiconducting CNTs. These fundamental features are of vital importance for the development of CNT-based nanoelectronics and applications in magnetic fields. PMID:29560175</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20110013500&hterms=comparative&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dcomparative','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20110013500&hterms=comparative&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dcomparative"><span>Ring Current Dynamics in Moderate and Strong Storms: Comparative Analysis of TWINS and IMAGE/HENA Data with the Comprehensive Ring Current Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Buzulukova, N.; Fok, M.-C.; Goldstein, J.; Valek, P.; McComas, D. J.; Brandt, P. C.</p> <p>2010-01-01</p> <p>We present a comparative study of ring current dynamics during strong and moderate storms. The ring current during the strong storm is studied with IMAGE/HENA data near the solar cycle maximum in 2000. The ring current during the moderate storm is studied using energetic neutral atom (ENA) data from the Two Wide-Angle Imaging Neutral- Atom Spectrometers (TWINS) mission during the solar minimum in 2008. For both storms, the local time distributions of ENA emissions show signatures of postmidnight enhancement (PME) during the main phases. To model the ring current and ENA emissions, we use the Comprehensive Ring Current Model (CRCM). CRCM results show that the main-phase ring current pressure peaks in the premidnight-dusk sector, while the most intense CRCM-simulated ENA emissions show PME signatures. We analyze two factors to explain this difference: the dependence of charge-exchange cross section on energy and pitch angle distributions of ring current. We find that the IMF By effect (twisting of the convection pattern due to By) is not needed to form the PME. Additionally, the PME is more pronounced for the strong storm, although relative shielding and hence electric field skewing is well developed for both events.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013JChPh.138g4304M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013JChPh.138g4304M"><span>Coherent π-electron dynamics of (P)-2,2'-biphenol induced by ultrashort linearly polarized UV pulses: Angular momentum and ring current</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mineo, H.; Lin, S. H.; Fujimura, Y.</p> <p>2013-02-01</p> <p>The results of a theoretical investigation of coherent π-electron dynamics for nonplanar (P)-2,2'-biphenol induced by ultrashort linearly polarized UV pulses are presented. Expressions for the time-dependent coherent angular momentum and ring current are derived by using the density matrix method. The time dependence of these coherences is determined by the off-diagonal density matrix element, which can be obtained by solving the coupled equations of motion of the electronic-state density matrix. Dephasing effects on coherent angular momentum and ring current are taken into account within the Markov approximation. The magnitudes of the electronic angular momentum and current are expressed as the sum of expectation values of the corresponding operators in the two phenol rings (L and R rings). Here, L (R) denotes the phenol ring in the left (right)-hand side of (P)-2,2'-biphenol. We define the bond current between the nearest neighbor carbon atoms Ci and Cj as an electric current through a half plane perpendicular to the Ci-Cj bond. The bond current can be expressed in terms of the inter-atomic bond current. The inter-atomic bond current (bond current) depends on the position of the half plane on the bond and has the maximum value at the center. The coherent ring current in each ring is defined by averaging over the bond currents. Since (P)-2,2'-biphenol is nonplanar, the resultant angular momentum is not one-dimensional. Simulations of the time-dependent coherent angular momentum and ring current of (P)-2,2'-biphenol excited by ultrashort linearly polarized UV pulses are carried out using the molecular parameters obtained by the time-dependent density functional theory (TD-DFT) method. Oscillatory behaviors in the time-dependent angular momentum (ring current), which can be called angular momentum (ring current) quantum beats, are classified by the symmetry of the coherent state, symmetric or antisymmetric. The bond current of the bridge bond linking the L and R rings is zero for the symmetric coherent state, while it is nonzero for the antisymmetric coherent state. The magnitudes of ring current and ring current-induced magnetic field are also evaluated, and their possibility as a control parameter in ultrafast switching devices is discussed. The present results give a detailed description of the theoretical treatment reported in our previous paper [H. Mineo, M. Yamaki, Y. Teranish, M. Hayashi, S. H. Lin, and Y. Fujimura, J. Am. Chem. Soc. 134, 14279 (2012), 10.1021/ja3047848].</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23445006','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23445006"><span>Coherent π-electron dynamics of (P)-2,2'-biphenol induced by ultrashort linearly polarized UV pulses: angular momentum and ring current.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mineo, H; Lin, S H; Fujimura, Y</p> <p>2013-02-21</p> <p>The results of a theoretical investigation of coherent π-electron dynamics for nonplanar (P)-2,2'-biphenol induced by ultrashort linearly polarized UV pulses are presented. Expressions for the time-dependent coherent angular momentum and ring current are derived by using the density matrix method. The time dependence of these coherences is determined by the off-diagonal density matrix element, which can be obtained by solving the coupled equations of motion of the electronic-state density matrix. Dephasing effects on coherent angular momentum and ring current are taken into account within the Markov approximation. The magnitudes of the electronic angular momentum and current are expressed as the sum of expectation values of the corresponding operators in the two phenol rings (L and R rings). Here, L (R) denotes the phenol ring in the left (right)-hand side of (P)-2,2'-biphenol. We define the bond current between the nearest neighbor carbon atoms Ci and Cj as an electric current through a half plane perpendicular to the Ci-Cj bond. The bond current can be expressed in terms of the inter-atomic bond current. The inter-atomic bond current (bond current) depends on the position of the half plane on the bond and has the maximum value at the center. The coherent ring current in each ring is defined by averaging over the bond currents. Since (P)-2,2'-biphenol is nonplanar, the resultant angular momentum is not one-dimensional. Simulations of the time-dependent coherent angular momentum and ring current of (P)-2,2'-biphenol excited by ultrashort linearly polarized UV pulses are carried out using the molecular parameters obtained by the time-dependent density functional theory (TD-DFT) method. Oscillatory behaviors in the time-dependent angular momentum (ring current), which can be called angular momentum (ring current) quantum beats, are classified by the symmetry of the coherent state, symmetric or antisymmetric. The bond current of the bridge bond linking the L and R rings is zero for the symmetric coherent state, while it is nonzero for the antisymmetric coherent state. The magnitudes of ring current and ring current-induced magnetic field are also evaluated, and their possibility as a control parameter in ultrafast switching devices is discussed. The present results give a detailed description of the theoretical treatment reported in our previous paper [H. Mineo, M. Yamaki, Y. Teranish, M. Hayashi, S. H. Lin, and Y. Fujimura, J. Am. Chem. Soc. 134, 14279 (2012)].</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSM43B2715S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSM43B2715S"><span>The role of cold plasma and its composition on the growth of electromagnetic ion cyclotron waves in the inner magnetosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Snelling, J. M.; Johnson, J.; Engebretson, M. J.; Kim, E. H.; Tian, S.</p> <p>2017-12-01</p> <p>While it is currently well accepted that the free energy for growth of electromagnetic ion cyclotron (EMIC) waves in Earth's magnetosphere comes from unstable configurations of hot anisotropic ions that are injected into the ring current, several questions remain about what controls the instability. A recent study of the occurrence of EMIC waves relative to the plasmapause in Vallen Probes Data showed that plasma density gradients or enhancements were not the dominant factor in determining the site of EMIC wave generation [Tetrick et al. 2017]. However, the factors that control wave growth on each of the branches are not fully understood. For example, in some cases, the measured anisotropy is not adequate to explain local instability, and the relative importance of the density and composition of a cold plasma population is still uncertain. Several intervals of EMIC wave activity are analyzed to determine the role of a cold population in driving instability on each of the wave branches. This study utilizes the WHAMP (Waves in Homogeneous Anisotropic Magnetized Plasma) stability code with plasma distributions optimized to fit the observed distributions including temperature anisotropy, loss cone, and ring beam populations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20080031164&hterms=Plasma+Ring&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DPlasma%2BRing','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20080031164&hterms=Plasma+Ring&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DPlasma%2BRing"><span>Magnetic Field Observations of Partial Ring Current during Storm Recovery Phase</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Le, G.; Russell, C. T.; Slavin, J. A.; Lucek, E. A.</p> <p>2008-01-01</p> <p>We present results of an extensive survey of the magnetic field observations in the inner magnetosphere using 30 years of magnetospheric magnetic field data from Polar, Cluster, ISEE, and AMPTE/CCE missions. The purpose of this study is to understand the magnetic field evolution during the recovery phase of geomagnetic storms, and its implication to the ring current recovery and loss mechanisms of ring current particles. It is now commonly believed that a strong partial ring current is formed during the storm main phase due to the enhanced earthward convection of energetic ions from nightside plasma sheet. But the presence of a strong partial ring current throughout the recovery phase remains controversial. The magnetic field generated by the ring current inflates the inner magnetosphere and causes magnetic field depressions in the equatorial magnetosphere. During the storm recovery phase, we find that the distribution of the equatorial magnetic field depression exhibits similar local time dependence as the ring current distribution obtained from the combined dataset in the earlier study. It shows that a strong partial ring current is a permanent feature throughout the recovery phase. In the early recovery phase, the partial ring current peaks near the dusk terminator as indicated by the peak of the magnetic field depression. As the recovery phase progresses, the partial ring current decays most quickly near the dusk and results in a dusk-to-midnight moving of the peak of the partial ring current. Thus the loss mechanisms work most effectively near the dusk. The magnetic field depression increases the gyroradius of ring current protons to a scale greater or comparable to the thickness of the magnetopause, which increases the chance of ion drift loss near the dusk magnetopause at larger L-shell (L greater than 5). But the drift loss mechanism alone cannot explain the loss of ring current ions especially in the smaller L-shell (L less than 5). The precipitation loss due to wave-particle interaction is most likely the dominant loss mechanism in the small L-shell as it works most effectively at the same local time.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19850016266&hterms=Plasma+Ring&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DPlasma%2BRing','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19850016266&hterms=Plasma+Ring&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DPlasma%2BRing"><span>Ring current dynamics and plasma sheet sources. [magnetic storms</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lyons, L. R.</p> <p>1984-01-01</p> <p>The source of the energized plasma that forms in geomagnetic storm ring currents, and ring current decay are discussed. The dominant loss processes for ring current ions are identified as charge exchange and resonant interactions with ion-cyclotron waves. Ring current ions are not dominated by protons. At L4 and energies below a few tens of keV, O+ is the most abundant ion, He+ is second, and protons are third. The plasma sheet contributes directly or indirectly to the ring current particle population. An important source of plasma sheet ions is earthward streaming ions on the outer boundary of the plasma sheet. Ion interactions with the current across the geomagnetic tail can account for the formation of this boundary layer. Electron interactions with the current sheet are possibly an important source of plasma sheet electrons.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23398371','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23398371"><span>Analysis of the contributions of ring current and electric field effects to the chemical shifts of RNA bases.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sahakyan, Aleksandr B; Vendruscolo, Michele</p> <p>2013-02-21</p> <p>Ring current and electric field effects can considerably influence NMR chemical shifts in biomolecules. Understanding such effects is particularly important for the development of accurate mappings between chemical shifts and the structures of nucleic acids. In this work, we first analyzed the Pople and the Haigh-Mallion models in terms of their ability to describe nitrogen base conjugated ring effects. We then created a database (DiBaseRNA) of three-dimensional arrangements of RNA base pairs from X-ray structures, calculated the corresponding chemical shifts via a hybrid density functional theory approach and used the results to parametrize the ring current and electric field effects in RNA bases. Next, we studied the coupling of the electric field and ring current effects for different inter-ring arrangements found in RNA bases using linear model fitting, with joint electric field and ring current, as well as only electric field and only ring current approximations. Taken together, our results provide a characterization of the interdependence of ring current and electric field geometric factors, which is shown to be especially important for the chemical shifts of non-hydrogen atoms in RNA bases.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li class="active"><span>8</span></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_8 --> <div id="page_9" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="161"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27241465','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27241465"><span>Analysis of the magnetically induced current density of molecules consisting of annelated aromatic and antiaromatic hydrocarbon rings.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sundholm, Dage; Berger, Raphael J F; Fliegl, Heike</p> <p>2016-06-21</p> <p>Magnetically induced current susceptibilities and current pathways have been calculated for molecules consisting of two pentalene groups annelated with a benzene (1) or naphthalene (2) moiety. Current strength susceptibilities have been obtained by numerically integrating separately the diatropic and paratropic contributions to the current flow passing planes through chosen bonds of the molecules. The current density calculations provide novel and unambiguous current pathways for the unusual molecules with annelated aromatic and antiaromatic hydrocarbon moieties. The calculations show that the benzene and naphthalene moieties annelated with two pentalene units as in molecules 1 and 2, respectively, are unexpectedly antiaromatic sustaining only a local paratropic ring current around the ring, whereas a weak diatropic current flows around the C-H moiety of the benzene ring. For 1 and 2, the individual five-membered rings of the pentalenes are antiaromatic and a slightly weaker semilocal paratropic current flows around the two pentalene rings. Molecules 1 and 2 do not sustain any net global ring current. The naphthalene moiety of the molecule consisting of a naphthalene annelated with two pentalene units (3) does not sustain any strong ring current that is typical for naphthalene. Instead, half of the diatropic current passing the naphthalene moiety forms a zig-zag pattern along the C-C bonds of the naphthalene moiety that are not shared with the pentalene moieties and one third of the current continues around the whole molecule partially cancelling the very strong paratropic semilocal ring current of the pentalenes. For molecule 3, the pentalene moieties and the individual five-membered rings of the pentalenes are more antiaromatic than for 1 and 2. The calculated current patterns elucidate why the compounds with formally [4n + 2] π-electrons have unusual aromatic properties violating the Hückel π-electron count rule. The current density calculations also provide valuable information for interpreting the measured (1)H NMR spectra.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1328613-ultrafast-harmonic-rf-kicker-design-beam-dynamics-analysis-energy-recovery-linac-based-electron-circulator-cooler-ring','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1328613-ultrafast-harmonic-rf-kicker-design-beam-dynamics-analysis-energy-recovery-linac-based-electron-circulator-cooler-ring"><span>Ultrafast harmonic rf kicker design and beam dynamics analysis for an energy recovery linac based electron circulator cooler ring</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Huang, Yulu; Wang, Haipeng; Rimmer, Robert A.; ...</p> <p>2016-08-01</p> <p>An ultrafast kicker system is being developed for the energy recovery linac (ERL) based electron circulator cooler ring (CCR) in the proposed Jefferson Lab Electron Ion Collider (JLEIC, previously named MEIC). In the CCR, the injected electron bunches can be recirculated while performing ion cooling for 10–30 turns before the extraction, thus reducing the recirculation beam current in the ERL to 1/10–1/30 (150mA–50 mA) of the cooling beam current (up to 1.5 A). Assuming a bunch repetition rate of 476.3 MHz and a recirculating factor of 10 in the CCR, the kicker is required to operate at a pulse repetitionmore » rate of 47.63 MHz with pulse width of around 2 ns, so that only every 10th bunch in the CCR will experience a transverse kick while the rest of the bunches will not be disturbed. Such a kicker pulse can be synthesized by ten harmonic modes of the 47.63 MHz kicker pulse repetition frequency, using up to four quarter wavelength resonator (QWR) based deflecting cavities. In this paper, several methods to synthesize such a kicker waveform will be discussed and a comparison of their beam dynamics performance is made using ELEGANT. Four QWR cavities are envisaged with high transverse shunt impedance requiring less than 100 W of total rf power for a Flat-Top kick pulse. Multipole fields due to the asymmetry of this type of cavity are analyzed. The transverse emittance growth due to the sextupole component is simulated in ELEGANT. In conclusion, off-axis injection and extraction issues and beam optics using a multicavity kick-drift scheme will also be discussed.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1369194-effects-electric-field-methods-modeling-midlatitude-ionospheric-electrodynamics-inner-magnetosphere-dynamics','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1369194-effects-electric-field-methods-modeling-midlatitude-ionospheric-electrodynamics-inner-magnetosphere-dynamics"><span>Effects of electric field methods on modeling the midlatitude ionospheric electrodynamics and inner magnetosphere dynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Yu, Yiqun; Jordanova, Vania Koleva; Ridley, Aaron J.; ...</p> <p>2017-05-10</p> <p>Here, we report a self-consistent electric field coupling between the midlatitude ionospheric electrodynamics and inner magnetosphere dynamics represented in a kinetic ring current model. This implementation in the model features another self-consistency in addition to its already existing self-consistent magnetic field coupling with plasma. The model is therefore named as Ring current-Atmosphere interaction Model with Self-Consistent magnetic (B) and electric (E) fields, or RAM-SCB-E. With this new model, we explore, by comparing with previously employed empirical Weimer potential, the impact of using self-consistent electric fields on the modeling of storm time global electric potential distribution, plasma sheet particle injection, andmore » the subauroral polarization streams (SAPS) which heavily rely on the coupled interplay between the inner magnetosphere and midlatitude ionosphere. We find the following phenomena in the self-consistent model: (1) The spatially localized enhancement of electric field is produced within 2.5 < L < 4 during geomagnetic active time in the dusk-premidnight sector, with a similar dynamic penetration as found in statistical observations. (2) The electric potential contours show more substantial skewing toward the postmidnight than the Weimer potential, suggesting the resistance on the particles from directly injecting toward the low-L region. (3) The proton flux indeed indicates that the plasma sheet inner boundary at the dusk-premidnight sector is located further away from the Earth than in the Weimer potential, and a “tongue” of low-energy protons extends eastward toward the dawn, leading to the Harang reversal. (4) SAPS are reproduced in the subauroral region, and their magnitude and latitudinal width are in reasonable agreement with data.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1369194','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1369194"><span>Effects of electric field methods on modeling the midlatitude ionospheric electrodynamics and inner magnetosphere dynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Yu, Yiqun; Jordanova, Vania Koleva; Ridley, Aaron J.</p> <p></p> <p>Here, we report a self-consistent electric field coupling between the midlatitude ionospheric electrodynamics and inner magnetosphere dynamics represented in a kinetic ring current model. This implementation in the model features another self-consistency in addition to its already existing self-consistent magnetic field coupling with plasma. The model is therefore named as Ring current-Atmosphere interaction Model with Self-Consistent magnetic (B) and electric (E) fields, or RAM-SCB-E. With this new model, we explore, by comparing with previously employed empirical Weimer potential, the impact of using self-consistent electric fields on the modeling of storm time global electric potential distribution, plasma sheet particle injection, andmore » the subauroral polarization streams (SAPS) which heavily rely on the coupled interplay between the inner magnetosphere and midlatitude ionosphere. We find the following phenomena in the self-consistent model: (1) The spatially localized enhancement of electric field is produced within 2.5 < L < 4 during geomagnetic active time in the dusk-premidnight sector, with a similar dynamic penetration as found in statistical observations. (2) The electric potential contours show more substantial skewing toward the postmidnight than the Weimer potential, suggesting the resistance on the particles from directly injecting toward the low-L region. (3) The proton flux indeed indicates that the plasma sheet inner boundary at the dusk-premidnight sector is located further away from the Earth than in the Weimer potential, and a “tongue” of low-energy protons extends eastward toward the dawn, leading to the Harang reversal. (4) SAPS are reproduced in the subauroral region, and their magnitude and latitudinal width are in reasonable agreement with data.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1328613-ultrafast-harmonic-rf-kicker-design-beam-dynamics-analysis-energy-recovery-linac-based-electron-circulator-cooler-ring','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1328613-ultrafast-harmonic-rf-kicker-design-beam-dynamics-analysis-energy-recovery-linac-based-electron-circulator-cooler-ring"><span>Ultrafast harmonic rf kicker design and beam dynamics analysis for an energy recovery linac based electron circulator cooler ring</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Huang, Yulu; Wang, Haipeng; Rimmer, Robert A.</p> <p></p> <p>An ultrafast kicker system is being developed for the energy recovery linac (ERL) based electron circulator cooler ring (CCR) in the proposed Jefferson Lab Electron Ion Collider (JLEIC, previously named MEIC). In the CCR, the injected electron bunches can be recirculated while performing ion cooling for 10–30 turns before the extraction, thus reducing the recirculation beam current in the ERL to 1/10–1/30 (150mA–50 mA) of the cooling beam current (up to 1.5 A). Assuming a bunch repetition rate of 476.3 MHz and a recirculating factor of 10 in the CCR, the kicker is required to operate at a pulse repetitionmore » rate of 47.63 MHz with pulse width of around 2 ns, so that only every 10th bunch in the CCR will experience a transverse kick while the rest of the bunches will not be disturbed. Such a kicker pulse can be synthesized by ten harmonic modes of the 47.63 MHz kicker pulse repetition frequency, using up to four quarter wavelength resonator (QWR) based deflecting cavities. In this paper, several methods to synthesize such a kicker waveform will be discussed and a comparison of their beam dynamics performance is made using ELEGANT. Four QWR cavities are envisaged with high transverse shunt impedance requiring less than 100 W of total rf power for a Flat-Top kick pulse. Multipole fields due to the asymmetry of this type of cavity are analyzed. The transverse emittance growth due to the sextupole component is simulated in ELEGANT. In conclusion, off-axis injection and extraction issues and beam optics using a multicavity kick-drift scheme will also be discussed.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRA..122.5321Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRA..122.5321Y"><span>Effects of electric field methods on modeling the midlatitude ionospheric electrodynamics and inner magnetosphere dynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yu, Yiqun; Jordanova, Vania K.; Ridley, Aaron J.; Toth, Gabor; Heelis, Roderick</p> <p>2017-05-01</p> <p>We report a self-consistent electric field coupling between the midlatitude ionospheric electrodynamics and inner magnetosphere dynamics represented in a kinetic ring current model. This implementation in the model features another self-consistency in addition to its already existing self-consistent magnetic field coupling with plasma. The model is therefore named as Ring current-Atmosphere interaction Model with Self-Consistent magnetic (B) and electric (E) fields, or RAM-SCB-E. With this new model, we explore, by comparing with previously employed empirical Weimer potential, the impact of using self-consistent electric fields on the modeling of storm time global electric potential distribution, plasma sheet particle injection, and the subauroral polarization streams (SAPS) which heavily rely on the coupled interplay between the inner magnetosphere and midlatitude ionosphere. We find the following phenomena in the self-consistent model: (1) The spatially localized enhancement of electric field is produced within 2.5 < L < 4 during geomagnetic active time in the dusk-premidnight sector, with a similar dynamic penetration as found in statistical observations. (2) The electric potential contours show more substantial skewing toward the postmidnight than the Weimer potential, suggesting the resistance on the particles from directly injecting toward the low-L region. (3) The proton flux indeed indicates that the plasma sheet inner boundary at the dusk-premidnight sector is located further away from the Earth than in the Weimer potential, and a "tongue" of low-energy protons extends eastward toward the dawn, leading to the Harang reversal. (4) SAPS are reproduced in the subauroral region, and their magnitude and latitudinal width are in reasonable agreement with data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26056956','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26056956"><span>Real-time and label-free ring-resonator monitoring of solid-phase recombinase polymerase amplification.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sabaté Del Río, Jonathan; Steylaerts, Tim; Henry, Olivier Y F; Bienstman, Peter; Stakenborg, Tim; Van Roy, Wim; O'Sullivan, Ciara K</p> <p>2015-11-15</p> <p>In this work we present the use of a silicon-on-insulator (SOI) chip featuring an array of 64 optical ring resonators used as refractive index sensors for real-time and label-free DNA detection. Single ring functionalisation was achieved using a click reaction after precise nanolitre spotting of specific hexynyl-terminated DNA capture probes to link to an azido-silanised chip surface. To demonstrate detectability using the ring resonators and to optimise conditions for solid-phase amplification, hybridisation between short 25-mer single stranded DNA (ssDNA) fragments and a complementary capture probe immobilised on the surface of the ring resonators was carried out and detected through the shift in the resonant wavelength. Using the optimised conditions demonstrated via the solid-phase hybridisation, a 144-bp double stranded DNA (dsDNA) was then detected directly using recombinase and polymerase proteins through on-chip target amplification and solid-phase elongation of immobilised forward primers on specific rings, at a constant temperature of 37°C and in less than 60min, achieving a limit of detection of 7.8·10(-13)M (6·10(5) copies in 50µL). The use of an automatic liquid handler injection instrument connected to an integrated resealable chip interface (RCI) allowed programmable multiple injection protocols. Air plugs between different solutions were introduced to prevent intermixing and a proportional-integral-derivative (PID) temperature controller minimised temperature based drifts. Published by Elsevier B.V.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMSM43A2289L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMSM43A2289L"><span>Magnetopause Losses of Radiation Belt Electrons During a Recent Magnetic Storm</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lemon, C. L.; Chen, M.; Roeder, J. L.; Fennell, J. F.; Mulligan, T. L.; Claudepierre, S. G.</p> <p>2013-12-01</p> <p>We present results from Van Allen Probes observations during the magnetic storm of June 1, 2013, and compare them with simulations of the same event using the RCM-E model. The RCM-E calculates ion and electron transport in self-consistently computed electric and magnetic fields. We examine the effect of the perturbed ring current magnetic field on the transport of energetic electrons, and the significance of this transport for explaining the observed evolution of radiation belt fluxes during this event. The event is notable because it is a relatively simple storm in which strong convection persists for approximately 7 hours, injecting a moderately strong ring current (minimum Dst of -120 nT); convection then quickly shuts off, leading to a long and smooth recovery phase. We use RCM-E simulations, constrained by Van Allen Probes data, to asses the rate of magnetopause losses of electrons (magnetopause shadowing), and to calculate electron drift times and the evolution of electron phase space densities during the storm event. We recently modified the RCM-E plasma drift calculations to include relativistic treatment of electrons and a more realistic electron loss model. The new electron loss model, although still somewhat simplistic, gives much more accurate loss rates in the inner magnetosphere (including the radiation belts), which significantly affects the resulting electron fluxes compared to previous simulations. This, in turn, modifies the transport of ions and electrons via feedback with both the electric and magnetic fields. Our results highlight the effect of the ring current on the evolution of the radiation belt electrons, with particular emphasis on the role that magnetopause losses play in the observed variation of radiation belt electron fluxes during the storm.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005JGRA..110.3204V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005JGRA..110.3204V"><span>Some characteristics of intense geomagnetic storms and their energy budget</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vichare, Geeta; Alex, S.; Lakhina, G. S.</p> <p>2005-03-01</p> <p>The present study analyses nine intense geomagnetic storms (∣Dst∣ > 175 nT) with the aid of ACE satellite measurements and ground magnetic field values at Alibag Magnetic Observatory. The study confirms the crucial role of southward IMF in triggering the storm main phase as well as controlling the magnitude of the storm. The main phase interval shows clear dependence on the duration of southward IMF. An attempt is made to identify the multipeak signature in the ring current energy injection rate during main phase of the storm. In order to quantify the energy budget of magnetic storms, the present paper computes the solar wind energies, magnetospheric coupling energies, auroral and Joule heating energies, and the ring current energies for each storm under examination. Computation of the solar wind- magnetosphere coupling function considers the variation of the size of the magnetosphere by using the measured solar wind ram pressure. During the main phase of the storm, the solar wind kinetic energy ranges from 9 × 1017 to 72 × 1017 J with an average of 30 × 1017 J; the total energy dissipated in the auroral ionosphere varies between 2 × 1015 and 9 × 1015 J, whereas ring current energies range from 8 × 1015 to 19 × 1015 J. For the total storm period, about 3.5% of total solar wind kinetic energy is available for the redistribution in the magnetosphere, and around 20% of this goes into the inner magnetosphere and in the auroral ionosphere of both the hemispheres. It is found that during main phase of the storm, almost 5% of the total solar wind kinetic energy is available for the redistribution in the magnetosphere, whereas during the recovery phase the percentage becomes 2.3%.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AJ....155....2W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AJ....155....2W"><span>The Dynamical History of 2060 Chiron and Its Proposed Ring System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wood, Jeremy; Horner, Jonti; Hinse, Tobias C.; Marsden, Stephen C.</p> <p>2018-01-01</p> <p>The surprising discovery of a ring system around the Centaur 10199 Chariklo in 2013 led to a reanalysis of archival stellar occultation data for the Centaur 2060 Chiron by Ortiz et al. One possible interpretation of that data is that a system of rings exists around Chiron. In this work, we study the dynamical history of the proposed Chiron ring system by integrating nearly 36,000 clones of the Centaur backward in time for 100 Myr under the influence of the Sun and the four giant planets. The severity of all close encounters between the clones and planets while the clones are in the Centaur region is recorded, along with the mean time between close encounters. We find that severe and extreme close encounters are very rare, making it possible that the Chiron ring system has remained intact since its injection into the Centaur region, which we find likely occurred within the past 8.5 Myr. Our simulations yield a backward dynamical half-life for Chiron of 0.7 Myr. The dynamical classes of a sample of clones are found. It is found that, on average, the Centaur lifetimes of resonance hopping clones are twice those of random-walk clones because of resonance sticking in mean motion resonances. In addition, we present MEGNO and chaotic lifetime maps of the region bound by 13 au ≤slant a≤slant 14 au and e≤slant 0.5. We confirm that the current mean orbital parameters of Chiron are located in a highly chaotic region of a - e phase space.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1995paac.confW...1P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1995paac.confW...1P"><span>Electric fields, electron production, and electron motion at the stripper foil in the Los Alamos Proton Storage Ring</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Plum, M.</p> <p></p> <p>The beam instability at the Los Alamos Proton Storage Ring (PSR) most likely involves coupled oscillations between electrons and protons. For this instability to occur, there must be a strong source of electrons. Investigation of the various sources of electrons in the PSR had begun. Copious electron production is expected in the injection section because this section contains the stripper foil. This foil is mounted near the center of the beam pipe, and both circulating and injected protons pass through it, thus allowing ample opportunity for electron production. This paper discusses various mechanisms for electron production, beam-induced electric fields, and electron motion in the vicinity of the foil.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20490245','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20490245"><span>Single-frequency operation of diode-pumped 2 microm Q-switched Tm:YAG laser injection seeded by monolithic nonplanar ring laser.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gao, Chunqing; Lin, Zhifeng; Gao, Mingwei; Zhang, Yunshan; Zhu, Lingni; Wang, Ran; Zheng, Yan</p> <p>2010-05-20</p> <p>We present a diode-pumped, 2mum single-frequency Q-switched Tm:YAG laser. The Q-switched laser is injection seeded by a monolithic Tm:YAG nonplanar ring oscillator with the ramp-hold-fire technique. The output energy of the 2mum single-frequency Q-switched pulse is 2.23mJ, with a pulse width of 290ns and a repetition rate of 200Hz. From the heterodyne beating measurement, the frequency difference between the seed laser and the Q-switched laser is determined to be 37.66MHz, with a half-width of the symmetric spectrum of about 2 MHz.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20100021385&hterms=Plasma+Ring&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DPlasma%2BRing','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20100021385&hterms=Plasma+Ring&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DPlasma%2BRing"><span>Recent Simulation Results on Ring Current Dynamics Using the Comprehensive Ring Current Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Zheng, Yihua; Zaharia, Sorin G.; Lui, Anthony T. Y.; Fok, Mei-Ching</p> <p>2010-01-01</p> <p>Plasma sheet conditions and electromagnetic field configurations are both crucial in determining ring current evolution and connection to the ionosphere. In this presentation, we investigate how different conditions of plasma sheet distribution affect ring current properties. Results include comparative studies in 1) varying the radial distance of the plasma sheet boundary; 2) varying local time distribution of the source population; 3) varying the source spectra. Our results show that a source located farther away leads to a stronger ring current than a source that is closer to the Earth. Local time distribution of the source plays an important role in determining both the radial and azimuthal (local time) location of the ring current peak pressure. We found that post-midnight source locations generally lead to a stronger ring current. This finding is in agreement with Lavraud et al.. However, our results do not exhibit any simple dependence of the local time distribution of the peak ring current (within the lower energy range) on the local time distribution of the source, as suggested by Lavraud et al. [2008]. In addition, we will show how different specifications of the magnetic field in the simulation domain affect ring current dynamics in reference to the 20 November 2007 storm, which include initial results on coupling the CRCM with a three-dimensional (3-D) plasma force balance code to achieve self-consistency in the magnetic field.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003OptCo.219..301W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003OptCo.219..301W"><span>A novel approach for clock recovery without pattern effect from degraded signal</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Zhaoxin; Wang, Tong; Lou, Caiyun; Huo, Li; Gao, Yizhi</p> <p>2003-04-01</p> <p>A novel clock recovery scheme using two-ring injection mode-locked fiber ring laser based on all 10 GHz bandwidth components was demonstrated. With this scheme, the clock with low timing jitter was obtained from a degraded 10 Gb/s optical data stream. Optical clock recovery was also achieved from a degraded 20 Gb/s optical data train when the clock division technique in the opto-electronic oscillator (OEO) and the rational harmonic mode-locking technique in the fiber ring laser were applied. No pattern effect was observed in the experiments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003NIMPA.515..394L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003NIMPA.515..394L"><span>Investigation of high duty factor ISR RFQ-1000</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lu, Y. R.; Chen, C. E.; Fang, J. X.; Gao, S. L.; Guo, J. F.; Guo, Z. Y.; Li, D. S.; Li, W. G.; Pan, O. J.; Ren, X. T.; Wu, Y.; Yan, X. Q.; Yu, J. X.; Yu, M. L.; Ratzinger, U.; Deitinghoff, H.; Klein, H.; Schempp, A.</p> <p>2003-12-01</p> <p>Two Integral Split Ring (ISR) RFQs with high duty factor of 16.7% have been designed for the application of heavy ion implantation and built in the past several years at Institute of Heavy Ion Physics (IHIP) in Peking University. Two kinds of PIG ion sources with permanent magnets and LEBT were installed and optimized for the injection into these two RFQs. The positive O+ and negative O- ions were extracted and accelerated separately as well as simultaneously. The output macro pulse O- beam current reached 660 μA at a transmission efficiency of more than 82%. The N+ beam was also accelerated with similar transmission efficiency, but the output current intensity for positive ions were lower than the negative ions because of the extracted current limitation of ion sources. The improvements, especially for high duty factor and experimental results with the 1 MeV ISR RFQ will be presented in this paper.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015APS..DPPG12117H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015APS..DPPG12117H"><span>Physics of Plasma Cathode Current Injection During LHI</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hinson, E. T.; Barr, J.; Bongard, M.; Burke, M. G.; Fonck, R.; Perry, J.</p> <p>2015-11-01</p> <p>Localized helicity injection (LHI) ST startup employs current sources at the tokamak edge. Max Ip in LHI scales with injection voltage Vinj, requiring an understanding of injector impedance. For the arc-plasma cathode electron injectors in Pegasus, impedance is plasma-determined, and typically Vinj>1kV for Iinj = 2kA. At low Iinj, Iinj Vinj3 / 2 , an indication of a double layer (DL) common to such devices. However, at Iinj> 1kA, Iinj Vinj1 / 2 occurs, a scaling expected for limited launched beam density, nb ≡Iinj / (e√{ 2eVinj /me }Ainj) Iinj /Vinj1 / 2 . An ohmic discharge injection target was created to test this hypothesis. Langmuir probe data showed Iinj/Vinj1 / 2 nedge at low nedge, consistent with a limit (nedge >=ne , b) imposed by quasineutrality. If edge fueling maintained nedge >=ne , b , spectroscopic measurements of source density narc indicated Iinj/Vinj1 / 2 narc , as expected from DL expansion. Thus nb established by narc or nedge determines Vinj up to the onset of cathode spot (CS) arcing. Technology development has increased obtainable Vinj and reduced CS damage using new ring shielding and a cathode design drawing CS's away from insulators. This involved a novel optimization of conical frustum geometry. Finally, consistent with NIMROD predictions of coherent streams in the edge during LHI, pairwise triangulation of outboard Mirnov data assuming beam m =1 motion has allowed an estimate of beam R(t), Z(t) location that is near the injector R, and consistent across the array. Supported by U.S. DOE Grant DE-FG02-96ER54375.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27620135','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27620135"><span>Custom sample environments at the ALBA XPEEM.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Foerster, Michael; Prat, Jordi; Massana, Valenti; Gonzalez, Nahikari; Fontsere, Abel; Molas, Bernat; Matilla, Oscar; Pellegrin, Eric; Aballe, Lucia</p> <p>2016-12-01</p> <p>A variety of custom-built sample holders offer users a wide range of non-standard measurements at the ALBA synchrotron PhotoEmission Electron Microscope (PEEM) experimental station. Some of the salient features are: an ultrahigh vacuum (UHV) suitcase compatible with many offline deposition and characterization systems, built-in electromagnets for uni- or biaxial in-plane (IP) and out-of-plane (OOP) fields, as well as the combination of magnetic fields with electric fields or current injection. Electronics providing a synchronized sinusoidal signal for sample excitation enable time-resolved measurements at the 500MHz storage ring RF frequency. Copyright © 2016 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSM31A2616S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSM31A2616S"><span>Substorm Electric And Magnetic Fields In The Earth's Magnetotail: Observations Compared To The WINDMI Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Srinivas, P. G.; Spencer, E. A.; Vadepu, S. K.; Horton, W., Jr.</p> <p>2017-12-01</p> <p>We compare satellite observations of substorm electric fields and magnetic fields to the output of a low dimensional nonlinear physics model of the nightside magnetosphere called WINDMI. The electric and magnetic field satellite data are used to calculate the E X B drift, which is one of the intermediate variables of the WINDMI model. The model uses solar wind and IMF measurements from the ACE spacecraft as input into a system of 8 nonlinear ordinary differential equations. The state variables of the differential equations represent the energy stored in the geomagnetic tail, central plasma sheet, ring current and field aligned currents. The output from the model is the ground based geomagnetic westward auroral electrojet (AL) index, and the Dst index.Using ACE solar wind data, IMF data and SuperMAG identification of substorm onset times up to December 2015, we constrain the WINDMI model to trigger substorm events, and compare the model intermediate variables to THEMIS and GEOTAIL satellite data in the magnetotail. By forcing the model to be consistent with satellite electric and magnetic field observations, we are able to track the magnetotail energy dynamics, the field aligned current contributions, energy injections into the ring current, and ensure that they are within allowable limts. In addition we are able to constrain the physical parameters of the model, in particular the lobe inductance, the plasma sheet capacitance, and the resistive and conductive parameters in the plasma sheet and ionosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22590959-design-transfer-line-from-booster-storage-ring-gev','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22590959-design-transfer-line-from-booster-storage-ring-gev"><span>Design of the transfer line from booster to storage ring at 3 GeV</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Bayar, C., E-mail: cafer.bayar@cern.ch; Ciftci, A. K., E-mail: abbas.kenan.ciftci@cern.ch</p> <p></p> <p>The Synchrotron Booster Ring accelerates the e-beam up to 3 GeV and particles are transported from booster to storage ring by transfer line. In this study, two options are considered, the first one is a long booster which shares the same tunnel with storage ring and the second one is a compact booster. As a result, two transfer line are designed based on booster options. The optical design is constrained by the e-beam Twiss parameters entering and leaving the transfer line. Twiss parameters in the extraction point of booster are used for the entrance of transfer line and are matchedmore » in the exit of transfer line to the injection point of the storage ring.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015umlm.confa2017Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015umlm.confa2017Y"><span>Measurements and PHITS Monte Carlo Estimations of Residual Activities Induced by the 181 MeV Proton Beam in the Injection Area at J-PARC RCS Ring</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yamakawa, Emi; Yoshimoto, Masahiro; Kinsho, Michikazu</p> <p></p> <p>At the injection area of the RCS ring in the J-PARC, residual gamma dose at the rectangular ceramic ducts, especially immediately downstream of the charge-exchanged foil, has increased with the output beam power. In order to investigate the cause of high residual activities, residual gamma dose and radioactive sources produced at the exterior surface of the ducts have been measured by a GM survey meter and a handy type of Germanium (Ge) semiconductor detector in the case of 181 MeV injected proton beam energy. With these measurements, it is revealed that the radioactive sources produced by nuclear reactions cause the high activities at the injection area. For a better understanding of phenomena in the injection area, various simulations have been done with the PHITS Monte Carlo code. The distribution of radioactive sources and residual gamma dose rate obtained by the calculations are consistent with the measurement results. With this consistency, secondary neutrons and protons derived from nuclear reactions at the charge-exchanged foil are the dominant cause to high residual gamma dose at the ceramic ducts in the injection area. These measurements and calculations are unique approaches to reveal the cause of high residual dose around the foil. This study is essential for the future of high-intensity proton accelerators using a stripping foil.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_9 --> <div id="page_10" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="181"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1215633','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1215633"><span>The two-way relationship between ionospheric outflow and the ring current</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Welling, Daniel T.; Jordanova, Vania Koleva; Glocer, Alex</p> <p></p> <p>It is now well established that the ionosphere, because it acts as a significant source of plasma, plays a critical role in ring current dynamics. However, because the ring current deposits energy into the ionosphere, the inverse may also be true: the ring current can play a critical role in the dynamics of ionospheric outflow. This study uses a set of coupled, first-principles-based numerical models to test the dependence of ionospheric outflow on ring current-driven region 2 field-aligned currents (FACs). A moderate magnetospheric storm event is modeled with the Space Weather Modeling Framework using a global MHD code (Block Adaptivemore » Tree Solar wind Roe-type Upwind Scheme, BATS-R-US), a polar wind model (Polar Wind Outflow Model), and a bounce-averaged kinetic ring current model (ring current atmosphere interaction model with self-consistent magnetic field, RAM-SCB). Initially, each code is two-way coupled to all others except for RAM-SCB, which receives inputs from the other models but is not allowed to feed back pressure into the MHD model. The simulation is repeated with pressure coupling activated, which drives strong pressure gradients and region 2 FACs in BATS-R-US. It is found that the region 2 FACs increase heavy ion outflow by up to 6 times over the non-coupled results. The additional outflow further energizes the ring current, establishing an ionosphere-magnetosphere mass feedback loop. This study further demonstrates that ionospheric outflow is not merely a plasma source for the magnetosphere but an integral part in the nonlinear ionosphere-magnetosphere-ring current system.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1215633-two-way-relationship-between-ionospheric-outflow-ring-current','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1215633-two-way-relationship-between-ionospheric-outflow-ring-current"><span>The two-way relationship between ionospheric outflow and the ring current</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Welling, Daniel T.; Jordanova, Vania Koleva; Glocer, Alex; ...</p> <p>2015-06-01</p> <p>It is now well established that the ionosphere, because it acts as a significant source of plasma, plays a critical role in ring current dynamics. However, because the ring current deposits energy into the ionosphere, the inverse may also be true: the ring current can play a critical role in the dynamics of ionospheric outflow. This study uses a set of coupled, first-principles-based numerical models to test the dependence of ionospheric outflow on ring current-driven region 2 field-aligned currents (FACs). A moderate magnetospheric storm event is modeled with the Space Weather Modeling Framework using a global MHD code (Block Adaptivemore » Tree Solar wind Roe-type Upwind Scheme, BATS-R-US), a polar wind model (Polar Wind Outflow Model), and a bounce-averaged kinetic ring current model (ring current atmosphere interaction model with self-consistent magnetic field, RAM-SCB). Initially, each code is two-way coupled to all others except for RAM-SCB, which receives inputs from the other models but is not allowed to feed back pressure into the MHD model. The simulation is repeated with pressure coupling activated, which drives strong pressure gradients and region 2 FACs in BATS-R-US. It is found that the region 2 FACs increase heavy ion outflow by up to 6 times over the non-coupled results. The additional outflow further energizes the ring current, establishing an ionosphere-magnetosphere mass feedback loop. This study further demonstrates that ionospheric outflow is not merely a plasma source for the magnetosphere but an integral part in the nonlinear ionosphere-magnetosphere-ring current system.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1394797','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1394797"><span>A FODO racetrack ring for nuSTORM: design and optimization</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Liu, A.; Bross, A.; Neuffer, D.</p> <p>2017-07-01</p> <p>The goal of nuSTORM is to provide well-defined neutrino beams for precise measurements of neutrino cross-sections and oscillations. The nuSTORM decay ring is a compact racetrack storage ring with a circumference of ~ 480 m that incorporates large aperture (60 cm diameter) magnets. There are many challenges in the design. In order to incorporate the Orbit Combination section (OCS), used for injecting the pion beam into the ring, a dispersion suppressor is needed adjacent to the OCS . Concurrently, in order to maximize the number of useful muon decays, strong bending dipoles are needed in the arcs to minimize the arcmore » length. These dipoles create strong chromatic effects, which need to be corrected by nonlinear sextupole elements in the ring. In this paper, a FODO racetrack ring design and its optimization using sextupolar fields via both a Genetic Algorithm (GA) and a Simulated Annealing (SA) algorithm will be discussed.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/864126','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/864126"><span>Production of field-reversed mirror plasma with a coaxial plasma gun</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Hartman, Charles W.; Shearer, James W.</p> <p>1982-01-01</p> <p>The use of a coaxial plasma gun to produce a plasma ring which is directed into a magnetic field so as to form a field-reversed plasma confined in a magnetic mirror. Plasma thus produced may be used as a target for subsequent neutral beam injection or other similarly produced and projected plasma rings or for direct fusion energy release in a pulsed mode.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/5478730','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/biblio/5478730"><span>Production of field-reversed mirror plasma with a coaxial plasma gun</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Hartman, C.W.; Shearer, J.W.</p> <p></p> <p>The use of a coaxial plasma gun to produce a plasma ring which is directed into a magnetic field so as to form a field-reversed plasma confined in a magnetic mirror. Plasma thus produced may be used as a target for subsequent neutral beam injection or other similarly produced and projected plasma rings or for direct fusion energy release in a pulsed mode.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21171615','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21171615"><span>Topological ring currents in the "empty" ring of benzo-annelated perylenes.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Dickens, Timothy K; Mallion, Roger B</p> <p>2011-01-27</p> <p>Cyclic conjugation in benzo-annelated perylenes is examined by means of the topological π-electron ring currents calculated for each of their constituent rings, in a study that is an exact analogy of a recent investigation by Gutman et al. based on energy-effect values for the corresponding rings in each of these structures. "Classical" approaches, such as Kekulé structures, Clar "sextet" formulas, and circuits of conjugation, predict that the central ring in perylene is "empty" and thus contributes negligibly to cyclic conjugation. However, conclusions from the present calculations of topological ring currents agree remarkably with those arising from the earlier study involving energy-effect values in that, contrary to what would be predicted from the classical approaches, rings annelated in an angular fashion relative to the central ring of these perylene structures materially increase the extent of that ring's involvement in cyclic conjugation. It is suggested that such close quantitative agreement between the predictions of these two superficially very different indices (energy effect and topological ring current) might be due to the fact that, ultimately, both depend, albeit in ostensibly quite different ways, only on an adjacency matrix that contains information about the carbon-carbon connectivity of the conjugated system in question.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMSM11A2126L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMSM11A2126L"><span>Modeling the near-Earth interaction between ring current ions and exospheric neutrals: escape through energetic neutral atoms (ENAs)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>LLera, K.; Goldstein, J.; McComas, D. J.; Valek, P. W.</p> <p>2016-12-01</p> <p>The two major loss processes for ring current decay are precipitation and energetic neutral atoms (ENAs). Since the exospheric neutral density increases with decreasing altitudes, precipitating ring current ions (reaching down to 200 - 800 km in altitude) also produce low-altitude ENA signatures that can be stronger than the ring current emission at equatorial distances ( 2 - 9 Re). The higher density results in multiple collisions between the ring current ions and exospheric oxygen. The affect on hydrogen ions is the focus of this study. Since the H particle sustains energy loss ( 36 eV) at each neutralizing or re-ionizing interaction, the escaped ENAs do not directly reflect the ring current properties. We model the energy loss due to multiple charge exchange and electron stripping interactions of 1 - 100 keV precipitating ring current ions undergo before emerging as low-altitude ENAs. The H particle is either an ion or an ENA throughout the simulation. Their lifetime is analytically determined by the length of one mean free path. We track the ion state with Lorentz motion while the ENA travels ballistically across the geomagnetic field. Our simulations show the energy loss is greater than 20% for hydrogen ring current ions below 30 keV (60 keV for the simulations that wander equatorward). This is the first quantification of the energy loss associated with the creation of low-altitude ENAs. Our model (currently constrained in the meridional plane) has revealed characteristics on how precipitation is affected by the near-Earth neutral exosphere. This ion-neutral interaction removes particles from the loss cone but promotes loss through ENA generation. These findings should be implemented in models predicting the ring current decay and used as an analysis tool to reconstruct the ring current population from observed low-altitude ENAs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24637301','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24637301"><span>Quantum rings in magnetic fields and spin current generation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cini, Michele; Bellucci, Stefano</p> <p>2014-04-09</p> <p>We propose three different mechanisms for pumping spin-polarized currents in a ballistic circuit using a time-dependent magnetic field acting on an asymmetrically connected quantum ring at half filling. The first mechanism works thanks to a rotating magnetic field and produces an alternating current with a partial spin polarization. The second mechanism works by rotating the ring in a constant field; like the former case, it produces an alternating charge current, but the spin current is dc. Both methods do not require a spin-orbit interaction to achieve the polarized current, but the rotating ring could be used to measure the spin-orbit interaction in the ring using characteristic oscillations. On the other hand, the last mechanism that we propose depends on the spin-orbit interaction in an essential way, and requires a time-dependent magnetic field in the plane of the ring. This arrangement can be designed to pump a purely spin current. The absence of a charge current is demonstrated analytically. Moreover, a simple formula for the current is derived and compared with the numerical results.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFMSM13F..04B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFMSM13F..04B"><span>In search of a Self-Consistent Explanation of Saturn's Magnetospheric Periodicities</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Brandt, P. C.; Mitchell, D. G.; Carbary, J. F.; Tsyganenko, N. A.; Ebihara, Y.</p> <p>2011-12-01</p> <p>A global picture of Saturn's magnetospheric periodicities is emerging from several observations and modeling efforts. In this presentation we demonstrate that these observations likely contain sufficient information to explain the mysterious periodicities at Saturn, without the need of any prescribed (and often, unobservable) longitudinal anomalies. In this picture plasmoids are released quasi-periodically down the tail, leading to fast planet-ward flows and particle energization ("injections") that enhance the plasma pressure in the night side magnetosphere in the 8-20 Rs region as clearly observed in energetic neutral atom (ENA) observations by the Ion Neutral Camera (INCA) on board Cassini. Both the fast flows and the enhanced pressure drive a 3D current system that closes through the ionosphere, whose upward field-aligned component can be linked to bursts of Saturn Kilometric Radition (SKR). The current system driven by the energetic particle pressure - the partial ring current (PRC) - also distorts the magnetic field significantly leading to its periodic oscillations as the enhanced particle pressure island drifts around Saturn with a period between 10-11 h. The missing link is how the plasmoid release can be periodic. We present global INCA observations showing that pre-existing energetic particle pressure distributions from a previous injection seem to trigger the next injection. This is likely to happen due to the inflation of the magnetic field and modification of the properties of the night side current sheet, leading to an unstable current sheet. The presence of a PRC rotating around Saturn also modifies the electric field in the magnetosphere due to its closure through the ionosphere. Such a modification is called a shielding electric field, and is commonly observed at Earth associated with a radially outward density enhancement of the cold, dense plasmasphere below the PRC. This can further contribute to triggering the plasmoid release. In regards to the "dual" SKR and field periodicities that appear to be different in the northern and southern hemispheres, we investigate the possibilities that this could be a combined effect of injections in to two different radial ranges and inter-hemispheric field-aligned currents (FAC) set up by the seasonal conductance differences of the two hemispheres. Injections have been observed in the two radial ranges of roughly 9-12 Rs and >15Rs where the drift periods differ. We will attempt to quantify if this holds statistically and visualize what the combination of a rotating PRC and inter hemispheric currents look like.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ChPhC..40h7004S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ChPhC..40h7004S"><span>Injection method of barrier bucket supported by off-aligned electron cooling for CRing of HIAF</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shen, Guo-Dong; Yang, Jian-Cheng; Xia, Jia-Wen; Mao, Li-Jun; Yin, Da-Yu; Chai, Wei-Ping; Shi, Jian; Sheng, Li-Na; Smirnov, A.; Wu, Bo; Zhao, He</p> <p>2016-08-01</p> <p>A new accelerator complex, HIAF (the High Intensity Heavy Ion Accelerator Facility), has been approved in China. It is designed to provide intense primary and radioactive ion beams for research in high energy density physics, nuclear physics, atomic physics as well as other applications. In order to achieve a high intensity of up to 5×1011 ppp 238U34+, the Compression Ring (CRing) needs to stack more than 5 bunches transferred from the Booster Ring (BRing). However, the normal bucket to bucket injection scheme can only achieve an intensity gain of 2, so an injection method, fixed barrier bucket (BB) supported by electron cooling, is proposed. To suppress the severe space charge effect during the stacking process, off-alignment is adopted in the cooler to control the transverse emittance. In this paper, simulation and optimization with the BETACOOL program are presented. Supported by New Interdisciplinary and Advanced Pilot Fund of Chinese Academy of Sciences</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26165281','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26165281"><span>Fabrication and Characterization of Ultrathin-ring Electrodes for Pseudo-steady-state Amperometric Detection.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kitazumi, Yuki; Hamamoto, Katsumi; Noda, Tatsuo; Shirai, Osamu; Kano, Kenji</p> <p>2015-01-01</p> <p>The fabrication of ultrathin-ring electrodes with a diameter of 2 mm and a thickness of 100 nm is established. The ultrathin-ring electrodes provide a large density of pseudo-steady-state currents, and realize pseudo-steady-state amperometry under quiescent conditions without a Faraday cage. Under the limiting current conditions, the current response at the ultrathin-ring electrode can be well explained by the theory of the microband electrode response. Cyclic voltammograms at the ultrathin-ring electrode show sigmoidal characteristics with some hysteresis. Numerical simulation reveals that the hysteresis can be ascribed to the time-dependence of pseudo-steady-state current. The performance of amperometry with the ultrathin-ring electrode has been verified in its application to redox enzyme kinetic measurements.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016NatSR...628320S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016NatSR...628320S"><span>Current-induced SQUID behavior of superconducting Nb nano-rings</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sharon, Omri J.; Shaulov, Avner; Berger, Jorge; Sharoni, Amos; Yeshurun, Yosef</p> <p>2016-06-01</p> <p>The critical temperature in a superconducting ring changes periodically with the magnetic flux threading it, giving rise to the well-known Little-Parks magnetoresistance oscillations. Periodic changes of the critical current in a superconducting quantum interference device (SQUID), consisting of two Josephson junctions in a ring, lead to a different type of magnetoresistance oscillations utilized in detecting extremely small changes in magnetic fields. Here we demonstrate current-induced switching between Little-Parks and SQUID magnetoresistance oscillations in a superconducting nano-ring without Josephson junctions. Our measurements in Nb nano-rings show that as the bias current increases, the parabolic Little-Parks magnetoresistance oscillations become sinusoidal and eventually transform into oscillations typical of a SQUID. We associate this phenomenon with the flux-induced non-uniformity of the order parameter along a superconducting nano-ring, arising from the superconducting leads (‘arms’) attached to it. Current enhanced phase slip rates at the points with minimal order parameter create effective Josephson junctions in the ring, switching it into a SQUID.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1036971','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1036971"><span>Future Synchrotron Light Sources Based on Ultimate Storage Rings</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Cai, Yunhai; /SLAC</p> <p>2012-04-09</p> <p>The main purpose of this talk is to describe how far one might push the state of the art in storage ring design. The talk will start with an overview of the latest developments and advances in the design of synchrotron light sources based on the concept of an 'ultimate' storage ring. The review will establish how bright a ring based light source might be, where the frontier of technological challenges are, and what the limits of accelerator physics are. Emphasis will be given to possible improvements in accelerator design and developments in technology toward the goal of achieving anmore » ultimate storage ring. An ultimate storage ring (USR), defined as an electron ring-based light source having an emittance in both transverse planes at the diffraction limit for the range of X-ray wavelengths of interest for a scientific community, would provide very high brightness photons having high transverse coherence that would extend the capabilities of X-ray imaging and probe techniques beyond today's performance. It would be a cost-effective, high-coherence 4th generation light source, competitive with one based on energy recovery linac (ERL) technology, serving a large number of users studying material, chemical, and biological sciences. Furthermore, because of the experience accumulated over many decades of ring operation, it would have the great advantage of stability and reliability. In this paper we consider the design of an USR having 10-pm-rad emittance. It is a tremendous challenge to design a storage ring having such an extremely low emittance, a factor of 100 smaller than those in existing light sources, especially such that it has adequate dynamic aperture and beam lifetime. In many ultra-low emittance designs, the injection acceptances are not large enough for accumulation of the electron beam, necessitating on-axis injection where stored electron bunches are completely replaced with newly injected ones. Recently, starting with the MAX-IV 7-bend achromatic cell, we have made significant progress with the design of PEP-X, a USR that would inhabit the decommissioned PEP-II tunnel at SLAC. The enlargement of the dynamic aperture is largely a result of the cancellations of the 4th-order resonances in the 3rd-order achromats and the effective use of lattice optimization programs. In this paper, we will show those cancellations of the 4th-order resonances using an analytical approach based on the exponential Lie operators and the Poisson brackets. Wherever possible, our analytical results will be compared with their numerical counterparts. Using the derived formulae, we will construct 4th-order geometric achromats and use them as modules for the lattice of the PEP-X USR, noting that only geometric terms are canceled to the 4th order.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19800031788&hterms=influence+movies&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dinfluence%2Bmovies','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19800031788&hterms=influence+movies&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dinfluence%2Bmovies"><span>Motions of charged particles in the magnetosphere under the influence of a time-varying large scale convection electric field</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Smith, P. H.; Hoffman, R. A.; Bewtra, N. K.</p> <p>1979-01-01</p> <p>The motions of charged particles under the influence of the geomagnetic and electric fields are quite complex in the region of the inner magnetosphere. The Volland-Stern type large-scale convection electric field with gamma = 2 has been used successfully to predict both the plasmapause location and particle enhancements determined from Explorer 45 (S3-A) measurements. Recently introduced into the trajectory calculations of Ejiri et al. (1978) is a time dependence in this electric field based on the variation in Kp for actual magnetic storm conditions. The particle trajectories are computed as they change in this time-varying electric field. Several storm fronts of particles of different magnetic moments are allowed to be injected into the inner magnetosphere from L = 10 in the equatorial plane. The motions of these fronts are presented in a movie format. The local time of injection, the particle magnetic moments and the subsequent temporal history of the magnetospheric electric field play important roles in determining whether the injected particles are trapped within the ring current region or whether they are convected to regions outside the inner magnetosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910055775&hterms=Plasma+Ring&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DPlasma%2BRing','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910055775&hterms=Plasma+Ring&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DPlasma%2BRing"><span>The plasma environment, charge state, and currents of Saturn's C and D rings</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wilson, G. R.</p> <p>1991-01-01</p> <p>The charge state and associated currents of Saturn's C an D rings are studied by modeling the flow of ionospheric plasma from the mid- to low-latitude ionosphere to the vicinity of the rings. It is found that the plasma density near the C and D rings, at a given radial location, will experience a one to two order of magnitude diurnal variation. The surface charge density (SCD) of these rings can show significant radial and azimuthal variations due mainly to variation in the plasma density. The SCD also depends on structural features of the rings such as thickness and the nature of the particle size distribution. The associated azimuthal currents carried by these rings also show large diurnal variations resulting in field-aligned currents which close in the ionosphere. The resulting ionospheric electric field will probably not produce a significant amount of plasma convection in the topside ionosphere and inner plasmasphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018RScI...89c3112C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018RScI...89c3112C"><span>Dianion diagnostics in DESIREE: High-sensitivity detection of Cn2 - from a sputter ion source</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chartkunchand, K. C.; Stockett, M. H.; Anderson, E. K.; Eklund, G.; Kristiansson, M. K.; Kamińska, M.; de Ruette, N.; Blom, M.; Björkhage, M.; Källberg, A.; Löfgren, P.; Reinhed, P.; Rosén, S.; Simonsson, A.; Zettergren, H.; Schmidt, H. T.; Cederquist, H.</p> <p>2018-03-01</p> <p>A sputter ion source with a solid graphite target has been used to produce dianions with a focus on carbon cluster dianions, Cn2 -, with n = 7-24. Singly and doubly charged anions from the source were accelerated together to kinetic energies of 10 keV per atomic unit of charge and injected into one of the cryogenic (13 K) ion-beam storage rings of the Double ElectroStatic Ion Ring Experiment facility at Stockholm University. Spontaneous decay of internally hot Cn2 - dianions injected into the ring yielded Cn- anions with kinetic energies of 20 keV, which were counted with a microchannel plate detector. Mass spectra produced by scanning the magnetic field of a 90° analyzing magnet on the ion injection line reflect the production of internally hot C72 - - C242 - dianions with lifetimes in the range of tens of microseconds to milliseconds. In spite of the high sensitivity of this method, no conclusive evidence of C62 - was found while there was a clear C72 - signal with the expected isotopic distribution. This is consistent with earlier experimental studies and with theoretical predictions. An upper limit is deduced for a C62 - signal that is two orders-of-magnitude smaller than that for C72 -. In addition, CnO2- and CnCu2- dianions were detected.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/658370','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/658370"><span>Performances of BNL high-intensity synchrotrons</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Weng, W.T.</p> <p>1998-03-01</p> <p>The AGS proton synchrotron was completed in 1960 with initial intensity in the 10 to the 10th power proton per pulse (ppp) range. Over the years, through many upgrades and improvements, the AGS now reached an intensity record of 6.3 {times} 10{sup 13} ppp, the highest world intensity record for a proton synchrotron on a single pulse basis. At the same time, the Booster reached 2.2 {times} 10{sup 13} ppp surpassing the design goal of 1.5 {times} 10{sup 13} ppp due to the introduction of second harmonic cavity during injection. The intensity limitation caused by space charge tune spread andmore » its relationship to injection energy at 50 MeV, 200 MeV, and 1,500 MeV will be presented as well as many critical accelerator manipulations. BNL currently participates in the design of an accumulator ring for the SNS project at Oak Ridge. The status on the issues of halo formation, beam losses and collimation are also presented.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://medlineplus.gov/ency/article/007555.htm','NIH-MEDLINEPLUS'); return false;" href="https://medlineplus.gov/ency/article/007555.htm"><span>Birth control - slow release methods</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://medlineplus.gov/">MedlinePlus</a></p> <p></p> <p></p> <p>Contraception - slow-release hormonal methods; Progestin implants; Progestin injections; Skin patch; Vaginal ring ... might want to consider a different birth control method. SKIN PATCH The skin patch is placed on ...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19850044800&hterms=Plasma+Ring&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DPlasma%2BRing','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19850044800&hterms=Plasma+Ring&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DPlasma%2BRing"><span>Coupled low-energy - ring current plasma diffusion in the Jovian magnetosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Summers, D.; Siscoe, G. L.</p> <p>1985-01-01</p> <p>The outwardly diffusing Iogenic plasma and the simultaneously inwardly diffusing ring current plasma in the Jovian magnetosphere are described using a coupled diffusion model which incorporates the effects of the pressure gradient of the ring current into the cross-L diffusion coefficient. The coupled diffusion coefficient is derived by calculating the total energy available to drive the diffusion process. The condition is imposed that the diffusion coefficient takes on a local minimum value at some point in the region L = 7-8, at which point the gradient of the Io plasma density is specified as ramp value given by Siscoe et al. (1981). The hypothesis that the pressure gradient of the ring current causes the diminution of radial plasma transport is tested, and solution profiles for the Iogenic and ring current plasma densities are obtained which imply that the Io plasma ramp is caused by a high-density, low-energy component of the ring current hitherto unobserved directly.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29742535','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29742535"><span>Augmented Reality-Guided Lumbar Facet Joint Injections.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Agten, Christoph A; Dennler, Cyrill; Rosskopf, Andrea B; Jaberg, Laurenz; Pfirrmann, Christian W A; Farshad, Mazda</p> <p>2018-05-08</p> <p>The aim of this study was to assess feasibility and accuracy of augmented reality-guided lumbar facet joint injections. A spine phantom completely embedded in hardened opaque agar with 3 ring markers was built. A 3-dimensional model of the phantom was uploaded to an augmented reality headset (Microsoft HoloLens). Two radiologists independently performed 20 augmented reality-guided and 20 computed tomography (CT)-guided facet joint injections each: for each augmented reality-guided injection, the hologram was manually aligned with the phantom container using the ring markers. The radiologists targeted the virtual facet joint and tried to place the needle tip in the holographic joint space. Computed tomography was performed after each needle placement to document final needle tip position. Time needed from grabbing the needle to final needle placement was measured for each simulated injection. An independent radiologist rated images of all needle placements in a randomized order blinded to modality (augmented reality vs CT) and performer as perfect, acceptable, incorrect, or unsafe. Accuracy and time to place needles were compared between augmented reality-guided and CT-guided facet joint injections. In total, 39/40 (97.5%) of augmented reality-guided needle placements were either perfect or acceptable compared with 40/40 (100%) CT-guided needle placements (P = 0.5). One augmented reality-guided injection missed the facet joint space by 2 mm. No unsafe needle placements occurred. Time to final needle placement was substantially faster with augmented reality guidance (mean 14 ± 6 seconds vs 39 ± 15 seconds, P < 0.001 for both readers). Augmented reality-guided facet joint injections are feasible and accurate without potentially harmful needle placement in an experimental setting.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_10 --> <div id="page_11" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="201"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29212656','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29212656"><span>The relevance and implications of signet-ring cell adenocarcinoma of the oesophagus.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bleaney, Christopher William; Barrow, Mickhaiel; Hayes, Stephen; Ang, Yeng</p> <p>2018-03-01</p> <p>To review the current understanding of signet-ring type oesophageal adenocarcinoma including evidence for prognosis. We conducted a literature search of nine healthcare literature databases for articles detailing the biology and clinical outcomes of signet-ring cell adenocarcinoma of the oesophagus. The impact of signet-ring cell morphology was analysed and detailed in written text and tabular format. Current understanding of the biology of signet-ring cell adenocarcinoma of the oesophagus was summarised. Signet-ring cell carcinoma was represented in 7.61% of the 18 989 cases of oesophageal carcinoma reviewed in multiple studies. The presence of signet-ring cells conferred a worse prognosis and these tumours responded differently to conventional treatments as compared with typical adenocarcinoma. Little is known about the biological features of signet-ring cell adenocarcinoma of the oesophagus. Work in gastric lesions has identified potential targets for future treatments such as CDH1 and RHOA genes. Categorisation of signet-ring cell carcinomas by the proportion of signet-ring cells within tumours differs among clinicians despite WHO criteria for classification. The current UK guidelines for histopathological reporting of oesophageal tumours do not emphasise the importance of identifying signet-ring cells. The presence of signet-ring cells in oesophageal adenocarcinomas leads to poorer clinical outcomes. Current understanding of signet-ring cell biology in oesophageal cancer is limited. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/7532648','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/7532648"><span>Glucocorticoids inhibit sulfur mustard-induced airway muscle hyperresponsiveness to substance P.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Calvet, J H; D'Ortho, M P; Jarreau, P H; Levame, M; Harf, A; Macquin-Mavier, I</p> <p>1994-11-01</p> <p>To explore the mechanisms of airway hyperreactivity to aerosolized substance P observed in guinea pigs 14 days after intratracheal injection of sulfur mustard (SM), we studied the effects of epithelium removal and inhibition of neutral endopeptidase (NEP) activity on airway muscle responsiveness. Tracheal rings from SM-intoxicated guinea pigs expressed a greater contractile response to substance P than rings from nonintoxicated guinea pigs. After epithelium removal or incubation with the NEP inhibitor phosphoramidon, the contractile responses of tracheal rings to substance P did not differ in guinea pigs injected with SM or ethanol (SM solvent). Treatment of the guinea pigs with betamethasone for 7 days before measurement abolished the airway muscle hyperresponsiveness observed in untreated SM-intoxicated guinea pigs and partially restored tracheal epithelium NEP activity. In addition, the tracheal epithelium height and cell density of SM-intoxicated guinea pigs treated with betamethasone were significantly greater than in those without betamethasone. These results demonstrate that SM intoxication induces airway muscle hyperresponsiveness to substance P by reducing tracheal epithelial NEP activity and that glucocorticoids might inhibit this hyperresponsiveness by increasing this activity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/20849665-current-drive','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/20849665-current-drive"><span>Current Drive</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Faulconer, D.W</p> <p>2004-03-15</p> <p>Certain devices aimed at magnetic confinement of thermonuclear plasma rely on the steady flow of an electric current in the plasma. In view of the dominant place it occupies in both the world magnetic-confinement fusion effort and the author's own activity, the tokamak toroidal configuration is selected as prototype for discussing the question of how such a current can be maintained. Tokamaks require a stationary toroidal plasma current, this being traditionally provided by a pulsed magnetic induction which drives the plasma ring as the secondary of a transformer. Since this mechanism is essentially transient, and steady-state fusion reactor operation hasmore » manifold advantages, significant effort is now devoted to developing alternate steady-state means of generating toroidal current. These methods are classed under the global heading of 'noninductive current drive' or simply 'current drive', generally, though not exclusively, employing the injection of waves and/or toroidally directed particle beams. In what follows we highlight the physical mechanisms underlying surprisingly various approaches to driving current in a tokamak, downplaying a number of practical and technical issues. When a significant data base exists for a given method, its experimental current drive efficiency and future prospects are detailed.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PhRvB..94t5125N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PhRvB..94t5125N"><span>Transfer matrix approach to the persistent current in quantum rings: Application to hybrid normal-superconducting rings</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nava, Andrea; Giuliano, Rosa; Campagnano, Gabriele; Giuliano, Domenico</p> <p>2016-11-01</p> <p>Using the properties of the transfer matrix of one-dimensional quantum mechanical systems, we derive an exact formula for the persistent current across a quantum mechanical ring pierced by a magnetic flux Φ as a single integral of a known function of the system's parameters. Our approach provides exact results at zero temperature, which can be readily extended to a finite temperature T . We apply our technique to exactly compute the persistent current through p -wave and s -wave superconducting-normal hybrid rings, deriving full plots of the current as a function of the applied flux at various system's scales. Doing so, we recover at once a number of effects such as the crossover in the current periodicity on increasing the size of the ring and the signature of the topological phase transition in the p -wave case. In the limit of a large ring size, resorting to a systematic expansion in inverse powers of the ring length, we derive exact analytic closed-form formulas, applicable to a number of cases of physical interest.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002JGRA..107.1224K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002JGRA..107.1224K"><span>Multistep Dst development and ring current composition changes during the 4-6 June 1991 magnetic storm</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kozyra, J. U.; Liemohn, M. W.; Clauer, C. R.; Ridley, A. J.; Thomsen, M. F.; Borovsky, J. E.; Roeder, J. L.; Jordanova, V. K.; Gonzalez, W. D.</p> <p>2002-08-01</p> <p>The 4-6 June 1991 magnetic storm, which occurred during solar maximum conditions, is analyzed to investigate two observed features of magnetic storms that are not completely understood: (1) the mass-dependent decay of the ring current during the early recovery phase and (2) the role of preconditioning in multistep ring current development. A kinetic ring current drift-loss model, driven by dynamic fluxes at the nightside outer boundary, was used to simulate this storm interval. A strong partial ring current developed and persisted throughout the main and early recovery phases. The majority of ions in the partial ring current make one pass through the inner magnetosphere on open drift paths before encountering the dayside magnetopause. The ring current exhibited a three-phase decay in this storm. A short interval of charge-exchange loss constituted the first phase of the decay followed by a classical two-phase decay characterized by an abrupt transition between two very different decay timescales. The short interval dominated by charge-exchange loss occurred because an abrupt northward turning of the interplanetary magnetic field (IMF) trapped ring current ions on closed trajectories, and turned-off sources and ``flow-out'' losses. If this had been the end of the solar wind disturbance, decay timescales would have gradually lengthened as charge exchange preferentially removed the short-lived species; a distinctive two-phase decay would not have resulted. However, the IMF turned weakly southward, drift paths became open, and a standard two-phase decay ensued as the IMF rotated slowly northward again. As has been shown before, a two-phase decay is produced as open drift paths are converted to closed in a weakening convection electric field, driving a transition from the fast flow-out losses associated with the partial ring current to the slower charge-exchange losses associated with the trapped ring current. The open drift path geometry during the main phase and during phase 1 of the two-phase decay has important consequences for the evolution of ring current composition and for preconditioning issues. In this particular storm, ring current composition changes measured by the Combined Release and Radiation Effects Satellite (CRRES) during the main and recovery phase of the storm resulted largely from composition changes in the plasma sheet transmitted into the inner magnetosphere along open drift paths as the magnetic activity declined. Possible preconditioning elements were investigated during the multistep development of this storm, which was driven by the sequential arrival of three southward IMF Bz intervals of increasing peak strength. In each case, previous intensifications (preexisting ring currents) were swept out of the magnetosphere by the enhanced convection associated with the latest intensification and did not act as a significant preconditioning element. However, plasma sheet characteristics varied significantly between subsequent intensifications, altering the response of the magnetosphere to the sequential solar wind drivers. A denser plasma sheet (ring current source population) appeared during the second intensification, compensating for the weaker IMF Bz at this time and producing a minimum pressure-corrected Dst* value comparable to the third intensification (driven by stronger IMF Bz but a lower density plasma sheet source). The controlling influence of the plasma sheet dynamics on the ring current dynamics and its role in altering the inner magnetospheric response to solar wind drivers during magnetic storms adds a sense of urgency to understanding what processes produce time-dependent responses in the plasma sheet density, composition, and temperature.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014RScI...85e5113H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014RScI...85e5113H"><span>Top-up operation at Pohang Light Source-II</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hwang, I.; Huang, J. Y.; Kim, M.; Lee, B.-J.; Kim, C.; Choi, J.-Y.; Kim, M.-H.; Lee, H. S.; Moon, D.; Lee, E. H.; Kim, D.-E.; Nam, S. H.; Shin, S.; Cho, Moohyun</p> <p>2014-05-01</p> <p>After three years of upgrading work, PLS-II (S. Shin, Commissioning of the PLS-II, JINST, January 2013) is now successfully operating. The top-up operation of the 3 GeV linear accelerator had to be delayed because of some challenges encountered, and PLS-II was run in decay mode at the beginning in March 2012. The main difficulties encountered in the top-up operation of PLS-II are different levels between the linear accelerator and the storage ring, the 14 narrow gap in-vacuum undulators in operation, and the full energy injection by 3 GeV linear accelerator. Large vertical emittance and energy jitter of the linac were the major obstacles that called for careful control of injected beam to reduce beam loss in the storage ring during injection. The following measures were taken to resolve these problems: (1) The high resolution Libera BPM (see http://www.i-tech.si) was implemented to measure the beam trajectory and energy. (2) Three slit systems were installed to filter the beam edge. (3) De-Qing circuit was applied to the modulator system to improve the energy stability of injected beam. As a result, the radiation by beam loss during injection is reduced drastically, and the top-up mode has been successfully operating since 19th March 2013. In this paper, we describe the experimental results of the PLS-II top-up operation and the improvement plan.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1013533','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1013533"><span>SIMULATIONS OF TRANSVERSE STACKING IN THE NSLS-II BOOSTER</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Fliller III, R.; Shaftan, T.</p> <p>2011-03-28</p> <p>The NSLS-II injection system consists of a 200 MeV linac and a 3 GeV booster. The linac needs to deliver 15 nC in 80 - 150 bunches to the booster every minute to achieve current stability goals in the storage ring. This is a very stringent requirement that has not been demonstrated at an operating light source. We have developed a scheme to transversely stack two bunch trains in the NSLS-II booster in order to alleviate the charge requirements on the linac. This scheme has been outlined previously. In this paper we show particle tracking simulations of the tracking scheme.more » We show simulations of the booster ramp with a stacked beam for a variety of lattice errors and injected beam parameters. In all cases the performance of the proposed stacking method is sufficient to reduce the required charge from the linac. For this reason the injection system of the NSLS-II booster is being designed to include this feature. The NSLS-II injection system consists of a 200 MeV linac and a 3 GeV booster. The injectors must provide 7.5nC in bunch trains 80-150 bunches long every minute for top off operation of the storage ring. Top off then requires that the linac deliver 15nC of charge once losses in the injector chain are taken into consideration. This is a very stringent requirement that has not been demonstrated at an operating light source. For this reason we have developed a method to transversely stack two bunch trains in the booster while maintaining the charge transport efficiency. This stacking scheme has been discussed previously. In this paper we show the simulations of the booster ramp with a single bunch train in the booster. Then we give a brief overview of the stacking scheme. Following, we show the results of stacking two bunch trains in the booster with varying beam emittances and train separations. The behavior of the beam through the ramp is examined showing that it is possible to stack two bunch trains in the booster.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1394797-fodo-racetrack-ring-nustorm-design-optimization','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1394797-fodo-racetrack-ring-nustorm-design-optimization"><span>A FODO racetrack ring for nuSTORM: design and optimization</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Liu, A.; Bross, A.; Neuffer, D.</p> <p>2017-07-17</p> <p>Here, the goal of nuSTORM is to provide well-defined neutrino beams for precise measurements of neutrino cross-sections and oscillations. The nuSTORM decay ring is a compact racetrack storage ring with a circumference of ~ 480 m that incorporates large aperture (60 cm diameter) magnets. There are many challenges in the design. In order to incorporate the Orbit Combination section (OCS), used for injecting the pion beam into the ring, a dispersion suppressor is needed adjacent to the OCS . Concurrently, in order to maximize the number of useful muon decays, strong bending dipoles are needed in the arcs to minimize themore » arc length. These dipoles create strong chromatic effects, which need to be corrected by nonlinear sextupole elements in the ring. In this paper, a FODO racetrack ring design and its optimization using sextupolar fields via both a Genetic Algorithm (GA) and a Simulated Annealing (SA) algorithm will be discussed.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/5332913-effect-strong-current-ion-ring-spheromak-stability','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/5332913-effect-strong-current-ion-ring-spheromak-stability"><span>Effect of a strong-current ion ring on spheromak stability</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Litwin, C.; Sudan, R.N.</p> <p></p> <p>The stability of a spheromak with an energetic ion ring, carrying a current comparable to the plasma current, to the tilt mode is considered. For small departures from sphericity a perturbative approach is applied to an appropriate energy principle in order to calculate the lowest nontrivial kinetic contribution of the ion ring. An analytic stability criterion is obtained. It is seen that the prolate configuration becomes more stable while the oblate one is less stable than in the absence of the ring. The prolomak becomes stable when the ring kinetic energy exceeds the magnetic energy within the separatrix.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015umlm.confa2001H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015umlm.confa2001H"><span>A Phase Space Monitoring of Injected Beam of J-PARC MR</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hatakeyama, Shuichiro; Toyama, Takeshi</p> <p></p> <p>Beam power of J-PARC MR (30 GeV Proton Synchrotron Main Ring) has been improved since 2008 and now achieved over 200 kW for the user operation. A part of beam loss is localized at the beam injection phase so it is important to monitor the beam bunch behavior in the transverse direction. In this paper it is described the method how to measure the position and momentum for each injected beam bunch using Beam Position Monitors (BPMs). It is also mentioned some implementation of an operator's interface (OPI) to display the plots of injected and circulating beam bunches in phase space coordinate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005AIPC..773..335D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005AIPC..773..335D"><span>A Method to Overcome Space Charge at Injection</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Derbenev, Ya.</p> <p>2005-06-01</p> <p>The transverse space charge forces in a high current, low energy beam can be reduced by mean of a large increase of the beam's transverse sizes while maintaining the beam area in the 4D phase space. This can be achieved by transforming the beam area in phase space of each of two normal 2D transverse (either plane or circular) modes from a spot shape into a narrow ring of a large amplitude, but homogeneous in phase. Such a transformation results from the beam evolution in the island of a dipole resonance when the amplitude width of the island shrinks adiabatically. After stacking (by using stripping foils or cooling) the beam in such a state and accelerating to energies sufficiently high that the space charge becomes insignificant, the beam then can be returned back to a normal spot shape by applying the reverse transformation. An arrangement that can provide such beam gymnastics along a transport line after a linac and before a booster and/or in a ring with circulating beam will be described and numerical estimates will be presented. Other potential applications of the method will be briefly discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012PhRvS..15k2802K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012PhRvS..15k2802K"><span>Independent component analysis applied to long bunch beams in the Los Alamos Proton Storage Ring</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kolski, Jeffrey S.; Macek, Robert J.; McCrady, Rodney C.; Pang, Xiaoying</p> <p>2012-11-01</p> <p>Independent component analysis (ICA) is a powerful blind source separation (BSS) method. Compared to the typical BSS method, principal component analysis, ICA is more robust to noise, coupling, and nonlinearity. The conventional ICA application to turn-by-turn position data from multiple beam position monitors (BPMs) yields information about cross-BPM correlations. With this scheme, multi-BPM ICA has been used to measure the transverse betatron phase and amplitude functions, dispersion function, linear coupling, sextupole strength, and nonlinear beam dynamics. We apply ICA in a new way to slices along the bunch revealing correlations of particle motion within the beam bunch. We digitize beam signals of the long bunch at the Los Alamos Proton Storage Ring with a single device (BPM or fast current monitor) for an entire injection-extraction cycle. ICA of the digitized beam signals results in source signals, which we identify to describe varying betatron motion along the bunch, locations of transverse resonances along the bunch, measurement noise, characteristic frequencies of the digitizing oscilloscopes, and longitudinal beam structure.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70015731','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70015731"><span>The magnetospheric disturbance ring current as a source for probing the deep earth electrical conductivity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Campbell, W.H.</p> <p>1990-01-01</p> <p>Two current rings have been observed in the equatorial plane of the earth at times of high geomagnetic activity. An eastward current exists between about 2 and 3.5 earth radii (Re) distant, and a larger, more variable companion current exists between about 4 and 9 Re. These current regions are loaded during geomagnetic substorms. They decay, almost exponentially, after the cessation of the particle influx that attends the solar wind disturbance. This review focuses upon characteristics needed for intelligent use of the ring current as a source for induction probing of the earth's mantle. Considerable difficulties are found with the assumption that Dst is a ring-current index. ?? 1990 Birkha??user Verlag.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017OptLT..97..137Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017OptLT..97..137Z"><span>Effect of ring-shaped SiO2 current blocking layer thickness on the external quantum efficiency of high power light-emitting diodes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhou, Shengjun; Liu, Mengling; Hu, Hongpo; Gao, Yilin; Liu, Xingtong</p> <p>2017-12-01</p> <p>A ring-shaped SiO2 CBL underneath the p-electrode was employed to enhance current spreading of GaN-based light-emitting diodes (LEDs). Effects of ring-shaped SiO2 current blocking layer (CBL) thickness on optical and electrical characteristics of high power LEDs were investigated. A 190-nm-thick ring-shaped SiO2 CBL with inclined sidewalls was obtained using a combination of a thermally reflowed photoresist technique and an inductively coupled plasma (ICP) etching process, allowing for the deposition of conformal indium tin oxide (ITO) transparent conductive layer on sidewalls of ring-shaped SiO2 CBL. It was indicated that the external quantum efficiency (EQE) of high power LEDs increased with increasing thickness of ring-shaped SiO2 CBL. The EQE of high power LED with 190-nm-thick ring-shaped SiO2 CBL was 12.7% higher than that of high power LED without SiO2 CBL. Simulations performed with commercial SimuLED software package showed that the ring-shaped SiO2 CBL could significantly alleviate current crowding around p-electrode, resulting in enhanced current spreading over the entire high power LED structure.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19970026575','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19970026575"><span>Plasmasphere Modeling with Ring Current Heating</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Guiter, S. M.; Fok, M.-C.; Moore, T. E.</p> <p>1995-01-01</p> <p>Coulomb collisions between ring current ions and the thermal plasma in the plasmasphere will heat the plasmaspheric electrons and ions. During a storm such heating would lead to significant changes in the temperature and density of the thermal plasma. This was modeled using a time- dependent, one-stream hydrodynamic model for plasmaspheric flows, in which the model flux tube is connected to the ionosphere. The model simultaneously solves the coupled continuity, momentum, and energy equations of a two-ion (H(+) and O(+) quasineutral, currentless plasma. Heating rates due to collisions with ring current ions were calculated along the field line using a kinetic ring current model. First, diurnally reproducible results were found assuming only photoelectron heating of the thermal electrons. Then results were found with heating of the H(+) ions by the ring current during the recovery phase of a magnetic storm.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20030062110','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20030062110"><span>A Self-Consistent Model of the Interacting Ring Current Ions and Electromagnetic Ion Cyclotron Waves, Initial Results: Waves and Precipitating Fluxes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Khazanov, G. V.; Gamayunov, K. V.; Jordanova, V. K.; Krivorutsky, E. N.</p> <p>2002-01-01</p> <p>Initial results from a newly developed model of the interacting ring current ions and ion cyclotron waves are presented. The model is based on the system of two kinetic equations: one equation describes the ring current ion dynamics, and another equation describes wave evolution. The system gives a self-consistent description of the ring current ions and ion cyclotron waves in a quasilinear approach. These equations for the ion phase space distribution function and for the wave power spectral density were solved on aglobal magnetospheric scale undernonsteady state conditions during the 2-5 May 1998 storm. The structure and dynamics of the ring current proton precipitating flux regions and the ion cyclotron wave-active zones during extreme geomagnetic disturbances on 4 May 1998 are presented and discussed in detail.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20020022313&hterms=waves+electromagnetic&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dwaves%2Belectromagnetic','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20020022313&hterms=waves+electromagnetic&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dwaves%2Belectromagnetic"><span>A Self-Consistent Model of the Interacting Ring Current Ions and Electromagnetic ICWs. Initial Results: Waves and Precipitation Fluxes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Khazanov, G. V.; Gamayunov, K. V.; Jordanova, V. K.; Krivorutsky, E. N.; Whitaker, Ann F. (Technical Monitor)</p> <p>2001-01-01</p> <p>Initial results from the new developed model of the interacting ring current ions and ion cyclotron waves are presented. The model described by the system of two bound kinetic equations: one equation describes the ring current ion dynamics, and another one gives wave evolution. Such system gives a self-consistent description of the ring current ions and ion cyclotron waves in a quasilinear approach. Calculating ion-wave relationships, on a global scale under non steady-state conditions during May 2-5, 1998 storm, we presented the data at three time cuts around initial, main, and late recovery phases of May 4, 1998 storm phase. The structure and dynamics of the ring current proton precipitating flux regions and the wave active ones are discussed in detail.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110008585','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110008585"><span>On the Role of Global Magnetic Field Configuration in Affecting Ring Current Dynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Zheng, Y.; Zaharia, S. G.; Fok, M. H.</p> <p>2010-01-01</p> <p>Plasma and field interaction is one important aspect of inner magnetospheric physics. The magnetic field controls particle motion through gradient, curvature drifts and E cross B drift. In this presentation, we show how the global magnetic field affects dynamics of the ring current through simulations of two moderate geomagnetic storms (20 November 2007 and 8-9 March 2008). Preliminary results of coupling the Comprehensive Ring Current Model (CRCM) with a three-dimensional plasma force balance code (to achieve self-consistency in both E and B fields) indicate that inclusion of self-consistency in B tends to mitigate the intensification of the ring current as other similar coupling efforts have shown. In our approach, self-consistency in the electric field is already an existing capability of the CRCM. The magnetic self-consistency is achieved by computing the three-dimensional magnetic field in force balance with anisotropic ring current ion distributions. We discuss the coupling methodology and its further improvement. In addition, comparative studies by using various magnetic field models will be shown. Simulation results will be put into a global context by analyzing the morphology of the ring current, its anisotropy and characteristics ofthe interconnected region 2 field-aligned currents.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/11509224','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/11509224"><span>The role of dopamine in the timing of Pavlovian conditioned keypecking in ring doves.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ohyama, T; Horvitz, J C; Kitsos, E; Balsam, P D</p> <p>2001-01-01</p> <p>The effect of dopaminergic drugs on the timing of conditioned keypecking in ring doves was studied in two experiments. Subjects were given pairings of a keylight with food and the temporal distribution of keypecks was obtained during unreinforced probe trials. Experiment 1 demonstrated that injections of pimozide before each session immediately decreased response rates but shifted timing distributions gradually to the right over several days of treatment. Experiment 2 showed similar results using a longer interstimulus interval (ISI). No shifts were observed when the drug was injected after training sessions, or when a delay, identical to each subject's average latency to eat during the drug condition, was inserted between keylight offset and food presentation. Consequently, the shifts in timing were mediated neither by mere accumulation of the drug nor a delay from keylight offset to food presentation resulting from the drug's ability to slow motor processes. The results suggest that pimozide modulates response rate through its effect on motor processes or incentive value, and response timing through a conditioned response (CR) to injection-related cues established via their repeated pairings with the drug.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1402617-cross-scale-observations-st-patrick-day-storm-themis-van-allen-probes-twins','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1402617-cross-scale-observations-st-patrick-day-storm-themis-van-allen-probes-twins"><span>Cross-scale observations of the 2015 St. Patrick's day storm: THEMIS, Van Allen Probes, and TWINS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Goldstein, J.; Angelopoulos, V.; De Pascuale, S.; ...</p> <p>2016-12-10</p> <p>In this paper, we present cross-scale magnetospheric observations of the 17 March 2015 (St. Patrick's Day) storm, by Time History of Events and Macroscale Interactions during Substorms (THEMIS), Van Allen Probes (Radiation Belt Storm Probes), and Two Wide-angle Imaging Neutral-atom Spectrometers (TWINS), plus upstream ACE/Wind solar wind data. THEMIS crossed the bow shock or magnetopause 22 times and observed the magnetospheric compression that initiated the storm. Empirical models reproduce these boundary locations within 0.7 R E. Van Allen Probes crossed the plasmapause 13 times; test particle simulations reproduce these encounters within 0.5 R E. Before the storm, Van Allen Probesmore » measured quiet double-nose proton spectra in the region of corotating cold plasma. About 15 min after a 0605 UT dayside southward turning, Van Allen Probes captured the onset of inner magnetospheric convection, as a density decrease at the moving corotation-convection boundary (CCB) and a steep increase in ring current (RC) proton flux. During the first several hours of the storm, Van Allen Probes measured highly dynamic ion signatures (numerous injections and multiple spectral peaks). Sustained convection after ~1200 UT initiated a major buildup of the midnight-sector ring current (measured by RBSP A), with much weaker duskside fluxes (measured by RBSP B, THEMIS a and THEMIS d). A close conjunction of THEMIS d, RBSP A, and TWINS 1 at 1631 UT shows good three-way agreement in the shapes of two-peak spectra from the center of the partial RC. A midstorm injection, observed by Van Allen Probes and TWINS at 1740 UT, brought in fresh ions with lower average energies (leading to globally less energetic spectra in precipitating ions) but increased the total pressure. Finally, the cross-scale measurements of 17 March 2015 contain significant spatial, spectral, and temporal structure.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_11 --> <div id="page_12" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="221"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1402617','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1402617"><span>Cross-scale observations of the 2015 St. Patrick's day storm: THEMIS, Van Allen Probes, and TWINS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Goldstein, J.; Angelopoulos, V.; De Pascuale, S.</p> <p></p> <p>In this paper, we present cross-scale magnetospheric observations of the 17 March 2015 (St. Patrick's Day) storm, by Time History of Events and Macroscale Interactions during Substorms (THEMIS), Van Allen Probes (Radiation Belt Storm Probes), and Two Wide-angle Imaging Neutral-atom Spectrometers (TWINS), plus upstream ACE/Wind solar wind data. THEMIS crossed the bow shock or magnetopause 22 times and observed the magnetospheric compression that initiated the storm. Empirical models reproduce these boundary locations within 0.7 R E. Van Allen Probes crossed the plasmapause 13 times; test particle simulations reproduce these encounters within 0.5 R E. Before the storm, Van Allen Probesmore » measured quiet double-nose proton spectra in the region of corotating cold plasma. About 15 min after a 0605 UT dayside southward turning, Van Allen Probes captured the onset of inner magnetospheric convection, as a density decrease at the moving corotation-convection boundary (CCB) and a steep increase in ring current (RC) proton flux. During the first several hours of the storm, Van Allen Probes measured highly dynamic ion signatures (numerous injections and multiple spectral peaks). Sustained convection after ~1200 UT initiated a major buildup of the midnight-sector ring current (measured by RBSP A), with much weaker duskside fluxes (measured by RBSP B, THEMIS a and THEMIS d). A close conjunction of THEMIS d, RBSP A, and TWINS 1 at 1631 UT shows good three-way agreement in the shapes of two-peak spectra from the center of the partial RC. A midstorm injection, observed by Van Allen Probes and TWINS at 1740 UT, brought in fresh ions with lower average energies (leading to globally less energetic spectra in precipitating ions) but increased the total pressure. Finally, the cross-scale measurements of 17 March 2015 contain significant spatial, spectral, and temporal structure.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930034953&hterms=diode+laser+CW&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Ddiode%2Blaser%2BCW','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930034953&hterms=diode+laser+CW&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Ddiode%2Blaser%2BCW"><span>Injection chaining of diode-pumped single-frequency ring lasers for free-space communication</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Cheng, E. A. P.; Kane, T. J.; Wallace, R. W.; Cornwell, D. M., Jr.</p> <p>1991-01-01</p> <p>A high-power three-stage laser suitable for use in a space communication system has been built. This laser uses three diode-pumped Nd:YAG oscillators coherently combined using the technique of injection chaining. All three oscillators are in one compact and permanently aligned package, and are actively frequency locked to provide CW single frequency output. The three stages provide the redundancy desirable for space communications.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016E%26ES...49b2006A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016E%26ES...49b2006A"><span>Air injection test on a Kaplan turbine: prototype - model comparison</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Angulo, M.; Rivetti, A.; Díaz, L.; Liscia, S.</p> <p>2016-11-01</p> <p>Air injection is a very well-known resource to reduce pressure pulsation magnitude in turbines, especially on Francis type. In the case of large Kaplan designs, even when not so usual, it could be a solution to mitigate vibrations arising when tip vortex cavitation phenomenon becomes erosive and induces structural vibrations. In order to study this alternative, aeration tests were performed on a Kaplan turbine at model and prototype scales. The research was focused on efficiency of different air flow rates injected in reducing vibrations, especially at the draft tube and the discharge ring and also in the efficiency drop magnitude. It was found that results on both scales presents the same trend in particular for vibration levels at the discharge ring. The efficiency drop was overestimated on model tests while on prototype were less than 0.2 % for all power output. On prototype, air has a beneficial effect in reducing pressure fluctuations up to 0.2 ‰ of air flow rate. On model high speed image computing helped to quantify the volume of tip vortex cavitation that is strongly correlated with the vibration level. The hydrophone measurements did not capture the cavitation intensity when air is injected, however on prototype, it was detected by a sonometer installed at the draft tube access gallery.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PhTea..54..112J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PhTea..54..112J"><span>DC-Powered Jumping Ring</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jeffery, Rondo N.; Amiri, Farhang</p> <p>2016-02-01</p> <p>The classroom jumping ring demonstration is nearly always performed using alternating current (AC), in which the ring jumps or flies off the extended iron core when the switch is closed. The ring jumps higher when cooled with liquid nitrogen (LN2). We have performed experiments using DC to power the solenoid and find similarities and significant differences from the AC case. In particular, the ring does not fly off the core but rises a short distance and then falls back. If the ring jumps high enough, the rising and the falling motion of the ring does not follow simple vertical motion of a projectile. This indicates that there are additional forces on the ring in each part of its motion. Four possible stages of the motion of the ring with DC are identified, which result from the ring current changing directions during the jump in response to a changing magnetic flux through the moving ring.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMSA32A..01I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMSA32A..01I"><span>The impact of exospheric neutral dynamics on ring current decay</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ilie, R.; Liemohn, M. W.; Skoug, R. M.; Funsten, H. O.; Gruntman, M.; Bailey, J. J.; Toth, G.</p> <p>2015-12-01</p> <p>The geocorona plays an important role in the energy budget of the Earth's inner magnetosphere since charge exchange of energetic ions with exospheric neutrals makes the exosphere act as an energy sink for ring current particles. Long-term ring current decay following a magnetic storm is mainly due to these electron transfer reactions, leading to the formation energetic neutral atoms (ENAs) that leave the ring current system on ballistic trajectories. The number of ENAs emitted from a given region of space depends on several factors, such as the energy and species of the energetic ion population in that region and the density of the neutral gas with which the ions undergo charge exchange. However, the density and structure of the exosphere are strongly dependent on changes in atmospheric temperature and density as well as charge exchange with the ions of plasmaspheric origin, which depletes the geocorona (by having a neutral removed from the system). Moreover, the radiation pressure exerted by solar far-ultraviolet photons pushes the geocoronal hydrogen away from the Earth in an anti-sunward direction to form a tail of neutral hydrogen. TWINS ENA images provide a direct measurement of these ENA losses and therefore insight into the dynamics of the ring current decay through interactions with the geocorona. We assess the influence of geocoronal neutrals on ring current formation and decay by analysis of the predicted ENA emissions using 6 different geocoronal models and simulations from the HEIDI ring current model during storm time. Comparison with TWINS ENA images shows that the location of the peak ENA enhancements is highly dependent on the distribution of geocoronal hydrogen density. We show that the neutral dynamics has a strong influence on the time evolution of the ring current populations as well as on the formation of energetic neutral atoms.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20020022491&hterms=hydra&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dhydra','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20020022491&hterms=hydra&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dhydra"><span>A Self-Consistent Model of the Interacting Ring Current Ions with Electromagnetic ICWs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Khazanov, G. V.; Gamayunov, K. V.; Jordanova, V. K.; Krivorutsky, E. N.; Whitaker, Ann F. (Technical Monitor)</p> <p>2001-01-01</p> <p>Initial results from a newly developed model of the interacting ring current ions and ion cyclotron waves are presented. The model is based on the system of two bound kinetic equations: one equation describes the ring current ion dynamics, and another equation describes wave evolution. The system gives a self-consistent description of ring current ions and ion cyclotron waves in a quasilinear approach. These two equations were solved on a global scale under non steady-state conditions during the May 2-5, 1998 storm. The structure and dynamics of the ring current proton precipitating flux regions and the wave active zones at three time cuts around initial, main, and late recovery phases of the May 4, 1998 storm phase are presented and discussed in detail. Comparisons of the model wave-ion data with the Polar/HYDRA and Polar/MFE instruments results are presented..</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20170002746&hterms=waves&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dwaves','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20170002746&hterms=waves&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dwaves"><span>Global Effects of Transmitted Shock Wave Propagation Through the Earth's Inner Magnetosphere: First Results from 3-D Hybrid Kinetic Modeling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lipatov, A. S.; Sibeck, D. G.</p> <p>2016-01-01</p> <p>We use a new hybrid kinetic model to simulate the response of ring current, outer radiation belt, and plasmaspheric particle populations to impulsive interplanetary shocks. Since particle distributions attending the interplanetary shock waves and in the ring current and radiation belts are non-Maxwellian, waveparticle interactions play a crucial role in energy transport within the inner magnetosphere. Finite gyroradius effects become important in mass loading the shock waves with the background plasma in the presence of higher energy ring current and radiation belt ions and electrons. Initial results show that shocks cause strong deformations in the global structure of the ring current, radiation belt, and plasmasphere. The ion velocity distribution functions at the shock front, in the ring current, and in the radiation belt help us determine energy transport through the Earth's inner magnetosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMSM32A..08G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMSM32A..08G"><span>Global, Energy-Dependent Ring Current Response During Two Large Storms</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Goldstein, J.; Angelopoulos, V.; Burch, J. L.; De Pascuale, S.; Fuselier, S. A.; Genestreti, K. J.; Kurth, W. S.; LLera, K.; McComas, D. J.; Reeves, G. D.; Spence, H. E.; Valek, P. W.</p> <p>2015-12-01</p> <p>Two recent large (~200 nT) geomagnetic storms occurred during 17--18 March 2015 and 22--23 June 2015. The global, energy-dependent ring current response to these two extreme events is investigated using both global imaging and multi-point in situ observations. Energetic neutral atom (ENA) imaging by the Two Wide-angle Imaging Neutral-atom Spectrometers (TWINS) mission provides a global view of ring current ions. Local measurements are provided by two multi-spacecraft missions. The two Van Allen Probes measure in situ plasma (including ion composition) and fields at ring current and plasmaspheric L values. The recently launched Magnetospheric Multiscale (MMS) comprises four spacecraft that have just begun to measure particles (including ion composition) and fields at outer magnetospheric L-values. We analyze the timing and energetics of the stormtime evolution of ring current ions, both trapped and precipitating, using TWINS ENA images and in situ data by the Van Allen Probes and MMS.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19790059028&hterms=Wind+energy&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DWind%2Benergy','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19790059028&hterms=Wind+energy&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DWind%2Benergy"><span>Relationship between the growth of the ring current and the interplanetary quantity. [solar wind energy-magnetospheric coupling parameter correlation with substorm AE index</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Akasofu, S.-I.</p> <p>1979-01-01</p> <p>Akasofu (1979) has reported that the interplanetary parameter epsilon correlates reasonably well with the magnetospheric substorm index AE; in the first approximation, epsilon represents the solar wind coupled to the magnetosphere. The correlation between the interplanetary parameter, the auroral electrojet index and the ring current index is examined for three magnetic storms. It is shown that when the interplanetary parameter exceeds the amount that can be dissipated by the ionosphere in terms of the Joule heat production, the excess energy is absorbed by the ring current belt, producing an abnormal growth of the ring current index.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..1511656B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..1511656B"><span>One ring to rule them all: storm time ring current and its influence on radiation belts, plasmasphere and global magnetosphere electrodynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Buzulukova, Natalia; Fok, Mei-Ching; Glocer, Alex; Moore, Thomas E.</p> <p>2013-04-01</p> <p>We report studies of the storm time ring current and its influence on the radiation belts, plasmasphere and global magnetospheric dynamics. The near-Earth space environment is described by multiscale physics that reflects a variety of processes and conditions that occur in magnetospheric plasma. For a successful description of such a plasma, a complex solution is needed which allows multiple physics domains to be described using multiple physical models. A key population of the inner magnetosphere is ring current plasma. Ring current dynamics affects magnetic and electric fields in the entire magnetosphere, the distribution of cold ionospheric plasma (plasmasphere), and radiation belts particles. To study electrodynamics of the inner magnetosphere, we present a MHD model (BATSRUS code) coupled with ionospheric solver for electric field and with ring current-radiation belt model (CIMI code). The model will be used as a tool to reveal details of coupling between different regions of the Earth's magnetosphere. A model validation will be also presented based on comparison with data from THEMIS, POLAR, GOES, and TWINS missions. INVITED TALK</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMSM41E2545M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMSM41E2545M"><span>The plasmasheet H+ and O+ contribution on the storm time ring current</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mouikis, C.; Bingham, S.; Kistler, L. M.; Spence, H. E.; Gkioulidou, M.; Claudepierre, S. G.; Farrugia, C. J.</p> <p>2015-12-01</p> <p>The source population of the storm time ring current is the night side plasma sheet. We use Van Allen Probes and Cluster observations to determine the contribution of the convecting plasma sheet H+ and O+ particles in the storm time development of the ring current. Using the Volland-Stern model with a dipole magnetic field together with the identification of the observed energy cutoffs in the particle spectra, we specify the pressure contributed by H+ and O+ populations that are on open drift paths vs. the pressure contributed by the trapped populations, for different local times. We find that during the storm main phase most of the ring current pressure in the pre-midnight inner magnetosphere is contributed by particles on open drift paths that cause the development of a strong partial ring current that causes most of the main phase Dst drop. These particles can reach as deep as L~2 and their pressure compares to the local magnetic field pressure as deep as L~3. During the recovery phase, if these particles are not lost at the magnetopause, will become trapped and will contribute to the symmetric ring current.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20010046488&hterms=ACCOUNTS+CHARGE&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DACCOUNTS%2BBY%2BCHARGE','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20010046488&hterms=ACCOUNTS+CHARGE&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DACCOUNTS%2BBY%2BCHARGE"><span>Charge Exchange Contribution to the Decay of the Ring Current, Measured by Energetic Neutral Atoms (ENAs)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Jorgensen, A. M.; Henderson, M. G.; Roelof, E. C.; Reeves, G. D.; Spence, H. E.</p> <p>2001-01-01</p> <p>In this paper we calculate the contribution of charge exchange to the decay of the ring current. Past works have suggested that charge exchange of ring current protons is primarily responsible for the decay of the ring current during the late recovery phase, but there is still much debate about the fast decay of the early recovery phase. We use energetic neutral atom (ENA) measurements from Polar to calculate the total ENA energy escape. To get the total ENA escape we apply a forward modeling technique, and to estimate the total ring current energy escape we use the Dessler-Parker-Sckopke relationship. We find that during the late recovery phase of the March 10, 1998 storm ENAs with energies greater than 17.5 keV can account for 75% of the estimated energy loss from the ring current. During the fast recovery the measured ENAs can only account for a small portion of the total energy loss. We also find that the lifetime of the trapped ions is significantly shorter during the fast recovery phase than during the late recovery phase, suggesting that different processes are operating during the two phases.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://medlineplus.gov/druginfo/meds/a607042.html','NIH-MEDLINEPLUS'); return false;" href="https://medlineplus.gov/druginfo/meds/a607042.html"><span>Darunavir</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://medlineplus.gov/">MedlinePlus</a></p> <p></p> <p></p> <p>... HIV-related illnesses such as serious infections or cancer. Taking these medications along with practicing safer sex ... while taking darunavir, call your doctor. Do not breast-feed if you are ... rings, injections, or implants). Talk to your doctor about other ways to ...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21863158','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21863158"><span>Aromaticity of strongly bent benzene rings: persistence of a diatropic ring current and its shielding cone in [5]paracyclophane.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jenneskens, Leonardus W; Havenith, Remco W A; Soncini, Alessandro; Fowler, Patrick W</p> <p>2011-10-06</p> <p>Direct evaluation of the induced π current density in [5]paracyclophane (1) shows that, despite the significant non-planarity (α = 23.2°) enforced by the pentamethylene bridge, there is only a modest (ca. 17%) reduction in the π ring current, justifying the use of shielding-cone arguments for the assignment of (1)H NMR chemical shifts of 1 and the claim that the non-planar benzene ring in 1 retains its aromaticity (on the magnetic criterion).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhyE...95..102A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhyE...95..102A"><span>Spin-dependent heat and thermoelectric currents in a Rashba ring coupled to a photon cavity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Abdullah, Nzar Rauf; Tang, Chi-Shung; Manolescu, Andrei; Gudmundsson, Vidar</p> <p>2018-01-01</p> <p>Spin-dependent heat and thermoelectric currents in a quantum ring with Rashba spin-orbit interaction placed in a photon cavity are theoretically calculated. The quantum ring is coupled to two external leads with different temperatures. In a resonant regime, with the ring structure in resonance with the photon field, the heat and the thermoelectric currents can be controlled by the Rashba spin-orbit interaction. The heat current is suppressed in the presence of the photon field due to contribution of the two-electron and photon replica states to the transport while the thermoelectric current is not sensitive to changes in parameters of the photon field. Our study opens a possibility to use the proposed interferometric device as a tunable heat current generator in the cavity photon field.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/952243-numerical-studies-high-intensity-injection-painting-project','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/952243-numerical-studies-high-intensity-injection-painting-project"><span>Numerical Studies of High-Intensity Injection Painting for Project X</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Drozhdin, A.I.; Vorobiev, L.G.; Johnson, D.E.</p> <p></p> <p>Injection phase space painting enables the mitigation of space charge and stability issues, and will be indispensable for the Project-X at Fermilab [1], delivering high-intensity proton beams to HEP experiments. Numerical simulations of multi-turn phase space painting have been performed for the FNAL Recycler Ring, including a self-consistent space charge model. The goal of our studies was to study the injection painting with inclusion of 3D space charge, using the ORBIT tracking code. In a current scenario the painting lasts for 110 turns, twice faster, than we considered in this paper. The optimal wave-forms for painting kickers, which ensure themore » flatter phase distributions, should be found. So far we used a simplified model for painting kicker strength (implemented as the 'ideal bump' in ORBIT). We will include a more realistic field map for the chicane magnets. Additional stripping simulations will be combined. We developed a block for longitudinal painting, which works with arbitrary notches in incoming micro-bunch buckets. The appropriate choice of the amplitude of the second harmonic of RF field will help to flatten the RF-bucket contours, as was demonstrated in 1D simulations. Non-linear lattice issue will be also addressed.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AdSpR..58.2148K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AdSpR..58.2148K"><span>Latitudinal and longitudinal behavior of the geomagnetic field during a disturbed period: A case study using wavelet techniques</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Klausner, Virginia; Domingues, Margarete Oliveira; Mendes, Odim; da Costa, Aracy Mendes; Papa, Andres Reinaldo Rodriguez; Gonzalez, Arian Ojeda</p> <p>2016-11-01</p> <p>Coronal mass ejections are the primary cause of the highly disturbed conditions observed in the magnetosphere. Momentum and energy from the solar wind are transferred to the Earth's magnetosphere mainly via magnetic reconnection which produces open field lines connecting the Earth magnetic field to the solar wind. Magnetospheric currents are coupled to the ionosphere through field-aligned currents. This particular characteristic of the magnetosphere-ionosphere interconnection is discussed here on the basis of the energy transfer from high (auroral currents) to low-latitudes (ring current). The objective of this work is to examine how the conditions during a magnetic storm can affect the global space and time configuration of the ring current, and, how these processes can affect the region of the South Atlantic Magnetic Anomaly. The H- or X-components of the Earth's magnetic field were examined using a set of six magnetometers approximately aligned around the geographic longitude at about 10 °, 140 ° and 295 ° from latitudes of 70 ° N to 70 ° S and aligned throughout the equatorial region, for the event of October 18-22, 1998. The investigation of simultaneous observations of data measured at different locations makes it possible to determine the effects of the magnetosphere-ionosphere coupling, and, it tries to establish some relationships among them. This work also compares the responses of the aligned magnetic observatories to the responses in the South Atlantic Magnetic Anomaly region. The major contribution of this paper is related to the applied methodology of the discrete wavelet transform. The wavelet coefficients are used as a filter to extract the information in high frequencies of the analyzed magnetogram. They also better represent information about the injections of energy and, consequently, the disturbances of the geomagnetic field measured on the ground. As a result, we present a better way to visualize the correlation between the X- or H-components. In the latitude range from ∼ 40 ° S to ∼ 60 ° N, the wavelet signatures do not show remarkable differences, except for the amplitudes of the wavelet coefficients. The sequence of transient field variations detected at auroral latitudes is probably associated to occurrences of substorms, while at lower latitudes, these variations are associated to the enhancement of the ring current.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22308860-top-up-operation-pohang-light-source-ii','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22308860-top-up-operation-pohang-light-source-ii"><span>Top-up operation at Pohang Light Source-II</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Hwang, I.; Huang, J. Y.; Kim, M.</p> <p>2014-05-15</p> <p>After three years of upgrading work, PLS-II (S. Shin, Commissioning of the PLS-II, JINST, January 2013) is now successfully operating. The top-up operation of the 3 GeV linear accelerator had to be delayed because of some challenges encountered, and PLS-II was run in decay mode at the beginning in March 2012. The main difficulties encountered in the top-up operation of PLS-II are different levels between the linear accelerator and the storage ring, the 14 narrow gap in-vacuum undulators in operation, and the full energy injection by 3 GeV linear accelerator. Large vertical emittance and energy jitter of the linac weremore » the major obstacles that called for careful control of injected beam to reduce beam loss in the storage ring during injection. The following measures were taken to resolve these problems: (1) The high resolution Libera BPM (see http://www.i-tech.si ) was implemented to measure the beam trajectory and energy. (2) Three slit systems were installed to filter the beam edge. (3) De-Qing circuit was applied to the modulator system to improve the energy stability of injected beam. As a result, the radiation by beam loss during injection is reduced drastically, and the top-up mode has been successfully operating since 19th March 2013. In this paper, we describe the experimental results of the PLS-II top-up operation and the improvement plan.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013JASTP..99...85A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013JASTP..99...85A"><span>Characteristics of plasma ring, surrounding the Earth at geocentric distances ˜7-10RE, and magnetospheric current systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Antonova, E. E.; Kirpichev, I. P.; Vovchenko, V. V.; Stepanova, M. V.; Riazantseva, M. O.; Pulinets, M. S.; Ovchinnikov, I. L.; Znatkova, S. S.</p> <p>2013-07-01</p> <p>There are strong experimental evidences of the existence of plasma domain forming a closed plasma ring around the Earth at geocentric distances ∼7-10RE. In this work, we analyze the main properties of this ring, using the data of the THEMIS satellite mission, acquired between April 2007 and September 2011. We also analyze the contribution of this ring to the storm dynamics. In particular, it is shown that the distribution of plasma pressure at ∼7-10RE is nearly azimuthally symmetric. However, the daytime compression of the magnetic field lines and the shift of the minimal value of the magnetic field to higher latitudes lead to the spreading of the transverse current along field lines and splitting of the daytime integral transverse current into two branches in Z direction. The CRC is the high latitude continuation of the ordinary ring current (RC), generated by plasma pressure gradients, directed to the Earth. We evaluated the contribution of the azimuthally symmetric part of the plasma ring to the Dst index for strong geomagnetic storms using the AMPTE/CCE radial profiles of plasma pressure published before, and showed that the contribution of the ring current including both RC and CRC is sufficient to obtain the observed Dst variation without the necessity to include the tail current system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/867545','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/867545"><span>Relativistic klystron driven compact high gradient accelerator as an injector to an X-ray synchrotron radiation ring</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Yu, David U. L.</p> <p>1990-01-01</p> <p>A compact high gradient accelerator driven by a relativistic klystron is utilized to inject high energy electrons into an X-ray synchrotron radiation ring. The high gradients provided by the relativistic klystron enables accelerator structure to be much shorter (typically 3 meters) than conventional injectors. This in turn enables manufacturers which utilize high energy, high intensity X-rays to produce various devices, such as computer chips, to do so on a cost effective basis.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_12 --> <div id="page_13" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="241"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1990QuEle..20..550B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1990QuEle..20..550B"><span>FIBER AND INTEGRATED OPTICS. OTHER TOPICS IN QUANTUM ELECTRONICS: Fiber-optic interferometers: control of spectral composition of the radiation and formation of high-intensity optical pulses</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bulushev, A. G.; Dianov, Evgenii M.; Kuznetsov, A. V.; Okhotnikov, O. G.; Paramonov, Vladimir M.; Tsarev, Vladimir A.</p> <p>1990-05-01</p> <p>A study was made of the use of single-mode fiber ring interferometers in narrowing the emission lines of semiconductor lasers and increasing the optical radiation power. Efficient coupling of radiation, emitted by a multifrequency injection laser with an external resonator, into a fiber ring interferometer was achieved both under cw and mode-locking conditions. Matching of the optical lengths of the external resonator and the fiber interferometer made it possible to determine the mode width for this laser. A method for generation of optical pulses in a fiber ring interferometer from cw frequency modulated radiation was developed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29052018','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29052018"><span>End-Users' Product Preference Across Three Multipurpose Prevention Technology Delivery Forms: Baseline Results from Young Women in Kenya and South Africa.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Weinrib, Rachel; Minnis, Alexandra; Agot, Kawango; Ahmed, Khatija; Owino, Fred; Manenzhe, Kgahlisho; Cheng, Helen; van der Straten, Ariane</p> <p>2018-01-01</p> <p>A multipurpose prevention technology (MPT) that combines HIV and pregnancy prevention is a promising women's health intervention, particularly for young women. However, little is known about the drivers of acceptability and product choice for MPTs in this population. This paper explores approval ratings and stated choice across three different MPT delivery forms among potential end-users. The Trio Study was a mixed-methods study in women ages 18-30 that examined acceptability of three MPT delivery forms: oral tablets, injections, and vaginal ring. Approval ratings and stated choice among the products was collected at baseline. Factors influencing stated product choice were explored using multivariable multinomial logistic regression. The majority (62%) of women in Trio stated they would choose injections, 27% would choose tablets and 11% would choose the ring. Significant predictors of choice included past experience with similar contraceptive delivery forms, age, and citing frequency of use as important. Ring choice was higher for older (25-30) women than for younger (18-24) women (aRR = 3.1; p < 0.05). These results highlight the importance of familiarity in MPT product choice of potential for variations in MPT preference by age.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..DPPG11037M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..DPPG11037M"><span>Spatial Control of Laser Wakefield Accelerated Electron Beams</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Maksimchuk, A.; Behm, K.; Zhao, T.; Joglekar, A. S.; Hussein, A.; Nees, J.; Thomas, A. G. R.; Krushelnick, K.; Elle, J.; Lucero, A.; Samarin, G. M.; Sarry, G.; Warwick, J.</p> <p>2017-10-01</p> <p>The laser wakefield experiments to study and control spatial properties of electron beams were performed using HERCULES laser at the University of Michigan at power of 100 TW. In the first experiment multi-electron beam generation was demonstrated using co-propagating, parallel laser beams with a π-phase shift mirror and showing that interaction between the wakefields can cause injection to occur for plasma and laser parameters in which a single wakefield displays no significant injection. In the second experiment a magnetic triplet quadrupole system was used to refocus and stabilize electron beams at the distance of 60 cm from the interaction region. This produced a 10-fold increase in remote gamma-ray activation of 63Cu using a lead converter. In the third experiment measurements of un-trapped electrons with high transverse momentum produce a 500 mrad (FWHM) ring. This ring is formed by electrons that receive a forward momentum boost by traversing behind the bubble and its size is inversely proportional to the plasma density. The characterization of divergence and charge of this electron ring may reveal information about the wakefield structure and trapping potential. Supported by U.S. Department of Energy and the National Nuclear Security Administration and Air Force Office of Scientific Research.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016APS..DPPP10054T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016APS..DPPP10054T"><span>Inferring Core Tungsten Behavior Using SPRED During the DIII-D Metal Rings Campaign</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Thomas, D. M.; Kaplan, D.; Groebner, R.; Grierson, B.; Unterberg, Z.; Victor, B.</p> <p>2016-10-01</p> <p>The GA SPRED EUV spectrometer was used to study core emission of highly charged tungsten ions (W40+-W45+) in the 120-135Å region during the recent Metal Rings Campaign. These experiments used two 5-cm wide toroidal rings of W-coated metal inserts exposed to a variety of DIII-D discharges to study effects of high-Z divertor erosion, migration, core uptake, and effects on advanced tokamak performance. For the proper core temperature range (2-4 keV), the measured multistate W emission forms a well defined spectral pattern that can be used to study the relative importance of strike point location, flux expansion, injected power, ELM characteristics and magnetic drift direction for high-Z core contamination in DIII-D. The spectra are fit using simple Gaussians to estimate concentrations using the historical SPRED intensity calibration. Calibration shots using known core dosages of pellet injected W are used to help infer the relative response of the instrument. Supported by US DOE under DE-FC02-04ER54698, DE-AC02-09CH11466, DE-AC05-00OR22725, DE-AC52-07NA27344.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010Icar..206..446K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010Icar..206..446K"><span>How the Enceladus dust plume feeds Saturn’s E ring</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kempf, Sascha; Beckmann, Uwe; Schmidt, Jürgen</p> <p>2010-04-01</p> <p>Pre-Cassini models of Saturn's E ring [Horányi, M., Burns, J., Hamilton, D., 1992. Icarus 97, 248-259; Juhász, A., Horányi, M., 2002. J. Geophys. Res. 107, 1-10] failed to reproduce its peculiar vertical structure inferred from Earth-bound observations [de Pater, I., Martin, S.C., Showalter, M.R., 2004. Icarus 172, 446-454]. After the discovery of an active ice-volcanism of Saturn's icy moon Enceladus the relevance of the directed injection of particles for the vertical ring structure of the E ring was swiftly recognised [Juhász, A., Horányi, M., Morfill, G.E., 2007. Geophys. Res. Lett. 34, L09104; Kempf, S., Beckmann, U., Moragas-Klostermeyer, G., Postberg, F., Srama, R., Economou, T., Schmidt, J., Spahn, F., Grün, E., 2008. Icarus 193, 420-437]. However, simple models for the delivery of particles from the plume to the ring predict a too small vertical ring thickness and overestimate the amount of the injected dust. Here we report on numerical simulations of grains leaving the plume and populating the dust torus of Enceladus. We run a large number of dynamical simulations including gravity and Lorentz force to investigate the earliest phase of the ring particle life span. The evolution of the electrostatic charge carried by the initially uncharged grains is treated selfconsistently. Freshly ejected plume particles are moving in almost circular orbits because the Enceladus orbital speed exceeds the particles' ejection speeds by far. Only a small fraction of grains that leave the Hill sphere of Enceladus survive the next encounter with the moon. Thus, the flux and size distribution of the surviving grains, replenishing the ring particle reservoir, differs significantly from the flux and size distribution of the particles freshly ejected from the plume. Our numerical simulations reproduce the vertical ring profile measured by the Cassini Cosmic Dust Analyzer (CDA) [Kempf, S., Beckmann, U., Moragas-Klostermeyer, G., Postberg, F., Srama, R., EconoDmou, T., Smchmidt, J., Spahn, F., Grün, E., 2008. Icarus 193, 420-437]. From our simulations we calculate the deposition rates of plume particles hitting Enceladus' surface. We find that at a distance of 100 m from a jet a 10 m sized ice boulder should be covered by plume particles in 105- 106 years.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1992NIMPA.321....1N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1992NIMPA.321....1N"><span>Observations of a fast transverse instability in the PSR</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Neuffer, D.; Colton, E.; Fitzgerald, D.; Hardek, T.; Hutson, R.; Macek, R.; Plum, M.; Thiessen, H.; Wang, T.-S.</p> <p>1992-09-01</p> <p>A fast instability with beam loss is observed in the Los Alamos Proton Storage Ring (PSR) when the injected beam current exceeds a threshold value, with both bunched and unbunched beams. Large coherent transverse oscillations occur prior to and during beam loss. The threshold depends strongly on rf voltage, beam-pulse shape, beam size, nonlinear fields, and beam environmental. Results of recent observations of the instability are reported; possible causes of the instability are discussed. Recent measurements and calculations indicate that the instability is an "e-p"-type instability, driven by coupled oscillations with electrons trapped within the proton beam. Future experiments toward further understanding of the instability are discussed, and methods of increasing PSR beam storage are suggested.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/5937717','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/5937717"><span>Report of the New Rings Study Group</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Holmes, S.D.; Dugan, G.; Marriner, J.</p> <p>1987-10-19</p> <p>We have taken the approach here of trying to understand both the feasibility and practicality of varied options for new rings at Fermilab, rather than trying to produce a single detailed design. In other words, this document is not a design report and should not be construed as such. Our perception of the potential needs for new rings (in order of priority) is as follows: Antiproton Storage and/or Recovery: A facility for storing up to 4 x 10/sup 12/ antiprotons is needed. Recovery of antiprotons from the collider becomes a viable option if the luminosity is indeed dominated by emittancemore » dilution rather than beam loss. New or Post-Booster: The goal here would be to inject into the existing Main Ring above transition. Improved performance of the Main Ring would be anticipated. New Main Ring: Advantages would include better emittance preservation, a faster cycle time for antiproton production, and the removal of interference/backgrounds at the B0 and D0 detectors. We discuss in this paper various scenarios based on one or more combinations of the above possibilities. 14 figs., 10 tabs.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1417034-cepc-booster-design-study','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1417034-cepc-booster-design-study"><span>CEPC booster design study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Bian, Tianjian; Gao, Jie; Zhang, Chuang; ...</p> <p>2017-12-10</p> <p>In September 2012, Chinese scientists proposed a Circular Electron Positron Collider (CEPC) in China at 240 GeV center-of-mass energy for Higgs studies. The booster provides 120 GeV electron and positron beams to the CEPC collider for top-up injection at 0.1 Hz. The design of the full energy booster ring of the CEPC is a challenge. The ejected beam energy is 120 GeV and the injected beam energy is 6 GeV. Here in this paper we describe two alternative schemes, the wiggler bend scheme and the normal bend scheme. For the wiggler bend scheme, we propose to operate the booster ringmore » as a large wiggler at low energy and as a normal ring at high energy to avoid the problem of very low dipole magnet fields. Finally, for the normal bend scheme, we implement the orbit correction to correct the earth field.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1329070','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1329070"><span>Proton Injection into the Fermilab Integrable Optics Test Accelerator (IOTA)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Prebys, Eric; Antipov, Sergey; Piekarz, Henryk</p> <p></p> <p>The Integrable Optics Test Accelerator (IOTA) is an experimental synchrotron being built at Fermilab to test the concept of non-linear "integrable optics". These optics are based on a lattice including non-linear elements that satisfies particular conditions on the Hamiltonian. The resulting particle motion is predicted to be stable but without a unique tune. The system is therefore insensitive to resonant instabilities and can in principle store very intense beams, with space charge tune shifts larger than those which are possible in conventional linear synchrotrons. The ring will initially be tested with pencil electron beams, but this poster describes the ultimatemore » plan to install a 2.5 MeV RFQ to inject protons, which will produce tune shifts on the order of unity. Technical details will be presented, as well as simulations of protons in the ring.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1417034-cepc-booster-design-study','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1417034-cepc-booster-design-study"><span>CEPC booster design study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Bian, Tianjian; Gao, Jie; Zhang, Chuang</p> <p></p> <p>In September 2012, Chinese scientists proposed a Circular Electron Positron Collider (CEPC) in China at 240 GeV center-of-mass energy for Higgs studies. The booster provides 120 GeV electron and positron beams to the CEPC collider for top-up injection at 0.1 Hz. The design of the full energy booster ring of the CEPC is a challenge. The ejected beam energy is 120 GeV and the injected beam energy is 6 GeV. Here in this paper we describe two alternative schemes, the wiggler bend scheme and the normal bend scheme. For the wiggler bend scheme, we propose to operate the booster ringmore » as a large wiggler at low energy and as a normal ring at high energy to avoid the problem of very low dipole magnet fields. Finally, for the normal bend scheme, we implement the orbit correction to correct the earth field.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21825345','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21825345"><span>Electromagnetic pulse-driven spin-dependent currents in semiconductor quantum rings.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhu, Zhen-Gang; Berakdar, Jamal</p> <p>2009-04-08</p> <p>We investigate the non-equilibrium charge and spin-dependent currents in a quantum ring with a Rashba spin-orbit interaction (SOI) driven by two asymmetric picosecond electromagnetic pulses. The equilibrium persistent charge and persistent spin-dependent currents are investigated as well. It is shown that the dynamical charge and the dynamical spin-dependent currents vary smoothly with a static external magnetic flux and the SOI provides a SU(2) effective flux that changes the phases of the dynamic charge and the dynamic spin-dependent currents. The period of the oscillation of the total charge current with the delay time between the pulses is larger in a quantum ring with a larger radius. The parameters of the pulse fields control to a certain extent the total charge and the total spin-dependent currents. The calculations are applicable to nanometre rings fabricated in heterojunctions of III-V and II-VI semiconductors containing several hundreds of electrons.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20020068061&hterms=waves+electromagnetic&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dwaves%2Belectromagnetic','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20020068061&hterms=waves+electromagnetic&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dwaves%2Belectromagnetic"><span>Ring Current Ion Coupling with Electromagnetic Ion Cyclotron Waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Khazanov. G. V.; Gamayunov, K. V.; Jordanova, V. K.; Six, N. Frank (Technical Monitor)</p> <p>2002-01-01</p> <p>A new ring current global model has been developed that couples the system of two kinetic equations: one equation describes the ring current (RC) ion dynamic, and another equation describes wave evolution of electromagnetic ion cyclotron waves (EMIC). The coupled model is able to simulate, for the first time self-consistently calculated RC ion kinetic and evolution of EMIC waves that propagate along geomagnetic field lines and reflect from the ionosphere. Ionospheric properties affect the reflection index through the integral Pedersen and Hall conductivities. The structure and dynamics of the ring current proton precipitating flux regions, intensities of EMIC global RC energy balance, and some other parameters will be studied in detail for the selected geomagnetic storms.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1997APS..PAC..5W21M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1997APS..PAC..5W21M"><span>Overview of Progress on the LANSCE Accelerator and Target Facilities Improvement Program</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Macek, R. J.; Brun, T.; Donahue, J. B.; Fitzgerald, D. H.</p> <p>1997-05-01</p> <p>Three projects to improve the performance of the accelerator and target facilities for the Los Alamos Neutron Science Center have been initiated since 1994. The LANSCE Reliability Improvement Project was separated into two phases. Phase I, completed in 1995, was targeted at near-term improvements to beam availability that could be completed in a year. Phase II, now underway, consists of two projects: 1) converting the beam injection into the Proton Storage Ring (PSR) from the present two-step process H^- to H^0 to H^+) to direct injection of H^- beam in one step (H^- to H^+), and 2) an upgrade of the spallation neutron production target which will reduce the target change-out time from about a year to about three weeks. The third project, the SPSS Enhancement Project, is aimed at increasing the PSR output beam current from the present 70 μA at 20 Hz to 200 μA at 30 Hz, plus implementing seven new neutron scattering instruments. Objectives, plans, results and progress to date will be summarized.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1364553-minimization-betatron-oscillations-electron-beam-injected-time-varying-lattice-via-extremum-seeking','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1364553-minimization-betatron-oscillations-electron-beam-injected-time-varying-lattice-via-extremum-seeking"><span>Minimization of betatron oscillations of electron beam injected into a time-varying lattice via extremum seeking</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Scheinker, Alexander; Huang, Xiaobiao; Wu, Juhao</p> <p>2017-02-20</p> <p>Here, we report on a beam-based experiment performed at the SPEAR3 storage ring of the Stanford Synchrotron Radiation Lightsource at the SLAC National Accelerator Laboratory, in which a model-independent extremum-seeking optimization algorithm was utilized to minimize betatron oscillations in the presence of a time-varying kicker magnetic field, by automatically tuning the pulsewidth, voltage, and delay of two other kicker magnets, and the current of two skew quadrupole magnets, simultaneously, in order to optimize injection kick matching. Adaptive tuning was performed on eight parameters simultaneously. The scheme was able to continuously maintain the match of a five-magnet lattice while the fieldmore » strength of a kicker magnet was continuously varied at a rate much higher (±6% sinusoidal voltage change over 1.5 h) than typically experienced in operation. Lastly, the ability to quickly tune or compensate for time variation of coupled components, as demonstrated here, is very important for the more general, more difficult problem of global accelerator tuning to quickly switch between various experimental setups.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1997PhRvB..5514513B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1997PhRvB..5514513B"><span>Susceptibility of superconductor disks and rings with and without flux creep</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Brandt, Ernst Helmut</p> <p>1997-06-01</p> <p>First some consequences of the Bean assumption of constant critical current Jc in type-II superconductors are listed and the Bean ac susceptibility of narrow rings is derived. Then flux creep is described by a nonlinear current-voltage law E~Jn, from which the saturated magnetic moment at constant ramp rate H-|Apa(t) is derived for rings with general hole radius a1 and general creep exponent n. Next the exact formulation for rings in a perpendicular applied field Ha(t) is presented in the form of an equation of motion for the current density in thick rings and disks or the sheet current in thin rings and disks. This method is used to compute general magnetization curves m(Ha) and ac susceptibilities χ of rings with and without creep, accounting also for nonconstant Jc(B). Typical current and field (B) profiles are depicted. The initial slope of m(Ha) (the ideal diamagnetic moment) and the field of full penetration are expressed as functions of the inner and outer ring radii a1 and a. A scaling law is derived which states that for arbitrary creep exponent n the complex nonlinear ac susceptibility χ(H0,ω) depends only on the combination Hn-10/ω of the ac amplitude H0 and the ac frequency ω/2π. This scaling law thus connects the known dependencies χ=χ(ω) in the ohmic limit (n=1) and χ=χ(H0) in the Bean limit (n-->∞).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA10094.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA10094.html"><span>Saturn Ring</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2007-12-12</p> <p>Like Earth, Saturn has an invisible ring of energetic ions trapped in its magnetic field. This feature is known as a "ring current." This ring current has been imaged with a special camera on Cassini sensitive to energetic neutral atoms. This is a false color map of the intensity of the energetic neutral atoms emitted from the ring current through a processed called charged exchange. In this process a trapped energetic ion steals and electron from cold gas atoms and becomes neutral and escapes the magnetic field. The Cassini Magnetospheric Imaging Instrument's ion and neutral camera records the intensity of the escaping particles, which provides a map of the ring current. In this image, the colors represent the intensity of the neutral emission, which is a reflection of the trapped ions. This "ring" is much farther from Saturn (roughly five times farther) than Saturn's famous icy rings. Red in the image represents the higher intensity of the particles, while blue is less intense. Saturn's ring current had not been mapped before on a global scale, only "snippets" or areas were mapped previously but not in this detail. This instrument allows scientists to produce movies (see PIA10083) that show how this ring changes over time. These movies reveal a dynamic system, which is usually not as uniform as depicted in this image. The ring current is doughnut shaped but in some instances it appears as if someone took a bite out of it. This image was obtained on March 19, 2007, at a latitude of about 54.5 degrees and radial distance 1.5 million kilometres (920,000 miles). Saturn is at the center, and the dotted circles represent the orbits of the moon's Rhea and Titan. The Z axis points parallel to Saturn's spin axis, the X axis points roughly sunward in the sun-spin axis plane, and the Y axis completes the system, pointing roughly toward dusk. The ion and neutral camera's field of view is marked by the white line and accounts for the cut-off of the image on the left. The image is an average of the activity over a (roughly) 3-hour period. http://photojournal.jpl.nasa.gov/catalog/PIA10094</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRA..123.1566H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRA..123.1566H"><span>Investigating the Development of Abnormal Subauroral Ion Drift (ASAID) and Abnormal Subauroral Polarization Stream (ASAPS) During the Magnetically Active Times of September 2003</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Horvath, Ildiko; Lovell, Brian C.</p> <p>2018-02-01</p> <p>This study investigates two recently reported subauroral phenomena: the abnormal subauroral ion drift (ASAID) appearing as an inverted SAID and the shielding-E—SAID structure depicting a SAID feature on the poleward side of a small eastward or antisunward flow channel that is the shielding electric (E) field's signature. We have analyzed polar cross sections, constructed with multi-instrument Defense Meteorological Satellite Program data, for the development of these subauroral phenomena. New results show the features of abnormal subauroral polarization stream (ASAPS) and ASAID-ASAPS comprised by a narrow ASAID embedded in a wider ASAPS. We have identified undershielding, perfect shielding, and overshielding events. Our observational results demonstrate SAPS development during undershielding, the absence of subauroral flow channel during perfect shielding, and ASAID/ASAPS and shielding-E—SAID/SAPS development during overshielding. The appearance of an ASAID-ASAPS structure together with a pair of dayside-nightside eastward auroral flow channels implies the intensification of region 2 field-aligned currents via the westward traveling surge and thus the strengthening of overshielding conditions. From the observational results presented we conclude for the magnetically active time period studied that (i) the shielding E field drove the wider ASAPS flow channel, (ii) the ASAID-ASAPS structure's narrow antisunward flow channel developed due to the injections of hot ring current ions in a short-circuited system wherein the hot ring current plasma was closer to the Earth than the cold plasmaspheric plasma, and (iii) overshielding created this hot-cold plasma configuration via the development of a plasmaspheric shoulder.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AGUFMSM12A..03N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AGUFMSM12A..03N"><span>Equatorial measurement of SAID electric fields and relation with the plasmapause location</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nishimura, Y.; Wygant, J.; Ono, T.; Iizima, M.; Kumamoto, A.; Brautigam, D.; Rich, F.</p> <p>2007-12-01</p> <p>In order to investigate the equatorial source of subauroral ion drifts (SAID) and its association with the plasmapause position, multi-spacecraft measurements of SAID are presented using the CRRES, Akebono, and DMSP. Direct measurement of the convection electric field and plasmapause density close to the equator is measured by the electric field instrument onboard the CRRES satellite, and the plasmasheet electrons and low energy part of the ring current ions are measured by the low energy plasma instrument. The CRRES satellite is on the dusk inner magnetosphere, and the DMSP-F8 and Akebono satellites are approximately on the same field line. Associated with a substorm onset at 16:40 UT on February 20, 1991, the DMSP-F8 satellite at 19 MLT measures SAID with a maximum westward velocity of 1,500 m/s. The CRRES satellite is on outbound in the inner magnetosphere at ~21 MLT and ~5 RE at the onset of the substorm. It measures increase of DC electric field with 0.4 mV/m in the plasmasphere just after the substorm onset. Thirty minutes later, injection of ring current ions are observed in the plasmasphere with Bz decrease. After the crossing of the plasmapause, the electric field increases to 0.8 mV/m. At the same time, the spacecraft enters the plasmasheet, and the DC electric field disappears. The same time sequence is also identified in other SAID events detected on the dusk inner magnetosphere. The above CRRES measurement indicates that DC electric field is intensified in a narrow region between the ring current and electron plasmasheet after the onset of the substorm. Although the E*B drift points sunward in this region, this region with enhanced electric field is filled with plasmaspheric plasma without abrupt density change. The position where the convection electric field is equal to the corotation electric field locates inside the plasmapause. The plasmapause coincides with inner edge of the plasmasheet. This association suggests that the plasmaspheric plasma is depleted by the plasmasheet electrons, possibly by the enhanced E*B drift earthward of the plasmasheet. During the SAID event on 16:40 UT on February 20, 1991, the Akebono satellite was approximately on the same field line of the CRRES satellite (21 MLT and 5 RE) 40 minutes later the substorm onset. It measures enhancement of electric field with 2 mV/m between L=5 and 6. The inner edge of the electric field corresponds to the inner edge of ring current ions, and the outer edge coincides with the plasmasheet electrons. This signature of the electric field intensification in the charge-separated region is in accordance with the CRRES measurement. This study has clarified that the equatorial source of SAID electric fields is charge separation of ring current ions and plasmasheet electrons by electric field associated with substorms. This is consistent with the theoretical study by Southwood and Wolf [1978] and low-altitude measurements by Anderson et al. [2001] by that the charge separation provides current and voltage sources and the electric field is increased by the low conductance of the subauroral ionosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19920014958','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19920014958"><span>Large transient fault current test of an electrical roll ring</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Yenni, Edward J.; Birchenough, Arthur G.</p> <p>1992-01-01</p> <p>The space station uses precision rotary gimbals to provide for sun tracking of its photoelectric arrays. Electrical power, command signals and data are transferred across the gimbals by roll rings. Roll rings have been shown to be capable of highly efficient electrical transmission and long life, through tests conducted at the NASA Lewis Research Center and Honeywell's Satellite and Space Systems Division in Phoenix, AZ. Large potential fault currents inherent to the power system's DC distribution architecture, have brought about the need to evaluate the effects of large transient fault currents on roll rings. A test recently conducted at Lewis subjected a roll ring to a simulated worst case space station electrical fault. The system model used to obtain the fault profile is described, along with details of the reduced order circuit that was used to simulate the fault. Test results comparing roll ring performance before and after the fault are also presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/6898014','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/6898014"><span>Stabilizing windings for tilting and shifting modes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Jardin, S.C.; Christensen, U.R.</p> <p>1982-02-26</p> <p>This invention provides simple, inexpensive, independent and passive, conducting loops for stabilizing a plasma ring having externally produced equilibrium fields on opposite sides of the plasma ring and internal plasma currents that interact to tilt and/or shift the plasma ring relative to the externally produced equilibrium field so as to produce unstable tilting and/or shifting modes in the plasma ring. More particularly this invention provides first and second passive conducting loops for containing first and second induced currents in first and second directions corresponding to the amplitude and directions of the unstable tilting and/or shifting modes in the plasma ring.more » To this end, the induced currents provide additional magnetic fields for producing restoring forces and/or restoring torques for counteracting the tilting and/or shifting modes when the conducting loops are held fixed in stationary positions relative to the externally produced equilibrium fields on opposite sides of the plasma ring.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_13 --> <div id="page_14" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="261"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017IJMPB..3150095O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017IJMPB..3150095O"><span>The angular electronic band structure and free particle model of aromatic molecules: High-frequency photon-induced ring current</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Öncan, Mehmet; Koç, Fatih; Şahin, Mehmet; Köksal, Koray</p> <p>2017-05-01</p> <p>This work introduces an analysis of the relationship of first-principles calculations based on DFT method with the results of free particle model for ring-shaped aromatic molecules. However, the main aim of the study is to reveal the angular electronic band structure of the ring-shaped molecules. As in the case of spherical molecules such as fullerene, it is possible to observe a parabolic dispersion of electronic states with the variation of angular quantum number in the planar ring-shaped molecules. This work also discusses the transition probabilities between the occupied and virtual states by analyzing the angular electronic band structure and the possibility of ring currents in the case of spin angular momentum (SAM) or orbital angular momentum (OAM) carrying light. Current study focuses on the benzene molecule to obtain its angular electronic band structure. The obtained electronic band structure can be considered as a useful tool to see the transition probabilities between the electronic states and possible contribution of the states to the ring currents. The photoinduced current due to the transfer of SAM into the benzene molecule has been investigated by using analytical calculations within the frame of time-dependent perturbation theory.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SPIE10045E..1JF','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SPIE10045E..1JF"><span>Correction of hyperopia by intrastromal cutting and biocompatible filler injection (Conference Presentation)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Freidank, Sebastian; Vogel, Alfred; Anderson, Richard R.; Birngruber, Reginald; Linz, Norbert</p> <p>2017-02-01</p> <p>For ametropic eyes, LASIK is a common surgical procedure to correct the refractive error. However, the correction of hyperopia is more difficult than that of myopia because the increase of the central corneal curvature by excimer ablation is only possible by intrastromal tissue removal within a ring-like zone in the corneal periphery. For high hyperopia, the ring-shaped indentation leads to problems with the stability and reproducibility of the correction due to epithelial regrowth. Recently, it was shown that the correction of hyperopia can be achieved by implanting intracorneal inlays into a laser-dissected intrastromal pocket. In this paper we demonstrate the feasibility of a new approach in which a transparent, and biocompatible liquid filler material is injected into a laser-dissected corneal pocket, and the refractive change is monitored via OCT. This technique allows for a precise and adjustable change of the corneal curvature. Precise cutting of the intrastromal pocket was achieved by focusing UV laser picosecond pulses from a microchip laser system into the cornea. After laser dissection, the transparent filler material was injected into the pocket. The increase of the refractive power by filler injection was evaluated by taking OCT images from the cornea. With this novel technique, it is possible to precisely correct hyperopia of up to 10 diopters. An astigmatism correction is also possible by using ellipsoidal intrastromal pockets.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22608337-nsls-ii-storage-ring-insertion-device-front-end-commissioning-operation','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22608337-nsls-ii-storage-ring-insertion-device-front-end-commissioning-operation"><span>NSLS-II storage ring insertion device and front-end commissioning and operation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Wang, G., E-mail: gwang@bnl.gov; Shaftan, T.; Amundsen, C.</p> <p></p> <p>The National Synchrotron Light Source II (NSLS-II) is a state of the art 3 GeV third generation light source at Brookhaven National Laboratory. During spring/ summer of 2014, the storage ring was commissioned up to 50 mA without insertion devices. In the fall of 2014, we began commissioning of the project beamlines, which included seven insertion devices on six ID ports. Beamlines IXS, HXN, CSX-1, CSX-2, CHX, SRX, and XPD-1 consist of elliptically polarized undulator (EPU), damping wigglers (DW) and in-vacuum undulators (IVU) covering from VUV to hard x-ray range. In this paper, experience with commissioning and operation is discussed.more » We focus on reaching storage ring performance with IDs, including injection, design emittance, compensation of orbit distortions caused by ID residual field, source point stability, beam alignment and tools for control, monitoring and protection of the ring chambers from ID radiation.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFM.A41C0111A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFM.A41C0111A"><span>High Power OPO Laser and wavelength-controlled system for 1.6μm CO2-DIAL</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Abo, M.; Nagasawa, C.; Shibata, Y.</p> <p>2009-12-01</p> <p>Unlike the existing 2.0μm CO2-DIAL, a high-energy pulse laser operating in the 1.6μm absorption band of CO2 has not been realized. Quasi phase matching (QPM) devices have high conversion efficiency and high beam quality due to their higher nonlinear optical coefficient. We adapt the PPMgLT crystal as the QPM device. The PPMgLT crystal had 3mm × 3mm apertures, and the periodically poled period was 30.9 μm, with the duty ratio close to the ideal value of 0.5. The beam quality of the pumping laser was exceed M2 ≥1.2. The repetition rate was 400 Hz and the energy was 35 mJ. The pumping laser pulse was injection-seeded by the continuous-wave (CW) fiber laser, which had a narrow spectrum. The pulse pumped the PPMgLT crystal in the ring cavity with a single pass through the dielectric mirror. The PPMgLT crystal was mounted on a copper holder, and the temperature was maintained at 40 °C using a Peltier module. The holder’s temperature was stabilized to within 0.01 °C when the copper holder was covered with a plastic case. The OPO ring cavity was a singly resonant oscillator optimized for the signal wave. Single-frequency oscillation of the PPMgLT OPO was achieved by injection seeding, as described in the following. The injection seeder was a DFB laser having a power of 30mW with a 1MHz oscillation spectrum. Their oscillation wavelength was coarse tuned by temperature and fine tuned by adjusting injection currents. The partial power of the online wavelength was split in the wavelength control unit. We locked the DFB laser as an injection seeder of the online wavelength onto the line center by referencing the fiber coupled multipath gas cell (path length 800mm) containing pure CO2 at a pressure of 700 Torr. Stabilization was estimated to within 1.8MHz rms of the line center of the CO2 absorption line by monitoring the feedback signal of a wavelength-controlled unit. Injection seeding of the PPMgLT OPO was performed by matching the cavity length to the seeder wavelength for each oscillation pulse. The on-line and off-line wavelengths were injected into the OPO cavity through its output mirror. The injection seeder could be automatically switched by applying the TTL trigger to an optical fiber switch. A typical power of 8mW was injected into the cavity. The OPO cavity length was controlled as follows. A slope voltage was applied to the piezoelectric element mounted on the cavity mirror. If the longitudinal mode of the cavity was closed at the wavelength of the injection seeder, the electrical signal monitored by the photodiode would be maximized. The CW laser beam was injected from the output coupler to control the oscillation wavelength. The maximum output energy of 12mJ at 400 Hz was observed at 35mJ of pumping laser energy. The slope efficiency was 43.7%. This output energy and this repetition rate were the highest achieved so far. No damage was observed even after 1 h of operation. Therefore higher-energy operations can be expected with this device if the beam quality of the pumping laser is improved. This work was financially supported by the System Development Program for Advanced Measurement and Analysis by the JST.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009SPIE.7339E..03W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009SPIE.7339E..03W"><span>CW injection locking for long-term stability of frequency combs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Williams, Charles; Quinlan, Franklyn; Delfyett, Peter J.</p> <p>2009-05-01</p> <p>Harmonically mode-locked semiconductor lasers with external ring cavities offer high repetition rate pulse trains while maintaining low optical linewidth via long cavity storage times. Continuous wave (CW) injection locking further reduces linewidth and stabilizes the optical frequencies. The output can be stabilized long-term with the help of a modified Pound-Drever-Hall feedback loop. Optical sidemode suppression of 36 dB has been shown, as well as RF supermode noise suppression of 14 dB for longer than 1 hour. In addition to the injection locking of harmonically mode-locked lasers requiring an external frequency source, recent work shows the viability of the injection locking technique for regeneratively mode-locked lasers, or Coupled Opto-Electronic Oscillators (COEO).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008EOSTr..89..379C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008EOSTr..89..379C"><span>Comment on ``Unraveling the Causes of Radiation Belt Enhancements''</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Campbell, Wallace H.</p> <p>2008-09-01</p> <p>The excellent article by M. W. Liemohn and A. A. Chan on the radiation belts (see Eos, 88(42), 16 October 2007) is misleading in its implication that the disturbance storm-time (Dst) index is an indicator of a magnetospheric ring current. That index is formed from an average of magnetic data from three or four low-latitude stations that have been fallaciously ``adjusted'' to a magnetic equatorial location under the 1960's assumption [Sugiura, 1964] that the fields arrive from the growth and decay of a giant ring of current in the magnetosphere. In truth, the index has a negative lognormal form [Campbell, 1996; Yago and Kamide, 2003] as a result of its composition from numerous negative ionospheric and magnetospheric disturbance field sources, each having normal field amplitude distributions [Campbell, 2004]. Some partial ring currents [Lui et al., 1987] and their associated field-aligned currents, as well as major ionospheric currents flowing from the auroral zone to equatorial latitudes, are the main contributors to the Dst index. No full magnetospheric ring of currents is involved, despite its false name (``Equatorial Dst Ring Current Index'') given by the index suppliers, the Geomagnetism Laboratory at Kyoto University, Japan.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19890058245&hterms=alicia&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dalicia%2Bd','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19890058245&hterms=alicia&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dalicia%2Bd"><span>Solar wind-magnetosphere coupling during intense magnetic storms (1978-1979)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gonzalez, Walter D.; Gonzalez, Alicia L. C.; Tsurutani, Bruce T.; Smith, Edward J.; Tang, Frances</p> <p>1989-01-01</p> <p>The solar wind-magnetosphere coupling problem during intense magnetic storms was investigated for ten intense magnetic storm events occurring between August 16, 1978 to December 28, 1979. Particular attention was given to the dependence of the ring current energization on the ISEE-measured solar-wind parameters and the evolution of the ring current during the main phase of the intense storms. Several coupling functions were tested as energy input, and several sets of the ring current decay time-constant were searched for the best correlation with the Dst response. Results indicate that a large-scale magnetopause reconnection operates during an intense storm event and that the solar wind ram pressure plays an important role in the energization of the ring current.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017NIMPB.408..280W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017NIMPB.408..280W"><span>Measurement of the lifetime and the proportion of 12C3+ ions in stored relativistic ion beams as a preparation for laser cooling experiments at the CSRe</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, H. B.; Wen, W. Q.; Huang, Z. K.; Zhang, D. C.; Hai, B.; Zhu, X. L.; Zhao, D. M.; Yang, J.; Li, J.; Li, X. N.; Mao, L. J.; Mao, R. S.; Wu, J. X.; Yang, J. C.; Yuan, Y. J.; Eidam, L.; Winters, D.; Beck, T.; Kiefer, D.; Rein, B.; Walther, Th.; Loeser, M.; Schramm, U.; Siebold, M.; Bussmann, M.; Ma, X.</p> <p>2017-10-01</p> <p>We report on an experiment that was conducted in preparation of laser cooling experiments at the heavy-ion storage ring CSRe. The lifetimes of ion beams made up of 12C3+ and 16O4+ ions stored at an energy of 122 MeV/u in the CSRe were determined by two independent methods, firstly via a DC current transformer (DCCT) and secondly via a Schottky resonator. Using electron-cooling, the signals of the 12C3+ and 16O4+ ions could be separated and clearly observed in the Schottky spectrum. The obtained individual lifetimes of the 12C3+ and 16O4+ components were 23.6 s and 17.8 s, respectively. The proportion of 12C3+ ions in the stored ion beam was measured to be more than 70% at the beginning of the injection and increasing as a function of time. In addition to these measurements, the operation and remote control of a pulsed laser system placed directly next to the storage ring was tested in a setup similar to the one envisaged for future laser experiments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27671654','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27671654"><span>Nanokit for single-cell electrochemical analyses.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Pan, Rongrong; Xu, Mingchen; Jiang, Dechen; Burgess, Jame D; Chen, Hong-Yuan</p> <p>2016-10-11</p> <p>The development of more intricate devices for the analysis of small molecules and protein activity in single cells would advance our knowledge of cellular heterogeneity and signaling cascades. Therefore, in this study, a nanokit was produced by filling a nanometer-sized capillary with a ring electrode at the tip with components from traditional kits, which could be egressed outside the capillary by electrochemical pumping. At the tip, femtoliter amounts of the kit components were reacted with the analyte to generate hydrogen peroxide for the electrochemical measurement by the ring electrode. Taking advantage of the nanotip and small volume injection, the nanokit was easily inserted into a single cell to determine the intracellular glucose levels and sphingomyelinase (SMase) activity, which had rarely been achieved. High cellular heterogeneities of these two molecules were observed, showing the significance of the nanokit. Compared with the current methods that use a complicated structural design or surface functionalization for the recognition of the analytes, the nanokit has adapted features of the well-established kits and integrated the kit components and detector in one nanometer-sized capillary, which provides a specific device to characterize the reactivity and concentrations of cellular compounds in single cells.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22608330-conceptual-design-front-ends-advanced-photon-source-multi-bend-achromats-upgrade','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22608330-conceptual-design-front-ends-advanced-photon-source-multi-bend-achromats-upgrade"><span>Conceptual design of front ends for the advanced photon source multi-bend achromats upgrade</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Jaski, Y., E-mail: jaskiy@aps.anl.gov; Westferro, F., E-mail: westferr@aps.anl.gov; Lee, S. H., E-mail: shlee@aps.anl.gov</p> <p>2016-07-27</p> <p>The proposed Advanced Photon Source (APS) upgrade from a double-bend achromats (DBA) to multi-bend achromats (MBA) lattice with ring energy change from 7 GeV to 6 GeV and beam current from 100 mA to 200 mA poses new challenges for front ends. All front ends must be upgraded to fulfill the following requirements: 1) handle the high heat load from two insertion devices in either inline or canted configuration, 2) include a clearing magnet in the front end to deflect and dump any electrons in case the electrons escape from the storage ring during swap-out injection with the safety shuttersmore » open, 3) incorporate the next generation x-ray beam position monitors (XBPMs) into the front end to meet the new stringent beam stability requirements. This paper presents the evaluation of the existing APS front ends and standardizes the insertion device (ID) front ends into two types: one for the single beam and one for the canted beams. The conceptual design of high heat load front end (HHLFE) and canted undulator front end (CUFE) for APS MBA upgrade is presented.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1336948-conceptual-design-front-ends-advanced-photon-source-multi-bend-achromats-upgrade','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1336948-conceptual-design-front-ends-advanced-photon-source-multi-bend-achromats-upgrade"><span>Conceptual Design of Front Ends for the Advanced Photon Source Multi-bend Achromats Upgrade</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Jaski, Y.; Westferro, F.; Lee, S. H.</p> <p>2016-07-27</p> <p>The proposed Advanced Photon Source (APS) upgrade from a double-bend achromats (DBA) to multi-bend achromats (MBA) lattice with ring energy change from 7 GeV to 6 GeV and beam current from 100 mA to 200 mA poses new challenges for front ends. All front ends must be upgraded to fulfill the following requirements: 1) handle the high heat load from two insertion devices in either inline or canted configuration, 2) include a clearing magnet in the front end to deflect and dump any electrons in case the electrons escape from the storage ring during swap-out injection with the safety shuttersmore » open, 3) incorporate the next generation x-ray beam position monitors (XBPMs) into the front end to meet the new stringent beam stability requirements. This paper presents the evaluation of the existing APS front ends and standardizes the insertion device (ID) front ends into two types: one for the single beam and one for the canted beams. The conceptual design of high heat load front end (HHLFE) and canted undulator front end (CUFE) for APS MBA upgrade is presented.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/20722791-method-overcome-space-charge-injection','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/20722791-method-overcome-space-charge-injection"><span>A Method to Overcome Space Charge at Injection</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Derbenev, Ya.</p> <p>2005-06-08</p> <p>The transverse space charge forces in a high current, low energy beam can be reduced by mean of a large increase of the beam's transverse sizes while maintaining the beam area in the 4D phase space. This can be achieved by transforming the beam area in phase space of each of two normal 2D transverse (either plane or circular) modes from a spot shape into a narrow ring of a large amplitude, but homogeneous in phase. Such a transformation results from the beam evolution in the island of a dipole resonance when the amplitude width of the island shrinks adiabatically.more » After stacking (by using stripping foils or cooling) the beam in such a state and accelerating to energies sufficiently high that the space charge becomes insignificant, the beam then can be returned back to a normal spot shape by applying the reverse transformation. An arrangement that can provide such beam gymnastics along a transport line after a linac and before a booster and/or in a ring with circulating beam will be described and numerical estimates will be presented. Other potential applications of the method will be briefly discussed.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/850378','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/850378"><span>A Method to Overcome Space Charge at Injection</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Ya. Derbenev</p> <p>2005-09-29</p> <p>The transverse space charge forces in a high current, low energy beam can be reduced by mean of a large increase of the beam's transverse sizes while maintaining the beam area in the 4D phase space. This can be achieved by transforming the beam area in phase space of each of two normal 2D transverse (either plane or circular) modes from a spot shape into a narrow ring of a large amplitude, but homogeneous in phase. Such a transformation results from the beam evolution in the island of a dipole resonance when the amplitude width of the island shrinks adiabatically.more » After stacking (by using stripping foils or cooling) the beam in such a state and accelerating to energies sufficiently high that the space charge becomes insignificant, the beam then can be returned back to a normal spot shape by applying the reverse transformation. An arrangement that can provide such beam gymnastics along a transport line after a linac and before a booster and/or in a ring with circulating beam will be described and numerical estimates will be presented. Other potential applications of the method will be briefly discussed.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1366410-progress-proton-power-upgrade-spallation-neutron-source','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1366410-progress-proton-power-upgrade-spallation-neutron-source"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Champion, Mark S; Dean, Robert A; Galambos, John D</p> <p></p> <p>The Proton Power Upgrade Project is underway at the Spallation Neutron Source at Oak Ridge National Labor-atory and will double the proton beam power capability from 1.4 MW to 2.8 MW to provide increased neutron intensity at the first target station and to support future operation of the second target station. This will be ac-complished by increasing the beam energy to 1.3 GeV and the beam current to 38 mA (average during the macropulse). Installation of 28 additional superconduct-ing cavities and their associated technical systems will provide for the energy increase. Increased beam loading throughout the accelerator will be accommodatedmore » primar-ily through the use of existing margin in the RF systems and the installation of 700 kW klystrons to power the new superconducting cavities. Upgrades of a few existing RF stations may also be needed. The injection and ex-traction regions of the accumulator ring will be upgraded, a ring to second target station tunnel stub will be con-structed, and a 2 MW target will be developed for the first target station. The project anticipates attainment of Criti-cal Decision 1 in 2017 to ratify the project conceptual design and cost range.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.springerlink.com/content/vt76166l878vh5g1/','USGSPUBS'); return false;" href="http://www.springerlink.com/content/vt76166l878vh5g1/"><span>Species differences in the sensitivity of avian embryos to methylmercury</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Heinz, G.H.; Hoffman, D.J.; Klimstra, J.D.; Stebbins, K.R.; Kondrad, S.L.; Erwin, C.A.</p> <p>2009-01-01</p> <p>We injected doses of methylmercury into the air cells of eggs of 26 species of birds and examined the dose-response curves of embryo survival. For 23 species we had adequate data to calculate the median lethal concentration (LC50). Based on the dose-response curves and LC50s, we ranked species according to their sensitivity to injected methylmercury. Although the previously published embryotoxic threshold of mercury in game farm mallards (Anas platyrhynchos) has been used as a default value to protect wild species of birds, we found that, relative to other species, mallard embryos are not very sensitive to injected methylmercury; their LC50 was 1.79 ug/g mercury on a wet-weight basis. Other species we categorized as also exhibiting relatively low sensitivity to injected methylmercury (their LC50s were 1 ug/g mercury or higher) were the hooded merganser (Lophodytes cucullatus), lesser scaup (Aythya affinis), Canada goose (Branta canadensis), double-crested cormorant (Phalacrocorax auritus), and laughing gull (Larus atricilla). Species we categorized as having medium sensitivity (their LC50s were greater than 0.25 ug/g mercury but less than 1 ug/g mercury) were the clapper rail (Rallus longirostris), sandhill crane (Grus canadensis), ring-necked pheasant (Phasianus colchicus), chicken (Gallus gallus), common grackle (Quiscalus quiscula), tree swallow (Tachycineta bicolor), herring gull (Larus argentatus), common tern (S terna hirundo), royal tern (Sterna maxima), Caspian tern (Sterna caspia), great egret (Ardea alba), brown pelican (Pelecanus occidentalis), and anhinga (Anhinga anhinga). Species we categorized as exhibiting high sensitivity (their LC50s were less than 0.25 ug/g mercury) were the American kestrel (Falco sparverius), osprey (Pandion haliaetus), white ibis (Eudocimus albus), snowy egret (Egretta thula), and tri-colored heron (Egretta tricolor). For mallards, chickens, and ring-necked pheasants (all species for which we could compare the toxicity of our injected methylmercury with that of published reports where methylmercury was fed to breeding adults and was deposited into the egg by the mother), we found the injected mercury to be more toxic than the same amount of mercury deposited naturally by the mother. The rank order of sensitivity of these same three species to methylmercury was, however, the same whether the methylmercury was injected or maternally deposited in the egg (i.e., the ring-necked pheasant was more sensitive than the chicken, which was more sensitive than the mallard). It is important to note that the dose-response curves and LC50s derived from our egg injections are useful for ranking the sensitivities of various species but are not identical to the LC50s that would be observed if the mother bird had put the same concentrations of mercury into her eggs; the LC50s of maternally deposited methylmercury would be higher.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JPhCS.969a2047S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JPhCS.969a2047S"><span>Little-Parks oscillations in superconducting ring with Josephson junctions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sharon, Omri J.; Sharoni, Amos; Berger, Jorge; Shaulov, Avner; Yeshurun, Yosi</p> <p>2018-03-01</p> <p>Nb nano-rings connected serially by Nb wires exhibit, at low bias currents, the typical parabolic Little-Parks magnetoresistance oscillations. As the bias current increases, these oscillations become sinusoidal. This result is ascribed to the generation of Josephson junctions caused by the combined effect of current-induced phase slips and the non-uniformity of the order parameter along each ring due to the Nb wires attached to it. This interpretation is validated by further increasing the bias current, which results in magnetoresistance oscillations typical of a SQUID.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PTEP.2017l1I01T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PTEP.2017l1I01T"><span>Superconducting fluctuation current caused by gravitational drag</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tsuchida, Satoshi; Kuratsuji, Hiroshi</p> <p>2017-12-01</p> <p>We examine a possible effect of the Lense-Thirring field or gravitational drag by calculating the fluctuation current through a superconducting ring. The gravitational drag is induced by a rotating sphere, on top of which the superconducting ring is placed. The formulation is based on the Landau-Ginzburg free-energy functional of linear form. The resultant fluctuation current is shown to be greatly enhanced in the vicinity of the transition temperature, and the current also increases on increasing the winding number of the ring. These effects would provide a modest step towards magnification of tiny gravity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22003871-mass-measurements-proton-rich-nuclides-cooler-storage-ring-imp','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22003871-mass-measurements-proton-rich-nuclides-cooler-storage-ring-imp"><span>Mass Measurements of Proton-rich Nuclides at the Cooler Storage Ring at IMP</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Zhang, Y. H.; Xu, H. S.; Wang, M.</p> <p>2011-11-30</p> <p>Recent results and progress of mass measurements of proton-rich nuclei using isochronous mass spectrometry (IMS) are reported. The nuclei under investigation were produced via fragmentation of relativistic energy heavy ions of {sup 78}Kr and {sup 58}Ni. After in-flight separation by the fragment separator RIBLL-2, the nuclei were injected and stored in the experimental storage ring CSRe, and their masses were determined from measurements of the revolution times. The impact of these measurements on the stellar nucleosynthesis in the rp-process is discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1402598-evolution-ring-current-ion-energy-density-energy-content-during-geomagnetic-storms-based-van-allen-probes-measurements','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1402598-evolution-ring-current-ion-energy-density-energy-content-during-geomagnetic-storms-based-van-allen-probes-measurements"><span>The evolution of ring current ion energy density and energy content during geomagnetic storms based on Van Allen Probes measurements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Zhao, H.; Li, X.; Baker, D. N.; ...</p> <p>2015-08-25</p> <p>Enabled by the comprehensive measurements from the Magnetic Electron Ion Spectrometer (MagEIS), Helium Oxygen Proton Electron mass spectrometer (HOPE), and Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE) instruments onboard Van Allen Probes in the heart of the radiation belt, the relative contributions of ions with different energies and species to the ring current energy density and their dependence on the phases of geomagnetic storms are quantified. The results show that lower energy (<50 keV) protons enhance much more often and also decay much faster than higher-energy protons. During the storm main phase, ions with energies <50 keV contribute moremore » significantly to the ring current than those with higher energies; while the higher-energy protons dominate during the recovery phase and quiet times. The enhancements of higher-energy proton fluxes as well as energy content generally occur later than those of lower energy protons, which could be due to the inward radial diffusion. For the 29 March 2013 storm we investigated in detail that the contribution from O + is ~25% of the ring current energy content during the main phase and the majority of that comes from <50 keV O +. This indicates that even during moderate geomagnetic storms the ionosphere is still an important contributor to the ring current ions. Using the Dessler-Parker-Sckopke relation, the contributions of ring current particles to the magnetic field depression during this geomagnetic storm are also calculated. In conclusion, the results show that the measured ring current ions contribute about half of the Dst depression.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMSM52A..03K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMSM52A..03K"><span>Comparing Sources of Storm-Time Ring Current O+</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kistler, L. M.</p> <p>2015-12-01</p> <p>The first observations of the storm-time ring current composition using AMPTE/CCE data showed that the O+ contribution to the ring current increases significantly during storms. The ring current is predominantly formed from inward transport of the near-earth plasma sheet. Thus the increase of O+ in the ring current implies that the ionospheric contribution to the plasma sheet has increased. The ionospheric plasma that reaches the plasma sheet can come from both the cusp and the nightside aurora. The cusp outflow moves through the lobe and enters the plasma sheet through reconnection at the near-earth neutral line. The nightside auroral outflow has direct access to nightside plasma sheet. Using data from Cluster and the Van Allen Probes spacecraft, we compare the development of storms in cases where there is a clear input of nightside auroral outflow, and in cases where there is a significant cusp input. We find that the cusp input, which enters the tail at ~15-20 Re becomes isotropized when it crosses the neutral sheet, and becomes part of the hot (>1 keV) plasma sheet population as it convects inward. The auroral outflow, which enters the plasma sheet closer to the earth, where the radius of curvature of the field line is larger, does not isotropize or become significantly energized, but remains a predominantly field aligned low energy population in the inner magnetosphere. It is the hot plasma sheet population that gets accelerated to high enough energies in the inner magnetosphere to contribute strongly to the ring current pressure. Thus it appears that O+ that enters the plasma sheet further down the tail has a greater impact on the storm-time ring current than ions that enter closer to the earth.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_14 --> <div id="page_15" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="281"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1999JGR...10420523V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1999JGR...10420523V"><span>Ring-slope interactions and the formation of the western boundary current in the Gulf of Mexico</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vidal, VíCtor M. V.; Vidal, Francisco V.; Meza, Eustorgio; Portilla, Josué; Zambrano, Lorenzo; Jaimes, BenjamíN.</p> <p>1999-09-01</p> <p>Hydrographic data from the Gulf of Mexico (gulf) provide evidence that a western boundary current was set up by the interaction of an anticyclonic Loop Current (LC) ring with the continental margin of the western gulf during March-August 1985. The March 1985 geostrophic circulation reveals a remnant anticyclonic ring colliding with the slope. During this collision, two cyclonic rings were shed as the anticyclone transferred vorticity to the surrounding slope water. During July-August 1985, the ring triad weakened and evolved into a ˜900-km-long, north flowing, along-slope, western boundary current and cyclonic-anticyclonic ring pairs distributed throughout the central and western gulf. This western boundary current attained maximum northward flow speeds of 25 cm s-1 and an 8.3-Sv mass transport between 94°-96°W at 25°N. Our March-August 1985 observations reveal that the residence time and decay period of LC anticyclones in the western gulf may exceed 150 days. Within this time period the western gulf's cyclonic-anticyclonic vorticity field decayed ˜50%. Thus the western boundary current's evolutionary period, from its gestation to its absolute decay, is estimated to be of the order of 300 days. Although the presence of a western boundary current in the gulf has been attributed to the annual wind stress curl cycle [Sturges, 1993], our analyses of the western gulf March and July-August 1985 ring-driven geostrophic circulation and corresponding (January, February and May, June 1985) monthly mean synoptic wind stress curl distributions reveal that these constitute competing forcing mechanisms for the gulf's regional circulation. However, when very strong local forcing such as large eddies are present, the wind-driven background circulation is overwhelmed by such eddy forcing.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1402598','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1402598"><span>The evolution of ring current ion energy density and energy content during geomagnetic storms based on Van Allen Probes measurements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Zhao, H.; Li, X.; Baker, D. N.</p> <p></p> <p>Enabled by the comprehensive measurements from the Magnetic Electron Ion Spectrometer (MagEIS), Helium Oxygen Proton Electron mass spectrometer (HOPE), and Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE) instruments onboard Van Allen Probes in the heart of the radiation belt, the relative contributions of ions with different energies and species to the ring current energy density and their dependence on the phases of geomagnetic storms are quantified. The results show that lower energy (<50 keV) protons enhance much more often and also decay much faster than higher-energy protons. During the storm main phase, ions with energies <50 keV contribute moremore » significantly to the ring current than those with higher energies; while the higher-energy protons dominate during the recovery phase and quiet times. The enhancements of higher-energy proton fluxes as well as energy content generally occur later than those of lower energy protons, which could be due to the inward radial diffusion. For the 29 March 2013 storm we investigated in detail that the contribution from O + is ~25% of the ring current energy content during the main phase and the majority of that comes from <50 keV O +. This indicates that even during moderate geomagnetic storms the ionosphere is still an important contributor to the ring current ions. Using the Dessler-Parker-Sckopke relation, the contributions of ring current particles to the magnetic field depression during this geomagnetic storm are also calculated. In conclusion, the results show that the measured ring current ions contribute about half of the Dst depression.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20030068415&hterms=Plasma+Ring&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3DPlasma%2BRing','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20030068415&hterms=Plasma+Ring&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3DPlasma%2BRing"><span>IMAGE Observations of Plasmasphere/Ring Current Interactions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gallagher, D. L.; Adrian, M. L.; Perez, J.; Sandel, B. R.</p> <p>2003-01-01</p> <p>Evidence has been found in IMAGE observations that overlap of the plasmasphere and the ring current may lead to enhanced loss of plasma into the ionosphere. It has long been anticipated that this mixing of plasma leads to coupling and resulting consequences on both populations. Wave generation, pitch angle scattering, and heating are some of the consequences that are anticipated. IMAGE plasmasphere ring current, and auroral observations will be presented and used to explore these interactions and their effects.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27823942','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27823942"><span>Combined hormonal contraceptive (CHC) use among obese women and contraceptive effectiveness: a systematic review.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Dragoman, Monica V; Simmons, Katharine B; Paulen, Melissa E; Curtis, Kathryn M</p> <p>2017-02-01</p> <p>To evaluate from the literature whether combined hormonal contraception (CHC), including combined oral contraception pills (COCs), transdermal patch, vaginal ring or combined injectables, have different effectiveness or failure rates by body weight or body mass index (BMI). We searched PubMed and the Cochrane Library databases for all articles in all languages published between inception and February 2016, for evidence relevant to body weight or BMI, CHC use and contraceptive effectiveness. The quality of each individual study was assessed using the system for evaluating evidence developed by the United States Preventive Services Task Force. From 2874 articles, we identified 15 reports for inclusion, all of fair to poor quality. Fourteen studies measured the association of obesity status and contraceptive failure among COC users. Three fair quality and one poor quality study reported increased COC failure among a heterogeneous population of overweight and obese women compared with normal weight women, while eight fair quality and two poor quality studies did not find an association. Two fair quality studies reported on contraceptive transdermal patches. One pooled analysis described a higher proportion of pregnancies among women using the patch who weighed ≥90 kg; another secondary analysis suggested BMI>30 was associated with increased failure. No studies directly compared contraceptive effectiveness using the combined vaginal ring or combined injectable. Current available evidence addressing the risk of CHC failure in obese compared to normal weight women is limited to fair and poor quality studies. Studies of COCs show mixed results, though absolute differences in COC failure by body weight and BMI are small. Based on limited evidence, it appears that increasing body weight and BMI may contribute to decreasing contraceptive patch effectiveness. Copyright © 2017. Published by Elsevier Inc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/874885','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/874885"><span>Injection mode-locking Ti-sapphire laser system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Hovater, James Curtis; Poelker, Bernard Matthew</p> <p>2002-01-01</p> <p>According to the present invention there is provided an injection modelocking Ti-sapphire laser system that produces a unidirectional laser oscillation through the application of a ring cavity laser that incorporates no intracavity devices to achieve unidirectional oscillation. An argon-ion or doubled Nd:YVO.sub.4 laser preferably serves as the pump laser and a gain-switched diode laser serves as the seed laser. A method for operating such a laser system to produce a unidirectional oscillating is also described.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSM31E..07S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSM31E..07S"><span>Do substorms energise the ring current?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sandhu, J. K.; Rae, J.; Freeman, M. P.; Forsyth, C.; Jackman, C. M.; Lam, M. M.</p> <p>2017-12-01</p> <p>The substorm phenomenon is a highly dynamic and variable process that results in the global reconfiguration and redistribution of energy within the magnetosphere. There are many open questions surrounding substorms, particularly how the energy released during a substorm is distributed throughout the magnetosphere, and how the energy loss varies from one substorm to the next. In this study, we explore whether energy lost during the substorm plays a role in energising the ring current. Using observations of the particle energy flux from RBSPICE/RBSP, we are able to quantitatively observe how the energy is distributed spatially and across the different ion species (H+, He+, and O+). Furthermore, we can observe how the total energy content of the ring current changes during the substorm process, using substorm phases defined by the SOPHIE algorithm. This analysis provides information on how the energy released from a substorm is partitioned throughout the magnetosphere, and on the processes determining the energy provided to the ring current. Overall, our results show that the substorm-ring current coupling is more complex than originally thought, and we discuss the reasons behind this complex response.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004NIMPA.532..321C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004NIMPA.532..321C"><span>Stacking with stochastic cooling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Caspers, Fritz; Möhl, Dieter</p> <p>2004-10-01</p> <p>Accumulation of large stacks of antiprotons or ions with the aid of stochastic cooling is more delicate than cooling a constant intensity beam. Basically the difficulty stems from the fact that the optimized gain and the cooling rate are inversely proportional to the number of particles 'seen' by the cooling system. Therefore, to maintain fast stacking, the newly injected batch has to be strongly 'protected' from the Schottky noise of the stack. Vice versa the stack has to be efficiently 'shielded' against the high gain cooling system for the injected beam. In the antiproton accumulators with stacking ratios up to 105 the problem is solved by radial separation of the injection and the stack orbits in a region of large dispersion. An array of several tapered cooling systems with a matched gain profile provides a continuous particle flux towards the high-density stack core. Shielding of the different systems from each other is obtained both through the spatial separation and via the revolution frequencies (filters). In the 'old AA', where the antiproton collection and stacking was done in one single ring, the injected beam was further shielded during cooling by means of a movable shutter. The complexity of these systems is very high. For more modest stacking ratios, one might use azimuthal rather than radial separation of stack and injected beam. Schematically half of the circumference would be used to accept and cool new beam and the remainder to house the stack. Fast gating is then required between the high gain cooling of the injected beam and the low gain stack cooling. RF-gymnastics are used to merge the pre-cooled batch with the stack, to re-create free space for the next injection, and to capture the new batch. This scheme is less demanding for the storage ring lattice, but at the expense of some reduction in stacking rate. The talk reviews the 'radial' separation schemes and also gives some considerations to the 'azimuthal' schemes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1221892','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1221892"><span>Capture, acceleration and bunching rf systems for the MEIC booster and storage rings</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Wang, Shaoheng; Guo, Jiquan; Lin, Fanglei</p> <p>2015-09-01</p> <p>The Medium-energy Electron Ion Collider (MEIC), proposed by Jefferson Lab, consists of a series of accelerators. The electron collider ring accepts electrons from CEBAF at energies from 3 to 12 GeV. Protons and ions are delivered to a booster and captured in a long bunch before being ramped and transferred to the ion collider ring. The ion collider ring accelerates a small number of long ion bunches to colliding energy before they are re-bunched into a high frequency train of very short bunches for colliding. Two sets of low frequency RF systems are needed for the long ion bunch energymore » ramping in the booster and ion collider ring. Another two sets of high frequency RF cavities are needed for re-bunching in the ion collider ring and compensating synchrotron radiation energy loss in the electron collider ring. The requirements from energy ramping, ion beam bunching, electron beam energy compensation, collective effects, beam loading and feedback capability, RF power capability, etc. are presented. The preliminary designs of these RF systems are presented. Concepts for the baseline cavity and RF station configurations are described, as well as some options that may allow more flexible injection and acceleration schemes.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013SPIE.8998E..0GZ','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013SPIE.8998E..0GZ"><span>Sensitivity analysis of linear CROW gyroscopes and comparison to a single-resonator gyroscope</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zamani-Aghaie, Kiarash; Digonnet, Michel J. F.</p> <p>2013-03-01</p> <p>This study presents numerical simulations of the maximum sensitivity to absolute rotation of a number of coupled resonator optical waveguide (CROW) gyroscopes consisting of a linear array of coupled ring resonators. It examines in particular the impact on the maximum sensitivity of the number of rings, of the relative spatial orientation of the rings (folded and unfolded), of various sequences of coupling ratios between the rings and various sequences of ring dimensions, and of the number of input/output waveguides (one or two) used to inject and collect the light. In all configurations the sensitivity is maximized by proper selection of the coupling ratio(s) and phase bias, and compared to the maximum sensitivity of a resonant waveguide optical gyroscope (RWOG) utilizing a single ring-resonator waveguide with the same radius and loss as each ring in the CROW. Simulations show that although some configurations are more sensitive than others, in spite of numerous claims to the contrary made in the literature, in all configurations the maximum sensitivity is independent of the number of rings, and does not exceed the maximum sensitivity of an RWOG. There are no sensitivity benefits to utilizing any of these linear CROWs for absolute rotation sensing. For equal total footprint, an RWOG is √N times more sensitive, and it is easier to fabricate and stabilize.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhLA..382.1432A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhLA..382.1432A"><span>Optical control of spin-dependent thermal transport in a quantum ring</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Abdullah, Nzar Rauf</p> <p>2018-05-01</p> <p>We report on calculation of spin-dependent thermal transport through a quantum ring with the Rashba spin-orbit interaction. The quantum ring is connected to two electron reservoirs with different temperatures. Tuning the Rashba coupling constant, degenerate energy states are formed leading to a suppression of the heat and thermoelectric currents. In addition, the quantum ring is coupled to a photon cavity with a single photon mode and linearly polarized photon field. In a resonance regime, when the photon energy is approximately equal to the energy spacing between two lowest degenerate states of the ring, the polarized photon field can significantly control the heat and thermoelectric currents in the system. The roles of the number of photon initially in the cavity, and electron-photon coupling strength on spin-dependent heat and thermoelectric currents are presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20020050515','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20020050515"><span>Energetic Electron Populations in the Magnetosphere During Geomagnetic Storms and Substorms</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>McKenzie, David L.; Anderson, Phillip C.</p> <p>2002-01-01</p> <p>This report summarizes the scientific work performed by the Aerospace Corporation under NASA Grant NAG5-10278, 'Energetic Electron Populations in the Magnetosphere during Geomagnetic Storms and Subsisting.' The period of performance for the Grant was March 1, 2001 to February 28, 2002. The following is a summary of the Statement of Work for this Grant. Use data from the PIXIE instrument on the Polar spacecraft from September 1998 onward to derive the statistical relationship between particle precipitation patterns and various geomagnetic activity indices. We are particularly interested in the occurrence of substorms during storm main phase and the efficacy of storms and substorms in injecting ring-current particles. We will compare stormtime simulations of the diffuse aurora using the models of Chen and Schulz with stormtime PIXIE measurements.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AIPA....7a5037L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AIPA....7a5037L"><span>The 3-D numerical simulation research of vacuum injector for linear induction accelerator</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, Dagang; Xie, Mengjun; Tang, Xinbing; Liao, Shuqing</p> <p>2017-01-01</p> <p>Simulation method for voltage in-feed and electron injection of vacuum injector is given, and verification of the simulated voltage and current is carried out. The numerical simulation for the magnetic field of solenoid is implemented, and a comparative analysis is conducted between the simulation results and experimental results. A semi-implicit difference algorithm is adopted to suppress the numerical noise, and a parallel acceleration algorithm is used for increasing the computation speed. The RMS emittance calculation method of the beam envelope equations is analyzed. In addition, the simulated results of RMS emittance are compared with the experimental data. Finally, influences of the ferromagnetic rings on the radial and axial magnetic fields of solenoid as well as the emittance of beam are studied.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20030060648&hterms=magnetic+particles&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dmagnetic%2Bparticles','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20030060648&hterms=magnetic+particles&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dmagnetic%2Bparticles"><span>Magnetospheric Convection Electric Field Dynamics and Stormtime Particle Energization: Case Study of the Magnetic Storm of May 4,1998</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Khazanov, George V.; Liemohn, Michael W.; Newman, Tim S.; Fok, Mei-Ching; Ridley, Aaron</p> <p>2003-01-01</p> <p>It is shown that narrow channels of high electric field are an effective mechanism for injecting plasma into the inner magnetosphere. Analytical expressions for the electric field cannot produce these channels of intense plasma flow, and thus result in less entry and energization of the plasma sheet into near-Earth space. For the ions, omission of these channels leads to an underprediction of the strength of the stormtime ring current and therefore an underestimation of the geoeffectiveness of the storm event. For the electrons, omission of these channels leads to the inability to create a seed population of 10-100 keV electrons deep in the inner magnetosphere. These electrons can eventually be accelerated into MeV radiation belt particles.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011JGRA..116.5214P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011JGRA..116.5214P"><span>The ion population of the magnetotail during the 17 April 2002 magnetic storm: Large-scale kinetic simulations and IMAGE/HENA observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Peroomian, Vahé; El-Alaoui, Mostafa; Brandt, Pontus C.:son</p> <p>2011-05-01</p> <p>The contribution of solar wind and ionospheric ions to the ion population of the magnetotail during the 17 April 2002 geomagnetic storm was investigated by using large-scale kinetic (LSK) particle tracing calculations. We began our investigation by carrying out a global magnetohydrodynamic simulation of the storm event by using upstream solar wind and interplanetary magnetic field data from the ACE spacecraft. We launched solar wind H+ ions and ionospheric O+ ions beginning at 0900 UT, ˜2 h prior to the sudden storm commencement (SSC), until 2000 UT. We found that during this Dst ˜ -98 nT storm, solar wind ions carried the bulk of the density and energy density in the nightside ring current and plasma sheet, with the notable exception of the 90 min immediately after the SSC when O+ densities in the ring current exceeded those of H+ ions. The LSK simulation did a very good job of reproducing ion densities observed by the Los Alamos National Laboratory spacecraft at geosynchronous orbit and reproduced the changes in the inner magnetosphere and the injection of ions observed by the IMAGE spacecraft during a substorm that occurred at 1900 UT. These comparisons with observations serve to validate our results throughout the magnetotail and allow us to obtain time-dependent maps of H+ and O+ density and energy density where IMAGE cannot make measurements. In essence, this work extends the viewing window of the IMAGE spacecraft far downtail.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSM22C..06Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSM22C..06Y"><span>The characteristic pitch angle distributions of 1 eV to 600 keV protons near the equator based on Van Allen Probes observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yue, C.; Bortnik, J.; Thorne, R. M.; Ma, Q.; An, X.; Chappell, C. R.; Gerrard, A. J.; Lanzerotti, L. J.; Shi, Q.</p> <p>2017-12-01</p> <p>Understanding the source and loss processes of various plasma populations is greatly aided by having accurate knowledge of their pitch angle distributions (PADs). Here, we statistically analyze 1 eV to 600 keV hydrogen (H+) PADs near the geomagnetic equator in the inner magnetosphere based on Van Allen Probes measurements, to comprehensively investigate how the H+ PADs vary with different energies, magnetic local times (MLTs), L-shells, and geomagnetic conditions. Our survey clearly indicates four distinct populations with different PADs: (1) a pancake distribution of the plasmaspheric H+ at low L-shells except for dawn sector; (2) a bi-directional field-aligned distribution of the warm plasma cloak; (3) pancake or isotropic distributions of ring current H+; (4) radiation belt particles show pancake, butterfly and isotropic distributions depending on their energy, MLT and L-shell. Meanwhile, the pancake distribution of ring current H+ moves to lower energies as L-shell increases which is primarily caused by adiabatic transport. Furthermore, energetic H+ (> 10 keV) PADs become more isotropic following the substorm injections, indicating wave-particle interactions. The radiation belt H+ butterfly distributions are identified in a narrow energy range of 100 < E < 400 keV at large L (L > 5), which are less significant during quiet times and extend from dusk to dawn sector through midnight during substorms. The different PADs near the equator provide clues of the underlying physical processes that produce the dynamics of these different populations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950059018&hterms=Plasma+Ring&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3DPlasma%2BRing','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950059018&hterms=Plasma+Ring&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3DPlasma%2BRing"><span>Magnetosheath-ionspheric plasma interactions in the cusp/cleft. 2: Mesoscale particle simulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Winglee, R. M.; Menietti, J. D.; Lin, C. S.</p> <p>1993-01-01</p> <p>Ionospheric plasma flowing out from the cusp can be an important source of plasma to the magnetosphere. One source of free energy that can drive this outflow is the injection of magnetosheath plasma into the cusp. Two-dimensional (three velocity) mesoscale particle simulations are used to investigate the particle dynamics in the cusp during southward interplanetary magnetic field. This mesoscale model self-consistently incorporates (1) global influences such as the convection of plasma across the cusp, the action of the mirror force, and the injection of the magnetosheath plasma, and (2) wave-particle interactions which produce the actual coupling between the magnetosheath and ionospheric plasmas. It is shown that, because the thermal speed of the electrons is higher than the bulk motion of the magnetosheath plasma, an upward current is formed on the equatorward edge of the injection region with return currents on either side. However, the poleward return currents are the stronger due to the convection and mirroring of many of the magnetosheath electrons. The electron distribution in this latter region evolves from upward directed streams to single-sided loss cones or possibly electron conics. The ion distribution also shows a variety of distinct features that are produced by spatial and/or temporal effects associated with varying convection patterns and wave-particle interactions. On the equatorward edge the distribution has a downflowing magnetosheath component and an upflowing cold ionospheric component due to continuous convection of ionospheric plasma into the region. In the center of the magnetosheath region, heating from the development of an ion-ion streaming instability causes the suppression of the cold ionospheric component and the formation of downward ionospheric streams. Further poleward there is velocity filtering of ions with low pitch angles, so that the magnetosheath ions develop a ring-beam distribution and the ensuing wave instabilities generate downward ionospheric conics. These downward ionospheric components are eventually turned by the mirror force, leading to the production of upward conics at elevated energies throughout the region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008JNEng...5..163D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008JNEng...5..163D"><span>Transcranial current stimulation focality using disc and ring electrode configurations: FEM analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Datta, Abhishek; Elwassif, Maged; Battaglia, Fortunato; Bikson, Marom</p> <p>2008-06-01</p> <p>We calculated the electric fields induced in the brain during transcranial current stimulation (TCS) using a finite-element concentric spheres human head model. A range of disc electrode configurations were simulated: (1) distant-bipolar; (2) adjacent-bipolar; (3) tripolar; and three ring designs, (4) belt, (5) concentric ring, and (6) double concentric ring. We compared the focality of each configuration targeting cortical structures oriented normal to the surface ('surface-radial' and 'cross-section radial'), cortical structures oriented along the brain surface ('surface-tangential' and 'cross-section tangential') and non-oriented cortical surface structures ('surface-magnitude' and 'cross-section magnitude'). For surface-radial fields, we further considered the 'polarity' of modulation (e.g. superficial cortical neuron soma hyper/depolarizing). The distant-bipolar configuration, which is comparable with commonly used TCS protocols, resulted in diffuse (un-focal) modulation with bi-directional radial modulation under each electrode and tangential modulation between electrodes. Increasing the proximity of the two electrodes (adjacent-bipolar electrode configuration) increased focality, at the cost of more surface current. At similar electrode distances, the tripolar-electrodes configuration produced comparable peak focality, but reduced radial bi-directionality. The concentric-ring configuration resulted in the highest spatial focality and uni-directional radial modulation, at the expense of increased total surface current. Changing ring dimensions, or use of two concentric rings, allow titration of this balance. The concentric-ring design may thus provide an optimized configuration for targeted modulation of superficial cortical neurons.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19750014906','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19750014906"><span>Coulomb collisions of ring current particles: Indirect source of heat for the ionosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Cole, K. D.</p> <p>1975-01-01</p> <p>The additional energy requirements of the topside ionosphere during a magnetic storm are less than one quarter of the ring current energy. This energy is supplied largely by Coulomb collisions of ring current protons of energy less than about 20 keV with background thermal electrons which conduct the heat to the ionosphere. Past criticisms are discussed of this mechanism for the supply of energy to the SAR-arc and neighboring regions of the ionosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.P51B2064C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.P51B2064C"><span>Atmospheric, Ionospheric, and Energetic Radiation Environments of Saturn's Rings</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cooper, J. F.; Kollmann, P.; Sittler, E. C., Jr.; Johnson, R. E.; Sturner, S. J.</p> <p>2015-12-01</p> <p>Planetary magnetospheric and high-energy cosmic ray interactions with Saturn's rings were first explored in-situ during the Pioneer 11 flyby in 1979. The following Voyager flybys produced a wealth of new information on ring structure and mass, and on spatial structure of the radiation belts beyond the main rings. Next came the Cassini Orbiter flyover of the rings during Saturn Orbital Insertion in 2004 with the first in-situ measurements of the ring atmosphere and plasma ionosphere. Cassini has since fully explored the radiation belt and magnetospheric plasma region beyond the main rings, discovering how Enceladus acts as a source of water group neutrals and water ions for the ion plasma. But do the main rings also substantially contribute by UV photolysis to water group plasma (H+, O+, OH+, H2O+, H3O+, O2+) and neutrals inwards from Enceladus? More massive rings, than earlier inferred from Pioneer 11 and Voyager observations, would further contribute by bulk ring ice radiolysis from interactions of galactic cosmic ray particles. Products of these interactions include neutron-decay proton and electron injection into the radiation belts beyond the main rings. How does radiolysis from moon and ring sweeping of the radiation belt particles compare with direct gas and plasma sources from the main rings and Enceladus? Can the magnetospheric ion and electron populations reasonably be accounted for by the sum of the ring-neutron-decay and outer magnetospheric inputs? Pioneer 11 made the deepest radial penetration into the C-ring, next followed by Cassini SOI. What might Cassini's higher-inclination proximal orbits reveal about the atmospheric, ionospheric, and energetic radiation environments in the D-ring and the proximal gap region? Recent modeling predicts a lower-intensity innermost radiation belt extending from the gap to the inner D-ring. Other remaining questions include the lifetimes of narrow and diffuse dust rings with respect to plasma and energetic particle irradiation processes, the mass flux of water group ions along planetary magnetic field lines into the Saturn planetary atmosphere, seasonal dust charging dynamics of the now-reappeared Saturn ring spokes, and the exchange of energy via energetic neutral atoms between the outer magnetosphere and the rings.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26598261','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26598261"><span>Some Comments on Topological Approaches to the π-Electron Currents in Conjugated Systems.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Dickens, Timothy K; Gomes, José A N F; Mallion, Roger B</p> <p>2011-11-08</p> <p>Within the past two years, three sets of independent authors (Mandado, Ciesielski et al., and Randić) have proposed methods in which π-electron currents in conjugated systems are estimated by invoking the concept of circuits of conjugation. These methods are here compared with ostensibly similar approaches published more than 30 years ago by two of the present authors (Gomes and Mallion) and (likewise independently) by Gayoso. Patterns of bond currents and ring currents computed by these methods for the nonalternant isomer of coronene that was studied by Randić are also systematically compared with those calculated by the Hückel-London-Pople-McWeeny (HLPM) "topological" approach and with the ab initio, "ipso-centric" current-density maps of Balaban et al. These all agree that a substantial diamagnetic π-electron current flows around the periphery of the selected structure (which could be thought of as a "perturbed" [18]-annulene), and consideration is given to the differing trends predicted by these several methods for the π-electron currents around its central six-membered ring and in its internal bonds. It is observed that, for any method in which calculated π-electron currents respect Kirchhoff's Laws of current conservation at a junction, consideration of bond currents-as an alternative to the more-traditional ring currents-can give a different insight into the magnetic properties of conjugated systems. However, provided that charge/current conservation is guaranteed-or Kirchhoff's First Law holds for bond currents instead of the more-general current-densities-then ring currents represent a more efficient way of describing the molecular reaction to the external magnetic field: ring currents are independent quantities, while bond currents are not.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_15 --> <div id="page_16" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="301"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1402426-twist-helix-snake-maintain-polarization-multi-gev-proton-rings','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1402426-twist-helix-snake-maintain-polarization-multi-gev-proton-rings"><span>4-twist helix snake to maintain polarization in multi-GeV proton rings</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Antoulinakis, F.; Chen, Y.; Dutton, A.; ...</p> <p>2017-09-27</p> <p>Solenoid Siberian snakes have successfully maintained polarization in particle rings below 1 GeV, but never in multi-GeV rings, because the spin rotation by a solenoid is inversely proportional to the beam momentum. High energy rings, such as Brookhaven’s 255 GeV Relativistic Heavy Ion Collider (RHIC), use only odd multiples of pairs of transverse B-field Siberian snakes directly opposite each other. When it became impractical to use a pair of Siberian Snakes in Fermilab’s 120 GeV/c Main Injector, we searched for a new type of single Siberian snake that could overcome all depolarizing resonances in the 8.9–120 GeV/c range. We foundmore » that a snake made of one 4-twist helix and 2 dipoles could maintain the polarization. Here, this snake design could solve the long-standing problem of significant polarization loss during acceleration of polarized protons from a few GeV to tens of GeV, such as in the AGS, before injecting them into multi-hundred GeV rings, such as RHIC.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhRvS..20i1003A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhRvS..20i1003A"><span>4-twist helix snake to maintain polarization in multi-GeV proton rings</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Antoulinakis, F.; Chen, Y.; Dutton, A.; Rossi De La Fuente, E.; Haupert, S.; Ljungman, E. A.; Myers, P. D.; Thompson, J. K.; Tai, A.; Aidala, C. A.; Courant, E. D.; Krisch, A. D.; Leonova, M. A.; Lorenzon, W.; Raymond, R. S.; Sivers, D. W.; Wong, V. K.; Yang, T.; Derbenev, Y. S.; Morozov, V. S.; Kondratenko, A. M.</p> <p>2017-09-01</p> <p>Solenoid Siberian snakes have successfully maintained polarization in particle rings below 1 GeV, but never in multi-GeV rings, because the spin rotation by a solenoid is inversely proportional to the beam momentum. High energy rings, such as Brookhaven's 255 GeV Relativistic Heavy Ion Collider (RHIC), use only odd multiples of pairs of transverse B-field Siberian snakes directly opposite each other. When it became impractical to use a pair of Siberian Snakes in Fermilab's 120 GeV /c Main Injector, we searched for a new type of single Siberian snake that could overcome all depolarizing resonances in the 8.9 - 120 GeV /c range. We found that a snake made of one 4-twist helix and 2 dipoles could maintain the polarization. This snake design could solve the long-standing problem of significant polarization loss during acceleration of polarized protons from a few GeV to tens of GeV, such as in the AGS, before injecting them into multi-hundred GeV rings, such as RHIC.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18846589','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18846589"><span>Charge transport through molecular rods with reduced pi-conjugation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lörtscher, Emanuel; Elbing, Mark; Tschudy, Meinrad; von Hänisch, Carsten; Weber, Heiko B; Mayor, Marcel; Riel, Heike</p> <p>2008-10-24</p> <p>A series of oligophenylene rods of increasing lengths is synthesized to investigate the charge-transport mechanisms. Methyl groups are attached to the phenyl rings to weaken the electronic overlap of the pi-subsystems along the molecular backbones. Out-of-plane rotation of the phenyl rings is confirmed in the solid state by means of X-ray analysis and in solution by using UV/Vis spectroscopy. The influence of the reduced pi-conjugation on the resonant charge transport is studied at the single-molecule level by using the mechanically controllable break-junction technique. Experiments are performed under ultra-high-vacuum conditions at low temperature (50 K). A linear increase of the conductance gap with increasing number of phenyl rings (from 260 meV for one ring to 580 meV for four rings) is revealed. In addition, the absolute conductance of the first resonant peaks does not depend on the length of the molecular wire. Resonant transport through the first molecular orbital is found to be dominated by charge-carrier injection into the molecule, rather than by the intrinsic resistance of the molecular wire length.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1402426','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1402426"><span>4-twist helix snake to maintain polarization in multi-GeV proton rings</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Antoulinakis, F.; Chen, Y.; Dutton, A.</p> <p></p> <p>Solenoid Siberian snakes have successfully maintained polarization in particle rings below 1 GeV, but never in multi-GeV rings, because the spin rotation by a solenoid is inversely proportional to the beam momentum. High energy rings, such as Brookhaven’s 255 GeV Relativistic Heavy Ion Collider (RHIC), use only odd multiples of pairs of transverse B-field Siberian snakes directly opposite each other. When it became impractical to use a pair of Siberian Snakes in Fermilab’s 120 GeV/c Main Injector, we searched for a new type of single Siberian snake that could overcome all depolarizing resonances in the 8.9–120 GeV/c range. We foundmore » that a snake made of one 4-twist helix and 2 dipoles could maintain the polarization. Here, this snake design could solve the long-standing problem of significant polarization loss during acceleration of polarized protons from a few GeV to tens of GeV, such as in the AGS, before injecting them into multi-hundred GeV rings, such as RHIC.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1389071','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1389071"><span>SIMULATIONS OF BOOSTER INJECTION EFFICIENCY FOR THE APS-UPGRADE</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Calvey, J.; Borland, M.; Harkay, K.</p> <p>2017-06-25</p> <p>The APS-Upgrade will require the injector chain to provide high single bunch charge for swap-out injection. One possible limiting factor to achieving this is an observed reduction of injection efficiency into the booster synchrotron at high charge. We have simulated booster injection using the particle tracking code elegant, including a model for the booster impedance and beam loading in the RF cavities. The simulations point to two possible causes for reduced efficiency: energy oscillations leading to losses at high dispersion locations, and a vertical beam size blowup caused by ions in the Particle Accumulator Ring. We also show that themore » efficiency is much higher in an alternate booster lattice with smaller vertical beta function and zero dispersion in the straight sections.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1389059','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1389059"><span>PRELIMINARY TEST RESULTS OF A PROTOTYPE FAST KICKER FOR APS MBA UPGRADE</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Yao, C.-Y.; Morrison, L.; Sun, X.</p> <p></p> <p>The APS multi-bend achromatic (MBA) upgrade storage ring plans to support two bunch fill patterns: a 48-bunch and a 324-bunch. A “swap out” injection scheme is required. In order to provide the required kick to injected beam, to minimize the beam loss and residual oscillation of injected beam, and to minimize the perturbation to stored beam during injection, the rise, fall, and flat-top parts of the kicker pulse must be within a 16.9-ns interval. Stripline-type kickers are chosen for both injection and extraction. We developed a prototype kicker that supports a ±15kV differential pulse voltage. We performed high voltage discharge,more » TDR measurement, high voltage pulse test and beam test of the kicker. We report the final design of the fast kicker and the test results.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005PhDT........88H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005PhDT........88H"><span>Electro-optical hybrid slip ring</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hong, En</p> <p>2005-11-01</p> <p>The slip ring is a rotary electrical interface, collector, swivel or rotary joint. It is a physical system that can perform continuous data transfer and data exchange between a stationary and a rotating structure. A slip ring is generally used to transfer data or power from an unrestrained, continuously rotating electro-mechanical system in real-time, thereby simplifying operations and eliminating damage-prone wires dangling from moving joints. Slip rings are widely used for testing, evaluating, developing and improving various technical equipment and facilities with rotating parts. They are widely used in industry, especially in manufacturing industries employing turbo machinery, as in aviation, shipbuilding, aerospace, defense, and in precise facilities having rotating parts such as medical Computerized Tomography (CT) and MRI scanners and so forth. Therefore, any improvement in slip ring technology can impact large markets. Research and development in this field will have broad prospects long into the future. The goal in developing the current slip ring technology is to improve and increase the reliability, stability, anti-interference, and high data fidelity between rotating and stationary structures. Up to now, there have been numerous approaches used for signal and data transfer utilizing a slip ring such as metal contacts, wires, radio transmission, and even liquid media. However, all suffer from drawbacks such as data transfer speed limitations, reliability, stability, electro-magnetic interference and durability. The purpose of the current research is to break through these basic limitations using an optical solution, thereby improving performance in current slip ring applications. This dissertation introduces a novel Electro-Optical Hybrid Slip Ring technology, which makes "through the air" digital-optical communication between stationary and rotating systems a reality with high data transfer speed, better reliability and low interference susceptibility. A laboratory scale non-contact Electro-Optical Hybrid Slip Ring system was successfully constructed, and its performance was determined. Experimental results affirmed the advantages of this new technology over current slip ring design.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JInst..12P6011W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JInst..12P6011W"><span>Cabling design of booster and storage ring construction progress of TPS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wong, Y.-S.; Liu, K.-B.; Liu, C.-Y.; Wang, b.-S.</p> <p>2017-06-01</p> <p>The 2012 Taiwan Photon Source (TPS) cable construction project started after 10 months to complete the cable laying and installation of power supply. The circumference of the booster ring (BR) is 496.8 m, whereas that of the storage ring (SR) is 518.4 m. Beam current is set to 500 mA at 3.3 GeV. The paper on grounding systems discusses the design of the ground wire (< 0.2 Ω) with low impedance, power supply of the accelerator and cabling tray. The flow and size of the ground current are carefully evaluated to avoid grounded current from flowing everywhere, which causes interference problems. In the design of the TPS, special shielding will be established to isolate the effects of electromagnetic interference on the magnet and ground current. Booster ring dipoles are connected by a series of 54-magnet bending dipole; the cable size of its stranded wire measures 250 mm2, with a total length of 5000 m. Booster ring and storage ring quadrupoles have 150 magnets; the cable size of their stranded wire is 250 mm2, with a total length of 17000 m. Storage ring dipole consists of 48 magnets; the cable size of its stranded wire is 325 mm2, with a total length of 6000 m. This study discusses the power supply cabling design of the storage ring and booster ring construction progress of TPS. The sections of this paper are divided into discussions of the construction of the control and instrument area, cabling layout of booster ring and storage ring, as well as the installation and commission machine. This study also discusses the use of a high-impedance meter to determine the effect of cabling insulation and TPS power supply machine on energy transfer to ensure the use of safe and correct magnet.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSM44A..07Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSM44A..07Y"><span>The Effects of Bursty Bulk Flows on Global-Scale Current Systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yu, Y.; Cao, J.; Fu, H.; Lu, H.; Yao, Z.</p> <p>2017-12-01</p> <p>Using a global magnetospheric MHD model coupled with a kinetic ring current model, we investigate the effects of magnetotail dynamics, particularly the earthward bursty bulk flows (BBFs) produced by the tail reconnection, on the global-scale current systems. The simulation results indicate that after BBFs brake around X = -10 RE due to the dipolar "magnetic wall," vortices are generated on the edge of the braking region and inside the inner magnetosphere. Each pair of vortex in the inner magnetosphere disturbs the westward ring current to arc radially inward as well as toward high latitudes. The resultant pressure gradient on the azimuthal direction induces region-1 sense field-aligned component from the ring current, which eventually is diverted into the ionosphere at high latitudes, giving rise to a pair of field-aligned current (FAC) eddies in the ionosphere. On the edge of the flow braking region where vortices also emerge, a pair of region-1 sense FACs arises, diverted fromthe cross-tail duskward current, generating a substorm current wedge. This is again attributed to the increase of thermal pressure ahead of the bursty flows turning azimuthally. It is further found that when multiple BBFs, despite their localization, continually and rapidly impinge on the "wall," carrying sufficient tail plasma sheet population toward the Earth, they can lead to the formation of a new ring current. These results indicate the important role that BBFs play in bridging the tail and the inner magnetosphere ring current and bring new insight into the storm-substorm relation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRA..122.6139Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRA..122.6139Y"><span>The effects of bursty bulk flows on global-scale current systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yu, Yiqun; Cao, Jinbin; Fu, Huishan; Lu, Haoyu; Yao, Zhonghua</p> <p>2017-06-01</p> <p>Using a global magnetospheric MHD model coupled with a kinetic ring current model, we investigate the effects of magnetotail dynamics, particularly the earthward bursty bulk flows (BBFs) produced by the tail reconnection, on the global-scale current systems. The simulation results indicate that after BBFs brake around X = -10 RE due to the dipolar "magnetic wall," vortices are generated on the edge of the braking region and inside the inner magnetosphere. Each pair of vortex in the inner magnetosphere disturbs the westward ring current to arc radially inward as well as toward high latitudes. The resultant pressure gradient on the azimuthal direction induces region-1 sense field-aligned component from the ring current, which eventually is diverted into the ionosphere at high latitudes, giving rise to a pair of field-aligned current (FAC) eddies in the ionosphere. On the edge of the flow braking region where vortices also emerge, a pair of region-1 sense FACs arises, diverted from the cross-tail duskward current, generating a substorm current wedge. This is again attributed to the increase of thermal pressure ahead of the bursty flows turning azimuthally. It is further found that when multiple BBFs, despite their localization, continually and rapidly impinge on the "wall," carrying sufficient tail plasma sheet population toward the Earth, they can lead to the formation of a new ring current. These results indicate the important role that BBFs play in bridging the tail and the inner magnetosphere ring current and bring new insight into the storm-substorm relation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1997APS..PAC..6W21P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1997APS..PAC..6W21P"><span>Performance of the LANSCE H^- Source and Low Energy Transport at Higher Peak Current</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pillai, Chandra; Stevens, Ralph; Fitzgerald, Daniel; Garnett, Robert; Ingllas, William; Merrill, Frank; Rybarcyk, Larry; Sander, Oscar</p> <p>1997-05-01</p> <p>The Los Alamos Neutron Science Center (LANSCE) 800 MeV linac facility uses a multicusp field, surface ion source to produce H^- beam for delivery to the Proton Storage Ring (PSR) and to the Weapon Neutron Research (WNR) areas. The source typically operates at a duty factor of 9.4% delivering a peak current of about 14 mA into the 750 keV LEBT. Each beam macropulse is chopped to create a sequence of 360 ns pulse, each with a 100 ns ``extraction notch'' for injection into PSR. The average current delivered to the short-pulse spallation target is nominally 70μA. One goal of the present PSR upgrade projects is an increase in the average beam current to 200μA. This will be accomplished by a combination of increased repetition rate (to 30 Hz), upgraded PSR bunchers, and a brighter H^- ion source that will produce higher peak current with lower beam emittance. The present ion source and injector system was studied to investigate the beam qualities of the source and the performance of the low energy transpot. The performance of the ion source at higher currents and the change in beam parameters in the low energy transport compared to those in the standard source conditions will be presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012PhRvB..85u4428L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012PhRvB..85u4428L"><span>Domain wall motion in magnetically frustrated nanorings</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lubarda, M. V.; Escobar, M. A.; Li, S.; Chang, R.; Fullerton, E. E.; Lomakin, V.</p> <p>2012-06-01</p> <p>We describe a magnetically frustrated nanoring (MFNR) configuration which is formed by introducing antiferromagnetic coupling across an interface orthogonal to the ring's circumferential direction. Such structures have the unique characteristic that only one itinerant domain wall (DW) can exist in the ring, which does not need to be nucleated or injected into the structure and can never escape making it analogous to a magnetic Möbius strip. Numerical simulations show that the DW in a MFNR can be driven consecutively around the ring with a prescribed cyclicity, and that the frequency of revolutions can be controlled by the applied field. The energy landscapes can be controlled to be flat allowing for low fields of operation or to have a barrier for thermal stability. Potential logic and memory applications of MFNRs are considered and discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1037597','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1037597"><span>Intra-Beam Scattering, Impedance, and Instabilities in Ultimate Storage Rings</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Bane, Karl; /SLAC</p> <p></p> <p>We have investigated collective effects in an ultimate storage ring, i.e. one with diffraction limited emittances in both planes, using PEP-X as an example. In an ultimate ring intra-beam scattering (IBS) sets the limit of current that can be stored. In PEP-X, a 4.5 GeV ring running round beams at 200 mA in 3300 bunches, IBS doubles the emittances to 11.5 pm at the design current. The Touschek lifetime is 11 hours. Impedance driven collective effects tend not to be important since the beam current is relatively low. We have investigated collective effects in PEP-X, an ultimate storage ring, i.e.more » one with diffraction limited emittances (at one angstrom wavelength) in both planes. In an ultimate ring intra-beam scattering (IBS) sets the limit of current that can be stored. In PEP-X, IBS doubles the emittances to 11.5 pm at the design current of 200 mA, assuming round beams. The Touschek lifetime is quite large in PEP-X, 11.6 hours, and - near the operating point - increases with decreasing emittance. It is, however, a very sensitive function of momentum acceptance. In an ultimate ring like PEP-X impedance driven collective effects tend not to be important since the beam current is relatively low. Before ultimate PEP-X can be realized, the question of how to run a machine with round beams needs serious study. For example, in this report we assumed that the vertical emittance is coupling dominated. It may turn out that using vertical dispersion is a preferable way to generate round beams. The choice will affect IBS and the Touschek effect.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20030062030&hterms=waves+electromagnetic&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dwaves%2Belectromagnetic','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20030062030&hterms=waves+electromagnetic&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dwaves%2Belectromagnetic"><span>Ring Current Ion Coupling with Electromagnetic Ion Cyclotron Waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Khazanov, George V.</p> <p>2002-01-01</p> <p>A new ring current global model has been developed for the first time that couples the system of two kinetic equations: one equation describes the ring current (RC) ion dynamic, and another equation describes wave evolution of electromagnetic ion cyclotron waves (EMIC). The coupled model is able to simulate, for the first time self-consistently calculated RC ion kinetic and evolution of EMIC waves that propagate along geomagnetic field lines and reflect from the ionosphere. Ionospheric properties affect the reflection index through the integral Pedersen and Hall coductivities. The structure and dynamics of the ring current proton precipitating flux regions, intensities of EMIC, global RC energy balance, and some other parameters will be studied in detail for the selected geomagnetic storms. The space whether aspects of RC modelling and comparison with the data will also be discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JGRA..121.5333K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JGRA..121.5333K"><span>The source of O+ in the storm time ring current</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kistler, L. M.; Mouikis, C. G.; Spence, H. E.; Menz, A. M.; Skoug, R. M.; Funsten, H. O.; Larsen, B. A.; Mitchell, D. G.; Gkioulidou, M.; Wygant, J. R.; Lanzerotti, L. J.</p> <p>2016-06-01</p> <p>A stretched and compressed geomagnetic field occurred during the main phase of a geomagnetic storm on 1 June 2013. During the storm the Van Allen Probes spacecraft made measurements of the plasma sheet boundary layer and observed large fluxes of O+ ions streaming up the field line from the nightside auroral region. Prior to the storm main phase there was an increase in the hot (>1 keV) and more isotropic O+ ions in the plasma sheet. In the spacecraft inbound pass through the ring current region during the storm main phase, the H+ and O+ ions were significantly enhanced. We show that this enhanced inner magnetosphere ring current population is due to the inward adiabatic convection of the plasma sheet ion population. The energy range of the O+ ion plasma sheet that impacts the ring current most is found to be from ~5 to 60 keV. This is in the energy range of the hot population that increased prior to the start of the storm main phase, and the ion fluxes in this energy range only increase slightly during the extended outflow time interval. Thus, the auroral outflow does not have a significant impact on the ring current during the main phase. The auroral outflow is transported to the inner magnetosphere but does not reach high enough energies to affect the energy density. We conclude that the more energetic O+ that entered the plasma sheet prior to the main phase and that dominates the ring current is likely from the cusp.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016cosp...41E..82A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016cosp...41E..82A"><span>Accaleration of Electrons of the Outer Electron Radiation Belt and Auroral Oval Dynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Antonova, Elizaveta; Ovchinnikov, Ilya; Riazantseva, Maria; Znatkova, Svetlana; Pulinets, Maria; Vorobjev, Viachislav; Yagodkina, Oksana; Stepanova, Marina</p> <p>2016-07-01</p> <p>We summarize the results of experimental observations demonstrating the role of auroral processes in the formation of the outer electron radiation belt and magnetic field distortion during magnetic storms. We show that the auroral oval does not mapped to the plasma sheet proper (region with magnetic field lines stretched in the tailward direction). It is mapped to the surrounding the Earth plasma ring in which transverse currents are closed inside the magnetosphere. Such currents constitute the high latitude continuation of the ordinary ring current. Mapping of the auroral oval to the region of high latitude continuation of the ordinary ring current explains the ring like shape of the auroral oval with finite thickness near noon and auroral oval dynamics during magnetic storms. The auroral oval shift to low latitudes during storms. The development of the ring current produce great distortion of the Earth's magnetic field and corresponding adiabatic variations of relativistic electron fluxes. Development of the asymmetric ring current produce the dawn-dusk asymmetry of such fluxes. We analyze main features of the observed processes including formation of sharp plasma pressure profiles during storms. The nature of observed pressure peak is analyzed. It is shown that the observed sharp pressure peak is directly connected with the creation of the seed population of relativistic electrons. The possibility to predict the position of new radiation belt during recovery phase of the magnetic storm using data of low orbiting and ground based observations is demonstrated.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950029533&hterms=convection+currents&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dconvection%2Bcurrents','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950029533&hterms=convection+currents&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dconvection%2Bcurrents"><span>Ion transport and loss in the Earth's quiet ring current. 2: Diffusion and magnetosphere-ionosphere coupling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Sheldon, R. B.</p> <p>1994-01-01</p> <p>We have studied the transport and loss of H(+), He(+), and He(++) ions in the Earth's quiet time ring current (1 to 300 keV/e, 3 to 7 R(sub E), Kp less than 2+, absolute value of Dst less than 11, 70 to 110 degs pitchangles, all LT) comparing the standard radial diffusion model developed for the higher-energy radiation belt particles with measurements of the lower energy ring current ions in a previous paper. Large deviations of that model, which fit only 50% of the data to within a factor of 10, suggested that another transport mechanism is operating in the ring current. Here we derive a modified diffusion coefficient corrected for electric field effects on ring current energy ions that fit nearly 80% of the data to within a factor of 2. Thus we infer that electric field fluctuations from the low-latitude to midlatitude ionosphere (ionospheric dynamo) dominated the ring current transport, rather than high-latitude or solar wind fluctuations. Much of the remaining deviation may arise from convective electric field transport of the E less than 30 keV particles. Since convection effects cannot be correctly treated with this azimuthally symmetric model, we defer treatment of the lowest-energy ions to a another paper. We give chi(exp 2) contours for the best fit, showing the dependence of the fit upon the internal/external spectral power of the predicted electric and magnetic field fluctuations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSM23A2587W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSM23A2587W"><span>3D tomographic reconstruction of the terrestrial exosphere and its time-dependent coupling to the magnetospheric ring current</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Waldrop, L.; Cucho-Padin, G.; Ilie, R.</p> <p>2017-12-01</p> <p>Charge exchange collisions between ring current ions and hydrogen (H) atoms in the outer exosphere serve to dissipate magnetospheric energy, particularly during the slow recovery phase of geomagnetic storms, through the generation of energetic neutral atoms (ENAs) which escape the system. As a result, knowledge of the spatial distribution and temporal variability of exospheric H density is critical for reliable interpretation of ENA flux measurements as well as for accurate modeling of the ring current. Although numerous theoretical, numerical, and empirical H distributions have been used for such analyses, their reliance on ad hoc or unphysical assumptions, together with their inherently static formulations, is a source of significant uncertainty. Our recent development of a robust tomographic technique for the model-independent estimation of global exospheric H density from optical remote sensing data overcomes the limitations of past analysis and enables an unprecedented investigation of global exospheric and ring current dynamics. Here, we present sample results of our 3D, time-dependent reconstructions of exospheric structure, derived from measurements of resonantly scattered solar Lyman-alpha (121.6 nm) photons acquired by the Lyman-alpha detectors (LADs) onboard NASA's Two Wide-angle Imaging Neutral-atom Spectrometers (TWINS) mission. We use the Hot Electron and Ion Drift Integrator (HEIDI) kinetic model of the ring current to investigate the charge exchange interactions between the resulting H density distribution and ring current ions and generate synthetic images of ENA flux for comparison with those measured by TWINS.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4934284','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4934284"><span>Improving the Accuracy of Laplacian Estimation with Novel Variable Inter-Ring Distances Concentric Ring Electrodes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Makeyev, Oleksandr; Besio, Walter G.</p> <p>2016-01-01</p> <p>Noninvasive concentric ring electrodes are a promising alternative to conventional disc electrodes. Currently, the superiority of tripolar concentric ring electrodes over disc electrodes, in particular, in accuracy of Laplacian estimation, has been demonstrated in a range of applications. In our recent work, we have shown that accuracy of Laplacian estimation can be improved with multipolar concentric ring electrodes using a general approach to estimation of the Laplacian for an (n + 1)-polar electrode with n rings using the (4n + 1)-point method for n ≥ 2. This paper takes the next step toward further improving the Laplacian estimate by proposing novel variable inter-ring distances concentric ring electrodes. Derived using a modified (4n + 1)-point method, linearly increasing and decreasing inter-ring distances tripolar (n = 2) and quadripolar (n = 3) electrode configurations are compared to their constant inter-ring distances counterparts. Finite element method modeling and analytic results are consistent and suggest that increasing inter-ring distances electrode configurations may decrease the truncation error resulting in more accurate Laplacian estimates compared to respective constant inter-ring distances configurations. For currently used tripolar electrode configuration, the truncation error may be decreased more than two-fold, while for the quadripolar configuration more than a six-fold decrease is expected. PMID:27294933</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27294933','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27294933"><span>Improving the Accuracy of Laplacian Estimation with Novel Variable Inter-Ring Distances Concentric Ring Electrodes.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Makeyev, Oleksandr; Besio, Walter G</p> <p>2016-06-10</p> <p>Noninvasive concentric ring electrodes are a promising alternative to conventional disc electrodes. Currently, the superiority of tripolar concentric ring electrodes over disc electrodes, in particular, in accuracy of Laplacian estimation, has been demonstrated in a range of applications. In our recent work, we have shown that accuracy of Laplacian estimation can be improved with multipolar concentric ring electrodes using a general approach to estimation of the Laplacian for an (n + 1)-polar electrode with n rings using the (4n + 1)-point method for n ≥ 2. This paper takes the next step toward further improving the Laplacian estimate by proposing novel variable inter-ring distances concentric ring electrodes. Derived using a modified (4n + 1)-point method, linearly increasing and decreasing inter-ring distances tripolar (n = 2) and quadripolar (n = 3) electrode configurations are compared to their constant inter-ring distances counterparts. Finite element method modeling and analytic results are consistent and suggest that increasing inter-ring distances electrode configurations may decrease the truncation error resulting in more accurate Laplacian estimates compared to respective constant inter-ring distances configurations. For currently used tripolar electrode configuration, the truncation error may be decreased more than two-fold, while for the quadripolar configuration more than a six-fold decrease is expected.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_16 --> <div id="page_17" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="321"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28268734','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28268734"><span>Finite element method modeling to assess Laplacian estimates via novel variable inter-ring distances concentric ring electrodes.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Makeyev, Oleksandr; Besio, Walter G</p> <p>2016-08-01</p> <p>Noninvasive concentric ring electrodes are a promising alternative to conventional disc electrodes. Currently, superiority of tripolar concentric ring electrodes over disc electrodes, in particular, in accuracy of Laplacian estimation has been demonstrated in a range of applications. In our recent work we have shown that accuracy of Laplacian estimation can be improved with multipolar concentric ring electrodes using a general approach to estimation of the Laplacian for an (n + 1)-polar electrode with n rings using the (4n + 1)-point method for n ≥ 2. This paper takes the next step toward further improving the Laplacian estimate by proposing novel variable inter-ring distances concentric ring electrodes. Derived using a modified (4n + 1)-point method, linearly increasing and decreasing inter-ring distances tripolar (n = 2) and quadripolar (n = 3) electrode configurations are compared to their constant inter-ring distances counterparts using finite element method modeling. Obtained results suggest that increasing inter-ring distances electrode configurations may decrease the estimation error resulting in more accurate Laplacian estimates compared to respective constant inter-ring distances configurations. For currently used tripolar electrode configuration the estimation error may be decreased more than two-fold while for the quadripolar configuration more than six-fold decrease is expected.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012LPICo1679.4155L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012LPICo1679.4155L"><span>ESPA-Based Multiple Satellite Architecture for Mars Science and Exploration</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lo, A. S.; Griffin, K.; Hanson, M.; Lee, G.</p> <p>2012-06-01</p> <p>We propose a LCROSS-based approach, enabled by ts innovative use of the ESPA ring. Exploiting this architecture for Mars mission can use the upcoming Mars launch opportunities to inject multiple satellites that can support the wide range of NASA’s goals.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1250523','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1250523"><span>Next Generation Muon g-2 Experiments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Hertzog, David W.</p> <p>2015-12-02</p> <p>I report on the progress of two new muon anomalous magnetic moment experiments, which are in advanced design and construction phases. The goal of Fermilab E989 is to reduce the experimental uncertainty ofmore » $$a_\\mu$$ from Brookhaven E821 by a factor of 4; that is, $$\\delta a_\\mu \\sim 16 \\times 10^{-11}$$, a relative uncertainty of 140~ppb. The method follows the same magic-momentum storage ring concept used at BNL, and pioneered previously at CERN, but muon beam preparation, storage ring internal hardware, field measuring equipment, and detector and electronics systems are all new or upgraded significantly. In contrast, J-PARC E34 will employ a novel approach based on injection of an ultra-cold, low-energy, muon beam injected into a small, but highly uniform magnet. Only a small magnetic focusing field is needed to maintain storage, which distinguishes it from CERN, BNL and Fermilab. E34 aims to roughly match the previous BNL precision in their Phase~1 installation.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/14572001','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/14572001"><span>Improvement of patient return electrodes in electrosurgery by experimental investigations and numerical field calculations.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Golombeck, M A; Dössel, O; Raiser, J</p> <p>2003-09-01</p> <p>Numerical field calculations and experimental investigations were performed to examine the heating of the surface of human skin during the application of a new electrode design for the patient return electrode. The new electrode is characterised by an equipotential ring around the central electrode pads. A multi-layer thigh model was used, to which the patient return electrode and the active electrode were connected. The simulation geometry and the dielectric tissue parameters were set according to the frequency of the current. The temperature rise at the skin surface due to the flow of current was evaluated using a two-step numerical solving procedure. The results were compared with experimental thermographical measurements that yielded a mean value of maximum temperature increase of 3.4 degrees C and a maximum of 4.5 degrees C in one test case. The calculated heating patterns agreed closely with the experimental results. However, the calculated mean value in ten different numerical models of the maximum temperature increase of 12.5 K (using a thermodynamic solver) exceeded the experimental value owing to neglect of heat transport by blood flow and also because of the injection of a higher test current, as in the clinical tests. The implementation of a simple worst-case formula that could significantly simplify the numerical process led to a substantial overestimation of the mean value of the maximum skin temperature of 22.4 K and showed only restricted applicability. The application of numerical methods confirmed the experimental assertions and led to a general understanding of the observed heating effects and hotspots. Furthermore, it was possible to demonstrate the beneficial effects of the new electrode design with an equipotential ring. These include a balanced heating pattern and the absence of hotspots.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010CosRe..48..211K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010CosRe..48..211K"><span>Radial profile of pressure in a storm ring current as a function of D st</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kovtyukh, A. S.</p> <p>2010-06-01</p> <p>Using satellite data obtained near the equatorial plane during 12 magnetic storms with amplitudes from -61 down to -422 nT, the dependences of maximum in L-profile of pressure ( L m) of the ring current (RC) on the current value of D st are constructed, and their analytical approximations are derived. It is established that function L m( D st ) is steeper on the phase of recovery than during the storm’s main phase. The form of the outer edge of experimental radial profiles of RC pressure is studied, and it is demonstrated to correspond to exponential growth of the total energy of RC particles on a given L shell with decreasing L. It is shown that during the storms’ main phase the ratio of plasma and magnetic field pressures at the RC maximum does not practically depend on the storm strength and L m value. This fact reflects resistance of the Earth’s magnetic field to RC expansion, and testifies that during storms the possibilities of injection to small L are limited for RC particles. During the storms’ recovery phase this ratio quickly increases with increasing L m, which reflects an increased fraction of plasma in the total pressure balance. It is demonstrated that function L m( D st ) is derived for the main phase of storms from the equations of drift motion of RC ions in electrical and magnetic fields, reflecting the dipole character of magnetic field and scale invariance of the pattern of particle convection near the RC maximum. For the recovery phase it is obtained from the Dessler-Parker-Sckopke relationship. The obtained regularities allow one to judge about the radial profile of RC pressure from ground-based magnetic measurements (data on the D st variation).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/21513185-adaptive-injection-locking-oscillator-array-rf-spectrum-analysis','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/21513185-adaptive-injection-locking-oscillator-array-rf-spectrum-analysis"><span>Adaptive Injection-locking Oscillator Array for RF Spectrum Analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Leung, Daniel</p> <p>2011-04-19</p> <p>A highly parallel radio frequency receiver using an array of injection-locking oscillators for on-chip, rapid estimation of signal amplitudes and frequencies is considered. The oscillators are tuned to different natural frequencies, and variable gain amplifiers are used to provide negative feedback to adapt the locking band-width with the input signal to yield a combined measure of input signal amplitude and frequency detuning. To further this effort, an array of 16 two-stage differential ring oscillators and 16 Gilbert-cell mixers is designed for 40-400 MHz operation. The injection-locking oscillator array is assembled on a custom printed-circuit board. Control and calibration is achievedmore » by on-board microcontroller.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28453571','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28453571"><span>Effect of Shenmai injection on preventing the development of nitroglycerin-induced tolerance in rats.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhou, Qian; Sun, Yan; Tan, Wangxiao; Liu, Xiao; Qian, Yuchen; Ma, Xianghui; Wang, Ting; Wang, Xiaoying; Gao, Xiumei</p> <p>2017-01-01</p> <p>Long-term nitroglycerin (NTG) therapy causes tolerance to its effects attributing to increased oxidative stress and endothelial dysfunction. Shenmai injection (SMI), which is clinically used to treat cardiovascular diseases, consists of two herbal medicines, Ginseng Rubra and Ophiopogonjaponicas, and is reported to have antioxidant effects. The present study was designed to investigate the potential preventive effects of Shenmai injection on development of nitroglycerin-induced tolerance. The present study involves both in vivo and in vitro experiments to investigate nitroglycerin-induced tolerance. We examined the effect of Shenmai injection on the cardiovascular oxidative stress by measuring the serum levels of malondialdehyde (MDA) and superoxide dismutase (SOD). Endothelial dysfunction was determined by an endothelium-dependent vasorelaxation method in aortic rings and NOS activity. Inhibition of the cGMP/cGK-I signalling pathway was determined from released serum levels of cGMP and the protein expression levels of sGC, cGK-I, PDE1A and P-VASP by western blot. Here, we showed that SMI ameliorated the decrease in AV Peak Vel, the attenuation in the vasodilation response to nitroglycerin and endothelial dysfunction. SMI also reduced the cardiovascular oxidative stress by reducing the release of MDA and increasing the activity of SOD. Shenmai injection further ameliorated inhibition of the cGMP/cGK-I signalling pathway triggered by nitroglycerin-induced tolerance through up-regulating the protein expression of sGC, cGK-I, and P-VASP and down- regulating the proteins expression of PDE1A. In vitro studies showed that Shenmai injection could recover the attenuated vasodilation response to nitroglycerin following incubation (of aortic rings) with nitroglycerin via activating the enzymes of sGC and cGK-I. Therefore, we conclude that Shenmai injection could prevent NTG nitroglycerin-induced tolerance at least in part by decreasing the cardiovascular oxidative stress, meliorating the endothelial dysfunction and ameliorating the inhibition of the cGMP/cGK-I signalling pathway. These findings indicate the potential of Shenmai injection (SMI) as a promising medicine for preventing the development of nitroglycerin-induced tolerance.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5409518','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5409518"><span>Effect of Shenmai injection on preventing the development of nitroglycerin-induced tolerance in rats</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Zhou, Qian; Sun, Yan; Tan, Wangxiao; Liu, Xiao; Qian, Yuchen; Ma, Xianghui; Wang, Ting; Wang, Xiaoying; Gao, Xiumei</p> <p>2017-01-01</p> <p>Long-term nitroglycerin (NTG) therapy causes tolerance to its effects attributing to increased oxidative stress and endothelial dysfunction. Shenmai injection (SMI), which is clinically used to treat cardiovascular diseases, consists of two herbal medicines, Ginseng Rubra and Ophiopogonjaponicas, and is reported to have antioxidant effects. The present study was designed to investigate the potential preventive effects of Shenmai injection on development of nitroglycerin-induced tolerance. The present study involves both in vivo and in vitro experiments to investigate nitroglycerin-induced tolerance. We examined the effect of Shenmai injection on the cardiovascular oxidative stress by measuring the serum levels of malondialdehyde (MDA) and superoxide dismutase (SOD). Endothelial dysfunction was determined by an endothelium-dependent vasorelaxation method in aortic rings and NOS activity. Inhibition of the cGMP/cGK-I signalling pathway was determined from released serum levels of cGMP and the protein expression levels of sGC, cGK-I, PDE1A and P-VASP by western blot. Here, we showed that SMI ameliorated the decrease in AV Peak Vel, the attenuation in the vasodilation response to nitroglycerin and endothelial dysfunction. SMI also reduced the cardiovascular oxidative stress by reducing the release of MDA and increasing the activity of SOD. Shenmai injection further ameliorated inhibition of the cGMP/cGK-I signalling pathway triggered by nitroglycerin-induced tolerance through up-regulating the protein expression of sGC, cGK-I, and P-VASP and down- regulating the proteins expression of PDE1A. In vitro studies showed that Shenmai injection could recover the attenuated vasodilation response to nitroglycerin following incubation (of aortic rings) with nitroglycerin via activating the enzymes of sGC and cGK-I. Therefore, we conclude that Shenmai injection could prevent NTG nitroglycerin-induced tolerance at least in part by decreasing the cardiovascular oxidative stress, meliorating the endothelial dysfunction and ameliorating the inhibition of the cGMP/cGK-I signalling pathway. These findings indicate the potential of Shenmai injection (SMI) as a promising medicine for preventing the development of nitroglycerin-induced tolerance. PMID:28453571</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFM.P53C..05S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFM.P53C..05S"><span>The Consequences of Saturn’s Rotating Asymmetric Ring Current</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Southwood, D. J.; Kivelson, M. G.</p> <p>2009-12-01</p> <p>The plasma and field behavior in the dipolar region of the Saturnian magnetosphere is described, based primarily on interpretation of the magnetic field behavior measured by the Cassini spacecraft. Previous authors, such as Provan and Khurana, have pointed out that the regular pulses in field strength at around 10.8 hrs period detected in this region imply the existence not only of a symmetric ring current but also of a partial ring current. Once spacecraft motion in local time has been allowed for, one finds a close to sinusoidal variation with azimuth and time of the magnetic signal. Hence the partial ring current appears to quasi-rigidly rotate about the planetary axis at the same 10.8 hr period as the pulsing of the Saturn kilometric radiation. We point out that, independent of whether the excess current is due to asymmetry in flux tube population or in plasma beta (pressure normalized to field pressure), such a current gives rise to a rotating circulation system. The compressional field pattern is consistent with an m = 1 pattern of circulation. The fairly uniform inner magnetosphere cam magnetic signature predicted on the basis of inner magnetosphere transverse field components in our past work is modified in a systematic way by the partial ring current effects. The circulation due to the partial ring current has its own set of distributed field aligned currents (FACs). The rotating transverse perturbation field components are twisted by the FACs so that the radial field is reduced at low L-shells and increased at larger L. Overall the cam field is depressed at low L and enhanced as one approaches the boundary of the cam region at L = 10-12. In practice the system must also respond to some local time effects. Loss of plasma is easier on the night-side and flanks than on the day-side and so a day-night asymmetry is imposed tending to increase the perturbation field amplitudes by night. The FACs driven by the asymmetric ring current should be broadly distributed throughout the cam region and correspondingly are associated with smaller current densities than those associated with the more narrowly confined cam current system on the outer edge of the cam. Accordingly the intense fluxes of electrons that give rise to the SKR signals are associated with the upward elements of the latter current system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSM13A2349H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSM13A2349H"><span>The Locations of Ring Current Pressure Peaks: Comparison of TWINS Measurements and CIMI Simulations for the 7-10 September 2015 CIR Storm</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hill, S. C.; Edmond, J. A.; Xu, H.; Perez, J. D.; Fok, M. C. H.; Goldstein, J.; McComas, D. J.; Valek, P. W.</p> <p>2017-12-01</p> <p>The characteristics of a four day 7-10 September 2015 co-rotating interaction region (CIR) storm (min. SYM/H ≤ -110 nT) are categorized by storm phase. Ion distributions of trapped particles in the ring current as measured by the Two Wide-Angle Imaging Neutral Atom Spectrometers (TWINS) are compared with the simulated ion distributions of the Comprehensive Inner Magnetosphere-Ionosphere Model (CIMI). The energetic neutral atom (ENA) images obtained by TWINS are deconvolved to extract equatorial pitch angle, energy spectra, ion pressure intensity, and ion pressure anisotropy distributions in the inner magnetosphere. CIMI, using either a self-consistent electric field or a semi-empirical electric field, simulates comparable distributions. There is good agreement between the data measured by TWINS and the different distributions produced by the self-consistent electric field and the semi-empirical electric field of CIMI. Throughout the storm the pitch angle distribution (PAD) is mostly perpendicular in both CIMI and TWINS and there is agreement between the anisotropy distributions. The locations of the ion pressure peaks seen by TWINS and by the self-consistent and semi empirical electric field parameters in CIMI are usually between dusk and midnight. On average, the self-consistent electric field in CIMI reveals ion pressure peaks closer to Earth than its semi empirical counterpart, while TWINS reports somewhat larger radial values for the ion pressure peak locations. There are also notable events throughout the storm during which the simulated observations show some characteristics that differ from those measured by TWINS. At times, there are ion pressure peaks with magnetic local time on the dayside and in the midnight to dawn region. We discuss these events in light of substorm injections indicated by fluctuating peaks in the AE index and a positive By component in the solar wind. There are also times in which there are multiple ion pressure peaks. This may imply that there are time dependent and spatially dependent injection events that are influenced by local reconnection regions in the tail of the magnetosphere. Using CIMI simulations, we present paths of particles with various energies to assist in interpreting these notable events.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/889675','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/889675"><span>Radiological Environmental Protection for PEP-II Ring High Luminosity Operation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Liu, James C.; Nakao, Noriaki; /SLAC</p> <p>2006-08-16</p> <p>Stanford Linear Accelerator Center (SLAC) is located in northern California, USA. Radiological environmental protection is one of the main elements of the radiation protection program. One of SLAC's accelerator facilities is B-Factory, whose PEP-II accelerator ring has been operating since 1997 and is being upgraded to higher luminosity operation. Four radiological issues associated with high luminosity operation up to CY2008 are re-evaluated: (1) annual doses in IR halls, (2) annual skyshine doses at site boundaries, (3) potential radioactive air releases, and (4) potential groundwater activation. This paper presents the skyshine doses and air emission doses to the Maximally Exposed Individualmore » (MEI) at SLAC site boundaries. The normal beam loss scenarios around PEP-II ring are presented first. In CY2008, the luminosity is 2 x 10{sup 34} cm{sup -2} s{sup -1}, and the stored current is 4.0-A for low-energy ring (LER ) and 2.2-A for high-energy ring (HER). The beam losses around PEP-II ring include those near injection region in IR10 and IR8 and those at collimators (e.g., HER collimators in IR12, LER collimators in IR4 and IR6). The beam losses in IR8 and IR10 (where injection into ring occurs) are further divided into septum, BAD (beam abort dump) and TD (tune-up dump), as well as apertures. The skyshine prompt dose rate distributions as a function of distance from an IR hall at four directions were calculated using the MARS15 Monte Carlo code. For skyshine dose to the MEI, the annual dose (7200 h/y occupancy) is calculated to be 2.9 mrem/y at Sand Hill Road (from e{sup -} losses in IR12 HER collimators) and 1.2 mrem/y at Horse Track Offices near IR6 (from e{sup +} losses in IR8, IR6 and IR4). These are lower than the SLAC skyshine limit of 5 mrem/y for any single facility within SLAC. Radionuclide productions in the air at the PEP-II IR10 were calculated using MARS15. Beam losses of 9-GeV electrons were assumed in three target cases: the copper TD, septum and BAD. Energy spectra of secondary particles of photons, neutrons, protons and pions in the IR10 air region were calculated. Radionuclide yields of {sup 11}C, {sup 13}N, {sup 15}O, {sup 3}H, {sup 7}Be and {sup 41}Ar were estimated using the obtained particle energy spectra, folded with the reaction cross sections. With certain operation and ventilation conditions, the annual air emission dose to the MEI at Sand Hill Road from e{sup -} losses in IR10 is calculated to be 0.004 mrem/y (7200 h/y occupancy). The annual dose to the MEI at Horse Track Offices is 0.002 mrem/y from e{sup +} losses in IR8, 0.003 mrem/y from IR6, and 0.025 mrem/y from IR4. The doses are dominated by {sup 13}N. Therefore, the EPA annual dose limit of 10 mrem/y for SLAC and the continuous ventilation monitoring limit of 0.1 mrem/y for each release point are not exceeded.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23295271','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23295271"><span>Computed tomography characteristics of fibrosarcoma -- a histological subtype of feline injection-site sarcoma.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Travetti, Olga; di Giancamillo, Mauro; Stefanello, Damiano; Ferrari, Roberta; Giudice, Chiara; Grieco, Valeria; Saunders, Jimmy H</p> <p>2013-06-01</p> <p>Feline injection-site sarcoma (FISS) may be a consequence of subcutaneous injection. In the present study, the medical records and the computed tomography (CT) features of 22 cats with a FISS, histopathological subtype fibrosarcoma, were used. The majority of the fibrosarcomas (45%) were located in the interscapular region. All fibrosarcomas, except one with mild enhancement, showed strong contrast uptake, characterised as ring (42%), heterogeneous (36%), homogeneous (9%), heterogeneous/ring (6.5%) or mixed heterogeneous/homogeneous enhancement (6.5%). The longest axis of the mass was in a cranio-caudal (68%) or dorso-ventral (32%) direction. The median volume calculated on CT was 7.57 cm(3). Common features were a marked local invasiveness of the musculature and heterogeneity of the tissue in the periphery of the neoplasia. When the fibrosarcoma was interscapular, performing an additional post-contrast scan with the forelimbs positioned caudally along the body, in addition to the standard protocol with the forelimbs extended cranially, allowed better evaluation of the actual relationship between the tumour and the surrounding tissues. The mean number of muscles involved with the tumour was 2.09 with extended and 1.95 with flexed forelimbs. When a lower number of structures was considered infiltrated through the double positioning, a less invasive surgical approach to underlying muscles and scapula was performed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20651145','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20651145"><span>Sphagnum moss disperses spores with vortex rings.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Whitaker, Dwight L; Edwards, Joan</p> <p>2010-07-23</p> <p>Sphagnum spores, which have low terminal velocities, are carried by turbulent wind currents to establish colonies many kilometers away. However, spores that are easily kept aloft are also rapidly decelerated in still air; thus, dispersal range depends strongly on release height. Vascular plants grow tall to lift spores into sufficient wind currents for dispersal, but nonvascular plants such as Sphagnum cannot grow sufficiently high. High-speed videos show that exploding capsules of Sphagnum generate vortex rings to efficiently carry spores high enough to be dispersed by turbulent air currents. Spores launched ballistically at similar speeds through still air would travel a few millimeters and not easily reach turbulent air. Vortex rings are used by animals; here, we report vortex rings generated by plants.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014APS..DFDR12005J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014APS..DFDR12005J"><span>Interaction of a vortex ring and a bubble</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jha, Narsing K.; Govardhan, Raghuraman N.</p> <p>2014-11-01</p> <p>Micro-bubble injection in to boundary layers is one possible method for reducing frictional drag of ships. Although this has been studied for some time, the physical mechanisms responsible for drag reduction using microbubbles in turbulent boundary layers is not yet fully understood. Previous studies suggest that bubble-vortical structure interaction seems to be one of the important physical mechanisms for frictional drag reduction using microbubbles. In the present work, we study a simplification of this problem, namely, the interaction of a single vortical structure, in particular a vortex ring, with a single bubble for better understanding of the physics. The vortex ring is generated using a piston-cylinder arrangement and the bubble is generated by connecting a capillary to an air pump. The bubble dynamics is directly visualized using a high speed camera, while the vorticity modification is measured using time resolved PIV. The results show that significant deformations can occur of both the bubble and the vortex ring. Effect of different non-dimensional parameters on the interaction will be presented in the meeting.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/5609740-desy-ii-new-injector-desy-storage-rings-petra-doris-ii','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/5609740-desy-ii-new-injector-desy-storage-rings-petra-doris-ii"><span>DESY II, a new injector for the DESY storage rings PETRA and DORIS II</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Hemmie, G.</p> <p>1983-08-01</p> <p>There is a proposal to build a new 9 GeV electron synchrotron as a dedicated injector for the storage rings DORIS and PETRA. This machine will be housed in the old DESY-tunnel side-by-side with the original DESY-synchrotron. It is characterized by a separated function lattice, a 12.5 Hz repetition frequency, an all-metal vacuum chamber and a high shunt impedance rf-system. After commissioning of this new machine in 1984, the old DESY-synchrotron could be converted into a dedicated proton-accelerator as part of the injection chain for HERA.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1351282-experience-round-beam-operation-advanced-photon-source','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1351282-experience-round-beam-operation-advanced-photon-source"><span>Experience with Round Beam Operation at The Advanced Photon Source</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Xiao, A.; Emery, L.; Sajaev, V.</p> <p>2015-01-01</p> <p>Very short Touschek lifetime becomes a common issue for next-generation ultra-low emittance storage ring light sources. In order to reach a longer beamlifetime, such amachine often requires operating with a vertical-to-horizontal emittance ratio close to an unity, i.e. a “round beam”. In tests at the APS storage ring, we determined how a round beam can be reached experimentally. Some general issues, such as beam injection, optics measurement and corrections, and orbit correction have been tested also. To demonstrate that a round beam was achieved, the beam size ratio is calibrated using beam lifetime measurement.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/4131778','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/biblio/4131778"><span>GUARD RING SEMICONDUCTOR JUNCTION</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Goulding, F.S.; Hansen, W.L.</p> <p>1963-12-01</p> <p>A semiconductor diode having a very low noise characteristic when used under reverse bias is described. Surface leakage currents, which in conventional diodes greatly contribute to noise, are prevented from mixing with the desired signal currents. A p-n junction is formed with a thin layer of heavily doped semiconductor material disposed on a lightly doped, physically thick base material. An annular groove cuts through the thin layer and into the base for a short distance, dividing the thin layer into a peripheral guard ring that encircles the central region. Noise signal currents are shunted through the guard ring, leaving the central region free from such currents. (AEC)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016NatSR...637398M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016NatSR...637398M"><span>Highly Efficient Spin-Current Operation in a Cu Nano-Ring</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Murphy, Benedict A.; Vick, Andrew J.; Samiepour, Marjan; Hirohata, Atsufumi</p> <p>2016-11-01</p> <p>An all-metal lateral spin-valve structure has been fabricated with a medial Copper nano-ring to split the diffusive spin-current path. We have demonstrated significant modulation of the non-local signal by the application of a magnetic field gradient across the nano-ring, which is up to 30% more efficient than the conventional Hanle configuration at room temperature. This was achieved by passing a dc current through a current-carrying bar to provide a locally induced Ampère field. We have shown that in this manner a lateral spin-valve gains an additional functionality in the form of three-terminal gate operation for future spintronic logic.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20020041256&hterms=swimming&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dswimming','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20020041256&hterms=swimming&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dswimming"><span>Ring Bubbles of Dolphins</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Shariff, Karim; Marten, Ken; Psarakos, Suchi; White, Don J.; Merriam, Marshal (Technical Monitor)</p> <p>1996-01-01</p> <p>The article discusses how dolphins create and play with three types of air-filled vortices. The underlying physics is discussed. Photographs and sketches illustrating the dolphin's actions and physics are presented. The dolphins engage in this behavior on their own initiative without food reward. These behaviors are done repeatedly and with singleminded effort. The first type is the ejection of bubbles which, after some practice on the part of the dolphin, turn into toroidal vortex ring bubbles by the mechanism of baroclinic torque. These bubbles grow in radius and become thinner as they rise vertically to the surface. One dolphin would blow two in succession and guide them to fuse into one. Physicists call this a vortex reconnection. In the second type, the dolphins first create an invisible vortex ring in the water by swimming on their side and waving their tail fin (also called flukes) vigorously. This vortex ring travels horizontally in the water. The dolphin then turns around, finds the vortex and injects a stream of air into it from its blowhole. The air "fills-out" the core of the vortex ring. Often, the dolphin would knock-off a smaller ring bubble from the larger ring (this also involves vortex reconnection) and steer the smaller ring around the tank. One other dolphin employed a few other techniques for planting air into the fluke vortex. One technique included standing vertically in the water with tail-up, head-down and tail piercing the free surface. As the fluke is waved to create the vortex ring, air is entrained from above the surface. Another technique was gulping air in the mouth, diving down, releasing air bubbles from the mouth and curling them into a ring when they rose to the level of the fluke. In the third type, demonstrated by only one dolphin, the longitudinal vortex created by the dorsal fin on the back is used to produce 10-15 foot long helical bubbles. In one technique she swims in a curved path. This creates a dorsal fin vortex since centrifugal force has to be balanced by a lift-like force. She then re-traces her path and injects air into the vortex from her blowhole. She can even make a ring reconnect from the helix. In the second technique, demonstrated a few times, she again swims in a curved path, releases a cloud or group of bubbles from her blowhole and turns sharply away (Which presumably strengthens the vortex). As the bubbles encounter the vortex, they travel to the center of the vortex, merge and, in a flash, elongate along the core of the vortex. In all the three types, the air-water interface is shiny smooth and stable because the pressure gradient in the vortex flow around the bubble stabilizes it. A lot of the interesting physics still remains to be explored.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19880035660&hterms=Butterfly&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3DButterfly','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19880035660&hterms=Butterfly&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3DButterfly"><span>Magnetic field drift shell splitting - Cause of unusual dayside particle pitch angle distributions during storms and substorms</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Sibeck, D. G.; Mcentire, R. W.; Lui, A. T. Y.; Lopez, R. E.; Krimigis, S. M.</p> <p>1987-01-01</p> <p>This paper presents a magnetic field drift shell-splitting model for the unusual butterfly and head-and-shoulder energetic (E greater than 25 keV) particle pitch angle distributions (PADs) which appear deep within the dayside magnetosphere during the course of storms and substorms. Drift shell splitting separates the high and low pitch angle particles in nightside injections as they move to the dayside magnetosphere, so that the higher pitch angle particles move radially away from earth. Consequently, butterfly PADs with a surplus of low pitch angle particles form on the inner edge of the injection, but head-and-shoulder PADs with a surplus of high pitch angle particles form on the outer edge. A similar process removes high pitch angle particles from the inner dayside magnetosphere during storms, leaving the remaining lower pitch angle particles to form butterfly PADs on the inner edge of the ring current. A detailed case and statistical study of Charge Composition Explorer/Medium-energy Particle Analyzer observations, as well as a review of previous work, shows most examples of unusual PADs to be consistent with the model.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29666937','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29666937"><span>Biomedical Approaches to HIV Prevention in Women.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Heumann, Christine L</p> <p>2018-04-17</p> <p>Effective HIV prevention techniques for women are of critical importance, as nearly half of all HIV infections globally are in women. This article reviews the recent literature on biomedical approaches to HIV prevention in women. In trials in which women were adherent to oral pre-exposure prophylaxis (PrEP), PrEP was equally efficacious in men and women. However, in studies of oral PrEP exclusively in women, adherence was low, and it was not efficacious. In trials of topical PrEP, including vaginal tenofovir gel and the monthly dapivirine ring, efficacy was also dependent upon adherence. Treatment as prevention (TasP) is a very effective HIV prevention strategy, though limited in that it is not controlled by the HIV-uninfected partner. Adherence is an important factor in the efficacy of biomedical interventions for HIV prevention in women; continued research is needed to identify the most efficacious and acceptable agents for women. Oral PrEP is currently recommended for the following groups of HIV-negative women: heterosexual women in ongoing sexual relationships with a partner infected with or at substantial risk of HIV infection and women who inject drugs and share injection or drug preparation equipment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28268735','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28268735"><span>Analytic assessment of Laplacian estimates via novel variable interring distances concentric ring electrodes.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Makeyev, Oleksandr; Besio, Walter G</p> <p>2016-08-01</p> <p>Noninvasive concentric ring electrodes are a promising alternative to conventional disc electrodes. Currently, superiority of tripolar concentric ring electrodes over disc electrodes, in particular, in accuracy of Laplacian estimation has been demonstrated in a range of applications. In our recent work we have shown that accuracy of Laplacian estimation can be improved with multipolar concentric ring electrodes using a general approach to estimation of the Laplacian for an (n + 1)-polar electrode with n rings using the (4n + 1)-point method for n ≥ 2. This paper takes the next step toward further improving the Laplacian estimate by proposing novel variable inter-ring distances concentric ring electrodes. Derived using a modified (4n + 1)-point method, linearly increasing inter-ring distances tripolar (n = 2) and quadripolar (n = 3) electrode configurations are analytically compared to their constant inter-ring distances counterparts using coefficients of the Taylor series truncation terms. Obtained results suggest that increasing inter-ring distances electrode configurations may decrease the truncation error of the Laplacian estimation resulting in more accurate Laplacian estimates compared to respective constant inter-ring distances configurations. For currently used tripolar electrode configuration the truncation error may be decreased more than two-fold while for the quadripolar more than seven-fold decrease is expected.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20070014868&hterms=major+depression&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dmajor%2Bdepression','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20070014868&hterms=major+depression&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dmajor%2Bdepression"><span>The Role of Ring Current on Slot Region Penetration</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Fok, Mei-Ching; Elkington, Scot</p> <p>2006-01-01</p> <p>During magnetic quiet times, the inner belt, slot region and the outer belt are well defined regions. However, during some major storms, outer belt particles penetrate inward and significantly fill the slot region. In some extreme events, the outer belt particles travel through the slot and create a new belt in the inner region that persists from months to years. In this paper, we examine the role of the ring current on this radiation belt penetration into the slot region. The storm-time intensification of the ring current produces strong magnetic depression in the inner magnetosphere. This perturbation and its fluctuation enhance the radial transport and diffusion of the outer radiation belt particles. We perform kinetic and test-particle calculations to quantitatively assess the effects of the ring current field on filling of the slot region. Simulation results during major storms will be presented and discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20020068099&hterms=Plasma+Ring&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DPlasma%2BRing','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20020068099&hterms=Plasma+Ring&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DPlasma%2BRing"><span>Plasmaspheric Erosion via Plasmasphere Coupling to Ring Current Plasmas: EUV Observations and Modeling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Adrian, M. L.; Gallagher, D. L.; Khazanov, G. V.; Chsang, S. W.; Liemohn, M. W.; Perez, J. D.; Green, J. L.; Sandel, B. R.; Mitchell, D. G.; Mende, S. B.; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20020068099'); toggleEditAbsImage('author_20020068099_show'); toggleEditAbsImage('author_20020068099_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20020068099_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20020068099_hide"></p> <p>2002-01-01</p> <p>During a geomagnetic storm on 24 May 2000, the IMAGE Extreme Ultraviolet (EUV) camera observed a plasmaspheric density trough in the evening sector at L-values inside the plasmapause. Forward modeling of this feature has indicated that plasmaspheric densities beyond the outer wall of the trough are well below model expectations. This diminished plasma condition suggests the presence of an erosion process due to the interaction of the plasmasphere with ring current plasmas. We present an overview of EUV, energetic neutral atom (ENA), and Far Ultraviolet (FUV) camera observations associated with the plasmaspheric density trough of 24 May 2000, as well as forward modeling evidence of the lie existence of a plasmaspheric erosion process during this period. FUV proton aurora image analysis, convolution of ENA observations, and ring current modeling are then presented in an effort to associate the observed erosion with coupling between the plasmasphere and ring-current plasmas.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1402622-predicting-electromagnetic-ion-cyclotron-wave-amplitude-from-unstable-ring-current-plasma-conditions','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1402622-predicting-electromagnetic-ion-cyclotron-wave-amplitude-from-unstable-ring-current-plasma-conditions"><span>Predicting electromagnetic ion cyclotron wave amplitude from unstable ring current plasma conditions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Fu, Xiangrong; Cowee, Misa M.; Jordanova, Vania K.; ...</p> <p>2016-11-01</p> <p>Electromagnetic ion cyclotron (EMIC) waves in the Earth's inner magnetosphere are enhanced fluctuations driven unstable by ring current ion temperature anisotropy. EMIC waves can resonate with relativistic electrons and play an important role in precipitation of MeV radiation belt electrons. In this study, we investigate the excitation and saturation of EMIC instability in a homogeneous plasma using both linear theory and nonlinear hybrid simulations. We have explored a four-dimensional parameter space, carried out a large number of simulations, and derived a scaling formula that relates the saturation EMIC wave amplitude to initial plasma conditions. Finally, such scaling can be usedmore » in conjunction with ring current models like ring current-atmosphere interactions model with self-consistent magnetic field to provide global dynamic EMIC wave maps that will be more accurate inputs for radiation belt modeling than statistical models.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19870003087','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19870003087"><span>Pioneer 10 and 11 (Jupiter and Saturn) magnetic field experiments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Jones, D. E.</p> <p>1986-01-01</p> <p>Magnet field data obtained by the vector helium magnetometer (VHM) during the encounters of Jupiter (Pioneer 10 and 11) and Saturn (Pioneer 11) was analyzed and interpreted. The puzzling characteristics of the Jovian and Saturnian magnetospheric magnetic fields were studied. An apparent substorm (including thinning of the dayside tail current sheet) was observed at Jupiter, as well as evidence suggesting that at the magnetopause the cusp is at an abnormally low latitude. The characteristics of Saturn's ring current as observed by Pioneer 11 were dramatically different from those suggested by the Voyager observations. Most importantly, very strong perturbations in the azimuthal ring current magnetic field suggest that the plane of the ring was not in the dipole equatorial plane, being tilted 5 to 10 deg. relative to the dipole and undergoing significant changes during the encounter. When these changing currents were corrected for, an improved planetary field determination was obtained. In addition, the ring and azimuthal currents at Saturn displayed significantly different time dependences.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AIPC.1699d0019S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AIPC.1699d0019S"><span>Determination of ion mobility in EHD flow zone of plasma generator</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sumariyah, Kusminarto, Hermanto, Arief; Nuswantoro, Pekik</p> <p>2015-12-01</p> <p>Determination has been carried out for ion mobility in EHD flow zone generated using a pin-concentric multiple ring electrodes and a pin-single ring electrode used as a comparator. The pin needle was made from stainless steel with a tip diameter of 0.18 mm. The concentris multiple ring electrode in form three/two concentric ring electrodes which made of metal material connected to each other. Each ring of three concentric ring electrode has a diameter of 24 mm, 16 mm and 8 mm. And each ring of two concentric ring electrode has a diameter of 24 mm and 16 mm. Single ring electrode has a diameter24 mm. The all ring has same of width and thickness were 2 mm and 3 mm. EHD was generated by using a DC high voltage of 10 kV. Pin functional as an active electrode of corona discharge while the all ring electrodes acted as ions collector and passive electrodes. The experimental results show that the ion current is proportional to V2 according to calculations by Chouelo for hyperbolic-field approach. Ion mobility obtained from the quadratic polynomial fitting of experimental data were current and voltage as well as Choelo formulation. The results showed that the mobility of ions in the EHD flow zones utilizing pin-consentric multiple ring electrode larger than utilizing pin-single ring electrode. Pin-three Consentic ring electrode has the largest of ion mobility</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006SPIE.6115..386K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006SPIE.6115..386K"><span>Spectral properties of all-active InP-based microring resonator devices</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kapsalis, A.; Alexandropoulos, D.; Mikroulis, S.; Simos, H.; Stamataki, I.; Syvridis, D.; Hamacher, M.; Troppenz, U.; Heidrich, H.</p> <p>2006-02-01</p> <p>Microring resonators are excellent candidates for very large scale photonic integration due to their compactness, and fabrication simplicity. Moreover a wide range of all-optical signal processing functions can be realized due to the resonance effect. Possible applications include filtering, add/drop of optical beams and power switching, as well as more complex procedures including multiplexing, wavelength conversion, and logic operations. All-active ring components based in InGaAsP/InP are possible candidates for laser sources, lossless filters, wavelength converters, etc. Our work is based on measurement, characterization and proposal of possible exploitation of such devices in a variety of applications. We investigate the spectral characteristics of multi-quantum well InGaAsP(λ=1.55μm)/InP microring structures of various ring diameters and different configurations including racetracks with one or two bus waveguides and MMI couplers. The latter configuration has recently exhibited the possibility to obtain tunable active filters as well as tunable laser sources based on all-active ring-bus-coupler structures. In the case of tunable lasers single mode operation has been achieved by obtaining sufficiently high side mode suppression ratio. The tuning capability is attributed to a coupled cavities effect, resembling the case of multi-section DBR lasers. However, in contrast to the latter, the fabrication of microring resonators is considered an easier task, due to a single step growth procedure, although further investigation must be carried out in order to achieve wide range tunability. Detailed mappings of achievable wavelengths are produced for a wide range of injection current values.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22632177-su-sparing-normal-tissue-ultra-high-dose-rate-radiation-therapy','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22632177-su-sparing-normal-tissue-ultra-high-dose-rate-radiation-therapy"><span>SU-F-J-45: Sparing Normal Tissue with Ultra-High Dose Rate in Radiation Therapy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Feng, Y</p> <p></p> <p>Purpose: To spare normal tissue by reducing the location uncertainty of a moving target, we proposed an ultra-high dose rate system and evaluated. Methods: High energy electrons generated with a linear accelerator were injected into a storage ring to be accumulated. The number of the electrons in the ring was determined based on the prescribed radiation dose. The dose was delivered within a millisecond, when an online imaging system found that the target was in the position that was consistent with that in a treatment plan. In such a short time period, the displacement of the target was negligible. Themore » margin added to the clinical target volume (CTV) could be reduced that was evaluated by comparing of volumes between CTV and ITV in 14 cases of lung stereotactic body radiation therapy (SBRT) treatments. A design of the ultra-high dose rate system was evaluated based clinical needs and the recent developments of low energy (a few MeV) electron storage ring. Results: This design of ultra-high dose rate system was feasible based on the techniques currently available. The reduction of a target volume was significant by reducing the margin that accounted the motion of the target. ∼50% volume reduction of the internal target volume (ITV) could be achieved in lung SBRT treatments. Conclusion: With this innovation of ultra-high dose rate system, the margin of target is able to be significantly reduced. It will reduce treatment time of gating and allow precisely specified gating window to improve the accuracy of dose delivering.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19760007453','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19760007453"><span>Geomagnetic responses to the solar wind and the solar activity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Svalgaard, L.</p> <p>1975-01-01</p> <p>Following some historical notes, the formation of the magnetosphere and the magnetospheric tail is discussed. The importance of electric fields is stressed and the magnetospheric convection of plasma and magnetic field lines under the influence of large-scale magnetospheric electric fields is outlined. Ionospheric electric fields and currents are intimately related to electric fields and currents in the magnetosphere and the strong coupling between the two regions is discussed. The energy input of the solar wind to the magnetosphere and upper atmosphere is discussed in terms of the reconnection model where interplanetary magnetic field lines merge or connect with the terrestrial field on the sunward side of the magnetosphere. The merged field lines are then stretched behind earth to form the magnetotail so that kinetic energy from the solar wind is converted into magnetic energy in the field lines in the tail. Localized collapses of the crosstail current, which is driven by the large-scale dawn/dusk electric field in the magnetosphere, divert part of this current along geomagnetic field lines to the ionosphere, causing substorms with auroral activity and magnetic disturbances. The collapses also inject plasma into the radiation belts and build up a ring current. Frequent collapses in rapid succession constitute the geomagnetic storm.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRA..122.9427K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRA..122.9427K"><span>Contribution of energetic and heavy ions to the plasma pressure: The 27 September to 3 October 2002 storm</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kronberg, E. A.; Welling, D.; Kistler, L. M.; Mouikis, C.; Daly, P. W.; Grigorenko, E. E.; Klecker, B.; Dandouras, I.</p> <p>2017-09-01</p> <p>Magnetospheric plasma sheet ions drift toward the Earth and populate the ring current. The ring current plasma pressure distorts the terrestrial internal magnetic field at the surface, and this disturbance strongly affects the strength of a magnetic storm. The contribution of energetic ions (>40 keV) and of heavy ions to the total plasma pressure in the near-Earth plasma sheet is not always considered. In this study, we evaluate the contribution of low-energy and energetic ions of different species to the total plasma pressure for the storm observed by the Cluster mission from 27 September until 3 October 2002. We show that the contribution of energetic ions (>40 keV) and of heavy ions to the total plasma pressure is ≃76-98.6% in the ring current and ≃14-59% in the magnetotail. The main source of oxygen ions, responsible for ≃56% of the plasma pressure of the ring current, is located at distances earthward of XGSE ≃ -13.5 RE during the main phase of the storm. The contribution of the ring current particles agrees with the observed Dst index. We model the magnetic storm using the Space Weather Modeling Framework (SWMF). We assess the plasma pressure output in the ring current for two different ion outflow models in the SWMF through comparison with observations. Both models yield reasonable results. The model which produces the most heavy ions agrees best with the observations. However, the data suggest that there is still potential for refinement in the simulations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/7590098','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/7590098"><span>Vasorelaxant effect of the analgesic clonixin on rat aorta.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Morales, M A; Silva, A; Brito, G; Bustamante, S; Ponce, H; Paeile, C</p> <p>1995-03-01</p> <p>1. A novel vasorelaxant effect of clonixinate of L-lysine (Clx), analgesic and anti-inflammatory, was studied in rat aortic rings. 2. Clx completely relaxed aortic rings contracted by KCl 70 mM and together with its analog flunixin exhibited lesser potency but equal efficacy than verapamil. In comparison, indomethacin, which is a more potent cyclo-oxygenase inhibitor relaxed only about 40% of the maximal contraction of aortic rings. 3. Furthermore, Clx antagonized Ca2+ dependent aortic contraction and BAY K-8644 induced aortic contraction suggesting its calcium antagonist character. 4. From these results it can be concluded that the hypotensive effect seen in rats in vivo after Clx i.v. injection arises because of vasodilatory effect of Clx and gives further support to the proposal that the pharmacological mechanism of action of Clx should be calcium antagonism.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19840028760&hterms=fine+dust&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dfine%2Bdust','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19840028760&hterms=fine+dust&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dfine%2Bdust"><span>The fine structure of the Saturnian ring system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Houpis, H. L. F.; Mendis, D. A.</p> <p>1983-01-01</p> <p>A dust disk within a planetary magnetosphere constitutes a novel type of dust-ring current. Such an azimuthal current carrying dust disk is subject to the dusty plasma analog of the well known finite-resistivity 'tearing' mode instability in regular plasma current sheets, at long wavelengths. It is proposed that the presently observed fine ringlet of the Saturnian ring system is a relic of this process operating at cosmogonic times and breaking up the initial proto-ring (which may be regarded as an admixture of fine dust and plasma) into an ensemble of thin ringlets. It is shown that this instability develops at a rate that is many orders of magnitude faster than any other known instability, when the disk thickness reaches a value that is comparable to its present observed value.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMSM51B2180C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMSM51B2180C"><span>Convection Electric Field Observations by THEMIS and the Van Allen Probes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Califf, S.; Li, X.; Bonnell, J. W.; Wygant, J. R.; Malaspina, D.; Hartinger, M.; Thaller, S. A.</p> <p>2013-12-01</p> <p>We present direct electric field measurements made by THEMIS and the Van Allen Probes in the inner magnetosphere, focusing on the large-scale, near-DC convection electric field. The convection electric field drives plasma Earthward from the tail into the inner magnetosphere, playing a critical role in forming the ring current. Although it is normally shielded deep inside the magnetosphere, during storm times this large-scale electric field can penetrate to low L values (L < 3), eroding the plasmasphere and also providing a mechanism for ~100 keV electron injection into the slot region and inner radiation belt. The relationship of the convection electric field with the plasmasphere is also important for understanding the dynamic outer radiation belt, as the plasmapause boundary has been strongly correlated with the dynamic variation of the outer radiation belt electrons.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=jump&id=EJ1090098','ERIC'); return false;" href="https://eric.ed.gov/?q=jump&id=EJ1090098"><span>DC-Powered Jumping Ring</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Jeffery, Rondo N.; Farhang, Amiri</p> <p>2016-01-01</p> <p>The classroom jumping ring demonstration is nearly always performed using alternating current (AC), in which the ring jumps or flies off the extended iron core when the switch is closed. The ring jumps higher when cooled with liquid nitrogen (LN2). We have performed experiments using DC to power the solenoid and find similarities and significant…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016NIMPA.814...66G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016NIMPA.814...66G"><span>Studies of longitudinal profile of electron bunches and impedance measurements at Indus-2 synchrotron radiation source</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Garg, Akash Deep; Yadav, S.; Kumar, Mukesh; Shrivastava, B. B.; Karnewar, A. K.; Ojha, A.; Puntambekar, T. A.</p> <p>2016-04-01</p> <p>Indus-2 is a 3rd generation synchrotron radiation source at the Raja Ramanna Centre for Advanced Technology (RRCAT) in India. We study the longitudinal profile of electrons in Indus-2 by using dual sweep synchroscan streak camera at visible diagnostic beamline. In this paper, the longitudinal profiles of electron bunch are analyzed by filling beam current in a single bunch mode. These studies are carried at injection energy (550 MeV) and at ramped beam energy (2.5 GeV). The effects of the wakefield generated interactions between the circulating electrons and the surrounding vacuum chamber are analyzed in terms of measured effects on longitudinal beam distribution. The impedance of the storage ring is obtained by fitting the solutions of Haissinski equation to the measured bunch lengthening with different impedance models. The impedance of storage ring obtained by a series R+L impedance model indicates a resistance (R) of 1350±125 Ω, an inductance (L) of 180±25 nH and broadband impedance of 2.69 Ω. These results are also compared with the values obtained from measured synchronous phase advancing and scaling laws. These studies are very useful in better understanding and control of the electromagnetic interactions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140000068','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140000068"><span>A Particle-in-Cell Simulation for the Traveling Wave Direct Energy Converter (TWDEC) for Fusion Propulsion</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Chap, Andrew; Tarditi, Alfonso G.; Scott, John H.</p> <p>2013-01-01</p> <p>A Particle-in-cell simulation model has been developed to study the physics of the Traveling Wave Direct Energy Converter (TWDEC) applied to the conversion of charged fusion products into electricity. In this model the availability of a beam of collimated fusion products is assumed; the simulation is focused on the conversion of the beam kinetic energy into alternating current (AC) electric power. The model is electrostatic, as the electro-dynamics of the relatively slow ions can be treated in the quasistatic approximation. A two-dimensional, axisymmetric (radial-axial coordinates) geometry is considered. Ion beam particles are injected on one end and travel along the axis through ring-shaped electrodes with externally applied time-varying voltages, thus modulating the beam by forming a sinusoidal pattern in the beam density. Further downstream, the modulated beam passes through another set of ring electrodes, now electrically oating. The modulated beam induces a time alternating potential di erence between adjacent electrodes. Power can be drawn from the electrodes by connecting a resistive load. As energy is dissipated in the load, a corresponding drop in beam energy is measured. The simulation encapsulates the TWDEC process by reproducing the time-dependent transfer of energy and the particle deceleration due to the electric eld phase time variations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4676057','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4676057"><span>Tunable Broadband Radiation Generated Via Ultrafast Laser Illumination of an Inductively Charged Superconducting Ring</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Bulmer, John; Bullard, Thomas; Dolasinski, Brian; Murphy, John; Sparkes, Martin; Pangovski, Krste; O’Neill, William; Powers, Peter; Haugan, Timothy</p> <p>2015-01-01</p> <p>An electromagnetic transmitter typically consists of individual components such as a waveguide, antenna, power supply, and an oscillator. In this communication we circumvent complications associated with connecting these individual components and instead combine them into a non-traditional, photonic enabled, compact transmitter device for tunable, ultrawide band (UWB) radiation. This device is a centimeter scale, continuous, thin film superconducting ring supporting a persistent super-current. An ultrafast laser pulse (required) illuminates the ring (either at a point or uniformly around the ring) and perturbs the super-current by the de-pairing and recombination of Cooper pairs. This generates a microwave pulse where both ring and laser pulse geometry dictates the radiated spectrum’s shape. The transmitting device is self contained and completely isolated from conductive components that are observed to interfere with the generated signal. A rich spectrum is observed that extends beyond 30 GHz (equipment limited) and illustrates the complex super-current dynamics bridging optical, THz, and microwave wavelengths. PMID:26659022</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19970022202','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19970022202"><span>Ring Current Development During Storm Main Phase</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Fok, Mei-Ching; Moore, Thomas E.; Greenspan, Marian E.</p> <p>1996-01-01</p> <p>The development of the ring current ions in the inner magnetosphere during the main phase of a magnetic storm is studied. The temporal and spatial evolution of the ion phase space densities in a dipole field are calculated using a three dimensional ring current model, considering charge exchange and Coulomb losses along drift paths. The simulation starts with a quiet time distribution. The model is tested by comparing calculated ion fluxes with Active Magnetospheric Particle Tracer Explorers/CCE measurement during the storm main phase on May 2, 1986. Most of the calculated omnidirectional fluxes are in good agreement with the data except on the dayside inner edge (L less than 2.5) of the ring current, where the ion fluxes are underestimated. The model also reproduces the measured pitch angle distributions of ions with energies below 10 keV. At higher energy, an additional diffusion in pitch angle is necessary in order to fit the data. The role of the induced electric field on the ring current dynamics is also examined by simulating a series of substorm activities represented by stretching and collapsing the magnetic field lines. In response to the impulsively changing fields, the calculated ion energy content fluctuates about a mean value that grows steadily with the enhanced quiescent field.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MS%26E..171a2144S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MS%26E..171a2144S"><span>MgB2-based superconductors for fault current limiters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sokolovsky, V.; Prikhna, T.; Meerovich, V.; Eisterer, M.; Goldacker, W.; Kozyrev, A.; Weber, H. W.; Shapovalov, A.; Sverdun, V.; Moshchil, V.</p> <p>2017-02-01</p> <p>A promising solution of the fault current problem in power systems is the application of fast-operating nonlinear superconducting fault current limiters (SFCLs) with the capability of rapidly increasing their impedance, and thus limiting high fault currents. We report the results of experiments with models of inductive (transformer type) SFCLs based on the ring-shaped bulk MgB2 prepared under high quasihydrostatic pressure (2 GPa) and by hot pressing technique (30 MPa). It was shown that the SFCLs meet the main requirements to fault current limiters: they possess low impedance in the nominal regime of the protected circuit and can fast increase their impedance limiting both the transient and the steady-state fault currents. The study of quenching currents of MgB2 rings (SFCL activation current) and AC losses in the rings shows that the quenching current density and critical current density determined from AC losses can be 10-20 times less than the critical current determined from the magnetization experiments.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1415430-characteristic-pitch-angle-distributions-nbsp-ev-nbsp-kev-protons-near-equator-based-van-allen-probes-observations','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1415430-characteristic-pitch-angle-distributions-nbsp-ev-nbsp-kev-protons-near-equator-based-van-allen-probes-observations"><span>The Characteristic Pitch Angle Distributions of 1 eV to 600 keV Protons Near the Equator Based On Van Allen Probes Observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Yue, Chao; Bortnik, Jacob; Thorne, Richard M.; ...</p> <p>2017-08-31</p> <p>Understanding the source and loss processes of various plasma populations is greatly aided by having accurate knowledge of their pitch angle distributions (PADs). Here we statistically analyze ~1 eV to 600 keV hydrogen (H+) PADs near the geomagnetic equator in the inner magnetosphere based on Van Allen Probes measurements, to comprehensively investigate how the H+ PADs vary with different energies, magnetic local times (MLTs), L shells, and geomagnetic conditions. Our survey clearly indicates four distinct populations with different PADs: a pancake distribution of the plasmaspheric H+ at low L shells except for dawn sector; a bidirectional field-aligned distribution of themore » warm plasma cloak; pancake or isotropic distributions of ring current H+; radiation belt particles show pancake, butterfly, and isotropic distributions depending on their energy, MLT, and L shell. Meanwhile, the pancake distribution of ring current H+ moves to lower energies as shell increases, which is primarily caused by adiabatic transport. Furthermore, energetic H+ (>10 keV) PADs become more isotropic following the substorm injections, indicating wave-particle interactions. The radiation belt H+ butterfly distributions are identified in a narrow energy range of 100 < E < 400 keV at large L ( L > 5), which are less significant during quiet times and extend from dusk to dawn sector through midnight during substorms. In conclusion, the different PADs near the equator provide clues of the underlying physical processes that produce the dynamics of these different populations.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1415430-characteristic-pitch-angle-distributions-protons-near-equator-based-van-allen-probes-observations','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1415430-characteristic-pitch-angle-distributions-protons-near-equator-based-van-allen-probes-observations"><span>The Characteristic Pitch Angle Distributions of 1 eV to 600 keV Protons Near the Equator Based On Van Allen Probes Observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Yue, Chao; Bortnik, Jacob; Thorne, Richard M.</p> <p></p> <p>Understanding the source and loss processes of various plasma populations is greatly aided by having accurate knowledge of their pitch angle distributions (PADs). Here we statistically analyze ~1 eV to 600 keV hydrogen (H+) PADs near the geomagnetic equator in the inner magnetosphere based on Van Allen Probes measurements, to comprehensively investigate how the H+ PADs vary with different energies, magnetic local times (MLTs), L shells, and geomagnetic conditions. Our survey clearly indicates four distinct populations with different PADs: a pancake distribution of the plasmaspheric H+ at low L shells except for dawn sector; a bidirectional field-aligned distribution of themore » warm plasma cloak; pancake or isotropic distributions of ring current H+; radiation belt particles show pancake, butterfly, and isotropic distributions depending on their energy, MLT, and L shell. Meanwhile, the pancake distribution of ring current H+ moves to lower energies as shell increases, which is primarily caused by adiabatic transport. Furthermore, energetic H+ (>10 keV) PADs become more isotropic following the substorm injections, indicating wave-particle interactions. The radiation belt H+ butterfly distributions are identified in a narrow energy range of 100 < E < 400 keV at large L ( L > 5), which are less significant during quiet times and extend from dusk to dawn sector through midnight during substorms. In conclusion, the different PADs near the equator provide clues of the underlying physical processes that produce the dynamics of these different populations.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSM43D..02O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSM43D..02O"><span>Propagation of Dipolarization Signatures Observed by the Van Allen Probes in the Inner Magnetosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ohtani, S.; Motoba, T.; Gkioulidou, M.; Takahashi, K.; Kletzing, C.</p> <p>2017-12-01</p> <p>Dipolarization, the change of the local magnetic field from a stretched to a more dipolar configuration, is one of the most fundamental processes of magnetospheric physics. It is especially critical for the dynamics of the inner magnetosphere. The associated electric field accelerates ions and electrons and transports them closer to Earth. Such injected ions intensify the ring current, and electrons constitute the seed population of the radiation belt. Those ions and electrons may also excite various waves that play important roles in the enhancement and loss of the radiation belt electrons. Despite such critical consequences, the general characteristics of dipolarization in the inner magnetosphere still remain to be understood. The Van Allen Probes mission, which consists of two probes that orbit through the equatorial region of the inner magnetosphere, provides an ideal opportunity to examine dipolarization signatures in the core of the ring current. In the present study we investigate the spatial expansion of the dipolarization region by examining the correlation and time delay of dipolarization signatures observed by the two probes. Whereas in general it requires three-point measurements to deduce the propagation of a signal on a certain plane, we statically examined the observed time delays and found that dipolarization signatures tend to propagate radially inward as well as away from midnight. In this paper we address the propagation of dipolarization signatures quantitatively and compare with the propagation velocities reported previously based on observations made farther away from Earth. We also discuss how often and under what conditions the dipolarization region expands.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001AGUFMSM11A0804M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001AGUFMSM11A0804M"><span>A UBK-space Visualization Tool for the Magnetosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mohan, M.; Sheldon, R. B.</p> <p>2001-12-01</p> <p>One of the stumbling blocks to understanding particle transport in the magnetosphere has been the difficulty to follow, track and model the motion of ions through the realistic magnetic and electric fields of the Earth. Under the weak assumption that the first two invariants remain conserved, Whipple [1978] found a coordinate transformation that makes all charged particles travel on straight lines in UBK-space. The transform permits the quantitative calculation of conservative phase space transport for all particles with energies less than ~100 MeV, especially ring current energies (Sheldon and Gaffey [1993]). Furthermore Sheldon and Eastman [1997] showed how this transform extended the validity of diffusion models to realistic magnetospheres over the entire energy range. However, widespread usage of this transform has been limited by its non-intuitive UBK coordinates. We present a Virtual Reality Meta Language (VRML) interface to the calculation of UBK transform demonstrating its usefulness in describing both static features of the magnetosphere, such as the plasmapause, and dynamic features, such as ring current injection and loss. The core software is written in C for speed, whereas the interface is constructed in Perl and Javascript. The code is freely available, and intended for portability and modularity. R.B. Sheldon and T. Eastman ``Particle Transport in the Magnetosphere: A New Diffusion Model", GRL, 24(7), 811-814, 1997. Whipple, Jr, E. C. ``(U,B,K) coordinates: A natural system for studying magnetospheric convection". JGR, 83, 4318-4326, 1978. Sheldon, R. B. and J. D. Gaffey, Jr. ``Particle tracing in the magnetosphere: New algorithms and results." GRL, 20, 767-770, 1993.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007DSRI...54.1329R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007DSRI...54.1329R"><span>Red Sea Intermediate Water at the Agulhas Current termination</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Roman, R. E.; Lutjeharms, J. R. E.</p> <p>2007-08-01</p> <p>The inter-ocean exchange of water masses at the Agulhas Current termination comes about through the shedding of rings, and this process plays an important role in the global thermohaline circulation. Using several hydrographic sections collected during the ARC (Agulhas Retroflection Cruise), MARE (Mixing of Agulhas Rings Experiment) and WOCE (World Ocean Circulation Experiment), this investigation aims to establish the degree to which Red Sea Intermediate Water (RSIW) is involved in this exchange and at what level of purity. To this end a wide range of hydrographic parameters were used. Upstream from the Agulhas Current retroflection water with clear RSIW origin is shown to move downstream on both the landward and seaward sides of the Agulhas Current with the highest water sample purity or water-mass content exceeding 15%. The least mixed water was found close to the continental shelf. At the retroflection the RSIW purity shows considerable variability that ranges between 5% and 20%. This suggests that RSIW moves down the current in patches of considerably varying degrees of previous mixing. This pattern was also observed in a ring sampled during the ARC experiment. The MARE sections in turn indicate that at times RSIW may be entirely absent in the Agulhas Current. RSIW is therefore shown to travel down the current as discontinuous filaments, and this intermittency is reflected in its presence in Agulhas Rings. From the sections investigated it is therefore clear that any calculation of RSIW fluxes involved in inter-ocean exchange can only be done on the basis of event scales. RSIW not trapped in Agulhas Rings flows east with the Agulhas Return Current.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950059022&hterms=Plasma+Ring&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3DPlasma%2BRing','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950059022&hterms=Plasma+Ring&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3DPlasma%2BRing"><span>Decay of equatorial ring current ions and associated aeronomical consequences</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Fok, M.-C.; Kozyra, J. U.; Nagy, A. F.; Rasmussen, C. E.; Khazanov, G. V.</p> <p>1993-01-01</p> <p>The decay of the major ion species which constitute the ring current is studied by solving the time evolution of their distribution functions during the recovery phase of a moderate geomagnetic storm. In this work, only equatorially mirroring particles are considered. Particles are assumed to move subject to E x B and gradient drifts. They also experience loses along their drift paths. Two loss mechanisms are considered: charge exchange with neutral hydrogen atoms and Coulomb collisions with thermal plasma in the plasmasphere. Thermal plasma densities are calculated with a plasmaspheric model employing a time-dependent convection electric field model. The drift-loss model successfully reproduces a number of important and observable features in the distribution function. Charge exchange is found to be the major loss mechanism for the ring current ions; however the important effects of Coulomb collisions on both the ring current and thermal populations are also presented. The model predicts the formation of a low-energy (less than 500 eV) ion population as a result of energy degradation caused by Coulomb collision of the ring current ions with the plasmaspheric electrons; this population may be one source of the low-energy ions observed during active and quiet periods in the inner magnetosphere. The energy transferred to plasmaspheric electrons through Coulomb collisions with ring current ions is believed to be the energy source for the electron temperature enhancement and the associated 6300 A (stable auroral red (SAR) arc) emission in the subauroral region. The calculated energy deposition rate is sufficient to produce a subauroral electron temperature enhancement and SAR arc emissions that are consistent with observations of these quantities during moderate magnetic activity levels.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1239325-crucial-role-nuclear-dynamics-electron-injection-dyesemiconductor-complex','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1239325-crucial-role-nuclear-dynamics-electron-injection-dyesemiconductor-complex"><span>Crucial role of nuclear dynamics for electron injection in a dye–semiconductor complex</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Monti, Adriano; Negre, Christian F. A.; Batista, Victor S.; ...</p> <p>2015-06-05</p> <p>In this study, we investigate the electron injection from a terrylene-based chromophore to the TiO 2 semiconductor bridged by a recently proposed phenyl-amide-phenyl molecular rectifier. The mechanism of electron transfer is studied by means of quantum dynamics simulations using an extended Hückel Hamiltonian. It is found that the inclusion of the nuclear motion is necessary to observe the photoinduced electron transfer. In particular, the fluctuations of the dihedral angle between the terrylene and the phenyl ring modulate the localization and thus the electronic coupling between the donor and acceptor states involved in the injection process. The electron propagation shows characteristicmore » oscillatory features that correlate with interatomic distance fluctuations in the bridge, which are associated with the vibrational modes driving the process. The understanding of such effects is important for the design of functional dyes with optimal injection and rectification properties.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1389069','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1389069"><span>Progress on the Design of the Storage Ring Vacuum System for the Advanced Photon Source Upgrade Project</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Stillwell, B.; Billett, B.; Brajuskovic, B.</p> <p>2017-06-20</p> <p>Recent work on the design of the storage ring vacuum system for the Advanced Photon Source Upgrade project (APS-U) includes: revising the vacuum system design to accommodate a new lattice with reverse bend magnets, modifying the designs of vacuum chambers in the FODO sections for more intense incident synchrotron radiation power, modifying the design of rf-shielding bellows liners for better performance and reliability, modifying photon absorber designs to make better use of available space, and integrated planning of components needed in the injection, extraction and rf cavity straight sections. An overview of progress in these areas is presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110005665','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110005665"><span>Modeling of the Convection and Interaction of Ring Current, Plasmaspheric and Plasma Sheet Plasmas in the Inner Magnetosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Fok, Mei-Ching; Chen, Sheng-Hsien; Buzulukova, Natalia; Glocer, Alex</p> <p>2010-01-01</p> <p>Distinctive sources of ions reside in the plasmasphere, plasmasheet, and ring current regions at discrete energies constitute the major plasma populations in the inner/middle magnetosphere. They contribute to the electrodynamics of the ionosphere-magnetosphere system as important carriers of the global current system, in triggering; geomagnetic storm and substorms, as well as critical components of plasma instabilities such as reconnection and Kelvin-Helmholtz instability at the magnetospheric boundaries. Our preliminary analysis of in-situ measurements shoves the complexity of the plasmas pitch angle distributions at particularly the cold and warm plasmas, vary dramatically at different local times and radial distances from the Earth in response to changes in solar wind condition and Dst index. Using an MHD-ring current coupled code, we model the convection and interaction of cold, warm and energetic ions of plasmaspheric, plasmasheet, and ring current origins in the inner magnetosphere. We compare our simulation results with in-situ and remotely sensed measurements from recent instrumentation on Geotail, Cluster, THEMIS, and TWINS spacecraft.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/864912','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/864912"><span>Method and apparatus for the formation of a spheromak plasma</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Jardin, Stephen C.; Yamada, Masaaki; Furth, Harold P.; Okabayashi, Mitcheo</p> <p>1984-01-01</p> <p>An inductive method and apparatus for forming detached spheromak plasma using a thin-walled metal toroidal ring, with external current leads and internal poloidal and toroidal field coils located inside a vacuum chamber filled with low density hydrogen gas and an external axial field generating coil. The presence of a current in the poloidal field coils, and an externally generated axial field sets up the initial poloidal field configuration in which the field is strongest toward the major axis of the toroid. The internal toroidal-field-generating coil is then pulsed on, ionizing the gas and inducing poloidal current and toroidal magnetic field into the plasma region in the sleeve exterior to and adjacent to the ring and causing the plasma to expand away from the ring and toward the major axis. Next the current in the poloidal field coils in the ring is reversed. This induces toroidal current into the plasma and causes the poloidal magnetic field lines to reconnect. The reconnection continues until substantially all of the plasma is formed in a separated spheromak configuration held in equilibrium by the initial external field.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AnGeo..36..107B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AnGeo..36..107B"><span>Magnetosphere dynamics during the 14 November 2012 storm inferred from TWINS, AMPERE, Van Allen Probes, and BATS-R-US-CRCM</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Buzulukova, Natalia; Goldstein, Jerry; Fok, Mei-Ching; Glocer, Alex; Valek, Phil; McComas, David; Korth, Haje; Anderson, Brian</p> <p>2018-01-01</p> <p>During the 14 November 2012 geomagnetic storm, the Van Allen Probes spacecraft observed a number of sharp decreases (<q>dropouts</q>) in particle fluxes for ions and electrons of different energies. In this paper, we investigate the global magnetosphere dynamics and magnetosphere-ionosphere (M-I) coupling during the dropout events using multipoint measurements by Van Allen Probes, TWINS, and AMPERE together with the output of the two-way coupled global BATS-R-US-CRCM model. We find different behavior for two pairs of dropouts. For one pair, the same pattern was repeated: (1) weak nightside Region 1 and 2 Birkeland currents before and during the dropout; (2) intensification of Region 2 currents after the dropout; and (3) a particle injection detected by TWINS after the dropout. The model predicted similar behavior of Birkeland currents. TWINS low-altitude emissions demonstrated high variability during these intervals, indicating high geomagnetic activity in the near-Earth tail region. For the second pair of dropouts, the structure of both Birkeland currents and ENA emissions was relatively stable. The model also showed quasi-stationary behavior of Birkeland currents and simulated ENA emissions with gradual ring current buildup. We confirm that the first pair of dropouts was caused by large-scale motions of the OCB (open-closed boundary) during substorm activity. We show the new result that this OCB motion was associated with global changes in Birkeland (M-I coupling) currents and strong modulation of low-altitude ion precipitation. The second pair of dropouts is the result of smaller OCB disturbances not related to magnetospheric substorms. The local observations of the first pair of dropouts result from a global magnetospheric reconfiguration, which is manifested by ion injections and enhanced ion precipitation detected by TWINS and changes in the structure of Birkeland currents detected by AMPERE. This study demonstrates that multipoint measurements along with the global model results enable the reconstruction of a more complete system-level picture of the dropout events and provides insight into M-I coupling aspects that have not previously been investigated.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1423799','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1423799"><span>Magnetosphere dynamics during the 14 November 2012 storm inferred from TWINS, AMPERE, Van Allen Probes, and BATS-R-US–CRCM</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Buzulukova, Natalia; Goldstein, Jerry; Fok, Mei-Ching</p> <p></p> <p>During the 14 November 2012 geomagnetic storm, the Van Allen Probes spacecraft observed a number of sharp decreases ("dropouts") in particle fluxes for ions and electrons of different energies. In this paper, we investigate the global magnetosphere dynamics and magnetosphere–ionosphere (M–I) coupling during the dropout events using multipoint measurements by Van Allen Probes, TWINS, and AMPERE together with the output of the two-way coupled global BATS-R-US–CRCM model. We find different behavior for two pairs of dropouts. For one pair, the same pattern was repeated: (1) weak nightside Region 1 and 2 Birkeland currents before and during the dropout; (2) intensificationmore » of Region 2 currents after the dropout; and (3) a particle injection detected by TWINS after the dropout. The model predicted similar behavior of Birkeland currents. TWINS low-altitude emissions demonstrated high variability during these intervals, indicating high geomagnetic activity in the near-Earth tail region. For the second pair of dropouts, the structure of both Birkeland currents and ENA emissions was relatively stable. The model also showed quasi-stationary behavior of Birkeland currents and simulated ENA emissions with gradual ring current buildup. We confirm that the first pair of dropouts was caused by large-scale motions of the OCB (open–closed boundary) during substorm activity. We show the new result that this OCB motion was associated with global changes in Birkeland (M–I coupling) currents and strong modulation of low-altitude ion precipitation. The second pair of dropouts is the result of smaller OCB disturbances not related to magnetospheric substorms. The local observations of the first pair of dropouts result from a global magnetospheric reconfiguration, which is manifested by ion injections and enhanced ion precipitation detected by TWINS and changes in the structure of Birkeland currents detected by AMPERE. This study demonstrates that multipoint measurements along with the global model results enable the reconstruction of a more complete system-level picture of the dropout events and provides insight into M–I coupling aspects that have not previously been investigated.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20180003027&hterms=bats&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dbats','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20180003027&hterms=bats&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dbats"><span>Magnetosphere Dynamics During the 14 November 2012 Storm Inferred from TWINS, AMPERE, Van Allen Probes, and BATS-R-US-CRCM</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Buzulukova, Natalia; Goldstein, Jerry; Fok, Mei-Ching; Glocer, Alex; Valek, Phil; McComas, David; Korth, Haje; Anderson, Brian</p> <p>2018-01-01</p> <p>During the 14 November 2012 geomagnetic storm, the Van Allen Probes spacecraft observed a number of sharp decreases ('dropouts') in particle fluxes for ions and electrons of different energies. In this paper, we investigate the global magnetosphere dynamics and magnetosphere- ionosphere (M-I) coupling during the dropout events using multipoint measurements by Van Allen Probes, TWINS, and AMPERE together with the output of the two-way coupled global BATS-R-US-CRCM model. We find different behavior for two pairs of dropouts. For one pair, the same pattern was repeated: (1) weak nightside Region 1 and 2 Birkeland currents before and during the dropout; (2) intensification of Region 2 currents after the dropout; and (3) a particle injection detected by TWINS after the dropout. The model predicted similar behavior of Birkeland currents. TWINS low-altitude emissions demonstrated high variability during these intervals, indicating high geomagnetic activity in the near-Earth tail region. For the second pair of dropouts, the structure of both Birkeland currents and ENA emissions was relatively stable. The model also showed quasi-stationary behavior of Birkeland currents and simulated ENA emissions with gradual ring current buildup. We confirm that the first pair of dropouts was caused by large-scale motions of the OCB (open-closed boundary) during substorm activity. We show the new result that this OCB motion was associated with global changes in Birkeland (M-I coupling) currents and strong modulation of low-altitude ion precipitation. The second pair of dropouts is the result of smaller OCB disturbances not related to magnetospheric substorms. The local observations of the first pair of dropouts result from a global magnetospheric reconfiguration, which is manifested by ion injections and enhanced ion precipitation detected by TWINS and changes in the structure of Birkeland currents detected by AMPERE. This study demonstrates that multipoint measurements along with the global model results enable the reconstruction of a more complete system-level picture of the dropout events and provides insight into M-I coupling aspects that have not previously been investigated.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1423799-magnetosphere-dynamics-during-november-storm-inferred-from-twins-ampere-van-allen-probes-bats-uscrcm','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1423799-magnetosphere-dynamics-during-november-storm-inferred-from-twins-ampere-van-allen-probes-bats-uscrcm"><span>Magnetosphere dynamics during the 14 November 2012 storm inferred from TWINS, AMPERE, Van Allen Probes, and BATS-R-US–CRCM</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Buzulukova, Natalia; Goldstein, Jerry; Fok, Mei-Ching; ...</p> <p>2018-01-25</p> <p>During the 14 November 2012 geomagnetic storm, the Van Allen Probes spacecraft observed a number of sharp decreases ("dropouts") in particle fluxes for ions and electrons of different energies. In this paper, we investigate the global magnetosphere dynamics and magnetosphere–ionosphere (M–I) coupling during the dropout events using multipoint measurements by Van Allen Probes, TWINS, and AMPERE together with the output of the two-way coupled global BATS-R-US–CRCM model. We find different behavior for two pairs of dropouts. For one pair, the same pattern was repeated: (1) weak nightside Region 1 and 2 Birkeland currents before and during the dropout; (2) intensificationmore » of Region 2 currents after the dropout; and (3) a particle injection detected by TWINS after the dropout. The model predicted similar behavior of Birkeland currents. TWINS low-altitude emissions demonstrated high variability during these intervals, indicating high geomagnetic activity in the near-Earth tail region. For the second pair of dropouts, the structure of both Birkeland currents and ENA emissions was relatively stable. The model also showed quasi-stationary behavior of Birkeland currents and simulated ENA emissions with gradual ring current buildup. We confirm that the first pair of dropouts was caused by large-scale motions of the OCB (open–closed boundary) during substorm activity. We show the new result that this OCB motion was associated with global changes in Birkeland (M–I coupling) currents and strong modulation of low-altitude ion precipitation. The second pair of dropouts is the result of smaller OCB disturbances not related to magnetospheric substorms. The local observations of the first pair of dropouts result from a global magnetospheric reconfiguration, which is manifested by ion injections and enhanced ion precipitation detected by TWINS and changes in the structure of Birkeland currents detected by AMPERE. This study demonstrates that multipoint measurements along with the global model results enable the reconstruction of a more complete system-level picture of the dropout events and provides insight into M–I coupling aspects that have not previously been investigated.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930071555&hterms=standard+model&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dstandard%2Bmodel','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930071555&hterms=standard+model&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dstandard%2Bmodel"><span>Ion transport and loss in the earth's quiet ring current. I - Data and standard model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Sheldon, R. B.; Hamilton, D. C.</p> <p>1993-01-01</p> <p>A study of the transport and loss of ions in the earth's quiet time ring current, in which the standard radial diffusion model developed for the high-energy radiation belt particles is compared with the measurements of the lower-energy ring current ions, is presented. The data set provides ionic composition information in an energy range that includes the bulk of the ring current energy density, 1-300 keV/e. Protons are found to dominate the quiet time energy density at all altitudes, peaking near L of about 4 at 60 keV/cu cm, with much smaller contributions from O(+) (1-10 percent), He(+) (1-5 percent), and He(2+) (less than 1 percent). A minimization procedure is used to fit the amplitudes of the standard electric radial diffusion coefficient, yielding 5.8 x 10 exp -11 R(E-squared)/s. Fluctuation ionospheric electric fields are suggested as the source of the additional diffusion detected.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JPCM...30n5303A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JPCM...30n5303A"><span>Photon-induced tunability of the thermospin current in a Rashba ring</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Abdullah, Nzar Rauf; Arnold, Thorsten; Tang, Chi-Shung; Manolescu, Andrei; Gudmundsson, Vidar</p> <p>2018-04-01</p> <p>The goal of this work is to show how the thermospin polarization current in a quantum ring changes in the presence of Rashba spin-orbit coupling and a quantized single photon mode of a cavity the ring is placed in. Employing the reduced density operator and a general master equation formalism, we find that both the Rashba interaction and the photon field can significantly modulate the spin polarization and the thermospin polarization current. Tuning the Rashba coupling constant, degenerate energy levels are formed corresponding to the Aharonov-Casher destructive phase interference in the quantum ring system. Our analysis indicates that the maximum spin polarization can be observed at the points of degenerate energy levels due to spin accumulation in the system without the photon field. The thermospin current is thus suppressed. In the presence of the cavity, the photon field leads to an additional kinetic momentum of the electron. As a result the spin polarization can be enhanced by the photon field.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19950016528','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19950016528"><span>Global electric field determination in the Earth's outer magnetosphere using energetic charged particles</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Eastman, Timothy E.; Sheldon, R.; Hamilton, D.</p> <p>1995-01-01</p> <p>Although many properties of the Earth's magnetosphere have been measured and quantified in the past 30 years since it was discovered, one fundamental measurement (for zeroth order MHD equilibrium) has been made infrequently and with poor spatial coverage - the global electric field. This oversight is due in part to the neglect of theorists. However, there is renewed interest in the convection electric field because it is now realized to be central to many magnetospheric processes, including the global MHD equilibrium, reconnection rates, Region 2 Birkeland currents, magnetosphere ionosphere coupling, ring current and radiation belt transport, substorm injections, and several acceleration mechanisms. Unfortunately the standard experimental methods have not been able to synthesize a global field (excepting the pioneering work of McIlwain's geostationary models) and we are left with an overly simplistic theoretical field, the Volland-Stern electric field model. Single point measurements of the plasmapause were used to infer the appropriate amplitudes of this model, parameterized by K(sub p). Although this result was never intended to be the definitive electric field model, it has gone nearly unchanged for 20 years. The analysis of current data sets requires a great deal more accuracy than can be provided by the Volland-Stern model. The variability of electric field shielding has not been properly addressed although effects of penetrating magnetospheric electric fields has been seen in mid-and low-latitude ionospheric data sets. The growing interest in substorm dynamics also requires a much better assessment of the electric fields responsible for particle injections. Thus we proposed and developed algorithms for extracting electric fields from particle data taken in the Earth's magnetosphere. As a test of the effectiveness of these new techniques, we analyzed data taken by the AMPTE/CCE spacecraft in equatorial orbit from 1984 to 1989.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21104760','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21104760"><span>Difference between ²JC2H3 and ²JC3H2 spin-spin couplings in heterocyclic five- and six-membered rings as a probe for studying σ-ring currents: a quantum chemical analysis.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Contreras, Rubén H; dos Santos, Francisco P; Ducati, Lucas C; Tormena, Cláudio F</p> <p>2010-12-01</p> <p>Adequate analyses of canonical molecular orbitals (CMOs) can provide rather detailed information on the importance of different σ-Fermi contact (FC) coupling pathways (FC term transmitted through the σ-skeleton). Knowledge of the spatial distribution of CMOs is obtained by expanding them in terms of natural bond orbitals (NBOs). Their relative importance for transmitting the σ-FC contribution to a given spin-spin coupling constants (SSCCs) is estimated by resorting to the expression of the FC term given by the polarisation propagator formalism. In this way, it is possible to classify the effects affecting such couplings in two different ways: delocalisation interactions taking place in the neighbourhood of the coupling nuclei and 'round the ring' effects. The latter, associated with σ-ring currents, are observed to yield significant differences between the FC terms of (2)J(C2H3) and (2)J(C3H2) SSCCs which, consequently, are taken as probes to gauge the differences in σ-ring currents for the five-membered rings (furan, thiophene, selenophene and pyrrol) and also for the six-membered rings (benzene, pyridine, protonated pyridine and N-oxide pyridine) used in the present study. Copyright © 2010 John Wiley & Sons, Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23950638','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23950638"><span>Development of a novel disposable lid speculum with a drape.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Urano, Toru; Kasaoka, Masataka; Yamakawa, Ryoji; Yukihikotamai; Nakamura, Shoichiro</p> <p>2013-01-01</p> <p>To evaluate the clinical use of a newly-developed disposable lid speculum with a drape. LiDrape® is a cylindrical device that consists of two flexible rings of polyacetal resin with a transparent elastic silicone sheet attached to the rings. The novel device holds the eyelids between the rings, and a hole in the center of the device provides a surgical field. We used the novel device in cataract surgery (75 eyes), glaucoma surgery (eleven eyes), vitrectomy (ten eyes), and intravitreal injection (six eyes) and evaluated its clinical efficacy. The LiDrape was easy to attach and detach. The novel device was not detached from the eye during surgery. No eyelashes or secretions from the meibomian glands were seen in the surgical field, and the drape provided a sufficient surgical field. The LiDrape functions as a lid speculum as well as a drape. Our results showed that the novel device is useful for ocular surgeries.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015PhFl...27e1703P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015PhFl...27e1703P"><span>Negative vortices: The formation of vortex rings with reversed rotation in viscoelastic liquids</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Palacios-Morales, Carlos; Barbosa, Christophe; Solorio, Francisco; Zenit, Roberto</p> <p>2015-05-01</p> <p>The formation process of vortex rings in a viscoelastic liquid is studied experimentally considering a piston-cylinder arrangement. Initially, a vortex ring begins to form as fluid is injected from the cylinder into the tank in a manner similar to that observed for Newtonian liquids. For later times, when the piston ceases its motion, the flow changes dramatically. A secondary vortex with reversed spinning direction appears and grows to be as large in size as the original one. The formation process is studied by contrasting the evolution with that obtained for Newtonian liquids with equivalent Reynolds numbers and stroke ratios. We argue that the reversing flow, or negative vortex, results from the combined action of shear and extension rates produced during the vortex formation, in a process similar to that observed behind ascending bubbles and falling spheres in viscoelastic media.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/863105','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/863105"><span>Cesium injection system for negative ion duoplasmatrons</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Kobayashi, Maasaki; Prelec, Krsto; Sluyters, Theodorus J</p> <p>1978-01-01</p> <p>Longitudinally extending, foraminous cartridge means having a cylindrical side wall forming one flat, circular, tip end surface and an opposite end; an open-ended cavity, and uniformly spaced orifices for venting the cavity through the side wall in the annulus of a plasma ring for uniformly ejecting cesium for coating the flat, circular, surface. To this end, the cavity is filled with a cesium containing substance and attached to a heater in a hollow-discharge duoplasmatron. By coating the flat circular surface with a uniform monolayer of cesium and locating it in an electrical potential well at the end of a hollow-discharge, ion duoplasmatron source of an annular hydrogen plasma ring, the negative hydrogen production from the duoplasmatron is increased. The negative hydrogen is produced on the flat surface of the cartridge and extracted by the electrical potential well along a trajectory coaxial with the axis of the plasma ring.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1375631','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1375631"><span>Study of Electron Polarization Dynamics in the JLEIC at Jlab</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Lin, Fanglei; Derbenev, Yaroslav; Morozov, Vasiliy</p> <p></p> <p>The design of an electron polarization scheme in the Jefferson Lab Electron-Ion Collider (JLEIC) aims to attain a high longitudinal electron polarization (over 70%) at collision points as required by the nuclear physics program. Comprehensive strategies for achieving this goal have been considered and developed including injection of highly polarized electrons from CEBAF, mechanisms for manipulation and preservation of the polarization in the JLEIC collider ring and measurement of the electron polarization. In particular, maintaining a sufficiently long polarization lifetime is crucial for accumulation of adequate experimental statistics. The chosen electron polarization configuration, based on the unique figure-8 geometry ofmore » the ring, removes the electron spin-tune energy dependence. This significantly simplifies the control of the electron polarization and suppresses the synchrotron sideband resonances. This paper reports recent studies and simulations of the electron polarization dynamics in the JLEIC electron collider ring.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=phase+AND+current&pg=2&id=EJ860270','ERIC'); return false;" href="https://eric.ed.gov/?q=phase+AND+current&pg=2&id=EJ860270"><span>The Phase Shift in the Jumping Ring</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Jeffery, Rondo N.; Amiri, Farhang</p> <p>2008-01-01</p> <p>The popular physics demonstration experiment known as Thomson's Jumping Ring (JR) has been variously explained as a simple example of Lenz's law, or as the result of a phase shift of the ring current relative to the induced emf. The failure of the first-quadrant Lenz's law explanation is shown by the time the ring takes to jump and by levitation.…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title9-vol1/pdf/CFR-2010-title9-vol1-sec113-450.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title9-vol1/pdf/CFR-2010-title9-vol1-sec113-450.pdf"><span>9 CFR 113.450 - General requirements for antibody products.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-01-01</p> <p>...: Provided, That cows maintained at Grade A dairies (or the equivalent) that are not injected with antigens... in accordance with applicable Milk Ordinances or similar laws or regulations. (B) Brucellosis at a... milk pool tested as required by the brucellosis ring test. An animal of a herd testing positive by this...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3944723','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3944723"><span>Superfluid qubit systems with ring shaped optical lattices</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Amico, Luigi; Aghamalyan, Davit; Auksztol, Filip; Crepaz, Herbert; Dumke, Rainer; Kwek, Leong Chuan</p> <p>2014-01-01</p> <p>We study an experimentally feasible qubit system employing neutral atomic currents. Our system is based on bosonic cold atoms trapped in ring-shaped optical lattice potentials. The lattice makes the system strictly one dimensional and it provides the infrastructure to realize a tunable ring-ring interaction. Our implementation combines the low decoherence rates of neutral cold atoms systems, overcoming single site addressing, with the robustness of topologically protected solid state Josephson flux qubits. Characteristic fluctuations in the magnetic fields affecting Josephson junction based flux qubits are expected to be minimized employing neutral atoms as flux carriers. By breaking the Galilean invariance we demonstrate how atomic currents through the lattice provide an implementation of a qubit. This is realized either by artificially creating a phase slip in a single ring, or by tunnel coupling of two homogeneous ring lattices. The single qubit infrastructure is experimentally investigated with tailored optical potentials. Indeed, we have experimentally realized scaled ring-lattice potentials that could host, in principle, n ~ 10 of such ring-qubits, arranged in a stack configuration, along the laser beam propagation axis. An experimentally viable scheme of the two-ring-qubit is discussed, as well. Based on our analysis, we provide protocols to initialize, address, and read-out the qubit. PMID:24599096</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27250428','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27250428"><span>Development of a magnetized coaxial plasma gun for compact toroid injection into the C-2 field-reversed configuration device.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Matsumoto, T; Sekiguchi, J; Asai, T; Gota, H; Garate, E; Allfrey, I; Valentine, T; Morehouse, M; Roche, T; Kinley, J; Aefsky, S; Cordero, M; Waggoner, W; Binderbauer, M; Tajima, T</p> <p>2016-05-01</p> <p>A compact toroid (CT) injector was developed for the C-2 device, primarily for refueling of field-reversed configurations. The CTs are formed by a magnetized coaxial plasma gun (MCPG), which consists of coaxial cylindrical electrodes and a bias coil for creating a magnetic field. First, a plasma ring is generated by a discharge between the electrodes and is accelerated by Lorenz self-force. Then, the plasma ring is captured by an interlinkage flux (poloidal flux). Finally, the fully formed CT is ejected from the MCPG. The MCPG described herein has two gas injection ports that are arranged tangentially on the outer electrode. A tungsten-coated inner electrode has a head which can be replaced with a longer one to extend the length of the acceleration region for the CT. The developed MCPG has achieved supersonic CT velocities of ∼100 km/s. Plasma parameters for electron density, electron temperature, and the number of particles are ∼5 × 10(21) m(-3), ∼40 eV, and 0.5-1.0 × 10(19), respectively.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005JGRA..110.7209M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005JGRA..110.7209M"><span>Stormtime coupling of the ring current, plasmasphere, and topside ionosphere: Electromagnetic and plasma disturbances</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mishin, E. V.; Burke, W. J.</p> <p>2005-07-01</p> <p>We compare plasma and field disturbances observed in the ring current/plasmasphere overlap region and in the conjugate ionosphere during the magnetic storm of 5 June 1991. Data come from the Combined Release and Radiation Effects Satellite (CRRES) flying in a geostationary transfer orbit and three satellites of the Defense Meteorological Satellite Program (DMSP) series in Sun-synchronous polar orbits. In the region between ring current nose structures and the electron plasma sheet, CRRES detected wave-like features in local electric and magnetic fields, embedded in structured cold plasmas. Mapped to the ionosphere, these fields should reflect structuring within subauroral plasma streams (SAPS). Indeed, during the period of interest, DMSP F8, F9, and F10 satellites observed highly structured SAPS in the evening ionosphere at topside altitudes. They were collocated with precipitating ring current ions, enhanced fluxes of suprathermal electrons and ions, elevated electron temperatures, and irregular plasma density troughs. Overall, these events are similar to electromagnetic structures observed by DMSP satellites within SAPS during recent geomagnetic storms (Mishin et al., 2003, 2004). Their features can be explained in terms of Alfvén and fast magnetosonic perturbations. We developed a scenario for the formation of elevated electron temperatures at the equatorward side of the SAPS. It includes a lower-hybrid drift instability driven by diamagnetic currents, consistent with strong lower- and upper-hybrid plasma wave activity and intense fluxes of the low-energy electrons and ions near the ring current's inner edge.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20170000980&hterms=comprehensive&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dcomprehensive','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20170000980&hterms=comprehensive&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dcomprehensive"><span>The Comprehensive Inner Magnetosphere-Ionosphere Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Fok, M.-C.; Buzulukova, N. Y.; Chen, S.-H.; Glocer, A.; Nagai, T.; Valek, P.; Perez, J. D.</p> <p>2014-01-01</p> <p>Simulation studies of the Earth's radiation belts and ring current are very useful in understanding the acceleration, transport, and loss of energetic particles. Recently, the Comprehensive Ring Current Model (CRCM) and the Radiation Belt Environment (RBE) model were merged to form a Comprehensive Inner Magnetosphere-Ionosphere (CIMI) model. CIMI solves for many essential quantities in the inner magnetosphere, including ion and electron distributions in the ring current and radiation belts, plasmaspheric density, Region 2 currents, convection potential, and precipitation in the ionosphere. It incorporates whistler mode chorus and hiss wave diffusion of energetic electrons in energy, pitch angle, and cross terms. CIMI thus represents a comprehensive model that considers the effects of the ring current and plasmasphere on the radiation belts. We have performed a CIMI simulation for the storm on 5-9 April 2010 and then compared our results with data from the Two Wide-angle Imaging Neutral-atom Spectrometers and Akebono satellites. We identify the dominant energization and loss processes for the ring current and radiation belts. We find that the interactions with the whistler mode chorus waves are the main cause of the flux increase of MeV electrons during the recovery phase of this particular storm. When a self-consistent electric field from the CRCM is used, the enhancement of MeV electrons is higher than when an empirical convection model is applied. We also demonstrate how CIMI can be a powerful tool for analyzing and interpreting data from the new Van Allen Probes mission.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008PhTea..46..350J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008PhTea..46..350J"><span>The Phase Shift in the Jumping Ring</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jeffery, Rondo N.; Amiri, Farhang</p> <p>2008-09-01</p> <p>The popular physics demonstration experiment known as Thomson's Jumping Ring (JR) has been variously explained as a simple example of Lenz's law, or as the result of a phase shift of the ring current relative to the induced emf. The failure of the first-quadrant Lenz's law explanation is shown by the time the ring takes to jump and by levitation. A method is given for measuring the phase shift with results for aluminum and brass rings.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMSM23A2224T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMSM23A2224T"><span>Interhemispheric currents in the ring current region as seen by the Cluster spacecraft</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tenfjord, P.; Ostgaard, N.; Haaland, S.; Laundal, K.; Reistad, J. P.</p> <p>2013-12-01</p> <p>The existence of interhemispheric currents has been predicted by several authors, but their extent in the ring current has to our knowledge never been studied systematically by using in-situ measurements. These currents have been suggested to be associated with observed asymmetries of the aurora. We perform a statistical study of current density and direction during ring current crossings using the Cluster spacecraft. We analyse the extent of the interhemispheric field aligned currents for a wide range of solar wind conditions. Direct estimations of equatorial current direction and density are achieved through the curlometer technique. The curlometer technique is based on Ampere's law and requires magnetic field measurements from all four spacecrafts. The use of this method requires careful study of factors that limit the accuracy, such as tetrahedron shape and configuration. This significantly limits our dataset, but is a necessity for accurate current calculations. Our goal is to statistically investigate the occurrence of interhemispheric currents, and determine if there are parameters or magnetospheric states on which the current magnitude and directions depend upon.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20080047931&hterms=major+depression&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dmajor%2Bdepression','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20080047931&hterms=major+depression&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dmajor%2Bdepression"><span>Energy and Mass Transport of Magnetospheric Plasmas during the November 2003 Magnetic Storm</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Fok, Mei-Chging; Moore, Thomas</p> <p>2008-01-01</p> <p>Intensive energy and mass transport from the solar wind across the magnetosphere boundary is a trigger of magnetic storms. The storm on 20-21 November 2003 was elicited by a high-speed solar wind and strong southward component of interplanetary magnetic field. This storm attained a minimum Dst of -422 nT. During the storm, some of the solar wind particles enter the magnetosphere and eventually become part of the ring current. At the same time, the fierce solar wind powers strong outflow of H+ and O+ from the ionosphere, as well as from the plasmasphere. We examine the contribution of plasmas from the solar wind, ionosphere and plasmasphere to the storm-time ring current. Our simulation shows, for this particular storm, ionospheric O+ and solar wind ions are the major sources of the ring current particles. The polar wind and plasmaspheric H+ have only minor impacts. In the storm main phase, the strong penetration of solar wind electric field pushes ions from the geosynchronous orbit to L shells of 2 and below. Ring current is greatly intensified during the earthward transport and produces a large magnetic depression in the surface field. When the convection subsides, the deep penetrating ions experience strong charge exchange loss, causing rapid decay of the ring current and fast initial storm recovery. Our simulation reproduces very well the storm development indicated by the Dst index.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMSM41C2495G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMSM41C2495G"><span>Storm- Time Dynamics of Ring Current Protons: Implications for the Long-Term Energy Budget in the Inner Magnetosphere.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gkioulidou, M.; Ukhorskiy, A. Y.; Mitchell, D. G.; Lanzerotti, L. J.</p> <p>2015-12-01</p> <p>The ring current energy budget plays a key role in the global electrodynamics of Earth's space environment. Pressure gradients developed in the inner magnetosphere can shield the near-Earth region from solar wind-induced electric fields. The distortion of Earth's magnetic field due to the ring current affects the dynamics of particles contributing both to the ring current and radiation belts. Therefore, understanding the long-term evolution of the inner magnetosphere energy content is essential. We have investigated the evolution of ring current proton pressure (7 - 600 keV) in the inner magnetosphere based on data from the Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE) instrument aboard Van Allen Probe B throughout the year 2013. We find that although the low-energy component of the protons (< 80 keV) is governed by convective timescales and is very well correlated with the Dst index, the high-energy component (>100 keV) varies on much longer timescales and shows either no or anti-correlation with the Dst index. Interestingly, the contributions of the high- and low-energy protons to the total energy content are comparable. Our results indicate that the proton dynamics, and as a consequence the total energy budget in the inner magnetosphere (inside geosynchronous orbit), is not strictly controlled by storm-time timescales as those are defined by the Dst index.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22617401-two-dimensional-quantum-ring-graphene-layer-presence-aharonovbohm-flux','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22617401-two-dimensional-quantum-ring-graphene-layer-presence-aharonovbohm-flux"><span>Two-dimensional quantum ring in a graphene layer in the presence of a Aharonov–Bohm flux</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Amaro Neto, José; Bueno, M.J.; Furtado, Claudio, E-mail: furtado@fisica.ufpb.br</p> <p>2016-10-15</p> <p>In this paper we study the relativistic quantum dynamics of a massless fermion confined in a quantum ring. We use a model of confining potential and introduce the interaction via Dirac oscillator coupling, which provides ring confinement for massless Dirac fermions. The energy levels and corresponding eigenfunctions for this model in graphene layer in the presence of Aharonov–Bohm flux in the centre of the ring and the expression for persistent current in this model are derived. We also investigate the model for quantum ring in graphene layer in the presence of a disclination and a magnetic flux. The energy spectrummore » and wave function are obtained exactly for this case. We see that the persistent current depends on parameters characterizing the topological defect.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRA..123.3806H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRA..123.3806H"><span>Field-Aligned Currents in Saturn's Magnetosphere: Observations From the F-Ring Orbits</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hunt, G. J.; Provan, G.; Bunce, E. J.; Cowley, S. W. H.; Dougherty, M. K.; Southwood, D. J.</p> <p>2018-05-01</p> <p>We investigate the azimuthal magnetic field signatures associated with high-latitude field-aligned currents observed during Cassini's F-ring orbits (October 2016-April 2017). The overall ionospheric meridional current profiles in the northern and southern hemispheres, that is, the regions poleward and equatorward of the field-aligned currents, differ most from the 2008 observations. We discuss these differences in terms of the seasonal change between data sets and local time (LT) differences, as the 2008 data cover the nightside while the F-ring data cover the post-dawn and dusk sectors in the northern and southern hemispheres, respectively. The F-ring field-aligned currents typically have a similar four current sheet structure to those in 2008. We investigate the properties of the current sheets and show that the field-aligned currents in a hemisphere are modulated by that hemisphere's "planetary period oscillation" (PPO) systems. We separate the PPO-independent and PPO-related currents in both hemispheres using their opposite symmetry. The average PPO-independent currents peak at 1.5 MA/rad just equatorward of the open closed field line boundary, similar to the 2008 observations. However, the PPO-related currents in both hemispheres are reduced by 50% to 0.4 MA/rad. This may be evidence of reduced PPO amplitudes, similar to the previously observed weaker equatorial oscillations at similar dayside LTs. We do not detect the PPO current systems' interhemispheric component, likely a result of the weaker PPO-related currents and their closure within the magnetosphere. We also do not detect previously proposed lower latitude discrete field-aligned currents that act to "turn off" the PPOs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1994STIN...9518041K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1994STIN...9518041K"><span>Advanced diesel engine component development program, tasks 4-14</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kaushal, Tony S.; Weber, Karen E.</p> <p>1994-11-01</p> <p>This report summarizes the Advanced Diesel Engine Component Development (ADECD) Program to develop and demonstrate critical technology needed to advance the heavy-duty low heat rejection engine concept. Major development activities reported are the design, analysis, and fabrication of monolithic ceramic components; vapor phase and solid film lubrication; electrohydraulic valve actuation; and high pressure common rail injection. An advanced single cylinder test bed was fabricated as a laboratory tool in studying these advanced technologies. This test bed simulates the reciprocator for a system having no cooling system, turbo compounding, Rankine bottoming cycle, common rail injection, and variable valve actuation to achieve fuel consumption of 160 g/kW-hr (.26 lb/hp-hr). The advanced concepts were successfully integrated into the test engine. All ceramic components met their functional and reliability requirements. The firedeck, cast-in-place ports, valves, valve guides, piston cap, and piston ring were made from silicon nitride. Breakthroughs required to implement a 'ceramic' engine included the fabrication of air-gap cylinder heads, elimination of compression gaskets, machining of ceramic valve seats within the ceramic firedeck, fabrication of cast-in-place ceramic port liners, implementation of vapor phase lubrication, and elimination of the engine coolant system. Silicon nitride valves were successfully developed to meet several production abuse test requirements and incorporated into the test bed with a ceramic valve guide and solid film lubrication. The ADECD cylinder head features ceramic port shields to increase insulation and exhaust energy recovery. The combustion chamber includes a ceramic firedeck and piston cap. The tribological challenge posed by top ring reversal temperatures of 550 C was met through the development of vapor phase lubrication using tricresyl phosphate at the ring-liner interface. A solenoid-controlled, variable valve actuation system that eliminated the conventional camshaft was demonstrated on the test bed. High pressure fuel injection via a common rail system was also developed to reduce particulate emissions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19950011626','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19950011626"><span>Advanced diesel engine component development program, tasks 4-14</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kaushal, Tony S.; Weber, Karen E.</p> <p>1994-01-01</p> <p>This report summarizes the Advanced Diesel Engine Component Development (ADECD) Program to develop and demonstrate critical technology needed to advance the heavy-duty low heat rejection engine concept. Major development activities reported are the design, analysis, and fabrication of monolithic ceramic components; vapor phase and solid film lubrication; electrohydraulic valve actuation; and high pressure common rail injection. An advanced single cylinder test bed was fabricated as a laboratory tool in studying these advanced technologies. This test bed simulates the reciprocator for a system having no cooling system, turbo compounding, Rankine bottoming cycle, common rail injection, and variable valve actuation to achieve fuel consumption of 160 g/kW-hr (.26 lb/hp-hr). The advanced concepts were successfully integrated into the test engine. All ceramic components met their functional and reliability requirements. The firedeck, cast-in-place ports, valves, valve guides, piston cap, and piston ring were made from silicon nitride. Breakthroughs required to implement a 'ceramic' engine included the fabrication of air-gap cylinder heads, elimination of compression gaskets, machining of ceramic valve seats within the ceramic firedeck, fabrication of cast-in-place ceramic port liners, implementation of vapor phase lubrication, and elimination of the engine coolant system. Silicon nitride valves were successfully developed to meet several production abuse test requirements and incorporated into the test bed with a ceramic valve guide and solid film lubrication. The ADECD cylinder head features ceramic port shields to increase insulation and exhaust energy recovery. The combustion chamber includes a ceramic firedeck and piston cap. The tribological challenge posed by top ring reversal temperatures of 550 C was met through the development of vapor phase lubrication using tricresyl phosphate at the ring-liner interface. A solenoid-controlled, variable valve actuation system that eliminated the conventional camshaft was demonstrated on the test bed. High pressure fuel injection via a common rail system was also developed to reduce particulate emissions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27147409','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27147409"><span>Active mode locking of quantum cascade lasers in an external ring cavity.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Revin, D G; Hemingway, M; Wang, Y; Cockburn, J W; Belyanin, A</p> <p>2016-05-05</p> <p>Stable ultrashort light pulses and frequency combs generated by mode-locked lasers have many important applications including high-resolution spectroscopy, fast chemical detection and identification, studies of ultrafast processes, and laser metrology. While compact mode-locked lasers emitting in the visible and near infrared range have revolutionized photonic technologies, the systems operating in the mid-infrared range where most gases have their strong absorption lines, are bulky and expensive and rely on nonlinear frequency down-conversion. Quantum cascade lasers are the most powerful and versatile compact light sources in the mid-infrared range, yet achieving their mode-locked operation remains a challenge, despite dedicated effort. Here we report the demonstration of active mode locking of an external-cavity quantum cascade laser. The laser operates in the mode-locked regime at room temperature and over the full dynamic range of injection currents.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4858733','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4858733"><span>Active mode locking of quantum cascade lasers in an external ring cavity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Revin, D. G.; Hemingway, M.; Wang, Y.; Cockburn, J. W.; Belyanin, A.</p> <p>2016-01-01</p> <p>Stable ultrashort light pulses and frequency combs generated by mode-locked lasers have many important applications including high-resolution spectroscopy, fast chemical detection and identification, studies of ultrafast processes, and laser metrology. While compact mode-locked lasers emitting in the visible and near infrared range have revolutionized photonic technologies, the systems operating in the mid-infrared range where most gases have their strong absorption lines, are bulky and expensive and rely on nonlinear frequency down-conversion. Quantum cascade lasers are the most powerful and versatile compact light sources in the mid-infrared range, yet achieving their mode-locked operation remains a challenge, despite dedicated effort. Here we report the demonstration of active mode locking of an external-cavity quantum cascade laser. The laser operates in the mode-locked regime at room temperature and over the full dynamic range of injection currents. PMID:27147409</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1402612','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1402612"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Chaston, C. C.; Bonnell, J. W.; Reeves, Geoffrey D.</p> <p></p> <p>We show how dispersive Alfvén waves observed in the inner magnetosphere during geomagnetic storms can extract O + ions from the topside ionosphere and accelerate these ions to energies exceeding 50 keV in the equatorial plane. This occurs through wave trapping, a variant of “shock” surfing, and stochastic ion acceleration. These processes in combination with the mirror force drive field-aligned beams of outflowing ionospheric ions into the equatorial plane that evolve to provide energetic O + distributions trapped near the equator. These waves also accelerate preexisting/injected ion populations on the same field lines. We show that the action of dispersivemore » Alfvén waves over several minutes may drive order of magnitude increases in O + ion pressure to make substantial contributions to magnetospheric ion energy density. These wave accelerated ions will enhance the ring current and play a role in the storm time evolution of the magnetosphere.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.V34C..06G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.V34C..06G"><span>Influence of Topographic Unloading on Magma Intrusions: Modelling Dike Propagation Under Calderas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gaete Rojas, A. B.; Kavanagh, J.; Walter, T. R.</p> <p>2017-12-01</p> <p>Dikes are common igneous bodies involved in the transport of magma through the crust to feed volcanic eruptions. Dike emplacement in the presence of topographic depressions, as produced by unloading in volcanic systems with calderas, is enigmatic. Field observations of post-caldera volcanism suggest the emplacement of dikes often occurs as cone sheets and/or ring/radial dikes. However, the extrapolation of the surface expression of these laminar intrusions to depth to infer their sub-surface geometry is often based on limited information. As a result, key questions remain regarding the propagation dynamics of dikes beneath calderas, including the physical processes that influence the development of an intrusive cone sheet rather than a circumferential, steep-sided ring dike that could breach the surface. Scaled laboratory modeling allows us to study the development of cone sheets and ring dikes in 3D in the presence of a surface depression, tracking the evolution of the dynamic processes of their formation.Here, we analyze the evolution of dikes propagating in an elastic medium in the presence of a stress perturbation due to unloading. We performed experiments using a 30 × 40 × 40 cm3tank filled with 2.5 wt.% solidified gelatine with a cylindrical surface depression to produce a crustal analogue with caldera-like topography. Magma-filled hydrofractures were creating by injecting dyed water as the magma analogue. The intrusion evolution was monitored using 3 cameras, with an overhead laser scanner measuring the progressive surface uplift and polarized light tracking the evolution of the stress field. We find that the formation of a cone sheet or a ring dike is a consequence of the caldera size and its stress field, with small calderas favouring ring dike formation. The offset of the injection point relative to the centre of the caldera is also assessed. Cone sheets are formed as the dike is strongly deflected, and the dike propagation front transitions into radially propagating fingers that eventually join to form the cone. Surface deformation is broader and produces greater topographic change, whereas a ring dike produces a smaller and more localized surface displacement. These results may help to identify and interpret the process related to magma ascent during post-caldera volcanism.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/969247','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/969247"><span>Experiences from First Top-Off Injection at the Stanford Synchrotron Radiation Lightsource</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Bauer, J.M.; Liu, J.C.; Prinz, A.</p> <p>2009-12-11</p> <p>As the Stanford Synchrotron Radiation Lightsource (SSRL) of the SLAC National Accelerator Laboratory (SLAC) is moving toward Top-Off injection mode, SLAC's Radiation Protection Department is working with SSRL on minimizing the radiological hazards of this mode. One such hazard is radiation that is created inside the accelerator concrete enclosure by injected beam. Since during Top-Off injection the stoppers that would otherwise isolate the storage ring from the experimental area stay open, the stoppers no longer prevent such radiation from reaching the experimental area. The level of this stray radiation was measured in April 2008 during the first Top-Off injection tests.more » They revealed radiation dose rates of up to 18 microSv/h (1.8 millirem/h) outside the experimental hutches, significantly higher than our goal of 1 microSv/h (0.1 millirem/h). Non-optimal injection increased the measured dose rates by a factor two. Further tests in 2008 indicated that subsequent improvements by SSRL to the injection system have reduced the dose rates to acceptable levels. This presentation describes the studies performed before the Top-Off tests, the tests themselves and their major results (both under initial conditions and after improvements were implemented), and presents the controls being implemented for full and routine Top-Off injection.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22224164-studies-beam-injection-compensated-bump-uncompensated-bump-synchrotron','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22224164-studies-beam-injection-compensated-bump-uncompensated-bump-synchrotron"><span>Studies of beam injection with a compensated bump and uncompensated bump in a synchrotron</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Akbar Fakhri, Ali; Prajapati, S. K.; Ghodke, A. D.</p> <p>2013-08-15</p> <p>Synchrotron radiation sources Indus-1 and Indus-2 have a synchrotron as the common injector. A three kicker compensated bump injection scheme was employed for beam injection into this synchrotron. The stored beam current in the synchrotron is higher, when all the three kickers are operated at the same current than when kickers are operated at currents required to generate compensated bump. Beam dynamics studies have been done to understand why this happens. Theoretical studies indicate that higher stored current in the later case is attributed to smaller residual oscillations of injected beam. These studies also reveal that if the angle ofmore » the injected beam during beam injection is kept varying, the performance could be further improved. This is experimentally confirmed by injecting the beam on rising part of the injection septum magnet current pulse.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..1510823M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..1510823M"><span>Penetration of Solar Wind Driven ULF Waves into the Earth's Inner Magnetosphere: Role in Radiation Belt and Ring Current Dynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mann, Ian; Murphy, Kyle; Rae, Jonathan; Ozeke, Louis; Milling, David</p> <p>2013-04-01</p> <p>Ultra-low frequency (ULF) waves in the Pc4-5 band can be excited in the magnetosphere by the solar wind. Much recent work has shown how ULF wave power is strongly correlated with solar wind speed. However, little attention has been paid the dynamics of ULF wave power penetration onto low L-shells in the inner magnetosphere. We use more than a solar cycle of ULF wave data, derived from ground-based magnetometer networks, to examine this ULF wave power penetration and its dependence on solar wind and geomagnetic activity indices. In time domain data, we show very clearly that dayside ULF wave power, spanning more than 4 orders of magnitude, follows solar wind speed variations throughout the whole solar cycle - during periods of sporadic solar maximum ICMEs, during declining phase fast solar wind streams, and at solar minimum, alike. We also show that time domain ULF wave power increases during magnetic storms activations, and significantly demonstrate that a deeper ULF wave power penetration into the inner magnetosphere occurs during larger negative excursions in Dst. We discuss potential explanations for this low-L ULF wave power penetration, including the role of plasma mass density (such as during plasmaspheric erosion), or ring current ion instabilities during near-Earth ring current penetration. Interestingly, we also show that both ULF wave power and SAMPEX MeV electron flux show a remarkable similarity in their penetration to low-L, which suggests that ULF wave power penetration may be important for understanding and explaining radiation belt dynamics. Moreover, the correlation of ULF wave power with Dst, which peaks at one day lag, suggests the ULF waves might also be important for the inward transport of ions into the ring current. Current ring current models, which exclude long period ULF wave transport, under-estimate the ring current during fast solar wind streams which is consistent with a potential role for ULF waves in ring current energisation. The combination of data from ground arrays such as CARISMA and the contemporaneous operation of the NASA Van Allen Probes (VAP) mission offers an excellent basis for understanding this cross-energy plasma coupling which spans more than 6 orders of magnitude in energy. Explaining the casual connections between plasmas in the plasmasphere (eV), ring current (keV), and radiation belt (MeV), via the intermediaries of plasma waves, is key to understanding inner magnetosphere dynamics. This work has received funding from the European Union under the Seventh Framework Programme (FP7-Space) under grant agreement n 284520 for the MAARBLE (Monitoring, Analyzing and Assessing Radiation Belt Energization and Loss) collaborative research project.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMSM33A2128M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMSM33A2128M"><span>Role of ULF Waves in Radiation Belt and Ring Current Dynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mann, I. R.; Murphy, K. R.; Rae, I. J.; Ozeke, L.; Milling, D. K.</p> <p>2013-12-01</p> <p>Ultra-low frequency (ULF) waves in the Pc4-5 band can be excited in the magnetosphere by the solar wind. Much recent work has shown how ULF wave power is strongly correlated with solar wind speed. However, little attention has been paid the dynamics of ULF wave power penetration onto low L-shells in the inner magnetosphere. We use more than a solar cycle of ULF wave data, derived from ground-based magnetometer networks, to examine this ULF wave power penetration and its dependence on solar wind and geomagnetic activity indices. In time domain data, we show very clearly that dayside ULF wave power, spanning more than 4 orders of magnitude, follows solar wind speed variations throughout the whole solar cycle - during periods of sporadic solar maximum ICMEs, during declining phase fast solar wind streams, and at solar minimum, alike. We also show that time domain ULF wave power increases during magnetic storms activations, and significantly demonstrate that a deeper ULF wave power penetration into the inner magnetosphere occurs during larger negative excursions in Dst. We discuss potential explanations for this low-L ULF wave power penetration, including the role of plasma mass density (such as during plasmaspheric erosion), or ring current ion instabilities during near-Earth ring current penetration. Interestingly, we also show that both ULF wave power and SAMPEX MeV electron flux show a remarkable similarity in their penetration to low-L, which suggests that ULF wave power penetration may be important for understanding and explaining radiation belt dynamics. Moreover, the correlation of ULF wave power with Dst, which peaks at one day lag, suggests the ULF waves might also be important for the inward transport of ions into the ring current. Current ring current models, which exclude long period ULF wave transport, under-estimate the ring current during fast solar wind streams which is consistent with a potential role for ULF waves in ring current energisation. The combination of data from ground arrays such as CARISMA and the contemporaneous operation of the NASA Van Allen Probes (VAP) mission offers an excellent basis for understanding this cross-energy plasma coupling which spans more than 6 orders of magnitude in energy. Explaining the casual connections between plasmas in the plasmasphere (eV), ring current (keV), and radiation belt (MeV), via the intermediaries of plasma waves, is key to understanding inner magnetosphere dynamics. This work has received funding from the European Union under the Seventh Framework Programme (FP7-Space) under grant agreement n 284520 for the MAARBLE (Monitoring, Analyzing and Assessing Radiation Belt Energization and Loss) collaborative research project.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22095733-energy-transfer-orbital-angular-momentum-discrete-current-double-ring-fiber-array','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22095733-energy-transfer-orbital-angular-momentum-discrete-current-double-ring-fiber-array"><span>Energy transfer, orbital angular momentum, and discrete current in a double-ring fiber array</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Alexeyev, C. N.; Volyar, A. V.; Yavorsky, M. A.</p> <p></p> <p>We study energy transfer and orbital angular momentum of supermodes in a double-ring array of evanescently coupled monomode optical fibers. The structure of supermodes and the spectra of their propagation constants are obtained. The geometrical parameters of the array, at which the energy is mostly confined within the layers, are determined. The developed method for finding the supermodes of concentric arrays is generalized for the case of multiring arrays. The orbital angular momentum carried by a supermode of a double-ring array is calculated. The discrete lattice current is introduced. It is shown that the sum of discrete currents over themore » array is a conserved quantity. The connection of the total discrete current with orbital angular momentum of discrete optical vortices is made.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..1511601T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..1511601T"><span>Isotopic analysis of dissolved organic carbon in produced water brines by wet chemical oxidation and cavity ring-down spectroscopy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Thomas, Randal; Conaway, Christopher; Saad, Nabil; Kharaka, Yousif</p> <p>2013-04-01</p> <p>Identification of fluid migration and escape from intentionally altered subsurface geologic systems, such as in hydraulic fracturing, enhanced oil recovery, and carbon sequestration activities, is an important issue for environmental regulators based on the traction that the "fracking" process is gathering across the United States. Given diverse injected fluid compositions and the potential for toxic or regulated compounds to be released, one of the most important steps in the process is accurately identifying evidence of injected fluid escape during and after injection processes. An important tool in identifying differences between the natural groundwater and injected fluid is the isotopic composition of dissolved constituents including inorganic components such as Sr and carbon isotopes of the dissolved organic compounds. Since biological processes in the mesothermal subsurface can rapidly alter the organic composition of a fluid, stable carbon isotopes of the dissolved organic compounds (DOC) are an effective means to identify differences in the origin of two fluids, especially when coupled with inorganic compound analyses. The burgeoning field of cavity ring-down spectroscopy (CRDS) for isotopic analysis presents an opportunity to obtain rapid, reliable and cost-effective isotopic measurements of DOC in potentially affected groundwater for the identification of leakage or the improvement of hydrogeochemical pathway models. Here we adapt the use of the novel hyphenated TOC-CRDS carbon isotope analyzer for the analysis of DOC in produced water by wet oxidation and describe the methods to evaluate performance and obtain useful information at higher salinities. Our methods are applied to a specific field example in a CO2-enhanced EOR field in Cranfield, Mississippi (USA) as a means to demonstrate the ability to distinguish natural and injected DOC using the stable isotopic composition of the dissolved organic carbon when employing the novel TOC-CRDS instrumentation set up.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19720006378','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19720006378"><span>Computer controlled performance mapping of thermionic converters: effect of collector, guard-ring potential imbalances on the observed collector current-density, voltage characteristics and limited range performance map of an etched-rhenium, niobium planar converter</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Manista, E. J.</p> <p>1972-01-01</p> <p>The effect of collector, guard-ring potential imbalance on the observed collector-current-density J, collector-to-emitter voltage V characteristic was evaluated in a planar, fixed-space, guard-ringed thermionic converter. The J,V characteristic was swept in a period of 15 msec by a variable load. A computerized data acquisition system recorded test parameters. The results indicate minimal distortion of the J,V curve in the power output quadrant for the nominal guard-ring circuit configuration. Considerable distortion, along with a lowering of the ignited-mode striking voltage, was observed for the configuration with the emitter shorted to the guard ring. A limited-range performance map of an etched-rhenium, niobium, planar converter was obtained by using an improved computer program for the data acquisition system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22679582-ibex-ribbon-pickup-ion-ring-stability-outer-heliosheath-ii-monte-carlo-particle-cell-model-results','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22679582-ibex-ribbon-pickup-ion-ring-stability-outer-heliosheath-ii-monte-carlo-particle-cell-model-results"><span>THE IBEX RIBBON AND THE PICKUP ION RING STABILITY IN THE OUTER HELIOSHEATH. II. MONTE-CARLO AND PARTICLE-IN-CELL MODEL RESULTS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Niemiec, J.; Florinski, V.; Heerikhuisen, J.</p> <p>2016-08-01</p> <p>The nearly circular ribbon of energetic neutral atom (ENA) emission discovered by NASA’s Interplanetary Boundary EXplorer satellite ( IBEX ), is most commonly attributed to the effect of charge exchange of secondary pickup ions (PUIs) gyrating about the magnetic field in the outer heliosheath (OHS) and the interstellar space beyond. The first paper in the series (Paper I) presented a theoretical analysis of the pickup process in the OHS and hybrid-kinetic simulations, revealing that the kinetic properties of freshly injected proton rings depend sensitively on the details of their velocity distribution. It was demonstrated that only rings that are notmore » too narrow (parallel thermal spread above a few km s{sup −1}) and not too wide (parallel temperature smaller than the core plasma temperature) could remain stable for a period of time long enough to generate ribbon ENAs. This paper investigates the role of electron dynamics and the extra spatial degree of freedom in the ring ion scattering process with the help of two-dimensional full particle-in-cell (PIC) kinetic simulations. A good agreement is observed between ring evolution under unstable conditions in hybrid and PIC models, and the dominant modes are found to propagate parallel to the magnetic field. We also present more realistic ribbon PUI distributions generated using Monte Carlo simulations of atomic hydrogen in the global heliosphere and examine the effect of both the cold ring-like and the hot “halo” PUIs produced from heliosheath ENAs on the ring stability. It is shown that the second PUI population enhances the fluctuation growth rate, leading to faster isotropization of the solar-wind-derived ring ions.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22647596','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22647596"><span>Acute and chronic pain in calves after different methods of rubber-ring castration.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Becker, Johanna; Doherr, Marcus G; Bruckmaier, Rupert M; Bodmer, Michèle; Zanolari, Patrik; Steiner, Adrian</p> <p>2012-12-01</p> <p>The goal of the present study was to evaluate the effect of different methods of rubber-ring castration on acute and chronic pain in calves. Sixty-three 4-6 week-old calves were randomly and sequentially allocated to one of five groups: Group RR (traditional rubber ring castration); group BRR (combination of one rubber ring with Burdizzo); group Rcut (one rubber ring applied with the scrotal tissue and rubber ring removed on day 9); group 3RR (three rubber rings placed one above the other around the scrotal neck); and group CO (controls; sham-castrated). All calves received 0.2 mL/kg bodyweight lidocaine 2%, injected into the spermatic cords and around the scrotal neck 15 min before castration. The presence of acute and chronic pain was assessed using plasma cortisol concentrations, response to palpation of scrotal area, time from castration until complete wound healing, and behavioural signs. Calves of group 3RR showed severe swelling and inflammation, and licking of the scrotal area occurred significantly more often than in groups Rcut and CO. Technique 3RR was discontinued for welfare reasons before the end of the study. All castration groups had significantly more pain upon palpation than calves of group CO, but palpation elicited markedly less pain in group Rcut than in the other castration groups. The most rapid healing time and shortest duration of chronic pain after castration was achieved in group Rcut. For welfare reasons, the Rcut technique should be considered as a valuable alternative to traditional rubber ring castration of calves at 4-6 weeks of age. Copyright © 2012 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ApJ...826..198N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ApJ...826..198N"><span>The IBEX Ribbon and the Pickup Ion Ring Stability in the Outer Heliosheath II. Monte-Carlo and Particle-in-cell Model Results</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Niemiec, J.; Florinski, V.; Heerikhuisen, J.; Nishikawa, K.-I.</p> <p>2016-08-01</p> <p>The nearly circular ribbon of energetic neutral atom (ENA) emission discovered by NASA’s Interplanetary Boundary EXplorer satellite (IBEX), is most commonly attributed to the effect of charge exchange of secondary pickup ions (PUIs) gyrating about the magnetic field in the outer heliosheath (OHS) and the interstellar space beyond. The first paper in the series (Paper I) presented a theoretical analysis of the pickup process in the OHS and hybrid-kinetic simulations, revealing that the kinetic properties of freshly injected proton rings depend sensitively on the details of their velocity distribution. It was demonstrated that only rings that are not too narrow (parallel thermal spread above a few km s-1) and not too wide (parallel temperature smaller than the core plasma temperature) could remain stable for a period of time long enough to generate ribbon ENAs. This paper investigates the role of electron dynamics and the extra spatial degree of freedom in the ring ion scattering process with the help of two-dimensional full particle-in-cell (PIC) kinetic simulations. A good agreement is observed between ring evolution under unstable conditions in hybrid and PIC models, and the dominant modes are found to propagate parallel to the magnetic field. We also present more realistic ribbon PUI distributions generated using Monte Carlo simulations of atomic hydrogen in the global heliosphere and examine the effect of both the cold ring-like and the hot “halo” PUIs produced from heliosheath ENAs on the ring stability. It is shown that the second PUI population enhances the fluctuation growth rate, leading to faster isotropization of the solar-wind-derived ring ions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009APS..MAR.X1005W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009APS..MAR.X1005W"><span>Paramagnetic or diamagnetic persistent currents? A topological point of view</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Waintal, Xavier</p> <p>2009-03-01</p> <p>A persistent current flows at low temperatures in small conducting rings when they are threaded by a magnetic flux. I will discuss the sign of this persistent current (diamagnetic or paramagnetic response) in the special case of N electrons in a one dimensional ring [1]. One dimension is very special in the sense that the sign of the persistent current is entirely controlled by the topology of the system. I will establish lower bounds for the free energy in the presence of arbitrary electron-electron interactions and external potentials. Those bounds are the counterparts of upper bounds derived by Leggett using another topological argument. Rings with odd (even) numbers of polarized electrons are always diamagnetic (paramagnetic). The situation is more interesting with unpolarized electrons where Leggett upper bound breaks down: rings with N=4n exhibit either paramagnetic behavior or a superconductor-like current-phase relation. The topological argument provides a rigorous justification for the phenomenological Huckel rule which states that cyclic molecules with 4n + 2 electrons like benzene are aromatic while those with 4n electrons are not. [4pt] [1] Xavier Waintal, Geneviève Fleury, Kyryl Kazymyrenko, Manuel Houzet, Peter Schmitteckert, and Dietmar Weinmann Phys. Rev. Lett.101, 106804 (2008).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhRvB..95o5449N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhRvB..95o5449N"><span>Persistent current and zero-energy Majorana modes in a p -wave disordered superconducting ring</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nava, Andrea; Giuliano, Rosa; Campagnano, Gabriele; Giuliano, Domenico</p> <p>2017-04-01</p> <p>We discuss the emergence of zero-energy Majorana modes in a disordered finite-length p -wave one-dimensional superconducting ring, pierced by a magnetic flux Φ tuned at an appropriate value Φ =Φ* . In the absence of fermion parity conservation, we evidence the emergence of the Majorana modes by looking at the discontinuities in the persistent current I [Φ ] at Φ =Φ* . By monitoring the discontinuities in I [Φ ] , we map out the region in parameter space characterized by the emergence of Majorana modes in the disordered ring.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=yahoo&pg=6&id=EJ586418','ERIC'); return false;" href="https://eric.ed.gov/?q=yahoo&pg=6&id=EJ586418"><span>Running Rings Around the Web.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>McDermott, Irene E.</p> <p>1999-01-01</p> <p>Describes the development and current status of WebRing, a service that links related Web sites into a central hub. Discusses it as a viable alternative to other search engines and examines issues of free speech, use by the business sector, and implications for WebRing after its purchase by Yahoo! (LRW)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=256514&keyword=intervention&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=256514&keyword=intervention&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>Statistical methodologies for tree-ring research to understand the climate-growth relationships over time and space</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>The International Tree-Ring Database is a valuable resource for studying climate change and its effects on terrestrial ecosystems over time and space. We examine the statistical methods in current use in dendroclimatology and dendroecology to process the tree-ring data and make ...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AGUSMOS53A..01B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AGUSMOS53A..01B"><span>On the Squeezing of the North Brazil Current Rings Through the Lesser Antilles as Observed From Satellite Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bulgakov, S. N.; Cruz Gomez, R. C.</p> <p>2007-05-01</p> <p>The North Brazil Current Rings (NBCR) penetration into the Caribbean Sea is being investigated employing a merged altimeter-derived sea height anomaly (TOPEX/Poseidon, Jason-1 and ERS-1,2), the ocean surface color data (SeaWiFS) and Global Drifter Program information. Four strategies are being applied to process the data: (1) calculations of Okubo-Weiss parameter for NBCR identification, (2) longitude-time plots (also known as Hovmöller diagrams), (3) two-dimensional Radon transforms and (4) two-dimensional Fourier transforms. A twofold NBCR structure has been detected in the region under investigation. The results have shown that NBC rings mainly propagate into the Caribbean Sea along two principal pathways (near 12ºN and 17ºN) in the ring translation corridor. Thus, rings following the southern pathway in the fall-winter period can enter through very shallow southern straits as non-coherent structures. A different behavior is observed near the northern pathway (near 17ºN), where NBC rings are thought to have a coherent structure during their squeezing into the eastern Caribbean, i.e. conserving the principal characteristics of the incident rings. We attribute this difference in the rings' behavior to the vertical scales of the rings and to the bottom topography features in the vicinity of the Lesser Antilles.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1999JGR...104.4567F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1999JGR...104.4567F"><span>Influence of the substorm current wedge on the Dst index</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Friedrich, Erena; Rostoker, Gordon; Connors, Martin G.; McPherron, R. L.</p> <p>1999-03-01</p> <p>One of the major questions confronting researchers studying the nature of the solar-terrestrial interaction centers around whether or not the substorm expansive phase has any causal effect on the growth of the storm time ring current. This question is often addressed by using the Dst index as a proxy for the storm time ring current and inspecting the main phase growth of Dst in the context of the substorm expansive phases which occur in the same time frame as the ring current growth. In the past it has been assumed that the magnetic effects of the substorm current wedge have little influence on the Dst index because the current wedge is an asymmetric current system, while Dst is supposed to reflect changes in the symmetric component of the ring current. In this paper we shall shown that the substorm current wedge can have a significant effect on the present Dst index, primarily as a consequence of the fact that only four stations are presently used to formulate the index. Calculations are made assuming the instantaneous magnitude of the wedge current is constant at 1 MA. Hourly values of Dst may be as much as 50° smaller than those presented here because of variation of the wedge current over the hour. We shall show how the effect of the current wedge depends on the UT of the expansive phase onset, the angular extent of the current wedge, and the locale of the closure current in the magnetosphere. The fact that the substorm current wedge is a conjugate phenomenon has an important influence on the magnitude of the expansive phase effect in the Dst index.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSM21B..08J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSM21B..08J"><span>Investigating EMIC Wave Dynamics with RAM-SCB-E</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jordanova, V. K.; Fu, X.; Henderson, M. G.; Morley, S.; Welling, D. T.; Yu, Y.</p> <p>2017-12-01</p> <p>The distribution of ring current ions and electrons in the inner magnetosphere depends strongly on their transport in realistic electric (E) and magnetic (B) fields and concurrent energization or loss. To investigate the high variability of energetic particle (H+, He+, O+, and electron) fluxes during storms selected by the GEM Surface Charging Challenge, we use our kinetic ring current model (RAM) two-way coupled with a 3-D magnetic field code (SCB). This model was just extended to include electric field calculations, making it a unique, fully self-consistent, anisotropic ring current-atmosphere interactions model, RAM-SCB-E. Recently we investigated electromagnetic ion cyclotron (EMIC) instability in a local plasma using both linear theory and nonlinear hybrid simulations and derived a scaling formula that relates the saturation EMIC wave amplitude to initial plasma conditions. Global dynamic EMIC wave maps obtained with our RAM-SCB-E model using this scaling will be presented and compared with statistical models. These plasma waves can affect significantly both ion and electron precipitation into the atmosphere and the subsequent patterns of ionospheric conductance, as well as the global ring current dynamics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19720023747','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19720023747"><span>A unified theory of stable auroral red arc formation at the plasmapause</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Cornwall, J. M.; Coroniti, F. V.; Thorne, R. M.</p> <p>1970-01-01</p> <p>A theory is proposed that SAR-arcs are generated at the plasmapause as a consequence of the turbulent dissipation of ring current energy. During the recovery phase of a geomagnetic storm, the plasmapause expands outward into the symmetric ring current. When the cold plasma densities reach about 100/cu cm, ring current protons become unstable and generate intense ion cyclotron wave turbulence in a narrow region 1/2 earth radius wide (just inside the plasmapause). Approximately one-half of the ring current energy is dissipated into wave turbulence which in turn is absorbed through a Landau resonant interaction with plasma spheric electrons. The combined thermal heat flux to the ionosphere due to Landau absorption of the wave energy and proton-electron Coulomb dissipation is sufficient to drive SAR-arcs at the observed intensities. It is predicted that the arcs should be localized to a narrow latitudinal range just within the stormtime plasmapause. They should occur at all local times and persist for the 10 to 20 hour duration of the plasma-pause expansion.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29060003','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29060003"><span>Proof of concept Laplacian estimate derived for noninvasive tripolar concentric ring electrode with incorporated radius of the central disc and the widths of the concentric rings.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Makeyev, Oleksandr; Lee, Colin; Besio, Walter G</p> <p>2017-07-01</p> <p>Tripolar concentric ring electrodes are showing great promise in a range of applications including braincomputer interface and seizure onset detection due to their superiority to conventional disc electrodes, in particular, in accuracy of surface Laplacian estimation. Recently, we proposed a general approach to estimation of the Laplacian for an (n + 1)-polar electrode with n rings using the (4n + 1)-point method for n ≥ 2 that allows cancellation of all the truncation terms up to the order of 2n. This approach has been used to introduce novel multipolar and variable inter-ring distances concentric ring electrode configurations verified using finite element method. The obtained results suggest their potential to improve Laplacian estimation compared to currently used constant interring distances tripolar concentric ring electrodes. One of the main limitations of the proposed (4n + 1)-point method is that the radius of the central disc and the widths of the concentric rings are not included and therefore cannot be optimized. This study incorporates these two parameters by representing the central disc and both concentric rings as clusters of points with specific radius and widths respectively as opposed to the currently used single point and concentric circles. A proof of concept Laplacian estimate is derived for a tripolar concentric ring electrode with non-negligible radius of the central disc and non-negligible widths of the concentric rings clearly demonstrating how both of these parameters can be incorporated into the (4n + 1)-point method.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23455096','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23455096"><span>Octave-spanning spectrum generation in tapered silica photonic crystal fiber by Yb:fiber ring laser above 500 MHz.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jiang, Tongxiao; Wang, Guizhong; Zhang, Wei; Li, Chen; Wang, Aimin; Zhang, Zhigang</p> <p>2013-02-15</p> <p>We report octave-spanning spectrum generated in a tapered silica photonic crystal fiber by a mode-locked Yb:fiber ring laser at a repetition rate as high as 528 MHz. The output pulses from this laser were compressed to 62 fs. By controlling the hole expansion and core diameter, a silica PCF was tapered to 20 cm with an optimal d/Λ ratio of 0.6. Pulses with the energy of 280 pJ and the peak power of 4.5 kW were injected into the tapered fiber and the pulse spectrum was expanded from 500 to 1600 nm at the level of -30 dB.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110011701','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110011701"><span>Modeling the Inner Magnetosphere: Radiation Belts, Ring Current, and Composition</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Glocer, Alex</p> <p>2011-01-01</p> <p>The space environment is a complex system defined by regions of differing length scales, characteristic energies, and physical processes. It is often difficult, or impossible, to treat all aspects of the space environment relative to a particular problem with a single model. In our studies, we utilize several models working in tandem to examine this highly interconnected system. The methodology and results will be presented for three focused topics: 1) Rapid radiation belt electron enhancements, 2) Ring current study of Energetic Neutral Atoms (ENAs), Dst, and plasma composition, and 3) Examination of the outflow of ionospheric ions. In the first study, we use a coupled MHD magnetosphere - kinetic radiation belt model to explain recent Akebono/RDM observations of greater than 2.5 MeV radiation belt electron enhancements occurring on timescales of less than a few hours. In the second study, we present initial results of a ring current study using a newly coupled kinetic ring current model with an MHD magnetosphere model. Results of a dst study for four geomagnetic events are shown. Moreover, direct comparison with TWINS ENA images are used to infer the role that composition plays in the ring current. In the final study, we directly model the transport of plasma from the ionosphere to the magnetosphere. We especially focus on the role of photoelectrons and and wave-particle interactions. The modeling methodology for each of these studies will be detailed along with the results.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20040047249&hterms=hydra&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dhydra','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20040047249&hterms=hydra&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dhydra"><span>Self-Consistent Model of Magnetospheric Ring Current and Electromagnetic Ion Cyclotron Waves: The 2-7 May 1998 Storm</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Khazanov, G. V.; Gamayunov, K. V.; Jordanova, V. K.</p> <p>2003-01-01</p> <p>A complete description of a self-consistent model of magnetospheric ring current interacting with electromagnetic ion cyclotron waves is presented. The model is based on the system of two kinetic equations; one equation describes the ring current ion dynamics, and another equation describes the wave evolution. The effects on ring current ions interacting with electromagnetic ion cyclotron waves and back on waves are considered self-consistently by solving both equations on a global magnetospheric scale under nonsteady state conditions. The developed model is employed to simulate the entire 2-7 May 1998 storm period. First, the trapped number fluxes of the ring current protons are calculated and presented along with comparison with the data measured by the three- dimensional hot plasma instrument Polar/HYDRA. Incorporating in the model the wave-particle interaction leads to much better agreement between the experimental data and the model results. Second, examining of the wave (MLT, L shell) distributions produced by the model during the storm progress reveals an essential intensification of the wave emission about 2 days after the main phase of the storm. This result is well consistent with the earlier ground-based observations. Finally, the theoretical shapes and the occurrence rates of the wave power spectral densities are studied. It is found that about 2 days after the storm s main phase on 4 May, mainly non-Gaussian shapes of power spectral densities are produced.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/873117','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/873117"><span>Optical heterodyne detection for cavity ring-down spectroscopy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Levenson, Marc D.; Paldus, Barbara A.; Zare, Richard N.</p> <p>2000-07-25</p> <p>A cavity ring-down system for performing cavity ring-down spectroscopy (CRDS) using optical heterodyne detection of a ring-down wave E.sub.RD during a ring-down phase or a ring-up wave E.sub.RU during a ring up phase. The system sends a local oscillator wave E.sub.LO and a signal wave E.sub.SIGNAL to the cavity, preferably a ring resonator, and derives an interference signal from the combined local oscillator wave E.sub.LO and the ring-down wave E.sub.RD (or ring-up wave E.sub.RU). The local oscillator wave E.sub.LO has a first polarization and the ring-down wave E.sub.RD has a second polarization different from the first polarization. The system has a combining arrangement for combining or overlapping local oscillator wave E.sub.LO and the ring-down wave E.sub.RD at a photodetector, which receives the interference signal and generates a heterodyne current I.sub.H therefrom. Frequency and phase differences between the waves are adjustable.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMSM43C2265W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMSM43C2265W"><span>The Role of Ionospheric Outflow Preconditioning in Determining Storm Geoeffectiveness</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Welling, D. T.; Liemohn, M. W.; Ridley, A. J.</p> <p>2012-12-01</p> <p>It is now well accepted that ionospheric outflow plays an important role in the development of the plasma sheet and ring current during geomagnetic storms. Furthermore, even during quiet times, ionospheric plasma populates the magnetospheric lobes, producing a reservoir of hydrogen and oxygen ions. When the Interplanetary Magnetic Field (IMF) turns southward, this reservoir is connected to the plasma sheet and ring current through magnetospheric convection. Hence, the conditions of the ionosphere and magnetospheric lobes leading up to magnetospheric storm onset have important implications for storm development. Despite this, there has been little research on this preconditioning; most global simulations begin just before storm onset, neglecting preconditioning altogether. This work explores the role of preconditioning in determining the geoeffectiveness of storms using a coupled global model system. A model of ionospheric outflow (the Polar Wind Outflow Model, PWOM) is two-way coupled to a global magnetohydrodynamic model (the Block-Adaptive Tree Solar wind Roe-type Upwind Scheme, BATS-R-US), which in turn drives a ring current model (the Ring current Atmosphere interactions Model, RAM). This unique setup is used to simulate an idealized storm. The model is started at many different times, from 1 hour before storm onset to 12 hours before. The effects of storm preconditioning are examined by investigating the total ionospheric plasma content in the lobes just before onset, the total ionospheric contribution in the ring current just after onset, and the effects on Dst, magnetic elevation angle at geosynchronous, and total ring current energy density. This experiment is repeated for different solar activity levels as set by F10.7 flux. Finally, a synthetic double-dip storm is constructed to see how two closely spaced storms affect each other by changing the preconditioning environment. It is found that preconditioning of the magnetospheric lobes via ionospheric outflow greatly influences the geoeffectiveness of magnetospheric storms.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.P11G..06K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.P11G..06K"><span>An Ionosphere/Magnetosphere Coupling Current System Located in the Gap Between Saturn and its Rings</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Khurana, K. K.; Dougherty, M. K.; Cao, H.; Hunt, G. J.; Provan, G.</p> <p>2017-12-01</p> <p>The Grand Finale Orbits of the Cassini spacecraft traversed through Saturn's D ring and brought the spacecraft to within 3000 km of Saturn's cloud tops. The closest approaches (CA) were near the equatorial plane of Saturn and were distributed narrowly around the local noon. The difference field (observations - internal field - magnetospheric ring current field) obtained from the Grand Finale orbits show persistent residual fields centered around the CA which diminish at higher latitudes on field lines that connect to the ring. Modeling of this perturbation in terms of internal harmonics shows that the perturbation is not of internal origin but is produced by external currents that couple the ionosphere to the magnetosphere. The sense of the current system suggests that the southern feet of the field lines in the ionosphere lead their northern footprints. We show that the observed field perturbations are consistent with a meridional Pedersen current whose strength is 1 MA/radian, i.e. comparable in strength to the Planetary-period-oscillation related current systems observed in the auroral zone. We show that the implied Lorentz force in the ionosphere extracts momentum from the faster moving southern ionosphere and passes it on to the northern ionosphere. We discuss several ideas for generating this current system. In particular, we highlight a mechanism that involves shears in the neutral winds in the thermospheric region to generate the observed magnetic field.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20590238','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20590238"><span>Evaluation of ion collection area in Faraday probes.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Brown, Daniel L; Gallimore, Alec D</p> <p>2010-06-01</p> <p>A Faraday probe with three concentric rings was designed and fabricated to assess the effect of gap width and collector diameter in a systematic study of the diagnostic ion collection area. The nested Faraday probe consisted of two concentric collector rings and an outer guard ring, which enabled simultaneous current density measurements on the inner and outer collectors. Two versions of the outer collector were fabricated to create gaps of 0.5 and 1.5 mm between the rings. Distribution of current density in the plume of a low-power Hall thruster ion source was measured in azimuthal sweeps at constant radius from 8 to 20 thruster diameters downstream of the exit plane with variation in facility background pressure. A new analytical technique is proposed to account for ions collected in the gap between the Faraday probe collector and guard ring. This method is shown to exhibit excellent agreement between all nested Faraday probe configurations, and to reduce the magnitude of integrated ion beam current to levels consistent with Hall thruster performance analyses. The technique is further studied by varying the guard ring bias potential with a fixed collector bias potential, thereby controlling ion collection in the gap. Results are in agreement with predictions based on the proposed analytical technique. The method is applied to a past study comparing the measured ion current density profiles of two Faraday probe designs. These findings provide new insight into the nature of ion collection in Faraday probe diagnostics, and lead to improved accuracy with a significant reduction in measurement uncertainty.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AIPC.1150..180S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AIPC.1150..180S"><span>Status of The Indian SRS Indus-2</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sahni, V. C.</p> <p>2009-07-01</p> <p>Raja Ramanna Centre for Advanced Technology (RRCAT, formerly called Centre for Advanced Technology) is a prime R&D laboratory of Indian Department of Atomic Energy devoted to developing technologies related to accelerators and lasers as well as their applications. RRCAT is home to 2 synchrotron radiation sources (SRS): Indus-1 (a 100 mA, 450 MeV storage ring) & Indus-2 (a 2.5 GeV booster cum storage ring designed for a current of up to 300 mA), sharing a common injector system, comprising of 20 MeV microtron & 450-700 MeV range booster synchrotron. Most of the accelerator hardware has been built indigenously. Normally beam is injected into Indus-2 (and accumulated) at 550 MeV, and ramped to 2 or 2.5 GeV depending on the user needs. At present we have permission from Atomic Energy Regulatory Board (Indian agency charged with radiation protection responsibility in the country) to operate Indus-2 at 2.5 GeV with up to 50 mA & in the next stage we will get authorization to go up to 100 mA. Currently 5 beam lines on Indus-1 and 3 on Indus-2 are operational and work is going on 4 more beam lines on Indus-2 & is progressing well. The 3 completed beam lines on Indus-2 are: high resolution XRD, position sensitive detector based multi channel EXAFS (Extended X-ray Absorption Fine Structure) and EDXRD (Energy Dispersive X-ray Diffraction). The paper gives an overview of how the SRS program at RRCAT has evolved over the years, where we stand today and also some of our future plans.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1409370-core-tungsten-radiation-diagnostic-calibration-small-shell-pellet-injection-diii-tokamak','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1409370-core-tungsten-radiation-diagnostic-calibration-small-shell-pellet-injection-diii-tokamak"><span>Core tungsten radiation diagnostic calibration by small shell pellet injection in the DIII-D tokamak</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Hollmann, Eric M.; Commaux, Nicolas; Shiraki, Daisuke; ...</p> <p>2017-10-04</p> <p>Injection of small (OD = 0.8 mm) plastic pellets carrying embedded smaller (10 μg) tungsten grains is used to check calibrations of core tungsten line radiation diagnostics in support of the 2016 tungsten rings campaign in the DIII-D tokamak. The total (1 eV – 10 keV) and soft x-ray (1 keV – 10 keV) brightnesses we observed were found to be reasonably well (< factor 2) predicted using existing calibration factors and rate calculations. Individual core (EUV/SXR) tungsten line brightnesses appear to be somewhat less reliable (factor 2-4) for prediction of core tungsten concentration.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1409370-core-tungsten-radiation-diagnostic-calibration-small-shell-pellet-injection-diii-tokamak','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1409370-core-tungsten-radiation-diagnostic-calibration-small-shell-pellet-injection-diii-tokamak"><span>Core tungsten radiation diagnostic calibration by small shell pellet injection in the DIII-D tokamak</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Hollmann, Eric M.; Commaux, Nicolas; Shiraki, Daisuke</p> <p></p> <p>Injection of small (OD = 0.8 mm) plastic pellets carrying embedded smaller (10 μg) tungsten grains is used to check calibrations of core tungsten line radiation diagnostics in support of the 2016 tungsten rings campaign in the DIII-D tokamak. The total (1 eV – 10 keV) and soft x-ray (1 keV – 10 keV) brightnesses we observed were found to be reasonably well (< factor 2) predicted using existing calibration factors and rate calculations. Individual core (EUV/SXR) tungsten line brightnesses appear to be somewhat less reliable (factor 2-4) for prediction of core tungsten concentration.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/972250','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/972250"><span>BPM Breakdown Potential in the PEP-II B-factory Storage Ring Collider</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Weathersby, Stephen; Novokhatski, Alexander; /SLAC</p> <p>2010-02-10</p> <p>High current B-Factory BPM designs incorporate a button type electrode which introduces a small gap between the button and the beam chamber. For achievable currents and bunch lengths, simulations indicate that electric potentials can be induced in this gap which are comparable to the breakdown voltage. This study characterizes beam induced voltages in the existing PEP-II storage ring collider BPM as a function of bunch length and beam current.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2011-08-23/pdf/2011-21561.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2011-08-23/pdf/2011-21561.pdf"><span>76 FR 52640 - Determination Under the Textile and Apparel Commercial Availability Provision of the Dominican...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2011-08-23</p> <p>... (``CITA'') has determined that an acceptable substitute for certain compacted, plied, ring spun cotton... to remove or restrict (``Request'') certain compacted, plied, ring spun cotton yarns, currently on... Spun Cotton Yarns Compacted, plied, ring spun cotton yarns, with yarn counts in the range from 42 to...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24188702','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24188702"><span>Development of dapivirine vaginal ring for HIV prevention.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Devlin, Bríd; Nuttall, Jeremy; Wilder, Susan; Woodsong, Cynthia; Rosenberg, Zeda</p> <p>2013-12-01</p> <p>In the continuing effort to develop effective HIV prevention methods for women, a vaginal ring containing the non-nucleoside reverse transcriptase inhibitor dapivirine is currently being tested in two safety and efficacy trials. This paper reviews dapivirine ring's pipeline development process, including efforts to determine safe and effective dosing levels as well as identify delivery platforms with the greatest likelihood of success for correct and consistent use. Dapivirine gel and other formulations were developed and tested in preclinical and clinical studies. Multiple vaginal ring prototypes were also tested, resulting in the current ring design as well as additional designs under consideration for future testing. Efficacy results from clinical trials are expected in 2015. Through ongoing consultations with national regulatory authorities, licensure requirements for dapivirine vaginal ring approval have been defined. This article is based on a presentation at the "Product Development Workshop 2013: HIV and Multipurpose Prevention Technologies," held in Arlington, Virginia on February 21-22, 2013. It forms part of a special supplement to Antiviral Research. Copyright © 2013 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015APS..MARZ31011D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015APS..MARZ31011D"><span>Persistent Hall voltages across thin planar charged quantum rings on the surface of a topological insulator</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Durganandini, P.</p> <p>2015-03-01</p> <p>We consider thin planar charged quantum rings on the surface of a three dimensional topological insulator coated with a thin ferromagnetic layer. We show theoretically, that when the ring is threaded by a magnetic field, then, due to the Aharanov-Bohm effect, there are not only the well known circulating persistent currents in the ring but also oscillating persistent Hall voltages across the thin ring. Such oscillating persistent Hall voltages arise due to the topological magneto-electric effect associated with the axion electrodynamics exhibited by the surface electronic states of the three dimensional topological insulator when time reversal symmetry is broken. We further generalize to the case of dipole currents and show that analogous Hall dipole voltages arise. We also discuss the robustness of the effect and suggest possible experimental realizations in quantum rings made of semiconductor heterostructures. Such experiments could also provide new ways of observing the predicted topological magneto-electric effect in three dimensional topological insulators with time reversal symmetry breaking. I thank BCUD, Pune University, Pune for financial support through research grant.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.B22F..02P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.B22F..02P"><span>Method to make accurate concentration and isotopic measurements for small gas samples</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Palmer, M. R.; Wahl, E.; Cunningham, K. L.</p> <p>2013-12-01</p> <p>Carbon isotopic ratio measurements of CO2 and CH4 provide valuable insight into carbon cycle processes. However, many of these studies, like soil gas, soil flux, and water head space experiments, provide very small gas sample volumes, too small for direct measurement by current constant-flow Cavity Ring-Down (CRDS) isotopic analyzers. Previously, we addressed this issue by developing a sample introduction module which enabled the isotopic ratio measurement of 40ml samples or smaller. However, the system, called the Small Sample Isotope Module (SSIM), does dilute the sample during the delivery with inert carrier gas which causes a ~5% reduction in concentration. The isotopic ratio measurements are not affected by this small dilution, but researchers are naturally interested accurate concentration measurements. We present the accuracy and precision of a new method of using this delivery module which we call 'double injection.' Two portions of the 40ml of the sample (20ml each) are introduced to the analyzer, the first injection of which flushes out the diluting gas and the second injection is measured. The accuracy of this new method is demonstrated by comparing the concentration and isotopic ratio measurements for a gas sampled directly and that same gas measured through the SSIM. The data show that the CO2 concentration measurements were the same within instrument precision. The isotopic ratio precision (1σ) of repeated measurements was 0.16 permil for CO2 and 1.15 permil for CH4 at ambient concentrations. This new method provides a significant enhancement in the information provided by small samples.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhDT.......207A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhDT.......207A"><span>Increasing the Extracted Beam Current Density in Ion Thrusters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Arthur, Neil Anderson</p> <p></p> <p>Ion thrusters have seen application on space science missions and numerous satellite missions. Ion engines offer higher electrical efficiency and specific impulse capability coupled with longer demonstrated lifetime as compared to other space propulsion technologies. However, ion engines are considered to have low thrust. This work aims to address the low thrust conception; whereby improving ion thruster performance and thrust density will lead to expanded mission capabilities for ion thruster technology. This goal poses a challenge because the mechanism for accelerating ions, the ion optics, is space charge limited according to the Child-Langmuir law-there is a finite number of ions that can be extracted through the grids for a given voltage. Currently, ion thrusters operate at only 40% of this limit, suggesting there is another limit artificially constraining beam current. Experimental evidence suggests the beam current can become source limited-the ion density within the plasma is not large enough to sustain high beam currents. Increasing the discharge current will increase ion density, but ring cusp ion engines become anode area limited at high discharge currents. The ring cusp magnetic field increases ionization efficiency but limits the anode area available for electron collection. Above a threshold current, the plasma becomes unstable. Increasing the engine size is one approach to increasing the operational discharge current, ion density, and thus the beam current, but this presents engineering challenges. The ion optics are a pair of closely spaced grids. As the engine diameter increases, it becomes difficult to maintain a constant grid gap. Span-to-gap considerations for high perveance optics limit ion engines to 50 cm in diameter. NASA designed the annular ion engine to address the anode area limit and scale-up problems by changing the discharge chamber geometry. The annular engine provides a central mounting structure for the optics, allowing the beam area to increase while maintaining a fixed span-to-gap. The central stalk also provides additional surface area for electron collection. Circumventing the anode area limitation, the annular ion engine can operate closer to the Child-Langmuir limit as compared to a conventional cylindrical ion thruster. Preliminary discharge characterization of a 65 cm annular ion engine shows >90% uniformity and validates the scalability of the technology. Operating beyond the Child-Langmuir limit would allow for even larger performance gains. This classic law does not consider the ion injection velocity into the grid sheath. The Child-Langmuir limit shifts towards higher current as the ion velocity increases. Ion drift velocity can be created by enhancing the axially-directed electric field. One method for creating this field is to modify the plasma potential distribution. This can be accomplished by biasing individual magnetic cusps, through isolated, conformal electrodes placed on each magnet ring. Experiments on a 15 cm ion thruster have shown that plasma potential in the bulk can be modified by as much as 5 V and establish ion drift towards the grid plane. Increases in ion current density at the grid by up to 20% are demonstrated. Performance implications are also considered, and increases in simulated beam current of 15% and decreases in discharge losses of 5% are observed. Electron density measurements within the magnetic cusps revealed, surprisingly, as cusp current draw increases, the leak width does not change. This suggests that instead of increasing the electron collection area, cusp bias enhances electron mobility along field lines.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19997275','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19997275"><span>Electric currents induced by twisted light in Quantum Rings.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Quinteiro, G F; Berakdar, J</p> <p>2009-10-26</p> <p>We theoretically investigate the generation of electric currents in quantum rings resulting from the optical excitation with twisted light. Our model describes the kinetics of electrons in a two-band model of a semiconductor-based mesoscopic quantum ring coupled to light having orbital angular momentum (twisted light). We find the analytical solution, which exhibits a "circular" photon-drag effect and an induced magnetization, suggesting that this system is the circular analog of that of a bulk semiconductor excited by plane waves. For realistic values of the electric field and material parameters, the computed electric current can be as large as microA; from an applied perspective, this opens new possibilities to the optical control of the magnetization in semiconductors.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014SPIE.9215E..0EK','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014SPIE.9215E..0EK"><span>The effect of guard ring on leakage current and spectroscopic performance of TlBr planar detectors</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kargar, Alireza; Kim, Hadong; Cirignano, Leonard; Shah, Kanai</p> <p>2014-09-01</p> <p>Four thallium bromide planar detectors were fabricated from materials grown at RMD Inc. The TlBr samples were prepared to investigate the effect of guard ring on device gamma-ray spectroscopy performance, and to investigate the leakage current through surface and bulk. The devices' active area in planar configuration were 4.4 × 4.4 × 1.0 mm3. In this report, the detector fabrication process is described and the resulting energy spectra are discussed. It is shown that the guard ring improves device spectroscopic performance by shielding the sensing electrode from the surface leakage current, and by making the electric filed more uniform in the active region of the device.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22278124-profiling-injected-charge-drift-current-transients-cross-sectional-scanning-technique','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22278124-profiling-injected-charge-drift-current-transients-cross-sectional-scanning-technique"><span>Profiling of the injected charge drift current transients by cross-sectional scanning technique</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Gaubas, E., E-mail: eugenijus.gaubas@ff.vu.lt; Ceponis, T.; Pavlov, J.</p> <p>2014-02-07</p> <p>The electric field distribution and charge drift currents in Si particle detectors are analyzed. Profiling of the injected charge drift current transients has been implemented by varying charge injection position within a cross-sectional boundary of the particle detector. The obtained profiles of the induction current density and duration of the injected charge drift pulses fit well the simulated current variations. Induction current transients have been interpreted by different stages of the bipolar and monopolar drift of the injected carriers. Profiles of the injected charge current transients registered in the non-irradiated and neutron irradiated Si diodes are compared. It has beenmore » shown that the mixed regime of the competing processes of drift, recombination, and diffusion appears in the measured current profiles on the irradiated samples. The impact of the avalanche effects can be ignored based on the investigations presented. It has been shown that even a simplified dynamic model enabled us to reproduce the main features of the profiled transients of induced charge drift current.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.P13A3798M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.P13A3798M"><span>Cassini/MIMI Science Today and Tomorrow</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mitchell, D. G.</p> <p>2014-12-01</p> <p>Between Saturn Orbit Insertion in July 2004 and the present, the Magnetospheric IMaging Instrument (MIMI) on the Cassini spacecraft has measured electrons and ions (energies ~5 keV to over 10 MeV and energetic neutrals (energies ~5 - 200 keV) throughout Saturn's magnetosphere including Saturn's bow shock and magnetopause, plasma sheet, magnetotail, and cis-moon spaces. MIMI observations have included auroral acceleration, magnetotail reconnection, global and local-scale injection events, identifications of charged particle species,, dual and multiple periodicities associated with planetary rotation, and the seasonal variations of many of these phenomena. Most recent MIMI investigations have shown (1) short-period charged-particle oscillations (~1 hour) at high latitude are associated with similar magnetic field, radio, and aurora variations (2) quasi-periodic relativistic electron injection in Saturn's outer magnetosphere, (3) modeling of radiation belt particles to explain their distribution and energy spectrum, and to anticipate the population inside the D-ring, (4) continuing the imaging of energetic neutral atoms (ENAs) from the heliosheath and beyond, (5) characterizing the interaction of Titan with the un-shocked solar wind, (6) deep tail observations supporting the "bowl model" of plasma sheet curvature, (7) asymmetries in the charged particles that are associated with a still-unexplained noon-midnight electric field, (8) local time variations in the energetic particle periodicities, (9) and signatures of satellite-magnetosphere interactions and their implications for both the body and the whole system. During the final sets of orbits of the Cassini Mission at Saturn (dubbed the Grand Finale, which includes the F-ring—periapsis outside the F-ring—and the Proximal Orbits—periapsis between the innermost D-ring and the atmosphere), MIMI will make the first-ever measurements of the innermost radiation belts of Saturn, detailed ENA imaging of charged particle acceleration above the high-latitude polar caps, composition of any energetic plasma between the rings and the ionosphere, and evidence for coupling between the rings, ionosphere, and magnetosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22438332','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22438332"><span>Development of polylactide and polyethylene vinyl acetate blends for the manufacture of vaginal rings.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mc Conville, Christopher; Major, Ian; Friend, David R; Clark, Meredith R; Woolfson, A David; Malcolm, R Karl</p> <p>2012-05-01</p> <p>Vaginal rings are currently being investigated for delivery of HIV microbicides. However, vaginal rings are currently manufactured form hydrophobic polymers such as silicone elastomer and polyethylene vinyl acetate (PEVA), which do not permit release of hydrophilic microbicides such as the nucleotide reverse transcriptase inhibitor tenofovir. Biodegradable polymers such as polylactide (PLA) may help increase release rates by controlling polymer degradation rather than diffusion of the drug through the polymer. However, biodegradable polymers have limited flexibility making them unsuitable for use in the manufacture of vaginal rings. This study demonstrates that by blending PLA and PEVA together it is possible to achieve a blend that has flexibility similar to native PEVA but also allows for the release of tenofovir. Copyright © 2011 Wiley Periodicals, Inc.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JPhCS.627a2020M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JPhCS.627a2020M"><span>Quantum coherent π-electron rotations in a non-planar chiral molecule induced by using a linearly polarized UV laser pulse</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mineo, Hirobumi; Fujimura, Yuichi</p> <p>2015-06-01</p> <p>We propose an ultrafast quantum switching method of π-electron rotations, which are switched among four rotational patterns in a nonplanar chiral aromatic molecule (P)-2,2’- biphenol and perform the sequential switching among four rotational patterns which are performed by the overlapped pump-dump laser pulses. Coherent π-electron dynamics are generated by applying the linearly polarized UV pulse laser to create a pair of coherent quasidegenerated excited states. We also plot the time-dependent π-electron ring current, and discussed ring current transfer between two aromatic rings.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUSMSM34A..08M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUSMSM34A..08M"><span>ULF Waves in the Earth's Inner Magnetosphere: Role in Radiation Belt and Ring Current Dynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mann, I. R.; Murphy, K. R.; Rae, J.; Claudepierre, S. G.; Fennell, J. F.; Baker, D. N.; Reeves, G. D.; Spence, H. E.; Ozeke, L.; Milling, D. K.</p> <p>2013-05-01</p> <p>Ultra-low frequency (ULF) waves in the Pc4-5 band can be excited in the magnetosphere by the solar wind. Much recent work has shown how ULF wave power is strongly correlated with solar wind speed. However, little attention has been paid the dynamics of ULF wave power penetration onto low L-shells in the inner magnetosphere. We use more than a solar cycle of ULF wave data, derived from ground-based magnetometer networks, to examine this ULF wave power penetration and its dependence on solar wind and geomagnetic activity indices. In time domain data, we show very clearly that dayside ULF wave power, spanning more than 4 orders of magnitude, follows solar wind speed variations throughout the whole solar cycle - during periods of sporadic solar maximum ICMEs, during declining phase fast solar wind streams, and at solar minimum, alike. We also show that time domain ULF wave power increases during magnetic storms activations, and significantly demonstrate that a deeper ULF wave power penetration into the inner magnetosphere occurs during larger negative excursions in Dst. We discuss potential explanations for this low-L ULF wave power penetration, including the role of plasma mass density (such as during plasmaspheric erosion), or ring current ion instabilities during near-Earth ring current penetration. Interestingly, we also show that both ULF wave power and SAMPEX MeV electron flux show a remarkable similarity in their penetration to low-L, which suggests that ULF wave power penetration may be important for understanding and explaining radiation belt dynamics. Moreover, the correlation of ULF wave power with Dst, which peaks at one day lag, suggests the ULF waves might also be important for the inward transport of ions into the ring current. Current ring current models, which exclude long period ULF wave transport, under-estimate the ring current during fast solar wind streams which is consistent with a potential role for ULF waves in ring current energisation. Finally, the combination of data from ground arrays such as CARISMA and the contemporaneous operation of the NASA Van Allen Probes mission offers an excellent basis for understanding this cross-energy plasma coupling which spans more than 6 orders of magnitude in energy; we present an initial example of ULF-wave particle interaction using early mission data. This work has received funding from the European Union under the Seventh Framework Programme (FP7-Space) under grant agreement n 284520 for the MAARBLE (Monitoring, Analyzing and Assessing Radiation Belt Energization and Loss) collaborative research project.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSM31D..03B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSM31D..03B"><span>Scientific Achievements of Global ENA Imaging and Future Outlook</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Brandt, P. C.; Stephens, G. K.; Hsieh, S. Y. W.; Demajistre, R.; Gkioulidou, M.</p> <p>2017-12-01</p> <p>Energetic Neutral Atom (ENA) imaging is the only technique that can capture the instantaneous global state of energetic ion distributions in planetary magnetospheres and from the heliosheath. In particular at Earth, ENA imaging has been used to diagnose the morphology and dynamics of the ring current and plasma sheet down to several minutes time resolution and is therefore a critical tool to validate global ring current physics models. However, this requires a detailed understanding for how ENAs are produced from the ring current and inversion techniques that are thoroughly validated against in-situ measurements. To date, several missions have carried out planetary and heliospheric ENA imaging including Cassini, JUICE, IBEX of the heliosphere, and POLAR, Astrid-1, Double Star, TWINS and IMAGE of the terrestrial magnetosphere. Because of their path-finding successes, a future global-imaging mission concept, MEDICI, has been recommended in the Heliophysics Decadal Survey. Its core mission consists of two satellites in one circular, near-polar orbit beyond the radiation belts at around 8 RE, with ENA, EUV and FUV cameras. This recommendation has driven the definition of smaller mission concepts that address specific science aspects of the MEDICI concept. In this presentation, we review the past scientific achievements of ENA imaging with a focus on the terrestrial magnetosphere from primarily the NASA IMAGE and the TWINS missions. The highlighted achievements include the storm, sub-storm and quiet-time morphology, dynamics and pitch-angle distributions of the ring current, global differential acceleration of protons versus O+ ions, the structure of the global electrical current systems associated with the plasma pressure of protons and O+ ions up to around 200 keV, and the relation between ring current and plasmasphere. We discuss the need for future global observations of the ring current, plasma sheet and magnetosheath ion distributions based and derive their measurement requirements, of which high-angular resolution (≤2˚) is critical. A significant aspect of the future science definition is the stability and accessibility of inversion algorithms that retrieve the 3D distribution from the 2D ENA images, that will also be discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70017849','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70017849"><span>Geomagnetic storms, the Dst ring-current myth and lognormal distributions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Campbell, W.H.</p> <p>1996-01-01</p> <p>The definition of geomagnetic storms dates back to the turn of the century when researchers recognized the unique shape of the H-component field change upon averaging storms recorded at low latitude observatories. A generally accepted modeling of the storm field sources as a magnetospheric ring current was settled about 30 years ago at the start of space exploration and the discovery of the Van Allen belt of particles encircling the Earth. The Dst global 'ring-current' index of geomagnetic disturbances, formulated in that period, is still taken to be the definitive representation for geomagnetic storms. Dst indices, or data from many world observatories processed in a fashion paralleling the index, are used widely by researchers relying on the assumption of such a magnetospheric current-ring depiction. Recent in situ measurements by satellites passing through the ring-current region and computations with disturbed magnetosphere models show that the Dst storm is not solely a main-phase to decay-phase, growth to disintegration, of a massive current encircling the Earth. Although a ring current certainly exists during a storm, there are many other field contributions at the middle-and low-latitude observatories that are summed to show the 'storm' characteristic behavior in Dst at these observatories. One characteristic of the storm field form at middle and low latitudes is that Dst exhibits a lognormal distribution shape when plotted as the hourly value amplitude in each time range. Such distributions, common in nature, arise when there are many contributors to a measurement or when the measurement is a result of a connected series of statistical processes. The amplitude-time displays of Dst are thought to occur because the many time-series processes that are added to form Dst all have their own characteristic distribution in time. By transforming the Dst time display into the equivalent normal distribution, it is shown that a storm recovery can be predicted with remarkable accuracy from measurements made during the Dst growth phase. In the lognormal formulation, the mean, standard deviation and field count within standard deviation limits become definitive Dst storm parameters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27731811','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27731811"><span>Preparation and in vitro/in vivo evaluation of gestodene (GEST) intravaginal ring.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Li, Chunxiao; Ning, Meiying; Yao, Xiaodong; Wang, Yankun; Liu, Ying</p> <p>2016-09-01</p> <p>Preparation and in vitro/in vivo evaluation of gestodene (GEST) intravaginal ring (IVR) formulations which can release a constant dose of GEST during 3 weeks were investigated. In present study a reservoir gestodene intravaginal ring, including a gestodene silicone elastomer core and the non-active silicone layer, was reported, which was manufactured by reaction injection moulding at 80°C for 20 min. The raw materials compatibility experiments showed that the silicone elastomer core carrier wouldn't interact with drugs. In vitro release samples were determined by HPLC and the experiment was performed under sink conditions. The equation of cumulative release verse time was Y=64.76χ+5.44 (r=0.9998), performing zero-order release at about the target dose of 60 µg/day over 21 days. Drug release increased with temperature elevating from 45 to 55°C, which could be attributed to optimizing the prescription. In addition, the pharmacokinetic and safety studies of gestodene intravaginal ring were evaluated in female New Zealand White rabbits. The GEST in plasma was analyzed by LC-MS/MS and the results proved that the correlation between in vitro and in vivo was relatively well.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19740029484&hterms=Perfluorocarbon+Measurement&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DPerfluorocarbon%2BMeasurement','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19740029484&hterms=Perfluorocarbon+Measurement&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DPerfluorocarbon%2BMeasurement"><span>On the design and test of a liquid injection electric thruster</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Youmans, E. H.; Kenney, J. T.; Dahlgren, J. B.</p> <p>1973-01-01</p> <p>The design of the thruster described incorporates a coaxial four-segment trigger assembly to discharge a high-energy capacitor. The discharge ablates a waxy perfluorocarbon from the surface of porous annular metal ring, and the resulting plasma is electromagnetically accelerated to ambient producing thrust. Tests revealed a thruster performance well in excess of the major design goals.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5541562','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5541562"><span>Modelling and simulation of a thermally induced optical transparency in a dual micro-ring resonator</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p></p> <p>2017-01-01</p> <p>This paper introduces the simulation and modelling of a novel dual micro-ring resonator. The geometric configuration of the resonators, and the implementation of a simulated broadband excitation source, results in the realization of optical transparencies in the combined through port output spectrum. The 130 nm silicon on insulator rib fabrication process is adopted for the simulation of the dual-ring configuration. Two titanium nitride heaters are positioned over the coupling regions of the resonators, which can be operated independently, to control the spectral position of the optical transparency. A third heater, centrally located above the dual resonator rings, can be used to red shift the entire spectrum to a required reference resonant wavelength. The free spectral range with no heater currents applied is 4.29 nm. For a simulated heater current of 7 mA (55.7 mW heater power) applied to one of the through coupling heaters, the optical transparency exhibits a red shift of 1.79 nm from the reference resonant wavelength. The ring-to-ring separation of approximately 900 nm means that it can be assumed that there is a zero ring-to-ring coupling field in this model. This novel arrangement has potential applications as a gas mass airflow sensor or a gas species identification sensor. PMID:28791167</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28791167','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28791167"><span>Modelling and simulation of a thermally induced optical transparency in a dual micro-ring resonator.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lydiate, Joseph</p> <p>2017-07-01</p> <p>This paper introduces the simulation and modelling of a novel dual micro-ring resonator. The geometric configuration of the resonators, and the implementation of a simulated broadband excitation source, results in the realization of optical transparencies in the combined through port output spectrum. The 130 nm silicon on insulator rib fabrication process is adopted for the simulation of the dual-ring configuration. Two titanium nitride heaters are positioned over the coupling regions of the resonators, which can be operated independently, to control the spectral position of the optical transparency. A third heater, centrally located above the dual resonator rings, can be used to red shift the entire spectrum to a required reference resonant wavelength. The free spectral range with no heater currents applied is 4.29 nm. For a simulated heater current of 7 mA (55.7 mW heater power) applied to one of the through coupling heaters, the optical transparency exhibits a red shift of 1.79 nm from the reference resonant wavelength. The ring-to-ring separation of approximately 900 nm means that it can be assumed that there is a zero ring-to-ring coupling field in this model. This novel arrangement has potential applications as a gas mass airflow sensor or a gas species identification sensor.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21151108','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21151108"><span>Origin of Saturn's rings and inner moons by mass removal from a lost Titan-sized satellite.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Canup, Robin M</p> <p>2010-12-16</p> <p>The origin of Saturn's rings has not been adequately explained. The current rings are more than 90 to 95 per cent water ice, which implies that initially they were almost pure ice because they are continually polluted by rocky meteoroids. In contrast, a half-rock, half-ice mixture (similar to the composition of many of the satellites in the outer Solar System) would generally be expected. Previous ring origin theories invoke the collisional disruption of a small moon, or the tidal disruption of a comet during a close passage by Saturn. These models are improbable and/or struggle to account for basic properties of the rings, including their icy composition. Saturn has only one large satellite, Titan, whereas Jupiter has four large satellites; additional large satellites probably existed originally but were lost as they spiralled into Saturn. Here I report numerical simulations of the tidal removal of mass from a differentiated, Titan-sized satellite as it migrates inward towards Saturn. Planetary tidal forces preferentially strip material from the satellite's outer icy layers, while its rocky core remains intact and is lost to collision with the planet. The result is a pure ice ring much more massive than Saturn's current rings. As the ring evolves, its mass decreases and icy moons are spawned from its outer edge with estimated masses consistent with Saturn's ice-rich moons interior to and including Tethys.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/992902','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/992902"><span>Optimization of Dynamic Aperture of PEP-X Baseline Design</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Wang, Min-Huey; /SLAC; Cai, Yunhai</p> <p>2010-08-23</p> <p>SLAC is developing a long-range plan to transfer the evolving scientific programs at SSRL from the SPEAR3 light source to a much higher performing photon source. Storage ring design is one of the possibilities that would be housed in the 2.2-km PEP-II tunnel. The design goal of PEPX storage ring is to approach an optimal light source design with horizontal emittance less than 100 pm and vertical emittance of 8 pm to reach the diffraction limit of 1-{angstrom} x-ray. The low emittance design requires a lattice with strong focusing leading to high natural chromaticity and therefore to strong sextupoles. Themore » latter caused reduction of dynamic aperture. The dynamic aperture requirement for horizontal injection at injection point is about 10 mm. In order to achieve the desired dynamic aperture the transverse non-linearity of PEP-X is studied. The program LEGO is used to simulate the particle motion. The technique of frequency map is used to analyze the nonlinear behavior. The effect of the non-linearity is tried to minimize at the given constrains of limited space. The details and results of dynamic aperture optimization are discussed in this paper.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22597944-development-magnetized-coaxial-plasma-gun-compact-toroid-injection-field-reversed-configuration-device','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22597944-development-magnetized-coaxial-plasma-gun-compact-toroid-injection-field-reversed-configuration-device"><span>Development of a magnetized coaxial plasma gun for compact toroid injection into the C-2 field-reversed configuration device</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Matsumoto, T., E-mail: cstd14003@g.nihon-u.ac.jp; Sekiguchi, J.; Asai, T.</p> <p></p> <p>A compact toroid (CT) injector was developed for the C-2 device, primarily for refueling of field-reversed configurations. The CTs are formed by a magnetized coaxial plasma gun (MCPG), which consists of coaxial cylindrical electrodes and a bias coil for creating a magnetic field. First, a plasma ring is generated by a discharge between the electrodes and is accelerated by Lorenz self-force. Then, the plasma ring is captured by an interlinkage flux (poloidal flux). Finally, the fully formed CT is ejected from the MCPG. The MCPG described herein has two gas injection ports that are arranged tangentially on the outer electrode.more » A tungsten-coated inner electrode has a head which can be replaced with a longer one to extend the length of the acceleration region for the CT. The developed MCPG has achieved supersonic CT velocities of ∼100 km/s. Plasma parameters for electron density, electron temperature, and the number of particles are ∼5 × 10{sup 21} m{sup −3}, ∼40 eV, and 0.5–1.0 × 10{sup 19}, respectively.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26039921','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26039921"><span>Analysis of Physicochemical Properties for Drugs of Natural Origin.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Camp, David; Garavelas, Agatha; Campitelli, Marc</p> <p>2015-06-26</p> <p>The impact of time, therapy area, and route of administration on 13 physicochemical properties calculated for 664 drugs developed from a natural prototype was investigated. The mean values for the majority of properties sampled over five periods from pre-1900 to 2013 were found to change in a statistically significant manner. In contrast, lipophilicity and aromatic ring count remained relatively constant, suggesting that these parameters are the most important for successful prosecution of a natural product drug discovery program if the route of administration is not focused exclusively on oral availability. An examination by therapy area revealed that anti-infective agents had the most differences in physicochemical property profiles compared with other areas, particularly with respect to lipophilicity. However, when this group was removed, the variation between the mean values for lipophilicity and aromatic ring count across the remaining therapy areas was again found not to change in a meaningful manner, further highlighting the importance of these two parameters. The vast majority of drugs with a natural progenitor were formulated for either oral and/or injectable administration. Injectables were, on average, larger and more polar than drugs developed for oral, topical, and inhalation routes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010JGRC..11510004J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010JGRC..11510004J"><span>On the propagation and decay of North Brazil Current rings</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jochumsen, Kerstin; Rhein, Monika; Hüttl-Kabus, Sabine; BöNing, Claus W.</p> <p>2010-10-01</p> <p>Near the western boundary of the tropical North Atlantic, where the North Brazil Current (NBC) retroflects into the North Equatorial Countercurrent, large anticyclonic rings are shed. After separating from the retroflection region, the so-called NBC rings travel northwestward along the Brazilian coast, until they reach the island chain of the Lesser Antilles and disintegrate. These rings contribute substantially to the upper limb return flow of the Atlantic Meridional Overturning Circulation by carrying South Atlantic Water into the northern subtropical gyre. Their relevance for the northward transport of South Atlantic Water depends on the frequency of their generation as well as on their horizontal and vertical structure. The ring shedding and propagation and the complex interaction of the rings with the Lesser Antilles are investigated in the ? Family of Linked Atlantic Model Experiments (FLAME) model. The ring properties simulated in FLAME reach the upper limit of the observed rings in diameter and agree with recent observations on seasonal variability, which indicates a maximum shedding during the first half of the year. When the rings reach the shallow topography of the Lesser Antilles, they are trapped by the island triangle of St. Lucia, Barbados and Tobago and interact with the island chain. The model provides a resolution that is capable of resolving the complex topographic conditions at the islands and illuminates various possible fates for the water contained in the rings. It also reproduces laboratory experiments that indicate that both cyclones and anticyclones are formed after a ring passes through a topographic gap. Trajectories of artificial floats, which were inserted into the modeled velocity field, are used to investigate the pathways of the ring cores and their fate after they encounter the Lesser Antilles. The majority of the floats entered the Caribbean, while the northward Atlantic pathway was found to be of minor importance. No prominent pathway was found east of Barbados, where a ring could avoid the interaction with the islands and migrate toward the northern Lesser Antilles undisturbed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011EPJD...61...95S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011EPJD...61...95S"><span>The effects of normal current density and the plasma spatial structuring in argon DBDs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shkurenkov, I. A.; Mankelevich, Y. A.; Rakhimova, T. V.</p> <p>2011-01-01</p> <p>This paper presents the results of theoretical studies of high-pressure dielectric barrier discharges (DBD) in argon. Two different DBDs at the megahertz and the kilohertz power frequency range were simulated. The effect of normal current density was obtained in the numerical model for both types of the discharge. The discharge of megahertz range was uniform over the radius. The increase in the discharge current is accompanied by increase in the discharge area. The discharge of kilohertz range is not uniform over the radius. The concentric ring formation was observed during calculations. The increase in the discharge current occurs due to increase in the number of rings and as a result in the discharge area. The developed 2D model is able to describe only the first stage of the filament formation - the formation of concentric plasma rings. The filament formation starts at the edge of the current channel and spreads to its centre. Both the effect of normal current density and the filaments formation are caused by the nonstationarity at the current channel boundary.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..1616736L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..1616736L"><span>World Encircling Tectonic Vortex Street - Geostreams Revisited: The Southern Ring Current EM Plasma-Tectonic Coupling in the Western Pacific Rim</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Leybourne, Bruce; Smoot, Christian; Longhinos, Biju</p> <p>2014-05-01</p> <p>Interplanetary Magnetic Field (IMF) coupling to south polar magnetic ring currents transfers induction energy to the Southern Geostream ringing Antarctica and underlying its encircling mid-ocean ridge structure. Magnetic reconnection between the southward interplanetary magnetic field and the magnetic field of the earth is the primary energy transfer mechanism between the solar wind and the magnetosphere. Induced telluric currents focused within joule spikes along Geostreams heat the southern Pacific. Alignment of the Australian Antarctic Discordance to other tectonic vortexes along the Western Pacific Rim, provide electrical connections to Earths core that modulate global telluric currents. The Banda Sea Triple Junction, a mantle vortex north of Australia, and the Lake Baikal Continental Rift vortex in the northern hemisphere modulate atmospheric Jetstream patterns gravitationally linked to internal density oscillations induced by these telluric currents. These telluric currents are driven by solar magnetic power, rotation and orbital dynamics. A solar rotation 40 day power spectrum in polarity controls north-south migration of earthquakes along the Western Pacific Rim and manifest as the Madden Julian Oscillation a well-documented climate cycle. Solar plasma turbulence cycles related to Hale flares trigger El Nino Southern Oscillations (ENSO's), while solar magnetic field strength frequencies dominate global warming and cooling trends indexed to the Pacific Decadal Oscillation. These Pacific climate anomalies are solar-electro-tectonically modulated via coupling to tropical geostream vortex streets. Particularly the section along the Central Pacific Megatrend connecting the Banda Sea Triple Junction (up welling mantle vortex) north of Australia with the Easter Island & Juan Fernandez twin rotating micro-plates (twin down welling mantle vortexes) along the East Pacific Rise modulating ENSO. Solar eruptions also enhance the equatorial ring current located approximately at the boundary of the plasmasphere and the outer magnetosphere. Induction power of geo-magnetic storms, are linked to ring current strength, and depend on the speed of solar eruptions, along with the dynamic pressure, strength and orientation of the IMF.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018NIMPA.883..151H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018NIMPA.883..151H"><span>Constrained multi-objective optimization of storage ring lattices</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Husain, Riyasat; Ghodke, A. D.</p> <p>2018-03-01</p> <p>The storage ring lattice optimization is a class of constrained multi-objective optimization problem, where in addition to low beam emittance, a large dynamic aperture for good injection efficiency and improved beam lifetime are also desirable. The convergence and computation times are of great concern for the optimization algorithms, as various objectives are to be optimized and a number of accelerator parameters to be varied over a large span with several constraints. In this paper, a study of storage ring lattice optimization using differential evolution is presented. The optimization results are compared with two most widely used optimization techniques in accelerators-genetic algorithm and particle swarm optimization. It is found that the differential evolution produces a better Pareto optimal front in reasonable computation time between two conflicting objectives-beam emittance and dispersion function in the straight section. The differential evolution was used, extensively, for the optimization of linear and nonlinear lattices of Indus-2 for exploring various operational modes within the magnet power supply capabilities.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/20630259-development-abort-gap-monitor-high-energy-proton-rings','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/20630259-development-abort-gap-monitor-high-energy-proton-rings"><span>Development of an Abort Gap Monitor for High-Energy Proton Rings</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Beche, J.-F.; Byrd, J.; De Santis, S.</p> <p>2004-11-10</p> <p>The fill pattern in proton synchrotrons usually features an empty gap, longer than the abort kicker raise time, for machine protection. This gap is referred to as the 'abort gap', and any particles, which may accumulate in it due to injection errors and diffusion between RF buckets, would be lost inside the ring, rather than in the beam dump, during the kicker firing. In large proton rings, due to the high energies involved, it is vital to monitor the build up of charges in the abort gap with a high sensitivity. We present a study of an abort gap monitormore » based on a photomultiplier with a gated microchannel plate, which would allow for detecting low charge densities by monitoring the synchrotron radiation emitted. We show results of beam test experiments at the Advanced Light Source using a Hamamatsu 5916U MCP-PMT and compare them to the specifications for the Large Hadron Collider.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/834942','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/834942"><span>Development of an abort gap monitor for high-energy proton rings</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Beche, Jean-Francois; Byrd, John; De Santis, Stefano</p> <p>2004-05-03</p> <p>The fill pattern in proton synchrotrons usually features an empty gap, longer than the abort kicker raise time, for machine protection. This gap is referred to as the ''abort gap'' and any particles, which may accumulate in it due to injection errors and diffusion between RF buckets, would be lost inside the ring, rather than in the beam dump, during the kicker firing. In large proton rings, due to the high energies involved, it is vital to monitor the build up of charges in the abort gap with a high sensitivity. We present a study of an abort gap monitormore » based on a photomultiplier with a gated microchannel plate, which would allow for detecting low charge densities by monitoring the synchrotron radiation emitted. We show results of beam test experiments at the Advanced Light Source using a Hamamatsu 5916U MCP-PMT and compare them to the specifications for the Large Hadron Collider« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19740032645&hterms=dropout&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Ddropout','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19740032645&hterms=dropout&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Ddropout"><span>Auroral electrojets and evening sector electron dropouts at synchronous orbit</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Erickson, K. N.; Winckler, J. R.</p> <p>1973-01-01</p> <p>Evidence is presented in support of the concept that, during magnetospheric substorms, ionospheric auroral electrojet currents are directly coupled to the proton partial ring current in the outer magnetosphere. It has been found that for sufficiently isolated substorms the timing of the start of the electron dropout and of its maximum depression is in good agreement with the start and maximum of electrojet activity as indicated by the auroral electrojet index. This correlation suggests a direct coupling between the electrojet currents and the proton partial ring current.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70012328','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70012328"><span>Ocean eddy structure by satellite radar altimetry required for iceberg towing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Campbell, W.J.; Cheney, R.E.; Marsh, J.G.; Mognard, N.M.</p> <p>1980-01-01</p> <p>Models for the towing of large tabular icebergs give towing speeds of 0.5 knots to 1.0 knots relative to the ambient near surface current. Recent oceanographic research indicates that the world oceans are not principally composed of large steady-state current systems, like the Gulf Stream, but that most of the ocean momentum is probably involved in intense rings, formed by meanders of the large streams, and in mid-ocean eddies. These rings and eddies have typical dimensions on the order of 200 km with dynamic height anomalies across them of tens-of-centimeters to a meter. They migrate at speeds on the order of a few cm/sec. Current velocities as great as 3 knots have been observed in rings, and currents of 1 knot are common. Thus, the successful towing of icebergs is dependent on the ability to locate, measure, and track ocean rings and eddies. To accomplish this systematically on synoptic scales appears to be possible only by using satelliteborne radar altimeters. Ocean current and eddy structures as observed by the radar altimeters on the GEOS-3 and Seasat-1 satellites are presented and compared. Several satellite programs presently being planned call for flying radar altimeters in polar or near-polar orbits in the mid-1980 time frame. Thus, by the time tows of large icebergs will probably be attempted, it is possible synoptic observations of ocean rings and eddies which can be used to ascertain their location, size, intensity, and translation velocity will be a reality. ?? 1980.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/890773','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/890773"><span>Upgrading the Digital Electronics of the PEP-II Bunch Current Monitors at the Stanford Linear Accelerator Center</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Kline, Josh; /SLAC</p> <p>2006-08-28</p> <p>The testing of the upgrade prototype for the bunch current monitors (BCMs) in the PEP-II storage rings at the Stanford Linear Accelerator Center (SLAC) is the topic of this paper. Bunch current monitors are used to measure the charge in the electron/positron bunches traveling in particle storage rings. The BCMs in the PEP-II storage rings need to be upgraded because components of the current system have failed and are known to be failure prone with age, and several of the integrated chips are no longer produced making repairs difficult if not impossible. The main upgrade is replacing twelve old (1995)more » field programmable gate arrays (FPGAs) with a single Virtex II FPGA. The prototype was tested using computer synthesis tools, a commercial signal generator, and a fast pulse generator.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001DPS....33.1420G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001DPS....33.1420G"><span>Decadal Survey: Planetary Rings Panel</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gordon, M. K.; Cuzzi, J. N.; Lissauer, J. J.; Poulet, F.; Brahic, A.; Charnoz, S.; Ferrari, C.; Burns, J. A.; Nicholson, P. D.; Durisen, R. H.; Rappaport, N. J.; Spilker, L. J.; Yanamandra-Fisher, P.; Bosh, A. S.; Olkin, C.; Larson, S. M.; Graps, A. L.; Krueger, H.; Black, G. J.; Festou, M.; Karjalainen, R.; Salo, H. J.; Murray, C. D.; Showalter, M. R.; Dones, L.; Levison, H. F.; Namouni, F.; Araki, S.; Lewis, M. C.; Brooks, S.; Colwell, J. E.; Esposito, L. W.; Horanyi, M.; Stewart, G. R.; Krivov, A.; Schmidt, J.; Spahn, F.; Hamilton, D. P.; Giuliatti-Winter, S.; French, R. G.</p> <p>2001-11-01</p> <p>The National Research Council's Committee on Planetary and Lunar Exploration(COMPLEX) met earlier this year to begin the organization of a major activity, "A New Strategy for Solar System Exploration." Several members of the planetary rings community formed an ad hoc panel to discuss the current state and future prospects for the study of planetary rings. In this paper we summarize fundamental questions of ring science, list the key science questions expected to occupy the planetary rings community for the decade 2003-2013, outline the initiatives, missions, and other supporting activities needed to address those questions, and recommend priorities.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/863326','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/863326"><span>Divertor for use in fusion reactors</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Christensen, Uffe R.</p> <p>1979-01-01</p> <p>A poloidal divertor for a toroidal plasma column ring having a set of poloidal coils co-axial with the plasma ring for providing a space for a thick shielding blanket close to the plasma along the entire length of the plasma ring cross section and all the way around the axis of rotation of the plasma ring. The poloidal coils of this invention also provide a stagnation point on the inside of the toroidal plasma column ring, gently curving field lines for vertical stability, an initial plasma current, and the shaping of the field lines of a separatrix up and around the shielding blanket.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMSM43A2300R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMSM43A2300R"><span>Inner Magnetosphere Modeling at the CCMC: Ring Current, Radiation Belt and Magnetic Field Mapping</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rastaetter, L.; Mendoza, A. M.; Chulaki, A.; Kuznetsova, M. M.; Zheng, Y.</p> <p>2013-12-01</p> <p>Modeling of the inner magnetosphere has entered center stage with the launch of the Van Allen Probes (RBSP) in 2012. The Community Coordinated Modeling Center (CCMC) has drastically improved its offerings of inner magnetosphere models that cover energetic particles in the Earth's ring current and radiation belts. Models added to the CCMC include the stand-alone Comprehensive Inner Magnetosphere-Ionosphere (CIMI) model by M.C. Fok, the Rice Convection Model (RCM) by R. Wolf and S. Sazykin and numerous versions of the Tsyganenko magnetic field model (T89, T96, T01quiet, TS05). These models join the LANL* model by Y. Yu hat was offered for instant run earlier in the year. In addition to these stand-alone models, the Comprehensive Ring Current Model (CRCM) by M.C. Fok and N. Buzulukova joined as a component of the Space Weather Modeling Framework (SWMF) in the magnetosphere model run-on-request category. We present modeling results of the ring current and radiation belt models and demonstrate tracking of satellites such as RBSP. Calculations using the magnetic field models include mappings to the magnetic equator or to minimum-B positions and the determination of foot points in the ionosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20010038733&hterms=movie+interpretation&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dmovie%2Binterpretation','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20010038733&hterms=movie+interpretation&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dmovie%2Binterpretation"><span>The UAH Spinning Terrella Experiment: A Laboratory Analog for the Earth's Magnetosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Sheldon, R. B.; Gallagher, D. L.; Craven, P. D.; Whitaker, Ann F. (Technical Monitor)</p> <p>2001-01-01</p> <p>The UAH Spinning Terrella Experiment has been modified to include the effect of a second magnet. This is a simple laboratory demonstration of the well-known double-dipole approximation to the Earth's magnetosphere. In addition, the magnet has been biassed $\\sim$-400V which generates a DC glow discharge and traps it in a ring current around the magnet. This ring current is easily imaged with a digital camera and illustrates several significant topological properties of a dipole field. In particular, when the two dipoles are aligned, and therefore repel, they emulate a northward IMF Bz magnetosphere. Such a geometry traps plasma in the high latitude cusps as can be clearly seen in the movies. Likewise, when the two magnets are anti-aligned, they emulate a southward IMF Bz magnetosphere with direct feeding of plasma through the x-line. We present evidence for trapping and heating of the plasma, comparing the dipole-trapped ring current to the cusp-trapped population. We also present a peculiar asymmetric ring current produced in by the plasma at low plasma densities. We discuss the similarities and dissimilarities of the laboratory analog to the collisionless Earth plasma, and implications for the interpretation of IMAGE data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24800292','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24800292"><span>Type II GaSb quantum ring solar cells under concentrated sunlight.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tsai, Che-Pin; Hsu, Shun-Chieh; Lin, Shih-Yen; Chang, Ching-Wen; Tu, Li-Wei; Chen, Kun-Cheng; Lay, Tsong-Sheng; Lin, Chien-chung</p> <p>2014-03-10</p> <p>A type II GaSb quantum ring solar cell is fabricated and measured under the concentrated sunlight. The external quantum efficiency confirms the extended absorption from the quantum rings at long wavelength coinciding with the photoluminescence results. The short-circuit current of the quantum ring devices is 5.1% to 9.9% more than the GaAs reference's under various concentrations. While the quantum ring solar cell does not exceed its GaAs counterpart in efficiency under one-sun, the recovery of the open-circuit voltages at higher concentration helps to reverse the situation. A slightly higher efficiency (10.31% vs. 10.29%) is reported for the quantum ring device against the GaAs one.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22679585-ibex-ribbon-pickup-ion-ring-stability-outer-heliosheath-theory-hybrid-simulations','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22679585-ibex-ribbon-pickup-ion-ring-stability-outer-heliosheath-theory-hybrid-simulations"><span>THE IBEX RIBBON AND THE PICKUP ION RING STABILITY IN THE OUTER HELIOSHEATH. I. THEORY AND HYBRID SIMULATIONS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Florinski, V.; Heerikhuisen, J.; Niemiec, J.</p> <p>2016-08-01</p> <p>The nearly circular band of energetic neutral atom emission dominating the field of view of the Interplanetary Boundary Explorer ( IBEX ) satellite, is most commonly attributed to the effect of charge exchange of secondary pickup ions (PUIs) gyrating about the magnetic field in the outer heliosheath and the interstellar space beyond. Several models for the PUI dynamics of this mechanism have been proposed, each requiring either strong or weak scattering of the initial pitch angle. Conventional wisdom states that ring distributions tend to generate waves and scatter onto a shell on timescales too short for charge exchange to occur.more » We performed a careful study of ring and thin shell proton distribution stability using theoretical tools and hybrid plasma simulations. We show that the kinetic behavior of a freshly injected proton ring is a far more complicated process than previously thought. In the presence of a warm Maxwellian core, narrower rings could be more stable than broader toroidal distributions. The scattered rings possess a fine structure that can only be revealed using very large numbers of macroparticles in a simulation. It is demonstrated that a “stability gap” in ring temperature exists where the protons could retain large gyrating anisotropies for years, and the wave activity could remain below the level of the ambient magnetic fluctuations in interstellar space. In the directions away from the ribbon, however, a partial shell distribution is more likely to be unstable, leading to significant scattering into one hemisphere in velocity space. The process is accompanied by turbulence production, which is puzzling given the very low level of magnetic fluctuations measured in the outer heliosheath by Voyager 1 .« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22055798-design-cavity-ring-down-spectroscopy-diagnostic-negative-ion-rf-source-spider','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22055798-design-cavity-ring-down-spectroscopy-diagnostic-negative-ion-rf-source-spider"><span>Design of a cavity ring-down spectroscopy diagnostic for negative ion rf source SPIDER</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Pasqualotto, R.; Alfier, A.; Lotto, L.</p> <p>2010-10-15</p> <p>The rf source test facility SPIDER will test and optimize the source of the 1 MV neutral beam injection systems for ITER. Cavity ring-down spectroscopy (CRDS) will measure the absolute line-of-sight integrated density of negative (H{sup -} and D{sup -}) ions, produced in the extraction region of the source. CRDS takes advantage of the photodetachment process: negative ions are converted to neutral hydrogen atoms by electron stripping through absorption of a photon from a laser. The design of this diagnostic is presented with the corresponding simulation of the expected performance. A prototype operated without plasma has provided CRDS reference signals,more » design validation, and results concerning the signal-to-noise ratio.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19810050966&hterms=exponential+current&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dexponential%2Bcurrent','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19810050966&hterms=exponential+current&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dexponential%2Bcurrent"><span>Inference of the ring current ion composition by means of charge exchange decay</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Smith, P. H.; Hoffman, R. A.; Bewtra, N. K.</p> <p>1981-01-01</p> <p>The analysis of data from the Explorer 45 (S3-A) electrostatic analyzer in the energy range 5-30 keV has provided some new results on the ring current ion composition. It has been well established that the storm time ring current has a decay time of several days, during which the particle fluxes decrease nearly monotonically. By analyzing the measured ion fluxes during the several day storm recovery period and assuming that beside hydrogen other ions were present and that the decays were exponential in nature, three separate lifetimes for the ions were established. These fitted decay lifetimes are in excellent agreement with the expected charge exchange decay lifetimes for H(+), O(+) and He(+) in the energy and L value range of the data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19900035878&hterms=quasi+particle&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dquasi%2Bparticle','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19900035878&hterms=quasi+particle&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dquasi%2Bparticle"><span>Particle simulation of ion heating in the ring current</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Qian, S.; Hudson, M. K.; Roth, I.</p> <p>1990-01-01</p> <p>Heating of heavy ions has been observed in the equatorial magnetosphere in GEOS 1 and 2 and ATS 6 data due to ion cyclotron waves generated by anisotropic hot ring current ions. A one-dimensional hybrid-Darwin code has been developed to study ion heating in the ring current. Here, a strong instability and heating of thermal ions is investigated in a plasma with a los cone distribution of hot ions. The linear growth rate calculation and particle simulations are conducted for cases with different loss cones and relative ion densities. The linear instability of the waves, the quasi-linear heating of cold ions and dependence on the thermal H(+)/He(+) density ratio are analyzed, as well as nonlinear parallel heating of thermal ions. Effects of thermal oxygen and hot oxygen are also studied.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/7773117','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/7773117"><span>HIV risk-taking behaviour among injecting drug users currently, previously and never enrolled in methadone treatment.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Baker, A; Kochan, N; Dixon, J; Wodak, A; Heather, N</p> <p>1995-04-01</p> <p>This study compares the injecting and sexual risk-taking behaviour among injecting drug users (IDUs) currently, previously and never enrolled in methadone maintenance treatment (MMT). All subjects had injected during the 6 months prior to the day of interview. The current MMT group showed significantly lower injecting risk-taking behaviour subscale scores on the HIV Risk-taking Behaviour Scale (HRBS) of the Opiate Treatment Index than the previous MMT and non-MMT groups together. The current MMT group differed from the other two groups in the frequency of injecting and cleaning of injection equipment with bleach. There was no difference between the current MMT group and the other two groups combined in sexual risk-taking behaviour scores on the HRBS. There were no differences between the previous MMT and non-MMT groups in injecting and sexual risk-taking behaviour. HIV seroprevalence was low and there was no difference in seroprevalence between groups. Thus, IDUs currently enrolled in MMT are at reduced risk for HIV infection when compared with IDUs who have previously or never been enrolled in MMT. However, the absence of a difference between the current MMT and other two groups in frequency of sharing behaviours suggests the need for additional strategies among MMT clients to reduce needle-sharing. Possible strategies include the application of relapse prevention interventions and the availability of sterile injecting equipment in MMT clinics. Further research is needed to identify factors which increase attraction and retention of IDUs to MMT.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007SPIE.6784E..0WI','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007SPIE.6784E..0WI"><span>Ethernet ring protection with managed FDB using APS payload</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Im, Jinsung; Ryoo, Jeong-dong; Joo, Bheom Soon; Rhee, J.-K. Kevin</p> <p>2007-11-01</p> <p>Ethernet ring protection (ERP) is a new technology based on OAM (operations, administration, and maintenance) being standardized by the ITU-T G.8032 working group. In this paper, we present the recent development of Ethernet ring protection which is called FDB (filtering database) flush scheme and propose a new Ethernet ring protection technique introducing a managed FDB using APS to deliver information how to fix FDB selectively. We discuss the current development of the ERP technology at ITU-T and performance comparisons between different proposals.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20070031162','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20070031162"><span>Self-consistent Model of Magnetospheric Ring Current and Propagating Electromagnetic Ion Cyclotron Waves. 2. Wave Induced Ring Current Precipitation and Thermal Electron Heating</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Khazanov, G. V.; Gamayunov, K. V.; Gallagher, D. L.; Kozyra, J. U.; Liemohn, M. W.</p> <p>2007-01-01</p> <p>This paper continues presentation and discussion of the results from our new global self-consistent theoretical model of interacting ring current ions and propagating electromagnetic ion cyclotron waves [Khazanov et al., 2006]. To study the effects of electromagnetic ion cyclotron wave propagation and refraction on the wave induced ring current precipitation and heating of the thermal plasmaspheric electrons, we simulate the May 1998 storm. The main findings after a simulation can be summarized as follows. Firstly, the wave induced ring current precipitation exhibits quite a lot of fine structure, and is highly organized by location of the plasmapause gradient. The strongest fluxes of about 4 x 10(exp 6) (cm(raised dot) s(raised dot) sr(raised dot) (sup -1)) are observed during the maill and early recovery phases of the storm. The very interesting and probably more important finding is that in a number of cases the most intense precipitating fluxes are not connected to the most intense waves in simple manner. The characteristics of the wave power spectral density distribution over the wave normal angle are extremely crucial for the effectiveness of the ring current ion scattering. Secondly, comparison of the global proton precipitating patterns with the results from RAM [Kozyra et al., 1997a] reveals that although we observe a qualitative agreement between the localizations of the wave induced precipitations in the models, there is no quantitative agreement between the magnitudes of the fluxes. The quantitative differences are mainly due to a qualitative difference between the characteristics of the wave power spectral density distributions over the wave normal angle in RAM and in our model. Thirdly, the heat fluxes to plasmaspheric electrons caused by Landau resonate energy absorption from electromagnetic ion cyclotron waves are observed in the postnoon-premidnight MLT sector, and can reach the magnitude of 10(exp 11) eV/(cm(sup 2)(raised dot)s). The Coulomb energy degradation of the RC H(+) and O(+) ions maximizes at about 10(exp 11) (eV/(cm(sup 2) (raised dot) s), and typically leads to electron energy deposition rates of about 2(raised dot) 10(exp 10) (eV/(cm(sup 2)(raised dot)s) which are observed during two periods; 32-48 hours, and 76-86 hours after 1 May, 0000 UT. The theoretically derived spatial structure of the thermal electron heating caused by interaction of the ring current with the plasmasphere is strongly supported by concurrent and conjugate plasma measurements from the plasmasphere, ring current, and topside ionosphere [Gurgiolo et al., 2005]. Finally, the wave induced intense electron heating has a structure of the spot-like patches along the most enhanced density gradients in the plasmasphere boundary layer and can be a possible driver to the observed but still not explained small-scale structures of enhanced emissions in the stable auroral red arcs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018QS%26T....3c5006H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018QS%26T....3c5006H"><span>Mesoscopic Vortex–Meissner currents in ring ladders</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Haug, Tobias; Amico, Luigi; Dumke, Rainer; Kwek, Leong-Chuan</p> <p>2018-07-01</p> <p>Recent experimental progress have revealed Meissner and Vortex phases in low-dimensional ultracold atoms systems. Atomtronic setups can realize ring ladders, while explicitly taking the finite size of the system into account. This enables the engineering of quantized chiral currents and phase slips in between them. We find that the mesoscopic scale modifies the current. Full control of the lattice configuration reveals a reentrant behavior of Vortex and Meissner phases. Our approach allows a feasible diagnostic of the currents’ configuration through time-of-flight measurements.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20040031476','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20040031476"><span>Nonlinear Gulf Stream Interaction with the Deep Western Boundary Current System: Observations and a Numerical Simulation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Dietrich, David E.; Mehra, Avichal; Haney, Robert L.; Bowman, Malcolm J.; Tseng, Yu-Heng</p> <p>2003-01-01</p> <p>Gulf Stream (GS) separation near its observed Cape Hatteras (CH) separation location, and its ensuing path and dynamics, is a challenging ocean modeling problem. If a model GS separates much farther north than CH, then northward GS meanders, which pinch off warm core eddies (rings), are not possible or are strongly constrained by the Grand Banks shelfbreak. Cold core rings pinch off the southward GS meanders. The rings are often re-absorbed by the GS. The important warm core rings enhance heat exchange and, especially, affect the northern GS branch after GS bifurcation near the New England Seamount Chain. This northern branch gains heat by contact with the southern branch water upstream of bifurcation, and warms the Arctic Ocean and northern seas, thus playing a major role in ice dynamics, thermohaline circulation and possible global climate warming. These rings transport heat northward between the separated GS and shelf slope/Deep Western Boundary Current system (DWBC). This region has nearly level time mean isopycnals. The eddy heat transport convergence/divergence enhances the shelfbreak and GS front intensities and thus also increases watermass transformation. The fronts are maintained by warm advection by the Florida Current and cool advection by the DWBC. Thus, the GS interaction with the DWBC through the intermediate eddy field is climatologically important.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19770020316&hterms=high+current+electron+beam&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dhigh%2Bcurrent%2Belectron%2Bbeam','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19770020316&hterms=high+current+electron+beam&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dhigh%2Bcurrent%2Belectron%2Bbeam"><span>Current-limited electron beam injection</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Stenzel, R. L.</p> <p>1977-01-01</p> <p>The injection of an electron beam into a weakly collisional, magnetized background plasma was investigated experimentally. The injected beam was energetic and cold, the background plasma was initially isothermal. Beam and plasma dimensions were so large that the system was considered unbounded. The temporal and spatial evolution of the beam-plasma system was dominated by collective effects. High-frequency electrostatic instabilities rapidly thermalized the beam and heated the background electrons. The injected beam current was balanced by a return current consisting of background electrons drifting toward the beam source. The drift between electrons and ions gave rise to an ion acoustic instability which developed into strong three-dimensional turbulence. It was shown that the injected beam current was limited by the return current which is approximately given by the electron saturation current. Non-Maxwellian electron distribution functions were observed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22617441-characteristics-persistent-spin-current-components-quasi-periodic-fibonacci-ring-spinorbit-interactions-prediction-spinorbit-coupling-site-energy','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22617441-characteristics-persistent-spin-current-components-quasi-periodic-fibonacci-ring-spinorbit-interactions-prediction-spinorbit-coupling-site-energy"><span>Characteristics of persistent spin current components in a quasi-periodic Fibonacci ring with spin–orbit interactions: Prediction of spin–orbit coupling and on-site energy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Patra, Moumita; Maiti, Santanu K., E-mail: santanu.maiti@isical.ac.in</p> <p></p> <p>In the present work we investigate the behavior of all three components of persistent spin current in a quasi-periodic Fibonacci ring subjected to Rashba and Dresselhaus spin–orbit interactions. Analogous to persistent charge current in a conducting ring where electrons gain a Berry phase in presence of magnetic flux, spin Berry phase is associated during the motion of electrons in presence of a spin–orbit field which is responsible for the generation of spin current. The interplay between two spin–orbit fields along with quasi-periodic Fibonacci sequence on persistent spin current is described elaborately, and from our analysis, we can estimate the strengthmore » of any one of two spin–orbit couplings together with on-site energy, provided the other is known. - Highlights: • Determination of Rashba and Dresselhaus spin–orbit fields is discussed. • Characteristics of all three components of spin current are explored. • Possibility of estimating on-site energy is given. • Results can be generalized to any lattice models.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3899853','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3899853"><span>Writing with ring currents: selectively hydrogenated polycyclic aromatics as finite models of graphene and graphane</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Fowler, Patrick W.; Gibson, Christopher M.; Bean, David E.</p> <p>2014-01-01</p> <p>Alternating partial hydrogenation of the interior region of a polycyclic aromatic hydrocarbon gives a finite model system representing systems on the pathway from graphene to the graphane modification of the graphene sheet. Calculations at the DFT and coupled Hartree–Fock levels confirm that sp2 cycles of bare carbon centres isolated by selective hydrogenation retain the essentially planar geometry and electron delocalization of the annulene that they mimic. Delocalization is diagnosed by the presence of ring currents, as detected by ipsocentric calculation and visualization of the current density induced in the π system by a perpendicular external magnetic field. These induced ‘ring’ currents have essentially the same sense, strength and orbital origin as in the free hydrocarbon. Subjected to the important experimental proviso of the need for atomic-scale control of hydrogenation, this finding predicts the possibility of writing single, multiple and concentric diatropic and/or paratropic ring currents on the graphene/graphane sheet. The implication is that pathways for free flow of ballistic current can be modelled in the same way. PMID:24611026</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013APS..DMP.D1088V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013APS..DMP.D1088V"><span>Developing Density of Laser-Cooled Neutral Atoms and Molecules in a Linear Magnetic Trap</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Velasquez, Joe, III; Walstrom, Peter; di Rosa, Michael</p> <p>2013-05-01</p> <p>In this poster we show that neutral particle injection and accumulation using laser-induced spin flips may be used to form dense ensembles of ultracold magnetic particles, i.e., laser-cooled paramagnetic atoms and molecules. Particles are injected in a field-seeking state, are switched by optical pumping to a field-repelled state, and are stored in the minimum-B trap. The analogous process in high-energy charged-particle accumulator rings is charge-exchange injection using stripper foils. The trap is a linear array of sextupoles capped by solenoids. Particle-tracking calculations and design of our linear accumulator along with related experiments involving 7Li will be presented. We test these concepts first with atoms in preparation for later work with selected molecules. Finally, we present our preliminary results with CaH, our candidate molecule for laser cooling. This project is funded by the LDRD program of Los Alamos National Laboratory.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011JLTP..162..340Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011JLTP..162..340Y"><span>Transition to Quantum Turbulence and the Propagation of Vortex Loops at Finite Temperatures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yamamoto, Shinji; Adachi, Hiroyuki; Tsubota, Makoto</p> <p>2011-02-01</p> <p>We performed numerical simulation of the transition to quantum turbulence and the propagation of vortex loops at finite temperatures in order to understand the experiments using vibrating wires in superfluid 4He by Yano et al. We injected vortex rings to a finite volume in order to simulate emission of vortices from the wire. When the injected vortices are dilute, they should decay by mutual friction. When they are dense, however, vortex tangle are generated through vortex reconnections and emit large vortex loops. The large vortex loops can travel a long distance before disappearing, which is much different from the dilute case. The numerical results are consistent with the experimental results.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/783169','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/783169"><span>MEASURED TRANSVERSE COUPLING IMPEDANCE OF RHIC INJECTION AND ABORT KICKERS.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>HAHN,H.; DAVINO,D.</p> <p>2001-06-18</p> <p>Concerns regarding possible transverse instabilities in RHIC and the SNS pointed to the need for measurements of the transverse coupling impedance of ring components. The impedance of the RHIC injection and abort kicker was measured using the conventional method based on the S{sub 21} forward transmission coefficient. A commercial 450 {Omega} twin-wire Lecher line were used and the data was interpreted via the log-formula. All measurements, were performed in test stands fully representing operational conditions including pulsed power supplies and connecting cables. The measured values for the transverse coupling impedance in kick direction and perpendicular to it are comparable inmore » magnitude, but differ from Handbook predictions.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1392223','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1392223"><span>eRHIC Beam Scrubbing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Zhang, S. Y.</p> <p></p> <p>We propose using beam scrubbing to mitigate the electron cloud effect in the eRHIC. The bunch number is adjusted below the heat load limit, then it increases with the reduced secondary electron yield resulted from the beam scrubbing, up to the design bunch number. Since the electron density threshold of beam instability is lower at the injection, a preliminary injection scrubbing should go first, where large chromaticity can be used to keep the beam in the ring for scrubbing. After that, the beam can be ramped to full energy, allowing physics scrubbing. Simulations demonstrated that with beam scrubbing in amore » reasonable period of time, the eRHIC baseline design is feasible.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018Semic..52..535K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018Semic..52..535K"><span>Electronic States and Persistent Currents in Nanowire Quantum Ring</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kokurin, I. A.</p> <p>2018-04-01</p> <p>The new model of a quantum ring (QR) defined inside a nanowire (NW) is proposed. The one-particle Hamiltonian for electron in [111]-oriented NW QR is constructed taking into account both Rashba and Dresselhaus spin-orbit coupling (SOC). The energy levels as a function of magnetic field are found using the exact numerical diagonalization. The persistent currents (both charge and spin) are calculated. The specificity of SOC and arising anticrossings in energy spectrum lead to unusual features in persistent current behavior. The variation of magnetic field or carrier concentration by means of gate can lead to pure spin persistent current with the charge current being zero.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3090378','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3090378"><span>Understanding and meeting injection device needs in multiple sclerosis: a survey of patient attitudes and practices</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Verdun di Cantogno, Elisabetta; Russell, Susan; Snow, Tom</p> <p>2011-01-01</p> <p>Background: All established disease-modifying drugs for multiple sclerosis require parenteral administration, which can cause difficulties for some patients, sometimes leading to suboptimal adherence. A new electronic autoinjection device has been designed to address these issues. Methods: Patients with relapsing multiple sclerosis currently receiving subcutaneous or intramuscular interferon beta-1a, interferon beta-1b, or glatiramer acetate completed an online questionnaire (July 4–25, 2008) that surveyed current injection practices, experiences with current injection methods, and impressions and appeal of the new device. Results: In total, 422 patients completed the survey, of whom 44% used autoinjectors, 43% prefilled syringes, and 13% syringes and vials; overall, 66% currently self-injected. Physical and psychological barriers to self-injection included difficulty with injections, needle phobia, and concerns over correct injection technique. Only 40% of respondents were “very satisfied” with their current injection method. The new electronic autoinjector was rated as “very appealing” by 65% of patients. The benefits of the new device included the ability to customize injection settings and to review dosing history. Conclusion: New technologies may help patients overcome physical and psychological barriers to self-injection. The combination of a reliable and flexible autoinjection device with dose-monitoring technology may improve communication between health care professionals and patients, and improve treatment adherence. PMID:21573048</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910048921&hterms=diode+laser+CW&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Ddiode%2Blaser%2BCW','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910048921&hterms=diode+laser+CW&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Ddiode%2Blaser%2BCW"><span>Low-threshold, CW, all-solid-state Ti:Al2O3 laser</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Harrison, James; Finch, Andrew; Rines, David M.; Rines, Glen A.; Moulton, Peter F.</p> <p>1991-01-01</p> <p>A CW Ti:Al2O3 ring laser with a threshold power of 119 mW is demonstrated. It provides a tunable source of single-frequency, diffraction-limited radiation that is suitable for injection seeding. The Ti:Al2O3 laser is operated with a diode-laser-pumped, frequency-doubled, Nd:YAG laser as the sole pump source.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012APS..DFDR11002N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012APS..DFDR11002N"><span>Microfluidic separation of motile sperm with millilitre-scale sample capacity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nosrati, Reza; Vollmer, Marion; Eamer, Lise; Zeidan, Krista; San Gabriel, Maria C.; Zini, Armand; Sinton, David</p> <p>2012-11-01</p> <p>Isolating motile from non-motile spermatozoa has been a challenge since the establishment of in vitro fertilization. Microfluidic approaches have been employed for this purpose, but current devices are limited by low sample volume. Here, we present a high-throughput microfluidic device that separates spermatozoa from one millilitre of raw semen sample based on the hydrodynamic characteristics of swimming sperm in a confined geometry. The device consists of two layers: an outer injection ring on top aligned with a network of radial microchannels at the bottom guiding motile sperm into an inner collection chamber. This approach (1) maximizes exposure of the sperm to the fluid channels, (2) maximizes surface area density (3) prevents fluid flow bias, and (4) employs a non-Newtonian viscoelastic medium consistent with the in vivo environment. Tests with human and bull spermatozoa indicate an increase in motile sperm concentration from 62.2% in raw semen to 99.2% in separated sample combined with a higher incidence of normal morphology. DNA integrity testing is currently underway. In conclusion, we present an effective one-step procedure to perform semen purification and separation on a millilitre-scale with clinically relevant numbers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PSST...27e5020A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PSST...27e5020A"><span>Laser collisional induced fluorescence electron density measurements as a function of ring bias and the onset of anode spot formation in a ring cusp magnetic field</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Arthur, N. A.; Foster, J. E.; Barnat, E. V.</p> <p>2018-05-01</p> <p>Two-dimensional electron density measurements are made in a magnetic ring cusp discharge using laser collisional induced fluorescence. The magnet rings are isolated from the anode structure such that they can be biased independently in order to modulate electron flows through the magnetic cusps. Electron density images are captured as a function of bias voltage in order to assess the effects of current flow through the cusp on the spatial extent of the cusp. We anticipated that for a fixed current density being funneled through the magnetic cusp, the leak width would necessarily increase. Unexpectedly, the leak width, as measured by LCIF images, does not increase. This suggests that the current density is not constant, and that possibly either electrons are being heated or additional ionization events are occurring within the cusp. Spatially resolving electron temperature would be needed to determine if electrons are being heated within the cusp. We also observe breakdown of the anode magnetosheath and formation of anode spots at high bias voltage.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27165308','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27165308"><span>Hot Melt Extruded and Injection Moulded Dosage Forms: Recent Research and Patents.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Major, Ian; McConville, Christopher</p> <p>2015-01-01</p> <p>Hot Melt Extrusion (HME) and Injection Moulding (IM) are becoming more prevalent in the drug delivery field due to their continuous nature and advantages over current pharmaceutical manufacturing techniques. Hot melt extrusion (HME) is a process that involves the use of at least one reciprocating screw to force a thermoplastic resin along a heated barrel and through a die, while injection moulding is a forming process were molten polymer is forced at high pressure to enter a mould. HME offers a number of advantages over conventional pharmaceutical manufacturing techniques such as increased solubility and bioavailability of poorly water soluble drugs, a solvent free and continuous process, improved content uniformity and flexibility in manufacture. Injection moulding (IM) has been recognised as a rapid and versatile manufacturing technique, which has the advantages of being a continuous process, which is easily scaled up by the use of larger equipment and moulds. However, despite their advantages and the significant number of publications and patents on HME and IM drug delivery devices there are very few marketed formulations. These marketed products range from oral dosage forms which improve bioavailability and reduce pill burden to vaginal rings which provide long-term controlled release thus improving patient compliance. The patenting strategy for IM and HME seems to be focused towards patenting the finished product, more so than patenting the manufacturing process. This is probably due to the fact that the IM and HME processes have already been patented. HME is a process where raw materials (i.e. polymer, plasticizer, drug etc.) are mixed and pumped along by a rotating screw(s) at elevated temperatures through a die to produce a product of uniform shape. IM is similar to HME except that the raw materials are pushed into a mould which is set at lower temperatures. Interest in the use of HME and IM within the pharmaceutical industry is growing with as steady increase in the number of HME patents being issued and with more than 10 products, ranging from oral dosage forms to implantable devices, currently on the market. Therefore, this review of HME and IM is important to the scientific community to further understand and advance these novel and exciting manufacturing techniques.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007OExpr..15.8619F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007OExpr..15.8619F"><span>Optical ferris wheel for ultracold atoms</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Franke-Arnold, S.; Leach, J.; Padgett, M. J.; Lembessis, V. E.; Ellinas, D.; Wright, A. J.; Girkin, J. M.; Ohberg, P.; Arnold, A. S.</p> <p>2007-07-01</p> <p>We propose a versatile optical ring lattice suitable for trapping cold and quantum degenerate atomic samples. We demonstrate the realisation of intensity patterns from pairs of Laguerre-Gauss (exp(iℓө) modes with different ℓ indices. These patterns can be rotated by introducing a frequency shift between the modes. We can generate bright ring lattices for trapping atoms in red-detuned light, and dark ring lattices suitable for trapping atoms with minimal heating in the optical vortices of blue-detuned light. The lattice sites can be joined to form a uniform ring trap, making it ideal for studying persistent currents and the Mott insulator transition in a ring geometry.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19303230','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19303230"><span>Sudden death associated with intravenous injection of toad extract.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kostakis, Chris; Byard, Roger W</p> <p>2009-07-01</p> <p>A 24-year-old male died suddenly following the intravenous injection of what was believed to be the ring-derivate amphetamine 'ecstasy' (MDMA). Toxicological analyses of the victim's blood and the injected material, however, failed to reveal MDMA, but showed instead low levels of bufotenine, a tryptamine derivative alkaloid found in the secretions of various toads. In addition, resibufogenin, cinobufagin and bufalin, bufadienolides that are also found in toad venom, were identified in the injected material. While these substances also occur in certain South American plants, the finding of paracetamol, promethazine and diclofenac would be in keeping with ingredients found in the traditional Chinese herbal product Chan Su that derives from the skin glands and secretions of toads and that is often adulterated with standard pharmaceutical drugs. This case demonstrates the problems that users and sellers may encounter from the unknown composition of street drugs and herbal medicines, and the danger that may be incurred from the injection of such materials. It also shows the difficulties that may be associated with attempting to identify low levels of organic toxins in postmortem specimens necessitating a targeted screening approach guided by information obtained at the death scene.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011JGRA..116.0J17F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011JGRA..116.0J17F"><span>Modeling the superstorm in November 2003</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fok, Mei-Ching; Moore, Thomas E.; Slinker, Steve P.; Fedder, Joel A.; Delcourt, Dominique C.; Nosé, Masahito; Chen, Sheng-Hsien</p> <p>2011-01-01</p> <p>The superstorm on 20-21 November 2003 was the largest geomagnetic storm in solar cycle 23 as measured by Dst, which attained a minimum value of -422 nT. We have simulated this storm to understand how particles originating from the solar wind and ionosphere get access to the magnetosphere and how the subsequent transport and energization processes contribute to the buildup of the ring current. The global electromagnetic configuration and the solar wind H+ distribution are specified by the Lyon-Fedder-Mobarry (LFM) magnetohydrodynamics model. The outflow of H+ and O+ ions from the ionosphere are also considered. Their trajectories in the magnetosphere are followed by a test-particle code. The particle distributions at the inner plasma sheet established by the LFM model and test-particle calculations are then used as boundary conditions for a ring current model. Our simulations reproduce the rapid decrease of Dst during the storm main phase and the fast initial phase of recovery. Shielding in the inner magnetosphere is established at early main phase. This shielding field lasts several hours and then breaks down at late main phase. At the peak of the storm, strong penetration of ions earthward to L shell of 1.5 is revealed in the simulation. It is surprising that O+ is significant but not the dominant species in the ring current in our calculation for this major storm. It is very likely that substorm effects are not well represented in the models and O+ energization is underestimated. Ring current simulation with O+ energy density at the boundary set comparable to Geotail observations produces excellent agreement with the observed symH. As expected in superstorms, ring current O+ is the dominant species over H+ during the main to midrecovery phase of the storm.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMSM21A..04K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMSM21A..04K"><span>Impact of Near-Earth Plasma Sheet Dynamics on the Ring Current Composition</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kistler, L. M.; Mouikis, C.; Menz, A.; Spence, H. E.; Mitchell, D. G.; Gkioulidou, M.; Lanzerotti, L. J.; Skoug, R. M.; Larsen, B.; Claudepierre, S. G.; Fennell, J. F.; Blake, J. B.</p> <p>2014-12-01</p> <p>How the dynamics in the near-earth plasma sheet affects the heavy ion content, and therefore the ion pressure, of the ring current in Earth's magnetosphere is an outstanding question. Substorms accelerate plasma in the near-earth region and drive outflow from the aurora, and both these processes can preferentially enhance the population of heavy ions in this region. These heavy ions are then driven into the inner magnetosphere during storms. Thus understanding how the composition of the ring current changes requires simultaneous observations in the near-earth plasma sheet and in the inner magnetosphere. We use data from the CODIF instrument on Cluster and HOPE, RBSPICE, and MagEIS instruments on the Van Allen Probes to study the acceleration and transport of ions from the plasma sheet into the ring current. During the main phase of a geomagnetic storm on Aug 4-6, 2013, the Cluster spacecraft were moving inbound in the midnight central plasma sheet, while the apogees of the two Van Allen Probes were located on the duskside. The Cluster spacecraft measure the composition and spectral changes in the plasma sheet, while the Van Allen Probes measure the ions that reach the inner magnetosphere. A strong increase in 1-40 keV O+ was observed at the Cluster location during the storm main phase, and the Van Allen Probes observed both H+ and O+ being driven deep into the inner magnetosphere. By comparing the variations in phase space density (PSD) vs. magnetic moment at the Cluster and the Van Allen Probes locations, we examine how the composition changes non-adiabatically in the near-earth plasma sheet, and how those changes are propagated into the inner magnetosphere, populating the hto ion ring current.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1993JGR....98..215H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1993JGR....98..215H"><span>Loss of ring current O+ ions due to interaction with Pc 5 waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hudson, Mary; Chan, Anthony; Roth, Ilan</p> <p>1993-01-01</p> <p>The behavior of ring current ions in low-frequency geomagnetic pulsations is investigated analytically and numerically. We focus primarily on ring current O+ ions, whose flux increases dramatically during geomagnetic storms and decays at a rate which is not fully explained by collisional processes. This paper presents a new loss mechanism for the O+ ions due to the combined effects of convection and corotation electric fields and interaction with Pc 5 waves (wave period: 150-600 s) via a magnetic drift-bounce resonance. A test particle code has been developed to calculate the motion of the ring current O+ ions in a time-independent dipole magnetic field, and convection and corotation electric fields, plus Pc 5 wave fields, for which a simple analytical model has been formulated based on spacecraft observations. For given fields, whether a particle gains or loses energy depends on its initial kinetic energy, pitch angle at the equatorial plane, and the position of its guiding center with respect to the azimuthal phase of the wave. The ring current O+ ions show a dispersion in energies and L values with decreasing local time across the dayside, and a bulk shift to lower energies and higher L values. The former is due to the wave-particle interaction causing the ion to gain or lose energy, while the latter is due to the convection electric field. Our simulations show that, due to the interaction with the Pc 5 waves, the particle's kinetic energy can drop below that required to overcome the convection potential and the particle will be lost to the dayside magnetopause by a sunward E×B drift. This may contribute to the loss of O+ ions at intermediate energies (tens of keV) observed during the recovery phase of geomagnetic storms.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1253959-beam-studies-spear3-synchrotron-using-digital-optical-mask','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1253959-beam-studies-spear3-synchrotron-using-digital-optical-mask"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Zhang, H. D.; Fiorito, R. B.; Corbett, J.</p> <p></p> <p>The 3GeV SPEAR3 synchrotron light source operates in top-up injection mode with up to 500 mA circulating in the storage ring (equivalently 392 nC). Each injection pulse contains 40–80 pC producing a contrast ratio between total stored charge and injected charge of about 6500:1. In order to study transient injected beam dynamics during user operations, it is desirable to optically image the injected pulse in the presence of the bright stored beam. In the present work this is done by imaging the visible component of the synchrotron radiation onto a digital micro-mirror-array device (DMD), which is then used as anmore » optical mask to block out light from the bright central core of the stored beam. The physical masking, together with an asynchronously-gated, ICCD imaging camera, makes it possible to observe the weak injected beam component on a turn-by-turn basis. The DMD optical masking system works similar to a classical solar coronagraph but has some distinct practical advantages: i.e. rapid adaption to changes in the shape of the stored beam, a high extinction ratio for unwanted light and minimum scattering from the primary beam into the secondary optics. In this paper we describe the DMD masking method, features of the high dynamic range point spread function for the SPEAR3 optical beam line and measurements of the injected beam in the presence of the stored beam.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1251203','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1251203"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Zhang, Hao; Fiorito, Ralph; Corbett, Jeff</p> <p></p> <p>The 3GeV SPEAR3 synchrotron light source operates in top-up injection mode with up to 500mA circulating in the storage ring (equivalently 392nC). Each injection pulse contains only 40-80 pC producing a contrast ratio between total stored charge and injected charge of about 6500:1. In order to study transient injected beam dynamics during User operations, it is desirable to optically image the injected pulse in the presence of the bright stored beam. In the present work this is done by re-imaging visible synchrotron radiation onto a digital micro-mirror-array device (DMD), which is then used as an optical mask to block outmore » light from the bright central core of the stored beam. The physical masking, together with an asynchronously-gated, ICCD imaging camera makes it is possible to observe the weak injected beam component on a turn-by-turn basis. The DMD optical masking system works similar to a classical solar coronagraph but has some distinct practical advantages: i.e. rapid adaption to changes in the shape of the stored beam, high extinction ratio for unwanted light and minimum scattering from the primary beam into the secondary optics. In this paper we describe the DMD masking method, features of the high dynamic range point spread function for the SPEAR3 optical beam line and measurements of the injected beam in the presence of the stored beam.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PTEP.2017i3G01H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PTEP.2017i3G01H"><span>Beam-based compensation of extracted-beam displacement caused by field ringing of pulsed kicker magnets in the 3 GeV rapid cycling synchrotron of the Japan Proton Accelerator Research Complex</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Harada, Hiroyuki; Saha, Pranab Kumar; Tamura, Fumihiko; Meigo, Shin-ichiro; Hotchi, Hideaki; Hayashi, Naoki; Kinsho, Michikazu; Hasegawa, Kazuo</p> <p>2017-09-01</p> <p>Commissioned in October 2007, the 3 GeV rapid cycling synchrotron (RCS) of the Japan Proton Accelerator Research Complex was designed for a high-intensity output beam power of 1 MW. The RCS extracts 3 GeV proton beams of two bunches by using eight pulsed kicker magnets and three DC septum magnets with 25 Hz repetition. These beams are delivered to a materials and life science experimental facility (MLF) and a 50 GeV main ring synchrotron (MR). However, the flat-top fields of the kicker magnets experience ringing that displaces the position of the extracted beam. This displacement is a major issue from the viewpoint of target integrity at the MLF and emittance growth at MR injection. To understand the flat-top uniformity of the total field of all the kickers, the uniformity was measured as the displacement of the extracted beams by using a shorter bunched beam and scanning the entire trigger timing of the kickers. The beam displacement of the first bunch exceeded the required range. Therefore, we performed beam-based measurements kicker by kicker to understand each field-ringing effect, and then we understood the characteristics (strength and temporal structure) of each ringing field. We managed to cancel out the ringing by using all the beam-based measurement data and optimizing each trigger timing. As a result, the field-ringing effect of the kickers was successfully compensated by optimizing the trigger timing of each kicker without hardware upgrades or improvements to the kicker system. By developing an automatic monitoring and correction system, we now have a higher stability of extracted beams during routine user operation. In this paper, we report our procedure for ringing compensation and present supporting experimental results.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014ChPhC..38j7003X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014ChPhC..38j7003X"><span>Conditioning of BPM pickup signals for operations of the Duke storage ring with a wide range of single-bunch current</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xu, Wei; Li, Jing-Yi; Huang, Sen-Lin; Z. Wu, W.; Hao, H.; P., Wang; K. Wu, Y.</p> <p>2014-10-01</p> <p>The Duke storage ring is a dedicated driver for the storage ring based oscillator free-electron lasers (FELs), and the High Intensity Gamma-ray Source (HIGS). It is operated with a beam current ranging from about 1 mA to 100 mA per bunch for various operations and accelerator physics studies. High performance operations of the FEL and γ-ray source require a stable electron beam orbit, which has been realized by the global orbit feedback system. As a critical part of the orbit feedback system, the electron beam position monitors (BPMs) are required to be able to precisely measure the electron beam orbit in a wide range of the single-bunch current. However, the high peak voltage of the BPM pickups associated with high single-bunch current degrades the performance of the BPM electronics, and can potentially damage the BPM electronics. A signal conditioning method using low pass filters is developed to reduce the peak voltage to protect the BPM electronics, and to make the BPMs capable of working with a wide range of single-bunch current. Simulations and electron beam based tests are performed. The results show that the Duke storage ring BPM system is capable of providing precise orbit measurements to ensure highly stable FEL and HIGS operations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19850045555&hterms=convection+currents&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dconvection%2Bcurrents','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19850045555&hterms=convection+currents&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dconvection%2Bcurrents"><span>Rotary motions and convection as a means of regulating primary production in warm core rings. [of ocean currents</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Yentsch, C. S.; Phinney, D. A.</p> <p>1985-01-01</p> <p>The term 'ring' is generally used in the case of a subdivision of ocean eddies. in the present investigation, it denotes mesoscale features which are spawned by the Gulf Stream. This investigation is concerned with the mechanism involved in the regulation of the growth of phytoplankton by the physical oceanographic features of rings. Gulf Stream rings were first observed by Parker (1971) and Fuglister (1972) as a result of extensive temperature measurements from ships in the Gulf Stream. Attention is given to changes in density boundaries associated with the rotation of rings, a synthetic model of a newly formed warm core ring, convection-stabilization, the role of light, the influence of convective overturn in adding nutrients to surface waters of warm core rings, and two major areas which require study.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3886282','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3886282"><span>Association between prescription drug misuse and injection among runaway and homeless youth</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Al-Tayyib, Alia A; Rice, Eric; Rhoades, Harmony; Riggs, Paula</p> <p>2013-01-01</p> <p>Background The nonmedical use of prescription drugs is the fastest growing drug problem in the United States, disproportionately impacting youth. Furthermore, the population prevalence of injection drug use among youth is also on the rise. This short communication examines the association between current prescription drug misuse (PDM) and injection among runaway and homeless youth. Methods Homeless youth were surveyed between October, 2011 and February, 2012 at two drop-in service agencies in Los Angeles, CA. Prevalence ratios (PR) and 95% confidence intervals (CI) for the association between current PDM and injection behavior were estimated. The outcome of interest was use of a needle to inject any illegal drug into the body during the past 30 days. Results Of 380 homeless youth (median age, 21; IQR, 17-25; 72% male), 84 (22%) reported current PDM and 48 (13%) reported currently injecting. PDM during the past 30 days was associated with a 7.7 (95% CI: 4.4, 13.5) fold increase in the risk of injecting during that same time. Among those reporting current PDM with concurrent heroin, cocaine, and methamphetamine use, the PR with injection was 15.1 (95% CI: 8.5, 26.8). Conclusions Runaway and homeless youth are at increased risk for a myriad of negative outcomes. Our preliminary findings are among the first to show the strong association between current PDM and injection in this population. Our findings provide the basis for additional research to delineate specific patterns of PDM and factors that enable or inhibit transition to injection among homeless and runaway youth. PMID:24300900</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24300900','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24300900"><span>Association between prescription drug misuse and injection among runaway and homeless youth.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Al-Tayyib, Alia A; Rice, Eric; Rhoades, Harmony; Riggs, Paula</p> <p>2014-01-01</p> <p>The nonmedical use of prescription drugs is the fastest growing drug problem in the United States, disproportionately impacting youth. Furthermore, the population prevalence of injection drug use among youth is also on the rise. This short communication examines the association between current prescription drug misuse (PDM) and injection among runaway and homeless youth. Homeless youth were surveyed between October 2011 and February 2012 at two drop-in service agencies in Los Angeles, CA. Prevalence ratios (PR) and 95% confidence intervals (CI) for the association between current PDM and injection behavior were estimated. The outcome of interest was use of a needle to inject any illegal drug into the body during the past 30 days. Of 380 homeless youth (median age, 21; IQR, 17-25; 72% male), 84 (22%) reported current PDM and 48 (13%) reported currently injecting. PDM during the past 30 days was associated with a 7.7 (95% CI: 4.4, 13.5) fold increase in the risk of injecting during that same time. Among those reporting current PDM with concurrent heroin, cocaine, and methamphetamine use, the PR with injection was 15.1 (95% CI: 8.5, 26.8). Runaway and homeless youth are at increased risk for a myriad of negative outcomes. Our preliminary findings are among the first to show the strong association between current PDM and injection in this population. Our findings provide the basis for additional research to delineate specific patterns of PDM and factors that enable or inhibit transition to injection among homeless and runaway youth. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>