Science.gov

Sample records for ring hera measurements

  1. Precision QCD measurements at HERA

    NASA Astrophysics Data System (ADS)

    Pirumov, Hayk

    2014-11-01

    A review of recent experimental results on perturbative QCD from the HERA experiments H1 and ZEUS is presented. All inclusive deep inelastic cross sections measured by the H1 and ZEUS collaborations in neutral and charged current unpolarised ep scattering are combined. They span six orders of magnitude in negative four-momentum-transfer squared, Q2, and in Bjorken x. This data set is used as the sole input to NLO and NNLO QCD analyses to determine new sets of parton distributions, HERAPDF2.0, with small experimental uncertainties and an estimate of model and parametrisation uncertainties. Also shown are new results on inclusive jet, dijet and trijet differential cross sections measured in neutral current deep inelastic scattering. The precision jet data is used to extract the strong coupling αs at NLO with small experimental errors.

  2. Measurements of Heavy Flavour Photoproduction at HERA

    NASA Astrophysics Data System (ADS)

    Mergelmeyer, Sebastian

    2013-12-01

    Recent measurements of open charm and beauty photoproduction with the H1 and ZEUS detectors at the e±p-collider HERA are presented. These measurements reveal valuable details about the inner structure of the proton and the photon, the fragmentation of quarks into jets, and allow tests of perturbative QCD. Various experimental techniques were employed to identify and extract the heavy-quark signal. Their results are discussed, and compared to each other and to NLO QCD calculations. In addition the determination of charm fragmentation fractions is presented.

  3. The HERA-B ring imaging Cherenkov counter

    NASA Astrophysics Data System (ADS)

    Ariño, I.; Bastos, J.; Broemmelsiek, D.; Carvalho, J.; Chmeissani, M.; Conde, P.; Davila, J.; Dujmić, D.; Eckmann, R.; Garrido, L.; Gascon, D.; Hamacher, T.; Gorišek, A.; Ivaniouchenkov, I.; Ispirian, M.; Karabekian, S.; Kim, M.; Korpar, S.; Križan, P.; Kupper, S.; Lau, K.; Maas, P.; McGill, J.; Miquel, R.; Murthy, N.; Peralta, D.; Pestotnik, R.; Pyrlik, J.; Ramachandran, S.; Reeves, K.; Rosen, J.; Schmidt-Parzefall, W.; Schwarz, A.; Schwitters, R. F.; Siero, X.; Starič, M.; Stanovnik, A.; Škrk, D.; Živko, T.

    2004-01-01

    The HERA-B RICH uses a radiation path length of 2.8 m in C 4F 10 gas and a large 24 m2 spherical mirror for imaging Cherenkov rings. The photon detector consists of 2240 Hamamatsu multi-anode photomultipliers with about 27 000 channels. A 2:1 reducing two-lens telescope in front of each photomultiplier tube increases the sensitive area at the expense of increased pixel size, resulting in a contribution to the resolution which roughly matches that of dispersion. The counter was completed in January of 1999, and its performance has been steady and reliable over the years it has been in operation. The design performance of the Ring Imaging Cherenkov counter was fully reached: the average number of detected photons in the RICH for a β=1 particle was found to be 33 with a single-hit resolution of 0.7 and 1 mrad in the fine and coarse granularity regions, respectively.

  4. Precision QCD measurements in DIS at HERA

    NASA Astrophysics Data System (ADS)

    Britzger, Daniel

    2016-08-01

    New and recent results on QCD measurements from the H1 and ZEUS experiments at the HERA ep collider are reviewed. The final results on the combined deep-inelastic neutral and charged current cross-sections are presented and their role in the extractions of parton distribution functions (PDFs) is studied. The PDF fits give insight into the compatibility of QCD evolution and heavy flavor schemes with the data as a function of kinematic variables such as the scale Q2. Measurements of jet production cross-sections in ep collisions provide direct proves of QCD and extractions of the strong coupling constants are performed. Charm and beauty cross-section measurements are used for the determination of the heavy quark masses. Their role in PDF fits is investigated. In the regime of diffractive DIS and photoproduction, dijet and prompt photon production cross-sections provide insights into the process of factorization and the nature of the diffractive exchange.

  5. New Results from Experiments at the HERA Storage Ring and from ARGUS

    NASA Astrophysics Data System (ADS)

    Wegener, D.

    1994-10-01

    Recent results from the ep storage ring HERA and from the e+e- storage ring DORIS II are discussed. Special emphasis is given to the specific layout of the detectors and to the progress in calorimetry achieved in the last few years. The impact of the ARGUS experiment on B- and π-physics is discussed.

  6. First measurement of the charged current cross section at HERA

    NASA Astrophysics Data System (ADS)

    Ahmed, T.; Andreev, V.; Andrieu, B.; Appuhn, R.-D.; Arpagaus, M.; Babaev, A.; Bán, J.; Baranov, P.; Barrelet, E.; Bartel, W.; Barth, M.; Bassler, U.; Beck, H. P.; Behrend, H.-J.; Belousov, A.; Berger, Ch.; Bergstein, H.; Bernardi, G.; Bernet, R.; Bertrand-Coremans, G.; Besançon, M.; Biddulph, P.; Bizot, J. C.; Blobel, V.; Borras, K.; Boudry, V.; Braemer, A.; Brasse, F.; Braunschweig, W.; Brisson, V.; Bruncko, D.; Brune, C.; Büngener, L.; Bürger, J.; Büsser, F. W.; Buniatian, A.; Burke, S.; Buschhorn, G.; Campbell, A. J.; Carli, T.; Charles, F.; Clarke, D.; Clegg, A. B.; Colombo, M.; Coughlan, J. A.; Courau, A.; Coutures, Ch.; Cozzika, G.; Criegee, L.; Cussans, D. G.; Cvach, J.; Dagoret, S.; Dainton, J. B.; Danilov, M.; Dann, A. W. E.; Dau, W. D.; Daum, K.; David, M.; Deffur, E.; Delcourt, B.; Del Buono, L.; De Roeck, A.; De Wolf, E.; Dollfus, C.; Dowell, J. D.; Dreis, H. B.; Duboc, J.; Düllmann, D.; Dünger, O.; Duhm, H.; Ebert, J.; Ebert, T. R.; Eckerlin, G.; Efremenko, V.; Egli, S.; Ehrlichmann, H.; Eichenberger, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Ellison, R. J.; Elsen, E.; Erdmann, M.; Evrard, E.; Favart, L.; Fedotov, A.; Feeken, D.; Felst, R.; Feltesse, J.; Ferencei, J.; Ferrarotto, F.; Flamm, K.; Flauger, W.; Fleischer, M.; Flieser, M.; Flügge, G.; Fomenko, A.; Fominykh, B.; Forbush, M.; Formánek, J.; Foster, J. M.; Franke, G.; Fretwurst, E.; Gabathuler, E.; Gamerdinger, K.; Garvey, J.; Gayler, J.; Gebauer, M.; Gellrich, A.; Genzel, H.; Gerhards, R.; Goerlach, U.; Goerlich, L.; Gogitidze, N.; Goldberg, M.; Goldner, D.; Goodall, A. M.; Gorelov, I.; Goritchev, P.; Grab, C.; Grässler, H.; Grässler, R.; Greenshaw, T.; Grindhammer, G.; Gruber, C.; Haack, J.; Haidt, D.; Hajduk, L.; Hamon, O.; Hampel, M.; Hanlon, E. M.; Hapke, M.; Haynes, W. J.; Heatherington, J.; Hedberg, V.; Heinzelmann, G.; Henderson, R. C. W.; Henschel, H.; Herma, R.; Herynek, I.; Hildesheim, W.; Hill, P.; Hilton, C. D.; Hladký, J.; Hoeger, K. C.; Höppner, M.; Huet, Ph.; Hufnagel, H.; Ibbotson, M.; Itterbeck, H.; Jabiol, M.-A.; Jacholkowska, A.; Jacobsson, C.; Jaffre, M.; Janoth, J.; Jansen, T.; Jönsson, L.; Johannsen, K.; Johnson, D. P.; Johnson, L.; Jung, H.; Kalmus, P. I. P.; Kant, D.; Kazarian, S.; Kaschowitz, R.; Kasselmann, P.; Kathage, U.; Kaufmann, H. H.; Kenyon, I. R.; Kermiche, S.; Keuker, C.; Kiesling, C.; Klein, M.; Kleinwort, C.; Knies, G.; Ko, W.; Köhler, T.; Kolanoski, H.; Kole, F.; Kolya, S. D.; Korbel, V.; Korn, M.; Kostka, P.; Kotelnikov, S. K.; Krasny, M. W.; Krehbiel, H.; Krücker, D.; Krüger, U.; Krüner-Marquis, M.; Kubenka, J. P.; Küster, H.; Kuhlen, M.; Kurča, T.; Kurzhöfer, J.; Kuznik, B.; Lacour, D.; Lamarche, F.; Lander, R.; Landon, M. P. J.; Lange, W.; Lanius, P.; Laporte, J. F.; Lebedev, A.; Leverenz, C.; Levonian, S.; Ley, Ch.; Lindner, A.; Lindström, G.; Linsel, F.; Lipinski, J.; Loch, P.; Lohmander, H.; Lopez, G. C.; Lüers, D.; Lüke, D.; Magnussen, N.; Malinovski, E.; Mani, S.; Marage, P.; Marshall, R.; Martens, J.; Martin, R.; Martyn, H.-U.; Martyniak, J.; Masson, S.; Mavroidis, A.; Maxfield, S. J.; McMahon, S. J.; Mehta, A.; Meier, K.; Mercer, D.; Merz, T.; Meyer, C. A.; Meyer, H.; Meyer, J.; Mikocki, S.; Milone, V.; Milstead, D.; Moreau, F.; Morris, J. V.; Müller, G.; Murín, P.; Nagovizin, V.; Naroska, B.; Naumann, Th.; Nawrath, G.; Newman, P. R.; Newton, D.; Neyret, D.; Nguyen, H. K.; Niebergall, F.; Niebuhr, C.; Nisius, R.; Nowak, G.; Noyes, G. W.; Nyberg-Werther, M.; Oberlack, H.; Obrock, U.; Olsson, J. E.; Panitch, A.; Pascaud, C.; Patel, G. D.; Peppel, E.; Perez, E.; Phillips, J. P.; Pichler, Ch.; Pitzl, D.; Pope, G.; Prell, S.; Prosi, R.; Rädel, G.; Raupach, F.; Reimer, P.; Reinshagen, S.; Ribarics, P.; Riech, V.; Riedlberger, J.; Riess, S.; Rietz, M.; Robertson, S. M.; Robmann, P.; Roosen, R.; Rosenbauer, K.; Rostovtsev, A.; Royon, C.; Rüter, K.; Ruffer, M.; Rusakov, S.; Rybicki, K.; Sahlmann, N.; Sanchez, E.; Sankey, D. P. C.; Savitsky, M.; Schacht, P.; Schleper, P.; von Schlippe, W.; Schmidt, C.; Schmidt, D.; Schöning, A.; Schröder, V.; Schulz, M.; Schwab, B.; Schwind, A.; Seehausen, U.; Sefkow, F.; Sell, R.; Semenov, A.; Shekelyan, V.; Sheviakov, I.; Shooshtari, H.; Shtarkov, L. N.; Siegmon, G.; Siewert, U.; Sirois, Y.; Skillicorn, I. O.; Smirnov, P.; Smith, J. R.; Soloviev, Y.; Spitzer, H.; Staroba, P.; Steenbock, M.; Steffen, P.; Steinberg, R.; Stella, B.; Stephens, K.; Stier, J.; Stiewe, J.; Stösslein, U.; Strachota, J.; Straumann, U.; Struczinski, W.; Sutton, J. P.; Tapprogge, S.; Taylor, R. E.; Tchernyshov, V.; Thiebaux, C.; Thompson, G.; Tichomirov, I.; Truöl, P.; Turnau, J.; Tutas, J.; Usik, A.; Valkar, S.; Valkarova, A.; Vallée, C.; Van Esch, P.; Van Mechelen, P.; Vartapetian, A.; Vazdik, Y.; Vecko, M.; Verrecchia, P.; Villet, G.; Wacker, K.; Wagener, A.; Walker, I. W.; Walther, A.; Weber, G.; Weber, M.; Weber, M.; Wegener, D.; Wegner, A.; Wellisch, H. P.; West, L. R.; Willard, S.; Winde, M.; Winter, G.-G.; Wolff, Th.; Wright, A. E.; Wünsch, E.; Wulff, N.; Yiou, T. P.; Žáček, J.; Zhang, Z.; Zimmer, M.; Zimmermann, W.; Zomer, F.; Zuber, K.; H1 Collaboration

    1994-03-01

    The cross section of the charged current process e-p → ve + hadrons is measured at HERA for transverse momenta of the hadron system larger than 25 GeV. The size of the cross section exhibits the W propagator.

  7. Jet production and measurements of αs at HERA

    NASA Astrophysics Data System (ADS)

    Britzger, Daniel

    2015-05-01

    Results on the measurements of the hadronic final state in e± p collisions by the H1 and ZEUS experiments at HERA are presented. These are measurements on the production of prompt photons in photoproduction, inclusive jet, dijet and trijet production in deep-inelatic scattering and on the search for QCD instantons. The jet production data is employed for the extraction of the strong coupling constant αs(MZ).

  8. Measurement of charm fragmentation fractions in photoproduction at HERA

    NASA Astrophysics Data System (ADS)

    Abramowicz, H.; Abt, I.; Adamczyk, L.; Adamus, M.; Aggarwal, R.; Antonelli, S.; Antonioli, P.; Antonov, A.; Arneodo, M.; Arslan, O.; Aushev, V.; Aushev, Y.; Bachynska, O.; Bamberger, A.; Barakbaev, A. N.; Barbagli, G.; Bari, G.; Barreiro, F.; Bartosik, N.; Bartsch, D.; Basile, M.; Behnke, O.; Behr, J.; Behrens, U.; Bellagamba, L.; Bertolin, A.; Bhadra, S.; Bindi, M.; Blohm, C.; Bokhonov, V.; Bold, T.; Boos, E. G.; Borras, K.; Boscherini, D.; Bot, D.; Brock, I.; Brownson, E.; Brugnera, R.; Brümmer, N.; Bruni, A.; Bruni, G.; Brzozowska, B.; Bussey, P. J.; Bylsma, B.; Caldwell, A.; Capua, M.; Carlin, R.; Catterall, C. D.; Chekanov, S.; Chwastowski, J.; Ciborowski, J.; Ciesielski, R.; Cifarelli, L.; Cindolo, F.; Contin, A.; Cooper-Sarkar, A. M.; Coppola, N.; Corradi, M.; Corriveau, F.; Costa, M.; D'Agostini, G.; Corso, F. Dal; del Peso, J.; Dementiev, R. K.; De Pasquale, S.; Derrick, M.; Devenish, R. C. E.; Dobur, D.; Dolgoshein, B. A.; Dolinska, G.; Doyle, A. T.; Drugakov, V.; Durkin, L. S.; Dusini, S.; Eisenberg, Y.; Ermolov, P. F.; Eskreys, A.; Fang, S.; Fazio, S.; Ferrando, J.; Ferrero, M. I.; Figiel, J.; Foster, B.; Gach, G.; Galas, A.; Gallo, E.; Garfagnini, A.; Geiser, A.; Gialas, I.; Gizhko, A.; Gladilin, L. K.; Gladkov, D.; Glasman, C.; Gogota, O.; Golubkov, Yu. A.; Göttlicher, P.; Grabowska-Bold, I.; Grebenyuk, J.; Gregor, I.; Grigorescu, G.; Grzelak, G.; Gueta, O.; Guzik, M.; Gwenlan, C.; Haas, T.; Hain, W.; Hamatsu, R.; Hart, J. C.; Hartmann, H.; Hartner, G.; Hilger, E.; Hochman, D.; Hori, R.; Hüttmann, A.; Ibrahim, Z. A.; Iga, Y.; Ingbir, R.; Ishitsuka, M.; Iudin, A.; Jakob, H.-P.; Januschek, F.; Jones, T. W.; Jüngst, M.; Kadenko, I.; Kahle, B.; Kananov, S.; Kanno, T.; Karshon, U.; Karstens, F.; Katkov, I. I.; Kaur, M.; Kaur, P.; Keramidas, A.; Khein, L. A.; Kim, J. Y.; Kisielewska, D.; Kitamura, S.; Klanner, R.; Klein, U.; Koffeman, E.; Kondrashova, N.; Kononenko, O.; Kooijman, P.; Korol, Ie.; Korzhavina, I. A.; Kotanski, A.; Kötz, U.; Kovalchuk, N.; Kowalski, H.; Kuprash, O.; Kuze, M.; Lee, A.; Levchenko, B. B.; Levy, A.; Libov, V.; Limentani, S.; Ling, T. Y.; Lisovyi, M.; Lobodzinska, E.; Lohmann, W.; Löhr, B.; Lohrmann, E.; Long, K. R.; Longhin, A.; Lontkovskyi, D.; Lukina, O. Yu.; Maeda, J.; Magill, S.; Makarenko, I.; Malka, J.; Mankel, R.; Margotti, A.; Marini, G.; Martin, J. F.; Mastroberardino, A.; Mattingly, M. C. K.; Melzer-Pellmann, I.-A.; Mergelmeyer, S.; Miglioranzi, S.; Mohamad Idris, F.; Monaco, V.; Montanari, A.; Morris, J. D.; Mujkic, K.; Musgrave, B.; Myronenko, V.; Nagano, K.; Namsoo, T.; Nania, R.; Nigro, A.; Ning, Y.; Nobe, T.; Notz, D.; Nowak, R. J.; Nuncio-Quiroz, A. E.; Oh, B. Y.; Okazaki, N.; Olkiewicz, K.; Onishchuk, Yu.; Papageorgiu, K.; Parenti, A.; Paul, E.; Pawlak, J. M.; Pawlik, B.; Pelfer, P. G.; Pellegrino, A.; Perlanski, W.; Perrey, H.; Piotrzkowski, K.; Plucinski, P.; Pokrovskiy, N. S.; Polini, A.; Proskuryakov, A. S.; Przybycien, M.; Raval, A.; Reeder, D. D.; Reisert, B.; Ren, Z.; Repond, J.; Ri, Y. D.; Robertson, A.; Roloff, P.; Rubinsky, I.; Ruspa, M.; Sacchi, R.; Samson, U.; Sartorelli, G.; Savin, A. A.; Saxon, D. H.; Schioppa, M.; Schlenstedt, S.; Schleper, P.; Schmidke, W. B.; Schneekloth, U.; Schönberg, V.; Schörner-Sadenius, T.; Schwartz, J.; Sciulli, F.; Shcheglova, L. M.; Shehzadi, R.; Shevchenko, R.; Shimizu, S.; Shkola, O.; Singh, I.; Skillicorn, I. O.; Slominski, W.; Smith, W. H.; Sola, V.; Solano, A.; Son, D.; Sosnovtsev, V.; Spiridonov, A.; Stadie, H.; Stanco, L.; Stefaniuk, N.; Stern, A.; Stewart, T. P.; Stifutkin, A.; Stopa, P.; Suchkov, S.; Susinno, G.; Suszycki, L.; Sztuk-Dambietz, J.; Szuba, D.; Szuba, J.; Tapper, A. D.; Tassi, E.; Terrón, J.; Theedt, T.; Tiecke, H.; Tokushuku, K.; Tomaszewska, J.; Trofymov, A.; Trusov, V.; Tsurugai, T.; Turcato, M.; Turkot, O.; Tymieniecka, T.; Vázquez, M.; Verbytskyi, A.; Viazlo, O.; Vlasov, N. N.; Walczak, R.; Wan Abdullah, W. A. T.; Whitmore, J. J.; Wichmann, K.; Wiggers, L.; Wing, M.; Wlasenko, M.; Wolf, G.; Wolfe, H.; Wrona, K.; Yagües-Molina, A. G.; Yamada, S.; Yamazaki, Y.; Yoshida, R.; Youngman, C.; Zakharchuk, N.; Żarnecki, A. F.; Zawiejski, L.; Zenaiev, O.; Zeuner, W.; Zhautykov, B. O.; Zhmak, N.; Zichichi, A.; Zolkapli, Z.; Zotkin, D. S.

    2013-09-01

    The production of D 0, D *+, D +, and charm hadrons and their antiparticles in ep scattering at HERA has been studied with the ZEUS detector, using a total integrated luminosity of 372 pb-1. The fractions of charm quarks hadronising into a particular charm hadron were derived. In addition, the ratio of neutral to charged D-meson production rates, the fraction of charged D mesons produced in a vector state, and the stangeness-suppression factor have been determined. The measurements have been performed in the photoproduction regime. The charm hadrons were reconstructed in the range of transverse momentum p T > 3 .8 GeV and pseudorapidity | η| < 1 .6. The charm fragmentation fractions are compared to previous results from HERA and from e + e - experiments. The data support the hypothesis that fragmentation is independent of the production process.

  9. Measurement of heavy-quark jet photoproduction at HERA

    NASA Astrophysics Data System (ADS)

    Abramowicz, H.; Abt, I.; Adamczyk, L.; Adamus, M.; Aggarwal, R.; Antonelli, S.; Antonioli, P.; Antonov, A.; Arneodo, M.; Aushev, V.; Aushev, Y.; Bachynska, O.; Bamberger, A.; Barakbaev, A. N.; Barbagli, G.; Bari, G.; Barreiro, F.; Bartosik, N.; Bartsch, D.; Basile, M.; Behnke, O.; Behr, J.; Behrens, U.; Bellagamba, L.; Bertolin, A.; Bhadra, S.; Bindi, M.; Blohm, C.; Bokhonov, V.; Bołd, T.; Bolilyi, O.; Bondarenko, K.; Boos, E. G.; Borras, K.; Boscherini, D.; Bot, D.; Brock, I.; Brownson, E.; Brugnera, R.; Brümmer, N.; Bruni, A.; Bruni, G.; Brzozowska, B.; Bussey, P. J.; Bylsma, B.; Caldwell, A.; Capua, M.; Carlin, R.; Catterall, C. D.; Chekanov, S.; Chwastowski, J.; Ciborowski, J.; Ciesielski, R.; Cifarelli, L.; Cindolo, F.; Contin, A.; Cooper-Sarkar, A. M.; Coppola, N.; Corradi, M.; Corriveau, F.; Costa, M.; D'Agostini, G.; Dal Corso, F.; Del Peso, J.; Dementiev, R. K.; de Pasquale, S.; Derrick, M.; Devenish, R. C. E.; Dobur, D.; Dolgoshein, B. A.; Dolinska, G.; Doyle, A. T.; Drugakov, V.; Durkin, L. S.; Dusini, S.; Eisenberg, Y.; Ermolov, P. F.; Eskreys, A.; Fang, S.; Fazio, S.; Ferrando, J.; Ferrero, M. I.; Figiel, J.; Forrest, M.; Foster, B.; Fourletov, S.; Gach, G.; Galas, A.; Gallo, E.; Garfagnini, A.; Geiser, A.; Gialas, I.; Gladilin, L. K.; Gladkov, D.; Glasman, C.; Gogota, O.; Golubkov, Yu. A.; Göttlicher, P.; Grabowska-Bołd, I.; Grebenyuk, J.; Gregor, I.; Grigorescu, G.; Grzelak, G.; Gueta, O.; Gwenlan, C.; Haas, T.; Hain, W.; Hamatsu, R.; Hart, J. C.; Hartmann, H.; Hartner, G.; Hilger, E.; Hochman, D.; Hori, R.; Horton, K.; Hüttmann, A.; Ibrahim, Z. A.; Iga, Y.; Ingbir, R.; Ishitsuka, M.; Jakob, H.-P.; Januschek, F.; Jimenez, M.; Jones, T. W.; Jüngst, M.; Kadenko, I.; Kahle, B.; Kamaluddin, B.; Kananov, S.; Kanno, T.; Karshon, U.; Karstens, F.; Katkov, I. I.; Kaur, M.; Kaur, P.; Keramidas, A.; Khein, L. A.; Kim, J. Y.; Kisielewska, D.; Kitamura, S.; Klanner, R.; Klein, U.; Koffeman, E.; Kooijman, P.; Korol, I.; Korzhavina, I. A.; Kotański, A.; Kötz, U.; Kowalski, H.; Kulinski, P.; Kuprash, O.; Kuze, M.; Lee, A.; Levchenko, B. B.; Levy, A.; Libov, V.; Limentani, S.; Ling, T. Y.; Lisovyi, M.; Lobodzinska, E.; Lohmann, W.; Löhr, B.; Lohrmann, E.; Long, K. R.; Longhin, A.; Lontkovskyi, D.; Lukina, O. Yu.; Łużniak, P.; Maeda, J.; Magill, S.; Makarenko, I.; Malka, J.; Mankel, R.; Margotti, A.; Marini, G.; Martin, J. F.; Mastroberardino, A.; Mattingly, M. C. K.; Melzer-Pellmann, I.-A.; Mergelmeyer, S.; Miglioranzi, S.; Idris, F. Mohamad; Monaco, V.; Montanari, A.; Morris, J. D.; Mujkic, K.; Musgrave, B.; Nagano, K.; Namsoo, T.; Nania, R.; Nicholass, D.; Nigro, A.; Ning, Y.; Nobe, T.; Noor, U.; Notz, D.; Nowak, R. J.; Nuncio-Quiroz, A. E.; Oh, B. Y.; Okazaki, N.; Oliver, K.; Olkiewicz, K.; Onishchuk, Yu.; Papageorgiu, K.; Parenti, A.; Paul, E.; Pawlak, J. M.; Pawlik, B.; Pelfer, P. G.; Pellegrino, A.; Perlanski, W.; Perrey, H.; Piotrzkowski, K.; Plucinski, P.; Pokrovskiy, N. S.; Polini, A.; Proskuryakov, A. S.; Przybycień, M.; Raval, A.; Reeder, D. D.; Reisert, B.; Ren, Z.; Repond, J.; Ri, Y. D.; Robertson, A.; Roloff, P.; Ron, E.; Rubinsky, I.; Ruspa, M.; Sacchi, R.; Salii, A.; Samson, U.; Sartorelli, G.; Savin, A. A.; Saxon, D. H.; Schioppa, M.; Schlenstedt, S.; Schleper, P.; Schmidke, W. B.; Schneekloth, U.; Schönberg, V.; Schörner-Sadenius, T.; Schwartz, J.; Sciulli, F.; Shcheglova, L. M.; Shehzadi, R.; Shimizu, S.; Singh, I.; Skillicorn, I. O.; Słomiński, W.; Smith, W. H.; Sola, V.; Solano, A.; Son, D.; Sosnovtsev, V.; Spiridonov, A.; Stadie, H.; Stanco, L.; Stern, A.; Stewart, T. P.; Stifutkin, A.; Stopa, P.; Suchkov, S.; Susinno, G.; Suszycki, L.; Sztuk-Dambietz, J.; Szuba, D.; Szuba, J.; Tapper, A. D.; Tassi, E.; Terrón, J.; Theedt, T.; Tiecke, H.; Tokushuku, K.; Tomalak, O.; Tomaszewska, J.; Tsurugai, T.; Turcato, M.; Tymieniecka, T.; Uribe-Estrada, C.; Vázquez, M.; Verbytskyi, A.; Viazlo, O.; Vlasov, N. N.; Volynets, O.; Walczak, R.; Wan Abdullah, W. A. T.; Whitmore, J. J.; Whyte, J.; Wiggers, L.; Wing, M.; Wlasenko, M.; Wolf, G.; Wolfe, H.; Wrona, K.; Yagües-Molina, A. G.; Yamada, S.; Yamazaki, Y.; Yoshida, R.; Youngman, C.; Żarnecki, A. F.; Zawiejski, L.; Zenaiev, O.; Zeuner, W.; Zhautykov, B. O.; Zhmak, N.; Zhou, C.; Zichichi, A.; Zolko, M.; Zotkin, D. S.; Zulkapli, Z.

    2011-05-01

    Photoproduction of beauty and charm quarks in events with at least two jets has been measured with the ZEUS detector at HERA using an integrated luminosity of 133 pb-1. The fractions of jets containing b and c quarks were extracted using the invariant mass of charged tracks associated with secondary vertices and the decay-length significance of these vertices. Differential cross sections as a function of jet transverse momentum, pT^{jet}, and pseudorapidity, η jet, were measured. The data are compared with previous measurements and are well described by next-to-leading-order QCD predictions.

  10. The HERA-B vertex detector system

    NASA Astrophysics Data System (ADS)

    Bauer, C.; Bräuer, M.; Glebe, T.; Hofmann, W.; Jagla, T.; Klefenz, F.; Knöpfle, K. T.; Pugatch, V.; Schmelling, M.; Schwingenheuer, B.; Sexauer, E.; Trunk, U.; Wanke, R.; Zurheide, F.; Abt, I.; Dressel, M.; Kisel, I.; Masciocchi, S.; Moshous, B.; Perschke, T.; Sang, M.; Schaller, S.; Wagner, W.

    2000-10-01

    The HERA-B experiment is being built to measure CP violation in the B-system using internal targets at the HERA proton storage ring at DESY. This paper presents an overview of its vertex detector which - apart from an additional superlayer - is realized by a system of 20 Roman pots containing seven superlayers of double-sided silicon microstrip detectors that are operated at 10 mm distance from the proton beam in a high-radiation environment.

  11. Measurement of D*± production in deep inelastic scattering at HERA

    NASA Astrophysics Data System (ADS)

    Abramowicz, H.; Abt, I.; Adamczyk, L.; Adamus, M.; Aggarwal, R.; Antonelli, S.; Antonioli, P.; Antonov, A.; Arneodo, M.; Arslan, O.; Aushev, V.; Aushev, Y.; Bachynska, O.; Bamberger, A.; Barakbaev, A. N.; Barbagli, G.; Bari, G.; Barreiro, F.; Bartosik, N.; Bartsch, D.; Basile, M.; Behnke, O.; Behr, J.; Behrens, U.; Bellagamba, L.; Bertolin, A.; Bhadra, S.; Bindi, M.; Blohm, C.; Bokhonov, V.; Bold, T.; Boos, E. G.; Borras, K.; Boscherini, D.; Bot, D.; Brock, I.; Brownson, E.; Brugnera, R.; Brümmer, N.; Bruni, A.; Bruni, G.; Brzozowska, B.; Bussey, P. J.; Bylsma, B.; Caldwell, A.; Capua, M.; Carlin, R.; Catterall, C. D.; Chekanov, S.; Chwastowski, J.; Ciborowski, J.; Ciesielski, R.; Cifarelli, L.; Cindolo, F.; Contin, A.; Cooper-Sarkar, A. M.; Coppola, N.; Corradi, M.; Corriveau, F.; Costa, M.; D'Agostini, G.; Dal Corso, F.; del Peso, J.; Dementiev, R. K.; De Pasquale, S.; Derrick, M.; Devenish, R. C. E.; Dobur, D.; Dolgoshein, B. A.; Dolinska, G.; Doyle, A. T.; Drugakov, V.; Durkin, L. S.; Dusini, S.; Eisenberg, Y.; Ermolov, P. F.; Eskreys, A.; Fang, S.; Fazio, S.; Ferrando, J.; Ferrero, M. I.; Figiel, J.; Foster, B.; Gach, G.; Galas, A.; Gallo, E.; Garfagnini, A.; Geiser, A.; Gialas, I.; Gizhko, A.; Gladilin, L. K.; Gladkov, D.; Glasman, C.; Gogota, O.; Golubkov, Yu. A.; Göttlicher, P.; Grabowska-Bold, I.; Grebenyuk, J.; Gregor, I.; Grigorescu, G.; Grzelak, G.; Gueta, O.; Guzik, M.; Gwenlan, C.; Haas, T.; Hain, W.; Hamatsu, R.; Hart, J. C.; Hartmann, H.; Hartner, G.; Hilger, E.; Hochman, D.; Hori, R.; Hüttmann, A.; Ibrahim, Z. A.; Iga, Y.; Ingbir, R.; Ishitsuka, M.; Iudin, A.; Jakob, H.-P.; Januschek, F.; Jones, T. W.; Jüngst, M.; Kadenko, I.; Kahle, B.; Kananov, S.; Kanno, T.; Karshon, U.; Karstens, F.; Katkov, I. I.; Kaur, M.; Kaur, P.; Keramidas, A.; Khein, L. A.; Kim, J. Y.; Kisielewska, D.; Kitamura, S.; Klanner, R.; Klein, U.; Koffeman, E.; Kondrashova, N.; Kononenko, O.; Kooijman, P.; Korol, Ie.; Korzhavina, I. A.; Kotanski, A.; Kötz, U.; Kovalchuk, N.; Kowalski, H.; Kuprash, O.; Kuze, M.; Lee, A.; Levchenko, B. B.; Levy, A.; Libov, V.; Limentani, S.; Ling, T. Y.; Lisovyi, M.; Lobodzinska, E.; Lohmann, W.; Löhr, B.; Lohrmann, E.; Long, K. R.; Longhin, A.; Lontkovskyi, D.; Lukina, O. Yu.; Maeda, J.; Magill, S.; Makarenko, I.; Malka, J.; Mankel, R.; Margotti, A.; Marini, G.; Martin, J. F.; Mastroberardino, A.; Mattingly, M. C. K.; Melzer-Pellmann, I.-A.; Mergelmeyer, S.; Miglioranzi, S.; Mohamad Idris, F.; Monaco, V.; Montanari, A.; Morris, J. D.; Mujkic, K.; Musgrave, B.; Nagano, K.; Namsoo, T.; Nania, R.; Nigro, A.; Ning, Y.; Nobe, T.; Notz, D.; Nowak, R. J.; Nuncio-Quiroz, A. E.; Oh, B. Y.; Okazaki, N.; Olkiewicz, K.; Onishchuk, Yu.; Papageorgiu, K.; Parenti, A.; Paul, E.; Pawlak, J. M.; Pawlik, B.; Pelfer, P. G.; Pellegrino, A.; Perlanski, W.; Perrey, H.; Piotrzkowski, K.; Plucinski, P.; Pokrovskiy, N. S.; Polini, A.; Proskuryakov, A. S.; Przybycien, M.; Raval, A.; Reeder, D. D.; Reisert, B.; Ren, Z.; Repond, J.; Ri, Y. D.; Robertson, A.; Roloff, P.; Rubinsky, I.; Ruspa, M.; Sacchi, R.; Samson, U.; Sartorelli, G.; Savin, A. A.; Saxon, D. H.; Schioppa, M.; Schlenstedt, S.; Schleper, P.; Schmidke, W. B.; Schneekloth, U.; Schönberg, V.; Schörner-Sadenius, T.; Schwartz, J.; Sciulli, F.; Shcheglova, L. M.; Shehzadi, R.; Shimizu, S.; Singh, I.; Skillicorn, I. O.; Slominski, W.; Smith, W. H.; Sola, V.; Solano, A.; Son, D.; Sosnovtsev, V.; Spiridonov, A.; Stadie, H.; Stanco, L.; Stefaniuk, N.; Stern, A.; Stewart, T. P.; Stifutkin, A.; Stopa, P.; Suchkov, S.; Susinno, G.; Suszycki, L.; Sztuk-Dambietz, J.; Szuba, D.; Szuba, J.; Tapper, A. D.; Tassi, E.; Terrón, J.; Theedt, T.; Tiecke, H.; Tokushuku, K.; Tomaszewska, J.; Trofymov, A.; Trusov, V.; Tsurugai, T.; Turcato, M.; Turkot, O.; Tymieniecka, T.; Vázquez, M.; Verbytskyi, A.; Viazlo, O.; Vlasov, N. N.; Walczak, R.; Wan Abdullah, W. A. T.; Whitmore, J. J.; Wichmann, K.; Wiggers, L.; Wing, M.; Wlasenko, M.; Wolf, G.; Wolfe, H.; Wrona, K.; Yagües-Molina, A. G.; Yamada, S.; Yamazaki, Y.; Yoshida, R.; Youngman, C.; Zakharchuk, N.; Żarnecki, A. F.; Zawiejski, L.; Zenaiev, O.; Zeuner, W.; Zhautykov, B. O.; Zhmak, N.; Zichichi, A.; Zolkapli, Z.; Zotkin, D. S.

    2013-05-01

    The production of D *± mesons in deep inelastic ep scattering has been measured for exchanged photon virtualities 5 < Q 2 < 1000 GeV2, using an integrated luminosity of 363 pb-1 with the ZEUS detector at HERA. Differential cross sections have been measured and compared to next-to-leading-order QCD calculations. The cross-sections are used to extract the charm contribution to the proton structure functions, expressed in terms of the reduced charm cross section, σ_{red}^{{coverline{c}}} . Theoretical calculations based on fits to inclusive HERA data are compared to the results.

  12. Measurement of the deep-inelastic spin-dependent structure functions of the proton and neutron at HERA

    SciTech Connect

    Beck, D.H.; Filippone, B.W.; Jourdan, J.; McKeown, R.D.; Milner, R.G.; Woodward, C.E.; Freedman, S.J.; Geesaman, D.F.; Holt, R.J.; Jackson, H.E.

    1988-01-01

    It is possible to measure the deep-inelastic spin-dependent structure functions g/sub 1//sup p/(x) and g/sub 1//sup n/(x) for the proton and neutron using internal polarized hydrogen, deuterium, and /sup 3/He targets of polarization 50% and thickness 10/sup 14/ to 10/sup 15/ cm/sup -2/ and the 60 mA longitudinally polarized 30 GeV electron beam in the HERA electron storage ring. The measurement of the deep-inelastic spin-structure of both isospin states of the nucleon at the same kinematics and using the same apparatus allows the Bjorken sum rule to be experimentally checked. In addition, it uniquely constrains the spin distribution of the u and d quarks as a function of x in any model of the nucleon. Possible target and detector configurations are described and an estimate of the accuracy of such a measurement is presented.

  13. Measurement of beauty production at HERA using events with muons and jets

    SciTech Connect

    Behnke, Olaf

    2005-10-06

    Several new measurements of beauty production at HERA have been presented at this conference. In this talk we report about the H1 measurement using events with a muon associated to a jet. This is the first beauty analysis at HERA, where both the long lifetime and the large mass of b-flavoured hadrons are exploited to identify the beauty events, leading to an improved signal separation. Differential cross sections are measured both in photoproduction and in deep inelastic scattering. The measured data are found to be somewhat higher then perturbative QCD calculations to next-to-leading order. A significant excess is observed in certain corners of the kinematic phase space. At the end of this report new and recent beauty measurements are summarised.

  14. Deep inelastic cross-section measurements at large y with the ZEUS detector at HERA

    NASA Astrophysics Data System (ADS)

    Abramowicz, H.; Abt, I.; Adamczyk, L.; Adamus, M.; Aggarwal, R.; Antonelli, S.; Arslan, O.; Aushev, V.; Aushev, Y.; Bachynska, O.; Barakbaev, A. N.; Bartosik, N.; Behnke, O.; Behr, J.; Behrens, U.; Bertolin, A.; Bhadra, S.; Bloch, I.; Bokhonov, V.; Boos, E. G.; Borras, K.; Brock, I.; Brugnera, R.; Bruni, A.; Brzozowska, B.; Bussey, P. J.; Caldwell, A.; Capua, M.; Catterall, C. D.; Chwastowski, J.; Ciborowski, J.; Ciesielski, R.; Cooper-Sarkar, A. M.; Corradi, M.; Corriveau, F.; D'Agostini, G.; Dementiev, R. K.; Devenish, R. C. E.; Dolinska, G.; Drugakov, V.; Dusini, S.; Ferrando, J.; Figiel, J.; Foster, B.; Gach, G.; Garfagnini, A.; Geiser, A.; Gizhko, A.; Gladilin, L. K.; Gogota, O.; Golubkov, Yu. A.; Grebenyuk, J.; Gregor, I.; Grzelak, G.; Gueta, O.; Guzik, M.; Hain, W.; Hartner, G.; Hochman, D.; Hori, R.; Ibrahim, Z. A.; Iga, Y.; Ishitsuka, M.; Iudin, A.; Januschek, F.; Kadenko, I.; Kananov, S.; Kanno, T.; Karshon, U.; Kaur, M.; Kaur, P.; Khein, L. A.; Kisielewska, D.; Klanner, R.; Klein, U.; Kondrashova, N.; Kononenko, O.; Korol, Ie.; Korzhavina, I. A.; Kotański, A.; Kötz, U.; Kovalchuk, N.; Kowalski, H.; Kuprash, O.; Kuze, M.; Levchenko, B. B.; Levy, A.; Libov, V.; Limentani, S.; Lisovyi, M.; Lobodzinska, E.; Lohmann, W.; Löhr, B.; Lohrmann, E.; Longhin, A.; Lontkovskyi, D.; Lukina, O. Yu.; Maeda, J.; Makarenko, I.; Malka, J.; Martin, J. F.; Mergelmeyer, S.; Mohamad Idris, F.; Mujkic, K.; Myronenko, V.; Nagano, K.; Nigro, A.; Nobe, T.; Notz, D.; Nowak, R. J.; Olkiewicz, K.; Onishchuk, Yu.; Paul, E.; Perlański, W.; Perrey, H.; Pokrovskiy, N. S.; Proskuryakov, A. S.; Przybycień, M.; Raval, A.; Roloff, P.; Rubinsky, I.; Ruspa, M.; Samojlov, V.; Saxon, D. H.; Schioppa, M.; Schmidke, W. B.; Schneekloth, U.; Schörner-Sadenius, T.; Schwartz, J.; Shcheglova, L. M.; Shevchenko, R.; Shkola, O.; Singh, I.; Skillicorn, I. O.; Słomiński, W.; Sola, V.; Solano, A.; Spiridonov, A.; Stanco, L.; Stefaniuk, N.; Stern, A.; Stewart, T. P.; Stopa, P.; Sztuk-Dambietz, J.; Szuba, D.; Szuba, J.; Tassi, E.; Temiraliev, T.; Tokushuku, K.; Tomaszewska, J.; Trofymov, A.; Trusov, V.; Tsurugai, T.; Turcato, M.; Turkot, O.; Tymieniecka, T.; Verbytskyi, A.; Viazlo, O.; Walczak, R.; Wan Abdullah, W. A. T.; Wichmann, K.; Wing, M.; Wolf, G.; Yamada, S.; Yamazaki, Y.; Zakharchuk, N.; Żarnecki, A. F.; Zawiejski, L.; Zenaiev, O.; Zhautykov, B. O.; Zhmak, N.; Zotkin, D. S.; ZEUS Collaboration

    2014-10-01

    The reduced cross sections for e+p deep inelastic scattering have been measured with the ZEUS detector at HERA at three different center-of-mass energies, 318, 251 and 225 GeV. The cross sections, measured double differentially in Bjorken x and the virtuality, Q2, were obtained in the region 0.13≤y ≤0.75, where y denotes the inelasticity and 5≤Q2≤110 GeV2. The proton structure functions F2 and FL were extracted from the measured cross sections.

  15. Physics at HERA

    SciTech Connect

    Derrick, M.

    1993-12-31

    HERA is the first electron-proton colliding beam facility and the big news about it is that it works, despite concerns both about the reproducibility of the magnetic field in the proton ring magnets at injection and about the e-p beam-beam interaction. It is, however, a complex accelerator facility that will take a few years to bring up to full and efficient operation. With the present center of mass energy of 296 GeV, it extends the energy range for photoproduction studies by an order of magnitude over fixed target experiments and deep-inelastic e-p scattering up to momentum transfer values approaching 10{sup 5} GeV{sup 2} in both neutral and charged current interactions. At reasonable Q{sup 2}, and so with the present luminosity, events with Bjorken x down to a few times 10{sup {minus}5} are being studied. Two powerful general-purpose detectors -- H1 and ZEUS -- have been constructed to address these physics challenges and both collaborations have made new and interesting measurements as presented at this and other recent HEP conferences. The experimental program started in July 1992 and we are on a steep learning curve both with HERA and with the detectors.

  16. Measurement of exclusive dijet production in diffractive DIS with the ZEUS detector at HERA

    SciTech Connect

    Gach, Grzegorz

    2015-04-10

    The exclusive production of dijets in diffractive deep inelastic lepton–proton scattering has been measured with the ZEUS detector at HERA with an integrated luminosity of 372 pb{sup −1}. Jets have been reconstructed in the photon–Pomeron rest frame using the exclusive k{sub T} algorithm. The shape of the differential cross-section as a function of the angle between the plane spanned by the incoming and scattered lepton momenta and the plane spanned by the virtual photon and jets momenta is presented. The shape is determined by the jet production mechanism and provides information about the Pomeron structure.

  17. Measurement of exclusive dijet production in diffractive DIS with the ZEUS detector at HERA

    NASA Astrophysics Data System (ADS)

    Gach, Grzegorz

    2015-04-01

    The exclusive production of dijets in diffractive deep inelastic lepton-proton scattering has been measured with the ZEUS detector at HERA with an integrated luminosity of 372 pb-1. Jets have been reconstructed in the photon-Pomeron rest frame using the exclusive kT algorithm. The shape of the differential cross-section as a function of the angle between the plane spanned by the incoming and scattered lepton momenta and the plane spanned by the virtual photon and jets momenta is presented. The shape is determined by the jet production mechanism and provides information about the Pomeron structure.

  18. Measurement of the proton structure function F 2 from the 1993 HERA data

    NASA Astrophysics Data System (ADS)

    Derrick, M.; Krakauer, D.; Magill, S.; Musgrave, B.; Repond, J.; Schlereth, J.; Stanek, R.; Talaga, R. L.; Thron, J.; Arzarello, F.; Ayad, R.; Bari, G.; Basile, M.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruni, P.; Cara Romeo, G.; Castellini, G.; Chiarini, M.; Cifarelli, L.; Cindolo, F.; Ciralli, F.; Contin, A.; D'Auria, S.; Frasconi, F.; Giusti, P.; Iacobucci, G.; Laurenti, G.; Levi, G.; Margotti, A.; Massam, T.; Nania, R.; Nemoz, C.; Palmonari, F.; Polini, A.; Sartorelli, G.; Timellini, R.; Zamora Garcia, Y.; Zichichi, A.; Bargende, A.; Crittenden, J.; Desch, K.; Diekmann, B.; Doeker, T.; Feld, L.; Frey, A.; Geerts, M.; Geitz, G.; Grothe, M.; Hartmann, H.; Haun, D.; Heinloth, K.; Hilger, E.; Jakob, H.-P.; Katz, U. F.; Mari, S. M.; Mass, A.; Mengel, S.; Mollen, J.; Paul, E.; Rembser, Ch.; Schattevoy, R.; Schneider, J.-L.; Schramm, D.; Stamm, J.; Wedemeyer, R.; Campbell-Robson, S.; Cassidy, A.; Dyce, N.; Foster, B.; George, S.; Gilmore, R.; Heath, G. P.; Heath, H. F.; Llewellyn, T. J.; Morgado, C. J. S.; Norman, D. J. P.; O'Mara, J. A.; Tapper, R. J.; Wilson, S. S.; Yoshida, R.; Rau, R. R.; Arneodo, M.; Iannotti, L.; Schioppa, M.; Susinno, G.; Bernstein, A.; Caldwell, A.; Gialas, I.; Parsons, J. A.; Ritz, S.; Sciulli, F.; Straub, P. B.; Wai, L.; Yang, S.; Borzemski, P.; Chwastowski, J.; Eskreys, A.; Piotrzkowski, K.; Zachara, M.; Zawiejski, L.; Adamczyk, L.; Bednarek, B.; Eskreys, K.; Jeleń, K.; Kisielewska, D.; Kowalski, T.; Rulikowska-Zarębska, E.; Suszycki, L.; Zając, J.; Kędzierski, T.; Kotański, A.; Przybycień, M.; Bauerdick, L. A. T.; Behrens, U.; Bienlein, J. K.; Böttcher, S.; Coldewey, C.; Drews, G.; Flasiński, M.; Gilkinson, D. J.; Göttlicher, P.; Gutjahr, B.; Haas, T.; Hagge, L.; Hain, W.; Hasell, D.; Heßling, H.; Hultschig, H.; Iga, Y.; Joos, P.; Kasemann, M.; Klanner, R.; Koch, W.; Köpke, L.; Kötz, U.; Kowalski, H.; Kröger, W.; Krüger, J.; Labs, J.; Ladage, A.; Löhr, B.; Löwe, M.; Lüke, D.; Mainusch, J.; Mańczak, O.; Ng, J. S. T.; Nickel, S.; Notz, D.; Ohrenberg, K.; Roco, M.; Rohde, M.; Roldán, J.; Schneekloth, U.; Schulz, W.; Selonke, F.; Stiliaris, E.; Voß, T.; Westphal, D.; Wolf, G.; Youngman, C.; Grabosch, H. J.; Leich, A.; Meyer, A.; Rethfeldt, C.; Schlenstedt, S.; Barbagli, G.; Pelfer, P.; Anzivino, G.; Maccarrone, G.; de Pasquale, S.; Qian, S.; Votano, L.; Bamberger, A.; Freidhof, A.; Poser, T.; Söldner-Rembold, S.; Schroeder, J.; Theisen, G.; Trefzger, T.; Brook, N. H.; Bussey, P. J.; Doyle, A. T.; Fleck, I.; Jamieson, V. A.; Saxon, D. H.; Utley, M. L.; Wilson, A. S.; Dannemann, A.; Holm, U.; Horstmann, D.; Kammerlocher, H.; Krebs, B.; Neumann, T.; Sinkus, R.; Wick, K.; Badura, E.; Burow, B. D.; Fürtjes, A.; Lohrmann, E.; Milewski, J.; Nakahata, M.; Pavel, N.; Poelz, G.; Schott, W.; Terron, J.; Zetsche, F.; Bacon, T. C.; Beuselinck, R.; Butterworth, I.; Gallo, E.; Harris, V. L.; Hung, B. H.; Long, K. R.; Miller, D. B.; Morawitz, P. P. O.; Prinias, A.; Sedgbeer, J. K.; Whitfield, A. F.; Mallik, U.; McCliment, E.; Wang, M. Z.; Zhang, Y.; Cloth, P.; Filges, D.; An, S. H.; Hong, S. M.; Nam, S. W.; Park, S. K.; Suh, M. H.; Yon, S. H.; Imlay, R.; Kartik, S.; Kim, H.-J.; McNeil, R. R.; Metcalf, W.; Nadendla, V. K.; Barreiro, F.; Cases, G.; Graciani, R.; Hernández, J. M.; Hervás, L.; Labarga, L.; Del Peso, J.; Puga, J.; de Trocóniz, J. F.; Ikraiam, F.; Mayer, J. K.; Smith, G. R.; Corriveau, F.; Hanna, D. S.; Hartmann, J.; Hung, L. W.; Lim, J. N.; Matthews, C. G.; Mitchell, J. W.; Patel, P. M.; Sinclair, L. E.; Stairs, D. G.; St. Laurent, M.; Ullmann, R.; Bashkirov, V.; Dolgoshein, B. A.; Stifutkin, A.; Bashindzhagyan, G. L.; Ermolov, P. F.; Gladilin, L. K.; Golubkov, Y. A.; Kobrin, V. D.; Kuzmin, V. A.; Proskuryakov, A. S.; Savin, A. A.; Shcheglova, L. M.; Solomin, A. N.; Zotov, N. P.; Bentvelsen, S.; Botje, M.; Chlebana, F.; Dake, A.; Engelen, J.; de Jong, P.; de Kamps, M.; Kooijman, P.; Kruse, A.; O'Dell, V.; Tenner, A.; Tiecke, H.; Verkerke, W.; Vreeswijk, M.; Wiggers, L.; de Wolf, E.; van Woudenberg, R.; Acosta, D.; Bylsma, B.; Durkin, L. S.; Honscheid, K.; Li, C.; Ling, T. Y.; McLean, K. W.; Murray, W. N.; Park, I. H.; Romanowski, T. A.; Seidlein, R.; Bailey, D. S.; Blair, G. A.; Byrne, A.; Cashmore, R. J.; Cooper-Sarkar, A. M.; Daniels, D.; Devenish, R. C. E.; Harnew, N.; Lancaster, M.; Luffman, P. E.; Lindemann, L.; McFall, J.; Nath, C.; Quadt, A.; Uijterwaal, H.; Walczak, R.; Wilson, F. F.; Yip, T.; Abbiendi, G.; Bertolin, A.; Brugnera, R.; Carlin, R.; Dal Corso, F.; de Giorgi, M.; Dosselli, U.; Gasparini, F.; Limentani, S.; Morandin, M.; Posocco, M.; Stanco, L.; Stroili, R.; Voci, C.; Bulmahn, J.; Butterworth, J. M.; Feild, R. G.; Oh, B. Y.; Whitmore, J. J.; D'Agostini, G.; Iori, M.; Marini, G.; Mattioli, M.; Nigro, A.; Tassi, E.; Hart, J. C.; McCubbin, N. A.; Prytz, K.; Shah, T. P.; Short, T. L.; Barberis, E.; Cartiglia, N.; Dubbs, T.; Heusch, C.; van Hook, M.; Hubbard, B.; Lockman, W.; Rahn, J. T.; Sadrozinski, H. F.-W.; Seiden, A.; Biltzinger, J.; Seifert, R. J.; Walenta, A. H.; Zech, G.; Abramowicz, H.; Briskin, G.; Dagan, S.; Levy, A.; Hasegawa, T.; Hazumi, M.; Ishii, T.; Kuze, M.; Mine, S.; Nagasawa, Y.; Nagira, T.; Nakao, M.; Suzuki, I.; Tokushuku, K.; Yamada, S.; Yamazaki, Y.; Chiba, M.; Hamatsu, R.; Hirose, T.; Homma, K.; Kitamura, S.; Nagayama, S.; Nakamitsu, Y.; Cirio, R.; Costa, M.; Ferrero, M. I.; Lamberti, L.; Maselli, S.; Peroni, C.; Sacchi, R.; Solano, A.; Staiano, A.; Dardo, M.; Bandyopadhyay, D.; Benard, F.; Brkic, M.; Crombie, M. B.; Gingrich, D. M.; Hartner, G. F.; Joo, K. K.; Levman, G. M.; Martin, J. F.; Orr, R. S.; Sampson, C. R.; Teuscher, R. J.; Catterall, C. D.; Jones, T. W.; Kaziewicz, P. B.; Lane, J. B.; Saunders, R. L.; Shulman, J.; Blankenship, K.; Kochocki, J.; Lu, B.; Mo, L. W.; Bogusz, W.; Charchula, K.; Ciborowski, J.; Gajewski, J.; Grzelak, G.; Kasprzak, M.; Krzyżanowski, M.; Muchorowski, K.; Nowak, R. J.; Pawlak, J. M.; Tymieniecka, T.; Wróblewski, A. K.; Zakrzewski, J. A.; Żarnecki, A. F.; Adamus, M.; Eisenberg, Y.; Glasman, C.; Karshon, U.; Revel, D.; Shapira, A.; Ali, I.; Behrens, B.; Dasu, S.; Fordham, C.; Foudas, C.; Goussiou, A.; Loveless, R. J.; Reeder, D. D.; Silverstein, S.; Smith, W. H.; Tsurugai, T.; Bhadra, S.; Frisken, W. R.; Furutani, K. M.

    1995-09-01

    The ZEUS detector has been used to measure the proton structure function F 2. During 1993 HERA collided 26.7 GeV electrons on 820 GeV protons. The data sample corresponds to an integrated luminosity of 0.54 pb-1, representing a twenty fold increase in statistics compared to that of 1992. Results are presented for 7< Q 2<104 GeV2 and x values as low as 3×10-4. The rapid rise in F 2 as x decreases observed previously is now studied in greater detail and persists for Q 2 values up to 500 GeV2.

  19. Proposal to measure spin-structure functions and semi-exclusive asymmetries for the proton and neutron at HERA

    SciTech Connect

    Jackson, H.E.; Hansen, J.O.; Jones, C.E.

    1995-08-01

    Nucleon spin physics will be studied in the HERMES experiment, that will use polarized internal targets of essentially pure atomic H, D, and {sup 3}He in the HERA electron storage ring at DESY. A series of measurements of spin-dependent properties of the nucleon and few-body nuclei will be made; the spin structure function g{sub 1}(x) of the proton and neutron will be measured to test the Bjorken sum rule and study the fraction of the nucleon spin carried by quarks; the spin structure function g{sub 2}W, sensitive to quark-gluon correlations, and the structure functions b{sub 1}(x), and {Delta}(x), sensitive to nuclear binding effects, will be measured; and, using the particle identification capability of the HERMES detector, pions will be detected in coincidence with the scattered electrons. The coincident hadron measurements represent the most important extension that can be made at this time to the existing measurements on the nucleon spin structure functions because they provide information about the flavor-dependence of the quark spin distribution in the nucleon. Argonne is providing the Cerenkov counter to be used for particle identification and developing the drifilm coating technique for the ultrathin target cell required for this experiment. The HERMES collaboration intends to use polarized targets with the highest available figures of merit, and the Argonne laser-driven source offers the most promise for a significant advance in present-day targets.

  20. Measurement of Proton Structure and Parton Density Functions from HERA

    SciTech Connect

    Raicevic, Natasa

    2010-01-21

    A preliminary result is reported of the charged current and neutral current inclusive cross sections from e{sup +}p and e{sup -}p scattering obtained from a combination of published measurements from H1 and ZEUS. Taking into account the systematic error correlations in a coherent approach, a reduction of experimental uncertainties for combined results is achieved compared to the separate results of the H1 and ZEUS experiments. The combined results are used as input for a next-to-leading order (NLO) QCD parton distribution determination.

  1. Measurement of the Longitudinal Structure Function from ep Collisions with the H1 Detector at HERA

    SciTech Connect

    Raicevic, N.

    2007-04-23

    The longitudinal structure function, FL, is identically zero in lowest order QCD, but due to gluon radiation gets a non-zero value in perturbative QCD. Measurements of FL can thus provide constraints on the gluon density in the proton which are complementary to that obtained from the scaling violations of structure function F2. In this report indirect measurements of FL from ep collisions with the H1 detector at HERA accelerator, at center-of-mass energy of 320 Gev, are summarised. For the measurement of the FL it is essential to reach maximum possible values of inelasticity y. Experimental techniques which can provide precise measurements in this region will also be discussed.

  2. What HERA May Provide?

    SciTech Connect

    Jung, Hannes; De Roeck, Albert; Bartels, Jochen; Behnke, Olaf; Blumlein, Johannes; Brodsky, Stanley; Cooper-Sarkar, Amanda; Deak, Michal; Devenish, Robin; Diehl, Markus; Gehrmann, Thomas; Grindhammer, Guenter; Gustafson, Gosta; Khoze, Valery; Knutsson, Albert; Klein, Max; Krauss, Frank; Kutak, Krzysztof; Laenen, Eric; Lonnblad, Leif; Motyka, Leszek; /Hamburg U., Inst. Theor. Phys. II /Birmingham U. /Southern Methodist U. /DESY /Piemonte Orientale U., Novara /CERN /Paris, LPTHE /Hamburg U. /Penn State U.

    2011-11-10

    More than 100 people participated in a discussion session at the DIS08 workshop on the topic What HERA may provide. A summary of the discussion with a structured outlook and list of desirable measurements and theory calculations is given. The HERA accelerator and the HERA experiments H1, HERMES and ZEUS stopped running in the end of June 2007. This was after 15 years of very successful operation since the first collisions in 1992. A total luminosity of {approx} 500 pb{sup -1} has been accumulated by each of the collider experiments H1 and ZEUS. During the years the increasingly better understood and upgraded detectors and HERA accelerator have contributed significantly to this success. The physics program remains in full swing and plenty of new results were presented at DIS08 which are approaching the anticipated final precision, fulfilling and exceeding the physics plans and the previsions of the upgrade program. Most of the analyses presented at DIS08 were still based on the so called HERA I data sample, i.e. data taken until 2000, before the shutdown for the luminosity upgrade. This sample has an integrated luminosity of {approx} 100 pb{sup -1}, and the four times larger statistics sample from HERA II is still in the process of being analyzed.

  3. Measurement of the luminosity in the ZEUS experiment at HERA II

    NASA Astrophysics Data System (ADS)

    Adamczyk, L.; Andruszkow, J.; Bold, T.; Borzemski, P.; Buettner, C.; Caldwell, A.; Chwastowski, J.; Daniluk, W.; Drugakov, V.; Eskreys, A.; Figiel, J.; Galas, A.; Gil, M.; Helbich, M.; Januschek, F.; Jurkiewicz, P.; Kisielewska, D.; Klein, U.; Kotarba, A.; Lohmann, W.; Ning, Y.; Oliwa, K.; Olkiewicz, K.; Paganis, S.; Pieron, J.; Przybycien, M.; Ren, Z.; Ruchlewicz, W.; Schmidke, W.; Schneekloth, U.; Sciulli, F.; Stopa, P.; Sztuk-Dambietz, J.; Suszycki, L.; Sutiak, J.; Wierba, W.; Zawiejski, L.

    2014-04-01

    The luminosity in the ZEUS detector was measured using photons from electron bremsstrahlung off protons. In 2001 the HERA collider was upgraded for operation at higher luminosity. At the same time the luminosity-measuring system of the ZEUS experiment was modified to tackle the expected higher photon rate and synchrotron radiation. The existing lead-scintillator calorimeter was equipped with radiation hard scintillator tiles and shielded against synchrotron radiation. In addition, a magnetic spectrometer was installed to measure the luminosity independently using photons converted in the beam-pipe exit window. The redundancy provided a reliable and robust luminosity determination with a systematic uncertainty of 1.7%. The experimental setup, the techniques used for luminosity determination and the estimate of the systematic uncertainty are reported.

  4. Measurement of the t dependence in exclusive photoproduction of ϒ(1S) mesons at HERA

    NASA Astrophysics Data System (ADS)

    ZEUS Collaboration; Abramowicz, H.; Abt, I.; Adamczyk, L.; Adamus, M.; Aggarwal, R.; Antonelli, S.; Antonioli, P.; Antonov, A.; Arneodo, M.; Aushev, V.; Aushev, Y.; Bachynska, O.; Bamberger, A.; Barakbaev, A. N.; Barbagli, G.; Bari, G.; Barreiro, F.; Bartosik, N.; Bartsch, D.; Basile, M.; Behnke, O.; Behr, J.; Behrens, U.; Bellagamba, L.; Bertolin, A.; Bhadra, S.; Bindi, M.; Blohm, C.; Bokhonov, V.; Bołd, T.; Bondarenko, K.; Boos, E. G.; Borras, K.; Boscherini, D.; Bot, D.; Brock, I.; Brownson, E.; Brugnera, R.; Brümmer, N.; Bruni, A.; Bruni, G.; Brzozowska, B.; Bussey, P. J.; Bylsma, B.; Caldwell, A.; Capua, M.; Carlin, R.; Catterall, C. D.; Chekanov, S.; Chwastowski, J.; Ciborowski, J.; Ciesielski, R.; Cifarelli, L.; Cindolo, F.; Contin, A.; Cooper-Sarkar, A. M.; Coppola, N.; Corradi, M.; Corriveau, F.; Costa, M.; D'Agostini, G.; Dal Corso, F.; del Peso, J.; Dementiev, R. K.; De Pasquale, S.; Derrick, M.; Devenish, R. C. E.; Dobur, D.; Dolgoshein, B. A.; Dolinska, G.; Doyle, A. T.; Drugakov, V.; Durkin, L. S.; Dusini, S.; Eisenberg, Y.; Ermolov, P. F.; Eskreys, A.; Fang, S.; Fazio, S.; Ferrando, J.; Ferrero, M. I.; Figiel, J.; Forrest, M.; Foster, B.; Gach, G.; Galas, A.; Gallo, E.; Garfagnini, A.; Geiser, A.; Gialas, I.; Gladilin, L. K.; Gladkov, D.; Glasman, C.; Gogota, O.; Golubkov, Yu. A.; Göttlicher, P.; Grabowska-Bołd, I.; Grebenyuk, J.; Gregor, I.; Grigorescu, G.; Grzelak, G.; Gueta, O.; Guzik, M.; Gwenlan, C.; Haas, T.; Hain, W.; Hamatsu, R.; Hart, J. C.; Hartmann, H.; Hartner, G.; Hilger, E.; Hochman, D.; Hori, R.; Horton, K.; Hüttmann, A.; Ibrahim, Z. A.; Iga, Y.; Ingbir, R.; Ishitsuka, M.; Jakob, H.-P.; Januschek, F.; Jones, T. W.; Jüngst, M.; Kadenko, I.; Kahle, B.; Kananov, S.; Kanno, T.; Karshon, U.; Karstens, F.; Katkov, I. I.; Kaur, M.; Kaur, P.; Keramidas, A.; Khein, L. A.; Kim, J. Y.; Kisielewska, D.; Kitamura, S.; Klanner, R.; Klein, U.; Koffeman, E.; Kooijman, P.; Korol, Ie.; Korzhavina, I. A.; Kotański, A.; Kötz, U.; Kowalski, H.; Kuprash, O.; Kuze, M.; Lee, A.; Levchenko, B. B.; Levy, A.; Libov, V.; Limentani, S.; Ling, T. Y.; Lisovyi, M.; Lobodzinska, E.; Lohmann, W.; Löhr, B.; Lohrmann, E.; Long, K. R.; Longhin, A.; Lontkovskyi, D.; Lukina, O. Yu.; Maeda, J.; Magill, S.; Makarenko, I.; Malka, J.; Mankel, R.; Margotti, A.; Marini, G.; Martin, J. F.; Mastroberardino, A.; Mattingly, M. C. K.; Melzer-Pellmann, I.-A.; Mergelmeyer, S.; Miglioranzi, S.; Mohamad Idris, F.; Monaco, V.; Montanari, A.; Morris, J. D.; Mujkic, K.; Musgrave, B.; Nagano, K.; Namsoo, T.; Nania, R.; Nigro, A.; Ning, Y.; Nobe, T.; Noor, U.; Notz, D.; Nowak, R. J.; Nuncio-Quiroz, A. E.; Oh, B. Y.; Okazaki, N.; Oliver, K.; Olkiewicz, K.; Onishchuk, Yu.; Papageorgiu, K.; Parenti, A.; Paul, E.; Pawlak, J. M.; Pawlik, B.; Pelfer, P. G.; Pellegrino, A.; Perlański, W.; Perrey, H.; Piotrzkowski, K.; Pluciński, P.; Pokrovskiy, N. S.; Polini, A.; Proskuryakov, A. S.; Przybycień, M.; Raval, A.; Reeder, D. D.; Reisert, B.; Ren, Z.; Repond, J.; Ri, Y. D.; Robertson, A.; Roloff, P.; Rubinsky, I.; Ruspa, M.; Sacchi, R.; Salii, A.; Samson, U.; Sartorelli, G.; Savin, A. A.; Saxon, D. H.; Schioppa, M.; Schlenstedt, S.; Schleper, P.; Schmidke, W. B.; Schneekloth, U.; Schönberg, V.; Schörner-Sadenius, T.; Schwartz, J.; Sciulli, F.; Shcheglova, L. M.; Shehzadi, R.; Shimizu, S.; Singh, I.; Skillicorn, I. O.; Słomiński, W.; Smith, W. H.; Sola, V.; Solano, A.; Son, D.; Sosnovtsev, V.; Spiridonov, A.; Stadie, H.; Stanco, L.; Stern, A.; Stewart, T. P.; Stifutkin, A.; Stopa, P.; Suchkov, S.; Susinno, G.; Suszycki, L.; Sztuk-Dambietz, J.; Szuba, D.; Szuba, J.; Tapper, A. D.; Tassi, E.; Terrón, J.; Theedt, T.; Tiecke, H.; Tokushuku, K.; Tomalak, O.; Tomaszewska, J.; Tsurugai, T.; Turcato, M.; Tymieniecka, T.; Vázquez, M.; Verbytskyi, A.; Viazlo, O.; Vlasov, N. N.; Volynets, O.; Walczak, R.; Wan Abdullah, W. A. T.; Whitmore, J. J.; Wiggers, L.; Wing, M.; Wlasenko, M.; Wolf, G.; Wolfe, H.; Wrona, K.; Yagües-Molina, A. G.; Yamada, S.; Yamazaki, Y.; Yoshida, R.; Youngman, C.; Żarnecki, A. F.; Zawiejski, L.; Zenaiev, O.; Zeuner, W.; Zhautykov, B. O.; Zhmak, N.; Zhou, C.; Zichichi, A.; Zolkapli, Z.; Zolko, M.; Zotkin, D. S.

    2012-02-01

    The exclusive photoproduction reaction γp→ϒ(1S)p has been studied with the ZEUS detector in ep collisions at HERA using an integrated luminosity of 468 pb. The measurement covers the kinematic range 60measured, yielding b=4.3-1.3+2.0(stat.)-0.6+0.5(syst.) GeV. This constitutes the first measurement of the t dependence of the γp→ϒ(1S)p cross section.

  5. New measurement of inclusive deep inelastic scattering cross sections at HERA

    NASA Astrophysics Data System (ADS)

    Picuric, Ivana

    2016-03-01

    A combined measurement is presented of all inclusive deep inelastic cross sections measured by the H1 and ZEUS collaborations in neutral and charged current unpolarised e±p scattering at HERA. The H1 and ZEUS collaborations collected total integrated luminosities of approximately 500 pb-1 each, divided about equally between e+p and e-p scattering. They include data taken at electron (positron) beam energy of 27.5 GeV and proton beam energies of 920, 820, 575 and 460 GeV corresponding to centre-of-mass energy of 320, 300, 251 and 225 GeV respectively. This enabled the two collaborations to explore a large phase space in Bjorken x and negative four-momentum-transfer squared, Q2. The combination method takes the correlations of the systematic uncertainties into account, resulting in improved accuracy.

  6. New measurement of inclusive deep inelastic scattering cross sections at HERA

    SciTech Connect

    Picuric, Ivana

    2016-03-25

    A combined measurement is presented of all inclusive deep inelastic cross sections measured by the H1 and ZEUS collaborations in neutral and charged current unpolarised e{sup ±}p scattering at HERA. The H1 and ZEUS collaborations collected total integrated luminosities of approximately 500 pb{sup −1} each, divided about equally between e{sup +}p and e{sup −}p scattering. They include data taken at electron (positron) beam energy of 27.5 GeV and proton beam energies of 920, 820, 575 and 460 GeV corresponding to centre-of-mass energy of 320, 300, 251 and 225 GeV respectively. This enabled the two collaborations to explore a large phase space in Bjorken x and negative four-momentum-transfer squared, Q{sup 2}. The combination method takes the correlations of the systematic uncertainties into account, resulting in improved accuracy.

  7. Measurement of exclusive φ production in DIS at HERA with the ZEUS detector

    NASA Astrophysics Data System (ADS)

    Helbich, Miroslav

    The central aim of this thesis is the measurement of the exclusive electroproduction of φ mesons in e+/-p collisions with the ZEUS detector at the HERA collider. The measurements were performed in the kinematic range 2 < Q2 < 70 GeV2, 35 < W < 145 GeV and | t| < 0.6 GeV2. Vector meson production is an experimentally clean process which can be measured over a large range of kinematical phase space and at the same time is simple enough to attract large theoretical activity. This work has an ambition to provide experimental data that map the transition between "soft" and "hard" physics and help to guide future theoretical developments. The results presented benefit from the large amount of data collected by the ZEUS detector in 1998--2000 corresponding to an integrated luminosity of 66.4pb-1, which represents a factor of ˜30 increase as compared to previous published results from HERA. Due to improved algorithms for electron position measurement the kinematic range could be enlarged to lower values of Q2. The cross-sections are presented as a function of Q 2,W,t and helicity angle theta h. The results are consistent with a global vector meson production scaling with Q2 + M2VM . The W dependence was extracted in bins of t, and the results are consistent with no shrinkage. The ratio of the cross-sections for longitudinally and transversely polarized virtual photons, determined from the angular distribution of the decay products of the φ mesons, is presented as a function of Q2. The value of R = σL/σ T rises smoothly as a function of Q 2.

  8. Measurement of beauty production in deep inelastic scattering at HERA using decays into electrons

    NASA Astrophysics Data System (ADS)

    Abramowicz, H.; Abt, I.; Adamczyk, L.; Adamus, M.; Aggarwal, R.; Antonelli, S.; Antonioli, P.; Antonov, A.; Arneodo, M.; Aushev, V.; Aushev, Y.; Bachynska, O.; Bamberger, A.; Barakbaev, A. N.; Barbagli, G.; Bari, G.; Barreiro, F.; Bartosik, N.; Bartsch, D.; Basile, M.; Behnke, O.; Behr, J.; Behrens, U.; Bellagamba, L.; Bertolin, A.; Bhadra, S.; Bindi, M.; Blohm, C.; Bokhonov, V.; Bołd, T.; Bolilyi, O.; Boos, E. G.; Borras, K.; Boscherini, D.; Bot, D.; Boutle, S. K.; Brock, I.; Brownson, E.; Brugnera, R.; Brümmer, N.; Bruni, A.; Bruni, G.; Brzozowska, B.; Bussey, P. J.; Butterworth, J. M.; Bylsma, B.; Caldwell, A.; Capua, M.; Carlin, R.; Catterall, C. D.; Chekanov, S.; Chwastowski, J.; Ciborowski, J.; Ciesielski, R.; Cifarelli, L.; Cindolo, F.; Contin, A.; Cooper-Sarkar, A. M.; Coppola, N.; Corradi, M.; Corriveau, F.; Costa, M.; D'Agostini, G.; Dal Corso, F.; del Peso, J.; Dementiev, R. K.; De Pasquale, S.; Derrick, M.; Devenish, R. C. E.; Dobur, D.; Dolgoshein, B. A.; Dolinska, G.; Doyle, A. T.; Drugakov, V.; Durkin, L. S.; Dusini, S.; Eisenberg, Y.; Ermolov, P. F.; Eskreys, A.; Fang, S.; Fazio, S.; Ferrando, J.; Ferrero, M. I.; Figiel, J.; Forrest, M.; Foster, B.; Fourletov, S.; Gach, G.; Galas, A.; Gallo, E.; Garfagnini, A.; Geiser, A.; Gialas, I.; Gladilin, L. K.; Gladkov, D.; Glasman, C.; Gogota, O.; Golubkov, Y. A.; Göttlicher, P.; Grabowska-Bołd, I.; Grebenyuk, J.; Gregor, I.; Grigorescu, G.; Grzelak, G.; Gueta, O.; Gwenlan, C.; Haas, T.; Hain, W.; Hamatsu, R.; Hart, J. C.; Hartmann, H.; Hartner, G.; Hilger, E.; Hochman, D.; Hori, R.; Horton, K.; Hüttmann, A.; Iacobucci, G.; Ibrahim, Z. A.; Iga, Y.; Ingbir, R.; Ishitsuka, M.; Jakob, H.-P.; Januschek, F.; Jimenez, M.; Jones, T. W.; Jüngst, M.; Kadenko, I.; Kahle, B.; Kamaluddin, B.; Kananov, S.; Kanno, T.; Karshon, U.; Karstens, F.; Katkov, I. I.; Kaur, M.; Kaur, P.; Keramidas, A.; Khein, L. A.; Kim, J. Y.; Kisielewska, D.; Kitamura, S.; Klanner, R.; Klein, U.; Koffeman, E.; Kooijman, P.; Korol, I.; Korzhavina, I. A.; Kotański, A.; Kötz, U.; Kowalski, H.; Kulinski, P.; Kuprash, O.; Kuze, M.; Lee, A.; Levchenko, B. B.; Levy, A.; Libov, V.; Limentani, S.; Ling, T. Y.; Lisovyi, M.; Lobodzinska, E.; Lohmann, W.; Löhr, B.; Lohrmann, E.; Loizides, J. H.; Long, K. R.; Longhin, A.; Lontkovskyi, D.; Lukina, O. Y.; Łużniak, P.; Maeda, J.; Magill, S.; Makarenko, I.; Malka, J.; Mankel, R.; Margotti, A.; Marini, G.; Martin, J. F.; Mastroberardino, A.; Mattingly, M. C. K.; Melzer-Pellmann, I.-A.; Mergelmeyer, S.; Miglioranzi, S.; Mohamad Idris, F.; Monaco, V.; Montanari, A.; Morris, J. D.; Mujkic, K.; Musgrave, B.; Nagano, K.; Namsoo, T.; Nania, R.; Nicholass, D.; Nigro, A.; Ning, Y.; Noor, U.; Notz, D.; Nowak, R. J.; Nuncio-Quiroz, A. E.; Oh, B. Y.; Okazaki, N.; Oliver, K.; Olkiewicz, K.; Onishchuk, Y.; Papageorgiu, K.; Parenti, A.; Paul, E.; Pawlak, J. M.; Pawlik, B.; Pelfer, P. G.; Pellegrino, A.; Perlanski, W.; Perrey, H.; Piotrzkowski, K.; Plucinski, P.; Pokrovskiy, N. S.; Polini, A.; Proskuryakov, A. S.; Przybycień, M.; Raval, A.; Reeder, D. D.; Reisert, B.; Ren, Z.; Repond, J.; Ri, Y. D.; Robertson, A.; Roloff, P.; Ron, E.; Rubinsky, I.; Ruspa, M.; Sacchi, R.; Salii, A.; Samson, U.; Sartorelli, G.; Savin, A. A.; Saxon, D. H.; Schioppa, M.; Schlenstedt, S.; Schleper, P.; Schmidke, W. B.; Schneekloth, U.; Schönberg, V.; Schörner-Sadenius, T.; Schwartz, J.; Sciulli, F.; Shcheglova, L. M.; Shehzadi, R.; Shimizu, S.; Singh, I.; Skillicorn, I. O.; Słomiński, W.; Smith, W. H.; Sola, V.; Solano, A.; Son, D.; Sosnovtsev, V.; Spiridonov, A.; Stadie, H.; Stanco, L.; Stern, A.; Stewart, T. P.; Stifutkin, A.; Stopa, P.; Suchkov, S.; Susinno, G.; Suszycki, L.; Sztuk-Dambietz, J.; Szuba, D.; Szuba, J.; Tapper, A. D.; Tassi, E.; Terrón, J.; Theedt, T.; Tiecke, H.; Tokushuku, K.; Tomalak, O.; Tomaszewska, J.; Tsurugai, T.; Turcato, M.; Tymieniecka, T.; Uribe-Estrada, C.; Vázquez, M.; Verbytskyi, A.; Viazlo, O.; Vlasov, N. N.; Volynets, O.; Walczak, R.; Wan Abdullah, W. A. T.; Whitmore, J. J.; Whyte, J.; Wiggers, L.; Wing, M.; Wlasenko, M.; Wolf, G.; Wolfe, H.; Wrona, K.; Yagües-Molina, A. G.; Yamada, S.; Yamazaki, Y.; Yoshida, R.; Youngman, C.; Żarnecki, A. F.; Zawiejski, L.; Zenaiev, O.; Zeuner, W.; Zhautykov, B. O.; Zhmak, N.; Zhou, C.; Zichichi, A.; Zolko, M.; Zotkin, D. S.; Zulkapli, Z.

    2011-02-01

    The production of beauty quarks in ep interactions has been studied with the ZEUS detector at HERA for exchanged four-momentum squared Q 2>10 GeV2, using an integrated luminosity of 363 pb-1. The beauty events were identified using electrons from semileptonic b decays with a transverse momentum 0.9 < pTe < 8 GeV and pseudorapidity | η e |<1.5. Cross sections for beauty production were measured and compared with next-to-leading-order QCD calculations. The beauty contribution to the proton structure function F 2 was extracted from the double-differential cross section as a function of Bjorken- x and Q 2.

  9. Heavy Flavour Production at HERA

    NASA Astrophysics Data System (ADS)

    Plačakytė, Ringailė; H1; Zeus Collaborations

    2014-11-01

    Measurements of open charm and beauty production at HERA provide important input for stringent tests of quantum chromodynamics and are used to constrain the parton distribution functions of the proton. The recent results on the heavy flavour production obtained by the H1 and ZEUS experiments at HERA are reviewed in this contribution.

  10. Measurement of beauty and charm production in deep inelastic scattering at HERA and measurement of the beauty-quark mass

    NASA Astrophysics Data System (ADS)

    Abramowicz, H.; Abt, I.; Adamczyk, L.; Adamus, M.; Aggarwal, R.; Antonelli, S.; Arslan, O.; Aushev, V.; Aushev, Y.; Bachynska, O.; Barakbaev, A. N.; Bartosik, N.; Behnke, O.; Behr, J.; Behrens, U.; Bertolin, A.; Bhadra, S.; Bloch, I.; Bokhonov, V.; Boos, E. G.; Borras, K.; Brock, I.; Brugnera, R.; Bruni, A.; Brzozowska, B.; Bussey, P. J.; Caldwell, A.; Capua, M.; Catterall, C. D.; Chwastowski, J.; Ciborowski, J.; Ciesielski, R.; Cooper-Sarkar, A. M.; Corradi, M.; Corriveau, F.; D'Agostini, G.; Dementiev, R. K.; Devenish, R. C. E.; Dolinska, G.; Drugakov, V.; Dusini, S.; Ferrando, J.; Figiel, J.; Foster, B.; Gach, G.; Garfagnini, A.; Geiser, A.; Gizhko, A.; Gladilin, L. K.; Gogota, O.; Golubkov, Yu. A.; Grebenyuk, J.; Gregor, I.; Grzelak, G.; Gueta, O.; Guzik, M.; Hain, W.; Hartner, G.; Hochman, D.; Hori, R.; Ibrahim, Z. A.; Iga, Y.; Ishitsuka, M.; Iudin, A.; Januschek, F.; Kadenko, I.; Kananov, S.; Kanno, T.; Karshon, U.; Kaur, M.; Kaur, P.; Khein, L. A.; Kisielewska, D.; Klanner, R.; Klein, U.; Kondrashova, N.; Kononenko, O.; Korol, Ie.; Korzhavina, I. A.; Kotanski, A.; Kötz, U.; Kovalchuk, N.; Kowalski, H.; Kuprash, O.; Kuze, M.; Levchenko, B. B.; Levy, A.; Libov, V.; Limentani, S.; Lisovyi, M.; Lobodzinska, E.; Lohmann, W.; Löhr, B.; Lohrmann, E.; Longhin, A.; Lontkovskyi, D.; Lukina, O. Yu.; Maeda, J.; Makarenko, I.; Malka, J.; Martin, J. F.; Mergelmeyer, S.; Mohamad Idris, F.; Mujkic, K.; Myronenko, V.; Nagano, K.; Nigro, A.; Nobe, T.; Notz, D.; Nowak, R. J.; Olkiewicz, K.; Onishchuk, Yu.; Paul, E.; Perlanski, W.; Perrey, H.; Pokrovskiy, N. S.; Proskuryakov, A. S.; Przybycien, M.; Raval, A.; Roloff, P.; Rubinsky, I.; Ruspa, M.; Samojlov, V.; Saxon, D. H.; Schioppa, M.; Schmidke, W. B.; Schneekloth, U.; Schörner-Sadenius, T.; Schwartz, J.; Shcheglova, L. M.; Shehzadi, R.; Shevchenko, R.; Shkola, O.; Singh, I.; Skillicorn, I. O.; Slominski, W.; Sola, V.; Solano, A.; Spiridonov, A.; Stanco, L.; Stefaniuk, N.; Stern, A.; Stewart, T. P.; Stopa, P.; Sztuk-Dambietz, J.; Szuba, D.; Szuba, J.; Tassi, E.; Temiraliev, T.; Tokushuku, K.; Tomaszewska, J.; Trofymov, A.; Trusov, V.; Tsurugai, T.; Turcato, M.; Turkot, O.; Tymieniecka, T.; Verbytskyi, A.; Viazlo, O.; Walczak, R.; Wan Abdullah, W. A. T.; Wichmann, K.; Wing, M.; Wolf, G.; Yamada, S.; Yamazaki, Y.; Zakharchuk, N.; Żarnecki, A. F.; Zawiejski, L.; Zenaiev, O.; Zhautykov, B. O.; Zhmak, N.; Zotkin, D. S.

    2014-09-01

    The production of beauty and charm quarks in ep interactions has been studied with the ZEUS detector at HERA for exchanged four-momentum squared 5 < Q 2 < 1000 GeV2 using an integrated luminosity of 354 pb-1. The beauty and charm content in events with at least one jet have been extracted using the invariant mass of charged tracks associated with secondary vertices and the decay-length significance of these vertices. Differential cross sections as a function of Q 2, Bjorken x, jet trans- verse energy and pseudorapidity were measured and compared with next-to-leading-order QCD calculations. The beauty and charm contributions to the proton structure functions were extracted from the double-differential cross section as a function of x and Q 2. The running beauty-quark mass, m b at the scale m b , was determined from a QCD fit at next-to-leading order to HERA data for the first time and found to be m b ( m b ) = 4.07 ± 0.14 (fit){-/0.07 + 0.01}(mod.){-/0.00 + 0.05}(param.){-/0.05 + 0.08}(theo.) GeV.

  11. Measurement of beauty and charm production in deep inelastic scattering at HERA and measurement of the beauty-quark mass

    NASA Astrophysics Data System (ADS)

    Abramowicz, H.; Abt, I.; Adamczyk, L.; Adamus, M.; Aggarwal, R.; Antonelli, S.; Arslan, O.; Aushev, V.; Aushev, Y.; Bachynska, O.; Barakbaev, A. N.; Bartosik, N.; Behnke, O.; Behr, J.; Behrens, U.; Bertolin, A.; Bhadra, S.; Bloch, I.; Bokhonov, V.; Boos, E. G.; Borras, K.; Brock, I.; Brugnera, R.; Bruni, A.; Brzozowska, B.; Bussey, P. J.; Caldwell, A.; Capua, M.; Catterall, C. D.; Chwastowski, J.; Ciborowski, J.; Ciesielski, R.; Cooper-Sarkar, A. M.; Corradi, M.; Corriveau, F.; D'Agostini, G.; Dementiev, R. K.; Devenish, R. C. E.; Dolinska, G.; Drugakov, V.; Dusini, S.; Ferrando, J.; Figiel, J.; Foster, B.; Gach, G.; Garfagnini, A.; Geiser, A.; Gizhko, A.; Gladilin, L. K.; Gogota, O.; Golubkov, Yu. A.; Grebenyuk, J.; Gregor, I.; Grzelak, G.; Gueta, O.; Guzik, M.; Hain, W.; Hartner, G.; Hochman, D.; Hori, R.; Ibrahim, Z. A.; Iga, Y.; Ishitsuka, M.; Iudin, A.; Januschek, F.; Kadenko, I.; Kananov, S.; Kanno, T.; Karshon, U.; Kaur, M.; Kaur, P.; Khein, L. A.; Kisielewska, D.; Klanner, R.; Klein, U.; Kondrashova, N.; Kononenko, O.; Korol, Ie.; Korzhavina, I. A.; Kotanski, A.; Kötz, U.; Kovalchuk, N.; Kowalski, H.; Kuprash, O.; Kuze, M.; Levchenko, B. B.; Levy, A.; Libov, V.; Limentani, S.; Lisovyi, M.; Lobodzinska, E.; Lohmann, W.; Löhr, B.; Lohrmann, E.; Longhin, A.; Lontkovskyi, D.; Lukina, O. Yu.; Maeda, J.; Makarenko, I.; Malka, J.; Martin, J. F.; Mergelmeyer, S.; Mohamad Idris, F.; Mujkic, K.; Myronenko, V.; Nagano, K.; Nigro, A.; Nobe, T.; Notz, D.; Nowak, R. J.; Olkiewicz, K.; Onishchuk, Yu.; Paul, E.; Perlanski, W.; Perrey, H.; Pokrovskiy, N. S.; Proskuryakov, A. S.; Przybycien, M.; Raval, A.; Roloff, P.; Rubinsky, I.; Ruspa, M.; Samojlov, V.; Saxon, D. H.; Schioppa, M.; Schmidke, W. B.; Schneekloth, U.; Schörner-Sadenius, T.; Schwartz, J.; Shcheglova, L. M.; Shehzadi, R.; Shevchenko, R.; Shkola, O.; Singh, I.; Skillicorn, I. O.; Slominski, W.; Sola, V.; Solano, A.; Spiridonov, A.; Stanco, L.; Stefaniuk, N.; Stern, A.; Stewart, T. P.; Stopa, P.; Sztuk-Dambietz, J.; Szuba, D.; Szuba, J.; Tassi, E.; Temiraliev, T.; Tokushuku, K.; Tomaszewska, J.; Trofymov, A.; Trusov, V.; Tsurugai, T.; Turcato, M.; Turkot, O.; Tymieniecka, T.; Verbytskyi, A.; Viazlo, O.; Walczak, R.; Wan Abdullah, W. A. T.; Wichmann, K.; Wing, M.; Wolf, G.; Yamada, S.; Yamazaki, Y.; Zakharchuk, N.; Żarnecki, A. F.; Zawiejski, L.; Zenaiev, O.; Zhautykov, B. O.; Zhmak, N.; Zotkin, D. S.

    2014-10-01

    The production of beauty and charm quarks in ep interactions has been studied with the ZEUS detector at HERA for exchanged four-momentum squared 5 < Q 2 < 1000 GeV2 using an integrated luminosity of 354 pb-1. The beauty and charm content in events with at least one jet have been extracted using the invariant mass of charged tracks associated with secondary vertices and the decay-length significance of these vertices. Differential cross sections as a function of Q 2, Bjorken x, jet trans- verse energy and pseudorapidity were measured and compared with next-to-leading-order QCD calculations. The beauty and charm contributions to the proton structure functions were extracted from the double-differential cross section as a function of x and Q 2. The running beauty-quark mass, m b at the scale m b , was determined from a QCD fit at next-to-leading order to HERA data for the first time and found to be m b ( m b ) = 4.07 ± 0.14 (fit){-/0.07 + 0.01}(mod.){-/0.00 + 0.05}(param.){-/0.05 + 0.08}(theo.) GeV.

  12. Measurement of dijet cross sections with a leading neutron in photoproduction at HERA

    NASA Astrophysics Data System (ADS)

    Khakzad, Mohsen

    Differential cross sections for the reaction e +p --> e+ + 2 jet + n + X in the photoproduction regime (the virtuality of the exchanged photon in the range Q 2 < 4 GeV2, and the fraction y of the positron's energy carried by the exchanged photon in the range 0.2 < y < 0.8) have been measured with the ZEUS detector at HERA at a centre-of-mass energy of s = 300 GeV, using an integrated luminosity of 6.4 pb-1 . Cross sections are given for jet transverse energies EjetT > 6 GeV, neutron energy En > 400 GeV, and neutron scattering angle θ < 0.8 mrad. We have measured the fraction of all events with two jets (dijet events) which contain a leading neutron in the final state. The predictions of the One-Pion-Exchange model, describing the ep --> enX interaction through the exchange of a pion, are found to be in reasonable agreement with the measurements presented here; namely, the dijet differential cross section as a function of the jet transverse energies, the jet pseudorapidities, and the fraction of the momentum carried by the pion participating in the production of the dijet system.

  13. Measurement of inelastic J/ψ and ψ' photoproduction at HERA

    NASA Astrophysics Data System (ADS)

    Abramowicz, H.; Abt, I.; Adamczyk, L.; Adamus, M.; Aggarwal, R.; Antonelli, S.; Antonioli, P.; Antonov, A.; Arneodo, M.; Arslan, O.; Aushev, V.; Aushev, Y.; Bachynska, O.; Bamberger, A.; Barakbaev, A. N.; Barbagli, G.; Bari, G.; Barreiro, F.; Bartosik, N.; Bartsch, D.; Basile, M.; Behnke, O.; Behr, J.; Behrens, U.; Bellagamba, L.; Bertolin, A.; Bhadra, S.; Bindi, M.; Blohm, C.; Bokhonov, V.; Bold, T.; Bondarenko, K.; Boos, E. G.; Borras, K.; Boscherini, D.; Bot, D.; Brock, I.; Brownson, E.; Brugnera, R.; Brümmer, N.; Bruni, A.; Bruni, G.; Brzozowska, B.; Bussey, P. J.; Bylsma, B.; Caldwell, A.; Capua, M.; Carlin, R.; Catterall, C. D.; Chekanov, S.; Chwastowski, J.; Ciborowski, J.; Ciesielski, R.; Cifarelli, L.; Cindolo, F.; Contin, A.; Cooper-Sarkar, A. M.; Coppola, N.; Corradi, M.; Corriveau, F.; Costa, M.; D'Agostini, G.; Dal Corso, F.; del Peso, J.; Dementiev, R. K.; De Pasquale, S.; Derrick, M.; Devenish, R. C. E.; Dobur, D.; Dolgoshein, B. A.; Dolinska, G.; Doyle, A. T.; Drugakov, V.; Durkin, L. S.; Dusini, S.; Eisenberg, Y.; Ermolov, P. F.; Eskreys, A.; Fang, S.; Fazio, S.; Ferrando, J.; Ferrero, M. I.; Figiel, J.; Foster, B.; Gach, G.; Galas, A.; Gallo, E.; Garfagnini, A.; Geiser, A.; Gialas, I.; Gizhko, A.; Gladilin, L. K.; Gladkov, D.; Glasman, C.; Gogota, O.; Golubkov, Yu. A.; Göttlicher, P.; Grabowska-Bold, I.; Grebenyuk, J.; Gregor, I.; Grigorescu, G.; Grzelak, G.; Gueta, O.; Guzik, M.; Gwenlan, C.; Haas, T.; Hain, W.; Hamatsu, R.; Hart, J. C.; Hartmann, H.; Hartner, G.; Hilger, E.; Hochman, D.; Hori, R.; Hüttmann, A.; Ibrahim, Z. A.; Iga, Y.; Ingbir, R.; Ishitsuka, M.; Jakob, H.-P.; Januschek, F.; Jones, T. W.; Jüngst, M.; Kadenko, I.; Kahle, B.; Kananov, S.; Kanno, T.; Karshon, U.; Karstens, F.; Katkov, I. I.; Kaur, M.; Kaur, P.; Keramidas, A.; Khein, L. A.; Kim, J. Y.; Kisielewska, D.; Kitamura, S.; Klanner, R.; Klein, U.; Koffeman, E.; Kondrashova, N.; Kononenko, O.; Kooijman, P.; Korol, Ie.; Korzhavina, I. A.; Kotanski, A.; Kötz, U.; Kowalski, H.; Kuprash, O.; Kuze, M.; Lee, A.; Levchenko, B. B.; Levy, A.; Libov, V.; Limentani, S.; Ling, T. Y.; Lisovyi, M.; Lobodzinska, E.; Lohmann, W.; Löhr, B.; Lohrmann, E.; Long, K. R.; Longhin, A.; Lontkovskyi, D.; Lukina, O. Yu.; Maeda, J.; Magill, S.; Makarenko, I.; Malka, J.; Mankel, R.; Margotti, A.; Marini, G.; Martin, J. F.; Mastroberardino, A.; Mattingly, M. C. K.; Melzer-Pellmann, I.-A.; Mergelmeyer, S.; Miglioranzi, S.; Mohamad Idris, F.; Monaco, V.; Montanari, A.; Morris, J. D.; Mujkic, K.; Musgrave, B.; Nagano, K.; Namsoo, T.; Nania, R.; Nigro, A.; Ning, Y.; Nobe, T.; Notz, D.; Nowak, R. J.; Nuncio-Quiroz, A. E.; Oh, B. Y.; Okazaki, N.; Olkiewicz, K.; Onishchuk, Yu.; Papageorgiu, K.; Parenti, A.; Paul, E.; Pawlak, J. M.; Pawlik, B.; Pelfer, P. G.; Pellegrino, A.; Perlanski, W.; Perrey, H.; Piotrzkowski, K.; Plucinski, P.; Pokrovskiy, N. S.; Polini, A.; Proskuryakov, A. S.; Przybycien, M.; Raval, A.; Reeder, D. D.; Reisert, B.; Ren, Z.; Repond, J.; Ri, Y. D.; Robertson, A.; Roloff, P.; Rubinsky, I.; Ruspa, M.; Sacchi, R.; Samson, U.; Sartorelli, G.; Savin, A. A.; Saxon, D. H.; Schioppa, M.; Schlenstedt, S.; Schleper, P.; Schmidke, W. B.; Schneekloth, U.; Schönberg, V.; Schörner-Sadenius, T.; Schwartz, J.; Sciulli, F.; Shcheglova, L. M.; Shehzadi, R.; Shimizu, S.; Singh, I.; Skillicorn, I. O.; Slominski, W.; Smith, W. H.; Sola, V.; Solano, A.; Son, D.; Sosnovtsev, V.; Spiridonov, A.; Stadie, H.; Stanco, L.; Stefaniuk, N.; Stern, A.; Stewart, T. P.; Stifutkin, A.; Stopa, P.; Suchkov, S.; Susinno, G.; Suszycki, L.; Sztuk-Dambietz, J.; Szuba, D.; Szuba, J.; Tapper, A. D.; Tassi, E.; Terrón, J.; Theedt, T.; Tiecke, H.; Tokushuku, K.; Tomaszewska, J.; Trusov, V.; Tsurugai, T.; Turcato, M.; Turkot, O.; Tymieniecka, T.; Vázquez, M.; Verbytskyi, A.; Viazlo, O.; Vlasov, N. N.; Walczak, R.; Wan Abdullah, W. A. T.; Whitmore, J. J.; Wichmann, K.; Wiggers, L.; Wing, M.; Wlasenko, M.; Wolf, G.; Wolfe, H.; Wrona, K.; Yagües-Molina, A. G.; Yamada, S.; Yamazaki, Y.; Yoshida, R.; Youngman, C.; Zabiegalov, O.; Żarnecki, A. F.; Zawiejski, L.; Zenaiev, O.; Zeuner, W.; Zhautykov, B. O.; Zhmak, N.; Zichichi, A.; Zolkapli, Z.; Zotkin, D. S.

    2013-02-01

    The cross sections for inelastic photoproduction of J/ψ and ψ' mesons have been measured in ep collisions with the ZEUS detector at HERA, using an integrated luminosity of 468 pb-1 collected in the period 1996-2007. The ψ' to J/ψ cross section ratio was measured in the range 0 .55 < z < 0 .9 and 60 < W < 190 GeV as a function of W, z and p T . Here W denotes the photon-proton centre-of-mass energy, z is the fraction of the incident photon energy carried by the meson and p T is the transverse momentum of the meson with respect to the beam axis. The J/ψ cross sections were measured for 0 .1 < z < 0 .9, 60 < W < 240 GeV and p T > 1 GeV. Theoretical predictions within the non-relativistic QCD framework including NLO colour-singlet and colour-octet contributions were compared to the data, as were predictions based on the k T -factorisation approach.

  14. Measurement of {\\varvec{D^{*}}} production in diffractive deep inelastic scattering at HERA

    NASA Astrophysics Data System (ADS)

    Andreev, V.; Baghdasaryan, A.; Begzsuren, K.; Belousov, A.; Bolz, A.; Boudry, V.; Brandt, G.; Brisson, V.; Britzger, D.; Buniatyan, A.; Bylinkin, A.; Bystritskaya, L.; Campbell, A. J.; Avila, K. B. Cantun; Cerny, K.; Chekelian, V.; Contreras, J. G.; Cvach, J.; Dainton, J. B.; Daum, K.; Diaconu, C.; Dobre, M.; Dodonov, V.; Eckerlin, G.; Egli, S.; Elsen, E.; Favart, L.; Fedotov, A.; Feltesse, J.; Ferencei, J.; Fleischer, M.; Fomenko, A.; Gabathuler, E.; Gayler, J.; Ghazaryan, S.; Goerlich, L.; Gogitidze, N.; Gouzevitch, M.; Grab, C.; Grebenyuk, A.; Greenshaw, T.; Grindhammer, G.; Haidt, D.; Henderson, R. C. W.; Hladký, J.; Hoffmann, D.; Horisberger, R.; Hreus, T.; Huber, F.; Jacquet, M.; Jansová, M.; Janssen, X.; Jung, A.; Jung, H.; Kapichine, M.; Katzy, J.; Kiesling, C.; Klein, M.; Kleinwort, C.; Kogler, R.; Kostka, P.; Kretzschmar, J.; Krücker, D.; Krüger, K.; Landon, M. P. J.; Lange, W.; Laycock, P.; Lebedev, A.; Levonian, S.; Lipka, K.; List, B.; List, J.; Lobodzinski, B.; Malinovski, E.; Martyn, H.-U.; Maxfield, S. J.; Mehta, A.; Meyer, A. B.; Meyer, H.; Meyer, J.; Mikocki, S.; Morozov, A.; Müller, K.; Naumann, Th.; Newman, P. R.; Niebuhr, C.; Nowak, G.; Olsson, J. E.; Ozerov, D.; Pascaud, C.; Patel, G. D.; Perez, E.; Petrukhin, A.; Picuric, I.; Pirumov, H.; Pitzl, D.; Plačakytė, R.; Polifka, R.; Radescu, V.; Raicevic, N.; Ravdandorj, T.; Reimer, P.; Rizvi, E.; Robmann, P.; Roosen, R.; Rostovtsev, A.; Rotaru, M.; Šálek, D.; Sankey, D. P. C.; Sauter, M.; Sauvan, E.; Schmitt, S.; Schoeffel, L.; Schöning, A.; Sefkow, F.; Shushkevich, S.; Soloviev, Y.; Sopicki, P.; South, D.; Spaskov, V.; Specka, A.; Steder, M.; Stella, B.; Straumann, U.; Sykora, T.; Thompson, P. D.; Traynor, D.; Truöl, P.; Tsakov, I.; Tseepeldorj, B.; Valkárová, A.; Vallée, C.; Van Mechelen, P.; Vazdik, Y.; Wegener, D.; Wünsch, E.; Žáček, J.; Zhang, Z.; Žlebčík, R.; Zohrabyan, H.; Zomer, F.

    2017-05-01

    Measurements of D^{*}(2010) meson production in diffractive deep inelastic scattering (5HERA data recorded at a centre-of-mass energy √{s} = 319 GeV with an integrated luminosity of 287 pb^{-1}. The reaction ep → eXY is studied, where the system X, containing at least one D^{*}(2010) meson, is separated from a leading low-mass proton dissociative system Y by a large rapidity gap. The kinematics of D^{*} candidates are reconstructed in the D^{*}→ K π π decay channel. The measured cross sections compare favourably with next-to-leading order QCD predictions, where charm quarks are produced via boson-gluon fusion. The charm quarks are then independently fragmented to the D^{*} mesons. The calculations rely on the collinear factorisation theorem and are based on diffractive parton densities previously obtained by H1 from fits to inclusive diffractive cross sections. The data are further used to determine the diffractive to inclusive D^{*} production ratio in deep inelastic scattering.

  15. Measurement of jet production cross sections in deep-inelastic ep scattering at HERA

    NASA Astrophysics Data System (ADS)

    Andreev, V.; Baghdasaryan, A.; Begzsuren, K.; Belousov, A.; Bolz, A.; Boudry, V.; Brandt, G.; Brisson, V.; Britzger, D.; Buniatyan, A.; Bylinkin, A.; Bystritskaya, L.; Campbell, A. J.; Avila, K. B. Cantun; Cerny, K.; Chekelian, V.; Contreras, J. G.; Cvach, J.; Dainton, J. B.; Daum, K.; Diaconu, C.; Dobre, M.; Dodonov, V.; Eckerlin, G.; Egli, S.; Elsen, E.; Favart, L.; Fedotov, A.; Feltesse, J.; Ferencei, J.; Fleischer, M.; Fomenko, A.; Gabathuler, E.; Gayler, J.; Ghazaryan, S.; Goerlich, L.; Gogitidze, N.; Gouzevitch, M.; Grab, C.; Grebenyuk, A.; Greenshaw, T.; Grindhammer, G.; Haidt, D.; Henderson, R. C. W.; Hladkỳ, J.; Hoffmann, D.; Horisberger, R.; Hreus, T.; Huber, F.; Jacquet, M.; Janssen, X.; Jung, H.; Kapichine, M.; Katzy, J.; Kiesling, C.; Klein, M.; Kleinwort, C.; Kogler, R.; Kostka, P.; Kretzschmar, J.; Krücker, D.; Krüger, K.; Landon, M. P. J.; Lange, W.; Laycock, P.; Lebedev, A.; Levonian, S.; Lipka, K.; List, B.; List, J.; Lobodzinski, B.; Malinovski, E.; Martyn, H.-U.; Maxfield, S. J.; Mehta, A.; Meyer, A. B.; Meyer, H.; Meyer, J.; Mikocki, S.; Morozov, A.; Müller, K.; Naumann, Th.; Newman, P. R.; Niebuhr, C.; Nowak, G.; Olsson, J. E.; Ozerov, D.; Pascaud, C.; Patel, G. D.; Perez, E.; Petrukhin, A.; Picuric, I.; Pirumov, H.; Pitzl, D.; Plačakytė, R.; Polifka, R.; Radescu, V.; Raicevic, N.; Ravdandorj, T.; Reimer, P.; Rizvi, E.; Robmann, P.; Roosen, R.; Rostovtsev, A.; Rotaru, M.; Šálek, D.; Sankey, D. P. C.; Sauter, M.; Sauvan, E.; Schmitt, S.; Schoeffel, L.; Schöning, A.; Sefkow, F.; Shushkevich, S.; Soloviev, Y.; Sopicki, P.; South, D.; Spaskov, V.; Specka, A.; Steder, M.; Stella, B.; Straumann, U.; Sykora, T.; Thompson, P. D.; Traynor, D.; Truöl, P.; Tsakov, I.; Tseepeldorj, B.; Valkárová, A.; Vallée, C.; Van Mechelen, P.; Vazdik, Y.; Wegener, D.; Wünsch, E.; Žáček, J.; Zhang, Z.; Žlebčík, R.; Zohrabyan, H.; Zomer, F.

    2017-04-01

    A precision measurement of jet cross sections in neutral current deep-inelastic scattering for photon virtualities 5.5HERA, corresponding to an integrated luminosity of 290 pb^{-1}. Double-differential inclusive jet, dijet and trijet cross sections are measured simultaneously and are presented as a function of jet transverse momentum observables and as a function of Q^2. Jet cross sections normalised to the inclusive neutral current DIS cross section in the respective Q^2-interval are also determined. Previous results of inclusive jet cross sections in the range 150

  16. Measurement of the diffractive structure function in deep inelastic scattering at HERA

    NASA Astrophysics Data System (ADS)

    Derrick, M.; Krakauer, D.; Magill, S.; Mikunas, D.; Musgrave, B.; Repond, J.; Stanek, R.; Talaga, R. L.; Zhang, H.; Ayad, R.; Bari, G.; Basile, M.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruni, P.; Cara Romeo, G.; Castellini, G.; Chiarini, M.; Cifarelli, L.; Cindolo, F.; Contin, A.; Corradi, M.; Gialas, I.; Giusti, P.; Iacobucci, G.; Laurenti, G.; Levi, G.; Margotti, A.; Massam, T.; Nania, R.; Nemoz, C.; Palmonari, F.; Polini, A.; Sartorelli, G.; Timellini, R.; Zamora Garcia, Y.; Zichichi, A.; Bargende, A.; Crittenden, J.; Desch, K.; Diekmann, B.; Doeker, T.; Eckert, M.; Feld, L.; Frey, A.; Geerts, M.; Geitz, G.; Grothe, M.; Hartmann, H.; Heinloth, H.; Hilger, E.; Jakob, H.-P.; Katz, U. F.; Mari, S. M.; Mass, A.; Mengel, S.; Mollen, J.; Paul, E.; Rembser, Ch.; Schramm, D.; Stamm, J.; Wedemeyer, R.; Campbell-Robson, S.; Cassidy, A.; Dyce, N.; Foster, B.; George, S.; Gilmore, R.; Heath, G. P.; Heath, H. F.; Llewellyn, T. J.; Morgado, C. J. S.; Norman, D. J. P.; O'Mara, J. A.; Tapper, R. J.; Wilson, S. S.; Yoshida, R.; Rau, R. R.; Arneodo, M.; Capua, M.; Garfagnini, A.; Iannotti, L.; Schioppa, M.; Susinno, G.; Bernstein, A.; Caldwell, A.; Cartiglia, N.; Parsons, J. A.; Ritz, S.; Sciulli, F.; Straub, P. B.; Wai, L.; Yang, S.; Zhu, Q.; Borzemski, P.; Chwastowski, J.; Eskreys, A.; Piotrzkowski, K.; Zachara, M.; Zawiejski, L.; Adamczyk, L.; Bednarek, B.; Jeleń, K.; Kisielewska, D.; Kowalski, T.; Rulikowska-Zarębska, E.; Suszycki, L.; Zając, J.; Kotański, A.; Przybycień, M.; Bauerdick, L. A. T.; Behrens, U.; Beier, H.; Bienlein, J. K.; Coldewey, C.; Deppe, O.; Desler, K.; Drews, G.; Flasiński, M.; Gilkinson, D. J.; Glasman, C.; Göttlicher, P.; Große-Knetter, J.; Gutjahr, B.; Haas, T.; Hain, W.; Hasell, D.; Heßling, H.; Iga, Y.; Joos, P.; Kasemann, M.; Klanner, R.; Koch, W.; Köpke, L.; Kötz, U.; Kowalski, H.; Labs, J.; Ladage, A.; Löhr, B.; Löwe, M.; Lüke, D.; Mainusch, J.; Mańczak, O.; Monteiro, T.; Ng, J. S. T.; Nickel, S.; Notz, D.; Ohrenberg, K.; Roco, M.; Rohde, M.; Roldán, J.; Schneekloth, U.; Schulz, W.; Selonke, F.; Stiliaris, E.; Surrow, B.; Voß, T.; Westphal, D.; Wolf, G.; Youngman, C.; Zhou, J. F.; Grabosch, H. J.; Kharchilava, A.; Leich, A.; Mattingly, M. C. K.; Meyer, A.; Schlenstedt, S.; Wulff, N.; Barbagli, G.; Pelfer, P.; Anzivino, G.; Maccarrone, G.; de Pasquale, S.; Votano, L.; Bamberger, A.; Eisenhardt, S.; Freidhof, A.; Söldner-Rembold, S.; Schroeder, J.; Trefzger, T.; Brook, N. H.; Bussey, P. J.; Doyle, A. T.; Fleck, J. I.; Saxon, D. H.; Utley, M. L.; Wilson, A. S.; Dannemann, A.; Holm, U.; Horstmann, D.; Neumann, T.; Sinkus, R.; Wick, K.; Badura, E.; Burow, B. D.; Hagge, L.; Lohrmann, E.; Milewski, J.; Nakahata, M.; Pavel, N.; Poelz, G.; Schott, W.; Zetsche, F.; Bacon, T. C.; Butterworth, I.; Gallo, E.; Harris, V. L.; Hung, B. Y. H.; Long, K. R.; Miller, D. B.; Morawitz, P. P. O.; Prinias, A.; Sedgbeer, J. K.; Whitfield, A. F.; Mallik, U.; McCliment, E.; Wang, M. Z.; Wang, S. M.; Wu, J. T.; Zhang, Y.; Cloth, P.; Filges, D.; An, S. H.; Hong, S. M.; Nam, S. W.; Park, S. K.; Suh, M. H.; Yon, S. H.; Imlay, R.; Kartik, S.; Kim, H.-J.; McNeil, R. R.; Metcalf, W.; Nadendla, V. K.; Barreiro, F.; Cases, G.; Fernandez, J. P.; Graciani, R.; Hernández, J. M.; Hervás, L.; Labarga, L.; Martinez, M.; Del Peso, J.; Puga, J.; Terron, J.; de Trocóniz, J. F.; Smith, G. R.; Corriveau, F.; Hanna, D. S.; Hartmann, J.; Hung, L. W.; Lim, J. N.; Matthews, C. G.; Patel, P. M.; Sinclair, L. E.; Stairs, D. G.; St. Laurent, M.; Ullmann, R.; Zacek, G.; Bashkirov, V.; Dolgoshein, B. A.; Stifutkin, A.; Bashindzhagyan, G. L.; Ermolov, P. F.; Gladilin, L. K.; Golubkov, Yu. A.; Kobrin, V. D.; Korzhavina, I. A.; Kuzmin, V. A.; Lukina, O. Yu.; Proskuryakov, A. S.; Savin, A. A.; Shcheglova, L. M.; Solomin, A. N.; Zotov, N. P.; Botje, M.; Chlebana, F.; Dake, A.; Engelen, J.; de Kamps, M.; Kooijman, P.; Kruse, A.; Tiecke, H.; Verkerke, W.; Vreeswijk, M.; Wiggers, L.; de Wolf, E.; van Woudenberg, R.; Acosta, D.; Bylsma, B.; Durkin, L. S.; Honscheid, K.; Li, C.; Ling, T. Y.; McLean, K. W.; Murray, W. N.; Park, I. H.; Romanowski, T. A.; Seidlein, R.; Bailey, D. S.; Byrne, A.; Cashmore, R. J.; Cooper-Sarkar, A. M.; Devenish, R. C. E.; Harnew, N.; Lancaster, M.; Lindemann, L.; McFall, J. D.; Nath, C.; Noyes, V. A.; Quadt, A.; Tickner, J. R.; Uijterwaal, H.; Walczak, R.; Waters, D. S.; Wilson, F. F.; Yip, T.; Abbiendi, G.; Bertolin, A.; Brugnera, R.; Carlin, R.; Dal Corso, F.; de Giorgi, M.; Dosselli, U.; Limentani, S.; Morandin, M.; Posocco, M.; Stanco, L.; Stroili, R.; Voci, C.; Bulmahn, J.; Butterworth, J. M.; Feild, R. G.; Oh, B. Y.; Whitmore, J. J.; D'Agostini, G.; Marini, G.; Nigro, A.; Tassi, E.; Hart, J. C.; McCubbin, N. A.; Prytz, K.; Shah, T. P.; Short, T. L.; Barberis, E.; Dubbs, T.; Heusch, C.; van Hook, M.; Hubbard, B.; Lockman, W.; Rahn, J. T.; Sadrozinski, H. F.-W.; Seiden, A.; Biltzinger, J.; Seifert, R. J.; Schwarzer, O.; Walenta, A. H.; Zech, G.; Abramowicz, H.; Briskin, G.; Dagan, S.; Levy, A.; Hasegawa, T.; Hazumi, M.; Ishii, T.; Kuze, M.; Mine, S.; Nagasawa, Y.; Nakao, M.; Suzuki, I.; Tokushuku, K.; Yamada, S.; Yamazaki, Y.; Chiba, M.; Hamatsu, R.; Hirose, T.; Homma, K.; Kitamura, S.; Nakamitsu, Y.; Yamauchi, K.; Cirio, R.; Costa, M.; Ferrero, M. I.; Lamberti, L.; Maselli, S.; Peroni, C.; Sacchi, R.; Solano, A.; Staiano, A.; Dardo, M.; Bailey, D. C.; Bandyopadhyay, D.; Benard, F.; Brkic, M.; Crombie, M. B.; Gingrich, D. M.; Hartner, G. F.; Joo, K. K.; Levman, G. M.; Martin, J. F.; Orr, R. S.; Sampson, C. R.; Teuscher, R. J.; Catterall, C. D.; Jones, T. W.; Kaziewicz, P. B.; Lane, J. B.; Saunders, R. L.; Shulman, J.; Blankenship, K.; Lu, B.; Mo, L. W.; Bogusz, W.; Charchula, K.; Ciborowski, J.; Gajewski, J.; Grzelak, G.; Kasprzak, M.; Krzyżanowski, M.; Muchorowski, K.; Nowak, R. J.; Pawlak, J. M.; Tymieniecka, T.; Wróblewski, A. K.; Zakrzewski, J. A.; Żarnecki, A. F.; Adamus, M.; Eisenberg, Y.; Karshon, U.; Revel, D.; Zer-Zion, D.; Ali, I.; Badgett, W. F.; Behrens, B.; Dasu, S.; Fordham, C.; Foudas, C.; Goussiou, A.; Loveless, R. J.; Reeder, D. D.; Silverstein, S.; Smith, W. H.; Vaiciulis, A.; Wodarczyk, M.; Tsurugai, T.; Bhadra, S.; Cardy, M. L.; Fagerstroem, C.-P.; Frisken, W. R.; Furutani, K. M.; Khakzad, M.; Schmidke, W. B.

    1995-12-01

    This paper presents an analysis of the inclusive properties of diffractive deep inelastic scattering events produced in ep interactions at HERA. The events are characterised by a rapidity gap between the outgoing proton system and the remaining hadronic system. Inclusive distributions are presented and compared with Monte Carlo models for diffractive processes. The data are consistent with models where the pomeron structure function has a hard and a soft contribution. The diffractive structure function is measured as a function of x ℙ, the momentum fraction lost by the proton, of β, the momentum fraction of the struck quark with respect to x ℙ, and of Q 2 in the range 6.3·10-4< x ℙ <10-2, 0.1<β<0.8 and 8< Q 2<100 GeV2. The dependence is consistent with the form x ℙ where a=1.30±0.08(stat) {-0.14/+0.08} (sys) in all bins of β and Q 2. In the measured Q 2 range, the diffractive structure function approximately scales with Q 2 at fixed β. In an Ingelman-Schlein type model, where commonly used pomeron flux factor normalisations are assumed, it is found that the quarks within the pomeron do not saturate the momentum sum rule.

  17. Perturbative QCD at Hera

    NASA Astrophysics Data System (ADS)

    Gladilin, L. K.

    2015-06-01

    Recent measurements of proton structure, jet production cross sections, the strong coupling constant value, prompt photon production cross sections, charmed hadron production cross sections and the charm and beauty quark mass values, performed by the H1 and ZEUS collaborations at the e±p collider HERA, are presented.

  18. Ring lasers in precise measurements: A review

    SciTech Connect

    Kozubovskii, V.R.; Privalov, V.E.

    1995-05-01

    Features of the ring laser offer possibilities for various applications. The special features of frequency stabilization of ring lasers are analyzed. The employment of ring lasers in laser spectroscopy and the development of gas analytical devices on their basis are considered. It is shown that ring lasers offer some advantages for linear angular measurements and measurements of parameters of motion. Ways to optimize the parameters of ring lasers are indicated. 180 refs., 21 figs.

  19. A measurement of multi-jet rates in deep-inelastic scattering at HERA

    NASA Astrophysics Data System (ADS)

    Abt, I.; Ahmed, T.; Andreev, V.; Andrieu, B.; Appuhn, R.-D.; Arpagaus, M.; Babaev, A.; Bärwolff, H.; Bán, J.; Baranov, P.; Barrelet, E.; Bartel, W.; Bassler, U.; Beck, H. P.; Behrend, H.-J.; Belousov, A.; Berger, Ch.; Bergstein, H.; Bernardi, G.; Bernet, R.; Bertrand-Coremans, G.; Besançon, M.; Biddulph, P.; Binder, E.; Bischoff, A.; Bizot, J. C.; Blobel, V.; Borras, K.; Bosetti, P. C.; Boudry, V.; Bourdarios, C.; Brasse, F.; Braun, U.; Braunschweig, W.; Brisson, V.; Bruncko, D.; Büngener, L.; Bürger, J.; Büsser, F. W.; Buniatian, A.; Burke, S.; Buschhorn, G.; Campbell, A. J.; Carli, T.; Charles, F.; Clarke, D.; Clegg, A. B.; Colombo, M.; Coughlan, J. A.; Courau, A.; Coutures, Ch.; Cozzika, G.; Criegee, L.; Cvach, J.; Dagoret, S.; Dainton, J. B.; Danilov, M.; Dann, A. W. E.; Dau, W. D.; David, M.; Deffur, E.; Delcourt, B.; Del Buono, L.; Devel, M.; de Roeck, A.; Dingus, P.; Dollfus, C.; Dowell, J. D.; Dreis, H. B.; Drescher, A.; Duboc, J.; Düllmann, D.; Dünger, O.; Duhm, H.; Ebbinghaus, R.; Eberle, M.; Ebert, J.; Ebert, T. R.; Eckerlin, G.; Efremenko, V.; Egli, S.; Eichenberger, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Ellis, N. N.; Ellison, R. J.; Elsen, E.; Erdmann, M.; Evrard, E.; Favart, L.; Fedotov, A.; Feeken, D.; Felst, R.; Feltesse, J.; Fensome, I. F.; Ferencei, J.; Ferrarotto, F.; Flamm, K.; Flauger, W.; Fleischer, M.; Flieser, M.; Flügge, G.; Fomenko, A.; Fominykh, B.; Forbush, M.; Formánek, J.; Foster, J. M.; Franke, G.; Fretwurst, E.; Fuhrmann, P.; Gabathuler, E.; Gamerdinger, K.; Garvey, J.; Gayler, J.; Gellrich, A.; Gennis, M.; Genzel, H.; Gerhards, R.; Godfrey, L.; Goerlach, U.; Goerlich, L.; Gogitidze, N.; Goldberg, M.; Goodall, A. M.; Gorelov, I.; Goritchev, P.; Grab, C.; Grässler, H.; Grässler, R.; Greenshaw, T.; Greif, H.; Grindhammer, G.; Gruber, C.; Haack, J.; Haidt, D.; Hajduk, L.; Hamon, O.; Handschuh, D.; Hanlon, E. M.; Hapke, M.; Harjes, J.; Haydar, R.; Haynes, W. J.; Heatherington, J.; Hedberg, V.; Heinzelmann, G.; Henderson, R. C. W.; Henschel, H.; Herma, R.; Herynek, I.; Hildesheim, W.; Hill, P.; Hilton, C. D.; Hladký, J.; Hoeger, K. C.; Huet, Ph.; Hufnagel, H.; Huot, N.; Ibbotson, M.; Itterbeck, H.; Jabiol, M.-A.; Jacholkowska, A.; Jacobsson, C.; Jaffre, M.; Jansen, T.; Jönsson, L.; Johannsen, K.; Johnson, D. P.; Johnson, L.; Jung, H.; Kalmus, P. I. P.; Kasarian, S.; Kaschowitz, R.; Kasselmann, P.; Kathage, U.; Kaufmann, H. H.; Kenyon, I. R.; Kermiche, S.; Keuker, C.; Kiesling, C.; Klein, M.; Kleinwort, C.; Knies, G.; Ko, W.; Köhler, T.; Kolanoski, H.; Kole, F.; Kolya, S. D.; Korbel, V.; Korn, M.; Kostka, P.; Kotelnikov, S. K.; Krasny, M. W.; Krehbiel, H.; Krücker, D.; Krüger, U.; Kubenka, J. P.; Küster, H.; Kuhlen, M.; Kurča, T.; Kurzhöfer, J.; Kuznik, B.; Lacour, D.; Lamarche, F.; Lander, R.; Landon, M. P. J.; Lange, W.; Langkau, R.; Lanius, P.; Laporte, J. F.; Lebedev, A.; Leuschner, A.; Leverenz, C.; Levonian, S.; Lewin, D.; Ley, Ch.; Lindner, A.; Lindström, G.; Linsel, F.; Lipinski, J.; Loch, P.; Lohmander, H.; Lopez, G. C.; Lüers, D.; Magnussen, N.; Malinovski, E.; Mani, S.; Marage, P.; Marks, J.; Marshall, R.; Martens, J.; Martin, R.; Martyn, H.-U.; Martyniak, J.; Masson, S.; Mavroidis, A.; Maxfield, S. J.; McMahon, S. J.; Mehta, A.; Meier, K.; Mercer, D.; Merz, T.; Meyer, C. A.; Meyer, H.; Meyer, J.; Mikocki, S.; Milone, V.; Monnier, E.; Moreau, F.; Moreels, J.; Morris, J. V.; Müller, K.; Murín, P.; Murray, S. A.; Nagovizin, V.; Naroska, B.; Naumann, Th.; Newman, P. R.; Newton, D.; Neyret, D.; Nguyen, H. K.; Niebergall, F.; Niebuhr, C.; Nisius, R.; Nowak, G.; Noyes, G. W.; Nyberg, M.; Oberlack, H.; Obrock, U.; Olsson, J. E.; Orenstein, S.; Ould-Saada, F.; Pascaud, C.; Patel, G. D.; Peppel, E.; Peters, S.; Phillips, H. T.; Phillips, J. P.; Pichler, Ch.; Pilgram, W.; Pitzl, D.; Prell, S.; Prosi, R.; Rädel, G.; Raupach, F.; Rauschnabel, K.; Reimer, P.; Reinshagen, S.; Ribarics, P.; Riech, V.; Riedlberger, J.; Riess, S.; Rietz, M.; Robertson, S. M.; Robmann, P.; Roosen, R.; Rostovtsev, A.; Royon, C.; Rudowicz, M.; Ruffer, M.; Rusakov, S.; Rybicki, K.; Sahlmann, N.; Sanchez, E.; Sankey, D. P. C.; Savitsky, M.; Schacht, P.; Schleper, P.; von Schlippe, W.; Schmidt, C.; Schmidt, D.; Schmitz, W.; Schöning, A.; Schröder, V.; Schulz, M.; Schwab, B.; Schwind, A.; Scobel, W.; Seehausen, U.; Sell, R.; Semenov, A.; Shekelyan, V.; Sheviakov, I.; Shooshtari, H.; Shtarkov, L. N.; Siegmon, G.; Siewert, U.; Sirois, Y.; Skillicorn, I. O.; Smirnov, P.; Smith, J. R.; Smolik, L.; Soloviev, Y.; Spitzer, H.; Staroba, P.; Steenbock, M.; Steffen, P.; Steinberg, R.; Stella, B.; Stephens, K.; Stier, J.; Stösslein, U.; Strachota, J.; Straumann, U.; Struczinski, W.; Sutton, J. P.; Taylor, R. E.; Tchernyshov, V.; Thiebaux, C.; Thompson, G.; Tichomirov, I.; Truöl, P.; Turnau, J.; Tutas, J.; Urban, L.; Usik, A.; Valkar, S.; Valkarova, A.; Vallée, C.; van Esch, P.; Vartapetian, A.; Vazdik, Y.; Vecko, M.; Verrecchia, P.; Vick, R.; Villet, G.; Vogel, E.; Wacker, K.; Walker, I. W.; Walther, A.; Weber, G.; Wegener, D.; Wegner, A.; Wellisch, H. P.; West, L. R.; Willard, S.; Winde, M.; Winter, G.-G.; Wolff, Th.; Womersley, L. A.; Wright, A. E.; Wulff, N.; Yiou, T. P.; Žáček, J.; Závada, P.; Zeitnitz, C.; Ziaeepour, H.; Zimmer, M.; Zimmermann, W.; Zomer, F.

    1994-03-01

    Multi-jet production is observed in deep-inelastic electron proton scattering with the H1 detector at HERA. Jet rates for momentum transfers squared up to 500 GeV2 are determined using the JADE jet clustering algorithm. They are found to be in agreement with predictions from QCD based models.

  20. Combination and QCD analysis of charm production cross section measurements in deep-inelastic ep scattering at HERA

    NASA Astrophysics Data System (ADS)

    Abramowicz, H.; Abt, I.; Adamczyk, L.; Adamus, M.; Aggarwal, R.; Alexa, C.; Andreev, V.; Antonelli, S.; Antonioli, P.; Antonov, A.; Arneodo, M.; Arslan, O.; Aushev, V.; Aushev, Y.; Bachynska, O.; Baghdasaryan, A.; Baghdasaryan, S.; Bamberger, A.; Barakbaev, A. N.; Barbagli, G.; Bari, G.; Barreiro, F.; Bartel, W.; Bartosik, N.; Bartsch, D.; Basile, M.; Begzsuren, K.; Behnke, O.; Behr, J.; Behrens, U.; Bellagamba, L.; Belousov, A.; Belov, P.; Bertolin, A.; Bhadra, S.; Bindi, M.; Blohm, C.; Bokhonov, V.; Bondarenko, K.; Boos, E. G.; Borras, K.; Boscherini, D.; Bot, D.; Boudry, V.; Bozovic-Jelisavcic, I.; Bołd, T.; Brümmer, N.; Bracinik, J.; Brandt, G.; Brinkmann, M.; Brisson, V.; Britzger, D.; Brock, I.; Brownson, E.; Brugnera, R.; Bruni, A.; Bruni, G.; Brzozowska, B.; Bunyatyan, A.; Bussey, P. J.; Bylinkin, A.; Bylsma, B.; Bystritskaya, L.; Caldwell, A.; Campbell, A. J.; Cantun Avila, K. B.; Capua, M.; Carlin, R.; Catterall, C. D.; Ceccopieri, F.; Cerny, K.; Chekanov, S.; Chekelian, V.; Chwastowski, J.; Ciborowski, J.; Ciesielski, R.; Cifarelli, L.; Cindolo, F.; Contin, A.; Contreras, J. G.; Cooper-Sarkar, A. M.; Coppola, N.; Corradi, M.; Corriveau, F.; Costa, M.; Cvach, J.; D'Agostini, G.; Dainton, J. B.; Dal Corso, F.; Daum, K.; Delvax, J.; Dementiev, R. K.; Derrick, M.; Devenish, R. C. E.; De Pasquale, S.; De Wolf, E. A.; del Peso, J.; Diaconu, C.; Dobre, M.; Dobur, D.; Dodonov, V.; Dolgoshein, B. A.; Dolinska, G.; Dossanov, A.; Doyle, A. T.; Drugakov, V.; Durkin, L. S.; Dusini, S.; Eckerlin, G.; Egli, S.; Eisenberg, Y.; Elsen, E.; Ermolov, P. F.; Eskreys, A.; Fang, S.; Favart, L.; Fazio, S.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Ferrando, J.; Ferrero, M. I.; Figiel, J.; Fischer, D.-J.; Fleischer, M.; Fomenko, A.; Foster, B.; Gabathuler, E.; Gach, G.; Galas, A.; Gallo, E.; Garfagnini, A.; Gayler, J.; Geiser, A.; Ghazaryan, S.; Gialas, I.; Gizhko, A.; Gladilin, L. K.; Gladkov, D.; Glasman, C.; Glazov, A.; Goerlich, L.; Gogitidze, N.; Gogota, O.; Golubkov, Y. A.; Göttlicher, P.; Gouzevitch, M.; Grab, C.; Grabowska-Bołd, I.; Grebenyuk, A.; Grebenyuk, J.; Greenshaw, T.; Gregor, I.; Grigorescu, G.; Grindhammer, G.; Grzelak, G.; Gueta, O.; Guzik, M.; Gwenlan, C.; Hüttmann, A.; Haas, T.; Habib, S.; Haidt, D.; Hain, W.; Hamatsu, R.; Hart, J. C.; Hartmann, H.; Hartner, G.; Henderson, R. C. W.; Hennekemper, E.; Henschel, H.; Herbst, M.; Herrera, G.; Hildebrandt, M.; Hilger, E.; Hiller, K. H.; Hladký, J.; Hochman, D.; Hoffmann, D.; Hori, R.; Horisberger, R.; Hreus, T.; Huber, F.; Ibrahim, Z. A.; Iga, Y.; Ingbir, R.; Ishitsuka, M.; Jacquet, M.; Jakob, H.-P.; Janssen, X.; Januschek, F.; Jones, T. W.; Jönsson, L.; Jüngst, M.; Jung, A. W.; Jung, H.; Kadenko, I.; Kahle, B.; Kananov, S.; Kanno, T.; Kapichine, M.; Karshon, U.; Karstens, F.; Katkov, I. I.; Kaur, P.; Kaur, M.; Kenyon, I. R.; Keramidas, A.; Khein, L. A.; Kiesling, C.; Kim, J. Y.; Kisielewska, D.; Kitamura, S.; Klanner, R.; Klein, M.; Klein, U.; Kleinwort, C.; Kötz, U.; Koffeman, E.; Kogler, R.; Kondrashova, N.; Kononenko, O.; Kooijman, P.; Korol, I.; Korzhavina, I. A.; Kostka, P.; Kotański, A.; Kowalski, H.; Krämer, M.; Kretzschmar, J.; Krüger, K.; Kuprash, O.; Kuze, M.; Landon, M. P. J.; Lange, W.; Laštovička-Medin, G.; Laycock, P.; Lebedev, A.; Lee, A.; Lendermann, V.; Levchenko, B. B.; Levonian, S.; Levy, A.; Libov, V.; Limentani, S.; Ling, T. Y.; Lipka, K.; Lisovyi, M.; List, B.; List, J.; Lobodzinska, E.; Lobodzinski, B.; Löhr, B.; Lohmann, W.; Lohrmann, E.; Long, K. R.; Longhin, A.; Lontkovskyi, D.; Lopez-Fernandez, R.; Lubimov, V.; Lukina, O. Y.; Maeda, J.; Magill, S.; Makarenko, I.; Malinovski, E.; Malka, J.; Mankel, R.; Margotti, A.; Marini, G.; Martin, J. F.; Martyn, H.-U.; Mastroberardino, A.; Mattingly, M. C. K.; Maxfield, S. J.; Mehta, A.; Melzer-Pellmann, I.-A.; Mergelmeyer, S.; Meyer, A. B.; Meyer, H.; Meyer, J.; Miglioranzi, S.; Mikocki, S.; Milcewicz-Mika, I.; Mohamad Idris, F.; Monaco, V.; Montanari, A.; Moreau, F.; Morozov, A.; Morris, J. V.; Morris, J. D.; Mujkic, K.; Müller, K.; Musgrave, B.; Nagano, K.; Namsoo, T.; Nania, R.; Naumann, T.; Newman, P. R.; Niebuhr, C.; Nigro, A.; Nikitin, D.; Ning, Y.; Nobe, T.; Notz, D.; Nowak, G.; Nowak, K.; Nowak, R. J.; Nuncio-Quiroz, A. E.; Oh, B. Y.; Okazaki, N.; Olkiewicz, K.; Olsson, J. E.; Onishchuk, Y.; Ozerov, D.; Pahl, P.; Palichik, V.; Pandurovic, M.; Papageorgiu, K.; Parenti, A.; Pascaud, C.; Patel, G. D.; Paul, E.; Pawlak, J. M.; Pawlik, B.; Pelfer, P. G.; Pellegrino, A.; Perez, E.; Perlański, W.; Perrey, H.; Petrukhin, A.; Picuric, I.; Piotrzkowski, K.; Pirumov, H.; Pitzl, D.; Plačakytė, R.; Pluciński, P.; Pokorny, B.; Pokrovskiy, N. S.; Polifka, R.; Polini, A.; Povh, B.; Proskuryakov, A. S.; Przybycień, M.; Radescu, V.; Raicevic, N.; Raval, A.; Ravdandorj, T.; Reeder, D. D.; Reimer, P.; Reisert, B.; Ren, Z.; Repond, J.; Ri, Y. D.; Rizvi, E.; Robertson, A.; Robmann, P.; Roloff, P.; Roosen, R.; Rostovtsev, A.; Rotaru, M.; Rubinsky, I.; Ruiz Tabasco, J. E.; Rusakov, S.; Ruspa, M.; Sacchi, R.; Šálek, D.; Samson, U.; Sankey, D. P. C.; Sartorelli, G.; Sauter, M.; Sauvan, E.; Savin, A. A.; Saxon, D. H.; Schioppa, M.; Schlenstedt, S.; Schleper, P.; Schmidke, W. B.; Schmitt, S.; Schneekloth, U.; Schoeffel, L.; Schönberg, V.; Schöning, A.; Schörner-Sadenius, T.; Schultz-Coulon, H.-C.; Schwartz, J.; Sciulli, F.; Sefkow, F.; Shcheglova, L. M.; Shehzadi, R.; Shimizu, S.; Shushkevich, S.; Singh, I.; Skillicorn, I. O.; Słomiński, W.; Smith, W. H.; Sola, V.; Solano, A.; Soloviev, Y.; Son, D.; Sopicki, P.; Sosnovtsev, V.; South, D.; Spaskov, V.; Specka, A.; Spiridonov, A.; Stadie, H.; Stanco, L.; Staykova, Z.; Steder, M.; Stefaniuk, N.; Stella, B.; Stern, A.; Stewart, T. P.; Stifutkin, A.; Stoicea, G.; Stopa, P.; Straumann, U.; Suchkov, S.; Susinno, G.; Suszycki, L.; Sykora, T.; Sztuk-Dambietz, J.; Szuba, J.; Szuba, D.; Tapper, A. D.; Tassi, E.; Terrón, J.; Theedt, T.; Thompson, P. D.; Tiecke, H.; Tokushuku, K.; Tomaszewska, J.; Tran, T. H.; Traynor, D.; Truöl, P.; Trusov, V.; Tsakov, I.; Tseepeldorj, B.; Tsurugai, T.; Turcato, M.; Turkot, O.; Turnau, J.; Tymieniecka, T.; Vázquez, M.; Valkárová, A.; Vallée, C.; Van Mechelen, P.; Vazdik, Y.; Verbytskyi, A.; Viazlo, O.; Vlasov, N. N.; Walczak, R.; Wan Abdullah, W. A. T.; Wegener, D.; Whitmore, J. J.; Wichmann, K.; Wiggers, L.; Wing, M.; Wlasenko, M.; Wolf, G.; Wolfe, H.; Wrona, K.; Wünsch, E.; Yagües-Molina, A. G.; Yamada, S.; Yamazaki, Y.; Yoshida, R.; Youngman, C.; Zabiegalov, O.; Žáček, J.; Zálešák, J.; Zenaiev, O.; Zeuner, W.; Zhang, Z.; Zhautykov, B. O.; Zhmak, N.; Zichichi, A.; Žlebčík, R.; Zohrabyan, H.; Zolkapli, Z.; Zomer, F.; Zotkin, D. S.; Żarnecki, A. F.

    2013-02-01

    Measurements of open charm production cross sections in deep-inelastic ep scattering at HERA from the H1 and ZEUS Collaborations are combined. Reduced cross sections σ_red^{cbar{c}} for charm production are obtained in the kinematic range of photon virtuality 2.5≤ Q 2≤2000 GeV2 and Bjorken scaling variable 3ṡ10-5≤ x≤5ṡ10-2. The combination method accounts for the correlations of the systematic uncertainties among the different data sets. The combined charm data together with the combined inclusive deep-inelastic scattering cross sections from HERA are used as input for a detailed NLO QCD analysis to study the influence of different heavy flavour schemes on the parton distribution functions. The optimal values of the charm mass as a parameter in these different schemes are obtained. The implications on the NLO predictions for W ± and Z production cross sections at the LHC are investigated. Using the fixed flavour number scheme, the running mass of the charm quark is determined.

  1. Measurement of the energy dependence of the total photon-proton cross section at HERA

    NASA Astrophysics Data System (ADS)

    ZEUS Collaboration; Abramowicz, H.; Abt, I.; Adamczyk, L.; Adamus, M.; Aggarwal, R.; Antonelli, S.; Antonioli, P.; Antonov, A.; Arneodo, M.; Aushev, V.; Aushev, Y.; Bachynska, O.; Bamberger, A.; Barakbaev, A. N.; Barbagli, G.; Bari, G.; Barreiro, F.; Bartsch, D.; Basile, M.; Behnke, O.; Behr, J.; Behrens, U.; Bellagamba, L.; Bertolin, A.; Bhadra, S.; Bindi, M.; Blohm, C.; Bokhonov, V.; Bołd, T.; Boos, E. G.; Borras, K.; Boscherini, D.; Bot, D.; Boutle, S. K.; Brock, I.; Brownson, E.; Brugnera, R.; Brümmer, N.; Bruni, A.; Bruni, G.; Brzozowska, B.; Bussey, P. J.; Butterworth, J. M.; Bylsma, B.; Caldwell, A.; Capua, M.; Carlin, R.; Catterall, C. D.; Chekanov, S.; Chwastowski, J.; Ciborowski, J.; Ciesielski, R.; Cifarelli, L.; Cindolo, F.; Contin, A.; Cooper-Sarkar, A. M.; Coppola, N.; Corradi, M.; Corriveau, F.; Costa, M.; D'Agostini, G.; Dal Corso, F.; Del Peso, J.; Dementiev, R. K.; de Pasquale, S.; Derrick, M.; Devenish, R. C. E.; Dobur, D.; Dolgoshein, B. A.; Dolinska, G.; Doyle, A. T.; Drugakov, V.; Durkin, L. S.; Dusini, S.; Eisenberg, Y.; Ermolov, P. F.; Eskreys, A.; Fang, S.; Fazio, S.; Ferrando, J.; Ferrero, M. I.; Figiel, J.; Forrest, M.; Foster, B.; Fourletov, S.; Gach, G.; Galas, A.; Gallo, E.; Garfagnini, A.; Geiser, A.; Gialas, I.; Gladilin, L. K.; Gladkov, D.; Glasman, C.; Gogota, O.; Golubkov, Yu. A.; Göttlicher, P.; Grabowska-Bołd, I.; Grebenyuk, J.; Gregor, I.; Grigorescu, G.; Grzelak, G.; Gueta, O.; Gwenlan, C.; Haas, T.; Hain, W.; Hamatsu, R.; Hart, J. C.; Hartmann, H.; Hartner, G.; Hilger, E.; Hochman, D.; Hori, R.; Horton, K.; Hüttmann, A.; Iacobucci, G.; Ibrahim, Z. A.; Iga, Y.; Ingbir, R.; Ishitsuka, M.; Jakob, H.-P.; Januschek, F.; Jimenez, M.; Jones, T. W.; Jüngst, M.; Kadenko, I.; Kahle, B.; Kamaluddin, B.; Kananov, S.; Kanno, T.; Karshon, U.; Karstens, F.; Katkov, I. I.; Kaur, M.; Kaur, P.; Keramidas, A.; Khein, L. A.; Kim, J. Y.; Kisielewska, D.; Kitamura, S.; Klanner, R.; Klein, U.; Koffeman, E.; Kooijman, P.; Korol, Ie.; Korzhavina, I. A.; Kotański, A.; Kötz, U.; Kowalski, H.; Kulinski, P.; Kuprash, O.; Kuze, M.; Lee, A.; Levchenko, B. B.; Levy, A.; Libov, V.; Limentani, S.; Ling, T. Y.; Lisovyi, M.; Lobodzinska, E.; Lohmann, W.; Löhr, B.; Lohrmann, E.; Loizides, J. H.; Long, K. R.; Longhin, A.; Lontkovskyi, D.; Lukina, O. Yu.; Łużniak, P.; Maeda, J.; Magill, S.; Makarenko, I.; Malka, J.; Mankel, R.; Margotti, A.; Marini, G.; Martin, J. F.; Mastroberardino, A.; Mattingly, M. C. K.; Melzer-Pellmann, I.-A.; Miglioranzi, S.; Idris, F. Mohamad; Monaco, V.; Montanari, A.; Morris, J. D.; Mujkic, K.; Musgrave, B.; Nagano, K.; Namsoo, T.; Nania, R.; Nicholass, D.; Nigro, A.; Ning, Y.; Noor, U.; Notz, D.; Nowak, R. J.; Nuncio-Quiroz, A. E.; Oh, B. Y.; Okazaki, N.; Oliver, K.; Olkiewicz, K.; Onishchuk, Yu.; Papageorgiu, K.; Parenti, A.; Paul, E.; Pawlak, J. M.; Pawlik, B.; Pelfer, P. G.; Pellegrino, A.; Perlanski, W.; Perrey, H.; Piotrzkowski, K.; Plucinski, P.; Pokrovskiy, N. S.; Polini, A.; Proskuryakov, A. S.; Przybycień, M.; Raval, A.; Reeder, D. D.; Reisert, B.; Ren, Z.; Repond, J.; Ri, Y. D.; Robertson, A.; Roloff, P.; Ron, E.; Rubinsky, I.; Ruspa, M.; Sacchi, R.; Salii, A.; Samson, U.; Sartorelli, G.; Savin, A. A.; Saxon, D. H.; Schioppa, M.; Schlenstedt, S.; Schleper, P.; Schmidke, W. B.; Schneekloth, U.; Schönberg, V.; Schörner-Sadenius, T.; Schwartz, J.; Sciulli, F.; Shcheglova, L. M.; Shehzadi, R.; Shimizu, S.; Singh, I.; Skillicorn, I. O.; Słomiński, W.; Smith, W. H.; Sola, V.; Solano, A.; Son, D.; Sosnovtsev, V.; Spiridonov, A.; Stadie, H.; Stanco, L.; Stern, A.; Stewart, T. P.; Stifutkin, A.; Stopa, P.; Suchkov, S.; Susinno, G.; Suszycki, L.; Sztuk-Dambietz, J.; Szuba, D.; Szuba, J.; Tapper, A. D.; Tassi, E.; Terrón, J.; Theedt, T.; Tiecke, H.; Tokushuku, K.; Tomalak, O.; Tomaszewska, J.; Tsurugai, T.; Turcato, M.; Tymieniecka, T.; Uribe-Estrada, C.; Vázquez, M.; Verbytskyi, A.; Viazlo, O.; Vlasov, N. N.; Volynets, O.; Walczak, R.; Abdullah, W. A. T. Wan; Whitmore, J. J.; Whyte, J.; Wiggers, L.; Wing, M.; Wlasenko, M.; Wolf, G.; Wolfe, H.; Wrona, K.; Yagües-Molina, A. G.; Yamada, S.; Yamazaki, Y.; Yoshida, R.; Youngman, C.; Żarnecki, A. F.; Zawiejski, L.; Zenaiev, O.; Zeuner, W.; Zhautykov, B. O.; Zhmak, N.; Zhou, C.; Zichichi, A.; Zolko, M.; Zotkin, D. S.; Zulkapli, Z.

    2011-03-01

    The energy dependence of the photon-proton total cross section, σtotγp, was determined from e+p scattering data collected with the ZEUS detector at HERA at three values of the center-of-mass energy, W, of the γp system in the range 194

  2. Measurement of the energy dependence of the total photon-proton cross section at HERA

    NASA Astrophysics Data System (ADS)

    Abramowicz, H.; Abt, I.; Adamczyk, L.; Adamus, M.; Aggarwal, R.; Antonelli, S.; Antonioli, P.; Antonov, A.; Arneodo, M.; Aushev, V.; Aushev, Y.; Bachynska, O.; Bamberger, A.; Barakbaev, A. N.; Barbagli, G.; Bari, G.; Barreiro, F.; Bartsch, D.; Basile, M.; Behnke, O.; Behr, J.; Behrens, U.; Bellagamba, L.; Bertolin, A.; Bhadra, S.; Bindi, M.; Blohm, C.; Bokhonov, V.; Bołd, T.; Boos, E. G.; Borras, K.; Boscherini, D.; Bot, D.; Boutle, S. K.; Brock, I.; Brownson, E.; Brugnera, R.; Brümmer, N.; Bruni, A.; Bruni, G.; Brzozowska, B.; Bussey, P. J.; Butterworth, J. M.; Bylsma, B.; Caldwell, A.; Capua, M.; Carlin, R.; Catterall, C. D.; Chekanov, S.; Chwastowski, J.; Ciborowski, J.; Ciesielski, R.; Cifarelli, L.; Cindolo, F.; Contin, A.; Cooper-Sarkar, A. M.; Coppola, N.; Corradi, M.; Corriveau, F.; Costa, M.; D'Agostini, G.; Dal Corso, F.; del Peso, J.; Dementiev, R. K.; De Pasquale, S.; Derrick, M.; Devenish, R. C. E.; Dobur, D.; Dolgoshein, B. A.; Dolinska, G.; Doyle, A. T.; Drugakov, V.; Durkin, L. S.; Dusini, S.; Eisenberg, Y.; Ermolov, P. F.; Eskreys, A.; Fang, S.; Fazio, S.; Ferrando, J.; Ferrero, M. I.; Figiel, J.; Forrest, M.; Foster, B.; Fourletov, S.; Gach, G.; Galas, A.; Gallo, E.; Garfagnini, A.; Geiser, A.; Gialas, I.; Gladilin, L. K.; Gladkov, D.; Glasman, C.; Gogota, O.; Golubkov, Yu. A.; Göttlicher, P.; Grabowska-Bołd, I.; Grebenyuk, J.; Gregor, I.; Grigorescu, G.; Grzelak, G.; Gueta, O.; Gwenlan, C.; Haas, T.; Hain, W.; Hamatsu, R.; Hart, J. C.; Hartmann, H.; Hartner, G.; Hilger, E.; Hochman, D.; Hori, R.; Horton, K.; Hüttmann, A.; Iacobucci, G.; Ibrahim, Z. A.; Iga, Y.; Ingbir, R.; Ishitsuka, M.; Jakob, H.-P.; Januschek, F.; Jimenez, M.; Jones, T. W.; Jüngst, M.; Kadenko, I.; Kahle, B.; Kamaluddin, B.; Kananov, S.; Kanno, T.; Karshon, U.; Karstens, F.; Katkov, I. I.; Kaur, M.; Kaur, P.; Keramidas, A.; Khein, L. A.; Kim, J. Y.; Kisielewska, D.; Kitamura, S.; Klanner, R.; Klein, U.; Koffeman, E.; Kooijman, P.; Korol, Ie.; Korzhavina, I. A.; Kotański, A.; Kötz, U.; Kowalski, H.; Kulinski, P.; Kuprash, O.; Kuze, M.; Lee, A.; Levchenko, B. B.; Levy, A.; Libov, V.; Limentani, S.; Ling, T. Y.; Lisovyi, M.; Lobodzinska, E.; Lohmann, W.; Löhr, B.; Lohrmann, E.; Loizides, J. H.; Long, K. R.; Longhin, A.; Lontkovskyi, D.; Lukina, O. Yu.; Łużniak, P.; Maeda, J.; Magill, S.; Makarenko, I.; Malka, J.; Mankel, R.; Margotti, A.; Marini, G.; Martin, J. F.; Mastroberardino, A.; Mattingly, M. C. K.; Melzer-Pellmann, I.-A.; Miglioranzi, S.; Idris, F. Mohamad; Monaco, V.; Montanari, A.; Morris, J. D.; Mujkic, K.; Musgrave, B.; Nagano, K.; Namsoo, T.; Nania, R.; Nicholass, D.; Nigro, A.; Ning, Y.; Noor, U.; Notz, D.; Nowak, R. J.; Nuncio-Quiroz, A. E.; Oh, B. Y.; Okazaki, N.; Oliver, K.; Olkiewicz, K.; Onishchuk, Yu.; Papageorgiu, K.; Parenti, A.; Paul, E.; Pawlak, J. M.; Pawlik, B.; Pelfer, P. G.; Pellegrino, A.; Perlanski, W.; Perrey, H.; Piotrzkowski, K.; Plucinski, P.; Pokrovskiy, N. S.; Polini, A.; Proskuryakov, A. S.; Przybycień, M.; Raval, A.; Reeder, D. D.; Reisert, B.; Ren, Z.; Repond, J.; Ri, Y. D.; Robertson, A.; Roloff, P.; Ron, E.; Rubinsky, I.; Ruspa, M.; Sacchi, R.; Salii, A.; Samson, U.; Sartorelli, G.; Savin, A. A.; Saxon, D. H.; Schioppa, M.; Schlenstedt, S.; Schleper, P.; Schmidke, W. B.; Schneekloth, U.; Schönberg, V.; Schörner-Sadenius, T.; Schwartz, J.; Sciulli, F.; Shcheglova, L. M.; Shehzadi, R.; Shimizu, S.; Singh, I.; Skillicorn, I. O.; Słomiński, W.; Smith, W. H.; Sola, V.; Solano, A.; Son, D.; Sosnovtsev, V.; Spiridonov, A.; Stadie, H.; Stanco, L.; Stern, A.; Stewart, T. P.; Stifutkin, A.; Stopa, P.; Suchkov, S.; Susinno, G.; Suszycki, L.; Sztuk-Dambietz, J.; Szuba, D.; Szuba, J.; Tapper, A. D.; Tassi, E.; Terrón, J.; Theedt, T.; Tiecke, H.; Tokushuku, K.; Tomalak, O.; Tomaszewska, J.; Tsurugai, T.; Turcato, M.; Tymieniecka, T.; Uribe-Estrada, C.; Vázquez, M.; Verbytskyi, A.; Viazlo, O.; Vlasov, N. N.; Volynets, O.; Walczak, R.; Abdullah, W. A. T. Wan; Whitmore, J. J.; Whyte, J.; Wiggers, L.; Wing, M.; Wlasenko, M.; Wolf, G.; Wolfe, H.; Wrona, K.; Yagües-Molina, A. G.; Yamada, S.; Yamazaki, Y.; Yoshida, R.; Youngman, C.; Żarnecki, A. F.; Zawiejski, L.; Zenaiev, O.; Zeuner, W.; Zhautykov, B. O.; Zhmak, N.; Zhou, C.; Zichichi, A.; Zolko, M.; Zotkin, D. S.; Zulkapli, Z.; ZEUS Collaboration

    2011-03-01

    The energy dependence of the photon-proton total cross section, σtotγp, was determined from ep scattering data collected with the ZEUS detector at HERA at three values of the center-of-mass energy, W, of the γp system in the range 194

  3. The silicon vertex detector of HERA-B

    SciTech Connect

    Moshous, Basil

    1998-02-01

    HERA-B is an experiment to study CP violation in the B system using an internal target at the DESY HERA proton ring(820 GeV). The main goal is to measure the asymmetry in the 'gold plated' decays of B{sup 0}, B-bar{sup 0}{yields}J/{psi}K{sub s}{sup 0} yielding a measurement of the angle {beta} of the unitarity triangle. From the semileptonic decay channels of the b, b-bar-hadron produced in association with the B{sup 0},B-bar{sup 0} can be used to tag the flavor of the B{sup 0}. The purpose of the Vertex Detector System is to provide the track coordinates for reconstructing the J/{psi}{yields}e{sup +}e{sup -}, {mu}{sup +}{mu}{sup -} secondary decay vertices and the impact parameters of all tagging particles.

  4. Prospects for HERMES-spin structure studies at HERA

    SciTech Connect

    Jackson, H.E.

    1994-12-31

    HERMES (HERA Measurement of Spin), is a second generation experiment to study the spin structure of the nucleon by using polarized internal gas targets in the HERA 35-GeV electron storage ring. Scattered electrons and coincident hadrons will be detected in an open geometry spectrometer which will include particle identification. Measurements are planned for each of the inclusive structure functions, g{sub 1},(x), g{sub 2}(x), b{sub 1}(x) and A(x), as well as the study of semi-inclusive pion and kaon asymmetries. Targets of hydrogen, deuterium and {sup 3}He will be studied. The accuracy of data for the inclusive structure functions will equal or exceed that of current experiments. The semi-inclusive asymmetries will provide a unique and sensitive probe of the flavor dependence of quark helicity distributions and properties of the quark sea. Monte Carlo simulations of HERMES data for experiment asymmetries and polarized structure functions are discussed.

  5. Measurement of Feynman- spectra of photons and neutrons in the very forward direction in deep-inelastic scattering at HERA

    NASA Astrophysics Data System (ADS)

    Andreev, V.; Baghdasaryan, A.; Begzsuren, K.; Belousov, A.; Belov, P.; Boudry, V.; Brandt, G.; Brinkmann, M.; Brisson, V.; Britzger, D.; Buniatyan, A.; Bylinkin, A.; Bystritskaya, L.; Campbell, A. J.; Cantun Avila, K. B.; Ceccopieri, F.; Cerny, K.; Chekelian, V.; Contreras, J. G.; Dainton, J. B.; Daum, K.; Diaconu, C.; Dobre, M.; Dodonov, V.; Dossanov, A.; Eckerlin, G.; Egli, S.; Elsen, E.; Favart, L.; Fedotov, A.; Feltesse, J.; Ferencei, J.; Fleischer, M.; Fomenko, A.; Gabathuler, E.; Gayler, J.; Ghazaryan, S.; Glazov, A.; Goerlich, L.; Gogitidze, N.; Gouzevitch, M.; Grab, C.; Grebenyuk, A.; Greenshaw, T.; Grindhammer, G.; Haidt, D.; Henderson, R. C. W.; Herbst, M.; Hladkỳ, J.; Hoffmann, D.; Horisberger, R.; Hreus, T.; Huber, F.; Jacquet, M.; Janssen, X.; Jung, H.; Kapichine, M.; Kiesling, C.; Klein, M.; Kleinwort, C.; Kogler, R.; Kostka, P.; Kretzschmar, J.; Krüger, K.; Landon, M. P. J.; Lange, W.; Laycock, P.; Lebedev, A.; Levonian, S.; Lipka, K.; List, B.; List, J.; Lobodzinski, B.; Lytkin, L.; Malinovski, E.; Martyn, H.-U.; Maxfield, S. J.; Mehta, A.; Meyer, A. B.; Meyer, H.; Meyer, J.; Mikocki, S.; Morozov, A.; Müller, K.; Naumann, Th.; Newman, P. R.; Niebuhr, C.; Nowak, G.; Nowak, K.; Olsson, J. E.; Ozerov, D.; Pahl, P.; Pascaud, C.; Patel, G. D.; Perez, E.; Petrukhin, A.; Picuric, I.; Pirumov, H.; Pitzl, D.; Plačakytė, R.; Pokorny, B.; Polifka, R.; Povh, B.; Radescu, V.; Raicevic, N.; Ravdandorj, T.; Reimer, P.; Rizvi, E.; Robmann, P.; Roosen, R.; Rostovtsev, A.; Rotaru, M.; Rusakov, S.; Šálek, D.; Sankey, D. P. C.; Sauter, M.; Sauvan, E.; Schmitt, S.; Schoeffel, L.; Schöning, A.; Schultz-Coulon, H.-C.; Sefkow, F.; Shushkevich, S.; Soloviev, Y.; Sopicki, P.; South, D.; Spaskov, V.; Specka, A.; Steder, M.; Stella, B.; Straumann, U.; Sykora, T.; Thompson, P. D.; Traynor, D.; Truöl, P.; Tsakov, I.; Tseepeldorj, B.; Turnau, J.; Valkárová, A.; Vallée, C.; Van Mechelen, P.; Vazdik, Y.; Wegener, D.; Wünsch, E.; Žáček, J.; Zhang, Z.; Žlebčík, R.; Zohrabyan, H.; Zomer, F.

    2014-06-01

    Measurements of normalised cross sections for the production of photons and neutrons at very small angles with respect to the proton beam direction in deep-inelastic scattering at HERA are presented as a function of the Feynman variable and of the centre-of-mass energy of the virtual photon-proton system . The data are taken with the H1 detector in the years 2006 and 2007 and correspond to an integrated luminosity of . The measurement is restricted to photons and neutrons in the pseudorapidity range and covers the range of negative four momentum transfer squared at the positron vertex GeV, of inelasticity and of GeV. To test the Feynman scaling hypothesis the dependence of the dependent cross sections is investigated. Predictions of deep-inelastic scattering models and of models for hadronic interactions of high energy cosmic rays are compared to the measured cross sections.

  6. HERA: Illuminating Our Early Universe

    NASA Astrophysics Data System (ADS)

    DeBoer, David

    2014-06-01

    The Hydrogen Epoch of Reionization Arrays (HERA) roadmap is a staged plan for using the unique properties of the 21cm line from neutral hydrogen to probe our cosmic dawn, from the birth of the first stars and black holes, through the full reionization of the primordial intergalactic medium (IGM). HERA is a collaboration between the Precision Array Probing the Epoch of Reionization (PAPER), US-Murchison Widefield Array (MWA), and MIT Epoch of Reionization (MITEOR) teams.The first phase of the HERA roadmap entailed the operation of the PAPER and MWA telescopes to explore techniques and designs required to detect the primordial HI signal in the presence of radio continuum foreground emission some four orders of magnitude brighter. Studies with PAPER and the MWA have led to a new understanding of the interplay of foreground and instrumental systematics in the context of a three-dimensional cosmological intensity-mapping experiment. We are now able to remove foregrounds to the limits of our sensitivity with these instruments, culminating in the first physically meaningful upper limits on the power spectrum of 2 cm emission from reionization.Building on this understanding, the next stage of HERA entails a new 14m diameter antenna element that is optimized both for sensitivity and for minimizing foreground systematics. Arranging these elements in a compact hexagonal grid yields an array that facilitates calibration, leverages proven foreground removal techniques, and is scalable to large collecting areas. The HERA phase II will be located in the radio quiet environment of the SKA site in Karoo, South Africa, and have a sensitivity close to two orders of magnitude better than PAPER and the MWA, with broader frequency coverage, HERA can paint an uninterrupted picture through reionization, back to the end of the Dark Ages.This paper will present a summary of the current understanding of the signal characteristics and measurements and describe this planned HERA telescope to

  7. Combined inclusive diffractive cross sections measured with forward proton spectrometers in deep inelastic ep scattering at HERA

    NASA Astrophysics Data System (ADS)

    Aaron, F. D.; Abramowicz, H.; Abt, I.; Adamczyk, L.; Adamus, M.; Aggarwal, R.; Alexa, C.; Andreev, V.; Antonelli, S.; Antonioli, P.; Antonov, A.; Arneodo, M.; Arslan, O.; Aushev, V.; Aushev, Y.; Bachynska, O.; Backovic, S.; Baghdasaryan, A.; Baghdasaryan, S.; Bamberger, A.; Barakbaev, A. N.; Barbagli, G.; Bari, G.; Barreiro, F.; Barrelet, E.; Bartel, W.; Bartosik, N.; Bartsch, D.; Basile, M.; Begzsuren, K.; Behnke, O.; Behr, J.; Behrens, U.; Bellagamba, L.; Belousov, A.; Belov, P.; Bertolin, A.; Bhadra, S.; Bindi, M.; Bizot, J. C.; Blohm, C.; Bokhonov, V.; Bondarenko, K.; Boos, E. G.; Borras, K.; Boscherini, D.; Bot, D.; Boudry, V.; Bozovic-Jelisavcic, I.; Bołd, T.; Brümmer, N.; Bracinik, J.; Brandt, G.; Brinkmann, M.; Brisson, V.; Britzger, D.; Brock, I.; Brownson, E.; Brugnera, R.; Bruncko, D.; Bruni, A.; Bruni, G.; Brzozowska, B.; Bunyatyan, A.; Bussey, P. J.; Bylinkin, A.; Bylsma, B.; Bystritskaya, L.; Caldwell, A.; Campbell, A. J.; Cantun Avila, K. B.; Capua, M.; Carlin, R.; Catterall, C. D.; Ceccopieri, F.; Cerny, K.; Cerny, V.; Chekanov, S.; Chekelian, V.; Chwastowski, J.; Ciborowski, J.; Ciesielski, R.; Cifarelli, L.; Cindolo, F.; Contin, A.; Contreras, J. G.; Cooper-Sarkar, A. M.; Coppola, N.; Corradi, M.; Corriveau, F.; Costa, M.; Coughlan, J. A.; Cvach, J.; D'Agostini, G.; Dainton, J. B.; Dal Corso, F.; Daum, K.; Delcourt, B.; Delvax, J.; Dementiev, R. K.; Derrick, M.; Devenish, R. C. E.; De Pasquale, S.; De Wolf, E. A.; del Peso, J.; Diaconu, C.; Dobre, M.; Dobur, D.; Dodonov, V.; Dolgoshein, B. A.; Dolinska, G.; Dossanov, A.; Doyle, A. T.; Drugakov, V.; Dubak, A.; Durkin, L. S.; Dusini, S.; Eckerlin, G.; Egli, S.; Eisenberg, Y.; Eliseev, A.; Elsen, E.; Ermolov, P. F.; Eskreys, A.; Fang, S.; Favart, L.; Fazio, S.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Ferrando, J.; Ferrero, M. I.; Figiel, J.; Fischer, D.-J.; Fleischer, M.; Fomenko, A.; Forrest, M.; Foster, B.; Gabathuler, E.; Gach, G.; Galas, A.; Gallo, E.; Garfagnini, A.; Gayler, J.; Geiser, A.; Ghazaryan, S.; Gialas, I.; Gizhko, A.; Gladilin, L. K.; Gladkov, D.; Glasman, C.; Glazov, A.; Goerlich, L.; Gogitidze, N.; Gogota, O.; Golubkov, Y. A.; Göttlicher, P.; Gouzevitch, M.; Grab, C.; Grabowska-Bołd, I.; Grebenyuk, A.; Grebenyuk, J.; Greenshaw, T.; Gregor, I.; Grigorescu, G.; Grindhammer, G.; Grzelak, G.; Gueta, O.; Guzik, M.; Gwenlan, C.; Hüttmann, A.; Haas, T.; Habib, S.; Haidt, D.; Hain, W.; Hamatsu, R.; Hart, J. C.; Hartmann, H.; Hartner, G.; Henderson, R. C. W.; Hennekemper, E.; Henschel, H.; Herbst, M.; Herrera, G.; Hildebrandt, M.; Hilger, E.; Hiller, K. H.; Hladký, J.; Hochman, D.; Hoffmann, D.; Hori, R.; Horisberger, R.; Hreus, T.; Huber, F.; Ibrahim, Z. A.; Iga, Y.; Ingbir, R.; Ishitsuka, M.; Jacquet, M.; Jakob, H.-P.; Janssen, X.; Januschek, F.; Jones, T. W.; Jönsson, L.; Jüngst, M.; Jung, H.; Kadenko, I.; Kahle, B.; Kananov, S.; Kanno, T.; Kapichine, M.; Karshon, U.; Karstens, F.; Katkov, I. I.; Kaur, P.; Kaur, M.; Kenyon, I. R.; Keramidas, A.; Khein, L. A.; Kiesling, C.; Kim, J. Y.; Kisielewska, D.; Kitamura, S.; Klanner, R.; Klein, M.; Klein, U.; Kleinwort, C.; Koffeman, E.; Kogler, R.; Kondrashova, N.; Kononenko, O.; Kooijman, P.; Korol, I.; Korzhavina, I. A.; Kostka, P.; Kotański, A.; Kötz, U.; Kowalski, H.; Krämer, M.; Kretzschmar, J.; Krüger, K.; Kuprash, O.; Kuze, M.; Landon, M. P. J.; Lange, W.; Laštovička-Medin, G.; Laycock, P.; Lebedev, A.; Lee, A.; Lendermann, V.; Levchenko, B. B.; Levonian, S.; Levy, A.; Libov, V.; Limentani, S.; Ling, T. Y.; Lipka, K.; Lisovyi, M.; List, B.; List, J.; Lobodzinska, E.; Lobodzinski, B.; Lohmann, W.; Löhr, B.; Lohrmann, E.; Long, K. R.; Longhin, A.; Lontkovskyi, D.; Lopez-Fernandez, R.; Lubimov, V.; Lukina, O. Y.; Maeda, J.; Magill, S.; Makarenko, I.; Malinovski, E.; Malka, J.; Mankel, R.; Margotti, A.; Marini, G.; Martin, J. F.; Martyn, H.-U.; Mastroberardino, A.; Mattingly, M. C. K.; Maxfield, S. J.; Mehta, A.; Melzer-Pellmann, I.-A.; Mergelmeyer, S.; Meyer, A. B.; Meyer, H.; Meyer, J.; Miglioranzi, S.; Mikocki, S.; Milcewicz-Mika, I.; Mohamad Idris, F.; Monaco, V.; Montanari, A.; Moreau, F.; Morozov, A.; Morris, J. V.; Morris, J. D.; Mujkic, K.; Müller, K.; Musgrave, B.; Nagano, K.; Namsoo, T.; Nania, R.; Naumann, T.; Newman, P. R.; Niebuhr, C.; Nigro, A.; Nikitin, D.; Ning, Y.; Nobe, T.; Notz, D.; Nowak, G.; Nowak, K.; Nowak, R. J.; Nuncio-Quiroz, A. E.; Oh, B. Y.; Okazaki, N.; Olkiewicz, K.; Olsson, J. E.; Onishchuk, Y.; Ozerov, D.; Pahl, P.; Palichik, V.; Pandurovic, M.; Papageorgiu, K.; Parenti, A.; Pascaud, C.; Patel, G. D.; Paul, E.; Pawlak, J. M.; Pawlik, B.; Pelfer, P. G.; Pellegrino, A.; Perez, E.; Perlański, W.; Perrey, H.; Petrukhin, A.; Picuric, I.; Piotrzkowski, K.; Pirumov, H.; Pitzl, D.; Plačakytė, R.; Pluciński, P.; Pokorny, B.; Pokrovskiy, N. S.; Polifka, R.; Polini, A.; Povh, B.; Proskuryakov, A. S.; Przybycień, M.; Radescu, V.; Raicevic, N.; Raval, A.; Ravdandorj, T.; Reeder, D. D.; Reimer, P.; Reisert, B.; Ren, Z.; Repond, J.; Ri, Y. D.; Rizvi, E.; Robertson, A.; Robmann, P.; Roloff, P.; Roosen, R.; Rostovtsev, A.; Rotaru, M.; Rubinsky, I.; Ruiz Tabasco, J. E.; Rusakov, S.; Ruspa, M.; Sacchi, R.; Šálek, D.; Samson, U.; Sankey, D. P. C.; Sartorelli, G.; Sauter, M.; Sauvan, E.; Savin, A. A.; Saxon, D. H.; Schioppa, M.; Schlenstedt, S.; Schleper, P.; Schmidke, W. B.; Schmitt, S.; Schneekloth, U.; Schoeffel, L.; Schönberg, V.; Schöning, A.; Schörner-Sadenius, T.; Schultz-Coulon, H.-C.; Schwartz, J.; Sciulli, F.; Sefkow, F.; Shcheglova, L. M.; Shehzadi, R.; Shimizu, S.; Shtarkov, L. N.; Shushkevich, S.; Singh, I.; Skillicorn, I. O.; Słomiński, W.; Sloan, T.; Smith, W. H.; Sola, V.; Solano, A.; Soloviev, Y.; Son, D.; Sopicki, P.; Sosnovtsev, V.; South, D.; Spaskov, V.; Specka, A.; Spiridonov, A.; Stadie, H.; Stanco, L.; Staykova, Z.; Steder, M.; Stefaniuk, N.; Stella, B.; Stern, A.; Stewart, T. P.; Stifutkin, A.; Stoicea, G.; Stopa, P.; Straumann, U.; Suchkov, S.; Susinno, G.; Suszycki, L.; Sykora, T.; Sztuk-Dambietz, J.; Szuba, J.; Szuba, D.; Tapper, A. D.; Tassi, E.; Terrón, J.; Theedt, T.; Thompson, P. D.; Tiecke, H.; Tokushuku, K.; Tomaszewska, J.; Tran, T. H.; Traynor, D.; Truöl, P.; Trusov, V.; Tsakov, I.; Tseepeldorj, B.; Tsurugai, T.; Turcato, M.; Turkot, O.; Turnau, J.; Tymieniecka, T.; Vázquez, M.; Valkárová, A.; Vallée, C.; Van Mechelen, P.; Vazdik, Y.; Verbytskyi, A.; Viazlo, O.; Vlasov, N. N.; Walczak, R.; Wan Abdullah, W. A. T.; Wegener, D.; Whitmore, J. J.; Wichmann, K.; Wiggers, L.; Wing, M.; Wlasenko, M.; Wolf, G.; Wolfe, H.; Wrona, K.; Wünsch, E.; Yagües-Molina, A. G.; Yamada, S.; Yamazaki, Y.; Yoshida, R.; Youngman, C.; Zabiegalov, O.; Žáček, J.; Zálešák, J.; Zawiejski, L.; Zenaiev, O.; Zeuner, W.; Zhang, Z.; Zhautykov, B. O.; Zhmak, N.; Zhokin, A.; Zichichi, A.; Žlebčík, R.; Zohrabyan, H.; Zolkapli, Z.; Zomer, F.; Zotkin, D. S.; Żarnecki, A. F.

    2012-10-01

    A combination of the inclusive diffractive cross section measurements made by the H1 and ZEUS Collaborations at HERA is presented. The analysis uses samples of diffractive deep inelastic ep scattering data at a centre-of-mass energy sqrt{s}=318 GeV where leading protons are detected by dedicated spectrometers. Correlations of systematic uncertainties are taken into account, resulting in an improved precision of the cross section measurement which reaches 6 % for the most precise points. The combined data cover the range 2.5< Q 2<200 GeV2 in photon virtuality, 0.00035 < {x_{{P}}}< 0.09 in proton fractional momentum loss, 0.09<| t|<0.55 GeV2 in squared four-momentum transfer at the proton vertex and 0.0018< β<0.816 in β=x/{x_{{P}}}, where x is the Bjorken scaling variable.

  8. Capturing Control Room Simulator Data with the HERA Database

    SciTech Connect

    Ronald Boring; April Whaley; Bruce Hallbert; Karin Laumann; Per Oivind Braarud; Andreas Bye; Erasmia Lois; Yung Hsien James Chang

    2007-08-01

    The Human Event Repository and Analysis (HERA) system has been developed as a tool for classifying and recording human performance data extracted from primary data sources. This paper reviews the process of extracting data from simulator studies for use in HERA. Simulator studies pose unique data collection challenges, both in types and quality of data measures, but such studies are ideally suited to gather operator performance data, including the full spectrum of performance shaping factors used in a HERA analysis. This paper provides suggestions for obtaining relevant human performance data for a HERA analysis from a control room simulator study and for inputting those data in a format suitable for HERA.

  9. Beauty production at HERA

    SciTech Connect

    Yagues, A.

    2009-12-17

    Beauty quark production in ep collisions is being studied at HERA. The latest results in deep inelastic scattering (DIS) and photoproduction (PHP) regime performed by the ZEUS and HI experiments are presented here. The first measurement exploits the potential of the ZEUS mi-crovertex detector to identify beauty in PHP dijet events in an inclusive analysis. In the second measurement, beauty quarks were identified through their decays into muons. Finally, two measurements of the beauty contribution to the proton structure function, F{sub 2}{sup b???b}, in DIS are presented. The four measurements are consistent with previous results and are reasonably well described by QCD predictions.

  10. Measurement of the cross-section ratio σψ(2S)/σJ/ψ(1S) in deep inelastic exclusive ep scattering at HERA

    NASA Astrophysics Data System (ADS)

    Abramowicz, H.; Abt, I.; Adamczyk, L.; Adamus, M.; Antonelli, S.; Aushev, V.; Aushev, Y.; Behnke, O.; Behrens, U.; Bertolin, A.; Bloch, I.; Boos, E. G.; Borras, K.; Brock, I.; Brook, N. H.; Brugnera, R.; Bruni, A.; Bussey, P. J.; Caldwell, A.; Capua, M.; Catterall, C. D.; Chwastowski, J.; Ciborowski, J.; Ciesielski, R.; Cooper-Sarkar, A. M.; Corradi, M.; Corriveau, F.; Dementiev, R. K.; Devenish, R. C. E.; Dolinska, G.; Dusini, S.; Figiel, J.; Foster, B.; Gach, G.; Gallo, E.; Garfagnini, A.; Geiser, A.; Gizhko, A.; Gladilin, L. K.; Golubkov, Yu. A.; Grebenyuk, J.; Gregor, I.; Grzelak, G.; Gueta, O.; Guzik, M.; Hain, W.; Hochman, D.; Hori, R.; Ibrahim, Z. A.; Iga, Y.; Ishitsuka, M.; Iudin, A.; Januschek, F.; Jomhari, N. Z.; Kadenko, I.; Kananov, S.; Karshon, U.; Kaur, M.; Kaur, P.; Kisielewska, D.; Klanner, R.; Klein, U.; Kondrashova, N.; Kononenko, O.; Korol, Ie.; Korzhavina, I. A.; Kotański, A.; Kötz, U.; Kovalchuk, N.; Kowalski, H.; Krupa, B.; Kuprash, O.; Kuze, M.; Levchenko, B. B.; Levy, A.; Libov, V.; Limentani, S.; Lisovyi, M.; Lobodzinska, E.; Löhr, B.; Lohrmann, E.; Longhin, A.; Lontkovskyi, D.; Lukina, O. Yu.; Makarenko, I.; Malka, J.; Mergelmeyer, S.; Mohamad Idris, F.; Mohammad Nasir, N.; Myronenko, V.; Nagano, K.; Nobe, T.; Notz, D.; Nowak, R. J.; Onishchuk, Yu.; Paul, E.; Perlański, W.; Pokrovskiy, N. S.; Przybycień, M.; Roloff, P.; Rubinsky, I.; Ruspa, M.; Saxon, D. H.; Schioppa, M.; Schmidke, W. B.; Schneekloth, U.; Schörner-Sadenius, T.; Shcheglova, L. M.; Shevchenko, R.; Shkola, O.; Shyrma, Yu.; Singh, I.; Skillicorn, I. O.; Słomiński, W.; Solano, A.; Stanco, L.; Stefaniuk, N.; Stern, A.; Stopa, P.; Sztuk-Dambietz, J.; Szuba, D.; Szuba, J.; Tassi, E.; Tokushuku, K.; Tomaszewska, J.; Trofymov, A.; Tsurugai, T.; Turcato, M.; Turkot, O.; Tymieniecka, T.; Verbytskyi, A.; Viazlo, O.; Walczak, R.; Wan Abdullah, W. A. T.; Wichmann, K.; Wing, M.; Wolf, G.; Yamada, S.; Yamazaki, Y.; Zakharchuk, N.; Żarnecki, A. F.; Zawiejski, L.; Zenaiev, O.; Zhautykov, B. O.; Zhmak, N.; Zotkin, D. S.

    2016-08-01

    The exclusive deep inelastic electroproduction of ψ (2 S) and J / ψ (1 S) at an ep centre-of-mass energy of 317 GeV has been studied with the ZEUS detector at HERA in the kinematic range 2 HERA I running period and correspond to an integrated luminosity of 114 pb-1. The data for 5 HERA I and HERA II periods and correspond to an integrated luminosity of 468 pb-1. The decay modes analysed were μ+μ- and J / ψ (1 S)π+π- for the ψ (2 S) and μ+μ- for the J / ψ (1 S). The cross-section ratio σ ψ (2 S) /σ J / ψ (1 S) has been measured as a function of Q2 , W and t. The results are compared to predictions of QCD-inspired models of exclusive vector-meson production.

  11. Cassini RADAR Backscatter Measurements of Saturn Rings

    NASA Astrophysics Data System (ADS)

    West, R. D.; Janssen, M. A.; Cuzzi, J. N.; Anderson, Y. Z.; Hamilton, G.

    2016-12-01

    The Cassini mission is now heading into its last year of observations. Part of the mission plan includes orbits that bring the spacecraft close to Saturn's rings prior to deorbiting into Saturn's atmosphere. First, a series of F-ring orbits will cross the ring plane just outside of the F-ring, and then a series of Proximal orbits will cross the ring plane inside of the D-ring - just above the cloud tops. These orbits are providing a unique opportunity to obtain backscatter measurements and relatively high-resolution brightness temperature measurements from the rings. In one F-ring orbit and three Proximal orbits, the spacecraft will scan the rings with the radar central beam and obtain backscatter measurements as a function of radial distance with some variation of incidence angle. These radar observations will be designed to sweep the A through C rings with varying bandwidth chirps selected to optimize the tradeoff between radial resolution and measurement variance. Pulse compression will deliver radial resolutions varying from about 200 m to around 4 km depending on the bandwidth used. These measurements will provide a 1-D profile of backscatter obtained at 2.2 cm wavelength that will complement similar passive profiles obtained at optical, infrared, and microwave wavelengths. This presentation will summarize the detailed designs and tradeoffs made for these observations. Such measurements will further constrain and inform models of the composition and structure of the ring particle distributions. This work is supported by the NASA Cassini Program at JPL - CalTech.

  12. The HERA Proton

    NASA Astrophysics Data System (ADS)

    Habib, Shiraz

    2014-04-01

    The almost 1 fb-1 of ep data collected by the H1 and ZEUS collider experiments at HERA allows for a precise determination of the proton's parton distribution functions (PDFs). Measurements used to constrain the PDFs—inclusive and jet cross sections, charm contribution to the F2 proton structure function, F_2cbar c — are presented herein. The measurement process itself includes cataloguing the sensitivity of the cross sections to the various sources of correlated systematic uncertainties. In the jet measurement, correlations of a statistical nature are also quantified and catalogued. These correlations provide a basis to combine measurements of the same physical observable across different time periods, experiments and measurement methodology. The subsequent PDF fitting procedure also takes into account such correlations. The resulting HERAPDF1.5 set based on inclusive data as well as PDF sets derived from inclusive plus charm data are presented togeteher with their predictions for pp cross sections at the LHC.

  13. Measurements of Diffractive Vector-Meson Photoproduction at High Momentum Transfer from the ZEUS Experiment at HERA

    NASA Astrophysics Data System (ADS)

    Crittendenr, James A.

    We discuss recent preliminary results on the diffractive photoproduction of ρ0, φ, and J/ψ mesons at high momentum transfer reported by the ZEUS collaboration at HERA. A special-purpose calorimeter served to tag the quasi-real photons (Q2<0.01 Gev2) in the process γ+p-->VM+Y, where Y represents a dissociated state of the proton. The resulting range in photon-proton center-of-mass energy extends from 80 to 120 GeV. The differential cross sections (dσ )/(dt) were obtained in the region |t| > 1.2 GeV2, where t denotes the squared momentum transfer to the proton. The measurements provide good sensitivity to the observed power-law dependence (dσ )/(dt) (-t)-n. Over the region in momentum transfer covered by the data, the power is found to be approximately n = 3 for ρ0 and φ photoproduction, and approximately n = 2 for J/ψ photoproduction.

  14. Hydrogen Epoch of Reionization Array (HERA)

    NASA Astrophysics Data System (ADS)

    DeBoer, David R.; Parsons, Aaron R.; Aguirre, James E.; Alexander, Paul; Ali, Zaki S.; Beardsley, Adam P.; Bernardi, Gianni; Bowman, Judd D.; Bradley, Richard F.; Carilli, Chris L.; Cheng, Carina; de Lera Acedo, Eloy; Dillon, Joshua S.; Ewall-Wice, Aaron; Fadana, Gcobisa; Fagnoni, Nicolas; Fritz, Randall; Furlanetto, Steve R.; Glendenning, Brian; Greig, Bradley; Grobbelaar, Jasper; Hazelton, Bryna J.; Hewitt, Jacqueline N.; Hickish, Jack; Jacobs, Daniel C.; Julius, Austin; Kariseb, MacCalvin; Kohn, Saul A.; Lekalake, Telalo; Liu, Adrian; Loots, Anita; MacMahon, David; Malan, Lourence; Malgas, Cresshim; Maree, Matthys; Martinot, Zachary; Mathison, Nathan; Matsetela, Eunice; Mesinger, Andrei; Morales, Miguel F.; Neben, Abraham R.; Patra, Nipanjana; Pieterse, Samantha; Pober, Jonathan C.; Razavi-Ghods, Nima; Ringuette, Jon; Robnett, James; Rosie, Kathryn; Sell, Raddwine; Smith, Craig; Syce, Angelo; Tegmark, Max; Thyagarajan, Nithyanandan; Williams, Peter K. G.; Zheng, Haoxuan

    2017-04-01

    The Hydrogen Epoch of Reionization Array (HERA) is a staged experiment to measure 21 cm emission from the primordial intergalactic medium (IGM) throughout cosmic reionization (z = 6-12), and to explore earlier epochs of our Cosmic Dawn (z ˜ 30). During these epochs, early stars and black holes heated and ionized the IGM, introducing fluctuations in 21 cm emission. HERA is designed to characterize the evolution of the 21 cm power spectrum to constrain the timing and morphology of reionization, the properties of the first galaxies, the evolution of large-scale structure, and the early sources of heating. The full HERA instrument will be a 350-element interferometer in South Africa consisting of 14 m parabolic dishes observing from 50 to 250 MHz. Currently, 19 dishes have been deployed on site and the next 18 are under construction. HERA has been designated as an SKA Precursor instrument. In this paper, we summarize HERA’s scientific context and provide forecasts for its key science results. After reviewing the current state of the art in foreground mitigation, we use the delay-spectrum technique to motivate high-level performance requirements for the HERA instrument. Next, we present the HERA instrument design, along with the subsystem specifications that ensure that HERA meets its performance requirements. Finally, we summarize the schedule and status of the project. We conclude by suggesting that, given the realities of foreground contamination, current-generation 21 cm instruments are approaching their sensitivity limits. HERA is designed to bring both the sensitivity and the precision to deliver its primary science on the basis of proven foreground filtering techniques, while developing new subtraction techniques to unlock new capabilities. The result will be a major step toward realizing the widely recognized scientific potential of 21 cm cosmology.

  15. Measurement of inclusive cross sections at high at and 252 GeV and of the longitudinal proton structure function at HERA

    NASA Astrophysics Data System (ADS)

    Andreev, V.; Baghdasaryan, A.; Baghdasaryan, S.; Begzsuren, K.; Belousov, A.; Belov, P.; Boudry, V.; Bradt, G.; Brinkmann, M.; Brisson, V.; Britzger, D.; Buniatyan, A.; Bylinkin, A.; Bystritskaya, L.; Campbell, A. J.; Cantun Avila, K. B.; Ceccopieri, F.; Cerny, K.; Chekelian, V.; Contreras, J. G.; Dainton, J. B.; Daum, K.; De Wolf, E. A.; Diaconu, C.; Dobre, M.; Dodonov, V.; Dossanov, A.; Dubak, A.; Eckerlin, G.; Egli, S.; Elsen, E.; Favart, L.; Fedotov, A.; Feltesse, J.; Ferencei, J.; Fleischer, M.; Fomenko, A.; Gabathuler, E.; Gayler, J.; Ghazaryan, S.; Glazov, A.; Goerlich, L.; Gogitidze, N.; Gouzevitch, M.; Grab, C.; Grebenyuk, A.; Greenshaw, T.; Grindhammer, G.; Habib, S.; Haidt, D.; Henderson, R. C. W.; Herbst, M.; Hildebrandt, M.; Hladkỳ, J.; Hoffmann, D.; Horisberger, R.; Hreus, T.; Huber, F.; Jacquet, M.; Janssen, X.; Jung, A. W.; Jung, H.; Kapichine, M.; Kiesling, C.; Klein, M.; Kleinwort, C.; Kogler, R.; Kostka, P.; Kretzschmar, J.; Krüger, K.; Landon, M. P. J.; Lange, W.; Laycock, P.; Lebedev, A.; Levonian, S.; Lipka, K.; List, B.; List, J.; Lobodzinski, B.; Lubimov, V.; Malinovski, E.; Martyn, H.-U.; Maxfield, S. J.; Mehta, A.; Meyer, A. B.; Meyer, H.; Meyer, J.; Mikocki, S.; Morozov, A.; Müller, K.; Naumann, Th.; Newman, P. R.; Niebuhr, C.; Nowak, G.; Nowak, K.; Olivier, B.; Olsson, J. E.; Ozerov, D.; Pahl, P.; Pascaud, C.; Patel, G. D.; Perez, E.; Petrukhin, A.; Picuric, I.; Pirumov, H.; Pitzl, D.; Plačakytė, R.; Pokorny, B.; Polifka, R.; Radescu, V.; Raicevic, N.; Raspereza, A.; Ravdandorj, T.; Reimer, P.; Rizvi, E.; Robmann, P.; Roosen, R.; Rostovtsev, A.; Rotaru, M.; Rusakov, S.; Šálek, D.; Sankey, D. P. C.; Sauter, M.; Sauvan, E.; Schmitt, S.; Schoeffel, L.; Schöning, A.; Schultz-Coulon, H.-C.; Sefkow, F.; Shushkevich, S.; Soloviev, Y.; Sopicki, P.; South, D.; Spaskov, V.; Specka, A.; Steder, M.; Stella, B.; Straumann, U.; Sykora, T.; Thompson, P. D.; Traynor, D.; Truöl, P.; Tsakov, I.; Tseepeldorj, B.; Turnau, J.; Valkárová, A.; Vallée, C.; Van Mechelen, P.; Vazdik, Y.; Wegener, D.; Wünsch, E.; Žáček, J.; Zhang, Z.; Žlebčík, R.; Zohrabyan, H.; Zomer, F.

    2014-04-01

    Inclusive double differential cross sections for neutral current deep inelastic scattering are measured with the H1 detector at HERA. The data were taken with a lepton beam energy of GeV and two proton beam energies of and 575 GeV corresponding to centre-of-mass energies of 225 and 252 GeV, respectively. The measurements cover the region of for GeV up to . The measurements are used together with previously published H1 data at GeV and lower data at , and GeV to extract the longitudinal proton structure function in the region GeV.

  16. Proton structure functions at HERA

    NASA Astrophysics Data System (ADS)

    Abt, Iris

    2014-05-01

    The "proton structure" is a wide field. Discussed are predominantly the precision measurements of the proton structure functions at HERA and some of their implications for the LHC measurements. In addition, a discussion of what a proton structure function represents is provided. Finally, a connection to nuclear physics is attempted. This contribution is an updated reprint of a contribution to "Deep Inelastic Scattering 2012".1

  17. Mass and Lifetime Measurements in Storage Rings

    SciTech Connect

    Weick, H.; Beckert, K.; Beller, P.; Bosch, F.; Dimopoulou, C.; Kozhuharov, C.; Kurcewicz, J.; Mazzocco, M.; Nociforo, C.; Nolden, F.; Steck, M.; Sun, B.; Winkler, M.; Brandau, C.; Chen, L.; Geissel, H.; Knoebel, R.; Litvinov, S. A.; Litvinov, Yu. A.; Scheidenberger, C.

    2007-05-22

    Masses of nuclides covering a large area of the chart of nuclides can be measured in storage rings where many ions circulate at the same time. In this paper the recent progress in the analysis of Schottky mass spectrometry data is presented as well as the technical improvements leading to higher accuracy for isochronous mass measurements with a time-of-flight detector. The high sensitivity of the Schottky method down to single ions allows to measure lifetimes of nuclides by observing mother and daughter nucleus simultaneously. In this way we investigated the decay of bare and H-like 140Pr. As we could show the lifetime can be even shortened compared to those of atomic nuclei despite of a lower number of electrons available for internal conversion or electron capture.All these techniques will be implemented with further improvements at the storage rings of the new FAIR facility at GSI in the future.

  18. Microstrip Ring Resonator for Soil Moisture Measurements

    NASA Technical Reports Server (NTRS)

    Sarabandi, Kamal; Li, Eric S.

    1993-01-01

    Accurate determination of spatial soil moisture distribution and monitoring its temporal variation have a significant impact on the outcomes of hydrologic, ecologic, and climatic models. Development of a successful remote sensing instrument for soil moisture relies on the accurate knowledge of the soil dielectric constant (epsilon(sub soil)) to its moisture content. Two existing methods for measurement of dielectric constant of soil at low and high frequencies are, respectively, the time domain reflectometry and the reflection coefficient measurement using an open-ended coaxial probe. The major shortcoming of these methods is the lack of accurate determination of the imaginary part of epsilon(sub soil). In this paper a microstrip ring resonator is proposed for the accurate measurement of soil dielectric constant. In this technique the microstrip ring resonator is placed in contact with soil medium and the real and imaginary parts of epsilon(sub soil) are determined from the changes in the resonant frequency and the quality factor of the resonator respectively. The solution of the electromagnetic problem is obtained using a hybrid approach based on the method of moments solution of the quasi-static formulation in conjunction with experimental data obtained from reference dielectric samples. Also a simple inversion algorithm for epsilon(sub soil) = epsilon'(sub r) + j(epsilon"(sub r)) based on regression analysis is obtained. It is shown that the wide dynamic range of the measured quantities provides excellent accuracy in the dielectric constant measurement. A prototype microstrip ring resonator at L-band is designed and measurements of soil with different moisture contents are presented and compared with other approaches.

  19. Accelerator physics measurements at the damping ring

    SciTech Connect

    Rivkin, L.; Delahaye, J.P.; Wille, K.; Allen, M.; Bane, K.; Fieguth, T.; Hofmann, A.; Hutton, A.; Lee, M.; Linebarger, W.

    1985-05-01

    Besides the optics measurements described elsewhere, machine experiments were done at the SLC damping ring to determine some of its parameters. The synchrotron radiation energy loss which gives the damping rates was measured by observing the rf-voltage dependence of the synchronous phase angle. The emittance was obtained from the synchrotron light monitor, scraper measurements and by extracting the beam through a doublet and measuring its size for different quadrupole settings. Current dependent effects such as parasitic mode losses, head tail instabilities, synchrotron and betatron frequency shifts were measured to estimate the impedance. Rf-cavity beam loading and its compensation were also studied and ion collection was investigated. All results agree reasonably well with expectations and indicate no limitations to the design performance.

  20. Report from the ZEUS Collaboration at HERA

    SciTech Connect

    Abramowicz, H.

    1994-12-01

    This is a short overview of the results obtained by the ZEUS Collaboration with data collected during HERA`s first year and corresponding to an integrated luminosity of 25 nb{sup {minus}1}. Included are the measurement of the total, partial, and {rho} photoproduction cross sections, a study of high mass diffractive photoproduction, new results from hard photoproduction where a clear signal of a direct photon contribution has been established, the measurement of the photon structure function F{sub 2}, and first results on diffractive dissociation of the virtual photon in the deep inelastic electron photon scattering. Limits on leptoquarks and excited electrons are also presented.

  1. Measurement of D ± production in deep inelastic ep scattering with the ZEUS detector at HERA

    NASA Astrophysics Data System (ADS)

    Abramowicz, H.; Abt, I.; Adamczyk, L.; Adamus, M.; Aggarwal, R.; Antonelli, S.; Antonioli, P.; Antonov, A.; Arneodo, M.; Arslan, O.; Aushev, V.; Aushev, Y.; Bachynska, O.; Bamberger, A.; Barakbaev, A. N.; Barbagli, G.; Bari, G.; Barreiro, F.; Bartosik, N.; Bartsch, D.; Basile, M.; Behnke, O.; Behr, J.; Behrens, U.; Bellagamba, L.; Bertolin, A.; Bhadra, S.; Bindi, M.; Blohm, C.; Bokhonov, V.; Bold, T.; Boos, E. G.; Borras, K.; Boscherini, D.; Bot, D.; Brock, I.; Brownson, E.; Brugnera, R.; Brümmer, N.; Bruni, A.; Bruni, G.; Brzozowska, B.; Bussey, P. J.; Bylsma, B.; Caldwell, A.; Capua, M.; Carlin, R.; Catterall, C. D.; Chekanov, S.; Chwastowski, J.; Ciborowski, J.; Ciesielski, R.; Cifarelli, L.; Cindolo, F.; Contin, A.; Cooper-Sarkar, A. M.; Coppola, N.; Corradi, M.; Corriveau, F.; Costa, M.; D'Agostini, G.; Corso, F. Dal; del Peso, J.; Dementiev, R. K.; De Pasquale, S.; Derrick, M.; Devenish, R. C. E.; Dobur, D.; Dolgoshein, B. A.; Dolinska, G.; Doyle, A. T.; Drugakov, V.; Durkin, L. S.; Dusini, S.; Eisenberg, Y.; Ermolov, P. F.; Eskreys, A.; Fang, S.; Fazio, S.; Ferrando, J.; Ferrero, M. I.; Figiel, J.; Foster, B.; Gach, G.; Galas, A.; Gallo, E.; Garfagnini, A.; Geiser, A.; Gialas, I.; Gizhko, A.; Gladilin, L. K.; Gladkov, D.; Glasman, C.; Gogota, O.; Golubkov, Yu. A.; Göttlicher, P.; Grabowska-Bold, I.; Grebenyuk, J.; Gregor, I.; Grigorescu, G.; Grzelak, G.; Gueta, O.; Guzik, M.; Gwenlan, C.; Haas, T.; Hain, W.; Hamatsu, R.; Hart, J. C.; Hartmann, H.; Hartner, G.; Hilger, E.; Hochman, D.; Hori, R.; Hüttmann, A.; Ibrahim, Z. A.; Iga, Y.; Ingbir, R.; Ishitsuka, M.; Iudin, A.; Jakob, H.-P.; Januschek, F.; Jones, T. W.; Jüngst, M.; Kadenko, I.; Kahle, B.; Kananov, S.; Kanno, T.; Karshon, U.; Karstens, F.; Katkov, I. I.; Kaur, M.; Kaur, P.; Keramidas, A.; Khein, L. A.; Kim, J. Y.; Kisielewska, D.; Kitamura, S.; Klanner, R.; Klein, U.; Koffeman, E.; Kondrashova, N.; Kononenko, O.; Kooijman, P.; Korol, Ie.; Korzhavina, I. A.; Kotanski, A.; Kötz, U.; Kovalchuk, N.; Kowalski, H.; Kuprash, O.; Kuze, M.; Lee, A.; Levchenko, B. B.; Levy, A.; Libov, V.; Limentani, S.; Ling, T. Y.; Lisovyi, M.; Lobodzinska, E.; Lohmann, W.; Löhr, B.; Lohrmann, E.; Long, K. R.; Longhin, A.; Lontkovskyi, D.; Lukina, O. Yu.; Maeda, J.; Magill, S.; Makarenko, I.; Malka, J.; Mankel, R.; Margotti, A.; Marini, G.; Martin, J. F.; Mastroberardino, A.; Mattingly, M. C. K.; Melzer-Pellmann, I.-A.; Mergelmeyer, S.; Miglioranzi, S.; Idris, F. Mohamad; Monaco, V.; Montanari, A.; Morris, J. D.; Mujkic, K.; Musgrave, B.; Nagano, K.; Namsoo, T.; Nania, R.; Nigro, A.; Ning, Y.; Nobe, T.; Notz, D.; Nowak, R. J.; Nuncio-Quiroz, A. E.; Oh, B. Y.; Okazaki, N.; Olkiewicz, K.; Onishchuk, Yu.; Papageorgiu, K.; Parenti, A.; Paul, E.; Pawlak, J. M.; Pawlik, B.; Pelfer, P. G.; Pellegrino, A.; Perlanski, W.; Perrey, H.; Piotrzkowski, K.; Plucinski, P.; Pokrovskiy, N. S.; Polini, A.; Proskuryakov, A. S.; Przybycien, M.; Raval, A.; Reeder, D. D.; Reisert, B.; Ren, Z.; Repond, J.; Ri, Y. D.; Robertson, A.; Roloff, P.; Rubinsky, I.; Ruspa, M.; Sacchi, R.; Samson, U.; Sartorelli, G.; Savin, A. A.; Saxon, D. H.; Schioppa, M.; Schlenstedt, S.; Schleper, P.; Schmidke, W. B.; Schneekloth, U.; Schönberg, V.; Schörner-Sadenius, T.; Schwartz, J.; Sciulli, F.; Shcheglova, L. M.; Shehzadi, R.; Shimizu, S.; Singh, I.; Skillicorn, I. O.; Slominski, W.; Smith, W. H.; Sola, V.; Solano, A.; Son, D.; Sosnovtsev, V.; Spiridonov, A.; Stadie, H.; Stanco, L.; Stefaniuk, N.; Stern, A.; Stewart, T. P.; Stifutkin, A.; Stopa, P.; Suchkov, S.; Susinno, G.; Suszycki, L.; Sztuk-Dambietz, J.; Szuba, D.; Szuba, J.; Tapper, A. D.; Tassi, E.; Terrón, J.; Theedt, T.; Tiecke, H.; Tokushuku, K.; Tomaszewska, J.; Trofymov, A.; Trusov, V.; Tsurugai, T.; Turcato, M.; Turkot, O.; Tymieniecka, T.; Vázquez, M.; Verbytskyi, A.; Viazlo, O.; Vlasov, N. N.; Walczak, R.; Abdullah, W. A. T. Wan; Whitmore, J. J.; Wichmann, K.; Wiggers, L.; Wing, M.; Wlasenko, M.; Wolf, G.; Wolfe, H.; Wrona, K.; Yagües-Molina, A. G.; Yamada, S.; Yamazaki, Y.; Yoshida, R.; Youngman, C.; Zakharchuk, N.; Żarnecki, A. F.; Zawiejski, L.; Zenaiev, O.; Zeuner, W.; Zhautykov, B. O.; Zhmak, N.; Zichichi, A.; Zolkapli, Z.; Zotkin, D. S.

    2013-05-01

    Charm production in deep inelastic ep scattering was measured with the ZEUS detector using an integrated luminosity of 354 pb-1. Charm quarks were identified by reconstructing D ± mesons in the D ± → K ∓π±π± decay channel. Lifetime information was used to reduce combinatorial background substantially. Differential cross sections were measured in the kinematic region 5 < Q 2 < 1000 GeV2, 0 .02 < y < 0 .7, 1 .5 < p T ( D ±) < 15 GeV and | η( D ±)| < 1 .6, where Q 2 is the photon virtuality, y is the inelasticity, and p T ( D ±) and η( D ±) are the transverse momentum and the pseudorapidity of the D ± meson, respectively. Next-to-leading-order QCD predictions are compared to the data. The charm contribution, F_2^{{coverline{c}}} , to the proton structure-function F 2 was extracted.

  2. Measurement of D{plus-minus} and D{sup 0} production in deep Inelastic scattering using a lifetime tag at HERA.

    SciTech Connect

    Chekanov, S.; Derrick, M.; Magill, S.; Musgrave, B.; Repond, J.; Yoshida, R.; Nicholass, D.; High Energy Physics; ZEUS Collboration

    2009-10-01

    The production of D{sup {+-}}- and D{sup 0}-mesons has been measured with the ZEUS detector at HERA using an integrated luminosity of 133.6 pb{sup -1}. The measurements cover the kinematic range 5 < Q{sup 2} < 1000 GeV{sup 2}, 0.02 < y < 0.7, 1.5 < p T{sup D} < 15 GeV and |{eta}{sup D}| < 1.6. Combinatorial background to the D-meson signals is reduced by using the ZEUS microvertex detector to reconstruct displaced secondary vertices. Production cross sections are compared with the predictions of next-to-leading-order QCD, which is found to describe the data well. Measurements are extrapolated to the full kinematic phase space in order to obtain the open-charm contribution, F{sub 2}{sup c{bar c}} to the proton structure function, F{sub 2}.

  3. Measurement of the Inclusive ep Deep Inelastic Scattering Cross Section at Low Q2 with the H1 Detector at HERA

    SciTech Connect

    Raicevic, N.

    2007-04-23

    The focus of this report are the recent measurements of the cross section and proton structure function F2 in ep deep inelastic scattering (DIS) at low virtuality of the exchanged boson, Q2, with the H1 detector at the HERA accelerator in Hamburg. The region of low Q2 and low Bjorken x allows precision tests of perturbative QCD at high gluon densities to be performed and also the transition from the perturbative to non-perturbative QCD domains to be explored. The recent H1 measurements of charm and beauty cross sections and structure functions, F{sub 2}{sup cc-bar} ans F{sub 2}{sup bb-bar}, for photon virtuality 12 < Q2 < 60 GeV2 will also be discussed.

  4. Pentaquark Searches in e-p Interactions at HERA

    SciTech Connect

    Polini, A.

    2005-10-12

    Recent results on searches for baryonic resonances compatible with pentaquark states in deep-inelastic collisions at the HERA ep collider are reported. Searches and measurements of strange and charmed pentaquarks by the H1 and ZEUS experiments are presented. The analyses were performed in the central rapidity region of inclusive deep-inelastic scattering at an ep center-of-mass energy of 300-318 GeV using the full HERA I luminosity. Some conclusions and prospects for future measurements with HERA II are discussed.

  5. Open charm production at HERA-B

    NASA Astrophysics Data System (ADS)

    Dujmic, Denis

    A proton beam with a momentum of 920 GeV/c is collided with a carbon wire target ( s = 42 GeV) at a rate of 2--5 MHz during the commissioning of the HERA-B experiment. Events that had a lepton candidate with a transverse momentum greater than 1 GeV/c (1.5 GeV/c) are reconstructed and written to tape. The analysis uses 2.6 million events triggered in the muon channel. Performance of the Ring Imaging Cerenkov detector is described in detail, as well as the algorithm for positive particle identification, its efficiency, and pion-kaon separation. Detection of charm decays is carried out in two decay channels: D0 → piK and D + → pipiK. Signals obtained in the measurement are statistically significant with cross sections for all xF of sD0+D¯ 0 = 80 +/- 27(stat) +/- 61(syst) mub/nucleon for D0 + D¯0, and sD++D- = 52 +/- 20(stat) +/- 39(syst) mub/nucleon for D+ + D-. For comparison with other experiments, these measurements are converted into the total forward cross section for cc¯ production scc¯ = 39 +/- 10(stat) +/- 21(syst) mub/nucleon for xF > 0. This value is consistent with an estimate based on QCD calculations and other measurements. The production cross sections for two control channels J/psi → mumu and KS → pipi are also measured. The reconstructed J/psi signal leads to a cross section of (420 +/- 80) nb/nucleon, with nuclear dependence taken as A0.92. KS signal has cross section of 19.1 +/- 1.8 mb/nucleon, with A 0.718. Both measurements are in a good agreement with expectations. A set of detected D mesons was used to search for additional vertices that belong to B meson decays. It allows setting a limit for bb¯ production at <150 nb. This work presents a contribution to the commissioning of the HERA-B experiment, and an extension of its research program to the physics of open charm decays.

  6. Hydrogen Epoch of Reionization Array (HERA)

    NASA Astrophysics Data System (ADS)

    DeBoer, David R.; HERA

    2015-01-01

    end of the Dark Ages.This paper will present a summary of the current understanding of the signal characteristics and measurements and describe the funded and planned HERA telescope to be built to detect and characterize the EoR power spectrum.

  7. In-Situ Dust Measurements in Jupiter's Gossamer Rings

    NASA Astrophysics Data System (ADS)

    Krueger, H.; Gruen, E.; Hamilton, D. P.

    2003-04-01

    Jupiter's ring system -- the archetype of ethereal ring systems -- consists of at least three components: the main ring, the vertically extended halo and the gossamer ring(s). The small moonlets Thebe and Amalthea orbit Jupiter within the gossamer ring region and structure in the intensity obtained from imaging observations indicates that these moons are the dominant sources of the gossamer ring material. The current picture implies that particles ejected from a source moon evolve inward under the Poynting-Robertson drag. Beyond Thebe's orbit, a very faint outward extension of the gossamer ring has also been observed which is not yet explained. Typical grain radii derived from optical imaging are a few micrometers. In November 2002 the Galileo spacecraft traversed the gossamer ring for the first time and had a close flyby at Amalthea. With the in-situ dust detector on board, dust measurements were collected throughout the gossamer ring and close to Amalthea. Several hundred impacts of dust grains were recorded and the data sets (impact charges, rise times, impact directions, etc.) of about 70 impacts were transmitted to Earth. In-situ dust measurements provide information about the physical properties of the dust environment not accessible with imaging techniques. They directly provide dust spatial densities along the spacecraft trajectory as well as grain sizes and impact speeds. This allows to test and refine current models of ring particle dynamics (see D. P. Hamilton et al., this conference). In particular, the direct measurement of grain sizes and dust spatial density in different regions of the gossamer ring allow to better constrain the forces dominating the grains' dynamics. The Galileo measurements in Jupiter's gossamer ring pave the way towards the in-situ dust measurements with Cassini in Saturn's E ring beginning in 2004.

  8. Galileo in-situ dust measurements in Jupiter's Gossamer Rings

    NASA Astrophysics Data System (ADS)

    Krueger, H.; Grün, E.; Hamilton, D. P.

    2003-05-01

    Jupiter's ring system -- the archetype of ethereal ring systems -- consists of at least three components: the main ring, the vertically extended halo and the gossamer ring(s). The small moonlets Thebe and Amalthea orbit Jupiter within the gossamer ring region and structure in the intensity obtained from imaging observations indicates that these moons are the dominant sources of the gossamer ring material. The current picture implies that particles ejected from a source moon evolve inward under the Poynting-Robertson drag. Beyond Thebe's orbit, a very faint outward extension of the gossamer ring has also been observed which is not yet explained. Typical grain radii derived from optical imaging are a few micrometers. In November 2002 the Galileo spacecraft traversed the gossamer ring for the first time and had a close flyby at Amalthea. With the in-situ dust detector on board, dust measurements were collected throughout the gossamer ring and close to Amalthea. Several hundred impacts of dust grains were recorded and the data sets (impact charges, rise times, impact directions, etc.) of about 90 impacts were transmitted to Earth. In-situ dust measurements provide information about the physical properties of the dust environment not accessible with imaging techniques. They directly provide dust spatial densities along the spacecraft trajectory as well as grain sizes and impact speeds. This allows to test and refine current models of ring particle dynamics (see D. P. Hamilton et al., this conference). In particular, the direct measurement of grain sizes and dust spatial density in different regions of the gossamer ring allow to better constrain the forces dominating the grains' dynamics. The Galileo measurements in Jupiter's gossamer ring pave the way towards the in-situ dust measurements with Cassini in Saturn's E ring beginning in 2004.

  9. Combination of differential D∗± cross-section measurements in deep-inelastic ep scattering at HERA

    NASA Astrophysics Data System (ADS)

    Abramowicz, H.; Abt, I.; Adamczyk, L.; Adamus, M.; Andreev, V.; Antonelli, S.; Aushev, V.; Aushev, Y.; Baghdasaryan, A.; Begzsuren, K.; Behnke, O.; Behrens, U.; Belousov, A.; Bertolin, A.; Bloch, I.; Boos, E. G.; Borras, K.; Boudry, V.; Brandt, G.; Brisson, V.; Britzger, D.; Brock, I.; Brook, N. H.; Brugnera, R.; Bruni, A.; Buniatyan, A.; Bussey, P. J.; Bylinkin, A.; Bystritskaya, L.; Caldwell, A.; Campbell, A. J.; Avila, K. B. Cantun; Capua, M.; Catterall, C. D.; Ceccopieri, F.; Cerny, K.; Chekelian, V.; Chwastowski, J.; Ciborowski, J.; Ciesielski, R.; Contreras, J. G.; Cooper-Sarkar, A. M.; Corradi, M.; Corriveau, F.; Cvach, J.; Dainton, J. B.; Daum, K.; Dementiev, R. K.; Devenish, R. C. E.; Diaconu, C.; Dobre, M.; Dodonov, V.; Dolinska, G.; Dusini, S.; Eckerlin, G.; Egli, S.; Elsen, E.; Favart, L.; Fedotov, A.; Feltesse, J.; Ferencei, J.; Figiel, J.; Fleischer, M.; Fomenko, A.; Foster, B.; Gabathuler, E.; Gach, G.; Gallo, E.; Garfagnini, A.; Gayler, J.; Geiser, A.; Ghazaryan, S.; Gizhko, A.; Gladilin, L. K.; Goerlich, L.; Gogitidze, N.; Golubkov, Yu. A.; Gouzevitch, M.; Grab, C.; Grebenyuk, A.; Grebenyuk, J.; Greenshaw, T.; Gregor, I.; Grindhammer, G.; Grzelak, G.; Gueta, O.; Guzik, M.; Haidt, D.; Hain, W.; Henderson, R. C. W.; Hladky, J.; Hochman, D.; Hoffmann, D.; Hori, R.; Horisberger, R.; Hreus, T.; Huber, F.; Ibrahim, Z. A.; Iga, Y.; Ishitsuka, M.; Iudin, A.; Jacquet, M.; Janssen, X.; Januschek, F.; Jomhari, N. Z.; Jung, A. W.; Jung, H.; Kadenko, I.; Kananov, S.; Kapichine, M.; Karshon, U.; Kaur, M.; Kaur, P.; Kiesling, C.; Kisielewska, D.; Klanner, R.; Klein, M.; Klein, U.; Kleinwort, C.; Kogler, R.; Kondrashova, N.; Kononenko, O.; Korol, Ie.; Korzhavina, I. A.; Kostka, P.; Kotanski, A.; Kötz, U.; Kovalchuk, N.; Kowalski, H.; Kretzschmar, J.; Krüger, K.; Krupa, B.; Kuprash, O.; Kuze, M.; Landon, M. P. J.; Lange, W.; Laycock, P.; Lebedev, A.; Levchenko, B. B.; Levonian, S.; Levy, A.; Libov, V.; Limentani, S.; Lipka, K.; Lisovyi, M.; List, B.; List, J.; Lobodzinska, E.; Lobodzinski, B.; Löhr, B.; Lohrmann, E.; Longhin, A.; Lontkovskyi, D.; Lukina, O. Yu.; Makarenko, I.; Malinovski, E.; Malka, J.; Martyn, H.-U.; Maxfield, S. J.; Mehta, A.; Mergelmeyer, S.; Meyer, A. B.; Meyer, H.; Meyer, J.; Mikocki, S.; Mohamad Idris, F.; Morozov, A.; Muhammad Nasir, N.; Müller, K.; Myronenko, V.; Nagano, K.; Naumann, Th.; Newman, P. R.; Niebuhr, C.; Nobe, T.; Notz, D.; Nowak, G.; Nowak, R. J.; Olsson, J. E.; Onishchuk, Yu.; Ozerov, D.; Pahl, P.; Pascaud, C.; Patel, G. D.; Paul, E.; Perez, E.; Perlanski, W.; Petrukhin, A.; Picuric, I.; Pirumov, H.; Pitzl, D.; Plačakytė, R.; Pokorny, B.; Pokrovskiy, N. S.; Polifka, R.; Przybycien, M.; Radescu, V.; Raicevic, N.; Ravdandorj, T.; Reimer, P.; Rizvi, E.; Robmann, P.; Roloff, P.; Roosen, R.; Rostovtsev, A.; Rotaru, M.; Rubinsky, I.; Rusakov, S.; Ruspa, M.; Šálek, D.; Sankey, D. P. C.; Sauter, M.; Sauvan, E.; Saxon, D. H.; Schioppa, M.; Schmidke, W. B.; Schmitt, S.; Schneekloth, U.; Schoeffel, L.; Schöning, A.; Schörner-Sadenius, T.; Sefkow, F.; Shcheglova, L. M.; Shevchenko, R.; Shkola, O.; Shushkevich, S.; Shyrma, Yu.; Singh, I.; Skillicorn, I. O.; Slominski, W.; Solano, A.; Soloviev, Y.; Sopicki, P.; South, D.; Spaskov, V.; Specka, A.; Stanco, L.; Steder, M.; Stefaniuk, N.; Stern, A.; Stopa, P.; Straumann, U.; Sykora, T.; Sztuk-Dambietz, J.; Szuba, D.; Szuba, J.; Tassi, E.; Thompson, P. D.; Tokushuku, K.; Tomaszewska, J.; Traynor, D.; Trofymov, A.; Truöl, P.; Tsakov, I.; Tseepeldorj, B.; Tsurugai, T.; Turcato, M.; Turkot, O.; Turnau, J.; Tymieniecka, T.; Valkárová, A.; Vallée, C.; Van Mechelen, P.; Vazdik, Y.; Verbytskyi, A.; Viazlo, O.; Walczak, R.; Wan Abdullah, W. A. T.; Wegener, D.; Wichmann, K.; Wing, M.; Wolf, G.; Wünsch, E.; Yamada, S.; Yamazaki, Y.; Žáček, J.; Zakharchuk, N.; Żarnecki, A. F.; Zawiejski, L.; Zenaiev, O.; Zhang, Z.; Zhautykov, B. O.; Zhmak, N.; Žlebčík, R.; Zohrabyan, H.; Zomer, F.; Zotkin, D. S.

    2015-09-01

    H1 and ZEUS have published single-differential cross sections for inclusive D ∗±-meson production in deep-inelastic ep scattering at HERA from their respective final data sets. These cross sections are combined in the common visible phase-space region of photon virtuality Q 2 > 5 GeV2, electron inelasticity 0 .02 < y < 0 .7 and the D ∗± meson's transverse momentum p T( D ∗) > 1 .5 GeV and pseudorapidity | η( D ∗)| < 1 .5. The combination procedure takes into account all correlations, yielding significantly reduced experimental uncertainties. Double-differential cross sections d2 σ/d Q 2d y are combined with earlier D ∗± data, extending the kinematic range down to Q 2 > 1 .5 GeV2. Perturbative next-to-leading-order QCD predictions are compared to the results.

  10. Nuclear effects at HERA

    SciTech Connect

    Brodsky, S.J.

    1996-07-01

    The development of a nuclear beam facility at HERA would allow the study of fundamental features of quark and gluon interactions in QCD. I briefly review the physics underlying nuclear shadowing and anti-shadowing as well as other diffractive and jet fragmentation processes that can be studies in high energy electron-nucleus collisions.

  11. Galileo In-Situ Dust Measurements in Jupiter's Gossamer Rings

    NASA Astrophysics Data System (ADS)

    Krueger, H.; Hamilton, D. P.; Gruen, E.

    Jupiter's ring system consists of at least three components: the inner main ring, the vertically extended halo and the gossamer ring(s) further out. The small moons Thebe and Amalthea orbit Jupiter within the gossamer ring and are believed to be the sources of gossamer ring material. A very faint ring extension has also been observed beyond Thebe's orbit. On 5 November 2002 the Galileo spacecraft traversed Jupiter's gossamer ring system for the first time. High-resolution dust data were obtained with the dust detector on board down to 2.33 R_J , i.e. well inside Amalthea's orbit. A second ring passage occurred on 21 September 2003, a few hours before Galileo impacted Jupiter. This time, dust data were successfully received down to Amalthea's orbit at 2.5 R_J , however, with much reduced time-resolution. Several thousand dust impacts were counted during both ring passages, and the full data sets (impact charges, rise times, impact directions, etc.) of about 90 dust impacts were transmitted to Earth. In-situ dust measurements provide information about the physical properties of the dust environment not accessible with imaging techniques. They directly measure dust spatial densities along the spacecraft trajectory as well as grain sizes and impact speeds. Our as yet preliminary analysis %of the gossamer ring data implies particle sizes in the sub-micron and micron range. The size distribution -- increasing towards smaller particles -- is similar in the Thebe ring and the ring's outer extension, whereas in the Amalthea ring it is steeper. Dust number densities are about 104 - 106 km-3 . Our dust data allow for the first time to compare in-situ measurements with the results optical obtained from the inversion of optical images. It appears that small sub-micron grains dominate the number density whereas larger particles with at least a few micron radii contribute most to the optical depth. The dust density shows previously unrecognised fine-structure in the ring between

  12. The Hera Saturn entry probe mission

    NASA Astrophysics Data System (ADS)

    Mousis, O.; Atkinson, D. H.; Spilker, T.; Venkatapathy, E.; Poncy, J.; Frampton, R.; Coustenis, A.; Reh, K.; Lebreton, J.-P.; Fletcher, L. N.; Hueso, R.; Amato, M. J.; Colaprete, A.; Ferri, F.; Stam, D.; Wurz, P.; Atreya, S.; Aslam, S.; Banfield, D. J.; Calcutt, S.; Fischer, G.; Holland, A.; Keller, C.; Kessler, E.; Leese, M.; Levacher, P.; Morse, A.; Muñoz, O.; Renard, J.-B.; Sheridan, S.; Schmider, F.-X.; Snik, F.; Waite, J. H.; Bird, M.; Cavalié, T.; Deleuil, M.; Fortney, J.; Gautier, D.; Guillot, T.; Lunine, J. I.; Marty, B.; Nixon, C.; Orton, G. S.; Sánchez-Lavega, A.

    2016-10-01

    The Hera Saturn entry probe mission is proposed as an M-class mission led by ESA with a contribution from NASA. It consists of one atmospheric probe to be sent into the atmosphere of Saturn, and a Carrier-Relay spacecraft. In this concept, the Hera probe is composed of ESA and NASA elements, and the Carrier-Relay Spacecraft is delivered by ESA. The probe is powered by batteries, and the Carrier-Relay Spacecraft is powered by solar panels and batteries. We anticipate two major subsystems to be supplied by the United States, either by direct procurement by ESA or by contribution from NASA: the solar electric power system (including solar arrays and the power management and distribution system), and the probe entry system (including the thermal protection shield and aeroshell). Hera is designed to perform in situ measurements of the chemical and isotopic compositions as well as the dynamics of Saturn's atmosphere using a single probe, with the goal of improving our understanding of the origin, formation, and evolution of Saturn, the giant planets and their satellite systems, with extrapolation to extrasolar planets. Hera's aim is to probe well into the cloud-forming region of the troposphere, below the region accessible to remote sensing, to the locations where certain cosmogenically abundant species are expected to be well mixed. By leading to an improved understanding of the processes by which giant planets formed, including the composition and properties of the local solar nebula at the time and location of giant planet formation, Hera will extend the legacy of the Galileo and Cassini missions by further addressing the creation, formation, and chemical, dynamical, and thermal evolution of the giant planets, the entire solar system including Earth and the other terrestrial planets, and formation of other planetary systems.

  13. Charm, beauty and top at HERA

    NASA Astrophysics Data System (ADS)

    Behnke, O.; Geiser, A.; Lisovyi, M.

    2015-09-01

    Results on open charm and beauty production and on the search for top production in high-energy electron-proton collisions at HERA are reviewed. This includes a discussion of relevant theoretical aspects, a summary of the available measurements and measurement techniques, and their impact on improved understanding of QCD and its parameters, such as parton density functions and charm- and beauty-quark masses. The impact of these results on measurements at the LHC and elsewhere is also addressed.

  14. Measurement of high-Q2 neutral current deep inelastic e+p scattering cross sections with a longitudinally polarized positron beam at HERA

    NASA Astrophysics Data System (ADS)

    Abramowicz, H.; Abt, I.; Adamczyk, L.; Adamus, M.; Aggarwal, R.; Antonelli, S.; Antonioli, P.; Antonov, A.; Arneodo, M.; Arslan, O.; Aushev, V.; Aushev, Y.; Bachynska, O.; Bamberger, A.; Barakbaev, A. N.; Barbagli, G.; Bari, G.; Barreiro, F.; Bartosik, N.; Bartsch, D.; Basile, M.; Behnke, O.; Behr, J.; Behrens, U.; Bellagamba, L.; Bertolin, A.; Bhadra, S.; Bindi, M.; Blohm, C.; Bokhonov, V.; Bołd, T.; Bondarenko, K.; Boos, E. G.; Borras, K.; Boscherini, D.; Bot, D.; Brock, I.; Brownson, E.; Brugnera, R.; Brümmer, N.; Bruni, A.; Bruni, G.; Brzozowska, B.; Bussey, P. J.; Bylsma, B.; Caldwell, A.; Capua, M.; Carlin, R.; Catterall, C. D.; Chekanov, S.; Chwastowski, J.; Ciborowski, J.; Ciesielski, R.; Cifarelli, L.; Cindolo, F.; Contin, A.; Cooper-Sarkar, A. M.; Coppola, N.; Corradi, M.; Corriveau, F.; Costa, M.; D'Agostini, G.; Dal Corso, F.; del Peso, J.; Dementiev, R. K.; De Pasquale, S.; Derrick, M.; Devenish, R. C. E.; Dobur, D.; Dolgoshein, B. A.; Dolinska, G.; Doyle, A. T.; Drugakov, V.; Durkin, L. S.; Dusini, S.; Eisenberg, Y.; Ermolov, P. F.; Eskreys, A.; Fang, S.; Fazio, S.; Ferrando, J.; Ferrero, M. I.; Figiel, J.; Foster, B.; Gach, G.; Galas, A.; Gallo, E.; Garfagnini, A.; Geiser, A.; Gialas, I.; Gizhko, A.; Gladilin, L. K.; Gladkov, D.; Glasman, C.; Gogota, O.; Golubkov, Yu. A.; Göttlicher, P.; Grabowska-Bołd, I.; Grebenyuk, J.; Gregor, I.; Grigorescu, G.; Grzelak, G.; Gueta, O.; Guzik, M.; Gwenlan, C.; Haas, T.; Hain, W.; Hamatsu, R.; Hart, J. C.; Hartmann, H.; Hartner, G.; Hilger, E.; Hochman, D.; Hori, R.; Hüttmann, A.; Ibrahim, Z. A.; Iga, Y.; Ingbir, R.; Ishitsuka, M.; Jakob, H.-P.; Januschek, F.; Jones, T. W.; Jüngst, M.; Kadenko, I.; Kahle, B.; Kananov, S.; Kanno, T.; Karshon, U.; Karstens, F.; Katkov, I. I.; Kaur, M.; Kaur, P.; Keramidas, A.; Khein, L. A.; Kim, J. Y.; Kisielewska, D.; Kitamura, S.; Klanner, R.; Klein, U.; Koffeman, E.; Kondrashova, N.; Kononenko, O.; Kooijman, P.; Korol, Ie.; Korzhavina, I. A.; Kotański, A.; Kötz, U.; Kowalski, H.; Kuprash, O.; Kuze, M.; Lee, A.; Levchenko, B. B.; Levy, A.; Libov, V.; Limentani, S.; Ling, T. Y.; Lisovyi, M.; Lobodzinska, E.; Lohmann, W.; Löhr, B.; Lohrmann, E.; Long, K. R.; Longhin, A.; Lontkovskyi, D.; Lukina, O. Yu.; Maeda, J.; Magill, S.; Makarenko, I.; Malka, J.; Mankel, R.; Margotti, A.; Marini, G.; Martin, J. F.; Mastroberardino, A.; Mattingly, M. C. K.; Melzer-Pellmann, I.-A.; Mergelmeyer, S.; Miglioranzi, S.; Mohamad Idris, F.; Monaco, V.; Montanari, A.; Morris, J. D.; Mujkic, K.; Musgrave, B.; Nagano, K.; Namsoo, T.; Nania, R.; Nigro, A.; Ning, Y.; Nobe, T.; Notz, D.; Nowak, R. J.; Nuncio-Quiroz, A. E.; Oh, B. Y.; Okazaki, N.; Olkiewicz, K.; Onishchuk, Yu.; Papageorgiu, K.; Parenti, A.; Paul, E.; Pawlak, J. M.; Pawlik, B.; Pelfer, P. G.; Pellegrino, A.; Perlański, W.; Perrey, H.; Piotrzkowski, K.; Pluciński, P.; Pokrovskiy, N. S.; Polini, A.; Proskuryakov, A. S.; Przybycień, M.; Raval, A.; Reeder, D. D.; Reisert, B.; Ren, Z.; Repond, J.; Ri, Y. D.; Robertson, A.; Roloff, P.; Rubinsky, I.; Ruspa, M.; Sacchi, R.; Samson, U.; Sartorelli, G.; Savin, A. A.; Saxon, D. H.; Schioppa, M.; Schlenstedt, S.; Schleper, P.; Schmidke, W. B.; Schneekloth, U.; Schönberg, V.; Schörner-Sadenius, T.; Schwartz, J.; Sciulli, F.; Shcheglova, L. M.; Shehzadi, R.; Shimizu, S.; Singh, I.; Skillicorn, I. O.; Słomiński, W.; Smith, W. H.; Sola, V.; Solano, A.; Son, D.; Sosnovtsev, V.; Spiridonov, A.; Stadie, H.; Stanco, L.; Stefaniuk, N.; Stern, A.; Stewart, T. P.; Stifutkin, A.; Stopa, P.; Suchkov, S.; Susinno, G.; Suszycki, L.; Sztuk-Dambietz, J.; Szuba, D.; Szuba, J.; Tapper, A. D.; Tassi, E.; Terrón, J.; Theedt, T.; Tiecke, H.; Tokushuku, K.; Tomaszewska, J.; Trusov, V.; Tsurugai, T.; Turcato, M.; Turkot, O.; Tymieniecka, T.; Vázquez, M.; Verbytskyi, A.; Viazlo, O.; Vlasov, N. N.; Walczak, R.; Wan Abdullah, W. A. T.; Whitmore, J. J.; Wichmann, K.; Wiggers, L.; Wing, M.; Wlasenko, M.; Wolf, G.; Wolfe, H.; Wrona, K.; Yagües-Molina, A. G.; Yamada, S.; Yamazaki, Y.; Yoshida, R.; Youngman, C.; Zabiegalov, O.; Żarnecki, A. F.; Zawiejski, L.; Zenaiev, O.; Zeuner, W.; Zhautykov, B. O.; Zhmak, N.; Zichichi, A.; Zolkapli, Z.; Zotkin, D. S.

    2013-03-01

    Measurements of neutral current cross sections for deep inelastic scattering in e+p collisions at HERA with a longitudinally polarized positron beam are presented. The single-differential cross-sections dσ/dQ2, dσ/dx and dσ/dy and the reduced cross section σ˜ are measured in the kinematic region Q2>185GeV2 and y<0.9, where Q2 is the four-momentum transfer squared, x the Bjorken scaling variable and y the inelasticity of the interaction. The measurements are performed separately for positively and negatively polarized positron beams. The measurements are based on an integrated luminosity of 135.5pb-1 collected with the ZEUS detector in 2006 and 2007 at a center-of-mass energy of 318 GeV. The structure functions F˜3 and F3γZ are determined by combining the e+p results presented in this paper with previously published e-p neutral current results. The asymmetry parameter A+ is used to demonstrate the parity violation predicted in electroweak interactions. The measurements are well described by the predictions of the Standard Model.

  15. Geophysical Measurements Using a Ring Laser

    NASA Astrophysics Data System (ADS)

    Lamb, Angela

    2016-03-01

    Low frequency infrasound from weather related events has been studied for a number of years. In this poster, the results from using a large active ring laser as an infrasound detector are presented. A slightly modified cavity design enhances the interferometer's sensitivity to infrasound. Our results qualitatively agree with several findings from a long term study of weather generated infrasound by NOAA. On April 27, 2014, the 66 km track of an EF-4 tornado passed within 21 km of the ring laser interferometer. An FFT of the ring laser interferometer output revealed a steady tornado generated frequency of 0.94 Hz. The track also passed close to the US Array Transportable Station W41B. This provided the opportunity to examine both the infrasound and ground motion generated by the tornado. Infrasound from three other tornadoes is also included. In all cases the infrasound was detected approximately 30 minutes before the tornado funnel was observed. This work is generously supported by the National Science Foundation and NASA/Arkansas Space Grant.

  16. Transport currents measured in ring samples: test of superconducting weld

    NASA Astrophysics Data System (ADS)

    Zheng, H.; Claus, H.; Chen, L.; Paulikas, A. P.; Veal, B. W.; Olsson, B.; Koshelev, A.; Hull, J.; Crabtree, G. W.

    2001-02-01

    The critical current densities in bulk melt-textured YBa 2Cu 3O x and across superconducting “weld” joints are measured using scanning Hall probe measurements of the trapped magnetic field in ring samples. With this method, critical current densities are obtained without the use of electrical contacts. Large persistent currents are induced in ring samples at 77 K, after cooling in a 3 kG field. These currents can be determined from the magnetic field they produce. At 77 K a supercurrent exceeding 2000 A (about 10 4 A/cm 2) was induced in a 2 cm diameter ring; this current produces a magnetic field exceeding 1.5 kG in the bore of the ring. We demonstrate that when a ring is cut, and the cut is repaired by a superconducting weld, the weld joint can transmit the same high supercurrent as the bulk.

  17. CTEQ-TEA parton distribution functions and HERA Run I and II combined data

    NASA Astrophysics Data System (ADS)

    Hou, Tie-Jiun; Dulat, Sayipjamal; Gao, Jun; Guzzi, Marco; Huston, Joey; Nadolsky, Pavel; Pumplin, Jon; Schmidt, Carl; Stump, Daniel; Yuan, C.-P.

    2017-02-01

    We analyze the impact of the recent HERA Run I +II combination of inclusive deep inelastic scattering cross-section data on the CT14 global analysis of parton distribution functions (PDFs). New PDFs at next-to-leading order and next-to-next-to-leading order, called CT14 HERA 2 , are obtained by a refit of the CT14 data ensembles, in which the HERA Run I combined measurements are replaced by the new HERA Run I +II combination. The CT14 functional parametrization of PDFs is flexible enough to allow good descriptions of different flavor combinations, so we use the same parametrization for CT14 HERA 2 but with an additional shape parameter for describing the strange quark PDF. We find that the HERA I +II data can be fit reasonably well, and both CT14 and CT14 HERA 2 PDFs can describe equally well the non-HERA data included in our global analysis. Because the CT14 and CT14 HERA 2 PDFs agree well within the PDF errors, we continue to recommend CT14 PDFs for the analysis of LHC Run 2 experiments.

  18. Rare-RI ring for mass measurements at RIBF

    SciTech Connect

    Ozawa, Akira

    2014-05-02

    The rare-RI (radioactive isotope) ring at the RIKEN RI Beam Factory is described. The main purpose of the rare-RI ring is to measure the mass of short-lived rare RI. In the rare-RI ring, the mass is determined by measuring the revolution time of each nucleus based on isochronous mass spectrometry. The rare-RI ring consists of six magnetic sectors, and each sector consists of four dipole magnets. To precisely optimize the isochronous conditions of the circulating particles for large acceptance, we install 10 trim coils to half of the dipole magnets. Individual injection system enables efficient injection of the produced rare RI into the ring one by one. With facilitating efficient extraction of the circulating particles, time-of-flight measurements can be performed to the each rare RI. Construction of the rare-RI ring was begun in the middle of the fiscal year 2012, and the ring is expected to be fully functional by 2015, when we can start the mass measurements for unknown masses.

  19. Rare-RI ring for mass measurements at RIBF

    NASA Astrophysics Data System (ADS)

    Ozawa, Akira

    2014-05-01

    The rare-RI (radioactive isotope) ring at the RIKEN RI Beam Factory is described. The main purpose of the rare-RI ring is to measure the mass of short-lived rare RI. In the rare-RI ring, the mass is determined by measuring the revolution time of each nucleus based on isochronous mass spectrometry. The rare-RI ring consists of six magnetic sectors, and each sector consists of four dipole magnets. To precisely optimize the isochronous conditions of the circulating particles for large acceptance, we install 10 trim coils to half of the dipole magnets. Individual injection system enables efficient injection of the produced rare RI into the ring one by one. With facilitating efficient extraction of the circulating particles, time-of-flight measurements can be performed to the each rare RI. Construction of the rare-RI ring was begun in the middle of the fiscal year 2012, and the ring is expected to be fully functional by 2015, when we can start the mass measurements for unknown masses.

  20. A measuring tool for tree-rings analysis

    NASA Astrophysics Data System (ADS)

    Shumilov, Oleg; Kanatjev, Alexander; Kasatkina, Elena

    2013-04-01

    A special tool has been created for the annual tree-ring widths measurement and analysis. It consists of professional scanner, computer system and software. This created complex in many aspects does not yield the similar systems (LINTAB, WinDENDRO), but in comparison to manual measurement systems, it offers a number of advantages: productivity gain, possibility of archiving the results of the measurements at any stage of the processing, operator comfort. It has been developed a new software, allowing processing of samples of different types (cores, saw cuts), including those which is difficult to process, having got a complex wood structure (inhomogeneity of growing in different directions, missed, light and false rings etc.). This software can analyze pictures made with optical scanners, analog or digital cameras. The complex software program was created on programming language C++, being compatible with modern operating systems like Windows X. Annual ring widths are measured along paths traced interactively. These paths can have any orientation and can be created so that ring widths are measured perpendicular to ring boundaries. A graphic of ring-widths in function of the year is displayed on a screen during the analysis and it can be used for visual and numerical cross-dating and comparison with other series or master-chronologies. Ring widths are saved to the text files in a special format, and those files are converted to the format accepted for data conservation in the International Tree-Ring Data Bank. The created complex is universal in application that will allow its use for decision of the different problems in biology and ecology. With help of this complex it has been reconstructed a long-term juniper (1328-2004) and pine (1445-2005) tree-ring chronologies on the base of samples collected at Kola Peninsula (northwestern Russia).

  1. Measurement of the cross section ratio σψ(2S)/σJ/ψ(1S) in deep inelastic exclusive ep scattering at HERA

    NASA Astrophysics Data System (ADS)

    Ciborowsk, Jacek

    2016-11-01

    The exclusive deep inelastic electroproduction of ψ (2S) and J/ψ (1S) at an ep centre-of-mass energy of 317 GeV has been studied with the ZEUS detector at HERA in the kinematic range 2 < Q2 < 80 GeV2, 30 < W < 210 GeV and |t| < 1 GeV2, where Q2 is the photon virtuality, W is the photon-proton centre-of-mass energy and t is the squared four-momentum transfer at the proton vertex. The data for 2 < Q2 < 5 GeV2 were taken in the HERAI running period and correspond to an integrated luminosity of 114 pb-1. The data for 5 < Q2 < 80 GeV2 are from both HERAI and HERAII periods and correspond to an integrated luminosity of 468 pb-1. The decay modes analysed were μ+ μ- and J/ψ (1S) π+ π- for the ψ (2S) and μ+ μ- for the J/ψ(1S). The cross-section ratio σψ(2S)/σJ/ψ(1S) has been measured as a function of Q2; W and t. The results are compared to predictions of QCD-inspired models of exclusive vector-meson production.

  2. Diffraction at Hera

    NASA Astrophysics Data System (ADS)

    Collard, C.

    2003-02-01

    At the electron-proton collider HERA, diffractive interactions represent ~ 10% of the deep inelastic scattering. The production of diffractive events, characterised by the presence of a gap in rapidity or angular region without particle production, can be explained in the framework of the Regge model by the exchange of a colorless object, named the Pomeron. Describing the nature of the pomeron is a challenge for Quantum Chromodynamics. Results from the H1 and ZEUS Collaborations on exclusive vector meson production and on inclusive diffractive processes are presented.

  3. Open Charm and Beauty Production at HERA

    NASA Astrophysics Data System (ADS)

    Behnke, Olaf; ZEUS Collaboration; H1 Collaboration

    2012-01-01

    A review is provided of open charm and beauty production at HERA and its description by perturbative QCD (pQCD). Four years after the end of the data taking there is still a steady flow of new charm and beauty results from HERA. Among the results reported here are the first combined H1 and ZEUS measurements on the contribution from charm production to deep inelastic scattering (DIS), represented by the structure function F2cc¯, as well as new precise results on the corresponding structure function for beauty production, F2bb¯. Furthermore the situation of charm and beauty production in the photoproduction kinematic regime is reviewed. Since it is a related field also the first hadroproduction results from LHC are presented. A brief outlook is given on open heavy flavour prospects at possible future ep colliders, with a focus on the LHeC.

  4. The method for detecting diffusion ring diameter in Hemagglutinin measuring

    NASA Astrophysics Data System (ADS)

    Jing, Wenbo; Liu, Xue; Duan, Jin; Wang, Xiao-man

    2014-11-01

    The diffuser ring diameter measurement is the most critical in hemagglutinin Measuring. The traditional methods, such as a vernier caliper or high-definition scanned images are subjective and low for the measurement data reliability. Propose high-resolution diffusion ring image for drop-resolution processing, adaptive Canny operator and local detection method to extract complete and clear diffusion ring boundaries, and finally make use of polynomial interpolation algorithm to make diffusion ring outer boundary pixel coordinates achieve sub-pixel accuracy and the least-squares fitting circle algorithm to calculate the precise center of the circle and the diameter of the diffuser ring. Experimental results show that the method detection time is only 63.61ms, which is a faster speed; diffuser ring diameter estimation error can achieve 0.55 pixel, high stability in experimental data. This method is adapted to the various types of influenza vaccine hemagglutinin content measurements, and has important value in the influenza vaccine quality detection.

  5. Microgravity Diode Laser Spectroscopy Measurements in a Reacting Vortex Ring

    NASA Technical Reports Server (NTRS)

    Chen, Shin-Juh; Dahm, Werner J. A.; Silver, Joel A.; Piltch, Nancy D.; VanderWal, R. (Technical Monitor)

    2001-01-01

    The technique of Diode Laser Spectroscopy (DLS) with wavelength modulation is utilized to measure the concentration of methane in reacting vortex rings under microgravity conditions. From the measured concentration of methane, other major species such as water, carbon dioxide, nitrogen, and oxygen can be easily computed under the assumption of equilibrium chemistry with an iterative method called ITAC (Iterative Temperature with Assumed Chemistry). The conserved scalar approach in modelling the coupling between fluid dynamics and combustion is utilized to represent the unknown variables in terms of the mixture fraction and scalar dissipation rate in conjunction with ITAC. Post-processing of the DLS and the method used to compute the species concentration are discussed. From the flame luminosity results, ring circulation appears to increase the fuel consumption rate inside the reacting vortex ring and the flame height for cases with similar fuel volumes but different ring circulations. The concentrations of methane, water, and carbon dioxide agree well with available results from numerical simulations.

  6. Magnetoresistance measurement of permalloy thin film rings with triangular fins

    NASA Astrophysics Data System (ADS)

    Lai, Mei-Feng; Hsu, Chia-Jung; Liao, Chun-Neng; Chen, Ying-Jiun; Wei, Zung-Hang

    2010-01-01

    Magnetization reversals in permalloy rings controlled by nucleation sites using triangular fins at the same side and diagonal with respect to the field direction are demonstrated by magnetoresistance measurement and micromagnetic simulation. In the ring with triangular fins at the same side, there exists two-step reversal from onion to flux-closure state (or vortex state) and then from flux-closure (or vortex state) to reverse onion state; in the ring with diagonal triangular fins, one-step reversal occurs directly from onion to reverse onion state. The reversal processes are repeatable and controllable in contrast to an ideal ring without triangular fins where one-step and two-step reversals occur randomly in sweep-up and sweep-down processes.

  7. A Temperature-Monitoring Vaginal Ring for Measuring Adherence

    PubMed Central

    Boyd, Peter; Desjardins, Delphine; Kumar, Sandeep; Fetherston, Susan M.; Le-Grand, Roger; Dereuddre-Bosquet, Nathalie; Helgadóttir, Berglind; Bjarnason, Ásgeir; Narasimhan, Manjula; Malcolm, R. Karl

    2015-01-01

    Background Product adherence is a pivotal issue in the development of effective vaginal microbicides to reduce sexual transmission of HIV. To date, the six Phase III studies of vaginal gel products have relied primarily on self-reporting of adherence. Accurate and reliable methods for monitoring user adherence to microbicide-releasing vaginal rings have yet to be established. Methods A silicone elastomer vaginal ring prototype containing an embedded, miniature temperature logger has been developed and tested in vitro and in cynomolgus macaques for its potential to continuously monitor environmental temperature and accurately determine episodes of ring insertion and removal. Results In vitro studies demonstrated that DST nano-T temperature loggers encapsulated in medical grade silicone elastomer were able to accurately and continuously measure environmental temperature. The devices responded quickly to temperature changes despite being embedded in different thickness of silicone elastomer. Prototype vaginal rings measured higher temperatures compared with a subcutaneously implanted device, showed high sensitivity to diurnal fluctuations in vaginal temperature, and accurately detected periods of ring removal when tested in macaques. Conclusions Vaginal rings containing embedded temperature loggers may be useful in the assessment of product adherence in late-stage clinical trials. PMID:25965956

  8. Commissioning and Science Forecasts for the Hydrogen Epoch of Reionization Array (HERA)

    NASA Astrophysics Data System (ADS)

    Parsons, Aaron; HERA Collaboration

    2016-01-01

    The HERA is a low-frequency radio interferometer aiming to make precise measurements of the power spectrum of fluctuations in 21cm emission from the Epoch of Reionization at z=13—6. This project was recently awarded development funding under the 2014 cycle of the National Science Foundation's Mid-Scale Innovations Program (MSIP). We present initial results from the commissioning and testing of the 19-element HERA prototype in South Africa, including measurements of the performance of HERA's 14-m dish and feed via reflectometry, beam mapping, and on-sky commissioning tests. We then forecast the science results that HERA will deliver once it reaches its full size of 352 elements. These forecasts include constraints on the 21cm power spectrum, the impact of these constraints on parametrized models of ionization, and their relevance to cosmological models. Construction of HERA-352 is pending the outcome of the 2016 NSF MSIP cycle.

  9. The Proton as Seen by the HERA Collider

    NASA Astrophysics Data System (ADS)

    Abt, Iris

    2016-10-01

    Deep-inelastic electron-proton (ep) scattering at the HERA collider has been very important in the investigation of the partonic structure of the proton. The neutral- and charged-current cross sections, measured over a large kinematic range, are one of the legacies of the first and so far only ep collider. Here I discuss the combination of H1 and ZEUS data. The HERA data alone can provide parton distribution functions (PDFs) within the framework of perturbative QCD. I also discuss the family of sets of PDFs called HERAPDF2.0 as well as the interpretation of such proton PDFs that characterize proton interactions in momentum space. I then introduce other possible applications of the precision cross sections. In addition, some measurements at HERA provide hints about spatial aspects of the proton. Finally, I present a brief discussion of the connection to nuclear physics.

  10. Experimental determination of storage ring optics using orbit response measurements

    NASA Astrophysics Data System (ADS)

    Safranek, J.

    1997-02-01

    The measured response matrix giving the change in orbit at beam position monitors (BPMs) with changes in steering magnet excitation can be used to accurately calibrate the linear optics in an electron storage ring [1-8]. A computer code called LOCO (Linear Optics from Closed Orbits) was developed to analyze the NSLS X-Ray Ring measured response matrix to determine: the gradients in all 56 quadrupole magnets; the calibration of the steering magnets and BPMs; the roll of the quadrupoles, steering magnets, and BPMs about the electron beam direction; the longitudinal magnetic centers of the orbit steering magnets; the horizontal dispersion at the orbit steering magnets; and the transverse mis-alignment of the electron orbit in each of the sextupoles. Random orbit measurement error from the BPMs propagated to give only 0.04% rms error in the determination of individual quadrupole gradients and 0.4 mrad rms error in the determination of individual quadrupole rolls. Small variations of a few parts in a thousand in the quadrupole gradients within an individual family were resolved. The optics derived by LOCO gave accurate predictions of the horizontal dispersion, the beta functions, and the horizontal and vertical emittances, and it gave good qualitative agreement with the measured vertical dispersion. The improved understanding of the X-Ray Ring has enabled us to increase the synchrotron radiation brightness. The LOCO code can also be used to find the quadrupole family gradients that best correct for gradient errors in quadrupoles, in sextupoles, and from synchrotron radiation insertion devices. In this way the design periodicity of a storage ring's optics can be restored. An example of periodicity restoration will be presented for the NSLS VUV Ring. LOCO has also produced useful results when applied to the ALS storage ring [8].

  11. Jets and Heavy Flavors at HERA

    SciTech Connect

    Shehzadi, R.

    2011-07-15

    Recent results on jet cross sections and heavy-flavor production in photoproduction and neutral current deep inelastic ep scattering from the H1 and ZEUS Collaborations are presented. The jet measurements are used to perform stringent tests of perturbative QCD, to extract precise values of the strong coupling and to constrain further the proton and photon parton distribution functions. The measurement of beauty and charm production at HERA is an important testing ground for perturbative QCD and can provide information on the structure of the proton.

  12. Measuring the winding number instability in mesoscopic superconducting rings

    NASA Astrophysics Data System (ADS)

    Lollo, Anthony; Petkovic, Ivana; Devoret, Michel; Glazman, Leonid; Harris, Jack

    In equilibrium, a flux-biased superconducting ring occupies a state that is characterized by the integer winding number of its complex order parameter. Transitions between states of differing winding number occur via phase slips of the order parameter. A number of aspects of these phase slips remain poorly understood, including the particular value of flux bias at which the transition occurs, and the particular state into which the system relaxes. We use cantilever torque magnetometry to address these questions by measuring the equilibrium supercurrent in arrays of isolated aluminum rings over a wide range of applied flux and temperature. We fit the measured supercurrent using one-dimensional stationary Ginzburg Landau theory over the entire field range -Bc 3 < B rings' finite circumference. We find that in all instances the winding number changes by unity; this may be because the dynamics of the switching events are overdamped in these rings.

  13. E ring dust sources: Implications from Cassini's dust measurements

    NASA Astrophysics Data System (ADS)

    Spahn, Frank; Albers, Nicole; Hörning, Marcel; Kempf, Sascha; Krivov, Alexander V.; Makuch, Martin; Schmidt, Jürgen; Seiß, Martin; Miodrag Sremčević

    2006-08-01

    The Enceladus flybys of the Cassini spacecraft are changing our understanding of the origin and sustainment of Saturn's E ring. Surprisingly, beyond the widely accepted dust production caused by micrometeoroid impacts onto the atmosphereless satellites (the impactor-ejecta process), geophysical activities have been detected at the south pole of Enceladus, providing an additional, efficient dust source. The dust detector data obtained during the flyby E11 are used to identify the amount of dust produced in the impactor-ejecta process and to improve related modeling [Spahn, F., Schmidt, J., Albers, N., Hörning, M., Makuch, M., Seiß, M., Kempf, S., Srama, R., Dikarev, V.V., Helfert, S., Moragas-Klostermeyer, G., Krivov, A.V., Sremčević, M., Tuzzolino, A., Economou, T., Grün, E., 2006. Cassini dust measurements at Enceladus: implications for Saturn's E ring. Science, in press]. With this, we estimate the impact-generated dust contributions of the other E ring satellites and find significant differences in the dust ejection efficiency by two projectile families - the E ring particles (ERPs) and the interplanetary dust particles (IDPs). Together with the Enceladus south-pole source, the ERP impacts play a crucial role in the inner region, whereas the IDP impacts dominate the particle production in the outer E ring, possibly accounting for its large radial extent. Our results can be verified in future Cassini flybys of the E ring satellites. In this way poorly known parameters of the dust particle production in hypervelocity impacts can be constrained by comparison of the data and theory.

  14. Storage Ring Measurements of Electron Impact Ionization for Solar Physics

    NASA Astrophysics Data System (ADS)

    Hahn, Michael; Becker, A.; Bernhardt, D.; Grieser, M.; Krantz, C.; Lestinsky, M.; Müller, A.; Novotný, O.; Repnow, R.; Schippers, S.; Spruck, K.; Wolf, A.; Savin, D. W.

    2013-07-01

    The interpretation of astrophysical spectra requires knowledge of the charge state distribution (CSD) of the plasma. The CSD is determined by the rates of ionization and recombination. Thus, accurate electron impact ionization (EII) data are needed to calculate the CSD of the solar atmosphere as well as for other electron-ionized astrophysical objects, such as stars, supernovae, galaxies, and clusters of galaxies. We are studying EII for astrophysically important ions using the TSR storage ring located at the Max Plank Institute for Nuclear Physics in Heidelberg, Germany. Storage ring measurements are largely free of the metastable contamination found in other experimental geometries, resulting in unambiguous EII data. We have found discrepancies of about 10% - 30% between our measured cross sections and those commonly used in CSD models. Because it is impractical to perform experimental measurements for every astrophysically relevant ion, theory must provide the bulk of the necessary EII data. These experimental results provide an essential benchmark for such EII calculations.

  15. Magnetic response measurements of mesoscopic superconducting and normal metal rings

    NASA Astrophysics Data System (ADS)

    Bluhm, Hendrik

    The main part of this thesis reports three experiments on the magnetic response of mesoscopic superconducting and normal metal rings using a scanning SQUID microscope. The first experiment explores the magnetic response and fluxoid transitions of superconducting, mesoscopic bilayer aluminum rings in the presence of two coupled order parameters arising from the layered structure. For intermediate couplings, metastable states that have different phase winding numbers around the ring in each of the two order parameters were observed. Larger coupling locks the relative phase, so that the two order parameters are only manifest in the temperature dependence of the response. With increasing proximitization, this signature gradually disappears. The data can be described with a two-order-parameter Ginzburg-Landau theory. The second experiment concentrates on fluxoid transitions in similar, but single-layer rings. Near the critical temperature, the transitions, which are induced by applying a flux to the ring, only admit a single fluxoid at a time. At lower temperatures, several fluxoids enter or leave at once, and the final state approaches the ground state. Currently available theoretical frameworks cannot quantitatively explain the data. Heating and quasiparticle diffusion are likely important for a quantitative understanding of this experiment, which could provide a model system for studying the nonlinear dynamics of superconductors far from equilibrium. The third and most important scanning SQUID study concerns 33 individual mesoscopic gold rings. All measured rings show a paramagnetic linear susceptibility and a poorly understood anomaly around zero field, both of which are likely due to unpaired defect spins. The response of sufficiently small rings also has a component that is periodic in the flux through the ring, with a period close to h/e. Its amplitude varies in sign and magnitude from ring to ring, and its typical value and temperature dependence agree with

  16. Exclusive photoproduction of ϒ mesons at HERA

    NASA Astrophysics Data System (ADS)

    ZEUS Collaboration

    2009-09-01

    The exclusive photoproduction reaction γp→ϒp has been studied with the ZEUS experiment in ep collisions at HERA using an integrated luminosity of 468 pb-1. The measurement covers the kinematic range 60

  17. Heavy Quark Production and Spectroscopy at HERA

    NASA Astrophysics Data System (ADS)

    Karshon, Uri

    2002-06-01

    Production of final states containing open charm (c) and beauty (b) quarks at HERA is reviewed. Photoproduction (PHP) of the charm meson resonances D*, D0 and Ds, as well as D* production in the deep inelastic scattering (DIS) regime, are measured and compared to QCD predictions. The excited charm mesons D1)0(2420, D2) *0(2460 and Ds1)+/-(2536) have been observed and the rates of charm quarks hadronising to these mesons were extracted. A search for radially excited charm mesons has been performed. PHP and DIS beauty cross sections are higher than expected in next-to-leading order (NLO) QCD.

  18. Proceedings of the Ringberg Workshop New Trends in HERA Physics 2005

    NASA Astrophysics Data System (ADS)

    Grindhammer, G.; Ochs, W.; Kniehl, B. A.; Kramer, G.

    2006-04-01

    1. Proton structure. Proton structure measurements at high Q2 and large x / Katarzyna Wichmann. Electroweak physics at HERA / Joachim Meyer. Inclusive low Q2 measurements at HERA / Victor Lendermann. Resummed perturbative evolution at high energy / Richard Ball. Colour dipole phenomenology / Graham Shaw -- 2. Spin physics. Exclusive reactions at HERMES / Frank Ellinghaus. Transverse spin effects in single and double hadron electroproduction at HERMES / Benedikt Zihlmann. Present understanding of the nucleon spin structure in view of recent experiments / Andreas Metz -- 3. Production of Hadrons and Jets. Measurements of [symbol] and parton distribution functions using HERA jet data / Amanda Cooper-Sarkar. A new parton shower algorithm: shower evolution, matching at leading and next-to-leading order level / Zóltan Nagy. Jet production at HERA / Dan Traynor. Multi-jet production in lepton-proton scattering with next-to-leading order accuracy / Zóltan Trócsányi. Dijet rates with symmetric [symbol] cuts / Andrea Banfi. QCD dynamics from forward hadron and jet measurements / Lidia Goerlich. Light-hadron electroproduction at next-to-leading order and implications / Bernd Kniehl. Particle production and fragmentation / David Saxon. Soft gluon logarithmic resummation and hadron mass effects in single hadron inclusive production / Simon Albino -- 4. Heavy-flavour production. Heavy-flavour photo- and electroproduction at NLO / Ingo Schienbein. Physics with charm quarks at HERA / John Loizides. Beauty production at HERA / Olaf Behnke. J/[symbol] photoproduction at next-to-leading order / Luminita Mihaila. J/[symbol] photoproduction at large z in soft collinear effective theory / Sean Fleming -- 5. Diffractive ep Scattering. Exclusive and inclusive diffraction at HERA / Henri Kowalski. Diffractive production of vector mesons and the gluon at small x / Thomas Teubner. Inclusive diffraction / Laurent Favart. From factorization to its breaking in diffractive dijet production

  19. Microgravity Diode Laser Spectroscopy Measurements in a Reacting Vortex Ring

    NASA Technical Reports Server (NTRS)

    Chen, Shin-Juh; Dahm, Werner J. A.; Silver, Joel A.; Piltch, Nancy D.

    2001-01-01

    The technique of Diode Laser Spectroscopy (DLS) with wavelength modulation is utilized to measure the concentration of methane in reacting vortex rings under microgravity conditions. From the measured concentration of methane, other major species such as water, carbon dioxide, nitrogen, and oxygen can be easily computed under the assumption of equilibrium chemistry with the method of Interactive Temperature with Assumed Chemistry (ITAC). The conserved scalar approach in modelling the coupling between fluid dynamics and combustion is utilized to represent the unknown variables in terms of the mixture fraction and scalar dissipation rate in conjunction with ITAC. Post-processing of the DLS measurements and the method of ITAC used in computing the species concentration are discussed. From the flame luminosity results, the increase in ring circulation appears to increase the fuel consumption rate inside the reacting vortex ring and the flame height for cases with similar fuel volumes. Preliminary results and application of ITAC show some potential capabilities of ITAC in DLS. The measured concentration of methane, and computed concentrations of water and carbon dioxide agree well with available results from numerical simulations.

  20. Photonic programmable pulser for the Weto Wall detector and measuring system tests in the ZEUS experiment at the HERA accelerator

    NASA Astrophysics Data System (ADS)

    Pozniak, Krzysztof T.; Adamus, Marek

    1999-05-01

    Background rejection power of Veto Wall detector in ZEUS experiment significantly depends on electronics and photonics efficiency. This paper describes idea, and recent solution, for programmable multi-channel optical pulser. The pulser excites, with short electrical pulses, certain light emitting diodes. LEDs are placed in scintillators. These tests simulate flight of real particles through scintillator. The scintillator works as an optical waveguide in which guides photons to both ends of scintillators. These ends are attached to photomultipliers. Photons cause avalanche multiplication of electrons and an electrical pulse resulting in registered by measuring system. Some results of pulser application are presented for diagnosis of all processing blocks of measuring system. Paper includes also, for the sake of completeness, description of the functional structure of measuring system.

  1. Recent Results from Hera Collider

    NASA Astrophysics Data System (ADS)

    Levonian, Sergey

    2013-11-01

    HERA collaborations H1 and ZEUS are publishing final analyses based on complete e±p statistics of ~ 0.5 fb-1 per experiment and using combinations of their data sets. Here selected recent results are presented from three areas: structure of the proton, searches for new physics and investigations of QCD phenomena at low Bjorken x.

  2. Scalar electron productions at HERA

    NASA Astrophysics Data System (ADS)

    Tsutsui, H.; Nishikawa, K.; Yamada, S.; Kuroda, M.

    1990-08-01

    The cross section of the process: ep-->e~Γ~X is calculated including resonance state productions and deep inelastic reactions. Comparison is made with the two body process: eq-->e~q~. It is found that some unexamined region of the selectron mass can be investigated at HERA. Permanent address: Department of Physics, Meiji-Gakuin University, Yokohama, Japan.

  3. Measurements of the electron cloud in the APS storage ring.

    SciTech Connect

    Harkey, K. C.

    1999-04-16

    Synchrotron radiation interacting with the vacuum chamber walls in a storage ring produce photoelectrons that can be accelerated by the beam, acquiring sufficient energy to produce secondary electrons in collisions with the walls. If the secondary-electron yield (SEY) coefficient of the wall material is greater than one, as is the case with the aluminum chambers in the Advanced Photon Source (APS) storage ring, a runaway condition can develop. As the electron cloud builds up along a train of stored positron or electron bunches, the possibility exists that a transverse perturbation of the head bunch will be communicated to trailing bunches due to interaction with the cloud. In order to characterize the electron cloud, a special vacuum chamber was built and inserted into the ring. The chamber contains 10 rudimentary electron-energy analyzers, as well as three targets coated with different materials. Measurements show that the intensity and electron energy distribution are highly dependent on the temporal spacing between adjacent bunches and the amount of current contained in each bunch. Furthermore, measurements using the different targets are consistent with what would be expected based on the SEY of the coatings. Data for both positron and electron beams are presented.

  4. The hadronic final state at HERA

    NASA Astrophysics Data System (ADS)

    Newman, Paul R.; Wing, Matthew

    2014-07-01

    The hadronic final state in electron-proton collisions at HERA has provided a rich testing ground for development of the theory of the strong force, QCD. In this review, over 200 publications from the H1 and ZEUS Collaborations are summarized. Short distance physics, the measurement of processes at high-energy scales, has provided rigorous tests of perturbative QCD and constrained the structure of the proton as well as allowing precise determinations of the strong coupling constant to be made. Nonperturbative or low-energy processes have also been investigated and results on hadronization interpreted together with those from other experiments. Searches for exotic QCD objects, such as pentaquarks, glueballs, and instantons, have been performed. The subject of diffraction has been reinvigorated through its precise measurement, such that it can now be described by perturbative QCD. After discussion of HERA, the H1 and ZEUS detectors, and the techniques used to reconstruct differing hadronic final states, the above subject areas are elaborated on. The major achievements are then condensed further in a final section summarizing what has been learned.

  5. Mass and lifetime measurements of exotic nuclei in storage rings.

    PubMed

    Franzke, Bernhard; Geissel, Hans; Münzenberg, Gottfried

    2008-01-01

    Mass and lifetime measurements lead to the discovery and understanding of basic properties of matter. The isotopic nature of the chemical elements, nuclear binding, and the location and strength of nuclear shells are the most outstanding examples leading to the development of the first nuclear models. More recent are the discoveries of new structures of nuclides far from the valley of stability. A new generation of direct mass measurements which allows the exploration of extended areas of the nuclear mass surface with high accuracy has been opened up with the combination of the Experimental Storage Ring ESR and the FRragment Separator FRS at GSI Darmstadt. In-flight separated nuclei are stored in the ring. Their masses are directly determined from the revolution frequency. Dependent on the half-life two complementary methods are applied. Schottky Mass Spectrometry SMS relies on the measurement of the revolution frequency of electron cooled stored ions. The cooling time determines the lower half-life limit to the order of seconds. For Isochronous Mass Spectrometry IMS the ring is operated in an isochronous ion-optical mode. The revolution frequency of the individual ions coasting in the ring is measured using a time-of-flight method. Nuclides with lifetimes down to microseconds become accessible. With SMS masses of several hundreds nuclides have been measured simultaneously with an accuracy in the 2 x 10(-7)-range. This high accuracy and the ability to study large areas of the mass surface are ideal tools to discover new nuclear structure properties and to guide improvements for theoretical mass models. In addition, nuclear half-lives of stored bare and highly charged ions have been measured. This new experimental development is a significant progress since nuclear decay characteristics are mostly known for neutral atoms. For bare and highly charged ions new nuclear decay modes become possible, such as bound-state beta decay. Dramatic changes in the nuclear lifetime

  6. Pooled versus separate measurements of tree-ring stable isotopes.

    PubMed

    Dorado Liñán, Isabel; Gutiérrez, Emilia; Helle, Gerhard; Heinrich, Ingo; Andreu-Hayles, Laia; Planells, Octavi; Leuenberger, Markus; Bürger, Carmen; Schleser, Gerhard

    2011-05-01

    δ(13)C and δ(18)O of tree rings contain time integrated information about the environmental conditions weighted by seasonal growth dynamics and are well established as sources of palaeoclimatic and ecophysiological data. Annually resolved isotope chronologies are frequently produced by pooling dated growth rings from several trees prior to the isotopic analyses. This procedure has the advantage of saving time and resources, but precludes from defining the isotopic error or statistical uncertainty related to the inter-tree variability. Up to now only a few studies have compared isotope series from pooled tree rings with isotopic measurements from individual trees. We tested whether or not the δ(13)C and the δ(18)O chronologies derived from pooled and from individual tree rings display significant differences at two locations from the Iberian Peninsula to assess advantages and constraints of both methodologies. The comparisons along the period 1900-2003 reveal a good agreement between pooled chronologies and the two mean master series which were created by averaging raw individual values (Mean) or by generating a mass calibrated mean (MassC). In most of the cases, pooled chronologies show high synchronicity with averaged individual samples at interannual scale but some differences also show up especially when comparing δ(18)O decadal to multi-decadal variations. Moreover, differences in the first order autocorrelation among individuals may be obscured by pooling strategies. The lack of replication of pooled chronologies prevents detection of a bias due to a higher mass contribution of one sample but uncertainties associated with the analytical process itself, as sample inhomogeneity, seems to account for the observed differences.

  7. Impact of Saturn Main Ring Mass on interpretation of Pioneer 11 and Cassini SOI Radiation Measurements Across the Rings

    NASA Astrophysics Data System (ADS)

    Cooper, John F.; Sturner, Steven J.; Sittler, Edward C., Jr.; Kollmann, Peter; Roussos, Elias; Johnson, Robert E.

    2015-11-01

    The Pioneer 11 (1979) and Cassini Orbiter (2004) missions measured the energetic particle and gamma ray flux environments across the A, B, and outer C rings of Saturn. This radiation originates as secondary proton, neutron, electron, and gamma ray emissions from the interaction of high-energy (> 20 GeV) galactic cosmic ray protons and other ions with bulk ice material in the rings and is sensitive to the surface mass density of the rings. The Pioneer 11 analysis from the University of Chicago High Energy Telescope, published in 1985, was consistent with a average surface density of about 50 g/cm2, assuming pure water ice, and a total ring mass of 2.7x10-8 Saturn masses (MS). This independently-derived value confirmed the post-Voyager result of 3x10-8 MS from radio and stellar occultations, and from observed damping of density waves in the rings. Although some later ring models in the Cassini mission era (2004 - present) allow for a greater mass by an order of magnitude, the latest density wave analysis from Cassini indicates that the Pioneer-Voyager value may be correct. GEANT radiation transport simulations have been performed to update the ring radiation model and enable ongoing assessments of the Pioneer 11 HET and Cassini MIMI/LEMMS responses to this radiation. The O2 gas production by radiation chemistry within the ring material is also estimated as a function of ring mass for comparison to Cassini and earlier measurements of the ring atmosphere and ionosphere. More massive rings would produce more O2.

  8. Proton structure and parton distribution functions from HERA

    NASA Astrophysics Data System (ADS)

    Chekelian, Vladimir

    2016-11-01

    The H1 and ZEUS collaborations at the electron-proton collider HERA collected e± p scattering data corresponding to an integrated luminosity of about 1 fb-1. The data were taken at proton beam energies of 920, 820, 575 and 460 GeV and an electron beam energy of 27.5 GeV, with different electric charges and longitudinal polarisation of the electron beam. Using these data inclusive neutral and charged current deep inelastic cross sections were measured over six orders of magnitude in negative four-momentum-transfer squared, Q2, and Bjorken x. A combination of all inclusive cross sections, published by the H1 and ZEUS collaborations at HERA, was performed. Using these combined HERA data and the individual H1 and ZEUS data taken using the polarised electron beams, the proton structure functions F2, FγZ2, xFγZ3 and FL were obtained, and scaling violations, electroweak unification, and polarisation effects in the charged current process were demonstrated. The combined cross sections were used as a sole input to QCD analyses at leading, next-to-leading and next-to-next-to-leading orders, providing a new set of parton distribution functions, denoted as HERAPDF2.0. An extension of the analysis by including HERA data on charm and jet production allowed a simultaneous determination of parton distributions and the strong coupling.

  9. In-situ permittivity measurements using ring resonators

    NASA Astrophysics Data System (ADS)

    Mazzaro, Gregory J.

    2012-06-01

    Proper development of ground-penetrating radar (GPR) technology requires a unique understanding of the electromagnetic (EM) properties of targets and background media. Thus, electromagnetic characterization of targets and backgrounds is fundamental to the success or failure of UWB GPR as a threat detection technique. In many cases, threats are buried in soil. Soil properties directly affect the radar signature of targets and determine the depth at which they can be detected by radar. One such property is permittivity. A portable system recently developed at the U.S. Army Research Laboratory measures permittivity in-situ with minimal disturbance of the dielectric sample. The measurement technique uses ring resonators. Design equations and physical dimensions are presented for fabricating resonators at frequencies between 600 MHz and 2 GHz. Only a handheld vector network analyzer, coaxial cabling, and the ring resonators are necessary for each measurement. Lookup curves generated in simulation are referenced to calculate the complex permittivity of the sample. The permittivity measurement is explained step-by-step, and data is presented for samples of soils from Ft. Irwin, California and Yuma, Arizona.

  10. Rotational Raman scattering (Ring effect) in satellite backscatter ultraviolet measurements

    NASA Astrophysics Data System (ADS)

    Cebula, Richard P.; Joiner, Joanna; Bhartia, Pawan K.; Hilsenrath, Ernest; McPeters, Richard D.; Park, Hongwoo

    1995-07-01

    A detailed radiative transfer calculation has been carried out to estimate the effects of rotational Raman scattering (RRS) on satellite measurements of backscattered ultraviolet radiation. Raman-scattered light is shifted in frequency from the incident light, which causes filling in of solar Fraunhofer lines in the observed backscattered spectrum (also known as the Ring effect). The magnitude of the rotational Raman scattering filling in is a function of wavelength, solar zenith angle, surface reflectance, surface pressure, and instrument spectral resolution. The filling in predicted by our model is found to be in agreement with observations from the Shuttle Solar Backscatter Ultraviolet Radiometer and the Nimbus-7 Solar Backscatter Ultraviolet Radiometer.

  11. Impact of the HERA I+II combined data on the CT14 QCD global analysis

    NASA Astrophysics Data System (ADS)

    Dulat, S.; Hou, T.-J.; Gao, J.; Guzzi, M.; Huston, J.; Nadolsky, P.; Pumplin, J.; Schmidt, C.; Stump, D.; Yuan, C.-P.

    2016-11-01

    A brief description of the impact of the recent HERA run I+II combination of inclusive deep inelastic scattering cross-section data on the CT14 global analysis of PDFs is given. The new CT14HERA2 PDFs at NLO and NNLO are illustrated. They employ the same parametrization used in the CT14 analysis, but with an additional shape parameter for describing the strange quark PDF. The HERA I+II data are reasonably well described by both CT14 and CT14HERA2 PDFs, and differences are smaller than the PDF uncertainties of the standard CT14 analysis. Both sets are acceptable when the error estimates are calculated in the CTEQ-TEA (CT) methodology and the standard CT14 PDFs are recommended to be continuously used for the analysis of LHC measurements.

  12. Pulsed neutron fields measurements around a synchrotron storage ring

    NASA Astrophysics Data System (ADS)

    Caresana, Marco; Ballerini, Marcello; Ulfbeck, David Garf; Hertel, Niels; Manessi, Giacomo Paolo; Søgaard, Carsten

    2017-09-01

    A measurement campaign was performed for characterizing the neutron ambient dose equivalent, H*(10), in selected positions at ISA, Aarhus, Denmark, around the ASTRID and ASTRID2 storage rings. The neutron stray radiation field is characterized here by very intense radiation bursts with a low repetition rate, which result in a comparatively low average H*(10) rate. As a consequence, devices specifically conceived for operating in pulsed neutron fields must be employed for efficiently measuring in this radiation environment, in order to avoid severe underestimations of the H*(10) rate. The measurements were performed with the ELSE NUCLEAR LUPIN 5401 BF3-NP rem counter, a detector characterized by an innovative working principle that is not affected by dead time losses. This allowed characterizing both the H*(10) and the time structure of the radiation field in the pre-selected positions.

  13. Measuring Gravitomagnetic Effects by Means of Ring Lasers

    NASA Astrophysics Data System (ADS)

    Tartaglia, Angelo

    Light is a good probe for general relativistic effects. Exploiting the asymmetry of the propagation in the vicinity of a central rotating mass it is possible to use a ring laser in order to measure the frame dragging of the reference frames by the gravitational field of the Earth (Lense-Thirring effect). I shall present the G-GranSasso experiment whose objective is precisely to measure the Lense-Thirring and the de Sitter effects in a terrestrial laboratory. The experimental apparatus will be made of a set of at least three, differently oriented, ring lasers rigidly attached to a central "monument". The signal will be in the form of the beat frequency produced in the annular cavity of each laser by the rotational anisotropy. The laboratory will be located underground in the Laboratori Nazionali del Gran Sasso facility, in Italy. The required sensitivity is just one order of magnitude below the performance of the best existing instruments and the new design will attain it.

  14. Coupling measurement and correction at the SSRF storage ring

    NASA Astrophysics Data System (ADS)

    Zhang, ManZhou; Hou, Jie; Li, HaoHu

    2011-12-01

    Brightness is an important parameter for 3rd generation light source. Correcting the emittance coupling is a realistic way to increase brightness without any additional equipment in a machine under operation. The main sources of emittance coupling are betatron coupling and vertical dispersion. At the SSRF storage ring, tune split and LOCO are used to measure the respective betatron and emittance coupling. Both of these sources can be corrected by skew quadrupoles. By measuring the skew quadrupole-coupling response matrix, betatron coupling can be changed from 0.014% to 2%. But the vertical dispersion changes at the same time. LOCO can find the suitable setting to correct simultaneously the betatron coupling and vertical dispersion. The emittance coupling can be reduced to 0.17% by this method. More simulations show the potential for smaller emittance coupling if more skew quadrupoles are employed.

  15. Combination of measurements of inclusive deep inelastic {e^{± }p} scattering cross sections and QCD analysis of HERA data. H1 and ZEUS Collaborations

    NASA Astrophysics Data System (ADS)

    Abramowicz, H.; Abt, I.; Adamczyk, L.; Adamus, M.; Andreev, V.; Antonelli, S.; Antunović, B.; Aushev, V.; Aushev, Y.; Baghdasaryan, A.; Begzsuren, K.; Behnke, O.; Behrendt Dubak, A.; Behrens, U.; Belousov, A.; Belov, P.; Bertolin, A.; Bloch, I.; Boos, E. G.; Borras, K.; Boudry, V.; Brandt, G.; Brisson, V.; Britzger, D.; Brock, I.; Brook, N. H.; Brugnera, R.; Bruni, A.; Buniatyan, A.; Bussey, P. J.; Bylinkin, A.; Bystritskaya, L.; Caldwell, A.; Campbell, A. J.; Cantun Avila, K. B.; Capua, M.; Catterall, C. D.; Ceccopieri, F.; Cerny, K.; Chekelian, V.; Chwastowski, J.; Ciborowski, J.; Ciesielski, R.; Contreras, J. G.; Cooper-Sarkar, A. M.; Corradi, M.; Corriveau, F.; Cvach, J.; Dainton, J. B.; Daum, K.; Dementiev, R. K.; Devenish, R. C. E.; Diaconu, C.; Dobre, M.; Dodonov, V.; Dolinska, G.; Dusini, S.; Eckerlin, G.; Egli, S.; Elsen, E.; Favart, L.; Fedotov, A.; Feltesse, J.; Ferencei, J.; Figiel, J.; Fleischer, M.; Fomenko, A.; Foster, B.; Gabathuler, E.; Gach, G.; Gallo, E.; Garfagnini, A.; Gayler, J.; Geiser, A.; Ghazaryan, S.; Gizhko, A.; Gladilin, L. K.; Goerlich, L.; Gogitidze, N.; Golubkov, Yu. A.; Gouzevitch, M.; Grab, C.; Grebenyuk, A.; Grebenyuk, J.; Greenshaw, T.; Gregor, I.; Grindhammer, G.; Grzelak, G.; Gueta, O.; Guzik, M.; Gwenlan, C.; Haidt, D.; Hain, W.; Henderson, R. C. W.; Henkenjohann, P.; Hladkỳ, J.; Hochman, D.; Hoffmann, D.; Hori, R.; Horisberger, R.; Hreus, T.; Huber, F.; Ibrahim, Z. A.; Iga, Y.; Ishitsuka, M.; Iudin, A.; Jacquet, M.; Janssen, X.; Januschek, F.; Jomhari, N. Z.; Jung, H.; Kadenko, I.; Kananov, S.; Kapichine, M.; Karshon, U.; Katzy, J.; Kaur, M.; Kaur, P.; Kiesling, C.; Kisielewska, D.; Klanner, R.; Klein, M.; Klein, U.; Kleinwort, C.; Kogler, R.; Kondrashova, N.; Kononenko, O.; Korol, Ie.; Korzhavina, I. A.; Kostka, P.; Kotański, A.; Kötz, U.; Kovalchuk, N.; Kowalski, H.; Kretzschmar, J.; Krücker, D.; Krüger, K.; Krupa, B.; Kuprash, O.; Kuze, M.; Landon, M. P. J.; Lange, W.; Laycock, P.; Lebedev, A.; Levchenko, B. B.; Levonian, S.; Levy, A.; Libov, V.; Limentani, S.; Lipka, K.; Lisovyi, M.; List, B.; List, J.; Lobodzinska, E.; Lobodzinski, B.; Löhr, B.; Lohrmann, E.; Longhin, A.; Lontkovskyi, D.; Lukina, O. Yu.; Makarenko, I.; Malinovski, E.; Malka, J.; Martyn, H.-U.; Maxfield, S. J.; Mehta, A.; Mergelmeyer, S.; Meyer, A. B.; Meyer, H.; Meyer, J.; Mikocki, S.; Mohamad Idris, F.; Morozov, A.; Muhammad Nasir, N.; Müller, K.; Myronenko, V.; Nagano, K.; Naumann, Th.; Newman, P. R.; Niebuhr, C.; Nikiforov, A.; Nobe, T.; Notz, D.; Nowak, G.; Nowak, R. J.; Olsson, J. E.; Onishchuk, Yu.; Ozerov, D.; Pahl, P.; Pascaud, C.; Patel, G. D.; Paul, E.; Perez, E.; Perlański, W.; Petrukhin, A.; Picuric, I.; Pirumov, H.; Pitzl, D.; Pokorny, B.; Pokrovskiy, N. S.; Polifka, R.; Przybycień, M.; Radescu, V.; Raicevic, N.; Ravdandorj, T.; Reimer, P.; Rizvi, E.; Robmann, P.; Roloff, P.; Roosen, R.; Rostovtsev, A.; Rotaru, M.; Rubinsky, I.; Rusakov, S.; Ruspa, M.; Šálek, D.; Sankey, D. P. C.; Sauter, M.; Sauvan, E.; Saxon, D. H.; Schioppa, M.; Schmidke, W. B.; Schmitt, S.; Schneekloth, U.; Schoeffel, L.; Schöning, A.; Schörner-Sadenius, T.; Sefkow, F.; Shcheglova, L. M.; Shevchenko, R.; Shkola, O.; Shushkevich, S.; Shyrma, Yu.; Singh, I.; Skillicorn, I. O.; Słomiński, W.; Solano, A.; Soloviev, Y.; Sopicki, P.; South, D.; Spaskov, V.; Specka, A.; Stanco, L.; Steder, M.; Stefaniuk, N.; Stella, B.; Stern, A.; Stopa, P.; Straumann, U.; Sykora, T.; Sztuk-Dambietz, J.; Szuba, D.; Szuba, J.; Tassi, E.; Thompson, P. D.; Tokushuku, K.; Tomaszewska, J.; Traynor, D.; Trofymov, A.; Truöl, P.; Tsakov, I.; Tseepeldorj, B.; Tsurugai, T.; Turcato, M.; Turkot, O.; Turnau, J.; Tymieniecka, T.; Valkárová, A.; Vallée, C.; Van Mechelen, P.; Vazdik, Y.; Verbytskyi, A.; Viazlo, O.; Walczak, R.; Wan Abdullah, W. A. T.; Wegener, D.; Wichmann, K.; Wing, M.; Wolf, G.; Wünsch, E.; Yamada, S.; Yamazaki, Y.; Žáček, J.; Zakharchuk, N.; Żarnecki, A. F.; Zawiejski, L.; Zenaiev, O.; Zhang, Z.; Zhautykov, B. O.; Zhmak, N.; Žlebčík, R.; Zohrabyan, H.; Zomer, F.; Zotkin, D. S.

    2015-12-01

    A combination is presented of all inclusive deep inelastic cross sections previously published by the H1 and ZEUS collaborations at HERA for neutral and charged current e^{± }p scattering for zero beam polarisation. The data were taken at proton beam energies of 920, 820, 575 and 460 GeV and an electron beam energy of 27.5 GeV. The data correspond to an integrated luminosity of about 1 fb^{-1} and span six orders of magnitude in negative four-momentum-transfer squared, Q^2, and Bjorken x. The correlations of the systematic uncertainties were evaluated and taken into account for the combination. The combined cross sections were input to QCD analyses at leading order, next-to-leading order and at next-to-next-to-leading order, providing a new set of parton distribution functions, called HERAPDF2.0. In addition to the experimental uncertainties, model and parameterisation uncertainties were assessed for these parton distribution functions. Variants of HERAPDF2.0 with an alternative gluon parameterisation, HERAPDF2.0AG, and using fixed-flavour-number schemes, HERAPDF2.0FF, are presented. The analysis was extended by including HERA data on charm and jet production, resulting in the variant HERAPDF2.0Jets. The inclusion of jet-production cross sections made a simultaneous determination of these parton distributions and the strong coupling constant possible, resulting in α _s(M_Z^2)=0.1183 ± 0.0009 (exp) ± 0.0005(model/parameterisation) ± 0.0012(hadronisation) ^{+0.0037}_{-0.0030}(scale). An extraction of xF_3^{γ Z} and results on electroweak unification and scaling violations are also presented.

  16. Diffraction from HERA to the LHC

    SciTech Connect

    Newman, Paul

    2011-07-15

    Following a 15 year programme of intensive research into diffractive electron-proton scattering at HERA, it is important to transfer the knowledge and experience gained into the LHC programme. This contribution raises some current issues in diffraction at the LHC and suggests ways in which they might be addressed using HERA results.

  17. Complex permittivity measurement using metamaterial split ring resonators

    NASA Astrophysics Data System (ADS)

    Chakyar, Sreedevi P.; Simon, Sikha K.; Bindu, C.; Andrews, Jolly; Joseph, V. P.

    2017-02-01

    A direct and efficient method for determining the complex permittivity of materials at microwave frequencies using a Split Ring Resonator (SRR) metamaterial structure is presented. A single SRR unit fabricated on a substrate arranged between transmitting and receiving probes acts as a test probe. Dielectric samples having at least one flat surface of area greater than or equal to the area of SRR structure are used as test samples. The relative permittivity and the loss tangent of the dielectric are evaluated from the resonant frequency shift and the bandwidth of the SRR resonator, by placing the sample over it. The LC resonance of the SRR test probe is theoretically related to the permittivity by considering its equivalent circuit in terms of the dielectric filled capacitances formed on the upper and lower surfaces of the SRR. The permittivity measurements are performed using test probes of different resonant frequencies, and the results are compared with the values obtained by the cavity perturbation method.

  18. Combined electroweak and QCD fit to HERA data

    NASA Astrophysics Data System (ADS)

    Abt, I.; Cooper-Sarkar, A. M.; Foster, B.; Gwenlan, C.; Myronenko, V.; Turkot, O.; Wichmann, K.

    2016-09-01

    A simultaneous electroweak and QCD fit of electroweak parameters and parton distribution functions to HERA data on deep inelastic scattering is presented. The input data are neutral current and charged current inclusive cross sections measured by the H1 and ZEUS collaborations at the e p collider HERA. The polarization of the electron beam was taken into account for the ZEUS and H1 data recorded between 2004 and 2007. Results are presented on the vector and axial-vector couplings of the Z boson to u - and d -type quarks. The values are in agreement with Standard Model predictions. The results on au and vu represent the most precise measurements from a single process.

  19. Measuring mercury and other elemental components in tree rings

    USGS Publications Warehouse

    Gillan, C.; Hollerman, W.A.; Doyle, T.W.; Lewis, T.E.

    2004-01-01

    There has been considerable interest in measuring heavy metal pollution, such as mercury, using tree ring analysis. Since 1970, this method has provided a historical snapshot of pollutant concentrations near hazardous waste sites. Traditional methods of analysis have long been used with heavy metal pollutants such as mercury. These methods, such as atomic fluorescence and laser ablation, are sometimes time consuming and expensive to implement. In recent years, ion beam techniques, such as Particle Induced X-Ray Emission (PIXE), have been used to measure large numbers of elements. Most of the existing research in this area has been completed for low to medium atomic number pollutants, such as titanium, cobalt, nickel, and copper. Due to the reduction of sensitivity, it is often difficult or impossible to use traditional low energy (few MeV) PIXE analysis for pollutants with large atomic numbers. For example, the PIXE detection limit for mercury was recently measured to be about 1 ppm for a spiked Southern Magnolia wood sample [ref. 1]. This presentation will compare PIXE and standard chemical concentration results for a variety of wood samples.

  20. Measuring mercury and other elemental components in tree rings

    USGS Publications Warehouse

    Gillan, C.; Hollerman, W.A.; Doyle, T.W.; Lewis, T.E.

    2004-01-01

    There has been considerable interest in measuring heavy metal pollution, such as mercury, using tree ring analysis. Since 1970, this method has provided a historical snapshot of pollutant concentrations near hazardous waste sites. Traditional methods of analysis have long been used with heavy metal pollutants such as mercury. These methods, such as atomic fluorescence and laser ablation, are sometimes time consuming and expensive to implement. In recent years, ion beam techniques, such as Particle Induced X-Ray Emission (PIXE), have been used to measure large numbers of elements. Most of the existing research in this area has been completed for low to medium atomic number pollutants, such as titanium, cobalt, nickel, and copper. Due to the reduction of sensitivity, it is often difficult or impossible to use traditional low energy (few MeV) PIXE analysis for pollutants with large atomic numbers. For example, the PIXE detection limit for mercury was recently measured to be about 1 ppm for a spiked Southern Magnolia wood sample [ref. 1]. This presentation will compare PIXE and standard chemical concentration results for a variety of wood samples. Copyright 2004 by ISA.

  1. Dipole model analysis of high precision HERA data

    NASA Astrophysics Data System (ADS)

    Luszczak, A.; Kowalski, H.

    2014-04-01

    We analyze, within a dipole model, the inclusive deep inelastic scattering cross section data, obtained from the combination of the measurements of the H1 and ZEUS experiments performed at the HERA collider. We show that these high precision data are very well described within the dipole model framework, which is complemented with valence quark structure functions. We discuss the properties of the gluon density obtained in this way.

  2. Charm and bottom photoproduction at HERA with MC@NLO

    SciTech Connect

    Toll T.; Frixione, S.

    2011-12-01

    We apply the MC@NLO formalism to the production of heavy-quark pairs in pointlike photon-hadron collisions. By combining this result with its analogue relevant to hadron-hadron collisions, we obtain NLO predictions matched to parton showers for the photoproduction of Q{bar Q} pairs. We compare MC{at}NLO results to the measurements of c- and b-flavored hadron observables performed by the H1 and ZEUS Collaborations at HERA.

  3. Measurement of storage ring motion at the advanced light source

    SciTech Connect

    Krebs, G.F.

    1997-05-01

    The mechanical stability of the Advanced Light Source storage ring is examined over a period of 1.5 years from the point of view of floor motion. The storage ring beam position monitor stability is examined under various operating conditions.

  4. Superconducting magnet system for HERA

    SciTech Connect

    Meinke, R. )

    1991-03-01

    The HERA accelerator facility, is a collider for electrons and protons. It consists of two independent accelerators designed to store respectively 820 GeV protons and 30 GeV electrons. The two counter-rotating beams collide head on in up to four interaction regions which are distributed uniformly around the accelerator circumference of 6336 m. It is the first time that such a large number of superconducting magnets has been fabricated in industry. The experience of the series production and a detailed discussion of the magnet performance will be presented in this paper.

  5. Wet gas measure by tapered tube variable area ring orifice

    NASA Astrophysics Data System (ADS)

    Xue, Guomin; Shen, Yi

    2008-10-01

    Great difficulties exist in wet gas flow measuring by means of standard orifice plate since the rangeability can only reach 3:1, with serious pressure loss plus liquid aggregation near the upstream orifice plate. Therefore, it is necessary to improve the structure of the standard orifice plate. This paper presents a sort of tapered tube variable area ring orifice device for wet gas measure, which is designed structurally by combination of a tapered tube, an inner circle-shaped movable baffle, a precision spring and a displacement sensor. Accordingly, a wet gas flow equation is shown that features the substitution of displacement for pressure difference. The rangeability can be as large as 15:1 in the case that the area ratio of the variable flow path is designed to be 5:1. The hydromechanical numerical simulation results indicate that both rate field and pressure field inside the device are stable and the pressure loss is one-third of the standard orifice plate. Further, the problems of liquid aggregation and pressure ducts block are avoided.H

  6. Experimental study of hard photon radiation processes at HERA

    NASA Astrophysics Data System (ADS)

    Ahmed, T.; Aid, S.; Andreev, V.; Andrieu, B.; Appuhn, R.-D.; Arpagaus, M.; Babaev, A.; Baehr, J.; Bán, J.; Baranov, P.; Barrelet, E.; Bartel, W.; Barth, M.; Bassler, U.; Beck, H. P.; Behrend, H.-J.; Belousov, A.; Berger, Ch.; Bergstein, H.; Bernardi, G.; Bernet, R.; Bertrand-Coremans, G.; Besançon, M.; Beyer, R.; Biddulph, P.; Bizot, J. C.; Blobel, V.; Borras, K.; Botterweck, F.; Boudry, V.; Braemer, A.; Brasse, F.; Braunschweig, W.; Brisson, V.; Bruncko, D.; Brune, C.; Buchholz, R.; Büngener, L.; Bürger, J.; Büsser, F. W.; Buniatian, A.; Burke, S.; Buschhorn, G.; Campbell, A. J.; Carli, T.; Charles, F.; Clarke, D.; Clegg, A. B.; Clerbaux, B.; Colombo, M.; Contreras, J. G.; Cormack, C.; Coughlan, J. A.; Courau, A.; Coutures, Ch.; Cozzika, G.; Criegee, L.; Cussans, D. G.; Cvach, J.; Dagoret, S.; Dainton, J. B.; Danilov, M.; Dau, W. D.; Daum, K.; David, M.; Deffur, E.; Delcourt, B.; Del Buono, L.; de Roeck, A.; de Wolf, E. A.; di Nezza, P.; Dollfus, C.; Dowell, J. D.; Dreis, H. B.; Droutskoi, A.; Duboc, J.; Düllmann, D.; Dünger, O.; Duhm, H.; Ebert, J.; Ebert, T. R.; Eckerlin, G.; Efremenko, V.; Egli, S.; Ehrlichmann, H.; Eichenberger, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Ellison, R. J.; Elsen, E.; Erdmann, M.; Erdmann, W.; Evrard, E.; Favart, L.; Fedotov, A.; Feeken, D.; Felst, R.; Feltesse, J.; Ferencei, J.; Ferrarotto, F.; Flamm, K.; Fleischer, M.; Flieser, M.; Flügge, G.; Fomenko, A.; Fominykh, B.; Forbush, M.; Formánek, J.; Foster, J. M.; Franke, G.; Fretwurst, E.; Gabathuler, E.; Gabathuler, K.; Gamerdinger, K.; Garvey, J.; Gayler, J.; Gebauer, M.; Gellrich, A.; Genzel, H.; Gerhards, R.; Goerlach, U.; Goerlich, L.; Gogitidze, N.; Goldberg, M.; Goldner, D.; Gonzalez-Pineiro, B.; Gorelov, I.; Goritchev, P.; Grab, C.; Grässler, H.; Grässler, R.; Greenshaw, T.; Grindhammer, G.; Gruber, A.; Gruber, C.; Haack, J.; Haidt, D.; Hajduk, L.; Hamon, O.; Hampel, M.; Hanlon, E. M.; Hapke, M.; Haynes, W. J.; Heatherington, J.; Heinzelmann, G.; Henderson, R. C. W.; Henschel, H.; Herma, R.; Herynek, I.; Hess, M. F.; Hildesheim, W.; Hill, P.; Hiller, K. H.; Hilton, C. D.; Hladký, J.; Hoeger, K. C.; Höppner, M.; Horisberger, R.; Hudgson, V. L.; Huet, Ph.; Hütte, M.; Hufnagel, H.; Ibbotson, M.; Itterbeck, H.; Jabiol, M.-A.; Jacholkowska, A.; Jacobsson, C.; Jaffre, M.; Janoth, J.; Jansen, T.; Jönsson, L.; Johannsen, K.; Johnson, D. P.; Johnson, L.; Jung, H.; Kalmus, P. I. P.; Kant, D.; Kaschowitz, R.; Kasselmann, P.; Kathage, U.; Katzy, J.; Kaufmann, H. H.; Kazarian, S.; Kenyon, I. R.; Kermiche, S.; Keuker, C.; Kiesling, C.; Klein, M.; Kleinwort, C.; Knies, G.; Ko, W.; Köhler, T.; Köhne, J.; Kolanoski, H.; Kole, F.; Kolya, S. D.; Korbel, V.; Korn, M.; Kostka, P.; Kotelnikov, S. K.; Krämerkämper, T.; Krasny, M. W.; Krehbiel, H.; Krücker, D.; Krüger, U.; Krüner-Marquis, U.; Kubenka, J. P.; Küster, H.; Kuhlen, M.; Kurča, T.; Kurzhöfer, J.; Kuznik, B.; Lacour, D.; Lamarche, F.; Lander, R.; Landon, M. P. J.; Lange, W.; Lanius, P.; Laporte, J.-F.; Lebedev, A.; Leverenz, C.; Levonian, S.; Ley, Ch.; Lindner, A.; Lindström, G.; Linsel, F.; Lipinski, J.; List, B.; Loch, P.; Lohmander, H.; Lopez, G. C.; Lubimov, V.; Lüke, D.; Magnussen, N.; Malinovski, E.; Mani, S.; Maraček, R.; Marage, P.; Marks, J.; Marshall, R.; Martens, J.; Martin, R.; Martyn, H.-U.; Martyniak, J.; Masson, S.; Mavroidis, T.; Maxfield, S. J.; McMahon, S. J.; Mehta, A.; Meier, K.; Mercer, D.; Merz, T.; Meyer, C. A.; Meyer, H.; Meyer, J.; Mikocki, S.; Milstead, D.; Moreau, F.; Morris, J. V.; Mroczko, E.; Müller, G.; Müller, K.; Murín, P.; Nagovizin, V.; Nahnhauer, R.; Naroska, B.; Naumann, Th.; Newman, P. R.; Newton, D.; Neyret, D.; Nguyen, H. K.; Nicholls, T. C.; Niebergall, F.; Niebuhr, C.; Nisius, R.; Nowak, G.; Noyes, G. W.; Nyberg-Werther, M.; Oakden, M.; Oberlack, H.; Obrock, U.; Olsson, J. E.; Ozerov, D.; Panaro, E.; Panitch, A.; Pascaud, C.; Patel, G. D.; Peppel, E.; Perez, E.; Phillips, J. P.; Pichler, Ch.; Pitzl, D.; Pope, G.; Prell, S.; Prosi, R.; Rädel, G.; Raupach, F.; Reimer, P.; Reinshagen, S.; Ribarics, P.; Rick, H.; Riech, V.; Riedlberger, J.; Riess, S.; Rietz, M.; Rizvi, E.; Robertson, S. M.; Robmann, P.; Roloff, H. E.; Roosen, R.; Rosenbauer, K.; Rostovtsev, A.; Rouse, F.; Royon, C.; Rüter, K.; Rusakov, S.; Rybicki, K.; Rylko, R.; Sahlmann, N.; Sanchez, E.; Sankey, D. P. C.; Savitsky, M.; Schacht, P.; Schiek, S.; Schleper, P.; von Schlippe, W.; Schmidt, C.; Schmidt, D.; Schmidt, G.; Schöning, A.; Schröder, V.; Schuhmann, E.; Schwab, B.; Schwind, A.; Seehausen, U.; Sefkow, F.; Seidel, M.; Sell, R.; Semenov, A.; Shekelyan, V.; Sheviakov, I.; Shooshtari, H.; Shtarkov, L. N.; Siegmon, G.; Siewert, U.; Sirois, Y.; Skillicorn, I. O.; Smirnov, P.; Smith, J. R.; Solochenko, V.; Soloviev, Y.; Spiekermann, J.; Spitzer, H.; Starosta, R.; Steenbock, M.; Steffen, P.; Steinberg, R.; Stella, B.; Stephens, K.; Stier, J.; Stiewe, J.; Stösslein, U.; Stolze, K.; Strachota, J.; Straumann, U.; Struczinski, W.; Sutton, J. P.; Tapprogge, S.; Taylor, R. E.; Tchernyshov, V.; Thiebaux, C.; Thompson, G.; Truöl, P.; Turnau, J.; Tutas, J.; Uelkes, P.; Usik, A.; Valkár, S.; Valkárová, A.; Vallée, C.; van Esch, P.; van Mechelen, P.; Vartapetian, A.; Vazdik, Y.; Vecko, M.; Verrecchia, P.; Villet, G.; Wacker, K.; Wagener, A.; Wagener, M.; Walker, I. W.; Walther, A.; Weber, G.; Weber, M.; Wegener, D.; Wegner, A.; Wellisch, H. P.; West, L. R.; Willard, S.; Winde, M.; Winter, G.-G.; Wright, A. E.; Wünsch, E.; Wulff, N.; Yiou, T. P.; Žáček, J.; Zarbock, D.; Zhang, Z.; Zhokin, A.; Zimmer, M.; Zimmermann, W.; Zomer, F.; Zuber, K.

    1995-12-01

    We present an experimental study of the ep→ eγ+ p and ep→ eγ+ X processes using data recorded by the H1 detector in 1993 at the electron-proton collider HERA. These processes are employed to measure the luminosity with an accuracy of 4.5 %. A subsample of the ep→ eγ+ X events in which the hard photon is detected at angles θ{γ/'} ≤ 0.45 mrad with respect to the incident electron direction is used to verify experimentally the size of radiative corrections to the ep→ eX inclusive cross section and to investigate the structure of the proton in the Q 2 domain down to 2 GeV2, lower than previously attained at HERA.

  7. On the synthesis, measurement and applications of octanuclear heterometallic rings

    NASA Astrophysics Data System (ADS)

    Faust, T. B.

    Inorganic macrocycles have stimulated interest in recent years for their magnetic properties, their associated host-guest chemistry and their aesthetically appealing structures. These characteristics have led to suggestions that they could be exploited for the purposes of ion recognition, catalysis, as single molecule magnets, MRI agents, antibacterial agents and as part of larger architectures in a molecular machine. This thesis explores the properties of a group of chromium(III) macrocycles, with functionality tailored towards different pursuits. Firstly the magnetic properties of a newly synthesised family of ring dimers are investigated. The nature of magnetic exchange within each ring leads to a net electronic spin which, it has been proposed, could represent a quantum binary digit within a quantum information processing system. By linking together pairs of rings, the degree of inter-ring communication can be determined. Such interactions are important for the correlation of spin as initiation of quantum entanglement, a pre-requisite for quantum computing. The rings can also act as fluoro-metallocrown, hosting the molecule which templated their formation. A range of rings with different guests are synthesised and their solid and solution state structures are explored. On templating about bulky dialykyl amines hybrid organic-inorganic rotaxanes are formed where the guest is fixed. In contrast when using small amines and alkali metals, exchange of guests is possible. The dynamics of all of these systems are investigated with proton NMR, quite remarkable for such highly paramagnetic complexes.

  8. The Hera Saturn Entry Probe Mission: a Proposal in Response to the ESA M5 Call

    NASA Astrophysics Data System (ADS)

    Mousis, Olivier; Atkinson, David; Amato, Michael; Aslam, Shahid; Atreya, Sushil; Blanc, Michel; Bolton, Scott; Brugger, Bastien; Calcutt, Simon; Cavalié, Thibault; Charnoz, Sébastien; Coustenis, Athena; Deleuil, Magali; Dobrijevic, Michel; Ferri, Francesca; Fletcher, Leigh; Gautier, Daniel; Guillot, Tristan; Hartogh, Paul; Holland, Andrew

    2017-04-01

    The Hera Saturn entry probe mission is proposed as an ESA M-class mission to be piggybacked on a NASA spacecraft sent to or past the Saturn system. Hera consists of an atmospheric probe built by ESA and released into the atmosphere of Saturn by its NASA companion Saturn Carrier-Relay spacecraft. Hera will perform in situ measurements of the chemical and isotopic composition as well as the structure and dynamics of Saturn's atmosphere using a single probe, with the goal of improving our understanding of the origin, formation, and evolution of Saturn, the giant planets and their satellite systems, with extrapolation to extrasolar planets. Hera will probe well into and possibly beneath the cloud-forming region of the troposphere, below the region accessible to remote sensing, to locations where certain cosmogenically abundant species are expected to be well mixed. The Hera probe will be designed from ESA elements with possible contributions from NASA, and the Saturn/Carrier-Relay Spacecraft will be supplied by NASA through its selection via the New Frontier 2016 call or in the form of a flagship mission selected by the NASA "Roadmaps to Ocean Worlds" (ROW) program. The Hera probe will be powered by batteries, and we therefore anticipate only one major subsystems to be possibly supplied by the United States, either by direct procurement by ESA or by contribution from NASA: the thermal protection system of the probe. Following the highly successful example of the Cassini-Huygens mission, Hera will carry European and American instruments, with scientists and engineers from both agencies and many affiliates participating in all aspects of mission development and implementation. A Saturn probe is one of the six identified desired themes by the Planetary Science Decadal Survey committee on the NASA New Frontier's list, providing additional indication that a Saturn probe is of extremely high interest and a very high priority for the international community.

  9. Inclusive Deep Inelastic Scattering at HERA

    SciTech Connect

    Newman, Paul

    2011-07-15

    Recent inclusive charged and neutral current scattering data from HERA are presented. Emphasis is placed on the resulting constraints on the proton parton densities and on the influence of low x proton structure on diffraction.

  10. Inclusive diffraction at HERA

    SciTech Connect

    Favart, Laurent

    2011-07-15

    Results are reported on recent measurements, performed by the H1 and ZEUS Collaborations, of the cross section of the diffractive deep-inelastic process ep{yields}eXp using different experimental methods. In particular, first results using the Very Forward Proton Spectrometer of H1 are discussed.

  11. Experimental measurement of noncovalent interactions between halogens and aromatic rings.

    PubMed

    Adams, Harry; Cockroft, Scott L; Guardigli, Claudio; Hunter, Christopher A; Lawson, Kevin R; Perkins, Julie; Spey, Sharon E; Urch, Christopher J; Ford, Rhonan

    2004-05-03

    Chemical double mutant cycles have been used to quantify the interactions of halogens with the faces of aromatic rings in chloroform. The halogens are forced over the face of an aromatic ring by an array of hydrogen-bonding interactions that lock the complexes in a single, well-defined conformation. These interactions can also be engineered into the crystal structures of simpler model compounds, but experiments in solution show that the halogen-aromatic interactions observed in the solid state are all unfavourable, regardless of whether the aromatic rings contain electron-withdrawing or electron-donating substituents. The halogen-aromatic interactions are repulsive by 1-3 kJ mol(-1). The interactions with fluorine are slightly less favourable than with chlorine and bromine.

  12. Ring-core photonic crystal fiber interferometer for strain measurement

    NASA Astrophysics Data System (ADS)

    Chen, Weiguo; Lou, Shuqin; Wang, Liwen; Jian, Shuisheng

    2010-09-01

    A simple modal interferometer is proposed, to be produced by splicing a section of a novel ring-core photonic crystal fiber (RPCF) and two segments of single-mode fibers. Owing to the effects of the collapsed region, the ring modes in the RPCF can be effectively activated. This is the first demonstration of an interferometer based on the interference between ring modes, as opposed to previously reported interferometer based on the interference of core modes or cladding modes. The effects of the length of RPCF and the wavelength on the temperature and strain characteristics of the interferometer are investigated. The strain sensitivity increases with RPCF length and with wavelength. Based on the interferometer, a strain sensor with low temperature sensitivity is proposed, which has strain sensitivity of 1.777 pm/(μm/m).

  13. Central RF frequency measurement of the HLS-II storage ring

    NASA Astrophysics Data System (ADS)

    Zheng, Jia-Jun; Yang, Yong-Liang; Sun, Bao-Gen; Wu, Fang-Fang; Cheng, Chao-Cai; Tang, Kai; Wei, Jun-Hao

    2016-04-01

    Central RF frequency is a key parameter of storage rings. This paper presents the measurement of central RF frequency of the HLS-II storage ring with the sextupole modulation method. Firstly, the basis of central RF frequency measurement of the electron storage ring is briefly introduced. Then, the error sources and the optimized measurement method for the HLS-II storage ring are discussed. The workflow of a self-compiled Matlab script used in central RF frequency measurement is also described. Finally, the results achieved by using two data processing methods to cross-check each other are shown. The measured value of the central RF frequency demonstrates that the circumference deviation of the HLS-II storage ring is less than 1 mm. Supported by National Natural Science Foundation of China (11105141, 11175173) and the upgrade project of Hefei Light Source

  14. Planning and Prototyping for a Storage Ring Measurement of the Proton Electric Dipole Moment

    SciTech Connect

    Talman, Richard

    2015-07-01

    Electron and proton EDM's can be measured in "frozen spin" (with the beam polarization always parallel to the orbit, for example) storage rings. For electrons the "magic" kinetic energy at which the beam can be frozen is 14.5 MeV. For protons the magic kinetic energy is 230 MeV. The currently measured upper limit for the electron EDM is much smaller than the proton EDM upper limit, which is very poorly known. Nevertheless, because the storage ring will be an order of magnitude cheaper, a sensible plan is to first build an all-electric electron storage ring as a prototype. Such an electron ring was successfully built at Brookhaven, in 1954, as a prototype for their AGS ring. This leaves little uncertainty concerning the cost and performance of such a ring. (This is documentedin one of the Physical Review papers mentioned above.)

  15. Fiber ring laser for axial micro-strain measurement by employing few-mode concentric ring core fiber

    NASA Astrophysics Data System (ADS)

    Liu, Jingxuan; Liang, Xiao; Sun, Chunran; Jian, Shuisheng

    2017-01-01

    We proposed and demonstrated a novel few-mode concentric-ring core fiber (FM-CRCF) for axial micro-strain measurement with fiber ring laser based on few-mode-singlemode-few-mode fiber structure. The core area of CRCF consists of four concentric rings which refractive indices are 1.448, 1.441, 1.450, 1.441, respectively. LP01 and LP11 are two dominated propagating mode groups contributing in the CRCF. In this few-mode-singlemode-few-mode structure, two sections of CRCF act as the mode generator and coupler, respectively. The basis of sensing is the center single mode fiber. Moreover, this structure can be used as an optical band-pass filter. By using fiber ring cavity laser, the axial micro-strain sensing system has high intensity (∼20 dB), high optical signal to noise ratio (∼45 dB) and narrow 3 dB bandwidth (∼0.1 nm). In the axial micro-strain range from 0 to 1467 με , the lasing peak wavelength shifts from 1561.05 nm to 1559.9 nm with the experimentally sensitivity of ∼ 0.81pm / με .

  16. Enhanced ring lasers: a new measurement tool for Earth sciences

    NASA Astrophysics Data System (ADS)

    Schreiber, K. U.; Kluegel, T.; Wells, J.-P.; Holdaway, J.; Gebauer, A.; Velikoseltsev, A.

    2012-11-01

    We report the progress in the technology of fabrication of large ring lasers that has resulted in an increase in instrumental rotation sensitivity by as much as a factor of 3, to δΩ = 1.2 × 10-11 rad s-1 Hz-1/2, which makes the domain of changes in the angular velocity of Earth's rotation, ΔΩ/Ω ≈ 10-9, accessible to a local rotation sensor. New studies show that the largest contribution to the observed deviation in sensor performance with respect to the computed shot noise limit is caused by the micro-seismic background activity of the Earth. Our efforts have been concentrated on the improvement of sensor stability, including correction of drift effects, which are caused by the aging of the laser gas, fixing scale factor instabilities induced by atmospheric pressure variations, and minimising the temperature variations resulting from corresponding adiabatic expansion and compression of the local air around the instrument. To achieve this, we have recently introduced a pressure-stabilising vessel with dimensions slightly larger than the ring laser apparatus, such that it encloses the entire structure. By monitoring the optical frequency in the ring laser cavity continuously and stabilising the scale factor in a closed loop system with the pressure-stabilising vessel, it has become possible to extend the range of sensor stability from the short term (1 — 3 days) to well into the mid-term regime (>40 days), and possibly even well beyond that. Once a sufficiently long timeseries of the ring laser data has been recorded, we will be able to define the range of temporal stability in more detail. The extension of the regime of stability gives access to geophysical signals at frequencies substantially lower than previously observable with ring lasers.

  17. Enhanced ring lasers: a new measurement tool for Earth sciences

    SciTech Connect

    Schreiber, K U; Kluegel, T; Wells, J.-P.; Holdaway, J; Gebauer, A; Velikoseltsev, A

    2012-11-30

    We report the progress in the technology of fabrication of large ring lasers that has resulted in an increase in instrumental rotation sensitivity by as much as a factor of 3, to {delta}{Omega} = 1.2 Multiplication-Sign 10{sup -11} rad s{sup -1} Hz{sup -1/2}, which makes the domain of changes in the angular velocity of Earth's rotation, {Delta}{Omega}/{Omega} Almost-Equal-To 10{sup -9}, accessible to a local rotation sensor. New studies show that the largest contribution to the observed deviation in sensor performance with respect to the computed shot noise limit is caused by the micro-seismic background activity of the Earth. Our efforts have been concentrated on the improvement of sensor stability, including correction of drift effects, which are caused by the aging of the laser gas, fixing scale factor instabilities induced by atmospheric pressure variations, and minimising the temperature variations resulting from corresponding adiabatic expansion and compression of the local air around the instrument. To achieve this, we have recently introduced a pressure-stabilising vessel with dimensions slightly larger than the ring laser apparatus, such that it encloses the entire structure. By monitoring the optical frequency in the ring laser cavity continuously and stabilising the scale factor in a closed loop system with the pressure-stabilising vessel, it has become possible to extend the range of sensor stability from the short term (1 - 3 days) to well into the mid-term regime (>40 days), and possibly even well beyond that. Once a sufficiently long timeseries of the ring laser data has been recorded, we will be able to define the range of temporal stability in more detail. The extension of the regime of stability gives access to geophysical signals at frequencies substantially lower than previously observable with ring lasers. (laser applications and other topics in quantum electronics)

  18. HERA results on jets and hadronic final states

    NASA Astrophysics Data System (ADS)

    Verbytskyi, Andrii; H1 Collaboration; ZEUS Collaboration

    2017-01-01

    We discuss the recent results on the measurements of jets and hadronic final states in e± p collisions at HERA by the ZEUS and H1 experiments. The studies of jet production are presented with the measurements of multijets in low-Q2 region. Results of further measurements of isolated photons in different kinematic regions are provided as well as multiple results on exclusive meson production. The recently performed searches are presented with the searches of strange pentaquarks and QCD instanton induced processes.

  19. Comparison of beam transport simulations to measurements at the Los Alamos Proton Storage Ring

    SciTech Connect

    Wilkinson, C.; Neri, F.; Fitzgerald, D.H.; Blind, B.; Macek, R.; Plum, M.; Sander, O.; Thiessen, H.A.

    1997-10-01

    The ability to model and simulate beam behavior in the Proton Storage Ring (PSR) of the Los Alamos Neutron Science Center (LANSCE) is an important diagnostic and predictive tool. This paper gives the results of an effort to model the ring apertures and lattice and use beam simulation programs to track the beam. The results are then compared to measured activation levels from beam loss in the ring. The success of the method determines its usefulness in evaluating the effects of planned upgrades to the Proton Storage Ring.

  20. Organization of FtsZ filaments in the bacterial division ring measured from polarized fluorescence microscopy.

    PubMed

    Si, Fangwei; Busiek, Kimberly; Margolin, William; Sun, Sean X

    2013-11-05

    Cytokinesis in bacteria is accomplished by a ring-shaped cell-division complex (the Z-ring). The primary component of the Z-ring is FtsZ, a filamentous tubulin homolog that serves as a scaffold for the recruitment of other cell-division-related proteins. FtsZ forms filaments and bundles. In the cell, it has been suggested that FtsZ filaments form the arcs of the ring and are aligned in the cell-circumferential direction. Using polarized fluorescence microscopy in live Escherichia coli cells, we measure the structural organization of FtsZ filaments in the Z-ring. The data suggest a disordered organization: a substantial portion of FtsZ filaments are aligned in the cell-axis direction. FtsZ organization in the Z-ring also appears to depend on the bacterial species. Taken together, the unique arrangement of FtsZ suggests novel unexplored mechanisms in bacterial cell division.

  1. Inclusive charged particle cross sections in photoproduction at HERA

    NASA Astrophysics Data System (ADS)

    Abt, I.; Ahmed, T.; Andreev, V.; Aid, S.; Andrieu, B.; Appuhn, R.-D.; Arpagaus, M.; Babaev, A.; Bärwolff, H.; Bán, J.; Baranov, P.; Barrelet, E.; Bartel, W.; Bassler, U.; Beck, H. P.; Behrend, H.-J.; Belousov, A.; Berger, Ch.; Bergstein, H.; Bernardi, G.; Bernet, R.; Bertrand-Coremans, G.; Besançon, M.; Biddulph, P.; Binder, E.; Bizot, J. C.; Blobel, V.; Borras, K.; Bosetti, P. C.; Boudry, V.; Bourdarios, C.; Braemer, A.; Brasse, F.; Braun, U.; Braunschweig, W.; Brisson, V.; Bruncko, D.; Büngener, L.; Bürger, J.; Büsser, F. W.; Buniatian, A.; Burke, S.; Buschhorn, G.; Campbell, A. J.; Carli, T.; Charles, F.; Chyla, J.; Clarke, D.; Clegg, A. B.; Colombo, M.; Coughlan, J. A.; Courau, A.; Coutures, Ch.; Cozzika, G.; Criegee, L.; Cvach, J.; Dagoret, S.; Dainton, J. B.; Danilov, M.; Dann, A. W. E.; Dau, W. D.; David, M.; Deffur, E.; Delcourt, B.; Del Buono, L.; Devel, M.; De Roeck, A.; Di Nezza, P.; Dingus, P.; Dollfus, C.; Dowell, J. D.; Dreis, H. B.; Drescher, A.; Duboc, J.; Düllmann, D.; Dünger, O.; Duhm, H.; Ebbinghaus, R.; Eberle, M.; Ebert, J.; Ebert, T. R.; Eckerlin, G.; Efremenko, V.; Egli, S.; Ehrlichmann, H.; Eichenberger, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Ellis, N. N.; Ellison, R. J.; Elsen, E.; Erdmann, M.; Evrard, E.; Favart, L.; Fedotov, A.; Feeken, D.; Felst, R.; Feltesse, J.; Fensome, I. F.; Ferencei, J.; Ferrarotto, F.; Flamm, K.; Flauger, W.; Fleischer, M.; Flieser, M.; Flügge, G.; Fomenko, A.; Fominykh, B.; Forbush, M.; Formánek, J.; Foster, J. M.; Franke, G.; Fretwurst, E.; Fuhrmann, P.; Gabathuler, E.; Gamerdinger, K.; Garvey, J.; Gayler, J.; Gebauer, M.; Gellrich, A.; Gennis, M.; Genzel, H.; Gerhards, R.; Godfrey, L.; Goerlach, U.; Goerlich, L.; Gogitidze, N.; Goldberg, M.; Goldner, D.; Goodall, A. M.; Gorelov, I.; Goritchev, P.; Grab, C.; Grässler, H.; Grässler, R.; Greenshaw, T.; Greif, H.; Grindhammer, G.; Gruber, A.; Gruber, C.; Haack, J.; Haidt, D.; Hajduk, L.; Hamon, O.; Hampel, M.; Hanlon, E. M.; Hapke, M.; Harjes, J.; Haydar, R.; Haynes, W. J.; Heatherington, J.; Hedberg, V.; Heinzelmann, G.; Henderson, R. C. W.; Henschel, H.; Herma, R.; Herynek, I.; Hildesheim, W.; Hill, P.; Hilton, C. D.; Hladký, J.; Hoeger, K. C.; Höppner, M.; Huet, Ph.; Hufnagel, H.; Huot, N.; Ibbotson, M.; Itterbeck, H.; Jabiol, M.-A.; Jacholkowska, A.; Jacobsson, C.; Jaffre, M.; Jansen, T.; Jönsson, L.; Johannsen, K.; Johnson, D. P.; Johnson, L.; Jung, H.; Kalmus, P. I. P.; Kant, D.; Kazarian, S.; Kaschowitz, R.; Kasselmann, P.; Kathage, U.; Kaufmann, H. H.; Kenyon, I. R.; Kermiche, S.; Keuker, C.; Kiesling, C.; Klein, M.; Kleinwort, C.; Knies, G.; Ko, W.; Köhler, T.; Kolanoski, H.; Kole, F.; Kolya, S. D.; Korbel, V.; Korn, M.; Kostka, P.; Kotelnikov, S. K.; Krasny, M. W.; Krehbiel, H.; Krücker, D.; Krüger, U.; Kubenka, J. P.; Küster, H.; Kuhlen, M.; Kurča, T.; Kurzhöfer, J.; Kuznik, B.; Lacour, D.; Lamarche, F.; Lander, R.; Landon, M. P. J.; Lange, W.; Langkau, R.; Lanius, P.; Laporte, J. F.; Lebedev, A.; Leuschner, A.; Leverenz, C.; Levonian, S.; Lewin, D.; Ley, Ch.; Lindner, A.; Lindström, G.; Linsel, F.; Lipinski, J.; Loch, P.; Lohmander, H.; Lopez, G. C.; Lüers, D.; Lüke, D.; Magnussen, N.; Malinovski, E.; Mani, S.; Marage, P.; Marks, J.; Marshall, R.; Martens, J.; Martin, R.; Martyn, H.-U.; Martyniak, J.; Masson, S.; Mavroidis, A.; Maxfiedl, S. J.; McMahon, S. J.; Mehta, A.; Meier, K.; Mercer, D.; Merz, T.; Meyer, C. A.; Meyer, H.; Meyer, J.; Mikocki, S.; Monnier, E.; Moreau, F.; Moreels, J.; Morris, J. V.; Müller, K.; Murín, P.; Murray, S. A.; Nagovizin, V.; Naroska, B.; Naumann, Th.; Newman, P. R.; Newton, D.; Neyret, D.; Nguyen, H. K.; Niebergall, F.; Niebuhr, C.; Nisius, R.; Nowak, G.; Noyes, G. W.; Nyberg, M.; Oberlack, H.; Obrock, U.; Olsson, J. E.; Orenstein, S.; Ould-Saada, F.; Pascaud, C.; Patel, G. D.; Peppel, E.; Peters, S.; Phillips, H. T.; Phillips, J. P.; Pichler, Ch.; Pilgram, W.; Pitzl, D.; Prell, S.; Prosi, R.; Rädel, G.; Raupach, F.; Rauschnabel, K.; Reimer, P.; Reinshagen, S.; Ribarics, P.; Riech, V.; Riedlberger, J.; Riess, S.; Rietz, M.; Robertson, S. M.; Robmann, P.; Roosen, R.; Rosenbauer, K.; Rostovtsev, A.; Royon, C.; Rudowicz, M.; Ruffer, M.; Rusakov, S.; Rybicki, K.; Sahlmann, N.; Sanchez, E.; Sankey, D. P. C.; Savitsky, M.; Schacht, P.; Schleper, P.; von Schlippe, W.; Schmidt, C.; Schmidt, D.; Schmitz, W.; Schöning, A.; Schröder, V.; Schuhmann, E.; Schulz, M.; Schwab, B.; Schwind, A.; Scobel, W.; Seehausen, U.; Sell, R.; Semenov, A.; Shekelyan, V.; Sheviakov, I.; Shooshtari, H.; Shtarkov, L. N.; Siegmon, G.; Siewert, U.; Sirois, Y.; Skillicorn, I. O.; Smirnov, P.; Smith, J. R.; Soloviev, Y.; Spitzer, H.; Steenbock, M.; Steffen, P.; Steinberg, R.; Stella, B.; Stephens, K.; Stier, J.; Stösslein, U.; Strachota, J.; Straumann, U.; Struczinski, W.; Sutton, J. P.; Taylor, R. E.; Tchernyshov, V.; Thiebaux, C.; Thompson, G.; Tichomirov, I.; Truöl, P.; Turnau, J.; Tutas, J.; Urban, L.; Usik, A.; Valkar, S.; Valkarova, A.; Vallée, C.; Van Esch, P.; Vartapetian, A.; Vazdik, Y.; Vecko, M.; Verrecchia, P.; Vick, R.; Villet, G.; Vogel, E.; Wacker, K.; Walker, I. W.; Walther, A.; Weber, G.; Wegener, D.; Wegner, A.; Wellisch, H. P.; West, L. R.; Willard, S.; Winde, M.; Winter, G.-G.; Wolff, Th.; Womersley, L. A.; Wright, A. E.; Wulff, N.; Yiou, T. P.; Žáček, J.; Zeitnitz, C.; Ziaeepour, H.; Zimmer, M.; Zimmermann, W.; Zomer, F.; H1 Collaboration

    1994-05-01

    Cross sections are presented for the inclusive production of charged particles measured in electron-proton collisions at low Q2 with the H1 detector at HERA. The transverse momentum distribution extends up to 8 GeV/ c. Its shape is found to be harder than that observed in overlinepp collisions at comparable centre-of-mass energies √S γp ≈ √S overlinepp ≈ 200 GeV, and also harder than in γp collisions at lower energies √ Sγp ≈ 18 GeV. Results from quantum chromodynamics (QCD) calculations agree with the measured transverse momentum and pseudorapidity cross sections.

  2. Measurements of complex coupling coefficients in a ring resonator of a laser gyroscope

    NASA Astrophysics Data System (ADS)

    Bessonov, A. S.; Makeev, A. P.; Petrukhin, E. A.

    2017-07-01

    A method is proposed for measuring complex coupling coefficients in a ring optical resonator in the absence of an active gas mixture. A setup is described on which measurements are performed in ring resonators of ring He-Ne lasers with a wavelength of 632.8 nm. A model of backscattering field interference between conservative and dissipative sources is presented. Within the framework of this model, the unusual behaviour of backscattering fields in ring resonators observed in experiments is explained: a significant difference in the moduli of coupling coefficients of counterpropagating waves and variation of the magnitude of the total phase shift in a wide range. It is proposed to use this method as a metrological method when assembling and aligning a ring resonator of a laser gyroscope.

  3. Ring current electron dynamics during geomagnetic storms based on the Van Allen Probes measurements

    NASA Astrophysics Data System (ADS)

    Zhao, H.; Li, X.; Baker, D. N.; Claudepierre, S. G.; Fennell, J. F.; Blake, J. B.; Larsen, B. A.; Skoug, R. M.; Funsten, H. O.; Friedel, R. H. W.; Reeves, G. D.; Spence, H. E.; Mitchell, D. G.; Lanzerotti, L. J.

    2016-04-01

    Based on comprehensive measurements from Helium, Oxygen, Proton, and Electron Mass Spectrometer Ion Spectrometer, Relativistic Electron-Proton Telescope, and Radiation Belt Storm Probes Ion Composition Experiment instruments on the Van Allen Probes, comparative studies of ring current electrons and ions are performed and the role of energetic electrons in the ring current dynamics is investigated. The deep injections of tens to hundreds of keV electrons and tens of keV protons into the inner magnetosphere occur frequently; after the injections the electrons decay slowly in the inner belt but protons in the low L region decay very fast. Intriguing similarities between lower energy protons and higher-energy electrons are also found. The evolution of ring current electron and ion energy densities and energy content are examined in detail during two geomagnetic storms, one moderate and one intense. The results show that the contribution of ring current electrons to the ring current energy content is much smaller than that of ring current ions (up to ~12% for the moderate storm and ~7% for the intense storm), and <35 keV electrons dominate the ring current electron energy content at the storm main phases. Though the electron energy content is usually much smaller than that of ions, the enhancement of ring current electron energy content during the moderate storm can get to ~30% of that of ring current ions, indicating a more dynamic feature of ring current electrons and important role of electrons in the ring current buildup. The ring current electron energy density is also shown to be higher at midnight and dawn while lower at noon and dusk.

  4. Nuclei at HERA and heavy ion physics

    SciTech Connect

    Gavin, S.; Strikman, M.

    1995-12-31

    Copies of 16 viewgraph sets from a workshop held at Brookhaven National Laboratory, 17-18 November, 1995. Titles of talks: HERA: The Present; HERA: Potential with Nuclei; Review of Hadron-Lepton Nucleus Data; Fermilab E665: results in muon scattering; Interactions of Quarks and Gluons with Nuclear Matter; Rescattering in Nuclear Targets for Photoproduction and DIS; Structure Functions and Nuclear Effect at PHENIX; Probing Spin-Averaged and Spin-Dependent Parton Distributions Using the Solenoidal Tracker at RHIC (STAR); Jet Quenching in eA, pA, AA; Nuclear Gluon Shadowing via Continuum Lepton Pairs; What can we learn from HERA with a colliding heavy ion beam? The limiting curve of leading particles at infinite A; Coherent Production of Vector Mesons off Light Nuclei in DIS; A Model of High Parton Densities in PQCD; Gluon Production for Weizaecker-Williams Field in Nucleus-Nucleus Collisions; Summary Talk.

  5. Hera - The HEASARC's New Data Analysis Service

    NASA Technical Reports Server (NTRS)

    Pence, William

    2006-01-01

    Hera is the new computer service provided by the HEASARC at the NASA Goddard Space Flight Center that enables qualified student and professional astronomical researchers to immediately begin analyzing scientific data from high-energy astrophysics missions. All the necessary resources needed to do the data analysis are freely provided by Hera, including: * the latest version of the hundreds of scientific analysis programs in the HEASARC's HEASOFT package, as well as most of the programs in the Chandra CIAO package and the XMM-Newton SAS package. * high speed access to the terabytes of data in the HEASARC's high energy astrophysics Browse data archive. * a cluster of fast Linw workstations to run the software * ample local disk space to temporarily store the data and results. Some of the many features and different modes of using Hera are illustrated in this poster presentation.

  6. Hera - The HEASARC's New Data Analysis Service

    NASA Technical Reports Server (NTRS)

    Pence, William

    2006-01-01

    Hera is the new computer service provided by the HEASARC at the NASA Goddard Space Flight Center that enables qualified student and professional astronomical researchers to immediately begin analyzing scientific data from high-energy astrophysics missions. All the necessary resources needed to do the data analysis are freely provided by Hera, including: * the latest version of the hundreds of scientific analysis programs in the HEASARC's HEASOFT package, as well as most of the programs in the Chandra CIAO package and the XMM-Newton SAS package. * high speed access to the terabytes of data in the HEASARC's high energy astrophysics Browse data archive. * a cluster of fast Linw workstations to run the software * ample local disk space to temporarily store the data and results. Some of the many features and different modes of using Hera are illustrated in this poster presentation.

  7. Galileo In-Situ Dust Measurements and the Physics of Jupiter's Gossamer Rings

    NASA Astrophysics Data System (ADS)

    Krueger, H.; Hamilton, D. P.; Moissl, R.; Gruen, E.

    2007-12-01

    During its late orbital mission about Jupiter, the Galileo spacecraft flew twice through the giant planet's gossamer ring system. The dusty ring material is produced when interplanetary impactors collide with embedded moonlets. Optical images imply that the rings are constrained both horizontally and vertically by the orbits of the moons Amalthea and Thebe with the exception of a faint outward protrusion called the Thebe Extension. During the ring passages, the Galileo impact-ionization dust detector counted a few thousand impacts but only about 100 complete data sets of dust impacts (i.e. impact time, impact speed, mass, impact direction, etc.) were successfully transmitted to Earth. The instrument verified the outward extension of the gossamer ring beyond Thebe's orbit and measured a major reduction in particle ring material interior to Thebe's orbit. The existence of this partially evacuated gap in ring material is also indirectly confirmed by Galileo in-situ energetic particle measurements (Norbert Krupp, priv. comm.). Detected particle sizes range from about 0.2 to 4 micron, extending the size distribution by an order of magnitude towards smaller particles than previously derived from optical imaging (Showalter et al., Icarus 2007). The grain size distribution increases towards smaller grains, showing a much higher proportion of small particles in the Amalthea gossamer ring than in the Thebe ring and the Thebe Extension. Our analysis shows that particles contributing most to the optical cross-section are about 4 micron in radius, in agreement with imaging results. Finally, Galileo also detected some micron and sub-micron grains on highly inclined orbits with inclinations up to 20 degrees. Recent modelling (Hamilton & Krueger, Nature, submitted) shows that time variable electromagnetic effects can account for all of these surprising results. In particular, when the ring particles travel through Jupiter's shadow, dust grain electric charges vary systematically

  8. Measurement of the thermal noise of a proton beam in the NAP-M storage ring

    SciTech Connect

    Dement'ev, E.M.; Dikanskii, N.S.; Medvedko, A.S.; Parkhomchuk, V.V.; Pestrikov, D.V.

    1980-08-01

    Measurements of the spectra and power of the noise of uncooled and cooled proton beams in the NAP-M storage ring are reported. Features of the noise of the cooled beam due to particle interaction are analyzed.

  9. Protons as the prime contributors to the storm time ring current. [measured from Explorer 45

    NASA Technical Reports Server (NTRS)

    Berko, F. W.; Cahill, L. J., Jr.; Fritz, T. A.

    1974-01-01

    Following a large magnetic storm (17 June 1972), Explorer 45 measured the equatorial particle populations and magnetic field. Using data obtained during the symmetic recovery phase, it is shown that through a series of self-consistent calculations, the measured protons with energies from 1 to 872 keV, can account for the observed ring current magnetic effects within experimental uncertainities. This enables an upper limit to be set for the heavy ion contribution to the storm time ring current.

  10. Beauty photoproduction using decays into electrons at HERA

    SciTech Connect

    Chekanov, S.; Derrick, M.; Magill, S.; Musgrave, B.; Nicholass, D.; Repond, J.; Yoshida, R.; Mattingly, M. C. K.; Antonioli, P.; Bari, G.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Cindolo, F.; Corradi, M.; Iacobucci, G.; Margotti, A.; Nania, R.; Polini, A.

    2008-10-01

    Photoproduction of beauty quarks in events with two jets and an electron associated with one of the jets has been studied with the ZEUS detector at HERA using an integrated luminosity of 120 pb{sup -1}. The fractions of events containing b quarks, and also of events containing c quarks, were extracted from a likelihood fit using variables sensitive to electron identification as well as to semileptonic decays. Total and differential cross sections for beauty and charm production were measured and compared with next-to-leading-order QCD calculations and Monte Carlo models.

  11. Exclusive vector meson production at HERA from QCD with saturation

    SciTech Connect

    Marquet, C.; Peschanski, R.; Soyez, G.

    2007-08-01

    Following recent predictions that the geometric scaling properties of deep inelastic scattering data in inclusive {gamma}*p collisions are expected also in exclusive diffractive processes, we investigate the diffractive production of vector mesons. Using analytic results in the framework of the Balitsky-Kovchegov (BK) equation at nonzero momentum transfer, we extend to the nonforward amplitude a QCD-inspired forward saturation model including charm, following the theoretical predictions for the momentum transfer dependence of the saturation scale. We obtain a good fit to the available HERA data and make predictions for deeply virtual Compton scattering measurements.

  12. Measurements of carbon-14 with cavity ring-down spectroscopy

    NASA Astrophysics Data System (ADS)

    McCartt, A. D.; Ognibene, T.; Bench, G.; Turteltaub, K.

    2015-10-01

    Accelerator Mass Spectrometry (AMS) is the most sensitive method for quantitation of 14C in biological samples. This technology has been used in a variety of low dose, human health related studies over the last 20 years when very high sensitivity was needed. AMS helped pioneer these scientific methods, but its expensive facilities and requirements for highly trained technical staff have limited their proliferation. Quantification of 14C by cavity ring-down spectroscopy (CRDS) offers an approach that eliminates many of the shortcomings of an accelerator-based system and would supplement the use of AMS in biomedical research. Our initial prototype, using a non-ideal wavelength laser and under suboptimal experimental conditions, has a 3.5-modern, 1- σ precision for detection of milligram-sized, carbon-14-elevated samples. These results demonstrate proof of principle and provided a starting point for the development of a spectrometer capable of biologically relevant sensitivities.

  13. Measurements of Carbon-14 With Cavity Ring-Down Spectroscopy

    PubMed Central

    McCartt, A. D.; Ognibene, T.; Bench, G.; Turteltaub, K.

    2016-01-01

    Accelerator Mass Spectrometry (AMS) is the most sensitive method for quantitation of 14C in biological samples. This technology has been used in a variety of low dose, human health related studies over the last 20 years when very high sensitivity was needed. AMS helped pioneer these scientific methods, but its expensive facilities and requirements for highly trained technical staff have limited their proliferation. Quantification of 14C by cavity ring-down spectroscopy (CRDS) offers an approach that eliminates many of the shortcomings of an accelerator-based system and would supplement the use of AMS in biomedical research. Our initial prototype, using a non-ideal wavelength laser and under suboptimal experimental conditions, has a 3.5-modern, 1-σ precision for detection of milligram-sized, carbon-14-elevated samples. These results demonstrate proof of principle and provided a starting point for the development of a spectrometer capable of biologically relevant sensitivities. PMID:27065506

  14. Galileo in-situ dust measurements and the sculpting of Jupiter's gossamer rings by its shadow

    NASA Astrophysics Data System (ADS)

    Krüger, Harald; Hamilton, Douglas P.; Moissl, Richard; Grün, Eberhard

    2008-09-01

    Galileo was the first articfiial satellite to orbit Jupiter. During its late orbital mission the spacecraft made two passages through the giant planet's gossamer ring system. The highly sensitive impact-ionization dust detector on board successfully recorded dust impacts during both ring passages and provided the first in-situ measurements from a dusty planetary ring. During the first passage { on 5 November 2002 while Galileo was approaching Jupiter - dust measurements were collected until a spacecraft anomaly at 2:33RJ (Jupiter radii) just 16 min after a close flyby of Amalthea put the spacecraft into a safing mode. The second ring passage on 21 September 2003 provided ring dust measurements down to about 2:5RJ and the Galileo spacecraft was destroyed shortly thereafter in a planned impact with Jupiter. In all, a few thousand dust impacts were counted with the instrument accumulators during both ring passages, but only a total of 110 complete data sets of dust impacts were transmitted to Earth (Krüger et al, Icarus, submitted). Detected particle sizes range from about 0.2 to 5 μm, extending the known size distribution by an order of magnitude towards smaller particles than previously derived from optical imaging (Showalter et al., Icarus 2008). The grain size distribution increases towards smaller particles and shows an excess of these tiny motes in the Amalthea gossamer ring compared to the Thebe ring. The size distribution for the Amalthea ring derived from our in-situ measurements for the small grains agrees very well with the one obtained from images for large grains. Our analysis shows that particles contributing most to the optical cross-section are approximately 5 μm in radius, in agreement with imaging results. The measurements indicate a large drop in particle ux immediately interior to Thebe's orbit and some detected particles seem to be on highly-tilted orbits with inclinations up to 20°. Finally, the faint Thebe ring extension was detected out to

  15. CDA in-situ measurements during Cassini's F-ring plane crossings in 2017

    NASA Astrophysics Data System (ADS)

    Srama, Ralf; Moragas-Klostermeyer, Georg; Albin, Thomas; Economou, Thanasis; Hsu, Sean; Horanyi, Mihaly; Kempf, Sascha; Li, Yanwei; Postberg, Frank; Simolka, Jonas; Soja, Rachel; Strack, Heiko; Altobelli, Nicolas

    2017-04-01

    The Cosmic Dust Analyzer (CDA) onboard Cassini characterized successfully the dust environment at Saturn since 2004. The instrument measures the primary charge, speed, mass and composition of individual submicron and micron sized dust grains. Starting in December 2016 Cassini performed ring plane crossings at radial distances of 2.48 Saturn radii. For the first time, an in-situ dust detector explored this F-ring region of Saturn. CDA performed density, mass and compositional measurements. Furthermore, the High Rate Detector was activated using a high time and spatial resolution. The spatial resolution on January 2nd (2017) was as low as 2000 meters. Here, we do report preliminary results of the in-situ measurements of three F-ring orbit crossings. The relative encounter speed between Cassini and F-ring particles was approximately 20 km per second.

  16. Pressure sensor for Weight-In-Motion measurement based on fiber loop ring-down spectroscopy

    NASA Astrophysics Data System (ADS)

    Yang, Songlin; Ruan, Chi; Wang, Yuntao

    2016-10-01

    In order to resolve the disturbance of external perturbation in Weight-In-Motion (WIM) measurement by traditional methods, a novel pressure sensor for WIM of vehicles based on fiber ring-down spectroscopy is proposed here. A micro-bending sensing head is designed and its working principle is discussed in this paper. The fiber loop ring-down (FLRD) system reveals that the sensing forces applied to the sensing head can be obtained by measuring the ring-down time. Meanwhile, the velocity of vehicles is measured by analyzing two ring-down spectrums in this scheme. Experiment results show that the precision of velocity of vehicles is good and the sensor has a linear response to the applied force.

  17. Short-range and long-range correlations in DIS at HERA.

    SciTech Connect

    Chekanov, S. V.; Zawiejski, L.

    1999-09-23

    Correlations in deep-inelastic scattering (DIS) at HERA are investigated in order to test perturbative QCD and quark fragmentation universality. Two-particle correlations at small angular separations are measured in the Breit frame and compared to e{sup +}e{sup -} collisions. Also presented are the correlations between the current and target regions of the Breit frame.

  18. Measurements of Extinction by Aerosol Particles Using Cavity Ring-Down Spectroscopy and Optical Feedback Cavity Ring-Down Spectroscopy

    NASA Astrophysics Data System (ADS)

    Mellon, Daniel; Kim, Jin; Orr-Ewing, Andrew J.

    2009-06-01

    Cavity ring-down spectroscopy and optical feedback cavity ring-down spectroscopy using continuous-wave distributed-feedback diode lasers around 1.6 μm and 400 nm have been used to measure the extinction of light by samples of monodisperse spherical aerosol particles < 1 μm in diameter. A statistical model is proposed to describe the linear relationship between the extinction coefficient (α) and its variance Var(α). Application of this model to experimental measurements of Var(α) for a range of (α) values typically below 2 × 10^{-6} cm^{-1} allows extinction cross sections for the aerosol particles to be obtained without need for knowledge of the particle number density. Samples of polystyrene spheres with diameters of 400 nm, 500 nm, 600 nm, 700 nm and 900 nm were used to test the model, by comparing extinction cross sections determined from the experiment with the predictions of Mie theory calculations. The fitting method used to extract decay constants, aggregation of particles and their cloud-like motion can all provide extra contributions to Var(α) and are understood with the aid of computer simulations. T.J.A. Butler, D. Mellon, J. Kim, J. Litman and A.J. Orr-Ewing J. Chem. Phys. A in press (2009)

  19. Assessment of the state of the geometrical surface texture of seal rings by various measuring methods

    NASA Astrophysics Data System (ADS)

    Adamczak, S.; Kundera, C.; Swiderski, J.

    2017-08-01

    The present paper concerns the metrological measurements of the geometric structure of the faces of seal rings made of silicon carbide and carbon-graphite. Three different instruments, i.e. the stylus profilometer, the optical profilometer, and the atomic force microscope, were used to measure the geometric structure of surfaces. In the comparative analysis, an identical area of the ring surface which was mapped by three measuring instruments with different sampling densities resulting from their metrological characteristics was assumed. The measurements made show that for the silicon carbide ring, the surface texture measurements on an atomic force microscope and optical instruments more accurately represent the actual topography than the measurement determined by the stylus profilometer.

  20. Biomarkers and biometric measures of adherence to use of ARV-based vaginal rings

    PubMed Central

    Stalter, Randy M; Moench, Thomas R; MacQueen, Kathleen M; Tolley, Elizabeth E; Owen, Derek H

    2016-01-01

    Introduction Poor adherence to product use has been observed in recent trials of antiretroviral (ARV)-based oral and vaginal gel HIV prevention products, resulting in an inability to determine product efficacy. The delivery of microbicides through vaginal rings is widely perceived as a way to achieve better adherence but vaginal rings do not eliminate the adherence challenges exhibited in clinical trials. Improved objective measures of adherence are needed as new ARV-based vaginal ring products enter the clinical trial stage. Methods To identify technologies that have potential future application for vaginal ring adherence measurement, a comprehensive literature search was conducted that covered a number of biomedical and public health databases, including PubMed, Embase, POPLINE and the Web of Science. Published patents and patent applications were also searched. Technical experts were also consulted to gather more information and help evaluate identified technologies. Approaches were evaluated as to feasibility of development and clinical trial implementation, cost and technical strength. Results Numerous approaches were identified through our landscape analysis and classified as either point measures or cumulative measures of vaginal ring adherence. Point measurements are those that give a measure of adherence at a particular point in time. Cumulative measures attempt to measure ring adherence over a period of time. Discussion Approaches that require modifications to an existing ring product are at a significant disadvantage, as this will likely introduce additional regulatory barriers to the development process and increase manufacturing costs. From the point of view of clinical trial implementation, desirable attributes would be high acceptance by trial participants, and little or no additional time or training requirements on the part of participants or clinic staff. We have identified four promising approaches as being high priority for further development

  1. Biomarkers and biometric measures of adherence to use of ARV-based vaginal rings.

    PubMed

    Stalter, Randy M; Moench, Thomas R; MacQueen, Kathleen M; Tolley, Elizabeth E; Owen, Derek H

    2016-01-01

    Poor adherence to product use has been observed in recent trials of antiretroviral (ARV)-based oral and vaginal gel HIV prevention products, resulting in an inability to determine product efficacy. The delivery of microbicides through vaginal rings is widely perceived as a way to achieve better adherence but vaginal rings do not eliminate the adherence challenges exhibited in clinical trials. Improved objective measures of adherence are needed as new ARV-based vaginal ring products enter the clinical trial stage. To identify technologies that have potential future application for vaginal ring adherence measurement, a comprehensive literature search was conducted that covered a number of biomedical and public health databases, including PubMed, Embase, POPLINE and the Web of Science. Published patents and patent applications were also searched. Technical experts were also consulted to gather more information and help evaluate identified technologies. Approaches were evaluated as to feasibility of development and clinical trial implementation, cost and technical strength. Numerous approaches were identified through our landscape analysis and classified as either point measures or cumulative measures of vaginal ring adherence. Point measurements are those that give a measure of adherence at a particular point in time. Cumulative measures attempt to measure ring adherence over a period of time. Approaches that require modifications to an existing ring product are at a significant disadvantage, as this will likely introduce additional regulatory barriers to the development process and increase manufacturing costs. From the point of view of clinical trial implementation, desirable attributes would be high acceptance by trial participants, and little or no additional time or training requirements on the part of participants or clinic staff. We have identified four promising approaches as being high priority for further development based on the following measurements

  2. Galileo in-situ dust measurements in Jupiter’s gossamer rings

    NASA Astrophysics Data System (ADS)

    Krüger, Harald; Hamilton, Douglas P.; Moissl, Richard; Grün, Eberhard

    2009-09-01

    Galileo was the first artificial satellite to orbit Jupiter. During its late orbital mission the spacecraft made two passages through the giant planet's gossamer ring system. The impact-ionization dust detector on board successfully recorded dust impacts during both ring passages and provided the first in-situ measurements from a dusty planetary ring. During the first passage—on 5 November 2002 while Galileo was approaching Jupiter—dust measurements were collected until a spacecraft anomaly at 2.33 RJ (Jupiter radii) just 16 min after a close flyby of Amalthea put the spacecraft into a safing mode. The second ring passage on 21 September 2003 provided ring dust measurements down to about 2.5 RJ and the Galileo spacecraft was destroyed shortly thereafter in a planned impact with Jupiter. In all, a few thousand dust impacts were counted with the instrument accumulators during both ring passages, but only a total of 110 complete data sets of dust impacts were transmitted to Earth. Detected particle sizes range from about 0.2 to 5 μm, extending the known size distribution by an order of magnitude towards smaller particles than previously derived from optical imaging [Showalter, M.R., de Pater, I., Verbanac, G., Hamilton, D.P., Burns, J.A., 2008. Icarus 195, 361-377; de Pater, I., Showalter, M.R., Macintosh, B., 2008. Icarus 195, 348-360]. The grain size distribution increases towards smaller particles and shows an excess of these tiny motes in the Amalthea gossamer ring compared to the Thebe ring. The size distribution for the Amalthea ring derived from our in-situ measurements for the small grains agrees very well with the one obtained from images for large grains. Our analysis shows that particles contributing most to the optical cross-section are about 5 μm in radius, in agreement with imaging results. The measurements indicate a large drop in particle flux immediately interior to Thebe's orbit and some detected particles seem to be on highly-tilted orbits

  3. THE COLOR GLASS CONDENSATE, RHIC AND HERA.

    SciTech Connect

    MCLERRAN,L.

    2002-04-30

    In this talk, I discuss a universal form of matter, the Color Glass Condensate. It is this matter which composes the low x part of all hadronic wavefunctions. The experimental programs at RHIC and HERA, and future programs at LHC and eRHIC may allow us to probe and study the properties of this matter.

  4. Measuring the Thickness of a Transparent Ring with a Laser

    ERIC Educational Resources Information Center

    Leung, Alfred F.

    2007-01-01

    There seems to be no reasonable way to measure the thickness of a narrow-mouth glass bottle. One can measure the outer and inner diameters of the mouth with a ruler or a pair of calipers and then calculate the thickness. However, this measurement might be interfered with by the threads at the mouth. Furthermore, it is uncertain whether the…

  5. Measuring the Thickness of a Transparent Ring with a Laser

    ERIC Educational Resources Information Center

    Leung, Alfred F.

    2007-01-01

    There seems to be no reasonable way to measure the thickness of a narrow-mouth glass bottle. One can measure the outer and inner diameters of the mouth with a ruler or a pair of calipers and then calculate the thickness. However, this measurement might be interfered with by the threads at the mouth. Furthermore, it is uncertain whether the…

  6. Storage ring cross section measurements for electron impact ionization of Fe8+

    NASA Astrophysics Data System (ADS)

    Hahn, M.; Becker, A.; Bernhardt, D.; Grieser, M.; Krantz, C.; Lestinsky, M.; Müller, A.; Novotný, O.; Pindzola, M. S.; Repnow, R.; Schippers, S.; Spruck, K.; Wolf, A.; Savin, D. W.

    2016-04-01

    We have measured electron impact ionization (EII) for Fe8+ forming Fe9+ from below the ionization threshold to 1200 eV. These measurements were carried out at the TSR heavy ion storage ring. The objective of using a storage ring is to store the ion beam initially so that metastable levels decay, thereby allowing for measurements on a well-defined ground-level ion beam. In this case, however, some metastable levels were too long lived to be removed. We discuss several methods for quantifying the metastable fraction, which we estimate to be ˜30%-40%. Although metastables remain problematic, the present storage ring work improves upon other experimental geometries by limiting the metastable contamination to only a few long-lived excited levels. We discuss some future prospects for obtaining improved measurements of Fe8+ and other ions with long-lived metastable levels.

  7. Extinction measurement with open-path cavity ring-down technique of variable cavity length.

    PubMed

    Cui, Hao; Li, Bincheng; Han, Yanling; Wang, Jing; Gao, Chunming; Wang, Yafei

    2016-06-13

    Open-path cavity ring down (OPCRD) technique with variable cavity length was developed to measure optical extinction including scattering and absorption of air in laboratory environment at 635 nm wavelength. By moving the rear cavity mirror of the ring-down cavity to change cavity length, ring-down time with different cavity lengths was experimentally obtained and the dependence of total cavity loss on cavity length was determined. The extinction coefficient of air was determined by the slope of linear dependence of total cavity loss on cavity length. The extinction coefficients of air with different particle concentrations at 635 nm wavelength were measured to be from 10.46 to 84.19 Mm-1 (ppm/m) in a normal laboratory environment. This variable-cavity-length OPCRD technique can be used for absolute extinction measurement and real-time environmental monitoring without closed-path sample cells and background measurements.

  8. Streak-camera measurements of the PEP-II High-Energy Ring

    SciTech Connect

    Fisher, A.S.; Assmann, R.W.; Lumpkin, A.H.; Zotter, B.; Byrd, J.; Hinkson, J.

    1998-05-01

    The third commissioning run of the PEP-II High-Energy Ring (HER, the 9-GeV electron ring), in January 1998, included extensive measurements of single-bunch and multibunch fills using LBNL's dual-axis streak camera combined with Argonne's 119.0-MHz synchroscan plug-in. For single bunches, the dependence of bunch length on charge and RF voltage was studied from 0.5 to 2.5 mA and from 9.5 to 15 MV; the measured values ranged from 38 to 49 ps rms. The multibunch work focused on longitudinal instabilities as the current in the ring was raised to 500 mA, and the length of the bunch train was varied from 100 bunches (with 4.2-ns spacing) to a full ring. Large oscillations of up to 180 ps peak to peak were observed for bunches half a ring turn away from the start of the train, especially at higher currents and for trains filling roughly half the ring. These observations led to a new fill pattern with more gaps that allowed the authors to raise the current to 750 mA by the end of the run.

  9. Measurement of spin observables using a storage ring with polarized beam and polarized internal gas target

    SciTech Connect

    Lee, K.; Miller, M.A.; Smith, A.; Hansen, J.; Bloch, C.; van den Brand, J.F.J.; Bulten, H.J.; Ent, R.; Goodman, C.D.; Jacobs, W.W.; Jones, C.E.; Korsch, W.; Leuschner, M.; Lorenzon, W.; Marchlenski, D.; Meyer, H.O.; Milner, R.G.; Neal, J.S.; Pancella, P.V.; Pate, S.F.; Pitts, W.K.; von Przewoski, B.; Rinckel, T.; Sowinski, J.; Sperisen, F.; Sugarbaker, E.; Tschalaer, C.; Unal, O.; Zhou, Z. Indiana University Cyclotron Facility, Bloomington, Indiana 47405 MIT-Bates Linear Accelerator Center and Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 University of Wisconsin enMadison, Madison, Wisconsin 53706 The Ohio State University, Columbus, Ohio 43210 Western Michigan University, Kalamazoo, Michigan 49007 )

    1993-02-08

    We report the first measurement of analyzing powers and spin correlation parameters using a storage ring with both beam and internal target polarized. Spin observables were measured for elastic scattering of 45 and 198 MeV protons from polarized [sup 3]He nuclei in a new laser-pumped internal gas target at the Indiana University Cyclotron Facility Cooler Ring. Scattered protons and recoil [sup 3]He nuclei were detected in coincidence with large acceptance plastic scintillators and silicon detectors. The internal-target technique demonstrated in this experiment has broad applicability to the measurement of spin-dependent scattering in nuclear and particle physics.

  10. Measuring the residual stress in dental composites using a ring slitting method.

    PubMed

    Park, Jeong Won; Ferracane, Jack L

    2005-09-01

    The objective of this experiment was to employ the ring slitting method for the measurement of the residual stress (RS) produced in dental composite materials after polymerization. This study was designed to determine the effect of slitting and measuring time on the residual stress. Rings were made in a split brass mold from three composites (Z100/3MESPE; Herculite/Kerr; Heliomolar/Ivoclar) and cured in a Triad II (Dentsply). Two points were scribed, and the rings were slit at either 1 h (Early-group) or 24 h (Delayed-group) after curing the composite. The change in the distance between the scribed points was measured using an image analyzer system at both 1 and 24 h after slitting. From the measured change, circumferential RS was calculated and statistically analyzed with ANOVA/Tukey's (P<0.05). The degree of conversion of each composite at 1 and 24 h was measured with FTIR and analyzed using Student's t-test (P<0.05). In general, the residual stress (range=0.42-2.84 MPa) was highest for Z100 and lowest for Heliomolar, but this depended upon the test conditions. The early cut (1 h slitting), 24 h measurement groups showed the highest residual stress values. This study, describes a ring slitting method to measure residual stress generated in dental composites during and after curing. The stress of composite can be affected by the cutting and measurement time.

  11. Heavy Quark Production in ep Collisions at HERA

    SciTech Connect

    Bloch, I.

    2006-11-17

    Collisions of electrons with protons at a centre-of-mass energy of 318 GeV are being recorded by the two experiments H1 and ZEUS at the ep accelerator HERA at DESY, Hamburg (Germany). Measurements involving beauty and charm quarks, performed by these experiments, provide a good environment to test perturbative QCD predictions as the large quark mass supplies a hard scale. Recent measurements of beauty and charm production in ep collisions are presented here. QCD predictions at next-to-leading order are found to generally agree with the measurements. Beauty measurements however are sometimes slightly higher than the predicted cross sections. Beauty and charm contributions to the proton structure were also measured and are well described by QCD predictions.

  12. Organization of FtsZ Filaments in the Bacterial Division Ring Measured from Polarized Fluorescence Microscopy

    PubMed Central

    Si, Fangwei; Busiek, Kimberly; Margolin, William; Sun, Sean X.

    2013-01-01

    Cytokinesis in bacteria is accomplished by a ring-shaped cell-division complex (the Z-ring). The primary component of the Z-ring is FtsZ, a filamentous tubulin homolog that serves as a scaffold for the recruitment of other cell-division-related proteins. FtsZ forms filaments and bundles. In the cell, it has been suggested that FtsZ filaments form the arcs of the ring and are aligned in the cell-circumferential direction. Using polarized fluorescence microscopy in live Escherichia coli cells, we measure the structural organization of FtsZ filaments in the Z-ring. The data suggest a disordered organization: a substantial portion of FtsZ filaments are aligned in the cell-axis direction. FtsZ organization in the Z-ring also appears to depend on the bacterial species. Taken together, the unique arrangement of FtsZ suggests novel unexplored mechanisms in bacterial cell division. PMID:24209842

  13. Latest on polarization in electron storage rings

    SciTech Connect

    Chao, A.W.

    1983-01-01

    The field of beam polarization in electron storage rings is making rapid progress in recent several years. This report is an attempt to summarize some of these developments concerning how to produce and maintain a high level of beam polarization. Emphasized will be the ideas and current thoughts people have on what should and could be done on electron rings being designed at present such as HERA, LEP and TRISTAN. 23 references.

  14. Measurement of annual ring width of log ends in forest machinery

    NASA Astrophysics Data System (ADS)

    Marjanen, Kalle; Ojala, Petteri; Ihalainen, Heimo

    2008-02-01

    The quality of wood is of increasing importance in wood industry. One important quality aspect is the average annual ring width and its standard deviation that is related to the wood strength and stiffness. We present a camera based measurement system for annual ring measurements. The camera system is designed for outdoor use in forest harvesters. Several challenges arise, such as the quality of cutting process, camera positioning and the light variations. In the freshly cut surface of log end the annual rings are somewhat unclear due to small splinters and saw marks. In the harvester the optical axis of camera cannot be set orthogonally to the log end causing non-constant resolution of the image. The amount of natural light in forest varies from total winter darkness to midsummer brightness. In our approach the image is first geometrically transformed to orthogonal geometry. The annual ring width is measured with two-dimensional power spectra. The two-dimensional power spectra combined with the transformation provide a robust method for estimating the mean and the standard deviation of annual ring width. With laser lighting the variability due to natural lighting can be minimized.

  15. Working Group I: Parton distributions: Summary report for the HERA LHC Workshop Proceedings

    SciTech Connect

    Dittmar, M.; Forte, S.; Glazov, A.; Moch, S.; Alekhin, S.; Altarelli, G.; Andersen, Jeppe R.; Ball, R.D.; Blumlein, J.; Bottcher, H.; Carli, T.; Ciafaloni, M.; Colferai, D.; Cooper-Sarkar, A.; Corcella, G.; Del Debbio, L.; Dissertori, G.; Feltesse, J.; Guffanti, A.; Gwenlan, C.; Huston, J.; /Zurich, ETH /DESY, Zeuthen /Serpukhov, IHEP /CERN /Rome III U. /INFN, Rome3 /Cambridge U. /Edinburgh U. /Florence U. /INFN, Florence /Oxford U. /DSM, DAPNIA, Saclay /Michigan State U. /Uppsala U. /Barcelona U., ECM /Podgorica U. /Turin U. /INFN, Turin /Harish-Chandra Res. Inst. /Fermilab /Hamburg U., Inst. Theor. Phys. II

    2005-11-01

    We provide an assessment of the impact of parton distributions on the determination of LHC processes, and of the accuracy with which parton distributions (PDFs) can be extracted from data, in particular from current and forthcoming HERA experiments. We give an overview of reference LHC processes and their associated PDF uncertainties, and study in detail W and Z production at the LHC.We discuss the precision which may be obtained from the analysis of existing HERA data, tests of consistency of HERA data from different experiments, and the combination of these data. We determine further improvements on PDFs which may be obtained from future HERA data (including measurements of F{sub L}), and from combining present and future HERA data with present and future hadron collider data. We review the current status of knowledge of higher (NNLO) QCD corrections to perturbative evolution and deep-inelastic scattering, and provide reference results for their impact on parton evolution, and we briefly examine non-perturbative models for parton distributions. We discuss the state-of-the art in global parton fits, we assess the impact on them of various kinds of data and of theoretical corrections, by providing benchmarks of Alekhin and MRST parton distributions and a CTEQ analysis of parton fit stability, and we briefly presents proposals for alternative approaches to parton fitting. We summarize the status of large and small x resummation, by providing estimates of the impact of large x resummation on parton fits, and a comparison of different approaches to small x resummation, for which we also discuss numerical techniques.

  16. Charge Exchange Contribution to the Decay of the Ring Current, Measured by Energetic Neutral Atoms (ENAs)

    NASA Technical Reports Server (NTRS)

    Jorgensen, A. M.; Henderson, M. G.; Roelof, E. C.; Reeves, G. D.; Spence, H. E.

    2001-01-01

    In this paper we calculate the contribution of charge exchange to the decay of the ring current. Past works have suggested that charge exchange of ring current protons is primarily responsible for the decay of the ring current during the late recovery phase, but there is still much debate about the fast decay of the early recovery phase. We use energetic neutral atom (ENA) measurements from Polar to calculate the total ENA energy escape. To get the total ENA escape we apply a forward modeling technique, and to estimate the total ring current energy escape we use the Dessler-Parker-Sckopke relationship. We find that during the late recovery phase of the March 10, 1998 storm ENAs with energies greater than 17.5 keV can account for 75% of the estimated energy loss from the ring current. During the fast recovery the measured ENAs can only account for a small portion of the total energy loss. We also find that the lifetime of the trapped ions is significantly shorter during the fast recovery phase than during the late recovery phase, suggesting that different processes are operating during the two phases.

  17. Charge Exchange Contribution to the Decay of the Ring Current, Measured by Energetic Neutral Atoms (ENAs)

    NASA Technical Reports Server (NTRS)

    Jorgensen, A. M.; Henderson, M. G.; Roelof, E. C.; Reeves, G. D.; Spence, H. E.

    2001-01-01

    In this paper we calculate the contribution of charge exchange to the decay of the ring current. Past works have suggested that charge exchange of ring current protons is primarily responsible for the decay of the ring current during the late recovery phase, but there is still much debate about the fast decay of the early recovery phase. We use energetic neutral atom (ENA) measurements from Polar to calculate the total ENA energy escape. To get the total ENA escape we apply a forward modeling technique, and to estimate the total ring current energy escape we use the Dessler-Parker-Sckopke relationship. We find that during the late recovery phase of the March 10, 1998 storm ENAs with energies greater than 17.5 keV can account for 75% of the estimated energy loss from the ring current. During the fast recovery the measured ENAs can only account for a small portion of the total energy loss. We also find that the lifetime of the trapped ions is significantly shorter during the fast recovery phase than during the late recovery phase, suggesting that different processes are operating during the two phases.

  18. Hard QCD and hadronic final state at HERA

    NASA Astrophysics Data System (ADS)

    Valkárová, Alice

    2017-03-01

    The production of inclusive jets, dijets and trijets was investigated with the high statistics HERA II DIS data. The H1 experiment has determined the corresponding cross sections with improved experimental precision and sophisticated method of unfolding, compared to previous measurements. The results were compared with NLO QCD and NNLO QCD calculations for the first time. Signals of QCD instanton-induced processes were searched for in neutral current deep-inelastic scattering with high momentum transfer Q2 by H1 collaboration. Compared to earlier publications, the limits were improved by an order of magnitude. A search for a narrow baryonic state in the p KS0 and p ¯KS0 system has been performed with the ZEUS detector. Measurements with the ZEUS data in DIS of isolated photons were reported, including studies of kinematic variables sensitive to the event dynamics. The measurements were compared to MC models and to theoretical calculations based on kt factorisation QCD approach.

  19. Information from leading neutrons at HERA

    NASA Astrophysics Data System (ADS)

    Khoze, V. A.; Martin, A. D.; Ryskin, M. G.

    2006-12-01

    In principle, leading neutrons produced in photoproduction and deep-inelastic scattering at HERA have the potential to determine the pion structure function, the neutron absorptive cross section and the form of the pion flux. To explore this potential we compare theoretical predictions for the xL and pt spectra of leading neutrons and the Q2 dependence of the cross section with the existing ZEUS data.

  20. Amphibious hearing in ringed seals (Pusa hispida): underwater audiograms, aerial audiograms and critical ratio measurements.

    PubMed

    Sills, Jillian M; Southall, Brandon L; Reichmuth, Colleen

    2015-07-01

    Ringed seals (Pusa hispida) are semi-aquatic marine mammals with a circumpolar Arctic distribution. In this study, we investigate the amphibious hearing capabilities of ringed seals to provide auditory profiles for this species across the full range of hearing. Using psychophysical methods with two trained ringed seals, detection thresholds for narrowband signals were measured under quiet, carefully controlled environmental conditions to generate aerial and underwater audiograms. Masked underwater thresholds were measured in the presence of octave-band noise to determine critical ratios. Results indicate that ringed seals possess hearing abilities comparable to those of spotted seals (Phoca largha) and harbor seals (Phoca vitulina), and considerably better than previously reported for ringed and harp seals. Best sensitivity was 49 dB re. 1 µPa (12.8 kHz) in water, and -12 dB re. 20 µPa (4.5 kHz) in air, rivaling the acute hearing abilities of some fully aquatic and terrestrial species in their respective media. Critical ratio measurements ranged from 14 dB at 0.1 kHz to 31 dB at 25.6 kHz, suggesting that ringed seals--like other true seals--can efficiently extract signals from background noise across a broad range of frequencies. The work described herein extends similar research on amphibious hearing in spotted seals recently published by the authors. These parallel studies enhance our knowledge of the auditory capabilities of ice-living seals, and inform effective management strategies for these and related species in a rapidly changing Arctic environment.

  1. A General Purpose Q-Measuring Circuit Using Pulse Ring-Down.

    PubMed

    Quine, Richard W; Mitchell, Deborah G; Eaton, Gareth R

    2011-02-01

    A general purpose pulsed microwave circuit was developed for the purpose of measuring resonator Q by the pulse ring-down method in EPR spectrometers without pulse capability. The circuit was installed and tested in a Bruker X-band EPR bridge. This method and circuit could be adapted for use in a variety of spectrometers operating at various microwave frequencies.

  2. Measuring tree-ring increments on tree bole sections with a video-based robotic positioner.

    PubMed

    Schmidt, R A; Kaufmann, M R; Porth, L; Watkins, R K

    1996-10-01

    We report on the design and performance of a system that speeds measurement of radial tree-ring increments on tree stem disks; this method replaces the usual binocular microscope with a video image, and automates the measuring and recording processes. The system was used to measure bole sections cut from stems at various heights to determine volume growth of representative trees in an old-growth ponderosa pine stand. The objective of the measurement system was to speed acquisition of annual growth increments from a large number of disks. A personal computer controls the location of a video camera in a 3-axis positioning system. The operator views the sample on a video monitor and positions the camera over each ring by selecting it with a computer-driven mouse. The computer measures and records the distance that the camera moves between each ring. Task selection is facilitated by menu-driven software that also formats, checks and organizes data files. Measurements have a resolution of 0.026 mm; however, finer resolution could be obtained with a different camera lens. Tests of measurement variability (repeated measurements by individual operators on a single radius) indicated standard errors of 0.006 mm or less for the first measurement sets for four operators. Correlation coefficients among four radii per bole section were as low as 0.66 for a whole tree, suggesting that measurements on single radii may provide poor estimates of radial growth for old trees. This system also offers the potential for automatic ring detection and measurement.

  3. Chiral cavity ring down polarimetry: Chirality and magnetometry measurements using signal reversals.

    PubMed

    Bougas, Lykourgos; Sofikitis, Dimitris; Katsoprinakis, Georgios E; Spiliotis, Alexandros K; Tzallas, Paraskevas; Loppinet, Benoit; Rakitzis, T Peter

    2015-09-14

    We present the theory and experimental details for chiral-cavity-ring-down polarimetry and magnetometry, based on ring cavities supporting counterpropagating laser beams. The optical-rotation symmetry is broken by the presence of both chiral and Faraday birefringence, giving rise to signal reversals which allow rapid background subtractions. We present the measurement of the specific rotation at 800 nm of vapors of α-pinene, 2-butanol, and α-phellandrene, the measurement of optical rotation of sucrose solutions in a flow cell, the measurement of the Verdet constant of fused silica, and measurements and theoretical treatment of evanescent-wave optical rotation at a prism surface. Therefore, these signal-enhancing and signal-reversing methods open the way for ultrasensitive polarimetry measurements in gases, liquids and solids, and at surfaces.

  4. Chiral cavity ring down polarimetry: Chirality and magnetometry measurements using signal reversals

    SciTech Connect

    Bougas, Lykourgos; Sofikitis, Dimitris; Katsoprinakis, Georgios E.; Spiliotis, Alexandros K.; Rakitzis, T. Peter; Tzallas, Paraskevas; Loppinet, Benoit

    2015-09-14

    We present the theory and experimental details for chiral-cavity-ring-down polarimetry and magnetometry, based on ring cavities supporting counterpropagating laser beams. The optical-rotation symmetry is broken by the presence of both chiral and Faraday birefringence, giving rise to signal reversals which allow rapid background subtractions. We present the measurement of the specific rotation at 800 nm of vapors of α-pinene, 2-butanol, and α-phellandrene, the measurement of optical rotation of sucrose solutions in a flow cell, the measurement of the Verdet constant of fused silica, and measurements and theoretical treatment of evanescent-wave optical rotation at a prism surface. Therefore, these signal-enhancing and signal-reversing methods open the way for ultrasensitive polarimetry measurements in gases, liquids and solids, and at surfaces.

  5. Direct Measurement and Chemical Speciation of Top Ring Zone Liquid During Engine Operation

    SciTech Connect

    Splitter, Derek A; Burrows, Barry Clay; Lewis Sr, Samuel Arthur

    2015-01-01

    The present manuscript consists of proof of concept experiments involving direct measurements and detailed chemical speciation from the top ring zone of a running engine. The work uses a naturally aspirated single cylinder utility engine that has been modified to allow direct liquid sample acquisition from behind the top ring. Samples were analyzed and spectated using gas chromatographic techniques. Results show that the liquid mixture in the top ring zone is neither neat lubricant nor fuel but a combination of the two with unique chemical properties. At the tested steady state no-load operating condition, the chemical species of the top ring zone liquid were found to be highly dependent on boiling point, where both low reactivity higher boiling point fuel species and lubricant are observed to be the dominant constituents. The results show that at least for the tested condition, approximately 25% of the top ring zone is comprised of gasoline fuel like molecules, which are dominated by high octane number aromatic species, while the remainder of the liquid is comprised of lubricant like species.

  6. A statistical analysis of the beam position measurement in the Los Alamos proton storage ring

    SciTech Connect

    Kolski, Jeff S; Macek, Robert J; Mc Crady, Rodney C

    2010-01-01

    The beam position monitors (BPMs) are the main diagnostic in the Los Alamos Proton Storage Ring (PSR). They are used in several applications during operations and tuning including orbit bumps and measurements of the tune, closed orbit (CO), and injection offset. However the BPM data acquisition system makes use of older technologies, such as matrix switches, that could lead to faulty measurements. This is the first statistical study of the PSR BPM perfonnance using BPM measurements. In this study, 101 consecutive CO measurements are analyzed. Reported here are the results of the statistical analysis, tune and CO measurement spreads, the BPM single turn measurement error, and examples of the observed data acquisition errors.

  7. Compensating measured intra-wafer ring oscillator stage delay with intra-wafer exposure dose corrections

    NASA Astrophysics Data System (ADS)

    Verhaegen, Staf; Nackaerts, Axel; Dusa, Mircea; Carpaij, Rene; Vandenberghe, Geert; Finders, Jo

    2006-03-01

    The purpose of this paper is to use measurements on real working devices to derive more information than typically measured by the classic line-width measurement techniques. The first part of the paper will discuss the principle of the measurements with a ring oscillator, a circuit used to measure the speed of elementary logic gates. These measurements contribute to the understanding of the exact timing dependencies in circuits, which is of utmost importance for the design and simulation of these circuits. When connecting an odd number of digital inverting stages in a ring, the circuit has no stable digital state but acts as an analog oscillator with the oscillation frequency dependent on the analog propagation delay of the signals through the stages. By varying some conditions during a litho step, the delay change caused by the process condition change can be measured very accurately. The response of the ring oscillator delay to exposure dose is measured and presented in this paper together with a comparison of measured line-width values of the poly gate lines. The second part of the paper will focus on improving the intra-wafer variation of the stage delay. A number of ring oscillators are put in a design at different slit and scan locations. 200mm wafers are processed with 48 full dies present. From the intra-wafer delay fingerprint and the dose sensitivity of the delay an intra-wafer dose correction, also called a dose recipe, is calculated. This dose recipe is used on the scanner to compensate for effects that are the root cause for the delay profile; including reticle and processing such as track, etch and annealing.

  8. Recombination and Ionization Measurements at the Heidelberg Heavy Ion Storage Ring TSR

    NASA Astrophysics Data System (ADS)

    Hahn, M.; Lestinsky, M.; Novotný, O.; Savin, D. W.; Bernhardt, D.; Müller, A.; Schippers, S.; Krantz, C.; Grieser, M.; Repnow, R.; Wolf, A.

    2011-05-01

    Knowledge of the charge state distribution (CSD) of astrophysical plasmas is important for the interpretation of spectroscopic data. To accurately calculate CSDs, reliable rate coefficients are needed for dielectronic recombination (DR), which is the dominant electron-ion recombination mechanism for most ions, and for electron impact ionization (EII). We are carrying out DR and EII measurements of astrophysically important ions using the TSR storage ring at the Max-Plank-Institute for Nuclear Physics in Heidelberg, Germany. Storage ring measurements are largely free of the metastable contamination found in other experimental geometries, resulting in more unambiguous DR and EII reaction rate measurements. The measured data can be used in plasma modelling as well as for benchmarking theoretical atomic calculations.

  9. Surveying for Exoplanetary Auroral Radio Emission with HERA

    NASA Astrophysics Data System (ADS)

    Williams, Peter K. G.; Berger, Edo

    2017-05-01

    HERA, the Hydrogen Epoch of Reionization Array, is a long wavelength radio telescope under construction in South Africa. Although HERA's primary science driver is the search for radio signatures of the Epoch of Reionization, its large collecting area, excellent calibratability, and methodical observing scheme make it a world-class tool for time-domain radio astronomy as well. In particlar, the completed HERA array will be sensitive to auroral radio bursts from planets with auroral powers and magnetic field strengths comparable to (factors of a few larger than) those of Jupiter, assuming a fiducial distance of 10 pc. HERA will log thousands of hours monitoring the stellar systems in its sky footprint, including the 40 systems found within this fiducial horizon. In this talk I will describe the current status of HERA and its future prospects for directly detecting exoplanetary magnetospheres.

  10. Saturn's Rings

    NASA Astrophysics Data System (ADS)

    Cuzzi, J. N.

    2014-12-01

    observations: direct measurement of the still-unknown ring mass; direct in-situ sampling of ring particle composition (targeting the iron- or carbon-based red nonicy component); and radar backscattering observations. Cuzzi, J. N. et al. (2010) An Evolving View of Saturn's Dynamic Rings; Science (Inv. Review) 19 March 2010: 327. no. 5972, pp. 1470 - 1475

  11. Measuring Intraocular Pressure in Patients With Keratoconus With and Without Intrastromal Corneal Ring Segments.

    PubMed

    Mendez-Hernandez, Carmen; Arribas-Pardo, Paula; Cuiña-Sardiña, Ricardo; Fernandez-Perez, Cristina; Mendez-Fernandez, Rosalia; Saenz-Frances, Federico; Benitez-Del-Castillo, Jose M; Garcia-Feijoo, Julian

    2017-01-01

    To compare intraocular pressure (IOP) measurements made using 5 tonometers in keratoconic eyes with and without intrastromal corneal ring segments. This was an observational case series study. A total of 147 eyes of 147 patients with keratoconus, 74 of which had undergone corneal ring segment placement, were prospectively evaluated. IOP was measured using the tonometers Tonopen XL, Pascal dynamic contour tonometer, iCare Pro, ocular response analyzer (ORA), and Goldmann applanation (GAT) in random order. The Bland-Altman method was used to examine interinstrument agreement. Effects on readings of central corneal thickness, corneal curvature, and corneal astigmatism were assessed by multivariate regression analysis. Smallest mean IOP differences with GAT measurements in eyes without and with ring segments, respectively, were detected for iCare Pro [0.2 (2.9) mm Hg and 0.4 (3.0) mm Hg, P=0.914] and greatest differences for ORA Goldmann-correlated IOP [5.8 (3.3) mm Hg and 6.0 (3.1) mm Hg, P=0.363]. Best agreement with GAT was shown by iCare Pro (ICC=0.829; 95% CI, 0.721-0.896) and worse agreement by ORA corneal-compensated IOP (ICC=-0.145; 95% CI, -0.826 to 0.283). All but the dynamic contour tonometer readings were influenced by central corneal thickness, yet these measurements were affected by the presence of ring segments (P=0.017) and corneal astigmatism (P=0.030). Corneal curvature only affected ORA Goldmann-correlated IOP (P=0.029). All 5 tonometers provided reliable IOP readings in the keratoconic eyes regardless of the presence of corneal ring segments. iCare Pro readings were most consistent with GAT, whereas ORA readings were least consistent with this reference standard.

  12. Quantitative measurements of Jupiter, Saturn, their rings and satellites made from Voyager imaging data

    NASA Technical Reports Server (NTRS)

    Collins, S. A.; Bunker, A. S.

    1983-01-01

    The Voyager spacecraft cameras use selenium-sulfur slow scan vidicons to convert focused optical images into sensible electrical signals. The vidicon-generated data thus obtained are the basis of measurements of much greater precision than was previously possible, in virtue of their superior linearity, geometric fidelity, and the use of in-flight calibration. Attention is given to positional, radiometric, and dynamical measurements conducted on the basis of vidicon data for the Saturn rings, the Saturn satellites, and the Jupiter atmosphere.

  13. Quantitative measurements of Jupiter, Saturn, their rings and satellites made from Voyager imaging data

    NASA Technical Reports Server (NTRS)

    Collins, S. A.; Bunker, A. S.

    1983-01-01

    The Voyager spacecraft cameras use selenium-sulfur slow scan vidicons to convert focused optical images into sensible electrical signals. The vidicon-generated data thus obtained are the basis of measurements of much greater precision than was previously possible, in virtue of their superior linearity, geometric fidelity, and the use of in-flight calibration. Attention is given to positional, radiometric, and dynamical measurements conducted on the basis of vidicon data for the Saturn rings, the Saturn satellites, and the Jupiter atmosphere.

  14. Magnetic measurements on an in-vacuum undulator for the NSLS x-ray ring

    SciTech Connect

    Rakowsky, G.; Aspenleiter, J.J.; Graves, W.S.

    1997-07-01

    Magnetic measurements have been performed on the In-Vacuum Undulator (IVUN), built jointly by BNL and SPring-8 for the NSLS X-ray Ring. The IVUN magnet has a Halback-type, pure-permanent magnet structure with a period of 11 mm and a minimum gap of 2 mm. Results of magnetic measurements utilizing Hall probe, moving wire and pulsed wire techniques will be presented and compared.

  15. Ionization and Recombination Measurements at the Heidelberg Heavy Ion Storage Ring TSR

    NASA Astrophysics Data System (ADS)

    Savin, D. W.; Hahn, M.; Lestinsky, M.; Novonty, O.; Bernhardt, D.; Mueller, A.; Schippers, S.; Krantz, C.; Wolf, A.

    2011-05-01

    Reliable ionization balance calculations are needed to analyze spectra from a wide range of cosmic sources including photoionized objects such as AGNs and X-ray binaries and electron ionized objects such as as stars, supernovae, galaxies, and clusters of galaxies. These theoretical charge state distributions (CSD) depend in turn upon the underlying atomic data. Of particular importance are reliable rate coefficients for dielectronic recombination (DR), which is the dominant electron-ion recombination recombination mechanism for most ions, and for electron impact ionization (EII). We are carrying out DR and EII measurements of astrophysically important ions using the heavy ion Test Storage Ring (TSR) at the Max-Plank-Institute for Nuclear Physics in Heidelberg, Germany. The storage ring measurements are largely free of the metastable contamination found in other experimental geometries. Storage ring measurements therefore result in more precise DR and EII reaction rate measurements. The measured rate coefficients can be used in modeling cosmic and laboratory plasmas as well as in the benchmarking of theoretical atomic calculations. Here we report results for selected recent DR and EII measurements.

  16. Recombination and Ionization Measurements at the Heidelberg Heavy Ion Storage Ring TSR

    NASA Astrophysics Data System (ADS)

    Hahn, Michael; Bernhardt, D.; Krantz, C.; Lestinsky, M.; Mueller, A.; Novotny, O.; Schippers, S.; Wolf, A.; Savin, D. W.

    2010-03-01

    Reliable ionization balance calculations are needed to analyze spectra from a wide range of cosmic sources including photoionized objects such as AGNs and X-ray binaries and electron ionized objects such as as stars, supernovae, galaxies, and clusters of galaxies. These theoretical charge state distributions (CSD) depend in turn upon the underlying atomic data. Of particular importance are reliable rate coefficients for dielectronic recombination (DR), which is the dominant electron-ion recombination recombination mechanism for most ions, and for electron impact ionzation (EII). We are carrying out DR and EII measurements of astrophysically important ions using the heavy ion Test Storage Ring (TSR) at the Max-Plank-Insitute for Nuclear Physics in Heidelberg, Germany. The storage ring measurements are largely free of the metastable contamination found in other experimental geometries. Storage ring measurements therefore result in more precise DR and EII reaction rate measurements. The measured rate coefficients can be used in plasma modelling as well as in the benchmarking of theoretical atomic calculations. Here we report recent DR and EII measurements of Mg VIII and Fe XII.

  17. GINGER (Gyroscopes IN General Relativity), a ring lasers array to measure the Lense-Thirring effect

    NASA Astrophysics Data System (ADS)

    Di Virgilio, Angela D. V.

    The purpose of the GINGER is to perform the first test of general relativity (not considering the gravitational redshift measurements) in a terrestrial laboratory, using light as a probe. The experiment will complement the ones in space, performed or under way, with an entirely different technique and at a far lower cost. The methodology is based on ring-lasers, which are extremely accurate rotation sensors and can not only sense purely kinematical rotations (Sagnac effect accounting for the Earth rotation, polar motion of the terrestrial axis, local rotational movements of the laboratory due to the Earth crust dynamics...), but also general relativistic contributions such as the de Sitter effect (coupling between the gravito-electric field of the earth and the kinematical rotation) and the Lense-Thirring effect (inertial frame dragging due to the angular momentum of the earth). In order to reveal the latter effects, ring-laser response must be improved to be able to measure the effective rotation vector (kinematic plus GR terms) with an accuracy of 1 part in 109 or better. This is a challenging technological aspect, which however has been accurately taken into account by designing a system of ring lasers that will be implemented in this project. A ring laser have been installed inside the underground laboratory of GranSasso, with the purpose to see if an underground location is the right choice for GINGER. The apparatus and the preliminary results will be discussed.

  18. Reconstructing seasonal climate from high-resolution carbon and oxygen isotope measurements across tree rings

    NASA Astrophysics Data System (ADS)

    Schubert, B.; Jahren, H.

    2014-12-01

    Intra-annual records of carbon (δ13C) and oxygen (δ18O) isotope measurements across tree rings reveal significant changes in δ13C and δ18O value across each growing season. We previously found that across a broad range of climate regimes, the seasonal change in δ13C measured within tree rings reflects changes in seasonal precipitation amount, and demonstrated its utility for quantifying seasonal paleo-precipitation from non-permineralized, fossil wood. Here we produce an equation relating intra-ring changes in δ18O to seasonal changes in temperature and precipitation amount, but the equation yields for unknowns (summer and winter precipitation amounts, and cold and warm month mean temperatures). By combining high-resolution δ13C and δ18O records with independent estimates of mean annual temperature and mean annual precipitation, we show how our general, global relationships could be used to quantify seasonal climate information from fossil sites. We validate our approach using high-resolution δ13C and δ18O data from trees growing at five modern sites (Hawaii, Alaska, Norway, Guyana, and Kenya). The reconstructed estimates of seasonal precipitation and temperature showed excellent agreement with the known climate data for each site (precipitation: R2 = 0.98; temperature: R2 = 0.91). These results confirm that across diverse sites and tree species, seasonal climate information can be accurately quantified using a combination of carbon and oxygen intra-ring isotope profiles.

  19. Saturn's G and D Rings Provide Nearly Complete Measured Scattering Phase Functions of Nearby Debris Disks

    NASA Astrophysics Data System (ADS)

    Hedman, Matthew M.; Stark, Christopher C.

    2015-09-01

    The appearance of debris disks around distant stars depends upon the scattering/phase function (SPF) of the material in the disk. However, characterizing the SPFs of these extrasolar debris disks is challenging because only a limited range of scattering angles are visible to Earth-based observers. By contrast, Saturn’s tenuous rings can be observed over a much broader range of geometries, so their SPFs can be much better constrained. Since these rings are composed of small particles released from the surfaces of larger bodies, they are reasonable analogs to debris disks and so their SPFs can provide insights into the plausible scattering properties of debris disks. This work examines two of Saturn’s dusty rings: the G ring (at 167,500 km from Saturn’s center) and the D68 ringlet (at 67,600 km). Using data from the cameras on board the Cassini spacecraft, we are able to estimate the rings’ brightnesses at scattering angles ranging from 170° to 0.°5. We find that both of the rings exhibit extremely strong forward-scattering peaks, but for scattering angles above 60° their brightnesses are nearly constant. These SPFs can be well approximated by a linear combination of three Henyey-Greenstein functions, and are roughly consistent with the SPFs of irregular particles from laboratory measurements. Comparing these data to Fraunhofer and Mie models highlights several challenges involved in extracting information about particle compositions and size distributions from SPFs alone. The SPFs of these rings also indicate that the degree of forward scattering in debris disks may be greatly underestimated.

  20. Measurement of inner and/or outer profiles of pipes using ring beam devices

    NASA Astrophysics Data System (ADS)

    Wakayama, T.; Yoshizawa, T.

    2009-11-01

    Inner profile measurement is an important matter in such fields as medicine, dentistry and anthropology as well as mechanical engineering and industry. Here we propose a measurement method for inner diameter of pipes and/or holes. The key device in this technique is a ring beam device which consists of a conical mirror and a laser diode. And the fundamental principle is based on optical sectioning without any contact probe. The optically sectioned profile of an inner wall of a pipe-like object is analyzed to give the inner profile in addition to the inner diameter. This optical instrument with a simple and small configuration is now under development for practical uses. In the hitherto-tried experimental works, the availability of this instrument has been highly evaluated and usability for practical applications is expected, especially, for measurement and inspection of mechanical components and elements besides pipes. This ring beam device consisting of a conical mirror and a LD is assembled to form a disklike light beam sheet. We show measurement result of pipes and holes, and, at the same time, report a compact inner profile measuring instrument. Both the ring beam device and a miniaturized CCD camera are fabricated in a glass tube. Availability of this instrument is shown by measuring the inner profiles of various pipes. In response to this trial, there appeared a strong request that not only the internal but external profiles should be measured simultaneously. Therefore we propose an improved method for measuring the external profile in addition to the internal profile. In our arrangement, one pair of concaved conical mirrors is used for the external profile measurement. In combination with the inner profile measurement technique, simultaneous measurement of the inner and outer profiles becomes attainable. A measurement result on a bevel gear shows availability of newly proposed principle. Now we are aiming to realize simultaneous measurement of the internal

  1. Transverse beam stability measurement and analysis for the SNS accumulator ring

    DOE PAGES

    Xie, Zaipeng; Deibele, Craig; Schulte, Michael J.; ...

    2015-07-01

    In a Field-programmable gate array (FPGA) based transverse feedback damper system we implemented in the Spallation Neutron Source (SNS) accumulator ring with the intention to stabilize the electron-proton (e-p) instability in a frequency range from 1 MHz to 300 MHz. The transverse damper could also be used as a diagnostic tool by measuring the beam transfer function (BTF). An analysis of the BTF measurement provides the stability diagram for the production beam at SNS. Our paper describes the feedback damper system and its set-up as the BTF diagnostic tool. Experimental BTF results are presented and beam stability analysis is performedmore » based on the BTF measurements for the SNS accumulator ring.« less

  2. Entanglement propagation and typicality of measurements in the quantum Kac ring

    SciTech Connect

    Oberreuter, Johannes M. Homrighausen, Ingo; Kehrein, Stefan

    2014-09-15

    We study the time evolution of entanglement in a new quantum version of the Kac ring, where two spin chains become dynamically entangled by quantum gates, which are used instead of the classical markers. The features of the entanglement evolution are best understood by using knowledge about the behavior of an ensemble of classical Kac rings. For instance, the recurrence time of the quantum many-body system is twice the length of the chain and “thermalization” only occurs on time scales much smaller than the dimension of the Hilbert space. The model thus elucidates the relation between the results of measurements in quantum and classical systems: While in classical systems repeated measurements are performed over an ensemble of systems, the corresponding result is obtained by measuring the same quantum system prepared in an appropriate superposition repeatedly.

  3. Transverse beam stability measurement and analysis for the SNS accumulator ring

    NASA Astrophysics Data System (ADS)

    Xie, Zaipeng; Deibele, Craig; Schulte, Michael J.; Hu, Yu-Hen

    2015-07-01

    A field-programmable gate array (FPGA)-based transverse feedback damper system was implemented in the Spallation Neutron Source (SNS) accumulator ring with the intention to stabilize the electron-proton (e-p) instability in the frequency range of 1-300 MHz. The transverse feedback damper could also be used as a diagnostic tool by measuring the beam transfer function (BTF). An analysis of the BTF measurements provides the stability diagram for the production beam at SNS. This paper describes the feedback damper system and its setup as the BTF diagnostic tool. Experimental BTF results are presented and beam stability is analyzed by use of the BTF measurements for the SNS accumulator ring.

  4. Beam measurements using visible synchrotron light at NSLS2 storage ring

    SciTech Connect

    Cheng, Weixing Bacha, Bel; Singh, Om

    2016-07-27

    Visible Synchrotron Light Monitor (SLM) diagnostic beamline has been designed and constructed at NSLS2 storage ring, to characterize the electron beam profile at various machine conditions. Due to the excellent alignment, SLM beamline was able to see the first visible light when beam was circulating the ring for the first turn. The beamline has been commissioned for the past year. Besides a normal CCD camera to monitor the beam profile, streak camera and gated camera are used to measure the longitudinal and transverse profile to understand the beam dynamics. Measurement results from these cameras will be presented in this paper. A time correlated single photon counting system (TCSPC) has also been setup to measure the single bunch purity.

  5. Multi-Target Operation at the HERA-B Experiment

    SciTech Connect

    Vassiliev, Yu.; Aushev, V.; Ehret, K.; Funcke, M.; Sever, S.I.; Pavlenko, Yu.; Pugatch, V.; Spratte, S.; Symalla, M.; Tkatch, N.; Wegener, D.

    2000-12-31

    The HERA-B internal target consists of eight target ribbons arranged around the beam. Each target can be moved in the radial direction independently in sub-micron steps, allowing to compensate relative beam shifts and to steer for the desired interaction rate. The experimental constraints require a stable interaction rate equally distributed over all inserted targets. The actual equalization is based on a measurement of charge originated from the beam-target interaction. The system shows a good linearity with the interaction rate and allows a reasonable distribution of the interaction rate among several wires. To cross check the performance of the multi-wire steering, the reconstructed tracks and primary vertices in the silicon vertex detector were used.

  6. Fragmentation contributions to J/ψ photoproduction at HERA

    DOE PAGES

    Bodwin, Geoffrey T.; Chung, Hee Sok; Kim, U-Rae; ...

    2015-10-28

    Here, we compute leading-power fragmentation corrections to J/ψ photoproduction at DESY HERA, making use of the nonrelativistic QCD factorization approach. Our calculations include parton production cross sections through order α3s, fragmentation functions though order α2s, and leading logarithms of the transverse momentum divided by the charm-quark mass to all orders in αs. We find that the leading-power fragmentation corrections, beyond those that are included through next-to-leading order in αs, are small relative to the fixed-order contributions through next-to-leading order in αs. Consequently, an important discrepancy remains between the experimental measurements of the J/ψ photoproduction cross section and predictions that makemore » use of nonrelativistic-QCD long-distance matrix elements that are extracted from the J/ψ hadroproduction cross-section and polarization data.« less

  7. Comparison of deep inelastic scattering with photoproduction interactions at HERA

    NASA Astrophysics Data System (ADS)

    Aid, S.; Andreev, V.; Andrieu, B.; Appuhn, R.-D.; Arpagaus, M.; Babaev, A.; Bähr, J.; Bán, J.; Ban, Y.; Baranov, P.; Barrelet, E.; Barschke, R.; Bartel, W.; Barth, M.; Bassler, U.; Beck, H. P.; Behrend, H.-J.; Belousov, A.; Berger, Ch.; Bernardi, G.; Bernet, R.; Bertrand-Coremans, G.; Besançon, M.; Beyer, R.; Biddulph, P.; Bispham, P.; Bizot, J. C.; Blobel, V.; Borras, K.; Botterweck, F.; Boudry, V.; Bourov, S.; Braemer, A.; Brasse, F.; Braunschweig, W.; Brisson, V.; Bruncko, D.; Brune, C.; Buchholz, R.; Büngener, L.; Bürger, J.; Büsser, F. W.; Buniatian, A.; Burke, S.; Burton, M. J.; Buschhorn, G.; Campbell, A. J.; Carli, T.; Charles, F.; Charlet, M.; Clarke, D.; Clegg, A. B.; Clerbaux, B.; Contreras, J. G.; Cormack, C.; Coughlan, J. A.; Courau, A.; Coutures, Ch.; Cozzika, G.; Criegee, L.; Cussans, D. G.; Cvach, J.; Dagoret, S.; Dainton, J. B.; Dau, W. D.; Daum, K.; David, M.; Davis, C. L.; Delcourt, B.; Del Buono, L.; De Roeck, A.; De Wolf, E. A.; Dixon, P.; Di Nezza, P.; Dollfus, C.; Dowell, J. D.; Dreis, H. B.; Droutskoi, A.; Duboc, J.; Düllmann, D.; Dünger, O.; Duhm, H.; Ebert, J.; Ebert, T. R.; Eckerlin, G.; Efremenko, V.; Egli, S.; Ehrlichmann, H.; Eichenberger, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Ellison, R. J.; Elsen, E.; Erdmann, M.; Erdmann, W.; Evrard, E.; Favart, L.; Fedotov, A.; Feeken, D.; Felst, R.; Feltesse, J.; Ferencei, J.; Ferrarotto, F.; Flamm, K.; Fleischer, M.; Flieser, M.; Flügge, G.; Fomenko, A.; Fominykh, B.; Forbush, M.; Formánek, J.; Foster, J. M.; Franke, G.; Fretwurst, E.; Gabathuler, E.; Gabathuler, K.; Garvey, J.; Gayler, J.; Gebauer, M.; Gellrich, A.; Genzel, H.; Gerhards, R.; Glazov, A.; Goerlach, U.; Goerlich, L.; Gogitidze, N.; Goldberg, M.; Goldner, D.; Gonzalez-Pineiro, B.; Gorelov, I.; Goritchev, P.; Grab, C.; Grässler, H.; Grässler, R.; Greenshaw, T.; Griffiths, R.; Grindhammer, G.; Gruber, A.; Gruber, C.; Haack, J.; Haidt, D.; Hajduk, L.; Hamon, O.; Hampel, M.; Hapke, M.; Haynes, W. J.; Heatherington, J.; Heinzelmann, G.; Henderson, R. C. W.; Henschel, H.; Herynek, I.; Hess, M. F.; Hildesheim, W.; Hill, P.; Hiller, K. H.; Hilton, C. D.; Hladký, J.; Hoeger, K. C.; Höppner, M.; Horisberger, R.; Hudgson, V. L.; Huet, Ph.; Hütte, M.; Hufnagel, H.; Ibbotson, M.; Itterbeck, H.; Jabiol, M.-A.; Jacholkowska, A.; Jacobsson, C.; Jaffre, M.; Janoth, J.; Jansen, T.; Jönsson, L.; Johnson, D. P.; Johnson, L.; Jung, H.; Kalmus, P. I. P.; Kant, D.; Kaschowitz, R.; Kasselmann, P.; Kathage, U.; Katzy, J.; Kaufmann, H. H.; Kazarian, S.; Kenyon, I. R.; Kermiche, S.; Keuker, C.; Kiesling, C.; Klein, M.; Kleinwort, C.; Knies, G.; Ko, W.; Köhler, T.; Köhne, J. H.; Kolanoski, H.; Kole, F.; Kolya, S. D.; Korbel, V.; Korn, M.; Kostka, P.; Kotelnikov, S. K.; Krämerkämper, T.; Krasny, M. W.; Krehbiel, H.; Krücker, D.; Krüger, U.; Krüner-Marquis, U.; Küster, H.; Kuhlen, M.; Kurča, T.; Kurzhöfer, J.; Kuznik, B.; Lacour, D.; Laforge, B.; Lamarche, F.; Lander, R.; Landon, M. P. J.; Lange, W.; Lanius, P.; Laporte, J.-F.; Lebedev, A.; Lehner, F.; Leverenz, C.; Levonian, S.; Ley, Ch.; Lindström, G.; Link, J.; Linsel, F.; Lipinski, J.; List, B.; Lobo, G.; Loch, P.; Lohmander, H.; Lomas, J. W.; Lopez, G. C.; Lubimov, V.; Lüke, D.; Magnussen, N.; Malinovski, E.; Mani, S.; Maraček, R.; Marage, P.; Marks, J.; Marshall, R.; Martens, J.; Martin, G.; Martin, R.; Martyn, H.-U.; Martyniak, J.; Masson, S.; Mavroidis, T.; Maxfield, S. J.; McMahon, S. J.; Mehta, A.; Meier, K.; Mercer, D.; Merz, T.; Meyer, A.; Meyer, C. A.; Meyer, H.; Meyer, J.; Meyer, P.-O.; Migliori, A.; Mikocki, S.; Milstead, D.; Moreau, F.; Morris, J. V.; Mroczko, E.; Müller, G.; Müller, K.; Murín, P.; Nagovizin, V.; Nahnhauer, R.; Naroska, B.; Naumann, Th.; Newman, P. R.; Newton, D.; Neyret, D.; Nguyen, H. K.; Nicholls, T. C.; Niebergall, F.; Niebuhr, C.; Niedzballa, Ch.; Nisius, R.; Nowak, G.; Noyes, G. W.; Nyberg-Werther, M.; Oakden, M.; Oberlack, H.; Obrock, U.; Olsson, J. E.; Ozerov, D.; Palmen, P.; Panaro, E.; Panitch, A.; Pascaud, C.; Patel, G. D.; Pawletta, H.; Peppel, E.; Perez, E.; Phillips, J. P.; Pichler, Ch.; Pieuchot, A.; Pitzl, D.; Pope, G.; Prell, S.; Prosi, R.; Rabbertz, K.; Rädel, G.; Raupach, F.; Reimer, P.; Reinshagen, S.; Ribarics, P.; Rick, H.; Riech, V.; Riedlberger, J.; Riess, S.; Rietz, M.; Rizvi, E.; Robertson, S. M.; Robmann, P.; Roloff, H. E.; Roosen, R.; Rosenbauer, K.; Rostovtsev, A.; Rouse, F.; Royon, C.; Rüter, K.; Rusakov, S.; Rybicki, K.; Rylko, R.; Sahlmann, N.; Sankey, D. P. C.; Schacht, P.; Schiek, S.; Schleif, S.; Schleper, P.; von Schlippe, W.; Schmidt, D.; Schmidt, G.; Schöning, A.; Schröder, V.; Schuhmann, E.; Schwab, B.; Sciacca, G.; Sefkow, F.; Seidel, M.; Sell, R.; Semenov, A.; Shekelyan, V.; Sheviakov, I.; Shtarkov, L. N.; Siegmon, G.; Siewert, U.; Sirois, Y.; Skillicorn, I. O.; Smirnov, P.; Smith, J. R.; Solochenko, V.; Soloviev, Y.; Spiekermann, J.; Spielman, S.; Spitzer, H.; Starosta, R.; Steenbock, M.; Steffen, P.; Steinberg, R.; Stella, B.; Stephens, K.; Stier, J.; Stiewe, J.; Stößlein, U.; Stolze, K.; Strachota, J.; Straumann, U.; Struczinski, W.; Sutton, J. P.; Tapprogge, S.; Tchernyshov, V.; Theissen, J.; Thiebaux, C.; Thompson, G.; Truöl, P.; Turnau, J.; Tutas, J.; Uelkes, P.; Usik, A.; Valkár, S.; Valkárová, A.; Vallée, C.; Vandenplas, D.; Van Esch, P.; Van Mechelen, P.; Vartapetian, A.; Vazdik, Y.; Verrecchia, P.; Villet, G.; Wacker, K.; Wagener, A.; Wagener, M.; Walther, A.; Waugh, B.; Weber, G.; Weber, M.; Wegener, D.; Wegner, A.; Wellisch, H. P.; West, L. R.; Willard, S.; Winde, M.; Winter, G.-G.; Wittek, C.; Wright, A. E.; Wünsch, E.; Wulff, N.; Yiou, T. P.; Žáček, J.; Zarbock, D.; Zhang, Z.; Zhokin, A.; Zimmer, M.; Zimmermann, W.; Zomer, F.; Zsembery, J.; Zuber, K.; zurNedden, M.; H1 Collaboration

    1995-02-01

    Photon-proton ( γp) interactions with Q 2 < 10 -2 GeV 2 and deep-inelastic scattering ( γ ∗p ) interactions with photon virtualities Q 2 > 5 GeV 2 are studied at the high energy electron-proton collider HERA. The transverse energy flow and relative rates of large rapidity gap events are compared in the two event samples. The observed similarity between γp and γ ∗p interactions can be understood in a picture where the photon develops as a hadronic object. The transverse energy density measured in the central region of the collision, at η ∗ = 0 in the γ ∗p centre of mass frame, is compared with data from hadron-hadron interactions as function of the CMS energy of the collision.

  8. Studies of the diffractive photoproduction of isolated photons at HERA

    NASA Astrophysics Data System (ADS)

    Abramowicz, H.; Abt, I.; Adamczyk, L.; Adamus, M.; Antonelli, S.; Aushev, V.; Aushev, Y.; Behnke, O.; Behrens, U.; Bertolin, A.; Bloch, I.; Brock, I.; Brook, N. H.; Brugnera, R.; Bruni, A.; Bussey, P. J.; Caldwell, A.; Capua, M.; Catterall, C. D.; Chwastowski, J.; Ciborowski, J.; Ciesielski, R.; Cooper-Sarkar, A. M.; Corradi, M.; Dementiev, R. K.; Devenish, R. C. E.; Dusini, S.; Foster, B.; Gach, G.; Gallo, E.; Garfagnini, A.; Geiser, A.; Gizhko, A.; Gladilin, L. K.; Golubkov, Yu. A.; Grzelak, G.; Guzik, M.; Gwenlan, C.; Hlushchenko, O.; Hochman, D.; Hori, R.; Ibrahim, Z. A.; Iga, Y.; Ishitsuka, M.; Jomhari, N. Z.; Kadenko, I.; Kananov, S.; Karshon, U.; Kaur, P.; Kisielewska, D.; Klanner, R.; Klein, U.; Korzhavina, I. A.; Kotański, A.; Kovalchuk, N.; Kowalski, H.; Krupa, B.; Kuprash, O.; Kuze, M.; Levchenko, B. B.; Levy, A.; Lisovyi, M.; Lobodzinska, E.; Löhr, B.; Lohrmann, E.; Longhin, A.; Lukina, O. Yu.; Malka, J.; Mastroberardino, A.; Mohamad Idris, F.; Mohammad Nasir, N.; Myronenko, V.; Nagano, K.; Onishchuk, Yu.; Paul, E.; Perlański, W.; Pokrovskiy, N. S.; Polini, A.; Przybycień, M.; Ruspa, M.; Saxon, D. H.; Schioppa, M.; Schneekloth, U.; Schörner-Sadenius, T.; Shcheglova, L. M.; Shkola, O.; Shyrma, Yu.; Skillicorn, I. O.; Słomiński, W.; Solano, A.; Stanco, L.; Stefaniuk, N.; Stern, A.; Stopa, P.; Sztuk-Dambietz, J.; Tassi, E.; Tokushuku, K.; Tomaszewska, J.; Tsurugai, T.; Turcato, M.; Turkot, O.; Tymieniecka, T.; Verbytskyi, A.; Wan Abdullah, W. A. T.; Wichmann, K.; Wing, M.; Yamada, S.; Yamazaki, Y.; Żarnecki, A. F.; Zawiejski, L.; Zenaiev, O.; Zhautykov, B. O.; ZEUS Collaboration

    2017-08-01

    The photoproduction of isolated photons has been measured in diffractive events recorded by the ZEUS detector at HERA. Cross sections are evaluated in the photon transverse-energy and pseudorapidity ranges 5 0.9 , where zPmeas is the fraction of the longitudinal momentum of the colorless "Pomeron" exchange that is transferred to the photon-jet final state, giving evidence for direct Pomeron interactions.

  9. Fragmentation contributions to J/psi photoproduction at HERA

    DOE PAGES

    Bodwin, Geoffrey T.; Chung, Hee Sok; Kim, U-Rae; ...

    2015-10-28

    We compute leading-power fragmentation corrections to J/psi photoproduction at DESY HERA, making use of the nonrelativistic QCD factorization approach. Our calculations include parton production cross sections through order alpha(2)(s), fragmentation functions though order alpha(2)(s), and leading logarithms of the transverse momentum divided by the charm-quark mass to all orders in as. We find that the leading-power fragmentation corrections, beyond those that are included through next-to-leading order in as, are small relative to the fixed-order contributions through next-to-leading order in as. Consequently, an important discrepancy remains between the experimental measurements of the J/psi photoproduction cross section and predictions that make usemore » of nonrelativistic-QCD long-distance matrix elements that are extracted from the J/psi hadroproduction cross-section and polarization data.« less

  10. Measurement of the beam longitudinal profile in a storage ring bynon-linear laser mixing

    SciTech Connect

    Beche, J.-F.; Byrd, J.; De Santis, S.; Denes, P.; Placidi, M.; Turner, W.; Zolotorev, M.

    2004-05-03

    We report on the development of a new technique for the measurement of the longitudinal beam profile in storage rings. This technique, which has been successfully demonstrated at the Advanced Light Source, mixes the synchrotron radiation with the light from a mode-locked solid state laser oscillator in a non-linear crystal. The up-converted radiation is then detected with a photomultiplier and processed to extract, store, and display the required information. The available choices of laser repetition frequency, pulse width, and phase modulation give a wide range of options for matching the bunch configuration of a particular storage ring. Besides the dynamic measurement of the longitudinal profile of each bunch, the instrument can monitor the evolution of the bunch tails, the presence of untrapped particles and their diffusion into nominally empty RF buckets (''ghostbunches'').

  11. A simple program to measure and analyse tree rings using Excel, R and SigmaScan

    PubMed Central

    Hietz, Peter

    2011-01-01

    I present a new software that links a program for image analysis (SigmaScan), one for spreadsheets (Excel) and one for statistical analysis (R) for applications of tree-ring analysis. The first macro measures ring width marked by the user on scanned images, stores raw and detrended data in Excel and calculates the distance to the pith and inter-series correlations. A second macro measures darkness along a defined path to identify latewood–earlywood transition in conifers, and a third shows the potential for automatic detection of boundaries. Written in Visual Basic for Applications, the code makes use of the advantages of existing programs and is consequently very economic and relatively simple to adjust to the requirements of specific projects or to expand making use of already available code. PMID:26109835

  12. A simple program to measure and analyse tree rings using Excel, R and SigmaScan.

    PubMed

    Hietz, Peter

    I present a new software that links a program for image analysis (SigmaScan), one for spreadsheets (Excel) and one for statistical analysis (R) for applications of tree-ring analysis. The first macro measures ring width marked by the user on scanned images, stores raw and detrended data in Excel and calculates the distance to the pith and inter-series correlations. A second macro measures darkness along a defined path to identify latewood-earlywood transition in conifers, and a third shows the potential for automatic detection of boundaries. Written in Visual Basic for Applications, the code makes use of the advantages of existing programs and is consequently very economic and relatively simple to adjust to the requirements of specific projects or to expand making use of already available code.

  13. Cascade Problems in Some Atomic Lifetime Measurements at a Heavy-Ion Storage Ring

    SciTech Connect

    Trabert, E; Hoffmann, J; Krantz, C; Wolf, A; Ishikawa, Y; Santana, J

    2008-10-09

    Lifetimes of 3s{sup 2}3p{sup k} ground configuration levels of Al-, Si-, P-, and S-like ions of Be, Co, and Ni have been measured at a heavy-ion storage ring. Some of the observed decay curves show strong evidence of cascade repopulation from specific 3d levels that feature lifetimes in the same multi-millisecond range as the levels of the ground configuration.

  14. A search for heavy leptons at HERA

    NASA Astrophysics Data System (ADS)

    Ahmed, T.; Aid, S.; Andreev, V.; Andrieu, B.; Appuhn, R.-D.; Arpagaus, M.; Babaev, A.; Baehr, J.; Bán, J.; Baranov, P.; Barrelet, E.; Bartel, W.; Barth, M.; Bassler, U.; Beck, H. P.; Behrend, H.-J.; Belousov, A.; Berger, Ch.; Bergstein, H.; Bernardi, G.; Bernet, R.; Bertrand-Coremans, G.; Besançon, M.; Biddulph, P.; Bizot, J. C.; Blobel, V.; Borras, K.; Botterweck, F.; Boudry, V.; Braemer, A.; Brasse, F.; Braunschweig, W.; Brisson, V.; Bruncko, D.; Brune, C.; Buchholz, R.; Büngener, L.; Bürger, J.; Büsser, F. W.; Buniatian, A.; Burke, S.; Buschhorn, G.; Campbell, A. J.; Carli, T.; Charles, F.; Clarke, D.; Clegg, A. B.; Colombo, M.; Contreras, J. G.; Coughlan, J. A.; Courau, A.; Coutures, Ch.; Cozzika, G.; Criegee, L.; Cussans, D. G.; Cvach, J.; Dagoret, S.; Dainton, J. B.; Danilov, M.; Dau, W. D.; Daum, K.; David, M.; Deffur, E.; Delcourt, B.; Del Buono, L.; De Roeck, A.; De Wolf, E. A.; Di Nezza, P.; Dollfus, C.; Dowell, J. D.; Dreis, H. B.; Duboc, J.; Düllmann, D.; Dünger, O.; Duhm, H.; Ebert, J.; Ebert, T. R.; Eckerlin, G.; Efremenko, V.; Egli, S.; Ehrlichmann, H.; Eichenberger, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Ellison, R. J.; Elsen, E.; Erdmann, M.; Evrard, E.; Favart, L.; Fedotov, A.; Feeken, D.; Felst, R.; Feltesse, J.; Ferencei, J.; Ferrarotto, F.; Flamm, K.; Fleischer, M.; Flieser, M.; Flügge, G.; Fomenko, A.; Fominykh, B.; Forbush, M.; Formánek, J.; Foster, J. M.; Franke, G.; Fretwurst, E.; Gabathuler, E.; Gabathuler, K.; Gamerdinger, K.; Garvey, J.; Gayler, J.; Gebauer, M.; Gellrich, A.; Genzel, H.; Gerhards, R.; Goerlach, U.; Goerlich, L.; Gogitidze, N.; Goldberg, M.; Goldner, D.; Gonzalez-Pineiro, B.; Goodall, A. M.; Gorelov, I.; Goritchev, P.; Grab, C.; Grässler, H.; Grässler, R.; Greenshaw, T.; Grindhammer, G.; Gruber, A.; Gruber, C.; Haack, J.; Haidt, D.; Hajduk, L.; Hamon, O.; Hampel, M.; Hanlon, E. M.; Hapke, M.; Haynes, W. J.; Heatherington, J.; Hedberg, V.; Heinzelmann, G.; Henderson, R. C. W.; Henschel, H.; Herma, R.; Herynek, I.; Hess, M. F.; Hildesheim, W.; Hill, P.; Hiller, K. H.; Hilton, C. D.; Hladký, J.; Hoeger, K. C.; Höppner, M.; Horisberger, R.; Huet, Ph.; Hufnagel, H.; Ibbotson, M.; Itterbeck, H.; Jabiol, M.-A.; Jacholkowska, A.; Jacobsson, C.; Jaffre, M.; Janoth, J.; Jansen, T.; Jönsson, L.; Johanssen, K.; Johnson, D. P.; Johnson, L.; Jung, H.; Kalmus, P. I. P.; Kant, D.; Kaschowitz, R.; Kasselmann, P.; Kathage, U.; Kaufmann, H. H.; Kazarian, S.; Kenyon, I. R.; Kermiche, S.; Keuker, C.; Kiesling, C.; Klein, M.; Kleinwort, C.; Knies, G.; Ko, W.; Köhler, T.; Kolanoski, H.; Kole, F.; Kolya, S. D.; Korbel, V.; Korn, M.; Kostka, P.; Kotelnikov, S. K.; Krasny, M. W.; Krehbiel, H.; Krücker, D.; Krüger, U.; Krüner-Marquis, U.; Kubenka, J. P.; Küster, H.; Kuhlen, M.; Kurča, T.; Kurzhöfer, J.; Kuznik, B.; Lacour, D.; Lamarche, F.; Lander, R.; Landon, M. P. J.; Lange, W.; Lanius, P.; Laporte, J. F.; Lebedev, A.; Leverenz, C.; Levonian, S.; Ley, Ch.; Lindner, A.; Lindström, G.; Linsel, F.; Lipinski, J.; List, B.; Loch, P.; Lohmander, H.; Lopez, G. C.; Lüke, D.; Magnussen, N.; Malinovski, E.; Mani, S.; Maraček, R.; Marage, P.; Marshall, R.; Martens, J.; Martin, R.; Martyn, H.-U.; Martyniak, J.; Masson, S.; Mavroidis, T.; Maxfield, S. J.; McMahon, S. J.; Mehta, A.; Meier, K.; Mercer, D.; Merz, T.; Meyer, C. A.; Meyer, H.; Meyer, J.; Mikocki, S.; Milstead, D.; Moreau, F.; Morris, J. V.; Müller, G.; Müller, K.; Murín, P.; Nagovizin, V.; Nahnhauer, R.; Naroska, B.; Naumann, Th.; Newman, P. R.; Newton, D.; Neyret, D.; Nguyen, H. K.; Niebergall, F.; Niebuhr, C.; Nisius, R.; Nowak, G.; Noyes, G. W.; Nyberg-Werther, M.; Oberlack, H.; Obrock, U.; Olsson, J. E.; Panitch, A.; Pascaud, C.; Patel, G. D.; Peppel, E.; Perez, E.; Phillips, J. P.; Pichler, Ch.; Pitzl, D.; Pope, G.; Prell, S.; Prosi, R.; Rädel, G.; Raupach, F.; Reimer, P.; Reinshagen, S.; Ribarics, P.; Riech, V.; Riedlberger, J.; Riess, S.; Rietz, M.; Robertson, S. M.; Robmann, P.; Roloff, H. E.; Roosen, R.; Rosenbauer, K.; Rostovtsev, A.; Rouse, F.; Royon, C.; Rüter, K.; Rusakov, S.; Rybicki, K.; Rylko, R.; Sahlmann, N.; Sanchez, E.; Sankey, D. P. C.; Savitsky, M.; Schacht, P.; Schiek, S.; Schleper, P.; von Schlippe, W.; Schmidt, C.; Schmidt, D.; Schmidt, G.; Schöning, A.; Schröder, V.; Schuhmann, E.; Schwab, B.; Schwind, A.; Seehausen, U.; Sefkow, F.; Seidel, M.; Sell, R.; Semenov, A.; Shekelyan, V.; Sheviakov, I.; Shooshtari, H.; Shtarkov, L. N.; Siegmon, G.; Siewert, U.; Sirois, Y.; Skillicorn, I. O.; Smirnov, P.; Smith, J. R.; Soloviev, Y.; Spitzer, H.; Starosta, R.; Steenbock, M.; Steffen, P.; Steinberg, R.; Stella, B.; Stephens, K.; Stier, J.; Stiewe, J.; Stösslein, U.; Strachota, J.; Straumann, U.; Struczinski, W.; Sutton, J. P.; Tapprogge, S.; Taylor, R. E.; Tchernyshov, V.; Thiebaux, C.; Thompson, G.; Tichomirov, I.; Truöl, P.; Turnau, J.; Tutas, J.; Uelkes, P.; Usik, A.; Valkár, S.; Valkárová, A.; Vallée, C.; Van Esch, P.; Van Mechelen, P.; Vartapetian, A.; Vazdik, Y.; Vecko, M.; Verrecchia, P.; Villet, G.; Wacker, K.; Wagener, A.; Walker, I. W.; Walther, A.; Weber, G.; Weber, M.; Wegener, D.; Wegener, A.; Wellisch, H. P.; West, L. R.; Willard, S.; Winde, M.; Winter, G.-G.; Wolff, Th.; Wright, A. E.; Wünsch, E.; Wulff, N.; Yiou, T. P.; Žáček, J.; Zhang, Z.; Zimmer, M.; Zimmermann, W.; Zomer, F.; Zuber, K.; H1 Collaboration

    1994-12-01

    A search for direct production of new leptons in the mass range from 10 GeV up to 225 GeV is presented by the H1 experiment at HERA. The data were obtained during 1993 and correspond to an integrated luminosity of 528 nb -1. The search includes heavy lepton decays to final states e ( ν) γ and e ( ν) W, e( ν) Z with the subsequent decay of the W and Z bosons into jets or lepton pairs. No evidence was found for the production of new massive electrons or neutrinos in any of the decay channels. Rejection limits for excited electrons and neutrinos are derived.

  15. New results on proton structure from HERA

    NASA Astrophysics Data System (ADS)

    Raičević, Nataša

    2016-03-01

    In this paper we show the new set of parton distribution functions (PDFs) determined using new combined H1 and ZEUS data on neutral and charged current inclusive cross sections from all running periods (1994-2007). The combined data are used as the sole input to NLO and NNLO QCD analyses. The new set of PDFs is termed as HERAPDF2.0. Also we show an extended QCD analysis at NLO including the combined data on jet and charm production which enables the simultaneous determination of PDFs (HERAPDF2.0Jets) and the strong coupling constant from HERA data alone.

  16. New results on proton structure from HERA

    SciTech Connect

    Raičević, Nataša

    2016-03-25

    In this paper we show the new set of parton distribution functions (PDFs) determined using new combined H1 and ZEUS data on neutral and charged current inclusive cross sections from all running periods (1994-2007). The combined data are used as the sole input to NLO and NNLO QCD analyses. The new set of PDFs is termed as HERAPDF2.0. Also we show an extended QCD analysis at NLO including the combined data on jet and charm production which enables the simultaneous determination of PDFs (HERAPDF2.0Jets) and the strong coupling constant from HERA data alone.

  17. Frequency noise measurement of diode-pumped Nd:YAG ring lasers

    NASA Technical Reports Server (NTRS)

    Chen, Chien-Chung; Win, Moe Zaw

    1990-01-01

    The combined frequency noise spectrum of two model 120-01A nonplanar ring oscillator lasers was measured by first heterodyne detecting the IF signal and then measuring the IF frequency noise using an RF frequency discriminator. The results indicated the presence of a 1/f-squared noise component in the power-spectral density of the frequency fluctuations between 1 Hz and 1 kHz. After incorporating this 1/f-squared into the analysis of the optical phase tracking loop, the measured phase error variance closely matches the theoretical predictions.

  18. Mass Measurements of Proton-rich Nuclides at the Cooler Storage Ring at IMP

    SciTech Connect

    Zhang, Y. H.; Xu, H. S.; Wang, M.; Zhou, X. H.; Yuan, Y. J.; Xia, J. W.; Hu, Z. G.; Huang, W. X.; Liu, Y.; Ma, X.; Mao, R. S.; Mei, B.; Sun, Z. Y.; Wang, J. S.; Xiao, G. Q.; Yan, X. L.; Yang, J. C.; Zhao, H. W.; Zhao, T. C.; Zhang, X. Y.; and others

    2011-11-30

    Recent results and progress of mass measurements of proton-rich nuclei using isochronous mass spectrometry (IMS) are reported. The nuclei under investigation were produced via fragmentation of relativistic energy heavy ions of {sup 78}Kr and {sup 58}Ni. After in-flight separation by the fragment separator RIBLL-2, the nuclei were injected and stored in the experimental storage ring CSRe, and their masses were determined from measurements of the revolution times. The impact of these measurements on the stellar nucleosynthesis in the rp-process is discussed.

  19. Review of searches for rare processes and physics beyond the Standard Model at HERA

    NASA Astrophysics Data System (ADS)

    South, David M.; Turcato, Monica

    2016-06-01

    The electron-proton collisions collected by the H1 and ZEUS experiments at HERA comprise a unique particle physics data set, and a comprehensive range of measurements has been performed to provide new insight into the structure of the proton. The high centre of mass energy at HERA has also allowed rare processes to be studied, including the production of W and Z0 bosons and events with multiple leptons in the final state. The data have also opened up a new domain to searches for physics beyond the Standard Model including contact interactions, leptoquarks, excited fermions and a number of supersymmetric models. This review presents a summary of such results, where the analyses reported correspond to an integrated luminosity of up to 1 fb^{-1}, representing the complete data set recorded by the H1 and ZEUS experiments.

  20. The Future is Hera! Analyzing Astronomical Over the Internet

    NASA Technical Reports Server (NTRS)

    Valencic, L. A.; Chai, P.; Pence, W.; Shafer, R.; Snowden, S.

    2008-01-01

    Hera is the data processing facility provided by the High Energy Astrophysics Science Archive Research Center (HEASARC) at the NASA Goddard Space Flight Center for analyzing astronomical data. Hera provides all the pre-installed software packages, local disk space, and computing resources need to do general processing of FITS format data files residing on the users local computer, and to do research using the publicly available data from the High ENergy Astrophysics Division. Qualified students, educators and researchers may freely use the Hera services over the internet of research and educational purposes.

  1. Aersol Optical Property Measurements During TEXAQS II Using Cavity Ring-Down Transmissometer.

    NASA Astrophysics Data System (ADS)

    Wright, M. E.; Parra, J.; Linda, G.; Dean, A.

    2006-12-01

    Measurements of aerosol extinction and scattering were made using a tandem cavity ring-down transmissometer/nephelometer instrument during the TEXAQS II measurement campaign August 14 to September 29, 2006. The visible (532 nm) particle absorption and single scattering albedo are also derived from the measured extinction and scattering coefficients. The instrument was part of a suite of measurements conducted at the Moody Tower on the University of Houston campus as part of the Texas Radical and Aerosol Measurement Program. Comparison between various aerosol measurement techniques deployed at the Moody Tower site and by the other measurement platforms will be possible given the wide range of aerosol conditions encountered. A preliminary analysis of our aerosol optical property data and possible consequences for radiative forcing and air quality will be presented.

  2. Numerical evaluation of convex-roof entanglement measures with applications to spin rings

    NASA Astrophysics Data System (ADS)

    Röthlisberger, Beat; Lehmann, Jörg; Loss, Daniel

    2009-10-01

    We present two ready-to-use numerical algorithms to evaluate convex-roof extensions of arbitrary pure-state entanglement monotones. Their implementation leaves the user merely with the task of calculating derivatives of the respective pure-state measure. We provide numerical tests of the algorithms and demonstrate their good convergence properties. We further employ them in order to investigate the entanglement in particular few-spins systems at finite temperature. Namely, we consider ferromagnetic Heisenberg exchange-coupled spin- (1)/(2) rings subject to an inhomogeneous in-plane field geometry obeying full rotational symmetry around the axis perpendicular to the ring through its center. We demonstrate that highly entangled states can be obtained in these systems at sufficiently low temperatures and by tuning the strength of a magnetic field configuration to an optimal value which is identified numerically.

  3. Deep underground rotation measurements: GINGERino ring laser gyroscope in Gran Sasso

    NASA Astrophysics Data System (ADS)

    Belfi, Jacopo; Beverini, Nicolò; Bosi, Filippo; Carelli, Giorgio; Cuccato, Davide; De Luca, Gaetano; Di Virgilio, Angela; Gebauer, André; Maccioni, Enrico; Ortolan, Antonello; Porzio, Alberto; Saccorotti, Gilberto; Simonelli, Andreino; Terreni, Giuseppe

    2017-03-01

    GINGERino is a large frame laser gyroscope investigating the ground motion in the most inner part of the underground international laboratory of the Gran Sasso, in central Italy. It consists of a square ring laser with a 3.6 m side. Several days of continuous measurements have been collected, with the apparatus running unattended. The power spectral density in the seismic bandwidth is at the level of 10-10 (rad/s) /√{Hz} . A maximum resolution of 30 prad/s is obtained with an integration time of few hundred seconds. The ring laser routinely detects seismic rotations induced by both regional earthquakes and teleseisms. A broadband seismic station is installed on the same structure of the gyroscope. First analysis of the correlation between the rotational and the translational signal is presented.

  4. The Hera Entry Probe Mission to Saturn, an ESA M-class mission proposal

    NASA Astrophysics Data System (ADS)

    Mousis, O.; Atkinson, D. H.; Spilker, T.; Venkatapathy, E.; Poncy, J.; Coustenis, A.; Reh, K.

    2015-10-01

    A fundamental goal of solar system exploration is to understand the origin of the solar system, the initial stages, conditions, and processes by which the solar system formed, how the formation process was initiated, and the nature of the interstellar seed material from which the solar system was born. Key to understanding solar system formation and subsequent dynamical and chemical evolution is the origin and evolution of the giant planets and their atmospheres. Additionally, the atmospheres of the giant planets serve as laboratories to better understand the atmospheric chemistries, dynamics, processes, and climates on all planets in the solar system including Earth, offer a context and provide a ground truth for exoplanets and exoplanetary systems,and have long been thought to play a critical role in the development of potentially habitable planetary systems. Remote sensing observations are limited when used to study the bulk atmospheric composition of the giant planets of our solar system. A remarkable example of the value of in situ probe measurements is illustrated by the exploration of Jupiter, where key measurements such as noble gases abundances and the precise measurement of the helium mixing ratio have only been made available through in situ measurements by the Galileo probe. Representing the only method providing ground-truth to connect the remote sensing inferences with physical reality, in situ measurements have only been accomplished twice in the history of outer solar system exploration, via the Galileo probe for Jupiter and the Huygens probe for Titan. In situ measurements provide access to atmospheric regions that are beyond the reach of remote sensing, enabling the dynamical, chemical and aerosol-forming processes at work from the thermosphere to the troposphere below the cloud decks to be studied. A proposal for a Saturn entry probe mission named Hera was recently submitted to the European Space Agency Medium Class mission announcement of

  5. HERA Data Preservation plans and activities

    NASA Astrophysics Data System (ADS)

    Szuba, J.; DESY Data Preservation Group

    2011-12-01

    An international inter-experimental study group on data preservation and long-term analysis in HEP (DPHEP) was convened at the end of 2008 and held a series of workshops during 2009. The HERA experiments H1, ZEUS, HERMES as well as the IT division and the Library are well represented in DPHEP and efforts are now being made to form a coherent approach at DESY. Various options for preservation are explored, from permanent evolution (H1) to the use of virtualisation techniques (ZEUS). Both experiments have planned the computing and the associated resources until 2013 and now explore possibilities to ensure the maintenance of the data analysis capabilities beyond 2013. A common effort and additional resources may lead to longer viability of data analysis. Technical solutions have been investigated by DESY-IT and involve virtualisation systems tailored for long term software preservation as well as systems for self consistent data archiving and migration. The communication between experiments, DESY-IT and the Library have put forward the possibility for further common developments related to documentation scanning and storage as well as pilot projects within the HEP documentation system INSPIRE. The evaluation of such projects is ongoing and concrete proposals to ensure HERA data analysis after 2013 are expected in 2010.

  6. Comparison of calculated with measured dynamic aperture

    SciTech Connect

    Zimmermann, F.

    1994-06-01

    The measured dynamic aperture of the HERA proton ring and the value expected from simulation studies agree within a factor of 2. A better agreement is achieved if a realistic tune modulation is included in the simulation. The approximate threshold of tune-modulation induced diffusion can be calculated analytically. Its value is in remarkable agreement with the dynamic aperture measured. The calculation is based on parameters of resonances through order 11 which are computed using differential-algebra methods and normal-form algorithms. Modulational diffusion in conjunction with drifting machine parameters appears to be the most important transverse diffusion process.

  7. Cavity Ring-Down System for Density Measurement of Negative Hydrogen Ion on Negative Ion Source

    SciTech Connect

    Nakano, Haruhisa; Tsumori, Katsuyoshi; Nagaoka, Kenichi; Shibuya, Masayuki; Kisaki, Masashi; Ikeda, Katsunori; Osakabe, Masaki; Kaneko, Osamu; Asano, Eiji; Kondo, Tomoki; Sato, Mamoru; Komada, Seiji; Sekiguchi, Haruo; Takeiri, Yasuhiko; Fantz, Ursel

    2011-09-26

    A Cavity Ring-Down (CRD) system was applied to measure the density of negative hydrogen ion (H{sup -}) in vicinity of extraction surface in the H{sup -} source for the development of neutral beam injector on Large Helical Device (LHD). The density measurement with sampling time of 50 ms was carried out. The measured density with the CRD system is relatively good agreement with the density evaluated from extracted beam-current with applying a similar relation of positive ion sources. In cesium seeded into ion-source plasma, the linearity between an arc power of the discharge and the measured density with the CRD system was observed. Additionally, the measured density was proportional to the extracted beam current. These characteristics indicate the CRD system worked well for H{sup -} density measurement in the region of H{sup -} and extraction.

  8. Measurement of optical nonlinearity by antiresonant ring interferometric nonlinear spectroscopic (ARINS) technique

    NASA Astrophysics Data System (ADS)

    Bhushan, B.

    2016-08-01

    We have reported the measurement of third-order optical nonlinearity by antiresonant ring interferometric nonlinear spectroscopic (ARINS) technique and discussed its usefulness over other popular measuring techniques such as Z-scan, degenerate four wave mixing (DFWM) and third harmonic generation (THG). The measurement has been simulated theoretically by taking different numerical values as well as sign of δ, which is a key parameter of ARINS. The technique has been benchmarked using toluene and the theoretical simulation has been substantiated experimentally by measuring the nonlinear optical coefficients ( n 2 and β) of two different samples. The disadvantages of the technique have also been discussed. However, a number of advantages of ARINS override its disadvantages and therefore, ARINS may be preferred over other measuring techniques for the measurement of nonlinear optical parameters.

  9. Recent Results of Nuclear Mass Measurements at Storage Ring in IMP

    NASA Astrophysics Data System (ADS)

    Xu, H. S.; Zhang, Y. H.

    2014-09-01

    Recent commissioning of the Cooler Storage Ring at the Heavy Ion Research Facility in Lanzhou (HIRFL-CSR) has allowed us for direct mass measurements at the Institute of Modern Physics in Lanzhou (IMP), Chinese Academy of Sciences. A series of isochronous mass measurements have been carried out in the past few years using 78Kr, 86Kr, 58Ni, and 112Sn beams. The main results and the present status are presented in this talk, and the implications of these results with respect to nuclear structures and nucleosynthesis in the rp-process of x-ray bursts are discussed.

  10. Perturbative QCD tests from the LEP, HERA, and TEVATRON colliders

    SciTech Connect

    Kuhlmann, S.

    1994-09-01

    A review of QCD tests from LEP, HERA and the TEVATRON colliders is presented. This includes jet production, quark/gluon jet separation, quark/gluon propagator spin, {alpha}{sub s} updates, photon production, and rapidity gap experiments.

  11. STORAGE RING CROSS SECTION MEASUREMENTS FOR ELECTRON IMPACT IONIZATION OF Fe{sup 7+}

    SciTech Connect

    Hahn, M.; Novotný, O.; Savin, D. W.; Becker, A.; Grieser, M.; Krantz, C.; Repnow, R.; Wolf, A.; Bernhardt, D.; Müller, A.; Schippers, S.; Spruck, K.; Lestinsky, M.

    2015-11-01

    We have measured electron impact ionization for Fe{sup 7+} from the ionization threshold up to 1200 eV. The measurements were performed using the TSR heavy ion storage ring. The ions were stored long enough prior to measurements to remove most metastables, resulting in a beam of 94% ground-level ions. Comparing with the previously recommended atomic data, we find that the Arnaud and Raymond cross section is up to about 40% larger than our measurement, with the largest discrepancies below about 400 eV. The cross section of Dere agrees to within 10%, which is about the magnitude of the experimental uncertainties. The remaining discrepancies between our measurement and the Dere calculations are likely due to shortcomings in the theoretical treatment of the excitation-autoionization contribution.

  12. Development of an inner profile measurement instrument using a ring beam device

    NASA Astrophysics Data System (ADS)

    Yoshizawa, T.; Wakayama, T.

    2010-11-01

    Inner profile measurement is an important matter in such fields as medicine, dentistry and anthropology as well as mechanical engineering and other industrial applications. Here we describe recent development of our measurement principle for inner diameter of pipes and/or holes. The key device in this technique is a ring beam device which consists of a conical mirror and a laser diode. And the fundamental principle is based on optical sectioning without using any contact type stylus. The optically sectioned profile of an inner wall of a pipe-like object is analyzed to give the inner profile in addition to the inner diameter. This optical instrument with a simple and small configuration is now under development for practical uses. In our hitherto trial experimental works, the availability of this instrument has been evaluated in many cases and availability for practical applications is expected, especially, for measurement and inspection of mechanical components and elements besides pipes. This ring beam device consisting of a conical mirror and a LD is assembled to form a disk-like light sheet. We show measurement result of pipes and holes, and, at the same time, report a compact inner profile measuring instrument at this point. Both the ring beam device and a miniaturized CCD camera are fabricated into a glass tube. Availability of this instrument is shown by measuring the inner profiles of various pipes. In response to this trial, there appeared a strong request that not only the internal but external profiles should be measured simultaneously. Therefore we propose potentially possible method for measurement of external profile at the same time with internal profile. If one pair of concave mirrors are used in our arrangement, external profile is captured. In combination with inner profile measurement technique, simultaneous measurement of inner and outer profiles becomes attainable. A measurement result on a bevel gear shows availability of here proposed

  13. Application of ring down measurement approach to micro-cavities for bio-sensing applications

    NASA Astrophysics Data System (ADS)

    Cheema, M. I.; Kirk, Andrew G.

    2011-03-01

    Optical biosensors can detect biomarkers in the blood serum caused by either infections or exposure to toxins. Until now, most work on the micro-cavity biosensors has been based on measurement of the resonant frequency shift induced by binding of biomarkers to a cavity. However, frequency domain measurements are not precise for such high Q micro-cavities. We hypothesize that more accurate measurements and better noise tolerance can be achieved by the application of the ring down measurement approach to the micro-cavity in a biosensor. To test our hypothesis, we have developed a full vectorial finite element model of a silica toroidal micro-cavity immersed in water. Our modeling results show that a toroidal cavity with a major diameter of 70μm and a minor diameter of 6μm can achieve a sensitivity of 28.6μs/RIU refractive index units (RIU) at 580nm. Therefore, our sensor would achieve the resolution of 5 x 10-8 RIU by employing a detector with picosecond resolution. Hence we propose a micro-cavity ring down biosensor with high sensitivity which will find wide applications in real time and label free bio-sensing.

  14. Recombination and Ionization Measurements at the Heidelberg Heavy Ion Storage Ring TSR

    NASA Astrophysics Data System (ADS)

    Lestinsky, Michael; Lukic, D.; Savin, D. W.; Hoffmann, J.; Krantz, C.; Orlov, D. A.; Wolf, A.; Bernhardt, D.; Borovyk, O.; Schmidt, E. W.; Yu, D.; Schippers, S.; Müller, A.; Badnell, N. R.

    2008-05-01

    Much of our knowledge of the universe rests on our ability to interpret spectra collected from various cosmic sources. This analysis requires reliably understanding the underlying charge state distribution (CSD) for the observed gas. In turn, this depends on accurate rate coefficients for dielectronic recombination (DR) and electron impact ionization (EII), which play important roles in determining the CSD for a wide range of cosmic objects. To address these needs we have an ongoing experimental program carrying out DR and EII measurements for astrophysically important ions of cosmically abundant elements. Measurements are performed using the heavy-ion Test Storage Ring (TSR) at the Max-Plank-Institute for Nuclear Physics in Heidelberg, Germany. Storage rings are currently the only laboratory method capable of studying the astrophysically relevant DR channels for the majority of cosmically important ions. They are also the only method capable of studying EII using beams of ions with multiple electrons in the valence shell which are free of metastable contamination, allowing for unambiguous EII laboratory data. We use our results to produce rate coefficients for plasma modelling. We are also providing our data to atomic theorist to benchmark their calculations. Here we report our recent results for DR measurements of Fe XI and Fe X and show an early status report on the analysis of recent EII measurements of C IV, C V and O IV. This work has been supported in part by NASA, the German Federal Ministry for Education and Research, and the German Research Council.

  15. Precision analog signal processor for beam position measurements in electron storage rings

    SciTech Connect

    Hinkson, J.A.; Unser, K.B.

    1995-05-01

    Beam position monitors (BPM) in electron and positron storage rings have evolved from simple systems composed of beam pickups, coaxial cables, multiplexing relays, and a single receiver (usually a analyzer) into very complex and costly systems of multiple receivers and processors. The older may have taken minutes to measure the circulating beam closed orbit. Today instrumentation designers are required to provide high-speed measurements of the beam orbit, often at the ring revolution frequency. In addition the instruments must have very high accuracy and resolution. A BPM has been developed for the Advanced Light Source (ALS) in Berkeley which features high resolution and relatively low cost. The instrument has a single purpose; to measure position of a stable stored beam. Because the pickup signals are multiplexed into a single receiver, and due to its narrow bandwidth, the receiver is not intended for single-turn studies. The receiver delivers normalized measurements of X and Y posit ion entirely by analog means at nominally 1 V/mm. No computers are involved. No software is required. Bergoz, a French company specializing in precision beam instrumentation, integrated the ALS design m their new BPM analog signal processor module. Performance comparisons were made on the ALS. In this paper we report on the architecture and performance of the ALS prototype BPM.

  16. Galileo in-situ dust measurements and the significance of planetary shadowing in shaping Jupiter's gossamer ring structure

    NASA Astrophysics Data System (ADS)

    Krueger, Harald; Hamilton, Douglas P.; Moissl, Richard; Gruen, Eberhard

    During its late orbital mission about Jupiter in 2002 and 2003, the Galileo spacecraft made two passages through the giant planet's gossamer ring system. The dusty ring material is produced when interplanetary impactors collide with embedded moonlets. Optical images imply that the rings are constrained both horizontally and vertically by the orbits of the moons Amalthea and Thebe, with the exception of a faint outward protrusion called the Thebe Extension. During both ring passages the impact ionisation dust detector on board Galileo successfully recorded dust impacts and provided the first in-situ measurements from a dusty planetary ring. In all, a few thousand dust impacts were counted with the instrument accumulators during both ring passages but only 110 complete data sets of dust impacts (i.e. impact time, impact speed, mass, impact direction, etc.) were successfully transmitted to Earth. Detected particle sizes range from about 0.2 to 4 micron, extending the known size distribution by an order of magnitude towards smaller particles than previously derived from optical imaging (Showalter et al., Icarus 2008). The particle size distribution increases towards smaller grains, showing a much higher proportion of small particles in the Amalthea gossamer ring than in the Thebe ring and the Thebe Extension. The size distribution for the Amalthea ring derived from our in-situ measurements for the small grains agrees very well with the one obtained from images for large grains. Our analysis shows that particles contributing most to the optical cross-section are about 4 micron in radius, in agreement with imaging results. The instrument also detected some micron and sub-micron grains on highly inclined orbits with inclinations up to 20 degrees. The faint Thebe ring extension was detected out to at least 5 RJ (Jovian radius RJ = 71, 492 km), indicating that grains attain higher eccentricities than previously thought. Finally, Galileo measured a major reduction in

  17. Optical time-of-flight measurement based on data transmission in a ring oscillator.

    PubMed

    Noé, Reinhold; Koch, Benjamin; Sandel, David

    2009-12-07

    We introduce a novel optical propagation delay measurement scheme for distance estimation. It is based on a ring oscillator in which the oscillation signal is replaced by the clock information contained in optical data. A clock-and-data recovery can recover the oscillation signal at the receive end. Correlation of the received pattern with the transmitted pattern and a measurement of the bit duration by a frequency counter allow to determine the distance. The scheme has been realized at 1550 nm wavelength, using an externally modulated laser, a commercial 155.52 Mb/s clock-and-data recovery and a field-programmable gate array. Short-term repeatability is <10 microm at an equivalent free-space distance of 72 m. Measurement interval is 0.1 s. At 3 km distance the relative repeatability is 8.10(-8). The readout can be corrected with measured temperature data.

  18. Measurements of aperture and beam lifetime using movable beam scrapers in Indus-2 electron storage ring

    SciTech Connect

    Kumar, Pradeep; Ghodke, A. D.; Karnewar, A. K.; Holikatti, A. C.; Yadav, S.; Puntambekar, T. A.; Singh, G.; Singh, P.

    2013-12-15

    In this paper, the measurements of vertical and horizontal aperture which are available for stable beam motion in Indus-2 at beam energy 2.5 GeV using movable beam scrapers are presented. These beam scrapers are installed in one of the long straight sections in the ring. With the movement of beam scrapers towards the beam centre, the beam lifetime is measured. The beam lifetime data obtained from the movement of vertical and horizontal beam scrapers are analyzed. The contribution of beam loss due to beam-gas scattering (vacuum lifetime) and electron-electron scattering within a beam bunch (Touschek lifetime) is separated from the measured beam lifetime at different positions of the beam scrapers. Vertical and horizontal beam sizes at scrapers location are estimated from the scraper movement towards the beam centre in quantum lifetime limit and their values closely agree with measured value obtained using X-ray diagnostic beamline.

  19. Continuous wave cavity ring-down spectroscopy for velocity distribution measurements in plasma

    SciTech Connect

    McCarren, D.; Scime, E.

    2015-10-15

    We report the development of a continuous wave cavity ring-down spectroscopic (CW-CRDS) diagnostic for real-time, in situ measurement of velocity distribution functions of ions and neutral atoms in plasma. This apparatus is less complex than conventional CW-CRDS systems. We provide a detailed description of the CW-CRDS apparatus as well as measurements of argon ions and neutrals in a high-density (10{sup 9} cm{sup −3} < plasma density <10{sup 13} cm{sup −3}) plasma. The CW-CRDS measurements are validated through comparison with laser induced fluorescence measurements of the same absorbing states of the ions and neutrals.

  20. Self-mixing interference measurement system of a fiber ring laser with ultra-narrow linewidth.

    PubMed

    Lu, Liang; Yang, Jingyu; Zhai, Longhua; Wang, Rui; Cao, Zhigang; Yu, Benli

    2012-04-09

    A novel device for self-mixing interference measurement based on the fiber ring laser with ultra-narrow linewidth was investigated for the first time. In order to achieve requirement of our measurement system, a saturable-absorber which consists of a segment un-pumped erbium-doped fiber and a fiber Bragg grating is employed to provide a fine mode selection and guarantee the ultra-narrow linewidth operation. Results demonstrate that the signal-to-noise ratio of the self-mixing interference signal could be enhanced from 18.01 dB to 38.35 dB by inserting a saturable-absorber in the laser cavity. It is in good agreement with the theoretical analysis and proved potential using in self-mixing interference measurement system for high sensitivity and remote measurement.

  1. Measurement of photon statistics of wiggler radiation from an electron storage ring

    NASA Astrophysics Data System (ADS)

    Tanabe, Toshiya; Teich, Malvin C.; Marshall, T. C.; Galayda, John

    1991-07-01

    The number of visible photons emitted by an electron bunch moving through a wiggler in the Brookhaven Synchrotron Light Source storage ring was repetitively measured using an analog photon counting technique, and the photon counting distribution, which is the probability of finding n photons versus n, was obtained. The photoelectron-counting distribution of detected spontaneous light from the wiggler obeys a negative-binomial distribution consistent with a multi-electron, multimode description of the light generation process. In the absence of the wiggler, the bending-magnet light emerging from the pyrex exit port obeys the Neyman type-A distribution.

  2. TOSCA calculations and measurements for the SLAC SLC damping ring dipole magnet

    SciTech Connect

    Early, R.A.; Cobb, J.K.

    1985-04-01

    The SLAC damping ring dipole magnet was originally designed with removable nose pieces at the ends. Recently, a set of magnetic measurements was taken of the vertical component of induction along the center of the magnet for four different pole-end configurations and several current settings. The three dimensional computer code TOSCA, which is currently installed on the National Magnetic Fusion Energy Computer Center's Cray X-MP, was used to compute field values for the four configurations at current settings near saturation. Comparisons were made for magnetic induction as well as effective magnetic lengths for the different configurations. 1 ref., 12 figs., 2 tabs.

  3. Exploration of microwave plasma source cavity ring-down spectroscopy for elemental measurements.

    PubMed

    Duan, Yixiang; Wang, Chuji; Winstead, Christopher B

    2003-05-01

    We are exploring sensitive techniques for elemental measurements using cavity ring-down spectroscopy (CRDS) combined with a compact microwave plasma source as an atomic absorption cell. The research work marries the high sensitivity of CRDS with a low-power microwave plasma source to develop a new instrument that yields high sensitivity and capability for elemental measurements. CRDS can provide orders of magnitude improvement in sensitivity over conventional absorption techniques. Additional benefit is gained from a compact microwave plasma source that possesses the advantages of low power and low-plasma gas flow rate, which are of benefit for atomic absorption measurements. A laboratory CRDS system consisting of a tunable dye laser is used in this work for developing a scientific base and demonstrating the feasibility of the technique. A laboratory-designed and -built sampling system for solution sample introduction is used for testing. The ring-down signals are monitored using a photomultiplier tube and recorded using a digital oscilloscope interfaced to a computer. Lead is chosen as a typical element for the system optimization and characterization. The effects of baseline noise from the plasma source are reported. A detection limit of 0.8 ppb (10(-)(10)) is obtained with such a device.

  4. In-situ measurements of Saturn's dusty rings based on dust impact signals detected by Cassini RPWS

    NASA Astrophysics Data System (ADS)

    Ye, S.-Y.; Gurnett, D. A.; Kurth, W. S.

    2016-11-01

    The Cassini Radio and Plasma Wave Science (RPWS) instrument can detect dust particles when voltage pulses induced by the dust impacts are observed in the wideband receiver. The size of the voltage pulse is proportional to the mass of the impacting dust particle. In this paper, we show RPWS measurements of dust particles in Saturn's dusty rings. The differential size distribution of the dust particles can be characterized as a power law dn/dr∝rμ, where μ ∼ - 4 and r is the particle radius. The observed particle radius ranged from 0.2 to 10 μm. The dust density profiles of the dusty rings are derived from the impact rates measured by the RPWS wideband receiver. The radial density profiles show peaks near Enceladus' orbit and the G ring. The region around the G ring is found to be a very thin layer of dust particles with no observable vertical offset of the peak density from the ring plane. The vertical scale height of the E ring varies with the radial distance from Saturn with a local minimum at Enceladus' orbit. The vertical density profiles of the E ring show dips at the equatorial plane near Enceladus' orbit and vertical offsets of the peak locations away from Enceladus' orbit. These observations are consistent with previous modeling studies and measurements by other instruments onboard Cassini.

  5. The Evolution of Ring Current Energy Density and Energy Content during Geomagnetic Storms Based on Van Allen Probes Measurements

    NASA Astrophysics Data System (ADS)

    Zhao, H.; Li, X.; Baker, D. N.; Claudepierre, S. G.; Fennell, J. F.; Blake, J. B.; Larsen, B.; Skoug, R. M.; Funsten, H. O.; Freidel, R. H. W.; Reeves, G. D.; Spence, H. E.; Mitchell, D. G.; Lanzerotti, L. J.; Rodriguez, J. V.

    2015-12-01

    Enabled by the comprehensive measurements from the MagEIS, HOPE, and RBSPICE instruments onboard Van Allen Probes in the heart of the radiation belt, the relative contributions of particles with different energies and species to the ring current energy density and their dependence on the geomagnetic storms and storm phases are quantified. During the main phases of moderate storms (with minimum Dst between -50 nT and -100 nT), ions of energies < 50 keV and electrons of energies of <35 keV contribute more significantly to the ring current energy than those of higher energies. During the recovery phase and quiet times higher energy protons dominate the ring current energy content. For the March 29, 2013 moderate storm, the contribution from O+ is ~25% of the ring current energy content during the main phase, and the majority of that comes from < 50 keV O+. This indicates that even during moderate geomagnetic storms the ionosphere is still an important contributor to the ring current ions and low energy O+ plays an important role in ring current dynamics. The contribution of electrons to the ring current energy content is up to ~7% during this moderate storm and the magnetic local time dependence of electron energy density is also investigated. However, the ring current energy partitions for different species and energy ranges are very different during the great storm of 17 March 2015 (with minimum Dst<-210 nT).

  6. The New Web-Based Hera Data Processing System at the HEASARC

    NASA Astrophysics Data System (ADS)

    Pence, W.; Chai, P.

    2012-09-01

    The HEASARC at NASA/GSFC has hosted an on-line astronomical data processing system called Hera for several years. Hera provides a complete data processing environment, including installed software packages, local data storage, and the CPU resources needed to support astronomical research by external users. The original design of Hera was based on a ‘client/server’ model which required that the user a) download and install a small helper program on their own computer before using Hera, and b) ensure that several non-standard computer ports/sockets be open for communication through any local firewalls on the user's machine. Hera has now been redesigned to eliminate these restrictions by operating within a purely Web-based environment which is accessed via a standard Web browser. Web-Hera is available at http://heasarc.gsfc.nasa.gov/webHera.

  7. Characteristics and measurement of supersonic projectile shock waves by a 32-microphone ring array.

    PubMed

    Chang, Ho; Wu, Yan-Chyuan; Tsung, Tsing-Tshih

    2011-08-01

    This paper discusses about the characteristics of supersonic projectile shock wave in muzzle region during firing of high explosive anti-tank (HEAT) and high explosive (HE) projectiles. HEAT projectiles are fired horizontally at a muzzle velocity of Mach 3.5 from a medium caliber tank gun equipped with a newly designed multi-perforated muzzle brake, whereas HE projectiles are fired at elevation angles at a muzzle velocity of Mach 2 from a large caliber howitzer equipped with a newly designed double-baffle muzzle brake. In the near field, pressure signatures of the N-wave generated from projectiles are measured by 32-microphone ring array wrapped by cotton sheath. Records measured by the microphone array are used to demonstrate several key characteristics of the shock wave of supersonic projectile. All measurements made in this study can be a significant reference for developing guns, tanks, or the chassis of fighting vehicles.

  8. Characteristics and measurement of supersonic projectile shock waves by a 32-microphone ring array

    NASA Astrophysics Data System (ADS)

    Chang, Ho; Wu, Yan-Chyuan; Tsung, Tsing-Tshih

    2011-08-01

    This paper discusses about the characteristics of supersonic projectile shock wave in muzzle region during firing of high explosive anti-tank (HEAT) and high explosive (HE) projectiles. HEAT projectiles are fired horizontally at a muzzle velocity of Mach 3.5 from a medium caliber tank gun equipped with a newly designed multi-perforated muzzle brake, whereas HE projectiles are fired at elevation angles at a muzzle velocity of Mach 2 from a large caliber howitzer equipped with a newly designed double-baffle muzzle brake. In the near field, pressure signatures of the N-wave generated from projectiles are measured by 32-microphone ring array wrapped by cotton sheath. Records measured by the microphone array are used to demonstrate several key characteristics of the shock wave of supersonic projectile. All measurements made in this study can be a significant reference for developing guns, tanks, or the chassis of fighting vehicles.

  9. Measuring the jitter of ring oscillators by means of information theory quantifiers

    NASA Astrophysics Data System (ADS)

    Antonelli, M.; De Micco, L.; Larrondo, H. A.

    2017-02-01

    Ring oscillators (RO's) are elementary blocks widely used in digital design. Jitter is unavoidable in RO's, its presence is an undesired behavior in many applications, as clock generators. On the contrary, jitter may be used as the noise source in RO-based true-random numbers generators (TRNG). Consequently, jitter measure is a relevant issue to characterize a RO, and it is the subject of this paper. The main contribution is the use of Information Theory Quantifiers (ITQ) as measures of RO's jitter. It is shown that among several ITQ evaluated, two of them emerge as good measures because they are independent of parameters used for their statistical determination. They turned out to be robust and may be implemented experimentally. We encountered that a dual entropy plane allows a visual comparison of results.

  10. Estimating the AmLi Neutron Spectrum from Measured Ring Ratios

    SciTech Connect

    Weinmann-Smith, Robert; Beddingfield, David H.; Enqvist, Andreas; Swinhoe, Martyn Thomas

    2016-11-10

    These are a set of slides on estimating the AmLi neutron spectrum from measured ring ratios. The IAEA uses an AmLi source in the Uranium Neutron Coincidence Collar (UNCL) to verify compliance with nonproliferation treaties. The UNCL requires calibration with known uranium samples. The AmLi spectrum isn’t known well enough to allow simulated calibrations. Alphas lose energy traveling through AmO2 particle of unknown size. Energy reduction below Li threshold enhances O contribution. Unknown Li matrix material affects neutron production and thermalization. There is large variation in spectra from each element. Other topics covered include: applications, physics considerations, current spectra, measurement overview, measurement results - variation between sources, simulations, spectra fitting, other simulations, and conclusions.

  11. Physics from the first year of H1 at HERA

    SciTech Connect

    Kiesling, C.

    1994-12-01

    In this report the author summarizes the results from the H1 experiment at HERA, using the data from the first year of running, 1992, when an integrated luminosity of 25 nb{sup {minus}1} has been recorded. These results include photoproduction, the measurement of the deep inelastic scattering, both for neutral current reactions and the search for physics beyond the Standard Model. Apart from the measurement of a moderate rise in the total photoproduction cross section, clear evidence is seen for hard interactions in single particle spectra and jet production, requiring a {open_quotes}resolved{close_quotes} photon as expected in QCD. The investigation of the global properties of hadronic final states in deep inelastic scattering demonstrates the need for further improvement of present QCD models. Evidence is found for a class of events with diffractive characteristics, exhibiting a large gap of hadronic energy flow about the proton direction. The proton structure function F{sub 2}{sup p}(x, Q{sup 2}) has been measured for neutral current events for Bjorken x in the range 10{sup {minus}4} - 10{sup {minus}2} and Q{sup 2} > 5 GeV{sup 2}, showing a steep rise towards small x. Furthermore, using 1993 data, a measurement of the cross section for charged current events is presented, clearly demonstrating, for the first time, the propagator effect of the W boson. Finally, new limits on leptoquarks, leptogluons, and excited electrons have been determined.

  12. An ultra-precise storage ring for the muon g -- 2 measurement

    SciTech Connect

    Brown, D.; DeWinter, T.; Hazen, E.; Heisey, C.; Kerosky, B.; Krienen, F.; Loomba, D.; McIntyre, E.; Magaud, D.; Meng, W.; Miller, J.; Posnick, L.; Roberts, B.; Stassinopoulos, D.; Sulak, L.; Worstell, W.; Bunce, G.; Brown, H.; Chertok, B.; Cottingham, G.; Cullen, J.; Danby, G.; Jackson, J.; May, M.; Mills, J.; Pai, C.; Pendzick, A.; Polk, I.; Prodell, A.; Snydstrup, L.; Shutt, R.; Woodle, K.; Becker, K.; Lubell, M.; Kinoshita, T.

    1989-01-01

    An ultra precise 3 GeV/c storage ring with a 14.5 kG super-ferric magnet is under construction at the Brookhaven AGS for the measurement of the muon anomalous magnetic moment to 0.35 ppM accuracy. This requires a magnetic field with is constant to {approx} 1 ppM and is known sufficiently well that the magnetic field integral averaged over the muon orbits can be calculated to 0.1 ppM. First the magnetic field will be statically shimmed by various techniques. Pole face winding will be used for final small static and dynamic corrections. Very elaborate NMR field monitoring techniques are required. A movable trolley'' located inside the vacuum chamber and the electrostatic focusing quadrupoles will measure the field throughout the muon storage volume. The trolley siding'' is 180{degree} from the injection point where no electric quadrupoles are located. Injection can be interrupted so the trolley can circle the ring. Also {approx}200 NMR probes located outside the vacuum chamber monitor the field during physics running and control the pole face windings. The very large ({approx}15 m diameter) superconducting coils (SC) are designed. Test winding will soon commence. Orders for the magnet steel can now be placed. R and D on various pulsed and SC dc injection methods is ongoing. 4 refs., 4 figs., 4 tabs.

  13. Study of magnetic hysteresis effects in a storage ring using precision tune measurement

    NASA Astrophysics Data System (ADS)

    Li, Wei; Hao, Hao; Mikhailov, Stepan F.; Xu, Wei; Li, Jing-Yi; Li, Wei-Min; Wu, Ying. K.

    2016-12-01

    With the advances in accelerator science and technology in recent decades, the accelerator community has focused on the development of next-generation light sources, for example diffraction-limited storage rings (DLSRs), which require precision control of the electron beam energy and betatron tunes. This work is aimed at understanding magnet hysteresis effects on the electron beam energy and lattice focusing in circular accelerators, and developing new methods to gain better control of these effects. In this paper, we will report our recent experimental study of the magnetic hysteresis effects and their impacts on the Duke storage ring lattice using the transverse feedback based precision tune measurement system. The major magnet hysteresis effects associated with magnet normalization and lattice ramping are carefully studied to determine an effective procedure for lattice preparation while maintaining a high degree of reproducibility of lattice focusing. The local hysteresis effects are also studied by measuring the betatron tune shifts which result from adjusting the setting of a quadrupole. A new technique has been developed to precisely recover the focusing strength of the quadrupole by returning it to a proper setting to overcome the local hysteresis effect. Supported by National Natural Science Foundation of China (11175180, 11475167) and US DOE (DE-FG02-97ER41033)

  14. Airborne Measurements of NOx, NOy, and O3 Using Cavity Ring-Down Spectroscopy

    NASA Astrophysics Data System (ADS)

    Zarzana, K. J.; Wild, R. J.; Thompson, C. R.; Sjostedt, S. J.; Womack, C. C.; Washenfelder, R. A.; Dube, W. P.; Ryerson, T. B.; Brown, S. S.

    2015-12-01

    NO and NO2 (=NOx) have a large effect on air quality and chemistry. Oxidation reactions transform NOx into other reactive nitrogen species such as PAN, HNO3, organic nitrates and N2O5, which can act either as sinks or reservoirs of NOx. Together with NOx, the sum of these oxidized reactive nitrogen species is termed NOy. Ozone serves as a principal oxidant source for many of these reactions, and it is also produced or destroyed during subsequent chemical cycles. Therefore, simultaneous measurements of all four species (NO, NO2, NOy, and O3) are desirable. Previous measurements of these species have principally been made by converting the compound of interest to NO, which is then detected using chemiluminescence. Alternatively, these species can be converted to NO2, which can then be detected using absorption spectroscopy. The use of a cavity ring down instrument allows for the accurate and rapid detection of NO2 in a compact and robust platform suitable for field deployments on numerous platforms, including vehicles and airplanes. In this work we describe the first aircraft deployment of a four-channel cavity ring-down instrument capable of simultaneously measuring NO2, NO, NOy, and O3. This deployment took place during the 2015 Shale Oil and Natural Gas Nexus (SONGNEX) field campaign in the western United States. The instrument flew in tandem with a chemiluminescence instrument, which measured the same set of compounds. A separate instrument that measured NO2 by a related absorption technique, broadband cavity enhanced spectroscopy (BBCES) was also on board the aircraft. An intercomparison between these instruments will be presented, as well as data from the SONGNEX flights that illustrate the capabilities of the CRDS insrument.

  15. Real W and Z bosons production at HERA

    NASA Astrophysics Data System (ADS)

    Nobe, Takuya

    2014-04-01

    The production of real W and Z bosons has been studied in ep collisions at HERA. A combined analysis is performed with the data taken with the H1 and ZEUS detectors corresponding to 0.98 fb-1 of integrated luminosity to search for events containing an isolated electron or muon and missing transverse momentum, which is dominated by single W production. The total single W boson production cross section is measured as 1.06 ± 0.16(stat.) ± 0.07(sys.) pb, in agreement with the Standard Model (SM) expectation of 1.26 ± 0.19 pb. The production of Z bosons has been studied in the reaction ep → eZp(∗), where p(∗) stands for a proton or a low-mass nucleon resonance, using a data sample collected with the ZEUS detector amounting to 0.5 fb-1. The Z is measured in the hadronic decay mode. The cross section of the reaction ep → eZp(∗) is measured to be 0.13 ± 0.06(stat.) ± 0.01(syst.) pb, in agreement with the SM prediction of 0.16 pb.

  16. HERA: an atmospheric probe to unveil the depths of Saturn

    NASA Astrophysics Data System (ADS)

    Mousis, Olivier; Atkinson, David H.; Amato, Michael; Aslam, Shahid; Atreya, Sushil K.; Blanc, Michel; Bolton, Scott J.; Brugger, Bastien; Calcutt, Simon; Cavalié, Thibault; Charnoz, Sébastien; Coustenis, Athena; DELEUIL, Magali; Ferri, Francesca; Fletcher, Leigh N.; Guillot, Tristan; Hartogh, Paul; Holland, Andrew; Hueso, Ricardo; Keller, Christoph; Kessler, Ernst; Lebreton, Jean-Pierre; leese, Mark; Lellouch, Emmanuel; Levacher, Patrick; Marty, Bernard; Morse, Andrew; Nixon, Conor; Reh, Kim R.; Renard, Jean-Baptiste; Sanchez-Lavega, Agustin; Schmider, François-Xavier; Sheridan, Simon; Simon, Amy A.; Snik, Frans; Spilker, Thomas R.; Stam, Daphne M.; Venkatapathy, Ethiraj; Vernazza, Pierre; Waite, J. Hunter; Wurz, Peter

    2016-10-01

    The Hera Saturn entry probe mission is proposed as an M-class mission led by ESA with a significant collaboration with NASA. It consists of a Saturn atmospheric probe and a Carrier-Relay spacecraft. Hera will perform in situ measurements of the chemical and isotopic compositions as well as the dynamics of Saturn's atmosphere, with the goal of improving our understanding of the origin, formation, and evolution of Saturn, the giant planets and their satellite systems, with extrapolation to extrasolar planets.The primary science objectives will be addressed by an atmospheric entry probe that would descend under parachute and carry out in situ measurements beginning in the stratosphere to help characterize the location and properties of the tropopause, and continue into the troposphere to pressures of at least 10 bars. All of the science objectives, except for the abundance of oxygen, which may be only addressed indirectly via observations of species whose abundances are tied to the abundance of water, can be achieved by reaching 10 bars. As in previous highly successful collaborative efforts between ESA and NASA, the proposed mission has a baseline concept based on a NASA-provided carrier/data relay spacecraft that would deliver the ESA-provided atmospheric probe to the desired atmospheric entry point at Saturn. ESA's proposed contribution should fit well into the M5 Cosmic Vision ESA call cost envelope.A nominal mission configuration would consist of a probe that detaches from the carrier one to several months prior to probe entry. Subsequent to probe release, the carrier trajectory would be deflected to optimize the over-flight phasing of the probe descent location for both probe data relay as well as performing carrier approach and flyby science, and would allow multiple retransmissions of the probe data for redundancy. The Saturn atmospheric entry probe would in many respects resemble the Jupiter Galileo probe. It is anticipated that the probe architecture for

  17. Measuring Particle Sizes from Diffraction Spikes at Saturn’s Ring Edges with Cassini UVIS Stellar Occultations

    NASA Astrophysics Data System (ADS)

    Becker, Tracy M.; Colwell, J. E.; Esposito, L. W.

    2013-10-01

    The sharp edges that define many of the boundaries in Saturn’s rings enable the detection of diffracted starlight by small particles during stellar occultations. As the occulted star is revealed in a gap or beyond the outer edge of the rings, the direct stellar signal is augmented by an additional signal due to the scattered light from the particles in the nearby edge. The Ultraviolet Imaging Spectrograph (UVIS) on Cassini has detected strong diffraction signals throughout Saturn’s A ring in 50-75% of the one hundred and thirty stellar occultations analyzed thus far. We measure the radial extent and the strength of the diffraction signals at the Encke Gap edges, the Keeler Gap edges, and the outer edge of the A ring in the UVIS occultation data. The radial extent of the signal is determined by the size of the smallest particles and the number of those particles determines the amplitude of the signal. We therefore use the measurements to place a lower limit on the particle size and to constrain the fractional optical depth due to these small particles. The diffraction signals extend radially from several meters to tens of kilometers beyond the ring edges, indicating significant populations of centimeter and millimeter-sized particles. We find more prominent diffraction signals in the Keeler Gap edges and the outer edge of the A ring than in the Encke Gap edges which suggests a decrease in particle size toward the outer edge of the A ring. We will present the results of a study of the small particle population at ring edges with azimuthal distance from the embedded ringmoons Pan (Encke Gap) and Daphnis (Keeler Gap) and the conclusions from our analysis of the size and abundance of particles in these three regions of the outer A ring.

  18. Longitudinal beam-transfer-function measurements at the SLC damping rings

    SciTech Connect

    Minty, M.G.; Zimmermann, F.

    1997-05-01

    A longitudinal single-bunch instability in the damping rings at the Stanford Linear Collider (SLC) is thought to contribute to pulse-to-pulse orbit variations in downstream accelerator sections. To better understand this instability, the authors measured the beam phase and bunch length under harmonic modulations of the rf phase and rf voltage. For small phase-modulations the measured response can be explained by interaction of the beam with the cavity fundamental mode. For larger excitations, they observed bifurcation and hysteresis effects. The response to an rf voltage modulation revealed two peaks near the quadrupole-mode frequency, one of which appears to be related to the longitudinal instability. In this paper they present the experimental results.

  19. Optimization of a multi-ring detector for Ps time of flight measurements

    NASA Astrophysics Data System (ADS)

    Di Noto, L.; Benetti, M.; Mariazzi, S.; Dalla Betta, G.-F.; Brusa, R. S.

    2013-06-01

    We have designed a multi-ring detector (MRD) based on Bismuth Germanate (BGO) crystals, coupled to Silicon PhotoMultipliers (SiPM) for measuring the Ps time of flight (TOF). The set-up geometry was optimized by Monte Carlo simulations to take into account at different Ps velocities: (i) the background noise due to backscattered positrons, (ii) the crosstalk between adjacent detectors, (iii) the lifetime of Ps decay. Three parameters were defined to evaluate the different configurations and a figure of merit was obtained. This allows the choice of the best set up configuration for measuring Ps emitted with a particular energy range, optimizing the signal to noise ratio and keeping the acquisition time acceptable.

  20. Optical Measurements of 14CO2 Using Cavity Ring-Down Spectroscopy

    NASA Astrophysics Data System (ADS)

    Long, David A.; Fleisher, Adam J.; Liu, Qingnan; Hodges, Joseph T.

    2016-06-01

    Measurements of radiocarbon (14C) provide a unique platform in order to determine the age of a material or alternatively for source attribution between biogenic and petrochemical sources. We describe a cavity ring-down spectrometer which uses an infrared quantum cascade laser to probe the fundamental of 14CO2. This instrument offers one of the highest sensitivities which has been reported in the mid-infrared and has fully automated spectral scanning for continuous data acquisition. Despite the ultra-low abundance of 14CO2 in the atmosphere (1.2 pmol/mol relative to 12CO2) we have been able to rapidly record the 14CO2 transition and determine the origin of carbon dioxide samples. Our experimental approach and future improvements to the instrument will be discussed as well as selected measurement targets.

  1. Single Scattering Albedo of fresh biomass burning aerosols measured using cavity ring down spectroscopy and nephelometry

    NASA Astrophysics Data System (ADS)

    Bililign, Solomon; Singh, Sujeeta; Fiddler, Marc; Smith, Damon; Bililign Research Group Team

    An accurate measurement of optical properties of aerosols is critical for quantifying the effect of aerosols on climate. Uncertainties still persist and measurement results vary significantly. The factors that affect measurement accuracy and the resulting uncertainties of the extinction-minus-scattering method are evaluated using a combination of cavity ring-down spectroscopy (CRDS) and integrating nephelometry and applied to measure the optical properties of fresh soot (size 300 and 400 nm) produced from burning of pine, red oak and cedar. We have demonstrated a system that allows measurement of optical properties at a wide range of wavelengths, which can be extended over most of the solar spectrum to determine ``featured'' absorption cross sections as a function of wavelength. SSA values measured were nearly flat ranging from 0.45 to 0.6. The result also demonstrates that SSA of fresh soot is nearly independent of wavelength of light in the 500-680 wavelength range with a slight increase at longer wavelength. The values are within the range of measured values both in the laboratory and in field studies for fresh soot The work is supported by the Department of Defense Grant W911NF-11-1-0188.

  2. Getting saturated hydraulic conductivity from surface Ground-Penetrating Radar measurements inside a ring infiltrometer

    NASA Astrophysics Data System (ADS)

    Leger, E.; Saintenoy, A.; Coquet, Y.

    2013-12-01

    fixed time steps, during an infiltration of 5 cm of water, inside a ring infiltrometer. We used the ring to demarcate the infiltration area, and to create reflexions at known depths. GPR reflexions coming from the wetting front as well as the buried edges of the cylinder were recorded. Modeling of the infiltration were made using SWMS-2D, GPR data of the infiltration were computed using GprMax suite programs. We generated 2D water content profiles associated with a saturated hydraulic conductivity value, at each experimental time step with SWMS-2D. Then we convert those profiles to 2D permittivity profiles using the Complex Refractive Index Method relation, to compute the reflexion time of the wetting front. We found the saturated hydraulic conductivity of soil by minimizing the differences between experimental and simulated data. Our retrieved saturated hydraulic conductivity from GPR data was compared to disk infiltrometer measurements.

  3. Airborne Cavity Ring-Down Measurement of Aerosol Extinction and Scattering During the Aerosol IOP

    NASA Technical Reports Server (NTRS)

    Strawa, A. W.; Ricci, K.; Provencal, R.; Schmid, B.; Covert, D.; Elleman, R.; Arnott, P.

    2003-01-01

    Large uncertainties in the effects of aerosols on climate require improved in-situ measurements of extinction coefficient and single-scattering albedo. This paper describes preliminary results from Cadenza, a new continuous wave cavity ring-down (CW-CRD) instrument designed to address these uncertainties. Cadenza measures the aerosol extinction coefficient for 675 nm and 1550 nm light, and simultaneously measures the scattering coefficient at 675 nm. In the past year Cadenza was deployed in the Asian Dust Above Monterey (ADAM) and DOE Aerosol Intensive Operating Period (IOP) field projects. During these flights Cadenza produced measurements of aerosol extinction in the range from 0.2 to 300 Mm-1 with an estimated precision of 0.1 Min-1 for 1550 nm light and 0.2 Mm-1 for 675 nm light. Cadenza data from the ADAM and Aerosol IOP missions compared favorably with data from the other instruments aboard the CIRPAS Twin Otter aircraft and participating in those projects.= We present comparisons between the Cadenza measurements and those friom a TSI nephelometer, Particle Soot Absorption Photometer (PSAP), and the AATS 14 sun-photometer. Measurements of the optical properties of smoke and dust plumes sampled during these campaigns are presented and estimates of heating rates due to these plumes are made.

  4. On the determination of {alpha}{sub s} from differential jet rates at HERA

    SciTech Connect

    Weber, Marc

    1997-04-20

    A measurement of the differential 2+1 jet rate in deep inelastic scattering at HERA in the kinematic range Q{sup 2}>200 GeV{sup 2} is presented. The jets are found using the JADE jet algorithm. Jet distributions measured with the H1 detector are compared to QCD model expectations. The differential 2+1 jet rate is unfolded to remove hadronization and detector effects, and is compared to next-to-leading order QCD calculations. The value of the strong coupling constant {alpha}{sub s} is extracted, and contributions to its systematic error are discussed.

  5. Hera: Using NASA Astronomy Data in the Classroom

    NASA Astrophysics Data System (ADS)

    Lochner, James C.; Mitchell, S.; Pence, W. D.

    2006-12-01

    Hera is a free internet-based tool that provides students access to both analysis software and data for studying astronomical objects such as black holes, binary star systems, supernovae, and galaxies. Students use a subset of the same software, and experience the same analysis process, that an astronomer follows in analyzing data obtained from an orbiting satellite observatory. Hera is accompanied by a web-based tutorial which steps students through the science background, procedures for accessing the data, and using the Hera software. The web pages include a lesson plan in which students explore data from a binary star system containing a normal star and a black hole. The objective of the lesson is for students to use plotting, estimation, and statistical techniques to determine the orbital period. Students may then apply these techniques to a number of data sets and draw conclusions on the natures of the systems (for example, students discover that one system is an eclipsing binary). The web page tutorial is self-guided and contains a number of exercises; students can work independently or in groups. Hera has been use with high school students and in introductory astronomy classes in community colleges. This poster describes Hera and its web-based tutorial. We outline the underlying software architecture, the development process, and its testing and classroom applications. We also describe the benefits to students in developing skills which extend basic science and math concepts into real applications.

  6. Overview of the Human Exploration Research Analog (HERA)

    NASA Technical Reports Server (NTRS)

    Neigut, J.

    2015-01-01

    In 2013, the Human Research Program at NASA began developing a new confinement analog specifically for conducting research to investigate the effects of confinement on the human system. The HERA (Human Exploration Research Analog) habitat has been used for both 7 and 14 day missions to date to examine and mitigate exploration risks to enable safe, reliable and productive human space exploration. This presentation will describe how the Flight Analogs Project developed the HERA facility and the infrastructure to suit investigator requirements for confinement research and in the process developed a new approach to analog utilization and a new state of the art analog facility. Details regarding HERA operations will be discussed including specifics on the mission simulation utilized for the current 14-day campaign, the specifics of the facility (total volume, overall size, hardware), and the capabilities available to researchers. The overall operational philosophy, mission fidelity including timeline, schedule pressures and cadence, and development and implementation of mission stressors will be presented. Research conducted to date in the HERA has addressed risks associated with behavioral health and performance, human physiology, as well as human factors. This presentation will conclude with a discussion of future research plans for the HERA, including infrastructure improvements and additional research capabilities planned for the upcoming 30-day missions in 2016.

  7. Time-domain measurement of optical transport in silicon micro-ring resonators.

    PubMed

    Pernice, Wolfram H P; Li, Mo; Tang, Hong X

    2010-08-16

    We perform time-domain measurements of optical transport dynamics in silicon nano-photonic devices. Using pulsed optical excitation the thermal and carrier induced optical nonlinearities of micro-ring resonators are investigated, allowing for identification of their individual contributions. Under pulsed excitation build-up of free carriers and heat in the waveguides leads to a beating oscillation of the cavity resonance frequency. When employing a burst of pulse trains shorter than the carrier life-time, the slower heating effect can be separated from the faster carrier effect. Our scheme provides a convenient way to thermally stabilize optical resonators for high-power time-domain applications and nonlinear optical conversion.

  8. Creation and measurement of broadband squeezed vacuum from a ring optical parametric oscillator

    NASA Astrophysics Data System (ADS)

    Serikawa, Takahiro; Yoshikawa, Jun-ichi; Makino, Kenzo; Frusawa, Akira

    2016-12-01

    We report a 65MHz-bandwidth triangular-shaped optical parametric oscillator (OPO) for squeezed vacuum generation at 860nm. The triangle structure of our OPO enables the round-trip length to reach 45mm as a ring cavity, which provides a counter circulating optical path available for introducing a probe beam or generating another squeezed vacuum. Hence our OPO is suitable for the applications in high-speed quantum information processing where two or more squeezed vacua form a complicated interferometer, like continuous-variable quantum teleportation. With a homemade, broadband and low-loss homodyne detector, a direct measurement shows 8.4dB of squeezing at 3MHz and also 2.4dB of squeezing at 100MHz.

  9. Creation and measurement of broadband squeezed vacuum from a ring optical parametric oscillator.

    PubMed

    Serikawa, Takahiro; Yoshikawa, Jun-Ichi; Makino, Kenzo; Frusawa, Akira

    2016-12-12

    We report a 65 MHz-bandwidth triangular-shaped optical parametric oscillator (OPO) for squeezed vacuum generation at 860 nm. The triangle structure of our OPO enables the round-trip length to reach 45 mm as a ring cavity, which provides a counter circulating optical path available for introducing a probe beam or generating another squeezed vacuum. Hence our OPO is suitable for the applications in high-speed quantum information processing where two or more squeezed vacua form a complicated interferometer, like continuous-variable quantum teleportation. With a homemade, broadband and low-loss homodyne detector, a direct measurement shows 8.4 dB of squeezing at 3 MHz and also 2.4 dB of squeezing at 100 MHz.

  10. Schottky Mass Measurements of Cooled Proton-Rich Nuclei at the GSI Experimental Storage Ring

    SciTech Connect

    Radon, T.; Schlitt, B.; Beckert, K.; Bosch, F.; Eickhoff, H.; Franzke, B.; Geissel, H.; Hausmann, M.; Irnich, H.; Klepper, O.; Kluge, H.; Kozhuharov, C.; Kraus, G.; Muenzenberg, G.; Nickel, F.; Nolden, F.; Patyk, Z.; Reich, H.; Scheidenberger, C.; Schwab, W.; Steck, M.; Suemmerer, K.; Kerscher, T.; Beha, T.; Loebner, K.E.; Fujita, Y.; Jung, H.C.; Wollnik, H.; Novikov, Y.

    1997-06-01

    High-precision mass measurements of proton-rich isotopes in the range of 60{le}Z{le}84 were performed using the novel technique of Schottky spectrometry. Projectile fragments produced by {sup 209}Bi ions at 930{ital A} MeV were separated with the magnetic spectrometer FRS and stored and cooled in the experimental storage ring (ESR). A typical mass resolving power of 350000 and a precision of 100keV were achieved in the region A{approx}200 . Masses of members of {alpha} chains linked by precise Q{sub {alpha}} values but not yet connected to the known masses were determined. In this way it is concluded that {sup 201}Fr and {sup 197}At are proton unbound. {copyright} {ital 1997} {ital The American Physical Society}

  11. Dissociative recombination measurements of NH{sup +} using an ion storage ring

    SciTech Connect

    Novotný, O.; Savin, D. W.; Berg, M.; Bing, D.; Buhr, H.; Grieser, M.; Grussie, F.; Krantz, C.; Mendes, M. B.; Nordhorn, C.; Repnow, R.; Schwalm, D.; Yang, B.; Wolf, A.; Geppert, W.

    2014-09-10

    We have investigated dissociative recombination (DR) of NH{sup +} with electrons using a merged beams configuration at the TSR heavy-ion storage ring located at the Max Planck Institute for Nuclear Physics in Heidelberg, Germany. We present our measured absolute merged-beams recombination rate coefficient for collision energies from 0 to 12 eV. From these data, we have extracted a cross section, which we have transformed to a plasma rate coefficient for the collisional plasma temperature range from T {sub pl} = 10 to 18,000 K. We show that the NH{sup +} DR rate coefficient data in current astrochemical models are underestimated by up to a factor of approximately nine. Our new data will result in predicted NH{sup +} abundances lower than those calculated by present models. This is in agreement with the sensitivity limits of all observations attempting to detect NH{sup +} in interstellar clouds.

  12. Measured Two-Dimensional Damping Effectiveness of Fuel-Sloshing Baffles applied to Ring Baffles in Cylindrical Tanks

    NASA Technical Reports Server (NTRS)

    Cole, Henry A., Jr.; Gambucci, Bruno J.

    1961-01-01

    Measured two-dimensional damping forces of baffles with various shapes and perforations are presented for fluid conditions representative of those in liquid-fuel rocket vehicles. The effect of amplitude and frequency of fuel sloshing, and surface proximity on baffle damping are shown. Application of the result sin the prediction of damping effectiveness of ring baffles in cylindrical tanks is demonstrated. Finally, some measurements of damping in a free-free cylindrical tank are presented which verify the predictions based on two-dimensional results. Measurements of certain three-dimensional baffles show that they provide greater damping than ring baffles.

  13. CONTROLLING THE CHARACTERISTICS OF LASER LIGHT: New possibilities for measuring optical nonreciprocity in a solid-state ring laser

    NASA Astrophysics Data System (ADS)

    Zolotoverkh, I. I.; Lariontsev, E. G.

    1993-05-01

    New methods are proposed for measuring the amplitude and frequency nonreciprocity of the ring resonator in a solid-state ring laser operating under self-modulation conditions. The amplitude nonreciprocity can be found from measurements of the phase difference between the self-oscillations in the intensities of the counterpropagating waves. Equations are derived which relate the amplitude and frequency nonreciprocity with certain parameters of the self-oscillations which can be measured. The possibility of determining the frequency nonreciprocity through a comparison of two signals, namely, the intensity of one of the generated modes and the signal of the photomixing two counterpropagating waves, is discussed.

  14. Hera - an ESA M-class Saturn Entry Probe Mission Proposal

    NASA Astrophysics Data System (ADS)

    Atkinson, D. H.; Mousis, O.; Spilker, T. R.; Venkatapathy, E.; Poncy, J.; Coustenis, A.; Reh, K. R.

    2015-12-01

    A fundamental goal of solar system exploration is to understand the origin of the solar system, the initial stages, conditions, and processes by which the solar system formed, how the formation process was initiated, and the nature of the interstellar seed material from which the solar system was born. Key to understanding solar system formation and subsequent dynamical and chemical evolution is the origin and evolution of the giant planets and their atmospheres. Additionally, the atmospheres of the giant planets serve as laboratories to better understand the atmospheric chemistries, dynamics, processes, and climates on all planets in the solar system including Earth, offer a context and provide a ground truth for exoplanets and exoplanetary systems, and have long been thought to play a critical role in the development of potentially habitable planetary systems. Remote sensing observations are limited when used to study the bulk atmospheric composition of the giant planets of our solar system. A remarkable example of the value of in situ measurements is provided by measurements of Jupiter's noble gas abundances and helium mixing ratio by the Galileo probe. In situ measurements provide direct access to atmospheric regions that are beyond the reach of remote sensing, enabling the dynamical, chemical and aerosol-forming processes at work from the thermosphere to the troposphere below the cloud decks to be studied. Studies for a newly proposed Saturn atmospheric entry probe mission named Hera is being prepared for the upcoming European Space Agency Medium Class (M5) mission announcement of opportunity. A solar powered mission, Hera will take approximately 8 years to reach Saturn and will carry instruments to measure the composition, structure, and dynamics of Saturn's atmosphere. In the context of giant planet science provided by the Galileo, Juno, and Cassini missions to Jupiter and Saturn, the Hera Saturn probe will provide critical measurements of composition

  15. The Measurement of Aerosol Optical Properties Using Continuous Wave Cavity Ring-Down Techniques

    NASA Technical Reports Server (NTRS)

    Strawa, A. W.; Owano, T.; Castaneda, R.; Baer, D. S.; Paldus, B. A.; Gore, Warren J. (Technical Monitor)

    2002-01-01

    Large uncertainties in the effects that aerosols have on climate require improved in-situ measurements of extinction coefficient and single-scattering albedo. This abstract describes the use of continuous wave cavity ring-down (CW-CRD) technology to address this problem. The innovations in this instrument are the use of CW-CRD to measure aerosol extinction coefficient, the simultaneous measurement of scattering coefficient, and small size suitable for a wide range of aircraft applications. Our prototype instrument measures extinction and scattering coefficient at 690 nm and extinction coefficient at 1550 nm. The instrument itself is small (60 x 48 x 15 cm) and relatively insensitive to vibrations. The prototype instrument has been tested in our lab and used in the field. While improvements in performance are needed, the prototype has been shown to make accurate and sensitive measurements of extinction and scattering coefficients. Combining these two parameters, one can obtain the single-scattering albedo and absorption coefficient, both important aerosol properties. The use of two wavelengths also allows us to obtain a quantitative idea of the size of the aerosol through the Angstrom exponent. Minimum sensitivity of the prototype instrument is 1.5 x 10(exp -6)/m (1.5/Mm). Validation of the measurement of extinction coefficient has been accomplished by comparing the measurement of calibration spheres with Mie calculations. This instrument and its successors have potential to help reduce uncertainty currently associated with aerosol optical properties and their spatial and temporal variation. Possible applications include studies of visibility, climate forcing by aerosol, and the validation of aerosol retrieval schemes from satellite data.

  16. The Measurement of Aerosol Optical Properties using Continuous Wave Cavity Ring-Down Techniques

    NASA Technical Reports Server (NTRS)

    Strawa, Anthony W.; Castaneda, Rene; Owano, Thomas; Baer, Douglas S.; Paldus, Barbara A.; Gore, Warren J. (Technical Monitor)

    2002-01-01

    Large uncertainties in the effects that aerosols have on climate require improved in situ measurements of extinction coefficient and single-scattering albedo. This paper describes the use of continuous wave cavity ring-down (CW-CRD) technology to address this problem. The innovations in this instrument are the use of CW-CRD to measure aerosol extinction coefficient, the simultaneous measurement of scattering coefficient, and small size suitable for a wide range of aircraft applications. Our prototype instrument measures extinction and scattering coefficient at 690 nm and extinction coefficient at 1550 nm. The instrument itself is small (60 x 48 x 15 cm) and relatively insensitive to vibrations. The prototype instrument has been tested in our lab and used in the field. While improvements in performance are needed, the prototype has been shown to make accurate and sensitive measurements of extinction and scattering coefficients. Combining these two parameters, one can obtain the single-scattering albedo and absorption coefficient, both important aerosol properties. The use of two wavelengths also allows us to obtain a quantitative idea of the size of the aerosol through the Angstrom exponent. Minimum sensitivity of the prototype instrument is 1.5 x 10(exp -6)/m (1.5 M/m). Validation of the measurement of extinction coefficient has been accomplished by comparing the measurement of calibration spheres with Mie calculations. This instrument and its successors have potential to help reduce uncertainty currently associated with aerosol optical properties and their spatial and temporal variation. Possible applications include studies of visibility, climate forcing by aerosol, and the validation of aerosol retrieval schemes from satellite data.

  17. The Measurement of Aerosol Optical Properties Using Continuous Wave Cavity Ring-Down Techniques

    NASA Technical Reports Server (NTRS)

    Strawa, A. W.; Owano, T.; Castaneda, R.; Baer, D. S.; Paldus, B. A.; Gore, Warren J. (Technical Monitor)

    2002-01-01

    Large uncertainties in the effects that aerosols have on climate require improved in-situ measurements of extinction coefficient and single-scattering albedo. This abstract describes the use of continuous wave cavity ring-down (CW-CRD) technology to address this problem. The innovations in this instrument are the use of CW-CRD to measure aerosol extinction coefficient, the simultaneous measurement of scattering coefficient, and small size suitable for a wide range of aircraft applications. Our prototype instrument measures extinction and scattering coefficient at 690 nm and extinction coefficient at 1550 nm. The instrument itself is small (60 x 48 x 15 cm) and relatively insensitive to vibrations. The prototype instrument has been tested in our lab and used in the field. While improvements in performance are needed, the prototype has been shown to make accurate and sensitive measurements of extinction and scattering coefficients. Combining these two parameters, one can obtain the single-scattering albedo and absorption coefficient, both important aerosol properties. The use of two wavelengths also allows us to obtain a quantitative idea of the size of the aerosol through the Angstrom exponent. Minimum sensitivity of the prototype instrument is 1.5 x 10(exp -6)/m (1.5/Mm). Validation of the measurement of extinction coefficient has been accomplished by comparing the measurement of calibration spheres with Mie calculations. This instrument and its successors have potential to help reduce uncertainty currently associated with aerosol optical properties and their spatial and temporal variation. Possible applications include studies of visibility, climate forcing by aerosol, and the validation of aerosol retrieval schemes from satellite data.

  18. The Measurement of Aerosol Optical Properties using Continuous Wave Cavity Ring-Down Techniques

    NASA Technical Reports Server (NTRS)

    Strawa, Anthony W.; Castaneda, Rene; Owano, Thomas; Baer, Douglas S.; Paldus, Barbara A.; Gore, Warren J. (Technical Monitor)

    2002-01-01

    Large uncertainties in the effects that aerosols have on climate require improved in situ measurements of extinction coefficient and single-scattering albedo. This paper describes the use of continuous wave cavity ring-down (CW-CRD) technology to address this problem. The innovations in this instrument are the use of CW-CRD to measure aerosol extinction coefficient, the simultaneous measurement of scattering coefficient, and small size suitable for a wide range of aircraft applications. Our prototype instrument measures extinction and scattering coefficient at 690 nm and extinction coefficient at 1550 nm. The instrument itself is small (60 x 48 x 15 cm) and relatively insensitive to vibrations. The prototype instrument has been tested in our lab and used in the field. While improvements in performance are needed, the prototype has been shown to make accurate and sensitive measurements of extinction and scattering coefficients. Combining these two parameters, one can obtain the single-scattering albedo and absorption coefficient, both important aerosol properties. The use of two wavelengths also allows us to obtain a quantitative idea of the size of the aerosol through the Angstrom exponent. Minimum sensitivity of the prototype instrument is 1.5 x 10(exp -6)/m (1.5 M/m). Validation of the measurement of extinction coefficient has been accomplished by comparing the measurement of calibration spheres with Mie calculations. This instrument and its successors have potential to help reduce uncertainty currently associated with aerosol optical properties and their spatial and temporal variation. Possible applications include studies of visibility, climate forcing by aerosol, and the validation of aerosol retrieval schemes from satellite data.

  19. Exclusive electroproduction of two pions at HERA

    NASA Astrophysics Data System (ADS)

    Abramowicz, H.; Abt, I.; Adamczyk, L.; Adamus, M.; Aggarwal, R.; Antonelli, S.; Antonioli, P.; Antonov, A.; Arneodo, M.; Ashery, D.; Aushev, V.; Aushev, Y.; Bachynska, O.; Bamberger, A.; Barakbaev, A. N.; Barbagli, G.; Bari, G.; Barreiro, F.; Bartosik, N.; Bartsch, D.; Basile, M.; Behnke, O.; Behr, J.; Behrens, U.; Bellagamba, L.; Bertolin, A.; Bhadra, S.; Bindi, M.; Blohm, C.; Bokhonov, V.; Bołd, T.; Bondarenko, K.; Boos, E. G.; Borras, K.; Boscherini, D.; Bot, D.; Brock, I.; Brownson, E.; Brugnera, R.; Brümmer, N.; Bruni, A.; Bruni, G.; Brzozowska, B.; Bussey, P. J.; Bylsma, B.; Caldwell, A.; Capua, M.; Carlin, R.; Catterall, C. D.; Chekanov, S.; Chwastowski, J.; Ciborowski, J.; Ciesielski, R.; Cifarelli, L.; Cindolo, F.; Contin, A.; Cooper-Sarkar, A. M.; Coppola, N.; Corradi, M.; Corriveau, F.; Costa, M.; D'Agostini, G.; Dal Corso, F.; del Peso, J.; Dementiev, R. K.; De Pasquale, S.; Derrick, M.; Devenish, R. C. E.; Dobur, D.; Dolgoshein, B. A.; Dolinska, G.; Doyle, A. T.; Drugakov, V.; Durkin, L. S.; Dusini, S.; Eisenberg, Y.; Ermolov, P. F.; Eskreys, S.; Fang, S.; Fazio, S.; Ferrando, J.; Ferrero, M. I.; Figiel, J.; Forrest, M.; Foster, B.; Gach, G.; Galas, A.; Gallo, E.; Garfagnini, A.; Geiser, A.; Gialas, I.; Gladilin, L. K.; Gladkov, D.; Glasman, C.; Gogota, O.; Golubkov, Yu. A.; Göttlicher, P.; Grabowska-Bołd, I.; Grebenyuk, J.; Gregor, I.; Grigorescu, G.; Grzelak, G.; Gueta, O.; Gurvich, E.; Guzik, M.; Gwenlan, C.; Haas, T.; Hain, W.; Hamatsu, R.; Hart, J. C.; Hartmann, H.; Hartner, G.; Hilger, E.; Hochman, D.; Hori, R.; Horton, K.; Hüttmann, A.; Ibrahim, Z. A.; Iga, Y.; Ingbir, R.; Ishitsuka, M.; Jakob, H.-P.; Januschek, F.; Jones, T. W.; Jüngst, M.; Kadenko, I.; Kahle, B.; Kananov, S.; Kanno, T.; Karshon, U.; Karstens, F.; Katkov, I. I.; Kaur, M.; Kaur, P.; Keramidas, A.; Khein, L. A.; Kim, J. Y.; Kisielewska, D.; Kitamura, S.; Klanner, R.; Klein, U.; Koffeman, E.; Kooijman, P.; Korol, Ie.; Korzhavina, I. A.; Kotański, A.; Kötz, U.; Kowalski, H.; Kuprash, O.; Kuze, M.; Lee, A.; Levchenko, B. B.; Levy, A.; Libov, V.; Limentani, S.; Ling, T. Y.; Lisovyi, M.; Lobodzinska, E.; Lohmann, W.; Löhr, B.; Lohrmann, E.; Long, K. R.; Longhin, A.; Lontkovskyi, D.; Lukina, O. Yu.; Maeda, J.; Magill, S.; Makarenko, I.; Malka, J.; Mankel, R.; Margotti, A.; Marini, G.; Martin, J. F.; Mastroberardino, A.; Mattingly, M. C. K.; Melzer-Pellmann, I.-A.; Mergelmeyer, S.; Miglioranzi, S.; Mohamad Idris, F.; Monaco, V.; Montanari, A.; Morris, J. D.; Mujkic, K.; Musgrave, B.; Nagano, K.; Namsoo, T.; Nania, R.; Nigro, A.; Ning, Y.; Nobe, T.; Noor, U.; Notz, D.; Nowak, R. J.; Nuncio-Quiroz, A. E.; Oh, B. Y.; Okazaki, N.; Oliver, K.; Olkiewicz, K.; Onishchuk, Yu.; Papageorgiu, K.; Parenti, A.; Paul, E.; Pawlak, J. M.; Pawlik, B.; Pelfer, P. G.; Pellegrino, A.; Perlański, W.; Perrey, H.; Piotrzkowski, K.; Pluciński, P.; Pokrovskiy, N. S.; Polini, A.; Proskuryakov, A. S.; Przybycień, M.; Raval, A.; Reeder, D. D.; Reisert, B.; Ren, Z.; Repond, J.; Ri, Y. D.; Robertson, A.; Roloff, P.; Rubinsky, I.; Ruspa, M.; Sacchi, R.; Salii, A.; Samson, U.; Sartorelli, G.; Savin, A. A.; Saxon, D. H.; Schioppa, M.; Schlenstedt, S.; Schleper, P.; Schmidke, W. B.; Schneekloth, U.; Schönberg, V.; Schörner-Sadenius, T.; Schwartz, J.; Sciulli, F.; Shcheglova, L. M.; Shehzadi, R.; Shimizu, S.; Singh, I.; Skillicorn, I. O.; Słomiński, W.; Smith, W. H.; Sola, V.; Solano, A.; Son, D.; Sosnovtsev, V.; Spiridonov, A.; Stadie, H.; Stanco, L.; Stern, A.; Stewart, T. P.; Stifutkin, A.; Stopa, P.; Suchkov, S.; Susinno, G.; Suszycki, L.; Sztuk-Dambietz, J.; Szuba, D.; Szuba, J.; Tapper, A. D.; Tassi, E.; Terrón, J.; Theedt, T.; Tiecke, H.; Tokushuku, K.; Tomalak, O.; Tomaszewska, J.; Tsurugai, T.; Turcato, M.; Tymieniecka, T.; Vázquez, M.; Verbytskyi, A.; Viazlo, O.; Vlasov, N. N.; Volynets, O.; Walczak, R.; Wan Abdullah, W. A. T.; Whitmore, J. J.; Wiggers, L.; Wing, M.; Wlasenko, M.; Wolf, G.; Wolfe, H.; Wrona, K.; Yagües-Molina, A. G.; Yamada, S.; Yamazaki, Y.; Yoshida, R.; Youngman, C.; Żarnecki, A. F.; Zawiejski, L.; Zenaiev, O.; Zeuner, W.; Zhautykov, B. O.; Zhmak, N.; Zhou, C.; Zichichi, A.; Zolkapli, Z.; Zolko, M.; Zotkin, D. S.

    2012-01-01

    The exclusive electroproduction of two pions in the mass range 0.4< M ππ <2.5 GeV has been studied with the ZEUS detector at HERA using an integrated luminosity of 82 pb-1. The analysis was carried out in the kinematic range of 2< Q 2<80 GeV2, 32< W<180 GeV and | t|<0.6 GeV2, where Q 2 is the photon virtuality, W is the photon-proton centre-of-mass energy and t is the squared four-momentum transfer at the proton vertex. The two-pion invariant-mass distribution is interpreted in terms of the pion electromagnetic form factor, | F( M ππ )|, assuming that the studied mass range includes the contributions of the ρ, ρ' and ρ'' vector-meson states. The masses and widths of the resonances were obtained and the Q 2 dependence of the cross-section ratios σ( ρ'→ ππ)/ σ( ρ) and σ( ρ''→ ππ)/ σ( ρ) was extracted. The pion form factor obtained in the present analysis is compared to that obtained in e + e -→ π + π -.

  20. Deep Inelastic Scattering results from the first year of HERA operation

    SciTech Connect

    Magill, S.R.

    1993-12-31

    The first year of operation of the HERA electron-proton collider has resulted in Deep Inelastic Scattering (DIS) Physics results from both the H1 and ZEUS experiments. Reported here are the H1 and ZEUS measurements of the proton structure function F{sub 2} at higher Q{sup 2} and lower x than previously reported from fixed target experiments. Also included are the results of QCD studies on hadronic final states and jets, and the observation of high Q{sup 2} charged current events from both experiments. Finally, the observation of events with large rapidity gaps by the ZEUS collaboration is also reported.

  1. Energy flow and charged particle spectra in deep inelastic scattering at HERA

    NASA Astrophysics Data System (ADS)

    Abt, I.; Ahmed, T.; Andreev, V.; Aid, S.; Andrieu, B.; Appuhn, R.-D.; Arpagaus, M.; Babaev, A.; Bärwolff, H.; Bán, J.; Baranov, P.; Barrelet, E.; Bartel, W.; Bassler, U.; Beck, H. P.; Behrend, H.-J.; Belousov, A.; Berger, Ch.; Bergstein, H.; Bernardi, G.; Bernet, R.; Bertrand-Coremans, G.; Besançon, M.; Biddulph, P.; Binder, E.; Bizot, J. C.; Blobel, V.; Borras, K.; Bosetti, P. C.; Boudry, V.; Bourdarios, C.; Braemer, A.; Brasse, F.; Braun, U.; Braunschweig, W.; Brisson, V.; Bruncko, D.; Büngener, L.; Bürger, J.; Büsser, F. W.; Buniatian, A.; Burke, S.; Buschhorn, G.; Campbell, A. J.; Carli, T.; Charles, F.; Chyla, J.; Clarke, D.; Clegg, A. B.; Colombo, M.; Coughlan, J. A.; Courau, A.; Coutures, Ch.; Cozzika, G.; Criegee, L.; Cvach, J.; Dagoret, S.; Dainton, J. B.; Danilov, M.; Dann, A. W. E.; Dau, W. D.; David, M.; Deffur, E.; Delcourt, B.; Del Buono, L.; Devel, M.; de Roeck, A.; di Nezza, P.; Dingus, P.; Dollfus, C.; Dowell, J. D.; Dreis, H. B.; Drescher, A.; Duboc, J.; Düllmann, D.; Dünger, O.; Duhm, H.; Ebbinghaus, R.; Eberle, M.; Ebert, J.; Ebert, T. R.; Eckerlin, G.; Efremenko, V.; Egli, S.; Ehrlichmann, H.; Eichenberger, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Ellis, N. N.; Ellison, R. J.; Elsen, E.; Erdmann, M.; Evrard, E.; Favart, L.; Fedotov, A.; Feeken, D.; Felst, R.; Feltesse, J.; Fensome, I. F.; Ferencei, J.; Ferrarotto, F.; Flamm, K.; Flauger, W.; Fleischer, M.; Flieser, M.; Flügge, G.; Fomenko, A.; Fominykh, B.; Forbush, M.; Formánek, J.; Foster, J. M.; Franke, G.; Fretwurst, E.; Fuhrmann, P.; Gabathuler, E.; Gamerdinger, K.; Garvey, J.; Gayler, J.; Gebauer, M.; Gellrich, A.; Gennis, M.; Genzel, H.; Gerhards, R.; Godfrey, L.; Goerlach, U.; Goerlich, L.; Gogitidze, N.; Goldberg, M.; Goldner, D.; Goodall, A. M.; Gorelov, I.; Goritchev, P.; Grab, C.; Grässler, H.; Grässler, R.; Greenshaw, T.; Greif, H.; Grindhammer, G.; Gruber, A.; Gruber, C.; Haack, J.; Haidt, D.; Hajduk, L.; Hamon, O.; Hampel, M.; Hanlon, E. M.; Hapke, M.; Harjes, J.; Haydar, R.; Haynes, W. J.; Heatherington, J.; Hedberg, V.; Heinzelmann, G.; Henderson, R. C. W.; Henschel, H.; Herma, R.; Herynek, I.; Hildesheim, W.; Hill, P.; Hilton, C. D.; Hladký, J.; Hoeger, K. C.; Höppner, M.; Huet, Ph.; Hufnagel, H.; Huot, N.; Ibbotson, M.; Itterbeck, H.; Jabiol, M.-A.; Jacholkowska, A.; Jacobsson, C.; Jaffre, M.; Jansen, T.; Jönsson, L.; Johannsen, K.; Johnson, D. P.; Johnson, L.; Jung, H.; Kalmus, P. I. P.; Kant, D.; Kazarian, S.; Kaschowitz, R.; Kasselmann, P.; Kathage, U.; Kaufmann, H. H.; Kenyon, I. R.; Kermiche, S.; Keuker, C.; Kiesling, C.; Klein, M.; Kleinwort, C.; Knies, G.; Ko, W.; Köhler, T.; Kolanoski, H.; Kole, F.; Kolya, S. D.; Korbel, V.; Korn, M.; Kostka, P.; Kotelnikov, S. K.; Krasny, M. W.; Krücker, D.; Krüger, U.; Kubenka, J. P.; Küster, H.; Kuhlen, M.; Kurča, T.; Kurzhöfer, J.; Kuznik, B.; Lacour, D.; Lamarche, F.; Lander, R.; Landon, M. P. J.; Lange, W.; Langkau, R.; Lanius, P.; Laporte, J. F.; Lebedev, A.; Leuschner, A.; Leverenz, C.; Levonian, S.; Lewin, D.; Ley, Ch.; Lindner, A.; Lindström, G.; Linsel, F.; Lipinski, J.; Loch, P.; Lohmander, H.; Lopez, G. C.; Lüers, D.; Lüke, D.; Magnussen, N.; Malinovski, E.; Mani, S.; Marage, P.; Marks, J.; Marshall, R.; Martens, J.; Martin, R.; Martyn, H.-U.; Martyniak, J.; Masson, S.; Mavroidis, A.; Maxfield, S. J.; McMahon, S. J.; Mehta, A.; Meier, K.; Mercer, D.; Merz, T.; Meyer, C. A.; Meyer, H.; Meyer, J.; Mikocki, S.; Monnier, E.; Moreau, F.; Moreels, J.; Morris, J. V.; Müller, K.; Murín, P.; Murray, S. A.; Nagovizin, V.; Naroska, B.; Naumann, Th.; Newman, P. R.; Newton, D.; Neyret, D.; Nguyen, H. K.; Niebergall, F.; Niebuhr, C.; Nisius, R.; Nowak, G.; Noyes, G. W.; Nyberg, M.; Oberlack, H.; Obrock, U.; Olsson, J. E.; Orenstein, S.; Ould-Saada, F.; Pascaud, C.; Patel, G. D.; Peppel, E.; Peters, S.; Phillips, H. T.; Phillips, J. P.; Pichler, Ch.; Pilgram, W.; Pitzl, D.; Prell, S.; Prosi, R.; Rädel, G.; Raupach, F.; Rauschnabel, K.; Reimer, P.; Reinshagen, S.; Ribarics, P.; Riech, V.; Riedlberger, J.; Riess, S.; Rietz, M.; Robertson, S. M.; Robmann, P.; Roosen, R.; Rosenbauer, K.; Rostovtsev, A.; Royon, C.; Rudowicz, M.; Ruffer, M.; Rusakov, S.; Rybicki, K.; Sahlmann, N.; Sanchez, E.; Sankey, D. P. C.; Savitsky, M.; Schacht, P.; Schleper, P.; von Schlippe, W.; Schmidt, C.; Schmidt, D.; Schmitz, W.; Schöning, A.; Schröder, V.; Schuhmann, E.; Schulz, M.; Schwab, B.; Schwind, A.; Scobel, W.; Seehausen, U.; Sell, R.; Semenov, A.; Shekelyan, V.; Sheviakov, I.; Shooshtari, H.; Shtarkov, L. N.; Siegmon, G.; Siewert, U.; Sirois, Y.; Skillicorn, I. O.; Smirnov, P.; Smith, J. R.; Soloviev, Y.; Spitzer, H.; Steenbock, M.; Steffen, P.; Steinberg, R.; Stella, B.; Stephens, K.; Stier, J.; Stösslein, U.; Strachota, J.; Straumann, U.; Struczinski, W.; Sutton, J. P.; Taylor, R. E.; Tchernyshov, V.; Thiebaux, C.; Thompson, G.; Tichomirov, I.; Truöl, P.; Turnau, J.; Tutas, J.; Urban, L.; Usik, A.; Valkar, S.; Valkarova, A.; Vallée, C.; van Esch, P.; Vartapetian, A.; Vazdik, Y.; Vecko, M.; Verrecchia, P.; Vick, R.; Villet, G.; Vogel, E.; Wacker, K.; Walker, I. W.; Walther, A.; Weber, G.; Wegener, D.; Wegener, A.; Wellisch, H. P.; West, L. R.; Willard, S.; Winde, M.; Winter, G.-G.; Wolff, Th.; Womersley, L. A.; Wright, A. E.; Wulff, N.; Yiou, T. P.; Žáček, J.; Zeitnitz, C.; Ziaeepour, H.; Zimmer, M.; Zimmermann, W.; Zomer, F.

    1994-09-01

    Global properties of the hadronic final state in deep inelastic scattering events at HERA are investigated. The data are corrected for detector effects and are compared directly with QCD phenomenology. Energy flows in both the laboratory frame and the hadronic centre of mass system and energy-energy correlations in the laboratory frame are presented. Comparing various QCD models, the colour dipole model provides the only satisfactory description of the data. In the hadronic centre of mass system the momentum components of charged particles longitudinal and transverse to the virtual boson direction are measured and compared with lower energy lepton-nucleon scattering data as well as with e + e - dat from LEP.

  2. Eddy covariance flux measurements of gaseous elemental mercury using cavity ring-down spectroscopy.

    PubMed

    Pierce, Ashley M; Moore, Christopher W; Wohlfahrt, Georg; Hörtnagl, Lukas; Kljun, Natascha; Obrist, Daniel

    2015-02-03

    A newly developed pulsed cavity ring-down spectroscopy (CRDS) system for measuring atmospheric gaseous elemental mercury (GEM) concentrations at high temporal resolution (25 Hz) was used to successfully conduct the first eddy covariance (EC) flux measurements of GEM. GEM is the main gaseous atmospheric form, and quantification of bidirectional exchange between the Earth's surface and the atmosphere is important because gas exchange is important on a global scale. For example, surface GEM emissions from natural sources, legacy emissions, and re-emission of previously deposited anthropogenic pollution may exceed direct primary anthropogenic emissions. Using the EC technique for flux measurements requires subsecond measurements, which so far has not been feasible because of the slow time response of available instrumentation. The CRDS system measured GEM fluxes, which were compared to fluxes measured with the modified Bowen ratio (MBR) and a dynamic flux chamber (DFC). Measurements took place near Reno, NV, in September and October 2012 encompassing natural, low-mercury (Hg) background soils and Hg-enriched soils. During nine days of measurements with deployment of Hg-enriched soil in boxes within 60 m upwind of the EC tower, the covariance of GEM concentration and vertical wind speed was measured, showing that EC fluxes over an Hg-enriched area were detectable. During three separate days of flux measurements over background soils (without Hg-enriched soils), no covariance was detected, indicating fluxes below the detection limit. When fluxes were measurable, they strongly correlated with wind direction; the highest fluxes occurred when winds originated from the Hg-enriched area. Comparisons among the three methods showed good agreement in direction (e.g., emission or deposition) and magnitude, especially when measured fluxes originated within the Hg-enriched soil area. EC fluxes averaged 849 ng m(-2) h(-1), compared to DFC fluxes of 1105 ng m(-2) h(-1) and MBR fluxes

  3. A cavity ring-down spectroscopy sensor for real-time Hall thruster erosion measurements.

    PubMed

    Lee, B C; Huang, W; Tao, L; Yamamoto, N; Gallimore, A D; Yalin, A P

    2014-05-01

    A continuous-wave cavity ring-down spectroscopy sensor for real-time measurements of sputtered boron from Hall thrusters has been developed. The sensor uses a continuous-wave frequency-quadrupled diode laser at 250 nm to probe ground state atomic boron sputtered from the boron nitride insulating channel. Validation results from a controlled setup using an ion beam and target showed good agreement with a simple finite-element model. Application of the sensor for measurements of two Hall thrusters, the H6 and SPT-70, is described. The H6 was tested at power levels ranging from 1.5 to 10 kW. Peak boron densities of 10 ± 2 × 10(14) m(-3) were measured in the thruster plume, and the estimated eroded channel volume agreed within a factor of 2 of profilometry. The SPT-70 was tested at 600 and 660 W, yielding peak boron densities of 7.2 ± 1.1 × 10(14) m(-3), and the estimated erosion rate agreed within ~20% of profilometry. Technical challenges associated with operating a high-finesse cavity in the presence of energetic plasma are also discussed.

  4. Contact angle and surface tension measurements of a five-ring polyphenyl ether

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.

    1985-01-01

    Contact angle measurements were performed for a five-ring polyphenyl ether isomeric mixture on M-50 steel in a dry nitrogen atmosphere. Two different techniques were used: (1) a tilting plate apparatus, and (2) a sessile drop apparatus. Measurements were made for the temperature range 25 to 190 C. Surface tension was measured by a differential maximum bubble pressure technique over the range 23 to 220C in room air. The critical surface energy of spreading (gamma (sub c)) was determined for the polyphenyl ether by plotting the cosine of the contact angle (theta) versus the surface tension (gamma (sub LV)). The straight line intercept at cosine theta = 1 is defined as gamma (sub c). Gamma (sub c) was found to be 30.1 dyn/cm for the tilting plate technique and 31.3 dyn/cm for the sessile drop technique. These results indicate that the polyphenyl ether is inherently autophobic (i.e., it will not spread on its own surface film until its surface tension is less than gamma (sub c). This phenomenon is discussed in light of the wettability and wear problems encountered with this fluid.

  5. DISSOCIATIVE RECOMBINATION MEASUREMENTS OF HCl{sup +} USING AN ION STORAGE RING

    SciTech Connect

    Novotný, O.; Stützel, J.; Savin, D. W.; Becker, A.; Buhr, H.; Domesle, C.; Grieser, M.; Krantz, C.; Kreckel, H.; Repnow, R.; Schwalm, D.; Yang, B.; Wolf, A.; Geppert, W.; Spruck, K.

    2013-11-01

    We have measured dissociative recombination (DR) of HCl{sup +} with electrons using a merged beams configuration at the TSR heavy-ion storage ring located at the Max Planck Institute for Nuclear Physics in Heidelberg, Germany. We present the measured absolute merged beams recombination rate coefficient for collision energies from 0 to 4.5 eV. We have also developed a new method for deriving the cross section from the measurements. Our approach does not suffer from approximations made by previously used methods. The cross section was transformed to a plasma rate coefficient for the electron temperature range from T = 10 to 5000 K. We show that the previously used HCl{sup +} DR data underestimate the plasma rate coefficient by a factor of 1.5 at T = 10 K and overestimate it by a factor of three at T = 300 K. We also find that the new data may partly explain existing discrepancies between observed abundances of chlorine-bearing molecules and their astrochemical models.

  6. On Physical Interpretation of the In-Site Measurement of Earth Rotation by Ring Laser Gyrometers

    NASA Technical Reports Server (NTRS)

    Chao, B. F.

    2004-01-01

    Large ring laser gyrometers under development have demonstrated the capability of detecting minute ground motions and deformations on a wide range of timescales. The next challenge and goal is to measure the Earth's rotation variations to a precision that rivals that of the present space-geodesy techniques, thus providing an in-situ (and cost effective alternatives of Earth rotation measurement for geophysical research and geodetic applications. Aside from thermal and mechanical instabilities, "undesirable" ground motion and tilt that appear in the signal will need to be removed before any variation in Earth rotation can be detected. Removal of these signals, some of them are larger than the sought rotation signals, has been a typical procedure in many precise geophysical instruments, such as gravimeters, seismometers, and tiltmeters. The remaining Earth rotation signal resides in both the spin around the axis and in the orientation of the axis. In the case of the latter, the in-situ measurement is complementary to the space-geodetic observables in terms of polar motion and nutation, a fact to be exploited.

  7. A cavity ring-down spectroscopy sensor for real-time Hall thruster erosion measurements

    SciTech Connect

    Lee, B. C.; Huang, W.; Tao, L.; Yamamoto, N.; Yalin, A. P.; Gallimore, A. D.

    2014-05-15

    A continuous-wave cavity ring-down spectroscopy sensor for real-time measurements of sputtered boron from Hall thrusters has been developed. The sensor uses a continuous-wave frequency-quadrupled diode laser at 250 nm to probe ground state atomic boron sputtered from the boron nitride insulating channel. Validation results from a controlled setup using an ion beam and target showed good agreement with a simple finite-element model. Application of the sensor for measurements of two Hall thrusters, the H6 and SPT-70, is described. The H6 was tested at power levels ranging from 1.5 to 10 kW. Peak boron densities of 10 ± 2 × 10{sup 14} m{sup −3} were measured in the thruster plume, and the estimated eroded channel volume agreed within a factor of 2 of profilometry. The SPT-70 was tested at 600 and 660 W, yielding peak boron densities of 7.2 ± 1.1 × 10{sup 14} m{sup −3}, and the estimated erosion rate agreed within ∼20% of profilometry. Technical challenges associated with operating a high-finesse cavity in the presence of energetic plasma are also discussed.

  8. Measurements of the Electron Cloud Density in the PEP-II Low Energy Ring

    SciTech Connect

    Byrd, J.; De Santis, S.; Sonnad, K.; Caspers, F.; Kroyer, T.; Krasnykh, A.; Pivi, M.; /SLAC

    2012-04-10

    Clouds of low energy electrons in the vacuum beam pipes of accelerators of positively charged particle beams present a serious limitation for operation of these machines at high currents. Because of the size of these accelerators, it is difficult to probe the low energy electron clouds over substantial lengths of the beam pipe. We have developed a novel technique to directly measure the electron cloud density via the phase shift induced in a TE wave that is independently excited and transmitted over a section of the accelerator. We infer the absolute phase shift with relatively high accuracy from the phase modulation of the transmission due to the modulation of the electron cloud density from a gap in the positively charged beam. We have used this technique for the first time to measure the average electron cloud density over a 50 m straight section in the positron ring of the PEP-II collider at the Stanford Linear Accelerator Center. We have also measured the variation of the density by using low field solenoid magnets to control the electrons.

  9. Contact angle and surface tension measurements of a five-ring polyphenyl ether

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.

    1986-01-01

    Contact angle measurements were performed for a five-ring polyphenyl ether isomeric mixture on M-50 steel in a dry nitrogen atmosphere. Two different techniques were used: (1) a tilting plate apparatus, and (2) a sessile drop apparatus. Measurements were made for the temperature range 25 to 190 C. Surface tension was measured by a differential maximum bubble pressure technique over the range 23 to 220 C in room air. The critical surface energy of spreading (gamma /sub c/) was determined for the polyphenyl ether by plotting the cosine of the contact angle (theta) versus the surface tension (gamma /sub LV/). The straight line intercept at cosine theta = 1 is defined as gamma (sub c). Gamma (sub c) was found to be 30.1 dyn/cm for the tilting plate technique and 31.3 dyn/cm for the sessile drop technique. These results indicate that the polyphenyl ether is inherently autophobic (i.e., it will not spread on its own surface film until its surface tension is less than gamma /sub c/). This phenomenon is discussed in light of the wettability and wear problems encountered with this fluid.

  10. Parton distributions with the combined HERA charm production cross sections

    SciTech Connect

    Bertone, Valerio; Rojo, Juan

    2013-04-15

    Heavy quark structure functions from HERA provide a direct handle on the medium and small-x gluon PDF. In this contribution, we discuss ongoing progress on the implementation of the FONLL General-Mass scheme with running heavy quark masses, and of its benchmarking with the HOPPET and OpenQCDrad codes, and then present the impact of the recently released combined HERA charm production cross sections in the NNPDF 2.3 analysis. We find that the combined charm data contribute to constraining the gluon and quarks at small values of Bjorken-x.

  11. Planetary Rings

    NASA Astrophysics Data System (ADS)

    Esposito, Larry

    2014-03-01

    Preface: a personal view of planetary rings; 1. Introduction: the allure of the ringed planets; 2. Studies of planetary rings 1610-2013; 3. Diversity of planetary rings; 4. Individual ring particles and their collisions; 5. Large-scale ring evolution; 6. Moons confine and sculpt rings; 7. Explaining ring phenomena; 8. N-body simulations; 9. Stochastic models; 10. Age and evolution of rings; 11. Saturn's mysterious F ring; 12. Uranus' rings and moons; 13. Neptune's partial rings; 14. Jupiter's ring-moon system after Galileo and New Horizons; 15. Ring photometry; 16. Dusty rings; 17. Concluding remarks; Afterword; Glossary; References; Index.

  12. Electron deuteron scattering with HERA, a letter of intent for an experimental programme with the H1 detector

    SciTech Connect

    T. Alexopoulos; et. al.

    2003-12-01

    This document outlines the case for a program of electron-deuteron scattering measurements at HERA using the H1 detector. The goals of the e D program are to map the partonic structure of the nucleon at large Q2 and low x, to explore the valence quark distributions at the highest x values, to provide a precise measurement of the strong coupling constant and to investigate the parton recombination phenomena revealed in shadowing and their relationship to diffraction. The importance of these measurements for the understanding of the perturbative and non-perturbative aspects of QCD thought to be responsible for nucleon structure is discussed, as is the significance of the measurements for future experimental programs. Some modifications to both the H1 apparatus and the HERA accelerator are necessary to realize this program; these are presented in the document. Mention is also made of questions that will remain unanswered following the completion of the above program and the potential role of HERA and of H1 in investigating these questions is outlined. Physicists and Institutes interested in supporting this project are asked to inform Max Klein (klein@ifh.de) and Tim Greenshaw (green@hep.ph.liv.ac.uk) that they would like to have their names on the Letter of Intent by Wednesday 30th April 2003.

  13. Estimation of regional CO2 fluxes in northern Wisconsin using the ring of towers concentration measurements

    NASA Astrophysics Data System (ADS)

    Uliasz, M.; Denning, A. S.; Corbin, K.; Miles, N.; Richardson, S.; Davis, K.

    2006-12-01

    The WLEF TV tower in northern Wisconsin is instrumented to take continuous measurements of CO2 mixing ratio at 6 levels from 11 to 396m. During the spring and summer of 2004 additional CO2 measurements were deployed on five 76 m communication towers forming a ring around the WLEF tower with a 100-150 km radius. The data from the ring of towers are being used to estimate regional fluxes of CO2. The modeling framework developed for this purpose is based on SiB-RAMS: Regional Atmospheric Modeling System linked to Simple Biosphere model. The RAMS domain extends over the entire continental US with nested grids centered in northern Wisconsin. The CO2 lateral boundary conditions are provided by a global transport model PCTM (Parameterized Chemistry and Transport Model). This model system is capable to realistically reproduce diurnal cycle of CO2 fluxes as well as their spatial patterns in regional scale related to different vegetation types. However, there is still significant uncertainty in simulating atmospheric transport of CO2 due to synoptic and mesoscale circulations. We are attempting to assimilate available CO2 tower data into our modeling system in order to provide corrections for the fluxes simulated by the SiB-RAMS. These corrections applied separately to respiration and assimilation fluxes have spatial patterns but are assumed constant in time during a period of 10 days. Another correction is estimated for the CO2 inflow concentration entering the regional domain. The CO2 data assimilation is based the Lagrangian Particle Dispersion (LPD) model and the Bayessian inversion technique. The LPD model is driven by meteorological fields from the SiB-RAMS and is used for a regional domain in its adjoint mode to trace particles backward in time to derive influence functions for each concentration sample. The influence functions provide information on potential contributions both from surface sources and inflow fluxes that make their way through the modeling domain

  14. Erbium-doped fiber ring laser based on few-mode-singlemode-few-mode fiber structure for refractive index measurement

    NASA Astrophysics Data System (ADS)

    Liu, Jingxuan; Wang, Muguang; Liang, Xiao; Dong, Yue; Xiao, Han; Jian, Shuisheng

    2017-08-01

    A novel Erbium-doped fiber ring cavity laser sensor for refractive index (RI) measurement based on a special designed few-mode-singlemode-few-mode structure is proposed and experimentally demonstrated. The few-mode fiber is a home-made concentric ring core fiber (CRCF) which can only support two scalar modes. Thus a stable mode interference occurs which functions as a sensing head and band-pass filter to select the lasing wavelength simultaneously. A sensitivity of -45.429 nm/RIU is obtained in the range of 1.333-1.363. High optical signal to noise ratio (OSNR) of ∼45 dB and narrow 3-dB bandwidth of ∼0.1 nm indicate that the fiber ring laser sensing system has a high resolution and accuracy RI measurement.

  15. High-resolution temperature sensor through measuring the frequency shift of single-frequency Erbium-doped fiber ring laser

    NASA Astrophysics Data System (ADS)

    Zhang, Haiwei; Shi, Wei; Duan, Liangcheng; Fu, Shijie; Sheng, Quan; Yao, Jianquan

    2017-02-01

    We propose a principle to achieve a high-resolution temperature sensor through measuring the central frequency shift in the single-frequency Erbium-doped fiber ring laser induced by the thermal drift via the optical heterodyne spectroscopy method. We achieve a temperature sensor with a sensitivity about 9.7 pm/°C and verify the detection accuracy through an experiment. Due to the narrow linewidth of the output singlefrequency signal and the high accuracy of the optical heterodyne spectroscopy method in measuring the frequency shift in the single-frequency ring laser, the temperature sensor can be employed to resolve a temperature drift up to 5.5×10-6 °C theoretically when the single-frequency ring laser has a linewidth of 1 kHz and 10-kHz frequency shift is achieved from the heterodyne spectra.

  16. Voyager Saturnian ring measurements and the early history of the solar system

    NASA Technical Reports Server (NTRS)

    Alfven, H.; Axnaes, I.; Brenning, N.; Lindquist, P. A.

    1985-01-01

    The mass distribution in the Saturnian ring system is investigated and compared with predictions from plasma cosmogony. According to this theory, the matter in the rings was once a magnetized plasma, in which gravitation is balanced by the centrifugal and electromagnetic forces. As the plasma is neutralized, the electromagnetic forces disappear and the matter falls in to 2/3 of the original saturnocentric distance. This causes the cosmogonic shadow effect, demonstrated for the large scale structure of the Saturnian ring system. It is shown that many structures of the present ring system can be understood as shadows and antishadows of cosmogonic origin. These appear in the form of double rings centered around a position a factor 0.64 (slightly 2/3) closer to Saturn than the causing feature. Voyager data agree with an accuracy 1%.

  17. Measurement of charged hadron spectra at the Z{sup 0} with Cherenkov ring imaging

    SciTech Connect

    Pavel, Tomas Josef

    1997-08-01

    This dissertation attempts to probe hadronization, the process by which the fundamental quarks described by quantum chromodynamics produce the jets of hadrons that the author observed in experiments. The measurements are made using e+e- collisions at the SLAC Linear Collider (SLC), operating at the Z0 resonance with the SLC Large Detector (SLD), and the unique capabilities of the SLC/SLD facility are exploited. First, the spectra of charged hadrons (π±, K±, and p/$\\bar{p}$) are measured. This is accomplished with the SLD Cherenkov Ring Imaging Detector (CRID), one of a first generation of devices that have been developed for efficient particle identification over a wide momentum range. The use of the CRID is central to this dissertation, and its design and performance are described in detail here. The measured spectra agree with other measurements at the Z0 and extend the momentum coverage. Next, the excellent spatial resolution of the SLD tracking systems, along with the small and stable beam spots of the SLC, is employed to identify jets produced from heavy b or c quarks and to separate them from the remaining light-quark (uds) jets. This removes the effects of heavy quark fragmentation and decays of heavy-quark hadrons from the study of hadronization. The first measurements of particle spectra in light-quark jets are then presented. Finally, the highly-polarized incident electron beam of the SLC, together with the electroweak asymmetries of the quarks, is exploited to separate quark and antiquark jets. Significant differences in quark-antiquark production of protons and of kaons are observed at high momenta. This signal suggests a leading particle effect, where the particles containing the primary quark of a jet are more likely to populate the high-momentum phase space than are other hadrons.

  18. Measurement of atmospheric NO2 by pulsed cavity ring-down spectroscopy

    NASA Astrophysics Data System (ADS)

    Osthoff, Hans D.; Brown, Steven S.; Ryerson, Thomas B.; Fortin, Tara J.; Lerner, Brian M.; Williams, Eric J.; Pettersson, Anders; Baynard, Tahllee; Dubé, William P.; Ciciora, Steven J.; Ravishankara, A. R.

    2006-06-01

    We have constructed a pulsed cavity ring-down spectrometer (CARDS) for simultaneous measurements of nitrogen dioxide (NO2), the nitrate radical (NO3), and dinitrogen pentoxide (N2O5) in the atmosphere. In this paper, we describe the development of the instrument to measure NO2 via its absorption at 532 nm. The NO2 detection channel was calibrated against a NIST traceable calibration standard as well as a photolysis-chemiluminescence (P-CL) NO2 detector. The absorption cross section of NO2 at 532 nm was determined to be (1.45 ± 0.06) × 10-19 cm2. The NO2 detection limit (1σ) for 1 s data is 40 pptv, and the instrument response is accurate within ±4% (1σ) under laboratory conditions. The linear dynamic range of the instrument has been verified from the detection limit to above 200 ppbv (r2 > 99.99%). For field measurements it is necessary to correct the CARDS NO2 signal for absorption by ozone. Under ambient conditions we report 1 s NO2 CARDS data with total uncertainty ±(4%, 60 pptv + 0.4 × (pptv/ppbv) × O3) (1σ). The instrument was deployed in the field during the New England Air Quality Study-International Transport and Chemical Transformation on board the NOAA research vessel Ronald H. Brown in the summer of 2004 and in Boulder, Colorado, in the winter of 2005. In both campaigns, CARDS and P-CL NO2 measurements were highly correlated (r2 > 98%), indicating the absence of interfering gas phase absorbers at 532 nm other than ozone and the suitability of CARDS to measure NO2 in the troposphere.

  19. Measuring intraocular pressure after intrastromal corneal ring segment implantation with rebound tonometry and Goldmann applanation tonometry.

    PubMed

    Arribas-Pardo, Paula; Mendez-Hernandez, Carmen; Cuiña-Sardiña, Ricardo; Fernandez-Perez, Cristina; Diaz-Valle, David; Garcia-Feijoo, Julian

    2015-05-01

    The aim of this study was to compare intraocular pressure (IOP) measurements in patients with ectatic corneas after intrastromal corneal ring segment (ICRS) implantation using the Rebound tonometers (RBTs) Icare and Icare Pro, compared with Goldmann applanation tonometry (GAT) and to assess the influence of central corneal thickness (CCT), corneal curvature (CC), and corneal astigmatism (CA) on IOP. This prospective cross-sectional study consecutively included 60 eyes of 60 patients with corneal ectasia having ICRS for at least 6 months from January 2011 to December 2013. All subjects underwent GAT, Icare, and Icare Pro IOP measurements in a random order, and CCT, CC, and CA evaluation using a Pentacam. The Bland-Altman method and multivariate regression analysis logistic method were used to assess intertonometer agreement and the influence of corneal variables on IOP measurements. Icare significantly underestimated IOP compared with GAT [GAT - Icare 1.2 ± 3.0 mm Hg, P = 0.002 (95% confidence interval, 0.5-2.0)], whereas Icare Pro showed no statistical differences compared with GAT [GAT - Icare Pro 0.1 ± 3.1 mm Hg, P = 0.853 (95% confidence interval, -0.7 to 0.9)]. Both RBTs presented good concordance with GAT (intraclass coefficient correlation > 0.6). All tonometer measurements were influenced by CCT values and age (P < 0.05); the number of ICRS implanted did not influenced IOP measurement with any of the 3 tonometers. Both RBTs could be an alternative to GAT in patients with corneal ectasia and ICRS; however, Icare Pro shows greater accuracy.

  20. Ion storage ring measurements of dielectronic recombination for astrophysically relevant Feq+ ions

    SciTech Connect

    Savin, D W; Badnell, N R; Bartsch, T; Brandau, C; Chen, M H; Grieser, M; Gwinner, G; Hoffknecht, A; Kahn, S M; Linkemann, J; Muller, A; Repnow, R; Saghiri, A A; Schippers, S; Schmitt, M; Schwalm, D; Wolf, A

    2000-06-06

    Iron ions provide many valuable plasma diagnostics for cosmic plasmas. The accuracy of these diagnostics, however, often depends on an accurate understanding of the ionization structure of the emitting gas. Dielectronic recombination (DR) is the dominant electron-ion recombination mechanism for most iron ions in cosmic plasmas. Using the heavy-ion storage ring at the Max-Planck-Institute for Nuclear Physics in Heidelberg, Germany, we have measured the low temperature DR rates for Fe{sup q+} where q = 15, 17, 18, and 19. These rates are important for photoionized gases which form in the media surrounding active galactic nuclei, X-ray binaries, and cataclysmic variables. Our results demonstrate that commonly used theoretical approximations for calculating low temperature DR rates can easily under- or over-estimate the DR rate by a factor of {approx} 2 or more. As essentially all DR rates used for modeling photoionized gases are calculated using these approximations, our results indicate that new DR rates are needed for almost all charge states of cosmically abundant elements. Measurements are underway for other charge states of iron.

  1. Extreme Ring Current Proton Spectra Measured by the Van Allen Probes

    NASA Astrophysics Data System (ADS)

    Summers, D.; Shi, R.; Manweiler, J. W.; Mitchell, D. G.; Lanzerotti, L. J.

    2016-12-01

    We analyze proton spectra measured by the Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE) on board the Van Allen Probes over the energy range 50 - 600 keV for L-shells , 3 < L < 6 . Three magnetic storm periods are considered,namely,March 17 - 20, 2013; February 18 - 22, 2014; and March 17 - 20, 2015. We consider the most intense proton spectra over these storm periods. Recent progress has been achieved in modeling the limitation of energetic ring current ion spectra resulting from the action of pitch-angle scattering by electromagnetic ion cyclotron (EMIC)waves. According to this theory,the limiting (extreme) spectrum is achieved when the EMIC waves acquire a certain gain over a given convective length scale for all frequencies over which wave growth occurs. The limiting spectrum is determined by numerically solving a standard integral equation. By comparing the observed extreme proton spectra with the corresponding numerical limiting spectra ,we find plausible evidence that the extreme spectra are controlled by EMIC wave scattering. Further work is required to compare measured extreme particle spectra with the theoretical limiting solutions over a wider range of events and varying geomagnetic conditions.

  2. Double resonant absorption measurement of acetylene symmetric vibrational states probed with cavity ring down spectroscopy

    NASA Astrophysics Data System (ADS)

    Karhu, J.; Nauta, J.; Vainio, M.; Metsälä, M.; Hoekstra, S.; Halonen, L.

    2016-06-01

    A novel mid-infrared/near-infrared double resonant absorption setup for studying infrared-inactive vibrational states is presented. A strong vibrational transition in the mid-infrared region is excited using an idler beam from a singly resonant continuous-wave optical parametric oscillator, to populate an intermediate vibrational state. High output power of the optical parametric oscillator and the strength of the mid-infrared transition result in efficient population transfer to the intermediate state, which allows measuring secondary transitions from this state with a high signal-to-noise ratio. A secondary, near-infrared transition from the intermediate state is probed using cavity ring-down spectroscopy, which provides high sensitivity in this wavelength region. Due to the narrow linewidths of the excitation sources, the rovibrational lines of the secondary transition are measured with sub-Doppler resolution. The setup is used to access a previously unreported symmetric vibrational state of acetylene, ν 1 + ν 2 + ν 3 + ν4 1 + ν5 - 1 in the normal mode notation. Single-photon transitions to this state from the vibrational ground state are forbidden. Ten lines of the newly measured state are observed and fitted with the linear least-squares method to extract the band parameters. The vibrational term value was measured to be at 9775.0018(45) cm-1, the rotational parameter B was 1.162 222(37) cm-1, and the quartic centrifugal distortion parameter D was 3.998(62) × 10-6 cm-1, where the numbers in the parenthesis are one-standard errors in the least significant digits.

  3. Identification, measurement and interpretation of tree rings in woody species from mediterranean climates.

    PubMed

    Cherubini, Paolo; Gartner, Barbara L; Tognetti, Roberto; Bräker, Otto U; Schoch, Werner; Innes, John L

    2003-02-01

    We review the literature dealing with mediterranean climate, vegetation, phenology and ecophysiology relevant to the understanding of tree-ring formation in mediterranean regions. Tree rings have been used extensively in temperate regions to reconstruct responses of forests to past environmental changes. In mediterranean regions, studies of tree rings are scarce, despite their potential for understanding and predicting the effects of global change on important ecological processes such as desertification. In mediterranean regions, due to the great spatio-temporal variability of mediterranean environmental conditions, tree rings are sometimes not formed. Often, clear seasonality is lacking, and vegetation activity is not always associated with regular dormancy periods. We present examples of tree-ring morphology of five species (Arbutus unedo, Fraxinus ornus, Quercus cerris, Q. ilex, Q. pubescens) sampled in Tuscany, Italy, focusing on the difficulties we encountered during the dating. We present an interpretation of anomalies found in the wood structure and, more generally, of cambial activity in such environments. Furthermore, we propose a classification of tree-ring formation in mediterranean environments. Mediterranean tree rings can be dated and used for dendrochronological purposes, but great care should be taken in selecting sampling sites, species and sample trees.

  4. Method and apparatus for elemental and isotope measurements and diagnostics-microwave induced plasma-cavity ring-down spectroscopy

    DOEpatents

    Wang, Chuji; Winstead, Christopher; Duan, Yixiang

    2006-05-30

    Provided is a novel system for conducting elemental measurements using cavity ring-down spectroscopy (CRDS). The present invention provides sensitivity thousands of times improved over conventional devices and does so with the advantages of low power, low plasma flow rate, and the ability being sustained with various gases.

  5. Intra- and inter-tester reliability and validity of normal finger size measurement using the Japanese ring gauge system.

    PubMed

    Suzuki, T; Sato, Y; Sotome, S; Arai, H; Arai, A; Yoshida, H

    2017-06-01

    This study was designed to investigate the reliability and validity of measurements of finger diameters with a ring gauge. A reliability study enrolled two independent samples (50 participants and seven examiners in Study I; 26 participants and 26 examiners in Study II). The sizes of each participant's little fingers were measured twice with a ring gauge by each examiner. To investigate the validity of the measurements, five hand therapists compared the finger size and hand volume of 30 participants with the ring gauge and with a figure-of-eight technique (Study III). The intra-class correlation coefficient for intra-observer reliability ranged from 0.97 to 0.99 in Study I, and 0.90 to 0.97 in Study II. The intra-class correlation coefficient for inter-observer reliability was 0.95 in Study I and 0.94 in Study II. The validity study showed a Pearson product moment correlation coefficient of 0.75. The ring gauge showed high reliability and validity for measurement of finger size. III, diagnostic.

  6. Absolute measurements of total peroxy nitrate mixing ratios by thermal dissociation blue diode laser cavity ring-down spectroscopy.

    PubMed

    Paul, Dipayan; Osthoff, Hans D

    2010-08-01

    Peroxycarboxylic nitric anhydrides (PANs) have long been recognized as important trace gas constituents of the troposphere. Here, we describe a blue diode laser thermal dissociation cavity ring-down spectrometer for rapid and absolute measurements of total peroxyacyl nitrate (SigmaPAN) abundances at ambient concentration levels. The PANs are thermally dissociated and detected as NO2, whose mixing ratios are quantified by optical absorption at 405 nm relative to a reference channel kept at ambient temperature. The effective NO2 absorption cross-section at the diode laser emission wavelength was measured to be 6.1 x 10(-19) cm2 molecule(-1), in excellent agreement with a prediction based on a projection of a high-resolution literature absorption spectrum onto the laser line width. The performance, i.e., accuracy and precision of measurement and matrix effects, of the new 405 nm thermal dissociation cavity ring-down spectrometer was evaluated and compared to that of a 532 nm thermal dissociation cavity ring-down spectrometer using laboratory-generated air samples. The new 405 nm spectrometer was considerably more sensitive and compact than the previously constructed version. The key advantage of laser thermal dissociation cavity ring-down spectroscopy is that the measurement can be considered absolute and does not need to rely on external calibration.

  7. Coagulation of particles in Saturn's rings - Measurements of the cohesive force of water frost

    SciTech Connect

    Hatzes, A.P.; Bridges, F.; Lin, D.N.C.; Sachtjen, S. McDonald Observatory, Austin, TX )

    1991-01-01

    Experimental data are presented on the sticking force of water ice particles which are indicative of the role that the cohesive properties of such particles could play in the dynamics of Saturn ring particles. Sticking forces are dependent on particle impact velocities; a Velcro model is devised to describe the surface structure involved in sticking. The data indicate that below the critical impact velocity of about 0.03 cm/sec, particle cohesion always occurs. Due to the optical depth of micron-sized grains in the Saturn rings, particles are hypothesized to be coated with a layer of frost which will render cohesion an important ring-dynamics process. 14 refs.

  8. Coagulation of particles in Saturn's rings - Measurements of the cohesive force of water frost

    NASA Technical Reports Server (NTRS)

    Hatzes, A. P.; Bridges, F.; Lin, D. N. C.; Sachtjen, S.

    1991-01-01

    Experimental data are presented on the sticking force of water ice particles which are indicative of the role that the cohesive properties of such particles could play in the dynamics of Saturn ring particles. Sticking forces are dependent on particle impact velocities; a 'Velcro' model is devised to describe the surface structure involved in sticking. The data indicate that below the critical impact velocity of about 0.03 cm/sec, particle cohesion always occurs. Due to the optical depth of micron-sized grains in the Saturn rings, particles are hypothesized to be coated with a layer of frost which will render cohesion an important ring-dynamics process.

  9. Coagulation of particles in Saturn's rings - Measurements of the cohesive force of water frost

    NASA Technical Reports Server (NTRS)

    Hatzes, A. P.; Bridges, F.; Lin, D. N. C.; Sachtjen, S.

    1991-01-01

    Experimental data are presented on the sticking force of water ice particles which are indicative of the role that the cohesive properties of such particles could play in the dynamics of Saturn ring particles. Sticking forces are dependent on particle impact velocities; a 'Velcro' model is devised to describe the surface structure involved in sticking. The data indicate that below the critical impact velocity of about 0.03 cm/sec, particle cohesion always occurs. Due to the optical depth of micron-sized grains in the Saturn rings, particles are hypothesized to be coated with a layer of frost which will render cohesion an important ring-dynamics process.

  10. Jet Trigger in the H1 Experiment at HERA

    SciTech Connect

    Dubak, Ana

    2007-04-23

    A novel calorimeter trigger at the first level is developed to complement existing LAr trigger in the H1 experiment at HERA. It searches for localised energy depositions in the calorimeter, thus avoiding summing up noise distributed over large parts of the calorimeter. This will improve the efficiency of triggering on low energy depositions in the calorimeter.

  11. Diffractive PDF fits and factorisation tests at HERA

    SciTech Connect

    Solano, Ada

    2011-07-15

    A DGLAP next-to-leading-order QCD analysis to extract the diffractive parton distribution functions, using DIS inclusive and dijet diffractive HERA data, is presented. Predictions based on the extracted parton densities are compared to diffractive dijet photoproduction data to discuss factorisation.

  12. Cavity ring-down spectroscopy (CRDS) system for measuring atmospheric mercury using differential absorption

    NASA Astrophysics Data System (ADS)

    Pierce, A.; Obrist, D.; Moosmuller, H.; Moore, C.

    2012-04-01

    Atmospheric elemental mercury (Hg0) is a globally pervasive element that can be transported and deposited to remote ecosystems where it poses — particularly in its methylated form — harm to many organisms including humans. Current techniques for measurement of atmospheric Hg0 require several liters of sample air and several minutes for each analysis. Fast-response (i.e., 1 second or faster) measurements would improve our ability to understand and track chemical cycling of mercury in the atmosphere, including high frequency Hg0 fluctuations, sources and sinks, and chemical transformation processes. We present theory, design, challenges, and current results of our new prototype sensor based on cavity ring-down spectroscopy (CRDS) for fast-response measurement of Hg0 mass concentrations. CRDS is a direct absorption technique that implements path-lengths of multiple kilometers in a compact absorption cell using high-reflectivity mirrors, thereby improving sensitivity and reducing sample volume compared to conventional absorption spectroscopy. Our sensor includes a frequency-doubled, dye-laser emitting laser pulses tunable from 215 to 280 nm, pumped by a Q-switched, frequency tripled Nd:YAG laser with a pulse repetition rate of 50 Hz. We present how we successfully perform automated wavelength locking and stabilization of the laser to the peak Hg0 absorption line at 253.65 nm using an external isotopically-enriched mercury (202Hg0) cell. An emphasis of this presentation will be on the implementation of differential absorption measurement whereby measurements are alternated between the peak Hg0 absorption wavelength and a nearby wavelength "off" the absorption line. This can be achieved using a piezo electric tuning element that allows for pulse-by-pulse tuning and detuning of the laser "online" and "offline" of the Hg absorption line, and thereby allows for continuous correction of baseline extinction losses. Unexpected challenges with this approach included

  13. The effect of Gibbs ringing artifacts on measures derived from diffusion MRI.

    PubMed

    Perrone, Daniele; Aelterman, Jan; Pižurica, Aleksandra; Jeurissen, Ben; Philips, Wilfried; Leemans, Alexander

    2015-10-15

    Diffusion-weighted (DW) magnetic resonance imaging (MRI) is a unique method to investigate microstructural tissue properties noninvasively and is one of the most popular methods for studying the brain white matter in vivo. To obtain reliable statistical inferences with diffusion MRI, however, there are still many challenges, such as acquiring high-quality DW-MRI data (e.g., high SNR and high resolution), careful data preprocessing (e.g., correcting for subject motion and eddy current induced geometric distortions), choosing the appropriate diffusion approach (e.g., diffusion tensor imaging (DTI), diffusion kurtosis imaging (DKI), or diffusion spectrum MRI), and applying a robust analysis strategy (e.g., tractography based or voxel based analysis). Notwithstanding the numerous efforts to optimize many steps in this complex and lengthy diffusion analysis pipeline, to date, a well-known artifact in MRI--i.e., Gibbs ringing (GR)--has largely gone unnoticed or deemed insignificant as a potential confound in quantitative DW-MRI analysis. Considering the recent explosion of diffusion MRI applications in biomedical and clinical applications, a systematic and comprehensive investigation is necessary to understand the influence of GR on the estimation of diffusion measures. In this work, we demonstrate with simulations and experimental DW-MRI data that diffusion estimates are significantly affected by GR artifacts and we show that an off-the-shelf GR correction procedure based on total variation already can alleviate this issue substantially. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Planetary Rings

    NASA Astrophysics Data System (ADS)

    Esposito, Larry W.

    2011-07-01

    Preface; 1. Introduction: the allure of ringed planets; 2. Studies of planetary rings 1610-2004; 3. Diversity of planetary rings; 4. Individual ring particles and their collisions; 5. Large-scale ring evolution; 6. Moons confine and sculpt rings; 7. Explaining ring phenomena; 8. N-Body simulations; 9. Stochastic models; 10. Age and evolution of rings; 11. Saturn's mysterious F ring; 12. Neptune's partial rings; 13. Jupiter's ring-moon system after Galileo; 14. Ring photometry; 15. Dusty rings; 16. Cassini observations; 17. Summary: the big questions; Glossary; References; Index.

  15. Leading neutron production in e+p collisions at HERA

    NASA Astrophysics Data System (ADS)

    Chekanov, S.; Krakauer, D.; Magill, S.; Musgrave, B.; Pellegrino, A.; Repond, J.; Yoshida, R.; Mattingly, M. C. K.; Antonioli, P.; Bari, G.; Basile, M.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Cara Romeo, G.; Cifarelli, L.; Cindolo, F.; Contin, A.; Corradi, M.; De Pasquale, S.; Giusti, P.; Iacobucci, G.; Levi, G.; Margotti, A.; Nania, R.; Palmonari, F.; Pesci, A.; Sartorelli, G.; Zichichi, A.; Aghuzumtsyan, G.; Bartsch, D.; Brock, I.; Crittenden, J.; Goers, S.; Hartmann, H.; Hilger, E.; Irrgang, P.; Jakob, H.-P.; Kappes, A.; Katz, U. F.; Kerger, R.; Kind, O.; Paul, E.; Rautenberg, J.; Renner, R.; Schnurbusch, H.; Stifutkin, A.; Tandler, J.; Voss, K. C.; Weber, A.; Bailey, D. S.; Brook, N. H.; Cole, J. E.; Foster, B.; Heath, G. P.; Heath, H. F.; Robins, S.; Rodrigues, E.; Scott, J.; Tapper, R. J.; Wing, M.; Capua, M.; Mastroberardino, A.; Schioppa, M.; Susinno, G.; Kim, J. Y.; Kim, Y. K.; Lee, J. H.; Lim, I. T.; Pac, M. Y.; Caldwell, A.; Helbich, M.; Liu, X.; Mellado, B.; Paganis, S.; Schmidke, W. B.; Sciulli, F.; Chwastowski, J.; Eskreys, A.; Figiel, J.; Olkiewicz, K.; Przybycień, M. B.; Stopa, P.; Zawiejski, L.; Bednarek, B.; Grabowska-Bold, I.; Jeleń, K.; Kisielewska, D.; Kowal, A. M.; Kowal, M.; Kowalski, T.; Mindur, B.; Przybycień, M.; Rulikowska-Zarȩbska, E.; Suszycki, L.; Szuba, D.; Szuba, J.; Kotański, A.; Słomiński, W.; Bauerdick, L. A. T.; Behrens, U.; Borras, K.; Chiochia, V.; Dannheim, D.; Derrick, M.; Drews, G.; Fourletova, J.; Fox-Murphy, A.; Fricke, U.; Geiser, A.; Goebel, F.; Göttlicher, P.; Gutsche, O.; Haas, T.; Hain, W.; Hartner, G. F.; Hillert, S.; Kötz, U.; Kowalski, H.; Labes, H.; Lelas, D.; Löhr, B.; Mankel, R.; Martínez, M.; Moritz, M.; Notz, D.; Pellmann, I.-A.; Petrucci, M. C.; Polini, A.; Schneekloth, U.; Selonke, F.; Surrow, B.; Wessoleck, H.; Wichmann, R.; Wolf, G.; Youngman, C.; Zeuner, W.; Lopez-Duran Viani, A.; Meyer, A.; Schlenstedt, S.; Barbagli, G.; Gallo, E.; Genta, C.; Pelfer, P. G.; Bamberger, A.; Benen, A.; Coppola, N.; Markun, P.; Raach, H.; Wölfle, S.; Bell, M.; Bussey, P. J.; Doyle, A. T.; Glasman, C.; Hanlon, S.; Lee, S. W.; Lupi, A.; McCance, G. J.; Saxon, D. H.; Skillicorn, I. O.; Gialas, I.; Bodmann, B.; Carli, T.; Holm, U.; Klimek, K.; Krumnack, N.; Lohrmann, E.; Milite, M.; Salehi, H.; Stonjek, S.; Wick, K.; Ziegler, A.; Ziegler, Ar; Collins-Tooth, C.; Foudas, C.; Gonçalo, R.; Long, K. R.; Metlica, F.; Miller, D. B.; Tapper, A. D.; Walker, R.; Cloth, P.; Filges, D.; Kuze, M.; Nagano, K.; Tokushuku, K.; Yamada, S.; Yamazaki, Y.; Barakbaev, A. N.; Boos, E. G.; Pokrovskiy, N. S.; Zhautykov, B. O.; Lim, H.; Son, D.; Barreiro, F.; González, O.; Labarga, L.; del Peso, J.; Redondo, I.; Terrón, J.; Vázquez, M.; Barbi, M.; Bertolin, A.; Corriveau, F.; Ochs, A.; Padhi, S.; Stairs, D. G.; St-Laurent, M.; Tsurugai, T.; Antonov, A.; Bashkirov, V.; Danilov, P.; Dolgoshein, B. A.; Gladkov, D.; Sosnovtsev, V.; Suchkov, S.; Dementiev, R. K.; Ermolov, P. F.; Golubkov, Yu. A.; Katkov, I. I.; Khein, L. A.; Korzhavina, I. A.; Kuzmin, V. A.; Levchenko, B. B.; Lukina, O. Yu; Proskuryakov, A. S.; Shcheglova, L. M.; Vlasov, N. N.; Zotkin, S. A.; Bokel, C.; Engelen, J.; Grijpink, S.; Koffeman, E.; Kooijman, P.; Maddox, E.; Schagen, S.; Tassi, E.; Tiecke, H.; Tuning, N.; Velthuis, J. J.; Wiggers, L.; de Wolf, E.; Brümmer, N.; Bylsma, B.; Durkin, L. S.; Gilmore, J.; Ginsburg, C. M.; Kim, C. L.; Ling, T. Y.; Boogert, S.; Cooper-Sarkar, A. M.; Devenish, R. C. E.; Ferrando, J.; Grzelak, G.; Matsushita, T.; Rigby, M.; Ruske, O.; Sutton, M. R.; Walczak, R.; Brugnera, R.; Carlin, R.; Dal Corso, F.; Dusini, S.; Garfagnini, A.; Limentani, S.; Longhin, A.; Parenti, A.; Posocco, M.; Stanco, L.; Turcato, M.; Adamczyk, L.; Heaphy, E. A.; Oh, B. Y.; Saull, P. R. B.; Whitmore, J. J.; Iga, Y.; D'Agostini, G.; Marini, G.; Nigro, A.; Cormack, C.; Hart, J. C.; McCubbin, N. A.; Heusch, C.; Park, I. H.; Pavel, N.; Abramowicz, H.; Dagan, S.; Gabareen, A.; Kananov, S.; Kreisel, A.; Levy, A.; Abe, T.; Fusayasu, T.; Kohno, T.; Umemori, K.; Yamashita, T.; Hamatsu, R.; Hirose, T.; Inuzuka, M.; Kitamura, S.; Matsuzawa, K.; Nishimura, T.; Arneodo, M.; Cartiglia, N.; Cirio, R.; Costa, M.; Ferrero, M. I.; Maselli, S.; Monaco, V.; Peroni, C.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Fagerstroem, C.-P.; Galea, R.; Koop, T.; Martin, J. F.; Mirea, A.; Sabetfakhri, A.; Butterworth, J. M.; Gwenlan, C.; Hall-Wilton, R.; Jones, T. W.; Lane, J. B.; Lightwood, M. S.; Loizides, J. H.; West, B. J.; Ciborowski, J.; Ciesielski, R.; Nowak, R. J.; Pawlak, J. M.; Smalska, B.; Sztuk, J.; Tymieniecka, T.; Ukleja, A.; Ukleja, J.; Zakrzewski, J. A.; Żarnecki, A. F.; Adamus, M.; Plucinski, P.; Eisenberg, Y.; Gladilin, L. K.; Hochman, D.; Karshon, U.; Kçira, D.; Lammers, S.; Li, L.; Reeder, D. D.; Savin, A. A.; Smith, W. H.; Deshpande, A.; Dhawan, S.; Hughes, V. W.; Straub, P. B.; Bhadra, S.; Catterall, C. D.; Fourletov, S.; Khakzad, M.; Menary, S.; Soares, M.; Standage, J.; ZEUS Collaboration

    2002-08-01

    The production of neutrons carrying at least 20% of the proton beam energy ( x L> 0.2 ) in e+p collisions has been studied with the ZEUS detector at HERA for a wide range of Q2, the photon virtuality, from photoproduction to deep inelastic scattering. The neutron-tagged cross section, ep→ e' Xn, is measured relative to the inclusive cross section, ep→ e' X, thereby reducing the systematic uncertainties. For xL> 0.3, the rate of neutrons in photoproduction is about half of that measured in hadroproduction, which constitutes a clear breaking of factorisation. There is about a 20% rise in the neutron rate between photoproduction and deep inelastic scattering, which may be attributed to absorptive rescattering in the γp system. For 0.64< xL<0.82, the rate of neutrons is almost independent of the Bjorken scaling variable x and Q2. However, at lower and higher xL values, there is a clear but weak dependence on these variables, thus demonstrating the breaking of limiting fragmentation. The neutron-tagged structure function, FLN(3)2( x, Q2, xL), rises at low values of x in a way similar to that of the inclusive F2( x, Q2) of the proton. The total γπ cross section and the structure function of the pion, Fπ2( xπ, Q2) where xπ= x/(1- xL), have been determined using a one-pion-exchange model, up to uncertainties in the normalisation due to the poorly understood pion flux. At fixed Q2, Fπ2 has approximately the same x dependence as F2 of the proton.

  16. The evolution of ring current ion energy density and energy content during geomagnetic storms based on Van Allen Probes measurements

    NASA Astrophysics Data System (ADS)

    Zhao, H.; Li, X.; Baker, D. N.; Fennell, J. F.; Blake, J. B.; Larsen, B. A.; Skoug, R. M.; Funsten, H. O.; Friedel, R. H. W.; Reeves, G. D.; Spence, H. E.; Mitchell, D. G.; Lanzerotti, L. J.; Rodriguez, J. V.

    2015-09-01

    Enabled by the comprehensive measurements from the Magnetic Electron Ion Spectrometer (MagEIS), Helium Oxygen Proton Electron mass spectrometer (HOPE), and Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE) instruments onboard Van Allen Probes in the heart of the radiation belt, the relative contributions of ions with different energies and species to the ring current energy density and their dependence on the phases of geomagnetic storms are quantified. The results show that lower energy (<50 keV) protons enhance much more often and also decay much faster than higher-energy protons. During the storm main phase, ions with energies <50 keV contribute more significantly to the ring current than those with higher energies; while the higher-energy protons dominate during the recovery phase and quiet times. The enhancements of higher-energy proton fluxes as well as energy content generally occur later than those of lower energy protons, which could be due to the inward radial diffusion. For the 29 March 2013 storm we investigated in detail that the contribution from O+ is ~25% of the ring current energy content during the main phase and the majority of that comes from <50 keV O+. This indicates that even during moderate geomagnetic storms the ionosphere is still an important contributor to the ring current ions. Using the Dessler-Parker-Sckopke relation, the contributions of ring current particles to the magnetic field depression during this geomagnetic storm are also calculated. The results show that the measured ring current ions contribute about half of the Dst depression.

  17. Voyager Saturnian ring measurements and the early history of the solar system

    NASA Technical Reports Server (NTRS)

    Alfven, H.; Axnas, I.; Brenning, N.; Lindqvist, P.-A.

    1986-01-01

    The mass distribution in the Saturnian ring system is investigated and compared with predictions from the plasma cosmogony. According to this theory, the matter in the rings has once been in the form of a magnetized plasma, in which the gravitation is balanced partly by the centrifugal force and partly by the electromagnetic forces. As the plasma is neutralized, the electromagnetic forces disappear and the matter can be shown to fall in to 2/3 of the original saturnocentric distance. This causes the so called 'cosmogonic shadow effect', which has been demonstrated earlier for the asteroidal belt and in the large scale structure of the Saturnian ring system. The relevance of the cosmogonic shadow effect is investigated for parts of the fine structures of the Saturnian ring system. It is shown that many structures of the present ring system can be understood as shadows and antishadows of cosmogonic origin. These appear in the form of double rings centered around a position a factor 0.64 (slightly less than 2/3) closer to Saturn than the causing feature. Voyager data agree with an accuracy better than 1 percent.

  18. Development of a versatile rotating ring-disc electrode for in situ pH measurements.

    PubMed

    Zimer, Alexsandro Mendes; Medina da Silva, Marina; Machado, Eduardo G; Varela, Hamilton; Mascaro, Lucia Helena; Pereira, Ernesto Chaves

    2015-10-15

    There are some electrocatalytic reactions in which the key parameter explaining their behavior is a local change in pH. Therefore, it is of utter importance to develop an electrode that could quantify this parameter in situ, but also be customizable to be used in different systems. The purpose of this work is to build a versatile rotating ring/disc electrode (RRDE) with IrOx deposited on a glass tube as a ring and any kind of material as disc. As the IrOx is sensitive to pH variation, the reactions promoted on the disc can trigger proportional pH shifts on the ring. In such assembly, the IrOx ring presents a fast response time even during the pH transients due to the small thickness of the ring (approximately 10 μm), which enables the detection of interfacial pH changes. The ring electrode was tested toward the interfacial pH shift observed during the electrolytic reduction of water on the disc and also characterized by acid-base titration to determine the response time. As the main conclusions, fast response and durable RRDE were obtained, and this assembly could be used to revisit many electrocatalytic reactions in order to test the importance of local pH on the process. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Thickness of Saturn's B ring as derived from seasonal temperature variations measured by Cassini CIRS

    NASA Astrophysics Data System (ADS)

    Reffet, E.; Verdier, M.; Ferrari, C.

    2015-07-01

    Structural and thermal properties of Saturn's B ring and its particles are derived from orbital and seasonal temperatures variations observed by the Cassini CIRS spectrometer between 2004 and 2009 equinox. Our multiscale thermal model (Ferrari, C., Reffet, E. [2013]. Icarus 223, 28-39), which assumes negligible heat transfer by vertical motion of particles in dense rings, is adjusted to the data. Most observations were focused on the center of the B ring, at 105,000 km from Saturn. A very good fit is obtained for conductive particles embedded in a moderately conductive ring medium. Assuming a bulk composition of water ice, the thermal inertia of particles is found to be Γ1 = 160-200J /m2 /K /s 1 / 2 and to vary with seasons as part of the heat transfer is radiative, then temperature-dependent. For the same reason, the thermal inertia of the ring, Γ0 , varies with seasons, between 30 and 35 J /m2 /K /s 1 / 2 . It is very comparable to the thermal inertia of icy satellite surfaces. The porosity of particles p1 found to fit this thermal inertia is very high (0.93) and may emphasize an inappropriate modeling of particles by an effective porous medium. The ring filling factor is fairly high, D = 0.34 ± 0.01 , but stays typical of a compact medium and compatible with the output of numerical simulations of dense ring dynamics. The thickness of the B ring at 105,000 km from Saturn is estimated at HS = 2.2 ± 0.2 m. The observed correlation of its optical depth with the thermal gradient between lit and unlit sides is easily reproduced by the model if the radial variations in optical depth are due to varying thickness HS (a) with constant filling factor. This thickness varies between 1 and 3 m across theB2,B3 and B4 regions. It is thinner than the neighboring C ring and Cassini Division. This can be understood as a consequence of self-gravity. The ring surface mass density Σ = (1 -p1)ρ0DHS (a) derived from these structural parameters is too low for a self

  20. Electromagnetic wave attenuation measurements in a ring-shaped inductively coupled air plasma

    SciTech Connect

    Xiaolong, Wei; Haojun, Xu; Min, Lin; Chen, Su; Jianhai, Li

    2015-05-28

    An aerocraft with the surface, inlet and radome covered large-area inductive coupled plasma (ICP) can attenuate its radar echo effectively. The shape, thickness, and electron density (N{sub e}) distribution of ICP are critical to electromagnetic wave attenuation. In the paper, an air all-quartz ICP generator in size of 20 × 20 × 7 cm{sup 3} without magnetic confinement is designed. The discharge results show that the ICP is amorphous in E-mode and ring-shaped in H-mode. The structure of ICP stratifies into core region and edge halo in H-mode, and its width and thickness changes from power and pressure. Such phenomena are explained by the distribution of RF magnetic field, the diffusion of negative ions plasma and the variation of skin depth. In addition, the theoretical analysis shows that the N{sub e} achieves nearly uniform within the electronegative core and sharply steepens in the edge. The N{sub e} of core region is diagnosed by microwave interferometer under varied conditions (pressure in range of 10–50 Pa, power in 300–700 W). Furthermore, the electromagnetic wave attenuation measurements were carried out with the air ICP in the frequencies of 4–5 GHz. The results show that the interspaced ICP is still effective to wave attenuation, and the wave attenuation increases with the power and pressure. The measured attenuation is approximately in accordance with the calculation data of finite-different time-domain simulations.

  1. Three- and four-jet final states in photoproduction at HERA

    NASA Astrophysics Data System (ADS)

    Chekanov, S.; Derrick, M.; Magill, S.; Musgrave, B.; Nicholass, D.; Repond, J.; Yoshida, R.; Mattingly, M. C. K.; Jechow, M.; Pavel, N.; Yagües Molina, A. G.; Antonelli, S.; Antonioli, P.; Bari, G.; Basile, M.; Bellagamba, L.; Bindi, M.; Boscherini, D.; Bruni, A.; Bruni, G.; Cifarelli, L.; Cindolo, F.; Contin, A.; Corradi, M.; De Pasquale, S.; Iacobucci, G.; Margotti, A.; Nania, R.; Polini, A.; Sartorelli, G.; Zichichi, A.; Bartsch, D.; Brock, I.; Hartmann, H.; Hilger, E.; Jakob, H.-P.; Jüngst, M.; Kind, O. M.; Nuncio-Quiroz, A. E.; Paul, E.; Renner, R.; Samson, U.; Schönberg, V.; Shehzadi, R.; Wlasenko, M.; Brook, N. H.; Heath, G. P.; Morris, J. D.; Capua, M.; Fazio, S.; Mastroberardino, A.; Schioppa, M.; Susinno, G.; Tassi, E.; Kim, J. Y.; Ma, K. J.; Ibrahim, Z. A.; Kamaluddin, B.; Wan Abdullah, W. A. T.; Ning, Y.; Ren, Z.; Sciulli, F.; Chwastowski, J.; Eskreys, A.; Figiel, J.; Galas, A.; Gil, M.; Olkiewicz, K.; Stopa, P.; Zawiejski, L.; Adamczyk, L.; Bołd, T.; Grabowska-Bołd, I.; Kisielewska, D.; Łukasik, J.; Przybycień, M.; Suszycki, L.; Kotański, A.; Słomiński, W.; Adler, V.; Behrens, U.; Bloch, I.; Blohm, C.; Bonato, A.; Borras, K.; Ciesielski, R.; Coppola, N.; Dossanov, A.; Drugakov, V.; Fourletova, J.; Geiser, A.; Gladkov, D.; Göttlicher, P.; Grebenyuk, J.; Gregor, I.; Haas, T.; Hain, W.; Horn, C.; Hüttmann, A.; Kahle, B.; Katkov, I. I.; Klein, U.; Kötz, U.; Kowalski, H.; Lobodzinska, E.; Löhr, B.; Mankel, R.; Melzer-Pellmann, I.-A.; Miglioranzi, S.; Montanari, A.; Namsoo, T.; Notz, D.; Rinaldi, L.; Roloff, P.; Rubinsky, I.; Santamarta, R.; Schneekloth, U.; Spiridonov, A.; Stadie, H.; Szuba, D.; Szuba, J.; Theedt, T.; Wolf, G.; Wrona, K.; Youngman, C.; Zeuner, W.; Lohmann, W.; Schlenstedt, S.; Barbagli, G.; Gallo, E.; Pelfer, P. G.; Bamberger, A.; Dobur, D.; Karstens, F.; Vlasov, N. N.; Bussey, P. J.; Doyle, A. T.; Dunne, W.; Forrest, M.; Saxon, D. H.; Skillicorn, I. O.; Gialas, I.; Papageorgiu, K.; Gosau, T.; Holm, U.; Klanner, R.; Lohrmann, E.; Salehi, H.; Schleper, P.; Schörner-Sadenius, T.; Sztuk, J.; Wichmann, K.; Wick, K.; Foudas, C.; Fry, C.; Long, K. R.; Tapper, A. D.; Kataoka, M.; Matsumoto, T.; Nagano, K.; Tokushuku, K.; Yamada, S.; Yamazaki, Y.; Barakbaev, A. N.; Boos, E. G.; Pokrovskiy, N. S.; Zhautykov, B. O.; Aushev, V.; Borodin, M.; Kozulia, A.; Lisovyi, M.; Son, D.; de Favereau, J.; Piotrzkowski, K.; Barreiro, F.; Glasman, C.; Jimenez, M.; Labarga, L.; del Peso, J.; Ron, E.; Soares, M.; Terrón, J.; Zambrana, M.; Corriveau, F.; Liu, C.; Walsh, R.; Zhou, C.; Tsurugai, T.; Antonov, A.; Dolgoshein, B. A.; Sosnovtsev, V.; Stifutkin, A.; Suchkov, S.; Dementiev, R. K.; Ermolov, P. F.; Gladilin, L. K.; Khein, L. A.; Korzhavina, I. A.; Kuzmin, V. A.; Levchenko, B. B.; Lukina, O. Yu.; Proskuryakov, A. S.; Shcheglova, L. M.; Zotkin, D. S.; Zotkin, S. A.; Abt, I.; Büttner, C.; Caldwell, A.; Kollar, D.; Schmidke, W. B.; Sutiak, J.; Grigorescu, G.; Keramidas, A.; Koffeman, E.; Kooijman, P.; Pellegrino, A.; Tiecke, H.; Vázquez, M.; Wiggers, L.; Brümmer, N.; Bylsma, B.; Durkin, L. S.; Lee, A.; Ling, T. Y.; Allfrey, P. D.; Bell, M. A.; Cooper-Sarkar, A. M.; Devenish, R. C. E.; Ferrando, J.; Foster, B.; Korcsak-Gorzo, K.; Oliver, K.; Patel, S.; Roberfroid, V.; Robertson, A.; Straub, P. B.; Uribe-Estrada, C.; Walczak, R.; Bellan, P.; Bertolin, A.; Brugnera, R.; Carlin, R.; Dal Corso, F.; Dusini, S.; Garfagnini, A.; Limentani, S.; Longhin, A.; Stanco, L.; Turcato, M.; Oh, B. Y.; Raval, A.; Ukleja, J.; Whitmore, J. J.; Iga, Y.; D'Agostini, G.; Marini, G.; Nigro, A.; Cole, J. E.; Hart, J. C.; Abramowicz, H.; Gabareen, A.; Ingbir, R.; Kananov, S.; Levy, A.; Kuze, M.; Maeda, J.; Hori, R.; Kagawa, S.; Okazaki, N.; Shimizu, S.; Tawara, T.; Hamatsu, R.; Kaji, H.; Kitamura, S.; Ota, O.; Ri, Y. D.; Ferrero, M. I.; Monaco, V.; Sacchi, R.; Solano, A.; Arneodo, M.; Ruspa, M.; Fourletov, S.; Martin, J. F.; Boutle, S. K.; Butterworth, J. M.; Gwenlan, C.; Jones, T. W.; Loizides, J. H.; Sutton, M. R.; Wing, M.; Brzozowska, B.; Ciborowski, J.; Grzelak, G.; Kulinski, P.; Łużniak, P.; Malka, J.; Nowak, R. J.; Pawlak, J. M.; Tymieniecka, T.; Ukleja, A.; Żarnecki, A. F.; Adamus, M.; Plucinski, P.; Eisenberg, Y.; Giller, I.; Hochman, D.; Karshon, U.; Rosin, M.; Brownson, E.; Danielson, T.; Everett, A.; Kçira, D.; Reeder, D. D.; Ryan, P.; Savin, A. A.; Smith, W. H.; Wolfe, H.; Bhadra, S.; Catterall, C. D.; Cui, Y.; Hartner, G.; Menary, S.; Noor, U.; Standage, J.; Whyte, J.; ZEUS Collaboration

    2008-03-01

    Three- and four-jet final states have been measured in photoproduction at HERA using the ZEUS detector with an integrated luminosity of 121 pb. The results are presented for jets with transverse energy ETjet>6 GeV and pseudorapidity |η|<2.4, in the kinematic region given by the virtuality of the photon Q<1 GeV and the inelasticity 0.2⩽y⩽0.85 and in two mass regions defined as 25⩽M<50 GeV and M⩾50 GeV, where M is the invariant mass of the n-jet system. The four-jet photoproduction cross section has been measured for the first time and represents the highest-order process studied at HERA. Both the three- and four-jet cross sections have been compared with leading-logarithmic parton-shower Monte Carlo models, with and without multi-parton interactions. The three-jet cross sections have been compared to an O(ααs2) perturbative QCD calculation.

  2. How Many Muons Do We Need to Store in a Ring For Neutrino Cross-Section Measurements?

    SciTech Connect

    Geer, Steve; /Fermilab

    2011-07-14

    Analytical estimate of the number of muons that must decay in the straight section of a storage ring to produce a neutrino & anti-neutrino beam of sufficient intensity to facilitate cross-section measurements with a statistical precision of 1%. As we move into the era of precision long-baseline {nu}{sub {mu}} {yields} {nu}{sub e} and {bar {nu}}{sub {mu}} {yields} {bar {nu}}{sub e} measurements there is a growing need to precisely determine the {nu}{sub e} and {bar {nu}}{sub e} cross-sections in the relevant energy range, from a fraction of 1 GeV to a few GeV. This will require {nu}{sub e} and {bar {nu}}{sub e} beams with precisely known fluxes and spectra. One way to produce these beams is to use a storage ring with long straight sections in which muon decays ({mu}{sup -} {yields} e{sup -}{nu}{sub {mu}}{bar {nu}}{sub e} if negative muons are stored, and {nu}{sup +} {yields} e{sup +}{nu}{sub e}{bar {nu}}{sub {mu}} if positive muons are stored) produce the desired beam. The challenge is to capture enough muons in the ring to obtain useful neutrino and anti-neutrino fluxes. Early proposals to use a muon storage ring for neutrino oscillation experiments were based upon injecting 'high energy' charged pions into the ring which then decayed to create stored muons. These proposals were hampered by lack of sufficient intensity to pursue the physics. The Neutrino Factory proposal in 1997 was designed to fix this problem by using a Muon Collider class 'low energy' muon source to capture many more pions at low energy, allow them to decay in an external decay channel, manipulate their phase space to capture as many muons as possible within the acceptance of an accelerator, and then accelerate to the energy of choice before injecting into a specially designed ring with long straight sections. All this technology would do a wonderful job in fixing the intensity problem, but at a price that excludes this solution from being realized in the short term. The question that we are now

  3. Production of the excited charm mesons D1 and D2* at HERA

    NASA Astrophysics Data System (ADS)

    Abramowicz, H.; Abt, I.; Adamczyk, L.; Adamus, M.; Aggarwal, R.; Antonelli, S.; Antonioli, P.; Antonov, A.; Arneodo, M.; Arslan, O.; Aushev, V.; Aushev, Y.; Bachynska, O.; Bamberger, A.; Barakbaev, A. N.; Barbagli, G.; Bari, G.; Barreiro, F.; Bartosik, N.; Bartsch, D.; Basile, M.; Behnke, O.; Behr, J.; Behrens, U.; Bellagamba, L.; Bertolin, A.; Bhadra, S.; Bindi, M.; Blohm, C.; Bokhonov, V.; Bołd, T.; Bondarenko, K.; Boos, E. G.; Borras, K.; Boscherini, D.; Bot, D.; Brock, I.; Brownson, E.; Brugnera, R.; Brümmer, N.; Bruni, A.; Bruni, G.; Brzozowska, B.; Bussey, P. J.; Bylsma, B.; Caldwell, A.; Capua, M.; Carlin, R.; Catterall, C. D.; Chekanov, S.; Chwastowski, J.; Ciborowski, J.; Ciesielski, R.; Cifarelli, L.; Cindolo, F.; Contin, A.; Cooper-Sarkar, A. M.; Coppola, N.; Corradi, M.; Corriveau, F.; Costa, M.; D'Agostini, G.; Dal Corso, F.; del Peso, J.; Dementiev, R. K.; De Pasquale, S.; Derrick, M.; Devenish, R. C. E.; Dobur, D.; Dolgoshein, B. A.; Dolinska, G.; Doyle, A. T.; Drugakov, V.; Durkin, L. S.; Dusini, S.; Eisenberg, Y.; Ermolov, P. F.; Eskreys, A.; Fang, S.; Fazio, S.; Ferrando, J.; Ferrero, M. I.; Figiel, J.; Foster, B.; Gach, G.; Galas, A.; Gallo, E.; Garfagnini, A.; Geiser, A.; Gialas, I.; Gizhko, A.; Gladilin, L. K.; Gladkov, D.; Glasman, C.; Gogota, O.; Golubkov, Yu. A.; Göttlicher, P.; Grabowska-Bołd, I.; Grebenyuk, J.; Gregor, I.; Grigorescu, G.; Grzelak, G.; Gueta, O.; Guzik, M.; Gwenlan, C.; Haas, T.; Hain, W.; Hamatsu, R.; Hart, J. C.; Hartmann, H.; Hartner, G.; Hilger, E.; Hochman, D.; Hori, R.; Hüttmann, A.; Ibrahim, Z. A.; Iga, Y.; Ingbir, R.; Ishitsuka, M.; Jakob, H.-P.; Januschek, F.; Jones, T. W.; Jüngst, M.; Kadenko, I.; Kahle, B.; Kananov, S.; Kanno, T.; Karshon, U.; Karstens, F.; Katkov, I. I.; Kaur, M.; Kaur, P.; Keramidas, A.; Khein, L. A.; Kim, J. Y.; Kisielewska, D.; Kitamura, S.; Klanner, R.; Klein, U.; Koffeman, E.; Kondrashova, N.; Kononenko, O.; Kooijman, P.; Korol, Ie.; Korzhavina, I. A.; Kotański, A.; Kötz, U.; Kowalski, H.; Kuprash, O.; Kuze, M.; Lee, A.; Levchenko, B. B.; Levy, A.; Libov, V.; Limentani, S.; Ling, T. Y.; Lobodzinska, E.; Lohmann, W.; Löhr, B.; Lohrmann, E.; Long, K. R.; Longhin, A.; Lontkovskyi, D.; Lukina, O. Yu.; Maeda, J.; Magill, S.; Makarenko, I.; Malka, J.; Mankel, R.; Margotti, A.; Marini, G.; Martin, J. F.; Mastroberardino, A.; Mattingly, M. C. K.; Melzer-Pellmann, I.-A.; Mergelmeyer, S.; Miglioranzi, S.; Mohamad Idris, F.; Monaco, V.; Montanari, A.; Morris, J. D.; Mujkic, K.; Musgrave, B.; Nagano, K.; Namsoo, T.; Nania, R.; Nigro, A.; Ning, Y.; Nobe, T.; Notz, D.; Nowak, R. J.; Nuncio-Quiroz, A. E.; Oh, B. Y.; Okazaki, N.; Olkiewicz, K.; Onishchuk, Yu.; Papageorgiu, K.; Parenti, A.; Paul, E.; Pawlak, J. M.; Pawlik, B.; Pelfer, P. G.; Pellegrino, A.; Perlański, W.; Perrey, H.; Piotrzkowski, K.; Pluciński, P.; Pokrovskiy, N. S.; Polini, A.; Proskuryakov, A. S.; Przybycień, M.; Raval, A.; Reeder, D. D.; Reisert, B.; Ren, Z.; Repond, J.; Ri, Y. D.; Robertson, A.; Roloff, P.; Rubinsky, I.; Ruspa, M.; Sacchi, R.; Samson, U.; Sartorelli, G.; Savin, A. A.; Saxon, D. H.; Schioppa, M.; Schlenstedt, S.; Schleper, P.; Schmidke, W. B.; Schneekloth, U.; Schönberg, V.; Schörner-Sadenius, T.; Schwartz, J.; Sciulli, F.; Shcheglova, L. M.; Shehzadi, R.; Shimizu, S.; Singh, I.; Skillicorn, I. O.; Słomiński, W.; Smith, W. H.; Sola, V.; Solano, A.; Son, D.; Sosnovtsev, V.; Spiridonov, A.; Stadie, H.; Stanco, L.; Stefaniuk, N.; Stern, A.; Stewart, T. P.; Stifutkin, A.; Stopa, P.; Suchkov, S.; Susinno, G.; Suszycki, L.; Sztuk-Dambietz, J.; Szuba, D.; Szuba, J.; Tapper, A. D.; Tassi, E.; Terrón, J.; Theedt, T.; Tiecke, H.; Tokushuku, K.; Tomaszewska, J.; Trusov, V.; Tsurugai, T.; Turcato, M.; Turkot, O.; Tymieniecka, T.; Vázquez, M.; Verbytskyi, A.; Viazlo, O.; Vlasov, N. N.; Walczak, R.; Wan Abdullah, W. A. T.; Whitmore, J. J.; Wichmann, K.; Wiggers, L.; Wing, M.; Wlasenko, M.; Wolf, G.; Wolfe, H.; Wrona, K.; Yagües-Molina, A. G.; Yamada, S.; Yamazaki, Y.; Yoshida, R.; Youngman, C.; Zabiegalov, O.; Żarnecki, A. F.; Zawiejski, L.; Zenaiev, O.; Zeuner, W.; Zhautykov, B. O.; Zhmak, N.; Zichichi, A.; Zolkapli, Z.; Zotkin, D. S.; ZEUS Collaboration

    2013-01-01

    The production of the excited charm mesons D1(2420) and D2*(2460) in ep collisions has been measured with the ZEUS detector at HERA using an integrated luminosity of 373 pb. The masses of the neutral and charged states, the widths of the neutral states, and the helicity parameter of D1(2420 were determined and compared with other measurements and with theoretical expectations. The measured helicity parameter of the D10 allows for some mixing of S- and D-waves in its decay to Dπ∓. The result is also consistent with a pure D-wave decay. Ratios of branching fractions of the two decay modes of the D2*(2460 and D2*(2460 states were measured and compared with previous measurements. The fractions of charm quarks hadronising into D1 and D2* were measured and are consistent with those obtained in e+e- annihilations.

  4. The evaluation of four different diffuse radiation correction models applied to shadow ring measurements for Beer Sheva, Israel

    NASA Astrophysics Data System (ADS)

    Kudish, Avraham I.; Evseev, Efim G.

    2007-09-01

    The measurement of the horizontal diffuse radiation, a priori a straightforward task, is fraught with difficulties. It is possible to measure the diffuse radiation by both direct and indirect methods. The most accurate method is probably the indirect one, which utilizes concurrent measurements of the horizontal global and the normal incidence beam radiation. The disadvantage of this method is the relatively expensive tracking system required for measuring the latter. The diffuse radiation can be measured directly with a pyranometer outfitted with either an occulting disk or shadow ring, which prevent the beam radiation from impinging on the pyranometer sensor. The former method can provide accurate measurements of the diffuse radiation but requires a relatively expensive sun tracking system in the east-west axis. The shadow ring is a stationary device with regard to the east-west axis and blocks the beam radiation component by creating a permanent shadow on the pyranometer sensor. The disadvantage of the shadow ring is that it also blocks a portion of the sky, which necessitates a geometrical correction factor. There is also a need to correct for anisotropic sky conditions. Four correction models have been applied to the data and the results evaluated and ranked.

  5. A Long-term Ring Current Measure Created by Using the VMO MANGO Service Package

    NASA Astrophysics Data System (ADS)

    Bargatze, L. F.; King, T. A.

    2008-12-01

    A set of computational routines called MANGO (Magnetogram Analysis for the Network of Geomagnetic Observatories) is utilized to calculate a new measure of magnetic storm activity for the years 1932 to the near present. The MANGO routines are part of an effort to enhance data services available to users of the Heliophysics VxOs, specifically for the Virtual Magnetospheric Observatory (VMO). The community can utilize MANGO to derive value-added data products and images suitable for publication via the VMO web site. MANGO routines will be demonstrated through their application to study magnetic storms, a field of research that began in 1828 when von Humboldt launched an investigation of observations taken simultaneously from magnetic field stations spread around the Earth. The defining signature of magnetic storms is a worldwide decrease of the horizontal component of the magnetic field caused by fluctuations in the strength of the ring current. In the 1940's, Bartel pushed for deriving an index to measure the strength of magnetic storms. Progress intensified during the International Geophysical Year leading to the definition of the Dst index. The definitive Dst index is calculated at WDC-C2 for Geomagnetism in Kyoto by using a derivation scheme certified by Division V of IAGA. The Dst index time series spans the years 1957 to present with a cadence equal to 1-hr. The new data set we will present is a magnetic storm measure that is similar to the Dst index though it is calculated by using MANGO and a method that differs slightly from the official scheme. The MANGO data service package is based on a set of IDL routines that decompose ground magnetic field observations to isolate secular, diurnal, and disturbance variations of the magnetic field station-by-station. Each MANGO subroutine has been written in modular fashion to allow "plug and play"- style flexibility and each has been designed to account for failure modes and noisy data so that the programs will run to

  6. Demonstration of High-Throughput Water Isotopologue Measurements Using Cavity Ring-Down Spectroscopy

    NASA Astrophysics Data System (ADS)

    van Pelt, A. D.; Gupta, P.; Green, I.

    2009-12-01

    The ability to measure the δ18O and δD isotopic content of water has long relied on cumbersome methods that require well equipped laboratories, highly qualified technicians and frequently calibrated instruments. The advent of commercial analyzers based on Wavelength Scanned Cavity Ring-Down Spectroscopy (WS-CRDS) for isotopic water measurements has opened up new possibilities for mobile laboratory and field deployable isotopic instruments. For many laboratories, sample throughput has been a major bottleneck - either real-time sampling of stream flow or simply the number of samples gathered during a campaign can be a daunting challenge. It is not uncommon for users to have a huge backlog on the water samples that need to be analyzed within a short period of time. We present results of a new high throughput water analyzer based on WS-CRDS technology. This high throughput method comes with negligible impact on the precision and memory and absolutely no impact on the drift characteristics of the analyzer. In order to provide confidence in the data collected, even in the most challenging environments, there can be no comprise on the consistency or reproducibility of the instrument performance. The new high throughput isotopic water analyzer measures isotopologues of water with a typical precision of better than 0.15‰ for δ18O and better than 0.6‰ for δD and can execute over 380 injections per day. The analyzer has extremely low drift of < ±0.3‰ for δ18O and < ±0.9‰ for δD. This presentation demonstrates these capabilities of the high throughput isotopic water analyzer. This water isotope analyzer can be configured to analyze water vapor, liquid, or alternate between vapor and liquid. The alternating configuration enables the periodic recalibration of water vapor measurements using liquid water isotopic standards. The results of this study clearly demonstrate that the precision of the analyzer is very high and the memory and drift are exceptional even

  7. SATURN’S G AND D RINGS PROVIDE NEARLY COMPLETE MEASURED SCATTERING PHASE FUNCTIONS OF NEARBY DEBRIS DISKS

    SciTech Connect

    Hedman, Matthew M.; Stark, Christopher C. E-mail: cstark@stsci.edu

    2015-09-20

    The appearance of debris disks around distant stars depends upon the scattering/phase function (SPF) of the material in the disk. However, characterizing the SPFs of these extrasolar debris disks is challenging because only a limited range of scattering angles are visible to Earth-based observers. By contrast, Saturn’s tenuous rings can be observed over a much broader range of geometries, so their SPFs can be much better constrained. Since these rings are composed of small particles released from the surfaces of larger bodies, they are reasonable analogs to debris disks and so their SPFs can provide insights into the plausible scattering properties of debris disks. This work examines two of Saturn’s dusty rings: the G ring (at 167,500 km from Saturn’s center) and the D68 ringlet (at 67,600 km). Using data from the cameras on board the Cassini spacecraft, we are able to estimate the rings’ brightnesses at scattering angles ranging from 170° to 0.°5. We find that both of the rings exhibit extremely strong forward-scattering peaks, but for scattering angles above 60° their brightnesses are nearly constant. These SPFs can be well approximated by a linear combination of three Henyey–Greenstein functions, and are roughly consistent with the SPFs of irregular particles from laboratory measurements. Comparing these data to Fraunhofer and Mie models highlights several challenges involved in extracting information about particle compositions and size distributions from SPFs alone. The SPFs of these rings also indicate that the degree of forward scattering in debris disks may be greatly underestimated.

  8. Scalar mixing and strain dynamics methodologies for PIV/LIF measurements of vortex ring flows

    NASA Astrophysics Data System (ADS)

    Bouremel, Yann; Ducci, Andrea

    2017-01-01

    Fluid mixing operations are central to possibly all chemical, petrochemical, and pharmaceutical industries either being related to biphasic blending in polymerisation processes, cell suspension for biopharmaceuticals production, and fractionation of complex oil mixtures. This work aims at providing a fundamental understanding of the mixing and stretching dynamics occurring in a reactor in the presence of a vortical structure, and the vortex ring was selected as a flow paradigm of vortices commonly encountered in stirred and shaken reactors in laminar flow conditions. High resolution laser induced fluorescence and particle imaging velocimetry measurements were carried out to fully resolve the flow dissipative scales and provide a complete data set to fully assess macro- and micro-mixing characteristics. The analysis builds upon the Lamb-Oseen vortex work of Meunier and Villermaux ["How vortices mix," J. Fluid Mech. 476, 213-222 (2003)] and the engulfment model of Baldyga and Bourne ["Simplification of micromixing calculations. I. Derivation and application of new model," Chem. Eng. J. 42, 83-92 (1989); "Simplification of micromixing calculations. II. New applications," ibid. 42, 93-101 (1989)] which are valid for diffusion-free conditions, and a comparison is made between three methodologies to assess mixing characteristics. The first method is commonly used in macro-mixing studies and is based on a control area analysis by estimating the variation in time of the concentration standard deviation, while the other two are formulated to provide an insight into local segregation dynamics, by either using an iso-concentration approach or an iso-concentration gradient approach to take into account diffusion.

  9. Bunch Length Measurements at the ATF Damping Ring in April 2000

    SciTech Connect

    Bane, K.L.F.; Naito, T.; Okugi, T.; Urakawa, J.; /KEK, Tsukuba

    2005-12-19

    We want to accurately know the energy spread and bunch length dependence on current in the ATF damping ring. One reason is to know the strength of the impedance: From the energy spread measurements we know whether or not we are above the threshold to the microwave instability, and from the energy spread and bunch length measurements we find out the extent of potential-well bunch lengthening (PWBL). Another reason for these measurements is to help in our understanding of the intra-beam scattering (IBS) effect in the ATF. The ATF as it is now, running below design energy and with the wigglers turned off, is strongly affected by IBS. To check for consistency with IBS theory of, for example, the measured vertical beam size, we need to know all dimensions of the beam, including the longitudinal one. But beyond this practical reason for studying IBS, IBS is currently a hot research topic at many accelerators around the world (see e.g. Ref. [1]), and the effect in actual machines is not well understood. Typically, when comparing theory with measurements fudge factors are needed to get agreement (see e.g. Ref. [1]). With its strong IBS effect, the ATF is an ideal machine for studying IBS, and an indispensable ingredient for this study is a knowledge of the longitudinal phase space of the beam. The results of earlier bunch lengthening measurements in the ATF can be found in Refs. [2]-[4]. Measurements of current dependent effects, especially bunch length measurements using a streak camera, can be difficult to perform accurately. For example, space charge in the camera itself can lead to systematic errors in the measurement results. It is important the results be accurate and reproducible. In the measurements of both December 1998[3] and December 1999[4], by using light filters, the authors first checked that space charge in the streak camera was not significant. And then the Dec 99 authors show that their results agree with those Dec 98, i.e. on the dates of the two

  10. Structure of the hexameric HerA ATPase reveals a mechanism of translocation-coupled DNA-end processing in archaea.

    PubMed

    Rzechorzek, Neil J; Blackwood, John K; Bray, Sian M; Maman, Joseph D; Pellegrini, Luca; Robinson, Nicholas P

    2014-11-25

    The HerA ATPase cooperates with the NurA nuclease and the Mre11-Rad50 complex for the repair of double-strand DNA breaks in thermophilic archaea. Here we extend our structural knowledge of this minimal end-resection apparatus by presenting the first crystal structure of hexameric HerA. The full-length structure visualizes at atomic resolution the N-terminal HerA-ATP synthase domain and a conserved C-terminal extension, which acts as a physical brace between adjacent protomers. The brace also interacts in trans with nucleotide-binding residues of the neighbouring subunit. Our observations support a model in which the coaxial interaction of the HerA ring with the toroidal NurA dimer generates a continuous channel traversing the complex. HerA-driven translocation would propel the DNA towards the narrow annulus of NurA, leading to duplex melting and nucleolytic digestion. This system differs substantially from the bacterial end-resection paradigms. Our findings suggest a novel mode of DNA-end processing by this integrated archaeal helicase-nuclease machine.

  11. Observation of a periodic pattern in the persistent-current fields of the superconducting HERA magnets

    SciTech Connect

    Brueck, H.; Gall, D.; Krzywinski, J.; Meinke, R.; Preissner, H. , Hamburg ); Halemeyer, M.; Schmueser, P.; Stolzenburg, C. . 2. Inst. fuer Experimentalphysik); Stiening, R. ); ter Avest, D.; van de Klundert, L.J.M. (Technische Hogeschool Twente, Enschede (Netherlands

    1991-05-01

    The time dependence of persistent current multipoles in superconducting magnets is still unexplained. The decay is too large to be accounted for by flux creep and it does not show the expected dependence on temperature. Furthermore the decay is influenced by a preceding field sweep in the magnet, it becomes more pronounced if the magnet was previously excited to its maximum field. For a detailed study of the decay mechanism a special sensor has been developed which allows to record small sexupole components in superconducting dipole magnets. During an experimental study of the time dependence of a HERA dipole it was found that the sextupole field exhibits a sinusoidal structure along the axis of the magnet. A similar periodic structure was found for the main dipole field with the help of a nuclear magnetic resonance probe. The wavelength of the periodic pattern is compatible with the transposition pitch of the Rutherford-type cable in the magnet coils. The structure was found to exist in all HERA dipoles measured afterwards and also in a superconducting coil without iron yoke. With a specially developed 2 cm long pickup coil it was found that all accessible multipole components in dipole and quadrupole magnets are modulated along their axis. 3 refs., 6 figs.

  12. Cold atoms in one-dimensional rings: a Luttinger liquid approach to precision measurement

    NASA Astrophysics Data System (ADS)

    Ragole, Stephen; Taylor, Jacob

    Recent experiments have realized ring shaped traps for ultracold atoms. We consider the one-dimensional limit of these ring systems with a moving weak barrier, such as a blue-detuned laser beam. In this limit, we employ Luttinger liquid theory and find an analogy with the superconducting charge qubit. In particular, we find that strongly-interacting atoms in such a system could be used for precision rotation sensing. We compare the performance of this new sensor to the state of the art non-interacting atom interferometry. Funding provided by the Physics Frontier Center at the JQI and by DARPA QUASAR.

  13. The Murchison Widefield Array (MWA) and the Path to HERA

    NASA Astrophysics Data System (ADS)

    Lonsdale, Colin J.; Bowman, J.; Hewitt, J.; Morales, M.; Moran, J.

    2011-05-01

    The Murchison Widefield Array (MWA), supported in the US by a grant from the National Science Foundation, is a first-generation instrument designed to detect and characterize redshifted 21cm signals from neutral hydrogen during the epoch of reionization at z 10. An important goal of the effort is to do pathfinding for subsequent generations of EoR instruments, and to directly inform the design of the planned Hydrogen Epoch of Reionization Array (HERA) phase 2 array. Such an instrument would be roughly 10 times larger than MWA. We describe the design of MWA, what we expect to learn from its use, and the ways we plan to use that knowledge in the HERA-II design.

  14. Higher level trigger systems for the HERA-B experiment

    SciTech Connect

    Dam, M.; Dippel, R.; Erhan, S.

    1998-08-01

    The HERA-B experiment is designed for observation of CP violation in the B-meson system at the HERA machine in DESY. The data acquisition and triggering system must cope with a half million detector channels, a 40 MHz interaction rate and a signal to background ratio of 10{sup {minus}10}. A highly selective multi-level trigger and high bandwidth data acquisition system has been designed and is currently being implemented. The second-level event buffer and mid-level trigger switch will be built from DSP boards carrying SHARC processors. The second and third level trigger code will run on a farm of 100--200 Pentium processors under Linux. The switch to the 4th level trigger farm will be based on Fast-Ethernet.

  15. Search for first-generation leptoquarks at HERA

    NASA Astrophysics Data System (ADS)

    Abramowicz, H.; Abt, I.; Adamczyk, L.; Adamus, M.; Aggarwal, R.; Antonelli, S.; Antonioli, P.; Antonov, A.; Arneodo, M.; Arslan, O.; Aushev, V.; Aushev, Y.; Bachynska, O.; Bamberger, A.; Barakbaev, A. N.; Barbagli, G.; Bari, G.; Barreiro, F.; Bartosik, N.; Bartsch, D.; Basile, M.; Behnke, O.; Behr, J.; Behrens, U.; Bellagamba, L.; Bertolin, A.; Bhadra, S.; Bindi, M.; Blohm, C.; Bokhonov, V.; Bołd, T.; Bondarenko, K.; Boos, E. G.; Borras, K.; Boscherini, D.; Bot, D.; Brock, I.; Brownson, E.; Brugnera, R.; Brümmer, N.; Bruni, A.; Bruni, G.; Brzozowska, B.; Bussey, P. J.; Bylsma, B.; Caldwell, A.; Capua, M.; Carlin, R.; Catterall, C. D.; Chekanov, S.; Chwastowski, J.; Ciborowski, J.; Ciesielski, R.; Cifarelli, L.; Cindolo, F.; Contin, A.; Cooper-Sarkar, A. M.; Coppola, N.; Corradi, M.; Corriveau, F.; Costa, M.; D'Agostini, G.; Dal Corso, F.; del Peso, J.; Dementiev, R. K.; De Pasquale, S.; Derrick, M.; Devenish, R. C. E.; Dobur, D.; Dolgoshein, B. A.; Dolinska, G.; Doyle, A. T.; Drugakov, V.; Durkin, L. S.; Dusini, S.; Eisenberg, Y.; Ermolov, P. F.; Eskreys, A.; Fang, S.; Fazio, S.; Ferrando, J.; Ferrero, M. I.; Figiel, J.; Forrest, M.; Foster, B.; Gach, G.; Galas, A.; Gallo, E.; Garfagnini, A.; Geiser, A.; Gialas, I.; Gizhko, A.; Gladilin, L. K.; Gladkov, D.; Glasman, C.; Gogota, O.; Golubkov, Yu. A.; Göttlicher, P.; Grabowska-Bołd, I.; Grebenyuk, J.; Gregor, I.; Grigorescu, G.; Grzelak, G.; Gueta, O.; Guzik, M.; Gwenlan, C.; Haas, T.; Hain, W.; Hamatsu, R.; Hart, J. C.; Hartmann, H.; Hartner, G.; Hilger, E.; Hochman, D.; Hori, R.; Horton, K.; Hüttmann, A.; Ibrahim, Z. A.; Iga, Y.; Ingbir, R.; Ishitsuka, M.; Jakob, H.-P.; Januschek, F.; Jones, T. W.; Jüngst, M.; Kadenko, I.; Kahle, B.; Kananov, S.; Kanno, T.; Karshon, U.; Karstens, F.; Katkov, I. I.; Kaur, M.; Kaur, P.; Keramidas, A.; Khein, L. A.; Kim, J. Y.; Kisielewska, D.; Kitamura, S.; Klanner, R.; Klein, U.; Koffeman, E.; Kondrashova, N.; Kononenko, O.; Kooijman, P.; Korol, Ie.; Korzhavina, I. A.; Kotański, A.; Kötz, U.; Kowalski, H.; Kuprash, O.; Kuze, M.; Lee, A.; Levchenko, B. B.; Levy, A.; Libov, V.; Limentani, S.; Ling, T. Y.; Lisovyi, M.; Lobodzinska, E.; Lohmann, W.; Löhr, B.; Lohrmann, E.; Long, K. R.; Longhin, A.; Lontkovskyi, D.; Lukina, O. Yu.; Maeda, J.; Magill, S.; Makarenko, I.; Malka, J.; Mankel, R.; Margotti, A.; Marini, G.; Martin, J. F.; Mastroberardino, A.; Mattingly, M. C. K.; Melzer-Pellmann, I.-A.; Mergelmeyer, S.; Miglioranzi, S.; Mohamad dris, F.; Monaco, V.; Montanari, A.; Morris, J. D.; Mujkic, K.; Musgrave, B.; Nagano, K.; Namsoo, T.; Nania, R.; Nigro, A.; Ning, Y.; Nobe, T.; Notz, D.; Nowak, R. J.; Nuncio-Quiroz, A. E.; Oh, B. Y.; Okazaki, N.; Oliver, K.; Olkiewicz, K.; Onishchuk, Yu.; Papageorgiu, K.; Parenti, A.; Paul, E.; Pawlak, J. M.; Pawlik, B.; Pelfer, P. G.; Pellegrino, A.; Perlański, W.; Perrey, H.; Piotrzkowski, K.; Pluciński, P.; Pokrovskiy, N. S.; Polini, A.; Proskuryakov, A. S.; Przybycień, M.; Raval, A.; Reeder, D. D.; Reisert, B.; Ren, Z.; Repond, J.; Ri, Y. D.; Robertson, A.; Roloff, P.; Rubinsky, I.; Ruspa, M.; Sacchi, R.; Samson, U.; Sartorelli, G.; Savin, A. A.; Saxon, D. H.; Schioppa, M.; Schlenstedt, S.; Schleper, P.; Schmidke, W. B.; Schneekloth, U.; Schönberg, V.; Schörner-Sadenius, T.; Schwartz, J.; Sciulli, F.; Shcheglova, L. M.; Shehzadi, R.; Shimizu, S.; Singh, I.; Skillicorn, I. O.; Słomiński, W.; Smith, W. H.; Sola, V.; Solano, A.; Son, D.; Sosnovtsev, V.; Spiridonov, A.; Stadie, H.; Stanco, L.; Stefaniuk, N.; Stern, A.; Stewart, T. P.; Stifutkin, A.; Stopa, P.; Suchkov, S.; Susinno, G.; Suszycki, L.; Sztuk-Dambietz, J.; Szuba, D.; Szuba, J.; Tapper, A. D.; Tassi, E.; Terrón, J.; Theedt, T.; Tiecke, H.; Tokushuku, K.; Tomaszewska, J.; Trusov, V.; Tsurugai, T.; Turcato, M.; Turkot, O.; Tymieniecka, T.; Vázquez, M.; Verbytskyi, A.; Viazlo, O.; Vlasov, N. N.; Walczak, R.; Wan Abdullah, W. A. T.; Whitmore, J. J.; Wichmann, K.; Wiggers, L.; Wing, M.; Wlasenko, M.; Wolf, G.; Wolfe, H.; Wrona, K.; Yagües-Molina, A. G.; Yamada, S.; Yamazaki, Y.; Yoshida, R.; Youngman, C.; Zabiegalov, O.; Żarnecki, A. F.; Zawiejski, L.; Zenaiev, O.; Zeuner, W.; Zhautykov, B. O.; Zhmak, N.; Zhou, C.; Zichichi, A.; Zolkapli, Z.; Zotkin, D. S.

    2012-07-01

    A search for first-generation leptoquarks was performed in electron-proton and positron-proton collisions recorded with the ZEUS detector at HERA in 2003-2007 using an integrated luminosity of 366pb-1. Final states with an electron and jets or with missing transverse momentum and jets were analyzed, searching for resonances or other deviations from the standard model predictions. No evidence for any leptoquark signal was found. The data were combined with data previously taken at HERA, resulting in a total integrated luminosity of 498pb-1. Limits on the Yukawa coupling, λ, of leptoquarks were set as a function of the leptoquark mass for different leptoquark types within the Buchmüller-Rückl-Wyler model. Leptoquarks with a coupling λ=0.3 are excluded for masses up to 699 GeV.

  16. New Morphometric Measurements of Peak-Ring Basins on Mercury and the Moon: Results from the Mercury Laser Altimeter and Lunar Orbiter Laser Altimeter

    NASA Technical Reports Server (NTRS)

    Baker, David M. H.; Head, James W.; Prockter, Louise M.; Fassett, Caleb I.; Neumann, Gregory A.; Smith, David E.; Solomon, Sean C.; Zuber, Maria T.; Oberst, Juergen; Preusker, Frank; hide

    2012-01-01

    Peak-ring basins (large impact craters exhibiting a single interior ring) are important to understanding the processes controlling the morphological transition from craters to large basins on planetary bodies. New image and topography data from the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) and Lunar Reconnaissance Orbiter (LRO) spacecraft have helped to update the catalogs of peak-ring basins on Mercury and the Moon [1,2] and are enabling improved calculations of the morphometric properties of these basins. We use current orbital altimeter measurements from the Mercury Laser Altimeter (MLA) [3] and the Lunar Orbiter Laser Altimeter (LOLA) [4], as well as stereo-derived topography [5], to calculate the floor depths and peak-ring heights of peak-ring basins on Mercury and the Moon. We present trends in these parameters as functions of rim-crest diameter, which are likely to be related to processes controlling the onset of peak rings in these basins.

  17. Angular correlations in three-jet events in ep collisions at HERA

    NASA Astrophysics Data System (ADS)

    Abramowicz, H.; Abt, I.; Adamczyk, L.; Adamus, M.; Aggarwal, R.; Antonelli, S.; Antonioli, P.; Antonov, A.; Arneodo, M.; Aushev, V.; Aushev, Y.; Bachynska, O.; Bamberger, A.; Barakbaev, A. N.; Barbagli, G.; Bari, G.; Barreiro, F.; Bartosik, N.; Bartsch, D.; Basile, M.; Behnke, O.; Behr, J.; Behrens, U.; Bellagamba, L.; Bertolin, A.; Bhadra, S.; Bindi, M.; Blohm, C.; Bokhonov, V.; Bołd, T.; Bondarenko, K.; Boos, E. G.; Borras, K.; Boscherini, D.; Bot, D.; Brock, I.; Brownson, E.; Brugnera, R.; Brümmer, N.; Bruni, A.; Bruni, G.; Brzozowska, B.; Bussey, P. J.; Bylsma, B.; Caldwell, A.; Capua, M.; Carlin, R.; Catterall, C. D.; Chekanov, S.; Chwastowski, J.; Ciborowski, J.; Ciesielski, R.; Cifarelli, L.; Cindolo, F.; Contin, A.; Cooper-Sarkar, A. M.; Coppola, N.; Corradi, M.; Corriveau, F.; Costa, M.; D'Agostini, G.; Corso, F. Dal; del Peso, J.; Dementiev, R. K.; De Pasquale, S.; Derrick, M.; Devenish, R. C. E.; Dobur, D.; Dolgoshein, B. A.; Dolinska, G.; Doyle, A. T.; Drugakov, V.; Durkin, L. S.; Dusini, S.; Eisenberg, Y.; Ermolov, P. F.; Eskreys, A.; Fang, S.; Fazio, S.; Ferrando, J.; Ferrero, M. I.; Figiel, J.; Forrest, M.; Foster, B.; Gach, G.; Galas, A.; Gallo, E.; Garfagnini, A.; Geiser, A.; Gialas, I.; Gladilin, L. K.; Gladkov, D.; Glasman, C.; Gogota, O.; Golubkov, Yu. A.; Göttlicher, P.; Grabowska-Bołd, I.; Grebenyuk, J.; Gregor, I.; Grigorescu, G.; Grzelak, G.; Gueta, O.; Guzik, M.; Gwenlan, C.; Haas, T.; Hain, W.; Hamatsu, R.; Hart, J. C.; Hartmann, H.; Hartner, G.; Hilger, E.; Hochman, D.; Hori, R.; Horton, K.; Hüttmann, A.; Ibrahim, Z. A.; Iga, Y.; Ingbir, R.; Ishitsuka, M.; Jakob, H.-P.; Januschek, F.; Jimenez, M.; Jones, T. W.; Jüngst, M.; Kadenko, I.; Kahle, B.; Kananov, S.; Kanno, T.; Karshon, U.; Karstens, F.; Katkov, I. I.; Kaur, M.; Kaur, P.; Keramidas, A.; Khein, L. A.; Kim, J. Y.; Kisielewska, D.; Kitamura, S.; Klanner, R.; Klein, U.; Koffeman, E.; Kooijman, P.; Korol, Ie.; Korzhavina, I. A.; Kotański, A.; Kötz, U.; Kowalski, H.; Kuprash, O.; Kuze, M.; Lee, A.; Levchenko, B. B.; Levy, A.; Libov, V.; Limentani, S.; Ling, T. Y.; Lisovyi, M.; Lobodzinska, E.; Lohmann, W.; Löhr, B.; Lohrmann, E.; Long, K. R.; Longhin, A.; Lontkovskyi, D.; Lukina, O. Yu.; Maeda, J.; Magill, S.; Makarenko, I.; Malka, J.; Mankel, R.; Margotti, A.; Marini, G.; Martin, J. F.; Mastroberardino, A.; Mattingly, M. C. K.; Melzer-Pellmann, I.-A.; Mergelmeyer, S.; Miglioranzi, S.; Mohamad Idris, F.; Monaco, V.; Montanari, A.; Morris, J. D.; Mujkic, K.; Musgrave, B.; Nagano, K.; Namsoo, T.; Nania, R.; Nigro, A.; Ning, Y.; Nobe, T.; Noor, U.; Notz, D.; Nowak, R. J.; Nuncio-Quiroz, A. E.; Oh, B. Y.; Okazaki, N.; Oliver, K.; Olkiewicz, K.; Onishchuk, Yu.; Papageorgiu, K.; Parenti, A.; Paul, E.; Pawlak, J. M.; Pawlik, B.; Pelfer, P. G.; Pellegrino, A.; Perlański, W.; Perrey, H.; Piotrzkowski, K.; Pluciński, P.; Pokrovskiy, N. S.; Polini, A.; Proskuryakov, A. S.; Przybycień, M.; Raval, A.; Reeder, D. D.; Reisert, B.; Ren, Z.; Repond, J.; Ri, Y. D.; Robertson, A.; Roloff, P.; Rubinsky, I.; Ruspa, M.; Sacchi, R.; Salii, A.; Samson, U.; Sartorelli, G.; Savin, A. A.; Saxon, D. H.; Schioppa, M.; Schlenstedt, S.; Schleper, P.; Schmidke, W. B.; Schneekloth, U.; Schönberg, V.; Schörner-Sadenius, T.; Schwartz, J.; Sciulli, F.; Shcheglova, L. M.; Shehzadi, R.; Shimizu, S.; Singh, I.; Skillicorn, I. O.; Słomiński, W.; Smith, W. H.; Sola, V.; Solano, A.; Son, D.; Sosnovtsev, V.; Spiridonov, A.; Stadie, H.; Stanco, L.; Stern, A.; Stewart, T. P.; Stifutkin, A.; Stopa, P.; Suchkov, S.; Susinno, G.; Suszycki, L.; Sztuk-Dambietz, J.; Szuba, D.; Szuba, J.; Tapper, A. D.; Tassi, E.; Terrón, J.; Theedt, T.; Tiecke, H.; Tokushuku, K.; Tomalak, O.; Tomaszewska, J.; Tsurugai, T.; Turcato, M.; Tymieniecka, T.; Vázquez, M.; Verbytskyi, A.; Viazlo, O.; Vlasov, N. N.; Volynets, O.; Walczak, R.; Wan Abdullah, W. A. T.; Whitmore, J. J.; Wiggers, L.; Wing, M.; Wlasenko, M.; Wolf, G.; Wolfe, H.; Wrona, K.; Yagües-Molina, A. G.; Yamada, S.; Yamazaki, Y.; Yoshida, R.; Youngman, C.; Żarnecki, A. F.; Zawiejski, L.; Zenaiev, O.; Zeuner, W.; Zhautykov, B. O.; Zhmak, N.; Zhou, C.; Zichichi, A.; Zolkapli, Z.; Zolko, M.; Zotkin, D. S.

    2012-03-01

    Three-jet production in deep inelastic ep scattering and photoproduction was investigated with the ZEUS detector at HERA using an integrated luminosity of up to 127pb-1. Measurements of differential cross sections are presented as functions of angular correlations between the three jets in the final state and the proton-beam direction. These correlations provide a stringent test of perturbative QCD and show sensitivity to the contributions from different color configurations. Fixed-order perturbative calculations assuming the values of the color factors CF, CA, and TF as derived from a variety of gauge groups were compared to the measurements to study the underlying gauge group symmetry. The measured angular correlations in the deep inelastic ep scattering and photoproduction regimes are consistent with the admixture of color configurations as predicted by SU(3) and disfavour other symmetry groups, such as SU(N) in the limit of large N.

  18. Production of exclusive dijets in diffractive deep inelastic scattering at HERA

    NASA Astrophysics Data System (ADS)

    Abramowicz, H.; Abt, I.; Adamczyk, L.; Adamus, M.; Antonelli, S.; Aushev, V.; Aushev, Y.; Behnke, O.; Behrens, U.; Bertolin, A.; Bloch, I.; Boos, E. G.; Borras, K.; Brock, I.; Brook, N. H.; Brugnera, R.; Bruni, A.; Bussey, P. J.; Caldwell, A.; Capua, M.; Catterall, C. D.; Chwastowski, J.; Ciborowski, J.; Ciesielski, R.; Cooper-Sarkar, A. M.; Corradi, M.; Corriveau, F.; Dementiev, R. K.; Devenish, R. C. E.; Dolinska, G.; Dusini, S.; Figiel, J.; Foster, B.; Gach, G.; Gallo, E.; Garfagnini, A.; Geiser, A.; Gizhko, A.; Gladilin, L. K.; Golubkov, Yu. A.; Grebenyuk, J.; Gregor, I.; Grzelak, G.; Gueta, O.; Guzik, M.; Hain, W.; Hochman, D.; Hori, R.; Ibrahim, Z. A.; Iga, Y.; Ishitsuka, M.; Iudin, A.; Januschek, F.; Jomhari, N. Z.; Kadenko, I.; Kananov, S.; Karshon, U.; Kaur, M.; Kaur, P.; Kisielewska, D.; Klanner, R.; Klein, U.; Kondrashova, N.; Kononenko, O.; Korol, Ie.; Korzhavina, I. A.; Kotański, A.; Kötz, U.; Kovalchuk, N.; Kowalski, H.; Krupa, B.; Kuprash, O.; Kuze, M.; Levchenko, B. B.; Levy, A.; Libov, V.; Limentani, S.; Lisovyi, M.; Lobodzinska, E.; Löhr, B.; Lohrmann, E.; Longhin, A.; Lontkovskyi, D.; Lukina, O. Yu.; Makarenko, I.; Malka, J.; Mergelmeyer, S.; Mohamad Idris, F.; Mohammad Nasir, N.; Myronenko, V.; Nagano, K.; Nobe, T.; Notz, D.; Nowak, R. J.; Onishchuk, Yu.; Paul, E.; Perlański, W.; Pokrovskiy, N. S.; Przybycień, M.; Roloff, P.; Rubinsky, I.; Ruspa, M.; Saxon, D. H.; Schioppa, M.; Schmidke, W. B.; Schneekloth, U.; Schörner-Sadenius, T.; Shcheglova, L. M.; Shevchenko, R.; Shkola, O.; Shyrma, Yu.; Singh, I.; Skillicorn, I. O.; Słomiński, W.; Solano, A.; Stanco, L.; Stefaniuk, N.; Stern, A.; Stopa, P.; Sztuk-Dambietz, J.; Szuba, D.; Szuba, J.; Tassi, E.; Tokushuku, K.; Tomaszewska, J.; Trofymov, A.; Tsurugai, T.; Turcato, M.; Turkot, O.; Tymieniecka, T.; Verbytskyi, A.; Viazlo, O.; Walczak, R.; Wan Abdullah, W. A. T.; Wichmann, K.; Wing, M.; Wolf, G.; Yamada, S.; Yamazaki, Y.; Zakharchuk, N.; Żarnecki, A. F.; Zawiejski, L.; Zenaiev, O.; Zhautykov, B. O.; Zhmak, N.; Zotkin, D. S.

    2016-01-01

    Production of exclusive dijets in diffractive deep inelastic e^± p scattering has been measured with the ZEUS detector at HERA using an integrated luminosity of 372 pb^{-1}. The measurement was performed for γ ^{*}- p centre-of-mass energies in the range 90< W < {250} {GeV} and for photon virtualities Q^2 > {25} {GeV2}. Energy flows around the jet axis are presented. The cross section is presented as a function of β and φ , where β =x/x_IP, x is the Bjorken variable and x_IP is the proton fractional longitudinal momentum loss. The angle φ is defined by the γ ^{*}-dijet plane and the γ ^{*}-e^± plane in the rest frame of the diffractive final state. The φ cross section is measured in bins of β . The results are compared to predictions from models based on different assumptions about the nature of the diffractive exchange.

  19. Search for CHARM pentaquarks in ZEUS at HERA

    SciTech Connect

    Eisenberg, Yehuda

    2006-02-11

    Using the full 1996 - 2000 ZEUS data at HERA (121 pb-1) we have searched for the {theta}{sub c}{sup 0}(3100) pentaquark in the photoproduction and DIS regime. The search has yielded negative results. The 95% C.L. upper limits on the visible rate R({theta}{sub c}{sup 0} {yields} D*p/D*) is 0.23% (0.35% for DIS)

  20. Exclusive Photoproduction of ϒ:. from Hera to Tevatron

    NASA Astrophysics Data System (ADS)

    Rybarska, Anna; Schäfer, Wolfgang; Szczurek, Antoni

    The amplitude for photoproduction γp → ϒp is calculated in a pQCD k⊥-factorization approach. The total cross section for diffractive ϒs is compared to recent HERA data. The amplitude is used to predict the cross section for exclusive pbar p-> pΥ (1S, 2S)bar p proces in hadronic reactions at Tevatron energies. We also included absorption effects.

  1. Tests of QCD at HERA: determination of the gluon density

    SciTech Connect

    Repond, J.

    1996-12-31

    An overview is given of the various methods available to the colliding beam experiments at HERA to determine the gluon density of the proton. The article includes a description of fits to the structure function F{sub 2}, of studies of dijet and open charm production in deep inelastic scattering, of elastic and inelastic {psi} photoproduction, and of inclusive diffractive scattering. 13 refs., 8 figs.

  2. BFKL equation with running QCD coupling and HERA data

    NASA Astrophysics Data System (ADS)

    Levin, Eugene; Potashnikova, Irina

    2014-02-01

    In this paper we developed approach based on the BFKL evolution in ln( Q 2). We show that the simplest diffusion approximation with running QCD coupling is able to describe the HERA experimental data on the deep inelastic structure function with good χ2 /d .o .f . ≈ 1 .3. From our description of the experimental data we learned several lessons; (i) the non-perturbative physics at long distances started to show up at Q 2 = 0 .25 GeV2; (ii) the scattering amplitude at Q 2 = 0 .25 GeV2 cannot be written as sum of soft Pomeron and the secondary Reggeon but the Pomeron interactions should be taken into account; (iii) the Pomeron interactions can be reduced to the enhanced diagrams and, therefore, we do not see any needs for the shadowing corrections at HERA energies; and (iv) we demonstrated that the shadowing correction could be sizable at higher than HERA energies without any contradiction with our initial conditions.

  3. Measurement of Photon Statistics of Wiggler Radiation from AN Electron Storage Ring at the National Synchrotron Light Source.

    NASA Astrophysics Data System (ADS)

    Tanabe, Toshiya

    1990-01-01

    The photon statistics of wiggler light from the vacuum ultraviolet (VUV) storage ring at the National Synchrotron Light Source (NSLS) in Brookhaven National Laboratory (BNL) have been measured using an analog photon-counting technique. The linear wiggler produces fundamental wavelength light and the third harmonic light at 532 nm for ring energies ~650 MeV and 375 MeV, respectively. The average ring current was ~50 mA for one-electron-bunch operation. The bunch was ~480 psec long and the wiggler light was emitted every 170.2 nsec. The number of photons emitted by an electron bunch was repetitively measured for a given coherence volume. The photon counting distribution, which is the probability of finding n photons versus n, was obtained. The experimental results show that the wiggler radiation is consistent with multi-mode thermal radiation, whereas the bending magnet light gives rise to a distribution consistent with a Neyman Type-A distribution instead of Poisson when the light of large bandwith through a Pyrex window is collected. Near field and electron beam emittance effects have proven to have an important influence on the transverse coherence of the emitted radiation.

  4. Structure of self-gravity wakes in Saturn's A ring as measured by Cassini CIRS

    NASA Astrophysics Data System (ADS)

    Ferrari, C.; Brooks, S.; Edgington, S.; Leyrat, C.; Pilorz, S.; Spilker, L.

    2009-01-01

    The CIRS infrared spectrometer onboard the Cassini spacecraft has scanned Saturn's A ring azimuthally from several viewing angles since its orbit insertion in 2004. A quadrupolar asymmetry has been detected in this ring at spacecraft elevations ranging between 16° to 37°. Its fractional amplitude decreases from 22% to 8% from 20° to 37° elevations. The patterns observed in two almost complete azimuthal scans at elevations 20° and 36° strongly favor the self-gravity wakes as the origin of the asymmetry. The elliptical, infinite cylinder model of Hedman et al. [Hedman, M.M., Nicholson, P.D., Salo, H., Wallis, B.D., Buratti, B.J., Baines, K.H., Brown, R.H., Clark, R.N., 2007. Astron. J. 133, 2624-2629] can reproduce the CIRS observations well. Such wakes are found to have an average height-to-spacing ratio H/λ=0.1607±0.0002, a width-over-spacing W/λ=0.3833±0.0008. Gaps between wakes, which are filled with particles, have an optical depth τ=0.1231±0.0005. The wakes mean pitch angle Φ is 70.70°±0.07°, relative to the radial direction. The comparison of ground-based visible data with CIRS observations constrains the A ring to be a monolayer. For a surface mass density of 40 g cm -2 [Tiscarino, M.S., Burns, J.A., Nicholson, P.D., Hedman, M.M., Porco, C.C., 2007. Icarus 189, 14-34], the expected spacing of wakes is λ≈60 m. Their height and width would then be H≈10 m and W≈24 m, values that match the maximum size of particles in this ring as determined from ground-based stellar occultations [French, R.G., Nicholson, P.D., 2000. Icarus 145, 502-523].

  5. Strain measurement in the wavy-ply region of an externally pressurized cross-ply composite ring

    SciTech Connect

    Gascoigne, H.E.; Abdallah, M.G.

    1996-07-01

    Ply-level strains are determined in the cross-section of an externally pressurized cross-ply (3:1 circumferential to axial fiber ratio) graphite-epoxy ring containing an isolated circumferential wavy region. A special test fixture was used which permitted measuring orthogonal displacement components in the wavy area using moire interferometry as the pressure was increased. Strain components were determined at selected locations in the wavy area up to approximately90% of failure pressure. The study shows: (1) large interlaminar shear strains, which are non-existent in the perfect ring, are present near the wave inflection points; (2) the wavy plies generate increased interlaminar normal compressive strains in both circumferential and axial plies along a radial line coinciding with maximum wave amplitude; and (3) nonlinear strain response begins at approximately 60% of failure pressure.

  6. Seven Years (2004-2011) of Cassini Measurements Reveal Strong Local Time Asymmetry of the Saturnian Ring Current

    NASA Astrophysics Data System (ADS)

    Sergis, N.; Krimigis, S.; Thomsen, M.; Roelof, E.; Mitchell, D.; Hamilton, D.; Krupp, N.; Dougherty, M.; Crary, F.

    2012-04-01

    The Saturnian ring current, initially inferred from magnetic field and particle measurements after the Voyager 1 and 2 flybys, has been studied in substantial detail via in-situ and remote measurements since the July 2004 Cassini orbit insertion. The ring current of Saturn, located between 7 and 15 RS and primarily composed of O+ ions, is characterized by increased suprathermal (> 3 keV) particle pressure with high (> 1) plasma β values and intense dynamic behavior, as revealed by the analysis of combined particle data from the Cassini Magnetospheric Imaging Instrument (MIMI) and the Cassini Plasma Spectrometer instrument (CAPS), and magnetic field measurements from the Cassini magnetometer (MAG). Among the most important findings so far is that the azimuthal ring current flows primarily to balance inertial centrifugal forces inside ~8 RS, but increasingly it is driven by the non-thermal pressure gradient beyond its maximum region (8-12 RS, 100-150 pA/m2) and certainly it dominates farther out. Beyond ~ 10RS, the non-thermal pressure decreases with radial distance faster than the previously assumed 1/r rate and results in a magnetic perturbation of 10-15 nT. In this work we present the most complete (2004-2011) and up-to-date results, focusing on the local time asymmetry of the ring current properties (e.g. particle pressure, current density), and the relative contribution of different components to the radial force balance. The comprehensive spatial and local time coverage provided by the Cassini orbits has revealed that the suprathermal pressure and its corresponding pressure gradient is higher by a factor of 3 to 8 on the night side, in agreement with the observed distribution of energetic particle injections and energetic neutral atom (ENA) emissions. In addition to in-situ measurements, ENA images from the Ion and Neutral Camera (INCA) of Cassini, offer a unique overview of large parts of the Saturnian magnetosphere, depicting the rotation and dynamics of the

  7. Open charm production in deep inelastic scattering at next-to-leading order at HERA.

    SciTech Connect

    Harris, B. W.

    1999-09-20

    An introduction and overview of charm production in deep inelastic scattering at HERA is given. The existing next-to-leading order perturbative QCD calculations are then reviewed, and key results are summarized. Finally, comparisons are made with the most recent HERA data, and unresolved issues are highlighted.

  8. The New Web-Based Hera Data Processing System at the HEASARC

    NASA Technical Reports Server (NTRS)

    Pence, W.

    2011-01-01

    The HEASARC at NASA/GSFC has provide an on-line astronomical data processing system called Hera for several years. Hera provides a complete data processing environment, including installed software packages, local data storage, and the CPU resources needed to process the user's data. The original design of Hera, however, has 2 requirements that has limited it's usefulness for some users, namely, that 1) the user must download and install a small helper program on their own computer before using Hera, and 2) Hera requires that several computer ports/sockets be allowed to communicate through any local firewalls on the users machine. Both of these restrictions can be problematic for some users, therefore we are now migrating Hera into a purely Web based environment which only requires a standard Web browser. The first release of Web Hera is now publicly available at http://heasarc.gsfc.nasa.gov/webheara/. It currently provides a standard graphical interface for running hundreds of different data processing programs that are available in the HEASARC's ftools software package. Over the next year we to add more features to Web Hera, including an interactive command line interface, and more display and line capabilities.

  9. Transverse energy and forward jet production in the low x regime at HERA

    NASA Astrophysics Data System (ADS)

    Aid, S.; Andreev, V.; Andrieu, B.; Appuhn, R.-D.; Arpagaus, M.; Babaev, A.; Bähr, J.; Bán, J.; Ban, Y.; Baranov, P.; Barrelet, E.; Barschke, R.; Bartel, W.; Barth, M.; Bassler, U.; Beck, H. P.; Behrend, H.-J.; Belousov, A.; Berger, Ch; Bernardi, G.; Bernet, R.; Bertrand-Coremans, G.; Besançon, M.; Beyer, R.; Biddulph, P.; Bispham, P.; Bizot, J. C.; Blobel, V.; Borras, K.; Botterweck, F.; Boudry, V.; Braemer, A.; Brasse, F.; Braunschweig, W.; Brisson, V.; Bruncko, D.; Brune, C.; Buchholz, R.; Büngener, L.; Bürger, J.; Büsser, F. W.; Buniatian, A.; Burke, S.; Burton, M. J.; Buschhorn, G.; Campbell, A. J.; Carli, T.; Charles, F.; Charlet, M.; Clarke, D.; Clegg, A. B.; Clerbaux, B.; Colombo, M.; Contreras, J. G.; Cormack, C.; Coughlan, J. A.; Courau, A.; Coutures, Ch; Cozzika, G.; Criegee, L.; Cussans, D. G.; Cvach, J.; Dagoret, S.; Dainton, J. B.; Dau, W. D.; Daum, K.; David, M.; Delcourt, B.; Del Buono, L.; De Roeck, A.; De Wolf, E. A.; Di Nezza, P.; Dollfus, C.; Dowell, J. D.; Dreis, H. B.; Droutskoi, A.; Duboc, J.; Düllmann, D.; Dünger, O.; Duhm, H.; Ebert, J.; Ebert, T. R.; Eckerlin, G.; Efremenko, V.; Egli, S.; Ehrlichmann, H.; Eichenberger, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Ellison, R. J.; Elsen, E.; Erdmann, M.; Erdmann, W.; Evrard, E.; Favart, L.; Fedotov, A.; Feeken, D.; Felst, R.; Feltesse, J.; Ferencei, J.; Ferrarotto, F.; Flamm, K.; Fleischer, M.; Flieser, M.; Flügge, G.; Fomenko, A.; Fominykh, B.; Forbush, M.; Formánek, J.; Foster, J. M.; Franke, G.; Fretwurst, E.; Gabathuler, E.; Gabathuler, K.; Garvey, J.; Gayler, J.; Gebauer, M.; Gellrich, A.; Genzel, H.; Gerhards, R.; Glazov, A.; Goerlach, U.; Goerlich, L.; Gogitidze, N.; Goldberg, M.; Goldner, D.; Gonzalez-Pineiro, B.; Gorelov, I.; Goritchev, P.; Grab, C.; Grässler, H.; Grässler, R.; Greenshaw, T.; Grindhammer, G.; Gruber, A.; Gruber, C.; Haack, J.; Haidt, D.; Hajduk, L.; Hamon, O.; Hampel, M.; Hapke, M.; Haynes, W. J.; Heatherington, J.; Heinzelmann, G.; Henderson, R. C. W.; Henschel, H.; Herynek, I.; Hess, M. F.; Hildesheim, W.; Hill, P.; Hiller, K. H.; Hilton, C. D.; Hladký, J.; Hoeger, K. C.; Höppner, M.; Horisberger, R.; Hudgson, V. L.; Huet, Ph; Hütte, M.; Hufnagel, H.; Ibbotson, M.; Itterbeck, H.; Jabiol, M.-A.; Jacholkowska, A.; Jacobsson, C.; Jaffre, M.; Janoth, J.; Jansen, T.; Jönsson, L.; Johnson, D. P.; Johnson, L.; Jung, H.; Kalmus, P. I. P.; Kant, D.; Kaschowitz, R.; Kasselmann, P.; Kathage, U.; Katzy, J.; Kaufmann, H. H.; Kazarian, S.; Kenyon, I. R.; Kermiche, S.; Keuker, C.; Kiesling, C.; Klein, M.; Kleinwort, C.; Knies, G.; Ko, W.; Köhler, T.; Köhne, J. H.; Kolanoski, H.; Kole, F.; Kolya, S. D.; Korbel, V.; Korn, M.; Kostka, P.; Kotelnikov, S. K.; Krämerkämper, T.; Krasny, M. W.; Krehbiel, H.; Krücker, D.; Krüger, U.; Krüner-Marquis, U.; Küster, H.; Kuhlen, M.; Kurča, T.; Kurzhöfer, J.; Kuznik, B.; Lacour, D.; Lamarche, F.; Lander, R.; Landon, M. P. J.; Lange, W.; Lanius, P.; Laporte, J.-F.; Lebedev, A.; Lehner, F.; Leverenz, C.; Levonian, S.; Ley, Ch; Lindner, A.; Lindström, G.; Link, J.; Linsel, F.; Lipinski, J.; List, B.; Lobo, G.; Loch, P.; Lohmander, H.; Lomas, J. W.; Lopez, G. C.; Lubimov, V.; Lüke, D.; Magnussen, N.; Malinovski, E.; Mani, S.; Maraček, R.; Marage, P.; Marks, J.; Marshall, R.; Martens, J.; Martin, G.; Martin, R.; Martyn, H.-U.; Martyniak, J.; Masson, S.; Mavroidis, T.; Maxfield, S. J.; McMahon, S. J.; Mehta, A.; Meier, K.; Mercer, D.; Merz, T.; Meyer, A.; Meyer, C. A.; Meyer, H.; Meyer, J.; Migliori, A.; Mikocki, S.; Milstead, D.; Moreau, F.; Morris, J. V.; Mroczko, E.; Müller, G.; Müller, K.; Murín, P.; Nagovizin, V.; Nahnhauer, R.; Naroska, B.; Naumann, Th; Newman, P. R.; Newton, D.; Neyret, D.; Nguyen, H. K.; Nicholls, T. C.; Nieberball, F.; Niebuhr, C.; Niedzballa, Ch; Nisius, R.; Nowak, G.; Noyes, G. W.; Nyberg-Werther, M.; Oakden, M.; Oberlack, H.; Obrock, U.; Olsson, J. E.; Ozerov, D.; Panaro, E.; Panitch, A.; Pascaud, C.; Patel, G. D.; Peppel, E.; Perez, E.; Phillips, J. P.; Pichler, Ch; Pieuchot, A.; Pitzl, D.; Pope, G.; Prell, S.; Prosi, R.; Rabbertz, K.; Rädel, G.; Raupach, F.; Reimer, P.; Reinshagen, S.; Ribarics, P.; Rick, H.; Riech, V.; Riedlberger, J.; Riess, S.; Rietz, M.; Rizvi, E.; Robertson, S. M.; Robmann, P.; Roloff, H. E.; Roosen, R.; Rosenbauer, K.; Rostovtsev, A.; Rouse, F.; Royon, C.; Rüter, K.; Rusakov, S.; Rybicki, K.; Rylko, R.; Sahlmann, N.; Sankey, D. P. C.; Schacht, P.; Schiek, S.; Schleif, S.; Schleper, P.; von Schlippe, W.; Schmidt, D.; Schmidt, G.; Schöning, A.; Schröder, V.; Schuhmann, E.; Schwab, B.; Sciacca, G.; Sefkow, F.; Seidel, M.; Sell, R.; Semenov, A.; Shekelyan, V.; Sheviakov, I.; Shtarkov, L. N.; Siegmon, G.; Siewert, U.; Sirois, Y.; Skillicorn, I. O.; Smirnov, P.; Smith, J. R.; Solochenko, V.; Soloviev, Y.; Spiekermann, J.; Spitzer, H.; Starosta, R.; Steenbock, M.; Steffen, P.; Steinberg, R.; Stella, B.; Stephens, K.; Stier, J.; Stiewe, J.; Stößlein, U.; Stolze, K.; Strachota, J.; Straumann, U.; Struczinski, W.; Sutton, J. P.; Tapprogge, S.; Tchernyshov, V.; Thiebaux, C.; Thompson, G.; Truöl, P.; Turnau, J.; Tutas, J.; Uelkes, P.; Usik, A.; Valkár, S.; Valkárová, A.; Vallée, C.; Vandenplas, D.; Van Esch, P.; Van Mechelen, P.; Vartapetian, A.; Vazdik, Y.; Verrecchia, P.; Villet, G.; Wacker, K.; Wagener, A.; Wagener, M.; Walther, A.; Weber, G.; Weber, M.; Wegener, D.; Wegner, A.; Wellisch, H. P.; West, L. R.; Willard, S.; Winde, M.; Winter, G.-G.; Wittek, C.; Wright, A. E.; Wünsch, E.; Wulff, N.; Yiou, T. P.; Žáček, J.; Zarbock, D.; Zhang, Z.; Zhokin, A.; Zimmer, M.; Zimmermann, W.; Zomer, F.; Zuber, K.; zur Nedden, M.; H1 Collaboration

    1995-02-01

    The production of transverse energy in deep inelastic scattering is measured as a function of the kinematic variables x and Q2 using the H1 detector at the ep collider HERA. The results are compared to the different predictions based upon two alternative QCD evolution equations, namely the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) and the Balitsky-Fadin-Kuraev-Lipatov (BFKL) equations. In a pseudorapidity interval which is central in the hadronic centre of mass system between the current and the proton remnant fragmentation region the produced transverse energy increases with decreasing x for constant Q2. Such a behaviour can be explained with a QCD calculation based upon the BFKL ansatz. The rate of forward jets, proposed as a signature for BFKL dynamics, has been measured.

  10. Cassini dust measurements at Enceladus and implications for the origin of the E ring.

    PubMed

    Spahn, Frank; Schmidt, Jürgen; Albers, Nicole; Hörning, Marcel; Makuch, Martin; Seiss, Martin; Kempf, Sascha; Srama, Ralf; Dikarev, Valeri; Helfert, Stefan; Moragas-Klostermeyer, Georg; Krivov, Alexander V; Sremcevic, Miodrag; Tuzzolino, Anthony J; Economou, Thanasis; Grün, Eberhard

    2006-03-10

    During Cassini's close flyby of Enceladus on 14 July 2005, the High Rate Detector of the Cosmic Dust Analyzer registered micron-sized dust particles enveloping this satellite. The dust impact rate peaked about 1 minute before the closest approach of the spacecraft to the moon. This asymmetric signature is consistent with a locally enhanced dust production in the south polar region of Enceladus. Other Cassini experiments revealed evidence for geophysical activities near Enceladus' south pole: a high surface temperature and a release of water gas. Production or release of dust particles related to these processes may provide the dominant source of Saturn's E ring.

  11. Cassini Dust Measurements at Enceladus and Implications for the Origin of the E Ring

    NASA Astrophysics Data System (ADS)

    Spahn, Frank; Schmidt, Jürgen; Albers, Nicole; Hörning, Marcel; Makuch, Martin; Seiß, Martin; Kempf, Sascha; Srama, Ralf; Dikarev, Valeri; Helfert, Stefan; Moragas-Klostermeyer, Georg; Krivov, Alexander V.; Sremčević, Miodrag; Tuzzolino, Anthony J.; Economou, Thanasis; Grün, Eberhard

    2006-03-01

    During Cassini's close flyby of Enceladus on 14 July 2005, the High Rate Detector of the Cosmic Dust Analyzer registered micron-sized dust particles enveloping this satellite. The dust impact rate peaked about 1 minute before the closest approach of the spacecraft to the moon. This asymmetric signature is consistent with a locally enhanced dust production in the south polar region of Enceladus. Other Cassini experiments revealed evidence for geophysical activities near Enceladus' south pole: a high surface temperature and a release of water gas. Production or release of dust particles related to these processes may provide the dominant source of Saturn's E ring.

  12. High precision measurements of 16O12C17O using a new type of cavity ring down spectrometer

    NASA Astrophysics Data System (ADS)

    Daëron, M.; Stoltmann, T.; Kassi, S.; Burkhart, J.; Kerstel, E.

    2016-12-01

    Laser absorption techniques for the measurement of isotopologue abundances in gases have been dripping into the geoscientific community over the past decade. In the field of carbon dioxide such instruments have mostly been restricted to measurements of the most abundant stable isotopologues. Distinct advantages of CRDS techniques are non-destructiveness and the ability to resolve isobaric isotopologues. The determination of low-abundance isotopologues is predominantly limited by the linewidth of the probing laser, laser jitter, laser drift and system stability. Here we present first measurements of 16O12C17O abundances using a new type of ultra-precise cavity ring down spectrometer. By the use of Optical Feedback Frequency Stabilization, we achieved a laser line width in the sub-kHz regime with a frequency drift of less than 20 Hz/s. A tight coupling with an ultra-stable ring down cavity combined with a frequency tuning mechanism which enables us to arbitrarily position spectral points (Burkart et al., 2013) allowed us to demonstrate a single-scan (2 minutes) precision of 40 ppm on the determination of the 16O12C17O abundance. These promising results imply that routine, direct, high-precision measurements of 17O-anomalies in CO2 using this non-destructive method are in reach. References:Burkart J, Romanini D, Kassi S; Optical feedback stabilized laser tuned by single-sideband modulation; Optical Letters 12:2062-2063 (2013)

  13. A double-cusp type electrostatic analyzer for high-cadence ring current ion measurements

    NASA Astrophysics Data System (ADS)

    Ogasawara, K.; Allegrini, F.; Burch, J. L.; Desai, M. I.; Ebert, R. W.; Goldstein, J.; John, J. M.; Livi, S. A.; McComas, D. J.

    2015-12-01

    Detailed observations of a variety of ion species at a sufficiently high temporal resolution are essential to understanding the loss and acceleration processes of ring current ions. For example, CRESS/MICS observations indicated that the energy density of suprathermal O+ exceeds that of H+ in large magnetic storms (Daglis et al., 1997), while the H+ energy density dominates under quiet conditions. However, the primary ion loss processes during the storm recovery phase are still incompletely understood. The mechanisms to accelerate upflowing ions, regularly observed with energies of a few keV at ~1000 km altitude, up to the 100s-keV range in the geospace are also not fully understood. Our novel electrostatic analyzer (ESA) employs a toroidal double-shell structure to cover the entire ring current ion range of ~3-250 keV/Q with high temporal resolution (<1 minute with a necessary counting statistics for the quiet time), while saving significant resources in mass and size. In this presentation, we discuss the operation principle and the proof of concept study of the ESA in terms of numerical calculations and ion beam calibration activities. This presentation comprehensively covers the expected sensor performance important for the in-flight capabilities, such as sensor parameters (G-factor, K-factor, and energy resolution), cross-shell contaminations, and UV background counts.

  14. Resummation of double collinear logs in BK evolution versus HERA data

    NASA Astrophysics Data System (ADS)

    Albacete, Javier L.

    2017-01-01

    We present a global fit to HERA data on the reduced cross section measured in electron-proton collisions in the region of small Bjorken-x: x ≤x0 =10-2 and moderate to high values of the virtuality Q2

  15. A study of the fragmentation of quarks in et- p collisions at HERA

    NASA Astrophysics Data System (ADS)

    Aid, S.; Andreev, V.; Andrieu, B.; Appuhn, R.-D.; Arpagaus, M.; Babaev, A.; Baehr, J.; Bán, J.; Ban, Y.; Baranov, P.; Barrelet, E.; Barschke, R.; Bartel, W.; Barth, M.; Bassler, U.; Beck, H. P.; Behrend, H.-J.; Belousov, A.; Berger, Ch.; Bernardi, G.; Bernet, R.; Bertrand-Coremans, G.; Besançon, M.; Beyer, R.; Biddulph, P.; Bispham, P.; Bizot, J. C.; Blobel, V.; Borras, K.; Botterweck, F.; Boudry, V.; Braemer, A.; Brasse, F.; Braunschweig, W.; Brisson, V.; Bruncko, D.; Brune, C.; Buchholz, R.; Büngener, L.; Bürger, J.; Büsser, F. W.; Buniatian, A.; Bürke, S.; Burton, M.; Buschhorn, G.; Campbell, A. J.; Carli, T.; Charles, F.; Charlet, M.; Clarke, D.; Clegg, A. B.; Clerbaux, B.; Colombo, M.; Contreras, J. G.; Cormack, C.; Coughlan, J. A.; Courau, A.; Coutures, Ch.; Cozzika, G.; Criegee, L.; Cussans, D. G.; Cvach, J.; Dagoret, S.; Dainton, J. B.; Dau, W. D.; Daum, K.; David, M.; Delcourt, B.; Del Buono, L.; De Roeck, A.; De Wolf, E. A.; Di Nezza, P.; Dollfus, C.; Dowell, J. D.; Dreis, H. B.; Droutskoi, A.; Duboc, J.; Düllmann, D.; Dünger, O.; Duhm, H.; Ebert, J.; Ebert, T. R.; Eckerlin, G.; Efremenko, V.; Egli, S.; Ehrlichmann, H.; Eichenberger, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Ellison, R. J.; Elsen, E.; Erdmann, M.; Erdmann, W.; Evrard, E.; Favart, L.; Fedotov, A.; Feeken, D.; Felst, R.; Feltesse, J.; Ferencei, J.; Ferrarotto, F.; Flamm, K.; Fleischer, M.; Flieser, M.; Flügge, G.; Fomenko, A.; Fominykh, B.; Forbush, M.; Formánek, J.; Foster, J. M.; Franke, G.; Fretwurst, E.; Gabathuler, E.; Gabathuler, K.; Gamerdinger, K.; Garvey, J.; Gayler, J.; Gebauer, M.; Gellrich, A.; Genzel, H.; Gerhards, R.; Goerlach, U.; Goerlach, L.; Gogitidze, N.; Goldberg, M.; Goldner, D.; Gonzalez-Pineiro, B.; Gorelov, I.; Goritchev, P.; Grab, C.; Grässler, H.; Grässler, R.; Greenshaw, T.; Grindhammer, G.; Gruber, A.; Gruber, C.; Haack, J.; Haidt, D.; Hajduk, L.; Hamon, O.; Hampel, M.; Hanlon, E. M.; Hapke, M.; Haynes, W. J.; Heatherington, J.; Heinzelmann, G.; Henderson, R. C. W.; Henschel, H.; Herynek, I.; Hess, M. F.; Hildesheim, W.; Hill, P.; Hiller, K. H.; Hilton, C. D.; Hladký, J.; Hoeger, K. C.; Höppner, M.; Horisberger, R.; Hudgson, V. L.; Huet, Ph.; Hütte, M.; Hufnagel, H.; Ibbotson, M.; Itterbeck, H.; Jabiol, M.-A.; Jacholkowska, A.; Jacobsson, C.; Jaffre, M.; Janoth, J.; Jansen, T.; Jönson, L.; Johnson, D. P.; Johnson, L.; Jung, H.; Kalmus, P. I. P.; Kant, D.; Kaschowitz, R.; Kasselmann, P.; Kathage, U.; Katzy, J.; Kaufmann, H. H.; Kazarian, S.; Kenyon, I. R.; Kermiche, S.; Keuker, C.; Kiesling, C.; Klein, M.; Kleinwort, C.; Knies, G.; Ko, W.; Köhler, T.; Köhne, J. H.; Kolanoski, H.; Kole, F.; Kolya, S. D.; Korbel, V.; Korn, M.; Kostka, P.; Kotelnikov, S. K.; Krdmerkämper, T.; Krasny, M. W.; Krehbiel, H.; Krücker, D.; Krüger, U.; Krüner-Marquis, U.; Kubenka, J. P.; Küster, H.; Kuhlen, M.; Kurča, T.; Kurzhöfer, J.; Kuznik, B.; Lacour, D.; Lamarche, F.; Lander, R.; Landon, M. P. J.; Lange, W.; Lanius, P.; Laporte, J.-F.; Lebedev, A.; Leverenz, C.; Levonian, S.; Ley, Ch.; Lindner, A.; Lindström, G.; Link, J.; Linsel, F.; Lipinski, J.; List, B.; Lobo, G.; Loch, P.; Lohmander, H.; Lomas, J.; Lopez, G. C.; Lubimov, V.; Luke, D.; Magnussen, N.; Malinovski, E.; Mani, S.; Maraček, R.; Marage, P.; Marks, J.; Marshall, R.; Martens, J.; Martin, R.; Martyn, H.-U.; Martyniak, J.; Masson, S.; Mavroidis, T.; Maxfield, S. J.; McMahon, S. J.; Mehta, A.; Meier, K.; Mercer, D.; Merz, T.; Meyer, C. A.; Meyer, H.; Meyer, J.; Migliori, A.; Mikocki, S.; Milstead, D.; Moreau, F.; Morris, J. V.; Mroczko, E.; Müller, G.; Müller, K.; Murín, P.; Nagovizin, V.; Nahnhauer, R.; Naroska, B.; Naumann, Th.; Newman, P. R.; Newton, D.; Neyret, D.; Nguyen, H. K.; Nicholls, T. C.; Niebergall, F.; Niebuhr, C.; Niedzballa, Ch.; Nisius, R.; Nowak, G.; Noyes, G. W.; Nyberg-Werther, M.; Oakden, M.; Oberlack, H.; Obrock, U.; Olsson, J. E.; Ozerov, D.; Panaro, E.; Panitch, A.; Pascaud, C.; Patel, G. D.; Peppel, E.; Perez, E.; Phillips, J. P.; Pichler, Ch.; Pieuchot, A.; Pitzl, D.; Pope, G.; Prell, S.; Prosi, R.; Rabbertz, K.; Radel, G.; Raupach, F.; Reimer, P.; Reinshagen, S.; Ribarics, P.; Rick, H.; Riech, V.; Riedlberger, J.; Riess, S.; Rietz, M.; Rizvi, E.; Robertson, S. M.; Robmann, P.; Roloff, H. E.; Roosen, R.; Rosenbauer, K.; Rostovtsev, A.; Rouse, F.; Royon, C.; Rütter, K.; Rusakov, S.; Rybicki, K.; Rylko, R.; Sahlmann, N.; Sanchez, E.; Sankey, D. P. C.; Schacht, P.; Schiek, S.; Schleper, P.; von Schlippe, W.; Schmidt, C.; Schmidt, D.; Schmidt, G.; Schöning, A.; Schröder, V.; Schuhmann, E.; Schwab, B.; Schwind, A.; Sefkow, F.; Seidel, M.; Sell, R.; Semenov, A.; Shekelyan, V.; Sheviakov, I.; Shooshtari, H.; Shtarkov, L. N.; Siegmon, G.; Siewert, U.; Sirois, Y.; Skillicorn, I. O.; Smirnov, P.; Smith, J. R.; Solochenko, V.; Soloviev, Y.; Spiekermann, J.; Spielman, S.; Spitzerx, H.; Starosta, R.; Steenbock, M.; Steffen, P.; Steinberg, R.; Stella, B.; Stephens, K.; Stier, J.; Stiewe, J.; Stosslein, U.; Stolze, K.; Strachota, J.; Straumann, U.; Struczinski, W.; Sutton, J. P.; Tapprogge, S.; Tchernyshov, V.; Thiebaux, C.; Thompson, G.; Truöl, P.; Turnau, J.; Tutas, J.; Uelkes, P.; Usik, A.; Valkár, S.; Valkárová, A.; Vallée, C.; Van Esch, P.; Van Mechelen, P.; Vartapetian, A.; Vazdik, Y.; Verrecchia, P.; Villet, G.; Wacker, K.; Wagener, A.; Wagener, M.; Walker, I. W.; Walther, A.; Weber, G.; Weber, M.; Wegener, D.; Wegner, A.; Wellisch, H. P.; West, L. R.; Willard, S.; Winde, M.; Winter, G.-G.; Wittek, C.; Wright, A. E.; Wünsch, E.; Wulff, N.; Yiou, T. P.; Žáček, J.; Zarbock, D.; Zhang, Z.; Zhokin, A.; Zimmer, M.; Zimmermann, W.; Zomer, F.; Zuber, K.; H1 Collaboration

    1995-02-01

    Deep inelastic scattering (DIS) events, selected from 1993 data taken by the H1 experiment at HERA, are studied in the Breit frame of reference. The fragmentation function of the quark is compared with those of e+e- data. It is shown that certain aspects of the quarks emerging from within the proton in e-p interactions are essentially the same as those of quarks pair-created from the vacuum in e+e- annihilation. The measured area, peak position and width of the fragmentation function show that the kinematic evolution variable, equivalent to the e+e- squared centre of mass energy, is in the Breit frame the invariant square of the four-momentum transfer. We comment on the extent to which we have evidence for coherence effects in pArton showers.

  16. Prompt-photon plus jet associated photoproduction at HERA in the parton Reggeization approach

    NASA Astrophysics Data System (ADS)

    Kniehl, B. A.; Nefedov, M. A.; Saleev, V. A.

    2014-06-01

    We study the photoproduction of isolated prompt photons associated with hadron jets in the framework of the parton Reggeization approach. The cross section distributions in the transverse energies and pseudorapidities of the prompt photon and the jet as well as the azimuthal-decorrelation variables measured by the H1 and ZEUS collaborations at DESY HERA are nicely described by our predictions. The main improvements with respect to previous studies in the kT-factorization framework include the application of the Reggeized-quark formalism, the generation of exactly gauge-invariant amplitudes with off-shell initial-state quarks, and the exact treatment of the γR→γg box contribution with off-shell initial-state gluons.

  17. Recent results from low-x and forward physics at HERA

    SciTech Connect

    Goerlich, Lidia; Collaboration: H1 Collaboration

    2013-04-15

    The production of forward jets in inclusive as well as diffractive deep inelastic scattering at HERA is studied with the H1 detector. For inclusive DIS events at low Q{sup 2} with a forward jet, produced close to the proton remnant, differential cross sections and normalised distributions are measured as a function of the azimuthal angle difference between the forward jet and the scattered positron. Results on dijet production cross sections are also presented for diffractive DIS events in which the final state proton is tagged in the H1 Forward Proton Spectrometer. Two topologies are investigated by either requiring the two jets being produced centrally or by requiring that one of the jets is going in the forward direction. The data are compared with NLO QCD predictions as well as leading order Monte Carlo models.

  18. Photoproduction of isolated photons, inclusively and with a jet, at HERA

    NASA Astrophysics Data System (ADS)

    Abramowicz, H.; Abt, I.; Adamczyk, L.; Adamus, M.; Aggarwal, R.; Antonelli, S.; Arslan, O.; Aushev, V.; Aushev, Y.; Bachynska, O.; Barakbaev, A. N.; Bartosik, N.; Behnke, O.; Behr, J.; Behrens, U.; Bertolin, A.; Bhadra, S.; Bloch, I.; Bokhonov, V.; Boos, E. G.; Borras, K.; Brock, I.; Brugnera, R.; Bruni, A.; Brzozowska, B.; Bussey, P. J.; Caldwell, A.; Capua, M.; Catterall, C. D.; Chwastowski, J.; Ciborowski, J.; Ciesielski, R.; Cooper-Sarkar, A. M.; Corradi, M.; Corriveau, F.; D'Agostini, G.; Dementiev, R. K.; Devenish, R. C. E.; Dolinska, G.; Drugakov, V.; Dusini, S.; Ferrando, J.; Figiel, J.; Foster, B.; Gach, G.; Garfagnini, A.; Geiser, A.; Gizhko, A.; Gladilin, L. K.; Gogota, O.; Golubkov, Yu. A.; Grebenyuk, J.; Gregor, I.; Grzelak, G.; Gueta, O.; Guzik, M.; Hain, W.; Hartner, G.; Hochman, D.; Hori, R.; Ibrahim, Z. A.; Iga, Y.; Ishitsuka, M.; Iudin, A.; Januschek, F.; Kadenko, I.; Kananov, S.; Kanno, T.; Karshon, U.; Kaur, M.; Kaur, P.; Khein, L. A.; Kisielewska, D.; Klanner, R.; Klein, U.; Kondrashova, N.; Kononenko, O.; Korol, Ie.; Korzhavina, I. A.; Kotański, A.; Kötz, U.; Kovalchuk, N.; Kowalski, H.; Kuprash, O.; Kuze, M.; Levchenko, B. B.; Levy, A.; Libov, V.; Limentani, S.; Lisovyi, M.; Lobodzinska, E.; Lohmann, W.; Löhr, B.; Lohrmann, E.; Longhin, A.; Lontkovskyi, D.; Lukina, O. Yu.; Maeda, J.; Makarenko, I.; Malka, J.; Martin, J. F.; Mergelmeyer, S.; Mohamad Idris, F.; Mujkic, K.; Myronenko, V.; Nagano, K.; Nigro, A.; Nobe, T.; Notz, D.; Nowak, R. J.; Olkiewicz, K.; Onishchuk, Yu.; Paul, E.; Perlański, W.; Perrey, H.; Pokrovskiy, N. S.; Proskuryakov, A. S.; Przybycień, M.; Raval, A.; Roloff, P.; Rubinsky, I.; Ruspa, M.; Samojlov, V.; Saxon, D. H.; Schioppa, M.; Schmidke, W. B.; Schneekloth, U.; Schörner-Sadenius, T.; Schwartz, J.; Shcheglova, L. M.; Shevchenko, R.; Shkola, O.; Singh, I.; Skillicorn, I. O.; Słomiński, W.; Sola, V.; Solano, A.; Spiridonov, A.; Stanco, L.; Stefaniuk, N.; Stern, A.; Stewart, T. P.; Stopa, P.; Sztuk-Dambietz, J.; Szuba, D.; Szuba, J.; Tassi, E.; Temiraliev, T.; Tokushuku, K.; Tomaszewska, J.; Trofymov, A.; Trusov, V.; Tsurugai, T.; Turcato, M.; Turkot, O.; Tymieniecka, T.; Verbytskyi, A.; Viazlo, O.; Walczak, R.; Wan Abdullah, W. A. T.; Wichmann, K.; Wing, M.; Wolf, G.; Yamada, S.; Yamazaki, Y.; Zakharchuk, N.; Żarnecki, A. F.; Zawiejski, L.; Zenaiev, O.; Zhautykov, B. O.; Zhmak, N.; Zotkin, D. S.

    2014-03-01

    The photoproduction of isolated photons, both inclusive and together with a jet, has been measured with the ZEUS detector at HERA using an integrated luminosity of 374 pb. Differential cross sections are presented in the isolated-photon transverse-energy and pseudorapidity ranges 6

  19. Further studies of the photoproduction of isolated photons with a jet at HERA

    NASA Astrophysics Data System (ADS)

    Abramowicz, H.; Abt, I.; Adamczyk, L.; Adamus, M.; Aggarwal, R.; Antonelli, S.; Arslan, O.; Aushev, V.; Aushev, Y.; Bachynska, O.; Barakbaev, A. N.; Bartosik, N.; Behnke, O.; Behr, J.; Behrens, U.; Bertolin, A.; Bhadra, S.; Bloch, I.; Bokhonov, V.; Boos, E. G.; Borras, K.; Brock, I.; Brugnera, R.; Bruni, A.; Brzozowska, B.; Bussey, P. J.; Caldwell, A.; Capua, M.; Catterall, C. D.; Chwastowski, J.; Ciborowski, J.; Ciesielski, R.; Cooper-Sarkar, A. M.; Corradi, M.; Corriveau, F.; D'Agostini, G.; Dementiev, R. K.; Devenish, R. C. E.; Dolinska, G.; Drugakov, V.; Dusini, S.; Ferrando, J.; Figiel, J.; Foster, B.; Gach, G.; Garfagnini, A.; Geiser, A.; Gizhko, A.; Gladilin, L. K.; Gogota, O.; Golubkov, Yu. A.; Grebenyuk, J.; Gregor, I.; Grzelak, G.; Gueta, O.; Guzik, M.; Hain, W.; Hartner, G.; Hochman, D.; Hori, R.; Ibrahim, Z. A.; Iga, Y.; Ishitsuka, M.; Iudin, A.; Januschek, F.; Kadenko, I.; Kananov, S.; Kanno, T.; Karshon, U.; Kaur, M.; Kaur, P.; Khein, L. A.; Kisielewska, D.; Klanner, R.; Klein, U.; Kondrashova, N.; Kononenko, O.; Korol, Ie.; Korzhavina, I. A.; Kotanski, A.; Kötz, U.; Kovalchuk, N.; Kowalski, H.; Kuprash, O.; Kuze, M.; Levchenko, B. B.; Levy, A.; Libov, V.; Limentani, S.; Lisovyi, M.; Lobodzinska, E.; Lohmann, W.; Löhr, B.; Lohrmann, E.; Longhin, A.; Lontkovskyi, D.; Lukina, O. Yu.; Maeda, J.; Makarenko, I.; Malka, J.; Martin, J. F.; Mergelmeyer, S.; Idris, F. Mohamad; Mujkic, K.; Myronenko, V.; Nagano, K.; Nigro, A.; Nobe, T.; Notz, D.; Nowak, R. J.; Olkiewicz, K.; Onishchuk, Yu.; Paul, E.; Perlanski, W.; Perrey, H.; Pokrovskiy, N. S.; Proskuryakov, A. S.; Przybycien, M.; Raval, A.; Roloff, P.; Rubinsky, I.; Ruspa, M.; Samojlov, V.; Saxon, D. H.; Schioppa, M.; Schmidke, W. B.; Schneekloth, U.; Schörner-Sadenius, T.; Schwartz, J.; Shcheglova, L. M.; Shevchenko, R.; Shkola, O.; Singh, I.; Skillicorn, I. O.; Slominski, W.; Sola, V.; Solano, A.; Spiridonov, A.; Stanco, L.; Stefaniuk, N.; Stern, A.; Stewart, T. P.; Stopa, P.; Sztuk-Dambietz, J.; Szuba, D.; Szuba, J.; Tassi, E.; Temiraliev, T.; Tokushuku, K.; Tomaszewska, J.; Trofymov, A.; Trusov, V.; Tsurugai, T.; Turcato, M.; Turkot, O.; Tymieniecka, T.; Verbytskyi, A.; Viazlo, O.; Walczak, R.; Abdullah, W. A. T. Wan; Wichmann, K.; Wing, M.; Wolf, G.; Yamada, S.; Yamazaki, Y.; Zakharchuk, N.; Żarnecki, A. F.; Zawiejski, L.; Zenaiev, O.; Zhautykov, B. O.; Zhmak, N.; Zotkin, D. S.

    2014-08-01

    In this extended analysis using the ZEUS detector at HERA, the photoproduction of isolated photons together with a jet is measured for different ranges of the fractional photon energy, x {/γ meas}, contributing to the photon-jet final state. Cross sections are evaluated in the photon transverse-energy and pseudorapidity ranges 6 < E {/T γ } < 15 GeV and -0 .7 < η γ < 0 .9, and for jet transverse-energy and pseudorapidity ranges 4 < E {/T jet} < 35 GeV and -1 .5 < η jet < 1 .8, for an integrated luminosity of 374 pb-1. The kinematic observables studied comprise the transverse energy and pseudorapidity of the photon and the jet, the azimuthal difference between them, the fraction of proton energy taking part in the interaction, and the difference between the pseudorapidities of the photon and the jet. Higher-order theoretical calculations are compared to the results.

  20. Limits on the effective quark radius from inclusive ep scattering at HERA

    NASA Astrophysics Data System (ADS)

    Abramowicz, H.; Abt, I.; Adamczyk, L.; Adamus, M.; Antonelli, S.; Aushev, V.; Behnke, O.; Behrens, U.; Bertolin, A.; Bhadra, S.; Bloch, I.; Boos, E. G.; Brock, I.; Brook, N. H.; Brugnera, R.; Bruni, A.; Bussey, P. J.; Caldwell, A.; Capua, M.; Catterall, C. D.; Chwastowski, J.; Ciborowski, J.; Ciesielski, R.; Cooper-Sarkar, A. M.; Corradi, M.; Dementiev, R. K.; Devenish, R. C. E.; Dusini, S.; Foster, B.; Gach, G.; Gallo, E.; Garfagnini, A.; Geiser, A.; Gizhko, A.; Gladilin, L. K.; Golubkov, Yu. A.; Grzelak, G.; Guzik, M.; Gwenlan, C.; Hain, W.; Hlushchenko, O.; Hochman, D.; Hori, R.; Ibrahim, Z. A.; Iga, Y.; Ishitsuka, M.; Januschek, F.; Jomhari, N. Z.; Kadenko, I.; Kananov, S.; Karshon, U.; Kaur, P.; Kisielewska, D.; Klanner, R.; Klein, U.; Korzhavina, I. A.; Kotański, A.; Kötz, U.; Kovalchuk, N.; Kowalski, H.; Krupa, B.; Kuprash, O.; Kuze, M.; Levchenko, B. B.; Levy, A.; Limentani, S.; Lisovyi, M.; Lobodzinska, E.; Löhr, B.; Lohrmann, E.; Longhin, A.; Lontkovskyi, D.; Lukina, O. Yu.; Makarenko, I.; Malka, J.; Mastroberardino, A.; Mohamad Idris, F.; Mohammad Nasir, N.; Myronenko, V.; Nagano, K.; Nobe, T.; Nowak, R. J.; Onishchuk, Yu.; Paul, E.; Perlański, W.; Pokrovskiy, N. S.; Polini, A.; Przybycień, M.; Roloff, P.; Ruspa, M.; Saxon, D. H.; Schioppa, M.; Schneekloth, U.; Schörner-Sadenius, T.; Shcheglova, L. M.; Shevchenko, R.; Shkola, O.; Shyrma, Yu.; Singh, I.; Skillicorn, I. O.; Słomiński, W.; Solano, A.; Stanco, L.; Stefaniuk, N.; Stern, A.; Stopa, P.; Sukhonos, D.; Sztuk-Dambietz, J.; Tassi, E.; Tokushuku, K.; Tomaszewska, J.; Tsurugai, T.; Turcato, M.; Turkot, O.; Tymieniecka, T.; Verbytskyi, A.; Wan Abdullah, W. A. T.; Wichmann, K.; Wing, M.; Yamada, S.; Yamazaki, Y.; Zakharchuk, N.; Żarnecki, A. F.; Zawiejski, L.; Zenaiev, O.; Zhautykov, B. O.; Zotkin, D. S.

    2016-06-01

    The high-precision HERA data allows searches up to TeV scales for beyond the Standard Model contributions to electron-quark scattering. Combined measurements of the inclusive deep inelastic cross sections in neutral and charged current ep scattering corresponding to a luminosity of around 1 fb-1 have been used in this analysis. A new approach to the beyond the Standard Model analysis of the inclusive ep data is presented; simultaneous fits of parton distribution functions together with contributions of "new physics" processes were performed. Results are presented considering a finite radius of quarks within the quark form-factor model. The resulting 95% C.L. upper limit on the effective quark radius is 0.43 ṡ10-16 cm.

  1. STORAGE RING MEASUREMENT OF ELECTRON IMPACT IONIZATION FOR Mg{sup 7+} FORMING Mg{sup 8+}

    SciTech Connect

    Hahn, M.; Lestinsky, M.; Novotny, O.; Savin, D. W.; Bernhardt, D.; Mueller, A.; Schippers, S.; Wolf, A.

    2010-04-01

    We report electron impact ionization cross section measurements for Mg{sup 7+} forming Mg{sup 8+} at center of mass energies from approximately 200 eV to 2000 eV. The experimental work was performed using the heavy-ion storage ring TSR located at the Max-Planck-Institut fuer Kernphysik in Heidelberg, Germany. We find good agreement with distorted wave calculations using both the GIPPER code of the Los Alamos Atomic Physics Code suite and using the Flexible Atomic Code.

  2. The Balloon Ring: A High-Performance Low-Cost Instrumentation Platform for Measuring Atmospheric Turbulence Profiles (Postprint)

    DTIC Science & Technology

    2009-06-22

    for publication in the Optics and Photonics SPIE proceedings; San Diego California; August 4-6, 2009. Conference 7463 "Atmospheric Optics: Models ...circumference of the ring. The raw data is transmitted to the ground with a bandwidth extending to 1.25 kHz. A sample of the measurements taken during a flight...normally tracing an elliptical path. The boundary of the wake is shown extending below the balloon. Depending on the width of the wake at the end of the

  3. High-accuracy absolute rotation rate measurements with a large ring laser gyro: establishing the scale factor.

    PubMed

    Hurst, Robert B; Mayerbacher, Marinus; Gebauer, Andre; Schreiber, K Ulrich; Wells, Jon-Paul R

    2017-02-01

    Large ring lasers have exceeded the performance of navigational gyroscopes by several orders of magnitude and have become useful tools for geodesy. In order to apply them to tests in fundamental physics, remaining systematic errors have to be significantly reduced. We derive a modified expression for the Sagnac frequency of a square ring laser gyro under Earth rotation. The modifications include corrections for dispersion (of both the gain medium and the mirrors), for the Goos-Hänchen effect in the mirrors, and for refractive index of the gas filling the cavity. The corrections were measured and calculated for the 16  m2 Grossring laser located at the Geodetic Observatory Wettzell. The optical frequency and the free spectral range of this laser were measured, allowing unique determination of the longitudinal mode number, and measurement of the dispersion. Ultimately we find that the absolute scale factor of the gyroscope can be estimated to an accuracy of approximately 1 part in 108.

  4. A searching of past large Solar Proton Event by measuring carbon-14 content in tree-rings

    NASA Astrophysics Data System (ADS)

    Miyake, F.; Masuda, K.; Hakozaki, M.; Nakamura, T.; Kimura, K.

    2014-12-01

    Radiocarbon (14C) is produced by incoming cosmic rays to the Earth. The produced 14C becomes 14CO2 and is absorbed by trees by photosynthesis. If a large Solar Proton Event (SPE) had occurred in the past, tree-rings would record such an event as a sudden 14C increase within 1-year. Recently we found two signatures of large SPEs in AD 774-775 and AD 993-994 by the measurement of the 14C content in tree-rings. Some studies have estimated a scale of the AD 775 event as ten to dozens of times larger than the largest SPE on record. There is the possibility that a lot of such events are hidden in the periods when the 14C content has not been measured with a 1-year resolution. If we detect such events, we are able to discuss a detailed occurrence rate of the large SPE which is very important factor to prepare for future large SPEs. We are planning to search for the past large SPEs by the measurements of 14C content in Japanese trees for this 5000 years. In this thesis, we are going to explain the plan and problems.

  5. Long term changes in Intrinsic Water Use Efficiency, the palaoe record derived from stable carbon isotope measurements from tree rings.

    NASA Astrophysics Data System (ADS)

    Gagen, Mary; McCarroll, Danny; Loader, Neil; Young, Giles; Robertson, Iain

    2015-04-01

    Stable carbon isotope (δ13C) measurements from the annual rings of trees are increasingly used to explore long term changes in plant-carbon-water relations, via changes in intrinsic water use efficiency (iWUE); the ratio of photosynthetic rate to stomatal conductance. Many studies report a significant increase in iWEU since industrialisation, which tracks rising global atmospheric CO2. Such changes are logical are trees are known to change their stomatal geometry, number and action in response to rising CO2. However, which increasing iWUE suggests physiological changes which should lead to increased growth increasing iWUE is rarely matched by enhanced tree growth when tree rings are measured, despite increases of up to 30% in iWUE over the recent past (van der Sleen et al 2015). Explanations for the mismatch between iWUE and tree growth records encompass questions over the veracity of δ13C records for recording physiological change (Silva and Howarth 2013), suggestions that moisture stress in warming climates becomes a limit to growth and prevents opportunistic use of rising CO2 by trees (Andreu-Hayles et al 2011) and questions regarding the use of tree ring width, which does not record tree height gain, to record growth. Here we present an extensive range of long term iWUE records, derived broadly from the temperate, high latitude and one tropical forest site to explore the palaeoclimatic perspective on the iWUE-fertilization conundrum in a spatio temporally extensive manner.

  6. Particle pressure, inertial force, and ring current density profiles in the magnetosphere of Saturn, based on Cassini measurements

    NASA Astrophysics Data System (ADS)

    Sergis, N.; Krimigis, S. M.; Roelof, E. C.; Arridge, C. S.; Rymer, A. M.; Mitchell, D. G.; Hamilton, D. C.; Krupp, N.; Thomsen, M. F.; Dougherty, M. K.; Coates, A. J.; Young, D. T.

    2010-01-01

    We report initial results on the particle pressure distribution and its contribution to ring current density in the equatorial magnetosphere of Saturn, as measured by the Magnetospheric Imaging Instrument (MIMI) and the Cassini Plasma Spectrometer (CAPS) onboard the Cassini spacecraft. Data were obtained from September 2005 to May 2006, within ±0.5 RS from the nominal magnetic equator in the range 6 to 15 RS. The analysis of particle and magnetic field measurements, the latter provided by the Cassini magnetometer (MAG), allows the calculation of average radial profiles for various pressure components in Saturn's magnetosphere. The radial gradient of the total particle pressure is compared to the inertial body force to determine their relative contribution to the Saturnian ring current, and an average radial profile of the azimuthal current intensity is deduced. The results show that: (1) Thermal pressure dominates from 6 to 9 RS, while thermal and suprathermal pressures are comparable outside 9 RS with the latter becoming larger outside 12 RS. (2) The plasma β (particle/magnetic pressure) remains ≥1 outside 8 RS, maximizing (˜3 to ˜10) between 11 and 14 RS. (3) The inertial body force and the pressure gradient are similar at 9-10 RS, but the gradient becomes larger ≥11 RS. (4) The azimuthal ring current intensity develops a maximum between approximately 8 and 12 RS, reaching values of 100-150 pA/m2. Outside this region, it drops with radial distance faster than the 1/r rate assumed by typical disk current models even though the total current is not much different to the model results.

  7. Real-Tme Boron Nitride Erosion Measurements of the HiVHAc Thruster via Cavity Ring-Down Spectroscopy

    NASA Technical Reports Server (NTRS)

    Lee, Brian C.; Yalin, Azer P.; Gallimore, Alec; Huang, Wensheng; Kamhawi, Hani

    2013-01-01

    Cavity ring-down spectroscopy was used to make real-time erosion measurements from the NASA High Voltage Hall Accelerator thruster. The optical sensor uses 250 nm light to measure absorption of atomic boron in the plume of an operating Hall thruster. Theerosion rate of the High Voltage Hall Accelerator thruster was measured for discharge voltages ranging from 330 to 600 V and discharge powers ranging from 1 to 3 kW. Boron densities as high as 6.5 x 10(exp 15) per cubic meter were found within the channel. Using a very simple boronvelocity model, approximate volumetric erosion rates between 5.0 x 10(exp -12) and 8.2 x 10(exp -12) cubic meter per second were found.

  8. A search for leptoquarks and squarks at HERA

    NASA Astrophysics Data System (ADS)

    Ahmed, T.; Aid, S.; Andreev, V.; Andrieu, B.; Appuhn, R.-D.; Arpagaus, M.; Babaev, A.; Baehr, J.; Bán, J.; Baranov, P.; Barrelet, E.; Bartel, W.; Barth, M.; Bassler, U.; Beck, H. P.; Behrend, H.-J.; Belousov, A.; Berger, Ch.; Bergstein, H.; Bernardi, G.; Bernet, R.; Bertrand-Coremans, G.; Besançon, M.; Beyer, R.; Biddulph, P.; Bizot, J. C.; Blobel, V.; Borras, K.; Botterweck, F.; Boudry, V.; Braemer, A.; Brasse, F.; Braunschweig, W.; Brisson, V.; Bruncko, D.; Brune, C.; Buchholz, R.; Büngener, L.; Bürger, J.; Büsser, F. W.; Buniatian, A.; Burke, S.; Buschhorn, G.; Campbell, A. J.; Carli, T.; Charles, F.; Clarke, D.; Clegg, A. B.; Colombo, M.; Contreras, J. G.; Coughlan, J. A.; Courau, A.; Coutures, Ch.; Cozzika, G.; Criegee, L.; Cussans, D. G.; Cvach, J.; Dagoret, S.; Dainton, J. B.; Danilov, M.; Dau, W. D.; Daum, K.; David, M.; Deffur, E.; Delcourt, B.; Del Buono, L.; de Roeck, A.; de Wolf, E. A.; di Nezza, P.; Dollfus, C.; Dowell, J. D.; Dreis, H. B.; Duboc, J.; Düllmann, D.; Dünger, O.; Duhm, H.; Ebert, J.; Ebert, T. R.; Eckerlin, G.; Efremenko, V.; Egli, S.; Ehrlichmann, H.; Eichenberger, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Ellison, R. J.; Elsen, E.; Erdmann, M.; Erdmann, W.; Evrard, E.; Favart, L.; Fedotov, A.; Feeken, D.; Felst, R.; Feltesse, J.; Ferencei, J.; Ferrarotto, F.; Flamm, K.; Fleischer, M.; Flieser, M.; Flügge, G.; Fomenko, A.; Fominykh, B.; Forbush, M.; Formánek, J.; Foster, J. M.; Franke, G.; Fretwurst, E.; Gabathuler, E.; Gabathuler, K.; Gamerdinger, K.; Garvey, J.; Gayler, J.; Gebauer, M.; Gellrich, A.; Genzel, H.; Gerhards, R.; Goerlach, U.; Goerlich, L.; Gogitidze, N.; Goldberg, M.; Goldner, D.; Gonzalez-Pineiro, B.; Goodall, A. M.; Gorelov, I.; Goritchev, P.; Grab, C.; Grässler, H.; Grässler, R.; Greenshaw, T.; Grindhammer, G.; Gruber, A.; Gruber, C.; Haack, J.; Haidt, D.; Hajduk, L.; Hamon, O.; Hampel, M.; Hanlon, E. M.; Hapke, M.; Haynes, W. J.; Heatherington, J.; Hedberg, V.; Heinzelmann, G.; Henderson, R. C. W.; Henschel, H.; Herma, R.; Herynek, I.; Hess, M. F.; Hildesheim, W.; Hill, P.; Hiller, K. H.; Hilton, C. D.; Hladký, J.; Hoeger, K. C.; Höppner, M.; Horisberger, R.; Huet, Ph.; Hufnagel, H.; Ibbotson, M.; Itterbeck, H.; Jabiol, M.-A.; Jacholkowska, A.; Jacobsson, C.; Jaffre, M.; Janoth, J.; Jansen, T.; Jönsson, L.; Johannsen, K.; Johnson, D. P.; Johnson, L.; Jung, H.; Kalmus, P. I. P.; Kant, D.; Kaschowitz, R.; Kasselmann, P.; Kathage, U.; Kaufmann, H. H.; Kazarian, S.; Kenyon, I. R.; Kermiche, S.; Keuker, C.; Kiesling, C.; Klein, M.; Kleinwort, C.; Knies, G.; Ko, W.; Köhler, T.; Kolanoski, H.; Kole, F.; Kolya, S. D.; Korbel, V.; Korn, M.; Kostka, P.; Kotelnikov, S. K.; Krasny, M. W.; Krehbiel, H.; Krücker, D.; Krüger, U.; Krüner-Marquis, U.; Kubenka, J. P.; Küster, H.; Kuhlen, M.; Kurča, T.; Kurzhöfer, J.; Kuznik, B.; Lacour, D.; Lamarche, F.; Lander, R.; Landon, M. P. J.; Lange, W.; Lanius, P.; Laporte, J.-F.; Lebedev, A.; Leverenz, C.; Levonian, S.; Ley, Ch.; Lindner, A.; Lindström, G.; Linsel, F.; Lipinski, J.; List, B.; Loch, P.; Lohmander, H.; Lopez, G. C.; Lüke, D.; Magnussen, N.; Malinovski, E.; Mani, S.; Maraček, R.; Marage, P.; Marks, J.; Marshall, R.; Martens, J.; Martin, R.; Martyn, H.-U.; Martyniak, J.; Masson, S.; Mavroidis, T.; Maxfield, S. J.; McMahon, S. J.; Mehta, A.; Meier, K.; Mercer, D.; Merz, T.; Meyer, C. A.; Meyer, H.; Meyer, J.; Mikocki, S.; Milstead, D.; Moreau, F.; Morris, J. V.; Müller, G.; Müller, K.; Murín, P.; Nagovizin, V.; Nahnhauer, R.; Naroska, B.; Naumann, Th.; Newman, P. R.; Newton, D.; Neyret, D.; Nguyen, H. K.; Niebergall, F.; Niebuhr, C.; Nisius, R.; Nowak, G.; Noyes, G. W.; Nyberg-Werther, M.; Oberlack, H.; Obrock, U.; Olsson, J. E.; Panaro, E.; Panitch, A.; Pascaud, C.; Patel, G. D.; Peppel, E.; Perez, E.; Phillips, J. P.; Pichler, Ch.; Pitzl, D.; Pope, G.; Prell, S.; Prosi, R.; Rädel, G.; Raupach, F.; Reimer, P.; Reinshagen, S.; Ribarics, P.; Riech, V.; Riedlberger, J.; Riess, S.; Rietz, M.; Robertson, S. M.; Robmann, P.; Roloff, H. E.; Roosen, R.; Rosenbauer, K.; Rostovtsev, A.; Rouse, F.; Royon, C.; Rüter, K.; Rusakov, S.; Rybicki, K.; Rylko, R.; Sahlmann, N.; Sanchez, E.; Sankey, D. P. C.; Savitsky, M.; Schacht, P.; Schiek, S.; Schleper, P.; von Schlippe, W.; Schmidt, C.; Schmidt, D.; Schmidt, G.; Schöning, A.; Schröder, V.; Schuhmann, E.; Schwab, B.; Schwind, A.; Seehausen, U.; Sefkow, F.; Seidel, M.; Sell, R.; Semenov, A.; Shekelyan, V.; Sheviakov, I.; Shooshtari, H.; Shtarkov, L. N.; Siegmon, G.; Siewert, U.; Sirois, Y.; Skillicorn, I. O.; Smirnov, P.; Smith, J. R.; Soloviev, Y.; Spitzer, H.; Starosta, R.; Steenbock, M.; Steffen, P.; Steinberg, R.; Stella, B.; Stephens, K.; Stier, J.; Stiewe, J.; Stösslein, U.; Strachota, J.; Straumann, U.; Struczinski, W.; Sutton, J. P.; Tapprogge, S.; Taylor, R. E.; Tchernyshov, V.; Thiebaux, C.; Thompson, G.; Tichomirov, I.; Truöl, P.; Turnau, J.; Tutas, J.; Uelkes, P.; Usik, A.; Valkár, S.; Valkárová, A.; Vallée, C.; van Esch, P.; van Mechelen, P.; Vartapetian, A.; Vazdik, Y.; Vecko, M.; Verrecchia, P.; Villet, G.; Wacker, K.; Wagener, A.; Wagener, M.; Walker, I. W.; Walther, A.; Weber, G.; Weber, M.; Wegener, D.; Wegner, A.; Wellisch, H. P.; West, L. R.; Willard, S.; Winde, M.; Winter, G.-G.; Wright, A. E.; Wünsch, E.; Wulff, N.; Yiou, T. P.; Žáček, J.; Zarbock, D.; Zhang, Z.; Zimmer, M.; Zimmermann, W.; Zomer, F.; Zuber, K.

    1994-12-01

    A search in the H1 experiment at HERA for scalar and vector leptoquarks, leptogluons and squarks coupling to first generation fermions is presented in a data sample corresponding to an integrated luminosity of 425 nb-1. For masses ranging up to ˜275 GeV, no significant evidence for the direct production of such particles is found in various possible decay channels. At high masses and beyond the centre of mass energy of 296 GeV a contact interaction analysis is used to further constrain the couplings and masses of new vector leptoquarks and to set lower limits on compositeness scales.

  9. {J}/{ψ} production via fragmentation at HERA

    NASA Astrophysics Data System (ADS)

    Godbole, R. M.; Roy, D. P.; Sridhar, K.

    1996-02-01

    We compute the contributions to large- p T{J}/{ψ} production at DHEA coming from fragmentation of gluons and charm quarks. We find that the charm quark fragmentation contribution dominates over the direct production of {J}/{ψ} via photongluon fusion at large- p T, while the gluon fragmentation is negligibly small over the whole range of pT. An experimental study of pT distributions of {J}/{ψ} at HERA will providea direct probe of the charm quark fragmentation functions.

  10. Classification of soils based on double ring measured permeability in Zarrineh-Roud Delta, western Azarbayejan, Iran.

    PubMed

    Alipour, S

    2007-08-01

    A physical method of soil classification based on soil permeability as a preliminary quick way prior to slow and expensive chemical conventional method was conducted in regional scale using 40 test stations. Double ring method used for permeability measurements in the area. The results clearly differentiated development of various soil types and quality in the area under investigation. The results clearly indicate the physical method of double ring measurement permeability is able to identify various soil types in regional scale and the later chemical methods could be used in local scale for detailed classification. NaCl content of soils was reflected by the amount of infiltration rate. Permeability ranged as high, medium and low, corresponded with loamy sand, loamy and clay soils respectively. Permeability in the vicinity of the higher water flows was high due to leaching of NaCl in the soil. NaCl is considered to be the main factor of impermeability reduction in the area associated with clay and soil textures.

  11. RadWorks Project. ISS REM - to - BIRD - to - HERA: The Evolution of a Technology

    NASA Technical Reports Server (NTRS)

    McLeod, Catherine D.

    2015-01-01

    The advancement of particle detectors based on technologies developed for use in high-energy physics applications has enabled the development of a completely new generation of compact low-power active dosimeters and area monitors for use in space radiation environments. One such device, the TimePix, is being developed at CERN, and is providing the technology basis for the most recent line of radiation detection devices being developed by the NASA AES RadWorks project. The most fundamental of these devices, an ISS-Radiation Environment Monitor (REM), is installed as a USB device on ISS where it is monitoring the radiation environment on a perpetual basis. The second generation of this TimePix technology, the BIRD (Battery-operated Independent Radiation Detector), was flown on the NASA EFT-1 flight in December 2014. Data collected by BIRD was the first data made available from the Trapped Belt region of the Earth's atmosphere in over 40 years. The 3rdgeneration of this technology, the HERA (Hybrid Electronic Radiation Assessor), is planned to be integrated into the Orion EM-1, and EM-2 vehicles where it will monitor the radiation environment. For the EM-2 flight, HERA will provide Caution and Warning notification for SPEs as well as real time dose measurements for crew members. The development of this line of radiation detectors provide much greater information and characterization of charged particles in the space radiation environment than has been collected in the past, and in the process provide greater information to inform crew members of radiation related risks, while being very power and mass efficient.

  12. Structural effects on the beta-scission reaction of alkoxyl radicals. Direct measurement of the absolute rate constants for ring opening of benzocycloalken-1-oxyl radicals.

    PubMed

    Bietti, Massimo; Lanzalunga, Osvaldo; Salamone, Michela

    2005-02-18

    [reaction: see text] The absolute rate constants for beta-scission of a series of benzocycloalken-1-oxyl radicals and of the 2-(4-methylphenyl)-2-butoxyl radical have been measured directly by laser flash photolysis. The benzocycloalken-1-oxyl radicals undergo ring opening with rates which parallel the ring strain of the corresponding cycloalkanes. In the 1-X-indan-1-oxyl radical series, ring opening is observed when X = H, Me, whereas exclusive C-X bond cleavage occurs when X = Et. The factors governing the fragmentation regioselectivity are discussed.

  13. Progress in accurate measurements of sub-surface flows near the solar limb using ring-diagram analysis

    NASA Astrophysics Data System (ADS)

    Baldner, Charles; Bogart, Richard S.

    2016-05-01

    The use of helioseismology to study the properties of the Sun has yielded very high precision measurements of solar flows throughout much of the interior. It has been apparent for many years, however, that the accuracy of many of these measurements is suspect due to significant systematic effects in helioseismic techniques. The most well-known effect in flow measurements is sometimes referred to as the `center-to-limb' effect, in which flow measurements depend strongly on the distance of the measurement from the center of the observed solar disk. Attempts have already been made to explain the origin of this error (e.g. Balder & Schou 2012) and to correct it (e.g. Zhao et al. 2011). Significant work remains, however.In this work, we report on continued efforts to precisely characterize the effect of position on the observed disk on flow measurements in the HMI ring diagram pipeline, and from other HMI data. Our efforts are focused on 1) quantifying the non-radial systematic effect in flow measurements; 2) understanding the effect of the underlying model used in the mode parameter estimations; and 3) characterizing the difference between helioseismic measurements made with different observed quantities.

  14. Calibration of a Cavity Ring Down Spectrometry and Nephelometry Setup for Measuring Aerosol Optical Properties

    NASA Astrophysics Data System (ADS)

    Colon-Bernal, I. D.

    2014-12-01

    Aerosols have a great impact on climate and global warming which is not yet fully understood. We want to have a better understanding how of how the optical properties of biomass burning aerosols, coming from cooking and forest wildfires, interact with light and affect the Earths radiation budget and its impact on climate. Cavity Ring-Down Spectrometry and integrating Nephelometry was used to determine the extinction of scattering and absorbing polystyrene latex (PSL) spheres of 390 nm and 404nm respectfully and a soot sample of 400 nm. The extinction coefficients obtained for the scattering 404 nm PSL spheres, 390 nm absorbing PSL spheres and the soot sample were: 1.337E-05 m-1, 9.569E-05 m-1, and 2.200E-05 m-1 respectively. The Single Scattering Albedo was also obtained for the lab standards, which were 0.7077 for the scattering PSL spheres and 0.0643 for the absorbing PSL spheres. Samples for the flaming stage and smoldering stage were observed under a Scanning Electron Microscope (SEM) to study how their morphology varies from one stage to the other. We determined the soot sample can attenuate light but less than what our PSL spheres are capable of after comparing extinction cross-sections. Error correlations need to be determined for the 400 nm soot particles and be applied to our data. Lastly, different morphologies were observed for the two burning stages analyzed under the SEM.

  15. Minimally destructive, Doppler measurement of a quantized flow in a ring-shaped Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Kumar, A.; Anderson, N.; Phillips, W. D.; Eckel, S.; Campbell, G. K.; Stringari, S.

    2016-02-01

    The Doppler effect, the shift in the frequency of sound due to motion, is present in both classical gases and quantum superfluids. Here, we perform an in situ, minimally destructive measurement, of the persistent current in a ring-shaped, superfluid Bose-Einstein condensate using the Doppler effect. Phonon modes generated in this condensate have their frequencies Doppler shifted by a persistent current. This frequency shift will cause a standing-wave phonon mode to be ‘dragged’ along with the persistent current. By measuring this precession, one can extract the background flow velocity. This technique will find utility in experiments where the winding number is important, such as in emerging ‘atomtronic’ devices.

  16. Precision Mass Measurements of Short-Lived Nuclides at The Heavy-Ion Storage Ring in Lanzhou

    NASA Astrophysics Data System (ADS)

    Zhang, Yuhu; Xu, Hushan; Litvinov, Yuri A.

    Recent commissioning of the Cooler Storage Ring at the Heavy Ion Research Facility in Lanzhou enabled us to conduct high-precision mass measurements at the Institute of Modern Physics in Lanzhou (IMP). In the past few years, mass measurements were performed using the CSRe-based isochronous mass spectrometry employing the fragmentation of the energetic beams of 58Ni, 78Kr, 86Kr, and 112Sn projectiles. Masses of short-lived nuclides of on both sides of the stability valley were addressed. Relative mass precision of down to 10-6-10-7 is routinely achieved. The mass values were used as an input for dedicated nuclear structure and astrophysics studies, providing for instance new insights into the rp-process of nucleosynthesis in X-ray bursts. In this contribution, we briefly review the so far conducted experiments and the main achieved results, as well as outline the plans for future experiments.

  17. Design of a three-axis magnetic field measurement system for the magnetic shield of the ring laser gyroscope

    NASA Astrophysics Data System (ADS)

    Rong, Chuiyu; Yao, Xu

    2015-10-01

    The magnetic field is one of the main causes of zero drift in a Ring Laser Gyroscope (RLG), which should be avoided by adopting a magnetic shielding system. The Gauss Meter is usually used to measure the magnetic shielding effectiveness. Generally, the traditional Gauss Meter has advantages of high measure range and high reliability, however, its drawbacks such as complex structure, high price and the PC client software cannot be customized at will, are also obvious. In this paper, aiming at a type of experimental magnetic shielding box of RLG, we design a new portable three-axis magnetic field measurement system. This system has both high modularity degree and reliability, with measuring range at ±48Gs, max resolution at 1.5mGs and can measure the magnetic field in x, y and z direction simultaneously. Besides, its PC client software can be easily customized to achieve the automatic DAQ, analysis, plotting and storage functions. The experiment shows that, this system can meet the measuring requirements of certain type of experimental magnetic shielding box for RLG, meanwhile, for the measurement of some other magnetic shielding effectiveness, this system is also applicable.

  18. Multimode interference-based fiber sensor in a cavity ring-down system for refractive index measurement

    NASA Astrophysics Data System (ADS)

    Silva, Susana; Frazão, Orlando

    2017-06-01

    This work reports a multimode interference-based fiber sensor in a cavity ring-down system (CRD) for sensing temperature-induced refractive index (RI) changes of water. The sensing head is based in multimodal interference (MMI) and it is placed inside the fiber loop cavity of the CRD system. A modulated laser source was used to send pulses down into the fiber loop cavity and an erbium-doped fiber amplifier (EDFA) was placed in the fiber ring to provide an observable signal with a reasonable decay time. The behavior of the sensing head to temperature was studied due to its intrinsic sensitivity to said parameter - a sensitivity of -1.6×10-9 μs/°C was attained. This allowed eliminating the temperature component from RI measurement of water and a linear sensitivity of 580 μs/RIU in the RI range of 1.324-1.331 was obtained. The use of a MMI fiber sensor in the proposed CRD configuration allowed achieving a sensitivity ∼4-fold than that obtained with a tilted fiber Bragg grating and ∼2-fold than that when a micrometric channel inscribed in the fiber was used.

  19. The HERA RF-Driven Multicusp H- Ion Source

    NASA Astrophysics Data System (ADS)

    Peters, J.

    2007-08-01

    The HERA RF-Volume Source is the only source that has delivered routinely an H- current of 40 mA without Cs. The current has now been improved to 60 mA. While for HERA operation a pulse length of less than 200 μsec is necessary, operation with a pulse length of 3 msec was demonstrated at DESY in cooperation with SNS, FNAL and CERN. The physics of the extraction plasma region has been the subject of very detailed investigations with special sets of collars and different materials. Tests with plasma chambers of different sizes have been done. Significant changes have since been made in the source design. A more efficient RF coupling to the plasma was developed. Together with a new funnel system this source delivers higher H- currents and a lower H- /electron ratio. The high voltage and vacuum technology was improved and a new electron dump technique was introduced. The steps to a new improved source design are described in this paper.

  20. Collinearly-improved BK evolution meets the HERA data

    DOE PAGES

    Iancu, E.; Madrigal, J. D.; Mueller, A. H.; ...

    2015-10-03

    In a previous publication, we have established a collinearly-improved version of the Balitsky–Kovchegov (BK) equation, which resums to all orders the radiative corrections enhanced by large double transverse logarithms. Here, we study the relevance of this equation as a tool for phenomenology, by confronting it to the HERA data. To that aim, we first improve the perturbative accuracy of our resummation, by including two classes of single-logarithmic corrections: those generated by the first non-singular terms in the DGLAP splitting functions and those expressing the one-loop running of the QCD coupling. The equation thus obtained includes all the next-to-leading order correctionsmore » to the BK equation which are enhanced by (single or double) collinear logarithms. Furthermore, we then use numerical solutions to this equation to fit the HERA data for the electron–proton reduced cross-section at small Bjorken x. We obtain good quality fits for physically acceptable initial conditions. Our best fit, which shows a good stability up to virtualities as large as Q2 = 400 GeV2 for the exchanged photon, uses as an initial condition the running-coupling version of the McLerran–Venugopalan model, with the QCD coupling running according to the smallest dipole prescription.« less

  1. Portable low power cavity ring-down spectrometer for precise measurement of carbon dioxide, methane and water vapor

    NASA Astrophysics Data System (ADS)

    Fleck, Derek; Hoffnagle, John; Tan, Sze; He, Yonggang

    2016-05-01

    The necessity for monitoring of changing levels of greenhouse gases (GHGs) is clearly evident now more than ever. This has led to large deployments of analytical devices to most remote locations as well as the most densely populated regions around the world. Both large and small scale projects have forced new and old technologies to be pushed to their limits to obtain the highest performing measurements while maintaining a cost effective way to remotely monitor changes in atmospheric concentrations. In order to accomplish these strict guidelines, we present a low-power cavity ring-down spectrometer that measures Carbon Dioxide, Methane and water vapor which can achieve measurements with precisions lower than 20ppb of CO2 and 50ppt of CH4. Comparing to hundreds of watts needed in conventional CRDS design, we demonstrate that the high performance can be achieved with less than 25W. Stability of these measurements has allowed for averaging times of up to 3hr, yielding measurements of methane concentrations with precisions down to 40ppt. This is accomplished utilizing an FSR based frequency scale to determine an absolute frequency scale for these absorption features. Taking advantage of this faster, and less costly measurement technique of CRDS shows future promise with applications spanning scientific and industrial analyses, from isotopes to trace gases.

  2. Local probabilistic sensitivity measures for comparing FORM and Monte Carlo calculations illustrated with dike ring reliability calculations

    NASA Astrophysics Data System (ADS)

    Cooke, Roger M.; van Noortwijk, Jan M.

    1999-03-01

    We define local probabilistic sensitivity measures as proportional to ∂E( X i| Z = z)/ ∂z, where Z is a function of random variables XI,…, X n. These measures are local in that they depend only on the neighborhood of Z = z, but unlike other local sensitivity measures, the local probabilistic sensitivity of X i does not depend on values of other input variables. For the independent linear normal model, or indeed for any model for which X i has linear regression on Z, the above measure equals σx iρ ( Z,X i)/ σz. When linear regression does not hold, the new sensitivity measures can be compared with the correlation coefficients to indicate degree of departure from linearity. We say that Z is probabilistically dissonant in X i at Z = z if Z is increasing (decreasing) in X i at z, but probabilistically decreasing (increasing) at z. Probabilistic dissonance is rather common in complicated models. The new measures are able to pick up this probabilistic dissonance. These notions are illustrated with data from an ongoing uncertainty analysis of dike ring reliability.

  3. Ring correlations in random networks

    NASA Astrophysics Data System (ADS)

    Sadjadi, Mahdi; Thorpe, M. F.

    2016-12-01

    We examine the correlations between rings in random network glasses in two dimensions as a function of their separation. Initially, we use the topological separation (measured by the number of intervening rings), but this leads to pseudo-long-range correlations due to a lack of topological charge neutrality in the shells surrounding a central ring. This effect is associated with the noncircular nature of the shells. It is, therefore, necessary to use the geometrical distance between ring centers. Hence we find a generalization of the Aboav-Weaire law out to larger distances, with the correlations between rings decaying away when two rings are more than about three rings apart.

  4. Measurement of Aerosol Optical Properties by Integrating Cavity Ring-Down Spectroscopy and Nephelometry

    DTIC Science & Technology

    2013-01-01

    and agricultural burning. Mineral dust is formed from storms over arid areas such as the Sahara desert. Dust particles can be transported several...CLASSIFICATION OF: We measure scattering coefficient , extinction coefficient , scattering cross-section and single scattering albedo of 102, 203 and 296...We compared experimental optical property measurements with Mie theory predicted values. The scattering coefficient and scattering cross-section

  5. Radioactive gold ring dermatitis

    SciTech Connect

    Miller, R.A.; Aldrich, J.E. )

    1990-08-01

    A superficial squamous cell carcinoma developed in a woman who wore a radioactive gold ring for more than 30 years. Only part of the ring was radioactive. Radiation dose measurements indicated that the dose to basal skin layer was 2.4 Gy (240 rad) per week. If it is assumed that the woman continually wore her wedding ring for 37 years since purchase, she would have received a maximum dose of approximately 4600 Gy.

  6. Comparison of LIDAR and Cavity Ring-Down Measurements of Aerosol Extinction and Study of Inferred Aerosol Gradients

    NASA Astrophysics Data System (ADS)

    Eberhard, W. L.; Massoli, P.; McCarty, B. J.; Machol, J. L.; Tucker, S. C.

    2007-12-01

    A LIDAR and a Cavity Ring-Down Aerosol Extinction Spectrometer (CRD) instrument simultaneously measured aerosol extinction at 355-nm wavelength from aboard the Research Vessel Ronald H. Brown during the Texas Air Quality Study II campaign. The CRD measured air sampled from the top of the common mast used by several in situ aerosol optical and chemical instruments. The LIDAR's scan sequence included near-horizontal stares (2° elevation angle) with pointing corrected for ship's roll. Aerosol extinction was retrieved using a variant of the slope method. The LIDAR therefore sampled air over a short vertical extent with midpoint higher above the surface than the CRD intake and at a horizontal distance of as much as a few kilometers. The CRD measured aerosol extinction at dry and at high (near-ambient) relative humidity (RH) levels, which were used to scale the measurements to ambient RH for the comparisons. Data from the two instruments for well-mixed conditions (supported by turbulence and atmospheric stability data) are compared to evaluate the degree of agreement between the two methods and reasons for differences. For instances of larger differences, the aerosol gradient below approximately 100 m altitude is inferred and examined in context of low-level meteorological parameters and LIDAR measurements at higher angles.

  7. Diode laser cavity ring-down spectroscopy for in situ measurement of NO3 radical in ambient air

    NASA Astrophysics Data System (ADS)

    Wang, Dan; Hu, Renzhi; Xie, Pinhua; Liu, Jianguo; Liu, Wenqing; Qin, Min; Ling, Liuyi; Zeng, Yi; Chen, Hao; Xing, XingBiao; Zhu, Guoliang; Wu, Jun; Duan, Jun; Lu, Xue; Shen, Lanlan

    2015-11-01

    A cavity ring-down spectroscopy (CRDS) instrument for measuring atmospheric NO3 radical developed in our laboratory is presented in detail. Light from a red laser diode (661.85 nm) is coupled on-axis into an optical cavity formed by a pair of high-reflectivity mirrors (R≥99.9985%) to achieve an effective absorption path length of approximately 20 km. The detection limit of the NO3 radical determined by Allan variance for the field observation with high particles is approximately 3.2 pptv (2σ, 10 s). The transmission efficiency of the NO3 radical in the system is calibrated, including the filter loss and surface loss. Moreover, measurable interferences from NO2, O3 and water vapor are also discussed. Considering the influence of inlet transmission efficiency and other factors, the instrument accuracy for NO3 radical measurement is approximately ±8% (1σ). The measurement of NO3 radical was performed at a suburb site in Beijing under the situation of high particles concentration (PM2.5 approximately several tens to 150 μg/m3) from October 26 to November 11, 2014. The NO3 radical concentration during the period is relatively low with the maximum value of 38 pptv. The observation results on October 29, combining NO2, O3 and NO data, are briefly analyzed. The experimental results demonstrate that this compact CRDS instrument has the potential for NO3 radical measurements in the field with high particles.

  8. Effects of Particles on Trace-Gas Measurement Using Open-Path Cavity Ring-Down Spectroscopy

    NASA Astrophysics Data System (ADS)

    Mchale, L.; Shadman, S.; Yalin, A.

    2015-12-01

    Open-path Cavity Ring-down Spectroscopy offers many potential advantages over traditional closed-path configurations for the measurement of atmospheric trace gasses. Removal of the vacuum pump and flow system may enable more compact instruments suitable for remote and mobile deployments as well as real time measurement of 'sticky' gases. However, open path operation introduces new challenges including exposure of high reflectivity mirrors to ambient air and aerosols, the need to measure wider (pressure broadened) spectral peaks and possible signal interferences due to optical extinction by aerosol particles in the cavity laser beam. The present submission focuses on the effects of aerosol particles on open-path CRDS using a near-infrared (1742 nm) methane gas measurement system as a test bed. A simple purge enclosure system was developed to prevent aerosol deposition on the cavity high-reflectors. The purge uses ambient air pulled in with a micro-pump through a hepa filter and maintained mirror reflectivity R>0.99996 over 100 hours of use in the presence of high aerosol loading. Optical extinction due to ambient aerosols can change the cavity loss and influence the recorded ring-down times. We observed relatively large fluctuations due to supermicron particles and a near-constant baseline shift due to smaller submicron particles. The fluctuations correspond to absorption on the order of 10-8-10-7 cm-1, comparable to the amplitude of the targeted methane absorption features, causing significant interference. Simple software filter approaches were developed to counter these fluctuations without a priori knowledge of the ambient aerosols. The filters exploit the statistical distribution of signals as well as the expected absorption lineshape. Using these filters, noise-equivalent sensitivities within a factor of ~3 of closed-path systems were obtained (4x10-10cm-1Hz-1/2). Outdoor open-path measurements were validated with side-by-side measurements with a commercial

  9. KRONOS: A Monte Carlo event generator for higher order QED corrections at HERA — Status report

    NASA Astrophysics Data System (ADS)

    Anlauf, Harald; Manakos, Panagiotis; Mannel, Thomas; Dahmen, Hans D.; Ohl, Thorsten

    1992-12-01

    We report on the status of the Monte Carlo event generator KRONOS for deep inelastic lepton hadron scattering at HERA. KRONOS focusses on the description of electronmagnetic corrections beyond the existing fixed order calculations.

  10. Neptune's rings

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This 591-second exposure of the rings of Neptune were taken with the clear filter by the Voyager 2 wide-angle camera. The two main rings are clearly visible and appear complete over the region imaged. Also visible in this image is the inner faint ring and the faint band which extends smoothly from the ring roughly halfway between the two bright rings. Both of these newly discovered rings are broad and much fainter than the two narrow rings. The bright glare is due to over-exposure of the crescent on Neptune. Numerous bright stars are evident in the background. Both bright rings have material throughout their entire orbit, and are therefore continuous. The Voyager Mission is conducted by JPL for NASA's Office of Space Science and Applications.

  11. Ring World

    NASA Image and Video Library

    2007-03-01

    Our robotic emissary, flying high above Saturn, captured this view of an alien copper-colored ring world. The overexposed planet has deliberately been removed to show the unlit rings alone, seen from an elevation of 60 degrees

  12. Neptune Rings

    NASA Image and Video Library

    1999-10-29

    This 591-second exposure of the rings of Neptune were taken with the clear filter by NASA Voyager 2 wide-angle camera. The two main rings are clearly visible and appear complete over the region imaged.

  13. Ring Backdrop

    NASA Image and Video Library

    2011-01-03

    Saturn moon Enceladus brightly reflects sunlight before a backdrop of the planet rings and the rings shadows cast onto the planet. NASA Cassini spacecraft captured this snapshot during its flyby of the moon on Nov. 30, 2010.

  14. Production of Ξ{sup −} in deep inelastic scattering with ZEUS detector at HERA

    SciTech Connect

    Nasir, N. Mohammad Wan Abdullah, W. A. T.

    2016-01-22

    In this paper, we discussed about the possible mechanism on how strange baryon are being produced. The discovery of strange quarks in cosmic rays before the quarks model being proposed makes the searches become more interesting, as it has long lifetimes. The inclusive deep inelastic scattering of Ξ{sup −} has been studied in electron-proton collisions with ZEUS detector at HERA. We also studied HERA kinematics and phase space.

  15. Production of Ξ- in deep inelastic scattering with ZEUS detector at HERA

    NASA Astrophysics Data System (ADS)

    Nasir, N. Mohammad; Wan Abdullah, W. A. T.

    2016-01-01

    In this paper, we discussed about the possible mechanism on how strange baryon are being produced. The discovery of strange quarks in cosmic rays before the quarks model being proposed makes the searches become more interesting, as it has long lifetimes. The inclusive deep inelastic scattering of Ξ- has been studied in electron-proton collisions with ZEUS detector at HERA. We also studied HERA kinematics and phase space.

  16. Experimental characterization of elastomeric O-rings as reusable seals for mass spectrometric measurements: Application to in situ K-Ar dating on Mars

    NASA Astrophysics Data System (ADS)

    Cho, Yuichiro; Kameda, Shingo; Okuno, Mamoru; Horiuchi, Misa; Shibasaki, Kazuo; Wagatsuma, Ryo; Aida, Yusuke; Miura, Yayoi N.; Yoshioka, Kazuo; Okazaki, Ryuji; Sugita, Seiji

    2017-10-01

    Mass spectrometry has been widely used in lander missions to characterize the volatiles in rocks and soils on planetary surfaces. A good vacuum seal is very important for introducing such solid samples to a vacuum chamber and ejecting them. However, multiple measurements require many metal gaskets, leading to extra weight and complexity for the instruments. In this study, we investigate the capability of three kinds of elastomeric O-rings (Viton, Nexus-SLT, and Nexus-FV) as vacuum seals for mass spectrometric measurements, particularly for in situ K-Ar dating on Mars. First, thermal cycle tests revealed that low-temperature-resistant O-rings can maintain pressure <10-5 Pa at -60 °C under 1 bar ambient pressure, whereas Viton O-rings leaked at -25 °C. Then, the amount of 40Ar due to outgassing from the O-rings and permeation under the ambient pressure of 650 Pa or 3 Pa was measured and compared with the amounts of 40Ar that a flight-equivalent laser would liberate from potential target Martian rocks. The measured amounts were <1% of that a target rock with 5000 ppm K2O and an age of 4.2 Ga would yield. These results suggest that a Viton O-ring can maintain the Ar blank low under the Mars atmospheric pressure when temperatures are higher than -25 °C. A double O-ring seal using the low-temperature-resistant elastomers would be an alternative approach at lower temperatures. The elastomeric O-rings would be useful for constructing a small and light-weighted mass spectrometric instrument for in situ K-Ar dating on Mars.

  17. A measurement of total reactive nitrogen, NOy, together with NO₂, NO, and O₃ via cavity ring-down spectroscopy.

    PubMed

    Wild, Robert J; Edwards, Peter M; Dubé, William P; Baumann, Karsten; Edgerton, Eric S; Quinn, Patricia K; Roberts, James M; Rollins, Andrew W; Veres, Patrick R; Warneke, Carsten; Williams, Eric J; Yuan, Bin; Brown, Steven S

    2014-08-19

    We present a sensitive, compact detector that measures total reactive nitrogen (NOy), as well as NO2, NO, and O3. In all channels, NO2 is directly detected by laser diode based cavity ring-down spectroscopy (CRDS) at 405 nm. Ambient O3 is converted to NO2 in excess NO for the O3 measurement channel. Likewise, ambient NO is converted to NO2 in excess O3. Ambient NOy is thermally dissociated at ∼700 °C to form NO2 or NO in a heated quartz inlet. Any NO present in ambient air or formed from thermal dissociation of other reactive nitrogen compounds is converted to NO2 in excess O3 after the thermal converter. We measured thermal dissociation profiles for six of the major NOy components and compared ambient measurements with other instruments during field campaigns in Utah and Alabama. Alabama measurements were made in a rural location with high biogenic emissions, and Utah measurements were made in the wintertime in unusual conditions that form high ozone levels from emissions related to oil and gas production. The NOy comparison in Alabama, to an accepted standard measurement method (a molybdenum catalytic converter/chemiluminescence instrument), agreed to within 12%, which we define as an upper limit to the accuracy of the NOy channel. The 1σ precision is <30 pptv at 1 s and <4 pptv at 1 min time resolution for all measurement channels. The accuracy is 3% for the NO2 and O3 channels and 5% for the NO channel. The precision and accuracy of this instrument make it a versatile alternative to standard chemiluminescence-based NOy instruments.

  18. Measurements of methane emissions from landfills using mobile plume method with trace gas and cavity ring-down spectroscopy

    NASA Astrophysics Data System (ADS)

    Mønster, J.; Kjeldsen, P.; Scheutz, C.

    2012-04-01

    Methane is emitted to the atmosphere from both anthropogenic and natural sources. One of the major anthropogenic sources is methane produced by bacteria in anaerobic environments such as rice pads and landfills. Land filling has for many years been the preferred waste disposal method, resulting in a large methane production with a large contribution to the global increase in atmospheric green house gas concentration. Several steps have been taken to reduce the emission of methane from landfills. In order to validate the effect of these steps, a measurement method is needed to quantify methane emissions with a large spatial variation. One method is to use a highly sensitive and fast analytical method, capable of measuring the atmospheric concentration methane downwind from emission areas. Combined with down-wind measurements of a trace gas, emitted at a controlled mass flow rate, the methane emission can be calculated. This method is called the mobile plume method, as the whole plume is measured by doing several transects. In the current study a methane/acetylene analyzer with cavity ring-down spectroscopy detection (Picarro, G2203) was used to estimate methane from a number of Danish landfills. We measured at both active and closed landfills and investigated the difference in methane emission. At landfills where the emissions could have more than one origin, the source strength of the different emission areas was determined by accurate trace gas positioning and choosing appropriate wind speed and measurement distance. To choose these factors, we addressed the uncertainties and limitations of the method with respect to the configuration of the trace gas bottles and the distance between the emission area and the measurement points. Composting of organic material in large piles was done at several of the investigated landfills and where possible, the methane emission from this partly anaerobic digestion was measured as a separate emission.

  19. High Precision Continuous and Real-Time Measurement of Atmospheric Oxygen Using Cavity Ring-Down Spectroscopy.

    NASA Astrophysics Data System (ADS)

    Kim-Hak, D.; Hoffnagle, J.; Rella, C.; Sun, M.

    2016-12-01

    Oxygen is a major and vital component of the Earth atmosphere representing about 21% of its composition. It is consumed or produced through biochemical processes such as combustion, respiration, and photosynthesis. Although atmospheric oxygen is not a greenhouse gas, it can be used as a top-down constraint on the carbon cycle. The variation observations of oxygen in the atmosphere are very small, in the order of the few ppm's. This presents the main technical challenge for measurement as a very high level of precision is required and only few methods including mass spectrometry, fuel cell, and paramagnetic are capable of overcoming it. Here we present new developments of a high-precision gas analyzer that utilizes the technique of Cavity Ring-Down Spectroscopy to measure oxygen concentration and oxygen isotope. Its compact and ruggedness design combined with high precision and long-term stability allows the user to deploy the instrument in the field for continuous monitoring of atmospheric oxygen level. Measurements have a 1-σ 5-minute averaging precision of 1-2 ppm for O2 over a dynamic range of 0-20%. We will present supplemental data acquired from our 10m tower measurements in Santa Clara, CA.

  20. Measuring Optical Properties of SOOT from Biomass Burning Using Cavity RING-DOWN Spectroscopy and Integrating Nephelometry

    NASA Astrophysics Data System (ADS)

    Bililign, S.; Smith, D. M.; Fiddler, M. N.; Singh, S.; Colon-Bernal, I. D.

    2014-12-01

    Since black carbon and brown carbon are among the greatest contributors to radiative forcing (black carbon being second only to carbon dioxide), this work focuses on the laboratory measurement of their optical properties using cavity ring-down spectroscopy (CRDS) and integrating nephelometry. Water soluble soot is collected using an impinger by burning different fuel types to mimic ambient aerosols dominant in regions where biomass burning is the main source of aerosols. Using an optical parametric oscillator (OPO) as a light source, we are able to measure extinction and scattering over a wide range of wavelengths. The extinction-minus-scattering method is then used to determine particle absorption and single scattering albedo for soot collected from different fuel sources at different stages of burning. Purely scattering polystyrene latex (PSL) spheres of known sizes (100 - 700 nm) are used in the lab to calibrate the system for this study. Our preliminary measurements of optical properties of soot samples collected by burning different wood samples will be reported. A correction method that properly accounts for and reduces systematic extinction uncertainties, random scattering and extinction errors, and reconciles nephelometer with CRDS measurements is used.

  1. Dijet cross sections in photoproduction at HERA

    NASA Astrophysics Data System (ADS)

    ZEUS Collaboration; Breitweg, J.; et al.

    Dijet cross sections are presented using photoproduction data obtained with the ZEUS detector during 1994. These measurements represent an extension of previous results, as the higher statistics allow cross sections to be measured at higher jet transverse energy ( ETjet). Jets are identified in the hadronic final state using three different algorithms, and the cross sections compared to complete next-to-leading order QCD calculations. Agreement with these calculations is seen for the pseudorapidity dependence of the direct photon events with ETjet > 6 GeV and of the resolved photon events with ETjet > 11 GeV. Calculated cross sections for resolved photon processes with 6 GeV < ETjet < 11 GeV lie below the data.

  2. Slowing of Vortex Rings

    NASA Astrophysics Data System (ADS)

    Donnelly, Russell; Bolster, Diogo; Hershberger, Robert

    2008-11-01

    We have investigated the slowing of vortex rings in water which are created with very thin cores. We find that these rings propagate with no measurable change in diameter or core size. The drag appears to be the result of viscous forces on the core. A simple model for this drag describes experimental data in terms of a drag coefficient, which depends only on Reynolds number. Barenghi's group at Newcastle found that the translational velocity of a ring in an inviscid fluid perturbed by Kelvin waves decreases with increasing amplitude of Kelvin waves. This suggests that the velocity of vortex rings in a viscous fluid may well depend on the amplitude of Kelvin waves at the time of formation. Rings with substantial amplitude of Kelvin waves will be expected to move more slowly than rings with little or no Kelvin wave amplitude. We present experimental data confirming this suggestion.

  3. Fugitive methane emission pinpointing and source attribution using ethane measurements in a portable cavity ring-down analyzer

    NASA Astrophysics Data System (ADS)

    Fleck, Derek; Hoffnagle, John; Yiu, John; Chong, Johnston; Tan, Sze

    2017-04-01

    Methane source pinpointing and attribution is ever more important because of the vast network of natural gas distribution which has led to a very large emission sources. Ethane can be used as a tracer to distinguish gas sources between biogenic and natural gas. Having this measurement sensitive enough can even distinguish between gas distributors, or maturity through gas wetness. Here we present data obtained using a portable cavity ring-down spectrometer weighing less than 11 kg and consuming less than 35W that simultaneously measures methane and ethane with a raw 1-σ precision of 50ppb and 4.5ppb, respectively at 2 Hz. These precisions allow for a C2:C1 ratio 1-σ measurement of <0.1% above 10ppm in a single measurement. Utilizing a second onboard laser allows for a high precision methane only mode used for surveying and pinpointing. This mode measures at a rate faster than 4Hz with a 1-σ precision of <3ppb. Because methane seepages are highly variable due to air turbulence and mixing right above the ground, correlations in the variations in C2H6 and CH4 are used to derive a source C2:C1. Additional hardware is needed for steady state concentration measurements to reliably measure the C2:C1 ratio instantaneously. Source discrimination data of local leaks and methane sources using this analysis method are presented. Additionally, two-dimensional plume snapshots are constructed using an integrated onboard GPS to visualize horizontal plane gas propagation.

  4. Pooled versus separate tree-ring δD measurements, and implications for reconstruction of the Arctic Oscillation in northwestern China.

    PubMed

    Liu, Xiaohong; An, Wenling; Treydte, Kerstin; Wang, Wenzhi; Xu, Guobao; Zeng, Xiaomin; Wu, Guoju; Wang, Bo; Zhang, Xuanwen

    2015-04-01

    Stable hydrogen isotope ratios (δD) in tree rings are an attractive but still rarely explored terrestrial archive of past climatic information. Because the preparation of the cellulose nitrate for δD measurements requires more wood and a longer preparation time than preparation techniques for other isotopes in cellulose (δ18O or δ13C), it is challenging to obtain high-resolution records, especially for slow-growing trees at high elevations and in boreal regions. Here, we tested whether annually pooled samples of Qinghai spruce (Picea crassifolia Kom.) trees from northwestern China provided results similar to those derived as the mean of individual measurements of the same trees and whether the resulting chronologies recorded useful climate information. Inter-tree variability of δD was higher than that of measured ring width for the same trees. We found higher and significant coherence between pooled and mean isotope chronologies than that among the individual series. It showed a logarithmic relationship between ring mass and δD; however, accounting for the influence of ring mass on δD values only slightly improved the strength of climatic signals in the pooled records. Tree-ring δD was significantly positively correlated with the mean, maximum, and minimum temperatures during the previous winter and with maximum temperature during the current August, and significantly negatively correlated with precipitation in the previous November to January and the current July. The winter climate signal seems to dominate tree-ring δD through the influence of large-scale atmospheric circulation patterns, i.e. the Arctic Oscillation. These results will facilitate reconstruction of winter atmospheric circulation patterns over northwestern China based on a regional tree-ring δD networks.

  5. Dust and Planetary Rings

    NASA Astrophysics Data System (ADS)

    Siddiqui, Muddassir

    ABSTRACT Space is not empty it has comic radiations (CMBR), dust etc. Cosmic dust is that type of dust which is composed of particles in space which vary from few molecules to 0.1micro metres in size. This type of dust is made up of heavier atoms born in the heart of stars and supernova. Mainly it contains dust grains and when these dust grains starts compacting then it turns to dense clouds, planetary ring dust and circumstellar dust. Dust grains are mainly silicate particles. Dust plays a major role in our solar system, for example in zodiacal light, Saturn's B ring spokes, planetary rings at Jovian planets and comets. Observations and measurements of cosmic dust in different regions of universe provide an important insight into the Universe's recycling processes. Astronomers consider dust in its most recycled state. Cosmic dust have radiative properties by which they can be detected. Cosmic dusts are classified as intergalactic dusts, interstellar dusts and planetary rings. A planetary ring is a ring of cosmic dust and other small particles orbiting around a planet in flat disc shape. All of the Jovian planets in our solar system have rings. But the most notable one is the Saturn's ring which is the brightest one. In March 2008 a report suggested that the Saturn's moon Rhea may have its own tenuous ring system. The ring swirling around Saturn consists of chunks of ice and dust. Most rings were thought to be unstable and to dissipate over course of tens or hundreds of millions of years but it now appears that Saturn's rings might be older than that. The dust particles in the ring collide with each other and are subjected to forces other than gravity of its own planet. Such collisions and extra forces tend to spread out the rings. Pluto is not known to have any ring system but some Astronomers believe that New Horizons probe might find a ring system when it visits in 2015.It is also predicted that Phobos, a moon of Mars will break up and form into a planetary ring

  6. Magnetic and structural properties of an octanuclear Cu(II) S=1/2 mesoscopic ring: Susceptibility and NMR measurements

    SciTech Connect

    Lascialfari, A.; Jang, Z. H.; Borsa, F.; Gatteschi, D.; Cornia, A.; Rovai, D.; Caneschi, A.; Carretta, P.

    2000-03-01

    Magnetic susceptibility, {sup 1}H NMR and {sup 63}Cu NMR-NQR experiments on two slightly different species of the molecular S=1/2 antiferromagnetic (AF) ring Cu8, [Cu{sub 8}(dmpz){sub 8}(OH){sub 8}]{center_dot}2C{sub 5}H{sub 5}N (Cu8P) and [Cu{sub 8}(dmpz){sub 8}(OH){sub 8}]{center_dot}2C{sub 5}H{sub 5}NO{sub 2} (Cu8N), are presented. The magnetic energy levels are calculated exactly for an isotropic Heisenberg model Hamiltonian in zero magnetic field. From the magnetic susceptibility measurements we estimate the AF exchange coupling constant J{approx}1000 K and the resulting gap {delta}{approx}500 K between the S{sub T}=0 ground state and the S{sub T}=1 first excited state. The {sup 63,65}Cu NQR spectra indicate the presence of four crystallographically inequivalent copper nuclei in each ring. From the combination of the {sup 63}Cu NQR spectra and of the {sup 63}Cu NMR spectra at high magnetic field, we estimate the quadrupole coupling constant v{sub Q} of each site and the average asymmetry parameter {eta} of the electric-field gradient tensor. The nuclear spin-lattice relaxation rate (NSLR) decreases exponentially on decreasing temperature for all nuclei investigated. The gap parameter extracted from {sup 63}Cu NQR-NSLR is the same as for the susceptibility while a smaller value is obtained from the {sup 63}Cu NMR-NSLR in an external magnetic field of 8.2 T. (c) 2000 The American Physical Society.

  7. Storage-ring measurements of hyperfine induced transition rates in berylliumlike ions

    SciTech Connect

    Schippers, Stefan

    2013-07-11

    The status of experimental measurements and theoretical calculations of the hyperfine induced 2s2p{sup 3}P{sub 0}{yields}2s{sup 21}S{sub 0} transition rate in Be-like ions is reviewed. Possible reasons, such as external electromagnetic fields and competing E1M1 two-photon transitions, for presently existing significant discrepancies between experiment and theory are discussed. Finally, directions for future research are outlined.

  8. High Precision Continuous and Real-Time Measurement of Atmospheric Oxygen Using Cavity Ring-Down Spectroscopy

    NASA Astrophysics Data System (ADS)

    Kim-Hak, David; Leuenberger, Markus; Berhanu, Tesfaye; Nyfeler, Peter; Hoffnagle, John; Sun, Minghua

    2017-04-01

    Oxygen (O2) is a major and vital component of the Earth atmosphere representing about 21% of its composition. It is consumed or produced through biochemical processes such as combustion, respiration, and photosynthesis and can be used as a top-down constraint on the carbon cycle. The observed variations of oxygen in the atmosphere are relatively small, in the order of a few ppm's. This presents the main technical challenge for the measurement since a very high level of precision on a large background is required. Only few analytical methods including mass spectrometry, fuel, ultraviolet[1] and paramagnetic cells are capable of achieving it. Here we present new developments of a high-precision gas analyzer that utilizes the technique of Cavity Ring-Down Spectroscopy to measure oxygen concentration and its oxygen isotope ratio 18O/16O. Its compact and ruggedness design combined with high precision and long-term stability allows the user to deploy the instrument in the field for continuous monitoring of atmospheric oxygen level. Measurements have a 1-σ 5-minute averaging precision of 1-2 ppm for O2 over a dynamic range of 0-50%. We will present comparative test results of this instrument against the incumbent technologies such as the mass spectrometer and the paramagnetic cell. In addition, we will demonstrate its long-term stability from a field deployment in Switzerland.

  9. The application of a cavity ring-down spectrometer to measurements of ambient ammonia using traceable primary standard gas mixtures

    NASA Astrophysics Data System (ADS)

    Martin, Nicholas A.; Ferracci, Valerio; Cassidy, Nathan; Hoffnagle, John A.

    2016-08-01

    A correction for the undesirable effects of direct and indirect cross-interference from water vapour on ammonia (NH3) measurements was developed using an optical laser sensor based on cavity ring-down spectroscopy. This correction relied on new measurements of the collisional broadening due to water vapour of two NH3 spectral lines in the near infra-red (6548.6 and 6548.8 cm-1), and on the development of novel stable primary standard gas mixtures (PSMs) of ammonia prepared by gravimetry in passivated gas cylinders at 100 μmol mol-1. The PSMs were diluted dynamically to provide calibration mixtures of dry and humidified ammonia atmospheres of known composition in the nmol mol-1 range and were employed as part of establishing a metrological traceability chain to improve the reliability and accuracy of ambient ammonia measurements. The successful implementation of this correction will allow the extension of this rapid on-line spectroscopic technique to exposure chamber validation tests under controlled conditions and ambient monitoring in the field.

  10. Recent Highlights from HERA Collider Experiments

    NASA Astrophysics Data System (ADS)

    Wolf, Guenter

    1998-10-01

    High statistics data have been presented by ZEUS for hard photoproduction of D* mesons. The measured cross sections for large pD*⊥ , η D* lie above those predicted by QCD-NLO calculations. There is a substantial contribution from resolved photons indicating the existence of charm excitation in the photon. Photoproduction of beauty quarks has been observed for the first time by H1. The measured cross section lies above the theoretical expectations calculated in QCD-LO by a substantial factor. First results on quasielastic photoproduction of Upsilons have been presented by ZEUS. The observed cross section lies above the theoretical predictions. QCD-NLO fits to data for the proton structure function F2 from H1 and ZEUS have provided rather precise determinations of the density of gluons in the proton. The resulting predictions for the charm contribution Fc2 to F2 are consistent with Fc2 obtained directly from charm production by DIS. An analysis of F2 data at small Q2 indicates that the transition from soft hadron-like scattering to DIS occurs somewhere between 0.5 and 3 GeV2. A QCD-NLO analysis by ZEUS with F2 measurements starting at Q2 = 1 GeV2 shows that a good description of the data can be obtained. Surprisingly, while at Q2 = 7, 20 GeV2 the gluon density (g)at small x is much larger than that for the singlet quarks ({Σ }), the situation appears to be reversed at Q2 = 1 GeV2 where g < {Σ }. Diffraction dissociation of the virtual photon into high mass hadrons represents a substantial part of the DIS cross section. Its energy dependence is similar to that of the sum of all DIS channels and leads to a pomeron trajectory which lies above that observed in hadron-hadron scattering. The behaviour of the diffractive structure function suggests a substantial contribution from partonic interactions. H1 and ZEUS previously had reported an excess of events above the Standard Model predictions at large Q2, high x seen in the 1994-96 data. Analysis of the 1997 data

  11. High Precision 13C/12C Measurement of Dissolved Carbon Using a Transportable Cavity Ring-Down Spectrophotometer System

    NASA Astrophysics Data System (ADS)

    Saad, N.; Crosson, E.

    2009-05-01

    We report here on the measurement of high precision δ13C from total inorganic carbon (TIC) and dissolved organic carbon (DOC) using a sample preparation system coupled to a small footprint Wavelength- Scanned Cavity Ring-Down Spectrometer (WS-CRDS). This system is capable of applying a 5% H3PO4 solution or a sodium persulfate oxidation process to a water sample in an exetainer vial, thereby liberating gaseous CO2 and permitting stable carbon isotope measurement in TIC and DOC, respectively. The isotopic carbon signature determination can then be used to trace the origin of carbonates or organic carbon compounds. In a first phase, a manual process was employed in which TIC containing samples were acidified and the evolved CO2 was collected inside gas pillows. The gas pillows were then connected to the inlet of the isotopic WS-CRDS instrument for carbon ratio measurement. In a second phase, the CO2 liberation processes were automated in an integrated analyzer enabling software control of a sample preparation system directly connected to the gas inlet of the isotopic WS-CRDS instrument. A measurement precision of the isotopic ratio in the range of 0.2 to 0.4 permil was achieved in minutes of measurement time. Such precision readily distinguishes the isotopic TIC and DOC signatures from a set of three different stream water samples collected from various sites in Northern California. The current TIC/DOC- CRDS setup will enable shipboard measurement and presents a rugged, portable and inexpensive analytical instrumentation alternative to the traditional use of methods based on the more complex and lab-confined isotope ratio mass spectrometry technique.

  12. Estimating diffractive Higgs boson production at LHC from HERA data

    NASA Astrophysics Data System (ADS)

    Graudenz, D.; Veneziano, G.

    1996-02-01

    Using a recently proposed factorization hypothesis for semi-inclusive hard processes in QCD, one can study, in principle, the diffractive production of the Standard Model Higgs boson at LHC using only, as input, ep diffractive hard-processes data of the type recently collected and analyzed by the H1 and ZEUS collaborations at HERA. While waiting for a more precise and complete set of data, we combine here the existing data with a simple Pomeron-exchange picture and find a large spread in the Higgs boson production cross section, depending on the input parametrization of the Pomeron's parton content. In particular, if the Pomeron gluon density f {g}/{p}(β) is peaked at large β for small scales, single diffractive events will represent a sizeable fraction of all produced Higgs bosons with an expected better-than-average signal-to-background ratio.

  13. H Calorimeter Daq Upgrade for Hera-Ii

    NASA Astrophysics Data System (ADS)

    Hoffmann, Dirk; Duval, Pierre-Yves; Vallee, Claude

    2002-01-01

    The H1 collaboration has performed an upgrade of its data acquisition system for the calorimeters in view of the HERA-II programme. A heterogeneous system based on 29K/VRTX, 68k/OS9 and Vax/VMS was replaced by an integrated Unix cluster composed of two PPC/LynxOS VME boards and Sparc/SunOS stations, using TCP/IP protocols for inter process communication (IPC) and POSIX standards in general. Software transcription consisted of porting three essential functions: hardware setup, calibration datataking with a high serial data through-put and online datataking which emphasizes low frontend deadtime through a three level buffering by means of POSIX threads and messages. Low performance control tasks were programmed in Perl, the user interface has been written in Java. Although the very frontend electronics remain unchanged, a factor two increase in performance was obtained together with a manifestly improved environment for monitoring and diagnostics.

  14. Laboratory aging studies for the HERA-B muon chambers

    NASA Astrophysics Data System (ADS)

    Danilov, M.; Tikhomirov, I.; Titov, M.; Zaitsev, Yu.

    2002-11-01

    The severe radiation environment of the HERA-B experiment leads to a maximum accumulated charge on a wire, within the muon detector, of 200 mC/cm wire . For operation in this high-intensity environment, the main criteria for the gas choice turned out to be stability against aging. We report recent results of laboratory aging studies performed by irradiating proportional wire chambers filled with Ar/CF 4/CH 4 (74:20:6), Ar/CF 4/CH 4 (67:30:3), and Ar/CF 4/CO 2 (65:30:5) mixtures. The penetration of water and oxygen through the walls of plastic tubes has also been investigated. Water can be introduced indirect to the gas mixture by using polyamide (nylon) pipes for gas supply lines.

  15. Combined QCD and electroweak analysis of HERA data

    NASA Astrophysics Data System (ADS)

    Abramowicz, H.; Abt, I.; Adamczyk, L.; Adamus, M.; Antonelli, S.; Aushev, V.; Behnke, O.; Behrens, U.; Bertolin, A.; Bhadra, S.; Bloch, I.; Boos, E. G.; Brock, I.; Brook, N. H.; Brugnera, R.; Bruni, A.; Bussey, P. J.; Caldwell, A.; Capua, M.; Catterall, C. D.; Chwastowski, J.; Ciborowski, J.; Ciesielski, R.; Cooper-Sarkar, A. M.; Corradi, M.; Dementiev, R. K.; Devenish, R. C. E.; Dusini, S.; Foster, B.; Gach, G.; Gallo, E.; Garfagnini, A.; Geiser, A.; Gizhko, A.; Gladilin, L. K.; Golubkov, Yu. A.; Grzelak, G.; Guzik, M.; Gwenlan, C.; Hain, W.; Hlushchenko, O.; Hochman, D.; Hori, R.; Ibrahim, Z. A.; Iga, Y.; Ishitsuka, M.; Januschek, F.; Jomhari, N. Z.; Kadenko, I.; Kananov, S.; Karshon, U.; Kaur, P.; Kisielewska, D.; Klanner, R.; Klein, U.; Korzhavina, I. A.; Kotański, A.; Kötz, U.; Kovalchuk, N.; Kowalski, H.; Krupa, B.; Kuprash, O.; Kuze, M.; Levchenko, B. B.; Levy, A.; Limentani, S.; Lisovyi, M.; Lobodzinska, E.; Löhr, B.; Lohrmann, E.; Longhin, A.; Lontkovskyi, D.; Lukina, O. Yu.; Makarenko, I.; Malka, J.; Mastroberardino, A.; Mohamad Idris, F.; Mohammad Nasir, N.; Myronenko, V.; Nagano, K.; Nobe, T.; Nowak, R. J.; Onishchuk, Yu.; Paul, E.; Perlański, W.; Pokrovskiy, N. S.; Polini, A.; Przybycień, M.; Roloff, P.; Ruspa, M.; Saxon, D. H.; Schioppa, M.; Schneekloth, U.; Schörner-Sadenius, T.; Shcheglova, L. M.; Shevchenko, R.; Shkola, O.; Shyrma, Yu.; Singh, I.; Skillicorn, I. O.; Słomiński, W.; Solano, A.; Stanco, L.; Stefaniuk, N.; Stern, A.; Stopa, P.; Sztuk-Dambietz, J.; Tassi, E.; Tokushuku, K.; Tomaszewska, J.; Tsurugai, T.; Turcato, M.; Turkot, O.; Tymieniecka, T.; Verbytskyi, A.; Wan Abdullah, W. A. T.; Wichmann, K.; Wing, M.; Yamada, S.; Yamazaki, Y.; Zakharchuk, N.; Żarnecki, A. F.; Zawiejski, L.; Zenaiev, O.; Zhautykov, B. O.; Zotkin, D. S.; ZEUS Collaboration

    2016-05-01

    A simultaneous fit of parton distribution functions (PDFs) and electroweak parameters to HERA data on deep inelastic scattering is presented. The input data are the neutral current and charged current inclusive cross sections which were previously used in the QCD analysis leading to the HERAPDF2.0 PDFs. In addition, the polarization of the electron beam was taken into account for the ZEUS data recorded between 2004 and 2007. Results on the vector and axial-vector couplings of the Z boson to u - and d -type quarks, on the value of the electroweak mixing angle and the mass of the W boson are presented. The values obtained for the electroweak parameters are in agreement with Standard Model predictions.

  16. Measurements of extinction by aerosol particles in the near-infrared using continuous wave cavity ring-down spectroscopy.

    PubMed

    Mellon, Daniel; King, Simon J; Kim, Jin; Reid, Jonathan P; Orr-Ewing, Andrew J

    2011-02-10

    Cavity ring-down spectroscopy using a fiber-coupled continuous wave distributed feedback laser at a wavelength of 1520 nm has been used to measure extinction of light by samples of nearly monodisperse aerosol particles <1 μm in diameter. A model is tested for the analysis of the sample extinction that is based on the Poisson statistics of the number of particles within the intracavity laser beam: variances of measured extinction are used to derive values of the scattering cross section for size-selected aerosol particles, without need for knowledge of the particle number density or sample length. Experimental parameters that influence the performance of the CRD system and the application and limitations of the statistical model are examined in detail. Determinations are reported of the scattering cross sections for polystyrene spheres (PSSs), sodium chloride, and ammonium sulfate, and, for particles greater than 500 nm in diameter, are shown to be in agreement with the corresponding values calculated using Mie theory or Discrete Dipole Approximation methods. For smaller particles, the experimentally derived values of the scattering cross section are larger than the theoretical predictions, and transmission of a small fraction of larger particles into the cavity is argued to be responsible for this discrepancy. The effects of cubic structure on the determination of optical extinction efficiencies of sodium chloride aerosol particles are examined. Values are reported for the real components of the refractive indices at 1520 nm of PSS, sodium chloride, and ammonium sulfate aerosol particles.

  17. AC losses in high pressure synthesized MgB2 bulk rings measured by a transformer method

    NASA Astrophysics Data System (ADS)

    Meerovich, V.; Sokolovsky, V.; Prikhna, T.; Gawalek, W.; Habisreuther, T.

    2013-03-01

    Recently developed manufacturing technologies use high pressure and various doping additions to prepare bulk MgB2-based materials with a high critical current density measured by the magnetization method. We use a contactless transformer method, which is based on studying the superconductor response to an induced transport current, to measure AC losses in bulk MgB2 rings synthesized under high pressure. The obtained dependence of the losses on the primary current (applied magnetic field) is fitted by a power law with an exponent of ˜2.1 instead of the cubic dependence predicted by Bean’s model and power law electric field-current density (E-J) characteristics with a large exponent. An unusually strong dependence of the AC losses on the frequency is also observed. It is shown that the E-J characteristic of bulk MgB2 is well fitted by the dependence used in the extended critical state model based on account of the viscous vortex motion in the flux flow regime. Numerical simulation using this E-J characteristic gives current and frequency AC loss dependences that agree well with the experimental results.

  18. Planetary Rings

    NASA Astrophysics Data System (ADS)

    Tiscareno, Matthew S.

    Planetary rings are the only nearby astrophysical disks and the only disks that have been investigated by spacecraft (especially the Cassini spacecraft orbiting Saturn). Although there are significant differences between rings and other disks, chiefly the large planet/ring mass ratio that greatly enhances the flatness of rings (aspect ratios as small as 10- 7), understanding of disks in general can be enhanced by understanding the dynamical processes observed at close range and in real time in planetary rings.We review the known ring systems of the four giant planets, as well as the prospects for ring systems yet to be discovered. We then review planetary rings by type. The A, B, and C rings of Saturn, plus the Cassini Division, comprise our solar system's only dense broad disk and host many phenomena of general application to disks including spiral waves, gap formation, self-gravity wakes, viscous overstability and normal modes, impact clouds, and orbital evolution of embedded moons. Dense narrow rings are found both at Uranus (where they comprise the main rings entirely) and at Saturn (where they are embedded in the broad disk) and are the primary natural laboratory for understanding shepherding and self-stability. Narrow dusty rings, likely generated by embedded source bodies, are surprisingly found to sport azimuthally confined arcs at Neptune, Saturn, and Jupiter. Finally, every known ring system includes a substantial component of diffuse dusty rings.Planetary rings have shown themselves to be useful as detectors of planetary processes around them, including the planetary magnetic field and interplanetary impactors as well as the gravity of nearby perturbing moons. Experimental rings science has made great progress in recent decades, especially numerical simulations of self-gravity wakes and other processes but also laboratory investigations of coefficient of restitution and spectroscopic ground truth. The age of self-sustained ring systems is a matter of

  19. Direct measurement of the plasma loss width in an optimized, high ionization fraction, magnetic multi-dipole ring cusp

    NASA Astrophysics Data System (ADS)

    Cooper, C. M.; Weisberg, D. B.; Khalzov, I.; Milhone, J.; Flanagan, K.; Peterson, E.; Wahl, C.; Forest, C. B.

    2016-10-01

    The loss width of plasma in the WiPAL multi-dipole magnetic ring cusp [Cooper et al., Phys. Plasmas 21, 13505 (2014); Forest et al., J. Plasma Phys. 81, 345810501 (2015)] has been directly measured using a novel array of probes embedded in the insulating plasma limiters. The large plasma volume ( ˜10 m3), small loss area associated with strong rare earth permanent magnets ( Bo˜2.23 kG at face), and large heating power ( ≤200 kW) produces a broad range of electron temperatures ( 2 measured. This plasma regime, accessible with high magnetic fields, differs from previous devices: the cusp loss width is much larger than the Debye length and electron gyroradius and comparable to the collision length. Plasma parameters measured at the surface of ceramic limiter tiles covering the magnets and along radial chords in the cusp magnetic field indicate that electron density and temperature are nearly constant on magnetic field lines and that the mirror forces play little role in confining the plasma other than to constrict the loss area. Particle balance modeling is used to determine the cross field diffusion coefficient base on the measured losses to the limiters. The experimentally determined cross field diffusion coefficient (which determines the cusp loss width) is consistent with ambipolar diffusion across five orders of magnitude. The ambipolar diffusion across a given field line is set primarily by the electron-neutral collisions in the region where the magnetic field is the weakest, even though these plasmas can have ionization fractions near 1.

  20. Tin re-deposition and erosion measured by cavity-ring-down-spectroscopy under a high flux plasma beam

    NASA Astrophysics Data System (ADS)

    Kvon, V.; Al, R.; Bystrov, K.; Peeters, F. J. J.; van de Sanden, M. C. M.; Morgan, T. W.

    2017-08-01

    Cavity-ring-down spectroscopy (CRDS) was implemented to measure the re-deposition of liquid tin under a high flux plasma beam in the linear plasma device Pilot-PSI. A capillary porous system (CPS) consisting of a molybdenum cup and tungsten meshes (pores diameters of 0.2 mm and 0.44 mm) was filled with tin and exposed to argon plasma. The absorption of a UV laser-beam at 286.331 nm was used to determine a number of sputtered neutral tin atoms. The incoming flux of argon ions of ~50 eV was 1.6-2.7  ×  1023 m-2 s-1, and the sample temperature measured by pyrometry varied from 850 °C to 1200 °C during exposures. The use of CRDS for measuring absolute number of particles under such plasma exposure was demonstrated for the first time. The number of sputtered tin particles in the cavity region assuming no losses would be expected to be 5.5  ×  1011-1.2  ×  1012 while CRDS measurements showed only 5.7-9.9  ×  108. About 98-99.8% of sputtered particles were therefore found to not reach the CRDS observation volume. Spectroscopic ratios of Sn I to Sn II ions, as well as equilibrium considerations, indicate that fast ionization as well as plasma entrainment of neutrals is responsible for the discrepancy. This would lead to high re-deposition rates, implying a lowered contamination rate of core plasma and lower required replenishment rates at high-flux conditions than would otherwise be expected.

  1. Production of Z0 bosons in elastic and quasi-elastic ep collisions at HERA

    NASA Astrophysics Data System (ADS)

    ZEUS Collaboration; Abramowicz, H.; Abt, I.; Adamczyk, L.; Adamus, M.; Aggarwal, R.; Antonelli, S.; Antonioli, P.; Antonov, A.; Arneodo, M.; Arslan, O.; Aushev, V.; Aushev, Y.; Bachynska, O.; Bamberger, A.; Barakbaev, A. N.; Barbagli, G.; Bari, G.; Barreiro, F.; Bartosik, N.; Bartsch, D.; Basile, M.; Behnke, O.; Behr, J.; Behrens, U.; Bellagamba, L.; Bertolin, A.; Bhadra, S.; Bindi, M.; Blohm, C.; Bokhonov, V.; Bołd, T.; Bondarenko, K.; Boos, E. G.; Borras, K.; Boscherini, D.; Bot, D.; Brock, I.; Brownson, E.; Brugnera, R.; Brümmer, N.; Bruni, A.; Bruni, G.; Brzozowska, B.; Bussey, P. J.; Bylsma, B.; Caldwell, A.; Capua, M.; Carlin, R.; Catterall, C. D.; Chekanov, S.; Chwastowski, J.; Ciborowski, J.; Ciesielski, R.; Cifarelli, L.; Cindolo, F.; Contin, A.; Cooper-Sarkar, A. M.; Coppola, N.; Corradi, M.; Corriveau, F.; Costa, M.; D'Agostini, G.; Dal Corso, F.; del Peso, J.; Dementiev, R. K.; De Pasquale, S.; Derrick, M.; Devenish, R. C. E.; Dobur, D.; Dolgoshein, B. A.; Dolinska, G.; Doyle, A. T.; Drugakov, V.; Durkin, L. S.; Dusini, S.; Eisenberg, Y.; Ermolov, P. F.; Eskreys, A.; Fang, S.; Fazio, S.; Ferrando, J.; Ferrero, M. I.; Figiel, J.; Foster, B.; Gach, G.; Galas, A.; Gallo, E.; Garfagnini, A.; Geiser, A.; Gialas, I.; Gizhko, A.; Gladilin, L. K.; Gladkov, D.; Glasman, C.; Gogota, O.; Golubkov, Yu. A.; Göttlicher, P.; Grabowska-Bołd, I.; Grebenyuk, J.; Gregor, I.; Grigorescu, G.; Grzelak, G.; Gueta, O.; Guzik, M.; Gwenlan, C.; Haas, T.; Hain, W.; Hamatsu, R.; Hart, J. C.; Hartmann, H.; Hartner, G.; Hilger, E.; Hochman, D.; Hori, R.; Hüttmann, A.; Ibrahim, Z. A.; Iga, Y.; Ingbir, R.; Ishitsuka, M.; Jakob, H.-P.; Januschek, F.; Jones, T. W.; Jüngst, M.; Kadenko, I.; Kahle, B.; Kananov, S.; Kanno, T.; Karshon, U.; Karstens, F.; Katkov, I. I.; Kaur, M.; Kaur, P.; Keramidas, A.; Khein, L. A.; Kim, J. Y.; Kisielewska, D.; Kitamura, S.; Klanner, R.; Klein, U.; Koffeman, E.; Kondrashova, N.; Kononenko, O.; Kooijman, P.; Korol, Ie.; Korzhavina, I. A.; Kotański, A.; Kötz, U.; Kowalski, H.; Kuprash, O.; Kuze, M.; Lee, A.; Levchenko, B. B.; Levy, A.; Libov, V.; Limentani, S.; Ling, T. Y.; Lisovyi, M.; Lobodzinska, E.; Lohmann, W.; Löhr, B.; Lohrmann, E.; Long, K. R.; Longhin, A.; Lontkovskyi, D.; Lukina, O. Yu.; Maeda, J.; Magill, S.; Makarenko, I.; Malka, J.; Mankel, R.; Margotti, A.; Marini, G.; Martin, J. F.; Mastroberardino, A.; Mattingly, M. C. K.; Melzer-Pellmann, I.-A.; Mergelmeyer, S.; Miglioranzi, S.; Mohamad Idris, F.; Monaco, V.; Montanari, A.; Morris, J. D.; Mujkic, K.; Musgrave, B.; Nagano, K.; Namsoo, T.; Nania, R.; Nigro, A.; Ning, Y.; Nobe, T.; Notz, D.; Nowak, R. J.; Nuncio-Quiroz, A. E.; Oh, B. Y.; Okazaki, N.; Olkiewicz, K.; Onishchuk, Yu.; Papageorgiu, K.; Parenti, A.; Paul, E.; Pawlak, J. M.; Pawlik, B.; Pelfer, P. G.; Pellegrino, A.; Perlański, W.; Perrey, H.; Piotrzkowski, K.; Pluciński, P.; Pokrovskiy, N. S.; Polini, A.; Proskuryakov, A. S.; Przybycień, M.; Raval, A.; Reeder, D. D.; Reisert, B.; Ren, Z.; Repond, J.; Ri, Y. D.; Robertson, A.; Roloff, P.; Rubinsky, I.; Ruspa, M.; Sacchi, R.; Samson, U.; Sartorelli, G.; Savin, A. A.; Saxon, D. H.; Schioppa, M.; Schlenstedt, S.; Schleper, P.; Schmidke, W. B.; Schneekloth, U.; Schönberg, V.; Schörner-Sadenius, T.; Schwartz, J.; Sciulli, F.; Shcheglova, L. M.; Shehzadi, R.; Shimizu, S.; Singh, I.; Skillicorn, I. O.; Słomiński, W.; Smith, W. H.; Sola, V.; Solano, A.; Son, D.; Sosnovtsev, V.; Spiridonov, A.; Stadie, H.; Stanco, L.; Stefaniuk, N.; Stern, A.; Stewart, T. P.; Stifutkin, A.; Stopa, P.; Suchkov, S.; Susinno, G.; Suszycki, L.; Sztuk-Dambietz, J.; Szuba, D.; Szuba, J.; Tapper, A. D.; Tassi, E.; Terrón, J.; Theedt, T.; Tiecke, H.; Tokushuku, K.; Tomaszewska, J.; Trusov, V.; Tsurugai, T.; Turcato, M.; Turkot, O.; Tymieniecka, T.; Vázquez, M.; Verbytskyi, A.; Viazlo, O.; Vlasov, N. N.; Walczak, R.; Wan Abdullah, W. A. T.; Whitmore, J. J.; Wichmann, K.; Wiggers, L.; Wing, M.; Wlasenko, M.; Wolf, G.; Wolfe, H.; Wrona, K.; Yagües-Molina, A. G.; Yamada, S.; Yamazaki, Y.; Yoshida, R.; Youngman, C.; Zabiegalov, O.; Żarnecki, A. F.; Zawiejski, L.; Zenaiev, O.; Zeuner, W.; Zhautykov, B. O.; Zhmak, N.; Zichichi, A.; Zolkapli, Z.; Zotkin, D. S.

    2013-01-01

    The production of Z0 bosons in the reaction ep→eZ0p, where p stands for a proton or a low-mass nucleon resonance, has been studied in ep collisions at HERA using the ZEUS detector. The analysis is based on a data sample collected between 1996 and 2007, amounting to 496 pb of integrated luminosity. The Z0 was measured in the hadronic decay mode. The elasticity of the events was ensured by a cut on ηmax<3.0, where ηmax is the maximum pseudorapidity of energy deposits in the calorimeter defined with respect to the proton beam direction. A signal was observed at the Z0 mass. The cross section of the reaction ep→eZ0p was measured to be σ(ep→eZ0p)=0.13±0.06(stat.)±0.01(syst.) pb, in agreement with the Standard Model prediction of 0.16 pb. This is the first measurement of Z0 production in ep collisions.

  2. Production of Z0 bosons in elastic and quasi-elastic ep collisions at HERA

    NASA Astrophysics Data System (ADS)

    Abramowicz, H.; Abt, I.; Adamczyk, L.; Adamus, M.; Aggarwal, R.; Antonelli, S.; Antonioli, P.; Antonov, A.; Arneodo, M.; Arslan, O.; Aushev, V.; Aushev, Y.; Bachynska, O.; Bamberger, A.; Barakbaev, A. N.; Barbagli, G.; Bari, G.; Barreiro, F.; Bartosik, N.; Bartsch, D.; Basile, M.; Behnke, O.; Behr, J.; Behrens, U.; Bellagamba, L.; Bertolin, A.; Bhadra, S.; Bindi, M.; Blohm, C.; Bokhonov, V.; Bołd, T.; Bondarenko, K.; Boos, E. G.; Borras, K.; Boscherini, D.; Bot, D.; Brock, I.; Brownson, E.; Brugnera, R.; Brümmer, N.; Bruni, A.; Bruni, G.; Brzozowska, B.; Bussey, P. J.; Bylsma, B.; Caldwell, A.; Capua, M.; Carlin, R.; Catterall, C. D.; Chekanov, S.; Chwastowski, J.; Ciborowski, J.; Ciesielski, R.; Cifarelli, L.; Cindolo, F.; Contin, A.; Cooper-Sarkar, A. M.; Coppola, N.; Corradi, M.; Corriveau, F.; Costa, M.; D'Agostini, G.; Dal Corso, F.; del Peso, J.; Dementiev, R. K.; De Pasquale, S.; Derrick, M.; Devenish, R. C. E.; Dobur, D.; Dolgoshein, B. A.; Dolinska, G.; Doyle, A. T.; Drugakov, V.; Durkin, L. S.; Dusini, S.; Eisenberg, Y.; Ermolov, P. F.; Eskreys, A.; Fang, S.; Fazio, S.; Ferrando, J.; Ferrero, M. I.; Figiel, J.; Foster, B.; Gach, G.; Galas, A.; Gallo, E.; Garfagnini, A.; Geiser, A.; Gialas, I.; Gizhko, A.; Gladilin, L. K.; Gladkov, D.; Glasman, C.; Gogota, O.; Golubkov, Yu. A.; Göttlicher, P.; Grabowska-Bołd, I.; Grebenyuk, J.; Gregor, I.; Grigorescu, G.; Grzelak, G.; Gueta, O.; Guzik, M.; Gwenlan, C.; Haas, T.; Hain, W.; Hamatsu, R.; Hart, J. C.; Hartmann, H.; Hartner, G.; Hilger, E.; Hochman, D.; Hori, R.; Hüttmann, A.; Ibrahim, Z. A.; Iga, Y.; Ingbir, R.; Ishitsuka, M.; Jakob, H.-P.; Januschek, F.; Jones, T. W.; Jüngst, M.; Kadenko, I.; Kahle, B.; Kananov, S.; Kanno, T.; Karshon, U.; Karstens, F.; Katkov, I. I.; Kaur, M.; Kaur, P.; Keramidas, A.; Khein, L. A.; Kim, J. Y.; Kisielewska, D.; Kitamura, S.; Klanner, R.; Klein, U.; Koffeman, E.; Kondrashova, N.; Kononenko, O.; Kooijman, P.; Korol, Ie.; Korzhavina, I. A.; Kotański, A.; Kötz, U.; Kowalski, H.; Kuprash, O.; Kuze, M.; Lee, A.; Levchenko, B. B.; Levy, A.; Libov, V.; Limentani, S.; Ling, T. Y.; Lisovyi, M.; Lobodzinska, E.; Lohmann, W.; Löhr, B.; Lohrmann, E.; Long, K. R.; Longhin, A.; Lontkovskyi, D.; Lukina, O. Yu.; Maeda, J.; Magill, S.; Makarenko, I.; Malka, J.; Mankel, R.; Margotti, A.; Marini, G.; Martin, J. F.; Mastroberardino, A.; Mattingly, M. C. K.; Melzer-Pellmann, I.-A.; Mergelmeyer, S.; Miglioranzi, S.; Mohamad Idris, F.; Monaco, V.; Montanari, A.; Morris, J. D.; Mujkic, K.; Musgrave, B.; Nagano, K.; Namsoo, T.; Nania, R.; Nigro, A.; Ning, Y.; Nobe, T.; Notz, D.; Nowak, R. J.; Nuncio-Quiroz, A. E.; Oh, B. Y.; Okazaki, N.; Olkiewicz, K.; Onishchuk, Yu.; Papageorgiu, K.; Parenti, A.; Paul, E.; Pawlak, J. M.; Pawlik, B.; Pelfer, P. G.; Pellegrino, A.; Perlański, W.; Perrey, H.; Piotrzkowski, K.; Pluciński, P.; Pokrovskiy, N. S.; Polini, A.; Proskuryakov, A. S.; Przybycień, M.; Raval, A.; Reeder, D. D.; Reisert, B.; Ren, Z.; Repond, J.; Ri, Y. D.; Robertson, A.; Roloff, P.; Rubinsky, I.; Ruspa, M.; Sacchi, R.; Samson, U.; Sartorelli, G.; Savin, A. A.; Saxon, D. H.; Schioppa, M.; Schlenstedt, S.; Schleper, P.; Schmidke, W. B.; Schneekloth, U.; Schönberg, V.; Schörner-Sadenius, T.; Schwartz, J.; Sciulli, F.; Shcheglova, L. M.; Shehzadi, R.; Shimizu, S.; Singh, I.; Skillicorn, I. O.; Słomiński, W.; Smith, W. H.; Sola, V.; Solano, A.; Son, D.; Sosnovtsev, V.; Spiridonov, A.; Stadie, H.; Stanco, L.; Stefaniuk, N.; Stern, A.; Stewart, T. P.; Stifutkin, A.; Stopa, P.; Suchkov, S.; Susinno, G.; Suszycki, L.; Sztuk-Dambietz, J.; Szuba, D.; Szuba, J.; Tapper, A. D.; Tassi, E.; Terrón, J.; Theedt, T.; Tiecke, H.; Tokushuku, K.; Tomaszewska, J.; Trusov, V.; Tsurugai, T.; Turcato, M.; Turkot, O.; Tymieniecka, T.; Vázquez, M.; Verbytskyi, A.; Viazlo, O.; Vlasov, N. N.; Walczak, R.; Wan Abdullah, W. A. T.; Whitmore, J. J.; Wichmann, K.; Wiggers, L.; Wing, M.; Wlasenko, M.; Wolf, G.; Wolfe, H.; Wrona, K.; Yagües-Molina, A. G.; Yamada, S.; Yamazaki, Y.; Yoshida, R.; Youngman, C.; Zabiegalov, O.; Żarnecki, A. F.; Zawiejski, L.; Zenaiev, O.; Zeuner, W.; Zhautykov, B. O.; Zhmak, N.; Zichichi, A.; Zolkapli, Z.; Zotkin, D. S.; ZEUS Collaboration

    2013-01-01

    The production of Z0 bosons in the reaction ep → eZ0p (*), where p (*) stands for a proton or a low-mass nucleon resonance, has been studied in ep collisions at HERA using the ZEUS detector. The analysis is based on a data sample collected between 1996 and 2007, amounting to 496 pb-1 of integrated luminosity. The Z0 was measured in the hadronic decay mode. The elasticity of the events was ensured by a cut on ηmax < 3.0, where ηmax is the maximum pseudorapidity of energy deposits in the calorimeter defined with respect to the proton beam direction. A signal was observed at the Z0 mass. The cross section of the reaction ep → eZ0p (*) was measured to be σ (ep → eZ0p (*)) = 0.13 ± 0.06 (stat.) ± 0.01 (syst.) pb, in agreement with the Standard Model prediction of 0.16 pb. This is the first measurement of Z0 production in ep collisions.

  3. Vortex rings

    NASA Technical Reports Server (NTRS)

    Shariff, Karim; Leonard, Anthony

    1992-01-01

    The vortex-ring problem in fluid mechanics is examined generally in terms of formation, the steady state, the duration of the rings, and vortex interactions. The formation is studied by examining the generation of laminar and turbulent vortex rings and their resulting structures with attention given to the three stages of laminar ring development. Inviscid dynamics is addressed to show how core dynamics affects overall ring motion, and laminar vortex structures are described in two dimensions. Viscous and inviscid structures are related in terms of 'leapfrogging', head-on collisions, and collisions with a no-slip wall. Linear instability theory is shown to successfully describe observational data, although late stages in the breakdown are not completely understood. This study of vortex rings has important implications for key aerodynamic issues including sound generation, transport and mixing, and vortex interactions.

  4. Translucent Rings

    NASA Image and Video Library

    2014-12-08

    Although solid-looking in many images, Saturn's rings are actually translucent. In this picture, we can glimpse the shadow of the rings on the planet through (and below) the A and C rings themselves, towards the lower right hand corner. For centuries people have studied Saturn's rings, but questions about the structure and composition of the rings lingered. It was only in 1857 when the physicist James Clerk Maxwell demonstrated that the rings must be composed of many small particles and not solid rings around the planet, and not until the 1970s that spectroscopic evidence definitively showed that the rings are composed mostly of water ice. This view looks toward the sunlit side of the rings from about 17 degrees above the ringplane. The image was taken with the Cassini spacecraft wide-angle camera on Aug. 12, 2014 in near-infrared light centered at 752 nanometers. The view was obtained at a distance of approximately 1.4 million miles (2.3 million kilometers) from Saturn and at a Sun-Saturn-spacecraft, or phase, angle of 24 degrees. Image scale is 85 miles (136 kilometers) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA18295

  5. Ultra-Sensitive Elemental and Isotope Measurements with Compact Plasma Source Cavity Ring-Down Spectroscopy (CPS-CRDS)

    SciTech Connect

    Duan, Yixiang; Wang, Chuji; Winstead, Christopher B.

    2005-06-01

    The proposed research is to develop a new class of instruments for actinide isotopes and hazardous element analysis through coupling highly sensitive cavity ring-down spectroscopy to a compact microwave plasma source. The research work will combine advantages of CRDS measurement with a low power, low flow rate, tubing-type microwave plasma source to reach breakthrough sensitivity for elemental analysis and unique capability of isotope measurement. The project has several primary goals: (1) Explore the feasibility of marrying CRDS with a new microwave plasma source; (2) Provide quantitative evaluation of CMP-CRDS for ultratrace elemental and actinide isotope analysis; (3) Approach a breakthrough detection limit of ca. 10{sup -13} g/ml or so, which are orders of magnitude better than currently available best values; (4) Demonstrate the capability of CMP-CRDS technology for isobaric measurements, such as {sup 238}U and {sup 238}Pu isotopes. (5) Design and assemble the first compact, field portable CMP-CRDS instrument with a high-resolution diode laser for DOE/EM on-site demonstration. With all these unique capabilities and sensitivities, we expect CMP-CRDS will bring a revolutionary change in instrument design and development, and will have great impact and play critical roles in supporting DOE's missions in environmental remediation, environmental emission control, waste management and characterization, and decontamination and decommissioning. The ultimate goals of the proposed project are to contribute to environmental management activities that would decrease risk for the public and workers, increase worker productivity with on-site analysis, and tremendously reduce DOE/EM operating costs.

  6. Time-resolved measurements of NO2 concentration in pulsed discharges by high-sensitivity cavity ring-down spectroscopy

    NASA Astrophysics Data System (ADS)

    Wu, Xingwei; Li, Cong; Feng, Chunlei; Wang, Qi; Ding, Hongbin

    2017-05-01

    To describe the complex kinetics of formation and destruction mechanism of nitrogen dioxide (NO2), there is an increasing demand for real-time and in situ analysis of NO2 in the discharge region. Pulsed cavity ring-down spectroscopy (CRDS) provides an excellent diagnostic approach. In the present paper, CRDS has been applied in situ for time evolution measurement of NO2 concentration which is rarely investigated in gas discharges. In pulsed direct current discharge of NO2/Ar mixture at a pressure of 500 Pa, a peak voltage of -1300 V and a frequency of 30 Hz, for higher initial NO2 concentration (3.05 × 1014 cm-3, 8.88 × 1013 cm-3), the NO2 concentration sharply decreases at the beginning of the discharge afterglow and then becomes almost constant, and the pace of decline increases with pulse duration; however, for lower initial NO2 concentration of 1.69 × 1013 cm-3, the NO2 concentration also decreases at the beginning of the discharge afterglow for 200 ns and 1 μs pulse durations, while it slightly increases and then declines for 2 μs pulse duration. Thus, the removal of low-level NO2 could not be promoted by a higher mean energy input.

  7. Temperature Dependence of Near-Infrared CO_2 Line Shapes Measured by Cavity Ring-Down Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ghysels, Mélanie; Fleisher, Adam J.; Liu, Qingnan; Hodges, Joseph T.

    2017-06-01

    We present high signal-to-noise ratio, mode-by-mode cavity ring-down spectroscopy (CRDS) line shape measurements of air-broadened transitions in the 30013 → 0001 band of ^{12}C^{16}O_2 located near λ = 1.6 μm. Absorption spectra were acquired from (230-290) K with a variable-temperature spectrometer developed in the framework of the NASA Orbiting Carbon Observatory-2 Mission to improve our understanding of carbon dioxide and oxygen line shape parameters. This system comprises a monolithic, thermally stabilized two-mirror, optical resonator exhibiting a mode stability of 200 kHz and a minimum detectable absorption coefficient of 10^{-11} cm^{-1}. Observed spectra were modeled the using the recently recommended Hartmann-Tran line profile (HTP) (and several of its limiting cases) which includes the effects of Dicke narrowing, speed dependent broadening, correlation between velocity- and phase-changing collisions and first-order line mixing effects. At fixed temperature, line shape parameters were determined by constrained multispectrum fitting of spectra acquired over the pressure range (30 - 300) Torr. For each transition considered, analysis of the temperature dependence of the fitted line shape parameters yielded the pressure-broadening temperature exponent and speed dependence parameter, where the latter quantity was found to be in good agreement with theoretical values consistent with the HTP model. Tennyson, et al., Pure Appl. Chem. 86, (2014) 1931

  8. Advanced Ring-Shaped Microelectrode Assay Combined with Small Rectangular Electrode for Quasi-In vivo Measurement of Cell-to-Cell Conductance in Cardiomyocyte Network

    NASA Astrophysics Data System (ADS)

    Nomura, Fumimasa; Kaneko, Tomoyuki; Hamada, Tomoyo; Hattori, Akihiro; Yasuda, Kenji

    2013-06-01

    To predict the risk of fatal arrhythmia induced by cardiotoxicity in the highly complex human heart system, we have developed a novel quasi-in vivo electrophysiological measurement assay, which combines a ring-shaped human cardiomyocyte network and a set of two electrodes that form a large single ring-shaped electrode for the direct measurement of irregular cell-to-cell conductance occurrence in a cardiomyocyte network, and a small rectangular microelectrode for forced pacing of cardiomyocyte beating and for acquiring the field potential waveforms of cardiomyocytes. The advantages of this assay are as follows. The electrophysiological signals of cardiomyocytes in the ring-shaped network are superimposed directly on a single loop-shaped electrode, in which the information of asynchronous behavior of cell-to-cell conductance are included, without requiring a set of huge numbers of microelectrode arrays, a set of fast data conversion circuits, or a complex analysis in a computer. Another advantage is that the small rectangular electrode can control the position and timing of forced beating in a ring-shaped human induced pluripotent stem cell (hiPS)-derived cardiomyocyte network and can also acquire the field potentials of cardiomyocytes. First, we constructed the human iPS-derived cardiomyocyte ring-shaped network on the set of two electrodes, and acquired the field potential signals of particular cardiomyocytes in the ring-shaped cardiomyocyte network during simultaneous acquisition of the superimposed signals of whole-cardiomyocyte networks representing cell-to-cell conduction. Using the small rectangular electrode, we have also evaluated the response of the cell network to electrical stimulation. The mean and SD of the minimum stimulation voltage required for pacing (VMin) at the small rectangular electrode was 166+/-74 mV, which is the same as the magnitude of amplitude for the pacing using the ring-shaped electrode (179+/-33 mV). The results showed that the

  9. Simultaneous interfacial rheology and microstructure measurement of densely aggregated particle laden interfaces using a modified double wall ring interfacial rheometer.

    PubMed

    Barman, Sourav; Christopher, Gordon F

    2014-08-19

    The study of particle laden interfaces has increased significantly due to the increasing industrial use of particle stabilized foams and Pickering emulsions, whose bulk rheology and stability are highly dependent on particle laden interface's interfacial rheology, which is a function of interfacial microstructure. To understand the physical mechanisms that dictate interfacial rheology of particle laden interfaces requires correlating rheology to microstructure. To achieve this goal, a double wall ring interfacial rheometer has been modified to allow real time, simultaneous interfacial visualization and shear rheology measurements. The development of this tool is outlined, and its ability to provide novel and unique measurements is demonstrated on a sample system. This tool has been used to examine the role of microstructure on the steady shear rheology of densely packed, aggregated particle laden interfaces at three surface concentrations. Through examination of the rheology and analysis of interfacial microstructure response to shear, a transition from shear thinning due to aggregated cluster breakup to yielding at a slip plane within the interface has been identified. Interestingly, it is found that aggregated interfaces transition to yielding well before they reached a jammed state. Furthermore, these systems undergo significant shear induced order when densely packed. These results indicate that the mechanics of these interfaces are not simply jammed or unjammed and that the interfacial rheology relationship with microstructure can give us significant insight into understanding how to engineer particle laden interfaces in the future. By examining both rheology and microstructure, the mechanisms that dictate observed rheology are now understood and can be used to predict and control the rheology of the interface.

  10. Widening Rings

    NASA Image and Video Library

    2010-03-18

    Saturn rings and its moon Rhea are imaged before a crescent of the planet in this image captured by NASA Cassini spacecraft. The shadows of the rings continue to grow wider after their disappearing act during the planet August 2009 equinox.

  11. Planetary Rings

    NASA Technical Reports Server (NTRS)

    Cuzzi, Jeffrey N.

    1994-01-01

    Just over two decades ago, Jim Pollack made a critical contribution to our understanding of planetary ring particle properties, and resolved a major apparent paradox between radar reflection and radio emission observations. At the time, particle properties were about all there were to study about planetary rings, and the fundamental questions were, why is Saturn the only planet with rings, how big are the particles, and what are they made of? Since then, we have received an avalanche of observations of planetary ring systems, both from spacecraft and from Earth. Meanwhile, we have seen steady progress in our understanding of the myriad ways in which gravity, fluid and statistical mechanics, and electromagnetism can combine to shape the distribution of the submicron-to-several-meter size particles which comprise ring systems into the complex webs of structure that we now know them to display. Insights gained from studies of these giant dynamical analogs have carried over into improved understanding of the formation of the planets themselves from particle disks, a subject very close to Jim's heart. The now-complete reconnaissance of the gas giant planets by spacecraft has revealed that ring systems are invariably found in association with families of regular satellites, and there is ark emerging perspective that they are not only physically but causally linked. There is also mounting evidence that many features or aspects of all planetary ring systems, if not the ring systems themselves, are considerably younger than the solar system

  12. Ring Slicer

    NASA Image and Video Library

    2015-07-06

    Saturn's moon Prometheus, seen here looking suspiciously blade-like, is captured near some of its sculpting in the F ring. Prometheus' (53 miles or 86 kilometers across) orbit sometimes takes it into the F ring. When it enters the ring, it leaves a gore where its gravitational influence clears out some of the smaller ring particles. Below Prometheus, the dark lanes interior to the F ring's bright core provide examples of previous ring-moon interactions. This view looks toward the unilluminated side of the rings from about 7 degrees below the ring plane. The image was taken in visible light with the Cassini spacecraft narrow-angle camera on March 15, 2015. The view was obtained at a distance of approximately 286,000 miles (461,000 kilometers) from Saturn and at a Sun-Saturn-spacecraft, or phase, angle of 115 degrees. Image scale is 1.7 miles (2.8 kilometers) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA18324

  13. Planetary Rings

    NASA Technical Reports Server (NTRS)

    Cuzzi, Jeffrey N.

    1994-01-01

    Just over two decades ago, Jim Pollack made a critical contribution to our understanding of planetary ring particle properties, and resolved a major apparent paradox between radar reflection and radio emission observations. At the time, particle properties were about all there were to study about planetary rings, and the fundamental questions were, why is Saturn the only planet with rings, how big are the particles, and what are they made of? Since then, we have received an avalanche of observations of planetary ring systems, both from spacecraft and from Earth. Meanwhile, we have seen steady progress in our understanding of the myriad ways in which gravity, fluid and statistical mechanics, and electromagnetism can combine to shape the distribution of the submicron-to-several-meter size particles which comprise ring systems into the complex webs of structure that we now know them to display. Insights gained from studies of these giant dynamical analogs have carried over into improved understanding of the formation of the planets themselves from particle disks, a subject very close to Jim's heart. The now-complete reconnaissance of the gas giant planets by spacecraft has revealed that ring systems are invariably found in association with families of regular satellites, and there is ark emerging perspective that they are not only physically but causally linked. There is also mounting evidence that many features or aspects of all planetary ring systems, if not the ring systems themselves, are considerably younger than the solar system

  14. Neptune's ring system.

    NASA Astrophysics Data System (ADS)

    Porco, C. C.; Nicholson, P. D.; Cuzzi, J. N.; Lissauer, J. J.; Esposito, L. W.

    The authors review the current state of knowledge regarding the structure, particle properties, kinematics, dynamics, origin, and evolution of the Neptune rings derived from Earth-based and Voyager data. Neptune has a diverse system of five continuous rings - 2 broad (Galle and Lassell) and 3 narrow (Adams, Le Verrier, and Arago) - plus a narrow discontinuous ring sharing the orbit of one of its ring-region satellites, Galatea. The outermost Adams ring contains the only arcs observed so far in Voyager images. The five arcs vary in angular extent from ≡1° to ≡10°, and exhibit internal azimuthal structure with typical spatial scales of ≡0.5°. All five lie within ≡40° of longitude. Dust is present throughout the Neptune system and measureable quantities of it were detected over Neptune's north pole. The Adams ring (including the arcs) and the Le Verrier ring contain a significant fraction of dust. The Neptune ring particles are probably red, and may consist of ice "dirtied" with silicates and/or some carbon-bearing material. A kinematic model for the arcs derived from Voyager data, the arcs' physical characteristics, and their orbital geometry and phasing are all roughly in accord with single-satellite arc shepherding by Galatea, though the presence of small kilometer-sized bodies embedded either within the arcs or placed at their Lagrange points may explain some inconsistencies with this model.

  15. Deep inelastic scattering events with a large rapidity gap at HERA

    NASA Astrophysics Data System (ADS)

    Ahmed, T.; Aid, S.; Andreev, V.; Andrieu, B.; Appuhn, R.-D.; Arpagaus, M.; Babaev, A.; Baehr, J.; Bán, J.; Baranov, P.; Barrelet, E.; Bartel, W.; Barth, M.; Bassler, U.; Beck, H. P.; Behrend, H.-J.; Belousov, A.; Berger, Ch.; Bergstein, H.; Bernardi, G.; Bernet, R.; Bertrand-Coremans, G.; Besançon, M.; Biddulph, P.; Bizot, J. C.; Blobel, V.; Borras, K.; Botterweck, F.; Boudry, V.; Braemer, A.; Brasse, F.; Braunschweig, W.; Brisson, V.; Bruncko, D.; Brune, C.; Buchholz, R.; Büngener, L.; Bürger, J.; Büsser, F. W.; Buniatian, A.; Burke, S.; Buschhorn, G.; Campbell, A. J.; Carli, T.; Charles, F.; Clarke, D.; Clegg, A. B.; Clerbaux, B.; Colombo, M.; Contreras, J. G.; Coughlan, J. A.; Courau, A.; Coutures, Ch.; Cozzika, G.; Criegee, L.; Cussans, D. G.; Cvach, J.; Dagoret, S.; Deffur, E.; Delcourt, B.; Del Buono, L.; De Roeck, A.; De Wolf, E. A.; Di Nezza, P.; Dollfus, C.; Dowell, J. D.; Dreis, H. B.; Duboc, J.; Düllmann, D.; Dünger, O.; Duhm, H.; Ebert, J.; Ebert, T. R.; Eckerlin, G.; Efremenko, V.; Egli, S.; Ehrlichmann, H.; Eichenberger, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Ellison, R. J.; Elsen, E.; Erdmann, M.; Evrard, E.; Favart, L.; Fedotov, A.; Feeken, D.; Felst, R.; Feltesse, J.; Ferencei, J.; Ferrarotto, F.; Flamm, K.; Fleischer, M.; Flieser, M.; Flügge, G.; Fomenko, A.; Fominykh, B.; Forbush, M.; Formánek, J.; Foster, J. M.; Franke, G.; Fretwurst, E.; Gabathuler, E.; Gabathuler, K.; Gamerdinger, K.; Garvey, J.; Gayler, J.; Gebauer, M.; Gellrich, A.; Genzel, H.; Gerhards, R.; Goerlach, U.; Goerlich, L.; Gogitidze, N.; Goldberg, M.; Goldner, D.; Gonzalez-Pineiro, B.; Goodall, A. M.; Gorelov, I.; Goritchev, P.; Grab, C.; Grässler, H.; Grässler, R.; Greenshaw, T.; Grindhammer, G.; Gruber, A.; Gruber, C.; Haack, J.; Haidt, D.; Hajduk, L.; Hamon, O.; Hampel, M.; Hanlon, E. M.; Hapke, M.; Haynes, W. J.; Heaterington, J.; Hedberg, V.; Heinzelmann, G.; Henderson, R. C. W.; Henschel, H.; Herma, R.; Herynek, I.; Hess, M. F.; Hildesheim, W.; Hill, P.; Hiller, K. H.; Hilton, C. D.; Hladký, J.; Hoeger, K. C.; Höppner, M.; Horisberger, R.; Huet, Ph.; Hufnagel, H.; Ibbotson, M.; Itterbeck, H.; Jabiol, M.-A.; Jacholkowska, A.; Jacobsson, C.; Jaffre, M.; Janoth, J.; Jansen, T.; Jönsson, L.; Johannsen, K.; Johnson, D. P.; Johnson, L.; Jung, H.; Kalmus, P. I. P.; Kant, D.; Kaschowitz, R.; Kasselmann, P.; Kathage, U.; Kaufmann, H. H.; Kazarian, S.; Kenyon, I. R.; Kermiche, S.; Keuker, C.; Kiesling, C.; Klein, M.; Kleinwort, C.; Knies, G.; Ko, W.; Köhler, T.; Kolanoski, H.; Kole, F.; Kolya, S. D.; Korbel, V.; Korn, M.; Kostka, P.; Kotelnikov, S. K.; Krasny, M. W.; Krehbiel, H.; Krücker, D.; Krüger, U.; Krüner-Marquis, U.; Kubenka, J. P.; Küster, H.; Kuhlen, M.; Kurča, T.; Kurzhöfer, J.; Kuznik, B.; Lacour, D.; Lamarche, F.; Lander, R.; Landon, M. P. J.; Lange, W.; Lanius, P.; Laporte, J.-F.; Lebedev, A.; Leverenz, C.; Levonian, S.; Ley, Ch.; Lindner, A.; Lindström, G.; Linsel, F.; Lipinski, J.; List, B.; Loch, P.; Lohmander, H.; Lopez, G. C.; Lüke, D.; Magnussen, N.; Malinovski, E.; Magnussen, N.; Malinovski, E.; Mani, S.; Maraček, R.; Marage, P.; Marks, J.; Marshall, R.; Martens, J.; Martin, R.; Martyn, H.-U.; Martyniak, J.; Masson, S.; Mavroidis, T.; Maxfield, S. J.; McMahon, S. J.; Mehta, A.; Meier, K.; Mercer, D.; Merz, T.; Meyer, C. A.; Meyer, H.; Meyer, J.; Mikocki, S.; Milstead, D.; Moreau, F.; Morris, J. V.; Müller, G.; Müller, K.; Murín, P.; Nagovizin, V.; Nahnhauer, R.; Naroska, B.; Naumann, Th.; Newman, P. R.; Newton, D.; Neyret, D.; Nguyen, H. K.; Niebergall, F.; Niebuhr, C.; Nisius, R.; Nowak, G.; Noyes, G. W.; Nyberg-Werther, M.; Oberlack, H.; Obrock, U.; Olsson, J. E.; Panaro, E.; Panitch, A.; Pascaud, C.; Patel, G. D.; Peppel, E.; Perez, E.; Phillips, J. P.; Pichler, Ch.; Pitzl, D.; Pope, G.; Prell, S.; Prosi, R.; Rädel, G.; Raupach, F.; Reimer, P.; Reinshagen, S.; Ribarics, P.; Riech, V.; Riedlberger, J.; Riess, S.; Rietz, M.; Robertson, S. M.; Robmann, P.; Roloff, H. E.; Roosen, R.; Rosenbauer, K.; Rostovtsev, A.; Rouse, F.; Royon, C.; Rüter, K.; Rusakov, S.; Rybicki, K.; Rylko, R.; Sahlmann, N.; Sanchez, E.; Sankey, D. P. C.; Savitsky, M.; Schacht, P.; Schiek, S.; Schleper, P.; von Schlippe, W.; Schmidt, C.; Schmidt, D.; Schmidt, G.; Schöning, A.; Schröder, V.; Schuhmann, E.; Schwab, B.; Schwind, A.; Seehausen, U.; Sefkow, F.; Seidel, M.; Sell, R.; Semenov, A.; Shekelyan, V.; Sheviakov, I.; Shooshtari, H.; Shtarkov, L. N.; Siegmon, G.; Siewert, U.; Sirois, Y.; Skillicorn, I. O.; Smirnov, P.; Smith, J. R.; Soloviev, Y.; Spitzer, H.; Starosta, R.; Steenbock, M.; Steffen, P.; Steinberg, R.; Stella, B.; Stephens, K.; Stier, J.; Stiewe, J.; Stösslein, U.; Strachota, J.; Straumann, U.; Struczinski, W.; Sutton, J. P.; Tapprogge, S.; Taylor, R. E.; Tchernyshov, V.; Thiebaux, C.; Thompson, G.; Tichomirov, I.; Truöl, P.; Turnau, J.; Tutas, J.; Uelkes, P.; Usik, A.; Valkár, S.; Valkárová, A.; Vallée, C.; Van Esch, P.; Van Mechelen, P.; Vartapetian, A.; Vazdik, Y.; Vecko, M.; Verrecchia, P.; Villet, G.; Wacker, K.; Wagener, A.; Walker, I. W.; Walther, A.; Weber, G.; Weber, M.; Wegener, D.; Wegner, A.; Wellisch, H. P.; west, L. R.; Willard, S.; Winde, M.; Winter, G.-G.; Wolff, Th.; Wright, A. E.; Wünsch, E.; Wulff, N.; Yiou, T. P.; Žáček, J.; Zhang, Z.; Zimmer, M.; Zimmermann, W.; Zomer, F.; Zuber, K.; H1 Collaboration

    1994-11-01

    Evidence is presented using data taken with the H1 detector at HERA for a class of deep inelastic electron-proton scattering (DIS) events (5 < Q2 < 120 GeV 2) at low Bjorken- x (10 -4 < x < 10 -2) which have almost no hadronic energy flow in a large interval of pseudo-rapidity around the proton remnant direction and which cannot be attributed to our present understanding of DIS and fluctuations in final state hadronic fragmentation. From an integrated luminosity of 273 nb -1, 734 events, that is about 5% of the total DIS sample, have no energy deposition greater than 400 MeV forward of laboratory pseudo-rapidity ηmax = 1.8 up to the largest measurable pseudo-rapidity of about 3.65. Evidence that about 10% of observed rapidity gap events are exclusive vector meson electroproduction is presented. Good descriptions of the data are obtained using models based either on a vector meson dominance like picture, which includes a large fraction of inelastic virtual photon dissociation, or on deep inelastic electron-pomeron scattering in which the partonic sub-structure of the latter is resolved.

  16. Estimation of regional CO2 fluxes using concentration measurements from the ring of towers in northern Wisconsin

    NASA Astrophysics Data System (ADS)

    Uliasz, M.; Denning, A.; Schuh, A.; Richardson, S. J.; Miles, N.; D