Nd:GdVO4 ring laser pumped by laser diodes
NASA Astrophysics Data System (ADS)
Hao, E. J.; Li, T.; Wang, Z. D.; Zhang, Y.
2013-02-01
The design and operation of a laser diode-pumped Nd:GdVO4 ring laser is described. A composite crystal (Nd:GdVO4/YVO4) with undoped ends is single-end pumped by a fiber-coupled laser diode (LD) at 808 nm. A four-mirror ring cavity is designed to keep the laser operating unidirectionally, which eliminates spatial hole burning in the standing-wave cavity. This laser can operate either as continuous wave (CW) or Q-switched. The single-frequency power obtained was 9.1 W at 1063 nm. Q-switched operation produced 0.23 mJ/pulse at 20 kHz in the fundamental laser.
Integration and initial operation of the multi-component large ring laser structure ROMY
NASA Astrophysics Data System (ADS)
Schreiber, Karl Ulrich; Igel, Heiner; Wassermann, Joachim; Gebauer, André; Simonelli, Andrea; Bernauer, Felix; Donner, Stefanie; Hadziioannou, Celine; Egdorf, Sven; Wells, Jon-Paul
2017-04-01
Rotation sensing for the geosciences requires a high sensor resolution of the order of 10 pico- radians per second or even less. An optical Sagnac interferometer offers this sensitivity, provided that the scale factor can be made very large. We have designed and built a multi- component ring laser system, consisting of 4 individual large ring lasers, each covering an area of more than 62 square m. The rings are orientated in the shape of a tetrahedron, so that all 3 spatial directions are covered, allowing also for some redundancy. We report on the initial operation of the free running gyroscopes in their underground facility in order to establish a performance estimate for the ROMY ring laser structure. Preliminary results suggest that the quantum noise limit is lower than that of the G ring laser.
Coupling strategies for coherent operation of quantum cascade ring laser arrays
NASA Astrophysics Data System (ADS)
Schwarzer, Clemens; Yao, Y.; Mujagić, E.; Ahn, S.; Schrenk, W.; Chen, J.; Gmachl, C.; Strasser, G.
2011-12-01
We report the design, fabrication and operation of coherently coupled ring cavity surface emitting quantum cascade lasers, emitting at wavelength around 8 μm. Special emphasis is placed on the evaluation of optimal coupling approaches and corresponding parameters. Evanescent field coupling as well as direct coupling where both devices are physically connected is presented. Furthermore, exploiting the Vernier-effect was used to obtain enhanced mode selectivity and robust coherent coupling of two ring-type quantum cascade lasers. Investigations were performed at pulsed room-temperature operation.
Narrow-band erbium-doped fibre linear–ring laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kolegov, A A; Sofienko, G S; Minashina, L A
2014-01-31
We have demonstrated a narrow-band linear – ring fibre laser with an output power of 15 mW at a wavelength of 1.55 μm and an emission bandwidth less than 5 kHz. The laser frequency is stabilised by an unpumped active fibre section and fibre Bragg grating. The fibre laser operates in a travelling wave mode, which allows the spatial hole burning effect to be avoided. At a certain pump power level, the laser switches from continuous mode to repetitivepulse operation, corresponding to relaxation oscillations. (control of laser radiation parameters)
Bichromatic emission in a ring dye laser
NASA Technical Reports Server (NTRS)
Lawandy, N. M.; Sohrab Afzal, R.; Rabinovich, W. S.
1987-01-01
An experimental study of a high-Q Rhodamine 6G ring dye laser has been performed, and bichromatic emission (BE) with wavelength spacings as large as 110 A when the laser operated bidirectionally has been measured. The BE vanished at all excitations when the laser was forced into unidirectional operation using a Faraday isolator. However, when a weak reflected beam was allowed to make a single pass in the direction opposite to that allowed by the Faraday device, BE is recovered at the higher pump powers.
A tunable erbium-doped fiber ring laser with power-equalized output
NASA Astrophysics Data System (ADS)
Yeh, Chien-Hung; Lin, Ming-Ching; Chi, Sien
2006-12-01
We propose and demonstrate a tunable erbium-based fiber ring laser with power-equalized output. When a mode-restricting intracavity fiber Fabry-Perot tunable filter (FFP-TF) is combined, the proposed resonator can guarantee a tunable laser oscillation. This proposed laser can obtain the flatter lasing wavelength in an effectively operating range of 1533.3 to 1574.6 nm without any other operating mechanism. Moreover, the performances of the output power, wavelength tuning range, and side-mode suppression ratio (SMSR) were studied.
Yin, Guolu; Saxena, Bhavaye; Bao, Xiaoyi
2011-12-19
A tunable and single longitudinal mode Er-doped fiber ring laser (SLM-EDFRL) is proposed and demonstrated based on Rayleigh backscattering (RBS) in single mode fiber-28e (SMF-28e). Theory and experimental study on formation of SLM from normal multi-mode ring laser is demonstrated. The RBS feedback in 660 m SMF-28e is the key to ensure SLM laser oscillation. This tunable SLM laser can be tuned over 1549.7-1550.18 nm with a linewidth of 2.5-3.0 kHz and a side mode suppression ratio (SMSR) of ~72 dB for electrical signal power. The tuning range is determined by the bandpass filter and gain medium used in the experiment. The laser is able to operate at S+C+L band.
Impact of fiber ring laser configuration on detection capabilities in FBG based sensor systems
NASA Astrophysics Data System (ADS)
Osuch, Tomasz; Kossek, Tomasz; Markowski, Konrad
2014-11-01
In this paper fiber ring lasers (FRL) as interrogation units for distributed fiber Bragg grating (FBG) based sensor networks are studied. In particular, two configurations of the fiber laser with erbium-doped fiber amplifier (EDFA) and semiconductor optical amplifier (SOA) as gain medium were analyzed. In the case of EDFA-based fiber interrogation systems, CW as well as active-mode locking operation were taken into account. The influence of spectral overlapping of FBGs spectra on detection capabilities of examined FRLs are presented. Experimental results show that the SOA-based fiber laser interrogation unit can operate as a multi-parametric sensing system. In turn, using an actively mode-locked fiber ring laser with an EDFA, an electronically switchable FBG based sensing system can be realized.
Ring laser having an output at a single frequency
Hackell, Lloyd A.
1991-01-01
A ring laser is disclosed that produces a single frequency of laser radiation in either the pulsed mode of operation or the continuous waveform (cw) mode of operation. The laser comprises a ring laser in a bowtie configuration, a birefringent gain material such as Nd:YLF, an improved optical diode that supports laser oscillation having a desired direction of travel and linear polarization, and a Q-switch. An output coupler (mirror) having a high reflectivity, such as 94%, is disclosed. Also disclosed is a self-seeded method of operation in which the laser can provide a pulse or a series of pulses of high power laser radiation at a consistent single frequency with a high degree of amplitude stability and temporal stability. In operation, the laser is operated in continuous waveform (cw) at a low power output with the Q-switch introducing a loss into the resonating cavity. Pumping is continued at a high level, causing the gain material to store energy. When a pulse is desired, the Q-switch is actuated to substantially reduce the losses so that a pulse can build up based on the low level cw oscillation. The pulse quickly builds, using the stored energy in the gain medium to provide a high power output pulse. The process may be repeated to provide a series of high power pulses of a consistent single frequency.
Circular lasers for telecommunications and rf/photonics applications
NASA Astrophysics Data System (ADS)
Griffel, Giora
2000-04-01
Following a review of ring resonator research in the past decade we shall report a novel bi-level etching technique that permits the use of standard photolithography for coupling to deeply-etched ring resonator structures. The technique is employed to demonstrate InGaAsP laterally- coupled racetrack ring resonators laser with record low threshold currents of 66 mA. The racetrack laser have curved sections of 150 micrometers radius with negligible bending loss. The lasers operate CW single mode up to nearly twice threshold with a 26 dB side-mode-suppression ratio. We shall also present a transfer matrix formalism for the analysis of ring resonator arrays and indicate application examples for flat band filter synthesis.
Semiconductor ring lasers coupled by a single waveguide
NASA Astrophysics Data System (ADS)
Coomans, W.; Gelens, L.; Van der Sande, G.; Mezosi, G.; Sorel, M.; Danckaert, J.; Verschaffelt, G.
2012-06-01
We experimentally and theoretically study the characteristics of semiconductor ring lasers bidirectionally coupled by a single bus waveguide. This configuration has, e.g., been suggested for use as an optical memory and as an optical neural network motif. The main results are that the coupling can destabilize the state in which both rings lase in the same direction, and it brings to life a state with equal powers at both outputs. These are both undesirable for optical memory operation. Although the coupling between the rings is bidirectional, the destabilization occurs due to behavior similar to an optically injected laser system.
NASA Technical Reports Server (NTRS)
Numata, Kenji; Camp, Jordan
2012-01-01
We have developed a linearly polarized Ytterbium-doped fiber ring laser with a single longitudinal mode output at 1064 run. A fiber-coupled intracavity phase modulator ensured mode-hop free operation and allowed fast frequency tuning. The fiber laser was locked with high stability to an iodine-stabilized laser, showing a frequency noise suppression of a factor approx 10 (exp 5) at 1 mHz
Eigenpolarization theory of monolithic nonplanar ring oscillators
NASA Technical Reports Server (NTRS)
Nilsson, Alan C.; Gustafson, Eric K.; Byer, Robert L.
1989-01-01
Diode-laser-pumped monolithic nonplanar ring oscillators (NPROs) in an applied magnetic field can operate as unidirectional traveling-wave lasers. The diode laser pumping, monolithic construction, and unidirectional oscillation lead to narrow linewidth radiation. Here, a comprehensive theory of the eigenpolarizations of a monolithic NPRO is presented. It is shown how the properties of the integral optical diode that forces unidirectional operation depend on the choice of the gain medium, the applied magnetic field, the output coupler, and the geometry of the nonplanar ring light path. Using optical equivalence theorems to gain insight into the polarization characteristics of the NPRO, a strategy for designing NPROs with low thresholds and large loss nonreciprocities is given. An analysis of the eigenpolarizations for one such NPRO is presented, alternative optimization approaches are considered, and the prospects for further reducing the linewidths of these lasers are briefly discussed.
NASA Astrophysics Data System (ADS)
Dai, T. Y.; Fan, Z. G.; Wu, J.; Ju, Y. L.; Yao, B. Q.; Zhang, Z. G.; Teng, K.; Xu, X. G.; Duan, X. M.
2017-05-01
We report a unidirectional single-longitudinal-mode Ho:YLF ring laser. An acousto-optic modulator and two half-wave plates were used to enforce the Ho:YLF ring laser in a unidirectional operation. The single-longitudinal-mode output power could reach 3.73 W successfully when the incident pump power was 16.4 W. The corresponding slope efficiency was 27.1%. The wavelength of the single-longitudinal-mode Ho:YLF ring laser was 2063.8 nm. The M2 factor was 1.12. The results illustrated that the single-longitudinal-mode output power could be further enhanced by increasing the radio frequency power of the acousto-optic modulator.
Design and performance of an astigmatism-compensated self-mode-locked ring-cavity Ti:sapphire laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Y.; Dai, J.; Wang, Q.
1996-12-31
Based on the nonlinear ABCD matrix and the renormalized q-parameter for Gaussian-beam propagation, self-focusing in conjunction with a spatial gain profile for self-mode locking in a ring-cavity Ti:sapphire laser is analyzed. In the experiment, an astigmatism-compensated self-mode-locked ring-cavity Ti:sapphire laser is demonstrated, and self-mode-locked operation is achieved in both bidirection and unidirection with pulse durations as short as 36 fs and 32 fs, respectively. The experimental observations are in good agreement with theoretical predictions.
Koch, Peter; Bartschke, Juergen; L'huillier, Johannes A
2015-11-30
In this paper we report on the realization of a single-mode Q-switched Nd:YVO4 ring laser at 1342 nm. Unidirectional and single-mode operation of the ring laser is achieved by injection-locking with a continuous wave Nd:YVO4 microchip laser, emitting a single-frequency power of up to 40 mW. The ring laser provides a single-mode power of 13.9 W at 10 kHz pulse repetition frequency with a pulse duration of 18.2 ns and an excellent beam quality (M2 < 1.05). By frequency doubling of the fundamental 1342 nm laser, a power of 8.7 W at 671 nm with a pulse duration of 14.8 ns and a beam propagation factor of M2 < 1.1 is obtained. The 671 nm radiation features a long-term spectral width of 75 MHz.
NASA Astrophysics Data System (ADS)
Feng, Suchun; Xu, Ou; Lu, Shaohua; Ning, Tigang; Jian, Shuisheng
2009-06-01
Switchable single-longitudinal-mode (SLM) dual-wavelength erbium-doped fiber ring laser based on one polarization-maintaining fiber Bragg grating (PMFBG) is demonstrated. Due to the enhancement of the polarization hole burning (PHB) by the PMFBG, the laser can be designed to operate in stable dual-wavelength or wavelength-switching modes with a wavelength spacing of 0.336 nm at room temperature by adjusting a polarization controller (PC). The stable SLM operation is guaranteed by a compound-ring cavity and a saturable absorber (SA). The optical signal-to-noise ratio (OSNR) is over 45 dB. The amplitude variation in nearly one and half an hour is less than 0.2 dB.
Wang, Yi-Ping; Wang, Dong Ning; Jin, Wei
2006-09-01
A method for measuring the length of an optical fiber by use of an optical fiber ring laser pulse source is proposed and demonstrated. The key element of the optical fiber ring laser is a gain-switched Fabry-Perot laser diode operated in a self-injection seeding scheme. This method is especially suitable for measuring a medium or long fiber, and a resolution of 0.1 m is experimentally achieved. The measurement is implemented by accurately determining the pulse frequency that can maximize the output power of the fiber ring laser. The measurement results depend only on the refractive index of the fiber corresponding to this single wavelength, instead of the group index of the fiber, which represents a great advantage over both optical time-domain reflectometry and optical low-coherence reflectometry methods.
NASA Astrophysics Data System (ADS)
Korobko, Dmitry A.; Zolotovskii, Igor O.; Panajotov, Krassimir; Spirin, Vasily V.; Fotiadi, Andrei A.
2017-12-01
We develop a theoretical framework for modeling of semiconductor laser coupled to an external fiber-optic ring resonator. The developed approach has shown good qualitative agreement between theoretical predictions and experimental results for particular configuration of a self-injection locked DFB laser delivering narrow-band radiation. The model is capable of describing the main features of the experimentally measured laser outputs such as laser line narrowing, spectral shape of generated radiation, mode-hoping instabilities and makes possible exploring the key physical mechanisms responsible for the laser operation stability.
Two semiconductor ring lasers coupled by a single-waveguide for optical memory operation
NASA Astrophysics Data System (ADS)
Van der Sande, Guy; Coomans, Werner; Gelens, Lendert
2014-05-01
Semiconductor ring lasers are semiconductor lasers where the laser cavity consists of a ring-shaped waveguide. SRLs are highly integrable and scalable, making them ideal candidates for key components in photonic integrated circuits. SRLs can generate light in two counterpropagating directions between which bistability has been demonstrated. Hence, information can be coded into the emission direction. This bistable operation allows SRLs to be used in systems for all-optical switching and as all-optical memories. For the demonstration of fast optical flip-flop operation, Hill et al. [Nature 432, 206 (2004)] fabricated two SRLs coupled by a single waveguide, rather than a solitary SRL. Nevertheless, the literature shows that a single SRL can also function perfectly as an all-optical memory. In our recent paper [W. Coomans et al., Phys. Rev. A 88, 033813, (2013)], we have raised the question whether coupling two SRLs to realize a single optical memory has any advantage over using a solitary SRL, taking into account the obvious disadvantage of a doubled footprint and power consumption. To provide the answer, we have presented in that paper a numerical study of the dynamical behavior of semiconductor ring lasers coupled by a single bus waveguide, both when weakly coupled and when strongly coupled. We have provided a detailed analysis of the multistable landscape in the coupled system, analyzed the stability of all solutions and related the internal dynamics in the individual lasers to the field effectively measured at the output of the waveguide. We have shown which coupling phases generally promote instabilities and therefore need to be avoided in the design. Regarding all-optical memory operation, we have demonstrated that there is no real advantage for bistable memory operation compared to using a solitary SRL. An increased power suppression ratio has been found to be mainly due to the destructive interference of the SRL fields at the low power port. Also, multistability between several modal configurations has been shown to remain unavoidable.
A Multicomponent Large Ringlaser for Seismology: First Observations
NASA Astrophysics Data System (ADS)
Igel, H.; Gebauer, A.; Simonelli, A.; Kodet, J.; Bernauer, F.; Donner, S.; Wassermann, J. M.; Tanimoto, T.; Schreiber, K. U.
2017-12-01
During 2016 a large 4-component ring laser structure called "Romy" was built and implemented underground in the Geophysical Observatory of the Ludwig-Maximilians-University (LMU) 20km outside Munich primarily funded by the European Research Council and LMU. The ring laser has a tetrahedral top-down shape with four triangles of 12m side length. The independent triangular He-Ne ring lasers with 12 m side length are expected to resolve rotational motions down to 12 prad/s/sqrt(Hz), allowing us to record below the assumed low-noise model for rotational ground motions in a wide frequency band (e.g., ocean-generated noise, free oscillations, local regional and global earthquakes). Recently, Romy was described in a feature article in Science (Hand, DOI: 10.1126/science.aal1069). We will present the current state of the instrument and discuss the operation principle and quality of the ring laser components. First observations include the ocean-generated noise, the late 2016 earthquake sequence of Italy, and several teleseismic events. We compare ring laser observations from different sites (Gran Sasso Underground Laboratory, Italy, and G-ring Wettzell, Germany) in relation with their local site conditions. We report on future plans to stabilize the ring geometry providing long-term stability for geodetic applications such as the precise measurement of the Earth's complete rotation vector.
Theory of a ring laser. [electromagnetic field and wave equations
NASA Technical Reports Server (NTRS)
Menegozzi, L. N.; Lamb, W. E., Jr.
1973-01-01
Development of a systematic formulation of the theory of a ring laser which is based on first principles and uses a well-known model for laser operation. A simple physical derivation of the electromagnetic field equations for a noninertial reference frame in uniform rotation is presented, and an attempt is made to clarify the nature of the Fox-Li modes for an open polygonal resonator. The polarization of the active medium is obtained by using a Fourier-series method which permits the formulation of a strong-signal theory, and solutions are given in terms of continued fractions. It is shown that when such a continued fraction is expanded to third order in the fields, the familiar small-signal ring-laser theory is obtained.
NASA Astrophysics Data System (ADS)
Cheng, Jianqun; Ruan, Shuangchen
2011-11-01
A switchable multi-wavelength Erbium-doped photonic crystal fiber (ED-PCF) ring laser based on a length of polarization-maintaining photonic crystal fiber(PM-PCF) is presented and demonstrated experimentally. A segment of ED-PCF is used as linear gain medium in the resonant cavity. Due to the polarization hole burning (PHB) caused by the PM-PCF and a polarization controller (PC), the laser can operate in stable dual- or triple- wavelength modes at room temperature. The optical signal-to-noise ratio (OSNR) of the laser without any wavelength-selective components is greater than 30 dB. The amplitude variations of lasing peaks in ten minutes are less than 0.26dB for two different operating modes.
NASA Astrophysics Data System (ADS)
Cheng, Jianqun; Ruan, Shuangchen
2012-03-01
A switchable multi-wavelength Erbium-doped photonic crystal fiber (ED-PCF) ring laser based on a length of polarization-maintaining photonic crystal fiber(PM-PCF) is presented and demonstrated experimentally. A segment of ED-PCF is used as linear gain medium in the resonant cavity. Due to the polarization hole burning (PHB) caused by the PM-PCF and a polarization controller (PC), the laser can operate in stable dual- or triple- wavelength modes at room temperature. The optical signal-to-noise ratio (OSNR) of the laser without any wavelength-selective components is greater than 30 dB. The amplitude variations of lasing peaks in ten minutes are less than 0.26dB for two different operating modes.
Gao, Chunqing; Lin, Zhifeng; Gao, Mingwei; Zhang, Yunshan; Zhu, Lingni; Wang, Ran; Zheng, Yan
2010-05-20
We present a diode-pumped, 2mum single-frequency Q-switched Tm:YAG laser. The Q-switched laser is injection seeded by a monolithic Tm:YAG nonplanar ring oscillator with the ramp-hold-fire technique. The output energy of the 2mum single-frequency Q-switched pulse is 2.23mJ, with a pulse width of 290ns and a repetition rate of 200Hz. From the heterodyne beating measurement, the frequency difference between the seed laser and the Q-switched laser is determined to be 37.66MHz, with a half-width of the symmetric spectrum of about 2 MHz.
NASA Astrophysics Data System (ADS)
Chen, W. G.; Lou, S. Q.; Feng, S. C.; Wang, L. W.; Li, H. L.; Guo, T. Y.; Jian, S. S.
2009-11-01
Switchable multi-wavelength fiber ring laser with an in-fiber Mach-Zehnder interferometer incorporated into the ring cavity serving as wavelength-selective filter at room temperature is demonstrated. The filter is formed by splicing a section of few-mode photonic crystal fiber (PCF) and two segments of single mode fiber (SMF) with the air-holes on the both sides of PCF intentionally collapsed in the vicinity of the splices. By adjusting the states of the polarization controller (PC) appropriately, the laser can be switched among the stable single-, dual- and triple-wavelength lasing operations by exploiting polarization hole burning (PHB) effect.
High Voltage TAL Erosion Characterization
NASA Technical Reports Server (NTRS)
Jacobson, David T.
2003-01-01
Extended operation of a D-80 anode layer thruster at high voltage was investigated. The thruster was operated for 1200 hours at 700 Volts and 4 Amperes. Laser profilometry was employed to quantify the erosion of the thruster's graphite guard rings and electrodes at 0, 300, 600, 900, and 1200 hours. Thruster performance and electrical characteristics were monitored over the duration of the investigation. The guard rings exhibited asymmetric erosion that was greatest in the region of the cathode. Erosion of the guard rings exposed the magnet poles between 600 to 900 hours of operation.
Intracavity optical trapping with Ytterbium doped fiber ring laser
NASA Astrophysics Data System (ADS)
Sayed, Rania; Kalantarifard, Fatemeh; Elahi, Parviz; Ilday, F. Omer; Volpe, Giovanni; Maragò, Onofrio M.
2013-09-01
We propose a novel approach for trapping micron-sized particles and living cells based on optical feedback. This approach can be implemented at low numerical aperture (NA=0.5, 20X) and long working distance. In this configuration, an optical tweezers is constructed inside a ring cavity fiber laser and the optical feedback in the ring cavity is controlled by the light scattered from a trapped particle. In particular, once the particle is trapped, the laser operation, optical feedback and intracavity power are affected by the particle motion. We demonstrate that using this configuration is possible to stably hold micron-sized particles and single living cells in the focal spot of the laser beam. The calibration of the optical forces is achieved by tracking the Brownian motion of a trapped particle or cell and analysing its position distribution.
Jun, Changsu; Villiger, Martin; Oh, Wang-Yuhl; Bouma, Brett E.
2014-01-01
Innovations in laser engineering have yielded several novel configurations for high repetition rate, broad sweep range, and long coherence length wavelength swept lasers. Although these lasers have enabled high performance frequency-domain optical coherence tomography, they are typically complicated and costly and many require access to proprietary materials or devices. Here, we demonstrate a simplified ring resonator configuration that is straightforward to construct from readily available materials at a low total cost. It was enabled by an insight regarding the significance of isolation against bidirectional operation and by configuring the sweep range of the intracavity filter to exceed its free spectral range. The design can easily be optimized to meet a range of operating specifications while yielding robust and stable performance. As an example, we demonstrate 240 kHz operation with 125 nm sweep range and >70 mW of average output power and demonstrate high quality frequency domain OCT imaging. The complete component list and directions for assembly of the laser are posted on-line at www.octresearch.org. PMID:25401614
High-Reliability Pump Module for Non-Planar Ring Oscillator Laser
NASA Technical Reports Server (NTRS)
Liu, Duncan T.; Qiu, Yueming; Wilson, Daniel W.; Dubovitsky, Serge; Forouhar, Siamak
2007-01-01
We propose and have demonstrated a prototype high-reliability pump module for pumping a Non-Planar Ring Oscillator (NPRO) laser suitable for space missions. The pump module consists of multiple fiber-coupled single-mode laser diodes and a fiber array micro-lens array based fiber combiner. The reported Single-Mode laser diode combiner laser pump module (LPM) provides a higher normalized brightness at the combined beam than multimode laser diode based LPMs. A higher brightness from the pump source is essential for efficient NPRO laser pumping and leads to higher reliability because higher efficiency requires a lower operating power for the laser diodes, which in turn increases the reliability and lifetime of the laser diodes. Single-mode laser diodes with Fiber Bragg Grating (FBG) stabilized wavelength permit the pump module to be operated without a thermal electric cooler (TEC) and this further improves the overall reliability of the pump module. The single-mode laser diode LPM is scalable in terms of the number of pump diodes and is capable of combining hundreds of fiber-coupled laser diodes. In the proof-of-concept demonstration, an e-beam written diffractive micro lens array, a custom fiber array, commercial 808nm single mode laser diodes, and a custom NPRO laser head are used. The reliability of the proposed LPM is discussed.
Amplitude and polarization asymmetries in a ring laser
NASA Technical Reports Server (NTRS)
Campbell, L. L.; Buholz, N. E.
1971-01-01
Asymmetric amplitude effects between the oppositely directed traveling waves in a He-Ne ring laser are analyzed both theoretically and experimentally. These effects make it possible to detect angular orientations of an inner-cavity bar with respect to the plane of the ring cavity. The amplitude asymmetries occur when a birefringent bar is placed in the three-mirror ring cavity, and an axial magnetic field is applied to the active medium. A simplified theoretical analysis is performed by using a first order perturbation theory to derive an expression for the polarization of the active medium, and a set of self-consistent equations are derived to predict threshold conditions. Polarization asymmetries between the oppositely directed waves are also predicted. Amplitude asymmetries similar in nature to those predicted at threshold occur when the laser is operating in 12-15 free-running modes, and polarization asymmetry occurs simultaneously.
NASA Astrophysics Data System (ADS)
Inoue, Shunya; Nishimura, Shun; Nakahama, Masanori; Matsutani, Akihiro; Sakaguchi, Takahiro; Koyama, Fumio
2018-04-01
For use in wavelength division multiplexing (WDM) with high-speed wavelength routing functions, the fast wavelength switching of tunable lasers is a key function. A tunable MEMS vertical cavity surface emitting laser (VCSEL) is a good candidate as a light source for this purpose. The cantilever in MEMS VCSELs has a high mechanical resonance frequency thanks to its small size, but the switching time is limited by the ringing of the cantilever structure. In this paper, we analyzed the mechanical behavior of a cantilever MEMS mirror and demonstrated ringing-free operation with an engineered voltage signal. The applied voltage waveform was optimized in a two-step format and we experimentally obtained ringing free wavelength switching. We measured the transient response of the wavelength by inserting a tunable filter, exhibiting the settling time of less than 2.5 µs, which corresponds to a half period of the cantilever resonance frequency.
Zhang, Peng; Wu, Di; Du, Quanli; Li, Xiaoyan; Han, Kexuan; Zhang, Lizhong; Wang, Tianshu; Jiang, Huilin
2017-12-10
A 1.7 μm band tunable narrow-linewidth Raman fiber laser based on spectrally sliced amplified spontaneous emission (SS-ASE) and multiple filter structures is proposed and experimentally demonstrated. In this scheme, an SS-ASE source is employed as a pump source in order to avoid stimulated Brillouin scattering. The ring configuration includes a 500 m long high nonlinear optical fiber and a 10 km long dispersion shifted fiber as the gain medium. A segment of un-pumped polarization-maintaining erbium-doped fiber is used to modify the shape of the spectrum. Furthermore, a nonlinear polarization rotation scheme is applied as the wavelength selector to generate lasers. A high-finesse ring filter and a ring filter are used to narrow the linewidth of the laser, respectively. We demonstrate tuning capabilities of a single laser over 28 nm between 1652 nm and 1680 nm by adjusting the polarization controller (PC) and tunable filter. The tunable laser has a 0.023 nm effective linewidth with the high-finesse ring filter. The stable multi-wavelength laser operation of up to four wavelengths can be obtained by adjusting the PC carefully when the pump power increases.
Bilenca, A; Yun, S H; Tearney, G J; Bouma, B E
2006-03-15
Recent results have demonstrated unprecedented wavelength-tuning speed and repetition rate performance of semiconductor ring lasers incorporating scanning filters. However, several unique operational characteristics of these lasers have not been adequately explained, and the lack of an accurate model has hindered optimization. We numerically investigated the characteristics of these sources, using a semiconductor optical amplifier (SOA) traveling-wave Langevin model, and found good agreement with experimental measurements. In particular, we explored the role of the SOA refractive-index nonlinearities in determining the intracavity frequency-shift-broadening and the emitted power dependence on scan speed and direction. Our model predicts both continuous-wave and pulse operation and shows a universal relationship between the output power of lasers that have different cavity lengths and the filter peak frequency shift per round trip, therefore revealing the advantage of short cavities for high-speed biomedical imaging.
NASA Astrophysics Data System (ADS)
Salceda-Delgado, G.; Martinez-Rios, A.; Sierra-Hernandez, J. M.; Rodríguez-Carreón, V. C.; Toral-Acosta, D.; Selvas-Aguilar, R.; Álvarez-Tamayo, R. I.; Castillo-Guzman, A. A.; Rojas-Laguna, R.
2018-03-01
A straightforward and versatile method for switching from single to different multiwavelength laser emission in ring cavity fiber lasers is proposed and demonstrated experimentally. The method is based on using the changeable interference pattern from an optical fiber modal Michelson interferometer as a wavelength selective filter into the ring cavity laser. The interferometer is constructed using a bi-conical tapered fiber and a single-mode fiber segment, with these being spliced together to form an optical fiber tip probe. When the length of the single-mode fiber piece is modified, the phase difference between the interfering modes of the interferometer causes a change in the interferometer free spectral range. As a consequence, the laser intra-cavity losses lead to gain competition, which allows us to adjust the number of simultaneously generated laser lines. A multiwavelength reconfiguration of the laser from one up to a maximum of eight emission lines was obtained, with a maximum SNR of around 47 dBm.
Measuring a Fiber-Optic Delay Line Using a Mode-Locked Laser
NASA Technical Reports Server (NTRS)
Tu, Meirong; McKee, Michael R.; Pak, Kyung S.; Yu, Nan
2010-01-01
The figure schematically depicts a laboratory setup for determining the optical length of a fiber-optic delay line at a precision greater than that obtainable by use of optical time-domain reflectometry or of mechanical measurement of length during the delay-line-winding process. In this setup, the delay line becomes part of the resonant optical cavity that governs the frequency of oscillation of a mode-locked laser. The length can then be determined from frequency-domain measurements, as described below. The laboratory setup is basically an all-fiber ring laser in which the delay line constitutes part of the ring. Another part of the ring - the laser gain medium - is an erbium-doped fiber amplifier pumped by a diode laser at a wavelength of 980 nm. The loop also includes an optical isolator, two polarization controllers, and a polarizing beam splitter. The optical isolator enforces unidirectional lasing. The polarization beam splitter allows light in only one polarization mode to pass through the ring; light in the orthogonal polarization mode is rejected from the ring and utilized as a diagnostic output, which is fed to an optical spectrum analyzer and a photodetector. The photodetector output is fed to a radio-frequency spectrum analyzer and an oscilloscope. The fiber ring laser can generate continuous-wave radiation in non-mode-locked operation or ultrashort optical pulses in mode-locked operation. The mode-locked operation exhibited by this ring is said to be passive in the sense that no electro-optical modulator or other active optical component is used to achieve it. Passive mode locking is achieved by exploiting optical nonlinearity of passive components in such a manner as to obtain ultra-short optical pulses. In this setup, the particular nonlinear optical property exploited to achieve passive mode locking is nonlinear polarization rotation. This or any ring laser can support oscillation in multiple modes as long as sufficient gain is present to overcome losses in the ring. When mode locking is achieved, oscillation occurs in all the modes having the same phase and same polarization. The frequency interval between modes, often denoted the free spectral range (FSR), is given by c/nL, where c is the speed of light in vacuum, n is the effective index of refraction of the fiber, and L is the total length of optical path around the ring. Therefore, the length of the fiber-optic delay line, as part of the length around the ring, can be calculated from the FSRs measured with and without the delay line incorporated into the ring. For this purpose, the FSR measurements are made by use of the optical and radio-frequency spectrum analyzers. In experimentation on a 10-km-long fiber-optic delay line, it was found that this setup made it possible to measure the length to within a fractional error of about 3 10(exp -6), corresponding to a length error of 3 cm. In contrast, measurements by optical time-domain reflectometry and mechanical measurement were found to be much less precise: For optical time-domain reflectometry, the fractional error was found no less than 10(exp -4) (corresponding to a length error of 1 m) and for mechanical measurement, the fractional error was found to be about 10(exp -2) (corresponding to a length error of 100 m).
CW molecular iodine laser pumped with a low power DPSSL
NASA Astrophysics Data System (ADS)
Luhs, W.; Wellegehausen, B.; Goyal, M.
2017-04-01
Cw oscillation of molecular iodine on many lines in the range of 557-802 nm pumped with a low power common diode pumped and frequency doubled solid state laser DPSSL is reported. The DPSSL is temperature stabilized, operates in single frequency and can be tuned by about 2 nm at 532 nm. Operation conditions of this simple and low cost iodine ring laser will be described and possible applications will be discussed.
Low-threshold, CW, all-solid-state Ti:Al2O3 laser
NASA Technical Reports Server (NTRS)
Harrison, James; Finch, Andrew; Rines, David M.; Rines, Glen A.; Moulton, Peter F.
1991-01-01
A CW Ti:Al2O3 ring laser with a threshold power of 119 mW is demonstrated. It provides a tunable source of single-frequency, diffraction-limited radiation that is suitable for injection seeding. The Ti:Al2O3 laser is operated with a diode-laser-pumped, frequency-doubled, Nd:YAG laser as the sole pump source.
Optical analysis of grazing incidence ring resonators for free-electron lasers
NASA Astrophysics Data System (ADS)
Gabardi, David R.; Shealy, David L.
1990-06-01
Two types of grazing incidence ring resonators for use with free-electron lasers have been investigated. These cavities utilize off-axis conical and flat mirrors and have been designed to operate in the extreme ultraviolet region of the spectrum. In this paper, a design algorithm that calculates the mirror parameters for propagation of Gaussian TEM mode beams in the two cavity types is presented. Results concerning the angular stability of each type are also shown.
Koch, Peter; Ruebel, Felix; Bartschke, Juergen; L'huillier, Johannes A
2015-11-20
We demonstrate a continuous wave single-frequency laser at 671.1 nm based on a high-power 888 nm pumped Nd:YVO4 ring laser at 1342.2 nm. Unidirectional operation of the fundamental ring laser is achieved with the injection-locking technique. A Nd:YVO4 microchip laser serves as the injecting seed source, providing a tunable single-frequency power of up to 40 mW. The ring laser emits a single-frequency power of 17.2 W with a Gaussian beam profile and a beam propagation factor of M2<1.1. A 60-mm-long periodically poled MgO-doped LiNbO3 crystal is used to generate the second harmonic in a single-pass scheme. Up to 5.7 W at 671.1 nm with a Gaussian shaped beam profile and a beam propagation factor of M2<1.2 are obtained, which is approximately twice the power of previously reported lasers. This work opens possibilities in cold atoms experiments with lithium, allowing the use of larger ensembles in magneto-optical traps or higher diffraction orders in atomic beam interferometers.
Injection mode-locking Ti-sapphire laser system
Hovater, James Curtis; Poelker, Bernard Matthew
2002-01-01
According to the present invention there is provided an injection modelocking Ti-sapphire laser system that produces a unidirectional laser oscillation through the application of a ring cavity laser that incorporates no intracavity devices to achieve unidirectional oscillation. An argon-ion or doubled Nd:YVO.sub.4 laser preferably serves as the pump laser and a gain-switched diode laser serves as the seed laser. A method for operating such a laser system to produce a unidirectional oscillating is also described.
Tunable single frequency fiber laser based on FP-LD injection locking.
Zhang, Aiqin; Feng, Xinhuan; Wan, Minggui; Li, Zhaohui; Guan, Bai-ou
2013-05-20
We propose and demonstrate a tunable single frequency fiber laser based on Fabry Pérot laser diode (FP-LD) injection locking. The single frequency operation principle is based on the fact that the output from a FP-LD injection locked by a multi-longitudinal-mode (MLM) light can have fewer longitudinal-modes number and narrower linewidth. By inserting a FP-LD in a fiber ring laser cavity, single frequency operation can be possibly achieved when stable laser oscillation established after many roundtrips through the FP-LD. Wavelength switchable single frequency lasing can be achieved by adjusting the tunable optical filter (TOF) in the cavity to coincide with different mode of the FP-LD. By adjustment of the drive current of the FP-LD, the lasing modes would shift and wavelength tunable operation can be obtained. In experiment, a wavelength tunable range of 32.4 nm has been obtained by adjustment of the drive current of the FP-LD and a tunable filter in the ring cavity. Each wavelength has a side-mode suppression ratio (SMSR) of at least 41 dB and a linewidth of about 13 kHz.
NASA Technical Reports Server (NTRS)
Gerstenberger, D. C.; Tye, G. E.; Wallace, R. W.
1991-01-01
Efficient second-harmonic conversion of the 1064-nm output of a diode-pumped CW single-frequency Nd:YAG laser to 532 nm was obtained by frequency locking the laser to a monolithic ring resonator constructed of magnesium-oxide-doped lithium niobate. The conversion efficiency from the fundamental to the second harmonic was 65 percent. Two hundred milliwatts of CW single-frequency 532-nm light were produced from 310 mW of power of 1064-nm light. This represents a conversion efficiency of 20 percent from the 1-W diode laser used to pump the Nd:YAG laser to single-frequency 532-nm output. No signs of degradation were observed for over 500 h of operation.
Statistical Properties of a Ring Laser with Injected Signal and Backscattering
NASA Astrophysics Data System (ADS)
Leng, Feng; Zhu, Shi-Qun
2001-01-01
The statistical properties of a homogeneously broadened ring laser with an injected signal are investigated and the normalized two-mode intensity auto- and cross-correlation functions are calculated by a full saturation laser theory with backscattering. The theoretical predictions are in good agreement with the experimental measurements. Further investigation reveals that the backscattering can reduce the fluctuations in the system while the full saturation effect plays a major role when the laser is operated above threshold. It is also quite important to notice that the injected signal can drive the weak mode from incoherent light to coherent light. The project supported by National Natural Science Foundation of China (Grant No. 19874046) and Natural Science Foundation of Jiangsu Education Commission of China
Silicon Photonics Transmitter with SOA and Semiconductor Mode-Locked Laser.
Moscoso-Mártir, Alvaro; Müller, Juliana; Hauck, Johannes; Chimot, Nicolas; Setter, Rony; Badihi, Avner; Rasmussen, Daniel E; Garreau, Alexandre; Nielsen, Mads; Islamova, Elmira; Romero-García, Sebastián; Shen, Bin; Sandomirsky, Anna; Rockman, Sylvie; Li, Chao; Sharif Azadeh, Saeed; Lo, Guo-Qiang; Mentovich, Elad; Merget, Florian; Lelarge, François; Witzens, Jeremy
2017-10-24
We experimentally investigate an optical link relying on silicon photonics transmitter and receiver components as well as a single section semiconductor mode-locked laser as a light source and a semiconductor optical amplifier for signal amplification. A transmitter based on a silicon photonics resonant ring modulator, an external single section mode-locked laser and an external semiconductor optical amplifier operated together with a standard receiver reliably supports 14 Gbps on-off keying signaling with a signal quality factor better than 7 for 8 consecutive comb lines, as well as 25 Gbps signaling with a signal quality factor better than 7 for one isolated comb line, both without forward error correction. Resonant ring modulators and Germanium waveguide photodetectors are further hybridly integrated with chip scale driver and receiver electronics, and their co-operability tested. These experiments will serve as the basis for assessing the feasibility of a silicon photonics wavelength division multiplexed link relying on a single section mode-locked laser as a multi-carrier light source.
NASA Astrophysics Data System (ADS)
Liu, Zhi-bo; Yin, Bin; Liang, Xiao; Bai, Yunlong; Tan, Zhongwei; Liu, Shuo; Li, Yang; Liu, Yan; Jian, Shuisheng
2014-06-01
This paper experimentally demonstrated a singlemode-coreless-singlemode (SCS) fiber structure-based fiber ring cavity laser for strain and temperature measurement. The basis of the sensing system is the multimodal interference occurs in coreless fiber, and the transmission spectrum is sensitive to the ambient perturbation. In this sensing system, the SCS fiber structure not only acts as the sensing head of the sensor but also the band-pass filter of the ring laser. Blue shift with strain sensitivity of ˜ -2 pm/μɛ ranging from 0 to 730 μɛ and red shift with temperature sensitivity of ˜ 11 pm/°C ranging from 5 to 75 °C have been achieved. Experimental results also show the proposal has great potential in using long-distance operation. The fiber ring laser sensing system has a optical signal to noise ratio (OSNR) more than 50 and 3 dB bandwidth less than 0.05 nm. The result shows that the coreless fiber has no improvement of the temperature and axial strain sensitivity. However, compared to the common singlemode-multimode-singlemode fiber structure sensors, the laser sensing system has the additional advantages of high OSNR, high intensity and narrow 3 dB bandwidth, and thus improves the accuracy.
NASA Astrophysics Data System (ADS)
Wazen, P.; Bourdet, G. L.
1991-01-01
The authors studied the Doppler-broadened 11.76-micron N-15H3 emission line optically pumped in a ring resonator by a CW CO2 laser operating on the 10R(42) line. Behavior related to the optical pumping of gas Doppler-broadened lines is found and shown to be very dependent on the laser parameters. For instance, the laser emission can occur in one direction or two directions simultaneously. A local gain model based on the interaction of two laser fields with a three-level molecular system is used to clarify the emission characteristics of this laser. Basically, the two-photon or Raman process and the Rabi splitting generate a gain anisotropy and an anomalous dispersion curve. The effects lead to a different optical path for the two directions of propagation and, consequently, a simultaneous bidirectional emission with unequal emission frequency.
NASA Astrophysics Data System (ADS)
Dutta Banik, Gourab; Maity, Abhijit; Som, Suman; Pal, Mithun; Pradhan, Manik
2018-04-01
We report on the performance of a widely tunable continuous wave mode-hop-free external-cavity quantum cascade laser operating at λ ~ 5.2 µm combined with cavity ring-down spectroscopy (CRDS) technique for high-resolution molecular spectroscopy. The CRDS system has been utilized for simultaneous and molecule-specific detection of several environmentally and bio-medically important trace molecular species such as nitric oxide, nitrous oxide, carbonyl sulphide and acetylene (C2H2) at ultra-low concentrations by probing numerous rotationally resolved ro-vibrational transitions in the mid-IR spectral region within a relatively small spectral range of ~0.035 cm-1. This continuous wave external-cavity quantum cascade laser-based multi-component CRDS sensor with high sensitivity and molecular specificity promises applications in environmental sensing as well as non-invasive medical diagnosis through human breath analysis.
Wang, Lutang; Fang, Nian; Wu, Chunxu; Qin, Haijuan; Huang, Zhaoming
2014-01-01
A novel fiber-optic acoustic sensor using an erbium-doped fiber amplifier (EDFA)-based fiber ring laser and a balanced Sagnac interferometer for acoustic sensing of the partial discharge (PD) in power transformers is proposed and demonstrated. As a technical background, an experimental investigation on how the variations of the fiber birefringence affect the sensor performances was carried out, and the results are discussed. The operation principles are described, and the relevant formulas are derived. The analytical results show that an EDFA-based fiber ring laser operating in chaotic mode can provide a degree of polarization (DOP) tunable light beam for effectively suppressing polarization fading noises. The balanced Sagnac interferometer can eliminate command intensity noises and enhance the signal-to-noise ratio (SNR). Furthermore, it inherently operates at the quadrature point of the response curve without any active stabilizations. Several experiments are conducted for evaluating the performances of the sensor system, as well as for investigating the ability of the detection of high-frequency acoustic emission signals. The experimental results demonstrate that the DOP of the laser beam can be continuously tuned from 0.2% to 100%, and the power fluctuation in the whole DOP tuning range is less than 0.05 dBm. A high-frequency response up to 300 kHz is reached, and the high sensing sensitivity for detections of weak corona discharges, as well as partial discharges also is verified. PMID:24824371
High-power narrow-linewidth quasi-CW diode-pumped TEM00 1064 nm Nd:YAG ring laser.
Liu, Yuan; Wang, Bao-shan; Xie, Shi-yong; Bo, Yong; Wang, Peng-yuan; Zuo, Jun-wei; Xu, Yi-ting; Xu, Jia-lin; Peng, Qin-jun; Cui, Da-fu; Xu, Zu-yan
2012-04-01
We demonstrated a high average power, narrow-linewidth, quasi-CW diode-pumped Nd:YAG 1064 nm laser with near-diffraction-limited beam quality. A symmetrical three-mirror ring cavity with unidirectional operation elements and an etalon was employed to realize the narrow-linewidth laser output. Two highly efficient laser modules and a 90° quartz rotator for birefringence compensation were used for the high output power. The maximum average output power of 62.5 W with the beam quality factor M(2) of 1.15 was achieved under a pump power of 216 W at a repetition rate of 500 Hz, corresponding to the optical-to-optical conversion efficiency of 28.9%. The linewidth of the laser at the maximum output power was measured to be less than 0.2 GHz.
PT-symmetry of coupled fiber lasers
NASA Astrophysics Data System (ADS)
Smirnov, Sergey V.; Churkin, Dmitry V.; Makarenko, Maxim; Vatnik, Ilya; Suchkov, Sergey V.; Sukhorukov, Andrey A.
2017-10-01
In this work, we propose a concept of a coupled fiber laser exhibiting PT-symmetry properties. We consider a system operated via Raman gain. The scheme comprises two identical fiber loops (ring cavities) connected by means of two fiber couplers with variable phase shift between them. We show that by changing the phase shift one can switch between generation regimes, realizing either PT-symmetric or PT-broken solution. Furthermore, the paper investigates some peculiarities of the system such as power oscillations and the role of nonlinear phase shift in fiber rings.
A wavelength scannable XeCl oscillator-ring amplifier laser system
NASA Technical Reports Server (NTRS)
Pacala, T. J.; Mcdermid, I. S.; Laudenslager, J. B.
1982-01-01
A holographic grating at grazing angle of incidence was used to achieve tunable, narrow bandwidth (0.005 nm) operation of a XeCl oscillator for injection locking of a ring amplifier. The amplifier's narrow bandwidth output energy was constant and equal to the untuned, broadband output (approximately 15 mJ) in regions where injection locking was achieved. Scanning was provided by use of a stepping motor-driven differential micrometer on the tuning mirror. This system was used to produce a laser excitation spectrum of hydroxyl radicals (OH) in a flame.
Infrasonic Influence of Volcanos
NASA Astrophysics Data System (ADS)
Hosman, Ashley
2014-03-01
My presentation will consist of a poster on the use of ring laser interferometers to detect infrasound. The research was performed during the summer of 2013 and it focused on the finding infrasound emissions created by volcanic activity. I will explain how a ring laser works and discuss how I analyze the collected data using Fast Fourier Transforms. Due to the extreme distances over which infrasound can travel, I will also stress the need to compare the detected responses to specific volcanic eruptions. Finally, I will purpose practical applications of my research. One of the more promising applications is to use ring lasers to detect volcanic activity in remote areas such as parts of the Aleutian Islands. There is considerable air traffic over the Aleutian Islands. Volcanic plumes are a significant aviation hazard and can damage jet engines to the extent that they will no longer operate. Thank you to the NSF ans NASA foundations for providing funding for this reseach.
Mode-locking evolution in ring fiber lasers with tunable repetition rate.
Korobko, D A; Fotiadi, A A; Zolotovskii, I O
2017-09-04
We have applied a simple approach to analyze behavior of the harmonically mode-locked fiber laser incorporating an adjustable Mach-Zehnder interferometer (MZI). Our model is able to describe key features of the laser outputs and explore limitations of physical mechanisms responsible for laser operation at different pulse repetition rates tuned over a whole GHz range. At low repetition rates the laser operates as a harmonically mode-locked soliton laser triggered by a fast saturable absorber. At high repetition rates the laser mode-locking occurs due to dissipative four-wave mixing seeded by MZI and gain spectrum filtering. However, the laser stability in this regime is rather low due to poor mode selectivity provided by MZI that is able to support the desired laser operation just near the lasing threshold. The use of a double MZI instead of a single MZI could improve the laser stability and extends the range of the laser tunability. The model predicts a gap between two repetitive rate ranges where pulse train generation is not supported.
Active mode locking of quantum cascade lasers in an external ring cavity.
Revin, D G; Hemingway, M; Wang, Y; Cockburn, J W; Belyanin, A
2016-05-05
Stable ultrashort light pulses and frequency combs generated by mode-locked lasers have many important applications including high-resolution spectroscopy, fast chemical detection and identification, studies of ultrafast processes, and laser metrology. While compact mode-locked lasers emitting in the visible and near infrared range have revolutionized photonic technologies, the systems operating in the mid-infrared range where most gases have their strong absorption lines, are bulky and expensive and rely on nonlinear frequency down-conversion. Quantum cascade lasers are the most powerful and versatile compact light sources in the mid-infrared range, yet achieving their mode-locked operation remains a challenge, despite dedicated effort. Here we report the demonstration of active mode locking of an external-cavity quantum cascade laser. The laser operates in the mode-locked regime at room temperature and over the full dynamic range of injection currents.
Active mode locking of quantum cascade lasers in an external ring cavity
Revin, D. G.; Hemingway, M.; Wang, Y.; Cockburn, J. W.; Belyanin, A.
2016-01-01
Stable ultrashort light pulses and frequency combs generated by mode-locked lasers have many important applications including high-resolution spectroscopy, fast chemical detection and identification, studies of ultrafast processes, and laser metrology. While compact mode-locked lasers emitting in the visible and near infrared range have revolutionized photonic technologies, the systems operating in the mid-infrared range where most gases have their strong absorption lines, are bulky and expensive and rely on nonlinear frequency down-conversion. Quantum cascade lasers are the most powerful and versatile compact light sources in the mid-infrared range, yet achieving their mode-locked operation remains a challenge, despite dedicated effort. Here we report the demonstration of active mode locking of an external-cavity quantum cascade laser. The laser operates in the mode-locked regime at room temperature and over the full dynamic range of injection currents. PMID:27147409
Diode-end-pumped single-longitudinal-mode passively Q-switched Nd:GGG laser
NASA Astrophysics Data System (ADS)
Xue, Feng; Zhang, Sasa; Cong, Zhenhua; Huang, Qingjie; Guan, Chen; Wu, Qianwen; Chen, Hui; Bai, Fen; Liu, Zhaojun
2018-03-01
Diode-end-pumped passively Q-switched Nd:GGG laser in a ring cavity at 1062 nm was demonstrated. Single-longitudinal-mode laser linewidth less than 0.5 pm was accomplished by unidirectional operation. The maximum output pulse energy was 437 µJ and the pulse width was 43 ns when Cr4+:YAG with an initial transmission of 61% was used.
Passively mode-locked Raman fiber laser with 100 GHz repetition rate
NASA Astrophysics Data System (ADS)
Schröder, Jochen; Coen, Stéphane; Vanholsbeeck, Frédérique; Sylvestre, Thibaut
2006-12-01
We experimentally demonstrate the operation of a passively mode-locked Raman fiber ring laser with an ultrahigh repetition rate of 100GHz and up to 430mW of average output power. This laser constitutes a simple wavelength versatile pulsed optical source. Stable mode locking is based on dissipative four-wave mixing with a single fiber Bragg grating acting as the mode-locking element.
High energy efficient solid state laser sources
NASA Technical Reports Server (NTRS)
Byer, Robert L.
1988-01-01
Recent progress in the development of highly efficient coherent optical sources is reviewed. This work focusses on nonlinear frequency conversion of the highly coherent output of the Non-Planar Ring Laser Oscillators developed earlier in the program, and includes high efficiency second harmonic generation and the operation of optical parametric oscillators for wavelength diversity and tunability.
A ring lasers array for fundamental physics
NASA Astrophysics Data System (ADS)
Di Virgilio, Angela; Allegrini, Maria; Beghi, Alessandro; Belfi, Jacopo; Beverini, Nicolò; Bosi, Filippo; Bouhadef, Bachir; Calamai, Massimo; Carelli, Giorgio; Cuccato, Davide; Maccioni, Enrico; Ortolan, Antonello; Passeggio, Giuseppe; Porzio, Alberto; Ruggiero, Matteo Luca; Santagata, Rosa; Tartaglia, Angelo
2014-12-01
After reviewing the importance of light as a probe for testing the structure of space-time, we describe the GINGER project. GINGER will be a three-dimensional array of large-size ring-lasers able to measure the de Sitter and Lense-Thirring effects. The instrument will be located at the underground laboratory of Gran Sasso, in Italy. We describe the preliminary actions and measurements already under way and present the full road map to GINGER. The intermediate apparatuses GP2 and GINGERino are described. GINGER is expected to be fully operating in few years. xml:lang="fr"
Kim, Chur; Kim, Dohyun; Cheong, YeonJoon; Kwon, Dohyeon; Choi, Sun Young; Jeong, Hwanseong; Cha, Sang Jun; Lee, Jeong-Woo; Yeom, Dong-Il; Rotermund, Fabian; Kim, Jungwon
2015-10-05
We show the implementation of fiber-pigtailed, evanescent-field-interacting, single-walled carbon nanotube (CNT)-based saturable absorbers (SAs) using standard planar lightwave circuit (PLC) fabrication processes. The implemented PLC-CNT-SA device is employed to realize self-starting, high-repetition-rate, all-fiber ring oscillators at telecommunication wavelength. We demonstrate all-fiber Er ring lasers operating at 303-MHz (soliton regime) and 274-MHz (stretched-pulse regime) repetition-rates. The 303-MHz (274-MHz) laser centered at 1555 nm (1550 nm) provides 7.5 nm (19 nm) spectral bandwidth. After extra-cavity amplilfication, the amplified pulse train of the 303-MHz (274-MHz) laser delivers 209 fs (178 fs) pulses. To our knowledge, this corresponds to the highest repetition-rates achieved for femtosecond lasers employing evanescent-field-interacting SAs. The demonstrated SA fabrication method, which is based on well-established PLC processes, also shows a potential way for mass-producible and lower-cost waveguide-type SA devices suitable for all-fiber and waveguide lasers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Purohit, Gunjan, E-mail: gunjan75@gmail.com; Rawat, Priyanka; Chauhan, Prashant
This article presents higher-order paraxial theory (non-paraxial theory) for the ring ripple formation on an intense Gaussian laser beam and its propagation in plasma, taking into account the relativistic-ponderomotive nonlinearity. The intensity dependent dielectric constant of the plasma has been determined for the main laser beam and ring ripple superimposed on the main laser beam. The dielectric constant of the plasma is modified due to the contribution of the electric field vector of ring ripple. Nonlinear differential equations have been formulated to examine the growth of ring ripple in plasma, self focusing of main laser beam, and ring rippled lasermore » beam in plasma using higher-order paraxial theory. These equations have been solved numerically for different laser intensities and plasma frequencies. The well established experimental laser and plasma parameters are used in numerical calculation. It is observed that the focusing of the laser beams (main and ring rippled) becomes fast in the nonparaxial region by expanding the eikonal and other relevant quantities up to the fourth power of r. The splitted profile of laser beam in the plasma is observed due to uneven focusing/defocusing of the axial and off-axial rays. The growths of ring ripple increase when the laser beam intensity increases. Furthermore, the intensity profile of ring rippled laser beam gets modified due to the contribution of growth rate.« less
Free-flying experiment to measure the Schawlow-Townes linewidth limit of a 300 THz laser oscillator
NASA Technical Reports Server (NTRS)
Byer, R. L.; Byvik, C. E.
1988-01-01
Recent advances in laser diode-pumped solid state laser sources permit the design and testing of laser sources with linewidths that approach the Schawlow-Townes limit of 1 Hz/mW of output power. Laser diode pumped solid state ring oscillators have been operated with CW output power levels of 25 mW at electrical efficiencies that exceed 6 percent. These oscillators are expected to operate for lifetimes that approach those of the laser diode sources which is now approaching 20,000 hours. The efficiency and lifetime of these narrow linewidth laser sources will enable space measurements of gravity waves, remote sensing applications (including local range rate and measurements), and laser sources for frequency and time standards. A free-flight experiment, 'SUNLITE', is being designed to measure the linewidth of this all-solid-state laser system.
High energy efficient solid state laser sources
NASA Technical Reports Server (NTRS)
Byer, Robert L.
1989-01-01
Recent progress in the development of highly efficient coherent optical sources was reviewed. This work has focused on nonlinear frequency conversion of the highly coherent output of the non-planar ring laser oscillators developed earlier in the program, and includes high efficiency second harmonic generation and the operation of optical parametric oscillators for wavelength diversity and tunability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukhopadhyay, Pranb K., E-mail: pkm@rrcat.gov.in; Gupta, Pradeep K.; Singh, Chandra Pal
2015-03-15
We have constructed an Yb-doped fiber laser in all-normal-dispersion configuration which can be independently operated in Q-switched or modelocked configuration with the help of a simple fiber optic ring resonator (FORR). In the presence of FORR, the laser operates in Q-switched mode producing stable pulses in the range of 1 μs-200 ns with repetition rate in the range of 45 kHz-82 kHz. On the other hand, the laser can be easily switched to mode-locked operation by disjoining the FORR loop producing train of ultrashort pulses of ∼5 ps duration (compressible to ∼150 fs) at ∼38 MHz repetition rate. The transmissionmore » characteristics of FORR in combination with the nonlinear polarization rotation for passive Q-switching operation is numerically investigated and experimentally verified. The laser can serve as a versatile seed source for power amplifier which can be easily configured for application in the fields that require different pulsed fiber lasers.« less
NASA Astrophysics Data System (ADS)
Zhang, Haiwei; Shi, Wei; Bai, Xiaolei; Sheng, Quan; Xue, Lifang; Yao, Jianquan
2018-02-01
We obtain a switchable and tunable dual-wavelength single-frequency Er-doped ring fiber laser. In order to realize single-longitudinal output, two saturable-absorber-based tracking narrow-band filters are formed in 3- meter-long unpumped Er-doped fiber to narrow the linewidth via using the PM-FBG as a reflection filter. The maximum output power is 2.11 mW centered at 1550.16 nm and 1550.54 nm when the fiber laser operates in dual-wavelength mode. The corresponding linewidths of those two wavelengths are measured to be 769 Hz and 673 Hz, respectively. When the temperature around the PM-FBG is changed from 15 °C to 55 °C, the dual-wavelength single-frequency fiber laser can be tuned from 1550.12 nm to 1550.52 nm and from 1550.49 nm to 1550.82 nm, respectively.
Laser-driven injector of electrons for IOTA
NASA Astrophysics Data System (ADS)
Romanov, Aleksandr
2017-03-01
Fermilab is developing the Integrable Optics Test Accelerator (IOTA) ring for experiments on nonlinear integrable optics. The machine will operate with either electron beams of 150 MeV or proton beams of 2.5 MeV energies, respectively. The stability of integrable optics depends critically on the precision of the magnetic lattice, which demands the use of beam-based lattice measurements for optics correction. In the proton mode, the low-energy proton beam does not represent a good probe for this application; hence we consider the use of a low-intensity reverse-injected electron beam of matched momentum (70 MeV). Such an injector could be implemented with the use of laser-driven acceleration techniques. This report presents the consideration for a laser-plasma injector for IOTA and discusses the requirements determined by the ring design.
NASA Astrophysics Data System (ADS)
Roy, Anirban; Chakraborty, Arup Lal; Jha, Chandan Kumar
2017-04-01
This paper demonstrates the interrogation of a fiber Bragg grating with a flat-topped reflection spectrum centred on 1649.55 nm using only a single mode tunable 1651.93 nm semiconductor laser and a fiber ring resonator. The Bragg shift is accurately measured with the fiber-optic ring resonator that has a free spectral range (FSR) of 0.1008 GHz and a broadband photo-detector. Laser wavelength modulation and harmonic detection are used to transform the gentle edges of the flat-topped FBG spectrum into prominent leading and trailing peaks, either of which can be used to accurately measure spectral shifts of the FBG reflection spectrum with a resolution of 0.9 pm. A Raspberry Pi-based low-cost embedded processor is used to measure the temperature-induced spectral shifts over the range 30˚C - 80˚C. The shift was linear with a temperature sensitivity of 12.8 pm/˚C. This technique does not use an optical spectrum analyzer at any stage of its design or operation. The laser does not need to be pre-characterized either. This technique can be readily extended to all types of tunable diode lasers and is ideally suited for compact field instruments.
A 1kW EUV source for lithography based on FEL emission in a compact storage ring
NASA Astrophysics Data System (ADS)
Feser, Michael; Ruth, Ron; Loewen, Rod
2017-10-01
EUV has long been hailed as the next generation lithography technology. Its adoption into high volume manufacturing (HVM), however, has been delayed several technology nodes due to technical issues, many of which can be attributed to the EUV source performance. Today's EUV lithography scanners are powered by laser produce plasma (LPP) sources. They have issues with power scaling beyond 300 W, reliability and contamination. Free Electron Lasers (FELs) have been considered as an alternative EUV source. Advantages of accelerator based sources are the maturity of the accelerator technology, lack of debris/contamination, and ability to provide high power. Industry turned away from this technology because of the requirement to feed up to 10 scanners from one linear FEL to make it economically feasible, the large footprint, and generation of radioactive byproducts. All of these issues are overcome in the presented concept using a compact storage ring with steady-state FEL lasing action. At 1 kW output power, comparable cost and footprint to an LPP source, this source is ideally suited for use on a single scanner and promises reliable, contamination free operation. FEL action in the storage ring is sustained by operating the FEL well below the saturation regime and preserving the equilibrium low emittance and energy distribution of the ring.
NASA Astrophysics Data System (ADS)
Ibarra Villalón, H. E.; Pottiez, O.; Bracamontes Rodriguez, Y. E.; Lauterio-Cruz, J. P.; Gomez Vieyra, A.
2018-06-01
In this paper, we report an experimental study of different dynamics taking place in a 20 m long passively mode-locked fibre ring laser in dual-wavelength operation, at 1531 nm and 1558 nm. For different polarization adjustments, self-starting mode locking is obtained, yielding different types of emission: bunches of solitons in quasi-stationary regime, a compact bunch of solitons coexisting with loose bunches of solitons, a noise-like pulse coexisting with bunches of solitons and a noise-like pulse displaying quasi-periodic fluctuations. In each regime, we extract information on the pulse dynamics from measurements of the temporal profile evolution using a 16 GHz real-time oscilloscope and, at the same time, we propose a phase-space diagram representation of the intensity versus the energy of the temporal profile of the pulses; the latter allows evidencing patterns that could not be identified using conventional measurement techniques.
Storage ring two-color free-electron laser
Yan, J.; Hao, H.; Li, J. Y.; ...
2016-07-05
We report a systematic experimental study of a storage ring two-color free-electron laser (FEL) operating simultaneously in the infrared (IR) and ultraviolet (UV) wavelength regions. The two-color FEL lasing has been realized using a pair of dual-band high-reflectivity FEL mirrors with two different undulator configurations. We have demonstrated independent wavelength tuning in a wide range for each lasing color, as well as harmonically locked wavelength tuning when the UV lasing occurs at the second harmonic of the IR lasing. Precise power control of two-color lasing with good power stability has also been achieved. In addition, the impact of the degradationmore » of FEL mirrors on the two-color FEL operation is reported. Moreover, we have investigated the temporal structures of the two-color FEL beams, showing simultaneous two-color micropulses with their intensity modulations displayed as FEL macropulses.« less
NASA Astrophysics Data System (ADS)
Fan, Fan; Yu, Yueyang; Amiri, Seyed Ebrahim Hashemi; Quandt, David; Bimberg, Dieter; Ning, C. Z.
2017-04-01
Semiconductor nanolasers are potentially important for many applications. Their design and fabrication are still in the early stage of research and face many challenges. In this paper, we demonstrate a generally applicable membrane transfer method to release and transfer a strain-balanced InGaAs quantum-well nanomembrane of 260 nm in thickness onto various substrates with a high yield. As an initial device demonstration, nano-ring lasers of 1.5 μm in outer diameter and 500 nm in radial thickness are fabricated on MgF2 substrates. Room temperature single mode operation is achieved under optical pumping with a cavity volume of only 0.43λ03 (λ0 in vacuum). Our nano-membrane based approach represents an advantageous alternative to other design and fabrication approaches and could lead to integration of nanolasers on silicon substrates or with metallic cavity.
Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source.
Choma, Michael A; Hsu, Kevin; Izatt, Joseph A
2005-01-01
The increased sensitivity of spectral domain optical coherence tomography (OCT) has driven the development of a new generation of technologies in OCT, including rapidly tunable, broad bandwidth swept laser sources and spectral domain OCT interferometer topologies. In this work, the operation of a turnkey 1300-nm swept laser source is demonstrated. This source has a fiber ring cavity with a semiconductor optical amplifier gain medium. Intracavity mode selection is achieved with an in-fiber tunable fiber Fabry-Perot filter. A novel optoelectronic technique that allows for even sampling of the swept source OCT signal in k space also is described. A differential swept source OCT system is presented, and images of in vivo human cornea and skin are presented. Lastly, the effects of analog-to-digital converter aliasing on image quality in swept source OCT are discussed.
Mid-infrared surface transmitting and detecting quantum cascade device for gas-sensing
Harrer, Andreas; Szedlak, Rolf; Schwarz, Benedikt; Moser, Harald; Zederbauer, Tobias; MacFarland, Donald; Detz, Hermann; Andrews, Aaron Maxwell; Schrenk, Werner; Lendl, Bernhard; Strasser, Gottfried
2016-01-01
We present a bi-functional surface emitting and surface detecting mid-infrared device applicable for gas-sensing. A distributed feedback ring quantum cascade laser is monolithically integrated with a detector structured from a bi-functional material for same frequency lasing and detection. The emitted single mode radiation is collimated, back reflected by a flat mirror and detected by the detector element of the sensor. The surface operation mode combined with the low divergence emission of the ring quantum cascade laser enables for long analyte interaction regions spatially separated from the sample surface. The device enables for sensing of gaseous analytes which requires a relatively long interaction region. Our design is suitable for 2D array integration with multiple emission and detection frequencies. Proof of principle measurements with isobutane (2-methylpropane) and propane as gaseous analytes were conducted. Detectable concentration values of 0–70% for propane and 0–90% for isobutane were reached at a laser operation wavelength of 6.5 μm utilizing a 10 cm gas cell in double pass configuration. PMID:26887891
Controllable continuous evolution of electronic states in a single quantum ring
NASA Astrophysics Data System (ADS)
Chakraborty, Tapash; Manaselyan, Aram; Barseghyan, Manuk; Laroze, David
2018-02-01
An intense terahertz laser field is shown to have a profound effect on the electronic and optical properties of quantum rings where the isotropic and anisotropic quantum rings can now be treated on equal footing. We have demonstrated that in isotropic quantum rings the laser field creates unusual Aharonov-Bohm oscillations that are usually expected in anisotropic rings. Furthermore, we have shown that intense laser fields can restore the isotropic physical properties in anisotropic quantum rings. In principle, all types of anisotropies (structural, effective masses, defects, etc.) can evolve as in isotropic rings in our present approach. Most importantly, we have found a continuous evolution of the energy spectra and intraband optical characteristics of structurally anisotropic quantum rings to those of isotropic rings in a controlled manner with the help of a laser field.
Compact silicon photonic wavelength-tunable laser diode with ultra-wide wavelength tuning range
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kita, Tomohiro, E-mail: tkita@ecei.tohoku.ac.jp; Tang, Rui; Yamada, Hirohito
2015-03-16
We present a wavelength-tunable laser diode with a 99-nm-wide wavelength tuning range. It has a compact wavelength-tunable filter with high wavelength selectivity fabricated using silicon photonics technology. The silicon photonic wavelength-tunable filter with wide wavelength tuning range was realized using two ring resonators and an asymmetric Mach-Zehnder interferometer. The wavelength-tunable laser diode fabricated by butt-joining a silicon photonic filter and semiconductor optical amplifier shows stable single-mode operation over a wide wavelength range.
High Repetition Rate Pulsed 2-Micron Laser Transmitter for Coherent CO2 DIAL Measurement
NASA Technical Reports Server (NTRS)
Singh, Uprendra N.; Bai, Yingxin; Yu, Jirong; Petros, Mulugeta; Petzar, Paul J.; Trieu, Bo C.; Lee, Hyung
2009-01-01
A high repetition rate, highly efficient, Q-switched 2-micron laser system as the transmitter of a coherent differential absorption lidar for CO2 measurement has been developed at NASA Langley Research Center. Such a laser transmitter is a master-slave laser system. The master laser operates in a single frequency, either on-line or off-line of a selected CO2 absorption line. The slave laser is a Q-switched ring-cavity Ho:YLF laser which is pumped by a Tm:fiber laser. The repetition rate can be adjusted from a few hundred Hz to 10 kHz. The injection seeding success rate is from 99.4% to 99.95%. For 1 kHz operation, the output pulse energy is 5.5mJ with the pulse length of approximately 50 ns. The optical-to-optical efficiency is 39% when the pump power is 14.5W. The measured standard deviation of the laser frequency jitter is about 3 MHz.
Continuous wave room temperature external ring cavity quantum cascade laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Revin, D. G., E-mail: d.revin@sheffield.ac.uk; Hemingway, M.; Vaitiekus, D.
2015-06-29
An external ring cavity quantum cascade laser operating at ∼5.2 μm wavelength in a continuous-wave regime at the temperature of 15 °C is demonstrated. Out-coupled continuous-wave optical powers of up to 23 mW are observed for light of one propagation direction with an estimated total intra-cavity optical power flux in excess of 340 mW. The uni-directional regime characterized by the intensity ratio of more than 60 for the light propagating in the opposite directions was achieved. A single emission peak wavelength tuning range of 90 cm{sup −1} is realized by the incorporation of a diffraction grating into the cavity.
NASA Astrophysics Data System (ADS)
Choi, Myoung-Taek
This dissertation explores various aspects and potential of optical pulse generation based on active, passive, and hybrid mode-locked quantum dot semiconductor lasers with target applications such as optical interconnect and high speed signal processing. Design guidelines are developed for the single mode operation with suppressed reflection from waveguide discontinuities. The device fabrication procedure is explained, followed by characteristics of FP laser, SOA, and monolithic two-section devices. Short pulse generation from an external cavity mode-locked QD two-section diode laser is studied. High quality, sub-picosecond (960 fs), high peak power (1.2 W) pulse trains are obtained. The sign and magnitude of pulse chirp were measured for the first time. The role of the self-phase modulation and the linewidth enhancement factor in QD mode-locked lasers is addressed. The noise performance of two-section mode-locked lasers and a SOA-based ring laser was investigated. Significant reduction of the timing jitter under hybrid mode-locked operation was achieved owing to more than one order of magnitude reduction of the linewidth in QD gain media. Ultralow phase noise performance (integrated timing jitter of a few fs at a 10 GHz repetition rate) was demonstrated from an actively mode-locked unidirectional ring laser. These results show that quantum dot mode-locked lasers are strong competitors to conventional semiconductor lasers in noise performance. Finally we demonstrated an opto-electronic oscillator (OEO) and coupled opto-electronic oscillators (COEO) which have the potential for both high purity microwave and low noise optical pulse generation. The phase noise of the COEO is measured by the photonic delay line frequency discriminator method. Based on this study we discuss the prospects of the COEO as a low noise optical pulse source.
Dynamics of long ring Raman fiber laser
NASA Astrophysics Data System (ADS)
Sukhanov, Sergey V.; Melnikov, Leonid A.; Mazhirina, Yulia A.
2016-04-01
The numerical model for dynamics of long fiber ring Raman laser is proposed. The model is based on the transport equations and Courant-Isaacson-Rees numerical method. Different regimes of a long ring fiber Raman laser are investigated.
Monlithic nonplanar ring oscillator and method
NASA Technical Reports Server (NTRS)
Nilsson, Alan C. (Inventor); Byer, Robert L. (Inventor)
1991-01-01
A monolithic nonplanar ring oscillator having an optically isotropic solid-state laser body for propagating laser radiation about a nonplanar ring path internal to the laser body is disclosed. The monolithic laser body is configured to produce a 2N reflection nonplanar ring light path, where N is an integer greater than or equal to 2, comprising 2N-1 total internal reflections and one reflection at a coupler in a single round trip. Undirectional traveling wave oscillation of the laser is induced by the geometry of the nonplanar ring path together with the effect of an applied magnetic field and partial polarizer characteristics of the oblique reflection from the coupler. The 6-reflection nonplanar ring oscillator makes possible otpimal unidirectional oscillation (low loss for the oscillating direction of propagation and, simultaneously high loss for the nonoscillating direction of propagation) in monolithic NPROs using materials with index of refraction smaller than the square root of 3, for example, laser glass.
Spectral properties of all-active InP-based microring resonator devices
NASA Astrophysics Data System (ADS)
Kapsalis, A.; Alexandropoulos, D.; Mikroulis, S.; Simos, H.; Stamataki, I.; Syvridis, D.; Hamacher, M.; Troppenz, U.; Heidrich, H.
2006-02-01
Microring resonators are excellent candidates for very large scale photonic integration due to their compactness, and fabrication simplicity. Moreover a wide range of all-optical signal processing functions can be realized due to the resonance effect. Possible applications include filtering, add/drop of optical beams and power switching, as well as more complex procedures including multiplexing, wavelength conversion, and logic operations. All-active ring components based in InGaAsP/InP are possible candidates for laser sources, lossless filters, wavelength converters, etc. Our work is based on measurement, characterization and proposal of possible exploitation of such devices in a variety of applications. We investigate the spectral characteristics of multi-quantum well InGaAsP(λ=1.55μm)/InP microring structures of various ring diameters and different configurations including racetracks with one or two bus waveguides and MMI couplers. The latter configuration has recently exhibited the possibility to obtain tunable active filters as well as tunable laser sources based on all-active ring-bus-coupler structures. In the case of tunable lasers single mode operation has been achieved by obtaining sufficiently high side mode suppression ratio. The tuning capability is attributed to a coupled cavities effect, resembling the case of multi-section DBR lasers. However, in contrast to the latter, the fabrication of microring resonators is considered an easier task, due to a single step growth procedure, although further investigation must be carried out in order to achieve wide range tunability. Detailed mappings of achievable wavelengths are produced for a wide range of injection current values.
Improved Blackbody Temperature Sensors for a Vacuum Furnace
NASA Technical Reports Server (NTRS)
Farmer, Jeff; Coppens, Chris; O'Dell, J. Scott; McKechnie, Timothy N.; Schofield, Elizabeth
2009-01-01
Some improvements have been made in the design and fabrication of blackbody sensors (BBSs) used to measure the temperature of a heater core in a vacuum furnace. Each BBS consists of a ring of thermally conductive, high-melting-temperature material with two tantalum-sheathed thermocouples attached at diametrically opposite points. The name "blackbody sensor" reflects the basic principle of operation. Heat is transferred between the ring and the furnace heater core primarily by blackbody radiation, heat is conducted through the ring to the thermocouples, and the temperature of the ring (and, hence, the temperature of the heater core) is measured by use of the thermocouples. Two main requirements have guided the development of these BBSs: (1) The rings should have as high an emissivity as possible in order to maximize the heat-transfer rate and thereby maximize temperature-monitoring performance and (2) the thermocouples must be joined to the rings in such a way as to ensure long-term, reliable intimate thermal contact. The problem of fabricating a BBS to satisfy these requirements is complicated by an application-specific prohibition against overheating and thereby damaging nearby instrumentation leads through the use of conventional furnace brazing or any other technique that involves heating the entire BBS and its surroundings. The problem is further complicated by another application-specific prohibition against damaging the thin tantalum thermocouple sheaths through the use of conventional welding to join the thermocouples to the ring. The first BBS rings were made of graphite. The tantalum-sheathed thermocouples were attached to the graphite rings by use of high-temperature graphite cements. The ring/thermocouple bonds thus formed were found to be weak and unreliable, and so graphite rings and graphite cements were abandoned. Now, each BBS ring is made from one of two materials: either tantalum or a molybdenum/titanium/zirconium alloy. The tantalum-sheathed thermocouples are bonded to the ring by laser brazing. The primary advantage of laser brazing over furnace brazing is that in laser brazing, it is possible to form a brazed connection locally, without heating nearby parts to the flow temperature of the brazing material. Hence, it is possible to comply with the prohibition against overheating nearby instrumentation leads. Also, in laser brazing, unlike in furnace brazing, it is possible to exert control over the thermal energy to such a high degree that it becomes possible to braze the thermocouples to the ring without burning through the thin tantalum sheaths on the thermocouples. The brazing material used in the laser brazing process is a titanium-boron paste. This brazing material can withstand use at temperatures up to about 1,400 C. In thermal-cycling tests performed thus far, no debonding between the rings and thermocouples has been observed. Emissivity coatings about 0.001 in. (.0.025 mm) thick applied to the interior surfaces of the rings have been found to improve the performance of the BBS sensors by raising the apparent emissivities of the rings. In thermal-cycling tests, the coatings were found to adhere well to the rings.
Upstream capacity upgrade in TDM-PON using RSOA based tunable fiber ring laser.
Yi, Lilin; Li, Zhengxuan; Dong, Yi; Xiao, Shilin; Chen, Jian; Hu, Weisheng
2012-04-23
An upstream multi-wavelength shared (UMWS) time division multiplexing passive optical network (TDM-PON) is presented by using a reflective semiconductor amplifier (RSOA) and tunable optical filter (TOF) based directly modulated fiber ring laser as upstream laser source. The stable laser operation is easily achieved no matter what the bandwidth and shape of the TOF is and it can be directly modulated when the RSOA is driven at its saturation region. In this UMWS TDM-PON system, an individual wavelength can be assigned to the user who has a high bandwidth demand by tuning the central wavelength of the TOF in its upgraded optical network unit (ONU), while others maintain their traditional ONU structure and share the bandwidth via time slots, which greatly and dynamically upgrades the upstream capacity. We experimentally demonstrated the bidirectional transmission of downstream data at 10-Gb/s and upstream data at 1.25-Gb/s per wavelength over 25-km single mode fiber (SMF) with almost no power penalty at both ends. A stable performance is observed for the upstream wavelength tuned from 1530 nm to 1595 nm. Moreover, due to the high extinction ratio (ER) of the upstream signal, the burst-mode transmitting is successfully presented and a better time-division multiplexing performance can be obtained by turning off the unused lasers thanks to the rapid formation of the laser in the fiber ring. © 2012 Optical Society of America
NASA Astrophysics Data System (ADS)
Wang, T.; Liang, G.; Miao, X.; Zhou, X.; Li, Q.
2012-05-01
We demonstrate a simple dual-wavelength ring erbium-doped fiber laser operating in single-longitudinal-mode (SLM) at room temperature. A pair of reflection type short-period fiber Bragg gratings (FBGs), which have two different center wavelengths of 1545.072 and 1545.284 nm, are used as the wavelength-selective component of the laser. A segment of unpumped polarization maintaining erbium-doped fiber (PM-EDF) is acted as a narrow multiband filter. By turning the polarization controller (PC) to enhance the polarization hole burning (PHB), the single-wavelength and dual-wavelength laser oscillations are observed at 1545.072 and 1545.284 nm. The output power variation is less than 0.6 dB for both wavelengths over a five-minute period and the optical signal to noise ratio (OSNR) is greater than 50 dB. By beating the dual-wavelengths at a photodetector (PD), a microwave signal at 26.44 GHz is demonstrated.
NASA Technical Reports Server (NTRS)
Gneses, M. I.; Berg, D. S.
1981-01-01
Specifications for the pointing stabilization system of the large space telescope were used in an investigation of the feasibility of reducing ring laser gyro output quantization to the sub-arc-second level by the use of phase locked loops and associated electronics. Systems analysis procedures are discussed and a multioscillator laser gyro model is presented along with data on the oscillator noise. It is shown that a second order closed loop can meet the measurement noise requirements when the loop gain and time constant of the loop filter are appropriately chosen. The preliminary electrical design is discussed from the standpoint of circuit tradeoff considerations. Analog, digital, and hybrid designs are given and their applicability to the high resolution sensor is examined. the electrical design choice of a system configuration is detailed. The design and operation of the various modules is considered and system block diagrams are included. Phase 1 and 2 test results using the multioscillator laser gyro are included.
Erosion rate diagnostics in ion thrusters using laser-induced fluorescence
NASA Technical Reports Server (NTRS)
Gaeta, C. J.; Matossian, J. N.; Turley, R. S.; Beattie, J. R.; Williams, J. D.; Williamson, W. S.
1993-01-01
We have used laser-induced fluorescence (LIF) to monitor the charge-exchange ion erosion of the molybdenum accelerator electrode in ion thrusters. This real-time, nonintrusive method was implemented by operating a 30cm-diam ring-cusp thruster using xenon propellant. With the thruster operating at a total power of 5 kW, laser radiation at a wavelength of 390 nm (corresponding to a ground state atomic transition of molybdenum) was directed through the extracted ion beam adjacent to the downstream surface of the molybdenum accelerator electrode. Molybdenum atoms, sputtered from this surface as a result of charge-exchange ion erosion, were excited by the laser radiation. The intensity of the laser-induced fluorescence radiation, which is proportional to the sputter rate of the molybdenum atoms, was measured and correlated with variations in thruster operating conditions such as accelerator electrode voltage, accelerator electrode current, and test facility background pressure. We also demonstrated that the LIF technique has sufficient sensitivity and spatial resolution to evaluate accelerator electrode lifetime in ground-based test facilities.
Mega-pixel PQR laser chips for interconnect, display ITS, and biocell-tweezers OEIC
NASA Astrophysics Data System (ADS)
Kwon, O'Dae; Yoon, J. H.; Kim, D. K.; Kim, Y. C.; Lee, S. E.; Kim, S. S.
2008-02-01
We describe a photonic quantum ring (PQR) laser device of three dimensional toroidal whispering gallery cavity. We have succeeded in fabricating the first genuine mega-pixel laser chips via regular semiconductor technology. This has been realized since the present injection laser emitting surface-normal dominant 3D whispering gallery modes (WGMs) can be operated CW with extremely low operating currents (μA-nA per pixel), together with the lasing temperature stabilities well above 140 deg C with minimal redshifts, which solves the well-known integration problems facing the conventional VCSEL. Such properties unusual for quantum well lasers become usual because the active region, involving vertically confining DBR structure in addition to the 2D concave WGM geometry, induces a 'photonic quantum ring (PQR)-like' carrier distribution through a photonic quantum corral effect. A few applications of such mega-pixel PQR chips are explained as follows: (A) Next-generation 3D semiconductor technologies demand a strategy on the inter-chip and intra-chip optical interconnect schemes with a key to the high-density emitter array. (B) Due to mounting traffic problems and fatalities ITS technology today is looking for a revolutionary change in the technology. We will thus outline how 'SLEEP-ITS' can emerge with the PQR's position-sensing capability. (C) We describe a recent PQR 'hole' laser of convex WGM: Mega-pixel PQR 'hole' laser chips are even easier to fabricate than PQR 'mesa' lasers. Genuine Laguerre-Gaussian (LG) beam patterns of PQR holes are very promising for biocell manipulations like sorting mouse myeloid leukemia (M1s) cells. (D) Energy saving and 3D speckle-free POR laser can outdo LEDs in view of red GaAs and blue GaN devices fabricated recently.
NASA Technical Reports Server (NTRS)
Taghavi-Larigani, Shervin (Inventor); Vanzyl, Jakob J. (Inventor); Yariv, Amnon (Inventor)
2006-01-01
Tunable semiconductor lasers are disclosed requiring minimized coupling regions. Multiple laser embodiments employ ring resonators or ring resonator pairs using only a single coupling region with the gain medium are detailed. Tuning can be performed by changing the phase of the coupling coefficient between the gain medium and a ring resonator of the laser. Another embodiment provides a tunable laser including two Mach-Zehnder interferometers in series and a reflector coupled to a gain medium.
Diamond Shaped Ring Laser Characterization, Package Design and Performance
2006-09-01
fabricated by Binoptics, with the end facets formed by chemically assisted ion beam etching . The lasers, designed for operation at 1550 nm, propagated bi...calculated and Corning OptiFocus™ Lensed fiber was chosen to use for the four fiber outputs. Each fiber placement was actively optimized. Output power...aligned using active feedback and placed with submicron precision. The prototype package design was constrained to modification of a prior
NASA Astrophysics Data System (ADS)
Yeh, Chien-Hung; Yang, Zi-Qing; Huang, Tzu-Jung; Chow, Chi-Wai
2018-03-01
To achieve a steady single-longitudinal-mode (SLM) erbium-doped fiber (EDF) laser, the wheel-ring architecture is proposed in the laser cavity. According to Vernier effect, the proposed wheel-ring can produce three different free spectrum ranges (FSRs) to serve as the mode-filter for suppressing the densely multi-longitudinal-mode (MLM). Here, to complete wavelength-tunable EDF laser, an optical tunable bandpass filter (OTBF) is utilized inside the cavity for tuning arbitrarily. In addition, the entire output performances of the proposed EDF wheel-ring laser are also discussed and analyzed experimentally.
Prototype laser-diode-pumped solid state laser transmitters
NASA Technical Reports Server (NTRS)
Kane, Thomas J.; Cheng, Emily A. P.; Wallace, Richard W.
1989-01-01
Monolithic, diode-pumped Nd:YAG ring lasers can provide diffraction-limited, single-frequency, narrow-linewidth, tunable output which is adequate for use as a local oscillator in a coherent communication system. A laser was built which had a linewidth of about 2 kHz, a power of 5 milliwatts, and which was tunable over a range of 30 MHz in a few microseconds. This laser was phase-locked to a second, similar laser. This demonstrates that the powerful technique of heterodyne detection is possible with a diode-pumped laser used as the local oscillator. Laser diode pumping of monolithic Nd:YAG rings can lead to output powers of hundreds of milliwatts from a single laser. A laser was built with a single-mode output of 310 mW. Several lasers can be chained together to sum their power, while maintaining diffraction-limited, single frequency operation. This technique was demonstrated with two lasers, with a total output of 340 mW, and is expected to be practical for up to about ten lasers. Thus with lasers of 310 mW, output of up to 3 W is possible. The chaining technique, if properly engineered, results in redundancy. The technique of resonant external modulation and doubling is designed to efficiently convert the continuous wave, infrared output of our lasers into low duty-cycle pulsed green output. This technique was verified through both computer modeling and experimentation. Further work would be necessary to develop a deliverable system using this technique.
Scanning Laser Infrared Molecular Spectrometer (SLIMS)
NASA Technical Reports Server (NTRS)
Scott, David C.; Rickey, Kelly; Ksendzov, Alexander; George, Warren P.; Aljabri, Abdullah S.; Steinkraus, Joel M.
2012-01-01
This prototype innovation is a novel design that achieves very long, effective laser path lengths that are able to yield ppb (parts per billion) and sub-ppb measurements of trace gases. SLIMS can also accommodate multiple laser channels covering a wide range of wavelengths, resulting in detection of more chemicals of interest. The mechanical design of the mirror cell allows for the large effective path length within a small footprint. The same design provides a robust structure that lends itself to being immune to some of the alignment challenges that similar cells face. By taking a hollow cylinder and by cutting an elliptically or spherically curved surface into its inner wall, the basic geometry of a reflecting ring is created. If the curved, inner surface is diamond-turned and highly polished, a surface that is very highly reflective can be formed. The surface finish can be further improved by adding a thin chrome or gold film over the surface. This creates a high-quality, curved, mirrored surface. A laser beam, which can be injected from a small bore hole in the wall of the cylinder, will be able to make many low-loss bounces around the ring, creating a large optical path length. The reflecting ring operates on the same principle as the Herriott cell. The difference exists in the mirror that doesn't have to be optically aligned, and which has a relatively large, internal surface area that lends itself to either open air or evacuated spectroscopic measurements. This solid, spherical ring mirror removes the possibility of mirror misalignment caused by thermal expansion or vibrations, because there is only a single, solid reflecting surface. Benefits of the reflecting ring come into play when size constraints reduce the size of the system, especially for space missions in which mass is at a premium.
Study of Storage Ring Free-Electron Laser Using Experimental and Simulation Approaches
NASA Astrophysics Data System (ADS)
Jia, Botao
2011-12-01
The Duke electron storage ring, first commissioned in November of 1994, has been developed as a dedicated driver for storage ring free-electron lasers (SRFELs) operating in a wide wavelength range from infrared, to visible, to ultraviolet (UV) and vacuum ultraviolet (VUV). The storage ring has a long straight section for various insertion devices and can be operated in a wide energy range (0.25 GeV to 1.15 GeV). Commissioned in 1995, the first free-electron laser (FEL) on the Duke storage ring was the OK-4 FEL, an optical klystron with two planar undulators sandwiching a buncher magnet. In 2005, the OK-5 FEL with two helical undulators was commissioned. Operating four undulators---two OK-4 and two OK-5 undulators, the world's first distributed optical klystron FEL was brought to operation in 2005. Via Compton scattering of FEL photons and electrons in the storage ring, the Duke FEL drives the world's most powerful, nearly monochromatic, and polarized Compton gamma-ray source, the High Intensity Gamma-ray Source (HIgammaS). Today, a variety of configurations of the storage ring FELs at Duke have been used in a wide range of research areas from nuclear physics to biophysics, from chemical and medical research to industrial applications. The capability of accurately measuring the storage ring electron beam energy spread is crucial for understanding the longitudinal beam dynamics and the dynamics of the storage ring FEL. In this dissertation, we have successfully developed a noninvasive, versatile, and accurate method to measure the energy spread using optical klystron radiation. Novel numerical methods based upon the Gauss-Hermite expansion have been developed to treat both spectral broadening and modulation on an equal footing. Through properly configuring the optical klystron, this energy spread measurement method has a large dynamic range. In addition, a model-based scheme has been developed for correcting the electron beam emittance related inhomogeneous spectral broadening effect, to further enhance the accuracy of measuring the electron beam energy spread. Taking advantage of the direct measurement method of the electron beam energy spread, we have developed another novel technique to simultaneously measure the FEL power, electron beam energy spread, and other beam parameters. This allowed us to study the FEL power in a systematic manner for the first time. Based on the experimental findings and results of the theoretical predictions, we have proposed a compact formula to predict the FEL power using only the knowledge of electron beam current, beam energy, and bunch length. As part of the dissertation work, we have developed a self-consistent numerical model to study the storage ring FEL. The simulation program models the electron beam propagation along the storage ring, multi-turn FEL interaction in the undulators, gradual intra-cavity optical power buildup, etc. This simulation code captures the main features of a storage ring FEL at different time and space scales. The simulated FEL gain has been benchmarked against measured gain and calculated gain with good agreement. The simulation package can provide comprehensive information about the FEL gain, optical pulse growth, electron beam properties, etc. In the near future, we plan to further improve the simulation model, by including additional physics effects such as microwave instability, to make it a more useful tool for FEL research.
A fast low-power optical memory based on coupled micro-ring lasers
NASA Astrophysics Data System (ADS)
Hill, Martin T.; Dorren, Harmen J. S.; de Vries, Tjibbe; Leijtens, Xaveer J. M.; den Besten, Jan Hendrik; Smalbrugge, Barry; Oei, Yok-Siang; Binsma, Hans; Khoe, Giok-Djan; Smit, Meint K.
2004-11-01
The increasing speed of fibre-optic-based telecommunications has focused attention on high-speed optical processing of digital information. Complex optical processing requires a high-density, high-speed, low-power optical memory that can be integrated with planar semiconductor technology for buffering of decisions and telecommunication data. Recently, ring lasers with extremely small size and low operating power have been made, and we demonstrate here a memory element constructed by interconnecting these microscopic lasers. Our device occupies an area of 18 × 40µm2 on an InP/InGaAsP photonic integrated circuit, and switches within 20ps with 5.5fJ optical switching energy. Simulations show that the element has the potential for much smaller dimensions and switching times. Large numbers of such memory elements can be densely integrated and interconnected on a photonic integrated circuit: fast digital optical information processing systems employing large-scale integration should now be viable.
Fiber Laser Development for LISA
NASA Technical Reports Server (NTRS)
Numata, Kenji; Chen, Jeffrey R.
2009-01-01
We have developed a linearly-polarized Ytterbium-doped fiber ring laser with single longitudinal-mode output at 1064nm for LISA and other space applications. Single longitudinal-mode selection was achieved by using a fiber Bragg grating (FBG) and a fiber Fabry-Perot (FFP). The FFP also serves as a frequency-reference within our ring laser. Our laser exhibits comparable low frequency and intensity noise to Non-Planar Ring Oscillator (NPRO). By using a fiber-coupled phase modulator as a frequency actuator, the laser frequency can be electro-optically tuned at a rate of 100kHz. It appears that our fiber ring laser is promising for space applications where robustness of fiber optics is desirable.
1700 nm and 1800 nm band tunable thulium doped mode-locked fiber lasers.
Emami, Siamak Dawazdah; Dashtabi, Mahdi Mozdoor; Lee, Hui Jing; Arabanian, Atoosa Sadat; Rashid, Hairul Azhar Abdul
2017-10-06
This paper presents short wavelength operation of tunable thulium-doped mode-locked lasers with sweep ranges of 1702 to 1764 nm and 1788 to 1831 nm. This operation is realized by a combination of the partial amplified spontaneous emission suppression method, the bidirectional pumping mechanism and the nonlinear polarization rotation (NPR) technique. Lasing at emission bands lower than the 1800 nm wavelength in thulium-doped fiber lasers is achieved using mode confinement loss in a specially designed photonic crystal fiber (PCF). The enlargement of the first outer ring air holes around the core region of the PCF attenuates emissions above the cut-off wavelength and dominates the active region. This amplified spontaneous emission (ASE) suppression using our presented PCF is applied to a mode-locked laser cavity and is demonstrated to be a simple and compact solution to widely tunable all-fiber lasers.
NASA Astrophysics Data System (ADS)
Semaan, Georges; Meng, Yichang; Salhi, Mohamed; Niang, Alioune; Guesmi, Khmaies; Luo, Zhi-Chao; Sanchez, Francois
2016-04-01
In this communication, we demonstrate a passive mode-locked Er:Yb co-doped double-clad fiber laser using a tapered microfiber topological insulator (Bi2Se3) saturable absorber (TISA). The topological insulator is drop-casted onto the tapered fiber and optically deposited by optical tweezer effect. We use a ring laser setup including the fabricated TISA. By carefully optimizing the cavity losses and output coupling ratio, the mode-locked laser can operate in L-band with a high average output power. At a maximum pump power of 5 W, we obtain the 91st harmonic mode-locking of soliton bunches with a 3dB spectral bandwidth of 1.06nm, a repetition rate of 640.9 MHz and an average output power of 308mW. As far as we know, this is the highest output power yet reported of a mode-locked fiber laser operating with a TISA.
Surface emitting ring quantum cascade lasers for chemical sensing
NASA Astrophysics Data System (ADS)
Szedlak, Rolf; Hayden, Jakob; Martín-Mateos, Pedro; Holzbauer, Martin; Harrer, Andreas; Schwarz, Benedikt; Hinkov, Borislav; MacFarland, Donald; Zederbauer, Tobias; Detz, Hermann; Andrews, Aaron Maxwell; Schrenk, Werner; Acedo, Pablo; Lendl, Bernhard; Strasser, Gottfried
2018-01-01
We review recent advances in chemical sensing applications based on surface emitting ring quantum cascade lasers (QCLs). Such lasers can be implemented in monolithically integrated on-chip laser/detector devices forming compact gas sensors, which are based on direct absorption spectroscopy according to the Beer-Lambert law. Furthermore, we present experimental results on radio frequency modulation up to 150 MHz of surface emitting ring QCLs. This technique provides detailed insight into the modulation characteristics of such lasers. The gained knowledge facilitates the utilization of ring QCLs in combination with spectroscopic techniques, such as heterodyne phase-sensitive dispersion spectroscopy for gas detection and analysis.
NASA Astrophysics Data System (ADS)
Hsu, Yung; Yeh, Chien-Hung; Chow, Chi-Wai; Chang, Yuan-Chia; Cheng, Hao-Yun
2018-07-01
In the paper, a wavelength-tunable erbium-doped fiber (EDF) ring laser with stable single-longitudinal-mode (SLM) oscillation is proposed and investigated. Here, a silicon-micro-ring-resonator can be applied in a laser cavity for tuning wavelength in the C-band range. To complete the SLM oscillation, an unpumped EDF-based saturable absorber is used to act as ultra-narrowband filter for suppressing other oscillation modes. Additionally, the output stabilities of power and wavelength in the proposed EDF ring laser are also executed and discussed.
NASA Technical Reports Server (NTRS)
Bair, Clayton H.; Brockman, Philip; Hess, Robert V.; Modlin, Edward A.
1988-01-01
Theoretical and experimental frequency narrowing studies of a Ti:sapphire ring laser with no intracavity optical elements are reported. Frequency narrowing has been achieved using a birefringent filter between a partially reflecting reverse wave suppressor mirror and the ring cavity output mirror. Results of CW diode laser injection seeding are reported.
Interferometric ring lasers and optical devices
Hohimer, J.P.; Craft, D.C.
1995-03-14
Two ring diode lasers are optically coupled together to produce tunable, stable output through a Y-junction output coupler which may also be a laser diode or can be an active waveguide. These devices demonstrate a sharp peak in light output with an excellent side-mode-rejection ratio. The rings can also be made of passive or active waveguide material. With additional rings the device is a tunable optical multiplexer/demultiplexer. 11 figs.
Interferometric ring lasers and optical devices
Hohimer, John P.; Craft, David C.
1995-01-01
Two ring diode lasers are optically coupled together to produce tunable, stable output through a Y-junction output coupler which may also be a laser diode or can be an active waveguide. These devices demonstrate a sharp peak in light output with an excellent side-mode-rejection ratio. The rings can also be made of passive or active waveguide material. With additional rings the device is a tunable optical multiplexer/demultiplexer.
NASA Astrophysics Data System (ADS)
Scott, Austin Murphy
The purpose of this thesis is to design, build, test, and achieve pulsed operation of a ring-cavity erbium-doped fiber laser using carbon nanotubes as a saturable absorber. The erbium-doped fiber is characterized first, cross-sections are calculated, and the gain value is determined. Subsequently, the ring cavity is constructed and the laser is operated in the continuous wave regime. Much time is then spent trying to characterize and utilize the carbon nanotubes successfully. Many dispersions are made using multiple solvents and dispersing media, various images are taken with both scanning electron and Raman microscopy, and attempts at purification are made. Saturable absorbers are then created both by coating the end facet of a fiber with a dispersion containing carbon nanotubes and by inserting a fabricated poly-methyl-methacrylate (PMMA) and single-walled carbon nanotube (SWCNT) polymer composite film between two fiber end facets. Once inserted into the cavity, the saturable absorbers passively Q-switch the laser in three distinct cases. A fiber end facet coating of SWCNTs dispersed into isopropanol produced pulses with duration of 17.45 +/- 0.11 micros and 2.74 +/- 0.14 micros, with repetition rates of 25.36 +/- 0.53 kHz and 37.77 +/- 0.33 kHz, respectively. A second fiber end facet coating of SWCNTs dispersed into dimethylformamide (DMF) produced pulses with duration of 12.28 +/- 1.08 micros and 3.58 +/- 0.12 micros, with repetition rates of 25.13 +/- 0.63 kHz and 26.46 +/- 0.13 kHz, respectively. The PMMA plus SWCNT polymer composite film produced pulses of 0.716 +/- 0.007 micros duration and 142.8 +/- 1 kHz repetition rate.
Modeling synchronization in networks of delay-coupled fiber ring lasers.
Lindley, Brandon S; Schwartz, Ira B
2011-11-21
We study the onset of synchronization in a network of N delay-coupled stochastic fiber ring lasers with respect to various parameters when the coupling power is weak. In particular, for groups of three or more ring lasers mutually coupled to a central hub laser, we demonstrate a robust tendency toward out-of-phase (achronal) synchronization between the N-1 outer lasers and the single inner laser. In contrast to the achronal synchronization, we find the outer lasers synchronize with zero-lag (isochronal) with respect to each other, thus forming a set of N-1 coherent fiber lasers. © 2011 Optical Society of America
Ring-resonator-integrated tunable external cavity laser employing EAM and SOA.
Yoon, Ki-Hong; Kwon, O-Kyun; Kim, Ki Soo; Choi, Byung-Seok; Oh, Su Hwan; Kim, Hyun Su; Sim, Jae-Sik; Kim, Chul Soo
2011-12-05
We propose and demonstrate a tunable external cavity laser (ECL) composed of a polymer Bragg reflector (PBR) and integrated gain chip with gain, a ring resonator, an electro-absorption modulator (EAM), and a semiconductor optical amplifier (SOA). The cavity of the laser is composed of the PBR, gain, and ring resonator. The ring resonator reflects the predetermined wavelengths into the gain region and transmits the output signal into integrated devices such as the EAM and SOA. The output wavelength of the tunable laser is discretely tuned in steps of about 0.8 nm through the thermal-optic effect of the PBR and predetermined mode spacing of the ring resonator.
Wang, Yaoting; Liu, Jianli; Liu, Qin; Li, Yuanji; Zhang, Kuanshou
2010-06-07
We report a continuous-wave (cw) single frequency Nd:YAG blue laser at 473 nm end-pumped by a laser diode. A ring laser resonator was designed, the frequency doubling efficiency and the length of nonlinear crystal were optimized based on the investigation of the influence of the frequency doubling efficiency on the thermal lensing effect induced by energy-transfer upconversion. By intracavity frequency doubling with PPKTP crystal, an output power of 1 W all-solid-state cw blue laser of single-frequency operation was achieved. The stability of the blue output power was better than +/- 1.8% in the given four hours.
Numerical Modelling of a Bidirectional Long Ring Raman Fiber Laser Dynamics
NASA Astrophysics Data System (ADS)
Sukhanov, S. V.; Melnikov, L. A.; Mazhirina, Yu A.
2017-11-01
The numerical model for the simulation of the dynamics of a bidirectional long ring Raman fiber laser is proposed. The model is based on the transport equations and Courant-Isaacson-Rees method. Different regimes of a bidirectional long ring Raman fiber laser and long time-domain realizations are investigated.
Mode Behavior in Ultralarge Ring Lasers
NASA Astrophysics Data System (ADS)
Hurst, Robert B.; Dunn, Robert W.; Schreiber, K. Ulrich; Thirkettle, Robert J.; MacDonald, Graeme K.
2004-04-01
Contrary to expectations based on mode spacing, single-mode operation in very large He-Ne ring lasers may be achieved at intracavity power levels up to ~0.15 times the saturation intensity for the He-Ne transition. Homogeneous line broadening at a high total gas pressure of 4-6 Torr allows a single-peaked gain profile that suppresses closely spaced multiple modes. At startup, decay of initial multiple modes may take tens of seconds. The single remaining mode in each direction persists metastably as the cavity is detuned by many times the mode frequency spacing. A theoretical explanation requires the gain profile to be concave down and to satisfy an inequality related to slope and saturation at the operating frequency. Calculated metastable frequency ranges are greater than 150 MHz at 6 Torr and depend strongly on pressure. Examples of unusual stable mode configurations are shown, with differently numbered modes in the two directions and with multiple modes at a spacing of ~100 MHz.
Mode behavior in ultralarge ring lasers.
Hurst, Robert B; Dunn, Robert W; Schreiber, K Ulrich; Thirkettle, Robert J; MacDonald, Graeme K
2004-04-10
Contrary to expectations based on mode spacing, single-mode operation in very large He-Ne ring lasers may be achieved at intracavity power levels up to approximately0.15 times the saturation intensity for the He-Ne transition. Homogeneous line broadening at a high total gas pressure of 4-6 Torr allows a single-peaked gain profile that suppresses closely spaced multiple modes. At startup, decay of initial multiple modes may take tens of seconds. The single remaining mode in each direction persists metastably as the cavity is detuned by many times the mode frequency spacing. A theoretical explanation requires the gain profile to be concave down and to satisfy an inequality related to slope and saturation at the operating frequency. Calculated metastable frequency ranges are > 150 MHz at 6 Torr and depend strongly on pressure. Examples of unusual stable mode configurations are shown, with differently numbered modes in the two directions and with multiple modes at a spacing of approximately 100 MHz.
Modeling of anisotropic properties of double quantum rings by the terahertz laser field.
Baghramyan, Henrikh M; Barseghyan, Manuk G; Kirakosyan, Albert A; Ojeda, Judith H; Bragard, Jean; Laroze, David
2018-04-18
The rendering of different shapes of just a single sample of a concentric double quantum ring is demonstrated realizable with a terahertz laser field, that in turn, allows the manipulation of electronic and optical properties of a sample. It is shown that by changing the intensity or frequency of laser field, one can come to a new set of degenerated levels in double quantum rings and switch the charge distribution between the rings. In addition, depending on the direction of an additional static electric field, the linear and quadratic quantum confined Stark effects are observed. The absorption spectrum shifts and the additive absorption coefficient variations affected by laser and electric fields are discussed. Finally, anisotropic electronic and optical properties of isotropic concentric double quantum rings are modeled with the help of terahertz laser field.
Study of nonlinear liquid effects into ytterbium-doped fiber laser for multi-wavelength generation
NASA Astrophysics Data System (ADS)
Lozano-Hernandez, T.; Jauregui-Vazquez, D.; Estudillo-Ayala, J.; Herrera-Piad, L. A.; Rojas-Laguna, R.; Hernandez-Garcia, J. M.; Sierra-Hernandez, J. M.
2018-02-01
We present an experimental study of liquid refractive index effects into Ytterbium ring fiber laser cavity configuration. The laser is operated using a bi-tapered optical fiber immersed in water-alcohol concentrations. When the tapered fiber is dipped into a distilled water, a single lasing line with a peak power centered at 1025 nm is achieved. Afterward, by changing the polarization state into the cavity the lasing line can be switched. Moreover, by modifying the refractive index liquid surrounding media the lasing lines can be controlled and special liquid provide nonlinear response. The laser offers compactness, low effective cost and good stability.
Beam dynamics and expected performance of Sweden's new storage-ring light source: MAX IV
NASA Astrophysics Data System (ADS)
Leemann, S. C.; Andersson, Å.; Eriksson, M.; Lindgren, L.-J.; Wallén, E.; Bengtsson, J.; Streun, A.
2009-12-01
MAX IV will be Sweden’s next-generation high-performance synchrotron radiation source. The project has recently been granted funding and construction is scheduled to begin in 2010. User operation for a broad and international user community should commence in 2015. The facility is comprised of two storage rings optimized for different wavelength ranges, a linac-based short-pulse facility and a free-electron laser for the production of coherent radiation. The main radiation source of MAX IV will be a 528 m ultralow emittance storage ring operated at 3 GeV for the generation of high-brightness hard x rays. This storage ring was designed to meet the requirements of state-of-the-art insertion devices which will be installed in nineteen 5 m long dispersion-free straight sections. The storage ring is based on a novel multibend achromat design delivering an unprecedented horizontal bare lattice emittance of 0.33 nm rad and a vertical emittance below the 8 pm rad diffraction limit for 1 Å radiation. In this paper we present the beam dynamics considerations behind this storage-ring design and detail its expected unique performance.
Ring-laser gyroscope system using dispersive element(s)
NASA Technical Reports Server (NTRS)
Smith, David D. (Inventor)
2010-01-01
A ring-laser gyroscope system includes a ring-laser gyroscope (RLG) and at least one dispersive element optically coupled to the RLG's ring-shaped optical path. Each dispersive element has a resonant frequency that is approximately equal to the RLG's lasing frequency. A group index of refraction defined collectively by the dispersive element(s) has (i) a real portion that is greater than zero and less than one, and (ii) an imaginary portion that is less than zero.
All-fibre Q-switching YDFL operation with bismuth-doped fibre as saturable absorber
NASA Astrophysics Data System (ADS)
Muhammad, A. R.; Haris, H.; Arof, H.; Tan, S. J.; Ahmad, M. T.; Harun, S. W.
2018-05-01
We demonstrate the generation of a passively Q-switched ytterbium-doped fibre laser (YDFL) using a bismuth-doped fibre (BDF) as a solid-state fibre saturable absorber (FSA) in a ring cavity. The BDF used has a wide and low absorption band of 5 dB/m at the 1.0 μm region due to the ion transition of ? that occurs around the region. When introduced into a YDFL laser cavity, a stable Q-switched pulse operation was observed and the pulse repetition rate was proportional to the input pump power. It was limited to 72.99 kHz by the maximum power that the laser diode could supply. Meanwhile, the pulse width decreased from 12.22 to 4.85 μs as the pump power was increased from 215.6 to 475.6 mW. The finding suggests that BDF could be used as a potential SA for the development of robust, compact, efficient and low cost Q-switched fibre lasers operating at 1 micron region.
Fusion of Renewable Ring Resonator Lasers and Ultrafast Laser Inscribed Photonic Waveguides
Chandrahalim, Hengky; Rand, Stephen C.; Fan, Xudong
2016-01-01
We demonstrated the monolithic integration of reusable and wavelength reconfigurable ring resonator lasers and waveguides of arbitrary shapes to out-couple and guide laser emission on the same fused-silica chip. The ring resonator hosts were patterned by a single-mask standard lithography, whereas the waveguides were inscribed in the proximity of the ring resonator by using 3-dimensional femtosecond laser inscription technology. Reusability of the integrated ring resonator – waveguide system was examined by depositing, removing, and re-depositing dye-doped SU-8 solid polymer, SU-8 liquid polymer, and liquid solvent (toluene). The wavelength reconfigurability was validated by employing Rhodamine 6G (R6G) and 3,3′-Diethyloxacarbocyanine iodide (CY3) as exemplary gain media. In all above cases, the waveguide was able to couple out and guide the laser emission. This work opens a door to reconfigurable active and passive photonic devices for on-chip coherent light sources, optical signal processing, and the investigation of new optical phenomena. PMID:27600872
Fusion of Renewable Ring Resonator Lasers and Ultrafast Laser Inscribed Photonic Waveguides.
Chandrahalim, Hengky; Rand, Stephen C; Fan, Xudong
2016-09-07
We demonstrated the monolithic integration of reusable and wavelength reconfigurable ring resonator lasers and waveguides of arbitrary shapes to out-couple and guide laser emission on the same fused-silica chip. The ring resonator hosts were patterned by a single-mask standard lithography, whereas the waveguides were inscribed in the proximity of the ring resonator by using 3-dimensional femtosecond laser inscription technology. Reusability of the integrated ring resonator - waveguide system was examined by depositing, removing, and re-depositing dye-doped SU-8 solid polymer, SU-8 liquid polymer, and liquid solvent (toluene). The wavelength reconfigurability was validated by employing Rhodamine 6G (R6G) and 3,3'-Diethyloxacarbocyanine iodide (CY3) as exemplary gain media. In all above cases, the waveguide was able to couple out and guide the laser emission. This work opens a door to reconfigurable active and passive photonic devices for on-chip coherent light sources, optical signal processing, and the investigation of new optical phenomena.
Methods for SBS Threshold Reduction
1994-01-30
We have investigated methods for reducing the threshold for stimulated Brillouin scattering (SBS) using a frequency-narrowed Cr,Tm,Ho:YAG laser...operating at 2.12 micrometers. The SBS medium was carbon disulfide. Single-focus SBS and threshold reduction by using two foci, a loop, and a ring have
Vortex Rings Generated by a Shrouded Hartmann-Sprenger Tube
NASA Technical Reports Server (NTRS)
DeLoof, Richard L. (Technical Monitor); Wilson, Jack
2005-01-01
The pulsed flow emitted from a shrouded Hartmann-Sprenger tube was sampled with high-frequency pressure transducers and with laser particle imaging velocimetry, and found to consist of a train of vortices. Thrust and mass flow were also monitored using a thrust plate and orifice, respectively. The tube and shroud lengths were altered to give four different operating frequencies. From the data, the radius, velocity, and circulation of the vortex rings was obtained. Each frequency corresponded to a different length to diameter ratio of the pulse of air leaving the driver shroud. Two of the frequencies had length to diameter ratios below the formation number, and two above. The formation number is the value of length to diameter ratio below which the pulse converts to a vortex ring only, and above which the pulse becomes a vortex ring plus a trailing jet. A modified version of the slug model of vortex ring formation was used to compare the observations with calculated values. Because the flow exit area is an annulus, vorticity is shed at both the inner and outer edge of the jet. This results in a reduced circulation compared with the value calculated from slug theory accounting only for the outer edge. If the value of circulation obtained from laser particle imaging velocimetry is used in the slug model calculation of vortex ring velocity, the agreement is quite good. The vortex ring radius, which does not depend on the circulation, agrees well with predictions from the slug model.
Monolithic optofluidic ring resonator lasers created by femtosecond laser nanofabrication.
Chandrahalim, Hengky; Chen, Qiushu; Said, Ali A; Dugan, Mark; Fan, Xudong
2015-05-21
We designed, fabricated, and characterized a monolithically integrated optofluidic ring resonator laser that is mechanically, thermally, and chemically robust. The entire device, including the ring resonator channel and sample delivery microfluidics, was created in a block of fused-silica glass using a 3-dimensional femtosecond laser writing process. The gain medium, composed of Rhodamine 6G (R6G) dissolved in quinoline, was flowed through the ring resonator. Lasing was achieved at a pump threshold of approximately 15 μJ mm(-2). Detailed analysis shows that the Q-factor of the optofluidic ring resonator is 3.3 × 10(4), which is limited by both solvent absorption and scattering loss. In particular, a Q-factor resulting from the scattering loss can be as high as 4.2 × 10(4), suggesting the feasibility of using a femtosecond laser to create high quality optical cavities.
Bidirectional optical bistability in a dual-pumped erbium doped fiber ring laser.
Lai, W J; Shum, P; Binh, L
2004-11-15
We investigate bidirectional optical wave propagations in a dual-pumped erbium doped fiber ring laser without isolator, and observe optical bistability behaviors. Consequently, we propose and construct a NOLM-NALM fiber ring laser to demonstrate and exploit this bidirectional optical bistability phenomenon in optical switching by introducing two tunable variable ratio couplers in the system. Numerical analyses based on the proposed laser structure have also been demonstrated corroborated with the experimental results.
NASA Astrophysics Data System (ADS)
Yeh, Chien-Hung; Huang, Tzu-Jung; Yang, Zi-Qing; Chow, Chi-Wai
2017-12-01
In this demonstration, a stable and tunable single-longitudinal-mode (SLM) erbium-doped fiber (EDF) laser with multiple-ring configuration is proposed and investigated. The proposed compound-ring structure can create different free spectrum ranges (FSRs) to result in the mode-filter effect based on the Vernier effect for suppressing the other modes. Additionally, the output stabilization of power and wavelength in the proposed EDF multiple-ring laser are also discussed.
NASA Technical Reports Server (NTRS)
Baker, David M. H.; Head, James W.; Prockter, Louise M.; Fassett, Caleb I.; Neumann, Gregory A.; Smith, David E.; Solomon, Sean C.; Zuber, Maria T.; Oberst, Juergen; Preusker, Frank;
2012-01-01
Peak-ring basins (large impact craters exhibiting a single interior ring) are important to understanding the processes controlling the morphological transition from craters to large basins on planetary bodies. New image and topography data from the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) and Lunar Reconnaissance Orbiter (LRO) spacecraft have helped to update the catalogs of peak-ring basins on Mercury and the Moon [1,2] and are enabling improved calculations of the morphometric properties of these basins. We use current orbital altimeter measurements from the Mercury Laser Altimeter (MLA) [3] and the Lunar Orbiter Laser Altimeter (LOLA) [4], as well as stereo-derived topography [5], to calculate the floor depths and peak-ring heights of peak-ring basins on Mercury and the Moon. We present trends in these parameters as functions of rim-crest diameter, which are likely to be related to processes controlling the onset of peak rings in these basins.
Spatial-mode switchable ring fiber laser based on low mode-crosstalk all-fiber mode MUX/DEMUX
NASA Astrophysics Data System (ADS)
Ren, Fang; Yu, Jinyi; Wang, Jianping
2018-05-01
We report an all-fiber ring laser that emits linearly polarized (LP) modes based on the intracavity all-fiber mode multiplexer/demultiplexer (MUX/DEMUX). Multiple LP modes in ring fiber laser are generated by taking advantage of mode MUX/DEMUX. The all-fiber mode MUX/DEMUX are composed of cascaded mode-selective couplers (MSCs). The output lasing mode of the ring fiber laser can be switched among the three lowest-order LP modes by employing combination of a mode MUX and a simple N × 1 optical switch. The slope efficiencies, optical spectra and mode profiles are measured.
Insulative laser shell coupler
Arnold, Phillip A.; Anderson, Andrew T.; Alger, Terry W.
1994-01-01
A segmented coaxial laser shell assembly having at least two water jacket sections, two pairs of interconnection half rings, a dialectric break ring, and a pair of threaded ring sections. Each water jacket section with an inner tubular section that defines an inner laser cavity with water paths adjacent to at least a portion of the exterior of the inner tubular section, and mating faces at the end of the water jacket section through which the inner laser cavity opens and which defines at least one water port therethrough in communication with the water jackets. The water paths also define in their external surface a circumferential notch set back from and in close proximity to the mating face. The dielectric break ring has selected thickness and is placed between, and in coaxial alignment with, the mating faces of two of the adjacent water jacket sections. The break ring also defines an inner laser cavity of the same size and shape as the inner laser cavity of the water jacket sections and at least one water passage through the break ring to communicate with at least one water port through the mating faces of the water jacket sections.
Insulative laser shell coupler
Arnold, P.A.; Anderson, A.T.; Alger, T.W.
1994-09-20
A segmented coaxial laser shell assembly having at least two water jacket sections, two pairs of interconnection half rings, a dielectric break ring, and a pair of threaded ring sections is disclosed. Each water jacket section with an inner tubular section that defines an inner laser cavity with water paths adjacent to at least a portion of the exterior of the inner tubular section, and mating faces at the end of the water jacket section through which the inner laser cavity opens and which defines at least one water port therethrough in communication with the water jackets. The water paths also define in their external surface a circumferential notch set back from and in close proximity to the mating face. The dielectric break ring has selected thickness and is placed between, and in coaxial alignment with, the mating faces of two of the adjacent water jacket sections. The break ring also defines an inner laser cavity of the same size and shape as the inner laser cavity of the water jacket sections and at least one water passage through the break ring to communicate with at least one water port through the mating faces of the water jacket sections. 4 figs.
NASA Astrophysics Data System (ADS)
Mohammed, D. Z.; Khaleel, Wurood Abdulkhaleq; Al-Janabi, A. H.
2017-12-01
Ferro-oxide (Fe3O4) nanoparticles were used as a saturable absorber (SA) for a passively Q-switched erbium doped fiber laser (EDFL) with ring cavity. The Q-switching operation was achieved at a pump threshold of 80 mW. The proposed fiber laser produces stable pulses train of repetition rate ranging from 25 kHz to 80 kHz as the pump power increases from threshold to 342 mW. The minimum recorded pulse width was 2.7 μs at 342 mW. The C-band tunability operation was performed using single mode-multimode-single mode fiber (SM-MM-SM) structure. The laser exhibited a total tuning range of 7 nm, maximum sensitivity of 106.9 nm, optical signal to noise ratio (OSNR) of 38 dB and 3-dB linewidth of 0.06 nm.
Characterization of a FBG sensor interrogation system based on a mode-locked laser scheme.
Madrigal, Javier; Fraile-Peláez, Francisco Javier; Zheng, Di; Barrera, David; Sales, Salvador
2017-10-02
This paper is focused on the characterization of a fiber Bragg grating (FBG) sensor interrogation system based on a fiber ring laser with a semiconductor optical amplifier as the gain medium, and an in-loop electro-optical modulator. This system operates as a switchable active (pulsed) mode-locked laser. The operation principle of the system is explained theoretically and validated experimentally. The ability of the system to interrogate an array of different FBGs in wavelength and spatial domain is demonstrated. Simultaneously, the influence of several important parameters on the performance of the interrogation technique has been investigated. Specifically, the effects of the bandwidth and the reflectivity of the FBGs, the SOA gain, and the depth of the intensity modulation have been addressed.
Upgrades at the Duke Free Electron Laser Laboratory
NASA Astrophysics Data System (ADS)
Howell, Calvin R.
2004-11-01
Major upgrades to the storage-ring based photon sources at the Duke Free Electron Laser Laboratory (DFELL) are underway. The photon sources at the DFELL are well suited for research in the areas of medicine, biophysics, accelerator physics, nuclear physics and material science. These upgrades, which will be completed by the summer 2006, will significantly enhance the capabilities of the ultraviolet (UV) free-electron laser (FEL) and the high intensity gamma-ray source (HIGS). The HIGS is a relatively new research facility at the DFELL that is operated jointly by the DFELL and the Triangle Universities Nuclear Laboratory. The gamma-ray beam is produced by Compton back scattering of the UV photons inside the FEL optical cavity off the circulating electrons in the storage ring. The gamma-ray beam is 100% polarized and its energy resolution is selected by collimation. The capabilities of the upgraded facility will be described, the status of the upgrades will be summarized, and the proposed first-generation research program at HIGS will be presented.
NASA Technical Reports Server (NTRS)
Poberezhskiy, Ilya; Chang, Daniel; Erlig, Hernan
2011-01-01
Non Planar Ring Oscillator (NPRO) lasers are highly attractive for metrology applications. NPRO reliability for prolonged space missions is limited by reliability of 808 nm pump diodes. Combined laser farm aging parameter allows comparing different bias approaches. Monte-Carlo software developed to calculate the reliability of laser pump architecture, perform parameter sensitivity studies To meet stringent Space Interferometry Mission (SIM) Lite lifetime reliability / output power requirements, we developed a single-mode Laser Pump Module architecture that: (1) provides 2 W of power at 808 nm with >99.7% reliability for 5.5 years (2) consists of 37 de-rated diode lasers operating at -5C, with outputs combined in a very low loss 37x1 all-fiber coupler
Different polarization dynamic states in a vector Yb-doped fiber laser.
Li, Xingliang; Zhang, Shumin; Han, Huiyun; Han, Mengmeng; Zhang, Huaxing; Zhao, Luming; Wen, Fang; Yang, Zhenjun
2015-04-20
Different polarization dynamic states in an unidirectional, vector, Yb-doped fiber ring laser have been observed. A rich variety of dynamic states, including group velocity locked polarization domains and their splitting into regularly distributed multiple domains, polarization locked square pulses and their harmonic mode locking counterparts, and dissipative soliton resonances have all been observed with different operating parameters. We have also shown experimentally details of the conditions under which polarization-domain-wall dark pulses and bright square pulses form.
NASA Astrophysics Data System (ADS)
Xu, Wei; Li, Jing-Yi; Huang, Sen-Lin; Z. Wu, W.; Hao, H.; P., Wang; K. Wu, Y.
2014-10-01
The Duke storage ring is a dedicated driver for the storage ring based oscillator free-electron lasers (FELs), and the High Intensity Gamma-ray Source (HIGS). It is operated with a beam current ranging from about 1 mA to 100 mA per bunch for various operations and accelerator physics studies. High performance operations of the FEL and γ-ray source require a stable electron beam orbit, which has been realized by the global orbit feedback system. As a critical part of the orbit feedback system, the electron beam position monitors (BPMs) are required to be able to precisely measure the electron beam orbit in a wide range of the single-bunch current. However, the high peak voltage of the BPM pickups associated with high single-bunch current degrades the performance of the BPM electronics, and can potentially damage the BPM electronics. A signal conditioning method using low pass filters is developed to reduce the peak voltage to protect the BPM electronics, and to make the BPMs capable of working with a wide range of single-bunch current. Simulations and electron beam based tests are performed. The results show that the Duke storage ring BPM system is capable of providing precise orbit measurements to ensure highly stable FEL and HIGS operations.
A single-frequency double-pulse Ho:YLF laser for CO2-lidar
NASA Astrophysics Data System (ADS)
Kucirek, P.; Meissner, A.; Eiselt, P.; Höfer, M.; Hoffmann, D.
2016-03-01
A single-frequency q-switched Ho:YLF laser oscillator with a bow-tie ring resonator, specifically designed for highspectral stability, is reported. It is pumped with a dedicated Tm:YLF laser at 1.9 μm. The ramp-and-fire method with a DFB-diode laser as a reference is employed for generating single-frequency emission at 2051 nm. The laser is tested with different operating modes, including cw-pumping at different pulse repetition frequencies and gain-switched pumping. The standard deviation of the emission wavelength of the laser pulses is measured with the heterodyne technique at the different operating modes. Its dependence on the single-pass gain in the crystal and on the cavity finesse is investigated. At specific operating points the spectral stability of the laser pulses is 1.5 MHz (rms over 10 s). Under gain-switched pumping with 20% duty cycle and 2 W of average pump power, stable single-frequency pulse pairs with a temporal separation of 580 μs are produced at a repetition rate of 50 Hz. The measured pulse energy is 2 mJ (<2 % rms error on the pulse energy over 10 s) and the measured pulse duration is approx. 20 ns for each of the two pulses in the burst.
Invited review article: Large ring lasers for rotation sensing.
Schreiber, Karl Ulrich; Wells, Jon-Paul R
2013-04-01
Over the last two decades a series of large ring laser gyroscopes have been built having an unparalleled scale factor. These upscaled devices have improved the sensitivity and stability for rotation rate measurements by six orders of magnitude when compared to previous commercial developments. This progress has made possible entirely new applications of ring laser gyroscopes in the fields of geophysics, geodesy, and seismology. Ring lasers are currently the only viable measurement technology, which is directly referenced to the instantaneous rotation axis of the Earth. The sensor technology is rapidly developing. This is evidenced by the first experimentally viable proposals to make terrestrial tests of general relativistic effects such as the frame dragging of the rotating Earth.
Mission Performance of the GLAS Thermal Control System - 7 Years In Orbit
NASA Technical Reports Server (NTRS)
Grob, Eric W.
2010-01-01
ICESat (Ice, Cloud and land Elevation Satellite) was launched in 2003 carrying a single science instrument - the Geoscience Laser Altimeter System (GLAS). Its primary mission was to measure polar ice thickness. The GLAS thermal control architecture utilized propylene Loop Heat Pipe (LHP) technology to provide selectable and stable temperature control for the lasers and other electronics over a widely varying mission thermal environment. To minimize expected degradation of the radiators, Optical Solar Reflectors (OSRs) were used for both LHP radiators to minimize degradation caused by UV exposure in the various spacecraft attitudes necessary throughout the mission. Developed as a Class C mission, with selective redundancy, the thermal architecture was single st ring, except for temperature sensors used for heater control during normal operations. Although originally planned for continuous laser operations over the nominal three year science mission, laser anomalies limited operations to discrete measurement campaigns repeated throughout the year. For trending of the science data, these periods were selected to occur at approximately the same time each year, which resulted in operations during similar attitudes and beta angles. Despite the laser life issues, the LHPs have operated nearly continuously over this time, being non-operational for only brief periods. Using mission telemetry, this paper looks at the performance of the thermal subsystem during these periods and provides an assessment of radiator degradation over the mission lifetime.
Cui, Xing-Yang; Shen, Qi; Yan, Mei-Chen; Zeng, Chao; Yuan, Tao; Zhang, Wen-Zhuo; Yao, Xing-Can; Peng, Cheng-Zhi; Jiang, Xiao; Chen, Yu-Ao; Pan, Jian-Wei
2018-04-15
Second-harmonic generation (SHG) is useful for obtaining single-frequency continuous-wave laser sources at various wavelengths for applications ranging from biology to fundamental physics. Using an external power-enhancement cavity is an effective approach to improve the frequency conversion efficiency. However, thermal effects limit the efficiency, particularly, in high-power operation. Therefore, reducing thermal effects is important when designing a cavity. This Letter reports the use of an external ring cavity for SHG, yielding a 5.2 W, 671 nm laser light with a conversion efficiency of 93.8±0.8% which, to the best of our knowledge, is a new record of conversion efficiency for an external ring cavity. It is achieved using a 10 mm length periodically poled potassium titanyl phosphate crystal and a 65 μm radius beam waist in the cavity so as to minimize thermal dephasing and thermal lensing. Furthermore, a method is developed to determine a conversion efficiency more accurately based on measuring the pump depletion using a photodiode detector and a maximum pump depletion up to 97% is recorded. In this method, the uncertainty is much less than that achieved in a common method by direct measuring with a power meter.
Mode Selection for a Single-Frequency Fiber Laser
NASA Technical Reports Server (NTRS)
Liu, Jian
2010-01-01
A superstructured fiber-grating-based mode selection filter for a single-frequency fiber laser eliminates all free-space components, and makes the laser truly all-fiber. A ring cavity provides for stable operations in both frequency and power. There is no alignment or realignment required. After the fibers and components are spliced together and packaged, there is no need for specially trained technicians for operation or maintenance. It can be integrated with other modules, such as telescope systems, without extra optical alignment due to the flexibility of the optical fiber. The filter features a narrow line width of 1 kHz and side mode suppression ratio of 65 dB. It provides a high-quality laser for lidar in terms of coherence length and signal-to-noise ratio, which is 20 dB higher than solid-state or microchip lasers. This concept is useful in material processing, medical equipment, biomedical instrumentation, and optical communications. The pulse-shaping fiber laser can be directly used in space, airborne, and satellite applications including lidar, remote sensing, illuminators, and phase-array antenna systems.
Beam by design: Laser manipulation of electrons in modern accelerators
NASA Astrophysics Data System (ADS)
Hemsing, Erik; Stupakov, Gennady; Xiang, Dao; Zholents, Alexander
2014-07-01
Accelerator-based light sources such as storage rings and free-electron lasers use relativistic electron beams to produce intense radiation over a wide spectral range for fundamental research in physics, chemistry, materials science, biology, and medicine. More than a dozen such sources operate worldwide, and new sources are being built to deliver radiation that meets with the ever-increasing sophistication and depth of new research. Even so, conventional accelerator techniques often cannot keep pace with new demands and, thus, new approaches continue to emerge. In this article, a variety of recently developed and promising techniques that rely on lasers to manipulate and rearrange the electron distribution in order to tailor the properties of the radiation are reviewed. Basic theories of electron-laser interactions, techniques to create microstructures and nanostructures in electron beams, and techniques to produce radiation with customizable waveforms are reviewed. An overview of laser-based techniques for the generation of fully coherent x rays, mode-locked x-ray pulse trains, light with orbital angular momentum, and attosecond or even zeptosecond long coherent pulses in free-electron lasers is presented. Several methods to generate femtosecond pulses in storage rings are also discussed. Additionally, various schemes designed to enhance the performance of light sources through precision beam preparation including beam conditioning, laser heating, emittance exchange, and various laser-based diagnostics are described. Together these techniques represent a new emerging concept of "beam by design" in modern accelerators, which is the primary focus of this article.
Progress on 58 m2 Passive Resonant Ring Laser Gyroscope,
Pad; design of the optical-mechanical hardware to input the laser to the ring; investigations to insure against ZERODUR bar buckling associated with the...ring evacuation force; verification of ZERODUR physical properties which are key to this application, e.g. compressibility resulting from the usual
Laser-diode-pumped 1319-nm monolithic non-planar ring single-frequency laser
NASA Astrophysics Data System (ADS)
Wang, Qing; Gao, Chunqing; Zhao, Yan; Yang, Suhui; Wei, Guanghui; 2, Dongmei Hong
2003-10-01
Single-frequency 1319-nm laser was obtained by using a laser-diode-pumped monolithic Nd:YAG crystal with a non-planar ring oscillator (NPRO). When the NPRO laser was pumped by an 800-?m fiber coupled laser diode, the output power of the single-frequency 1319-nm laser was 220 mW, and the slope efficiency was 16%. With a 100-1m fiber coupled diode laser pumped, 99-mW single-frequency 1319-nm laser was obtained with a slope efficiency of 29%.
Optimal control of quantum rings by terahertz laser pulses.
Räsänen, E; Castro, A; Werschnik, J; Rubio, A; Gross, E K U
2007-04-13
Complete control of single-electron states in a two-dimensional semiconductor quantum-ring model is established, opening a path into coherent laser-driven single-gate qubits. The control scheme is developed in the framework of optimal-control theory for laser pulses of two-component polarization. In terms of pulse lengths and target-state occupations, the scheme is shown to be superior to conventional control methods that exploit Rabi oscillations generated by uniform circularly polarized pulses. Current-carrying states in a quantum ring can be used to manipulate a two-level subsystem at the ring center. Combining our results, we propose a realistic approach to construct a laser-driven single-gate qubit that has switching times in the terahertz regime.
Ring cavity for a Raman capillary waveguide amplifier
Kurnit, N.A.
1981-01-27
A regenerative ring amplifier and regenerative ring oscillator are described which function to feed back a portion of the Stokes signal to complete the ring cavity. The ring cavity configuration allows the CO/sub 2/ laser pump signal and Stokes signal to copropagate through the Raman capillary waveguide amplifier. A Raman capillary waveguide amplifier is also provided in the return leg of the ring cavity to increase gain without increasing the round trip time. Additionally, the ring cavity can be designed such that the amplified Stokes signal is synchronous with the mode-locked spikes of the incoming CO/sub 2/ laser pump signal.
Ring cavity for a Raman capillary waveguide amplifir
Kurnit, N.A.
1981-01-27
A regenerative ring amplifier and regenerative ring oscillator are described which function to feed back a portion of the Stokes signal to complete the ring cavity. The ring cavity configuration allows the CO/sub 2/ laser pump signal and Stokes signal to copropagate through the Raman capillary waveguide amplifier. A Raman capillary waveguide amplifier is also provided in the return leg of the ring cavity to increase gain without increasing the round trip time. Additionally, the ring cavity can be designed such that the amplified Stokes signal is synchronous with the mode-locked spikes of the incoming CO/sub 2/ laser pump signal.
Ring cavity for a raman capillary waveguide amplifier
Kurnit, Norman A.
1983-07-19
A regenerative ring amplifier and regenerative ring oscillator which function to feed back a portion of the Stokes signal to complete the ring cavity. The ring cavity configuration allows the CO.sub.2 laser pump signal and Stokes signal to copropagate through the Raman capillary waveguide amplifier. A Raman capillary waveguide amplifier is also provided in the return leg of the ring cavity to increase gain without increasing the round trip time. Additionally, the ring cavity can be designed such that the amplifier Stokes signal is synchronous with the mode-locked spikes of the incoming CO.sub.2 laser pump signal.
NASA Astrophysics Data System (ADS)
Maguen, Ezra I.; Salz, James J.; Nesburn, Anthony B.; Warren, Cathy; Macy, Jonathan I.; Papaioannou, Thanassis; Hofbauer, John; Berlin, Michael S.
1994-06-01
This report summarizes the authors' 3-year experience with excimer laser photorefractive keratectomy (PRK) on 240 eyes of 161 patients. With constant laser emission parameters, nitrogen (N2) flow across the cornea was used on 79 eyes while 161 eyes had no N2 flow. 74 eyes were operated on without fixation with a suction ring. Postoperative pain management included patching and oral analgesics in 77 eyes and the use of topical Diclofenac or Ketorolac, and a therapeutic soft contact lens in 163 eyes. Follow up ranged from 1 month (206 eyes) to 36 months (10 eyes).
NASA Astrophysics Data System (ADS)
Shi, Guannan; Fu, Shijie; Sheng, Quan; Shi, Wei; Yao, Jianquan
2018-02-01
We report on the generation of dual-wavelength noise-like pulse (NLP) from a passively mode-locked all-fiber laser based on multimode interference (MMI) effect. The theory to evaluate and design transmission spectrum of MMI filter is analyzed. A homemade MMI filter was employed in an Er-doped fiber ring laser with NPE configuration and dual-wavelength NLP at 1530 and 1600 nm was obtained with 3-dB bandwidth of 18.1 and 41.9 nm, respectively. The output had a signal-to-noise ratio higher than 35 dB and can achieve self-started operation.
A self-mixing based ring-type fiber-optic acoustic sensor
NASA Astrophysics Data System (ADS)
Wang, Lutang; Wu, Chunxu; Fang, Nian
2014-07-01
A novel, simple fiber-optic acoustic sensor consisting of a self-mixing effect based laser source and a ring-type interferometer is presented. With weak external optical feedbacks, the acoustic wave signals can be detected by measuring the changes of oscillating frequency of the laser diode, induced by the disturbances of sensing fiber, with the ring-type interferometer. The operation principles of the sensor system are explored in-depth and the experimental researches are carried out. The acoustic wave signals produced by various actions, such as by pencil broken, mental pin free falling and PZT are detected for evaluating the sensing performances of the experimental system. The investigation items include the sensitivity as well as frequency responses of the sensor system. An experiment for the detection of corona discharges is carried out, which occur in a high-voltage environment between two parallel copper electrodes, under different humidity levels. The satisfied experimental results are obtained. These experimental results well prove that our proposed sensing system has very high sensitivity and excellent high frequency responses characteristics in the detections of weak, high-frequency acoustic wave signals.
Ring resonator based narrow-linewidth semiconductor lasers
NASA Technical Reports Server (NTRS)
Ksendzov, Alexander (Inventor)
2005-01-01
The present invention is a method and apparatus for using ring resonators to produce narrow linewidth hybrid semiconductor lasers. According to one embodiment of the present invention, the narrow linewidths are produced by combining the semiconductor gain chip with a narrow pass band external feedback element. The semi conductor laser is produced using a ring resonator which, combined with a Bragg grating, acts as the external feedback element. According to another embodiment of the present invention, the proposed integrated optics ring resonator is based on plasma enhanced chemical vapor deposition (PECVD) SiO.sub.2 /SiON/SiO.sub.2 waveguide technology.
NASA Astrophysics Data System (ADS)
Wang, H. B.; Wen, W. Q.; Huang, Z. K.; Zhang, D. C.; Hai, B.; Zhu, X. L.; Zhao, D. M.; Yang, J.; Li, J.; Li, X. N.; Mao, L. J.; Mao, R. S.; Wu, J. X.; Yang, J. C.; Yuan, Y. J.; Eidam, L.; Winters, D.; Beck, T.; Kiefer, D.; Rein, B.; Walther, Th.; Loeser, M.; Schramm, U.; Siebold, M.; Bussmann, M.; Ma, X.
2017-10-01
We report on an experiment that was conducted in preparation of laser cooling experiments at the heavy-ion storage ring CSRe. The lifetimes of ion beams made up of 12C3+ and 16O4+ ions stored at an energy of 122 MeV/u in the CSRe were determined by two independent methods, firstly via a DC current transformer (DCCT) and secondly via a Schottky resonator. Using electron-cooling, the signals of the 12C3+ and 16O4+ ions could be separated and clearly observed in the Schottky spectrum. The obtained individual lifetimes of the 12C3+ and 16O4+ components were 23.6 s and 17.8 s, respectively. The proportion of 12C3+ ions in the stored ion beam was measured to be more than 70% at the beginning of the injection and increasing as a function of time. In addition to these measurements, the operation and remote control of a pulsed laser system placed directly next to the storage ring was tested in a setup similar to the one envisaged for future laser experiments.
Optical Coherence Tomography Accurately Measures Corneal Power Change From Laser Refractive Surgery
McNabb, Ryan P.; Farsiu, Sina; Stinnett, Sandra S.; Izatt, Joseph A.; Kuo, Anthony N.
2014-01-01
Purpose To determine the ability of motion corrected optical coherence tomography (OCT) to measure the corneal refractive power change due to laser in situ keratomileusis (LASIK). Design Evaluation of a diagnostic test or technology in a cohort. Subjects 70 eyes from 37 subjects undergoing LASIK were measured preoperatively. 39 eyes from 22 subjects were measured postoperatively and completed the study. Methods Consecutive patients undergoing LASIK at the Duke Eye Center who consented to participate were imaged with Placido-ring topography, Scheimpflug photography and OCT on the day of their surgery. Patients were then reimaged with the same imaging systems at the post-operative month 3 visit. Change in pre- to post-operative corneal refractive power as measured by each of the imaging modalities was compared to the pre- to post-operative change in manifest refraction using t-test with generalized estimating equations. Main Outcome Measures Corneal refractive power change due to LASIK as measured by Placido-ring topography, Scheimpflug Photography, and OCT compared to the manifest refraction change vertexed to the corneal plane. The change in manifest refraction should correspond to the change in the corneal refractive power from LASIK and was considered the reference measurement. Results In 22 returning post-LASIK individuals (39 eyes), we found no significant difference between the clinically measured pre to post LASIK change in manifest refraction and both Scheimpflug photography (p = 0.714) and OCT (p = 0.216). In contrast, keratometry values from Placido-ring topography were found to be significantly different from the measured refractive change (p < 0.001). Additionally, of the three imaging modalities, OCT recorded the smallest mean absolute difference from the reference measurement with the least amount of variability. Conclusion Motion corrected OCT more accurately measures the change in corneal refractive power due to laser refractive surgery than currently available clinical devices. By offering accurate corneal refractive power measurements in normal and surgically modified subjects, OCT offers a compelling alternative to current clinical devices for determining corneal refractive power. PMID:25487424
NASA Astrophysics Data System (ADS)
Wu, Yongxiao; Wang, Zhongyang; Chen, Sanbin; Shirakwa, Akira; Ueda, Ken-ichi; Li, Jianlang
2018-05-01
We proposed an efficient and vortex Nd:YAG laser for selective lasing of low- and high-order vortex modes, in which multiple-ring pump light was originated from cascaded conical refraction of multiple biaxial crystals. In our proof of concept demonstration, we used two-crystal cascade conical refraction to generate two-ring pump light; the mutual intensity ratio and relative separation of the inner ring and outer ring were controlled by rotating the second biaxial crystal and by moving the imaging lens, respectively. As a result, we obtained selective excitation of Laguerre–Gaussian (LG01 and LG03) vortex modes in the end-pump Nd:YAG laser. For LG01-mode output, the laser power reached 439 mW with 52.5% slope efficiency; for LG03-mode output, the laser power reached 160 mW with 41.3% slope efficiency. Our results revealed that the multiple-ring pumping technique based on cascaded conical refraction would pave the way for realization of the efficient and switchable excitation of low- and high-order LG modes in an end-pumped solid-state laser.
NASA Technical Reports Server (NTRS)
Javan, A.
1979-01-01
A tunable multiatmospheric pulsed CO2 laser with emphasis on experimental features and supporting theoretical analyses important to differential absorption lidar and Doppler lidar measurement of pollutants and wind velocities is reported. The energy deposition and the means to produce the uniform high density plasma in the multiatmospheric medium, through UV preionization of an organic seed gas is discussed. Design features of the pulsed CO2 laser are presented. The radiative processes which are operative and prevent the laser from breaking into oscillations in a large number of modes over its broad amplification bandwidth are described. The mode competition for the transient pulsed laser oscillation in a standing wave and traveling wave ring laser configuration is discussed and contrasted with the approach to steady state oscillations. The latter findings are important to transient injection locking for production of a highly stable pulsed CO2 laser output.
Reflex ring laser amplifier system
Summers, M.A.
1983-08-31
The invention is a method and apparatus for providing a reflex ring laser system for amplifying an input laser pulse. The invention is particularly useful in laser fusion experiments where efficient production of high-energy and high power laser pulses is required. The invention comprises a large aperture laser amplifier in an unstable ring resonator which includes a combination spatial filter and beam expander having a magnification greater than unity. An input pulse is injected into the resonator, e.g., through an aperture in an input mirror. The injected pulse passes through the amplifier and spatial filter/expander components on each pass around the ring. The unstable resonator is designed to permit only a predetermined number of passes before the amplified pulse exits the resonator. On the first pass through the amplifier, the beam fills only a small central region of the gain medium. On each successive pass, the beam has been expanded to fill the next concentric non-overlapping region of the gain medium.
NASA Technical Reports Server (NTRS)
Coyle, D. Barry; Kay, Richard B.; Degnan, John J.; Krebs, Danny J.; Seery, Bernard D.
1992-01-01
A small, all solid state, regenerative ring amplifier designed as a prototype for space application is discussed. Novel features include dual side pumping of the Nd:YAG crystal and a triangular ring cavity design which minimizes the number of optical components and losses. The amplifier is relatively small (3 ns round trip time) even though standard optical elements are employed. The ring regeneratively amplifies a 100 ps single pulse by approximately 10(exp 5) at a repetition rate of 10 to 100 Hz. The amplifier is designed to be injection seeded with a pulsed, 100 ps laser diode at 1.06 microns, but another Nd:YAG laser system supplying higher pulse energies was employed for laboratory experiment. This system is a prototype laser oscillator for the Geoscience Laser Ranging System (GLRS) platform. Results on measurements of beam quality, astigmatism, and gain are given.
Control of generation regimes of ring chip laser under the action of the stationary magnetic field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aulova, T V; Kravtsov, Nikolai V; Lariontsev, E G
2013-05-31
We consider realisation of different generation regimes in an autonomous ring chip laser, which is a rather complicated problem. We offer and demonstrate a simple and effective method for controlling the radiation dynamics of a ring Nd:YAG chip laser when it is subjected to a stationary magnetic field producing both frequency and substantial amplitude nonreciprocities. The amplitude and frequency nonreciprocities of a ring cavity, arising under the action of this magnetic field, change when the magnet is moved with respect to the active element of the chip laser. Some self-modulation and stationary generation regimes as well as the regime ofmore » beatings and dynamic chaos regime are experimentally realised. Temporal and spectral characteristics of radiation are studied and conditions for the appearance of the generation regime are found. (control of laser radiation parameters)« less
Hybrid integrated single-wavelength laser with silicon micro-ring reflector
NASA Astrophysics Data System (ADS)
Ren, Min; Pu, Jing; Krishnamurthy, Vivek; Xu, Zhengji; Lee, Chee-Wei; Li, Dongdong; Gonzaga, Leonard; Toh, Yeow T.; Tjiptoharsono, Febi; Wang, Qian
2018-02-01
A hybrid integrated single-wavelength laser with silicon micro-ring reflector is demonstrated theoretically and experimentally. It consists of a heterogeneously integrated III-V section for optical gain, an adiabatic taper for light coupling, and a silicon micro-ring reflector for both wavelength selection and light reflection. Heterogeneous integration processes for multiple III-V chips bonded to an 8-inch Si wafer have been developed, which is promising for massive production of hybrid lasers on Si. The III-V layer is introduced on top of a 220-nm thick SOI layer through low-temperature wafer-boning technology. The optical coupling efficiency of >85% between III-V and Si waveguide has been achieved. The silicon micro-ring reflector, as the key element of the hybrid laser, is studied, with its maximized reflectivity of 85.6% demonstrated experimentally. The compact single-wavelength laser enables fully monolithic integration on silicon wafer for optical communication and optical sensing application.
A 532 nm Chaotic Fiber Laser Transmitter for Underwater Lidar
2013-04-23
passes through unaffected. 3.1.1.2 Ring Lasers as Oscillators The simplest form of laser is a called a Fabry - Perot laser, in which two reflectors are...insufficient to drive the gain amplifier, and so the circulator-based design was scrapped in favor of the Fabry - Perot , whose efficiency was far better...Bidirectional Ring and Fabry - Perot Lasers The Fabry - Perot laser used two matched FBGs to create a wavelength-selective resonator cavity. First single- and
Optimization of the geometrical stability in square ring laser gyroscopes
NASA Astrophysics Data System (ADS)
Santagata, R.; Beghi, A.; Belfi, J.; Beverini, N.; Cuccato, D.; Di Virgilio, A.; Ortolan, A.; Porzio, A.; Solimeno, S.
2015-03-01
Ultra-sensitive ring laser gyroscopes are regarded as potential detectors of the general relativistic frame-dragging effect due to the rotation of the Earth. Our project for this goal is called GINGER (gyroscopes in general relativity), and consists of a ground-based triaxial array of ring lasers aimed at measuring the rotation rate of the Earth with an accuracy of {{10}-14} rad {{s}-1}. Such an ambitious goal is now within reach, as large-area ring lasers are very close to the required sensitivity and stability. However, demanding constraints on the geometrical stability of the optical path of the laser inside the ring cavity are required. Thus, we have begun a detailed study of the geometry of an optical cavity in order to find a control strategy for its geometry that could meet the specifications of the GINGER project. As the cavity perimeter has a stationary point for the square configuration, we identify a set of transformations on the mirror positions that allows us to adjust the laser beam steering to the shape of a square. We show that the geometrical stability of a square cavity strongly increases by implementing a suitable system to measure the mirror distances, and that the geometry stabilization can be achieved by measuring the absolute lengths of the two diagonals and the perimeter of the ring.
Nonreciprocal gain control for ring laser
NASA Technical Reports Server (NTRS)
Dueker, G.; Lee, P.
1967-01-01
Nonreciprocal gain control is used in a ring laser where the two contracirculating beams may have differing intensities because of the residual Faraday rotation and other secondary nonreciprocal effects.
Laser Pulse-Stretching Using Multiple Optical Ring-Cavities
NASA Technical Reports Server (NTRS)
Kojima, Jun; Nguyen, Quang-Viet; Lee, Chi-Ming (Technical Monitor)
2002-01-01
We describe a simple and passive nanosecond-long (ns-long) laser 'pulse-stretcher' using multiple optical ring-cavities. We present a model of the pulse-stretching process for an arbitrary number of optical ring-cavities. Using the model, we optimize the design of a pulse-stretcher for use in a spontaneous Raman scattering excitation system that avoids laser-induced plasma spark problems. From the optimized design, we then experimentally demonstrate and verify the model with a 3-cavity pulse-stretcher system that converts a 1000 mJ, 8.4 ns-long input laser pulse into an approximately 75 ns-long (FWHM) output laser pulse with a peak power reduction of 0.10X, and an 83% efficiency.
Detection of atmospheric infrasound with a ring laser interferometer
NASA Astrophysics Data System (ADS)
Dunn, Robert W.; Meredith, John A.; Lamb, Angela B.; Kessler, Elijah G.
2016-09-01
In this paper, the results from using a large active ring laser interferometer as an infrasound detector are presented. On April 27, 2014, an EF4 tornado struck Central Arkansas and passed within 21 km of the ring laser interferometer. The tornado resulted in 16 fatalities and millions of dollars in damage. Using the ring laser to study the tornado infrasound produced results that qualitatively agree with several findings from a long-term study of weather generated infrasound by the National Oceanic and Atmospheric Administration. A Fast Fourier Transform of the ring laser output revealed a coherent frequency of approximately 0.94 Hz that lasted during the life of the storm. The 0.94 Hz frequency was initially observed 30 min before the funnel was reported on the ground. Infrasound signatures from four separate tornadoes are presented. In each case, coherent infrasound was detected at least 30 min before the tornado was reported on the ground. Examples of the detection of distant coherent acoustic-gravity waves from volcanoes and typhoons are also presented. In addition, buoyancy waves were recorded.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gu, Jian; Yang, Yanfu, E-mail: yangyanfu@hotmail.com; Zhang, Jianyu
We have proposed and demonstrated a novel switchable single-longitudinal-mode (SLM), dual-wavelength erbium-doped fiber laser (DWEDFL) assisted by Rayleigh backscattering (RBS) in a tapered fiber in a ring laser configuration. The RBS feedback in a tapered fiber is a key mechanism as linewidth narrowing for laser output. A compound laser cavity ensured that the EDFL operated in the SLM state and a saturable absorber (SA) is employed to form a gain grating for both filtering and improving wavelength stability. The fiber laser can output dual wavelengths simultaneously or operate at single wavelength in a switchable manner. Experiment results show that withmore » the proper SA, the peak power drift was improved from 1–2 dB to 0.31 dB and the optical signal to noise ratio was higher than 60 dB. Under the assistance of RBS feedback, the laser linewidths are compressed by around three times and the Lorentzian 3 dB linewidths of 445 Hz and 425 Hz are obtained at 1550 nm and 1554 nm, respectively.« less
Single Longitudinal Mode, High Repetition Rate, Q-switched Ho:YLF Laser for Remote Sensing
NASA Technical Reports Server (NTRS)
Bai, Yingxin; Yu, Jirong; Petzar, Paul; Petros, M.; Chen, Songsheng; Trieu, Bo; Lee, Nyung; Singh, U.
2009-01-01
Ho:YLF/LuLiF lasers have specific applications for remote sensing such as wind-speed measurement and carbon dioxide (CO2) concentration measurement in the atmosphere because the operating wavelength (around 2 m) is located in the eye-safe range and can be tuned to the characteristic lines of CO2 absorption and there is strong backward scattering signal from aerosol (Mie scattering). Experimentally, a diode pumped Ho:Tm:YLF laser has been successfully used as the transmitter of coherent differential absorption lidar for the measurement of with a repetition rate of 5 Hz and pulse energy of 75 mJ [1]. For highly precise CO2 measurements with coherent detection technique, a laser with high repetition rate is required to averaging out the speckle effect [2]. In addition, laser efficiency is critically important for the air/space borne lidar applications, because of the limited power supply. A diode pumped Ho:Tm:YLF laser is difficult to efficiently operate in high repetition rate due to the large heat loading and up-conversion. However, a Tm:fiber laser pumped Ho:YLF laser with low heat loading can be operated at high repetition rates efficiently [3]. No matter whether wind-speed or carbon dioxide (CO2) concentration measurement is the goal, a Ho:YLF/LuLiF laser as the transmitter should operate in a single longitudinal mode. Injection seeding is a valid technique for a Q-switched laser to obtain single longitudinal mode operation. In this paper, we will report the new results for a single longitudinal mode, high repetition rate, Q-switched Ho:YLF laser. In order to avoid spectral hole burning and make injection seeding easier, a four mirror ring cavity is designed for single longitudinal mode, high repetition rate Q-switched Ho:YLF laser. The ramp-fire technique is chosen for injection seeding.
Coffee-ring effects in laser desorption/ionization mass spectrometry.
Hu, Jie-Bi; Chen, Yu-Chie; Urban, Pawel L
2013-03-05
This report focuses on the heterogeneous distribution of small molecules (e.g. metabolites) within dry deposits of suspensions and solutions of inorganic and organic compounds with implications for chemical analysis of small molecules by laser desorption/ionization (LDI) mass spectrometry (MS). Taking advantage of the imaging capabilities of a modern mass spectrometer, we have investigated the occurrence of "coffee rings" in matrix-assisted laser desorption/ionization (MALDI) and surface-assisted laser desorption/ionization (SALDI) sample spots. It is seen that the "coffee-ring effect" in MALDI/SALDI samples can be both beneficial and disadvantageous. For example, formation of the coffee rings gives rise to heterogeneous distribution of analytes and matrices, thus compromising analytical performance and reproducibility of the mass spectrometric analysis. On the other hand, the coffee-ring effect can also be advantageous because it enables partial separation of analytes from some of the interfering molecules present in the sample. We report a "hidden coffee-ring effect" where under certain conditions the sample/matrix deposit appears relatively homogeneous when inspected by optical microscopy. Even in such cases, hidden coffee rings can still be found by implementing the MALDI-MS imaging technique. We have also found that to some extent, the coffee-ring effect can be suppressed during SALDI sample preparation. Copyright © 2013 Elsevier B.V. All rights reserved.
Stable L-band multi-wavelength SOA fiber laser based on polarization rotation.
Liu, Tonghui; Jia, Dongfang; Yang, Tianxin; Wang, Zhaoying; Liu, Ying
2017-04-01
We propose and experimentally demonstrate a stable multi-wavelength fiber ring laser operating in the L-band with wavelength spacing of 25 GHz. The mechanism is induced by a polarization rotation intensity equalizer consisting of a semiconductor optical amplifier and polarization devices. A Fabry-Perot filter is inserted into the cavity to serve as a multi-wavelength selection device. Stable L-band multi-wavelength lasing with 3 dB uniformity of 21.2 nm, and simultaneous oscillation of 101 lines with wavelength spacing of 25 GHz, is obtained.
Ring cavity for a Raman capillary waveguide amplifier
Kurnit, N.A.
1983-07-19
Disclosed is a regenerative ring amplifier and regenerative ring oscillator which function to feed back a portion of the Stokes signal to complete the ring cavity. The ring cavity configuration allows the CO[sub 2] laser pump signal and Stokes signal to copropagate through the Raman capillary waveguide amplifier. A Raman capillary waveguide amplifier is also provided in the return leg of the ring cavity to increase gain without increasing the round trip time. Additionally, the ring cavity can be designed such that the amplifier Stokes signal is synchronous with the mode-locked spikes of the incoming CO[sub 2] laser pump signal. 6 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuri, Yosuke, E-mail: yuri.yosuke@jaea.go.jp
Three-dimensional (3D) ordering of a charged-particle beams circulating in a storage ring is systematically studied with a molecular-dynamics simulation code. An ion beam can exhibit a 3D ordered configuration at ultralow temperature as a result of powerful 3D laser cooling. Various unique characteristics of the ordered beams, different from those of crystalline beams, are revealed in detail, such as the single-particle motion in the transverse and longitudinal directions, and the dependence of the tune depression and the Coulomb coupling constant on the operating points.
Mid-infrared 1 W hollow-core fiber gas laser source.
Xu, Mengrong; Yu, Fei; Knight, Jonathan
2017-10-15
We report the characteristics of a 1 W hollow-core fiber gas laser emitting CW in the mid-IR. Our system is based on an acetylene-filled hollow-core optical fiber guiding with low losses at both the pump and laser wavelengths and operating in the single-pass amplified spontaneous emission regime. Through systematic characterization of the pump absorption and output power dependence on gas pressure, fiber length, and pump intensity, we determine that the reduction of pump absorption at high pump flux and the degradation of gain performance at high gas pressure necessitate the use of increased gain fiber length for efficient lasing at higher powers. Low fiber attenuation is therefore key to efficient high-power laser operation. We demonstrate 1.1 W output power at a 3.1 μm wavelength by using a high-power erbium-doped fiber amplifier pump in a single-pass configuration, approximately 400 times higher CW output power than in the ring cavity previously reported.
Design concepts using ring lasers for frequency stabilization
NASA Technical Reports Server (NTRS)
Mocker, H.
1967-01-01
Laser frequency stabilization methods are based on a frequency discriminant which generates an unambiguous deviation signal used for automatic stabilization. Closed-loop control stabilizes cavity length at a null point. Some systems have a stabilized ring laser using a piezoelectric dither and others use a Doppler gain tube.
Tunable femtosecond lasers with low pump thresholds
NASA Astrophysics Data System (ADS)
Oppo, Karen
The work in this thesis is concerned with the development of tunable, femtosecond laser systems, exhibiting low pump threshold powers. The main motive for this work was the development of a low threshold, self-modelocked Ti:Al2O3 laser in order to replace the conventional large-frame argon-ion pump laser with a more compact and efficient all-solid-state alternative. Results are also presented for an all-solid-state, self-modelocked Cr:LiSAF laser, however most of this work is concerned with self-modelocked Ti:Al2O3 laser systems. In chapter 2, the operation of a regeneratively-initiated, and a hard-aperture self- modelocked Ti:Al2O3 laser, pumped by an argon-ion laser, is discussed. Continuous- wave oscillation thresholds as low as 160mW have been demonstrated, along with self-modelocked threshold powers as low as 500mW. The measurement and suppression of phase noise on modelocked lasers is discussed in chapter 3. This is followed by a comparison of the phase noise characteristics of the regeneratively-initiated, and hard-aperture self-modelocked Ti:Al2O3 lasers. The use of a synchronously-operating, high resolution electron-optical streak camera in the evaluation of timing jitter is also presented. In chapter 4, the construction and self-modelocked operation of an all-solid-state Ti:Al2O3 laser is described. The all-solid-state alternative to the conventional argon-ion pump laser was a continuous-wave, intracavity-frequency doubled, diode-laser pumped Nd:YLF ring laser. At a total diode-laser pump power of 10W, this minilaser was capable of producing a single frequency output of 1W, at 523.5nm in a TEM00 beam. The remainder of this thesis looks at the operation of a self-modelocked Ti:Al2O3 laser generating ultrashort pulses at wavelengths as long as 1053nm. The motive for this work was the development of an all-solid-state, self- modelocked Ti:Al2O3 laser operating at 1053nm, for use as a master oscillator in a Nd:glass power chain.
Soliton formation from a noise-like pulse during extreme events in a fibre ring laser
NASA Astrophysics Data System (ADS)
Pottiez, O.; Ibarra-Villalon, H. E.; Bracamontes-Rodriguez, Y.; Minguela-Gallardo, J. A.; Garcia-Sanchez, E.; Lauterio-Cruz, J. P.; Hernandez-Garcia, J. C.; Bello-Jimenez, M.; Kuzin, E. A.
2017-10-01
We study experimentally the interactions between soliton and noise-like pulse (NLP) components in a mode-locked fibre ring laser operating in a hybrid soliton-NLP regime. For proper polarization adjustments, one NLP and multiple packets of solitons coexist in the cavity, at 1530 nm and 1558 nm, respectively. By examining time-domain sequences measured using a 16 GHz real-time oscilloscope, we unveil the process of soliton genesis: they are produced during extreme-intensity episodes affecting the NLP. These extreme events can emerge sporadically, appear in small groups or even form quasi-periodic sequences. Once formed, the wavelength-shifted soliton packet drifts away from the NLP in the dispersive cavity, and eventually vanishes after a variable lifetime. Evidence of the inverse process, through which NLP formation is occasionally seeded by an extreme-intensity event affecting a bunch of solitons, is also provided. The quasi-stationary dynamics described here constitutes an impressive illustration of the connections and interactions between NLPs, extreme events and solitons in passively mode-locked fibre lasers.
Self-seeded single-frequency solid-state ring laser and system using same
Dane, C. Brent; Hackel, Lloyd; Harris, Fritz B.
2007-02-20
A method of operating a laser to obtain an output pulse having a single wavelength, comprises inducing an intracavity loss into a laser resonator having an amount that prevents oscillation during a time that energy from the pump source is being stored in the gain medium. Gain is built up in the gain medium with energy from the pump source until formation of a single-frequency relaxation oscillation pulse in the resonator. Upon detection of the onset of the relaxation oscillation pulse, the intracavity loss is reduced, such as by Q-switching, so that the built-up gain stored in the gain medium is output from the resonator in the form of an output pulse at a single frequency. An electronically controllable output coupler is controlled to affect output pulse characteristics. The laser acts a master oscillator in a master oscillator power amplifier configuration. The laser is used for laser peening.
Beam shaping for laser initiated optical primers
NASA Astrophysics Data System (ADS)
Lizotte, Todd E.
2008-08-01
Remington was one of the first firearm manufacturing companies to file a patent for laser initiated firearms, in 1969. Nearly 40 years later, the development of laser initiated firearms has not become a mainstream technology in the civilian market. Requiring a battery is definitely a short coming, so it is easy to see how such a concept would be problematic. Having a firearm operate reliably and the delivery of laser energy in an efficient manner to ignite the shock-sensitive explosive primer mixtures is a tall task indeed. There has been considerable research on optical element based methods of transferring or compressing laser energy to ignite primer charges, including windows, laser chip primers and various lens shaped windows to focus the laser energy. The focusing of laser light needs to achieve igniting temperatures upwards of >400°C. Many of the patent filings covering this type of technology discuss simple approaches where a single point of light might be sufficient to perform this task. Alternatively a multi-point method might provide better performance, especially for mission critical applications, such as precision military firearms. This paper covers initial design and performance test of the laser beam shaping optics to create simultaneous multiple point ignition locations and a circumferential intense ring for igniting primer charge compounds. A simple initial test of the ring beam shaping technique was evaluated on a standard large caliber primer to determine its effectiveness on igniting the primer material. Several tests were conducted to gauge the feasibility of laser beam shaping, including optic fabrication and mounting on a cartridge, optic durability and functional ignition performance. Initial data will be presented, including testing of optically elements and empirical primer ignition / burn analysis.
NASA Astrophysics Data System (ADS)
Yang, Zi-Qing; Huang, Tzu-Jung; Chang, Yao-Jen; Yeh, Chien-Hung; Chow, Chi-Wai; Chen, Jing-Heng; Chen, Kun-Huang
2018-06-01
In this work, we propose and demonstrate a switchable dual-wavelength erbium-doped fiber (EDF) ring laser with stable single-longitudinal-mode (SLM) output. Here, a dual-ring (DR) structure with an unpumped EDF of 2 m is designed to achieve SLM oscillation. Five fiber Bragg gratings (FBGs) are applied in the laser cavity serving as the reflective element to generate different dual-wavelength outputs. In the measurement, six sets of generated dual-wavelengths with various mode-spacing (Δλ) can be achieved via the five FBGs. Additionally, the stability performance of the proposed EDF DR laser is also demonstrated.
The non-planar single-frequency ring laser with variable output coupling
NASA Astrophysics Data System (ADS)
Wu, Ke-ying; Yang, Su-hui; Wei, Guang-hui
2002-03-01
We put forward a novel non-planar single-frequency ring laser, which consists of a corner cube prism and a specially cut Porro prism made by Nd:YAG crystal. The relative angle between the corner cube and the Porro prism could be adjusted to control the output coupling of the laser resonator and the polarization-state of the output laser. A 1.06 μm single-frequency laser with 1 W output has been obtained.
NASA Astrophysics Data System (ADS)
Klein, Tony
2017-10-01
Used these days in inertial navigation, ring lasers are also used in recording the tiniest variations in the Earth's spin, as well in detecting earthquakes and even the drift of continents. How did it all begin?
In-band pumped Q-switched fiber laser based on monolayer graphene
NASA Astrophysics Data System (ADS)
Wu, Hanshuo; Wu, Jian; Xiao, Hu; Leng, Jinyong; Xu, Jiangming; Zhou, Pu
2017-06-01
We propose and demonstrate an in-band pumped all-fiberized passively Q-switched laser emitting at 1080 nm. A single mode 1030 nm fiber laser is used as the pump source, while a 2D material, CVD-grown monolayer graphene, is adopted as a saturable absorber inside the ring cavity. The repetition rate of the output pulses can be varied from 12.74 to 24.6 kHz with the pulse duration around 12 µs. The maximum average output power is 34.25 mW, with the pulse energy of 1.392 µJ. This work proves the practicability of achieving passively Q-switched operation via in-band pump.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rawat, Priyanka; Purohit, Gunjan, E-mail: gunjan75@gmail.com; Gauniyal, Rakhi
A theoretical and numerical study has been made of the propagation of a ring rippled laser beam in collisionless plasma with dominant relativistic ponderomotive nonlinearity and its effect on the excitation of electron plasma wave and stimulated Raman backscattering process. The growth of ring ripple, riding on an intense Gaussian laser beam in plasma has also been studied. A paraxial-ray and WKB approximation has been invoked to understand the nature of propagation of the ring rippled Gaussian laser beam in plasma, electron plasma wave and back reflectivity under the influence of both nonlinearities. The growth rate and focusing of amore » ring rippled beam is found to be considerably affected by the power of the main beam and the phase angle between the electric vectors of the main beam and the ring ripple. It has also been observed that the focusing is released by the coupling of relativistic and ponderomotive nonlinearities, which significantly affected the dynamics of the excitation of electron plasma wave and back reflectivity of stimulated Raman scattering (SRS). Due to the strong coupling between ring rippled laser beam and the excited electron plasma wave, back reflectivity of SRS is enhanced. It has been observed from the computational results that the effect of the increased intensity leads to suppression of SRS back reflectivity. The results have been presented for established laser and plasma parameters.« less
Fiber-ring laser-based intracavity photoacoustic spectroscopy for trace gas sensing.
Wang, Qiang; Wang, Zhen; Chang, Jun; Ren, Wei
2017-06-01
We demonstrated a novel trace gas sensing method based on fiber-ring laser intracavity photoacoustic spectroscopy. This spectroscopic technique is a merging of photoacoustic spectroscopy (PAS) with a fiber-ring cavity for sensitive and all-fiber gas detection. A transmission-type PAS gas cell (resonant frequency f0=2.68 kHz) was placed inside the fiber-ring laser to fully utilize the intracavity laser power. The PAS signal was excited by modulating the laser wavelength at f0/2 using a custom-made fiber Bragg grating-based modulator. We used this spectroscopic technique to detect acetylene (C2H2) at 1531.6 nm as a proof of principle. With a low Q-factor (4.9) of the PAS cell, our sensor achieved a good linear response (R2=0.996) to C2H2 concentration and a minimum detection limit of 390 ppbv at 2-s response time.
Examining Rotational Ground Motion Induced by Tornados
NASA Astrophysics Data System (ADS)
Kessler, Elijah; Dunn, Robert
2016-03-01
Ring lasers are well known for their ability to detect rotation and to serve as replacements for mechanical gyroscopes. The sensitivity of large ring lasers to various forms of ground motion is less familiar. Since ring lasers preferentially measure rotational ground motion and a standard seismograph is designed to measure translational and vertical ground motion, each device responds to different aspects of ground movement. Therefore, the two instruments will be used to explore responses to microseisms, earthquake generated shear waves, and in particular tornado generated ground movement. On April 27, 2014 an EF4 tornado devastated Vilonia, AR a small town ~ 21 km from the Hendrix College ring laser. The proximity of the tornado's path to the ring laser interferometer and to a seismograph located in Vilonia provided the opportunity to examine the response of these instruments to tornadic generated ground motion. Our measurements suggest tornadic weather systems can produce both rotational and lateral ground motion. This contention is supported by an after the fact damage survey which found that the tornado flattened a forest in which trees were uprooted and laid down in a pair of converging arcs with the centerline pointed in the direction of the tornado's path.
NASA Astrophysics Data System (ADS)
Osiński, Marek; Kalagara, Hemashilpa; Lee, Hosuk; Smolyakov, Gennady A.
2017-08-01
Greatly enhanced high-speed modulation performance has been recently predicted in numerical calculations for a novel injection-locking scheme involving a distributed Bragg reflector master laser monolithically integrated with a unidirectional whistle-geometry semiconductor microring laser. Operation of these devices relies on the assumption of large difference between modal losses experienced by counterpropagating modes. In this work, we confirm the unidirectionality of the whistle-geometry configuration through rigorous three-dimensional finite-difference timedomain (FDTD) simulation by showing a strong asymmetry in photon lifetimes between the two counterpropagating modes. We also show that similar asymmetry occurs in three-port couplers, whose structure resembles the coupling section of whistle-geometry lasers. We explain why these results do not violate the Helmholtz reciprocity principle.
NASA Astrophysics Data System (ADS)
Di Virgilio, Angela D. V.; Belfi, Jacopo; Ni, Wei-Tou; Beverini, Nicolo; Carelli, Giorgio; Maccioni, Enrico; Porzio, Alberto
2017-04-01
GINGER (Gyroscopes IN General Relativity) is a proposal for an Earth-based experiment to measure the Lense-Thirring (LT) and de Sitter effects. GINGER is based on ring lasers, which are the most sensitive inertial sensors to measure the rotation rate of the Earth. We show that two ring lasers, one at maximum signal and the other horizontal, would be the simplest configuration able to retrieve the GR effects. Here, we discuss this configuration in detail showing that it would have the capability to test LT effect at 1%, provided the accuracy of the scale factor of the instrument at the level of 1 part in 1012 is reached. In principle, one single ring laser could do the test, but the combination of the two ring lasers gives the necessary redundancy and the possibility to verify that the systematics of the lasers are sufficiently small. The discussion can be generalised to seismology and geodesy and it is possible to say that signals 10-12 orders of magnitude below the Earth rotation rate can be studied; the proposed array can be seen as the basic element of multi-axial systems, and the generalisation to three dimensions is feasible adding one or two devices and monitoring the relative angles between different ring lasers. This simple array can be used to measure with very high precision the amplitude of angular rotation rate (the length of the day, LOD), its short term variations, and the angle between the angular rotation vector and the horizontal ring laser. Finally this experiment could be useful to probe gravity at fundamental level giving indications on violations of Einstein Equivalence Principle and Lorenz Invariance and possible chiral effects in the gravitational field.
Combination ring cavity and backward Raman waveguide amplifier
Kurnit, Norman A.
1983-01-01
A combination regenerative ring and backward Raman waveguide amplifier and a combination regenerative ring oscillator and backward Raman waveguide amplifier which produce Raman amplification, pulse compression, and efficient energy extraction from the CO.sub.2 laser pump signal for conversion into a Stokes radiation signal. The ring cavity configuration allows the CO.sub.2 laser pump signal and Stokes signal to copropagate through the Raman waveguide amplifier. The backward Raman waveguide amplifier configuration extracts a major portion of the remaining energy from the CO.sub.2 laser pump signal for conversion to Stokes radiation. Additionally, the backward Raman amplifier configuration produces a Stokes radiation signal which has a high intensity and a short duration. Adjustment of the position of overlap of the Stokes signal and the CO.sub.2 laser pump signal in the backward Raman waveguide amplifiers alters the amount of pulse compression which can be achieved.
Srinivasan-Rao, Triveni
2002-01-01
A photon generator includes an electron gun for emitting an electron beam, a laser for emitting a laser beam, and an interaction ring wherein the laser beam repetitively collides with the electron beam for emitting a high energy photon beam therefrom in the exemplary form of x-rays. The interaction ring is a closed loop, sized and configured for circulating the electron beam with a period substantially equal to the period of the laser beam pulses for effecting repetitive collisions.
Small Business Innovations (MISER)
NASA Technical Reports Server (NTRS)
1991-01-01
Lightwave Electronics Corporation, Mountain View, CA, developed the Series 120 and 122 non-planner diode pumped ring lasers based on a low noise ring laser with voltage tuning that they delivered to Jet Propulsion Laboratory under a Small Business Innovation Research (SBIR) contract. The voltage tuning feature allows "phase-locking" the lasers, making them "electronic," similar to radio and microwave electronic oscillators. The Series 120 and 122 can be applied to fiber sensing, coherent communications and laser radar.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Guo-Bo; College of Science, National University of Defense Technology, Changsha 410073; Chen, Min, E-mail: minchen@sjtu.edu.cn, E-mail: yanyunma@126.com
2016-03-15
We show that a ring-shaped hollow electron beam can be injected and accelerated by using a Laguerre-Gaussian laser pulse and ionization-induced injection in a laser wakefield accelerator. The acceleration and evolution of such a hollow, relativistic electron beam are investigated through three-dimensional particle-in-cell simulations. We find that both the ring size and the beam thickness oscillate during the acceleration. The beam azimuthal shape is angularly dependent and evolves during the acceleration. The beam ellipticity changes resulting from the electron angular momenta obtained from the drive laser pulse and the focusing forces from the wakefield. The dependence of beam ring radiusmore » on the laser-plasma parameters (e.g., laser intensity, focal size, and plasma density) is studied. Such a hollow electron beam may have potential applications for accelerating and collimating positively charged particles.« less
NASA Astrophysics Data System (ADS)
Das, Goutam
This thesis studies experimentally and theoretically a few designs of multiwavelength fiber lasers. Four different configurations are proposed and demonstrated; all of which can operate at room temperatures. An elliptical core erbium-doped fiber is used as the gain medium, which is single mode along the minor axis and multimode along the major axis. The principle of operation is based on the anisotropic gain effect of an elliptical core erbium-doped fiber. Stable multiwavelength operation is achieved at room temperatures. A polarization controller is used to control and select the lasing wavelengths. The stability of the lasing lines, in the presence of anisotropic gain effects, has been examined. The maximum number of stable lasing lines that may be obtained depends on the number of modes supported by the erbium-doped fiber. The effects of the dimensions of the fiber are also studied. A ring resonator is formed using an elliptical core erbium-doped fiber. The basic theoretical expression for the threshold pump power for each lasing line is developed. The theoretical results are in excellent agreement with the values obtained experimentally. The dependence of the separations between the lasing wavelengths on the dimensions of the erbium-doped fiber is examined. A theoretical study of a Sagnac loop interferometer and its applications in a passive ring resonator is reported. A ring resonator is formed by using the Sagnac loop filter in the cavity. The experimental results show that the separations between the lasing wavelengths may be controlled by adjusting the birefringence of the Sagnac loop interferometer. These experimental results agree with the theoretical findings. Similarly, another resonator is formed using a Sagnac loop reflector and a broadband reflector in a Fabry-Perot configuration. An optical switch is made, where two wavelengths may be switched by using a polarization controller in the cavity. To study the stability of the lasing wavelengths, the outputs of the lasers are monitored for a few hours using an optical spectrum analyzer with a resolution bandwidth of 0.06 nm. The experimental results show that intensity fluctuations of the lasing lines of less than 0.2 dB are possible with no changes in wavelength. High concentrations of erbium in the fiber degrade the stability of the lasing wavelengths resulting in greater intensity fluctuations. The lasers may be made to lase in the C band or L band by adjusting the length of the erbium-doped fiber in the cavity.
De, Anulekha; Banik, Gourab Dutta; Maity, Abhijit; Pal, Mithun; Pradhan, Manik
2016-05-01
A high-resolution cavity ring-down spectroscopic (CRDS) system based on a continuous wave (cw) mode-hop-free (MHF) external-cavity quantum cascade laser (EC-QCL) operating at λ∼5.2 μm has been developed for ultrasensitive detection of nitric oxide (NO). We report the performance of the high-resolution EC-QCL based cw-CRDS instrument by measuring the rotationally resolved Λ-doublet e and f components of the P(7.5) line in the fundamental band of NO at 1850.169 cm-1 and 1850.179 cm-1. A noise-equivalent absorption coefficient of 1.01×10-9 cm-1 Hz-1/2 was achieved based on an empty cavity ring-down time of τ0=5.6 μs and standard deviation of 0.11% with averaging of six ring-down time determinations. The CRDS sensor demonstrates the advantages of measuring parts per billion NO concentrations in N2, as well as in human breath samples with ultrahigh sensitivity and specificity. The CRDS system could also be generalized to measure simultaneously many other trace molecular species within the broad tuning range of cw EC-QCL, as well as for studying the rotationally resolved hyperfine structures.
Microscale vortex laser with controlled topological charge
NASA Astrophysics Data System (ADS)
Wang, Xing-Yuan; Chen, Hua-Zhou; Li, Ying; Li, Bo; Ma, Ren-Min
2016-12-01
A microscale vortex laser is a new type of coherent light source with small footprint that can directly generate vector vortex beams. However, a microscale laser with controlled topological charge, which is crucial for virtually any of its application, is still unrevealed. Here we present a microscale vortex laser with controlled topological charge. The vortex laser eigenmode was synthesized in a metamaterial engineered non-Hermitian micro-ring cavity system at exceptional point. We also show that the vortex laser cavity can operate at exceptional point stably to lase under optical pumping. The microscale vortex laser with controlled topological charge can serve as a unique and general building block for next-generation photonic integrated circuits and coherent vortex beam sources. The method we used here can be employed to generate lasing eigenmode with other complex functionalities. Project supported by the “Youth 1000 Talent Plan” Fund, Ministry of Education of China (Grant No. 201421) and the National Natural Science Foundation of China (Grant Nos. 11574012 and 61521004).
NASA Astrophysics Data System (ADS)
Hunter, Craig R.; Jones, Brynmor E.; Schlosser, Peter; Sørensen, Simon Toft; Strain, Michael J.; McKnight, Loyd J.
2018-02-01
This paper will present developments in narrow-linewidth semiconductor-disk-laser systems using novel frequencystabilisation schemes for reduced sensitivity to mechanical vibrations, a critical requirement for mobile applications. Narrow-linewidth single-frequency lasers are required for a range of applications including metrology and highresolution spectroscopy. Stabilisation of the laser was achieved using a monolithic fibre-optic ring resonator with free spectral range of 181 MHz and finesse of 52 to act as passive reference cavity for the laser. Such a cavity can operate over a broad wavelength range and is immune to a wide band of vibrational frequency noise due to its monolithic implementation. The frequency noise of the locked system has been measured and compared to typical Fabry-Perotlocked lasers using vibration equipment to simulate harsh environments, and analysed here. Locked linewidths of < 40 kHz have been achieved. These developments offer a portable, narrow-linewidth laser system for harsh environments that can be flexibly designed for a range of applications.
Characteristics of the inductive nitrogen laser generation
NASA Astrophysics Data System (ADS)
Razhev, A. M.; Churkin, D. S.; Kargapoltsev, E. S.
2016-05-01
The results of the experimental study of energy, temporal, spectral and spatial characteristics of UV inductive laser generation are presented. The study has identified a number of characteristics which demonstrate the differences between electron parameters of inductively coupled plasma and the plasma of longitudinal and transverse electrical discharges. The mechanism of simultaneous occurrence of Lewis-Rayleigh afterglow representing transitions between higher vibrational substates of B3Πg and A3∑u+ states; laser generation at C3Πu→B3Πg transition as well as the absence of IR radiation at 1st positive system typical for electrical discharge nitrogen lasers has been thoroughly researched. The major characteristic is ring shaped laser beam which size and width depend on excitation conditions. Inductive UV nitrogen laser is found to operate in ASE regime, but has a low divergence of 0.4±0.1 mrad and high pulse-to-pulse stability (laser pulse deviation amplitude did not exceed 1%).
Sun, Xiankai; Yariv, Amnon
2008-06-09
We have developed a theory that unifies the analysis of the modal properties of surface-emitting chirped circular grating lasers. This theory is based on solving the resonance conditions which involve two types of reflectivities of chirped circular gratings. This approach is shown to be in agreement with previous derivations which use the characteristic equations. Utilizing this unified analysis, we obtain the modal properties of circular DFB, disk-, and ring- Bragg resonator lasers. We also compare the threshold gain, single mode range, quality factor, emission efficiency, and modal area of these types of circular grating lasers. It is demonstrated that, under similar conditions, disk Bragg resonator lasers have the highest quality factor, the highest emission efficiency, and the smallest modal area, indicating their suitability in low-threshold, high-efficiency, ultracompact laser design, while ring Bragg resonator lasers have a large single mode range, high emission efficiency, and large modal area, indicating their suitability for high-efficiency, large-area, high-power applications.
NASA Astrophysics Data System (ADS)
Glova, A. F.; Lebedev, E. A.; Lysikov, A. Yu; Shchetnikov, S. B.
1999-12-01
Phase locking of the radiation of two ring waveguide CO2 lasers with a common cavity and unidirectional lasing was achieved for an output power of about 20 W. Measurements of the fringe visibility of the radiation intensity distributions in the far-field zone agreed qualitatively with the calculations for plane waves.
Erbium-doped fiber ring laser with SMS modal interferometer for hydrogen sensing
NASA Astrophysics Data System (ADS)
Zhang, Ya-nan; Zhang, Lebin; Han, Bo; Peng, Huijie; Zhou, Tianmin; Lv, Ri-qing
2018-06-01
A hydrogen sensor based on erbium-doped fiber ring laser with modal interferometer is proposed. A single mode-multimode-single mode (SMS) modal interferometer structure coated with Pd/WO3 film is used as the sensing head, due to that it is easy to be fabricated and low cost. The sensing structure is inserted into an erbium-doped fiber ring laser in order to solve the problem of spectral confusion and improve the detection limit of the hydrogen sensor based on the SMS modal interferometer. The SMS sensing structure is acted as a fiber band-pass filter. When hydrogen concentration around the sensor is changed, it will induce the refractive index and strain variations of the Pd/WO3 film, and then shift the resonant spectrum of the SMS modal interferometer as well as the laser wavelength of the fiber ring laser. Therefore, the hydrogen concentration can be measured by monitoring the wavelength shift of the laser, which has high intensity and narrow full width half maximum. Experimental results demonstrate that the sensor has high sensitivity of 1.23 nm/%, low detection limit of 0.017%, good stability and excellent repeatability.
Hammond, Peter R.; Atkins, Ronald L.; Henry, Ronald A.; Fletcher, Aaron N.
1978-01-01
A dye laser comprising a laser dye solution of a compound having the general structure: ##STR1## wherein at least one of the 5, 6 and 8 ring positions is occupied by a nitrogen atom in lieu of the corresponding CR group and X is OH, alkoxy, or amino including amino substituted by at least one of the following: alkyl, aryl, acyl, aracyl, a group which taken together with the nitrogen atom of the amino group forms a heterocyclic ring, or part of one or two 5 or 6 membered aliphatic heterocyclic rings attached to ring A at positions 6 or 8 or both depending on where the N in ring A is located. R.sub.1, R.sub.3, R.sub.4, R.sub.5, R.sub.6 and R.sub.8 are hydrogen or other groups as defined below. The compounds lase in the blue to near ultraviolet region.
Hammond, Peter R.; Atkins, Ronald L.; Henry, Ronald A.; Fletcher, Aaron N.
1978-01-01
A dye laser comprising a laser dye solution of a compound having the general structure: ##STR1## wherein at least one of the 5, 6 and 8 ring positions is occupied by a nitrogen atom in lieu of the corresponding CR group and X is OH, alkoxy, or amino including amino substituted by at least one of the following: alkyl, aryl, acyl, aracyl, a group which taken together with the nitrogen atom of the amino group forms a heterocyclic ring, or part of one or two 5 or 6 membered aliphatic heterocyclic rings attached to ring A at positions 6 or 8 or both depending on where the N in ring A is located. R.sub.3, R.sub.4, R.sub.5, R.sub.6 and R.sub.8 are hydrogen or other groups as defined below. The compounds lase in the blue-green to near ultraviolet region.
Förster, Erik; Bohnert, Patrick; Kraus, Matthias; Kilper, Roland; Müller, Ute; Buchmann, Martin; Brunner, Robert
2016-11-20
This paper presents the conception and implementation of a variable diameter ring-cutting system for a CO2 laser with a working wavelength of 10.6 μm. The laser-cutting system is adapted to an observation zoom microscope for combined use and is applicable for the extraction of small circular areas from polymer films, such as forensic adhesive tapes in a single shot. As an important characteristic for our application, the variable diameter ring-cutting system provides telecentricity in the target area. Ring diameters are continuously tunable between 500 μm and 2 mm. A minimum width of less than 20 μm was found for the ring profile edge. The basic characteristics of the system, including telecentricity, were experimentally evaluated and demonstrated by cutting experiments on different polymer tapes and further exemplary samples.
Schulze, S; Nietgen, G; Sekundo, W
2004-07-01
The aim of this study was to determine and compare the rate of eccentric laser ablation after LASIK depending on the eye tracker ring used. All LASIK treatments were carried out using the MEL-70 flying spot excimer laser (Zeiss-Meditec, Jena). The flap was produced using a Corneal Shaper trade mark or Hansatome trade mark Microkeratome (B and L Surgical, Heidelberg). Initially we used an 11 mm eye tracker ring without hinge protector. At the end of February 2001 this ring was replaced by a 10 mm and a 9.5 mm ring with built-in hinge protector. An additional modification was introduced by us: at 1 mm separations little teeth-like spikes were engraved into the eyeward side of the ring, thus stabilising the position of the ring on the globe and allowing free liquid to flow through the spaces between each spike. The built-in calibration system of the corneal topography (TMS 3, Tomey, Erlangen) from patients with a follow-up of one month or longer was used to determine the distance between the centre of the ablation zone from the fixation point. In group I patients (old ring) 42 eyes were treated. In 4 eyes ablation was perfect, in 21 eyes the ablation centre was located 0.1 to 0.49 mm from the fixation point, in 11 eyes 0.51 to 0.99 mm and in 5 eyes 1.1 to 1.49 mm whereas one eye showed a decentred ablation of 1.53 mm. In group II (new ring) 42 eyes were investigated also. In 11 eyes ablation was perfect, in 20 eyes the ablation centre was located 0.1 to 0.49 mm from the fixation point, in 10 eyes 0.5 to 0.99 mm and one eye had an eccentric ablation of 1.28 mm from the fixation point. The further development of our eye tracker ring for the MEL-70 laser considerably reduced the rate of decentred ablations. An enhanced grip of the ring onto the globe reduces a slow slide during the laser procedure.
NASA Astrophysics Data System (ADS)
Mineo, Hirobumi; Fujimura, Yuichi
2015-06-01
We propose an ultrafast quantum switching method of π-electron rotations, which are switched among four rotational patterns in a nonplanar chiral aromatic molecule (P)-2,2’- biphenol and perform the sequential switching among four rotational patterns which are performed by the overlapped pump-dump laser pulses. Coherent π-electron dynamics are generated by applying the linearly polarized UV pulse laser to create a pair of coherent quasidegenerated excited states. We also plot the time-dependent π-electron ring current, and discussed ring current transfer between two aromatic rings.
Sideband analysis and seismic detection in a large ring laser
NASA Astrophysics Data System (ADS)
Stedman, G. E.; Li, Z.; Bilger, H. R.
1995-08-01
A ring laser unlocked by the Earth's Sagnac effect has attained a frequency resolution of 1 part in 3 \\times 1021 and a rotational resolution of 300 prad. We discuss both theoretically and experimentally the sideband structure of the Earth rotation-induced spectral line induced in the microhertz-hertz region by frequency modulation associated with extra mechanical motion, such as seismic events. The relative sideband height is an absolute measure of the rotational amplitude of that Fourier component. An initial analysis is given of the ring laser record from the Arthur's Pass-Coleridge seismic event of 18 June 1994.
Handheld Automated Microsurgical Instrumentation for Intraocular Laser Surgery
Yang, Sungwook; Lobes, Louis A.; Martel, Joseph N.; Riviere, Cameron N.
2016-01-01
Background and Objective Laser photocoagulation is a mainstay or adjuvant treatment for a variety of common retinal diseases. Automated laser photocoagulation during intraocular surgery has not yet been established. The authors introduce an automated laser photocoagulation system for intraocular surgery, based on a novel handheld instrument. The goals of the system are to enhance accuracy and efficiency and improve safety. Materials and Methods Triple-ring patterns are introduced as a typical arrangement for the treatment of proliferative retinopathy and registered to a preoperative fundus image. In total, 32 target locations are specified along the circumferences of three rings having diameters of 1, 2, and 3 mm, with a burn spacing of 600 μm. Given the initial system calibration, the retinal surface is reconstructed using stereo vision, and the targets specified on the preoperative image are registered with the control system. During automated operation, the laser probe attached to the manipulator of the active handheld instrument is deflected as needed via visual servoing in order to correct the error between the aiming beam and a specified target, regardless of any erroneous handle motion by the surgeon. A constant distance of the laser probe from the retinal surface is maintained in order to yield consistent size of burns and ensure safety during operation. Real-time tracking of anatomical features enables compensation for any movement of the eye. A graphical overlay system within operating microscope provides the surgeon with guidance cues for automated operation. Two retinal surgeons performed automated and manual trials in an artificial model of the eye, with each trial repeated three times. For the automated trials, various targeting thresholds (50–200 μm) were used to automatically trigger laser firing. In manual operation, fixed repetition rates were used, with frequencies of 1.0–2.5 Hz. The power of the 532 nm laser was set at 3.0 W with a duration of 20 ms. After completion of each trial, the speed of operation and placement error of burns were measured. The performance of the automated laser photocoagulation was compared with manual operation, using interpolated data for equivalent firing rates from 1.0 to 1.75 Hz. Results In automated trials, average error increased from 45 ± 27 to 60 ± 37 μm as the targeting threshold varied from 50 to 200 μm, while average firing rate significantly increased from 0.69 to 1.71 Hz. The average error in the manual trials increased from 102 ± 67 to 174 ± 98 μm as firing rate increased from 1.0 to 2.5 Hz. Compared to the manual trials, the average error in the automated trials was reduced by 53.0–56.4%, resulting in statistically significant differences (P ≤ 10−20) for all equivalent frequencies (1.0–1.75 Hz). The depth of the laser tip in the automated trials was consistently maintained within 18 ± 2 μm root-mean-square (RMS) of its initial position, whereas it significantly varied in the manual trials, yielding an error of 296 ± 30 μm RMS. At high firing rates in manual trials, such as at 2.5 Hz, laser photocoagulation is marginally attained, yielding failed burns of 30% over the entire pattern, whereas no failed burns are found in automated trials. Relatively regular burn sizes are attained in the automated trials by the depth servoing of the laser tip, while burn sizes in the manual trials vary considerably. Automated avoidance of blood vessels was also successfully demonstrated, utilizing the retina-tracking feature to identify avoidance zones. Conclusion Automated intraocular laser surgery can improve the accuracy of photocoagulation while ensuring safety during operation. This paper provides an initial demonstration of the technique under reasonably realistic laboratory conditions; development of a clinically applicable system requires further work. PMID:26287813
NASA Astrophysics Data System (ADS)
Chen, Weiguo; Lou, Shuqin; Wang, Liwen; Li, Honglei; Guo, Tieying; Jian, Shuisheng
2009-08-01
The compact Mach-Zehnder interferometer is proposed by splicing a section of photonic crystal fiber (PCF) and two pieces of single mode fiber (SMF) with the air-holes of PCF intentionally collapsed in the vicinity of the splices. The depedence of the fringe spacing on the length of PCF is investigated. Based on the Mach-Zehnder interferometer as wavelength-selective filter, a switchable dual-wavelength fiber ring laser is demonstrated with a homemade erbiumdoped fiber amplifier (EDFA) as the gain medium at room temperature. By adjusting the states of the polarization controller (PC) appropriately, the laser can be switched among the stable single-and dual -wavelength lasing operations by exploiting polarization hole burning (PHB) effect.
Ackermann, Mark; Diels, Jean-Claude
2005-06-28
A scatterometer utilizes the dead zone resulting from lockup caused by scatter from a sample located in the optical path of a ring laser at a location where counter-rotating pulses cross. The frequency of one pulse relative to the other is varied across the lockup dead zone.
Structure Formation in Complex Plasma
2011-08-24
Dewer bottle (upper figures) or in the vapor of liquid helium (lower figures). Liq. He Ring electrode Particles Green Laser RF Plasma ... Ring electrode CCD camera Prism mirror Liq. He Glass Tube Liq. N2 Glass Dewar Acrylic particles Gas Helium Green Laser CCD camera Pressure
Ringing phenomenon based whispering-gallery-mode sensing
Ye, Ming-Yong; Shen, Mei-Xia; Lin, Xiu-Min
2016-01-01
Highly sensitive sensing is one of the most important applications of whispering-gallery-mode (WGM) microresonators, which is usually accomplished through a tunable continuous-wave laser sweeping over a whispering-gallery mode with the help of a fiber taper in a relative slow speed. It is known that if a tunable continuous-wave laser sweeps over a high quality whispering-gallery mode in a fast speed, a ringing phenomenon will be observed. The ringing phenomenon in WGM microresonators is mainly used to measure the Q factors and mode-coupling strengths. Here we experimentally demonstrate that the WGM sensing can be achieved based on the ringing phenomenon. This kind of sensing is accomplished in a much shorter time and is immune to the noise caused by the laser wavelength drift. PMID:26796871
The GLC8 - A miniature low cost ring laser gyroscope
NASA Astrophysics Data System (ADS)
Godart, D.-F.; Peghaire, J.-P.
SAGEM is enlarging its family of ring laser gyros (RLG) which already includes a triangular 32-cm path-length gyro and a square 16-cm path-length gyro, in order to meet the increasing demand for low cost, medium accuracy strap-down inertial measurement units for applications such as short- and medium-range tactical missiles as well as aided navigation systems for aircrafts and land vehicles. Based on the experience acquired in the past 13 years in the RLG field, and especially in mirror manufacturing, SAGEM developed the GLC8 which has a square 8-cm path length cavity, central piezoelectric dither. It incorporates two cathodes, a single anode, and is technologically designed to minimize production-costs while optimizing the performance to global device size ratio. This gyro is characterized by a bias and a scale-factor stability respectively better than 0.5 deg/h and 100 ppm (1 sigma), and has an operating lifetime compatible with the most demanding relevant applications and a high robustness to mechanical environments.
Study of Cryogenic Complex Plasma
2007-04-26
enabled us to detect the formation of the Coulomb crystals as shown in Fig. 2. Liq. He Ring electrode Particles Green Laser RF Plasma ... Ring electrode CCD camera Prism mirror Liq. He Glass Tube Liq. N2 Glass Dewar Acrylic particles Gas Helium Green Laser CCD camera Pressure
Geophysical Measurements Using a Ring Laser
NASA Astrophysics Data System (ADS)
Lamb, Angela
2016-03-01
Low frequency infrasound from weather related events has been studied for a number of years. In this poster, the results from using a large active ring laser as an infrasound detector are presented. A slightly modified cavity design enhances the interferometer's sensitivity to infrasound. Our results qualitatively agree with several findings from a long term study of weather generated infrasound by NOAA. On April 27, 2014, the 66 km track of an EF-4 tornado passed within 21 km of the ring laser interferometer. An FFT of the ring laser interferometer output revealed a steady tornado generated frequency of 0.94 Hz. The track also passed close to the US Array Transportable Station W41B. This provided the opportunity to examine both the infrasound and ground motion generated by the tornado. Infrasound from three other tornadoes is also included. In all cases the infrasound was detected approximately 30 minutes before the tornado funnel was observed. This work is generously supported by the National Science Foundation and NASA/Arkansas Space Grant.
Formation of Ultrarelativistic Electron Rings from a Laser-Wakefield Accelerator.
Pollock, B B; Tsung, F S; Albert, F; Shaw, J L; Clayton, C E; Davidson, A; Lemos, N; Marsh, K A; Pak, A; Ralph, J E; Mori, W B; Joshi, C
2015-07-31
Ultrarelativistic-energy electron ring structures have been observed from laser-wakefield acceleration experiments in the blowout regime. These electron rings had 170-280 MeV energies with 5%-25% energy spread and ∼10 pC of charge and were observed over a range of plasma densities and compositions. Three-dimensional particle-in-cell simulations show that laser intensity enhancement in the wake leads to sheath splitting and the formation of a hollow toroidal pocket in the electron density around the wake behind the first wake period. If the laser propagates over a distance greater than the ideal dephasing length, some of the dephasing electrons in the second period can become trapped within the pocket and form an ultrarelativistic electron ring that propagates in free space over a meter-scale distance upon exiting the plasma. Such a structure acts as a relativistic potential well, which has applications for accelerating positively charged particles such as positrons.
NASA Astrophysics Data System (ADS)
Chen, Guangwei; Li, Wenlei
2018-03-01
A broadband pulsed mid-infrared difference frequency generation (DFG) laser source based on MgO-doped congruent LiNbO3 bulk is experimentally demonstrated, which employs a homemade pulsed ytterbium-doped ring fiber laser and a continuous wave erbium-doped ring fiber laser to act as seed sources. The experimental results indicate that the perfect phase match crystal temperature is about 74.5∘C. The maximum spectrum bandwidth of idler is about 60 nm with suitable polarization states of fundamental lights. The central wavelength of idlers varies from 3293 nm to 3333 nm over the crystal temperature ranges of 70.4-76∘C. A jump of central wavelength exists around crystal temperature of 72∘C with variation of about 30 nm. The conversion efficiency of DFG can be tuned with the crystal temperature and polarization states of fundamental lights.
NASA Astrophysics Data System (ADS)
Al-Muraeb, Ahmed Mohammed Maim
This dissertation presents new approaches to design photonic crystal fiber Bragg grating, which is a main component in wavelength-tunable fiber and solid-state laser (SSL) systems operating in eye-safe wavelength region (1.4 - 2 mum). Although they have their own name, fiber lasers can be categorized as SSL as they are being used in making Ion-doped SSL. Today however, fiber lasers compete with and threaten to replace most of high-power, bulk SSLs and even some gas lasers. Hence, an eye-safe dual-wavelength Tunable Fiber Ring Laser (TFRL) system is considered in this work. This work addresses: 1. Eye-safe region laser areas of applications, TFRL system description, and wavelength tuning mechanisms with focus on (1.8 - 2 mum) range. 2. Optimal design method for Fiber Bragg Grating (FBG) using the Bat Algorithm, with the novel Adaptive Position Update (APU-BA) (our work [1]). The latter enhances the search performance and accuracy of BA for FBG design. Also, APU-BA shows better search performance and higher accuracy against previously reported methods and algorithms. 3. Investigation and design of novel High-Birefringence Photonic Crystal Fiber (JIBPCF) structures based on the Binary Morse-Thue fractal Sequence (BMTS) [2]. The latter offers desirably higher birefringence and lower confinement loss with dispersion-free single-mode operation in the eye-safe region of interest (1.8 - 2 microm). 4. Combining the above results, for final design of the photonic crystal fiber Bragg grating device (serving as wavelength-selective reflector in TFRL). Fiber Bragg grating design and analysis were carried out using MATLAG RTM. Resulting in refractive index modulation over the designed FBG length for a given target FBG reflectance spectrum. Hexagonal standard Silica Glass solid-core 5-ring HB-PCF with circular air holes, is designed based on BMTS. COMSOL MultiphysicsRTM - Wave Optics Module is used in modeling and analysis for the design. Four BMTS formations were proposed, and compared in terms of PCF design parameters (mainly: birefringence). Fabrication in agreement with commercially available PCFs, are concerned in structure geometrical design.
Inline microring reflector for photonic applications
NASA Astrophysics Data System (ADS)
Kang, Young Mo
The microring is a compact resonator that is used as a versatile building block in photonic circuits ranging from filters, modulators, logic gates, sensors, switches, multiplexers, and laser cavities. The Bragg grating is a periodic structure that allows the selection of a narrow bandwidth of spectrum for stable lasing operation. In this dissertation, we study analysis and simulations of a compact microring based reflector assembled by forming a Bragg grating into a loop. With the appropriate design, the microring resonance can precisely align with the reflection peak of the grating while all other peaks are suppressed by reflection nulls of the grating. The field buildup at the resonance effectively amplifies small reflection of the grating, thereby producing significant overall reflection from the ring, and it is possible to achieve a stable narrow linewidth compact laser by forming a single mode laser cavity. The device operation principle is studied from two distinct perspectives; the first looks at coupling of two contra-directional traveling waves within the ring whereas the second aspect investigates relative excitation of the two competing microring resonant modes. In the former method, we relate the steady state amplitudes of the two traveling waves to the reflection spectrum of the grating and solve for the reflection and transmission response for each wavelength of interest. In the latter approach, we expand the field in terms of the resonant modes of the ring cavity and derive transfer functions for reflection and transmission from the nearby mode frequencies. The angular periodicity of the reflective microring geometry allows us to effectively simulate the resonant modes from a computational domain of a single period grating when the continuity boundary condition is applied. We successfully predict the reflection and transmission response of a Si3N 4/SiO2 microring reflector using this method---otherwise too large to carry out full-wave simulation---and show that the prediction agrees very well with the measurement result.
Brandstetter, Markus; Genner, Andreas; Schwarzer, Clemens; Mujagic, Elvis; Strasser, Gottfried; Lendl, Bernhard
2014-02-10
We present the time-resolved comparison of pulsed 2nd order ring cavity surface emitting (RCSE) quantum cascade lasers (QCLs) and pulsed 1st order ridge-type distributed feedback (DFB) QCLs using a step-scan Fourier transform infrared (FT-IR) spectrometer. Laser devices were part of QCL arrays and fabricated from the same laser material. Required grating periods were adjusted to account for the grating order. The step-scan technique provided a spectral resolution of 0.1 cm(-1) and a time resolution of 2 ns. As a result, it was possible to gain information about the tuning behavior and potential mode-hops of the investigated lasers. Different cavity-lengths were compared, including 0.9 mm and 3.2 mm long ridge-type and 0.97 mm (circumference) ring-type cavities. RCSE QCLs were found to have improved emission properties in terms of line-stability, tuning rate and maximum emission time compared to ridge-type lasers.
Reconfigurable Solid-state Dye-doped Polymer Ring Resonator Lasers
NASA Astrophysics Data System (ADS)
Chandrahalim, Hengky; Fan, Xudong
2015-12-01
This paper presents wavelength configurable on-chip solid-state ring lasers fabricated by a single-mask standard lithography. The single- and coupled-ring resonator hosts were fabricated on a fused-silica wafer and filled with 3,3‧-Diethyloxacarbocyanine iodide (CY3), Rhodamine 6G (R6G), and 3,3‧-Diethylthiadicarbocyanine iodide (CY5)-doped polymer as the reconfigurable gain media. The recorded lasing threshold was ~220 nJ/mm2 per pulse for the single-ring resonator laser with R6G, marking the lowest threshold shown by solid-state dye-doped polymer lasers fabricated with a standard lithography process on a chip. A single-mode lasing from a coupled-ring resonator system with the lasing threshold of ~360 nJ/mm2 per pulse was also demonstrated through the Vernier effect. The renewability of the dye-doped polymer was examined by removing and redepositing the dye-doped polymer on the same resonator hosts for multiple cycles. We recorded consistent emissions from the devices for all trials, suggesting the feasibility of employing this technology for numerous photonic and biochemical sensing applications that entail for sustainable, reconfigurable, and low lasing threshold coherent light sources on a chip.
Reconfigurable Solid-state Dye-doped Polymer Ring Resonator Lasers
Chandrahalim, Hengky; Fan, Xudong
2015-01-01
This paper presents wavelength configurable on-chip solid-state ring lasers fabricated by a single-mask standard lithography. The single- and coupled-ring resonator hosts were fabricated on a fused-silica wafer and filled with 3,3′-Diethyloxacarbocyanine iodide (CY3), Rhodamine 6G (R6G), and 3,3′-Diethylthiadicarbocyanine iodide (CY5)-doped polymer as the reconfigurable gain media. The recorded lasing threshold was ~220 nJ/mm2 per pulse for the single-ring resonator laser with R6G, marking the lowest threshold shown by solid-state dye-doped polymer lasers fabricated with a standard lithography process on a chip. A single-mode lasing from a coupled-ring resonator system with the lasing threshold of ~360 nJ/mm2 per pulse was also demonstrated through the Vernier effect. The renewability of the dye-doped polymer was examined by removing and redepositing the dye-doped polymer on the same resonator hosts for multiple cycles. We recorded consistent emissions from the devices for all trials, suggesting the feasibility of employing this technology for numerous photonic and biochemical sensing applications that entail for sustainable, reconfigurable, and low lasing threshold coherent light sources on a chip. PMID:26674508
Reconfigurable Solid-state Dye-doped Polymer Ring Resonator Lasers.
Chandrahalim, Hengky; Fan, Xudong
2015-12-17
This paper presents wavelength configurable on-chip solid-state ring lasers fabricated by a single-mask standard lithography. The single- and coupled-ring resonator hosts were fabricated on a fused-silica wafer and filled with 3,3'-Diethyloxacarbocyanine iodide (CY3), Rhodamine 6G (R6G), and 3,3'-Diethylthiadicarbocyanine iodide (CY5)-doped polymer as the reconfigurable gain media. The recorded lasing threshold was ~220 nJ/mm(2) per pulse for the single-ring resonator laser with R6G, marking the lowest threshold shown by solid-state dye-doped polymer lasers fabricated with a standard lithography process on a chip. A single-mode lasing from a coupled-ring resonator system with the lasing threshold of ~360 nJ/mm(2) per pulse was also demonstrated through the Vernier effect. The renewability of the dye-doped polymer was examined by removing and redepositing the dye-doped polymer on the same resonator hosts for multiple cycles. We recorded consistent emissions from the devices for all trials, suggesting the feasibility of employing this technology for numerous photonic and biochemical sensing applications that entail for sustainable, reconfigurable, and low lasing threshold coherent light sources on a chip.
NASA Astrophysics Data System (ADS)
Peterka, Pavel; Navrátil, Petr; Dussardier, Bernard; Slavík, Radan; Honzátko, Pavel; Kubecek, Václav
2012-06-01
Rare-earth doped fiber lasers are subject to instabilities and various self-pulsed regimes that can lead to catastrophic damage of their components. An interesting self-pulsing regime accompanied with laser wavelength drift with time is the so called self-induced laser line sweeping (SLLS). Despite the early observations of the SLLS in solid-state ruby lasers, in fiber lasers it was first time mentioned in literature only in 2009 where such a laser wavelength drift with time was observed in a relatively broad range of about 1076 -1084 nm in ring ytterbium-doped fiber laser (YDFL). The main characteristic of the SLLS is the scanning of the laser wavelength from shorter to longer wavelength, spanning over large interval of several nanometers, and instantaneous bounce backward. The period of this sweeping is usually quite long, of the order of seconds. This spectacular effect was attributed to spatial-hole burning caused by standing-wave in the laser cavity. In this paper we present experimental investigation of the SLLS in YDFLs in Fabry-Perot cavity and ring cavities. The SLLS was observed also in erbium-doped fiber laser around 1560 nm. We present for the first time observation of the laser wavelength sweep in reverse direction, i.e., from longer towards shorter wavelengths. It was observed in YDFL around 1080 nm.
Optical Analysis of Grazing Incidence Ring Resonators for Free-Electron Lasers
NASA Astrophysics Data System (ADS)
Gabardi, David Richard
1990-08-01
The design of resonators for free-electron lasers (FELs) which are to operate in the soft x-ray/vacuum ultraviolet (XUV) region of the spectrum is complicated by the fact that, in this wavelength regime, normal incidence mirrors, which would otherwise be used for the construction of the resonators, generally have insufficient reflectivities for this purpose. However, the use of grazing incidence mirrors in XUV resonators offers the possibility of (1) providing sufficient reflectivity, (2) a lessening of the mirrors' thermal loads due to the projection of the laser beam onto an oblique surface, and (3) the preservation of the FEL's tunability. In this work, the behavior of resonators employing grazing incidence mirrors in ring type configurations is explored. In particular, two designs, each utilizing four off-axis conic mirrors and a number of flats, are examined. In order to specify the location, orientation, and surface parameters for the mirrors in these resonators, a design algorithm has been developed based upon the properties of Gaussian beam propagation. Two computer simulation methods are used to perform a vacuum stability analysis of the two resonator designs. The first method uses paraxial ray trace techniques with the resonators' thin lens analogues while the second uses the diffraction-based computer simulation code GLAD (General Laser Analysis and Design). The effects of mirror tilts and deviations in the mirror surface parameters are investigated for a number of resonators designed to propagate laser beams of various Rayleigh ranges. It will be shown that resonator stability decreases as the laser wavelength for which the resonator was designed is made smaller. In addition, resonator stability will also be seen to decrease as the amount of magnification the laser beam receives as it travels around the resonator is increased.
Photonic Modulation Using Bi-Directional Diamond Shaped Ring Lasers at 1550 NM
2007-04-01
modes for (a) 1% of the relaxation running oscillation frequency and (b) just below free running relaxation oscillation frequency ... List of Tables Table 1. Power requirements needed for a ring laser based flash architecture. Table 2. Achievable bits using 10 mW and
Improving solar-pumped laser efficiency by a ring-array concentrator
NASA Astrophysics Data System (ADS)
Tibúrcio, Bruno D.; Liang, Dawei; Almeida, Joana; Matos, Rodrigo; Vistas, Cláudia R.
2018-01-01
We report here a compact pumping scheme for achieving large improvement in collection and conversion efficiency of a Nd:YAG solar-pumped laser by an innovative ring-array solar concentrator. An aspheric fused silica lens was used to further concentrate the solar radiation from the focal region of the 1.5-m-diameter ring-array concentrator to a 5.0-mm-diameter, 20-mm-length Nd:YAG single-crystal rod within a conical-shaped pump cavity, enabling multipass pumping to the laser rod. 67.3-W continuous-wave solar laser power was numerically calculated, corresponding to 38.2-W / m2 solar laser collection efficiency, being 1.22 and 1.27 times more than the state-of-the-art records by both heliostat-parabolic mirror and Fresnel lens solar laser systems, respectively. 4.0% conversion efficiency and 0.021-W brightness figure of merit were also numerically obtained, corresponding to 1.25 and 1.62 times enhancement over the previous records, respectively. The influence of tracking error on solar laser output power was also analyzed.
Article mounting and position adjustment stage
Cutburth, R.W.; Silva, L.L.
1988-05-10
An improved adjustment and mounting stage of the type used for the detection of laser beams is disclosed. A ring sensor holder has locating pins on a first side thereof which are positioned within a linear keyway in a surrounding housing for permitting reciprocal movement of the ring along the keyway. A rotatable ring gear is positioned within the housing on the other side of the ring from the linear keyway and includes an oval keyway which drives the ring along the linear keyway upon rotation of the gear. Motor-driven single-stage and dual (x, y) stage adjustment systems are disclosed which are of compact construction and include a large laser transmission hole. 6 figs.
Article mounting and position adjustment stage
Cutburth, Ronald W.; Silva, Leonard L.
1988-01-01
An improved adjustment and mounting stage of the type used for the detection of laser beams is disclosed. A ring sensor holder has locating pins on a first side thereof which are positioned within a linear keyway in a surrounding housing for permitting reciprocal movement of the ring along the keyway. A rotatable ring gear is positioned within the housing on the other side of the ring from the linear keyway and includes an oval keyway which drives the ring along the linear keyway upon rotation of the gear. Motor-driven single-stage and dual (x, y) stage adjustment systems are disclosed which are of compact construction and include a large laser transmission hole.
NASA Astrophysics Data System (ADS)
Sakata, H.; Kimpara, K.; Komori, K.; Tomiki, M.
2014-05-01
We report Q-switched pulse generation in Tm-doped fiber lasers by introducing piezoelectric-driven microbend into an elliptical coating fiber in a fiber ring resonator. Compared with the untreated circular fiber having a diameter of 240 μm, the elliptical coating fiber was flattened to have a major axis diameter of about 300 μm. We employed a pair of comblike plates attached on the piezoelectric actuators in order to bend the fiber from both sides. The output pulse power is improved by optimizing the tooth-width and spatial period of the comb-like plates, so that the elliptical coating fiber is easily bent and the propagation mode is efficiently coupled to radiation modes around λ = 1.9 μm. The Tm-doped fiber is pumped by a laser diode emitting at 1.63 μm and the pump light is introduced to the fiber ring resonator via the wavelength division multiplexing coupler. The emission spectra showed that the center oscillation wavelength was typically 1.92 μm. When the pump power was increased to 156 mW, the output pulse showed a peak power of 42.5 W with a pulse width of 1.06 μs. We expect that the in-fiber Q-switching technique will provide simple laser systems for environmental sensing and medical applications.
Compact Storage Ring for an X-Ray Source
NASA Astrophysics Data System (ADS)
Ovchinnikova, L.; Shvedunov, V.; Ivanov, K.
2017-12-01
We propose a new design of a compact storage ring for a source of X-ray radiation on the basis of reverse Thomson scattering of laser radiation by electrons with the energy of 35-50 MeV, which has small number of optical elements and a significant clear space for the placement of a beam injection-extraction system and a RF cavity. The original laser cavity layout has been considered. The ring dynamic aperture after correction of chromaticity and a second-order dispersion function is sufficient for the injection and stable circulation of an electron bunch in the ring.
NASA Astrophysics Data System (ADS)
Liu, Jingxuan; Wang, Muguang; Liang, Xiao; Dong, Yue; Xiao, Han; Jian, Shuisheng
2017-08-01
A novel Erbium-doped fiber ring cavity laser sensor for refractive index (RI) measurement based on a special designed few-mode-singlemode-few-mode structure is proposed and experimentally demonstrated. The few-mode fiber is a home-made concentric ring core fiber (CRCF) which can only support two scalar modes. Thus a stable mode interference occurs which functions as a sensing head and band-pass filter to select the lasing wavelength simultaneously. A sensitivity of -45.429 nm/RIU is obtained in the range of 1.333-1.363. High optical signal to noise ratio (OSNR) of ∼45 dB and narrow 3-dB bandwidth of ∼0.1 nm indicate that the fiber ring laser sensing system has a high resolution and accuracy RI measurement.
Bulmer, John; Bullard, Thomas; Dolasinski, Brian; Murphy, John; Sparkes, Martin; Pangovski, Krste; O’Neill, William; Powers, Peter; Haugan, Timothy
2015-01-01
An electromagnetic transmitter typically consists of individual components such as a waveguide, antenna, power supply, and an oscillator. In this communication we circumvent complications associated with connecting these individual components and instead combine them into a non-traditional, photonic enabled, compact transmitter device for tunable, ultrawide band (UWB) radiation. This device is a centimeter scale, continuous, thin film superconducting ring supporting a persistent super-current. An ultrafast laser pulse (required) illuminates the ring (either at a point or uniformly around the ring) and perturbs the super-current by the de-pairing and recombination of Cooper pairs. This generates a microwave pulse where both ring and laser pulse geometry dictates the radiated spectrum’s shape. The transmitting device is self contained and completely isolated from conductive components that are observed to interfere with the generated signal. A rich spectrum is observed that extends beyond 30 GHz (equipment limited) and illustrates the complex super-current dynamics bridging optical, THz, and microwave wavelengths. PMID:26659022
Fabrication of amorphous micro-ring arrays in crystalline silicon using ultrashort laser pulses
NASA Astrophysics Data System (ADS)
Fuentes-Edfuf, Yasser; Garcia-Lechuga, Mario; Puerto, Daniel; Florian, Camilo; Garcia-Leis, Adianez; Sanchez-Cortes, Santiago; Solis, Javier; Siegel, Jan
2017-05-01
We demonstrate a simple way to fabricate amorphous micro-rings in crystalline silicon using direct laser writing. This method is based on the fact that the phase of a thin surface layer can be changed into the amorphous phase by irradiation with a few ultrashort laser pulses (800 nm wavelength and 100 fs duration). Surface-depressed amorphous rings with a central crystalline disk can be fabricated without the need for beam shaping, featuring attractive optical, topographical, and electrical properties. The underlying formation mechanism and phase change pathway have been investigated by means of fs-resolved microscopy, identifying fluence-dependent melting and solidification dynamics of the material as the responsible mechanism. We demonstrate that the lateral dimensions of the rings can be scaled and that the rings can be stitched together, forming extended arrays of structures not limited to annular shapes. This technique and the resulting structures may find applications in a variety of fields such as optics, nanoelectronics, and mechatronics.
Test System to Study the Ignition of Metals by Polymers in Oxygen
NASA Technical Reports Server (NTRS)
Shoffstall, Michael S.; Stoltzfus, Joel M.; Fries, Joseph (Technical Monitor)
2000-01-01
A new test system that uses Laser energy to ignite a polymer promoter has been developed at the NASA White Sands Test Facility. It will facilitate the study of the spread of fire from a burning polymer material to the metal surrounding it. The system can be used to answer questions regarding the effects of configuration on ignition and combustion. The data obtained from this test could also be used to develop mathematical models for analyzing the effects of configuration on ignition and combustion. The system features a 10,000-psi (69-MPa) test chamber with sight glass windows on either end and a 25-watt carbon dioxide Laser for an ignition source. The test system can be used with gaseous oxygen, nitrogen or any mixture of the two gases. To minimize the effect of preheating the metallic, the polymer is ignited with a minimal amount of Laser energy. Igniting the polymer in this fashion also simplifies the thermodynamic analysis of the ignition and propagation reactions. The system is very robust, versatile and straightforward to use. Depending on the test pressure and configuration, the test system operator can perform as many as 20 tests per day. Test results verify that ignition and combustion of the metallic sample is not only dependent on pressure, material type and temperature, but configuration of both the polymer promoter and metallic sample. Both 6061 aluminum and 316 stainless steel 0.25-inch (6.35-mm) diameter rods with a standard 0-ring groove were tested with Buna-N, Silicone, Teflon and Viton 0-rings. The system ignited all four types of 0-rings in oxygen at pressures ranging from ambient to 10,000 psi (69 MPa). However, neither the stainless steel nor the aluminum rods on which the O-rings were mounted ignited in any test conditions. Future testing may be done on the 0.25-inch (6.35-mm) rod and O-ring configuration to evaluate the lack of ignition in these tests. Future configurations may include a plug of polymer in the base of the sample and replicas of fire-damaged components. Furthermore, the test system may be used in the future to analyze the oxidation rate of Laser-heated metals in gaseous oxygen.
Tunable multiwavelength fiber laser based on a θ-shaped microfiber filter
NASA Astrophysics Data System (ADS)
Li, Yue; Xu, Zhilin; Luo, Yiyang; Xiang, Yang; Yan, Zhijun; Liu, Deming; Sun, Qizhen
2018-06-01
We propose and experimentally demonstrate a flexibly tunable multiwavelength fiber ring laser based on a θ-shaped microfiber filter in conjunction with an erbium-doped fiber amplifier. The stable operation of the multiwavelength lasing is successfully achieved at room temperature, with the peak power fluctuation less than 0.519 dB. By micro-adjusting the cavity length of the filter, the channel spacing can be independently tuned within the gain range of the optical amplifier. We have achieved 0.084 nm-spacing 48 channel, 0.147 nm-spacing 25 channel, 0.190 nm-spacing 20 channel and 0.302 nm-spacing 15 channel lasing wavelengths at room temperature.
Krolopp, Ádám; Csákányi, Attila; Haluszka, Dóra; Csáti, Dániel; Vass, Lajos; Kolonics, Attila; Wikonkál, Norbert; Szipőcs, Róbert
2016-01-01
A novel, Yb-fiber laser based, handheld 2PEF/SHG microscope imaging system is introduced. It is suitable for in vivo imaging of murine skin at an average power level as low as 5 mW at 200 kHz sampling rate. Amplified and compressed laser pulses having a spectral bandwidth of 8 to 12 nm at around 1030 nm excite the biological samples at a ~1.89 MHz repetition rate, which explains how the high quality two-photon excitation fluorescence (2PEF) and second harmonic generation (SHG) images are obtained at the average power level of a laser pointer. The scanning, imaging and detection head, which comprises a conventional microscope objective for beam focusing, has a physical length of ~180 mm owing to the custom designed imaging telescope system between the laser scanner mirrors and the entrance aperture of the microscope objective. Operation of the all-fiber, all-normal dispersion Yb-fiber ring laser oscillator is electronically controlled by a two-channel polarization controller for Q-switching free mode-locked operation. The whole nonlinear microscope imaging system has the main advantages of the low price of the fs laser applied, fiber optics flexibility, a relatively small, light-weight scanning and detection head, and a very low risk of thermal or photochemical damage of the skin samples. PMID:27699118
Krolopp, Ádám; Csákányi, Attila; Haluszka, Dóra; Csáti, Dániel; Vass, Lajos; Kolonics, Attila; Wikonkál, Norbert; Szipőcs, Róbert
2016-09-01
A novel, Yb-fiber laser based, handheld 2PEF/SHG microscope imaging system is introduced. It is suitable for in vivo imaging of murine skin at an average power level as low as 5 mW at 200 kHz sampling rate. Amplified and compressed laser pulses having a spectral bandwidth of 8 to 12 nm at around 1030 nm excite the biological samples at a ~1.89 MHz repetition rate, which explains how the high quality two-photon excitation fluorescence (2PEF) and second harmonic generation (SHG) images are obtained at the average power level of a laser pointer. The scanning, imaging and detection head, which comprises a conventional microscope objective for beam focusing, has a physical length of ~180 mm owing to the custom designed imaging telescope system between the laser scanner mirrors and the entrance aperture of the microscope objective. Operation of the all-fiber, all-normal dispersion Yb-fiber ring laser oscillator is electronically controlled by a two-channel polarization controller for Q-switching free mode-locked operation. The whole nonlinear microscope imaging system has the main advantages of the low price of the fs laser applied, fiber optics flexibility, a relatively small, light-weight scanning and detection head, and a very low risk of thermal or photochemical damage of the skin samples.
Single-bubble and multibubble cavitation in water triggered by laser-driven focusing shock waves
NASA Astrophysics Data System (ADS)
Veysset, D.; Gutiérrez-Hernández, U.; Dresselhaus-Cooper, L.; De Colle, F.; Kooi, S.; Nelson, K. A.; Quinto-Su, P. A.; Pezeril, T.
2018-05-01
In this study a single laser pulse spatially shaped into a ring is focused into a thin water layer, creating an annular cavitation bubble and cylindrical shock waves: an outer shock that diverges away from the excitation laser ring and an inner shock that focuses towards the center. A few nanoseconds after the converging shock reaches the focus and diverges away from the center, a single bubble nucleates at the center. The inner diverging shock then reaches the surface of the annular laser-induced bubble and reflects at the boundary, initiating nucleation of a tertiary bubble cloud. In the present experiments, we have performed time-resolved imaging of shock propagation and bubble wall motion. Our experimental observations of single-bubble cavitation and collapse and appearance of ring-shaped bubble clouds are consistent with our numerical simulations that solve a one-dimensional Euler equation in cylindrical coordinates. The numerical results agree qualitatively with the experimental observations of the appearance and growth of large bubble clouds at the smallest laser excitation rings. Our technique of shock-driven bubble cavitation opens interesting perspectives for the investigation of shock-induced single-bubble or multibubble cavitation phenomena in thin liquids.
Robust gap repair in the contractile ring ensures timely completion of cytokinesis
Maiato, Helder; Pinto, Inês Mendes; Rubinstein, Boris
2016-01-01
Cytokinesis in animal cells requires the constriction of an actomyosin contractile ring, whose architecture and mechanism remain poorly understood. We use laser microsurgery to explore the biophysical properties of constricting rings in Caenorhabditis elegans embryos. Laser cutting causes rings to snap open. However, instead of disintegrating, ring topology recovers and constriction proceeds. In response to severing, a finite gap forms and is repaired by recruitment of new material in an actin polymerization–dependent manner. An open ring is able to constrict, and rings repair from successive cuts. After gap repair, an increase in constriction velocity allows cytokinesis to complete at the same time as controls. Our analysis demonstrates that tension in the ring increases while net cortical tension at the site of ingression decreases throughout constriction and suggests that cytokinesis is accomplished by contractile modules that assemble and contract autonomously, enabling local repair of the actomyosin network. Consequently, cytokinesis is a highly robust process impervious to discontinuities in contractile ring structure. PMID:27974482
High-birefringence photonic crystal fiber structures based on the binary morse-thue fractal sequence
NASA Astrophysics Data System (ADS)
Al-Muraeb, Ahmed; Abdel-Aty-Zohdy, Hoda
2016-09-01
A novel index-guiding Silica glass-core hexagonal High-Birefringence Photonic Crystal Fiber (HB-PCF) is proposed, with five rings of standard cladding air circular holes arranged in four formations inspired by the Binary Morse-Thue fractal Sequence (BMTS). The form birefringence, confinement loss, chromatic dispersion, effective mode area, and effective normalized frequency are evaluated for the four PCFs operating within (1.8 - 2 μm) eye-safe wavelength range. Modeling and analysis of the four PCF formations are performed deploying full-vector analysis in Finite Element Method (FEM) using COMSOL Multiphysics. Respecting fabrication and in light of commercial availability in designing the proposed PCF structures, a high birefringence of up to (6.549 × 10-3 at 2 μm) is achieved with dispersionfree single-mode operation. Confinement loss as low as (3.2 × 10-5 - 6.5 × 10-4 dB/m for 1.8 - 2 μm range) is achieved as well. Comparison against previously reported PCF structures reveals the desirably higher birefringence of our BMTS HB-PCF. The proposed PCFs are of vital use in various optical systems (e.g.: multi-wavelength fiber ring laser systems, and tunable lasers), catering for applications such as: optical sensing, LIDAR systems, material processing, optical signal processing, and optical communication.
Open Path Trace Gas Laser Sensors for UAV Deployment
NASA Astrophysics Data System (ADS)
Shadman, S.; Mchale, L.; Rose, C.; Yalin, A.
2015-12-01
Novel trace gas sensors based on open-path Cavity Ring-down Spectroscopy (CRDS) are being developed to enable remote and mobile deployments including on small unmanned aerial systems (UAS). Relative to established closed-path CRDS instruments, the use of open-path configurations allows removal of the bulky and power hungry vacuum and flow system, potentially enabling lightweight and low power instruments with high sensitivity. However, open path operation introduces new challenges including the need to maintain mirror cleanliness, mitigation of particle optical effects, and the need to measure spectral features that are relatively broad. The present submission details open-path CRDS instruments for ammonia and methane and their planned use in UAS studies. The ammonia sensor uses a quantum cascade laser at 10.3 mm in a configuration in which the laser frequency is continuously swept and a trigger circuit and acousto-optic modulator (AOM) extinguish the light when the laser is resonant with the cavity. Ring-down signals are measured with a two-stage thermoelectrically cooled MCT photodetector. The cavity mirrors have reflectivity of 0.9995 and a noise equivalent absorption of 1.5 ppb Hz-1/2 was demonstrated. A first version of the methane sensor operated at 1.7um with a telecom diode laser while the current version operates at 3.6 um with an interband cascade laser (stronger absorption). We have performed validation measurements against known standards for both sensors. Compact optical assemblies are being developed for UAS deployment. For example, the methane sensor head will have target mass of <4 kg and power draw <40 W. A compact single board computer and DAQ system is being designed for sensor control and signal processing with target mass <1 kg and power draw <10 W. The sensor size and power parameters are suitable for UAS deployment on both fixed wing and rotor style UAS. We plan to deploy the methane sensor to measure leakage and emission of methane from natural gas infrastructure, and to deploy both sensors together to study emissions from dairies and feedlots. The latter measurement campaign will also examine ammonia deposition to the ground, and bi-directional ammonia fluxes, using methane as a conservative tracer and examining the change in the ratio of ammonia to methane as a function of downwind position.
Durán-Sánchez, Manuel; Prieto-Cortés, Patricia; Salceda-Delgado, Guillermo; Castillo-Guzmán, Arturo A.; Selvas-Aguilar, Romeo; Ibarra-Escamilla, Baldemar; Kuzin, Evgeny A.
2017-01-01
An all-fiber curvature laser sensor by using a novel modal interference in-fiber structure is proposed and experimentally demonstrated. The in-fiber device, fabricated by fusion splicing of multimode fiber and double-clad fiber segments, is used as wavelength filter as well as the sensing element. By including a multimode fiber in an ordinary modal interference structure based on a double-clad fiber, the fringe visibility of the filter transmission spectrum is significantly increased. By using the modal interferometer as a curvature sensitive wavelength filter within a ring cavity erbium-doped fiber laser, the spectral quality factor Q is considerably increased. The results demonstrate the reliability of the proposed curvature laser sensor with advantages of robustness, ease of fabrication, low cost, repeatability on the fabrication process and simple operation. PMID:29182527
Álvarez-Tamayo, Ricardo I; Durán-Sánchez, Manuel; Prieto-Cortés, Patricia; Salceda-Delgado, Guillermo; Castillo-Guzmán, Arturo A; Selvas-Aguilar, Romeo; Ibarra-Escamilla, Baldemar; Kuzin, Evgeny A
2017-11-28
An all-fiber curvature laser sensor by using a novel modal interference in-fiber structure is proposed and experimentally demonstrated. The in-fiber device, fabricated by fusion splicing of multimode fiber and double-clad fiber segments, is used as wavelength filter as well as the sensing element. By including a multimode fiber in an ordinary modal interference structure based on a double-clad fiber, the fringe visibility of the filter transmission spectrum is significantly increased. By using the modal interferometer as a curvature sensitive wavelength filter within a ring cavity erbium-doped fiber laser, the spectral quality factor Q is considerably increased. The results demonstrate the reliability of the proposed curvature laser sensor with advantages of robustness, ease of fabrication, low cost, repeatability on the fabrication process and simple operation.
A stabilized optical frequency comb based on an Er-doped fiber femtosecond laser
NASA Astrophysics Data System (ADS)
Xia, Chuanqing; Wu, Tengfei; Zhao, Chunbo; Xing, Shuai
2018-03-01
An optical frequency comb based on a 250 MHz home-made Er-doped fiber femtosecond laser is presented in this paper. The Er-doped fiber laser has a ring cavity and operates mode-locked in femtosecond regime with the technique of nonlinear polarization rotation. The pulse duration is 118 fs and the spectral width is 30 nm. A part of the femtosecond laser is amplified in Er-doped fiber amplifier before propagating through a piece of highly nonlinear fiber for expanding the spectrum. The carrier-envelope offset frequency of the comb which has a signal-to-noise ratio more than 35 dB is extracted by means of f-2f beating. It demonstrates that both carrier-envelope offset frequency and repetition frequency keep phase locked to a Rubidium atomic clock simultaneously for 2 hours. The frequency stabilized fiber combs will be increasingly applied in optical metrology, attosecond pulse generation, and absolute distance measurement.
NASA Lidar system support and MOPA technology demonstration
NASA Technical Reports Server (NTRS)
Laughman, L. M.; Capuano, B.; Wayne, R. J.
1986-01-01
A series of lidar design and technology demonstration tasks in support of a CO2 lidar program is discussed. The first of these tasks is discussed in Section VI of this report under the heading of NASA Optical Lidar Design and it consists of detailed recommendations for the layout of a CO2 Doppler lidar incorporating then existing NASA optical components and mounts. The second phase of this work consisted of the design, development, and delivery to NASA of a novel acousto-optic laser frequency stabilization system for use with the existing NASA ring laser transmitter. The second major task in this program encompasses the design and experimental demonstration of a master oscillator-power amplifier (MOPA) laser transmitter utilizing a commercially available laser as the amplifier. The MOPA design including the low chirp master oscillator is discussed in detail. Experimental results are given for one, two and three pass amplification. The report includes operating procedures for the MOPA system.
Polarization rotation locking of vector solitons in a fiber ring laser.
Zhao, L M; Tang, D Y; Zhang, H; Wu, X
2008-07-07
Polarization rotation of vector solitons in a fiber ring laser was experimentally studied. It was observed that the period of vector soliton polarization rotation could be locked to the cavity roundtrip time or multiple of it. We further show that multiple vector solitons can be formed in a fiber laser, and all the vector solitons have the same group velocity in cavity, however, their instantaneous polarization ellipse orientations could be orthogonal.
[Laser Induced Fluorescence Spectroscopic Analysis of Aromatics from One Ring to Four Rings].
Zhang, Peng; Liu, Hai-feng; Yue, Zong-yu; Chen, Bei-ling; Yao, Ming-fa
2015-06-01
In order to distinguish small aromatics preferably, a Nd : YAG Laser was used to supply an excitation laser, which was adjusted to 0.085 J x cm(-2) at 266 nm. Benzene, toluene, naphthalene, phenanthrene, anthracene, pyrene and chrysene were used as the representative of different rings aromatics. The fluorescence emission spectra were researched for each aromatic hydrocarbon and mixtures by Laser induced fluorescence (LIF). Results showed that the rings number determined the fluorescence emission spectra, and the structure with same rings number did not affect the emission fluorescence spectrum ranges. This was due to the fact that the absorption efficiency difference at 266 nm resulted in that the fluorescence intensities of each aromatic hydrocarbon with same rings number were different and the fluorescence intensities difference were more apparently with aromatic ring number increasing. When the absorption efficiency was similar at 266 nm and the concentrations of each aromatic hydrocarbon were same, the fluorescence intensities were increased with aromatic ring number increasing. With aromatic ring number increasing, the fluorescence spectrum and emission peak wavelength were all red-shifted from ultraviolet to visible and the fluorescence spectrum range was also wider as the absorption efficiency was similar. The fluorescence emission spectra from one to four rings could be discriminated in the following wavelengths, 275 to 320 nm, 320 to 375 nm, 375 to 425 nm, 425 to 556 nm, respectively. It can be used for distinguish the type of the polycyclic aromatic hydrocarbons (PAHs) as it exists in single type. As PAHs are usually exist in a variety of different rings number at the same time, the results for each aromatic hydrocarbon may not apply to the aromatic hydrocarbon mixtures. For the aromatic hydrocarbon mixtures, results showed that the one- or two-ring PAHs in mixtures could not be detected by fluorescence as three- or four-ring PAHs existed in mixture. This was caused by radiation energy transfer mechanism, in which the ultraviolet light was lost in mixtures but the fluorescence intensities were increased with the one- or two-ring PAHs adding. When the mixture only contained three- and four-ring PAHs, the fluorescence emission spectrum showed the both characteristics of three- and four-ring PAHs fluorescence. When three- and four-ring PAHs existed in mixtures at the same time, the fluorescence emission spectra were related to each concentration, so the rings number could be discriminated to a certain extent.
Vernier effect-based multiplication of the Sagnac beating frequency in ring laser gyroscope sensors
NASA Astrophysics Data System (ADS)
Adib, George A.; Sabry, Yasser M.; Khalil, Diaa
2018-02-01
A multiplication method of the Sagnac effect scale factor in ring laser gyroscopes is presented based on the Vernier effect of a dual-coupler passive ring resonator coupled to the active ring. The multiplication occurs when the two rings have comparable lengths or integer multiples and their scale factors have opposite signs. In this case, and when the rings have similar areas, the scale factor is multiplied by ratio of their length to their length difference. The scale factor of the presented configuration is derived analytically and the lock-in effect is analyzed. The principle is demonstrated using optical fiber rings and semiconductor optical amplifier as gain medium. A scale factor multiplication by about 175 is experimentally measured, demonstrating larger than two orders of magnitude enhancement in the Sagnac effect scale factor for the first time in literature, up to the authors' knowledge.
NASA Astrophysics Data System (ADS)
Bulushev, A. G.; Dianov, Evgenii M.; Kuznetsov, A. V.; Okhotnikov, O. G.; Paramonov, Vladimir M.; Tsarev, Vladimir A.
1990-05-01
A study was made of the use of single-mode fiber ring interferometers in narrowing the emission lines of semiconductor lasers and increasing the optical radiation power. Efficient coupling of radiation, emitted by a multifrequency injection laser with an external resonator, into a fiber ring interferometer was achieved both under cw and mode-locking conditions. Matching of the optical lengths of the external resonator and the fiber interferometer made it possible to determine the mode width for this laser. A method for generation of optical pulses in a fiber ring interferometer from cw frequency modulated radiation was developed.
NASA Astrophysics Data System (ADS)
Hosaka, M.; Yamamoto, N.; Takashima, Y.; Szwaj, C.; Le Parquier, M.; Evain, C.; Bielawski, S.; Adachi, M.; Zen, H.; Tanikawa, T.; Kimura, S.; Katoh, M.; Shimada, M.; Takahashi, T.
2013-02-01
We study the efficiency limitation affecting laser-induced coherent synchrotron radiation (CSR) at high laser power. Experiments are made on the UVSOR-II storage ring in conditions of narrowband terahertz CSR emission. While, at moderate power, CSR power increases quadratically with laser power, a noticeable decrease in efficiency and eventually a decrease in CSR power is observed experimentally at high power. Details of the underlying process are analyzed numerically. As the saturation effect depends almost instantaneously on the laser intensity, the saturation occurs locally in longitudinal space. This has important consequences on the modulation pattern induced on the electron bunch.
Particle agglomerated 3-d nanostructures for photon absorption
NASA Astrophysics Data System (ADS)
Sivayoganathan, Mugunthan
The main objective of this thesis is to investigate the photon absorption properties of particle agglomerated 3-D structures that are synthesized through femtosecond laser ablation of solids. The size and morphology of these particle agglomerated 3-D structures, which can be tailored through adjusting laser parameters, determine the photon absorption property. A systematic theoretical and experimental study was performed to identify the effect of lasers on the size of the formed particles. The literature survey showed that the amount of supersaturation influences the growth rate as well as the nucleation rate of vapour condensed nanoparticles. Based on this theory, a mechanism was formed to explain the control of laser parameters over the size of formed particles. Further, a theoretical explanation was proposed from the experimental results for the transition of particle size distribution modals. These proposed mechanisms and explanations show the variation in particle size in the particle agglomerated 3-D nanostructures with laser parameters. The effect of laser parameters on the formed ring size was studied. Based on the previous studies, a mechanism was proposed for the formation of ring nanoclusters. The laser pulse intensity dependent ponderomotive force was the key force to define the formation of ring nanoclusters. Then the effect of laser parameters on ring size was studied. Structures fabricated on several materials such as graphite, aluminosilicate ceramic, zinc ingot, gold, and titanium were analyzed to show the influence of material properties, laser parameters, and the environmental conditions on the size of ring formed. The studies performed on the structures showed a minimum absorption of 0.75 A.U. in the bandwidth from UV to IR. The absorption spectrum is much wider compared to existing nanomaterials, such as silicon nanostructures and titanium dioxide nanostructures. To the best of the author's knowledge, it is a very competitive absorption rate when compared with the previous nanostructures used in photovoltaic conversion. Several features of nanostructures contribute to the enhancement of this light absorption. The special feature of the structure is that ease to fabricate and modify the properties by varying the laser parameters could make it competitive among other nanostructures available for solar cells.
An Intense Excitation Source for High Power (Blue-Green) Laser.
1983-11-22
mild and forms plasma rings near the edges of the center holes as indicated by the circular line in Figure 1. For dye laser pumping, the high pressure... ring formation, and the heavy gas plasmas produce more high-intensity light pulses than light gas. It is also possible to adjust the diameter of plasma ...sheets into the center hole; 5. the formation of plasma rings ; 6. the expansion and radiative cooling of the plasma which results in 7. the intense
Template For Aiming An X-Ray Machine
NASA Technical Reports Server (NTRS)
Morphet, W. J.
1994-01-01
Relatively inexpensive template helps in aligning x-ray machine with phenolic ring to be inspected for flaws. Phenolic ring in original application part of rocket nozzle. Concept also applicable to x-ray inspection of other rings. Template contains alignment holes for adjusting orientation, plus target spot for adjusting lateral position, of laser spotting beam. (Laser spotting beam coincides with the x-ray beam, turned on later, after alignment completed.) Use of template decreases positioning time and error, providing consistent sensitivity for detection of flaws.
An integrated parity-time symmetric wavelength-tunable single-mode microring laser
Liu, Weilin; Li, Ming; Guzzon, Robert S.; Norberg, Erik J.; Parker, John S.; Lu, Mingzhi; Coldren, Larry A.; Yao, Jianping
2017-01-01
Mode control in a laser cavity is critical for a stable single-mode operation of a ring laser. In this study we propose and experimentally demonstrate an electrically pumped parity-time (PT)-symmetric microring laser with precise mode control, to achieve wavelength-tunable single-mode lasing with an improved mode suppression ratio. The proposed PT-symmetric laser is implemented based on a photonic integrated circuit consisting of two mutually coupled active microring resonators. By incorporating multiple semiconductor optical amplifiers in the microring resonators, the PT-symmetry condition can be achieved by a precise manipulation of the interplay between the gain and loss in the two microring resonators, and the incorporation of phase modulators in the microring resonators enables continuous wavelength tuning. Single-mode lasing at 1,554.148 nm with a sidemode suppression ratio exceeding 36 dB is demonstrated and the lasing wavelength is continuously tunable from 1,553.800 to 1,554.020 nm. PMID:28497784
An integrated parity-time symmetric wavelength-tunable single-mode microring laser.
Liu, Weilin; Li, Ming; Guzzon, Robert S; Norberg, Erik J; Parker, John S; Lu, Mingzhi; Coldren, Larry A; Yao, Jianping
2017-05-12
Mode control in a laser cavity is critical for a stable single-mode operation of a ring laser. In this study we propose and experimentally demonstrate an electrically pumped parity-time (PT)-symmetric microring laser with precise mode control, to achieve wavelength-tunable single-mode lasing with an improved mode suppression ratio. The proposed PT-symmetric laser is implemented based on a photonic integrated circuit consisting of two mutually coupled active microring resonators. By incorporating multiple semiconductor optical amplifiers in the microring resonators, the PT-symmetry condition can be achieved by a precise manipulation of the interplay between the gain and loss in the two microring resonators, and the incorporation of phase modulators in the microring resonators enables continuous wavelength tuning. Single-mode lasing at 1,554.148 nm with a sidemode suppression ratio exceeding 36 dB is demonstrated and the lasing wavelength is continuously tunable from 1,553.800 to 1,554.020 nm.
Stable and wavelength-tunable silicon-micro-ring-resonator based erbium-doped fiber laser.
Yang, L G; Yeh, C H; Wong, C Y; Chow, C W; Tseng, F G; Tsang, H K
2013-02-11
In this work, we propose and demonstrate a stable and wavelength-tunable erbium-doped fiber (EDF) ring laser. Here, a silicon-on-insulator (SOI)-based silicon-micro-ring-resonator (SMRR) is used as the wavelength selective element inside the fiber ring cavity. A uniform period grating coupler (GC) is used to couple between the SMRR and single mode fiber (SMF) and serves also as a polarization dependent element in the cavity. The output lasing wavelength of the proposed fiber laser can be tuned at a tuning step of 2 nm (defined by the free spectral range (FSR) of the SMRR) in a bandwidth of 35.2 nm (1532.00 to 1567.20 nm), which is defined by the gain of the EDF. The optical-signal-to-noise-ratio (OSNR) of each lasing wavelength is larger than 42.0 dB. In addition, the output stabilities of power and wavelength are also discussed.
Fluorescence decay of naphthalene studied in an electrostatic storage ring, the Mini-Ring
NASA Astrophysics Data System (ADS)
Martin, S.; Matsumoto, J.; Kono, N.; Ji, M.-C.; Brédy, R.; Bernard, J.; Cassimi, A.; Chen, L.
2017-10-01
The cooling of naphthalene cations (C10H8)+ has been studied in a compact electrostatic ion storage ring, the Mini-Ring. A nano second laser pulse of 532 nm (2.33 eV) was used to probe the internal energy distribution every millisecond during the storage time up to 5 ms. The evolution of the internal energy distribution of the stored ions was simulated with a model taking into account the dissociation and the radiative decay processes. Calculated decay curves were fitted to the corresponding laser induced neutral decays. For a laser power of 200 μJ/pulse, a good agreement between experiment and modeling was found using an initial Gaussian energy distribution centered to 5.9 eV and a fluorescence decay rate varying from 200 to 300 s-1 in the energy range from 6 to 7 eV. This fast decay was attributed to the delayed Poincaré fluorescence process.
Vascular tissue engineering by computer-aided laser micromachining.
Doraiswamy, Anand; Narayan, Roger J
2010-04-28
Many conventional technologies for fabricating tissue engineering scaffolds are not suitable for fabricating scaffolds with patient-specific attributes. For example, many conventional technologies for fabricating tissue engineering scaffolds do not provide control over overall scaffold geometry or over cell position within the scaffold. In this study, the use of computer-aided laser micromachining to create scaffolds for vascular tissue networks was investigated. Computer-aided laser micromachining was used to construct patterned surfaces in agarose or in silicon, which were used for differential adherence and growth of cells into vascular tissue networks. Concentric three-ring structures were fabricated on agarose hydrogel substrates, in which the inner ring contained human aortic endothelial cells, the middle ring contained HA587 human elastin and the outer ring contained human aortic vascular smooth muscle cells. Basement membrane matrix containing vascular endothelial growth factor and heparin was to promote proliferation of human aortic endothelial cells within the vascular tissue networks. Computer-aided laser micromachining provides a unique approach to fabricate small-diameter blood vessels for bypass surgery as well as other artificial tissues with complex geometries.
NASA Astrophysics Data System (ADS)
Khoder, Mulham; Van der Sande, Guy; Danckaert, Jan; Verschaffelt, Guy
2016-05-01
It is well known that the performance of semiconductor lasers is very sensitive to external optical feedback. This feedback can lead to changes in lasing characteristics and a variety of dynamical effects including chaos and coherence collapse. One way to avoid this external feedback is by using optical isolation, but these isolators and their packaging will increase the cost of the total system. Semiconductor ring lasers nowadays are promising sources in photonic integrated circuits because they do not require cleaved facets or mirrors to form a laser cavity. Recently, some of us proposed to combine semiconductor ring lasers with on chip filtered optical feedback to achieve tunable lasers. The feedback is realized by employing two arrayed waveguide gratings to split/recombine light into different wavelength channels. Semiconductor optical amplifier gates are used to control the feedback strength. In this work, we investigate how such lasers with filtered feedback are influenced by an external conventional optical feedback. The experimental results show intensity fluctuations in the time traces in both the clockwise and counterclockwise directions due to the conventional feedback. We quantify the strength of the conventional feedback induced dynamics be extracting the standard deviation of the intensity fluctuations in the time traces. By using filtered feedback, we can shift the onset of the conventional feedback induced dynamics to larger values of the feedback rate [ Khoder et al, IEEE Photon. Technol. Lett. DOI: 10.1109/LPT.2016.2522184]. The on-chip filtered optical feedback thus makes the semiconductor ring laser less senstive to the effect of (long) conventional optical feedback. We think these conclusions can be extended to other types of lasers.
NASA Astrophysics Data System (ADS)
Wu, Frank F.; Khizhnyak, Anatoliy; Markov, Vladimir
2010-02-01
We have realized a single frequency Q-switched Nd:YAG laser with precisely controllable lasing time and thus enabled synchronization of multi-laser systems. The use of injection seeding to the slave ring oscillator results in unidirectional Q-switched laser oscillation with suppression of bidirectional Q-switched oscillation that otherwise would be initiated from spontaneous emission if the seeding laser is not present. Under normal condition, the cavity is high in loss during the pumping period; then a Pockels cell opens the cavity to form the pulse build up, with a second Pockels cell to perform cavity dumping, generating the Q-switched pulse output with optimized characteristics. The two Pockels cells can be replaced by a single unit if an adjustable gated electrical pulse is applied to the Pockels cell in which the pulse front is used to open the cavity and the falling edge to dump the laser pulse. Proper selection of the pump parameters and Pockels-cell gating enables operation of the system in a mode in which the Q-switched pulse can be formed only under the seeding condition. The advantage of the realized regime is in stable laser operation with no need in adjustment of the seeded light wavelength and the mode of the cavity. It is found that the frequency of the Q-switched laser radiation matches well to the injected seeded laser mode. By using two-stage amplifiers, an output energy better than 300 mJ has been achieved in MOPA configuration without active control of the cavity length and with pulse width adjustability from several nanoseconds to 20 ns. The Q-switched oscillator operates not only at precisely controlled firing time but also can be tuned over wide range. This will enable multi-laser systems synchronization and frequency locking down each other if necessary.
End-pumped Nd:YVO4 laser with reduced thermal lensing via the use of a ring-shaped pump beam.
Lin, Di; Andrew Clarkson, W
2017-08-01
A simple approach for alleviating thermal lensing in end-pumped solid-state lasers using a pump beam with a ring-shaped intensity distribution to decrease the radial temperature gradient is described. This scheme has been implemented in a diode-end-pumped Nd:YVO 4 laser yielding 14 W of TEM 00 output at 1.064 μm with a corresponding slope efficiency of 53% and a beam propagation factor (M 2 ) of 1.08 limited by available pump power. By comparison, the same laser design with a conventional quasi-top-hat pump beam profile of approximately equal radial extent yielded only 9 W of output before the power rolled over due to thermal lensing. Further investigation with the aid of a probe beam revealed that the thermal lens power was ∼30% smaller for the ring-shaped pump beam compared to the quasi-top-hat beam. The implications for further power scaling in end-pumped laser configurations are considered.
Hurst, Robert B; Mayerbacher, Marinus; Gebauer, Andre; Schreiber, K Ulrich; Wells, Jon-Paul R
2017-02-01
Large ring lasers have exceeded the performance of navigational gyroscopes by several orders of magnitude and have become useful tools for geodesy. In order to apply them to tests in fundamental physics, remaining systematic errors have to be significantly reduced. We derive a modified expression for the Sagnac frequency of a square ring laser gyro under Earth rotation. The modifications include corrections for dispersion (of both the gain medium and the mirrors), for the Goos-Hänchen effect in the mirrors, and for refractive index of the gas filling the cavity. The corrections were measured and calculated for the 16 m2 Grossring laser located at the Geodetic Observatory Wettzell. The optical frequency and the free spectral range of this laser were measured, allowing unique determination of the longitudinal mode number, and measurement of the dispersion. Ultimately we find that the absolute scale factor of the gyroscope can be estimated to an accuracy of approximately 1 part in 108.
GINGER (Gyroscopes IN General Relativity), a ring lasers array to measure the Lense-Thirring effect
NASA Astrophysics Data System (ADS)
Di Virgilio, Angela D. V.
The purpose of the GINGER is to perform the first test of general relativity (not considering the gravitational redshift measurements) in a terrestrial laboratory, using light as a probe. The experiment will complement the ones in space, performed or under way, with an entirely different technique and at a far lower cost. The methodology is based on ring-lasers, which are extremely accurate rotation sensors and can not only sense purely kinematical rotations (Sagnac effect accounting for the Earth rotation, polar motion of the terrestrial axis, local rotational movements of the laboratory due to the Earth crust dynamics...), but also general relativistic contributions such as the de Sitter effect (coupling between the gravito-electric field of the earth and the kinematical rotation) and the Lense-Thirring effect (inertial frame dragging due to the angular momentum of the earth). In order to reveal the latter effects, ring-laser response must be improved to be able to measure the effective rotation vector (kinematic plus GR terms) with an accuracy of 1 part in 109 or better. This is a challenging technological aspect, which however has been accurately taken into account by designing a system of ring lasers that will be implemented in this project. A ring laser have been installed inside the underground laboratory of GranSasso, with the purpose to see if an underground location is the right choice for GINGER. The apparatus and the preliminary results will be discussed.
[Historical review and future orientations of the conventional vascular microanastomoses].
Leclère, F M P; Schoofs, M; Mordon, S
2011-06-01
Microvascular surgery has become an important method for reconstructing surgical defects due to trauma, tumors or after burn. The most important factor for successful free flap transfer is a well-executed anastomosis. The time needed to perform the anastomosis and the failure rate are not negligible despite the high level of operator's experience. During the history, many alternatives were tried to help the microsurgeon and to reduce the complications. A Medline literature search was performed to find articles dealing with non-suture methods of microvascular anastomosis. Many historical books were also included. The non-suture techniques can be divided into four groups based on the used mechanism of sutures: double intubation including tubes and stents, intubation-eversion including simple rings, double eversion including staples and double rings, and wall adjustement with adhesives or laser. All these techniques were able to produce a faster and easier microvascular anastomosis. Nevertheless, disadvantages of the suturless techniques include toxicity, high cost, leakage or aneurysm formation. More refinement is needed before their widespread adoption. Thus, laser-assisted microvascular anastomosis using 1,9 μm diode laser appeared to be a safe and reliable help for the microsurgeon and may be further developed in the near future. Copyright © 2010 Elsevier Masson SAS. All rights reserved.
High-Accuracy Ring Laser Gyroscopes: Earth Rotation Rate and Relativistic Effects
NASA Astrophysics Data System (ADS)
Beverini, N.; Di Virgilio, A.; Belfi, J.; Ortolan, A.; Schreiber, K. U.; Gebauer, A.; Klügel, T.
2016-06-01
The Gross Ring G is a square ring laser gyroscope, built as a monolithic Zerodur structure with 4 m length on all sides. It has demonstrated that a large ring laser provides a sensitivity high enough to measure the rotational rate of the Earth with a high precision of ΔΩE < 10-8. It is possible to show that further improvement in accuracy could allow the observation of the metric frame dragging, produced by the Earth rotating mass (Lense-Thirring effect), as predicted by General Relativity. Furthermore, it can provide a local measurement of the Earth rotational rate with a sensitivity near to that provided by the international system IERS. The GINGER project is intending to take this level of sensitivity further and to improve the accuracy and the long-term stability. A monolithic structure similar to the G ring laser is not available for GINGER. Therefore the preliminary goal is the demonstration of the feasibility of a larger gyroscope structure, where the mechanical stability is obtained through an active control of the geometry. A prototype moderate size gyroscope (GP-2) has been set up in Pisa in order to test this active control of the ring geometry, while a second structure (GINGERino) has been installed inside the Gran Sasso underground laboratory in order to investigate the properties of a deep underground laboratory in view of an installation of a future GINGER apparatus. The preliminary data on these two latter instruments are presented.
Titanium-doped sapphire laser research and design study
NASA Technical Reports Server (NTRS)
Moulton, Peter F.
1987-01-01
Three main topics were considered in this study: the fundamental laser parameters of titanium-doped sapphire, characterization of commercially grown material, and design of a tunable, narrow-linewidth laser. Fundamental parameters investigated included the gain cross section, upper-state lifetime as a function of temperature and the surface-damage threshold. Commercial material was found to vary widely in the level of absorption of the laser wavelength with the highest absorption in Czochralski-grown crystals. Several Yi:sapphire lasers were constructed, including a multimode laser with greater than 50mJ of output energy and a single-transverse-mode ring laser, whose spectral and temporal characteristics were completely characterized. A design for a narrow-linewidth (single-frequency) Ti:sapphire laser was developed, based on the results of the experimental work. The design involves the use of a single-frequency, quasi-cw master oscillator, employed as an injection source for a pulsed ring laser.
Diode pumped, regenerative Nd:YAG ring amplifier for space application
NASA Technical Reports Server (NTRS)
Coyle, D. B.; Kay, Richard B.; Degnan, John J.; Krebs, Danny J.; Seery, Bernard D.
1992-01-01
The study reviews the research and development of a prototype laser used to study one possible method of short-pulse production and amplification, in particular, a pulsed Nd:YAG ring laser pumped by laser diode arrays and injected seeded by a 100-ps source. The diode array pumped, regenerative amplifier consists of only five optical elements, two mirrors, one thin film polarizer, one Nd:YAG crystal, and one pockels cell. The pockels cell performed both as a Q-switch and a cavity dumper for amplified pulse ejection through the thin film polarizer. The total optical efficiency was low principally due to the low gain provided by the 2-bar pumped laser head. After comparison with a computer model, a real seed threshold of about 10 exp -15 J was achieved because only about 0.1 percent of the injected energy mode-matched with the ring.
Krylov, Alexander A; Chernykh, Dmitriy S; Arutyunyan, Natalia R; Grebenyukov, Vyacheslav V; Pozharov, Anatoly S; Obraztsova, Elena D
2016-05-20
We report on the stable picosecond and femtosecond pulse generation from the bidirectional erbium-doped all-fiber ring laser hybridly mode-locked with a coaction of a single-walled carbon nanotube-based saturable absorber and nonlinear polarization evolution that was introduced through the insertion of the short-segment polarizing fiber. Depending on the total intracavity dispersion value, the laser emits conservative solitons, transform-limited Gaussian pulses, or highly chirped stretched pulses with almost 20 nm wide parabolic spectrum in both clockwise (CW) and counterclockwise (CCW) directions of the ring. Owing to the polarizing action in the cavity, we have demonstrated for the first time, to the best of our knowledge, an efficient tuning of soliton pulse characteristics for both CW and CCW channels via an appropriate polarization control. We believe that the bidirectional laser presented may be highly promising for gyroscopic and other dual-channel applications.
Trace contaminant determination in fish scale by laser-ablation technique
NASA Astrophysics Data System (ADS)
Lee, Ida; Coutant, C. C.; Arakawa, E. T.
1993-10-01
Laser ablation on rings of fish scale has been used to analyze the historical accumulation of polychlorinated biphenyls (PCB) in striped bass in the Watts Bar Reservoir. Rings on a fish scale grow in a pattern that forms a record of the fish's chemical intake. In conjunction with the migration patterns of fish monitored by ecologists, relative PCB concentrations in the seasonal rings of fish scale can be used to study the PCB distribution in the reservoir. In this study, a tightly-focused laser beam from a XeCl excimer laser was used to ablate and ionize a small portion of a fish scale placed in a vacuum chamber. The ions were identified and quantified by a time-of-flight mass spectrometer. Studies of this type can provide valuable information for the Department of Energy (DOE) off-site clean-up efforts as well as identifying the impacts of other sources to local aquatic populations.
Humidity sensor based on intracavity sensing of fiber ring laser
NASA Astrophysics Data System (ADS)
Shi, Jia; Xu, Wei; Xu, Degang; Wang, Yuye; Zhang, Chao; Yan, Chao; Yan, Dexian; He, Yixin; Tang, Longhuang; Zhang, Weihong; Yao, Jianquan
2017-10-01
A humidity sensor based on the intracavity sensing of a fiber ring laser is proposed and experimentally demonstrated. In the fiber ring laser, a humidity-sensitive fiber-optic multimode interferometer (MMI), fabricated by the single-mode-no-core-single-mode (SNCS) fiber coated with Agarose, works as the wavelength-selective filter for intracavity wavelength-modulated humidity sensing. The experiment shows that the lasing wavelength of the fiber laser has a good linear response to ambient humidity from 35%RH to 95%RH. The humidity sensitivity of -68 pm/%RH is obtained with a narrow 3 dB bandwidth less than 0.09 nm and a high signal-to-noise ratio (SNR) ˜60 dB. The time response of the sensor has been measured to be as fast as 93 ms. The proposed sensor possesses a good stability and low temperature cross-sensitivity.
Effects of CSR Generated from Upstream Bends in a Laser Plasma Storage Ring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitchell, C.; Qiang, J.; Venturini, M.
The recent proposal [1] of a Laser Plasma Storage Ring (LPSR) envisions the use of a laser-plasma (LP) acceleration module to inject an electron beam into a compact 500 MeV storage ring. Electron bunches generated by LP methods are naturally very short (tens of femtoseconds), presenting peak currents on the order of 10 kA or higher. Of obvious concern is the impact of collective effects and in particular Coherent Synchrotron Radiation (CSR) on the beam dynamics in the storage ring. Available simulation codes (e.g. Elegant [2]) usually include transient CSR effects but neglect the contribution of radiation emitted from trailingmore » magnets. In a compact storage ring, with dipole magnets close to each other, cross talking between different magnets could in principle be important.In this note we investigate this effect for the proposed LPSR and show that, in fact, this effect is relatively small. However our analysis also indicates that CSR effects in general would be quite strong and deserve a a careful study.« less
Tang, Dingyuan; Guo, Jun; Song, Yufeng; Zhang, Han; Zhao, Luming; Shen, Deyuan
2014-08-11
Dark soliton formation and soliton dynamics in all-normal dispersion cavity fiber ring lasers without an anti-saturable absorber in cavity is studied both theoretically and numerically. It is shown that under suitable conditions the dark solitons formed could be described by the nonlinear Schrödinger equation. The dark soliton formation in an all-normal-dispersion cavity erbium-doped fiber ring laser without an anti-saturable absorber in cavity is first experimentally demonstrated. Individual dark solitons are experimentally identified. Excellent agreement between theory and experiment is observed.
2009-11-01
maintaining (PM) fibre, utilising polarisation hole-burning ( PHB ) effect to reduce homogeneous linewidth of the EDFL. In our work, we demonstrate a stable...loss filter which will induce some loss to the cavity around its paired attenuation band region, thus imposing PHB effect to the gain medium. The...polarisation-hole-burning ( PHB ) effect to realise multi-wavelength switchable function in proposed fibre ring laser system. In the proposed fibre ring laser
Quantum control of coherent π -electron ring currents in polycyclic aromatic hydrocarbons
NASA Astrophysics Data System (ADS)
Mineo, Hirobumi; Fujimura, Yuichi
2017-12-01
We present results for quantum optimal control (QOC) of the coherent π electron ring currents in polycyclic aromatic hydrocarbons (PAHs). Since PAHs consist of a number of condensed benzene rings, in principle, there exist various coherent ring patterns. These include the ring current localized to a designated benzene ring, the perimeter ring current that flows along the edge of the PAH, and the middle ring current of PAHs having an odd number of benzene rings such as anthracene. In the present QOC treatment, the best target wavefunction for generation of the ring current through a designated path is determined by a Lagrange multiplier method. The target function is integrated into the ordinary QOC theory. To demonstrate the applicability of the QOC procedure, we took naphthalene and anthracene as the simplest examples of linear PAHs. The mechanisms of ring current generation were clarified by analyzing the temporal evolutions of the electronic excited states after coherent excitation by UV pulses or (UV+IR) pulses as well as those of electric fields of the optimal laser pulses. Time-dependent simulations of the perimeter ring current and middle ring current of anthracene, which are induced by analytical electric fields of UV pulsed lasers, were performed to reproduce the QOC results.
Design of a cavity ring-down spectroscopy diagnostic for negative ion rf source SPIDER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pasqualotto, R.; Alfier, A.; Lotto, L.
2010-10-15
The rf source test facility SPIDER will test and optimize the source of the 1 MV neutral beam injection systems for ITER. Cavity ring-down spectroscopy (CRDS) will measure the absolute line-of-sight integrated density of negative (H{sup -} and D{sup -}) ions, produced in the extraction region of the source. CRDS takes advantage of the photodetachment process: negative ions are converted to neutral hydrogen atoms by electron stripping through absorption of a photon from a laser. The design of this diagnostic is presented with the corresponding simulation of the expected performance. A prototype operated without plasma has provided CRDS reference signals,more » design validation, and results concerning the signal-to-noise ratio.« less
Solid optical ring interferometer for high-throughput feedback-free spectral analysis and filtering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petrak, B.; Peiris, M.; Muller, A., E-mail: mullera@usf.edu
2015-02-15
We describe a simple and inexpensive optical ring interferometer for use in high-resolution spectral analysis and filtering. It consists of a solid cuboid, reflection-coated on two opposite sides, in which constructive interference occurs for waves in a rhombic trajectory. Due to its monolithic design, the interferometer’s resonance frequencies are insensitive to environmental disturbances over time. Additional advantages are its simplicity of alignment, high-throughput, and feedback-free operation. If desired, it can be stabilized with a secondary laser without disturbance of the primary signal. We illustrate the use of the interferometer for the measurement of the spectral Mollow triplet from a quantummore » dot and characterize its long-term stability for filtering applications.« less
NASA Astrophysics Data System (ADS)
Ping, Y. L.; Zhong, J. Y.; Wang, X. G.; Sheng, Z. M.; Zhao, G.
2017-11-01
Pickup ring of energetic electrons found in relativistic magnetic reconnection (MR) driven by two relativistic intense femtosecond laser pulses is investigated by particle simulation in 3D geometry. Magnetic reconnection processes and configurations are characterized by plasma current density distributions at different axial positions. Two helical structures associated with the circular polarization of laser pulses break down in the reconnection processes to form a current sheet between them, where energetic electrons are found to pile up and the outflow relativistic electron jets are observed. In the field line diffusion region, electrons are accelerated to multi-MeV with a flatter power-law spectrum due to MR. The development of the pickup ring of energetic electrons is strongly dependent upon laser peak intensities.
High power 808 nm vertical cavity surface emitting laser with multi-ring-shaped-aperture structure
NASA Astrophysics Data System (ADS)
Hao, Y. Q.; Shang, C. Y.; Feng, Y.; Yan, C. L.; Zhao, Y. J.; Wang, Y. X.; Wang, X. H.; Liu, G. J.
2011-02-01
The carrier conglomeration effect has been one of the main problems in developing electrically pumped high power vertical cavity surface emitting laser (VCSEL) with large aperture. We demonstrate a high power 808 nm VCSEL with multi-ring-shaped-aperture (MRSA) to weaken the carrier conglomeration effect. Compared with typical VCSEL with single large aperture (SLA), the 300-μm-diameter VCSEL with MRSA has more uniform near field and far field patterns. Moreover, MRSA laser exhibits maximal CW light output power 0.3 W which is about 3 times that of SLA laser. And the maximal wall-plug efficiency of 17.4% is achieved, higher than that of SLA laser by 10%.
Yin, Bin; Feng, Suchun; Liu, Zhibo; Bai, Yunlong; Jian, Shuisheng
2014-09-22
A tunable and switchable dual-wavelength single polarization narrow linewidth single-longitudinal-mode (SLM) erbium-doped fiber (EDF) ring laser based on polarization-maintaining chirped moiré fiber Bragg grating (PM-CMFBG) filter is proposed and demonstrated. For the first time as we know, the CMFBG inscribed on the PM fiber is applied for the wavelength-tunable and-switchable dual-wavelength laser. The PM-CMFBG filter with ultra-narrow transmission band (0.1 pm) and a uniform polarization-maintaining fiber Bragg grating (PM-FBG) are used to select the laser longitudinal mode. The stable single polarization SLM operation is guaranteed by the PM-CMFBG filter and polarization controller. A tuning range of about 0.25 nm with about 0.075 nm step is achieved by stretching the uniform PM-FBG. Meanwhile, the linewidth of the fiber laser for each wavelength is approximate 6.5 and 7.1 kHz with a 20 dB linewidth, which indicates the laser linewidth is approximate 325 Hz and 355 Hz FWHM.
A novel approach for clock recovery without pattern effect from degraded signal
NASA Astrophysics Data System (ADS)
Wang, Zhaoxin; Wang, Tong; Lou, Caiyun; Huo, Li; Gao, Yizhi
2003-04-01
A novel clock recovery scheme using two-ring injection mode-locked fiber ring laser based on all 10 GHz bandwidth components was demonstrated. With this scheme, the clock with low timing jitter was obtained from a degraded 10 Gb/s optical data stream. Optical clock recovery was also achieved from a degraded 20 Gb/s optical data train when the clock division technique in the opto-electronic oscillator (OEO) and the rational harmonic mode-locking technique in the fiber ring laser were applied. No pattern effect was observed in the experiments.
NASA Astrophysics Data System (ADS)
Beckett, Douglas J. S.; Hickey, Ryan; Logan, Dylan F.; Knights, Andrew P.; Chen, Rong; Cao, Bin; Wheeldon, Jeffery F.
2018-02-01
Quantum dot comb sources integrated with silicon photonic ring-resonator filters and modulators enable the realization of optical sub-components and modules for both inter- and intra-data-center applications. Low-noise, multi-wavelength, single-chip, laser sources, PAM4 modulation and direct detection allow a practical, scalable, architecture for applications beyond 400 Gb/s. Multi-wavelength, single-chip light sources are essential for reducing power dissipation, space and cost, while silicon photonic ring resonators offer high-performance with space and power efficiency.
Hohimer, John P.; Craft, David C.
1994-01-01
Unidirectional ring lasers formed by integrating nonreciprocal optical elements into the resonant ring cavity. These optical elements either attenuate light traveling in a nonpreferred direction or amplify light traveling in a preferred direction. In one preferred embodiment the resonant cavity takes the form of a circle with an S-shaped crossover waveguide connected to two points on the interior of the cavity such that light traveling in a nonpreferred direction is diverted from the cavity into the crossover waveguide and reinjected out of the other end of the crossover waveguide into the cavity as light traveling in the preferred direction.
NASA Astrophysics Data System (ADS)
Dormidonov, A. E.; Kandidov, V. P.; Kompanets, V. O.; Chekalin, Sergei V.
2009-07-01
Supercontinuum emission observed upon filamentation of transform-limited collimated femtosecond laser pulses in a transparent condensed medium (fused KU-1 quartz) is studied experimentally and numerically. The splitting of diverging conical supercontinuum emission into discrete rings was observed with increasing the pulse energy.
2-Micron Laser Transmitter for Coherent CO2 DIAL Measurement
NASA Technical Reports Server (NTRS)
Singh, Upendra N.; Bai, Yingxin; Yu, Jirong
2009-01-01
Carbon dioxide (CO2) has been recognized as one of the most important greenhouse gases. It is essential for the study of global warming to accurately measure the CO2 concentration in the atmosphere and continuously record its variation. A high repetition rate, highly efficient, Q-switched 2-micron laser system as the transmitter of a coherent differential absorption lidar for CO2 measurement has been developed in NASA Langley Research Center. This laser system is capable of making a vertical profiling of CO2 from ground and column measurement of CO2 from air and space-borne platform. The transmitter is a master-slave laser system. The master laser operates in a single frequency, either on-line or off-line of a selected CO2 absorption line. The slave laser is a Q-switched ring-cavity Ho:YLF laser which is pumped by a Tm:fiber laser. The repetition rate can be adjusted from a few hundred Hz to 10 kHz. The injection seeding success rate is from 99.4% to 99.95%. For 1 kHz operation, the output pulse energy is 5.5mJ with the pulse length of 50 ns. The optical-to-optical efficiency is 39% when the pump power is 14.5W. A Ho:YLF laser operating in the range of 2.05 micrometers can be tuned over several characteristic lines of CO2 absorption. Experimentally, a diode pumped Ho:Tm:YLF laser has been successfully used as the transmitter of coherent differential absorption lidar for the measurement of CO2 with a repetition rate of 5 Hz and pulse energy of 75 mJ. For coherent detection, high repetition rate is required for speckle averaging to obtain highly precise measurements. However, a diode pumped Ho:Tm:YLF laser can not operate in high repetition rate due to the large heat loading and up-conversion. A Tm:fiber laser pumped Ho:YLF laser with low heat loading can operate in high repetition rate. A theoretical model has been established to simulate the performance of Tm:fiber laser pumped Ho:YLF lasers. For continuous wave (CW) operation, high pump intensity with small beam size is suitable for high efficiency. For Q-switched operation, the optimal energy extraction relies on the pump intensity, pump volume, and pump duration which is inversely proportion to the repetition rate. CW and Q-switched Ho:YLF lasers with different linear cavity configurations have been designed and demonstrated for a 30 W Tm:fiber pump laser. The CW Ho laser slope efficiency and optical-to-optical efficiencies reach 65% and 55%, respectively. The pulsed laser efficiency depends on the repetition rate. For 1 kHz operation, the optical-to-optical efficiency is 39% when the pump power is 14.5W. Currently, the injection seeding success rate is between 99.4% and 99.95%. After a ten thousand pulses, the standard deviation of the laser frequency jitter is about 3 MHz. It meets the requirements of highly precise CO2 concentration measurement. In conclusion, an injection seeded, high repetition rate, Q-switched Ho:YLF laser has been developed for a coherent CO2 differential absorption lidar. This master-slave laser system has high optical-to-optical efficiency and seeding success rate. It can potentially meet the requirements of the coherent detection of CO2 concentration by a differential absorption lidar technique.
Physical basics of endovenous laser treatment and potential of innovative developments
NASA Astrophysics Data System (ADS)
Sroka, R.; Esipova, A.; Schmedt, C. G.
2017-04-01
During the last decade, endoluminal laser treatment (ELT) has been rapidly developing. Protocols using radially emitting ELT fibres in combination with infrared laser light show clinical advantages over the bare-fibre technique and near infrared irradiation. Although the clinical response rate is high several side effects occurred. Innovative light application systems and feedback systems are therefore being under development to potentially improve the clinical situation. The irradiation patterns of bare fibres and radially emitting 1-ring and 2-ring fibres were measured using the goniometer technique. The device robustness, device handling and tissue effects were investigated using the established ox-foot-model. Furthermore, temperature measurements were performed either intraluminal within the irradiation field using a tiny temperature sensor and on the outer surface of the vessel wall by means of a thermocamera. All fibres showed sufficient mechanical and thermal robustness. The destruction threshold is far beyond the light powers employed during clinical application. The 1-ring fibre showed very high peak temperatures for a short time, while the 2-ring-fibre hold its somewhat lower maximum temperature for a longer time. Both forms of energy application resulted in the desired shrinkage and destruction effect. In this regard, the handling of the 2-ring fibre appears subjectively more convenient with reduced sticking-related problems. Acute tissue effects could be investigated to improve the understanding especially of the interaction between handling, maneuvers and tissue effects. The 2-ring radially emitting fibre in combination with IR laser light and specific application parameters showed improved handling and safety features.
Single-frequency Nd:YAG ring lasers with corner cube prism
NASA Astrophysics Data System (ADS)
Wu, Ke Ying; Yang, Su Hui; Zhao, Chang Ming; Wei, Guang Hui
2000-04-01
Kane and Byer reported the first monolithic non-planar miniature ring lasers in 1985. An intrinsic optical diode enforces unidirectional and hence single-frequency oscillation of this device. It has the advantages of compactness, reliability and high efficiency. We put forward another form of the non-planar ring lasers, in which the corner cube prism is the key element and the Nd:YAG crystal is used as a Porro prism to enclose the ring resonator. The phase shift due to the total internal reflections of the three differently orientated reflection planes of the corner cube prism, Faraday rotation in the Nd:YAG crystal placed in a magnetic field and the different output coupling in S and P polarization form an optical diode and enforce the single- frequency generating. A round trip analysis of the polarization properties of the resonator is made by the evaluation of Jones matrix. The results of our initial experiment are given in the paper.
The Large Ring Laser G for Continuous Earth Rotation Monitoring
NASA Astrophysics Data System (ADS)
Schreiber, K. U.; Klügel, T.; Velikoseltsev, A.; Schlüter, W.; Stedman, G. E.; Wells, J.-P. R.
2009-09-01
Ring Laser gyroscopes exploit the Sagnac effect and measure rotations absolute. They do not require an external reference frame and therefore provide an independent method to monitor Earth rotation. Large-scale versions of these gyroscopes promise to eventually provide a similar high resolution for the measurement of the variations in the Earth rotation rate as the established methods based on VLBI and GNSS. This would open the door to a continuous monitoring of LOD (Length of Day) and polar motion, which is not yet available today. Another advantage is the access to the sub-daily frequency regime of Earth rotation. The ring laser “G” (Grossring), located at the Geodetic Observatory Wettzell (Germany) is the most advanced realization of such a large gyroscope. This paper outlines the current sensor design and properties.
Iwakuni, Kana; Inaba, Hajime; Nakajima, Yoshiaki; Kobayashi, Takumi; Hosaka, Kazumoto; Onae, Atsushi; Hong, Feng-Lei
2012-06-18
We have developed an optical frequency comb using a mode-locked fiber ring laser with an intra-cavity waveguide electro-optic modulator controlling the optical length in the laser cavity. The mode-locking is achieved with a simple ring configuration and a nonlinear polarization rotation mechanism. The beat note between the laser and a reference laser and the carrier envelope offset frequency of the comb were simultaneously phase locked with servo bandwidths of 1.3 MHz and 900 kHz, respectively. We observed an out-of-loop beat between two identical combs, and obtained a coherent δ-function peak with a signal to noise ratio of 70 dB/Hz.
Lee, Ju Han; Takushima, Yuichi; Kikuchi, Kazuro
2005-10-01
We experimentally demonstrate a novel erbium-doped fiber based continuous-wave (cw) supercontinuum laser. The laser has a simple ring-cavity structure incorporating an erbium-doped fiber and a highly nonlinear dispersion-shifted fiber (HNL-DSF). Differently from previously demonstrated cw supercontinuum sources based on single propagation of a strong Raman pump laser beam through a highly nonlinear fiber, erbium gain inside the cavity generates a seed light oscillation, and the oscillated light subsequently evolves into a supercontinuum by nonlinear effects such as modulation instability and stimulated Raman scattering in the HNL-DSF. High quality of the depolarized supercontinuum laser output with a spectral bandwidth larger than 250 nm is readily achieved.
A narrow linewidth tunable single longitudinal mode Ga-EDF fiber laser
NASA Astrophysics Data System (ADS)
Mohamed Halip, N. H.; Abu Bakar, M. H.; Latif, A. A.; Muhd-Yasin, S. Z.; Zulkifli, M. I.; Mat-Sharif, K. A.; Omar, N. Y. M.; Mansoor, A.; Abdul-Rashid, H. A.; Mahdi, M. A.
2018-05-01
A tunable ring cavity single longitudinal mode (SLM) fiber laser incorporating Gallium-Erbium co-doped fiber (Ga-EDF) gain medium and several mode filtration techniques is demonstrated. With Ga-EDF, high emission power was accorded in short fiber length, allowing shorter overall cavity length and wider free spectral range. Tunable bandpass filter, sub-ring structure, and cascaded dissimilar fiber taper were utilized to filter multi-longitudinal modes. Each of the filter mechanism was tested individually within the laser cavity to assess its performance. Once the performance of each filter was obtained, all of them were deployed into the laser system. Ultimately, the 1561.47 nm SLM laser achieved a narrow linewidth laser, optical signal-to-noise ratio, and power fluctuation of 1.19 kHz, 61.52 dB and 0.16 dB, respectively. This work validates the feasibility of Ga-EDF to attain a stable SLM output in simple laser configuration.
NASA Astrophysics Data System (ADS)
Sakakibara, Youichi; Rozhin, Aleksey G.; Kataura, Hiromichi; Achiba, Yohji; Tokumoto, Madoka
2005-04-01
We fabricated single-wall carbon nanotube (SWNT)/poly(vinylalcohol) (PVA) nanocomposite freestanding films and examined their application in devices in which the saturable absorption of SWNTs at near-infrared optical telecommunication wavelengths can be utilized. In a passively mode-locked fiber laser, we integrated a 30-μm-thick SWNT/PVA film into a fiber connection adaptor with the film sandwiched by a pair of fiber ferrules. A ring fiber laser with a SWNT/PVA saturable absorber was operated very easily in the mode-locked short-pulse mode with a pulse width of about 500 fs. Reproducible stable device performance was confirmed. In examining noise suppression for optical amplifiers, mixed light of semiconductor amplified spontaneous emission (ASE) source and 370 fs laser pulses was passed through a 100-μm-thick SWNT/PVA film. The transmission loss of the femtosecond pulse light was smaller than that of the ASE light. This proved that the SWNT/PVA film has the ability to suppress ASE noise.
NASA Astrophysics Data System (ADS)
Halm, R.; Kupper, Th.; Fischer, A.
1987-01-01
Gridded reflectors are used on communication satellites antennas to provide frequency reuse in dual linear polarisation mode of operation. The polarisation sensitive surface consists of metallic strips, forming a grid with width and spacings of the order of 0.1 mm. The use of frequency-selective surface (FSS) subreflectors allows the simultaneous generation of different microwave beams with the same main reflector. Such a reflector will require a structure of conductive arrays of either dipoles, rings, squares or square loops with typical dimensions of the order of 3-6 mm. Optimisation of the electrical design leads to critical dimensioning of these structures. By direct ablation of an aluminium surface coating by means of laser evaporation, high accuracies can be achieved. The major requirements were to minimize thermal damage of the substrate material and to produce dimensionally accurate grids. Experiments were carried out using a pulsed TEA-CO2 laser and a Q-switched Alexandrite laser. Details of the experimental set-up and conditions are described.
Tsuboi, Yasuyuki; Shimizu, Ryosuke; Shoji, Tatsuya; Kitamura, Noboru
2009-09-09
We demonstrate that a photochromic reaction can be driven by irradiation from a weak, near-infrared continuous-wave (NIR-CW) laser light. A two-photon ring-opening photochromic reaction of a diarylethene (DE) derivative can be induced by irradiation with a NIR-CW laser light (lambda = 808 nm). An ultrathin polymer film doped with DE in its closed form was coated onto a gold-nanoparticle-integrated glass substrate. Upon irradiation of the sample with a CW laser at low fluence (0.1-4.0 W/cm(2)), we could clearly observe bleaching of the DE (ring-opening reaction). Following the IR irradiation, the bleached absorption could be reversibly recovered by applying UV irradiation (ring-closing reaction). We verified that the yield of the photochromic ring-opening reaction of the DE was proportional to the square of the irradiation fluence. The origin of this NIR-CW-induced two-photon photochromic reaction is an "enhancing effect" that acts on the electromagnetic field (localized surface plasmon) of the gold nanoparticles. The DE interacts with the surface plasmon and receives energy from two photons, which excites it to a state from which the ring-opening reaction can be initiated.
The properties of Ge quantum rings deposited by pulsed laser deposition.
Ma, Xiying
2010-07-01
SiGe ring-shape nanostructures have attracted much research interest because of the interesting morphology, mechanical, and electromagnetic properties. In this paper, we present the planar Ge nanorings with well-defined sharp edges self-assembled on Si (100) matrix prepared with pulsed laser deposition (PLD) in the present of Ar gas. The transforming mechanism of the droplets is discussed, which a dynamic deformation model has been developed to simulate the self-transforming process of the droplets. The rings were found to be formed in two steps: from droplets to cones and from cones to rings via an elastic self-deforming process, which were likely to be driven by the lateral strain of Ge/Si layers and the surface tension.
Hohimer, J.P.; Craft, D.C.
1994-09-20
Unidirectional ring lasers formed by integrating nonreciprocal optical elements into the resonant ring cavity is disclosed. These optical elements either attenuate light traveling in a nonpreferred direction or amplify light traveling in a preferred direction. In one preferred embodiment the resonant cavity takes the form of a circle with an S-shaped crossover waveguide connected to two points on the interior of the cavity such that light traveling in a nonpreferred direction is diverted from the cavity into the crossover waveguide and reinjected out of the other end of the crossover waveguide into the cavity as light traveling in the preferred direction. 21 figs.
Optical feedback in dfb quantum cascade laser for mid-infrared cavity ring-down spectroscopy
NASA Astrophysics Data System (ADS)
Terabayashi, Ryohei; Sonnenschein, Volker; Tomita, Hideki; Hayashi, Noriyoshi; Kato, Shusuke; Jin, Lei; Yamanaka, Masahito; Nishizawa, Norihiko; Sato, Atsushi; Nozawa, Kohei; Hashizume, Kenta; Oh-hara, Toshinari; Iguchi, Tetsuo
2017-11-01
A simple external optical feedback system has been applied to a distributed feedback quantum cascade laser (DFB QCL) for cavity ring-down spectroscopy (CRDS) and a clear effect of feedback was observed. A long external feedback path length of up to 4m can decrease the QCL linewidth to around 50kHz, which is of the order of the transmission linewidth of our high finesse ring-down cavity. The power spectral density of the transmission signal from high finesse cavity reveals that the noise at frequencies above 20kHz is reduced dramatically.
EUTERPE, a small electron storage ring for XRF
NASA Astrophysics Data System (ADS)
Botman, J. I. M.; Mutsaers, P. H. A.; Hagedoorn, H. L.; De Voigt, M. J. A.
1990-04-01
A small-sized electron storage ring is under construction at the Eindhoven University of Technology which will cover the energy range of 15 to 400 MeV. At top energy the characteristic wavelength of the synchrotron radiation spectrum is 8.3 nm for the regular dipole magnets and 1.2 nm corresponding to 1.06 keV for a 10 T wiggler magnet. This will provide useful radiation for X-ray fluorescence (XRF) up to 3.2 keV. Alternatively, photon conversion with a high power CO 2 laser beam of 0.124 eV photons will generate X-rays for XRF with energies ranging from 0.5 to 300 keV, depending on the operating energy of the storage ring. This facility will provide an important extension to the activities of the Eindhoven group on PIXE, RBS and microbeam analysis. A short description of the macnine will be given together with applications and specific examples of the XRF method.
Chang, John S M; Law, Antony K P; Ng, Jack C M; Cheng, May S Y
2017-01-01
To evaluate a surgical technique used in eyes with narrow palpebral fissure undergoing femtosecond laser flap creation without suction during laser in situ keratomileusis (LASIK). All data of 2 patient groups were collected through chart review. Group 1 consisted of 6 eyes with narrow palpebral fissure in which the suction ring was manually fixated and femtosecond laser was applied accordingly. Thirty comparison cases were randomly drawn from among eyes that underwent a standard LASIK procedure matched for age and preoperative refraction (group 2). Only 1 eye of each patient was selected to compare the refractive and visual outcomes between groups. In all group 1 eyes, the flaps were created successfully with manual fixation of the suction ring without suction. No eyes lost 2 or more lines of vision. No significant difference was found in the safety and refractive outcomes between groups. Manual fixation of the suction ring in eyes with narrow palpebral fissure without suction was feasible for flap creation during LASIK.
Chang, John S.M.; Law, Antony K.P.; Ng, Jack C.M.; Cheng, May S.Y.
2017-01-01
Purpose To evaluate a surgical technique used in eyes with narrow palpebral fissure undergoing femtosecond laser flap creation without suction during laser in situ keratomileusis (LASIK). Methods All data of 2 patient groups were collected through chart review. Group 1 consisted of 6 eyes with narrow palpebral fissure in which the suction ring was manually fixated and femtosecond laser was applied accordingly. Thirty comparison cases were randomly drawn from among eyes that underwent a standard LASIK procedure matched for age and preoperative refraction (group 2). Only 1 eye of each patient was selected to compare the refractive and visual outcomes between groups. Results In all group 1 eyes, the flaps were created successfully with manual fixation of the suction ring without suction. No eyes lost 2 or more lines of vision. No significant difference was found in the safety and refractive outcomes between groups. Conclusion Manual fixation of the suction ring in eyes with narrow palpebral fissure without suction was feasible for flap creation during LASIK. PMID:28690535
NASA Astrophysics Data System (ADS)
Bell, T.; Hasnaoui, A.; Ait-Ameur, K.; Ngcobo, S.
2017-10-01
In this paper we experimentally demonstrate selective excitation of high-radial-order Laguerre-Gaussian (LG p or LG{}p,0) modes with radial order p = 1-4 and azimuthal order l = 0 using a diode-pump solid-state laser (DPSSL) that is digitally controlled by a spatial light modulator (SLM). We encoded an amplitude mask containing p-absorbing rings, of various incompleteness (segmented) on grey-scale computer-generated digital holograms, and displayed them on an SLM which acted as an end mirror of the diode-pumped solid-state digital laser. The various incomplete (α) p-absorbing rings were digitally encoded to match the zero-intensity nulls of the desired LG p mode. We show that the creation of LG p , for p = 1 to p = 4, only requires an incomplete circular p-absorbing ring that has a completeness of ≈37.5%, giving the DPSSL resonator a lower pump threshold power while maintaining the same laser characteristics (such as beam propagation properties).
NASA Astrophysics Data System (ADS)
Huo, Tiancheng; Qi, Li; Zhang, Buyun; Chen, Zhongping
2017-03-01
Light carries both spin and orbital angular momentum (OAM) and the superpositions of these two dynamical properties have found many applications. Many techniques exist to create such light sources but none allow their creation at the femtosecond fiber laser. Here we report on a novel mode-locked Ytterbium-doped fiber laser that generates femtosecond pulses with generalized vector vortex states. The controlled generation of such pulses such as azimuthally and radially polarized light with definite orbital angular momentum modes are demonstrated. A unidirectional ring cavity constructed with the Yb-doped fiber placed at the end of the fiber section to reduces unnecessary nonlinear effects is employed for self-starting operation. Pairs of diffraction gratings are used for compensating the normal group velocity dispersion of the fiber and other elements. Mode-locked operation is achieved based on nonlinear polarization evolution, which is mainly implemented with the single mode fiber, the bulk wave plates and the variable spiral plates (q-plate with topological charge q=0.5). The conversion from spin angular momentum to the OAM and reverse inside the laser cavity are realized by means of a quarter-wave plate and a q-plate so that the polarization control was mapped to OAM mode control. The fiber laser is diode pumped by a wavelength-division multiplexing coupler, which leads to excellent stability and portability.
Destructive Single-Event Failures in Diodes
NASA Technical Reports Server (NTRS)
Casey, Megan C.; Gigliuto, Robert A.; Lauenstein, Jean-Marie; Wilcox, Edward P.; Kim, Hak; Chen, Dakai; Phan, Anthony M.; LaBel, Kenneth A.
2013-01-01
In this summary, we have shown that diodes are susceptible to destructive single-event effects, and that these failures occur along the guard ring. By determining the last passing voltages, a safe operating area can be derived. By derating off of those values, rather than by the rated voltage, like what is currently done with power MOSFETs, we can work to ensure the safety of future missions. However, there are still open questions about these failures. Are they limited to a single manufacturer, a small number, or all of them? Is there a threshold rated voltage that must be exceeded to see these failures? With future work, we hope to answer these questions. In the full paper, laser results will also be presented to verify that failures only occur along the guard ring.
Nonlinear optical measurements of conducting copolymers of aniline under CW laser excitation
NASA Astrophysics Data System (ADS)
Pramodini, S.; Poornesh, P.
2015-08-01
Synthesis and measurements of third-order optical nonlinearity and optical limiting of conducting copolymers of aniline are presented. Single beam z-scan technique was employed for the nonlinear optical studies. Continuous wave He-Ne laser operating at 633 nm was used as the source of excitation. Copolymer samples exhibited reverse saturable absorption (RSA) process. The nonlinear refraction studies depict that the copolymers exhibit self-defocusing property. The estimated values of βeff, n2 and χ(3) were found to be of the order of 10-2 cm/W, 10-5 esu and 10-7 esu respectively. Self-diffraction rings were observed due to refractive index change when exposed to the laser beam. A good optical limiting and clamping of power of ∼0.9 mW and ∼0.05 mW was observed. Therefore, copolymers of aniline emerge as a potential candidate for photonic device applications.
Ring-Down Spectroscopy for Characterizing a CW Raman Laser
NASA Technical Reports Server (NTRS)
Matsko, Andrey; Savchenkov, Anatoliy; Maleki, Lute
2007-01-01
.A relatively simple technique for characterizing an all-resonant intracavity continuous-wave (CW) solid-state Raman laser involves the use of ring-down spectroscopy. As used here, characterizing signifies determining such parameters as threshold pump power, Raman gain, conversion efficiency, and quality factors (Q values) of the pump and Stokes cavity modes. Heretofore, in order to characterize resonant-cavity-based Raman lasers, it has usually been necessary to manipulate the frequencies and power levels of pump lasers and, in each case, to take several sets of measurements. In cases involving ultra-high-Q resonators, it also has been desirable to lock pump lasers to resonator modes to ensure the quality of measurement data. Simpler techniques could be useful. In the present ring-down spectroscopic technique, one infers the parameters of interest from the decay of the laser out of its steady state. This technique does not require changing the power or frequency of the pump laser or locking the pump laser to the resonator mode. The technique is based on a theoretical analysis of what happens when the pump laser is abruptly switched off after the Raman generation reaches the steady state. The analysis starts with differential equations for the evolution of the amplitudes of the pump and Stokes electric fields, leading to solutions for the power levels of the pump and Stokes fields as functions of time and of the aforementioned parameters. Among other things, these solutions show how the ring-down time depends, to some extent, on the electromagnetic energy accumulated in the cavity. The solutions are readily converted to relatively simple equations for the parameters as functions of quantities that can be determined from measurements of the time-dependent power levels. For example, the steady-state intracavity conversion efficiency is given by G1/G2 1 and the threshold power is given by Pin(G2/G1)2, where Pin is the steady-state input pump power immediately prior to abrupt switch-off, G1 is the initial rate of decay of the pump field, and G2 is the final rate of decay of the pump field. Hence, it is possible to determine all the parameters from a single ring-down scan, provided that the measurements taken in that scan are sufficiently accurate and complete.
Zhuang, Leimeng; Khan, Muhammad Rezaul; Beeker, Willem; Leinse, Arne; Heideman, René; Roeloffzen, Chris
2012-11-19
We propose and demonstrate a novel wideband microwave photonic fractional Hilbert transformer implemented using a ring resonator-based optical all-pass filter. The full programmability of the ring resonator allows variable and arbitrary fractional order of the Hilbert transformer. The performance analysis in both frequency and time domain validates that the proposed implementation provides a good approximation to an ideal fractional Hilbert transformer. This is also experimentally verified by an electrical S21 response characterization performed on a waveguide realization of a ring resonator. The waveguide-based structure allows the proposed Hilbert transformer to be integrated together with other building blocks on a photonic integrated circuit to create various system-level functionalities for on-chip microwave photonic signal processors. As an example, a circuit consisting of a splitter and a ring resonator has been realized which can perform on-chip phase control of microwave signals generated by means of optical heterodyning, and simultaneous generation of in-phase and quadrature microwave signals for a wide frequency range. For these functionalities, this simple and on-chip solution is considered to be practical, particularly when operating together with a dual-frequency laser. To our best knowledge, this is the first-time on-chip demonstration where ring resonators are employed to perform phase control functionalities for optical generation of microwave signals by means of optical heterodyning.
NASA Astrophysics Data System (ADS)
Jia, Chenglai; Shastri, Bhavin J.; Abdukerim, Nurmemet; Rochette, Martin; Prucnal, Paul R.; Saad, Mohammed; Chen, Lawrence R.
2016-11-01
Dual-band fiber lasers are emerging as a promising technology to penetrate new industrial and medical applications from their dual-band properties, in addition to providing compactness and environmental robustness from the waveguide structure. Here, we demonstrate the use of a common graphene saturable absorber and a single gain medium (Tm3+:ZBLAN fiber) to implement (1) a dual-band fiber ring laser with synchronized Q-switched pulses at wavelengths of 1480 nm and 1840 nm, and (2) a dual-band fiber linear laser with synchronized mode-locked pulses at wavelengths of 1480 nm and 1845 nm. Q-switched operation at 1480 nm and 1840 nm is achieved with a synchronized repetition rate from 20 kHz to 40.5 kHz. For synchronous mode-locked operation, pulses with full-width at half maximum durations of 610 fs and 1.68 ps at wavelengths of 1480 nm and 1845 nm, respectively, are obtained at a repetition rate of 12.3 MHz. These dual-band pulsed sources with an ultra-broadband wavelength separation of ~360 nm will add new capabilities in applications including optical sensing, spectroscopy, and communications.
Jia, Chenglai; Shastri, Bhavin J; Abdukerim, Nurmemet; Rochette, Martin; Prucnal, Paul R; Saad, Mohammed; Chen, Lawrence R
2016-11-02
Dual-band fiber lasers are emerging as a promising technology to penetrate new industrial and medical applications from their dual-band properties, in addition to providing compactness and environmental robustness from the waveguide structure. Here, we demonstrate the use of a common graphene saturable absorber and a single gain medium (Tm 3+ :ZBLAN fiber) to implement (1) a dual-band fiber ring laser with synchronized Q-switched pulses at wavelengths of 1480 nm and 1840 nm, and (2) a dual-band fiber linear laser with synchronized mode-locked pulses at wavelengths of 1480 nm and 1845 nm. Q-switched operation at 1480 nm and 1840 nm is achieved with a synchronized repetition rate from 20 kHz to 40.5 kHz. For synchronous mode-locked operation, pulses with full-width at half maximum durations of 610 fs and 1.68 ps at wavelengths of 1480 nm and 1845 nm, respectively, are obtained at a repetition rate of 12.3 MHz. These dual-band pulsed sources with an ultra-broadband wavelength separation of ~360 nm will add new capabilities in applications including optical sensing, spectroscopy, and communications.
Quantum fluctuations of radiation in a ring Nd : YAG chip laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lariontsev, E G; Firsov, V V
2015-07-31
We report theoretical and experimental investigation of intensity fluctuations in a travelling-wave ring Nd : YAG chip laser, caused by the noise of spontaneous emission. In accordance with theory and experiment, quantum intensity fluctuations in the laser under study decrease dramatically with increasing pump over the threshold. As a result of the research performed, the factor β is found, which determines the ratio of the rate of spontaneous emission into the generated mode to the total rate of spontaneous emission into all modes. The effect of the relaxation rate from the lower laser level on quantum fluctuations of the radiationmore » intensity is found. (control of radiation parameters)« less
The Sagnac effect and its interpretation by Paul Langevin
NASA Astrophysics Data System (ADS)
Pascoli, Gianni
2017-11-01
The French physicist Georges Sagnac is nowdays frequently cited by the engineers who work on devices such as ring-laser gyroscopes. These systems operate on the principle of the Sagnac effect. It is less known that Sagnac was a strong opponent to the theory of special relativity proposed by Albert Einstein. He set up his experiment to prove the existence of the aether discarded by the Einsteinian relativity. An accurate explanation of the phenomenon was provided by Paul Langevin in 1921.
NASA Astrophysics Data System (ADS)
Doskolovich, L. L.; Kazanskiy, N. L.; Kharitonov, S. I.; Uspleniev, G. V.
A new method is investigated for synthesis of computer-generated optical elements: focusators that are able to focus the radial-symmetrical laser beam into complex focal contours, in particular into alphanumeric symbols. The method is based on decomposition of the focal contour into segments of straight lines and semi-circles, following corresponding spacing out of the focusator on elementary segments (concentric rings or sectors) and solution of the inverse task of focusing from focusator segments into corresponding elements of the focal contour. The results of numerical computing of the field from synthesized focusators into the letters are presented. The theoretical efficiency of the focusators discussed is no less than 85%. The amplitude masks and the results of operational studies of synthesized focusators are presented.
Mode-locked fiber laser using SU8 resist incorporating carbon nanotubes
NASA Astrophysics Data System (ADS)
Hernandez-Romano, Ivan; Mandridis, Dimitrios; May-Arrioja, Daniel A.; Sanchez-Mondragon, Jose J.; Delfyett, Peter J.
2011-06-01
We report the fabrication of a saturable absorber made of a novel polymer SU8 doped with Single Wall Carbon Nanotubes (SWCNTs). A passive mode-locked ring cavity fiber laser was built with a 100 μm thick SU8/SWCNT film inserted between two FC/APC connectors. Self-starting passively mode-locked lasing operation was observed at 1572.04 nm, with a FWHM of 3.26 nm. The autocorrelation trace was 1.536 ps corresponding to a pulse-width of 871 fs. The time-bandwidth product was 0.344, which is close enough to transform-limited sech squared pulses. The repetition rate was 21.27 MHz, and a maximum average output power of 1 mW was also measured.
A reflective hydrogen sensor based on fiber ring laser with PCF modal interferometer
NASA Astrophysics Data System (ADS)
Zhang, Ya-Nan; Zhang, Aozhuo; Han, Bo; E, Siyu
2018-06-01
A new hydrogen sensor based on a fiber ring laser with a photonic crystal fiber (PCF) modal interferometer is proposed. The reflective PCF modal interferometer, which is fabricated by forming two collapse regions on the two ends of PCF with a fusion discharge technique, is utilized as the sensing head and filter. Particularly, the Pd/WO3 hydrogen-sensitive thin film is coated on the PCF for hydrogen sensing. The combination of the fiber ring laser and PCF modal interferometer gives the sensor a high signal-to-noise ratio and an improved detection limit. Experimental results show that the sensing system can achieve a hydrogen sensitivity of 1.28 nm/%, a high signal-to-noise ratio (∼30 dB), a narrow full width at half maximum (∼0.05 nm), and low detection limit of 0.0133%.
Zheng, Jie; Ge, Chun; Wagner, Clark J; Lu, Meng; Cunningham, Brian T; Hewitt, J Darby; Eden, J Gary
2012-06-18
Continuous tuning over a 1.6 THz region in the near-infrared (842.5-848.6 nm) has been achieved with a hybrid ring/external cavity laser having a single, optically-driven grating reflector and gain provided by an injection-seeded semiconductor amplifier. Driven at 532 nm and incorporating a photonic crystal with an azobenzene overlayer, the reflector has a peak reflectivity of ~80% and tunes at the rate of 0.024 nm per mW of incident green power. In a departure from conventional ring or external cavity lasers, the frequency selectivity for this system is provided by the passband of the tunable photonic crystal reflector and line narrowing in a high gain amplifier. Sub - 0.1 nm linewidths and amplifier extraction efficiencies above 97% are observed with the reflector tuned to 842.5 nm.
NASA Astrophysics Data System (ADS)
Krylov, Alexander A.; Sazonkin, Stanislav G.; Lazarev, Vladimir A.; Dvoretskiy, Dmitriy A.; Leonov, Stanislav O.; Pnev, Alexey B.; Karasik, Valeriy E.; Grebenyukov, Vyacheslav V.; Pozharov, Anatoly S.; Obraztsova, Elena D.; Dianov, Evgeny M.
2015-06-01
We report for the first time to the best of our knowledge on the ultra-short pulse (USP) generation in the dispersion-managed erbium-doped all-fiber ring laser hybridly mode-locked with boron nitride-doped single-walled carbon nanotubes in the co-action with a nonlinear polarization evolution in the ring cavity with a distributed polarizer. Stable 92.6 fs dechirped pulses were obtained via precise polarization state adjustment at a central wavelength of 1560 nm with 11.2 mW average output power, corresponding to the 2.9 kW maximum peak power. We have also observed the laser switching from a USP generation regime to a chirped pulse one with a corresponding pulse-width of 7.1 ps at the same intracavity dispersion.
Fiber ring laser based on SMF-TCF-SMF structure for strain and refractive index sensing
NASA Astrophysics Data System (ADS)
Yu, Fen; Xu, Ben; Zhang, Yixin; Wang, Dongning
2017-12-01
An erbium-doped fiber ring laser with embedded Mach-Zehnder interferometer (MZI) is constructed and experimentally demonstrated for strain and refractive index (RI) measurement. The MZI consists of a segment of thin-core fiber sandwiched between two single-mode fibers and acts as both the sensing component as well as a bandpass filter to select the lasing wavelength. The strain sensitivity of ˜-0.97 pm/μɛ and RI sensitivity of ˜44.88 nm/RIU are obtained in the range of 0 to 1750 μɛ and 1.3300 to 1.3537, respectively. The high-optical signal-to-noise ratio of >50 dB and narrow 3-dB bandwidth of <0.11 nm obtained indicate that the fiber ring laser sensor is promising for high-precision strain and RI measurement.
NASA Astrophysics Data System (ADS)
Wan, Shunping; Tian, Qian; Sun, Liqun; Yao, Minyan; Mao, Xianhui; Qiu, Hongyun
2004-05-01
This paper reports an experimental research on the stability of bidirectional outputs and multi-longitudinal mode interference of laser diode end-pumped Nd:YVO4 solid-state ring laser (DPSSL). The bidirectional, multi-longitudinal and TEM00 mode continuous wave outputs are obtained and the output powers are measured and their stabilities are analyzed respectively. The spectral characteristic of the outputs is measured. The interfering pattern of the bidirectional longitudinal mode outputs is obtained and analyzed in the condition of the ring cavity with rotation velocity. The movement of the interfering fringe of the multi-longitudinal modes is very sensitive to the deformation of the setup base and the fluctuation of the intracavity air, but is stationary or randomly dithers when the stage is rotating.
Wei, Heming; Krishnaswamy, Sridhar
2017-05-01
Fiber Bragg grating (FBG) dynamic strain sensors using both an erbium-based fiber ring laser configuration and a reflective semiconductor optical amplifier (RSOA)-based linear laser configuration are investigated theoretically and experimentally. Fiber laser models are first presented to analyze the output characteristics of both fiber laser configurations when the FBG sensor is subjected to dynamic strains at high frequencies. Due to differences in the transition times of erbium and the semiconductor (InP/InGaAsP), erbium-doped fiber amplifier (EDFA)- and RSOA-based fiber lasers exhibit different responses and regimes of stability when the FBG is subjected to dynamic strains. The responses of both systems are experimentally verified using an adaptive photorefractive two-wave mixing (TWM) spectral demodulation technique. The experimental results show that the RSOA-FBG fiber linear cavity laser is stable and can stably respond to dynamic strains at high frequencies. An example application using a multiplexed TWM interferometer to demodulate multiple FBG sensors is also discussed.
Approaches to solar cell design for pulsed laser power receivers
NASA Technical Reports Server (NTRS)
Jain, Raj K.; Landis, Geoffrey A.
1993-01-01
Using a laser to beam power from Earth to a photovoltaic receiver in space could be a technology with applications to many space missions. Extremely high average-power lasers would be required in a wavelength range of 700-1000 nm. However, high-power lasers inherently operate in a pulsed format. Existing solar cells are not well designed to respond to pulsed incident power. To better understand cell response to pulsed illumination at high intensity, the PC-1D finite-element computer model was used to analyze the response of solar cells to continuous and pulsed laser illumination. Over 50 percent efficiency was calculated for both InP and GaAs cells under steady-state illumination near the optimum wavelength. The time-dependent response of a high-efficiency GaAs concentrator cell to a laser pulse was modeled, and the effect of laser intensity, wavelength, and bias point was studied. Three main effects decrease the efficiency of a solar cell under pulsed laser illumination: series resistance, L-C 'ringing' with the output circuit, and current limiting due to the output inductance. The problems can be solved either by changing the pulse shape or designing a solar cell to accept the pulsed input. Cell design possibilities discussed are a high-efficiency, light-trapping silicon cell, and a monolithic, low-inductance GaAs cell.
Spin Pit Application of Image Derotated Holographic Interferometry.
1980-09-01
temperatures resulting from induction heating of the test structuore through the interaction of the electromagnets and the magnetic ring. Subsequent...reference beam, and a Tektronix Model 7633 storage oscilloscope. When the laser is fired, a trigger signal from the laser power supply initiates the...rapid induction heating of the test structure due to the interaction of the electromagnets and the magnetic ring was evi(lent with the switch from dc to
A new systematic calibration method of ring laser gyroscope inertial navigation system
NASA Astrophysics Data System (ADS)
Wei, Guo; Gao, Chunfeng; Wang, Qi; Wang, Qun; Xiong, Zhenyu; Long, Xingwu
2016-10-01
Inertial navigation system has been the core component of both military and civil navigation systems. Before the INS is put into application, it is supposed to be calibrated in the laboratory in order to compensate repeatability error caused by manufacturing. Discrete calibration method cannot fulfill requirements of high-accurate calibration of the mechanically dithered ring laser gyroscope navigation system with shock absorbers. This paper has analyzed theories of error inspiration and separation in detail and presented a new systematic calibration method for ring laser gyroscope inertial navigation system. Error models and equations of calibrated Inertial Measurement Unit are given. Then proper rotation arrangement orders are depicted in order to establish the linear relationships between the change of velocity errors and calibrated parameter errors. Experiments have been set up to compare the systematic errors calculated by filtering calibration result with those obtained by discrete calibration result. The largest position error and velocity error of filtering calibration result are only 0.18 miles and 0.26m/s compared with 2 miles and 1.46m/s of discrete calibration result. These results have validated the new systematic calibration method and proved its importance for optimal design and accuracy improvement of calibration of mechanically dithered ring laser gyroscope inertial navigation system.
Rao, Yun-Jiang; Ran, Zeng-Ling; Chen, Rong-Rui
2006-09-15
A novel tunable fiber ring laser configuration with a combination of bidirectional Raman amplification and dual erbium-doped fiber (EDF) amplification is proposed for realizing high optical signal-to-noise ratio (SNR), long-distance, quasi-distributed fiber Bragg grating (FBG) sensing systems with large capacities and low cost. The hybrid Raman-EDF amplification configuration arranged in the ring laser can enhance the optical SNR of FBG sensor signals significantly owing to the good combination of the high gain of the erbium-doped fiber amplifier (EDFA) and the low noise of the Raman amplification. Such a sensing system can support a large number of FBG sensors because of the use of a tunable fiber Fabry-Perot filter located within the ring laser and spatial division multiplexing for expansion of sensor channels. Experimental results show that an excellent optical SNR of approximately 60 dB has been achieved for a 50 km transmission distance with a low Raman pump power of approximately 170 mW at a wavelength of 1455 nm and a low EDFA pump power of approximately 40 mW at a wavelength of 980 nm, which is the highest optical SNR achieved so far for a 50 km long FBG sensor system, to our knowledge.
Controlling the non-linear intracavity dynamics of large He-Ne laser gyroscopes
NASA Astrophysics Data System (ADS)
Cuccato, D.; Beghi, A.; Belfi, J.; Beverini, N.; Ortolan, A.; Di Virgilio, A.
2014-02-01
A model based on Lamb's theory of gas lasers is applied to a He-Ne ring laser (RL) gyroscope to estimate and remove the laser dynamics contribution from the rotation measurements. The intensities of the counter-propagating laser beams exiting one cavity mirror are continuously observed together with a monitor of the laser population inversion. These observables, once properly calibrated with a dedicated procedure, allow us to estimate cold cavity and active medium parameters driving the main part of the non-linearities of the system. The quantitative estimation of intrinsic non-reciprocal effects due to cavity and active medium non-linear coupling plays a key role in testing fundamental symmetries of space-time with RLs. The parameter identification and noise subtraction procedure has been verified by means of a Monte Carlo study of the system, and experimentally tested on the G-PISA RL oriented with the normal to the ring plane almost parallel to the Earth's rotation axis. In this configuration the Earth's rotation rate provides the maximum Sagnac effect while the contribution of the orientation error is reduced to a minimum. After the subtraction of laser dynamics by a Kalman filter, the relative systematic errors of G-PISA reduce from 50 to 5 parts in 103 and can be attributed to the residual uncertainties on geometrical scale factor and orientation of the ring.
Moser, Harald; Genner, Andreas; Ofner, Johannes; Schwarzer, C; Strasser, Gottfried; Lendl, Bernhard
2016-03-21
The present work reports on the first application of a ring-cavity-surface-emitting quantum-cascade laser (RCSE-QCL) for sensitive gas measurements. RCSE-QCLs are promising candidates for optical gas-sensing due to their single-mode, mode-hop-free and narrow-band emission characteristics along with their broad spectral coverage. The time resolved down-chirp of the RCSE-QCL in the 1227-1236 cm-1 (8.15-8.09 µm) spectral range was investigated using a step-scan FT-IR spectrometer (Bruker Vertex 80v) with 2 ns time and 0.1 cm-1 spectral resolution. The pulse repetition rate was set between 20 and 200 kHz and the laser device was cooled to 15-17°C. Employing 300 ns pulses a spectrum of ~1.5 cm-1 could be recorded. Under these laser operation conditions and a gas pressure of 1000 mbar a limit of detection (3σ) of 1.5 ppmv for hydrogen sulfide (H2S) in nitrogen was achieved using a 100 m Herriott cell and a thermoelectric cooled MCT detector for absorption measurements. Using 3 µs long pulses enabled to further extend the spectral bandwidth to 8.5 cm-1. Based on this increased spectral coverage and employing reduced pressure conditions (50 mbar) multiple peaks of the target analyte H2S as well as methane (CH4) could be examined within one single pulse.
Cavity-locked ring down spectroscopy
Zare, Richard N.; Paldus, Barbara A.; Harb, Charles C.; Spence, Thomas
2000-01-01
Distinct locking and sampling light beams are used in a cavity ring-down spectroscopy (CRDS) system to perform multiple ring-down measurements while the laser and ring-down cavity are continuously locked. The sampling and locking light beams have different frequencies, to ensure that the sampling and locking light are decoupled within the cavity. Preferably, the ring-down cavity is ring-shaped, the sampling light is s-polarized, and the locking light is p-polarized. Transmitted sampling light is used for ring-down measurements, while reflected locking light is used for locking in a Pound-Drever scheme.
Q-switched Erbium-doped fiber laser at 1600 nm for photoacoustic imaging application
Zeng, Lvming; Chen, Zhongping; Kim, Chang-Seok
2016-01-01
We present a nanosecond Q-switched Erbium-doped fiber (EDF) laser system operating at 1600 nm with a tunable repetition rate from 100 kHz to 1 MHz. A compact fiber coupled, acousto-optic modulator-based EDF ring cavity was used to generate a nanosecond seed laser at 1600 nm, and a double-cladding EDF based power amplifier was applied to achieve the maximum average power of 250 mW. In addition, 12 ns laser pulses with the maximum pulse energy of 2.4 μJ were obtained at 100 kHz. Furthermore, the Stokes shift by Raman scattering over a 25 km long fiber was measured, indicating that the laser can be potentially used to generate the high repetition rate pulses at the 1.7 μm region. Finally, we detected the photoacoustic signal from a human hair at 200 kHz repetition rate with a pulse energy of 1.2 μJ, which demonstrates that a Q-switched Er-doped fiber laser can be a promising light source for the high speed functional photoacoustic imaging. PMID:27110032
Q-switched Erbium-doped fiber laser at 1600 nm for photoacoustic imaging application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piao, Zhonglie; Beckman Laser Institute, Department of Biomedical Engineering, University of California, Irvine, California 92612; Zeng, Lvming
We present a nanosecond Q-switched Erbium-doped fiber (EDF) laser system operating at 1600 nm with a tunable repetition rate from 100 kHz to 1 MHz. A compact fiber coupled, acousto-optic modulator-based EDF ring cavity was used to generate a nanosecond seed laser at 1600 nm, and a double-cladding EDF based power amplifier was applied to achieve the maximum average power of 250 mW. In addition, 12 ns laser pulses with the maximum pulse energy of 2.4 μJ were obtained at 100 kHz. Furthermore, the Stokes shift by Raman scattering over a 25 km long fiber was measured, indicating that the laser can be potentially used to generate the highmore » repetition rate pulses at the 1.7 μm region. Finally, we detected the photoacoustic signal from a human hair at 200 kHz repetition rate with a pulse energy of 1.2 μJ, which demonstrates that a Q-switched Er-doped fiber laser can be a promising light source for the high speed functional photoacoustic imaging.« less
Two-dimensional network of atomtronic qubits
NASA Astrophysics Data System (ADS)
Safaei, S.; Grémaud, B.; Dumke, R.; Kwek, L.-C.; Amico, L.; Miniatura, C.
2018-04-01
Through a combination of laser beams, we engineer a two-dimensional optical lattice of Mexican hat potentials able to host atoms in its ring-shaped wells. When tunneling can be ignored (at high laser intensities), we show that a well-defined qubit can be associated with the states of the atoms trapped in each of the rings. Each of these two-level systems can be manipulated by a suitable configuration of Raman laser beams imprinting a synthetic flux onto each Mexican hat cell of the lattice. Overall, we believe that the system has the potential to form a scalable architecture for atomtronic flux qubits.
NASA Astrophysics Data System (ADS)
Zolotovskii, I. O.; Korobko, D. A.; Sysolyatin, A. A.
2018-02-01
We consider a model of a dissipative four-wave mixing, mode-locked fibre ring laser with an intracavity interferometer. The necessary conditions required for mode locking are presented. A pulse train generation is numerically simulated at different repetition rates and gain levels. Admissible ranges of values, for which successful mode locking is possible, are found. It is shown that in the case of normal dispersion of the resonator, a laser with an intracavity interferometer can generate a train of pulses with an energy much greater than that in the case of anomalous dispersion.
NASA Astrophysics Data System (ADS)
Watson, Norman F.
The relative merits of gimballed INS based on mechanical gyroscopes and strapdown INS based on ring laser gyroscopes are compared with regard to their use in 1 nm/hr combat aircraft navigation. Navigation performance, velocity performance, attitude performance, body axis outputs, environmental influences, reliability and maintainability, cost, and physical parameters are taken into consideration. Some of the advantages which have been claimed elsewhere for the laser INS, such as dramatically lower life cycle costs than for gimballed INS, are shown to be unrealistic under reasonable assumptions.
Vogel, A; Freidank, S; Linz, N
2014-06-01
In refractive corneal surgery femtosecond (fs) lasers are used for creating LASIK flaps, dissecting lenticules and for astigmatism correction by limbal incisions. Femtosecond laser systems are complex and expensive and cutting precision is compromised by the large focal length associated with the commonly used infrared (IR) wavelengths. Based on investigations of the cutting dynamics, novel approaches for corneal dissection using ultraviolet A (UVA) picosecond (ps) pulses and ring foci from vortex beams are presented. Laser-induced bubble formation in corneal stroma was investigated by high-speed photography at 1-50 million frames/s. Using Gaussian and vortex beams of UVA pulses with durations between 200 and 850 ps the laser energy needed for easy removal of flaps created in porcine corneas was determined and the quality of the cuts by scanning electron microscopy was documented. Cutting parameters for 850 ps are reported also for rabbit eyes. The UV-induced and mechanical stress were evaluated for Gaussian and vortex beams. The results show that UVA picosecond lasers provide better cutting precision than IR femtosecond lasers, with similar processing times. Cutting energy decreases by >50 % when the laser pulse duration is reduced to 200 ps. Vortex beams produce a short, donut-shaped focus allowing efficient and precise dissection along the corneal lamellae which results in a dramatic reduction of the absorbed energy needed for cutting and of mechanical side effects as well as in less bubble formation in the cutting plane. A combination of novel approaches for corneal dissection provides the option to replace femtosecond lasers by compact UVA microchip laser technology. Ring foci are also of interest for femtosecond laser surgery, especially for improved lenticule excision.
Molecular spectrum of laterally coupled quantum rings under intense terahertz radiation.
Baghramyan, Henrikh M; Barseghyan, Manuk G; Laroze, David
2017-09-05
We study the influence of intense THz laser radiation and electric field on molecular states of laterally coupled quantum rings. Laser radiation shows the capability to dissociate quantum ring molecule and add 2-fold degeneracy to the molecular states at the fixed value of the overlapping size between rings. It is shown that coupled to decoupled molecular states phase transition points form almost a straight line with a slope equal to two. In addition, the electric field direction dependent energy spectrum shows unexpected oscillations, demonstrating strong coupling between molecular states. Besides, intraband absorption is considered, showing both blue and redshifts in its spectrum. The obtained results can be useful for the controlling of degeneracy of the discrete energy spectrum of nanoscale structures and in the tunneling effects therein.
Spatial Control of Laser Wakefield Accelerated Electron Beams
NASA Astrophysics Data System (ADS)
Maksimchuk, A.; Behm, K.; Zhao, T.; Joglekar, A. S.; Hussein, A.; Nees, J.; Thomas, A. G. R.; Krushelnick, K.; Elle, J.; Lucero, A.; Samarin, G. M.; Sarry, G.; Warwick, J.
2017-10-01
The laser wakefield experiments to study and control spatial properties of electron beams were performed using HERCULES laser at the University of Michigan at power of 100 TW. In the first experiment multi-electron beam generation was demonstrated using co-propagating, parallel laser beams with a π-phase shift mirror and showing that interaction between the wakefields can cause injection to occur for plasma and laser parameters in which a single wakefield displays no significant injection. In the second experiment a magnetic triplet quadrupole system was used to refocus and stabilize electron beams at the distance of 60 cm from the interaction region. This produced a 10-fold increase in remote gamma-ray activation of 63Cu using a lead converter. In the third experiment measurements of un-trapped electrons with high transverse momentum produce a 500 mrad (FWHM) ring. This ring is formed by electrons that receive a forward momentum boost by traversing behind the bubble and its size is inversely proportional to the plasma density. The characterization of divergence and charge of this electron ring may reveal information about the wakefield structure and trapping potential. Supported by U.S. Department of Energy and the National Nuclear Security Administration and Air Force Office of Scientific Research.
Diffractive Combiner of Single-Mode Pump Laser-Diode Beams
NASA Technical Reports Server (NTRS)
Liu, Duncan; Wilson, Daniel; Qiu, Yueming; Forouhar, Siamak
2007-01-01
An optical beam combiner now under development would make it possible to use the outputs of multiple single-mode laser diodes to pump a neodymium: yttrium aluminum garnet (Nd:YAG) nonplanar ring oscillator (NPRO) laser while ensuring that the laser operates at only a single desired frequency. Heretofore, an Nd:YAG NPRO like the present one has been pumped by a single multimode laser-diode beam delivered via an optical fiber. It would be desirable to use multiple pump laser diodes to increase reliability beyond that obtainable from a single pump laser diode. However, as explained below, simplistically coupling multiple multimode laser-diode beams through a fiber-optic combiner would entail a significant reduction in coupling efficiency, and lasing would occur at one or more other frequencies in addition to the single desired frequency. Figure 1 schematically illustrates the principle of operation of a laser-diode-pumped Nd:YAG NPRO. The laser beam path is confined in a Nd:YAG crystal by means of total internal reflections on the three back facets and a partial-reflection coating on the front facet. The wavelength of the pump beam - 808 nm - is the wavelength most strongly absorbed by the Nd:YAG crystal. The crystal can lase at a wavelength of either 1,064 nm or 1,319 nm - which one depending on the optical coating on the front facet. A thermal lens effect induced by the pump beam enables stable lasing in the lowest-order transverse electromagnetic mode (the TEM00 mode). The frequency of this laser is very stable because of the mechanical stability of the laser crystal and the unidirectional nature of the lasing. The unidirectionality is a result of the combined effects of (1) a Faraday rotation induced by an externally applied magnetic field and (2) polarization associated with non-normal incidence and reflection on the front facet.
NASA Astrophysics Data System (ADS)
Stedman, G. E.; Schreiber, K. U.; Bilger, H. R.
2003-07-01
The possibility of detecting the Lense-Thirring field generated by the rotating earth (also rotating laboratory masses) is reassessed in view of recent dramatic advances in the technology of ring laser gyroscopes. This possibility is very much less remote than it was a decade ago. The effect may contribute significantly to the Sagnac frequency of planned instruments. Its discrimination and detection will require an improved metrology, linking the ring to the celestial reference frame, and a fuller study of dispersion- and backscatter-induced frequency pulling. Both these requirements have been the subject of recent major progress, and our goal looks feasible.
Generation of annular, high-charge electron beams at the Argonne wakefield accelerator
NASA Astrophysics Data System (ADS)
Wisniewski, E. E.; Li, C.; Gai, W.; Power, J.
2012-12-01
We present and discuss the results from the experimental generation of high-charge annular(ring-shaped)electron beams at the Argonne Wakefield Accelerator (AWA). These beams were produced by using laser masks to project annular laser profiles of various inner and outer diameters onto the photocathode of an RF gun. The ring beam is accelerated to 15 MeV, then it is imaged by means of solenoid lenses. Transverse profiles are compared for different solenoid settings. Discussion includes a comparison with Parmela simulations, some applications of high-charge ring beams,and an outline of a planned extension of this study.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Y.; Fowlkes, J. D.; Roberts, N. A.
Nanoscale copper rings of different radii, thicknesses, and widths were synthesized on silicon dioxide thin films and were subsequently liquefied via a nanosecond pulse laser treatment. During the nanoscale liquid lifetimes, the rings experience competing retraction dynamics and thin film and/or Rayleigh-Plateau types of instabilities, which lead to arrays of ordered nanodroplets. Surprisingly, the results are significantly different from those of similar experiments carried out on a Si surface.(1) We use hydrodynamic simulations to elucidate how the different liquid/solid interactions control the different instability mechanisms in the present problem.
Dual noise-like pulse and soliton operation of a fiber ring cavity
NASA Astrophysics Data System (ADS)
Bracamontes Rodríguez, Y. E.; Pottiez, O.; García Sanchez, E.; Lauterio Cruz, J. P.; Ibarra-Villalón, H.; Hernandez-Garcia, J. C.; Bello-Jimenez, M.; Beltrán-Pérez, G.; Ibarra-Escamilla, B.; Kuzin, E. A.
2017-03-01
Passively mode-locked fiber lasers (PML-FLs) are versatile sources that are capable of generating a broad variety of short and ultrashort optical pulses. Besides conservative solitons, PML-FLs allow the generation of different kinds of dissipative structures, usually called dissipative solitons, a concept that also encompasses more complex structures and collective behaviors such as soliton molecules, gas, rain of solitons, etc. In addition to this, PML-FLs are also able to generate even more complex objects, the so-called noise-like pulses (NLPs). A few recent research results revealed a connection between NLPs and solitons, a sign that deterministic ingredients enter into the composition of NLPs, whose nature is traditionally assumed to be random. Although it is usual that a fiber laser is able to generate either solitons or noise-like pulses, depending on pump power and adjustments in the cavity, these two regimes are rarely observed simultaneously. In this paper, a PML-FL in a ring configuration is presented, in which it is possible to observe and verify experimentally the simultaneous presence of NLPs and solitons. Interestingly, these two components are found in different spectral regions, which greatly facilitates their separation and individual study and characterization.
High power, high signal-to-noise ratio single-frequency 1μm Brillouin all-fiber laser
NASA Astrophysics Data System (ADS)
Wang, Jing; Hou, Yubin; Zhang, Qian; Jin, Dongchen; Sun, Ruoyu; Shi, Hongxing; Liu, Jiang; Wang, Pu
2016-03-01
We demonstrate a high-power, high signal-to-noise ratio single-frequency 1 μm Brillouin all-fiber laser with high slope efficiency. The Brillouin laser system consists of a high-power single-frequency fiber laser and a single-pass Brillouin ring cavity. The high-power single-frequency fiber laser is one-stage master-oscillator power amplifier with the maximum output power of 10.33 W, the signal-to-noise ratio of 50 dB and the slope efficiency of 46%. The Brillouin fiber laser is pumped by the amplified laser with a linewidth of 33 kHz and an output power of 2.61 W limited by the damage threshold of the optical isolator. By optimizing the length of the Brillouin ring cavity to 10 m, stable singlefrequency Brillouin fiber laser is obtained with 3 kHz linewidth owing to the linewidth narrowing effect. At the launched pump power of 2.15 W, the Brillouin fiber laser generates maximum output power of 1.4 W with a slope efficiency of 79% and the optical signal-to-noise ratio of 77 dB.
Zhang, Qian; Yang, Dong; Qi, Jia; Cheng, Ya; Gong, Qihuang; Li, Yan
2017-06-12
We report single scan transverse writing of depressed cladding waveguides inside ZBLAN glass with the longitudinally oriented annular ring-shaped focal intensity distribution of the femtosecond laser. The entire region of depressed cladding at the cross section, where a negative change of refraction index is induced, can be modified simultaneously with the ring-shaped focal intensity profile. The fabricated waveguides exhibit good single guided mode.
NASA Astrophysics Data System (ADS)
Ahmadi, A.; Avazpour, A.; Nadgaran, H.; Mousavi, M.
2018-04-01
The effect of terbium gallium garnet (TGG ) crystal length on 1064 and 532 nm output powers and beam quality of a unidirectional ring Nd:YVO4 laser is investigated. In the case of 1064 nm (without nonlinear crystal), the laser output power without considerating the effect of TGG crystal was computed theoretically. Then three TGG crystals with different lengths were placed in the laser setup one by one. A systematic decrease in output power was observed by increasing the TGG crystal length. The experiment was repeated in the case of 532 nm. It was found that in a 532 nm laser, higher laser efficiency and small beam quality degradation can be achieved by increasing the TGG crystal length leading to a 5.7 W green laser with 27 W pump power. The power stability and beam quality were 0.8% for 30 min and less than 1.3, respectively.
NASA Technical Reports Server (NTRS)
Yu, Jirong; Trieu, Bo; Bai, Yingxin; Koch, Grady; Chen, Songsheng; Petzar, Paul; Singh, Upendra N.; Kavaya, Michael J.; Beyon, Jeffrey
2010-01-01
The design of a double pulsed, injection seeded, 2-micrometer compact coherent Differential absorption Lidar (DIAL) transmitter for CO2 sensing is presented. This system is hardened for ground and airborne applications. The design architecture includes three continuous wave lasers which provide controlled on and off line seeding, injection seeded power oscillator and a single amplifier operating in double pass configuration. As the derivative a coherent Doppler wind lidar, this instrument has the added benefit of providing wind information. The active laser material used for this application is a Ho: Tm:YLF crystal operates at the eye-safe wavelength. The 3-meter long folded ring resonator produces energy of 130-mJ (90/40) with a temporal pulse length around 220 nanoseconds and 530 nanosecond pulses for on and off lines respectively. The separation between the two pulses is on the order of 200 microseconds. The line width is in the order of 2.5MHz and the beam quality has an M(sup 2) of 1.1 times diffraction limited beam. A final output energy for a pair of both on and off pulses as high as 315 mJ (190/125) at a repetition rate of 10 Hz is achieved. The operating temperature is set around 20 C for the pump diode lasers and 10 C for the rod. Since the laser design has to meet high-energy as well as high beam quality requirements, close attention is paid to the laser head design to avoid thermal distortion in the rod. A side-pumped configuration is used and heat is removed uniformly by passing coolant through a tube slightly larger than the rod to reduce thermal gradient. This paper also discusses the advantage of using a long upper laser level life time laser crystal for DIAL application. In addition issues related to injection seeding with two different frequencies to achieve a transform limited line width will be presented.
Light and/or atomic beams to detect ultraweak gravitational effects
NASA Astrophysics Data System (ADS)
Tartaglia, Angelo; Belfi, Jacopo; Beverini, Nicolò; Di Virgilio, Angela; Ortolan, Antonello; Porzio, Alberto; Ruggiero, Matteo Luca
2014-06-01
We shall review the opportunities lent by ring lasers and atomic beams interferometry in order to reveal gravitomagnetic effects on Earth. Both techniques are based on the asymmetric propagation of waves in the gravitational field of a rotating mass; actually the times of flight for co- or counter-rotating closed paths turn out to be different. After discussing properties and limitations of the two approaches we shall describe the proposed GINGER experiment which is being developed for the Gran Sasso National Laboratories in Italy. The experimental apparatus will consist of a three-dimensional array of square rings, 6m × 6m, that is planned to reach a sensitivity in the order of 1prad/√Hertz or better. This sensitivity would be one order of magnitude better than the best existing ring, which is the G-ring in Wettzell, Bavaria, and would allow for the terrestrial detection of the Lense-Thirring effect and possibly of deviations from General Relativity. The possibility of using either the ring laser approach or atomic interferometry in a space mission will also be considered. The technology problems are under experimental study using both the German G-ring and the smaller G-Pisa ring, located at the Gran Sasso.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akparov, V V; Dmitriev, Valentin G; Duraev, V P
A semiconductor ring laser (SRL) with a radiation wavelength of 1540 nm and a fibre ring cavity is developed and studied in several main lasing regimes. An SRL design based on a semiconductor optical travelling-wave amplifier and a ring cavity, composed of a single-mode polarisation-maintaining fibre, is considered. The SRL is studied in the regime of a rotation speed sensor, in which the frequency shift of counterpropagating waves in the SRL is proportional to its rotation speed. The minimum rotation speed that can be detected using the SRL under consideration depends on the cavity length; in our experiment it turnedmore » to be 1deg s{sup -1}. The changes in the threshold current, emission spectrum, and fundamental radiation wavelength upon closing and opening the SRL ring cavity and with a change in its radius are also investigated. (lasers)« less
NASA Astrophysics Data System (ADS)
Stay, Justin L.; Carr, Dustin; Ferguson, Steve; Haber, Todd; Jenkins, Robert; Mock, Joel
2017-02-01
Optical coherence tomography (OCT) has become a useful and common diagnostic tool within the field of ophthalmology. Although presently a commercial technology, research continues in improving image quality and applying the imaging method to other tissue types. Swept-wavelength lasers based upon fiber ring cavities containing fiber Fabry-Ṕerot tunable filters (FFP-TF), as an intracavity element, provide swept-source optical coherence tomography (SS-OCT) systems with a robust and scalable platform. The FFP-TF can be fabricated within a large range of operating wavelengths, free spectral ranges (FSR), and finesses. To date, FFP-TFs have been fabricated at operating wavelengths from 400 nm to 2.2 µm, FSRs as large as 45 THz, and finesses as high as 30 000. The results in this paper focus on presenting the capability of the FFP-TF as an intracavity element in producing swept-wavelength lasers sources and quantifying the trade off between coherence length and sweep range. We present results within a range of feasible operating conditions. Particular focus is given to the discovery of laser configurations that result in maximization of sweep range and/or power. A novel approach to the electronic drive of the PZT-based FFP-TF is also presented, which eliminates the need for the existence of a mechanical resonance of the optical device. This approach substantially increases the range of drive frequencies with which the filter can be driven and has a positive impact for both the short all-fiber laser cavity (presented in this paper) and long cavity FDML designs as well.
NASA Astrophysics Data System (ADS)
Dvoretskiy, D. A.; Sazonkin, S. G.; Voropaev, V. S.; Negin, M. A.; Leonov, S. O.; Pnev, A. B.; Karasik, V. E.; Denisov, L. K.; Krylov, A. A.; Davydov, V. A.; Obraztsova, E. D.
2016-11-01
Regimes of ultrashort pulse generation in an erbium-doped all-fibre ring laser with hybrid mode locking based on single-wall carbon - boron nitride nanotubes and the nonlinear Kerr effect in fibre waveguides are studied. Stable dechirped ultrashort pulses are obtained with a duration of ˜ 90 {\\text{fs}}, a repetition rate of ˜ 42.2 {\\text{MHz}}, and an average output power of ˜ 16.7 {\\text{mW}}, which corresponds to a pulse energy of ˜ 0.4 {\\text{nJ}} and a peak laser power of ˜ 4.4 {\\text{kW}}.
Environmentally stable seed source for high power ultrafast laser
NASA Astrophysics Data System (ADS)
Samartsev, Igor; Bordenyuk, Andrey; Gapontsev, Valentin
2017-02-01
We present an environmentally stable Yb ultrafast ring oscillator utilizing a new method of passive mode-locking. The laser is using all-fiber architecture which makes it insensitive to environmental factors, like temperature, humidity, vibrations, and shocks. The new method of mode-locking is utilizing crossed bandpass transmittance filters in ring architecture to discriminate against CW lasing. Broadband pulse evolves from cavity noise under amplification, after passing each filter, causing strong spectral broadening. The laser is self-starting. It generates transform limited spectrally flat pulses of 1 - 50 nm width at 6 - 15 MHz repetition rate and pulse energy 0.2 - 15 nJ at 1010 - 1080 nm CWL.
NASA Astrophysics Data System (ADS)
Yeh, Chien-Hung; Chow, Chi-Wai; Lu, Shao-Sheng
2014-05-01
In this work, we propose and demonstrate a multi-wavelength laser source produced by utilizing a C-band reflective semiconductor optical amplifier (RSOA) with a dual-ring fiber cavity. Here, the laser cavity consists of an RSOA, a 1 × 2 optical coupler, a 2 × 2 optical coupler and a polarization controller. As a result, thirteen to eighteen wavelengths around the L band could be generated simultaneously when the bias current of the C-band RSOA was driven at 30-70 mA. In addition, the output stabilities of the power and wavelength are also discussed.
NASA Technical Reports Server (NTRS)
Kane, Thomas J.; Nilsson, Alan C.; Byer, Robert L.
1987-01-01
The frequency stability of laser-diode-pumped, monolithic Nd:YAG solid-state unidirectional nonplanar ring oscillators was studied by heterodyne measurements. CW single-axial- and transverse-mode power of 25 mW at 1064 nm was obtained at a slope efficiency of 19 percent. Two independent oscillators were offset-locked at 17 MHz with frequency fluctuations of less than + or - 40 kHz for periods of 8 min.
Compact near-IR and mid-IR cavity ring down spectroscopy device
NASA Technical Reports Server (NTRS)
Miller, J. Houston (Inventor)
2011-01-01
This invention relates to a compact cavity ring down spectrometer for detection and measurement of trace species in a sample gas using a tunable solid-state continuous-wave mid-infrared PPLN OPO laser or a tunable low-power solid-state continuous wave near-infrared diode laser with an algorithm for reducing the periodic noise in the voltage decay signal which subjects the data to cluster analysis or by averaging of the interquartile range of the data.
NASA Astrophysics Data System (ADS)
Hayat, Ahmad; Bacou, Alexandre; Rissons, Angelique; Mollier, Jean-Claude
2009-02-01
We present here a 1.55 μm single mode Vertical-Cavity Surface-Emitting Laser (VCSEL) based low phasenoise ring optoelectronic (OEO) oscillator operating at 2.49 GHz for aerospace, avionics and embedded systems applications. Experiments using optical fibers of different lengths have been carried out to obtain optimal results. A phase-noise measurement of -107 dBc/Hz at an offset of 10 kHz from the carrier is obtained. A 3-dB linewidth of 16 Hz for this oscillator signal has been measured. An analysis of lateral mode spacing or Free Spectral Range (FSR) as a function of fiber length has been carried out. A parametric comparison with DFB Laser-based and multimode VCSEL-based opto-electronic oscillators is also presented.
Microgravity Diode Laser Spectroscopy Measurements in a Reacting Vortex Ring
NASA Technical Reports Server (NTRS)
Chen, Shin-Juh; Dahm, Werner J. A.; Silver, Joel A.; Piltch, Nancy D.; VanderWal, R. (Technical Monitor)
2001-01-01
The technique of Diode Laser Spectroscopy (DLS) with wavelength modulation is utilized to measure the concentration of methane in reacting vortex rings under microgravity conditions. From the measured concentration of methane, other major species such as water, carbon dioxide, nitrogen, and oxygen can be easily computed under the assumption of equilibrium chemistry with an iterative method called ITAC (Iterative Temperature with Assumed Chemistry). The conserved scalar approach in modelling the coupling between fluid dynamics and combustion is utilized to represent the unknown variables in terms of the mixture fraction and scalar dissipation rate in conjunction with ITAC. Post-processing of the DLS and the method used to compute the species concentration are discussed. From the flame luminosity results, ring circulation appears to increase the fuel consumption rate inside the reacting vortex ring and the flame height for cases with similar fuel volumes but different ring circulations. The concentrations of methane, water, and carbon dioxide agree well with available results from numerical simulations.
Systems and assemblies for transferring high power laser energy through a rotating junction
Norton, Ryan J.; McKay, Ryan P.; Fraze, Jason D.; Rinzler, Charles C.; Grubb, Daryl L.; Faircloth, Brian O.; Zediker, Mark S.
2016-01-26
There are provided high power laser devices and systems for transmitting a high power laser beam across a rotating assembly, including optical slip rings and optical rotational coupling assemblies. These devices can transmit the laser beam through the rotation zone in free space or within a fiber.
Al-khwarizmi: a new-found basin on the lunar far side.
El-Baz, F
1973-06-15
Apollo 16 and Apollo 17 photographs of the far side of the moon reveal a double-ringed basin 500 kilometers in diameter centered at 1 degrees N, 112 degrees E. The structure is very old and subdued; it is probably Pre-Nectarian in age and appears to have been filled and modified by younger events. The heights of the basin's rings are based on laser altimeter data from Apollo missions 15 through 17; these data suggest a third outer ring, approximately 1000 kilometers in diameter. Laser measurements also indicate that the filled basin separates the relatively low terrain on the eastern limb of the moon from the higher, more rugged highlands to the east.
Single-Frequency Nd:YAG Ring Lasers with Corner Cube Prism
NASA Astrophysics Data System (ADS)
Wu, Ke-Ying; Yang, Su-Hui; Zhao, Chang-Ming; Wei, Guang-Hui
2000-10-01
We put forward another form of the non-planar ring lasers, in which the corner cube prism is the key element and the Nd:YAG crystal is used as a Porro prism to enclose the ring resonator. The phase shift due to the total internal reflections of the three differently orientated reflection planes of the corner cube prism, Faraday rotation in the Nd:YAG crystal placed in a magnetic field and the different output coupling in S and P polarization form an optical diode and enforce the single-frequency generating power. A round trip analysis of the polarization properties of the resonator is made by the evaluation of Jones matrix.
NASA Astrophysics Data System (ADS)
Seraji, Faramarz E.
2009-03-01
In practice, dynamic behavior of fiber-optic ring resonator (FORR) appears as a detrimental factor to influence the transmission response of the FORR. This paper presents dynamic response analysis of the FORR by considering phase modulation of the FORR loop and sinewave modulation of input signal applied to the FORR from a laser diode. The analysis investigates the influences of modulation frequency and amplitude modulation index of laser diode, loop delay time of the FORR, phase angle between FM and AM response of laser diode, and laser diode line-width on dynamic response of the FORR. The analysis shows that the transient response of the FORR strongly depends on the product of modulation frequency and loop delay time, coupling and transmission coefficients of the FORR. The analyses presented here may have applications in optical systems employing an FORR with a laser diode source.
NASA Astrophysics Data System (ADS)
Abramov, D. V.; Arakelyan, S. M.; Galkin, A. F.; Klimovskii, Ivan I.; Kucherik, A. O.; Prokoshev, V. G.
2006-06-01
The video image of the graphite surface exposed to focused laser radiation is obtained with the help of a laser monitor. A bright ring moving over the heated surface was observed. A method for reconstructing the surface relief from the video image is proposed and realised. The method is based on the measurement of the angular distribution of the light intensity scattered by the graphite sample surface. The surface relief of the graphite sample changing in time is reconstructed. The relative change in the relief height during laser excitation is measured. The statistical characteristics of the reconstructed graphite surface shape and their variation during laser irradiation are studied. It is found that a circular convexity appears within the bright ring. The formation mechanism of this convexity requires further investigations.
A wavelength-tunable fiber laser using a novel filter based on a compound interference effect
NASA Astrophysics Data System (ADS)
Zou, Hui; Lou, Shuqin; Su, Wei; Han, Bolin; Shen, Xiao
2015-01-01
A wavelength-tunable erbium-doped fiber laser is proposed and experimentally demonstrated by using a novel filter which is formed from a 2 × 2 3 dB multimode coupler incorporating a segment of polarization maintaining fiber (PMF). By using the filter with 2.1 m lengths of PMF in a ring fiber laser, a stable single wavelength lasing is obtained experimentally. Its 3 dB bandwidth is less than 0.0147 nm and the side mode suppression ratio (SMSR) is higher than 58.91 dB. Experimental results demonstrate that mode competition can be effectively suppressed and the SMSR can be improved due to the compound interference effect aroused by the novel filter. Meanwhile the stability of the output lasing can be enhanced. By appropriately adjusting the polarization controllers (PCs), the output lasing wavelength can be tuned from 1563.51 to 1568.21 nm. This fiber laser has the advantage of a simple structure and stable operation at room temperature.
Laser amplification of incoherent radiation
NASA Technical Reports Server (NTRS)
Menegozzi, L. N.; Lamb, W. E., Jr.
1978-01-01
The amplification of noise in a laser amplifier is treated theoretically. The model for the active medium and its description using density-matrix techniques, are taken from the theory of laser operation. The spectral behavior of the radiation in the nonlinear regime is studied and the formalism is written from the onset in the frequency domain. The statistics of the light are gradually modified by the nonlinear amplification process, and expressions are derived for the rate of change of fluctuations in intensity as a measure of statistical changes. In addition, the range of validity of Litvak's Gaussian-statistics approximation is discussed. In the homogeneous-broadening case, the evolution of initially broadband Gaussian radiation toward quasimonochromatic oscillations with laserlike statistics is explored in several numerical examples. The connections of this study with the time-domain work on self-pulsing in a ring-laser configuration, are established. Finally, spectral-narrowing and -rebroadening effects in Doppler-broadened media are discussed both analytically and with numerical examples. These examples show the distinct contribution of pulsations in the population ('Raman-type terms'), and saturation phenomena.
Razeghi, Manijeh; Zhou, Wenjia; Slivken, Steven; Lu, Quan-Yong; Wu, Donghai; McClintock, Ryan
2017-11-01
The quantum cascade laser (QCL) is becoming the leading laser source in the mid-infrared (mid-IR) range, which contains two atmospheric transmission windows and many molecular fingerprint absorption features. Since its first demonstration in 1994, the QCL has undergone tremendous development in terms of the output power, wall plug efficiency, wavelength coverage, tunability and beam quality. At the Center for Quantum Devices, we have demonstrated high-power continuous wave operation of QCLs covering a wide wavelength range from 3 to 12 μm, with power output up to 5.1 W at room temperature. Recent research has resulted in power scaling in pulsed mode with up to 203 W output, electrically tunable QCLs based on monolithic sampled grating design, heterogeneous QCLs with a broad spectral gain, broadly tunable on-chip beam-combined QCLs, QCL-based mid-IR frequency combs, and fundamental mode surface emitting quantum cascade ring lasers. The developed QCLs will be the basis for a number of next-generation spectroscopy and sensing systems.
Experimental determination of gravitomagnetic effects by means of ring lasers
NASA Astrophysics Data System (ADS)
Tartaglia, Angelo
2013-08-01
A new experiment aimed to the detection of the gravito-magnetic Lense-Thirring effect at the surface of the Earth will be presented; the name of the experiment is GINGER. The proposed technique is based on the behavior of light beams in ring-lasers, also known as gyrolasers. A three-dimensional array of ringlasers will be attached to a rigid "monument"; each ring will have a different orientation in space. Within the space-time of a rotating mass the propagation of light is indeed anisotropic; part of the anisotropy is purely kinematical (Sagnac effect), part is due to the interaction between the gravito-electric field of the source and the kinematical motion of the observer (de Sitter effect), finally there is a contribution from the gravito-magnetic component of the Earth (gravito-magnetic frame dragging or Lense-Thirring effect). In a ring-laser a light beam traveling counterclockwise is superposed to another beam traveling in the opposite sense. The anisotropy in the propagation leads to standing waves with slightly different frequencies in the two directions; the final effect is a beat frequency proportional to the size of the instrument and its effective rotation rate in space, including the gravito-magnetic drag. Current laser techniques and the performances of the best existing ring-lasers allow at the moment a sensitivity within one order of magnitude of the required accuracy for the detection of gravito-magnetic effects, so that the objective of GINGER is in the range of feasibility and aims to improve the sensitivity of a couple of orders of magnitude with respect to present. The experiment will be underground, probably in the Gran Sasso National Laboratories in Italy, and is based on an international collaboration among four Italian groups, the Technische Universität München and the University of Canterbury in Christchurch (NZ).
NASA Astrophysics Data System (ADS)
Rahman, M. F. A.; Dhar, A.; Das, S.; Dutta, D.; Paul, M. C.; Rusdi, M. F. M.; Latiff, A. A.; Dimyati, K.; Harun, S. W.
2018-07-01
We demonstrate a Q-switched all-fiber laser operating at 2-μm region by adding a piece of 8 cm long holmium doped fiber (HDF) as a fiber saturable absorber (SA) in Thulium doped fiber laser (TDFL) ring cavity. Doping of Ho ions into yttria-alumina silica glass was done through conventional Modified Chemical Vapor Deposition (MCVD) technique in conjunction with solution doping process. The fabricated HDF has a linear absorption of 3 dB with a core diameter and a numerical aperture of 10 μm and 0.18, respectively. A self-started Q-switching operation begins at 418 mW pump level and continually dominant until 564 mW pump level. As the pump power increases, stable pulse train presence from 30.61 kHz to 38.89 kHz while the pulse width reduces from 3.18 μs to 2.27 μs. Both maximum output power and maximum peak power are obtained at 5.05 mW and 57.2 mW, respectively, while the maximum pulse energy is calculated to be 129 nJ. The signal-to-noise ratio (SNR) of the fundamental frequency is 50 dB. Our work may contribute to the discovery of stable, robust, and economic SA for pulse fiber laser generation at 2-μm region.
Laser control of reactions of photoswitching functional molecules.
Tamura, Hiroyuki; Nanbu, Shinkoh; Ishida, Toshimasa; Nakamura, Hiroki
2006-07-21
Laser control schemes of reactions of photoswitching functional molecules are proposed based on the quantum mechanical wave-packet dynamics and the design of laser parameters. The appropriately designed quadratically chirped laser pulses can achieve nearly complete transitions of wave packet among electronic states. The laser parameters can be optimized by using the Zhu-Nakamura theory of nonadiabatic transition. This method is effective not only for the initial photoexcitation process but also for the pump and dump scheme in the middle of the overall photoswitching process. The effects of momentum of the wave packet crossing a conical intersection on the branching ratio of products have also been clarified. These control schemes mentioned above are successfully applied to the cyclohexadiene/hexatriene photoisomerization (ring-opening) process which is the reaction center of practical photoswitching molecules such as diarylethenes. The overall efficiency of the ring opening can be appreciably increased by using the appropriately designed laser pulses compared to that of the natural photoisomerization without any control schemes.
Spatial Combining of Laser-Diode Beams for Pumping an NPRO
NASA Technical Reports Server (NTRS)
Gelsinger, Paul; Liu, Duncan; Mulder, Jerry; Aguayo, Francisco
2008-01-01
A free-space optical beam combiner now undergoing development makes it possible to use the outputs of multiple multimode laser diodes to pump a neodymium-doped yttrium aluminum garnet (Nd:YAG) non-planar ring oscillator (NPRO) laser while ensuring that the laser operates at only a single desired frequency. Heretofore, a Nd:YAG NPRO like the present one has been pumped by a single multimode laser-diode beam delivered via an optical fiber. It would be desirable to use multiple pump laser diodes to increase reliability beyond that obtainable from a single pump laser diode. However, as explained in this article, simplistically coupling multiple multimode laser-diode beams through a fiber-optic combiner would entail a significant reduction in coupling efficiency, and lasing would occur at one or more other frequencies in addition to the single desired frequency. To minimize coupling loss, one must ensure that the NA (approximately equal to 0.3) of the combined laser-diode beams is less than the NA of the fiber. The A(Omega) of the laser-diode beam in the slow-axis plane is 1/1.3 as large as that of the fiber. This A(Omega) is small enough to enable efficient coupling of light into the optical fiber, but too large for combining of beams in the slow-axis plane. Therefore, a pair of cylindrical lenses is used to cancel the slow-axis plane magnification introduced by the on-cylindrical lenses used to effect magnification in the fast-axis plane.
Ring-Gaussian laser pulse filamentation in a self-induced diffraction waveguide
NASA Astrophysics Data System (ADS)
Geints, Yu E.; Zemlyanov, A. A.
2017-10-01
Self-action in air of a high-power femtosecond laser pulse with the spatial form of a ring-Gaussian beam (‘dressed’ beam) is studied theoretically. Pulse self-focusing and filamentation is analyzed in detail through the numerical solution of the spectral propagation equation, taking into account medium optical nonlinearity and plasma generation. Pulse propagation dynamics and energy fluxes inside the beam are visualized by means of averaged diffraction ray tracing. We clearly show that, in terms of diffraction optics, the outer ring forms a specific nonmaterial diffractive waveguide, favoring long-range self-channeling of the central part of a beam by delivering optical energy to a filament. The spatial robustness and stability of such diffractive waveguides strongly depends on the energy stored in the ring, as well as on its position relative to the beam axis. The striking advantage of such ‘dressed’ beams is their reduced angular divergence during plasma-free (post-filamentation) evolution.
Estimates of Rayleigh-to-Love wave ratio in microseisms by co-located Ring Laser and STS-2
NASA Astrophysics Data System (ADS)
Tanimoto, Toshiro; Hadziioannou, Céline; Igel, Heiner; Wassermann, Joachim; Schreiber, Ulrich; Gebauer, André
2015-04-01
In older studies of microseisms (seismic noise), it was often assumed that microseisms, especially the secondary microseisms (0.1-0.3 Hz), mainly consist of Rayleigh waves. However, it has become clear that there exists a large amount of Love-wave energy mixed in it (e.g., Nishida et al., 2008). However, its confirmation is not necessarily straightforward and often required an array of seismographs. In this study, we take advantage of two co-located instruments, a Ring Laser and an STS-2 type seismograph, at Wettzell (WET), Germany (Schreiber et al., 2009). The Ring Laser records rotation (its vertical component) and is thus only sensitive to Love waves. The vertical component of STS-2 seismograph is only sensitive to Rayleigh waves. Therefore, a combination of the two instruments provides a unique opportunity to separate Rayleigh waves and Love waves in microseisms. The question we address in this paper is the ratio of Rayleigh waves to Love waves in microseisms. For both instruments, we analyze data from 2009 to 2014. Our basic approach is to create stacked vertical acceleration spectra for Rayleigh waves from STS-2 and stacked transverse acceleration spectra for Love waves from Ring Laser. The two spectra at Earth's surface can then be compared directly by their amplitudes. The first step in our analysis is a selection of time portions (each six-hour long) that are least affected by earthquakes. We do this by examining the GCMT (Global Centroid Moment Tensor) catalogue and also checking the PSDs for various frequency ranges. The second step is to create stacked (averaged) Fourier spectra from those selected time portions. The key is to use the same time portions for the STS-2 and the Ring Laser data so that the two can be directly compared. The vertical spectra from STS-2 are converted to acceleration spectra. The Ring Laser rotation spectra are first obtained in the unit of radians/sec (rotation rate). But as the Ring Laser spectra are dominated by fundamental-mode Love waves, the rotation spectra can be converted to transverse (SH) acceleration by multiplying them by the factor 2xCp where Cp is the Love-wave phase velocity. We used a seismic model by Fichtner et al. (2013) at WET to estimate Love-wave phase velocity. This conversion from rotation to transverse acceleration was first extensively used by Igel et al. (2005) for the analysis of lower frequency Love waves and the same relation holds for our spectral data. The two spectra provide the ratio of surface amplitudes. In the frequency range of secondary microseisms (0.10-0.35 Hz), they are comparable; near the spectral peak (~0.20 Hz), Rayleigh waves are about 20 percent larger in amplitudes but outside this peak region, Love waves have comparable or slightly larger amplitudes than Rayleigh waves. Therefore, the secondary microseisms at WET consist of similar contributions from Rayleigh waves and Love waves.
Performances Of The New Streak Camera TSN 506
NASA Astrophysics Data System (ADS)
Nodenot, P.; Imhoff, C.; Bouchu, M.; Cavailler, C.; Fleurot, N.; Launspach, J.
1985-02-01
The number of streack cameras used in research laboratory has been continuously increased du-ring the past years. The increasing of this type of equipment is due to the development of various measurement techniques in the nanosecond and picosecond range. Among the many different applications, we would mention detonics chronometry measurement, measurement of the speed of matter by means of Doppler-laser interferometry, laser and plasma diagnostics associated with laser-matter interaction. The old range of cameras have been remodelled, in order to standardize and rationalize the production of ultrafast cinematography instruments, to produce a single camera known as TSN 506. Tne TSN 506 is composed of an electronic control unit, built around the image converter tube it can be fitted with a nanosecond sweep circuit covering the whole range from 1 ms to 200 ns or with a picosecond circuit providing streak durations from 1 to 100 ns. We shall describe the main electronic and opto-electronic performance of the TSN 506 operating in these two temporal fields.
Jiang, Tongxiao; Wang, Guizhong; Zhang, Wei; Li, Chen; Wang, Aimin; Zhang, Zhigang
2013-02-15
We report octave-spanning spectrum generated in a tapered silica photonic crystal fiber by a mode-locked Yb:fiber ring laser at a repetition rate as high as 528 MHz. The output pulses from this laser were compressed to 62 fs. By controlling the hole expansion and core diameter, a silica PCF was tapered to 20 cm with an optimal d/Λ ratio of 0.6. Pulses with the energy of 280 pJ and the peak power of 4.5 kW were injected into the tapered fiber and the pulse spectrum was expanded from 500 to 1600 nm at the level of -30 dB.
NASA Astrophysics Data System (ADS)
Tanimoto, Toshiro; Hadziioannou, Céline; Igel, Heiner; Wasserman, Joachim; Schreiber, Ulrich; Gebauer, André
2015-04-01
Using a colocated ring laser and an STS-2 seismograph, we estimate the ratio of Rayleigh-to-Love waves in the secondary microseism at Wettzell, Germany, for frequencies between 0.13 and 0.30 Hz. Rayleigh wave surface acceleration was derived from the vertical component of STS-2, and Love wave surface acceleration was derived from the ring laser. Surface wave amplitudes are comparable; near the spectral peak about 0.22 Hz, Rayleigh wave amplitudes are about 20% higher than Love wave amplitudes, but outside this range, Love wave amplitudes become higher. In terms of the kinetic energy, Rayleigh wave energy is about 20-35% smaller on average than Love wave energy. The observed secondary microseism at Wettzell thus consists of comparable Rayleigh and Love waves but contributions from Love waves are larger. This is surprising as the only known excitation mechanism for the secondary microseism, described by Longuet-Higgins (1950), is equivalent to a vertical force and should mostly excite Rayleigh waves.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Guo-Bo; Key Laboratory for Laser Plasmas; Chen, Min, E-mail: minchen@sjtu.edu.cn, E-mail: yanyunma@126.com
2016-03-14
The acceleration of electron beams with multiple transverse structures in wakefields driven by Laguerre-Gaussian pulses has been studied through three-dimensional (3D) particle-in-cell simulations. Under different laser-plasma conditions, the wakefield shows different transverse structures. In general cases, the wakefield shows a donut-like structure and it accelerates the ring-shaped hollow electron beam. When a lower plasma density or a smaller laser spot size is used, besides the donut-like wakefield, a central bell-like wakefield can also be excited. The wake sets in the center of the donut-like wake. In this case, both a central on-axis electron beam and a ring-shaped electron beam aremore » simultaneously accelerated. Further, reducing the plasma density or laser spot size leads to an on-axis electron beam acceleration only. The research is beneficial for some potential applications requiring special pulse beam structures, such as positron acceleration and collimation.« less
Bond-breaking mechanism of vitreous silica densification by IR femtosecond laser pulses
NASA Astrophysics Data System (ADS)
Shcheblanov, Nikita S.; Povarnitsyn, Mikhail E.
2016-04-01
The densification of the vitreous silica (v-SiO2) due to laser irradiation appears reasonable to cause the change in refractive index. In this letter, the v-SiO2 densification under IR femtosecond laser irradiation is studied within molecular-dynamics simulation. The single- and multi-pulse interactions are explored numerically with an account of the bond-breaking mechanism. By analyzing the network at nanoscale, the nature of v-SiO2 densification is assigned to the reduction of major ring fractions of six- and seven-membered rings to minor fractions of three- and four-membered rings (related to D 2 and D 1 Raman signatures, respectively). The athermal behavior of v-SiO2 densification is disclosed at different degrees of ionization for both the single- and multi-pulse cases at sub-threshold regimes. The good agreement between calculated and measured D2 defect line and Si-O-Si angle changes argues in favor of the found mechanism.
Chen, X; Bhola, B; Huang, Y; Ho, S T
2010-08-02
Interactions between a semiconducting gain medium and confined plasmon-polaritons are studied using a multilevel multi-thermal-electron finite-difference time-domain (MLMTE-FDTD) simulator. We investigated the amplification of wave propagating in a plasmonic metal-semiconductor-metal (MSM) waveguide filled with semiconductor gain medium and obtained the conditions required to achieve net optical gain. The MSM gain waveguide is used to form a plasmonic semiconductor nano-ring laser(PSNRL) with an effective mode volume of 0.0071 microm3, which is about an order of magnitude smaller than the smallest demonstrated integrated photonic crystal based laser cavities. The simulation shows a lasing threshold current density of 1kA/cm2 for a 300 nm outer diameter ring cavity with 80 nm-wide ring. This current density can be realistically achieved in typical III-V semiconductor, which shows the experimental feasibility of the proposed PSNRL structure.
All-optical gain-clamped wideband serial EDFA with ring-shaped laser
NASA Astrophysics Data System (ADS)
Lu, Yung-Hsin; Chi, Sien
2004-01-01
We experimentally investigate the static and dynamic properties of all-optical gain-clamped wideband (1530-1600 nm) serial erbium-doped fiber amplifier with a single ring-shaped laser, which consists of a circulator and a fiber Bragg grating at the output end. The lasing light passing through the second stage is intentionally blocked at the output end by a C/L-band wavelength division multiplexer owning the huge insertion loss, and thus, the copropagating ring-laser light is formed by the first stage. This design can simultaneously clamp the gains of 1547 and 1584 nm probes near 14 dB and shows the same dynamic range of input power up to -4 dBm for conventional band and long-wavelength band. Furthermore, the transient responses of 1551 and 1596 nm surviving channels exhibit small power excursions (<0.54 dB) as the total saturating tone with -2 dBm is modulated on and off at 270 Hz.
NASA Astrophysics Data System (ADS)
Xiang, W. Z.; Xu, A. E.; Xu, J.; Bi, Z. G.; Shang, Y. B.; Ren, Q. S.
2010-08-01
Confocal laser scanning microscopy (CLSM) allows noninvasive visualization of human skin in vivo, without needing to fix or section the tissue. Melanocytes and pigmented keratinocytes at the level of the basal layer form bright dermal papillary rings which are readily amenable to identify in confocal images. Our purpose was to explore the role of dermal papillary rings in assessment of lesion location, the diagnosis, differential diagnosis of lesions and assessment of therapeutic efficacy by in vivo CLSM. Seventy-one patients were imaged with the VivaScope 1500 reflectance confocal microscope provided by Lucid, Inc. The results indicate that dermal papillary rings can assess the location of lesion; the application of dermal papillary rings can provide diagnostic support and differential diagnosis for vitiligo, nevus depigmentosus, tinea versicolor, halo nevus, common nevi, and assess the therapeutic efficacy of NBUVB phototherapy plus topical 0.1 percent tacrolimus ointment for vitiligo. In conclusion, our findings indicate that the dermal papillary rings play an important role in the assessment the location of lesion, diagnosis, differential diagnosis of lesions and assessment of therapeutic efficacy by in vivo CLSM. CLSM may be a promising tool for noninvasive examination in dermatology. However, larger studies are needed to expand the application of dermal papillary rings in dermatology.
Ring-Interferometric Sol-Gel Bio-Sensor
NASA Technical Reports Server (NTRS)
Bearman, Gregory (Inventor); Cohen, David (Inventor)
2006-01-01
A biosensor embodying the invention includes a sensing volume having an array of pores sized for immobilizing a first biological entity tending to bind to a second biological entity in such a manner as to change an index of refraction of the sensing volume. The biosensor further includes a ring interferometer, one volumetric section of the ring interferometer being the sensing volume, a laser for supplying light to the ring interferometer, and a photodetector for receiving light from the interferometer.
Multi-access laser communications transceiver system
NASA Technical Reports Server (NTRS)
Ross, Monte (Inventor); Lokerson, Donald C. (Inventor); Fitzmaurice, Michael W. (Inventor); Meyer, Daniel D. (Inventor)
1993-01-01
A satellite system for optical communications such as a multi-access laser transceiver system. Up to six low Earth orbiting satellites send satellite data to a geosynchronous satellite. The data is relayed to a ground station at the Earth's surface. The earth pointing geosynchronous satellite terminal has no gimbal but has a separate tracking mechanism for tracking each low Earth orbiting satellite. The tracking mechanism has a ring assembly rotatable about an axis coaxial with the axis of the field of view of the geosynchronous satellite and a pivotable arm mounted for pivotal movement on the ring assembly. An optical pickup mechanism at the end of each arm is positioned for optical communication with one of the orbiting satellites by rotation of the ring.
High Power OPO Laser and wavelength-controlled system for 1.6μm CO2-DIAL
NASA Astrophysics Data System (ADS)
Abo, M.; Nagasawa, C.; Shibata, Y.
2009-12-01
Unlike the existing 2.0μm CO2-DIAL, a high-energy pulse laser operating in the 1.6μm absorption band of CO2 has not been realized. Quasi phase matching (QPM) devices have high conversion efficiency and high beam quality due to their higher nonlinear optical coefficient. We adapt the PPMgLT crystal as the QPM device. The PPMgLT crystal had 3mm × 3mm apertures, and the periodically poled period was 30.9 μm, with the duty ratio close to the ideal value of 0.5. The beam quality of the pumping laser was exceed M2 ≥1.2. The repetition rate was 400 Hz and the energy was 35 mJ. The pumping laser pulse was injection-seeded by the continuous-wave (CW) fiber laser, which had a narrow spectrum. The pulse pumped the PPMgLT crystal in the ring cavity with a single pass through the dielectric mirror. The PPMgLT crystal was mounted on a copper holder, and the temperature was maintained at 40 °C using a Peltier module. The holder’s temperature was stabilized to within 0.01 °C when the copper holder was covered with a plastic case. The OPO ring cavity was a singly resonant oscillator optimized for the signal wave. Single-frequency oscillation of the PPMgLT OPO was achieved by injection seeding, as described in the following. The injection seeder was a DFB laser having a power of 30mW with a 1MHz oscillation spectrum. Their oscillation wavelength was coarse tuned by temperature and fine tuned by adjusting injection currents. The partial power of the online wavelength was split in the wavelength control unit. We locked the DFB laser as an injection seeder of the online wavelength onto the line center by referencing the fiber coupled multipath gas cell (path length 800mm) containing pure CO2 at a pressure of 700 Torr. Stabilization was estimated to within 1.8MHz rms of the line center of the CO2 absorption line by monitoring the feedback signal of a wavelength-controlled unit. Injection seeding of the PPMgLT OPO was performed by matching the cavity length to the seeder wavelength for each oscillation pulse. The on-line and off-line wavelengths were injected into the OPO cavity through its output mirror. The injection seeder could be automatically switched by applying the TTL trigger to an optical fiber switch. A typical power of 8mW was injected into the cavity. The OPO cavity length was controlled as follows. A slope voltage was applied to the piezoelectric element mounted on the cavity mirror. If the longitudinal mode of the cavity was closed at the wavelength of the injection seeder, the electrical signal monitored by the photodiode would be maximized. The CW laser beam was injected from the output coupler to control the oscillation wavelength. The maximum output energy of 12mJ at 400 Hz was observed at 35mJ of pumping laser energy. The slope efficiency was 43.7%. This output energy and this repetition rate were the highest achieved so far. No damage was observed even after 1 h of operation. Therefore higher-energy operations can be expected with this device if the beam quality of the pumping laser is improved. This work was financially supported by the System Development Program for Advanced Measurement and Analysis by the JST.
High precision measurements of 16O12C17O using a new type of cavity ring down spectrometer
NASA Astrophysics Data System (ADS)
Daëron, M.; Stoltmann, T.; Kassi, S.; Burkhart, J.; Kerstel, E.
2016-12-01
Laser absorption techniques for the measurement of isotopologue abundances in gases have been dripping into the geoscientific community over the past decade. In the field of carbon dioxide such instruments have mostly been restricted to measurements of the most abundant stable isotopologues. Distinct advantages of CRDS techniques are non-destructiveness and the ability to resolve isobaric isotopologues. The determination of low-abundance isotopologues is predominantly limited by the linewidth of the probing laser, laser jitter, laser drift and system stability. Here we present first measurements of 16O12C17O abundances using a new type of ultra-precise cavity ring down spectrometer. By the use of Optical Feedback Frequency Stabilization, we achieved a laser line width in the sub-kHz regime with a frequency drift of less than 20 Hz/s. A tight coupling with an ultra-stable ring down cavity combined with a frequency tuning mechanism which enables us to arbitrarily position spectral points (Burkart et al., 2013) allowed us to demonstrate a single-scan (2 minutes) precision of 40 ppm on the determination of the 16O12C17O abundance. These promising results imply that routine, direct, high-precision measurements of 17O-anomalies in CO2 using this non-destructive method are in reach. References:Burkart J, Romanini D, Kassi S; Optical feedback stabilized laser tuned by single-sideband modulation; Optical Letters 12:2062-2063 (2013)
Rotational Motions from Teleseismic Events - Modelling and Observations
NASA Astrophysics Data System (ADS)
Schuberth, B.; Igel, H.; Wassermann, J.; Cochard, A.; Schreiber, U.
2004-12-01
Currently only ring lasers technology is capable of recording rotational motions resulting from earthquakes with a sensitivity and frequency band that are interesting for broadband seismology. One of those instruments is located at the Geodetic observatory in Wettzell/Germany. Here we present theoretical studies of rotational motions simulated with different Earth models and comparisons with several observations at the Wettzell ring laser. The 3-D global simulations were performed with the Spectral Element Method (Komatitsch and Tromp 2002a,b), that was modified to also allow the output of rotational seismograms. The Earth models used in these simulations range from simple radially symmetric ones, such as PREM, to more complex models including 3D velocity structures, attenuation and geometric effects like topography and bathymetry. Thus, by comparison of the theoretical rotation rates with the ring laser data we show how the results converge to the observed rotation rates when using more realistic Earth models. In a second step we compare rotation rates to the transverse component of translational acceleration both obtained from simulations with 3D velocity structures in crust and mantle. As expected from theory - under the assumption of plane wave propagation - those two signals should be in phase and scale linearly with the phase velocity. Using this relation, it is possible to determine the local phase velocity of transverse signals from collocated measurments of rotations and transverse accelerations. We compare the estimated phase velocities with those observed in a temporary seismic array installed around the ring laser.
NASA Astrophysics Data System (ADS)
Lizotte, Todd
2010-08-01
A novel laser beam shaping system was designed to demonstrate the potential of using high power UV laser sources for large scale disinfection of liquids used in the production of food products, such as juices, beer, milk and other beverage types. The design incorporates a patented assembly of optical components including a diffractive beam splitting/shaping element and a faceted pyramidal or conically shaped Lambertian diffuser made from a compression molded PTFE compounds. When properly sintered to an appropriate density, as an example between 1.10 and 1.40 grams per cubic centimeter, the compressed PTFE compounds show a ~99% reflectance at wavelengths ranging from 300 nm to 1500 nm, and a ~98.5% refection of wavelengths from 250 nm to 2000 nm [1]. The unique diffuser configuration also benefits from the fact that the PTFE compounds do not degrade when exposed to ultraviolet radiation as do barium sulfate materials and silver or aluminized mirror coatings [2]. These components are contained within a hermetically sealed quartz tube. Once assembled a laser beam is directed through one end of the tube. This window takes the form of a computer generated diffractive splitter or other diffractive shaper element to split the laser beam into a series of spot beamlets, circular rings or other geometric shapes. As each of the split beamlets or rings cascade downward, they illuminate various points along the tapered PTFE cone or faceted pyramidal form. As they strike the surface they each diffuse in a Lambertian reflectance pattern creating a pseudo-uniform circumferential illuminator along the length of the quartz tube enclosing the assembly. The compact tubular structure termed Longitudinal Illuminated Diffuser (LID) provides a unique UV disinfection source that can be placed within a centrifugal reactor or a pipe based reactor chamber. This paper will review the overall design principle, key component design parameters, preliminary analytic and bench operational testing results.
Environmental stability of actively mode locked fibre lasers
NASA Astrophysics Data System (ADS)
Hill, Calum H.; Lee, Stephen T.; Reid, Derryck T.; Baili, Ghaya; Davies, John
2016-10-01
Lasers developed for defence related applications typically encounter issues with reliability and meeting desired specification when taken from the lab to the product line. In particular the harsh environmental conditions a laser has to endure can lead to difficulties. This paper examines a specific class of laser, namely actively mode-locked fibre lasers (AMLFLs), and discusses the impact of environmental perturbations. Theoretical and experimental results have assisted in developing techniques to improve the stability of a mode-locked pulse train for continuous operation. Many of the lessons learned in this research are applicable to a much broader category of lasers. The AMLFL consists of a fibre ring cavity containing a semiconductor optical amplifier (SOA), an isolator, an output coupler, a circulator, a bandpass filter and a modulator. The laser produces a train of 6-ps pulses at 800 nm with a repetition rate in the GHz regime and a low-noise profile. This performance is realisable in a laboratory environment. However, even small changes in temperature on the order of 0.1 °C can cause a collapse of mode-locked dynamics such that the required stability cannot be achieved without suitable feedback. Investigations into the root causes of this failure were performed by changing the temperature of components that constitute the laser resonator and observing their properties. Several different feedback mechanisms have been investigated to improve laser stability in an environment with dynamic temperature changes. Active cavity length control will be discussed along with DC bias control of the Mach-Zehnder modulator (MZM).
Silicon photonics WDM transmitter with single section semiconductor mode-locked laser
NASA Astrophysics Data System (ADS)
Müller, Juliana; Hauck, Johannes; Shen, Bin; Romero-García, Sebastian; Islamova, Elmira; Azadeh, Saeed Sharif; Joshi, Siddharth; Chimot, Nicolas; Moscoso-Mártir, Alvaro; Merget, Florian; Lelarge, François; Witzens, Jeremy
2015-04-01
We demonstrate a wavelength domain-multiplexed (WDM) optical link relying on a single section semiconductor mode-locked laser (SS-MLL) with quantum dash (Q-Dash) gain material to generate 25 optical carriers spaced by 60.8 GHz, as well as silicon photonics (SiP) resonant ring modulators (RRMs) to modulate individual optical channels. The link requires optical reamplification provided by an erbium-doped fiber amplifier (EDFA) in the system experiments reported here. Open eye diagrams with signal quality factors (Q-factors) above 7 are measured with a commercial receiver (Rx). For higher compactness and cost effectiveness, reamplification of the modulated channels with a semiconductor optical amplifier (SOA) operated in the linear regime is highly desirable. System and device characterization indicate compatibility with the latter. While we expect channel counts to be primarily limited by the saturation output power level of the SOA, we estimate a single SOA to support more than eight channels. Prior to describing the system experiments, component design and detailed characterization results are reported including design and characterization of RRMs, ring-based resonant optical add-drop multiplexers (RR-OADMs) and thermal tuners, S-parameters resulting from the interoperation of RRMs and RR-OADMs, and characterization of Q-Dash SS-MLLs reamplified with a commercial SOA. Particular emphasis is placed on peaking effects in the transfer functions of RRMs and RR-OADMs resulting from transient effects in the optical domain, as well as on the characterization of SS-MLLs in regard to relative intensity noise (RIN), stability of the modes of operation, and excess noise after reamplification.
Pulsed quantum cascade laser-based cavity ring-down spectroscopy for ammonia detection in breath.
Manne, Jagadeeshwari; Sukhorukov, Oleksandr; Jäger, Wolfgang; Tulip, John
2006-12-20
Breath analysis can be a valuable, noninvasive tool for the clinical diagnosis of a number of pathological conditions. The detection of ammonia in exhaled breath is of particular interest for it has been linked to kidney malfunction and peptic ulcers. Pulsed cavity ringdown spectroscopy in the mid-IR region has developed into a sensitive analytical technique for trace gas analysis. A gas analyzer based on a pulsed mid-IR quantum cascade laser operating near 970 cm(-1) has been developed for the detection of ammonia levels in breath. We report a sensitivity of approximately 50 parts per billion with a 20 s time resolution for ammonia detection in breath with this system. The challenges and possible solutions for the quantification of ammonia in human breath by the described technique are discussed.
Optical circular deflector with attosecond resolution for ultrashort electron beam
Zhang, Zhen; Du, Yingchao; Tang, Chuanxiang; ...
2017-05-25
A novel method using high-power laser as a circular deflector is proposed for the measurement of femtosecond (fs) and sub-fs electron beam. In the scheme, the electron beam interacts with a laser pulse operating in a radially polarized doughnut mode ( TEM 01 * ) in a helical undulator, generating angular kicks along the beam in two directions at the same time. The phase difference between the two angular kicks makes the beam form a ring after a propagation section with appropriate phase advance, which can reveal the current profile of the electron beam. Detailed theoretical analysis of the methodmore » and numerical results with reasonable parameters are both presented. Lastly, it is shown that the temporal resolution can reach up to ~ 100 attosecond, which is a significant improvement for the diagnostics of ultrashort electron beam.« less
Optical circular deflector with attosecond resolution for ultrashort electron beam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Zhen; Du, Yingchao; Tang, Chuanxiang
A novel method using high-power laser as a circular deflector is proposed for the measurement of femtosecond (fs) and sub-fs electron beam. In the scheme, the electron beam interacts with a laser pulse operating in a radially polarized doughnut mode ( TEM 01 * ) in a helical undulator, generating angular kicks along the beam in two directions at the same time. The phase difference between the two angular kicks makes the beam form a ring after a propagation section with appropriate phase advance, which can reveal the current profile of the electron beam. Detailed theoretical analysis of the methodmore » and numerical results with reasonable parameters are both presented. Lastly, it is shown that the temporal resolution can reach up to ~ 100 attosecond, which is a significant improvement for the diagnostics of ultrashort electron beam.« less
HERCULES/MSI: a multispectral imager with geolocation for STS-70
NASA Astrophysics Data System (ADS)
Simi, Christopher G.; Kindsfather, Randy; Pickard, Henry; Howard, William, III; Norton, Mark C.; Dixon, Roberta
1995-11-01
A multispectral intensified CCD imager combined with a ring laser gyroscope based inertial measurement unit was flown on the Space Shuttle Discovery from July 13-22, 1995 (Space Transport System Flight No. 70, STS-70). The camera includes a six position filter wheel, a third generation image intensifier, and a CCD camera. The camera is integrated with a laser gyroscope system that determines the ground position of the imagery to an accuracy of better than three nautical miles. The camera has two modes of operation; a panchromatic mode for high-magnification imaging [ground sample distance (GSD) of 4 m], or a multispectral mode consisting of six different user-selectable spectral ranges at reduced magnification (12 m GSD). This paper discusses the system hardware and technical trade-offs involved with camera optimization, and presents imagery observed during the shuttle mission.
Direct laser writing of polymer micro-ring resonator ultrasonic sensors
NASA Astrophysics Data System (ADS)
Wei, Heming; Krishnaswamy, Sridhar
2017-04-01
With the development of photoacoustic technology in recent years, ultrasound-related sensors play a vital role in a number of areas ranging from scientific research to nondestructive testing. Compared with the traditional PZT transducer as ultrasonic sensors, novel ultrasonic sensors based on optical methods such as micro-ring resonators have gained increasing attention. The total internal reflection of the light along the cavity results in light propagating in microcavities as whispering gallery modes (WGMs), which are extremely sensitive to change in the radius and refractive index of the cavity induced by ultrasound strain field. In this work, we present a polymer optical micro-ring resonator based ultrasonic sensor fabricated by direct laser writing optical lithography. The design consists of a single micro-ring and a straight tapered waveguide that can be directly coupled by single mode fibers (SMFs). The design and fabrication of the printed polymer resonator have been optimized to provide broad bandwidth and high optical quality factor to ensure high detection sensitivity. The experiments demonstrate the potential of the polymer micro-ring resonator to works as a high-performance ultrasonic sensor.
Frequency noise measurement of diode-pumped Nd:YAG ring lasers
NASA Technical Reports Server (NTRS)
Chen, Chien-Chung; Win, Moe Zaw
1990-01-01
The combined frequency noise spectrum of two model 120-01A nonplanar ring oscillator lasers was measured by first heterodyne detecting the IF signal and then measuring the IF frequency noise using an RF frequency discriminator. The results indicated the presence of a 1/f-squared noise component in the power-spectral density of the frequency fluctuations between 1 Hz and 1 kHz. After incorporating this 1/f-squared into the analysis of the optical phase tracking loop, the measured phase error variance closely matches the theoretical predictions.
Line intensities of the 30011e - 00001e band of 12C16O2by laser-locked cavity ring-down spectroscopy
NASA Astrophysics Data System (ADS)
Kang, P.; Wang, J.; Liu, G.-L.; Sun, Y. R.; Zhou, Z.-Y.; Liu, A.-W.; Hu, S.-M.
2018-03-01
Thirty well isolated ro-vibrational transitions of the 30011e - 00001e band of 12C16O2 at 1.54 μm have been recorded with a laser-locked cavity ring-down spectrometer. The line intensities were obtained with accuracies better than 0.85%. Comparisons of the line intensities determined in this work with literature experimental values and those from HITRAN2016, AMES, UCL-IAO and CDSD-296 line lists are given.
Apparatus for millimeter-wave signal generation
Vawter, G. Allen; Hietala, Vincent M.; Zolper, John C.; Mar, Alan; Hohimer, John P.
1999-01-01
An opto-electronic integrated circuit (OEIC) apparatus is disclosed for generating an electrical signal at a frequency .gtoreq.10 GHz. The apparatus, formed on a single substrate, includes a semiconductor ring laser for generating a continuous train of mode-locked lasing pulses and a high-speed photodetector for detecting the train of lasing pulses and generating the electrical signal therefrom. Embodiments of the invention are disclosed with an active waveguide amplifier coupling the semiconductor ring laser and the high-speed photodetector. The invention has applications for use in OEICs and millimeter-wave monolithic integrated circuits (MMICs).
Ring resonant cavities for spectroscopy
Zare, R.N.; Martin, J.; Paldus, B.A.; Xie, J.
1999-06-15
Ring-shaped resonant cavities for spectroscopy allow a reduction in optical feedback to the light source, and provide information on the interaction of both s- and p-polarized light with samples. A laser light source is locked to a single cavity mode. An intracavity acousto-optic modulator may be used to couple light into the cavity. The cavity geometry is particularly useful for Cavity Ring-Down Spectroscopy (CRDS). 6 figs.
Ring resonant cavities for spectroscopy
Zare, Richard N.; Martin, Juergen; Paldus, Barbara A.; Xie, Jinchun
1999-01-01
Ring-shaped resonant cavities for spectroscopy allow a reduction in optical feedback to the light source, and provide information on the interaction of both s- and p-polarized light with samples. A laser light source is locked to a single cavity mode. An intracavity acousto-optic modulator may be used to couple light into the cavity. The cavity geometry is particularly useful for Cavity Ring-Down Spectroscopy (CRDS).
Analysis of Acousto-Optic Errors in Laser Gyroscopes.
1982-12-01
2 2 Sagnac’s Interferometer ................................ 4 3 Harress ’ Prism Ring.................................... 5 4...years before Sagnac’s experiment, Harress , a German graduate student formed a ring of partially reflecting prisms to measure the dispersive properties of...glass (Figure 3). Harress noticed a fringe shift when he rotated the ring, and he assumed that the shift was caused by the *dragging" of the light
The Status of Turkish Accelerator Center Test Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yavas, Oe.
2007-04-23
Recently, conceptual design of Turkic Accelerator Center (TAC) proposal was completed. Main goal of this proposal is a charm factory that consists of a linac-ring type electron-positron collider. In addition, synchrotron radiation from the positron ring and free electron laser from the electron linac are proposed. The project related with this proposal has been accepted by Turkish government. It is planned that the Technical Design Report of TAC will have been written in next three years. In this period, an infrared oscillator free electron laser (IR FEL) will be constructed as a test facility for TAC. 20 and 50 MeVmore » electron energies will be used to obtain infra red free electron laser. The main parameters of the electron linac, the optical cavities and the free electron laser were determined. The possible use of obtained laser beam in basic and applied research areas such as biotechnology, nanotechnology, semiconductors and photo chemistry were stated.« less
Sun, Junjie; Wang, Zefeng; Wang, Meng; Zhou, Zhiyue; Tang, Ni; Chen, Jinbao; Gu, Xijia
2017-11-10
A watt-level tunable 1.5 μm narrow linewidth fiber ring laser using a temperature tuning π-phase-shifted fiber Bragg grating (π-PSFBG) is demonstrated here, to the best of our knowledge, for the first time. The π-PSFBG is employed as both a narrow band filter and a wavelength tuning component, and its central wavelength is thermally tuned by a thermo-electric cooler. The maximum laser power is about 1.1 W with a linewidth of ∼318 MHz (∼2.57 pm) and a power fluctuation of less than 3%. The wavelength tuning range of the laser is about 1.29 nm with a sensitivity of ∼14.33 pm/°C, and the wavelength fluctuation is about 0.2 pm. This work provides important reference for tunable fiber lasers with both high power and narrow linewidth.
Demonstration of versatile whispering-gallery micro-lasers for remote refractive index sensing.
Wan, Lei; Chandrahalim, Hengky; Zhou, Jian; Li, Zhaohui; Chen, Cong; Cho, Sangha; Zhang, Hui; Mei, Ting; Tian, Huiping; Oki, Yuji; Nishimura, Naoya; Fan, Xudong; Guo, L Jay
2018-03-05
We developed chip-scale remote refractive index sensors based on Rhodamine 6G (R6G)-doped polymer micro-ring lasers. The chemical, temperature, and mechanical sturdiness of the fused-silica host guaranteed a flexible deployment of dye-doped polymers for refractive index sensing. The introduction of the dye as gain medium demonstrated the feasibility of remote sensing based on the free-space optics measurement setup. Compared to the R6G-doped TZ-001, the lasing behavior of R6G-doped SU-8 polymer micro-ring laser under an aqueous environment had a narrower spectrum linewidth, producing the minimum detectable refractive index change of 4 × 10 -4 RIU. The maximum bulk refractive index sensitivity (BRIS) of 75 nm/RIU was obtained for SU-8 laser-based refractive index sensors. The economical, rapid, and simple realization of polymeric micro-scale whispering-gallery-mode (WGM) laser-based refractive index sensors will further expand pathways of static and dynamic remote environmental, chemical, biological, and bio-chemical sensing.
Intra-pulse transition between ion acceleration mechanisms in intense laser-foil interactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Padda, H.; King, M.; Gray, R. J.
Multiple ion acceleration mechanisms can occur when an ultrathin foil is irradiated with an intense laser pulse, with the dominant mechanism changing over the course of the interaction. Measurement of the spatial-intensity distribution of the beam of energetic protons is used to investigate the transition from radiation pressure acceleration to transparency-driven processes. It is shown numerically that radiation pressure drives an increased expansion of the target ions within the spatial extent of the laser focal spot, which induces a radial deflection of relatively low energy sheath-accelerated protons to form an annular distribution. Through variation of the target foil thickness, themore » opening angle of the ring is shown to be correlated to the point in time transparency occurs during the interaction and is maximized when it occurs at the peak of the laser intensity profile. Corresponding experimental measurements of the ring size variation with target thickness exhibit the same trends and provide insight into the intra-pulse laser-plasma evolution.« less
An event database for rotational seismology
NASA Astrophysics Data System (ADS)
Salvermoser, Johannes; Hadziioannou, Celine; Hable, Sarah; Chow, Bryant; Krischer, Lion; Wassermann, Joachim; Igel, Heiner
2016-04-01
The ring laser sensor (G-ring) located at Wettzell, Germany, routinely observes earthquake-induced rotational ground motions around a vertical axis since its installation in 2003. Here we present results from a recently installed event database which is the first that will provide ring laser event data in an open access format. Based on the GCMT event catalogue and some search criteria, seismograms from the ring laser and the collocated broadband seismometer are extracted and processed. The ObsPy-based processing scheme generates plots showing waveform fits between rotation rate and transverse acceleration and extracts characteristic wavefield parameters such as peak ground motions, noise levels, Love wave phase velocities and waveform coherence. For each event, these parameters are stored in a text file (json dictionary) which is easily readable and accessible on the website. The database contains >10000 events starting in 2007 (Mw>4.5). It is updated daily and therefore provides recent events at a time lag of max. 24 hours. The user interface allows to filter events for epoch, magnitude, and source area, whereupon the events are displayed on a zoomable world map. We investigate how well the rotational motions are compatible with the expectations from the surface wave magnitude scale. In addition, the website offers some python source code examples for downloading and processing the openly accessible waveforms.
Laser Spectroscopy for Atmospheric and Environmental Sensing
Fiddler, Marc N.; Begashaw, Israel; Mickens, Matthew A.; Collingwood, Michael S.; Assefa, Zerihun; Bililign, Solomon
2009-01-01
Lasers and laser spectroscopic techniques have been extensively used in several applications since their advent, and the subject has been reviewed extensively in the last several decades. This review is focused on three areas of laser spectroscopic applications in atmospheric and environmental sensing; namely laser-induced fluorescence (LIF), cavity ring-down spectroscopy (CRDS), and photoluminescence (PL) techniques used in the detection of solids, liquids, aerosols, trace gases, and volatile organic compounds (VOCs). PMID:22303184
Hybrid mode-locked fiber ring laser using graphene and charcoal nanoparticles as saturable absorbers
NASA Astrophysics Data System (ADS)
Hu, Hongyu; Zhang, Xiang; Li, Wenbo; Dutta, Niloy K.
2016-05-01
A fiber ring laser which implements hybrid mode locking technique has been proposed and experimentally demonstrated to generate pulse train at 20 GHz repetition rate with ultrashort pulse width. Graphene and charcoal nano-particles acting as passive mode lockers are inserted into a rational harmonic mode-locked fiber laser to improve the performance. With graphene saturable absorbers, the pulse duration is shortened from 5.3 ps to 2.8 ps, and with charcoal nano-particles, it is shortened to 3.2 ps. The RF spectra show that supermode noise can be removed in the presence of the saturable absorbers. Numerical simulation of the pulse transmission has also been carried out, which shows good agreement with the experimental results.
1986-03-01
mean-square (rms) have been measured on fused quartz and Zerodur surfaces polished by manufacturers of ring- laser gyros. The measurements were made...Sizes and Percent Crystallinity of Laser Gyro Materials. Crystallite Crystallinity, Material size, :-100 A ±10 vol% Zerodur 800 79 Quartz 500 53...Based on t data presented in this rel ort, Cervit, Zerodur , and RLA 559,122 from Corning Glass Works have acceptable material properties for laser
Passively Q-switched side pumped monolithic ring laser
NASA Technical Reports Server (NTRS)
Li, Steven X. (Inventor)
2012-01-01
Disclosed herein are systems and methods for generating a side-pumped passively Q-switched non-planar ring oscillator. The method introduces a laser into a cavity of a crystal, the cavity having a round-trip path formed by a reflection at a dielectrically coated front surface, a first internal reflection at a first side surface of the crystal at a non-orthogonal angle with the front, a second internal reflection at a top surface of the crystal, and a third internal reflection at a second side surface of the crystal at a non-orthogonal angle with the front. The method side pumps the laser at the top or bottom surface with a side pump diode array beam and generates an output laser emanating at a location on the front surface. The design can include additional internal reflections to increase interaction with the side pump. Waste heat may be removed by mounting the crystal to a heatsink.
NASA Astrophysics Data System (ADS)
Leon, Neira B. Oscar; Fabio, Mejía Elio; Elizabeth, y. Rincón B.
2008-04-01
The organic molecules of a chain structure containing phenyl, oxazole and oxadiazole rings are used in different combinations as active media for tunable lasers. From this viewpoint, we focused in the theoretical study of organic compounds of three rings, which have similar optical properties (fluorescence and laser properties). The main goal of this study is to compare the electronic structure through the analysis of molecular global descriptors defined in the DFT framework of2-[2-X-phenyl]-5-phenyl-1,3-Oxazole, 2-[2-X-phenyl]-5-phenyl-1,3,4-Oxadiazole, and 2-[2-X-phenyl]-5-phenyl-furane with X = H, F and Cl. The basis set used was 6-31G+(d).
Compact silicon photonics-based multi laser module for sensing
NASA Astrophysics Data System (ADS)
Ayotte, S.; Costin, F.; Babin, A.; Paré-Olivier, G.; Morin, M.; Filion, B.; Bédard, K.; Chrétien, P.; Bilodeau, G.; Girard-Deschênes, E.; Perron, L.-P.; Davidson, C.-A.; D'Amato, D.; Laplante, M.; Blanchet-Létourneau, J.
2018-02-01
A compact three-laser source for optical sensing is presented. It is based on a low-noise implementation of the Pound Drever-Hall method and comprises high-bandwidth optical phase-locked loops. The outputs from three semiconductor distributed feedback lasers, mounted on thermo-electric coolers (TEC), are coupled with micro-lenses into a silicon photonics (SiP) chip that performs beat note detection and several other functions. The chip comprises phase modulators, variable optical attenuators, multi-mode-interference couplers, variable ratio tap couplers, integrated photodiodes and optical fiber butt-couplers. Electrical connections between a metallized ceramic and the TECs, lasers and SiP chip are achieved by wirebonds. All these components stand within a 35 mm by 35 mm package which is interfaced with 90 electrical pins and two fiber pigtails. One pigtail carries the signals from a master and slave lasers, while another carries that from a second slave laser. The pins are soldered to a printed circuit board featuring a micro-processor that controls and monitors the system to ensure stable operation over fluctuating environmental conditions. This highly adaptable multi-laser source can address various sensing applications requiring the tracking of up to three narrow spectral features with a high bandwidth. It is used to sense a fiber-based ring resonator emulating a resonant fiber optics gyroscope. The master laser is locked to the resonator with a loop bandwidth greater than 1 MHz. The slave lasers are offset frequency locked to the master laser with loop bandwidths greater than 100 MHz. This high performance source is compact, automated, robust, and remains locked for days.
Multi terabits/s optical access transport technologies
NASA Astrophysics Data System (ADS)
Binh, Le Nguyen; Wang Tao, Thomas; Livshits, Daniil; Gubenko, Alexey; Karinou, Fotini; Liu Ning, Gordon; Shkolnik, Alexey
2016-02-01
Tremendous efforts have been developed for multi-Tbps over ultra-long distance and metro and access optical networks. With the exponential increase demand on data transmission, storage and serving, especially the 5G wireless access scenarios, the optical Internet networking has evolved to data-center based optical networks pressuring on novel and economical access transmission systems. This paper reports (1) Experimental platforms and transmission techniques employing band-limited optical components operating at 10G for 100G based at 28G baud. Advanced modulation formats such as PAM-4, DMT, duo-binary etc are reported and their advantages and disadvantages are analyzed so as to achieve multi-Tbps optical transmission systems for access inter- and intra- data-centered-based networks; (2) Integrated multi-Tbps combining comb laser sources and micro-ring modulators meeting the required performance for access systems are reported. Ten-sub-carrier quantum dot com lasers are employed in association with wideband optical intensity modulators to demonstrate the feasibility of such sources and integrated micro-ring modulators acting as a combined function of demultiplexing/multiplexing and modulation, hence compactness and economy scale. Under the use of multi-level modulation and direct detection at 56 GBd an aggregate of higher than 2Tbps and even 3Tbps can be achieved by interleaved two comb lasers of 16 sub-carrier lines; (3) Finally the fundamental designs of ultra-compacts flexible filters and switching integrated components based on Si photonics for multi Tera-bps active interconnection are presented. Experimental results on multi-channels transmissions and performances of optical switching matrices and effects on that of data channels are proposed.
NASA Astrophysics Data System (ADS)
Slack, Christopher L.; Pankratov, Michail M.; Perrault, Donald F., Jr.; Shapshay, Stanley M.; Aretz, H. Thomas
1993-07-01
The CO2 laser has been limited in its application within the tracheobronchial tree by its lack of a fiber delivery system. Recently a new product has been marketed, Luxar's flexible CO2 laser waveguide or FlexiguideTM, a spin-off of the presently used rigid waveguide or MicroguideTM. The study was undertaken so as to delineate the properties and thus the usefulness of this new product which promised an increased ease of delivery of the CO2 laser wavelength. We compared the flexiguide with its rigid counterpart along two parameters. Specifically, we determined the total energy necessary to endoscopically resect bovine tracheal rings with each guide and then examined the histologic crater characteristics of each guide at a given energy setting. In so doing we endeavored to see if the experience of the surgeon with the microguide could be translated to the use of the flexiguide. We found the flexiguide to require a greater total energy than the microguide in the continuous wave (cw) and chopped pulse (cp) operational modes p < 0.01. There was, however, no demonstrated difference in required energy in the superpulse (sp) operational mode. Preliminary histologic evidence when measuring such indices as crater depth, crater width, and shoulder width thermal damage seem to suggest that the flexiguide is less efficient at tissue ablation than its rigid counterpart at the same given energy. It also appears to cause a greater degree of associated thermal injury.
Shah, Chirag P; Heier, Jeffrey S
2017-09-01
Vitreous floaters are common and can worsen visual quality. YAG vitreolysis is an untested treatment for floaters. To evaluate YAG laser vitreolysis vs sham vitreolysis for symptomatic Weiss ring floaters from posterior vitreous detachment. This single-center, masked, sham-controlled randomized clinical trial was performed from March 25, 2015, to August 3, 2016, in 52 eyes of 52 patients (36 cases and 16 controls) treated at a private ophthalmology practice. Patients were randomly assigned to YAG laser vitreolysis or sham YAG (control). Primary 6-month outcomes were subjective change measured from 0% to 100% using a 10-point visual disturbance score, a 5-level qualitative scale, and National Eye Institute Visual Functioning Questionnaire 25 (NEI VFQ-25). Secondary outcomes included objective change assessed by masked grading of color fundus photography and Early Treatment Diabetic Retinopathy Study best-corrected visual acuity. Fifty-two patients (52 eyes; 17 men and 35 women; 51 white and 1 Asian) with symptomatic Weiss rings were enrolled in the study (mean [SD] age, 61.4 [8.0] years for the YAG laser group and 61.1 [6.6] years for the sham group). The YAG laser group reported greater symptomatic improvement (54%) than controls (9%) (difference, 45%; 95% CI, 25%-64%; P < .001). In the YAG laser group, the 10-point visual disturbance score improved by 3.2 vs 0.1 in the sham group (difference, -3.0; 95% CI, -4.3 to -1.7; P < .001). A total of 19 patients (53%) in the YAG laser group reported significantly or completely improved symptoms vs 0 individuals in the sham group (difference, 53%; 95% CI, 36%-69%, P < .001). Compared with sham, NEI VFQ-25 revealed improved general vision (difference, 16.3; 95% CI, 0.9-31.7; P = .04), peripheral vision (difference, 11.6; 95% CI, 0.8-22.4; P = .04), role difficulties (difference, 17.3; 95% CI, 8.0-26.6; P < .001), and dependency (difference, 5.6; 95% CI, 0.5-10.8; P = .03) among the YAG laser group. Best-corrected visual acuity changed by -0.2 letters in the YAG laser group and by -0.6 letters in sham group (difference, 0.4; 95% CI, -6.5 to 5.3; P = .94). No differences in adverse events between groups were identified. YAG laser vitreolysis subjectively improved Weiss ring-related symptoms and objectively improved Weiss ring appearance. Greater confidence in these outcomes may result from larger confirmatory studies of longer duration. clinicaltrials.gov NCT02897583.
High power, high beam quality regenerative amplifier
Hackel, L.A.; Dane, C.B.
1993-08-24
A regenerative laser amplifier system generates high peak power and high energy per pulse output beams enabling generation of X-rays used in X-ray lithography for manufacturing integrated circuits. The laser amplifier includes a ring shaped optical path with a limited number of components including a polarizer, a passive 90 degree phase rotator, a plurality of mirrors, a relay telescope, and a gain medium, the components being placed close to the image plane of the relay telescope to reduce diffraction or phase perturbations in order to limit high peak intensity spiking. In the ring, the beam makes two passes through the gain medium for each transit of the optical path to increase the amplifier gain to loss ratio. A beam input into the ring makes two passes around the ring, is diverted into an SBS phase conjugator and proceeds out of the SBS phase conjugator back through the ring in an equal but opposite direction for two passes, further reducing phase perturbations. A master oscillator inputs the beam through an isolation cell (Faraday or Pockels) which transmits the beam into the ring without polarization rotation. The isolation cell rotates polarization only in beams proceeding out of the ring to direct the beams out of the amplifier. The diffraction limited quality of the input beam is preserved in the amplifier so that a high power output beam having nearly the same diffraction limited quality is produced.
High power, high beam quality regenerative amplifier
Hackel, Lloyd A.; Dane, Clifford B.
1993-01-01
A regenerative laser amplifier system generates high peak power and high energy per pulse output beams enabling generation of X-rays used in X-ray lithography for manufacturing integrated circuits. The laser amplifier includes a ring shaped optical path with a limited number of components including a polarizer, a passive 90 degree phase rotator, a plurality of mirrors, a relay telescope, and a gain medium, the components being placed close to the image plane of the relay telescope to reduce diffraction or phase perturbations in order to limit high peak intensity spiking. In the ring, the beam makes two passes through the gain medium for each transit of the optical path to increase the amplifier gain to loss ratio. A beam input into the ring makes two passes around the ring, is diverted into an SBS phase conjugator and proceeds out of the SBS phase conjugator back through the ring in an equal but opposite direction for two passes, further reducing phase perturbations. A master oscillator inputs the beam through an isolation cell (Faraday or Pockels) which transmits the beam into the ring without polarization rotation. The isolation cell rotates polarization only in beams proceeding out of the ring to direct the beams out of the amplifier. The diffraction limited quality of the input beam is preserved in the amplifier so that a high power output beam having nearly the same diffraction limited quality is produced.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bahrdt, J.; Baecker, H.-J.; Frentrup, W.
Helmholtzzentrum Berlin has built an APPLE II undulator for the storage ring PETRA III. The device has a total length of 5m and a minimum gap of 11mm. The high magnetic forces in particular in the inclined mode have been analyzed by means of finite element methods (FEM). Specific mechanic components such as flexible joints have been optimized to cope with the gap- and shift-dependent 3D-forces and a sophisticated control and drive system has been implemented. After completion of the device, detailed laser interferometer measurements for all operation modes have been performed. The data are compared to the FEM simulations.
An Efficient Single Frequency Ho:YLF Laser for IPDA Lidar Applications
NASA Technical Reports Server (NTRS)
Yu, J.; Bai, Y.; Wong, T.; Reithmeier, K.; Petros, M.
2016-01-01
A highly efficient, versatile, single frequency 2-micron pulsed laser can be used in a pulsed Differential Absorption Lidar (DIAL) / Integrated Path Differential Absorption (IPDA) instrument to make precise, high-resolution measurements to investigate sources and sinks of CO2. For a direct detection IPDA lidar, the desired 2 ?m Ho:YLF laser should generate 30-40 mJ pulses at the repetition rate of 100 to 200 Hz, with short pulse length (<100 ns) and better than 2% wall plug efficiency. A Tm fiber laser in-band pumped Ho:YLF laser has been developed to meet this technical challenge. This Ho:YLF laser is designed in a four mirror ring resonator with bow tie configuration, which helps to obtain high beam quality. It is end-pumped by a 40 W linearly polarized Tm fiber laser at 1.94µm. The resonator length is 1.10 meters with output coupler reflectivity at 45%. The laser crystal size is 3 x 3 x 60 mm (w, h, l) with a doping concentration of 0.5% Holmium. The laser beam and pump beam are mode-matched in the active medium. Thus, the pump and laser beams have the same confocal parameters. Mode-matching is also helpful for operating the laser in a single transverse mode. The laser beam waist is slightly less than 0.5 mm at the center of the laser crystal. Based on quasi-four level modeling, pump absorption and saturation depend on laser intensity. Laser amplification and saturation also depend on the pump intensity in the crystal. The laser is injection seeded to obtain the single frequency required by an IPDA lidar measurement. The seed beam is entered into the resonator through an output coupler. The laser is mounted on a water cooled optical bench for stable and reliable operation. The size of the optical bench is 22.16 x 9.20 x 1.25 inches. It is stiffened so that the laser can be operated in any orientation of the optical bench. This packaged Ho:YLF laser is designed for either mobile trailer or airborne platform operation. The engineering prototype Ho:YLF laser has been fully characterized to demonstrate laser performance. Figure 1 shows the laser output power as a function of pump power at different pulse repetition rates from 100 Hz to 333 Hz. The threshold of the laser is less than 14 W. The slope efficiencies are 28%, 40%, 41% and 43% for pulse repetition rates of 100, 200, 250 and 333 Hz, respectively. Maximum power increases with the pulse repetition rate. Output power of 4.2 W, 6 W, 6.7 W, and 7.7 W is achieved for pulse repetition rates of 100, 200, 250 and 333Hz, respectively. This represents the optical conversion efficiency of 16.7%, 22.4%, 23.7%, and 26.5% at these various pulse repletion rates. It is the most efficient and compact Ho:YLF laser demonstrated in the high pulse energy (>20mJ) and moderate pulse repetition rate (100's Hz) operation range. As shown in Figure 1, the maximum pulse energy at 100 Hz is 42 mJ. This is limited due to optical damage. The laser stability is characterized and found to be very stable. A relative pulse energy standard deviation of 2% was measured. The beam quality of the Ho:YLF was measured by a Spiricon infrared laser beam camera. Figure 2 shows the beam profile image of the laser. Both the X-profile of the beam (horizontal direction) and the Y-profile of the beam (vertical direction) are well fitted by a Gaussian profile. The qualitative beam quality measurement shows excellent beam quality in both axis. The M-square value for the laser beam is measured at 1.06 and 1.09 for the x and y axis respectively.-
Improvement in the control aspect of laser frequency stabilization for SUNLITE project
NASA Technical Reports Server (NTRS)
Zia, Omar
1992-01-01
Flight Electronics Division of Langley Research Center is developing a spaceflight experiment called the Stanford University and NASA Laser In-Space Technology (SUNLITE). The objective of the project is to explore the fundamental limits on frequency stability using an FM laser locking technique on a Nd:YAG non-planar ring (free-running linewidth of 5 KHz) oscillator in the vibration free, microgravity environment of space. Compact and automated actively stabilized terahertz laser oscillators will operate in space with an expected linewidth of less than 3 Hz. To implement and verify this experiment, NASA engineers have designed and built a state of the art, space qualified high speed data acquisition system for measuring the linewidth and stability limits of a laser oscillator. In order to achieve greater stability and better performance, an active frequency control scheme requiring the use of a feedback control loop has been applied. In the summer of 1991, the application of control theory in active frequency control as a frequency stabilization technique was investigated. The results and findings were presented in 1992 at the American Control Conference in Chicago, and have been published in Conference Proceedings. The main focus was to seek further improvement in the overall performance of the system by replacing the analogue controller by a digital algorithm.
Colloidal-Quantum-Dot Ring Lasers with Active Color Control.
le Feber, Boris; Prins, Ferry; De Leo, Eva; Rabouw, Freddy T; Norris, David J
2018-02-14
To improve the photophysical performance of colloidal quantum dots for laser applications, sophisticated core/shell geometries have been developed. Typically, a wider bandgap semiconductor is added as a shell to enhance the gain from the quantum-dot core. This shell is designed to electronically isolate the core, funnel excitons to it, and reduce nonradiative Auger recombination. However, the shell could also potentially provide a secondary source of gain, leading to further versatility in these materials. Here we develop high-quality quantum-dot ring lasers that not only exhibit lasing from both the core and the shell but also the ability to switch between them. We fabricate ring resonators (with quality factors up to ∼2500) consisting only of CdSe/CdS/ZnS core/shell/shell quantum dots using a simple template-stripping process. We then examine lasing as a function of the optical excitation power and ring radius. In resonators with quality factors >1000, excitons in the CdSe cores lead to red lasing with thresholds at ∼25 μJ/cm 2 . With increasing power, green lasing from the CdS shell emerges (>100 μJ/cm 2 ) and then the red lasing begins to disappear (>250 μJ/cm 2 ). We present a rate-equation model that can explain this color switching as a competition between exciton localization into the core and stimulated emission from excitons in the shell. Moreover, by lowering the quality factor of the cavity we can engineer the device to exhibit only green lasing. The mechanism demonstrated here provides a potential route toward color-switchable quantum-dot lasers.
NASA Astrophysics Data System (ADS)
Buchter, Scott C.; Williams, Curtis; Schulte, Alfons; Alekel, Theodore, III; Mizell, Gregory J.; Fay, William R.
1995-04-01
Noncritical temperature-tuned phase-matching and large nonlinear coefficients make potassium niobate an attractive material for frequency doubling tuneable near-infrared radiation. We have mounted a KNbO3 crystal intracavity in an argon ion pumped, continuous wave Ti:Sapphire ring laser to increase the power level of the second harmonic. Wavelength selection at the fundamental frequency is accomplished with a birefringent filter. By using the crystal orientation that defines the d32 coefficient of KNbO3 we have obtained a blue second harmonic output tuneable from 425-445 nm. The laser is also characterized by the narrow linewidth of the Ti:Sapphire ring oscillator and good temporal stability. A continuous wave, frequency doubled Ti:sapphire laser is well suited to excite the resonance Raman spectrum in heme proteins with strong absorption bands in the range of 400 to 450 nm. We demonstrate the feasibility of such a setup for Raman studies of ligand binding to myoglobin. The Raman bands yield information on the reaction dynamics and on conformational changes near the linkage between the heme and the protein. In particular, a shift of the stretch frequency of the iron- histidine bond with high pressure may be attributed to a protein conformational change.
Precise laser gyroscope for autonomous inertial navigation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuznetsov, A G; Molchanov, A V; Izmailov, E A
2015-01-31
Requirements to gyroscopes of strapdown inertial navigation systems for aircraft application are formulated. The construction of a ring helium – neon laser designed for autonomous navigation is described. The processes that determine the laser service life and the relation between the random error of the angular velocity measurement and the surface relief features of the cavity mirrors are analysed. The results of modelling one of the promising approaches to processing the laser gyroscope signals are presented. (laser gyroscopes)
A Laser Photoacoustic Analysis of Residual CO2 and H2O in Larch Stems
Ageev, Boris; Ponomarev, Yurii; Sapozhnikova, Valeria; Savchuk, Dmitry
2014-01-01
Every so often, the results obtained from investigations into the effects of varying environmental conditions on the tree growth rate at the same sites and on the change in the carbon balance in plants, using traditional methods, are found to differ widely. We believe that the reason for the ambiguity of the data has to do with failure to account for the role of the residual CO2 (and H2O) in the tree wood exhibiting a climate response. In our earlier work, the results of a laser photoacoustic gas analysis of CO2 and H2O vacuum-desorbed from disc tree rings of evergreen conifer trees were presented. In this paper, laser photoacoustic measurements of tree ring gases in deciduous conifer trees and CO2 carbon isotope composition determined by means of a mass spectrometer are given. Conclusions are made regarding the response of annual larch CO2 disc tree ring distributions to climatic parameters (temperatures and precipitation). The data about the CO2 disc content for different sites are compared. PMID:25808838
Low distortion laser welding of cylindrical components
NASA Astrophysics Data System (ADS)
Kittel, Sonja
2011-02-01
Automotive components are for the most part cylindrical and thus the weld seams are of radial shape. Radial weld seams are usually produced by starting at a point on the component's surface rotating the component resulting in an overlap zone at the start/end of the weld. In this research, it is shown that the component's distortion strongly depends on the overlap of weld start and end. A correlation between overlap zone and distortion is verified by an experimental study. In order to reduce distortion generated by the overlap zone a special optics is used which allows shaping the laser beam into a ring shape which is then focused on the cylindrical surface and produces a radial ring weld seam simultaneously by one laser pulse. In doing this, the overlap zone is eliminated and distortion can be reduced. Radial weld seams are applied on precision samples and distortion is measured after welding. The distortion of the precision samples is measured by a tactile measuring method and a comparison of the results of welding with the ring optics to reference welds is done.
NASA Astrophysics Data System (ADS)
Wu, W. Z.; Kim, Y.; Li, J. Y.; Teytelman, D.; Busch, M.; Wang, P.; Swift, G.; Park, I. S.; Ko, I. S.; Wu, Y. K.
2011-03-01
Electron beam coupled-bunch instabilities can limit and degrade the performance of storage ring based light sources. A longitudinal feedback system has been developed for the Duke storage ring to suppress multi-bunch beam instabilities which prevent stable, high-current operation of the storage ring based free-electron lasers (FELs) and an FEL driven Compton gamma source, the high intensity gamma-ray source (HIGS) at Duke University. In this work, we report the development of a state-of-the-art second generation longitudinal feedback system which employs a field programmable gate array (FPGA) based processor, and a broadband, high shunt-impedance kicker cavity. With two inputs and two outputs, the kicker cavity was designed with a resonant frequency of 937 MHz, a bandwidth of 97 MHz, and a shunt impedance of 1530 Ω. We also developed an S-matrix based technique to fully characterize the performance of the kicker cavity in the cold test. This longitudinal feedback system has been commissioned and optimized to stabilize high-current electron beams with a wide range of electron beam energies (250 MeV to 1.15 GeV) and a number of electron beam bunch modes, including the single-bunch mode and all possible symmetric bunch modes. This feedback system has become a critical instrument to ensure stable, high-flux operation of HIGS to produce nearly monochromatic, highly polarized Compton gamma-ray beams.
2010-03-01
Characterization Solutions Enabled by Laser Doppler Vibrometer Measurements, Proc. SPIE, Fifth International Conference on Vibration Measurements by Laser ...commercial capabilities: Ring Laser Gyros, Fiber Optic Gyros, and Micro-Electro-Mechanical Systems (MEMS) gyros and accelerometers. RLGs and FOGs are now...augmentation sensors have been tied into the inertial systems; e.g., GPS, velocity meters, seekers, star trackers, magnetometers, lidar , etc. The
NASA Astrophysics Data System (ADS)
Zhou, Kaiming; Webb, David; Mou, Chengbo; Farries, Mark; Hayes, Neil; Bennion, Ian
2009-10-01
μA microchannel was inscribed in the fibre of a ring cavity which was constructed from two 0.1%:99.9% couplers and a 10m fibre loop. Cavity ring down spectroscopy (CRDS) was used to measure the refractive index (RI) of gels infused into the microchannel with high resolution. The ring down time discloses a nonlinear increase with respect to the RI of the gel and sensitivity up to 300μs/RI unit (RIU) and resolution of 5×10-4 were obtained.
Supersonic CO electric-discharge lasers
NASA Technical Reports Server (NTRS)
Hason, R. K.; Mitchner, M.; Stanton, A.
1975-01-01
Laser modeling activity is described which involved addition of an option allowing N2 as a second diatomic gas. This option is now operational and a few test cases involving N2/CO mixtures were run. Results from these initial test cases are summarized. In the laboratory, a CW double-discharge test facility was constructed and tested. Features include: water-cooled removable electrodes, O-ring construction to facilitate cleaning and design modifications, increased discharge length, and addition of a post-discharge observation section. Preliminary tests with this facility using N2 yielded higher power loadings than obtained in the first-generation facility. Another test-section modification, recently made and as yet untested, will permit injection of secondary gases into the cathode boundary layer. The objective will be to vary and enhance the UV emission spectrum from the auxiliary discharge, thereby influencing the level of photoionization in the main discharge region.
Technique to separate lidar signal and sunlight.
Sun, Wenbo; Hu, Yongxiang; MacDonnell, David G; Weimer, Carl; Baize, Rosemary R
2016-06-13
Sunlight contamination dominates the backscatter noise in space-based lidar measurements during daytime. The background scattered sunlight is highly variable and dependent upon the surface and atmospheric albedo. The scattered sunlight contribution to noise increases over land and snow surfaces where surface albedos are high and thus overwhelm lidar backscatter from optically thin atmospheric constituents like aerosols and thin clouds. In this work, we developed a novel lidar remote sensing concept that potentially can eliminate sunlight induced noise. The new lidar concept requires: (1) a transmitted laser light that carries orbital angular momentum (OAM); and (2) a photon sieve (PS) diffractive filter that separates scattered sunlight from laser light backscattered from the atmosphere, ocean and solid surfaces. The method is based on numerical modeling of the focusing of Laguerre-Gaussian (LG) laser beam and plane-wave light by a PS. The model results show that after passing through a PS, laser light that carries the OAM is focused on a ring (called "focal ring" here) on the focal plane of the PS filter, very little energy arrives at the center of the focal plane. However, scattered sunlight, as a plane wave without the OAM, focuses at the center of the focal plane and thus can be effectively blocked or ducted out. We also find that the radius of the "focal ring" increases with the increase of azimuthal mode (L) of LG laser light, thus increasing L can more effectively separate the lidar signal away from the sunlight noise.
NASA Astrophysics Data System (ADS)
Zhang, Yichi; Wang, Ping; Li, Liang; Chen, Zhimin; He, Chunying; Wu, Yiqun
Preparation of recording materials with high two-photon absorption activities is one of the important issues to superhigh- density two-photon absorption (TPA) three-dimensional (3D) optical data storage. In this paper, three new carbazole derivatives containing nitrogen heterocyclic ring with symmetric and asymmetric structures are prepared using ethylene as the π bridge between the carbazole unit and nitrogen heterocyclic ring, namely, 9-butyl-3-(2-(1,8- naphthyridin)vinyl)-carbazole (material 1), 9-butyl-3,6-bis(2-(1,8-naphthyl)vinyl)-carbazole (material 2) and 9-butyl-3,6- bis(2-(quinolin)vinyl)-carbazole (material 3). Their one photon properties including linear absorption spectra, fluorescence emission spectra, and fluorescence quantum yields are studied. The fluorescence excited by 120 fs pulse at 800 nm Ti: sapphire laser operating at 1 kHz repetition rate with different incident powers of 9-butyl-3-(2-(quinolin) vinyl)-carbazole (material 3) was investigated, and two-photon absorption cross-sections has been obtained. It is shown that material 3 containing quinoline rings as electron acceptor with symmetric structure exhibit high two-photon absorption activity. The result implies that material 3 (9-butyl-3-(2-(quinolin) vinyl)-carbazole) is a good candidate as a promising recording material for super-high-density two-photon absorption (TPA) three-dimensional (3D) optical data storage. The influence of chemical structure of the materials on the optical properties is discussed.
LLE review. Quarterly report, January 1994--March 1994, Volume 58
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simon, A.
1994-07-01
This volume of the LLE Review, covering the period Jan - Mar 1994, contains articles on backlighting diagnostics; the effect of electron collisions on ion-acoustic waves and heat flow; using PIC code simulations for analysis of ultrashort laser pulses interacting with solid targets; creating a new instrument for characterizing thick cryogenic layers; and a description of a large-aperture ring amplifier for laser-fusion drivers. Three of these articles - backlighting diagnostics; characterizing thick cryogenic layers; and large-aperture ring amplifier - are directly related to the OMEGA Upgrade, now under construction. Separate abstracts have been prepared for articles from this report.
NASA Astrophysics Data System (ADS)
Li, Shenping; Chan, K. T.
1999-05-01
A wavelength-tunable actively mode-locked erbium fiber ring laser was demonstrated using a Fabry-Perot semiconductor modulator. The modulator played the simultaneous roles of an intensity mode locker and a tunable optical filter. Stable single- or dual-wavelength nearly transform-limited picosecond pulses at gigabit repetition rates were generated. Continuous wavelength tuning was achieved by simply controlling the temperature of the modulator. Pulse train with a repetition rate up to 19.93 GHz (eight times the driving frequency) was obtained by using rational harmonic mode-locking technique.
NASA Astrophysics Data System (ADS)
di Virgilio, Angela D. V.
Gyroscopes IN General Relativity (GINGER) is a proposal of an Earth-base experiment to measure the Lense-Thirring effect. GINGER uses an array of ring lasers, which are the most sensitive inertial sensors to measure the rotation rate of the Earth. GINGER is based on a three-dimensional array of large size ring lasers, able to measure the de Sitter and Lense-Thirring effects. The instrument will be located in the INFN Gran Sasso underground laboratory, in Italy. We describe preliminary developments and measurements. Earlier prototypes based in Italy, GP2, GINGERino, and G-LAS are also described and their preliminary results reported.
NASA Astrophysics Data System (ADS)
Apeksimov, D. V.; Zemlyanov, A. A.; Iglakova, A. N.; Kabanov, A. M.; Kuchinskaya, O. I.; Matvienko, G. G.; Oshlakov, V. K.; Petrov, A. V.
2017-11-01
The transverse structure formation processes of a laser beam after multiple filamentation were investigated. It is shown that the spectra of post-filamentation light channels (PFC), rings and beam differ substantially. The spectrum of PFC has a significant and symmetrical spectral broadening and covers a range of 600-1100 nm. The broadening of the spectrum of the rings is asymmetric and is directed mainly to the short-wavelength region of the spectrum. The broadening data are stable and do not change when moving away from the multiple filamentation zone. The annular structure of radiation in the cross section of the beam is formed around individual filaments within the region of multiple filamentation, and at a distance of tens of meters from it begins to form a common ring structure surrounding postfilamentation channels.
Ring-like spatial distribution of laser accelerated protons in the ultra-high-contrast TNSA-regime
NASA Astrophysics Data System (ADS)
Becker, G. A.; Tietze, S.; Keppler, S.; Reislöhner, J.; Bin, J. H.; Bock, L.; Brack, F.-E.; Hein, J.; Hellwing, M.; Hilz, P.; Hornung, M.; Kessler, A.; Kraft, S. D.; Kuschel, S.; Liebetrau, H.; Ma, W.; Polz, J.; Schlenvoigt, H.-P.; Schorcht, F.; Schwab, M. B.; Seidel, A.; Zeil, K.; Schramm, U.; Zepf, M.; Schreiber, J.; Rykovanov, S.; Kaluza, M. C.
2018-05-01
The spatial distribution of protons accelerated from submicron-thick plastic foil targets using multi-terawatt, frequency-doubled laser pulses with ultra-high temporal contrast has been investigated experimentally. A very stable, ring-like beam profile of the accelerated protons, oriented around the target’s normal direction has been observed. The ring’s opening angle has been found to decrease with increasing foil thicknesses. Two-dimensional particle-in-cell simulations reproduce our results indicating that the ring is formed during the expansion of the proton density distribution into the vacuum as described by the mechanism of target-normal sheath acceleration. Here—in addition to the longitudinal electric fields responsible for the forward acceleration of the protons—a lateral charge separation leads to transverse field components accelerating the protons in the lateral direction.
III-V Semiconductor Optical Micro-Ring Resonators
NASA Astrophysics Data System (ADS)
Grover, Rohit; Absil, Philippe P.; Ibrahim, Tarek A.; Ho, Ping-Tong
2004-05-01
We describe the theory of optical ring resonators, and our work on GaAs-AlGaAs and GaInAsP-InP optical micro-ring resonators. These devices are promising building blocks for future all-optical signal processing and photonic logic circuits. Their versatility allows the fabrication of ultra-compact multiplexers/demultiplexers, optical channel dropping filters, lasers, amplifiers, and logic gates (to name a few), which will enable large-scale monolithic integration for optics.
A compact high brightness laser synchrotron light source for medical applications
NASA Astrophysics Data System (ADS)
Nakajima, Kazuhisa
1999-07-01
The present high-brightness hard X-ray sources have been developed as third generation synchrotron light sources based on large high energy electron storage rings and magnetic undulators. Recently availability of compact terawatt lasers arouses a great interest in the use of lasers as undulators. The laser undulator concept makes it possible to construct an attractive compact synchrotron radiation source which has been proposed as a laser synchrotron light source. This paper proposes a compact laser synchrotron light source for mediacal applications, such as an intravenous coronary angiography and microbeam therapy.
1.6 μm dissipative soliton fiber laser mode-locked by cesium lead halide perovskite quantum dots.
Liu, Bang; Gao, Lei; Cheng, Wei Wei; Tang, Xiao Sheng; Gao, Chao; Cao, Yu Long; Li, Yu Jia; Zhu, Tao
2018-03-19
We demonstrate a stable, picosecond fiber laser mode-locked by cesium lead halide perovskite quantum dots (CsPbBr 3 -QDs). The saturable absorber is produced by depositing the CsPbBr3-QDs nanocrystals onto the endface of a fiber ferrule through light pressure. A balanced two-detector measurement shows that it has a modulation depth of 2.5% and a saturation power of 17.29 MW/cm 2 . After incorporating the fabricated device into an Er 3+ -doped fiber ring cavity with a net normal dispersion of 0.238 ps 2 , we obtain stable dissipative soliton with a pulse duration of 14.4 ps and a center wavelength at 1600 nm together with an edge-to-dege bandwidth of 4.5 nm. The linear chirped phase can be compensated by 25 m single mode fiber, resulting into a compressed pulse duration of 1.046 ps. This experimental works proves that such CsPbBr3-QDs materials are effective choice for ultrafast laser operating with devious mode-locking states.
InP on SOI devices for optical communication and optical network on chip
NASA Astrophysics Data System (ADS)
Fedeli, J.-M.; Ben Bakir, B.; Olivier, N.; Grosse, Ph.; Grenouillet, L.; Augendre, E.; Phillippe, P.; Gilbert, K.; Bordel, D.; Harduin, J.
2011-01-01
For about ten years, we have been developing InP on Si devices under different projects focusing first on μlasers then on semicompact lasers. For aiming the integration on a CMOS circuit and for thermal issue, we relied on SiO2 direct bonding of InP unpatterned materials. After the chemical removal of the InP substrate, the heterostructures lie on top of silicon waveguides of an SOI wafer with a separation of about 100nm. Different lasers or photodetectors have been achieved for off-chip optical communication and for intra-chip optical communication within an optical network. For high performance computing with high speed communication between cores, we developed InP microdisk lasers that are coupled to silicon waveguide and produced 100μW of optical power and that can be directly modulated up to 5G at different wavelengths. The optical network is based on wavelength selective circuits with ring resonators. InGaAs photodetectors are evanescently coupled to the silicon waveguide with an efficiency of 0.8A/W. The fabrication has been demonstrated at 200mm wafer scale in a microelectronics clean room for CMOS compatibility. For off-chip communication, silicon on InP evanescent laser have been realized with an innovative design where the cavity is defined in silicon and the gain localized in the QW of bonded InP hererostructure. The investigated devices operate at continuous wave regime with room temperature threshold current below 100 mA, the side mode suppression ratio is as high as 20dB, and the fibercoupled output power is {7mW. Direct modulation can be achieved with already 6G operation.
Photonic Arbitrary Waveform Generation Technology
2006-06-01
locked external- cavity semiconductor diode ring laser “, Optics Letters, Vol. 27, No. 9 , 719-721, (2002). [22] S. Gee, F. Quinlan, S. Ozharar... optical pulses that one is accustomed to. Modelocked semiconductor lasers are used to generate a set of phase locked optical frequencies on a periodic...The corresponding optical spectrum of the laser consists of a comb of periodically spaced, phase - locked
Harmonically mode-locked erbium-doped waveguide laser
NASA Astrophysics Data System (ADS)
Fanto, Michael L.; Malowicki, John E.; Bussjager, Rebecca J.; Johns, Steven T.; Vettese, Elizabeth K.; Hayduk, Michael J.
2004-08-01
The generation of ultrastable picosecond pulses in the 1550 nm range is required for numerous applications that include photonic analog-to-digital converter systems and high-bit rate optical communication systems. Mode-locked erbium-doped fiber ring lasers (EDFLs) are typically used to generate pulses at this wavelength. In addition to timing stability and output power, the physical size of the laser cavity is of primary importance to the Air Force. The length of the erbium (Er)-doped fiber used as the gain medium may be on the order of meters or even tens of meters which adds complexity to packaging. However, with the recent advancements in the production of multi-component glasses, higher doping concentrations can be achieved as compared to silicate glasses. Even more recent is the introduction of Er-doped multi-component glass waveguides, thus allowing the overall footprint of the gain medium to be reduced. We have constructed a novel harmonically mode-locked fiber ring laser using the Er-doped multi-component glass waveguide as the gain medium. The performance characteristics of this Er-doped waveguide laser (EDWL) including pulse width, spectral width, harmonic suppression, optical output power, laser stability and single sideband residual phase noise will be discussed in this paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Byrd, J.M.; Hao, Z.; Martin, M.C.
2004-07-01
Interaction of an electron beam with a femtosecond laser pulse co-propagating through a wiggler at the ALS produces large modulation of the electron energies within a short {approx}100 fs slice of the electron bunch. Propagating around the storage ring, this bunch develops a longitudinal density perturbation due to the dispersion of electron trajectories. The length of the perturbation evolves with a distance from the wiggler but is much shorter than the electron bunch length. This perturbation causes the electron bunch to emit short pulses of temporally and spatially coherent infrared light which are automatically synchronized to the modulating laser. Themore » intensity and spectra of the infrared light were measured in two storage ring locations for a nominal ALS lattice and for an experimental lattice with the higher momentum compaction factor. The onset of instability stimulated by laser e-beam interaction had been discovered. The infrared signal is now routinely used as a sensitive monitor for a fine tuning of the laser beam alignment during data accumulation in the experiments with femtosecond x-ray pulses.« less
Fallon, M; Pazos, M; Morilla, A; Sebastián, M A; Xancó, R; Mora, C; Calderón, B; Vega, Z; Antón, A
2015-11-01
To evaluate morphological parameters of optic disc and retinal nerve fiber layer (RNFL) examined with confocal laser tomography (HRT3) and laser polarimetry (GDx-VCC) in a normal population, and analyze correlations of these parameters with demographic variables. Cross-sectional study in the context of a glaucoma screening campaign in the primary care center of Barcelona. The individuals selected were non-hypertensive Mediterranean Caucasians with risk for glaucoma development (individuals≥60 years old or≥40 years old with family history of glaucoma or intraocular pressure or myopia>3diopter). All subjects underwent a complete ophthalmic examination, confocal laser tomography (HRT3) and scanning laser polarimetry (GDX-VCC), subjects with results within normal limits only being included. Structural parameters were analyzed along with age, refraction, and pachymetry based on the Spearman rank correlation test. A total of 224 subjects included, with a mean age of 63.4±11.1 years. Disc areas, excavation and ring area were 2.14±0.52mm(2), 0.44±0.34mm (2) and 1.69±0.38mm(2), respectively. The mean RNFL (GDX) was 55.9±6.9μm. Age was correlated with lower ring volume, highest rate of cup shape measure, largest mean and maximum cup depth, lower nerve fiber index (NFI) and RNFL (all p-values below .05). The mean values and distribution of several parameters of the papilla and the RNFL in normal Mediterranean Caucasians population are presented. A loss of thickness of the RNFL, ring thinning, and enlarged cup was observed with increased age. Copyright © 2014 Sociedad Española de Oftalmología. Published by Elsevier España, S.L.U. All rights reserved.
Network connectivity enhancement by exploiting all optical multicast in semiconductor ring laser
NASA Astrophysics Data System (ADS)
Siraj, M.; Memon, M. I.; Shoaib, M.; Alshebeili, S.
2015-03-01
The use of smart phone and tablet applications will provide the troops for executing, controlling and analyzing sophisticated operations with the commanders providing crucial documents directly to troops wherever and whenever needed. Wireless mesh networks (WMNs) is a cutting edge networking technology which is capable of supporting Joint Tactical radio System (JTRS).WMNs are capable of providing the much needed bandwidth for applications like hand held radios and communication for airborne and ground vehicles. Routing management tasks can be efficiently handled through WMNs through a central command control center. As the spectrum space is congested, cognitive radios are a much welcome technology that will provide much needed bandwidth. They can self-configure themselves, can adapt themselves to the user requirement, provide dynamic spectrum access for minimizing interference and also deliver optimal power output. Sometimes in the indoor environment, there are poor signal issues and reduced coverage. In this paper, a solution utilizing (CR WMNs) over optical network is presented by creating nanocells (PCs) inside the indoor environment. The phenomenon of four-wave mixing (FWM) is exploited to generate all-optical multicast using semiconductor ring laser (SRL). As a result same signal is transmitted at different wavelengths. Every PC is assigned a unique wavelength. By using CR technology in conjunction with PC will not only solve network coverage issue but will provide a good bandwidth to the secondary users.
Chaikovska, I.; Cassou, K.; Chiche, R.; Cizeron, R.; Cornebise, P.; Delerue, N.; Jehanno, D.; Labaye, F.; Marie, R.; Martens, A.; Peinaud, Y.; Soskov, V.; Variola, A.; Zomer, F.; Cormier, E.; Lhermite, J.; Dolique, V.; Flaminio, R.; Michel, C.; Pinard, L.; Sassolas, B.; Akagi, T.; Araki, S.; Honda, Y.; Omori, T.; Terunuma, N.; Urakawa, J.; Miyoshi, S.; Takahashi, T.; Yoshitama, H.
2016-01-01
We report and discuss high-flux generation of circularly polarized γ-rays by means of Compton scattering. The γ-ray beam results from the collision of an external-cavity-enhanced infrared laser beam and a low emittance relativistic electron beam. By operating a non-planar bow-tie high-finesse optical Fabry-Perot cavity coupled to a storage ring, we have recorded a flux of up to (3.5 ± 0.3) × 108 photons per second with a mean measured energy of 24 MeV. The γ-ray flux has been sustained for several hours. In particular, we were able to measure a record value of up to 400 γ-rays per collision in a full bandwidth. Moreover, the impact of Compton scattering on the electron beam dynamics could be observed resulting in a reduction of the electron beam lifetime correlated to the laser power stored in the Fabry-Perot cavity. We demonstrate that the electron beam lifetime provides an independent and consistent determination of the γ-ray flux. Furthermore, a reduction of the γ-ray flux due to intrabeam scattering has clearly been identified. These results, obtained on an accelerator test facility, warrant potential scaling and revealed both expected and yet unobserved effects. They set the baseline for further scaling of the future Compton sources under development around the world. PMID:27857146
NASA Astrophysics Data System (ADS)
Zhou, Sheng; Han, Yanling; Li, Bincheng
2018-02-01
Nitric oxide (NO) in exhaled breath has gained increasing interest in recent years mainly driven by the clinical need to monitor inflammatory status in respiratory disorders, such as asthma and other pulmonary conditions. Mid-infrared cavity ring-down spectroscopy (CRDS) using an external cavity, widely tunable continuous-wave quantum cascade laser operating at 5.3 µm was employed for NO detection. The detection pressure was reduced in steps to improve the sensitivity, and the optimal pressure was determined to be 15 kPa based on the fitting residual analysis of measured absorption spectra. A detection limit (1σ, or one time of standard deviation) of 0.41 ppb was experimentally achieved for NO detection in human breath under the optimized condition in a total of 60 s acquisition time (2 s per data point). Diurnal measurement session was conducted for exhaled NO. The experimental results indicated that mid-infrared CRDS technique has great potential for various applications in health diagnosis.
Lin, Qingyu; Wei, Zhimei; Guo, Hongli; Wang, Shuai; Guo, Guangmeng; Zhang, Zhi; Duan, Yixiang
2017-06-10
A highly concentrated, ring-shaped phase conversion (RSPC) method was developed for liquid sample analysis using the laser-induced breakdown spectroscopy (LIBS) technique. In this work, test samples were prepared by mixing the metal particles with polyvinyl alcohol (PVA) supporter in liquid phase. With heat, the PVA solution solidified inside a modified glass petri dish, forming a metal-enriched polymer ring film. Distinguished from other traditional liquid-to-solid conversing methods, the proposed new method takes advantage of enhanced homogeneity for the target elements inside the ring film. The modified glass petri dish was used to control the ring-shaped concentration. Due to the specially designed circular groove at the bottom of this dish, where the PVA solution and liquid sample mixture accumulated, the target elements were concentrated in this small ring, which is beneficial for enhancing and stabilizing the plasma signals compared to the direct liquid sample analysis using LIBS. The limits of detection for Ag, Cu, Cr, and Ba obtained with the RSPC-LIBS technology were 0.098 μg·mL -1 , 0.18 μg·mL -1 , 0.83 μg·mL -1 , and 0.046 μg·mL -1 , respectively, which provided greater improvement than the direct bulk liquid analysis using LIBS.
NASA Astrophysics Data System (ADS)
Wan, Hongdan; Liu, Linqian; Ding, Zuoqin; Wang, Jie; Xiao, Yu; Zhang, Zuxing
2018-06-01
This paper proposes and demonstrates a single-longitudinal-mode, narrow bandwidth fiber laser, using an ultra-high roundness microsphere resonator (MSR) with a stabilized package as the single-longitudinal-mode selector inside a double-ring fiber cavity. By improving the heating technology and surface cleaning process, MSR with high Q factor are obtained. With the optimized coupling condition, light polarization state and fiber taper diameter, we achieve whispering gallery mode (WGM) spectra with a high extinction ratio of 23 dB, coupling efficiency of 99.5%, a 3 dB bandwidth of 1 pm and a side-mode-suppression-ratio of 14.5 dB. The proposed fiber laser produces single-longitudinal-mode laser output with a 20-dB frequency linewidth of about 340 kHz, a signal-to-background ratio of 54 dB and a high long-term stability without mode-hopping, which is potential for optical communication and sensing applications.
NASA Technical Reports Server (NTRS)
Chang, A. Y.; Battles, B. E.; Hanson, R. K.
1990-01-01
In high speed flows, laser induced fluorescence (LIF) on Doppler shifted transitions is an attractive technique for velocity measurement. LIF velocimetry was applied to combined single-point measurements of velocity, temperature, and pressure and 2-D imaging of velocity and pressure. Prior to recent research using NO, LIF velocimetry in combustion related flows relied largely on the use of seed molecules. Simultaneous, single-point LIF measurements is reported of velocity, temperature, and pressure using the naturally occurring combustion species OH. This experiment is an extension of earlier research in which a modified ring dye laser was used to make time resolved temperature measurements behind reflected shock waves by using OH absorption an in postflame gases by using OH LIF. A pair of fused-silica rhombs mounted on a single galvanonmeter in an intracavity-doubled Spectra-Physics 380 ring laser permit the UV output to be swept continuously over a few wave numbers at an effective frequency of 3kHz.
NASA Astrophysics Data System (ADS)
Adib, George A.; Sabry, Yasser M.; Khalil, Diaa
2016-03-01
The characterization of long fiber cavities is essential for many systems to predict the system practical performance. The conventional techniques for optical cavity characterization are not suitable for long fiber cavities due to the cavities' small free spectral ranges and due to the length variations caused by the environmental effects. In this work, we present a novel technique to characterize long fiber cavities using multi-longitudinal mode fiber laser source and RF spectrum analyzer. The fiber laser source is formed in a ring configuration, where the fiber laser cavity length is chosen to be 15 km to ensure that the free spectral range is much smaller than the free spectral range of the characterized passive fiber cavities. The method has been applied experimentally to characterize ring cavities with lengths of 6.2 m and 2.4 km. The results are compared to theoretical predictions with very good agreement.
NASA Astrophysics Data System (ADS)
Arthur, N. A.; Foster, J. E.; Barnat, E. V.
2018-05-01
Two-dimensional electron density measurements are made in a magnetic ring cusp discharge using laser collisional induced fluorescence. The magnet rings are isolated from the anode structure such that they can be biased independently in order to modulate electron flows through the magnetic cusps. Electron density images are captured as a function of bias voltage in order to assess the effects of current flow through the cusp on the spatial extent of the cusp. We anticipated that for a fixed current density being funneled through the magnetic cusp, the leak width would necessarily increase. Unexpectedly, the leak width, as measured by LCIF images, does not increase. This suggests that the current density is not constant, and that possibly either electrons are being heated or additional ionization events are occurring within the cusp. Spatially resolving electron temperature would be needed to determine if electrons are being heated within the cusp. We also observe breakdown of the anode magnetosheath and formation of anode spots at high bias voltage.
Microgravity Diode Laser Spectroscopy Measurements in a Reacting Vortex Ring
NASA Technical Reports Server (NTRS)
Chen, Shin-Juh; Dahm, Werner J. A.; Silver, Joel A.; Piltch, Nancy D.
2001-01-01
The technique of Diode Laser Spectroscopy (DLS) with wavelength modulation is utilized to measure the concentration of methane in reacting vortex rings under microgravity conditions. From the measured concentration of methane, other major species such as water, carbon dioxide, nitrogen, and oxygen can be easily computed under the assumption of equilibrium chemistry with the method of Interactive Temperature with Assumed Chemistry (ITAC). The conserved scalar approach in modelling the coupling between fluid dynamics and combustion is utilized to represent the unknown variables in terms of the mixture fraction and scalar dissipation rate in conjunction with ITAC. Post-processing of the DLS measurements and the method of ITAC used in computing the species concentration are discussed. From the flame luminosity results, the increase in ring circulation appears to increase the fuel consumption rate inside the reacting vortex ring and the flame height for cases with similar fuel volumes. Preliminary results and application of ITAC show some potential capabilities of ITAC in DLS. The measured concentration of methane, and computed concentrations of water and carbon dioxide agree well with available results from numerical simulations.
All-fiber nonlinearity- and dispersion-managed dissipative soliton nanotube mode-locked laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Z.; Nanjing University of Posts and Communications, Nanjing 210003; Popa, D., E-mail: dp387@cam.ac.uk
We report dissipative soliton generation from an Yb-doped all-fiber nonlinearity- and dispersion-managed nanotube mode-locked laser. A simple all-fiber ring cavity exploits a photonic crystal fiber for both nonlinearity enhancement and dispersion compensation. The laser generates stable dissipative solitons with large linear chirp in the net normal dispersion regime. Pulses that are 8.7 ps long are externally compressed to 118 fs, outperforming current nanotube-based Yb-doped fiber laser designs.
Bright-dark soliton pairs in a self-mode locking fiber laser
NASA Astrophysics Data System (ADS)
Meng, Yichang; Zhang, Shumin; Li, Hongfei; Du, Juan; Hao, Yanping; Li, Xingliang
2012-06-01
We have experimentally observed bright-dark soliton pairs in an erbium-doped fiber ring laser for the first time. This approach is different from the vector dark domain wall solitons which separate the two orthogonal linear polarization eigenstates of the laser emission. In our laser, the bright-dark soliton pairs can co-exist in any one polarization state. Numerical simulations based on the coupled complex Ginzburg-Landau equations have confirmed the experimental results.
Performing an allreduce operation on a plurality of compute nodes of a parallel computer
Faraj, Ahmad
2013-07-09
Methods, apparatus, and products are disclosed for performing an allreduce operation on a plurality of compute nodes of a parallel computer, each node including at least two processing cores, that include: establishing, for each node, a plurality of logical rings, each ring including a different set of at least one core on that node, each ring including the cores on at least two of the nodes; iteratively for each node: assigning each core of that node to one of the rings established for that node to which the core has not previously been assigned, and performing, for each ring for that node, a global allreduce operation using contribution data for the cores assigned to that ring or any global allreduce results from previous global allreduce operations, yielding current global allreduce results for each core; and performing, for each node, a local allreduce operation using the global allreduce results.
Novel method of dual fiber Bragg gratings integrated in fiber ring laser for biochemical sensors
NASA Astrophysics Data System (ADS)
Bui, H.; Pham, T. B.; Nguyen, V. A.; Pham, V. D.; Do, T. C.; Nguyen, T. V.; Hoang, T. H. C.; Le, H. T.; Pham, V. H.
2018-05-01
Optical sensors have been shown to be very effective for measuring the toxic content in liquid and air environments. Optical sensors, which operate based on the wavelength shift of the optical signals, require an expensive spectrometer. In this paper, we propose a new configuration of the optical sensor device for measuring wavelength shift without using a spectrometer. This configuration has a large potential for application in biochemical sensing techniques, and comes with a low cost. This configuration uses dual fiber Bragg gratings (FBGs) integrated in a fiber ring laser structure of erbium-doped fiber, in which one FBG is used as a reference to sweep over the applicable spectrum of the etched-Bragg grating. The etched-FBG as a sensing probe is suitable for bio- and/or chemical sensors. The sensitivity and accuracy of the sensor system can be improved by the narrow linewidth of emission spectra from the laser, the best limit of detection of this sensor is 1.5 × 10‑4 RIU (RIU: refractive index unit), as achieved by the optical sensor using a high resolution spectrometer. This sensor system has been experimentally investigated to detect different types of organic compounds, gasoline, mixing ratios of organic solvents in gasoline, and nitrate concentration in water samples. The experimental results show that this sensing method could determine different mixing ratios of organic solvents with good repeatability, high accuracy, and rapid response: e.g. for ethanol and/or methanol in gasoline RON 92 (RON: research octane number) of 0%–14% v/v, and nitrate in water samples at a low concentration range of 0–50 ppm. These results suggest that the proposed configuration can construct low-cost and accurate biochemical sensors.
Olcott, Peter; Kim, Ealgoo; Hong, Keyjo; Lee, Brian J; Grant, Alexander M; Chang, Chen-Ming; Glover, Gary; Levin, Craig S
2015-05-07
The simultaneous acquisition of PET and MRI data shows promise to provide powerful capabilities to study disease processes in human subjects, guide the development of novel treatments, and monitor therapy response and disease progression. A brain-size PET detector ring insert for an MRI system is being developed that, if successful, can be inserted into any existing MRI system to enable simultaneous PET and MRI images of the brain to be acquired without mutual interference. The PET insert uses electro-optical coupling to relay all the signals from the PET detectors out of the MRI system using analog modulated lasers coupled to fiber optics. Because the fibers use light instead of electrical signals, the PET detector can be electrically decoupled from the MRI making it partially transmissive to the RF field of the MRI. The SiPM devices and low power lasers were powered using non-magnetic MRI compatible batteries. Also, the number of laser-fiber channels in the system was reduced using techniques adapted from the field of compressed sensing. Using the fact that incoming PET data is sparse in time and space, electronic circuits implementing constant weight codes uniquely encode the detector signals in order to reduce the number of electro-optical readout channels by 8-fold. Two out of a total of sixteen electro-optical detector modules have been built and tested with the entire RF-shielded detector gantry for the PET ring insert. The two detectors have been tested outside and inside of a 3T MRI system to study mutual interference effects and simultaneous performance with MRI. Preliminary results show that the PET insert is feasible for high resolution simultaneous PET/MRI imaging for applications in the brain.
NASA Astrophysics Data System (ADS)
Olcott, Peter; Kim, Ealgoo; Hong, Keyjo; Lee, Brian J.; Grant, Alexander M.; Chang, Chen-Ming; Glover, Gary; Levin, Craig S.
2015-05-01
The simultaneous acquisition of PET and MRI data shows promise to provide powerful capabilities to study disease processes in human subjects, guide the development of novel treatments, and monitor therapy response and disease progression. A brain-size PET detector ring insert for an MRI system is being developed that, if successful, can be inserted into any existing MRI system to enable simultaneous PET and MRI images of the brain to be acquired without mutual interference. The PET insert uses electro-optical coupling to relay all the signals from the PET detectors out of the MRI system using analog modulated lasers coupled to fiber optics. Because the fibers use light instead of electrical signals, the PET detector can be electrically decoupled from the MRI making it partially transmissive to the RF field of the MRI. The SiPM devices and low power lasers were powered using non-magnetic MRI compatible batteries. Also, the number of laser-fiber channels in the system was reduced using techniques adapted from the field of compressed sensing. Using the fact that incoming PET data is sparse in time and space, electronic circuits implementing constant weight codes uniquely encode the detector signals in order to reduce the number of electro-optical readout channels by 8-fold. Two out of a total of sixteen electro-optical detector modules have been built and tested with the entire RF-shielded detector gantry for the PET ring insert. The two detectors have been tested outside and inside of a 3T MRI system to study mutual interference effects and simultaneous performance with MRI. Preliminary results show that the PET insert is feasible for high resolution simultaneous PET/MRI imaging for applications in the brain.
Fiber ring laser sensor based on Fabry-Perot cavity interferometer for temperature sensing
NASA Astrophysics Data System (ADS)
Zou, Hui; Ma, Lei; Xiong, Hui; Zhang, Yunshan; Li, Yong Tao
2018-01-01
A ring laser temperature sensor based on a novel reflective fiber Fabry-Perot (F-P) interferometer air cavity is proposed and experimentally demonstrated. The reflective F-P air cavity, which consists of a segment of glass capillary inserted between two single-mode fibers, is utilized as a sensing element as well as as a filter in the fiber ring cavity. As temperature increases, the reflection spectra of the F-P sensor move towards the longer wavelength, and then cause lasing wavelength shifts. By monitoring the variation of lasing wavelength, we obtain a temperature sensor system with a high temperature sensitivity of 0.249 nm °C-1, a narrow 3 dB bandwidth of 0.1514 nm, and a high signal-to-noise ratio of 52 dB. Moreover, it is convenient to fabricate the sensor head, and the stability is very good, giving it a wide range of applications.
NASA Astrophysics Data System (ADS)
Muhammad, F. D.; Zulkifli, M. Z.; Harun, S. W.; Ahmad, H.
2013-05-01
In this paper, we propose a fiber Bragg grating (FBG) interrogation system for high resolution sensor application based on radio frequency (RF) generation technique by beating a single longitudinal mode (SLM) fiber ring laser with an external tunable laser source (TLS). The external TLS provides a constant wavelength (CW), functioning as the reference signal for the frequency beating technique. The TLS used has a constant output power and wavelength over time. The sensor signal is provided by the reflected wavelength of a typical fiber Bragg grating (FBG) in the SLM fiber ring laser, which consists of a 1 m long highly doped Erbium doped fiber as the gain medium. The key to ensure the SLM laser oscillation is the role of graphene as saturable absorber which is opposed to the commonly used unpumped erbiumdoped fiber and this consequently contributes to the simple and short cavity design of our proposed system. The signal from the SLM fiber ring laser, which is generated by the FBG in response to external changes, such as temperature, strain, air humidity and air movement, is heterodyned with the CW signal from the TLS at a 6 GHz photodetector using a 3-dB fused coupler to generate the frequency beating. This proposed system is experimentally demonstrated as a temperature sensor and the results shows that the frequency response of the system towards the changes in temperature is about 1.3 GHz/°C, taking into account the resolution bandwidth of 3 MHz of the radio frequency spectrum analyzer (RFSA).
Multiple-Point Temperature Gradient Algorithm for Ring Laser Gyroscope Bias Compensation
Li, Geng; Zhang, Pengfei; Wei, Guo; Xie, Yuanping; Yu, Xudong; Long, Xingwu
2015-01-01
To further improve ring laser gyroscope (RLG) bias stability, a multiple-point temperature gradient algorithm is proposed for RLG bias compensation in this paper. Based on the multiple-point temperature measurement system, a complete thermo-image of the RLG block is developed. Combined with the multiple-point temperature gradients between different points of the RLG block, the particle swarm optimization algorithm is used to tune the support vector machine (SVM) parameters, and an optimized design for selecting the thermometer locations is also discussed. The experimental results validate the superiority of the introduced method and enhance the precision and generalizability in the RLG bias compensation model. PMID:26633401
[94 km Brillouin distributed optical fiber sensors based on ultra-long fiber ring laser pumping].
Yuan, Cheng-Xu; Wang, Zi-Nan; Jia, Xin-Hong; Li, Jin; Yan, Xiao-Dong; Cui, An-Bin
2014-05-01
A novel optical amplification configuration based on ultra-long fiber laser with a ring cavity was proposed and applied to Brillouin optical time-domain analysis (BOTDA) sensing system, in order to extend the measurement distance significantly. The parameters used in the experiment were optimized, considering the main limitations of the setup, such as depletion, self-phase modulation (SPM) and pump-signal relative intensity noise (RIN) transfer. Through analyzing Brillouin gain spectrum, we demonstrated distributed sensing over 94 km of standard single-mode fiber with 3 meter spatial resolution and strain/temperature accuracy of 28 /1. 4 degree C.
Postponed bifurcations of a ring-laser model with a swept parameter and additive colored noise
NASA Astrophysics Data System (ADS)
Mannella, R.; Moss, Frank; McClintock, P. V. E.
1987-03-01
The paper presents measurements of the time evolution of the statistical densities of both amplitude and field intensity obtained from a colored-noise-driven electronic circuit model of a ring laser, as the bifurcation parameter is swept through its critical values. The time-dependent second moments (intensities) were obtained from the densities. In addition, the individual stochastic trajectories were available from which the distribution of bifurcation times was constructed. For short-correlation-time (quasiwhite) noise the present results are in quantitative agreement with the recent calculations of Bogi, Colombo, Lugiato, and Mandel (1986). New results for long noise correlation times are obtained.
The GINGER project and status of the GINGERino prototype at LNGS
NASA Astrophysics Data System (ADS)
Ortolan, A.; Belfi, J.; Bosi, F.; Di Virgilio, A.; Beverini, N.; Carelli, G.; Maccioni, E.; Santagata, R.; Simonelli, A.; Beghi, A.; Cuccato, D.; Donazzan, A.; Naletto, G.
2016-05-01
GINGER (Gyroscopes IN GEneral Relativity) is a proposal for measuring in a ground-based laboratory the Lense-Thirring effect, known also as inertial frame dragging, that is predicted by General Relativity, and is induced by the rotation of a massive source. GINGER will consist in an array of at least three square ring lasers, mutually orthogonal, with about 6-10 m side, and located in a deep underground site, possibly the INFN - National Laboratories of Gran Sasso. The tri-axial design will provide a complete estimation of the laboratory frame angular velocity, to be compared with the Earths rotation estimate provided by IERS with respect the fixed stars frame. Large-size ring lasers have already reached a very high sensitivity, allowing for relevant geodetic measurements. The accuracy required for Lense-Thirring effect measurement is higher than 10-14 rad/s and therefore Earth angular velocity must be measured within one part in 10-9. A 3.6 m side, square ring laser, called GINGERino, has been recently installed inside the Gran Sasso underground laboratories in order to qualify the site for a future installation of GINGER. We discuss the current status of the experimental work, and in particular of the GINGERino prototype.
Performing an allreduce operation on a plurality of compute nodes of a parallel computer
Faraj, Ahmad [Rochester, MN
2012-04-17
Methods, apparatus, and products are disclosed for performing an allreduce operation on a plurality of compute nodes of a parallel computer. Each compute node includes at least two processing cores. Each processing core has contribution data for the allreduce operation. Performing an allreduce operation on a plurality of compute nodes of a parallel computer includes: establishing one or more logical rings among the compute nodes, each logical ring including at least one processing core from each compute node; performing, for each logical ring, a global allreduce operation using the contribution data for the processing cores included in that logical ring, yielding a global allreduce result for each processing core included in that logical ring; and performing, for each compute node, a local allreduce operation using the global allreduce results for each processing core on that compute node.
Preparation of 6-hydroxyindolines and their use for preparation of novel laser dyes
Field, George F.; Hammond, Peter R.
1993-01-01
A novel method for the synthesis of 6-hydroxyindolines and new fluorescent dyes produced therefrom, which dyes are ring-constrained indoline-based rhodamine class dyes. These dyes have absorption and emission spectra which make them particularly useful in certain dye laser applications.
text only NLC Home Page NLC Technical SLAC Sources Damping Rings S & L Band Linacs Engineering ; Presentations Injector System Documentation Talks and Presentations The NLC ZDR ISG Reports Sources Lasers Photocathodes Electron Source Laser Maintenance Facility Positron Source Sources Technical Notes Sources Meeting
Semiconductor laser-based optoelectronics oscillators
NASA Astrophysics Data System (ADS)
Yao, X. S.; Maleki, Lute; Wu, Chi; Davis, Lawrence J.; Forouhar, Siamak
1998-08-01
We demonstrate the realization of coupled opto-electronic oscillators (COEO) with different semiconductor lasers, including a ring laser, a Fabry-Perot laser, and a colliding pulse mode-locked laser. Each COEO can simultaneously generate short optical pulses and spectrally pure RF signals. With these devices, we obtained optical pulses as short as 6 picoseconds and RF signals as high in frequency as 18 GHz with a spectral purity comparable with a HP8561B synthesizer. These experiments demonstrate that COEOs are promising compact sources for generating low jitter optical pulses and low phase noise RF/millimeter wave signals.
Stable multi-wavelength fiber lasers for temperature measurements using an optical loop mirror.
Diaz, Silvia; Socorro, Abian Bentor; Martínez Manuel, Rodolfo; Fernandez, Ruben; Monasterio, Ioseba
2016-10-10
In this work, two novel stable multi-wavelength fiber laser configurations are proposed and demonstrated by using a spool of a single-mode fiber as an optical loop mirror and one or two fiber ring cavities, respectively. The lasers are comprised of fiber Bragg grating reflectors as the oscillation wavelength selecting filters. The influence of the length of the spool of fiber on the laser stability both in terms of wavelength and laser output power was investigated. An application for temperature measurement is also shown.
NASA Technical Reports Server (NTRS)
Baker, David M. H.; Head, James W.; Fassett, Caleb I.; Kadish, Seth J.; Smith, Dave E.; Zuber, Maria T.; Neumann, Gregory A.
2012-01-01
Impact craters on planetary bodies transition with increasing size from simple, to complex, to peak-ring basins and finally to multi-ring basins. Important to understanding the relationship between complex craters with central peaks and multi-ring basins is the analysis of protobasins (exhibiting a rim crest and interior ring plus a central peak) and peak-ring basins (exhibiting a rim crest and an interior ring). New data have permitted improved portrayal and classification of these transitional features on the Moon. We used new 128 pixel/degree gridded topographic data from the Lunar Orbiter Laser Altimeter (LOLA) instrument onboard the Lunar Reconnaissance Orbiter, combined with image mosaics, to conduct a survey of craters >50 km in diameter on the Moon and to update the existing catalogs of lunar peak-ring basins and protobasins. Our updated catalog includes 17 peak-ring basins (rim-crest diameters range from 207 km to 582 km, geometric mean = 343 km) and 3 protobasins (137-170 km, geometric mean = 157 km). Several basins inferred to be multi-ring basins in prior studies (Apollo, Moscoviense, Grimaldi, Freundlich-Sharonov, Coulomb-Sarton, and Korolev) are now classified as peak-ring basins due to their similarities with lunar peak-ring basin morphologies and absence of definitive topographic ring structures greater than two in number. We also include in our catalog 23 craters exhibiting small ring-like clusters of peaks (50-205 km, geometric mean = 81 km); one (Humboldt) exhibits a rim-crest diameter and an interior morphology that may be uniquely transitional to the process of forming peak rings. Comparisons of the predictions of models for the formation of peak-ring basins with the characteristics of the new basin catalog for the Moon suggest that formation and modification of an interior melt cavity and nonlinear scaling of impact melt volume with crater diameter provide important controls on the development of peak rings. In particular, a power-law model of growth of an interior melt cavity with increasing crater diameter is consistent with power-law fits to the peak-ring basin data for the Moon and Mercury. We suggest that the relationship between the depth of melting and depth of the transient cavity offers a plausible control on the onset diameter and subsequent development of peak-ring basins and also multi-ring basins, which is consistent with both planetary gravitational acceleration and mean impact velocity being important in determining the onset of basin morphological forms on the terrestrial planets.
Annular ring zoom system using two positive axicons
NASA Astrophysics Data System (ADS)
Dickey, Fred M.; Conner, Jacob D.
2011-10-01
The production of an annular ring of light with a variable diameter has applications in laser material processing and machining, particle manipulation, and corneal surgery. This can readily be accomplished using a positive and negative axicon pair. However, negative axicons are very expensive and difficult to obtain with small diameters. In this paper, we present a design of an annular ring zoom system using two positive axicons. One axicon is placed a distance before a primary lens that is greater than some prescribed minimum, and the second axicon is placed after the primary lens. The position of the second axicon determines the ring diameter. The ring diameter can be zoomed from some maximum design size to a zero diameter ring (spot). Experimental results from a developmental system will be presented.
FIBER AND INTEGRATED OPTICS: Integrated optical passive ring resonator for optical gyroscopes
NASA Astrophysics Data System (ADS)
Baĭborodin, Yu V.; Dyadin, S. S.; Lyadenko, A. F.; Mashchenko, A. I.; Ul'yanov, I. A.; Fatin, Yu L.
1992-02-01
A passive ring resonator based on channel waveguides, formed in a K8 glass substrate by diffusion ion exchange in molten potassium nitrate, was made and investigated. The waveguide structure of the resonator included a ring waveguide as well as two Y-type couplers, whose symmetric arms were coupled to the ring waveguide, whereas homogeneous arms were coupled to an external laser and a photodetector. The coupling of the external devices to the channel waveguides was implemented by prisms and butt (end face) contacts. The transfer function of the ring resonator was determined experimentally in order to illustrate its resonant properties and sharpness. Estimates were obtained of the ultimate sensitivity of an optical gyroscope utilizing a ring resonator with the properties described above and ways of improving this sensitivity were analyzed.
NASA Astrophysics Data System (ADS)
Gref, Orman; Weizman, Moshe; Rhein, Holger; Gabriel, Onno; Gernert, Ulrich; Schlatmann, Rutger; Boit, Christian; Friedrich, Felice
2016-06-01
A conductive atomic force microscope is used to study the local topography and conductivity of laser-fired aluminum contacts on KOH-structured multicrystalline silicon surfaces. A significant increase in conductivity is observed in the laser-affected area. The area size and spatial uniformity of this enhanced conductivity depends on the laser energy fluence. The laser-affected area shows three ring-shaped regimes of different conductance depending on the local aluminum and oxygen concentration. Finally, it was found that the topographic surface structure determined by the silicon grain orientation does not significantly affect the laser-firing process.
Laser system development for gravitational-wave interferometry in space
NASA Astrophysics Data System (ADS)
Numata, Kenji; Yu, Anthony W.; Camp, Jordan B.; Krainak, Michael A.
2018-02-01
A highly stable and robust laser system is a key component of the space-based Laser Interferometer Space Antenna (LISA) mission, which is designed to detect gravitational waves from various astronomical sources. The baseline architecture for the LISA laser consists of a low-power, low-noise Nd:YAG non-planar ring oscillator (NPRO) followed by a diode-pumped Yb-fiber amplifier with 2 W output. We are developing such laser system at the NASA Goddard Space Flight Center (GSFC), as well as investigating other laser options. In this paper, we will describe our progress to date and plans to demonstrate a technology readiness level (TRL) 6 LISA laser system.
NASA Astrophysics Data System (ADS)
Kurosaki, Yuzuru; Artamonov, Maxim; Ho, Tak-San; Rabitz, Herschel
2009-07-01
Quantum wave packet optimal control simulations with intense laser pulses have been carried out for studying molecular isomerization dynamics of a one-dimensional (1D) reaction-path model involving a dominant competing dissociation channel. The 1D intrinsic reaction coordinate model mimics the ozone open→cyclic ring isomerization along the minimum energy path that successively connects the ozone cyclic ring minimum, the transition state (TS), the open (global) minimum, and the dissociative O2+O asymptote on the O3 ground-state A1' potential energy surface. Energetically, the cyclic ring isomer, the TS barrier, and the O2+O dissociation channel lie at ˜0.05, ˜0.086, and ˜0.037 hartree above the open isomer, respectively. The molecular orientation of the modeled ozone is held constant with respect to the laser-field polarization and several optimal fields are found that all produce nearly perfect isomerization. The optimal control fields are characterized by distinctive high temporal peaks as well as low frequency components, thereby enabling abrupt transfer of the time-dependent wave packet over the TS from the open minimum to the targeted ring minimum. The quick transition of the ozone wave packet avoids detrimental leakage into the competing O2+O channel. It is possible to obtain weaker optimal laser fields, resulting in slower transfer of the wave packets over the TS, when a reduced level of isomerization is satisfactory.
Semiconductor lasers with a continuous tuning range above 100 nm in the nearest IR spectral region
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kostin, Yu O; Lobintsov, A A; Shramenko, M V
2015-08-31
We have developed two new types of lasers based on quantum-confined semiconductor optical amplifiers with an acousto-optic tunable filter in an external fibre ring cavity. The lasers offer continuous wavelength tuning ranges from 780 to 885 and from 880 to 1010 nm, 20 mW of cw output power, and a tuning rate up to 10{sup 4} nm s{sup -1} at an instantaneous spectral linewidth less than 0.1 nm. (lasers)
Study of Mn laser ablation in methane atmosphere
NASA Astrophysics Data System (ADS)
Krstulović, N.; Labazan, I.; Milošević, S.
2006-02-01
Laser ablation of Mn target in vacuum and in the presence of CH4 was studied under 308 nm laser irradiation. Time-resolved emission using gated detection and scanning monochromator and absorption using the cavity ring-down spectroscopy were used to study vaporized plume. In the CH4 atmosphere we observed transitions identified as C2 and MnH bands, while these spectral features were not detected in emission spectra. This is a clear evidence of importance in combining both spectroscopic techniques in laser vaporized plume study.
Preparation of 6-hydroxyindolines and their use for preparation of novel laser dyes
Field, G.F.; Hammond, P.R.
1993-10-26
A novel method is described for the synthesis of 6-hydroxyindolines and new fluorescent dyes produced therefrom, which dyes are ring-constrained indoline-based rhodamine class dyes. These dyes have absorption and emission spectra which make them particularly useful in certain dye laser applications.
Magnetized jet creation using a ring laser and applications
NASA Astrophysics Data System (ADS)
Liang, Edison; Gao, Ian; Lu, Yingchao; Ji, Hantao; Follett, Russ; Froula, Dustin; Tzeferacos, Petros; Lamb, Donald; Bickel, Andrew; Sio, Hong; Li, Chi Kiang; Petrasso, Richard; Wei, Mingsheng; Fu, Wen; Han, Lily
2017-10-01
We have recently demonstrated a new robust platform of magnetized jet creation using 20 OMEGA beams to form a hollow ring. We will present the latest experimental results and their theoretical interpretation, and explore potential applications to laboratory astrophysics, fundamental plasma physics and other areas. We will also discuss the scaling of this platform to future NIF experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, J.; Hao, H.; Li, J. Y.
We report a systematic experimental study of a storage ring two-color free-electron laser (FEL) operating simultaneously in the infrared (IR) and ultraviolet (UV) wavelength regions. The two-color FEL lasing has been realized using a pair of dual-band high-reflectivity FEL mirrors with two different undulator configurations. We have demonstrated independent wavelength tuning in a wide range for each lasing color, as well as harmonically locked wavelength tuning when the UV lasing occurs at the second harmonic of the IR lasing. Precise power control of two-color lasing with good power stability has also been achieved. In addition, the impact of the degradationmore » of FEL mirrors on the two-color FEL operation is reported. Moreover, we have investigated the temporal structures of the two-color FEL beams, showing simultaneous two-color micropulses with their intensity modulations displayed as FEL macropulses.« less
Injection chaining of diode-pumped single-frequency ring lasers for free-space communication
NASA Technical Reports Server (NTRS)
Cheng, E. A. P.; Kane, T. J.; Wallace, R. W.; Cornwell, D. M., Jr.
1991-01-01
A high-power three-stage laser suitable for use in a space communication system has been built. This laser uses three diode-pumped Nd:YAG oscillators coherently combined using the technique of injection chaining. All three oscillators are in one compact and permanently aligned package, and are actively frequency locked to provide CW single frequency output. The three stages provide the redundancy desirable for space communications.
1983-03-01
43. L circumference of ring laser cavity 44. LF pathlength through Faraday rotator 45. 1 distance between resonator mirrors of linear laser 46. M...limited clock stability 68. q mode number 69. Ri reflectivity of mirror i 70. eF angle between magnetic field and direction of light propagation 71...containing low pressure methane. The light reflects off a mirror and passes back through the cell. Then the light reflects from the beam splitter into
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shayduk, Roman; Vonk, Vedran; Strempfer, Jörg
We report on the quantitative determination of the transient surface temperature of Pt(110) upon nanosecond laser pulse heating. We find excellent agreement between heat transport theory and the experimentally determined transient surface temperature as obtained from time-resolved X-ray diffraction on timescales from hundred nanoseconds to milliseconds. Exact knowledge of the surface temperature's temporal evolution after laser excitation is crucial for future pump-probe experiments at synchrotron storage rings and X-ray free electron lasers.
NASA Astrophysics Data System (ADS)
Pierce, A.; Obrist, D.; Moosmuller, H.; Moore, C.
2012-04-01
Atmospheric elemental mercury (Hg0) is a globally pervasive element that can be transported and deposited to remote ecosystems where it poses — particularly in its methylated form — harm to many organisms including humans. Current techniques for measurement of atmospheric Hg0 require several liters of sample air and several minutes for each analysis. Fast-response (i.e., 1 second or faster) measurements would improve our ability to understand and track chemical cycling of mercury in the atmosphere, including high frequency Hg0 fluctuations, sources and sinks, and chemical transformation processes. We present theory, design, challenges, and current results of our new prototype sensor based on cavity ring-down spectroscopy (CRDS) for fast-response measurement of Hg0 mass concentrations. CRDS is a direct absorption technique that implements path-lengths of multiple kilometers in a compact absorption cell using high-reflectivity mirrors, thereby improving sensitivity and reducing sample volume compared to conventional absorption spectroscopy. Our sensor includes a frequency-doubled, dye-laser emitting laser pulses tunable from 215 to 280 nm, pumped by a Q-switched, frequency tripled Nd:YAG laser with a pulse repetition rate of 50 Hz. We present how we successfully perform automated wavelength locking and stabilization of the laser to the peak Hg0 absorption line at 253.65 nm using an external isotopically-enriched mercury (202Hg0) cell. An emphasis of this presentation will be on the implementation of differential absorption measurement whereby measurements are alternated between the peak Hg0 absorption wavelength and a nearby wavelength "off" the absorption line. This can be achieved using a piezo electric tuning element that allows for pulse-by-pulse tuning and detuning of the laser "online" and "offline" of the Hg absorption line, and thereby allows for continuous correction of baseline extinction losses. Unexpected challenges with this approach included different efficiencies of laser performance (e.g., frequency doubling) at the two wavelengths and temperature dependence. We will discuss improvements on the control of our system to eliminate drift due to conversion efficiency and temperature dependence. We will detail complications with operating this instrument from a mobile platform for in situ measurements in the field. Finally, we will present data acquisition and processing approaches along with results of calibration curves, and comparisons to conventional mercury analyzers (i.e., a Tekran 2537 mercury vapor analyzer) during ambient air measurements.
Switchable multiwavelength thulium-doped fiber ring lasers
NASA Astrophysics Data System (ADS)
Zhao, Shui; Lu, Ping; Liu, Deming; Zhang, Jiangshan
2013-08-01
Two kinds of thulium-doped fiber ring lasers based on a spatial mode beating filter and comb filtering effect are presented and experimentally demonstrated, which all show multiwavelength laser spectrum around 2 μm. In the implementation of the first type of experiment configuration by the use of a piece of multimode fiber (MMF) as a spatial mode beating filter, dual-,triple-, and quadruple-wavelengths appeared whose extinction noise ratio is 25 dB by adjusting the angle of polarization controller. Different wavelength spaces are obtained by inserting different lengths of MMF. The second type is achieved by inserting a Sagnac loop mirror, which was constructed by a 3-dB coupler and a piece of polarization maintaining fiber. Seven stable wavelengths with channel spacing of 0.65 nm and an extinction ratio of 35 dB was achieved. These systems are simple and easy to construct, which can be useful for 2 μm wavelength-division-multiplexed applications.
Mid-Ir Cavity Ring-Down Spectrometer for Biological Trace Nitric Oxide Detection
NASA Astrophysics Data System (ADS)
Kan, Vincent; Ragab, Ahemd; Stsiapura, Vitali; Lehmann, Kevin K.; Gaston, Benjamin M.
2011-06-01
S-nitrosothiols have received much attention in biochemistry and medicine as donors of nitrosonium ion (NO^+) and nitric oxide (NO) - physiologically active molecules involved in vasodilation and signal transduction. Determination of S-nitrosothiols content in cells and tissues is of great importance for fundamental research and medical applications. We will report on our ongoing development of a instrument to measure trace levels of nitric oxide gas (NO), released from S-nitrosothiols after exposure to UV light (340 nm) or reaction with L-Cysteine+CuCl mixture. The instrument uses the method of cavity ring-down spectroscopy, probing rotationally resolved lines in the vibrational fundamental transition near 5.2 μm. The laser source is a continuous-wave, room temperature external cavity quantum cascade laser. An acousto-optic modulator is used to abruptly turn off the optical power incident on the cavity when the laser and cavity pass through resonance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asadpour, Seyyed Hossein; Rahimpour Soleimani, H., E-mail: Rahimpour@guilan.ac.ir
2016-01-14
The optical bistability and multistability properties of a four-level quantum system near a plasmonic nanostructure embedded in a unidirectional ring cavity are studied theoretically. Two orthogonal circularly polarized laser fields with the same frequency, different phases and electric fields amplitude are interacted by four-level quantum system. It is found that in the presence of the plasmonic nanostructure, the bistable behaviors related to one of the laser fields propagating through the unidirectional ring cavity can be modified by relative phase and amplitude control of another laser fields. Our obtained results show that the optical bistability can be converted into the opticalmore » multistability by varying the value of distance between the quantum system and the surface of the plasmonic nanostructure. Moreover, it is shown that under specific condition related to the distance, the lasing without population inversion can be obtained.« less
NASA Astrophysics Data System (ADS)
Steiger, J.; Beck, B. R.; Gruber, L.; Church, D. A.; Holder, J. P.; Schneider, D.
1999-01-01
Storage rings and Penning traps are being used to study ions in their highest charge states. Both devices must have the capability for ion cooling in order to perform high precision measurements such as mass spectrometry and laser spectroscopy. This is accomplished in storage rings in a merged beam arrangement where a cold electron beam moves at the speed of the ions. In RETRAP, a Penning trap located at Lawrence Livermore National Laboratory, a sympathetic laser/ion cooling scheme has been implemented. In a first step, singly charged beryllium ions are cooled electronically by a tuned circuit and optically by a laser. Then hot, highly charged ions are merged into the cold Be plasma. By collisions, their kinetic energy is reduced to the temperature of the Be plasma. First experiments indicate that the highly charged ions form a strongly coupled plasma with a Coulomb coupling parameter exceeding 1000.
NASA Astrophysics Data System (ADS)
Bradu, Adrian; Jackson, David A.; Podoleanu, Adrian
2018-03-01
Typically, swept source optical coherence tomography (SS-OCT) imaging instruments are capable of a longer axial range than their camera based (CB) counterpart. However, there are still various applications that would take advantage for an extended axial range. In this paper, we propose an interferometer configuration that can be used to extend the axial range of the OCT instruments equipped with conventional swept-source lasers up to a few cm. In this configuration, the two arms of the interferometer are equipped with adjustable optical path length rings. The use of semiconductor optical amplifiers in the two rings allows for compensating optical losses hence, multiple paths depth reflectivity profiles (Ascans) can be combined axially. In this way, extremely long overall axial ranges are possible. The use of the recirculation loops produces an effect equivalent to that of extending the coherence length of the swept source laser. Using this approach, the achievable axial imaging range in SS-OCT can reach values well beyond the limit imposed by the coherence length of the laser, to exceed in principle many centimeters. In the present work, we demonstrate axial ranges exceeding 4 cm using a commercial swept source laser and reaching 6 cm using an "in-house" swept source laser. When used in a conventional set-up alone, both these lasers can provide less than a few mm axial range.
NASA Technical Reports Server (NTRS)
Schuller, F. T.
1984-01-01
A 118 mm bore roller bearing with a three piece inner ring ran successfully at 300,000 DN for 20 hr. Provisions were made for lubrication and cooling through the inner ring. In some tests the outer ring was also cooled. Power loss within the bearing increased with both speed and total oil flow rate to the inner ring. Outer ring temperature decreased by as much as 22 K (40 F) when outer ring cooling was employed whereas inner ring temperature remained essentially constant. Cage slip was greatly reduced or even eliminated by using a bearing with a very tight clearance at operating speed. A three piece inner ring bearing had higher inner ring temperatures and less temperature difference between the inner and outer rings than a conventional one piece inner ring bearing.
Schollaen, Karina; Heinrich, Ingo; Helle, Gerhard
2014-02-01
UV-laser-based microscopic systems were utilized to dissect and sample organic tissue for stable isotope measurements from thin wood cross-sections. We tested UV-laser-based microscopic tissue dissection in practice for high-resolution isotopic analyses (δ(13) C/δ(18) O) on thin cross-sections from different tree species. The method allows serial isolation of tissue of any shape and from millimetre down to micrometre scales. On-screen pre-defined areas of interest were automatically dissected and collected for mass spectrometric analysis. Three examples of high-resolution isotopic analyses revealed that: in comparison to δ(13) C of xylem cells, woody ray parenchyma of deciduous trees have the same year-to-year variability, but reveal offsets that are opposite in sign depending on whether wholewood or cellulose is considered; high-resolution tree-ring δ(18) O profiles of Indonesian teak reflect monsoonal rainfall patterns and are sensitive to rainfall extremes caused by ENSO; and seasonal moisture signals in intra-tree-ring δ(18) O of white pine are weighted by nonlinear intra-annual growth dynamics. The applications demonstrate that the use of UV-laser-based microscopic dissection allows for sampling plant tissue at ultrahigh resolution and unprecedented precision. This new technique facilitates sampling for stable isotope analysis of anatomical plant traits like combined tree eco-physiological, wood anatomical and dendroclimatological studies. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.
Differential Calculus on h-Deformed Spaces
NASA Astrophysics Data System (ADS)
Herlemont, Basile; Ogievetsky, Oleg
2017-10-01
We construct the rings of generalized differential operators on the h-deformed vector space of gl-type. In contrast to the q-deformed vector space, where the ring of differential operators is unique up to an isomorphism, the general ring of h-deformed differential operators {Diff}_{h},σ(n) is labeled by a rational function σ in n variables, satisfying an over-determined system of finite-difference equations. We obtain the general solution of the system and describe some properties of the rings {Diff}_{h},σ(n).
NASA Astrophysics Data System (ADS)
Nasedkin, Alexy N.; Pletnev, A. S.
2001-04-01
An investigation was made of applying a pulsed diode laser emitting at the wavelengths of 0.63 to 0.65 micrometers to treat various otolaryngological diseases, such as rhinosinusitis, acute rhinitis, vasomotor rhinitis, allergic rhinitis, the illness of the lymphoid ring, adenoiditis, chronic tonsillitis, pharyngitis, and catarrhal and suppurative otitis. The therapeutic effect produced by the pulsed diode laser was compared with that of conventional therapeutic lasers. It was found that the pulsed low-intensity laser radiation in the red spectrum region offered a number of advantages over conventional laser therapeutic techniques.
V-shaped resonators for addition of broad-area laser diode arrays
Liu, Bo; Liu, Yun; Braiman, Yehuda Y.
2012-12-25
A system and method for addition of broad-area semiconductor laser diode arrays are described. The system can include an array of laser diodes, a V-shaped external cavity, and grating systems to provide feedback for phase-locking of the laser diode array. A V-shaped mirror used to couple the laser diode emissions along two optical paths can be a V-shaped prism mirror, a V-shaped stepped mirror or include multiple V-shaped micro-mirrors. The V-shaped external cavity can be a ring cavity. The system can include an external injection laser to further improve coherence and phase-locking.
Dynamic analysis of a fibre-optic ring resonator excited by a sinewave-modulated laser diode
NASA Astrophysics Data System (ADS)
Pandian, G. Soundra; Seraji, Faramarz
1990-10-01
The present theoretical dynamic analysis of a fiber-optic ring resonator upon excitation by a sinusoidally-modulated laser diode (LD) yields results for such resonator conditions as modulating frequency, amplitude-modulation index, coupler power-coupling coefficient, loop-delay time (tau), and the phase angle between the LD's AM and FM responses. It is found that when the modulation frequency f(m) exceeds a threshold value such that f(m)tau exceeds 0.0002, the output response diverges from steady state and engages in an oscillatory behavior characterized by overshoots. When f(m)tau exceeds 1.0, the output approximates the intensity modulation of the LD.
NASA Astrophysics Data System (ADS)
Simonelli, A.; Belfi, J.; Beverini, N.; Di Virgilio, A.; Giacomelli, U.; De Luca, G.; Igel, H.
2017-12-01
We report the observation and analysis of the MW 8.1 Tehuantepec earthquake-induced rotational ground motion as observed by the Gingerino ring laser gyroscope (RLG).This instrument is located inside the National laboratory of the "Istituto Nazionale di Fisica Nucleare" in Gran Sasso (Italy) in a deep underground environment.We compare the vertical rotation rate with the horizontal acceleration measured by a co-located broadband seismometer. This analysis, performed by means of a wavelet-based correlation method, permits to identify the G1,G2,G3,G4 onsets of the surface Love waves in the 120 to 280 seconds period range.
Dark pulse generation in fiber lasers incorporating carbon nanotubes.
Liu, H H; Chow, K K
2014-12-01
We demonstrate the generation of dark pulses from carbon nanotube (CNT) incorporated erbium-doped fiber ring lasers with net anomalous dispersion. A side-polished fiber coated with CNT layer by optically-driven deposition method is embedded into the laser in order to enhance the birefringence and nonlinearity of the laser cavity. The dual-wavelength domain-wall dark pulses are obtained from the developed CNT-incorporated fiber laser at a relatively low pump threshold of 50.6 mW. Dark pulses repeated at the fifth-order harmonic of the fundamental cavity frequency are observed by adjusting the intra-cavity polarization state.
Laser dye DCM: CW, synchronously pumped, cavity pumped and single-frequency performance
NASA Astrophysics Data System (ADS)
Marason, E. G.
1981-04-01
Laser dye DCM exhibits a tuning range of 605 to 725 nm with a lasing efficiency as high as 34% when pumped by the 488 nm line of the argon ion laser, placing it among the most efficient and broadly tunable dyes known. Performance of the dye is characterized for four laser systems: 1) continuous wave, 2) synchronously pumped (SP), 3) cavity dumped synchrompously pumped (SPCD) and 4) single-frequency ring dye laser. Pulse peak powers were as high as 520 W and 2.8 kW for SP and SPCD systems respectively.
Development of Fiber-Based Laser Systems for LISA
NASA Technical Reports Server (NTRS)
Numata, Kenji; Camp, Jordan
2010-01-01
We present efforts on fiber-based laser systems for the LISA mission at the NASA Goddard Space Flight Center. A fiber-based system has the advantage of higher robustness against external disturbances and easier implementation of redundancies. For a master oscillator, we are developing a ring fiber laser and evaluating two commercial products, a DBR linear fiber laser and a planar-waveguide external cavity diode laser. They all have comparable performance to a traditional NPRO at LISA band. We are also performing reliability tests of a 2-W Yb fiber amplifier and radiation tests of fiber laser/amplifier components. We describe our progress to date and discuss the path to a working LISA laser system design.
Telle, J.M.
1984-05-01
Apparatus and method for generating continuous wave 16 ..mu..m laser radiation using gaseous CF/sub 4/. Laser radiation at 16 ..mu..m has been observed in a cooled static cell containing low pressure CF/sub 4/ optically pumped by an approximately 3 W output power c-w CO/sub 2/ laser. The laser cavity employed was a multiple-pass off-axis-path two spherical mirror ring resonator. Unidirectional CF/sub 4/ laser output power at 615 cm/sup -1/ exceeded 2 mW. Computer calculations indicate that for modest pump powers of about 40 W, approximately 1 W of emitted laser radiation at 16 ..mu..m might be obtained.
Apparatus and method for generating continuous wave 16 .mu.m laser radiation using gaseous CF.sub.4
Telle, John M.
1986-01-01
Apparatus and method for generating continuous wave 16 .mu.m laser radiation using gaseous CF.sub.4. Laser radiation at 16 .mu.m has been observed in a cooled static cell containing low pressure CF.sub.4 optically pumped by an approximately 3 W output power cw CO.sub.2 laser. The laser cavity employed was a multiple-pass off-axis-path two spherical mirror ring resonator. Unidirectional CF.sub.4 laser output power at 615 cm.sup.-1 exceeded 2 mW. Computer calculations indicate that for modest pump powers of about 40 W, approximately 1 W of emitted laser radiation at 16 .mu.m might be obtained.
Modeling Synchronization in Networks of Delay-Coupled Fiber Ring Lasers
2011-11-21
synchronication of delay-couple oscillators,” Chaos 20, 043127 (2010). 10. J. Mulet , C. Mirasso, T. Heil, and I. Fischer, “Synchronication scenario of two...distant mutually coupled semi- conductor lasers,” J. Opt. B: Quantum Semiclassical Opt. 6, 97–105 (2004). 11. T. Heil, I. Fischer, W. Elsasser, J. Mulet
Ring-shaped active mode-locked tunable laser using quantum-dot semiconductor optical amplifier
NASA Astrophysics Data System (ADS)
Zhang, Mingxiao; Wang, Yongjun; Liu, Xinyu
2018-03-01
In this paper, a lot of simulations has been done for ring-shaped active mode-locked lasers with quantum-dot semiconductor optical amplifier (QD-SOA). Based on the simulation model of QD-SOA, we discussed about the influence towards mode-locked waveform frequency and pulse caused by QD-SOA maximum mode peak gain, active layer loss coefficient, bias current, incident light pulse, fiber nonlinear coefficient. In the meantime, we also take the tunable performance of the laser into consideration. Results showed QD-SOA a better performance than original semiconductor optical amplifier (SOA) in recovery time, line width, and nonlinear coefficients, which makes it possible to output a locked-mode impulse that has a higher impulse power, narrower impulse width as well as the phase is more easily controlled. After a lot of simulations, this laser can realize a 20GHz better locked-mode output pulse after 200 loops, where the power is above 17.5mW, impulse width is less than 2.7ps, moreover, the tunable wavelength range is between 1540nm-1580nm.
Performing an allreduce operation on a plurality of compute nodes of a parallel computer
Faraj, Ahmad
2013-02-12
Methods, apparatus, and products are disclosed for performing an allreduce operation on a plurality of compute nodes of a parallel computer, each node including at least two processing cores, that include: performing, for each node, a local reduction operation using allreduce contribution data for the cores of that node, yielding, for each node, a local reduction result for one or more representative cores for that node; establishing one or more logical rings among the nodes, each logical ring including only one of the representative cores from each node; performing, for each logical ring, a global allreduce operation using the local reduction result for the representative cores included in that logical ring, yielding a global allreduce result for each representative core included in that logical ring; and performing, for each node, a local broadcast operation using the global allreduce results for each representative core on that node.
NASA Astrophysics Data System (ADS)
Meulenberg, Andrew; Karthik Balaji, P. S.
2011-06-01
Man's quest to get into space is hindered by major problems (e.g., system-development and capital costs, expense of putting mass into orbit, trapped-radiation belts, and environmental impact of a large increase in rocket launches). A multi-purpose low-earth-orbit system of rings circling the earth - the "LEO ARCHIPELAGO TM" - is proposed as a means of solving or bypassing many of them. A fiber-optic ring about the earth would be an initial testing and developmental stage for the Ring Systems, while providing cash-flow through a LEO-based, high-band-width, world-wide communication system. A low-earth-orbit-based space-elevator system, "Sling-on-a-Ring TM", is proposed as the crucial developmental stage of the LEO Archipelago. Being a LEO-based heavy-mass lifter, rather than earth- or GEO-based, it is much less massive and therefore less costly than other proposed space-elevators. With the advent of lower-cost, higher-mass transport to orbit, the options for further space development (e.g., space solar power, radiation, and space-debris dampers, sun shades, and permanent LEO habitation) are greatly expanded. This paper provides an update of the Sling-on-a-Ring concept in terms of new materials, potential applications, and trade-offs associated with an earlier model. The impact of Colossal Carbon Tubes, CCT, a new material with high tensile strength, extremely-low density, and other favorable properties, and other new technologies (e.g., solar-powered lasers, power beaming to near-space and earth, and thermal-control systems) on the development of associated LEO-Ring systems is also explored. The material's effect on the timeline for the system development indicates the feasibility of near-term implementation of the system (possibly within the decade). The Sling-on-a-Ring can provide a less-expensive, environment-friendly mode of access to space. This would pave the way (via eventual operation at >1000 t per day by 2050) for large scale development of space-based technologies.
NASA Astrophysics Data System (ADS)
Welch, Sharon S.
Topics discussed in this volume include aircraft guidance and navigation, optics for visual guidance of aircraft, spacecraft and missile guidance and navigation, lidar and ladar systems, microdevices, gyroscopes, cockpit displays, and automotive displays. Papers are presented on optical processing for range and attitude determination, aircraft collision avoidance using a statistical decision theory, a scanning laser aircraft surveillance system for carrier flight operations, star sensor simulation for astroinertial guidance and navigation, autonomous millimeter-wave radar guidance systems, and a 1.32-micron long-range solid state imaging ladar. Attention is also given to a microfabricated magnetometer using Young's modulus changes in magnetoelastic materials, an integrated microgyroscope, a pulsed diode ring laser gyroscope, self-scanned polysilicon active-matrix liquid-crystal displays, the history and development of coated contrast enhancement filters for cockpit displays, and the effect of the display configuration on the attentional sampling performance. (For individual items see A93-28152 to A93-28176, A93-28178 to A93-28180)
NASA Astrophysics Data System (ADS)
Pramodini, S.; Sudhakar, Y. N.; SelvaKumar, M.; Poornesh, P.
2014-04-01
We present the synthesis and characterization of third-order optical nonlinearity and optical limiting of the conducting polymers poly (aniline-co-o-anisidine) and poly (aniline-co-pyrrole). Nonlinear optical studies were carried out by employing the z-scan technique using a He-Ne laser operating in continuous wave mode at 633 nm. The copolymers exhibited a reverse saturable absorption process and self-defocusing properties under the experimental conditions. The estimated values of βeff, n2 and χ(3) were found to be of the order of 10-2 cm W-1, 10-5 esu and 10-7 esu respectively. Self-diffraction rings were observed due to refractive index change when exposed to the laser beam. The copolymers possess a lower limiting threshold and clamping level, which is essential to a great extent for power limiting devices. Therefore, copolymers of aniline emerge as a potential candidate for nonlinear optical device applications.
On Sagnac frequency splitting in a solid-state ring Raman laser.
Liang, Wei; Savchenkov, Anatoliy; Ilchenko, Vladimir; Griffith, Robert; De Cuir, Edwin; Kim, Steven; Matsko, Andrey; Maleki, Lute
2017-11-15
We report on an accurate measurement of the frequency splitting of an optical rotating ring microcavity made out of calcium fluoride. By measuring the frequencies of the clockwise and counter-clockwise coherent Raman emissions confined in the cavity modes, we show that the frequency splitting is inversely proportional to the refractive index of the cavity host material. The measurement has an accuracy of 1% and unambiguously confirms the classical theoretical prediction based on special theory of relativity. This Letter also demonstrates the usefulness of the ring Raman microlaser for rotation measurements.
NASA Astrophysics Data System (ADS)
Li, Jiafu; Xiang, Shuiying; Wang, Haoning; Gong, Junkai; Wen, Aijun
2018-03-01
In this paper, a novel image encryption algorithm based on synchronization of physical random bit generated in a cascade-coupled semiconductor ring lasers (CCSRL) system is proposed, and the security analysis is performed. In both transmitter and receiver parts, the CCSRL system is a master-slave configuration consisting of a master semiconductor ring laser (M-SRL) with cross-feedback and a solitary SRL (S-SRL). The proposed image encryption algorithm includes image preprocessing based on conventional chaotic maps, pixel confusion based on control matrix extracted from physical random bit, and pixel diffusion based on random bit stream extracted from physical random bit. Firstly, the preprocessing method is used to eliminate the correlation between adjacent pixels. Secondly, physical random bit with verified randomness is generated based on chaos in the CCSRL system, and is used to simultaneously generate the control matrix and random bit stream. Finally, the control matrix and random bit stream are used for the encryption algorithm in order to change the position and the values of pixels, respectively. Simulation results and security analysis demonstrate that the proposed algorithm is effective and able to resist various typical attacks, and thus is an excellent candidate for secure image communication application.
Yamada, Sohei; Iino, Takanori; Bessho, Yasumasa; Hosokawa, Yoichiroh; Matsui, Takaaki
2017-10-15
When cells in epithelial sheets are damaged by intrinsic or extrinsic causes, they are eliminated by extrusion from the sheet. Cell extrusion, which is required for maintenance of tissue integrity, is the consequence of contraction of actomyosin rings, as demonstrated by both molecular/cellular biological experimentation and numerical simulation. However, quantitative evaluation of actomyosin contraction has not been performed because of the lack of a suitable direct measurement system. In this study, we developed a new method using a femtosecond laser to quantify the contraction force of the actomyosin ring during cell extrusion in zebrafish embryonic epithelia. In this system, an epithelial cell in zebrafish embryo is first damaged by direct femtosecond laser irradiation. Next, a femtosecond laser-induced impulsive force is loaded onto the actomyosin ring, and the contraction force is quantified to be on the order of kPa as a unit of pressure. We found that cell extrusion was delayed when the contraction force was slightly attenuated, suggesting that a relatively small force is sufficient to drive cell extrusion. Thus, our method is suitable for the relative quantitative evaluation of mechanical dynamics in the process of cell extrusion, and in principle the method is applicable to similar phenomena in different tissues and organs of various species. © 2017. Published by The Company of Biologists Ltd.
Hirokawa, Masayuki; Yamamoto, Takashi
2016-01-01
Objective: Endovenous laser ablation (EVLA) and radiofrequency ablation (RFA) are safe and effective treatments for varicose veins caused by saphenous reflux. Deep venous thrombosis (DVT) and endovenous heat-induced thrombosis (EHIT) are known complications of these procedures. The purpose of this article is to investigate the incidence of postoperative DVT and EHIT in patients undergoing EVLA and RFA. Methods: The patients were assessed by clinical examination and venous duplex ultrasonography before operation and at 24–72 hours, 1 month, and 1 year follow-up after operation. Endovenous ablation (EVA) had been treated for 1026 limbs (835 patients) using an RFA; 1174 limbs (954 patients) using a 1470-nm wavelength diode laser with radial two-ring fiber (1470R); and 6118 limbs (5513 patients) using a 980-nm wavelength diode laser with bare-tip fiber (980B). Results: DVT was detected in 3 legs (0.3%) of RFA, 5 legs (0.4%) of 1470R, and 27 legs (0.4%) of 980B. One patient in three symptomatic DVT treated with 980B developed asymptomatic pulmonary embolus. In all, 31 of the 35 DVTs were confined to the calf veins. The incidence of EHIT classes 2 and 3 was 2.7% following RFA procedure, 6.7% after 1470R, and 7.5% after 980B. Conclusion: The incidence of EHIT following EVA was low, especially the RFA procedure. EHIT resolves within 2–4 weeks in most patients. DVT rates after EVA were compared with those published for saphenous vein stripping. (This is a translation of J Jpn Coll Angiol 2015; 55: 153–161.) PMID:28018495
Different evolution dynamics of vector solitons depending on their polarization states
NASA Astrophysics Data System (ADS)
Chen, Wei-Cheng; Chen, Guo-Jie
2014-03-01
There are three types of temporal evolution dynamics of vector solitons observed in a ring fiber laser with a semiconductor saturable absorption mirror (SESAM) as a mode-locker. It is found that the polarization property of vector solitons is an important factor for achieving different evolution dynamics. The vector soliton with a uniform polarization state across the whole pulse profile and zero polarization extinction ratio operates at a fundamental repetition rate with a single pulse profile. The elliptically polarized vector soliton with a larger polarization extinction ratio exhibits a harmonic pulse train. The soliton bunching with multi-peak structures exists between the above two states and shows elliptical polarization with a small polarization extinction ratio.
Development of a high temperature ceramic-to-metal seal for Air Force Weapons Laboratory Laser
NASA Astrophysics Data System (ADS)
Honnell, R. E.; Stoddard, S. D.
1987-03-01
Procedures were developed for fabricating vacuum tight metal-to-ceramic ring seals between Inconel 625 and MgO-3 wt % Y2O3 tubes metallized with a calcia-alumina-silica glass (CaO-29 wt % Al2O3-35 wt % SiO2) containing 50 vol % molybdenum filler. Palniro No. 1 (Au-25 wt % Pd-25 wt % Ni) was found to be the most reliable braze for joining Inconel to metallized MgO-3 wt % Y2O3 bodies. The reliabilities of the processing procedures and the material systems were demonstrated. A prototype electrical feedthrough was fabricated for 1173 K operation in air or vacuum.
Applications of advanced electric/electronic technology to conventional aircraft
NASA Technical Reports Server (NTRS)
Heimbold, R. L.
1980-01-01
The desirability of seven advanced technologies as applied to three commercial aircraft of 1985 to 1995 was investigated. Digital fly by wire, multiplexing, ring laser gyro, integrated avionics, all electric airplane, electric load management, and fiber optics were considered for 500 passenger, 50 passenger, and 30 passenger aircraft. The major figure of merit used was Net Value of Technology based on procurement and operating cost over the life of the aircraft. An existing computer program, ASSET, was used to resize the aircraft and evalute fuel usage and maintenance costs for each candidate configuration. Conclusions were that, for the 500 passenger aircraft, all candidates had a worthwhile payoff with the all electric airplane having a large payoff.