Slowing down of ring polymer diffusion caused by inter-ring threading.
Lee, Eunsang; Kim, Soree; Jung, YounJoon
2015-06-01
Diffusion of long ring polymers in a melt is much slower than the reorganization of their internal structures. While direct evidence for entanglements has not been observed in the long ring polymers unlike linear polymer melts, threading between the rings is suspected to be the main reason for slowing down of ring polymer diffusion. It is, however, difficult to define the threading configuration between two rings because the rings have no chain end. In this work, evidence for threading dynamics of ring polymers is presented by using molecular dynamics simulation and applying a novel analysis method. The simulation results are analyzed in terms of the statistics of persistence and exchange times that have proved useful in studying heterogeneous dynamics of glassy systems. It is found that the threading time of ring polymer melts increases more rapidly with the degree of polymerization than that of linear polymer melts. This indicates that threaded ring polymers cannot diffuse until an unthreading event occurs, which results in the slowing down of ring polymer diffusion. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Thermodynamic Presynthetic Considerations for Ring-Opening Polymerization
2016-01-01
The need for polymers for high-end applications, coupled with the desire to mimic nature’s macromolecular machinery fuels the development of innovative synthetic strategies every year. The recently acquired macromolecular-synthetic tools increase the precision and enable the synthesis of polymers with high control and low dispersity. However, regardless of the specificity, the polymerization behavior is highly dependent on the monomeric structure. This is particularly true for the ring-opening polymerization of lactones, in which the ring size and degree of substitution highly influence the polymer formation properties. In other words, there are two important factors to contemplate when considering the particular polymerization behavior of a specific monomer: catalytic specificity and thermodynamic equilibrium behavior. This perspective focuses on the latter and undertakes a holistic approach among the different lactones with regard to the equilibrium thermodynamic polymerization behavior and its relation to polymer synthesis. This is summarized in a monomeric overview diagram that acts as a presynthetic directional cursor for synthesizing highly specific macromolecules; the means by which monomer equilibrium conversion relates to starting temperature, concentration, ring size, degree of substitution, and its implications for polymerization behavior are discussed. These discussions emphasize the importance of considering not only the catalytic system but also the monomer size and structure relations to thermodynamic equilibrium behavior. The thermodynamic equilibrium behavior relation with a monomer structure offers an additional layer of complexity to our molecular toolbox and, if it is harnessed accordingly, enables a powerful route to both monomer formation and intentional macromolecular design. PMID:26795940
Thermodynamic Presynthetic Considerations for Ring-Opening Polymerization.
Olsén, Peter; Odelius, Karin; Albertsson, Ann-Christine
2016-03-14
The need for polymers for high-end applications, coupled with the desire to mimic nature's macromolecular machinery fuels the development of innovative synthetic strategies every year. The recently acquired macromolecular-synthetic tools increase the precision and enable the synthesis of polymers with high control and low dispersity. However, regardless of the specificity, the polymerization behavior is highly dependent on the monomeric structure. This is particularly true for the ring-opening polymerization of lactones, in which the ring size and degree of substitution highly influence the polymer formation properties. In other words, there are two important factors to contemplate when considering the particular polymerization behavior of a specific monomer: catalytic specificity and thermodynamic equilibrium behavior. This perspective focuses on the latter and undertakes a holistic approach among the different lactones with regard to the equilibrium thermodynamic polymerization behavior and its relation to polymer synthesis. This is summarized in a monomeric overview diagram that acts as a presynthetic directional cursor for synthesizing highly specific macromolecules; the means by which monomer equilibrium conversion relates to starting temperature, concentration, ring size, degree of substitution, and its implications for polymerization behavior are discussed. These discussions emphasize the importance of considering not only the catalytic system but also the monomer size and structure relations to thermodynamic equilibrium behavior. The thermodynamic equilibrium behavior relation with a monomer structure offers an additional layer of complexity to our molecular toolbox and, if it is harnessed accordingly, enables a powerful route to both monomer formation and intentional macromolecular design.
Conformational free energy of melts of ring-linear polymer blends.
Subramanian, Gopinath; Shanbhag, Sachin
2009-10-01
The conformational free energy of ring polymers in a blend of ring and linear polymers is investigated using the bond-fluctuation model. Previously established scaling relationships for the free energy of a ring polymer are shown to be valid only in the mean-field sense, and alternative functional forms are investigated. It is shown that it may be difficult to accurately express the total free energy of a ring polymer by a simple scaling argument, or in closed form.
Modification of vortex ring formation using dilute polymer solution
NASA Astrophysics Data System (ADS)
Jordan, Daniel; Krane, Michael; Peltier, Joel; Patterson, Eric; Fontaine, Arnold
2006-11-01
This talk will present the results of an experimental study to determine the effect of dilute polymer solution on the formation of a vortex ring. Experiments were conducted in a large, glass tank, filled with water. Vortex rings were produced by injecting a slug of dilute polymer solution into the tank through a nozzle. The injection was controlled by a prescribed piston motion in the nozzle. For the same piston motion, vortex rings were produced for 3 concentrations of the polymer solution, including one with no polymer. The vortex ring flowfield was measured using DPIV. Differences between the 3 cases of polymer concentration in vortex ring formation time, circulation, size, and convection speed are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ge, Ting; Kalathi, Jagannathan T.; Halverson, Jonathan D.
The motion of nanoparticles (NPs) in entangled melts of linear polymers and non-concatenated ring polymers are compared by large-scale molecular dynamics simulations. The comparison provides a paradigm for the effects of polymer architecture on the dynamical coupling between NPs and polymers in nanocomposites. Strongly suppressed motion of NPs with diameter d larger than the entanglement spacing a is observed in a melt of linear polymers before the onset of Fickian NP diffusion. This strong suppression of NP motion occurs progressively as d exceeds a, and is related to the hopping diffusion of NPs in the entanglement network. In contrast tomore » the NP motion in linear polymers, the motion of NPs with d > a in ring polymers is not as strongly suppressed prior to Fickian diffusion. The diffusion coefficient D decreases with increasing d much slower in entangled rings than in entangled linear chains. NP motion in entangled non-concatenated ring polymers is understood through a scaling analysis of the coupling between NP motion and the self-similar entangled dynamics of ring polymers.« less
Ge, Ting; Kalathi, Jagannathan T.; Halverson, Jonathan D.; ...
2017-02-13
The motion of nanoparticles (NPs) in entangled melts of linear polymers and non-concatenated ring polymers are compared by large-scale molecular dynamics simulations. The comparison provides a paradigm for the effects of polymer architecture on the dynamical coupling between NPs and polymers in nanocomposites. Strongly suppressed motion of NPs with diameter d larger than the entanglement spacing a is observed in a melt of linear polymers before the onset of Fickian NP diffusion. This strong suppression of NP motion occurs progressively as d exceeds a, and is related to the hopping diffusion of NPs in the entanglement network. In contrast tomore » the NP motion in linear polymers, the motion of NPs with d > a in ring polymers is not as strongly suppressed prior to Fickian diffusion. The diffusion coefficient D decreases with increasing d much slower in entangled rings than in entangled linear chains. NP motion in entangled non-concatenated ring polymers is understood through a scaling analysis of the coupling between NP motion and the self-similar entangled dynamics of ring polymers.« less
Self-Consistent Field Theory of Gaussian Ring Polymers
NASA Astrophysics Data System (ADS)
Kim, Jaeup; Yang, Yong-Biao; Lee, Won Bo
2012-02-01
Ring polymers, being free from chain ends, have fundamental importance in understanding the polymer statics and dynamics which are strongly influenced by the chain end effects. At a glance, their theoretical treatment may not seem particularly difficult, but the absence of chain ends and the topological constraints make the problem non-trivial, which results in limited success in the analytical or semi-analytical formulation of ring polymer theory. Here, I present a self-consistent field theory (SCFT) formalism of Gaussian (topologically unconstrained) ring polymers for the first time. The resulting static property of homogeneous and inhomogeneous ring polymers are compared with the random phase approximation (RPA) results. The critical point for ring homopolymer system is exactly the same as the linear polymer case, χN = 2, since a critical point does not depend on local structures of polymers. The critical point for ring diblock copolymer melts is χN 17.795, which is approximately 1.7 times of that of linear diblock copolymer melts, χN 10.495. The difference is due to the ring structure constraint.
Nanoparticle Motion in Entangled Melts of Linear and Nonconcatenated Ring Polymers
2017-01-01
The motion of nanoparticles (NPs) in entangled melts of linear polymers and nonconcatenated ring polymers are compared by large-scale molecular dynamics simulations. The comparison provides a paradigm for the effects of polymer architecture on the dynamical coupling between NPs and polymers in nanocomposites. Strongly suppressed motion of NPs with diameter d larger than the entanglement spacing a is observed in a melt of linear polymers before the onset of Fickian NP diffusion. This strong suppression of NP motion occurs progressively as d exceeds a and is related to the hopping diffusion of NPs in the entanglement network. In contrast to the NP motion in linear polymers, the motion of NPs with d > a in ring polymers is not as strongly suppressed prior to Fickian diffusion. The diffusion coefficient D decreases with increasing d much slower in entangled rings than in entangled linear chains. NP motion in entangled nonconcatenated ring polymers is understood through a scaling analysis of the coupling between NP motion and the self-similar entangled dynamics of ring polymers. PMID:28392603
Topology of polymer chains under nanoscale confinement.
Satarifard, Vahid; Heidari, Maziar; Mashaghi, Samaneh; Tans, Sander J; Ejtehadi, Mohammad Reza; Mashaghi, Alireza
2017-08-24
Spatial confinement limits the conformational space accessible to biomolecules but the implications for bimolecular topology are not yet known. Folded linear biopolymers can be seen as molecular circuits formed by intramolecular contacts. The pairwise arrangement of intra-chain contacts can be categorized as parallel, series or cross, and has been identified as a topological property. Using molecular dynamics simulations, we determine the contact order distributions and topological circuits of short semi-flexible linear and ring polymer chains with a persistence length of l p under a spherical confinement of radius R c . At low values of l p /R c , the entropy of the linear chain leads to the formation of independent contacts along the chain and accordingly, increases the fraction of series topology with respect to other topologies. However, at high l p /R c , the fraction of cross and parallel topologies are enhanced in the chain topological circuits with cross becoming predominant. At an intermediate confining regime, we identify a critical value of l p /R c , at which all topological states have equal probability. Confinement thus equalizes the probability of more complex cross and parallel topologies to the level of the more simple, non-cooperative series topology. Moreover, our topology analysis reveals distinct behaviours for ring- and linear polymers under weak confinement; however, we find no difference between ring- and linear polymers under strong confinement. Under weak confinement, ring polymers adopt parallel and series topologies with equal likelihood, while linear polymers show a higher tendency for series arrangement. The radial distribution analysis of the topology reveals a non-uniform effect of confinement on the topology of polymer chains, thereby imposing more pronounced effects on the core region than on the confinement surface. Additionally, our results reveal that over a wide range of confining radii, loops arranged in parallel and cross topologies have nearly the same contact orders. Such degeneracy implies that the kinetics and transition rates between the topological states cannot be solely explained by contact order. We expect these findings to be of general importance in understanding chaperone assisted protein folding, chromosome architecture, and the evolution of molecular folds.
Dimension of ring polymers in bulk studied by Monte-Carlo simulation and self-consistent theory.
Suzuki, Jiro; Takano, Atsushi; Deguchi, Tetsuo; Matsushita, Yushu
2009-10-14
We studied equilibrium conformations of ring polymers in melt over the wide range of segment number N of up to 4096 with Monte-Carlo simulation and obtained N dependence of radius of gyration of chains R(g). The simulation model used is bond fluctuation model (BFM), where polymer segments bear excluded volume; however, the excluded volume effect vanishes at N-->infinity, and linear polymer can be regarded as an ideal chain. Simulation for ring polymers in melt was performed, and the nu value in the relationship R(g) proportional to N(nu) is decreased gradually with increasing N, and finally it reaches the limiting value, 1/3, in the range of N>or=1536, i.e., R(g) proportional to N(1/3). We confirmed that the simulation result is consistent with that of the self-consistent theory including the topological effect and the osmotic pressure of ring polymers. Moreover, the averaged chain conformation of ring polymers in equilibrium state was given in the BFM. In small N region, the segment density of each molecule near the center of mass of the molecule is decreased with increasing N. In large N region the decrease is suppressed, and the density is found to be kept constant without showing N dependence. This means that ring polymer molecules do not segregate from the other molecules even if ring polymers in melt have the relationship nu=1/3. Considerably smaller dimensions of ring polymers at high molecular weight are due to their inherent nature of having no chain ends, and hence they have less-entangled conformations.
Miscibility phase diagram of ring-polymer blends: A topological effect.
Sakaue, Takahiro; Nakajima, Chihiro H
2016-04-01
The miscibility of polymer blends, a classical problem in polymer science, may be altered, if one or both of the component do not have chain ends. Based on the idea of topological volume, we propose a mean-field theory to clarify how the topological constraints in ring polymers affect the phase behavior of the blends. While the large enhancement of the miscibility is expected for ring-linear polymer blends, the opposite trend toward demixing, albeit comparatively weak, is predicted for ring-ring polymer blends. Scaling formulas for the shift of critical point for both cases are derived. We discuss the valid range of the present theory, and the crossover to the linear polymer blends behaviors, which is expected for short chains. These analyses put forward a view that the topological constraints could be represented as an effective excluded-volume effects, in which the topological length plays a role of the screening factor.
Qu, Lin; Sun, Peng; Wu, Ying; Zhang, Ke; Liu, Zhengping
2017-08-01
An efficient metal-free homodifunctional bimolecular ring-closure method is developed for the formation of cyclic polymers by combining reversible addition-fragmentation chain transfer (RAFT) polymerization and self-accelerating click reaction. In this approach, α,ω-homodifunctional linear polymers with azide terminals are prepared by RAFT polymerization and postmodification of polymer chain end groups. By virtue of sym-dibenzo-1,5-cyclooctadiene-3,7-diyne (DBA) as small linkers, well-defined cyclic polymers are then prepared using the self-accelerating double strain-promoted azide-alkyne click (DSPAAC) reaction to ring-close the azide end-functionalized homodifunctional linear polymer precursors. Due to the self-accelerating property of DSPAAC ring-closing reaction, this novel method eliminates the requirement of equimolar amounts of telechelic polymers and small linkers in traditional bimolecular ring-closure methods. It facilitates this method to efficiently and conveniently produce varied pure cyclic polymers by employing an excess molar amount of DBA small linkers. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Wang, Jiang; Ferguson, Andrew
Ring polymers offer a wide range of natural and engineered functions and applications, including as circular bacterial DNA, crown ethers for cation chelation, and ``molecular machines'' such as mechanical nanoswitches. The morphology and dynamics of ring polymers are governed by the chemistry and degree of polymerization of the ring, and intramolecular and supramolecular topological constraints such as knots or mechanically-interlocked rings. We perform molecular dynamics simulations of polyethylene ring polymers as a function of degree of polymerization and in different topological states, including a knotted state, catenane state (two interlocked rings), and borromean state (three interlocked rings). Applying nonlinear manifold learning to our all-atom simulation trajectories, we extract low-dimensional free energy surfaces governing the accessible conformational states and their relative thermodynamic stability. The free energy surfaces reveal how degree of polymerization and topological constraints affect the thermally accessible conformations, chiral symmetry breaking, and folding and collapse pathways of the rings, and present a means to rationally engineer ring size and topology to preferentially stabilize particular conformational states.
Slide-Ring Materials Using Cyclodextrin.
Ito, Kohzo
2017-01-01
We have recently synthesized slide-ring materials using cyclodextrin by cross-linking polyrotaxanes, a typical supramolecule. The slide-ring materials have polymer chains with bulky end groups topologically interlocked by figure-of-eight shaped junctions. This indicates that the cross-links can pass through the polymer chains similar to pulleys to relax the tension of the backbone polymer chains. The slide-ring materials also differ from conventional polymers in that the entropy of rings affects the elasticity. As a result, the slide-ring materials show quite small Young's modulus not proportional to the cross-linking density. This concept can be applied to a wide variety of polymeric materials as well as gels. In particular, the slide-ring materials show remarkable scratch-proof properties for coating materials for automobiles, cell phones, mobile computers, and so on. Further current applications include vibration-proof insulation materials for sound speakers, highly abrasive polishing media, dielectric actuators, and so on.
NASA Technical Reports Server (NTRS)
Frost, Lawrence W. (Inventor)
1980-01-01
Deep curable polymers having heterocyclic ring systems such as isoindoloquinazolinedione ring systems prepared from novel cyanoimide polymers, most desirably 2'-cyanoimide polymers. Preferably the cyanoimide polymers are prepared from a diamine having at least one nitrile group in the two position to an amine group and a dianhydride having at least two cyclic anhydride groups. Copolymers may be prepared having other linkages, notably imide linkages, in addition to isoindoloquinazolinedione ring systems and/or other similar heterocyclic ring systems. The copolymers can be prepared by use of diamines containing one or more cyanoimide groupings and/or imide groups in their structure.
Simulation of ring polymer melts with GPU acceleration
NASA Astrophysics Data System (ADS)
Schram, R. D.; Barkema, G. T.
2018-06-01
We implemented the elastic lattice polymer model on the GPU (Graphics Processing Unit), and show that the GPU is very efficient for polymer simulations of dense polymer melts. The implementation is able to perform up to 4.1 ṡ109 Monte Carlo moves per second. Compared to our standard CPU implementation, we find an effective speed-up of a factor 92. Using this GPU implementation we studied the equilibrium properties and the dynamics of non-concatenated ring polymers in a melt of such polymers, using Rouse modes. With increasing polymer length, we found a very slow transition to compactness with a growth exponent ν ≈ 1 / 3. Numerically we find that the longest internal time scale of the polymer scales as N3.1, with N the molecular weight of the ring polymer.
Polymer dynamics: Floored by the rings
NASA Astrophysics Data System (ADS)
McLeish, Tom
2008-12-01
The tube model can explain how mutually entangled polymer chains move and interact, but it relies on the loose ends of chains to generate relaxation. Ring polymers have no ends - so how do they relax?
NASA Astrophysics Data System (ADS)
Hua, Yunfeng; Deng, Zhenyu; Jiang, Yangwei; Zhang, Linxi
2017-06-01
Molecular dynamics simulations of a coarse-grained bead-spring model of ring polymer brushes under compression are presented. Flexible polymer brushes are always disordered during compression, whereas semiflexible polymer brushes tend to be ordered under sufficiently strong compression. Further, the polymer monomer density of the semiflexible polymer brush is very high near the brush surface, inducing a peak value of the free energy near the surface. Therefore, when nanoparticles are compressed in semiflexible ring polymer brushes, they tend to exhibit a closely packed single-layer structure between the brush surface and the impenetrable wall, and a quasi-two-dimensional ordered structure near the brush surface is formed under strong compression. These findings provide a new approach to designing responsive applications.
Mc Conville, Christopher; Major, Ian; Friend, David R; Clark, Meredith R; Woolfson, A David; Malcolm, R Karl
2012-05-01
Vaginal rings are currently being investigated for delivery of HIV microbicides. However, vaginal rings are currently manufactured form hydrophobic polymers such as silicone elastomer and polyethylene vinyl acetate (PEVA), which do not permit release of hydrophilic microbicides such as the nucleotide reverse transcriptase inhibitor tenofovir. Biodegradable polymers such as polylactide (PLA) may help increase release rates by controlling polymer degradation rather than diffusion of the drug through the polymer. However, biodegradable polymers have limited flexibility making them unsuitable for use in the manufacture of vaginal rings. This study demonstrates that by blending PLA and PEVA together it is possible to achieve a blend that has flexibility similar to native PEVA but also allows for the release of tenofovir. Copyright © 2011 Wiley Periodicals, Inc.
Nguyen, Minh T; Biberdorf, Joshua D; Holliday, Bradley J; Jones, Richard A
2017-11-01
A polymer consisting of a polynorbornene backbone with perylene diimide (PDI) pendant groups on each monomeric unit is synthesized via ring opening metathesis polymerization. The PDI pendant groups along the polymer backbone, studied by UV-vis absorption, fluorescence emission, and electron paramagnetic resonance spectroscopy in addition to electrochemical methods, show evidence of molecular aggregation and corresponding electronic coupling with neighboring groups, which forms pathways for efficient electron transport from one group to another in a specific reduced form. When n-doped, the title polymer shows redox conductivity of 5.4 × 10 -3 S cm -1 , comparable with crystalline PDI materials, and is therefore a promising material for use in organic electronics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Teng, Jie; Dumon, Pieter; Bogaerts, Wim; Zhang, Hongbo; Jian, Xigao; Han, Xiuyou; Zhao, Mingshan; Morthier, Geert; Baets, Roel
2009-08-17
Athermal silicon ring resonators are experimentally demonstrated by overlaying a polymer cladding on narrowed silicon wires. The ideal width to achieve athermal condition for the TE mode of 220 nm-height SOI waveguides is found to be around 350 nm. After overlaying a polymer layer, the wavelength temperature dependence of the silicon ring resonator is reduced to less than 5 pm/degrees C, almost eleven times less than that of normal silicon waveguides. The optical loss of a 350-nm bent waveguide (with a radius of 15 microm) is extracted from the ring transmission spectrum. The scattering loss is reduced to an acceptable level of about 50 dB/cm after overlaying a polymer cladding. (c) 2009 Optical Society of America
Linear and ring polymers in confined geometries
NASA Astrophysics Data System (ADS)
Usatenko, Zoryana; Kuterba, Piotr; Chamati, Hassan; Romeis, Dirk
2017-03-01
A short overview of the theoretical and experimental works on the polymer-colloid mixtures is given. The behaviour of a dilute solution of linear and ring polymers in confined geometries like slit of two parallel walls or in the solution of mesoscopic colloidal particles of big size with different adsorbing or repelling properties in respect to polymers is discussed. Besides, we consider the massive field theory approach in fixed space dimensions d = 3 for the investigation of the interaction between long flexible polymers and mesoscopic colloidal particles of big size and for the calculation of the correspondent depletion interaction potentials and the depletion forces between confining walls. The presented results indicate the interesting and nontrivial behavior of linear and ring polymers in confined geometries and give possibility better to understand the complexity of physical effects arising from confinement and chain topology which plays a significant role in the shaping of individual chromosomes and in the process of their segregation, especially in the case of elongated bacterial cells. The possibility of using linear and ring polymers for production of new types of nano- and micro-electromechanical devices is analyzed.
A synthetic polymer system with repeatable chemical recyclability
NASA Astrophysics Data System (ADS)
Zhu, Jian-Bo; Watson, Eli M.; Tang, Jing; Chen, Eugene Y.-X.
2018-04-01
The development of chemically recyclable polymers offers a solution to the end-of-use issue of polymeric materials and provides a closed-loop approach toward a circular materials economy. However, polymers that can be easily and selectively depolymerized back to monomers typically require low-temperature polymerization methods and also lack physical properties and mechanical strengths required for practical uses. We introduce a polymer system based on γ-butyrolactone (GBL) with a trans-ring fusion at the α and β positions. Such trans-ring fusion renders the commonly considered as nonpolymerizable GBL ring readily polymerizable at room temperature under solvent-free conditions to yield a high–molecular weight polymer. The polymer has enhanced thermostability and can be repeatedly and quantitatively recycled back to its monomer by thermolysis or chemolysis. Mixing of the two enantiomers of the polymer generates a highly crystalline supramolecular stereocomplex.
Fischer-Friedrich, Elisabeth; Gov, Nir
2011-04-01
The cytoskeletal protein FtsZ polymerizes to a ring structure (Z ring) at the inner cytoplasmic membrane that marks the future division site and scaffolds the division machinery in many bacterial species. FtsZ is known to polymerize in the presence of GTP into single-stranded protofilaments. In vivo, FtsZ polymers become associated with the cytoplasmic membrane via interaction with the membrane-binding proteins FtsA and ZipA. The FtsZ ring structure is highly dynamic and undergoes constantly polymerization and depolymerization processes and exchange with the cytoplasmic pool. In this theoretical study, we consider a scenario of Z ring self-organization via self-enhanced attachment of FtsZ polymers due to end-to-end interactions and lateral interactions of FtsZ polymers on the membrane. With the assumption of exclusively circumferential polymer orientations, we derive coarse-grained equations for the dynamics of the pool of cytoplasmic and membrane-bound FtsZ. To capture stochastic effects expected in the system due to low particle numbers, we simulate our computational model using a Gillespie-type algorithm. We obtain ring- and arc-shaped aggregations of FtsZ polymers on the membrane as a function of monomer numbers in the cell. In particular, our model predicts the number of FtsZ rings forming in the cell as a function of cell geometry and FtsZ concentration. We also calculate the time of FtsZ ring localization to the midplane in the presence of Min oscillations. Finally, we demonstrate that the assumptions and results of our model are confirmed by 3D reconstructions of fluorescently-labeled FtsZ structures in E. coli that we obtained.
Complex Fluids at Interfaces and Interfaces of Complex Fluids
NASA Astrophysics Data System (ADS)
Nouri, Mariam
The present thesis deals with two independent projects and is consequently divided into two parts. The first part details a computational study of the fluid structure of ring-shaped molecules and their positional and orientational molecular organizations in different degrees of confinement, while the second part concerns an experimental study of phase behavior and interfacial phenomena in confined colloid-polymer systems. In the first part, ring-shaped molecules are studied using Monte Carlo simulation techniques in one, two and three dimensions. The model used to describe ring-shaped molecules is composed of hard-spheres linked together to form planar rigid rings. For rings of various sizes and for a wide range of densities, positional and orientational orderings are reported in forms of pair distribution functions of the ring centers and correlation functions of the ring normal orientations. Special emphasis is given to understand structural formation at interfaces, i.e., the structure and orderings of these molecules when they are confined to two dimensions. In a plane but the rings themselves are free to rotate around all axes, nematic ordering is observed at sufficiently high densities. In the second part, phase equilibria of confined aqueous colloid-polymer systems are studied experimentally using fluorescence microscopy. Aqueous mixtures of fluorescent polystyrene spheres and polyacrylamide are confined between a glass slide and a coverslip. The phase diagram is determined as a function of the colloidal and polymer concentrations. Liquid-liquid phase coexistence between a colloid-rich phase and a polymer-rich phase occurs at intermediate polymer concentrations, while liquid-solid phase coexistence between a polymer-rich liquid and a colloid-rich solid is observed at high polymer concentrations. Interfacial thickness and tension of the interface between these coexisting phases are measured using image analysis techniques. It is also observed that the colloid-rich solid and liquid domains coarsen mainly by Ostwald ripening.
Hu, Yunzi; Daoud, Walid A.; Cheuk, Kevin Ka Leung; Lin, Carol Sze Ki
2016-01-01
Polycondensation and ring-opening polymerization are two important polymer synthesis methods. Poly(lactic acid), the most typical biodegradable polymer, has been researched extensively from 1900s. It is of significant importance to have an up-to-date review on the recent improvement in techniques for biodegradable polymers. This review takes poly(lactic acid) as the example to present newly developed polymer synthesis techniques on polycondensation and ring-opening polymerization reported in the recent decade (2005–2015) on the basis of industrial technique modifications and advanced laboratory research. Different polymerization methods, including various solvents, heating programs, reaction apparatus and catalyst systems, are summarized and compared with the current industrial production situation. Newly developed modification techniques for polymer properties improvement are also discussed based on the case of poly(lactic acid). PMID:28773260
Uehara, Erica; Deguchi, Tetsuo
2014-01-28
For a double-ring polymer in solution we evaluate the mean-square radius of gyration and the diffusion coefficient through simulation of off-lattice self-avoiding double polygons consisting of cylindrical segments with radius rex of unit length. Here, a self-avoiding double polygon consists of twin self-avoiding polygons which are connected by a cylindrical segment. We show numerically that several statistical and dynamical properties of double-ring polymers in solution depend on the linking number of the constituent twin ring polymers. The ratio of the mean-square radius of gyration of self-avoiding double polygons with zero linking number to that of no topological constraint is larger than 1, in particular, when the radius of cylindrical segments rex is small. However, the ratio is almost constant with respect to the number of vertices, N, and does not depend on N. The large-N behavior of topological swelling is thus quite different from the case of knotted random polygons.
Chaperonin polymers in archaea: The cytoskeleton of prokaryotes?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trent, J.D.; Kagawa, H.K.; Zaluzec, N.J.
Chaperonins are protein complexes that play a critical role in folding nascent polypeptides under normal conditions and refolding damaged proteins under stress conditions. In all organisms these complexes are composed of evolutionarily conserved 60-kDa proteins arranged in double-ring structures with between 7 and 9 protein subunits per ring. These double ring structures are assumed to be the functional units in vivo, although they have never been observed inside cells. Here the authors show that the purified chaperonin from the hyperthermophilic archaeon Sulfolobus shibatae, which is closely related to chaperonins in eukaryotes, has a double ring structure at low concentrations (0.1more » mg/ml), but at more physiological concentrations, the rings stack end to end to form polymers. The polymers are stable at physiological temperatures (75 C) and closely resemble structures observed inside unfixed S. shibatae cells. The authors suggest that in vivo chaperonin activity may be regulated by polymerization and that chaperonin polymers may act as a cytoskeleton-like structure in archaea and bacteria.« less
Chaperonin Polymers in Archaea: The Cytoskeleton of Prokaryotes?
DOE R&D Accomplishments Database
Trent, J. D.; Kagawa, H. K.; Zaluzec, N. J.
1997-07-01
Chaperonins are protein complexes that play a critical role in folding nascent polypeptides under normal conditions and refolding damaged proteins under stress conditions. In all organisms these complexes are composed of evolutionarily conserved 60-kDa proteins arranged in double-ring structures with between 7 and 9 protein subunits per ring. These double ring structures are assumed to be the functional units in vivo, although they have never been observed inside cells. Here the authors show that the purified chaperonin from the hyperthermophilic archaeon Sulfolobus shibatae, which is closely related to chaperonins in eukaryotes, has a double ring structure at low concentrations (0.1 mg/ml), but at more physiological concentrations, the rings stack end to end to form polymers. The polymers are stable at physiological temperatures (75 C) and closely resemble structures observed inside unfixed S. shibatae cells. The authors suggest that in vivo chaperonin activity may be regulated by polymerization and that chaperonin polymers may act as a cytoskeleton-like structure in archaea and bacteria.
Accelerated path-integral simulations using ring-polymer interpolation
NASA Astrophysics Data System (ADS)
Buxton, Samuel J.; Habershon, Scott
2017-12-01
Imaginary-time path-integral (PI) molecular simulations can be used to calculate exact quantum statistical mechanical properties for complex systems containing many interacting atoms and molecules. The limiting computational factor in a PI simulation is typically the evaluation of the potential energy surface (PES) and forces at each ring-polymer "bead"; for an n-bead ring-polymer, a PI simulation is typically n times greater than the corresponding classical simulation. To address the increased computational effort of PI simulations, several approaches have been developed recently, most notably based on the idea of ring-polymer contraction which exploits either the separation of the PES into short-range and long-range contributions or the availability of a computationally inexpensive PES which can be incorporated to effectively smooth the ring-polymer PES; neither approach is satisfactory in applications to systems modeled by PESs given by on-the-fly ab initio calculations. In this article, we describe a new method, ring-polymer interpolation (RPI), which can be used to accelerate PI simulations without any prior assumptions about the PES. In simulations of liquid water modeled by an empirical PES (or force field) under ambient conditions, where quantum effects are known to play a subtle role in influencing experimental observables such as radial distribution functions, we find that RPI can accurately reproduce the results of fully-converged PI simulations, albeit with far fewer PES evaluations. This approach therefore opens the possibility of large-scale PI simulations using ab initio PESs evaluated on-the-fly without the drawbacks of current methods.
Nanoprobe diffusion in entangled polymer solutions: Linear vs. unconcatenated ring chains
NASA Astrophysics Data System (ADS)
Nahali, Negar; Rosa, Angelo
2018-05-01
We employ large-scale molecular dynamics computer simulations to study the problem of nanoprobe diffusion in entangled solutions of linear polymers and unknotted and unconcatenated circular (ring) polymers. By tuning both the diameter of the nanoprobe and the density of the solution, we show that nanoprobes of diameter smaller than the entanglement distance (tube diameter) of the solution display the same (Rouse-like) behavior in solutions of both polymer architectures. Instead, nanoprobes with larger diameters appear to diffuse markedly faster in solutions of rings than in solutions of linear chains. Finally, by analysing the distribution functions of spatial displacements, we find that nanoprobe motion in rings' solutions shows both Gaussian and ergodic behaviors, in all regimes considered, while, in solutions of linear chains, nanoprobes exceeding the size of the tube diameter show a transition to non-Gaussian and non-ergodic motion. Our results emphasize the role of chain architecture in the motion of nanoprobes dispersed in polymer solutions.
Radzinski, Scott C; Foster, Jeffrey C; Matson, John B
2016-04-01
Bottlebrush polymers are synthesized using a tandem ring-opening polymerization (ROP) and ring-opening metathesis polymerization (ROMP) strategy. For the first time, ROP and ROMP are conducted sequentially in the same pot to yield well-defined bottlebrush polymers with molecular weights in excess of 10(6) Da. The first step of this process involves the synthesis of a polylactide macromonomer (MM) via ROP of d,l-lactide initiated by an alcohol-functionalized norbornene. ROMP grafting-through is then carried out in the same pot to produce the bottlebrush polymer. The applicability of this methodology is evaluated for different MM molecular weights and bottlebrush backbone degrees of polymerization. Size-exclusion chromatographic and (1)H NMR spectroscopic analyses confirm excellent control over both polymerization steps. In addition, bottlebrush polymers are imaged using atomic force microscopy and stain-free transmission electron microscopy on graphene oxide. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Reconfigurable Solid-state Dye-doped Polymer Ring Resonator Lasers
NASA Astrophysics Data System (ADS)
Chandrahalim, Hengky; Fan, Xudong
2015-12-01
This paper presents wavelength configurable on-chip solid-state ring lasers fabricated by a single-mask standard lithography. The single- and coupled-ring resonator hosts were fabricated on a fused-silica wafer and filled with 3,3‧-Diethyloxacarbocyanine iodide (CY3), Rhodamine 6G (R6G), and 3,3‧-Diethylthiadicarbocyanine iodide (CY5)-doped polymer as the reconfigurable gain media. The recorded lasing threshold was ~220 nJ/mm2 per pulse for the single-ring resonator laser with R6G, marking the lowest threshold shown by solid-state dye-doped polymer lasers fabricated with a standard lithography process on a chip. A single-mode lasing from a coupled-ring resonator system with the lasing threshold of ~360 nJ/mm2 per pulse was also demonstrated through the Vernier effect. The renewability of the dye-doped polymer was examined by removing and redepositing the dye-doped polymer on the same resonator hosts for multiple cycles. We recorded consistent emissions from the devices for all trials, suggesting the feasibility of employing this technology for numerous photonic and biochemical sensing applications that entail for sustainable, reconfigurable, and low lasing threshold coherent light sources on a chip.
Reconfigurable Solid-state Dye-doped Polymer Ring Resonator Lasers
Chandrahalim, Hengky; Fan, Xudong
2015-01-01
This paper presents wavelength configurable on-chip solid-state ring lasers fabricated by a single-mask standard lithography. The single- and coupled-ring resonator hosts were fabricated on a fused-silica wafer and filled with 3,3′-Diethyloxacarbocyanine iodide (CY3), Rhodamine 6G (R6G), and 3,3′-Diethylthiadicarbocyanine iodide (CY5)-doped polymer as the reconfigurable gain media. The recorded lasing threshold was ~220 nJ/mm2 per pulse for the single-ring resonator laser with R6G, marking the lowest threshold shown by solid-state dye-doped polymer lasers fabricated with a standard lithography process on a chip. A single-mode lasing from a coupled-ring resonator system with the lasing threshold of ~360 nJ/mm2 per pulse was also demonstrated through the Vernier effect. The renewability of the dye-doped polymer was examined by removing and redepositing the dye-doped polymer on the same resonator hosts for multiple cycles. We recorded consistent emissions from the devices for all trials, suggesting the feasibility of employing this technology for numerous photonic and biochemical sensing applications that entail for sustainable, reconfigurable, and low lasing threshold coherent light sources on a chip. PMID:26674508
Reconfigurable Solid-state Dye-doped Polymer Ring Resonator Lasers.
Chandrahalim, Hengky; Fan, Xudong
2015-12-17
This paper presents wavelength configurable on-chip solid-state ring lasers fabricated by a single-mask standard lithography. The single- and coupled-ring resonator hosts were fabricated on a fused-silica wafer and filled with 3,3'-Diethyloxacarbocyanine iodide (CY3), Rhodamine 6G (R6G), and 3,3'-Diethylthiadicarbocyanine iodide (CY5)-doped polymer as the reconfigurable gain media. The recorded lasing threshold was ~220 nJ/mm(2) per pulse for the single-ring resonator laser with R6G, marking the lowest threshold shown by solid-state dye-doped polymer lasers fabricated with a standard lithography process on a chip. A single-mode lasing from a coupled-ring resonator system with the lasing threshold of ~360 nJ/mm(2) per pulse was also demonstrated through the Vernier effect. The renewability of the dye-doped polymer was examined by removing and redepositing the dye-doped polymer on the same resonator hosts for multiple cycles. We recorded consistent emissions from the devices for all trials, suggesting the feasibility of employing this technology for numerous photonic and biochemical sensing applications that entail for sustainable, reconfigurable, and low lasing threshold coherent light sources on a chip.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKenna, Gregory B.; Grubbs, Robert H.; Kornfield, Julia A.
2012-04-25
The work described in the present report had the original goal to produce large, entangled, ring polymers that were uncontaminated by linear chains and to characterize by rheological methods the dynamics of these rings. While the work fell short of this specific goal, the outcomes of the research performed under support from this grant provided novel macromolecular synthesis methods, new separation methods for ring and linear chains, and novel rheological data on bottle brush polymers, wedge polymers and dendron-based ring molecules. The grant funded a total of 8 archival manuscripts and one patent, all of which are attached to themore » present report.« less
2016-01-01
Full control over the ceiling temperature (Tc) enables a selective transition between the monomeric and polymeric state. This is exemplified by the conversion of the monomer 2-allyloxymethyl-2-ethyl-trimethylene carbonate (AOMEC) to poly(AOMEC) and back to AOMEC within 10 h by controlling the reaction from conditions that favor ring-opening polymerization (Tc > T0) (where T0 is the reaction temperature) to conditions that favor ring-closing depolymerization (Tc < T0). The ring-closing depolymerization (RCDP) mirrors the polymerization behavior with a clear relation between the monomer concentration and the molecular weight of the polymer, indicating that RCDP occurs at the chain end. The Tc of the polymerization system is highly dependent on the nature of the solvent, for example, in toluene, the Tc of AOMEC is 234 °C and in acetonitrile Tc = 142 °C at the same initial monomer concentration of 2 M. The control over the monomer to polymer equilibrium sets new standards for the selective degradation of polymers, the controlled release of active components, monomer synthesis and material recycling. In particular, the knowledge of the monomer to polymer equilibrium of polymers in solution under selected environmental conditions is of paramount importance for in vivo applications, where the polymer chain is subjected to both high dilution and a high polarity medium in the presence of catalysts, that is, very different conditions from which the polymer was formed. PMID:27783494
Rheology modification with ring polymers
NASA Astrophysics Data System (ADS)
Vlassopoulos, Dimitris
It is now established that experimental unconcatenated ring polymers can be purified effectively by means of fractionation at the critical condition. For molecular weights well above the entanglement threshold, purified rings relax stress via power-law (with an exponent of about -0.4), sharply departing from their linear counterparts. Experimental results are in harmony with modeling predictions and simulations. Here, we present results from recent interdisciplinary efforts and discuss two challenges: (i) the nonlinear shear rheology of purified ring melts is also very different from that of unlinked chains. Whereas the latter exhibit features that can be explained, to a first approach, in the framework in the tube model, the former behave akin to unentangled chains with finite extensibility and exhibit much small deformation at steady state. (ii) blends of rings and linear polymers exhibit unique features in different regimes: The addition of minute amounts of linear chains drastically affects ring dynamics. This relates to ring purity and the ability of unlinked linear chains to thread rings. With the help of simulations, it is possible to rationalize the observed surprisingly slow viscoelastic relaxation, which is attributed to ring-linear and ring-ring penetrations. On the other hand, adding small amounts of rings to linear polymers of different molecular weights influences their linear and nonlinear rheology in an unprecedented way. The blend viscosity exceeds that of the slower component (linear) in this non-interacting mixture, and its dependencies on composition and molecular weight ratio are examined, whereas the role of molecular architecture is also addressed. Consequently, closing the ends of a linear chain can serve as a powerful means for molecular manipulation of its rheology. This presentation reflects collaborative efforts with S. Costanzo, Z-C. Yan, R. Pasquino, M. Kaliva, S. Kamble, Y. Jeong, P. Lutz, J. Allgaier, T. Chang, D. Talikis, V. Mavrantzas and M. Rubinstein.
Chemical Sensors Based on Optical Ring Resonators
NASA Technical Reports Server (NTRS)
Homer, Margie; Manfreda, Allison; Mansour, Kamjou; Lin, Ying; Ksendzov, Alexander
2005-01-01
Chemical sensors based on optical ring resonators are undergoing development. A ring resonator according to this concept is a closed-circuit dielectric optical waveguide. The outermost layer of this waveguide, analogous to the optical cladding layer on an optical fiber, is a made of a polymer that (1) has an index of refraction lower than that of the waveguide core and (2) absorbs chemicals from the surrounding air. The index of refraction of the polymer changes with the concentration of absorbed chemical( s). The resonator is designed to operate with relatively strong evanescent-wave coupling between the outer polymer layer and the electromagnetic field propagating along the waveguide core. By virtue of this coupling, the chemically induced change in index of refraction of the polymer causes a measurable shift in the resonance peaks of the ring. In a prototype that has been used to demonstrate the feasibility of this sensor concept, the ring resonator is a dielectric optical waveguide laid out along a closed path resembling a racetrack (see Figure 1). The prototype was fabricated on a silicon substrate by use of standard techniques of thermal oxidation, chemical vapor deposition, photolithography, etching, and spin coating. The prototype resonator waveguide features an inner cladding of SiO2, a core of SixNy, and a chemical-sensing outer cladding of ethyl cellulose. In addition to the ring Chemical sensors based on optical ring resonators are undergoing development. A ring resonator according to this concept is a closed-circuit dielectric optical waveguide. The outermost layer of this waveguide, analogous to the optical cladding layer on an optical fiber, is a made of a polymer that (1) has an index of refraction lower than that of the waveguide core and (2) absorbs chemicals from the surrounding air. The index of refraction of the polymer changes with the concentration of absorbed chemical( s). The resonator is designed to operate with relatively strong evanescent-wave coupling between the outer polymer layer and the electromagnetic field propagating along the waveguide core. By virtue of this coupling, the chemically induced change in index of refraction of the polymer causes a measurable shift in the resonance peaks of the ring. In a prototype that has been used to demonstrate the feasibility of this sensor concept, the ring resonator is a dielectric optical waveguide laid out along a closed path resembling a racetrack (see Figure 1). The prototype was fabricated on a silicon substrate by use of standard techniques of thermal oxidation, chemical vapor deposition, photolithography, etching, and spin coating. The prototype resonator waveguide features an inner cladding of SiO2, a core of SixNy, and a chemical-sensing outer cladding of ethyl cellulose. In addition to the ring res
Universal size properties of a star-ring polymer structure in disordered environments
NASA Astrophysics Data System (ADS)
Haydukivska, K.; Blavatska, V.
2018-03-01
We consider the complex polymer system, consisting of a ring polymer connected to the f1-branched starlike structure, in a good solvent in the presence of structural inhomogeneities. In particular cases f1=1 and f1=2 , such a system restores the synthesized tadpole-shaped polystyrenes [Doi et al., Macromolecules 46, 1075 (2013), 10.1021/ma302511j]. We assume that structural defects are correlated at large distances x according to a power law x-a. Applying the direct polymer renormalization approach, we evaluate the universal size characteristics such as the ratio of the radii of gyration of star-ring and star topologies, and compare the effective sizes of single arms in complex structures and isolated polymers of the same total molecular weight. The nontrivial impact of disorder on these quantities is analyzed.
Direct laser writing of polymer micro-ring resonator ultrasonic sensors
NASA Astrophysics Data System (ADS)
Wei, Heming; Krishnaswamy, Sridhar
2017-04-01
With the development of photoacoustic technology in recent years, ultrasound-related sensors play a vital role in a number of areas ranging from scientific research to nondestructive testing. Compared with the traditional PZT transducer as ultrasonic sensors, novel ultrasonic sensors based on optical methods such as micro-ring resonators have gained increasing attention. The total internal reflection of the light along the cavity results in light propagating in microcavities as whispering gallery modes (WGMs), which are extremely sensitive to change in the radius and refractive index of the cavity induced by ultrasound strain field. In this work, we present a polymer optical micro-ring resonator based ultrasonic sensor fabricated by direct laser writing optical lithography. The design consists of a single micro-ring and a straight tapered waveguide that can be directly coupled by single mode fibers (SMFs). The design and fabrication of the printed polymer resonator have been optimized to provide broad bandwidth and high optical quality factor to ensure high detection sensitivity. The experiments demonstrate the potential of the polymer micro-ring resonator to works as a high-performance ultrasonic sensor.
Directed Self-Assembly of Gradient Concentric Carbon Nanotube Rings
NASA Astrophysics Data System (ADS)
Hong, Suck Won; Jeong, Wonje; Ko, Hyunhyub; Tsukruk, Vladimir; Kessler, Michael; Lin, Zhiqun
2008-03-01
Hundreds of gradient concentric rings of linear conjugated polymer, (poly[2-methoxy-5-(2-ethylhexyloxy)-1,4- phenylenevinylene], i.e., MEH-PPV) with remarkable regularity over large areas were produced by controlled, repetitive ``stick- slip'' motions of the contact line in a confined geometry consisting of a sphere on a flat substrate (i.e., sphere-on-flat geometry). Subsequently, MEH-PPV rings exploited as template to direct the formation of gradient concentric rings of multiwalled carbon nanotubes (MWNTs) with controlled density. This method is simple, cost effective, and robust, combining two consecutive self-assembly processes, namely, evaporation-induced self- assembly of polymers in a sphere-on-flat geometry, followed by subsequent directed self-assembly of MWNTs on the polymer- templated surfaces.
Förster, Erik; Bohnert, Patrick; Kraus, Matthias; Kilper, Roland; Müller, Ute; Buchmann, Martin; Brunner, Robert
2016-11-20
This paper presents the conception and implementation of a variable diameter ring-cutting system for a CO2 laser with a working wavelength of 10.6 μm. The laser-cutting system is adapted to an observation zoom microscope for combined use and is applicable for the extraction of small circular areas from polymer films, such as forensic adhesive tapes in a single shot. As an important characteristic for our application, the variable diameter ring-cutting system provides telecentricity in the target area. Ring diameters are continuously tunable between 500 μm and 2 mm. A minimum width of less than 20 μm was found for the ring profile edge. The basic characteristics of the system, including telecentricity, were experimentally evaluated and demonstrated by cutting experiments on different polymer tapes and further exemplary samples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoon, Jeongha; Kim, Jinseong; Baig, Chunggi, E-mail: cbaig@unist.ac.kr
We present detailed results for the structural and rheological properties of unknotted and unconcatenated ring polyethylene (PE) melts under shear and elongation flows via direct atomistic nonequilibrium molecular dynamics simulations. Short (C{sub 78}H{sub 156}) and long (C{sub 400}H{sub 800}) ring PE melts were subjected to planar Couette flow (PCF) and planar elongational flow (PEF) across a wide range of strain rates from linear to highly nonlinear flow regimes. The results are analyzed in detail through a direct comparison with those of the corresponding linear polymers. We found that, in comparison to their linear analogs, ring melts possess rather compact chainmore » structures at or near the equilibrium state and exhibit a considerably lesser degree of structural deformation with respect to the applied flow strength under both PCF and PEF. The large structural resistance of ring polymers against an external flow field is attributed to the intrinsic closed-loop configuration of the ring and the topological constraint of nonconcatenation between ring chains in the melt. As a result, there appears to be a substantial discrepancy between ring and linear systems in terms of their structural and rheological properties such as chain orientation, the distribution of chain dimensions, viscosity, flow birefringence, hydrostatic pressure, the pair correlation function, and potential interaction energies. The findings and conclusions drawn in this work would be a useful guide in future exploration of the characteristic dynamical and relaxation mechanisms of ring polymers in bulk or confined systems under flowing conditions.« less
New Polybenzimidazole Architectures by Diels Alder Polymerization
2012-02-14
stable organic polymers known.9 This class of polymers is aromatic with the heterocyclic benzimidazole group, a five membered imidazole ring...will allow benzimidazole ring systems to be prepared from the cycloaddition with an imidazole diene. The goals of the project included synthesis
Preparation of Soypolymers by Ring-opening Polymerization of Epoxdized Soybean Oil
USDA-ARS?s Scientific Manuscript database
Ring opening polymerization of epoxidized soybean oil (ESO) initiated by boron trifluoride diethyl etherate in methylene chloride was conducted in an effort to develop useful biodegradable polymers. The resulting polymers (PESO) were characterized using Infrared (IR), differential scanning calorime...
Ring-opening Polymerization of Epoxidized Soybean Oil
USDA-ARS?s Scientific Manuscript database
Ring opening polymerization of epoxidized soybean oil (ESO) initiated by boron trifluoride diethyl etherate, (BF3•OEt2), in methylene chloride was conducted in an effort to develop useful biodegradable polymers. The resulting polymers (PESO) were characterized using Infrared (IR), differential scan...
NASA Technical Reports Server (NTRS)
Hayatsu, R.; Matsuoka, S.; Anders, E.; Scott, R. G.; Studier, M. H.
1977-01-01
Degradation techniques, including pyrolysis, depolymerization, and oxidation, were used to study the insoluble polymer from the Murchison C2 chondrite. Oxidation with Cr2O7(2-) or O2/UV led to the identification of 15 aromatic ring systems. Of 11 aliphatic acids identified, three dicarboxylic acids presumably came from hydroaromatic portions of the polymer, whereas eight monocarboxylic acids probably derive from bridging groups or ring substituents. Depolymerization with CF3COO4 yielded some of the same ring systems, as well as alkanes (C1 through C8) and alkenes (C2 through C8), alkyl (C1 through C5) benzenes and naphthalenes, and methyl- or dimethyl -indene, -indane, -phenol, -pyrrole, and -pyridine. All these compounds were detected below 200 C, and are therefore probably indigenous constituents. The properties of the meteoritic polymer were compared with the properties of a synthetic polymer produced by the Fischer-Tropsch reaction. It is suggested that the meteoritic polymer was also produced by surface catalysis.
Nanorheology of Entangled Polymer Melts
Ge, Ting; Grest, Gary S.; Rubinstein, Michael
2018-02-01
In this study, we use molecular simulations to probe the local viscoelasticity of an entangled polymer melt by tracking the motion of embedded nonsticky nanoparticles (NPs). As in conventional microrheology, the generalized Stokes-Einstein relation is employed to extract an effective stress relaxation function G GSE(t) from the mean square displacement of NPs. G GSE(t) for different NP diameters d are compared with the stress relaxation function G(t) of a pure polymer melt. The deviation of G GSE(t) from G(t) reflects the incomplete coupling between NPs and the dynamic modes of the melt. For linear polymers, a plateau in G GSE(t)more » emerges as d exceeds the entanglement mesh size a and approaches the entanglement plateau in G(t) for a pure melt with increasing d. For ring polymers, as d increases towards the spanning size R of ring polymers, G GSE(t) approaches G(t) of the ring melt with no entanglement plateau.« less
Nanorheology of Entangled Polymer Melts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ge, Ting; Grest, Gary S.; Rubinstein, Michael
In this study, we use molecular simulations to probe the local viscoelasticity of an entangled polymer melt by tracking the motion of embedded nonsticky nanoparticles (NPs). As in conventional microrheology, the generalized Stokes-Einstein relation is employed to extract an effective stress relaxation function G GSE(t) from the mean square displacement of NPs. G GSE(t) for different NP diameters d are compared with the stress relaxation function G(t) of a pure polymer melt. The deviation of G GSE(t) from G(t) reflects the incomplete coupling between NPs and the dynamic modes of the melt. For linear polymers, a plateau in G GSE(t)more » emerges as d exceeds the entanglement mesh size a and approaches the entanglement plateau in G(t) for a pure melt with increasing d. For ring polymers, as d increases towards the spanning size R of ring polymers, G GSE(t) approaches G(t) of the ring melt with no entanglement plateau.« less
Integrated polymer micro-ring resonators for optical sensing applications
NASA Astrophysics Data System (ADS)
Girault, Pauline; Lorrain, Nathalie; Poffo, Luiz; Guendouz, Mohammed; Lemaitre, Jonathan; Carré, Christiane; Gadonna, Michel; Bosc, Dominique; Vignaud, Guillaume
2015-03-01
Micro-resonators (MR) have become a key element for integrated optical sensors due to their integration capability and their easy fabrication with low cost polymer materials. Nowadays, there is a growing need on MRs as highly sensitive and selective functions especially in the areas of food and health. The context of this work is to implement and study integrated micro-ring resonators devoted to sensing applications. They are fabricated by processing SU8 polymer as core layer and PMATRIFE polymer as lower cladding layer. The refractive index of the polymers and of the waveguide structure as a function of the wavelength is presented. Using these results, a theoretical study of the coupling between ring and straight waveguides has been undertaken in order to define the MR design. Sub-micronic gaps of 0.5 μm to 1 μm between the ring and the straight waveguides have been successfully achieved with UV (i-lines) photolithography. Different superstrates such as air, water, and aqueous solutions with glucose at different concentrations have been studied. First results show a good normalized transmission contrast of 0.98, a resonator quality factor around 1.5 × 104 corresponding to a coupling ratio of 14.7%, and ring propagation losses around 5 dB/cm. Preliminary sensing experiments have been performed for different concentrations of glucose; a sensitivity of 115 ± 8 nm/RIU at 1550 nm has been obtained with this couple of polymers.
Isomer effects on polyimide properties
NASA Technical Reports Server (NTRS)
Stump, B. L.
1975-01-01
The effect of structure variation on the solubility and glass-transition temperature of polyimide polymers is investigated. The addition of alkyl substituents to an aromatic ring in the polymer molecule, the reduction in the number of imide rings per average polymer chain-length, and a variation in the symmetry of the polymer molecule are studied. The synthesis of key intermediates for the preparation of the monomers required in this investigation is reported along with progress made in the synthesis of polyimide-precursor amines that contain functional groups to allow for post-cure cross-linking.
Kilbinger, Andreas F M
2012-01-01
In this article we present a review of our recent results in one area of research we are involved in. All research efforts in our group focus on functional polymers and new ways of gaining higher levels of control with regard to the placement of functional groups within these polymers. Here, the living ring opening metathesis polymerization (ROMP) will be reviewed for which end-functionalization methods had been rare until very recently. Polymers carrying particular functional groups only at the chain-ends are, however, very interesting for a variety of industrial and academic applications. Polymeric surfactants and polymer-protein conjugates are two examples for the former and polymer-β-sheet-peptide conjugates one example for the latter. The functionalization of macroscopic or nanoscopic surfaces often relies on mono-end functional polymers. Complex macromolecular architectures are often constructed from macromolecules carrying exactly one functional group at their chain- end. The ring opening metathesis polymerization is particularly interesting in this context as it is one of the most functional group tolerant polymerization methods known. Additionally, high molecular weight polymers are readily accessible with this technique, a feature that living radical polymerizations often struggle to achieve. Finding new ways of functionalizing the polymer chain-end of ROMP polymers has therefore been a task long overdue. Here, we present our contribution to this area of research.
Accelerated sampling by infinite swapping of path integral molecular dynamics with surface hopping
NASA Astrophysics Data System (ADS)
Lu, Jianfeng; Zhou, Zhennan
2018-02-01
To accelerate the thermal equilibrium sampling of multi-level quantum systems, the infinite swapping limit of a recently proposed multi-level ring polymer representation is investigated. In the infinite swapping limit, the ring polymer evolves according to an averaged Hamiltonian with respect to all possible surface index configurations of the ring polymer and thus connects the surface hopping approach to the mean-field path-integral molecular dynamics. A multiscale integrator for the infinite swapping limit is also proposed to enable efficient sampling based on the limiting dynamics. Numerical results demonstrate the huge improvement of sampling efficiency of the infinite swapping compared with the direct simulation of path-integral molecular dynamics with surface hopping.
Biocompatible, Biodegradable Polymers for Use in Bone Repair,
1987-01-01
as intact polymers and because their degradation products are carbon dioxide and water. 7 B. Microstructure, Morphology, Synthesis The microstructure...Hydrophilic flIe x iblIe 0 6. Carbonate R-O-C-O-R Hydrophilic r ig id Hollinger Ibav %lark page 15 D. Potential Biodegradable Polymers For producing high...diacids or hydroxvacids. Lactone rings with three to six carbons within the ring can be used as monomers. This limits the ratio ot sp4 to sp2 carbons
Ring-Opening Polymerization of Lactide to Form a Biodegradable Polymer
ERIC Educational Resources Information Center
Robert, Jennifer L.; Aubrecht, Katherine B.
2008-01-01
In this laboratory activity for introductory organic chemistry, students carry out the tin(II) bis(2-ethylhexanoate)/benzyl alcohol mediated ring-opening polymerization of lactide to form the biodegradable polymer polylactide (PLA). As the mechanism of the polymerization is analogous to that of a transesterification reaction, the experiment can be…
Ring polymer dynamics in curved spaces
NASA Astrophysics Data System (ADS)
Wolf, S.; Curotto, E.
2012-07-01
We formulate an extension of the ring polymer dynamics approach to curved spaces using stereographic projection coordinates. We test the theory by simulating the particle in a ring, {T}^1, mapped by a stereographic projection using three potentials. Two of these are quadratic, and one is a nonconfining sinusoidal model. We propose a new class of algorithms for the integration of the ring polymer Hamilton equations in curved spaces. These are designed to improve the energy conservation of symplectic integrators based on the split operator approach. For manifolds, the position-position autocorrelation function can be formulated in numerous ways. We find that the position-position autocorrelation function computed from configurations in the Euclidean space {R}^2 that contains {T}^1 as a submanifold has the best statistical properties. The agreement with exact results obtained with vector space methods is excellent for all three potentials, for all values of time in the interval simulated, and for a relatively broad range of temperatures.
NASA Astrophysics Data System (ADS)
Dertinger, Jennifer J.; Walker, Amy V.
2013-08-01
The role of the ionic liquid (IL) anion structure on analyte signal enhancements has been systematically investigated in secondary ion mass spectrometry (SIMS) using a variety of samples, including lipids, sterols, polymers, and peptides. Twenty-four ILs were synthesized. The 12 matrix acids were cinnamic acid derivatives. Two bases were employed: 1-methylimidazole and tripropylamine. Three matrices, methylimmidazolium o-coumarate, tripropylammonium o-coumarate, and tripropylammonium 3,4,5-trimethoxycinnamate, were "universal" matrices enhancing all analytes tested. The pKa of the matrix acid does not appear to have a strong effect on analyte ion intensities. Rather, it is observed that a single hydroxyl group on the anion aromatic ring leads to significantly increased molecular ion intensities. No analyte signal enhancements were observed for -CH3, -CF3 and -OCH3 groups present on the aromatic ring. The position of the -OH group on the aromatic ring also alters molecular ion intensity enhancements. As well as the chemical identity and position of substituents, the number of moieties on the aromatic ring may affect the analyte signal enhancements observed. These observations suggest that the activation of the IL anion aromatic ring is important for optimizing analyte signal intensities. The implications for SIMS imaging of complex structures, such as biological samples, are discussed.
Polymeric molecular sieve membranes for gas separation
Dai, Sheng; Qiao, Zhenan; Chai, Songhai
2017-08-15
A porous polymer membrane useful in gas separation, the porous polymer membrane comprising a polymeric structure having crosslinked aromatic groups and a hierarchical porosity in which micropores having a pore size less than 2 nm are present at least in an outer layer of the porous polymer membrane, and macropores having a pore size of over 50 nm are present at least in an inner layer of the porous polymer membrane. Also described are methods for producing the porous polymer membrane in which a non-porous polymer membrane containing aromatic rings is subjected to a Friedel-Crafts crosslinking reaction in which a crosslinking molecule crosslinks the aromatic rings in the presence of a Friedel-Crafts catalyst and organic solvent under sufficiently elevated temperature, as well as methods for using the porous polymer membranes for gas or liquid separation, filtration, or purification.
Zhang, Yi-Mei; Huang, Zheng; Zhang, Ji; Wu, Wan-Xia; Liu, Yan-Hong; Yu, Xiao-Qi
2017-03-28
Cationic liposomes and polymers are both important candidates for use as non-viral gene vectors. However, both of them have special shortcomings and application limits. This work is devoted to the combination of advantages of liposomes and polymers. The ring-opening polymerization strategy was used for the preparation of amphiphilic polymers from cyclen-based cationic small lipids. The non-hydrophobic polymer and the corresponding lipids were also prepared for performing structure-activity relationship studies. Gel electrophoresis results reveal that both the lipopolymers and liposomes could effectively condense DNA into nanoparticles and protect DNA from degradation. Compared to polymers, the DNA binding ability of liposomes is more affected by hydrophobic tails. Under the same dosage, the synthetic polymers have stronger DNA binding ability than the liposomes. In vitro transfection experiments show that the polymers could give better transfection efficiency, which was much higher than those of the corresponding liposomes and non-hydrophobic polymer. The oleyl moiety is suitable for lipidic vectors, but things were different for polymers. Under optimized conditions, up to 14.2 times higher transfection efficiency than that for 25 kDa bPEI could be obtained. More importantly, the lipopolymers showed much better serum tolerance, which was further confirmed by protein adsorption, gel electrophoresis, flow cytometry, and CLSM assays. The results indicate that ring-opening polymerization is a promising strategy for the enhancement of the gene delivery efficiency and biocompatibility of cationic lipids.
Solid polymer battery electrolyte and reactive metal-water battery
Harrup, Mason K.; Peterson, Eric S.; Stewart, Frederick F.
2000-01-01
In one implementation, a reactive metal-water battery includes an anode comprising a metal in atomic or alloy form selected from the group consisting of periodic table Group 1A metals, periodic table Group 2A metals and mixtures thereof. The battery includes a cathode comprising water. Such also includes a solid polymer electrolyte comprising a polyphosphazene comprising ligands bonded with a phosphazene polymer backbone. The ligands comprise an aromatic ring containing hydrophobic portion and a metal ion carrier portion. The metal ion carrier portion is bonded at one location with the polymer backbone and at another location with the aromatic ring containing hydrophobic portion. The invention also contemplates such solid polymer electrolytes use in reactive metal/water batteries, and in any other battery.
Unexpected power-law stress relaxation of entangled ring polymers
KAPNISTOS, M.; LANG, M.; PYCKHOUT-HINTZEN, W.; RICHTER, D.; CHO, D.; CHANG, T.
2016-01-01
After many years of intense research, most aspects of the motion of entangled polymers have been understood. Long linear and branched polymers have a characteristic entanglement plateau and their stress relaxes by chain reptation or branch retraction, respectively. In both mechanisms, the presence of chain ends is essential. But how do entangled polymers without ends relax their stress? Using properly purified high-molar-mass ring polymers, we demonstrate that these materials exhibit self-similar dynamics, yielding a power-law stress relaxation. However, trace amounts of linear chains at a concentration almost two decades below their overlap cause an enhanced mechanical response. An entanglement plateau is recovered at higher concentrations of linear chains. These results constitute an important step towards solving an outstanding problem of polymer science and are useful for manipulating properties of materials ranging from DNA to polycarbonate. They also provide possible directions for tuning the rheology of entangled polymers. PMID:18953345
Chen, Hu; Hurhangee, Michael; Nikolka, Mark; Zhang, Weimin; Kirkus, Mindaugas; Neophytou, Marios; Cryer, Samuel J; Harkin, David; Hayoz, Pascal; Abdi-Jalebi, Mojtaba; McNeill, Christopher R; Sirringhaus, Henning; McCulloch, Iain
2017-09-01
The charge-carrier mobility of organic semiconducting polymers is known to be enhanced when the energetic disorder of the polymer is minimized. Fused, planar aromatic ring structures contribute to reducing the polymer conformational disorder, as demonstrated by polymers containing the indacenodithiophene (IDT) repeat unit, which have both a low Urbach energy and a high mobility in thin-film-transistor (TFT) devices. Expanding on this design motif, copolymers containing the dithiopheneindenofluorene repeat unit are synthesized, which extends the fused aromatic structure with two additional phenyl rings, further rigidifying the polymer backbone. A range of copolymers are prepared and their electrical properties and thin-film morphology evaluated, with the co-benzothiadiazole polymer having a twofold increase in hole mobility when compared to the IDT analog, reaching values of almost 3 cm 2 V -1 s -1 in bottom-gate top-contact organic field-effect transistors. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Electrically conducting porphyrin and porphyrin-fullerene electropolymers
Gust, Jr., John Devens; Liddell, Paul Anthony; Gervaldo, Miguel Andres; Bridgewater, James Ward; Brennan, Bradley James; Moore, Thomas Andrew; Moore, Ana Lorenzelli
2014-03-11
Compounds with aryl ring(s) at porphyrin meso position(s) bearing an amino group in position 4 relative to the porphyrin macrocycle, and at least one unsubstituted 5 (hydrogen-bearing) meso position with the 10-, 15-, and/or 20-relationship to the aryl ring bearing the amino group, and metal complexes thereof, feature broad spectral absorption throughout the visible region. These compounds are electropolymerized to form electrically conducting porphyrin and porphyrin-fullerene polymers that are useful in photovoltaic applications. The structure of one such electrically conducting porphyrin polymer is shown below. ##STR00001##
Degradation of different elastomeric polymers in simulated geothermal environments at 300°C
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sugama, Toshifumi; Pyatina, Tatiana; Redline, Erica Marie
This study evaluates the degradation of six different elastomeric polymers used for O-rings: EPDM, FEPM, type I- and II-FKM, FFKM, and FSR, in five different simulated geothermal environments at 300 °C: 1) non-aerated steam/cooling cycles, 2) aerated steam/cooling cycles, 3) water-based drilling fluid, 4) CO 2-rich geo-brine fluid, and, 5) heat–cool water quenching cycles. The factors assessed included the extent of oxidation, changes in thermal behavior, micro-defects, permeation of ionic species from the test environments into the O-rings, silicate-related scale-deposition, and changes in the O-rings' elastic modulus. The reliability of the O-rings to maintain their integrity depended on the elastomericmore » polymer composition and the exposure environment. FSR disintegrated while EPDM was oxidized only to some degree in all the environments, FKM withstood heat-water quenching but underwent chemical degradation, FEPM survived in all the environments with the exception of heat-water quenching where it underwent severe oxidation-induced degradation, and FFKM displayed outstanding compatibility with all the tested environments. This study discusses the degradation mechanisms of the polymers under the aforementioned conditions.« less
Degradation of different elastomeric polymers in simulated geothermal environments at 300°C
Sugama, Toshifumi; Pyatina, Tatiana; Redline, Erica Marie; ...
2015-07-17
This study evaluates the degradation of six different elastomeric polymers used for O-rings: EPDM, FEPM, type I- and II-FKM, FFKM, and FSR, in five different simulated geothermal environments at 300 °C: 1) non-aerated steam/cooling cycles, 2) aerated steam/cooling cycles, 3) water-based drilling fluid, 4) CO 2-rich geo-brine fluid, and, 5) heat–cool water quenching cycles. The factors assessed included the extent of oxidation, changes in thermal behavior, micro-defects, permeation of ionic species from the test environments into the O-rings, silicate-related scale-deposition, and changes in the O-rings' elastic modulus. The reliability of the O-rings to maintain their integrity depended on the elastomericmore » polymer composition and the exposure environment. FSR disintegrated while EPDM was oxidized only to some degree in all the environments, FKM withstood heat-water quenching but underwent chemical degradation, FEPM survived in all the environments with the exception of heat-water quenching where it underwent severe oxidation-induced degradation, and FFKM displayed outstanding compatibility with all the tested environments. This study discusses the degradation mechanisms of the polymers under the aforementioned conditions.« less
Electro Optic Modulation In a Polymer Ringresonator
NASA Astrophysics Data System (ADS)
Leinse, A.; Driessen, A.; Diemeer, M. B. J.
2004-05-01
A thermo optic and electro optic (EO) tunable polymer ringresonator was realized and tested. The device consisted of a microring resonator made of the 4-dimethylamino-4‵-nitrostilbene (DANS) containing polymer and measurements were done on the through port of this device. The ring was used in a vertical coupling structure. The port waveguides were made of the photo-definable epoxy (SU8). The rings used had a diameter of 100 μm and thermo optic tuning of about 170 pm/°C was measured. EO modulation was measured for TE polarization.
Active Curved Polymers Form Vortex Patterns on Membranes.
Denk, Jonas; Huber, Lorenz; Reithmann, Emanuel; Frey, Erwin
2016-04-29
Recent in vitro experiments with FtsZ polymers show self-organization into different dynamic patterns, including structures reminiscent of the bacterial Z ring. We model FtsZ polymers as active particles moving along chiral, circular paths by Brownian dynamics simulations and a Boltzmann approach. Our two conceptually different methods point to a generic phase behavior. At intermediate particle densities, we find self-organization into vortex structures including closed rings. Moreover, we show that the dynamics at the onset of pattern formation is described by a generalized complex Ginzburg-Landau equation.
NASA Astrophysics Data System (ADS)
Sasai, Kensuke; Keyamura, Kazuki; Suzuki, Haruka; Toyoda, Hirotaka
2018-06-01
For the surface treatment of a polymer tube, a ring-shaped atmospheric pressure microwave plasma (APMP) using a coaxial waveguide is studied. In this APMP, a dielectric plate is used not only as a partial mirror for cavity resonation but also for the precise alignment of the discharge gap for ring-shaped plasma production. The optimum position of the dielectric plate is investigated by electromagnetic wave simulation. On the basis of simulation results, a ring-shaped plasma with good uniformity along the ring is produced. The coaxial APMP is applied to the surface treatment of ethylene tetrafluoroethylene. A very fast surface modification within 3 s is observed.
Blob-Spring Model for the Dynamics of Ring Polymer in Obstacle Environment
NASA Astrophysics Data System (ADS)
Lele, Ashish K.; Iyer, Balaji V. S.; Juvekar, Vinay A.
2008-07-01
The dynamical behavior of cyclic macromolecules in a fixed obstacle (FO) environment is very different than the behavior of linear chains in the same topological environment; while the latter relax by a snake-like reptational motion from their chain ends the former can relax only by contour length fluctuations since they are endless. Duke, Obukhov and Rubinstein proposed a scaling model (the DOR model) to interpret the dynamical scaling exponents shown by Monte Carlo simulations of rings in a FO environment. We present a model (blob-spring model) to describe the dynamics of flexible and non-concatenated ring polymer in FO environment based on a theoretical formulation developed for the dynamics of an unentangled fractal polymer. We argue that the perpetual evolution of ring perimeter by the motion of contour segments results in an extra frictional load. Our model predicts self-similar dynamics with scaling exponents for the molecular weight dependence of diffusion coefficient and relaxation times that are in agreement with the scaling model proposed by Obukhov et al.
Electrically conductive alternating copolymers
Aldissi, M.; Jorgensen, B.S.
1987-08-31
Polymers which are soluble in common organic solvents and are electrically conductive, but which also may be synthesized in such a manner that they become nonconductive. Negative ions from the electrolyte used in the electrochemical synthesis of a polymer are incorporated into the polymer during the synthesis and serve as a dopant. A further electrochemical step may be utilized to cause the polymer to be conductive. The monomer repeat unit is comprised of two rings, a pyrrole molecule joined to a thienyl group, or a furyl group, or a phenyl group. The individual groups of the polymers are arranged in an alternating manner. For example, the backbone arrangement of poly(furylpyrrole) is -furan-pyrrole-furan-pyrrole- furan-pyrrole. An alkyl group or phenyl group may be substituted for either or both of the hydrogen atoms of the pyrrole ring.
Thermoset polymers via ring opening metathesis polymerization of functionalized oils
Larock, Richard C; Henna, Phillip H; Kessier, Michael R
2012-11-27
The invention provides a method for producing a thermosetting resin from renewable oils, the method comprising supplying renewable oil molecules containing strained ring alkene moieties; reacting the alkene moieties with cyclic alkenes to create a polymer; and repeating the above two steps until the resin having desired characteristics are obtained. Also provided is a thermoset resin comprising functionalized renewable oil polymerized with a co-monomer.
Liu, Deyu; Wang, Junyi; Gu, Chunyang; Li, Yonghai; Bao, Xichang; Yang, Renqiang
2018-02-01
Two series of new polymers with medium and wide bandgaps to match fullerene (PC 71 BM) and fullerene-free 3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone))-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3-d:2',3'-d']-s-indaceno[1,2-b:5,6-b']dithiophene (ITIC) acceptors are designed and synthesized, respectively. For constructing the key donor building blocks, the effective symmetry-breaking strategy is employed. Two common aromatic rings (thiophene and benzene) are chosen as one side substituted groups in the asymmetric benzodithiophene (BDT) monomers. In addition, another rigid benzene ring is inserted between aryl and thioether in the side chains, which results in larger twisting and destroying the aggregation and forming longer lever arms. As a result, highly ordered polymers (PBDTsTh-FBT and PBDTsPh-FBT) with strong aggregation properties can blend well with roughly spherical PC 71 BM, while amorphous polymers (PBDTsThPh-BDD and PBDTsPhPh-BDD) with long and rigid aryl rings show good miscibility with elongated ITIC, and finally, both devices exhibit excellent power conversion efficiencies over 10%. Thus, it clearly shows that the asymmetric BDT unit is an excellent donor building block to construct highly efficient photovoltaic polymers. Meanwhile, this work demonstrates that it is not necessary that high-performance fullerene-free polymer solar cells (PSCs) require highly ordered microstructures in the blending films, different from the fullerene-based PSCs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Guron, Marta
There is a need for new synthetic routes to high boron content materials for applications as polymeric precursors to ceramics, as well as in neutron shielding and potential medical applications. To this end, new ruthenium-catalyzed olefin metathesis routes have been devised to form new complex polyboranes and polymeric species. Metathesis of di-alkenyl substituted o-carboranes allowed the synthesis of ring-closed products fused to the carborane cage, many of which are new compounds and one that offers a superior synthetic method to one previously published. Acyclic diene metathesis of di-alkenyl substituted m-carboranes resulted in the formation of new main-chain carborane-containing polymers of modest molecular weights. Due to their extremely low char yields, and in order to explore other metathesis routes, ring opening metathesis polymerization (ROMP) was used to generate the first examples of poly(norbornenyl- o-carboranes). Monomer synthesis was achieved via a two-step process, incorporating Ti-catalyzed hydroboration to make 6-(5-norbornenyl)-decaborane, followed by alkyne insertion in ionic liquid media to achieve 1,2-R2 -3-norbornenyl o-carborane species. The monomers were then polymerized using ROMP to afford several examples of poly(norbornenyl- o-carboranes) with relatively high molecular weights. One such polymer, [1-Ph, 3-(=CH2-C5H7-CH2=)-1,2-C 2B10H10]n, had a char yield very close to the theoretical char yield of 44%. Upon random copolymerization with poly(6-(5-norbornenyl) decaborane), char yields significantly increased to 80%, but this number was well above the theoretical value implicating the formation of a boron-carbide/carbon ceramic. Finally, applications of polyboranes were explored via polymer blends toward the synthesis of ceramic composites and the use of polymer precursors as reagents for potential ultra high temperature ceramic applications. Upon pyrolysis, polymer blends of poly(6-(5-norbornenyl)-decaborane) and poly(methylcarbosilane) converted into boron-carbide/silicon-carbide ceramics with high char yields. These polymer blends were also shown to be useful as reagents for synthesis of hafnium-boride/hafnium-carbide/silicon carbide and zirconium-boride/zirconium-carbide/silicon carbide composites.
Ring-polymer instanton theory of electron transfer in the nonadiabatic limit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richardson, Jeremy O., E-mail: jeremy.richardson@fau.de
We take the golden-rule instanton method derived in the previous paper [J. O. Richardson, R. Bauer, and M. Thoss, J. Chem. Phys. 143, 134115 (2015)] and reformulate it using a ring-polymer instanton approach. This gives equations which can be used to compute the rates of electron-transfer reactions in the nonadiabatic (golden-rule) limit numerically within a semiclassical approximation. The multidimensional ring-polymer instanton trajectories are obtained efficiently by minimization of the action. In this form, comparison with Wolynes’ quantum instanton method [P. G. Wolynes, J. Chem. Phys. 87, 6559 (1987)] is possible and we show that our semiclassical approach is the steepest-descentmore » limit of this method. We discuss advantages and disadvantages of both methods and give examples of where the new approach is more accurate.« less
Functionalization of multi-walled carbon nanotubes by epoxide ring-opening polymerization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin Fanlong; Rhee, Kyong Yop; Park, Soo-Jin, E-mail: sjpark@inha.ac.kr
2011-12-15
In this study, covalent functionalization of carbon nanotubes (CNTs) was accomplished by surface-initiated epoxide ring-opening polymerization. FT-IR spectra showed that polyether and epoxide group covalently attached to the sidewalls of CNTs. TGA results indicated that the polyether was successfully grown from the CNT surface, with the final products having a polymer weight percentage of ca. 14-74 wt%. The O/C ratio of CNTs increased significantly from 5.1% to 29.8% after surface functionalization of CNTs. SEM and TEM images of functionalized CNTs exhibited that the tubes were enwrapped by polymer chains with thickness of several nanometers, forming core-shell structures with CNTs atmore » the center. - Graphical abstract: Functionalized CNTs were enwrapped by polymer chains with thickness of several nanometers, forming core-shell structures with CNTs at the center. Highlights: Black-Right-Pointing-Pointer CNTs were functionalized by epoxide ring-opening polymerization. Black-Right-Pointing-Pointer Polyether and epoxide group covalently attached to the sidewalls of CNTs. Black-Right-Pointing-Pointer Functionalized CNTs have a polymer weight percentage of ca. 14-74 wt%. Black-Right-Pointing-Pointer Functionalized CNTs were enwrapped by polymer chains with thickness of several nanometers.« less
Mechanism for Ring-Opening of Aromatic Polymers by Remote Atmospheric Pressure Plasma
NASA Astrophysics Data System (ADS)
Gonzalez, Eleazar; Barankin, Michael; Guschl, Peter; Hicks, Robert
2009-10-01
A low-temperature, atmospheric pressure oxygen and helium plasma was used to treat the surfaces of polyetheretherketone, polyphenylsulfone, polyethersulfone, and polysulfone. These aromatic polymers were exposed to the afterglow of the plasma, which contained oxygen atoms, and to a lesser extent metastable oxygen (^1δg O2) and ozone. After less than 2.5 seconds treatment, the polymers were converted from a hydrophobic state with a water contact angle of 85±5 to a hydrophilic state with a water contact angle of 13±5 . It was found that plasma activation increased the bond strength to adhesives by as much as 4 times. X-ray photoelectron spectroscopy revealed that between 7% and 27% of the aromatic carbon atoms on the polymer surfaces was oxidized and converted into aldehyde and carboxylic acid groups. Analysis of polyethersulfone by internal reflection infrared spectroscopy showed that a fraction of the aromatic carbon atoms were transformed into C=C double bonds, ketones, and carboxylic acids after plasma exposure. It was concluded that the oxygen atoms generated by the atmospheric pressure plasma insert into the double bonds on the aromatic rings, forming a 3-member epoxy ring, which subsequently undergoes ring opening and oxidation to yield an aldehyde and a carboxylic acid group.
Li, Yike; Samet, Cindy
2015-09-17
Hydrogen-bonded complexes of acetylene (Ac) with the polymers polystyrene (PS), poly(4-vinylpyridine) (P4VP), and poly(2-vinylpyridine) (P2VP) have been characterized for the first time at 16 K in a "polymer soft-landing isolation" experiment which is being pioneered in our research laboratory. In particular, changes in vibrational modes of Ac provide ample evidence for hydrogen-bonded complexes between Ac and the phenyl groups of PS or the pyridyl groups of P4VP and P2VP. With PS, the proton on the top Ac molecule of the classic T-shaped Ac dimer interacts with the π cloud of the benzene (Bz) ring to form a C-H---π interaction, while the π cloud of the lower Ac forms a second C-H---π interaction with a proton on the Bz ring. An analogous (ring)1-(Ac)2 double interaction occurs between an Ac dimer and the pyridine (Pyr) rings on both P2VP and P4VP, yielding a C-H---N and C-H---π interaction. With P4VP and P2VP a second bridged (ring)2-(Ac)2 product is formed, with the Ac dimer forming nearly collinear C-H---N hydrogen bonds to adjacent Pyr rings. On P2VP this bridged product is the only one after extensive annealing. These complexes in which Ac acts as both proton donor and acceptor have not previously been observed in conventional matrix isolation experiments. This study is the second from our laboratory employing this method, which represents a slight modification of the traditional matrix isolation technique.
``Coffee-ring'' patterns of polymer droplets
NASA Astrophysics Data System (ADS)
Biswas, Nupur; Datta, Alokmay
2013-02-01
Dried droplets of polymer solutions carries the self-assembly behavior of polymer molecules by forming various patterns. Pattern formation is a consequence of deposition of molecules depending on motion of the contact line during the drying process. The contact line motion depends on initial polymer concentrations and hence entanglement. Thus depending on entanglement the patterns represent the `particle' like or `collective' behavior of polymer molecules.
Integrated optics ring-resonator chemical sensor with polymer transduction layer
NASA Technical Reports Server (NTRS)
Ksendzov, A.; Homer, M. L.; Manfreda, A. M.
2004-01-01
An integrated optics chemical sensor based on a ring resonator with an ethyl cellulose polymer coating has been demonstrated. The measured sensitivity to isopropanol in air is 50 ppm-the level immediately useful for health-related air quality monitoring. The resonator was fabricated using SiO2 and SixNy materials. The signal readout is based on tracking the wavelength of a resonance peak. The resonator layout optimisation for sensing applications is discussed.
Role of special cross-links in structure formation of bacterial DNA polymer
NASA Astrophysics Data System (ADS)
Agarwal, Tejal; Manjunath, G. P.; Habib, Farhat; Lakshmi Vaddavalli, Pavana; Chatterji, Apratim
2018-01-01
Using data from contact maps of the DNA-polymer of Escherichia coli (E. Coli) (at kilobase pair resolution) as an input to our model, we introduce cross-links between monomers in a bead-spring model of a ring polymer at very specific points along the chain. Via suitable Monte Carlo simulations, we show that the presence of these cross-links leads to a particular organization of the chain at large (micron) length scales of the DNA. We also investigate the structure of a ring polymer with an equal number of cross-links at random positions along the chain. We find that though the polymer does get organized at the large length scales, the nature of the organization is quite different from the organization observed with cross-links at specific biologically determined positions. We used the contact map of E. Coli bacteria which has around 4.6 million base pairs in a single circular chromosome. In our coarse-grained flexible ring polymer model, we used 4642 monomer beads and observed that around 80 cross-links are enough to induce the large-scale organization of the molecule accounting for statistical fluctuations caused by thermal energy. The length of a DNA chain even of a simple bacterial cell such as E. Coli is much longer than typical proteins, hence we avoided methods used to tackle protein folding problems. We define new suitable quantities to identify the large scale structure of a polymer chain with a few cross-links.
NASA Astrophysics Data System (ADS)
Cota, Iuliana
2017-04-01
Biodegradable polymers represent a class of particularly useful materials for many biomedical and pharmaceutical applications. Among these types of polyesters, poly(ɛ-caprolactone) and polylactides are considered very promising for controlled drug delivery devices. These polymers are mainly produced by ring-opening polymerization of their respective cyclic esters, since this method allows a strict control of the molecular parameters (molecular weight and distribution) of the obtained polymers. The most widely used catalysts for ring-opening polymerization of cyclic esters are tin- and aluminium-based organometallic complexes; however since the contamination of the aliphatic polyesters by potentially toxic metallic residues is particularly of concern for biomedical applications, the possibility of replacing organometallic initiators by novel less toxic or more efficient organometallic complexes has been intensively studied. Thus, in the recent years, the use of highly reactive rare earth initiators/catalysts leading to lower polymer contamination has been developed. The use of rare earth complexes is considered a valuable strategy to decrease the polyester contamination by metallic residues and represents an attractive alternative to traditional organometallic complexes.
Effects of topology on the adsorption of singly tethered ring polymers to attractive surfaces.
Li, Bing; Sun, Zhao-Yan; An, Li-Jia
2015-07-14
We investigate the effect of topology on the equilibrium behavior of singly tethered ring polymers adsorbed on an attractive surface. We focus on the change of square radius of gyration Rg(2), the perpendicular component Rg⊥(2) and the parallel component Rg‖(2) to the adsorbing surface, the mean contacting number of monomers with the surface
Effect of viscosity of a thermoplastic prepreg and matrix upon winding of rings
NASA Astrophysics Data System (ADS)
Stavrov, V. P.; Markov, A. V.; Zhernovskii, A. V.; Friedrich, K. F.
2000-05-01
The problem of compression of a unidirectional layer and shear of a polymer interlayer during winding of rings is considered. The equations determining the dependence of the layer thickness and stresses on the parameters entering into the power flow law for a prepreg and polymer matrix and on the basic parameters of the winding process—the initial tension of the prepreg, its placement rate, and the radius of a mandrel—are derived. The ring thickness measurements obtained at various temperatures and initial tension forces of plies confirm the adequacy of the model offered. It is found that the viscous properties of the prepreg and matrix upon winding affect the relative change in the layer thickness to a greater extent than the stresses in these layers. With increase in temperature and tension force upon winding, the effect of viscous deformations of the prepreg and matrix increases. A decrease in viscosity and an increase in the tension force of the tape lead to a higher strength of the ring in tension and interlaminar shear; however, the growing percolation of the polymer melt leads to a greater inhomogeneity of the structure of the composite in the ring and to a lower reinforcing effect of the factors mentioned.
Study of soybean oil-based polymers for controlled release anticancer drugs
USDA-ARS?s Scientific Manuscript database
Soybean oil-based polymers were prepared by the ring-opening polymerization of epoxidized soybean oil with Lewis acid catalyst. The formed polymers (HPESO) could be converted into hydrogels through hydrolysis. Characterization and viscoelastic properties of this soy hydrogel and application in contr...
Jim Parkas; Magnus Paulsson; Terashima Noritsugu; Ulla Westermark; Sally Ralph
2004-01-01
Light-induced yellowing of lignocellulosicmaterials has been studied using 13C-enriched DHP (dehydrogenation polymer), selectively 13C-enriched at positions 1, 3, 4, and 5 in the aromatic ring, and quantitative solution state 13C NMR spectroscopy. The NMR study confirmed the results of previous studies using side-chain labeled DHP, mainly that coniferyl alcohol end...
Mukherjee, Amit; Saez, Cristian; Lutkenhaus, Joe
2001-01-01
FtsZ, the ancestral homologue of eukaryotic tubulins, assembles into the Z ring, which is required for cytokinesis in prokaryotic cells. Both FtsZ and tubulin have a GTPase activity associated with polymerization. Interestingly, the ftsZ2 mutant is viable, although the FtsZ2 mutant protein has dramatically reduced GTPase activity due to a glycine-for-aspartic acid substitution within the synergy loop. In this study, we have examined the properties of FtsZ2 and found that the reduced GTPase activity is not enhanced by DEAE-dextran-induced assembly, indicating it has a defective catalytic site. In the absence of DEAE-dextran, FtsZ2 fails to assemble unless supplemented with wild-type FtsZ. FtsZ has to be at or above the critical concentration for copolymerization to occur, indicating that FtsZ is nucleating the copolymers. The copolymers formed are relatively stable and appear to be stabilized by a GTP-cap. These results indicate that FtsZ2 cannot nucleate assembly in vitro, although it must in vivo. Furthermore, the stability of FtsZ-FtsZ2 copolymers argues that FtsZ2 polymers would be stable, suggesting that stable FtsZ polymers are able to support cell division. PMID:11717278
Test System to Study the Ignition of Metals by Polymers in Oxygen
NASA Technical Reports Server (NTRS)
Shoffstall, Michael S.; Stoltzfus, Joel M.; Fries, Joseph (Technical Monitor)
2000-01-01
A new test system that uses Laser energy to ignite a polymer promoter has been developed at the NASA White Sands Test Facility. It will facilitate the study of the spread of fire from a burning polymer material to the metal surrounding it. The system can be used to answer questions regarding the effects of configuration on ignition and combustion. The data obtained from this test could also be used to develop mathematical models for analyzing the effects of configuration on ignition and combustion. The system features a 10,000-psi (69-MPa) test chamber with sight glass windows on either end and a 25-watt carbon dioxide Laser for an ignition source. The test system can be used with gaseous oxygen, nitrogen or any mixture of the two gases. To minimize the effect of preheating the metallic, the polymer is ignited with a minimal amount of Laser energy. Igniting the polymer in this fashion also simplifies the thermodynamic analysis of the ignition and propagation reactions. The system is very robust, versatile and straightforward to use. Depending on the test pressure and configuration, the test system operator can perform as many as 20 tests per day. Test results verify that ignition and combustion of the metallic sample is not only dependent on pressure, material type and temperature, but configuration of both the polymer promoter and metallic sample. Both 6061 aluminum and 316 stainless steel 0.25-inch (6.35-mm) diameter rods with a standard 0-ring groove were tested with Buna-N, Silicone, Teflon and Viton 0-rings. The system ignited all four types of 0-rings in oxygen at pressures ranging from ambient to 10,000 psi (69 MPa). However, neither the stainless steel nor the aluminum rods on which the O-rings were mounted ignited in any test conditions. Future testing may be done on the 0.25-inch (6.35-mm) rod and O-ring configuration to evaluate the lack of ignition in these tests. Future configurations may include a plug of polymer in the base of the sample and replicas of fire-damaged components. Furthermore, the test system may be used in the future to analyze the oxidation rate of Laser-heated metals in gaseous oxygen.
Bond-equilibrium theory of liquid Se-Te alloys. II. Effect of singly attached ring molecules
NASA Astrophysics Data System (ADS)
Cutler, Melvin; Bez, Wolfgang G.
1981-06-01
A statistical-mechanical theory for bond equilibrium of chain polymers containing threefold (3F) and onefold (1F) bond defects is extended to include the effects of free ring molecules and ring molecules attached to chains by a single 3F atom. Positively charged singly attached rings are shown to play a key role in bond equilibrium in liquid Sex Te1-x by permitting the formation of ion pairs in which both constituents are effectively chain terminators, thus decreasing the average polymer size. The theory is applied to explain the behavior of the paramagnetic susceptibility, χp, and electronic transport as affected by the Fermi energy EF. It is found that the increase in χp with the concentration of Te is primarily the result of the smaller energy for breaking Te bonds. In addition, attached rings play an important role in determining the effect of temperature on χp. At x<~0.5, the concentrations of both free and attached rings becomes small at high T because of the high concentration of bond defects.
Block copolymer adhesion promoters via ring-opening metathesis polymerization
Kent, M.S.; Saunders, R.
1997-02-18
Coupling agents are disclosed based on functionalized block copolymers for bonding thermoset polymers to solid materials. These are polymers which possess at least two types of functional groups, one which is able to attach to and react with solid surfaces, and another which can react with a thermoset resin, which are incorporated as pendant groups in monomers distributed in blocks (typically two) along the backbone of the chain. The block copolymers in this invention are synthesized by living ring-opening metathesis polymerization. 18 figs.
Isomer effects on polyimide properties
NASA Technical Reports Server (NTRS)
Stump, B. L.
1978-01-01
Thermally stable polyimide polymers were prepared. Parameters explored include asymmetry of substitution, addition of alkyl substituents to an aromatic ring, and an increase in the number of aromatic rings present in the diamine monomer. It is shown that the use of an asymmetrical diamine in the preparation of a polyimide produces a polymer with a markedly lowered glass transition temperature. This is achieved with little or no sacrifice of thermal stability. An alternate approach taken was to prepare imide monomers which are capable of addition-type polymerization.
Block copolymer adhesion promoters via ring-opening metathesis polymerization
Kent, Michael S.; Saunders, Randall
1997-01-01
Coupling agents based on functionalized block copolymers for bonding thermoset polymers to solid materials. These are polymers which possess at least two types of functional groups, one which is able to attach to and react with solid surfaces, and another which can react with a thermoset resin, which are incorporated as pendant groups in monomers distributed in blocks (typically two) along the backbone of the chain. The block copolymers in this invention are synthesized by living ring-opening metathesis polymerization.
Fusion of Renewable Ring Resonator Lasers and Ultrafast Laser Inscribed Photonic Waveguides
Chandrahalim, Hengky; Rand, Stephen C.; Fan, Xudong
2016-01-01
We demonstrated the monolithic integration of reusable and wavelength reconfigurable ring resonator lasers and waveguides of arbitrary shapes to out-couple and guide laser emission on the same fused-silica chip. The ring resonator hosts were patterned by a single-mask standard lithography, whereas the waveguides were inscribed in the proximity of the ring resonator by using 3-dimensional femtosecond laser inscription technology. Reusability of the integrated ring resonator – waveguide system was examined by depositing, removing, and re-depositing dye-doped SU-8 solid polymer, SU-8 liquid polymer, and liquid solvent (toluene). The wavelength reconfigurability was validated by employing Rhodamine 6G (R6G) and 3,3′-Diethyloxacarbocyanine iodide (CY3) as exemplary gain media. In all above cases, the waveguide was able to couple out and guide the laser emission. This work opens a door to reconfigurable active and passive photonic devices for on-chip coherent light sources, optical signal processing, and the investigation of new optical phenomena. PMID:27600872
Fusion of Renewable Ring Resonator Lasers and Ultrafast Laser Inscribed Photonic Waveguides.
Chandrahalim, Hengky; Rand, Stephen C; Fan, Xudong
2016-09-07
We demonstrated the monolithic integration of reusable and wavelength reconfigurable ring resonator lasers and waveguides of arbitrary shapes to out-couple and guide laser emission on the same fused-silica chip. The ring resonator hosts were patterned by a single-mask standard lithography, whereas the waveguides were inscribed in the proximity of the ring resonator by using 3-dimensional femtosecond laser inscription technology. Reusability of the integrated ring resonator - waveguide system was examined by depositing, removing, and re-depositing dye-doped SU-8 solid polymer, SU-8 liquid polymer, and liquid solvent (toluene). The wavelength reconfigurability was validated by employing Rhodamine 6G (R6G) and 3,3'-Diethyloxacarbocyanine iodide (CY3) as exemplary gain media. In all above cases, the waveguide was able to couple out and guide the laser emission. This work opens a door to reconfigurable active and passive photonic devices for on-chip coherent light sources, optical signal processing, and the investigation of new optical phenomena.
Shankar, Ravi; Jain, Archana; Kociok-Köhn, Gabriele; Molloy, Kieran C
2011-02-21
The reactions of diorganotin precursors [R(2)Sn(OR(1))(OSO(2)R(1))](n) [R = R(1) = Me (1); R = Me, R(1) = Et (2)] with an equimolar amount of t-butylphosphonic acid (RT, 8-10 h) in methanol result in the formation of identical products, of composition [(Me(2)Sn)(3)(O(3)PBu(t))(2)(O(2)P(OH)Bu(t))(2)](n) (3). On the other hand, a similar reaction of 2, when carried out in dichloromethane, affords [(Me(2)Sn)(3)(O(3)PBu(t))(2)(OSO(2)Et)(2)·MeOH](n) (4). A plausible mechanism implicating the role of solvent in the formation of these compounds has been put forward. In addition, the synthesis of [(Me(2)Sn)(3)(O(3)PCH(2)CH(2)COOMe)(2)(OSO(2)Me)(2)](n) (5) and [R(2)Sn(O(2)P(OH)CH(2)CH(2)COOMe)(OSO(2)R(1))](n) [R = Et, R(1) = Me (6); R = (n)Bu, R(1) = Et (7)] has been achieved by reacting 1 and related diorganotin(alkoxy)alkanesulfonates with 3-phosphonopropionic acid in methanol. The formation of a methylpropionate functionality on the phosphorus center in these structural frameworks results from in situ esterification of the carboxylic group. X-ray crystallographic studies of 1-7 are presented. The structures of 1 and 2 represent one-dimensional (1D) coordination polymers composed of alternate [Sn-O](2) and [Sn-O-S-O](2) cyclic rings formed by μ(2)-alkoxo and sulfonate ligands, respectively. For 3-5 and 7, variable bonding modes of phosphonate and/or sulfonate ligands afford the construction of two- and three-dimensional self-assemblies that are comprised of trinuclear tin entities with an Sn(3)P(2)O(6) core as well as [Sn-O-P-O](2) and/or [Sn-O-S-O](2) rings. The formation of a 1D coordination polymer in 6 is unique in terms of repeating eight-membered cyclic rings containing Sn, O, P, and S heteroatoms. The contribution from hydrogen-bonding interactions is also found to be significant in these structures.
Integrated optics ring-resonator chemical sensor for detection of air contamination
NASA Technical Reports Server (NTRS)
Manfreda, A. M.; Homer, M. L.; Ksendzov, A.
2004-01-01
We report a silicon nitride-based ring resonator chemical sensor with sensing polymer coating. Its sensitivity to isopropanol in air is at least 50 ppm - well under the permissible exposure level of 400 ppm.
Intregrated optics ring-resonator chemical sensor for detection of air contamination
NASA Technical Reports Server (NTRS)
Ksendzov, Alexander; Homer, Margie L.; Manfreda, Allison M.
2004-01-01
We report a silicon nitride-based ring resonator chemical sensor with sensing polymer coating. Its sensitivity to isopropanol in air is at least 50 ppm - well under the permissible exposure level of 400 ppm.
NASA Technical Reports Server (NTRS)
Shevade, A. V.; Ryan, M. A.; Homer, M. L.; Manfreda, A. M.; Zhou, H.; Manatt, K.
2002-01-01
We report a molecular modeling study to investigate the polymer-carbon black (CB) composite-analyte interactions in resistive sensors. These sensors comprise the JPL Electronic Nose (ENose) sensing array developed for monitoring breathing air in human habitats. The polymer in the composite is modeled based on its stereisomerism and sequence isomerism, while the CB is modeled as uncharged naphthalene rings (with no hydrogens). The Dreiding 2.21 force field is used for the polymer and solvent molecules and graphite parameters are assigned to the carbon black atoms. A combination of molecular mechanics (MM) and molecular dynamics (NPT-MD and NVT-MD) techniques are used to obtain the equilibrium composite structure by inserting naphthalene rings in the polymer matrix. Polymers considered for this work include poly(4- vinylphenol), polyethylene oxide, and ethyl cellulose. Analytes studied are representative of both inorganic (ammonia) and organic (methanol, toluene, hydrazine) compounds. The results are analyzed for the composite microstructure by calculating the radial distribution profiles as well as for the sensor response by predicting the interaction energies of the analytes with the composites.
Molecular modeling of polymer composite-analyte interactions in electronic nose sensors
NASA Technical Reports Server (NTRS)
Shevade, A. V.; Ryan, M. A.; Homer, M. L.; Manfreda, A. M.; Zhou, H.; Manatt, K. S.
2003-01-01
We report a molecular modeling study to investigate the polymer-carbon black (CB) composite-analyte interactions in resistive sensors. These sensors comprise the JPL electronic nose (ENose) sensing array developed for monitoring breathing air in human habitats. The polymer in the composite is modeled based on its stereoisomerism and sequence isomerism, while the CB is modeled as uncharged naphthalene rings with no hydrogens. The Dreiding 2.21 force field is used for the polymer, solvent molecules and graphite parameters are assigned to the carbon black atoms. A combination of molecular mechanics (MM) and molecular dynamics (NPT-MD and NVT-MD) techniques are used to obtain the equilibrium composite structure by inserting naphthalene rings in the polymer matrix. Polymers considered for this work include poly(4-vinylphenol), polyethylene oxide, and ethyl cellulose. Analytes studied are representative of both inorganic and organic compounds. The results are analyzed for the composite microstructure by calculating the radial distribution profiles as well as for the sensor response by predicting the interaction energies of the analytes with the composites. c2003 Elsevier Science B.V. All rights reserved.
Additives and method for controlling clathrate hydrates in fluid systems
Sloan, Jr., Earle Dendy; Christiansen, Richard Lee; Lederhos, Joseph P.; Long, Jin Ping; Panchalingam, Vaithilingam; Du, Yahe; Sum, Amadeu Kun Wan
1997-01-01
Discussed is a process for preventing clathrate hydrate masses from detrimentally impeding the possible flow of a fluid susceptible to clathrate hydrate formation. The process is particularly useful in the natural gas and petroleum production, transportation and processing industry where gas hydrate formation can cause serious problems. Additives preferably contain one or more five member, six member and/or seven member cyclic chemical groupings. Additives include polymers having lactam rings. Additives can also contain polyelectrolytes that are believed to improve conformance of polymer additives through steric hinderance and/or charge repulsion. Also, polymers having an amide on which a C.sub.1 -C.sub.4 group is attached to the nitrogen and/or the carbonyl carbon of the amide may be used alone, or in combination with ring-containing polymers for enhanced effectiveness. Polymers having at least some repeating units representative of polymerizing at least one of an oxazoline, an N-substituted acrylamide and an N-vinyl alkyl amide are preferred.
Additives and method for controlling clathrate hydrates in fluid systems
Sloan, E.D. Jr.; Christiansen, R.L.; Lederhos, J.P.; Long, J.P.; Panchalingam, V.; Du, Y.; Sum, A.K.W.
1997-06-17
Discussed is a process for preventing clathrate hydrate masses from detrimentally impeding the possible flow of a fluid susceptible to clathrate hydrate formation. The process is particularly useful in the natural gas and petroleum production, transportation and processing industry where gas hydrate formation can cause serious problems. Additives preferably contain one or more five member, six member and/or seven member cyclic chemical groupings. Additives include polymers having lactam rings. Additives can also contain polyelectrolytes that are believed to improve conformance of polymer additives through steric hindrance and/or charge repulsion. Also, polymers having an amide on which a C{sub 1}-C{sub 4} group is attached to the nitrogen and/or the carbonyl carbon of the amide may be used alone, or in combination with ring-containing polymers for enhanced effectiveness. Polymers having at least some repeating units representative of polymerizing at least one of an oxazoline, an N-substituted acrylamide and an N-vinyl alkyl amide are preferred.
NASA Astrophysics Data System (ADS)
Grigalevicius, S.; Zostautiene, R.; Sipaviciute, D.; Stulpinaite, B.; Volyniuk, D.; Grazulevicius, J. V.; Liu, L.; Xie, Z.; Zhang, B.
2016-02-01
Monomers and polymers containing electronically isolated diphenylvinyl-substituted indole rings were synthesized and characterized by nuclear magnetic resonance (NMR) and mass spectroscopies as well as by gel permeation chromatography. The polymers represent amorphous materials with glass transition temperatures of 91-109°C and thermal decomposition starting above 307°C. Electron photoemission spectra of thin films of the synthesized polymers revealed ionization potentials of 5.54-5.58 eV. The synthesized polymers were tested as hole-transporting materials in simple electroluminescent organic light-emitting diode (OLED) devices with tris(quinolin-8-olato)aluminium (Alq3) as an emitter as well as an electron-transporting layer. A green OLED device containing a hole-transporting layer of poly[1-(2,3-epithiopropyl)-2-methyl-3-(2,2-diphenylvinyl)índole] exhibited the best overall performance with a driving voltage of 4.0 V, maximum photometric efficiency of 2.8 cd/A and maximum brightness of about 4200 cd/m2.
Wang, Lina; Xu, Lin; Liu, Binyuan; Shi, Tongfei; Jiang, Shichun; An, Lijia
2017-05-03
The dewetting behavior of ring polystyrene (RPS) film and linear polystyrene (LPS) film on silanized Si substrates with different grafting densities and PDMS substrate was investigated. Results showed that polymer architectures greatly influenced the dewetting behavior of the thin polymer film. On the silanized Si substrate with 69% grafting density, RPS chains exhibited stronger adsorption compared with LPS chains, and as a result the wetting layer formed more easily. For LPS films, with a decreased annealing temperature, the stability of the polymer film changed from non-slip dewetting via apparent slip dewetting to apparently stable. However, for RPS films, the polymer film stability switched from apparent slip dewetting to apparently stable. On the silanized Si substrate with 94% grafting density, the chain adsorption became weaker and the dewetting processes were faster than that on the substrate with 69% grafting density at the same experimental temperature for both the LPS and RPS films. Moreover, on the PDMS substrate, LPS films always showed non-slip dewetting, while the dewetting kinetics of RPS films switched from non-slip dewetting to slip dewetting behaviour. Forming the wetting layer strongly influenced the stability and dewetting behavior of the thin polymer films.
Marko, John F
2009-05-01
The Gauss linking number (Ca) of two flexible polymer rings which are tethered to one another is investigated. For ideal random walks, mean linking-squared varies with the square root of polymer length while for self-avoiding walks, linking-squared increases logarithmically with polymer length. The free-energy cost of linking of polymer rings is therefore strongly dependent on degree of self-avoidance, i.e., on intersegment excluded volume. Scaling arguments and numerical data are used to determine the free-energy cost of fixed linking number in both the fluctuation and large-Ca regimes; for ideal random walks, for |Ca|>N;{1/4} , the free energy of catenation is found to grow proportional, variant|Ca/N;{1/4}|;{4/3} . When excluded volume interactions between segments are present, the free energy rapidly approaches a linear dependence on Gauss linking (dF/dCa approximately 3.7k_{B}T) , suggestive of a novel "catenation condensation" effect. These results are used to show that condensation of long entangled polymers along their length, so as to increase excluded volume while decreasing number of statistical segments, can drive disentanglement if a mechanism is present to permit topology change. For chromosomal DNA molecules, lengthwise condensation is therefore an effective means to bias topoisomerases to eliminate catenations between replicated chromatids. The results for mean-square catenation are also used to provide a simple approximate estimate for the "knotting length," or number of segments required to have a knot along a single circular polymer, explaining why the knotting length ranges from approximately 300 for an ideal random walk to 10;{6} for a self-avoiding walk.
Ring-Opening Metathesis Polymerization in Aqueous Media using a Macroinitiator Approach.
Foster, Jeffery; Varlas, Spyridon; Blackman, Lewis; Arkinstall, Lucy; O'Reilly, Rachel Kerry
2018-06-26
Water-soluble and amphiphilic polymers are of great interest to industry and academia, as they can be used in applications such as biomaterials and drug delivery. Whilst ring-opening metathesis polymerization (ROMP) is a fast and functional group tolerant methodology for the synthesis of a wide range of polymers, its full potential for the synthesis of water-soluble polymers has yet to be realized. To address this we report a general strategy for the synthesis of block copolymers in aqueous milieu using a commercially available ROMP catalyst and a macroinitiator approach. This allows for excellent control in the preparation of block copolymers in water. If the second monomer is chosen such that it forms a water-insoluble polymer, polymerization-induced self-assembly (PISA) occurs and a variety of self-assembled nano-object morphologies can be accessed. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chemistry and adhesive properties of poly(arylene ether)s containing heterocyclic units
NASA Technical Reports Server (NTRS)
Connell, John W.
1991-01-01
Novel poly(arylene ether)s containing heterocyclic units were prepared, characterized, and evaluated as adhesives and composite matrices. The polymers were prepared by reacting a heterocyclic bisphenol with an activated aromatic dihalide in a polar aprotic solvent, using potassium carbonate. The polymerizations were generally carried out in N,N-dimethylacetamide at 155 C. In some cases, where the polymers were semicrystalline, higher temperatures and thus higher boiling solvents were necessary to keep the polymers in solution. Heterocyclic rings incorporated into the poly(arylene ether) backbone include phenylquinoxaline, phenylimidazole, benzimidazole, benzoxazole, 1,3,4-oxadiazole, and 1,2,4-triazole. The polymers were characterized by differential scanning calorimetry, solution viscosity, X-ray diffraction, thin film, and adhesive and (in some cases) composite properties. The glass transition temperatures, crystalline melt temperature, solubility, and mechanical properties varied depending upon the heterocyclic ring. The chemistry and properties of these materials are discussed.
Tough, High-Performance, Thermoplastic Addition Polymers
NASA Technical Reports Server (NTRS)
Pater, Ruth H.; Proctor, K. Mason; Gleason, John; Morgan, Cassandra; Partos, Richard
1991-01-01
Series of addition-type thermoplastics (ATT's) exhibit useful properties. Because of their addition curing and linear structure, ATT polymers have toughness, like thermoplastics, and easily processed, like thermosets. Work undertaken to develop chemical reaction forming stable aromatic rings in backbone of ATT polymer, combining high-temperature performance and thermo-oxidative stability with toughness and easy processibility, and minimizing or eliminating necessity for tradeoffs among properties often observed in conventional polymer syntheses.
Catalysts for CO2/epoxide ring-opening copolymerization
Trott, G.; Saini, P. K.; Williams, C. K.
2016-01-01
This article summarizes and reviews recent progress in the development of catalysts for the ring-opening copolymerization of carbon dioxide and epoxides. The copolymerization is an interesting method to add value to carbon dioxide, including from waste sources, and to reduce pollution associated with commodity polymer manufacture. The selection of the catalyst is of critical importance to control the composition, properties and applications of the resultant polymers. This review highlights and exemplifies some key recent findings and hypotheses, in particular using examples drawn from our own research. PMID:26755758
Polymer dual ring resonators for label-free optical biosensing using microfluidics.
Salleh, Muhammad H M; Glidle, Andrew; Sorel, Marc; Reboud, Julien; Cooper, Jonathan M
2013-04-18
We demonstrate a polymer resonator microfluidic biosensor that overcomes the complex manufacturing procedures required to fabricate traditional devices. In this new format, we show that a gapless light coupling photonic configuration, fabricated in SU8 polymer, can achieve high sensitivity, label-free chemical sensing in solution and high sensitivity biological sensing, at visible wavelengths.
Synthesis and Characterization of Perfluoroalkyl Heterocyclic Elastomers
Perfluoroalkyl bibenzoxazole polymers containing a (CF2)8 between heterocyclic rings have been prepared by the reaction of dihydroxybenzidine and...methyl perfluorosebacimidate . Through preparation of this polymer, the basic polymerization system has been significantly improved and polymers with...C. (TGA). Copolymers of dihydroxybenzidine and methyl perfluoro -4,9,14,19- tetraoxadocosanediimidate, which are tacky and resilient, have been
End-functionalized ROMP polymers for Biomedical Applications
Madkour, Ahmad E.; Koch, Amelie H. R.; Lienkamp, Karen; Tew, Gregory N.
2010-01-01
We present two novel allyl-based terminating agents that can be used to end-functionalize living polymer chains obtained by ring-opening metathesis polymerization (ROMP) using Grubbs’ third generation catalyst. Both terminating agents can be easily synthesized and yield ROMP polymers with stable, storable activated ester groups at the chain-end. These end-functionalized ROMP polymers are attractive building blocks for advanced polymeric materials, especially in the biomedical field. Dye-labeling and surface-coupling of antimicrobially active polymers using these end-groups were demonstrated. PMID:21499549
Marsalek, Ondrej; Markland, Thomas E
2016-02-07
Path integral molecular dynamics simulations, combined with an ab initio evaluation of interactions using electronic structure theory, incorporate the quantum mechanical nature of both the electrons and nuclei, which are essential to accurately describe systems containing light nuclei. However, path integral simulations have traditionally required a computational cost around two orders of magnitude greater than treating the nuclei classically, making them prohibitively costly for most applications. Here we show that the cost of path integral simulations can be dramatically reduced by extending our ring polymer contraction approach to ab initio molecular dynamics simulations. By using density functional tight binding as a reference system, we show that our ring polymer contraction scheme gives rapid and systematic convergence to the full path integral density functional theory result. We demonstrate the efficiency of this approach in ab initio simulations of liquid water and the reactive protonated and deprotonated water dimer systems. We find that the vast majority of the nuclear quantum effects are accurately captured using contraction to just the ring polymer centroid, which requires the same number of density functional theory calculations as a classical simulation. Combined with a multiple time step scheme using the same reference system, which allows the time step to be increased, this approach is as fast as a typical classical ab initio molecular dynamics simulation and 35× faster than a full path integral calculation, while still exactly including the quantum sampling of nuclei. This development thus offers a route to routinely include nuclear quantum effects in ab initio molecular dynamics simulations at negligible computational cost.
Measuring the Electro-Optic Coefficients of Bulk-poled Polymers
2012-09-01
polymethylmethacrylate (PMMA) was produced by CYRO Industries (Acrylite H15) and distributed by AMCO Plastics. All other chemicals were obtained from Sigma...nitrostyryl) benzene) PMMA polymethylmethacrylate RMS root-mean-square ROMP ring-opening metathesis polymer Tg glass transition temperature
Shen, Yong; Desseaux, Solenne; Aden, Bethany; ...
2015-04-20
We report that surface-grafting thermoresponsive polymers allows the preparation of thin polymer brush coatings with surface properties that can be manipulated by variation of temperature. In most instances, thermoresponsive polymer brushes are produced using polymers that dehydrate and collapse above a certain temperature. This report presents the preparation and properties of polymer brushes that show thermoresponsive surface properties, yet are shape-persistent in that they do not undergo main chain collapse. The polymer brushes presented here are obtained via vapor deposition surface-initiated ring-opening polymerization (SI-ROP) of γ-di- or tri(ethylene glycol)-modified glutamic acid N-carboxyanhydrides. Vapor deposition SI-ROP of γ-di- or tri(ethylene glycol)-modifiedmore » L- or D-glutamic acid N-carboxyanhydrides affords helical surface-tethered polymer chains that do not show any changes in secondary structure between 10 and 70 °C. QCM-D experiments, however, revealed significant dehydration of poly(γ-(2-(2-methoxyethoxy)ethyl)-l-glutamate) (poly(L-EG 2-Glu)) brushes upon heating from 10 to 40 °C. At the same time, AFM and ellipsometry studies did not reveal significant variations in film thickness over this temperature range, which is consistent with the shape-persistent nature of these polypeptide brushes and indicates that the thermoresponsiveness of the films is primarily due to hydration and dehydration of the oligo(ethylene glycol) side chains. The results we present here illustrate the potential of surface-initiated NCA ring-opening polymerization to generate densely grafted assemblies of polymer chains that possess well-defined secondary structures and tunable surface properties. These polypeptide brushes complement their conformationally unordered counterparts that can be generated via surface-initiated polymerization of vinyl-type monomers and represent another step forward to biomimetic surfaces and interfaces.« less
NASA Astrophysics Data System (ADS)
Shakib, Farnaz; Huo, Pengfei
Photo-induced proton-coupled electron transfer reactions (PCET) are at the heart of energy conversion reactions in photocatalysis. Here, we apply the recently developed ring-polymer surface-hopping (RPSH) approach to simulate the nonadiabatic dynamics of photo-induced PCET. The RPSH method incorporates ring-polymer (RP) quantization of the proton into the fewest-switches surface-hopping (FSSH) approach. Using two diabatic electronic states, corresponding to the electron donor and acceptor states, we model photo-induced PCET with the proton described by a classical isomorphism RP. From the RPSH method, we obtain numerical results that are comparable to those obtained when the proton is treated quantum mechanically. This accuracy stems from incorporating exact quantum statistics, such as proton tunnelling, into approximate quantum dynamics. Additionally, RPSH offers the numerical accuracy along with the computational efficiency. Namely, compared to the FSSH approach in vibronic representation, there is no need to calculate a massive number of vibronic states explicitly. This approach opens up the possibility to accurately and efficiently simulate photo-induced PCET with multiple transferring protons or electrons.
Poly(phenylene)-based anion exchange membrane
Hibbs, Michael [Albuquerque, NM; Cornelius, Christopher J [Albuquerque, NM; Fujimoto, Cy H [Albuquerque, NM
2011-02-15
A poly(phenylene) compound of copolymers that can be prepared with either random or multiblock structures where a first polymer has a repeat unit with a structure of four sequentially connected phenyl rings with a total of 2 pendant phenyl groups and 4 pendant tolyl groups and the second polymer has a repeat unit with a structure of four sequentially connected phenyl rings with a total of 6 pendant phenyl groups. The second polymer has chemical groups attached to some of the pendant phenyl groups selected from CH.sub.3, CH.sub.2Br, and CH.sub.2N(CH.sub.3).sub.3Br groups. When at least one group is CH.sub.2N(CH.sub.3).sub.3Br, the material functions as an anion exchange membrane.
NASA Astrophysics Data System (ADS)
Kelly, Giovanni; Bergeson, Amelia; Haque, Farihah; Grayson, Scott; Albert, Julie
Thin and ultrathin films of semi-crystalline polymers have been studied for decades due to their far-reaching applications including opto-electronic materials and biological studies of drug delivery and cell adhesion. This body of work has focused on every aspect of crystallization, from the fundamental thermodynamics and kinetics of crystal growth to methods for affecting crystalline morphologies via blending with other polymers. Due to significant synthetic challenges, one area where progress has lagged behind is the study of non-linear architectures, especially ring polymers. However, pioneering work by polymer chemists around the world has closed that gap, and we are beginning to observe important differences between ring and linear polymers in bulk materials. As a complement to those advances, this work aims to compare the morphologies of linear and cyclic poly(ɛ-caprolactones) (PCL) observed in heavily-confined ultrathin films where crystal growth is diffusion-limited. Understanding how confinement effects alter morphology will provide invaluable insight into differences in crystal growth as a function of molecular architecture.
Non-strinking siloxane polymers
Loy, Douglas A.; Rahimian, Kamyar
2001-01-01
Cross-linked polymers formed by ring-opening polymerization of a precursor monomer of the general formula R[CH.sub.2 CH(Si(CH.sub.3).sub.2).sub.2 O].sub.2, where R is a phenyl group or an alkyl group having at least two carbon atoms. A cross-linked polymer is synthesized by mixing the monomer with a co-monomer of the general formula CH.sub.2 CHR.sup.2 (SiMe.sub.2).sub.2 O in the presence of an anionic base to form a cross-linked polymer of recurring units of the general formula R(Me.sub.2 SiOCH.sub.2 CHSiMe.sub.2).sub.2 [CH.sub.2 CHR.sup.2 (SiMe.sub.2).sub.2 O].sub.n, where R.sup.2 is hydrogen, phenyl, ethyl, propyl or butyl. If the precursor monomer is a liquid, the polymer can be directly synthesized in the presence of an anionic base to a cross-linked polymer containing recurring units of the general formula R(Me.sub.2 SiOCH.sub.2 CHSiMe.sub.2).sub.2. The polymers have approximately less than 1% porosity and are thermally stable at temperatures up to approximately 500.degree. C. The conversion to the cross-linked polymer occurs by ring opening polymerization and results in shrinkage of less than approximately 5% by volume.
New transition metal complexes and their ring-opened polymers
NASA Astrophysics Data System (ADS)
Apodaca, Paula
An exciting new class of metallacycle (eta5-C5 H4Fe) (CO)2CH2SiR2 that undergoes ring-opening polymerization was recently reported by Sharma et al. [1]. We are interested in further expanding this research area by synthesizing related cyclopentadienyl derivatives containing Fe, Mo, and W in combination with other elements of the group 14. We report here the synthesis and crystal structure characterization of new germa-metallacyclobutanes of Mo and W. In addition, we have successfully synthesized and characterized new ring-opening polymers of the related germanium systems [(eta5-C5 H4Fe)(CO) 2(CH2GeR2)] n. The new polymers were characterized using various spectroscopic techniques and gel permeation chromatography. The recent report on the synthesis of a new class of siloxane polymers based upon base-catalyzed ring opening of phenylene-bridged cyclic siloxanes [2] encouraged us to investigate the related ferrocenyl (Fc, (C5H 5)Fe(C5H4)) siloxane systems. The incorporation of ferrocene could provide new materials with all the interesting properties usually associated with these groups such as thermal and photochemical stability, electrochemical activity and potentially conducting materials. Thus far a new required organometallic monomer containing Fc-R, where R = disilaoxacyclopentene 5 has been synthesized and completely characterized. Based-induced ring-opening polymerizations of 5 were attempted under different reaction conditions and produced, inter alia: (C5H5)Fe(C 5H4)C(SiMe2OH)=CH(SiMe2R), R = nBu (2), tBu (3), Ph (4). The single crystal X-ray structures and full spectroscopic analysis of such products has been accomplished. Furthermore, the reactivity of the ferrocenyl silanols concerning condensation and their behavior under acidic conditions has been investigated. 1Sharma, H.; Cervantes-Lee, F.; Pannell, K. H. J. Am. Chem. Soc. 2004, 126, 1326. 2 Loy, A. D.; Rahimian, K.; Samara, M. Angew. Chem. 1999, 38, 45.
NASA Technical Reports Server (NTRS)
Kane, K. M.; Cassidy, P. E.; Tullos, G. L.; Reynolds, D. W.
1990-01-01
The synthesis and properties to date of several novel HFIP-containing polymers and copolymers are presented. Thermal analyses of polyether ketones (PEK), aromatic polyesters, and polymers from a novel 18F-diacid were performed on a thermal analyzer. All three polymer types exhibited enhanced solubility, thermal stability, and low dielectric constants that are predicted for polymers containing the HFIP moiety. The moderate thermal stability observed in the polymers derived from the 18F-diacid is attributed to the oxidatively weak methylene linkage between the HFIP groups and the phenyl rings. PEKs and polyarylates show potential as high emissivity coatings under conditions where atomic oxygen is present.
1974-12-01
Polymerization 13 9. Polymers with Bridged Ring Systems 14 10. Spiro Polymers 14 11. Polyphenylene s 16 12. Phenol - Formaldehyde Resins 17 13. Polyphenylene... Formaldehyde Resins A wide variety of phenol- formaldehyde resins , cured with various curing agents, has been evaluated. The Tdec’s (N 2 ), which...415 0 570 415 540C 2- 410 0 -CHI - 0- c-Ci.f-CCH = 1-eC.- 390 540 0 (Phenol- Formaldehyde Resins ) -CVH- (aliph.) 390 / F_ 535 0 - CHL" (epoxy
Development of Processible Electroactive Oligomers and Polymers
1991-10-01
of structure and electroactive properties. Electroactive molecules including fused ring (ladder oligomers) dyes , squarylium -heterocyclic moieties...Electroactive molecules including fused ring (ladder oligomers) dyes , squarylium -heterocyclic moieties, phenylpolyenes, thienylpolyenes, carbocyanine dyes ...phenylpolyenes, thienylpolyenes, carbocyanine dyes , and tetraazaannulenes have also been synthetically incorporated into a variety of traditional
Properties of knotted ring polymers. I. Equilibrium dimensions.
Mansfield, Marc L; Douglas, Jack F
2010-07-28
We report calculations on three classes of knotted ring polymers: (1) simple-cubic lattice self-avoiding rings (SARs), (2) "true" theta-state rings, i.e., SARs generated on the simple-cubic lattice with an attractive nearest-neighbor contact potential (theta-SARs), and (3) ideal, Gaussian rings. Extrapolations to large polymerization index N imply knot localization in all three classes of chains. Extrapolations of our data are also consistent with conjectures found in the literature which state that (1) R(g)-->AN(nu) asymptotically for ensembles of random knots restricted to any particular knot state, including the unknot; (2) A is universal across knot types for any given class of flexible chains; and (3) nu is equal to the standard self-avoiding walk (SAW) exponent (congruent with 0.588) for all three classes of chains (SARs, theta-SARs, and ideal rings). However, current computer technology is inadequate to directly sample the asymptotic domain, so that we remain in a crossover scaling regime for all accessible values of N. We also observe that R(g) approximately p(-0.27), where p is the "rope length" of the maximally inflated knot. This scaling relation holds in the crossover regime, but we argue that it is unlikely to extend into the asymptotic scaling regime where knots become localized.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sugama, Toshifumi; Pyatina, Tatiana; Redline, Erica Marie
2014-12-01
This paper aims to evaluate the survival of O-rings made with six different elastomeric polymers, EPDM, type I- and II-FKM, FEPM, FFKM, and FSR, in five different simulated geothermal environments at 300°C. It further defines the relative strengths and weaknesses of the materials in each environment. The environments tested were: 1) non-aerated steam-cooling cycles, 2) aerated steam-cooling cycles, 3) water-based drilling fluid, 4) CO2-rich geo-brine fluid, and, 5) heat-cool water quenching cycles. Following exposure, the extent of oxidation, oxidationinduced degradation, thermal behaviors, micro-defects, permeation depths of ionic species present in environments throughout the O-ring, silicate-related scale-deposition, and changes in mechanicalmore » properties were assessed.« less
Asano, Natsuki; Kitamura, Shinichi; Terao, Ken
2013-08-15
Small-angle X-ray scattering and static and dynamic light scattering measurements were made for cyclic amylose tris(phenylcarbamate) (cATPC) of which weight-average molar mass M(w) ranges from 1.3 × 10(4) to 1.5 × 10(5) to determine their z-average mean square radius of gyration z, particle scattering function P(q), hydrodynamic radius R(H), and second virial coefficient A2 in methyl acetate (MEA), ethyl acetate (EA), and 4-methyl-2-pentanone (MIBK). The obtained z, P(q), and R(H) data were analyzed in terms of the wormlike ring to estimate the helix pitch per residue h and the Kuhn segment length λ(-1) (the stiffness parameter, twice the persistence length). Both h and λ(-1) for cATPC in MEA, EA, and MIBK are smaller than those for linear amylose tris(phenylcarbamate) (ATPC) in the corresponding solvent and the discrepancy becomes more significant with increasing the molar volume of the solvent. This indicates that not every rigid ring has the same local helical structure and chain stiffness as that for the linear polymer in the M(w) range investigated while infinitely long ring chains should have the same local conformation. This conformational difference also affects A2. In actuality, negative A2 was observed for cATPC in MIBK at the Θ temperature of linear ATPC whereas intermolecular topological interaction of ring polymers increases A2.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marsalek, Ondrej; Markland, Thomas E., E-mail: tmarkland@stanford.edu
Path integral molecular dynamics simulations, combined with an ab initio evaluation of interactions using electronic structure theory, incorporate the quantum mechanical nature of both the electrons and nuclei, which are essential to accurately describe systems containing light nuclei. However, path integral simulations have traditionally required a computational cost around two orders of magnitude greater than treating the nuclei classically, making them prohibitively costly for most applications. Here we show that the cost of path integral simulations can be dramatically reduced by extending our ring polymer contraction approach to ab initio molecular dynamics simulations. By using density functional tight binding asmore » a reference system, we show that our ring polymer contraction scheme gives rapid and systematic convergence to the full path integral density functional theory result. We demonstrate the efficiency of this approach in ab initio simulations of liquid water and the reactive protonated and deprotonated water dimer systems. We find that the vast majority of the nuclear quantum effects are accurately captured using contraction to just the ring polymer centroid, which requires the same number of density functional theory calculations as a classical simulation. Combined with a multiple time step scheme using the same reference system, which allows the time step to be increased, this approach is as fast as a typical classical ab initio molecular dynamics simulation and 35× faster than a full path integral calculation, while still exactly including the quantum sampling of nuclei. This development thus offers a route to routinely include nuclear quantum effects in ab initio molecular dynamics simulations at negligible computational cost.« less
Adachi, Naoya; Kaneko, Yuki; Sekiguchi, Kazuki; Sugiyama, Hiroki; Sugeno, Masafumi
2015-12-01
Poly(p-pyridinium phenylene ethynylene)s (PPyPE) functionalized with alternating donor-acceptor repeat units were synthesized by a Pd-catalyzed Sonogashira coupling reaction between diethynyl monomer and di-iodopyridine for use as a pH-responsive fluorescence chemical sensor. The synthesized PPyPE, containing pyridine units, was characterized by FT-IR, (1)H and (13)C NMR, UV-visible and fluorescence spectroscopies. We investigated the relationship between changes of optical properties and protonation/deprotonation of PPyPE containing pyridine units in solution. Addition of HCl decreased and red-shifted the fluorescence intensity of the conjugated polymers that contained pyridine rings; fluorescence intensity of the polymers increased upon addition of NaOH solution. The synthesized PPyPE was found to be an effective and reusable chemical sensor for pH sensing. Copyright © 2015 John Wiley & Sons, Ltd.
Disordered organic electronic materials based on non-benzenoid 1,6-methano[10]annulene rings
Tovar, John D; Streifel, Benjamin C; Peart, Patricia A
2014-10-07
Conjugated polymers and small molecules including the nonplanar aromatic 1,6-methano[10]annulene ring structure along with aromatic subunits, such as diketopyrrolopyrrole, and 2,1,3-benzothiadiazole, substituted with alkyl chains in a "Tail In," "Tail Out," or "No Tail" regiochemistry are disclosed.
Sulfuric acid as a catalyst for ring-opening of biobased bis-epoxides
USDA-ARS?s Scientific Manuscript database
Vegetable oils can be relatively and easily transformed into bio-based epoxides. Because of this, the acid-catalyzed epoxide ring-opening has been explored for the preparation of bio-based lubricants and polymers. Detailed model studies are carried out only with mono-epoxide made from methyl oleate,...
New rapid-curing, stable polyimide polymers with high-temperature strength and thermal stability
NASA Technical Reports Server (NTRS)
Burns, E. A.; Jones, J. F.; Kendrick, W. R.; Lubowitz, H. R.; Thorpe, R. S.; Wilson, E. R.
1969-01-01
Additive-type polymerization reaction forms thermally stable polyimide polymers, thereby eliminating the volatile matter attendant with the condensation reaction. It is based on the utilization of reactive alicyclic rings positioned on the ends of polyimide prepolymers having relatively low molecular weights.
Ultrahigh Molecular Weight Aromatic Siloxane Polymers
NASA Technical Reports Server (NTRS)
Ludwick, L. M.
1983-01-01
Silphenylene-siloxane polymers can be prepared by a condensation reaction of a diol 1,4-bis(hydroxydimethylsilyl)benzene and a silane bis(dimethylamino)dimethylsilane. Using a stepwise condensation technique, a polymer (R=CH3) with a molecular weight in excess of 1.0 x 1 million has been produced. The polymer exhibits increased thermal stability, compared to a methyl siloxane polymer without the aromatic phenyl ring in the backbone. The use of bis(dimethylamino)methylvinylsilane should allow for ready crosslinking at the vinyl sites (R=-CH=CH2) introduced into the backbone. However, under the conditions of the reaction system a high molecular weight polymer was not obtained or the polymer underwent a crosslinking process during the synthesis.
Polymerization of euphorbia oil with Lewis acid in carbon dioxide media
USDA-ARS?s Scientific Manuscript database
Boron trifluoride diethyl etherate (BF3-OEt2) Lewis acid catalyzed ring-opening polymerization of euphorbia oil (EO), a natural epoxy oil, in liquid carbon dioxide was conducted in an effort to develop useful vegetable oil based polymers. The resulting polymers (RPEO) were characterized by FTIR, 1H-...
NASA Astrophysics Data System (ADS)
John, Christopher; Spura, Thomas; Habershon, Scott; Kühne, Thomas D.
2016-04-01
We present a simple and accurate computational method which facilitates ab initio path-integral molecular dynamics simulations, where the quantum-mechanical nature of the nuclei is explicitly taken into account, at essentially no additional computational cost in comparison to the corresponding calculation using classical nuclei. The predictive power of the proposed quantum ring-polymer contraction method is demonstrated by computing various static and dynamic properties of liquid water at ambient conditions using density functional theory. This development will enable routine inclusion of nuclear quantum effects in ab initio molecular dynamics simulations of condensed-phase systems.
Recent New Methodologies for Acetylenic Polymers with Advanced Functionalities.
Qiu, Zijie; Han, Ting; Lam, Jacky W Y; Tang, Ben Zhong
2017-08-01
Polymers synthesized from acetylenic monomers often possess electronically unsaturated fused rings and thus show versatile optoelectronic properties and advanced functionalities. To expand the family of acetylenic polymers, development of new catalyst systems and synthetic routes is critically important. We summarize herein recent research progress on development of new methodologies towards functional polymers using alkyne building blocks since 2014. The polymerizations are categorized by the number of monomer components, namely homopolymerizations, two-component polymerizations, and multicomponent polymerizations. The properties and applications of acetylenic polymers, such as aggregation-induced emission, fluorescent photopatterning, light refraction, chemosensing, mechanochromism, chain helicity, etc., are also discussed.
Synthesis and Characterization of Polymers for Fuel Cells Application
NASA Technical Reports Server (NTRS)
Tytko, Stephen F.
2003-01-01
The goal of this summer research is to prepare Polymer Exchange Membranes (PEM s) for fuel cell application. Several high temperature polymers such as polybenzimidazoles and polyether ketones were known to possess good high temperature stability and had been investigated by post-sulfonation to yield sulfonated polymers. The research project will involve two approaches: 1. Synthesis of polybenzimidazoles and then react with alkyl sultonse to attach an aliphatic sulfonic groups. 2. Synthesis of monomers containing sulfonic acid units either on a aromatic ring or on an aliphatic chain and then polymerize the monomers to form high molecular weight sulfonate polymers.
Xiao, Minyu; Jasensky, Joshua; Zhang, Xiaoxian; Li, Yaoxin; Pichan, Cayla; Lu, Xiaolin; Chen, Zhan
2016-08-10
The molecular structures of organic semiconducting thin films mediate the performance of various devices composed of such materials. To fully understand how the structures of organic semiconductors alter on substrates due to different polymer side chains and different interfacial interactions, thin films of two kinds of polythiophene derivatives with different side-chains, poly(3-hexylthiophene) (P3HT) and poly(3-potassium-6-hexanoate thiophene) (P3KHT), were deposited and compared on various surfaces. A combination of analytical tools was applied in this research: contact angle goniometry and X-ray photoelectron spectroscopy (XPS) were used to characterize substrate dielectric surfaces with varied hydrophobicity for polymer film deposition; X-ray diffraction and UV-vis spectroscopy were used to examine the polythiophene film bulk structure; sum frequency generation (SFG) vibrational spectroscopy was utilized to probe the molecular structures of polymer film surfaces in air and buried solid/solid interfaces. Both side-chain hydrophobicity and substrate hydrophobicity were found to mediate the crystallinity of the polythiophene film, as well as the orientation of the thiophene ring within the polymer backbone at the buried polymer/substrate interface and the polymer thin film surface in air. For the same type of polythiophene film deposited on different substrates, a more hydrophobic substrate surface induced thiophene ring alignment with the surface normal at both the buried interface and on the surface in air. For different films (P3HT vs. P3KHT) deposited on the same dielectric substrate, a more hydrophobic polythiophene side chain caused the thiophene ring to align more towards the surface at the buried polymer/substrate interface and on the surface in air. We believe that the polythiophene surface, bulk, and buried interfacial molecular structures all influence the hole mobility within the polythiophene film. Successful characterization of an organic conducting thin film surface, buried interfacial, and bulk structures is a first crucial step in understanding the structure-function relationship of such films in order to optimize device performance. An in-depth understanding on how the side-chain influences the interfacial and surface polymer orientation will guide the future molecular structure design of organic semiconductors.
Investigation of Resin Systems for Improved Ablative Materials
1966-04-01
condensed rings, Boron linear chain of rings Carboranes B-P Resins Polymers Containing Si-O Silicon Si -C Si -N Furan Derivatives Furfural Base Furfural ...8217 Adsorption Theory of Adhesion’ presented at the 144th American Chemical Society Meeting, held in Los Angeles, April 1963. 15. Freeman, J. H. , L. W
Plate-slot polymer waveguide modulator on silicon-on-insulator.
Qiu, Feng; Spring, Andrew M; Hong, Jianxun; Yokoyama, Shiyoshi
2018-04-30
Electro-optic (EO) modulators are vital for efficient "electrical to optical" transitions and high-speed optical interconnects. In this work, we applied an EO polymer to demonstrate modulators on silicon-on-insulator substrates. The fabricated Mach-Zehnder interferometer (MZI) and ring resonator consist of a Si and TiO 2 slot, in which the EO polymer was embedded to realize a low-driving and large bandwidth modulation. The designed optical and electrical constructions are able to provide a highly concentrated TM mode with low propagation loss and effective EO properties. The fabricated MZI modulator shows a π-voltage-length product of 0.66 V·cm and a 3-dB bandwidth of 31 GHz. The measured EO activity is advantageous to exploit the ring modulator with a resonant tunability of 0.065 nm/V and a 3-dB modulation bandwidth up to 13 GHz.
From coffee ring to spherulites ring of poly(ethylene oxide) film from drying droplet
NASA Astrophysics Data System (ADS)
Hu, Yinchun; Zhang, Xuerong; Qiu, Maibo; Wei, Yan; Zhou, Qiong; Huang, Di
2018-03-01
We discuss how the "spherulites ring" morphology and "coffee ring" profile of PEO film formed by the drying droplet at glass substrate with different heating rate. Upon increasing the heating rate of substrate, it is found that deposited PEO film from drying droplet shows the unusually observed "coffee ring" profile and "spherulites ring" morphology. The main mechanism for this phenomenon is proposed to be an enhanced Marangoni convection which is induced by the increased solute concentration gradient and reduced viscous force above 70 °C. A simple formation mechanism of the unusually observed "coffee ring" profile and "spherulites ring" morphology is proposed. These findings can be exploited to trace the center of Marangoni convection, with potential applications in designing the spherulite patterns of crystalline polymer films in ink-jet printing and self-assembly fields.
Engineering a degradable polyurethane intravaginal ring for sustained delivery of dapivirine.
Kaur, Manpreet; Gupta, Kavita M; Poursaid, Azadeh E; Karra, Prasoona; Mahalingam, Alamelu; Aliyar, Hyder A; Kiser, Patrick F
2011-06-01
We describe the engineering of a degradable intravaginal ring (IVR) for the delivery of the potent HIV-1 reverse transcriptase inhibitor dapivirine. The degradable polymer used in fabricating the device incorporated poly(caprolactone) ester blocks in a poly(tetramethylene ether) glycol ABA type polyurethane backbone. The polymer was designed to maintain its structure for 1 month during usage and then degrade in the environment post-disposal. In vitro release of dapivirine showed zero-order kinetics for up to 1 month and significant levels of drug release into engineered vaginal tissue. The mechanical properties of the degradable IVR were comparable to those of a widely used contraceptive intravaginal ring upon exposure to simulated vaginal conditions. Incubation under simulated vaginal conditions for a month caused minimal degradation with minimal effect on the mechanical properties of the ring and polymer. The cytotoxicity evaluation of the drug-loaded IVRs against Vk2/E6E7 human vaginal epithelial cells, Lactobacillus jensenii, and engineered vaginal tissue constructs showed the degradable polyurethane to be non-toxic. In vitro evaluation of inflammatory potential monitored through the levels of inflammatory cytokines IL-8, IL-1α, IL-6, IL-1β, and MIP-3α when engineered EpiVaginal™ tissue was incubated with the polyurethanes suggested that the degradable polyurethane was comparable to commercial medical grade polyurethane. These results are encouraging for further development of this degradable IVR for topical vaginal delivery of microbicides.
Dynamics of the evaporative dewetting of a volatile liquid film confined within a circular ring.
Sun, Wei; Yang, Fuqian
2015-04-07
The dewetting dynamics of a toluene film confined within a copper ring on a deformable PMMA film is studied. The toluene film experiences evaporation and dewetting, which leads to the formation of a circular contact line around the center of the copper ring. The contact line recedes smoothly toward the copper ring at a constant velocity until reaching a dynamic "stick" state to form the first circular polymer ridge. The average receding velocity is found to be dependent on the dimensions of the copper ring (the copper ring diameter and the cross-sectional diameter of the copper wire) and the thickness of the PMMA films. A model is presented to qualitatively explain the evaporative dewetting phenomenon.
THERMALLY STABLE PERFLUORINATED POLYMERS.
Ring closure of the N ( perfluoroacylimidoyl ) perfluoroalkyl amidine by acylation with perfluoroacyl chloride was apparently hindered by formation of...quantitatively. The reaction of perfluoroadiphydrazidine with perfluoroadiponitrile produced the intermediate polyimidoylhydrazidine as a step in a... perfluoroalkyltriazole polymer synthesis. Reaction of perfluoroglutaronitrile with N2H4 produced a cyclic compound which may be useful as a single monomer for
PDMS-co-PVMS Copolymer Synthesis for Microfluidic Devices
NASA Astrophysics Data System (ADS)
Baiamonte, Arissa; Nguyen, Devin; Lwoya, Baraka; Kelly, Giovanni; Albert, Julie N. L.
Poly (dimethylsiloxane) (PDMS) is the predominant material used for the fabrication of microfluidic devices because it is an easily synthesized, biocompatible, and flexible material that forms a good seal with other surfaces. However, PDMS is chemically inert and therefore difficult to functionalize for targeted applications, it can swell in the presence of organic solvents, and it can contaminate microfluidic solutions with unreacted oligomers. Therefore, my research goal is to synthesize random copolymers of PDMS and poly (vinylmethylsiloxane) (PVMS) that retain the benefits of PDMS and can be functionalized easily via thiol-ene click reactions. In the first stage of this work, dichlorodimethylsilane and vinylmethyldichlorosilane were each reacted with water to produce n-membered dimethylsiloxane rings and n-membered vinylmethylsiloxane rings, respectively. In the next step, polymers are synthesized by reacting these rings with potassium hydroxide and heat to form PDMS, PVMS, and PDMS-co-PVMS copolymers. Several reaction conditions have been tested to determine the kinetics and to relate molecular weight of the polymer or copolymer to reaction time. The polymer is then cross-liked through hydroxyl end groups with vinylmethoxysiloxane homopolymer (PVMES) cross-linker, tin catalyst, and heat. Once the polymer is cross-linked, the surface can be modified via thiol-ene click reaction to provide a diversity of surface functionality for microfluidic device applications. In the present work, we functionalize with a fluorinated thiol to impart solvent resistance. Newcomb Tulane College Georges Lurcy Grant, National Academies Gulf Research Program Early Career Research Fellowship, Tulane CIF.
Sinha, Raju; Karabiyik, Mustafa; Al-Amin, Chowdhury; Vabbina, Phani K; Güney, Durdu Ö; Pala, Nezih
2015-03-24
We propose and systematically investigate a novel tunable, compact room temperature terahertz (THz) source based on difference frequency generation in a hybrid optical and THz micro-ring resonator. We describe detailed design steps of the source capable of generating THz wave in 0.5-10 THz with a tunability resolution of 0.05 THz by using high second order optical susceptibility (χ((2))) in crystals and polymers. In order to enhance THz generation compared to bulk nonlinear material, we employ a nonlinear optical micro-ring resonator with high-Q resonant modes for infrared input waves. Another ring oscillator with the same outer radius underneath the nonlinear ring with an insulation of SiO2 layer supports the generated THz with resonant modes and out-couples them into a THz waveguide. The phase matching condition is satisfied by engineering both the optical and THz resonators with appropriate effective indices. We analytically estimate THz output power of the device by using practical values of susceptibility in available crystals and polymers. The proposed source can enable tunable, compact THz emitters, on-chip integrated spectrometers, inspire a broader use of THz sources and motivate many important potential THz applications in different fields.
Sinha, Raju; Karabiyik, Mustafa; Al-Amin, Chowdhury; Vabbina, Phani K.; Güney, Durdu Ö.; Pala, Nezih
2015-01-01
We propose and systematically investigate a novel tunable, compact room temperature terahertz (THz) source based on difference frequency generation in a hybrid optical and THz micro-ring resonator. We describe detailed design steps of the source capable of generating THz wave in 0.5–10 THz with a tunability resolution of 0.05 THz by using high second order optical susceptibility (χ(2)) in crystals and polymers. In order to enhance THz generation compared to bulk nonlinear material, we employ a nonlinear optical micro-ring resonator with high-Q resonant modes for infrared input waves. Another ring oscillator with the same outer radius underneath the nonlinear ring with an insulation of SiO2 layer supports the generated THz with resonant modes and out-couples them into a THz waveguide. The phase matching condition is satisfied by engineering both the optical and THz resonators with appropriate effective indices. We analytically estimate THz output power of the device by using practical values of susceptibility in available crystals and polymers. The proposed source can enable tunable, compact THz emitters, on-chip integrated spectrometers, inspire a broader use of THz sources and motivate many important potential THz applications in different fields. PMID:25800287
NASA Astrophysics Data System (ADS)
Sun, Dawei; Chen, Cihai; Zhang, Jun; Wu, Xiaomin; Chen, Huipeng; Guo, Tailiang
2018-01-01
Fabrication of metal oxide thin film transistor (MOTFT) arrays using the inkjet printing process has caused tremendous interest for low-cost and large-area flexible electronic devices. However, the inkjet-printed MOTFT arrays usually exhibited a non-uniform geometry due to the coffee ring effect, which restricted their commercial application. Therefore, in this work, a strategy is reported to control the geometry and enhance device performance of inkjet-printed MOTFT arrays by the addition of an insulating polymer to the precursor solution prior to film deposition. Moreover, the impact of the polymer molecular weight (MW) on the geometry, chemical constitution, crystallization, and MOTFT properties of inkjet-printed metal oxide depositions was investigated. The results demonstrated that with an increase of MW of polystyrene (PS) from 2000 to 200 000, the coffee ring was gradually faded and the coffee ring effect was completely eliminated when MW reached 200 000, which is associated with the enhanced viscosity with the insulating polymer, providing a high resistance to the outward capillary flow, which facilitated the depinning of the contact line, leading to the elimination of the coffee ring. More importantly, the carrier mobility increased significantly from 4.2 cm2 V-1 s-1 up to 13.7 cm2 V-1 s-1 as PS MW increased from 2000 to 200 000, which was about 3 times that of the pristine In2O3 TFTs. Grazing incidence X-ray diffraction and X-ray photoelectron spectroscopy results indicated that PS doping of In2O3 films not only frustrated crystallization but also altered chemical constitution by enhancing the formation of the M-O structure, both of which facilitated the carrier transport. These results demonstrated that the simple polymer additive process provides a promising method that can efficiently control the geometry of MO arrays during inkjet printing and maximize the device performance of MOTFT arrays, which showed great potential for the application in next generation printed displays and integrated circuits.
ERIC Educational Resources Information Center
Chan, Julian M. W.; Zhang, Xiangyi; Brennan, Megan K.; Sardon, Haritz; Engler, Amanda C.; Fox, Courtney H.; Frank, Curtis W.; Waymouth, Robert M.; Hedrick, James L.
2015-01-01
In this laboratory experiment, students work in pairs to synthesize a simple aliphatic polycarbonate via ring-opening polymerization of trimethylene carbonate using 1,8-diazabicyclo[5.4.0]undec-7-ene and thiourea as organocatalysts. Following polymer isolation, students cool the material in a dry ice/acetone bath to observe its glass-transition…
Ring-resonator-integrated tunable external cavity laser employing EAM and SOA.
Yoon, Ki-Hong; Kwon, O-Kyun; Kim, Ki Soo; Choi, Byung-Seok; Oh, Su Hwan; Kim, Hyun Su; Sim, Jae-Sik; Kim, Chul Soo
2011-12-05
We propose and demonstrate a tunable external cavity laser (ECL) composed of a polymer Bragg reflector (PBR) and integrated gain chip with gain, a ring resonator, an electro-absorption modulator (EAM), and a semiconductor optical amplifier (SOA). The cavity of the laser is composed of the PBR, gain, and ring resonator. The ring resonator reflects the predetermined wavelengths into the gain region and transmits the output signal into integrated devices such as the EAM and SOA. The output wavelength of the tunable laser is discretely tuned in steps of about 0.8 nm through the thermal-optic effect of the PBR and predetermined mode spacing of the ring resonator.
NASA Astrophysics Data System (ADS)
Schroeder, Charles
Semi-dilute polymer solutions are encountered in a wide array of applications such as advanced 3D printing technologies. Semi-dilute solutions are characterized by large fluctuations in concentration, such that hydrodynamic interactions, excluded volume interactions, and transient chain entanglements may be important, which greatly complicates analytical modeling and theoretical treatment. Despite recent progress, we still lack a complete molecular-level understanding of polymer dynamics in these systems. In this talk, I will discuss three recent projects in my group to study semi-dilute solutions that focus on single molecule studies of linear and ring polymers and a new method to measure normal stresses in microfluidic devices based on the Stokes trap. In the first effort, we use single polymer techniques to investigate the dynamics of semi-dilute unentangled and semi-dilute entangled DNA solutions in extensional flow, including polymer relaxation from high stretch, transient stretching dynamics in step-strain experiments, and steady-state stretching in flow. In the semi-dilute unentangled regime, our results show a power-law scaling of the longest polymer relaxation time that is consistent with scaling arguments based on the double cross-over regime. Upon increasing concentration, we observe a transition region in dynamics to the entangled regime. We also studied the transient and steady-state stretching dynamics in extensional flow using the Stokes trap, and our results show a decrease in transient polymer stretch and a milder coil-to-stretch transition for semi-dilute polymer solutions compared to dilute solutions, which is interpreted in the context of a critical Weissenberg number Wi at the coil-to-stretch transition. Interestingly, we observe a unique set of polymer conformations in semi-dilute unentangled solutions that are highly suggestive of transient topological entanglements in solutions that are nominally unentangled at equilibrium. Taken together, these results suggest that the transient stretching pathways in semi-dilute solution extensional flows are qualitatively different than for both dilute solutions and for semi-dilute solutions in shear flow. In a second effort, we studied the dynamics of ring polymers in background solutions of semi-dilute linear polymers. Interestingly, we observe strikingly large fluctuations in steady-state polymer extension for ring polymers in flow, which occurs due to the interplay between polymer topology and concentration leading to chain `threading' in flow. In a third effort, we developed a new microfluidic method to measure normal stress and extensional viscosity that can be loosely described as passive yet non-linear microrheology. In particular, we incorporated 3-D particle imaging velocimetry (PIV) with the Stokes trap to study extensional flow-induced particle migration in semi-dilute polymer solutions. Experimental results are analyzed using the framework of a second-order-fluid model, which allows for measurement of normal stress and extensional viscosity in semi-dilute polymer solutions, all of which is a first-of-its-kind demonstration. Microfluidic measurements of extensional viscosity are directly compared to the dripping-onto-substrate or DOS method, and good agreement is generally observed. Overall, our work aims to provide a molecular-level understanding of the role of polymer topology and concentration on bulk rheological properties by using single polymer techniques.
Humer, Markus; Guider, Romain; Jantsch, Wolfgang; Fromherz, Thomas
2013-08-12
We experimentally investigate PbS nanocrystal (NC) photoluminescence (PL) coupled to all-integrated Si-based ring resonators and waveguides at telecom wavelengths. Dissolving the NCs into Novolak polymer significantly improves their stability in ambient atmosphere. Polymer-NC blends of various NC concentrations can be applied to and removed from the same device. For NC concentrations up to 4vol%, the spontaneous emission rate into ring-resonator modes is enhanced by a factor of ~13 with respect to that into a straight waveguide. The PL intensity shows a linear dependence on the excitation intensity up to 1.64kW/cm(2) and stable quality factors of ~2500.
Illy, Nicolas; Majonis, Daniel; Herrera, Isaac; Ornatsky, Olga; Winnik, Mitchell A
2012-08-13
Metal-chelating polymers (MCPs) are important reagents for multiplexed immunoassays based on mass cytometry. The role of the polymer is to carry multiple copies of individual metal isotopes, typically as lanthanide ions, and to provide a reactive functionality for convenient attachment to a monoclonal antibody (mAb). For this application, the optimum combination of chain length, backbone structure, end group, pendant groups, and synthesis strategy has yet to be determined. Here we describe the synthesis of a new type of MCP based on anionic ring-opening polymerization of an activated cyclopropane (the diallyl ester of 1,1-cyclopropane dicarboxylic acid) using a combination of 2-furanmethanethiol and a phosphazene base as the initiator. This reaction takes place with rigorous control over molecular weight, yielding a polymer with a narrow molecular weight distribution, reactive pendant groups for introducing a metal chelator, and a functional end group with orthogonal reactivity for attaching the polymer to the mAbs. Following the ring-opening polymerization, a two-step transformation introduced diethylenetriaminepentaacetic acid (DTPA) chelating groups on each pendant group. The polymers were characterized by NMR, size exclusion chromatography (SEC), and thermogravimetric analysis (TGA). The binding properties toward Gd(3+) as a prototypical lanthanide (Ln) ion were also studied by isothermal titration calorimetry (ITC). Attachment to a mAb involves a Diels-Alder reaction of the terminal furan with a bismaleimide, followed by a Michael addition of a thiol on the mAb, generated by mild reduction of a disulfide bond in the hinge region. Polymer samples with a number average degree of polymerization of 35, with a binding capacity of 49.5 ± 6 Ln(3+) ions per chain, were loaded with 10 different types of Ln ions and conjugated to 10 different mAbs. A suite of metal-tagged Abs was tested by mass cytometry in a 10-plex single cell analysis of human adult peripheral blood, allowing us to quantify the antibody binding capacity of 10 different cell surface antigens associated with specific cell types.
USDA-ARS?s Scientific Manuscript database
In an attempt to build up useful application of plant oil based polymers, natural epoxy oil (euphorbia oil-EuO) was polymerized in liquid carbon dioxide in the presence of Lewis acid catalyst [Boron trifluoride diethyl etherate (BF3•OEt2)]. The resulting polymers (RPEuO) were characterized by FTIR ...
Solid-state polymerisation via [2+2] cycloaddition reaction involving coordination polymers.
Medishetty, Raghavender; Park, In-Hyeok; Lee, Shim Sung; Vittal, Jagadese J
2016-03-14
Highly crystalline metal ions containing organic polymers are potentially useful to manipulate the magnetic and optical properties to make advanced multifunctional materials. However, it is challenging to synthesise monocrystalline metal complexes of organic polymers and single-phase hybrid materials made up of both coordination and organic polymers by traditional solution crystallisation. This requires an entirely different approach in the solid-state by thermal or photo polymerisation of the ligands. Among the photochemical methods available, [2+2] cycloaddition reaction has been recently employed to generate cyclobutane based coordination polymers from the metal complexes. Cyclobutane polymers have also been integrated into coordination polymers in this way. Recent advancements in the construction of polymeric chains of cyclobutane rings through photo-dimerisation reaction in the monocrystalline solids containing metal complexes, coordination polymers and metal-organic framework structures are discussed here.
Supramolecular Polymers Based on Non-Coplanar AAA-DDD Hydrogen-Bonded Complexes.
Mendez, Iamnica J Linares; Wang, Hong-Bo; Yuan, Ying-Xue; Wisner, James A
2018-03-01
Non-coplanar triple-hydrogen-bond arrays are connected as telechelic groups to alkyl chains and their properties as AA/BB type supramolecular polymers are examined. Viscosity studies at three temperatures are used to study the ring-chain equilibrium and determine the critical concentrations where polymer chains are formed. It is observed that neither the temperature range studied nor the alkyl chain length of one component significantly affect the polymerization properties in this system. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Condensed tannins: Quinone methide intermediates in procyanidin synthesis
Richard W. Hemingway; L. Y. Foo
1983-01-01
Proanthocyanidins (condensed tanruns) are widely distributed in plants and are found in sufficiently high concentration in some tree barks to encourage their industrial utilization. These polymers consist of flavanoid units linked through the C-4 of the pyran ring to the C-6 or C-8 carbons of the aromatic A-ring. Recent advances in the chemistry of condensed tannins...
Metal catalyzed synthesis of hyperbranched ethylene and/or .alpha.-olefin polymers
Sen, Ayusman; Kim, Jang Sub; Pawlow, James H.; Murtuza, Shahid; Kacker, Smita; Wojcinski, III, Louis M.
2001-01-01
Oily hyperbranched polymers derived from ethylene, propylene, butene and/or a C.sub.5 -C.sub.24 .alpha.-olefin, and a method for their synthesis, are disclosed. The polymers have non-regular microstructures and are characterized by a ratio ({character pullout})of methyl hydrogens centered around 0.85 ppm on the 1H-NMR spectra of the polymers relative to total aliphatic hydrogens of from about 0.40 to about 0.65 for polymers derived from ethylene or butene, and a ratio ({character pullout})of from greater than 0.50 to about 0.65 for polymers derived from propylene. A method for grafting hyperbranched polymers derived from ethylene, propylene, butene and/or a C.sub.5 -C.sub.24 .alpha.-olefin onto aromatic rings in organic molecules and polymers, and the resulting grafted materials, are also disclosed. The hyperbranched polymers and grafted materials are useful, for example, as lubricants and lubricant additives.
Impregnation of β-tricalcium phosphate robocast scaffolds by in situ polymerization.
Martínez-Vázquez, Francisco J; Perera, Fidel H; van der Meulen, Inge; Heise, Andreas; Pajares, Antonia; Miranda, Pedro
2013-11-01
Ring-opening polymerization of ε-caprolactone (ε-CL) and L-lactide (LLA) was performed to impregnate β-tricalcium phosphate (β-TCP) scaffolds fabricated by robocasting. Concentrated colloidal inks prepared from β-TCP commercial powders were used to fabricate porous structures consisting of a 3D mesh of interpenetrating rods. ε-CL and LLA were in situ polymerized within the ceramic structure by using a lipase and stannous octanoate, respectively, as catalysts. The results show that both the macropores inside the ceramic mesh and the micropores within the ceramic rods are full of polymer in either case. The mechanical properties of scaffolds impregnated by in situ polymerization (ISP) are significantly increased over those of the bare structures, exhibiting similar values than those obtained by other, more aggressive, impregnation methods such as melt-immersion (MI). ISP using enzymatic catalysts requires a reduced processing temperature which could facilitate the incorporation of growth factors and other drugs into the polymer composition, thus enhancing the bioactivity of the composite scaffold. The implications of these results for the optimization of the mechanical and biological performance of scaffolds for bone tissue engineering applications are discussed. Copyright © 2013 Wiley Periodicals, Inc.
Demonstration of versatile whispering-gallery micro-lasers for remote refractive index sensing.
Wan, Lei; Chandrahalim, Hengky; Zhou, Jian; Li, Zhaohui; Chen, Cong; Cho, Sangha; Zhang, Hui; Mei, Ting; Tian, Huiping; Oki, Yuji; Nishimura, Naoya; Fan, Xudong; Guo, L Jay
2018-03-05
We developed chip-scale remote refractive index sensors based on Rhodamine 6G (R6G)-doped polymer micro-ring lasers. The chemical, temperature, and mechanical sturdiness of the fused-silica host guaranteed a flexible deployment of dye-doped polymers for refractive index sensing. The introduction of the dye as gain medium demonstrated the feasibility of remote sensing based on the free-space optics measurement setup. Compared to the R6G-doped TZ-001, the lasing behavior of R6G-doped SU-8 polymer micro-ring laser under an aqueous environment had a narrower spectrum linewidth, producing the minimum detectable refractive index change of 4 × 10 -4 RIU. The maximum bulk refractive index sensitivity (BRIS) of 75 nm/RIU was obtained for SU-8 laser-based refractive index sensors. The economical, rapid, and simple realization of polymeric micro-scale whispering-gallery-mode (WGM) laser-based refractive index sensors will further expand pathways of static and dynamic remote environmental, chemical, biological, and bio-chemical sensing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Sang-Woo; Seong, Dong Gi; Yi, Jin-Woo
In order to manufacture carbon fiber-reinforced polyamide-6 (PA-6) composite, we optimized the reactive processing system. The in-situ anionic ring-opening polymerization of ε-caprolactam was utilized with proper catalyst and initiator for PA-6 matrix. The mechanical properties such as tensile strength, inter-laminar shear strength and compressive strength of the produced carbon fiber-reinforced PA-6 composite were measured, which were compared with the corresponding scanning electron microscope (SEM) images to investigate the polymer properties as well as the interfacial interaction between fiber and polymer matrix. Furthermore, kinetics of in-situ anionic ring-opening polymerization of ε-caprolactam will be discussed in the viewpoint of increasing manufacturing speedmore » and interfacial bonding between PA-6 matrix and carbon fiber during polymerization.« less
Poly-amido-saccharides: Synthesis via Anionic Polymerization of a β-Lactam Sugar Monomer
Dane, Eric L.; Grinstaff, Mark W.
2013-01-01
Chiral poly-amido-saccharides (PASs) with a defined molecular weight and narrow polydispersity are synthesized using an anionic ring-opening polymerization of a β-lactam sugar monomer. The PASs have a previously unreported main chain structure that is composed of pyranose rings linked through the 1- and 2-positions by an amide bond with α-stereochemistry. The monomer is synthesized in one-step from benzyl-protected d-glucal and polymerized using mild reaction conditions to give degrees of polymerization ranging from 25 to >150 in high yield. Computational modeling reveals how the monomer’s structure and steric bulk affect the thermodynamics and kinetics of polymerization. Protected and deprotected polymers and model compounds are characterized using a variety of methods (NMR, GPC, IR, DLS, etc.). Reductive debenzylation provides the deprotected, hydrophilic polymers in high yield. Based on circular dichroism, the deprotected polymers possess a regular secondary structure in aqueous solution, which agrees favorably with the prediction of a helical structure using molecular modeling. Furthermore, we provide evidence suggesting that the polymers bind the lectin concanavalin A at the same site as natural carbohydrates, showing the potential of these polymers to mimic natural polysaccharides. PASs offer the advantages associated with synthetic polymers, such as greater control over structure and derivitization, and less batch-to-batch variation. At the same time, they preserve many of the structural features of natural polysaccharides, such as a stereochemically regular, rigid pyranose backbone, that make natural carbohydrate polymers important materials both for their unique properties and useful applications. PMID:22937875
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Yong; Desseaux, Solenne; Aden, Bethany
We report that surface-grafting thermoresponsive polymers allows the preparation of thin polymer brush coatings with surface properties that can be manipulated by variation of temperature. In most instances, thermoresponsive polymer brushes are produced using polymers that dehydrate and collapse above a certain temperature. This report presents the preparation and properties of polymer brushes that show thermoresponsive surface properties, yet are shape-persistent in that they do not undergo main chain collapse. The polymer brushes presented here are obtained via vapor deposition surface-initiated ring-opening polymerization (SI-ROP) of γ-di- or tri(ethylene glycol)-modified glutamic acid N-carboxyanhydrides. Vapor deposition SI-ROP of γ-di- or tri(ethylene glycol)-modifiedmore » L- or D-glutamic acid N-carboxyanhydrides affords helical surface-tethered polymer chains that do not show any changes in secondary structure between 10 and 70 °C. QCM-D experiments, however, revealed significant dehydration of poly(γ-(2-(2-methoxyethoxy)ethyl)-l-glutamate) (poly(L-EG 2-Glu)) brushes upon heating from 10 to 40 °C. At the same time, AFM and ellipsometry studies did not reveal significant variations in film thickness over this temperature range, which is consistent with the shape-persistent nature of these polypeptide brushes and indicates that the thermoresponsiveness of the films is primarily due to hydration and dehydration of the oligo(ethylene glycol) side chains. The results we present here illustrate the potential of surface-initiated NCA ring-opening polymerization to generate densely grafted assemblies of polymer chains that possess well-defined secondary structures and tunable surface properties. These polypeptide brushes complement their conformationally unordered counterparts that can be generated via surface-initiated polymerization of vinyl-type monomers and represent another step forward to biomimetic surfaces and interfaces.« less
Fischer-Friedrich, Elisabeth; Friedrich, Benjamin M; Gov, Nir S
2012-02-01
In many bacterial species, the protein FtsZ forms a cytoskeletal ring that marks the future division site and scaffolds the division machinery. In rod-shaped bacteria, most frequently membrane-attached FtsZ rings or ring fragments are reported and occasionally helices. By contrast, axial FtsZ clusters have never been reported. In this paper, we investigate theoretically how dynamic FtsZ aggregates align in rod-shaped bacteria. We study systematically different physical mechanisms that affect the alignment of FtsZ polymers using a computational model that relies on autocatalytic aggregation of FtsZ filaments at the membrane. Our study identifies a general tool kit of physical and geometrical mechanisms by which rod-shaped cells align biopolymer aggregates. Our analysis compares the relative impact of each mechanism on the circumferential alignment of FtsZ as observed in rod-shaped bacteria. We determine spontaneous curvature of FtsZ polymers and axial confinement of FtsZ on the membrane as the strongest factors. Including Min oscillations in our model, we find that these stabilize axial and helical clusters on short time scales, but promote the formation of an FtsZ ring at the cell middle at longer times. This effect could provide an explanation to the long standing puzzle of transiently observed oscillating FtsZ helices in Escherichia coli cells prior to cell division.
NASA Astrophysics Data System (ADS)
Parrish, Dennis Arch
The research presented in this dissertation describes the investigation of 2,5-diketopiperazines (DKPs) as property modifiers for addition polymers and the self association behavior of pyroglutamic acid derivatives. The first project involved the copolymerization of methyl methacrylate and styrene with DKP-based methacrylate monomers. Low incorporations of serine- and aspartame-based DKPs in the copolymer resulted in dramatic increases in the glass transition temperature (Ts). The research presented in Chapter II focuses on the ring-opening reactions of pyroglutamic diketopiperazine (pyDKP). The original intent was to synthesize polymers containing backbone DKPs through ring-opening polymerization of the five-membered rings. However, it was discovered that regioselective ring-opening occurs at the six-membered ring to give pyroglutamic acid derivatives. Since this reaction had not been reported previously, the focus of research was altered to investigate the scope and limitations of the new reaction. The ring-opening reactions of pyDKP with diamines to give bispyroglutamides is described in Chapter IV. While these materials are not polymeric, they display polymeric behavior. It was found that multi-functional pyroglutamides display Tgs during thermal analysis, exhibit high thermal stability, and form melt-drawn fibers. In contrast, the materials have low solution viscosities and are freely soluble in water, ethanol, and chloroform. This behavior is attributed to non-covalent supramolecular associations. The final part of this dissertation involved the investigation of thermoreversible organic solvent gelators. The ring-opening reaction of pyDKP with long alkyl amines unexpectedly gelled the reaction solvent. A series of analogous gelators were synthesized, and the minimum concentration required for gelation in various solvents was determined. It was found that the nature of the solvent, alkyl chain length, and optical activity of the gelator determined gelator efficiency and gel structure.
Controlled Ring-Opening Metathesis Polymerization by Molybdenum and Tungsten Alkylidene Complexes
1988-07-29
weights and low polydispersities (as low as 1.03) consistent with a living catalyst system employing 50, 100, 200, and 400 eq of monomer. The reactions are...secondary metathesis of polymer chains Bulky alkoxide ligands Wittig-like reaction Ring-opening metathesis polymerization (ROMP) Feast monomer Cyclic...olefins Retro Diels-Alder reaction Norbornene (NBE) Low temperature column chromatography Endo-,endo-5,6-dicarbomethoxynorbornene Discrete, soluble
Topological effects on the mechanical properties of polymer knots
NASA Astrophysics Data System (ADS)
Zhao, Yani; Ferrari, Franco
2017-11-01
The mechanical properties of knotted polymer rings under stretching in a bad or good solvent are investigated by applying a force F to a point of the knot while keeping another point fixed. The Monte Carlo sampling of the polymer conformations is performed on a simple cubic lattice using the Wang-Landau algorithm. The specific energy, specific heat capacity, gyration radius and the force-elongation curves are computed for several knot topologies with lengths up to 120 lattice units. The common features of the mechanical and thermal behavior of stretched short polymer rings forming knots of a given topological type are analyzed as well as the differences arising due to topology and size effects. It is found that these systems admit three different phases depending on the values of the tensile force F and the temperature T. The transitions from one phase to the other are well characterized by the peaks of the specific heat capacity and by the data of the gyration radius and specific energy. At very low temperatures the force-elongation curves show that the stretching of a knot is a stepwise process, which becomes smooth at higher temperatures. Criteria for distinguishing topological and size effects are provided. It turns out from our study that the behavior of short polymer rings is strongly influenced by topological effects. In particular, the swelling and the swelling rate of knots are severely limited by the topological constraints. Several other properties that are affected by topology, like the decay of the specific energy at high tensile forces, are discussed. The fading out of the influences of topological origin with increasing knot lengths has been verified. Some anomalies detected in the plots of the specific heat capacity of very short and complex knots have been explained by the limitations in the number of accessible energy states due to the topological constraints.
He, Gang; Kang, Le; Torres Delgado, William; Shynkaruk, Olena; Ferguson, Michael J; McDonald, Robert; Rivard, Eric
2013-04-10
A versatile and general synthetic route for the synthesis of conjugated main group element-based polymers, previously inaccessible by conventional means, is reported. These polymers contain five-membered chalcogenophene rings based on S, Se, and Te, and we demonstrate that optoelectronic properties can be readily tuned via controlled atom substitution chemistry. In addition, regioregular hybrid thiophene-selenophene-tellurophene and selenophene-fluorene copolymers were synthesized to provide a further illustration of the scope of the presented metallacycle transfer/cross-coupling polymerization method.
Watching entangled circular DNA in real time with super-resolution
NASA Astrophysics Data System (ADS)
Jee, Ah-Young; Kim, Hyeongju; Granick, Steve
In this talk, we will show how we unraveled the conformational dynamics of entangled ring-shaped polymers in network, which is one of the most well-known problems in polymer physics, using deep imaging based on super-resolution fluorescence imaging, stimulated emission depletion (STED) microscopy. By using home-written software, we obtained the statistics of each of the hundreds of molecules, mapping out a large statistical distribution. Through inspection we not only found some aspects of the classic understanding of polymers, but some surprising aspects as well.
Computationally Designed Oligomers for High Contrast Black Electrochromic Polymers
2017-05-05
SUBJECT TERMS electrochromics, DFf, TDDFT, organic electronics , oligomer, organic polymers 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER... electron -withdrawing behaviors. Another finding was that the same dication was produced regardless of the color or peak morphology of the neutral 5...radical cation states present in the chromophore upon oxidation. The two-ring electron rich dioxythiophene portions of the chromophore (EAc) and/or the
Towards Well-Defined Polysilylenes and Polyphosphazenes
1992-05-25
distribution), non - controlled degrees of polymerization and unknown end cyclopentasilanes 2 8 . The anionic intermediates have been observed groups. Some... control in polysilanes will be presented: ring-opening polymerization, and polymer modications.. Block and graft copolymers based on polysilanes will be...34sticks" to the surface of alkali metal and continues to grow to high possible to prepare polymers with controlled molecular weight, with low m"m
Biodegradable polydepsipeptides.
Feng, Yakai; Guo, Jintang
2009-02-01
This paper reviews the synthesis, characterization, biodegradation and usage of bioresorbable polymers based on polydepsipeptides. The ring-opening polymerization of morpholine-2,5-dione derivatives using organic Sn and enzyme lipase is discussed. The dependence of the macroscopic properties of the block copolymers on their structure is also presented. Bioresorbable polymers based on polydepsipeptides could be used as biomaterials in drug controlled release, tissue engineering scaffolding and shape-memory materials.
Shimamura, Miyuki K; Deguchi, Tetsuo
2002-05-01
Several nontrivial properties are shown for the mean-square radius of gyration R2(K) of ring polymers with a fixed knot type K. Through computer simulation, we discuss both finite size and asymptotic behaviors of the gyration radius under the topological constraint for self-avoiding polygons consisting of N cylindrical segments with radius r. We find that the average size of ring polymers with the knot K can be much larger than that of no topological constraint. The effective expansion due to the topological constraint depends strongly on the parameter r that is related to the excluded volume. The topological expansion is particularly significant for the small r case, where the simulation result is associated with that of random polygons with the knot K.
Compact structure and non-Gaussian dynamics of ring polymer melts.
Brás, Ana R; Goossen, Sebastian; Krutyeva, Margarita; Radulescu, Aurel; Farago, Bela; Allgaier, Jürgen; Pyckhout-Hintzen, Wim; Wischnewski, Andreas; Richter, Dieter
2014-05-28
We present a neutron scattering analysis of the structure and dynamics of PEO polymer rings with a molecular weight 2.5 times higher than the entanglement mass. The melt structure was found to be more compact than a Gaussian model would suggest. With increasing time the center of mass (c.o.m.) diffusion undergoes a transition from sub-diffusive to diffusive behavior. The transition time agrees well with the decorrelation time predicted by a mode coupling approach. As a novel feature well pronounced non-Gaussian behavior of the c.o.m. diffusion was found that shows surprising analogies to the cage effect known from glassy systems. Finally, the longest wavelength Rouse modes are suppressed possibly as a consequence of an onset of lattice animal features as hypothesized in theoretical approaches.
Suleimanov, Yury V.; Aoiz, F. Javier; Guo, Hua
2016-09-14
This Feature Article presents an overview of the current status of ring polymer molecular dynamics (RPMD) rate theory. We first analyze the RPMD approach and its connection to quantum transition-state theory. We then focus on its practical applications to prototypical chemical reactions in the gas phase, which demonstrate how accurate and reliable RPMD is for calculating thermal chemical reaction rate coefficients in multifarious cases. This review serves as an important checkpoint in RPMD rate theory development, which shows that RPMD is shifting from being just one of recent novel ideas to a well-established and validated alternative to conventional techniques formore » calculating thermal chemical rate coefficients. We also hope it will motivate further applications of RPMD to various chemical reactions.« less
Study of biodegradable polymers for ``green'' devices
NASA Astrophysics Data System (ADS)
Perez, Carlos; Jiang, Xiaomei; Jiang Group Team
2015-03-01
Π - conjugated polymers such as polythiophenes are conventional picks for cost-effective organic solar cells. However, these organic semiconductors are not environment-friendly since the polymer back bones require temperature higher than 3000C to be decomposed, thus will cause potential environment problems upon disposal. In this work, the optical and electronic properties of biodegradable polymers, conjugated poly(disulfidediamine), were examined via continuous wave laser spectroscopy, FTIR spectroscopy and conductivity measurement. We found that the attachment of a side chain to aromatic ring increases both photo and thermal stability, as well as higher conductivity. Thermal annealing improved the film morphological, photophysical and electronic properties. Photo-Induced Absorption (PIA) reveals different features comparing with conventional pi-conjugated polymers. No observation of long-lived photoexcitations such as polarons or triplets which are common with pi-conjugated polymers. Instead, we found the formation of low energy species upon thermal annealing in these biodegradable polymers.
Zhu, Yunqing; Romain, Charles; Williams, Charlotte K
2015-09-30
Selective catalysis is used to prepare block copolyesters by combining ring-opening polymerization of lactones and ring-opening copolymerization of epoxides/anhydrides. By using a dizinc complex with mixtures of up to three different monomers and controlling the chemistry of the Zn-O(polymer chain) it is possible to select for a particular polymerization route and thereby control the composition of block copolyesters.
Structure and Properties of Polysaccharide Based BioPolymer Gels
NASA Astrophysics Data System (ADS)
Prud'Homme, Robert K.
2000-03-01
Nature uses the pyranose ring as the basic building unit for a wideclass of biopolymers. Because of their biological origin these biopolymers naturally find application as food additives, rheology modifiers. These polymers range from being rigid skeletal material, such as cellulose that resist dissolution in water, to water soluble polymers, such as guar or carrageenan. The flexibility of the basic pyranose ring structure to provide materials with such a wide range of properties comes from the specific interactions that can be engineered by nature into the structure. We will present several examples of specific interactions for these systems: hydrogen bonding, hydrophobic interactions, and specific ion interactions. The relationship between molecular interations and rheology will be emphasized. Hydrogen bonding mediated by steric interference is used to control of solubility of starch and the rheology of guar gels. A more interesting example is the hydrogen bonding induced by chemical modification in konjac glucomannan that results in a gel that melts upon cooling. Hydrogen bonding interactions in xanthan lead to gel formation at very low polymer concentrations which is a result of the fine tuning of the polymer persistence length and total contour length. Given the function of xanthan in nature its molecular architecture has been optimized. Hydrophobic interactions in methylcellulose show a reverse temperature dependence arising from solution entropy. Carrageenan gelation upon the addition of specific cations will be addressed to show the interplay of polymer secondary structure on chemical reactivity. And finally the cis-hydroxyls on galactomannans permit crosslinking by a variety of metal ions some of which lead to "living gels" and some of which lead to permanently crosslinked networks.
Synthesis and thermal stability of carborane containing phosphazenes
NASA Technical Reports Server (NTRS)
Fewell, L. L.; Basi, R. J.; Parker, J. A.
1983-01-01
Carborane substituted polyphosphazenes were prepared by the thermal polymerization of phenyl-carboranyl penta chlorocyclotriphosphazene. Successive isothermal vacuum pyrolyses were conducted on the polymer and examined for structural changes by infrared spectroscopy. The degradation products were ascertained by gas chromatography-mass spectrometric analysis. It was found that the presence of the carborane group improves the thermal stability of the polymer by retarding the ring chain equilibrium processes of decomposition.
Yavuz, Mustafa S.; Jensen, Gary C.; Penaloza, David P.; Seery, Thomas A. P.; Pendergraph, Samuel A.; Rusling, James F.; Sotzing, Gregory A.
2010-01-01
We have achieved reversible tunability of local surface plasmon resonance in conjugated polymer functionalized gold nanoparticles. This property was facilitated by the preparation of 3,4-ethylenedioxythiophene (EDOT) containing polynorbornene brushes on gold nanoparticles via surface-initiated ring-opening metathesis polymerization. Reversible tuning of the surface plasmon band was achieved by electrochemically switching the EDOT polymer between its reduced and oxidized states. PMID:19839619
O'Connell, Michael A; de Cuendias, Anne; Gayet, Florence; Shirley, Ian M; Mackenzie, Stuart R; Haddleton, David M; Unwin, Patrick R
2012-05-01
Evanescent wave cavity ring-down spectroscopy (EW-CRDS) has been employed to study the interfacial adsorption kinetics of coumarin-tagged macromolecules onto a range of functionalized planar surfaces. Such studies are valuable in designing polymers for complex systems where the degree of interaction between the polymer and surface needs to be tailored. Three tagged synthetic polymers with different functionalities are examined: poly(acrylic acid) (PAA), poly(3-sulfopropyl methacrylate, potassium salt) (PSPMA), and a mannose-modified glycopolymer. Adsorption transients at the silica/water interface are found to be characteristic for each polymer, and kinetics are deduced from the initial rates. The chemistry of the adsorption interfaces has been varied by, first, manipulation of silica surface chemistry via the bulk pH, followed by surfaces modified by poly(L-glutamic acid) (PGA) and cellulose, giving five chemically different surfaces. Complementary atomic force microscopy (AFM) imaging has been used for additional surface characterization of adsorbed layers and functionalized interfaces to allow adsorption rates to be interpreted more fully. Adsorption rates for PSPMA and the glycopolymer are seen to be highly surface sensitive, with significantly higher rates on cellulose-modified surfaces, whereas PAA shows a much smaller rate dependence on the nature of the adsorption surface.
NASA Astrophysics Data System (ADS)
Mitani, Masaki; Mori, Hiroki; Takano, Yu; Yamaki, Daisuke; Yoshioka, Yasunori; Yamaguchi, Kizashi
2000-09-01
Polyradicals comprised of m-phenylene-bridged organic radicals are well known as building blocks of organic ferromagnets, in which radical groups are connected with each other at the meta position in the benzene ring, and the parallel-spin configurations between radical sites are more stabilized than the antiparallel ones. Topological rules for spin alignments enable us to design organic high-spin dendrimers and polymers with the ferromagnetic ground states by linking various radical species through an m-phenylene unit. However, no systematic ab initio treatment of such spin dendrimers and magnetic polymers has been reported until now, though experimental studies on these materials have been performed extensively in the past ten years. As a first step to examine the possibilities of ferromagnetic dendrimers and polymers constructed of m-phenylene units with organic radicals, we report density functional and molecular orbital calculations of six m-phenylene biradical units with radical substituents and polycarbenes linked with an m-phenylene-type network. The relative stability between the spin states and spin density population are estimated by BLYP or B3LYP and Hartree-Fock calculations in order to clarify their utility for constructions of large spin denderimers and periodic magnetic polymers, which are final targets in this series of papers. It is shown that neutral polyradicals with an m-phenylene bridge are predicted as high-spin ground-state molecules by the computations, while m-phenylene-bridged ion-radical species formed by doping may have the low-spin ground states if zwitterionic configurations play significant roles to stabilize low-spin states. Ab initio computations also show an important role of conformations of polyradicals for stabilization of their high-spin states. The computational results are applied to molecular design of high-spin dendrimers and polymers. Implications of them are also discussed in relation to recent experimental results for high-spin organic molecules.
Recovery of Uranium from Seawater: Preparation and Development of Polymer-Supported Extractants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spiro, Alexandratos
2013-12-01
A new series of polymer-supported extractants is proposed for the removal and recovery of uranium from seawater. The objective is to produce polymers with improved stability, loading capacity, and sorption kinetics compared to what is found with amidoximes. The target ligands are diphosphonates and aminomethyldiphosphonates. Small molecule analogues, especially of aminomethyldiphos-phonates, have exceptionally high stability constants for the uranyl ion. The polymeric diphosphonates will have high affinities due to their ability to form six-membered rings with the uranyl ion while the aminomethyldiphosphonates may have yet higher affinities due to possible tridentate coordination and their greater acidity. A representative set ofmore » the polymers to be prepared are indicated.« less
Self-Assembling Brush Polymers Bearing Multisaccharides.
Lee, Jongchan; Kim, Jin Chul; Lee, Hoyeol; Song, Sungjin; Kim, Heesoo; Ree, Moonhor
2017-06-01
Three different series of brush polymers bearing glucosyl, maltosyl, or maltotriosyl moiety at the bristle end are successfully prepared by using cationic ring-opening polymerization and two sequential postmodification reactions. All brush polymers, except for the polymer containing 100 mol% maltotriosyl moiety, demonstrate the formation of multibilayer structure in films, always providing saccharide-enriched surface. These self-assembling features are remarkable, regarding the bulkiness of saccharide moieties and the kink in the bristle due to the triazole linker. The saccharide-enriched film surfaces reveal exceptionally high specific binding affinity to concanavalin A but suppress nonspecific binding of plasma proteins severely. Overall, the brush polymers bearing saccharide moieties of various kinds in this study are highly suitable materials for biomedical applications including biosensors. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Development and Evaluation of Phosphonitrilic Fluoroelastomer O-Rings.
1975-04-01
and having the following formula: c 0CH2(CF2$CF2H n 1 The polymer contained svfflclent cure sites to attain good curability with mnvent~onai...cable with phosphonitrilic fluoroelastomer compounds. A good quality coating of approximately 0,031" thickness was obtained by passing the cable through...extreme low temperature flexibility, outstanding fluid resistance, good heat resis- tance and good dynnmic properties. O-ring seals are one such
Zardalidis, George; Mars, Julian; Allgaier, Jürgen; Mezger, Markus; Richter, Dieter; Floudas, George
2016-10-04
The absence of entanglements, the more compact structure and the faster diffusion in melts of cyclic poly(ethylene oxide) (PEO) chains have consequences on their crystallization behavior at the lamellar and spherulitic length scales. Rings with molecular weight below the entanglement molecular weight (M < M e ), attain the equilibrium configuration composed from twice-folded chains with a lamellar periodicity that is half of the corresponding linear chains. Rings with M > M e undergo distinct step-like conformational changes to a crystalline lamellar with the equilibrium configuration. Rings melt from this configuration in the absence of crystal thickening in sharp contrast to linear chains. In general, rings more easily attain their extended equilibrium configuration due to strained segments and the absence of entanglements. In addition, rings have a higher equilibrium melting temperature. At the level of the spherulitic superstructure, growth rates are much faster for rings reflecting the faster diffusion and more compact structure. With respect to the segmental dynamics in their semi-crystalline state, ring PEOs with a steepness index of ∼34 form some of the "strongest" glasses.
Weiber, E Annika; Jannasch, Patric
2014-09-01
A series of copoly(arylene ether sulfone)s that have precisely two, three, or four quaternary ammonium (QA) groups clustered directly on single phenylene rings along the backbone are studied as anion-exchange membranes. The copolymers are synthesized by condensation polymerizations that involve either di-, tri-, or tetramethylhydroquinone followed by virtually complete benzylic bromination using N-bromosuccinimide and quaternization with trimethylamine. This synthetic strategy allows excellent control and systematic variation of the local density and distribution of QA groups along the backbone. Small-angle X-ray scattering of these copolymers shows extensive ionic clustering, promoted by an increasing density of QA on the single phenylene rings. At an ion-exchange capacity (IEC) of 2.1 meq g(-1), the water uptake decreases with the increasing local density of QA groups. Moreover, at moderate IECs at 20 °C, the Br(-) conductivity of the densely functionalized copolymers is higher than a corresponding randomly functionalized polymer, despite the significantly higher water uptake of the latter. Thus, the location of multiple cations on single aromatic rings in the polymers facilitates the formation of a distinct percolating hydrophilic phase domain with a high ionic concentration to promote efficient anion transport, despite probable limitations by reduced ion dissociation. These findings imply a viable strategy to improve the performance of alkaline membrane fuel cells. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Park, Sang-Hyuck; Wei, Shuting; Mizaikoff, Boris; Taylor, Amelia E; Favero, Cedrick; Huang, Ching-Hua
2009-03-01
Recent studies indicated that water treatment polymers such as poly(epichlorohydrin dimethylamine) (polyamine) and poly(diallyldimethylammonium chloride) (polyDADMAC) may form N-nitrosodimethylamine (NDMA) when in contact with chloramine water disinfectants. To minimize such potential risk and improve the polymer products, the mechanisms of how the polymers behave as NDMA precursors need to be elucidated. Direct chloramination of polymers and intermediate monomers in reagent water was conducted to probe the predominant mechanisms. The impact of polymer properties including polymer purity, polymer molecular weight and structure, residual dimethylamine (DMA), and other intermediate compounds involved in polymer synthesis, and reaction conditions such as pH, oxidant dose, and contact time on the NDMA formation potential (NDMA-FP) was investigated. Polymer degradation after reaction with chloramines was monitored at the molecular level using FT-IR and Raman spectroscopy. Overall, polyamines have greater NDMA-FP than polyDADMAC, and the NDMA formation from both polymers is strongly related to polymer degradation and DMA release during chloramination. Polyamines' tertiary amine chain ends play a major role in their NDMA-FP, while polyDADMACs' NDMA-FP is related to degradation of the quaternary ammonium ring group.
Hydrogen Diffusion and Trapping in α -Iron: The Role of Quantum and Anharmonic Fluctuations
NASA Astrophysics Data System (ADS)
Cheng, Bingqing; Paxton, Anthony T.; Ceriotti, Michele
2018-06-01
We investigate the thermodynamics and kinetics of a hydrogen interstitial in magnetic α -iron, taking account of the quantum fluctuations of the proton as well as the anharmonicities of lattice vibrations and hydrogen hopping. We show that the diffusivity of hydrogen in the lattice of bcc iron deviates strongly from an Arrhenius behavior at and below room temperature. We compare a quantum transition state theory to explicit ring polymer molecular dynamics in the calculation of diffusivity. We then address the trapping of hydrogen by a vacancy as a prototype lattice defect. By a sequence of steps in a thought experiment, each involving a thermodynamic integration, we are able to separate out the binding free energy of a proton to a defect into harmonic and anharmonic, and classical and quantum contributions. We find that about 30% of a typical binding free energy of hydrogen to a lattice defect in iron is accounted for by finite temperature effects, and about half of these arise from quantum proton fluctuations. This has huge implications for the comparison between thermal desorption and permeation experiments and standard electronic structure theory. The implications are even greater for the interpretation of muon spin resonance experiments.
Romero, Juan A [Albuquerque, NM; Walker, Charles A [Albuquerque, NM; Blair, Dianna S [Albuquerque, NM; Bodmer, Connie C [Albuquerque, NM
2012-05-29
Seals have a flexible wire that can be looped through a hasp-like device. The seals include a body having a recess, a plug insertable into the recess and a snap ring for fastening the plug to the body. The plug and/or body can have access holes for inserting the wire into the recess. "Teeth" on the outer diameter and through-holes through the thickness of the snap ring allow for passing the ends of the flexible wire from the recess through the snap ring. The ends of the wire can be folded back over the snap ring and into engagement with the teeth. Assembly of the seal causes the ends of the wire to be securely fastened between the teeth of the snap ring and the sidewall of the recess. Seals can include a plug and/or body made of a frangible material such as glass, ceramic, glass-ceramic or brittle polymer.
NASA Technical Reports Server (NTRS)
Peyghambarian, Nasser (Inventor); Hendrickx, Eric (Inventor); Volodin, Boris (Inventor); Marder, Seth R. (Inventor); Kippelen, Bernard (Inventor)
2000-01-01
Fused ring bridge, ring locked dyes that form thermally stable photorfractive compositions. The fused ring bridge structures are .pi.-conjugated bonds in benzene-, naphthalene- or anthracene-derived fused ring systems that connect donor and acceptor groups. The donor and acceptor groups contribute to a high molecular dipole moment and linear polarizability anisotropy. The polarization characteristics of the dye molecules are stabilized since the bonds in the fused ring bridge are not susceptible to rotation, reducing the opportunity for photoisomerization. The dyes are compatible with polymeric compositions, including thermoplastics. The dyes are electrically neutral but have charge transport, electronic and orientational properties such that upon illumination of a composition containing the dye, the dye facilitates refractive index modulation and a photorefractive effect that can be utilized advantageously in numerous applications such as in optical quality devices and biological imaging.
NASA Astrophysics Data System (ADS)
Ogawa, Kuniyasu; Haishi, Tomoyuki; Aoki, Masaru; Hasegawa, Hiroshi; Morisaka, Shinichi; Hashimoto, Seitaro
2017-01-01
A small radio-frequency (rf) coil inserted into a polymer electrolyte fuel cell (PEFC) can be used to acquire nuclear magnetic resonance (NMR) signals from the water in a membrane electrode assembly (MEA) or in oxygen gas channels in the PEFC. Measuring the spatial distribution of the water in a large PEFC requires using many rf probes, so an NMR measurement system which acquires NMR signals from 128 rf probes at intervals of 0.5 s was manufactured. The system has eight rf transceiver units with a field-programmable gate array (FPGA) for modulation of the excitation pulse and quadrature phase detection of the NMR signal, and one control unit with two ring buffers for data control. The sequence data required for the NMR measurement were written into one ring buffer. The acquired NMR signal data were then written temporarily into the other ring buffer and then were transmitted to a personal computer (PC). A total of 98 rf probes were inserted into the PEFC that had an electrical generation area of 16 cm × 14 cm, and the water generated in the PEFC was measured when the PEFC operated at 100 A. As a result, time-dependent changes in the spatial distribution of the water content in the MEA and the water in the oxygen gas channels were obtained.
Metal-capped silicon organic micro-ring electro-optical modulator (Conference Presentation)
NASA Astrophysics Data System (ADS)
Zaki, Aya O.; Kirah, Khaled A.; Swillam, Mohamed A.
2017-02-01
An ultra-compact hybrid plasmonic waveguide ring electro-optical modulator is designed to be easily fabricated on silicon on insulator (SOI) substrates using standard silicon photonics technology. The proposed waveguide is based on a buried standard silicon waveguide of height 220 nm topped with polymer and metal. The key advantage of this novel design is that only the silicon layer of the waveguide is structured as a coupled ring resonator. Then, the device is covered with electro-optical polymer and metal in post processes with no need for lithography or accurate mask alignment techniques. The simple fabrication method imposes many design challenges to obtain a resonator of reasonable loaded quality factor and high extinction ratio. Here, the performance of the resonator is optimized in the telecom wavelength range around 1550 nm using 3D FDTD simulations. The design of the coupling junction between the access waveguide and the tightly bent ring is thoroughly studied. The extension of the metal over the coupling region is exploited to make the critical dimension of the design geometry at least 2.5 times larger than conventional plasmonic resonators and the design is thus more robust. In this paper, we demonstrate an electro-optical modulator that offers an insertion loss < 1 dB, a modulation depth of 12 dB for an applied peak to peak voltage of only 2 V and energy consumption of 1.74 fJ/bit. The performance is superior to previously reported hybrid plasmonic ring resonator based modulators while the design shows robustness and low fabrication cost.
Analysis of Carbon Nanotube Pull-out from a Polymer Matrix
NASA Technical Reports Server (NTRS)
Frankland, S. J. V.; Harik, V. M.; Bushnell, Dennis M. (Technical Monitor)
2002-01-01
Molecular dynamics (MD) simulations of carbon nanotube (NT) pull-out from a polymer matrix are carried out. As the NT pull-out develops in the simulation, variations in the displacement and velocities of the NT are monitored. The existence of a carbon-ring-based period in NT sliding during pull-out is identified. Linear trends in the NT velocity-force relation are observed and used to estimate an effective viscosity coefficient for interfacial sliding at the NT/polymer interface. As a result, the entire process of NT pull-out is characterized by an interfacial friction model that is based on a critical pull-out force, and an analog of Newton's friction law used to describe the NT/polymer interfacial sliding.
Labelling Polymers and Micellar Nanoparticles via Initiation, Propagation and Termination with ROMP
Thompson, Matthew P.; Randolph, Lyndsay M.; James, Carrie R.; Davalos, Ashley N.; Hahn, Michael E.
2014-01-01
In this paper we compare and contrast three approaches for labelling polymers with functional groups via ring-opening metathesis polymerization (ROMP). We explored the incorporation of functionality via initiation, termination and propagation employing an array of novel initiators, termination agents and monomers. The goal was to allow the generation of selectively labelled and well-defined polymers that would in turn lead to the formation of labelled nanomaterials. Norbornene analogues, prepared as functionalized monomers for ROMP, included fluorescent dyes (rhodamine, fluorescein, EDANS, and coumarin), quenchers (DABCYL), conjugatable moieties (NHS esters, pentafluorophenyl esters), and protected amines. In addition, a set of symmetrical olefins for terminally labelling polymers, and for the generation of initiators in situ is described. PMID:24855496
NASA Astrophysics Data System (ADS)
Carrillo, Alvaro; Gujraty, Kunal V.; Rai, Prakash R.; Kane, Ravi S.
2005-07-01
Multivalent molecules, i.e. scaffolds presenting multiple copies of a suitable ligand, constitute an emerging class of nanoscale therapeutics. We present a novel approach for the design of multivalent ligands, which allows the biofunctionalization of polymers with proteins or peptides in a controlled orientation. It consists of the synthesis of water-soluble, activated polymer scaffolds of controlled molecular weight, which can be biofunctionalized with various thiolated ligands in aqueous media under mild conditions. These polymers were synthesized by ring-opening metathesis polymerization (ROMP) and further modified to make them water-soluble. The incorporation of chloride groups activated the polymers to react with thiol-containing peptides or proteins, and the formation of multivalent ligands in aqueous media was demonstrated. This strategy represents a convenient route for synthesizing multivalent ligands of controlled dimensions and valency.
Ngororabanga, Jean Marie Vianney; Du Plessis, Jacolien; Mama, Neliswa
2017-01-01
A novel fluorescent polymer with pendant triazolyl coumarin units was synthesized through radical polymerization. The polymer showed reasonable sensitivity and selectivity towards Cu2+ in acetonitrile in comparison to other tested metal ions with a significant quenching effect on fluorescence and blue shifting in the range of 20 nm. The blue shift was assigned to the conformation changes of the diethylamino group from the coumarin moiety which led to planarization of the triazolyl coumarin units. The possible binding modes for Cu2+ towards the polymer were determined through the comparison of the emission responses of the polymer, starting vinyl monomer and reference compound, and the triazole ring was identified as one of the possible binding sites for Cu2+. The detection limits of the polymer and vinyl monomer towards Cu2+ were determined from fluorescence titration experiments and a higher sensitivity (35 times) was observed for the polymer compared with its starting monomer. PMID:28867764
Ngororabanga, Jean Marie Vianney; Du Plessis, Jacolien; Mama, Neliswa
2017-08-30
A novel fluorescent polymer with pendant triazolyl coumarin units was synthesized through radical polymerization. The polymer showed reasonable sensitivity and selectivity towards Cu 2+ in acetonitrile in comparison to other tested metal ions with a significant quenching effect on fluorescence and blue shifting in the range of 20 nm. The blue shift was assigned to the conformation changes of the diethylamino group from the coumarin moiety which led to planarization of the triazolyl coumarin units. The possible binding modes for Cu 2+ towards the polymer were determined through the comparison of the emission responses of the polymer, starting vinyl monomer and reference compound, and the triazole ring was identified as one of the possible binding sites for Cu 2+ . The detection limits of the polymer and vinyl monomer towards Cu 2+ were determined from fluorescence titration experiments and a higher sensitivity (35 times) was observed for the polymer compared with its starting monomer.
Purushotham, Pallinti; Cho, Sung Hyun; Díaz-Moreno, Sara M.; Kumar, Manish; Nixon, B. Tracy; Bulone, Vincent; Zimmer, Jochen
2016-01-01
Plant cell walls are a composite material of polysaccharides, proteins, and other noncarbohydrate polymers. In the majority of plant tissues, the most abundant polysaccharide is cellulose, a linear polymer of glucose molecules. As the load-bearing component of the cell wall, individual cellulose chains are frequently bundled into micro and macrofibrils and are wrapped around the cell. Cellulose is synthesized by membrane-integrated and processive glycosyltransferases that polymerize UDP-activated glucose and secrete the nascent polymer through a channel formed by their own transmembrane regions. Plants express several different cellulose synthase isoforms during primary and secondary cell wall formation; however, so far, none has been functionally reconstituted in vitro for detailed biochemical analyses. Here we report the heterologous expression, purification, and functional reconstitution of Populus tremula x tremuloides CesA8 (PttCesA8), implicated in secondary cell wall formation. The recombinant enzyme polymerizes UDP-activated glucose to cellulose, as determined by enzyme degradation, permethylation glycosyl linkage analysis, electron microscopy, and mutagenesis studies. Catalytic activity is dependent on the presence of a lipid bilayer environment and divalent manganese cations. Further, electron microscopy analyses reveal that PttCesA8 produces cellulose fibers several micrometers long that occasionally are capped by globular particles, likely representing PttCesA8 complexes. Deletion of the enzyme’s N-terminal RING-finger domain almost completely abolishes fiber formation but not cellulose biosynthetic activity. Our results demonstrate that reconstituted PttCesA8 is not only sufficient for cellulose biosynthesis in vitro but also suffices to bundle individual glucan chains into cellulose microfibrils. PMID:27647898
Purushotham, Pallinti; Cho, Sung Hyun; Díaz-Moreno, Sara M; Kumar, Manish; Nixon, B Tracy; Bulone, Vincent; Zimmer, Jochen
2016-10-04
Plant cell walls are a composite material of polysaccharides, proteins, and other noncarbohydrate polymers. In the majority of plant tissues, the most abundant polysaccharide is cellulose, a linear polymer of glucose molecules. As the load-bearing component of the cell wall, individual cellulose chains are frequently bundled into micro and macrofibrils and are wrapped around the cell. Cellulose is synthesized by membrane-integrated and processive glycosyltransferases that polymerize UDP-activated glucose and secrete the nascent polymer through a channel formed by their own transmembrane regions. Plants express several different cellulose synthase isoforms during primary and secondary cell wall formation; however, so far, none has been functionally reconstituted in vitro for detailed biochemical analyses. Here we report the heterologous expression, purification, and functional reconstitution of Populus tremula x tremuloides CesA8 (PttCesA8), implicated in secondary cell wall formation. The recombinant enzyme polymerizes UDP-activated glucose to cellulose, as determined by enzyme degradation, permethylation glycosyl linkage analysis, electron microscopy, and mutagenesis studies. Catalytic activity is dependent on the presence of a lipid bilayer environment and divalent manganese cations. Further, electron microscopy analyses reveal that PttCesA8 produces cellulose fibers several micrometers long that occasionally are capped by globular particles, likely representing PttCesA8 complexes. Deletion of the enzyme's N-terminal RING-finger domain almost completely abolishes fiber formation but not cellulose biosynthetic activity. Our results demonstrate that reconstituted PttCesA8 is not only sufficient for cellulose biosynthesis in vitro but also suffices to bundle individual glucan chains into cellulose microfibrils.
ZapE Is a Novel Cell Division Protein Interacting with FtsZ and Modulating the Z-Ring Dynamics
Marteyn, Benoit S.; Karimova, Gouzel; Fenton, Andrew K.; Gazi, Anastasia D.; West, Nicholas; Touqui, Lhousseine; Prevost, Marie-Christine; Betton, Jean-Michel; Poyraz, Oemer; Ladant, Daniel; Gerdes, Kenn; Sansonetti, Philippe J.; Tang, Christoph M.
2014-01-01
ABSTRACT Bacterial cell division requires the formation of a mature divisome complex positioned at the midcell. The localization of the divisome complex is determined by the correct positioning, assembly, and constriction of the FtsZ ring (Z-ring). Z-ring constriction control remains poorly understood and (to some extent) controversial, probably due to the fact that this phenomenon is transient and controlled by numerous factors. Here, we characterize ZapE, a novel ATPase found in Gram-negative bacteria, which is required for growth under conditions of low oxygen, while loss of zapE results in temperature-dependent elongation of cell shape. We found that ZapE is recruited to the Z-ring during late stages of the cell division process and correlates with constriction of the Z-ring. Overexpression or inactivation of zapE leads to elongation of Escherichia coli and affects the dynamics of the Z-ring during division. In vitro, ZapE destabilizes FtsZ polymers in an ATP-dependent manner. PMID:24595368
Dynamic Response of Metal-Polymer Bilayers - Viscoelasticity, Adhesion and Failure
2013-11-25
polymers, particularly at large stretches. In the method developed for this purpose, a gas gun is used to impact a flange and impart a known velocity...Mott in his fragmentation model. Winter (1979) developed a method based on a gas - gun launched projectile in order to generate a rapidly...6061-O a The steady ring expansion speed reached in the time interval 15-50 | xs is quoted. There is a brief period of acceleration for about 15
NASA Astrophysics Data System (ADS)
Zhang, Lanhe; Elupula, Ravinder; Grayson, Scott; Torkelson, John
Cyclic or ring polymers represent an exciting class of topologically distinctive polymers. The influence of ``end-to-end'' tethering and the unusual conformational properties associated with cyclic topologies have led to polymer dynamics significantly different from the linear counterpart. Bulk cyclic polystyrene (c-PS) exhibits very weak Tg- and fragility-molecular weight (MW) dependences compared to linear PS. In stark contrast to the substantial Tg-confinement effects in linear PS, a nearly completely suppressed confinement effect is discovered in low MW c-PS. The cyclic topology strongly restricts polymer-substrate interactions. Therefore, the near elimination of the Tg-confinement effect in c-PS originates mainly from a very weak perturbation to Tg near the free surface. Upon nanoscale confinement, linear PS films have been shown to have significantly reduced fragility compared to bulk. Despite having similar bulk fragility as high MW linear PS, low MW c-PS films show major suppression in fragility reduction with decreasing thickness. Due to a lack of chain ends, properties associated with the ring structure are not prone to be perturbed by either MW reduction or confinement. This result indicates a strong correlation between the susceptibility of fragility perturbation and the susceptibility of Tg perturbation, caused by chain topology and/or by confinement. This work was supported by The Dow Chemical Company, a McCormick School of Engineering Fellowship, and the NSF.
NASA Astrophysics Data System (ADS)
Mao, Liucheng; Liu, Meiying; Xu, Dazhuang; Wan, Qing; Huang, Qiang; Jiang, Ruming; Shi, Yingge; Deng, Fengjie; Zhang, Xiaoyong; Wei, Yen
2017-05-01
Fluorescent silica nanoparticles (FSNPs) have been extensively investigated for various biomedical applications in recently years. However, the aggregation of organic dyes in silica nanoparticles also leads the significant fluorescence quenching owing to the aggregation caused quenching effects of organic dyes. Herein, we developed a rather facile strategy to fabricate FSNPs with desirable fluorescent properties through non-covalent incorporation of fluorophores with aggregation-induced emission (AIE) feature into silica nanoparticles, which were subsequently modified with functional polymers. The resultant FSNPs polymer nanocomposites (named as FSNPs-poly(IA-co-PEGMA)) exhibited uniform spherical morphology, high water dispersiity, and bright red fluorescence. Cytotoxicity results indicate that FSNPs-poly(IA-co-PEGMA) possess excellent biocompatibility. Cell uptake behavior suggests FSNPs-poly(IA-co-PEGMA) are of great potential for biological imaging applications. Taken together, we have reported a facile method for the fabrication of FSNPs through non-covalent encapsulation using an AIE-active dye. These FSNPs can be further functionalized with functional polymers through ring-opening reaction and the resultant FSNPs-poly(IA-co-PEGMA) showed great potential for biological imaging. More importantly, we believe that many other functional components could also be integrated into these FSNPs through the facile ring-opening reaction. Therefore, this method should be a facile and general tool for fabrication of polymer functionalized AIE-active FSNPs.
Chochos, Christos L; Singh, Ranbir; Gregoriou, Vasilis G; Kim, Min; Katsouras, Athanasios; Serpetzoglou, Efthymis; Konidakis, Ioannis; Stratakis, Emmanuel; Cho, Kilwon; Avgeropoulos, Apostolos
2018-03-28
We report on the photovoltaic parameters, photophysical properties, optoelectronic properties, self-assembly, and morphology variations in a series of high-performance donor-acceptor (D-A) π-conjugated polymers based on indacenodithiophene and quinoxaline moieties as a function of the number-average molecular weight ([Formula: see text]), the nature of aryl substituents, and the enlargement of the polymer backbone. One of the most important outcome is that from the three optimization approaches followed to tune the chemical structure toward enhanced photovoltaic performance in bulk heterojunction solar cell devices with the fullerene derivative [6,6]-phenyl-C 71 -butyric acid methyl ester as the electron acceptor, the choice of the aryl substituent is the most efficient rational design strategy. Incorporation of thienyl rings as substituents versus phenyl rings accelerates the electron-hole extraction process to the respective electrode, despite the slightly lower recombination lifetime and, thus, improves the electrical performance of the device. Single-junction solar cells based on ThIDT-TQxT feature a maximum power-conversion efficiency of 7.26%. This study provides significant insights toward understanding of the structure-properties-performance relationship for D-A π-conjugated polymers in solid state, which provide helpful inputs for the design of next-generation polymeric semiconductors for organic solar cells with enhanced performance.
Structural properties of atactic polystyrene adsorbed onto solid surfaces.
Tatek, Yergou B; Tsige, Mesfin
2011-11-07
In the present work, we are studying the local conformation of chains in a thin film of polystyrene adsorbed on a solid substrate by using atomistically detailed simulations. The simulations are carried out by using the readily available and massively parallel molecular dynamics code known as LAMMPS. In particular, a special emphasis is given to the density and orientation of side chains (which consist of phenyl groups and methylene units) at solid/polymer and polymer/vacuum interfaces. Three types of substrates were used in our study: α-quartz, graphite, and amorphous silica. Our investigation was restricted to atactic polystyrene. Our results show that the density and structural properties of side chains depend on the type of surface. An excess of phenyl rings is observed near the α-quartz substrate while the film adsorbed on graphite is depleted in C(6)H(5). Moreover, the orientation of the rings and methylene units on the substrate/film interface show a strong dependence on the type of the substrate, while the rings at the film/vacuum interface show a marked tendency to point outward, away from the film. The results we obtained are in a large part in good agreement with previous experimental and simulation results.
Ge, Xueping; Ye, Qiang; Song, Linyong; Misra, Anil; Spencer, Paulette
2015-04-01
The effects of polymerization kinetics and chemical miscibility on the crosslinking structure and mechanical properties of polymers cured by visible-light initiated free-radical/cationic ring-opening hybrid photopolymerization are determined. A three-component initiator system is used and the monomer system contains methacrylates and epoxides. The photopolymerization kinetics is monitored in situ by Fourier transform infrared-attenuated total reflectance. The crosslinking structure is studied by modulated differential scanning calorimetry and dynamic mechanical analysis. X-ray microcomputed tomography is used to evaluate microphase separation. The mechanical properties of polymers formed by hybrid formed by free-radical polymerization. These investigations mark the first time that the benefits of the chain transfer reaction between epoxy and hydroxyl groups of methacrylate, on the crosslinking network and microphase separation during hybrid visible-light initiated photopolymerization, have been determined.
Liu, Wenrui; Zhang, Jianyun; Zhou, Zichun; Zhang, Dongyang; Zhang, Yuan; Xu, Shengjie; Zhu, Xiaozhang
2018-05-16
Fused-ring electron acceptors (FREAs) have recently received intensive attention. Besides the continuing development of new FREAs, the demand for FREAs featuring good compatibility to donor materials is becoming more and more urgent, which is highly desirable for screening donor materials and achieving new breakthroughs. In this work, a new FREA is developed, ZITI, featuring an octacyclic dithienocyclopentaindenoindene central core. The core is designed by linking 2,7-dithienyl substituents and indenoindene with small methylene groups, in which the indeno[1,2-b]thiophene-2-(3-oxo-2,3-dihydro-1H-inden-1-ylidene)malononitrile part provides a large and unoccupied π-surface. Most notably, ZITI possesses an excellent compatibility with commercially available polymer donors, delivering very high power conversion efficiencies of over 13%. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Perspective: Ring-polymer instanton theory
NASA Astrophysics Data System (ADS)
Richardson, Jeremy O.
2018-05-01
Since the earliest explorations of quantum mechanics, it has been a topic of great interest that quantum tunneling allows particles to penetrate classically insurmountable barriers. Instanton theory provides a simple description of these processes in terms of dominant tunneling pathways. Using a ring-polymer discretization, an efficient computational method is obtained for applying this theory to compute reaction rates and tunneling splittings in molecular systems. Unlike other quantum-dynamics approaches, the method scales well with the number of degrees of freedom, and for many polyatomic systems, the method may provide the most accurate predictions which can be practically computed. Instanton theory thus has the capability to produce useful data for many fields of low-temperature chemistry including spectroscopy, atmospheric and astrochemistry, as well as surface science. There is however still room for improvement in the efficiency of the numerical algorithms, and new theories are under development for describing tunneling in nonadiabatic transitions.
Looped star polymers show conformational transition from spherical to flat toroidal shapes.
Reiss, Pascal; Fritsche, Miriam; Heermann, Dieter W
2011-11-01
Inspired by the topological organization of the circular Escherichia coli chromosome, which is compacted by separate domains, we study a polymer architecture consisting of a central ring to which either looped or linear side chains are grafted. A shape change from a spherical to a toroidal organization takes place as soon as the inner ring becomes large enough for the attached arms to fit within its circumference. Building up a torus, the system flattens, depending on the effective bending rigidity of the chain induced by entropic repulsion of the attached loops and, to a lesser extent, linear arms. Our results suggest that the natural formation of a toroidal structure with a decreased amount of writhe induced by a specific underlying topology could be one driving force, among others, that nature exploits to ensure proper packaging of the genetic material within a rod-shaped, bacterial envelope.
ERIC Educational Resources Information Center
McDermott, Irene E.
1999-01-01
Describes the development and current status of WebRing, a service that links related Web sites into a central hub. Discusses it as a viable alternative to other search engines and examines issues of free speech, use by the business sector, and implications for WebRing after its purchase by Yahoo! (LRW)
1992-07-22
Scheme I. The first nucleophilic displacement of halide of an n-haloalkan-l-ol with 4-cyano-4’-hydroxybiphenyl employed potassium carbonate in...21 polysiloxanes, 23.24 and polyacrylates . 2- All these polymers exhibit an odd-even effect. If one considers the total number of atoms between the...0.019 mol) and 4’-methoxy-4-hydroxybiphenyl (4.0g, 0.020 tool) were heated at 100°C in 40 mL of dimethylformamide in the presence of potassium carbonate
Acid-Catalyzed Degradation of Poly(2-Butyl-1,3,6-Trioxocane)
1986-01-10
was not studied. The "detailed investigation of ring formation by Illuminati and his coworkers" " show that formation of 8-membered rings is highly...with oxygen atom lowers the strain. Thus a trioxocane should be less destabilized relative 11 linear polymer than is cyclooctane. Illuminati et al...I, 1. 4, tw 29 11. G. Illuminati and L. Mandolini, Acct. Chem. Res. ,14. 95. 12. M.A. Casadel, C. Galli and L. Mandolini, 4, . hem. Soc. i123, 10.6
1998-07-06
the possibility that a diazotization at the aliphatic (alpha) amino group might lead to deamination with the formation of a cinnamic acid derivative...symmetric chlorinated/nitrated cinnamic acid derivative, and might not provide unequivocal connectivity information, although it could suggest ring...substituted aromatic ring, i.e., it is more like the spectrum of p-coumaric acid than the desired 3-amino-4-hydroxy- cinnamic acid , which would be
Z-Selective Ruthenium Metathesis Catalysts: Comparison of Nitrate and Nitrite X-type Ligands
Pribisko, Melanie A.; Ahmed, Tonia S.; Grubbs, Robert H.
2014-01-01
Two new Ru-based metathesis catalysts, 3 and 4, have been synthesized for the purpose of comparing their catalytic properties to those of their cis-selective nitrate analogues, 1 and 2. Although catalysts 3 and 4 exhibited slower initiation rates than 1 and 2, they maintained high cis-selectivity in homodimerization and ring-opening metathesis polymerization reactions. Furthermore, the nitrite catalysts displayed higher cis-selectivity than 2 for ring-opening metathesis polymerizations, and 4 delivered higher yields of polymer. PMID:25484484
Z-Selective Ruthenium Metathesis Catalysts: Comparison of Nitrate and Nitrite X-type Ligands.
Pribisko, Melanie A; Ahmed, Tonia S; Grubbs, Robert H
2014-12-14
Two new Ru-based metathesis catalysts, 3 and 4 , have been synthesized for the purpose of comparing their catalytic properties to those of their cis -selective nitrate analogues, 1 and 2 . Although catalysts 3 and 4 exhibited slower initiation rates than 1 and 2 , they maintained high cis -selectivity in homodimerization and ring-opening metathesis polymerization reactions. Furthermore, the nitrite catalysts displayed higher cis -selectivity than 2 for ring-opening metathesis polymerizations, and 4 delivered higher yields of polymer.
Solventless sol-gel chemistry through ring-opening polymerization of bridged disilaoxacyclopentanes
DOE Office of Scientific and Technical Information (OSTI.GOV)
RAHIMIAN,KAMYAR; LOY,DOUGLAS A.
2000-05-01
Ring-opening polymerization (ROP) of disilaoxacyclopentanes has proven to be an excellent approach to sol-gel type hybrid organic-inorganic materials. These materials have shown promise as precursors for encapsulation and microelectronics applications. The polymers are highly crosslinked and are structurally similar to traditional sol-gels, but unlike typical sol-gels they are prepared by an organic base or Bronsted acid (formic or triflic acid), without the use of solvents and water, they have low VOC's and show little shrinkage during processing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rossi, Mariana; Manolopoulos, David E.; Ceriotti, Michele
Two of the most successful methods that are presently available for simulating the quantum dynamics of condensed phase systems are centroid molecular dynamics (CMD) and ring polymer molecular dynamics (RPMD). Despite their conceptual differences, practical implementations of these methods differ in just two respects: the choice of the Parrinello-Rahman mass matrix and whether or not a thermostat is applied to the internal modes of the ring polymer during the dynamics. Here, we explore a method which is halfway between the two approximations: we keep the path integral bead masses equal to the physical particle masses but attach a Langevin thermostatmore » to the internal modes of the ring polymer during the dynamics. We justify this by showing analytically that the inclusion of an internal mode thermostat does not affect any of the established features of RPMD: thermostatted RPMD is equally valid with respect to everything that has actually been proven about the method as RPMD itself. In particular, because of the choice of bead masses, the resulting method is still optimum in the short-time limit, and the transition state approximation to its reaction rate theory remains closely related to the semiclassical instanton approximation in the deep quantum tunneling regime. In effect, there is a continuous family of methods with these properties, parameterised by the strength of the Langevin friction. Here, we explore numerically how the approximation to quantum dynamics depends on this friction, with a particular emphasis on vibrational spectroscopy. We find that a broad range of frictions approaching optimal damping give similar results, and that these results are immune to both the resonance problem of RPMD and the curvature problem of CMD.« less
Organic materials able to detect analytes
NASA Technical Reports Server (NTRS)
Swager, Timothy M. (Inventor); Zhu, Zhengguo (Inventor); Bulovic, Vladimir (Inventor); Rose, Aimee (Inventor); Madigan, Conor Francis (Inventor)
2012-01-01
The present invention generally relates to polymers with lasing characteristics that allow the polymers to be useful in detecting analytes. In one aspect, the polymer, upon an interaction with an analyte, may exhibit a change in a lasing characteristic that can be determined in some fashion. For example, interaction of an analyte with the polymer may affect the ability of the polymer to reach an excited state that allows stimulated emission of photons to occur, which may be determined, thereby determining the analyte. In another aspect, the polymer, upon interaction with an analyte, may exhibit a change in stimulated emission that is at least 10 times greater with respect to a change in the spontaneous emission of the polymer upon interaction with the analyte. The polymer may be a conjugated polymer in some cases. In one set of embodiments, the polymer includes one or more hydrocarbon side chains, which may be parallel to the polymer backbone in some instances. In another set of embodiments, the polymer may include one or more pendant aromatic rings. In yet another set of embodiments, the polymer may be substantially encapsulated in a hydrocarbon. In still another set of embodiments, the polymer may be substantially resistant to photobleaching. In certain aspects, the polymer may be useful in the detection of explosive agents, such as 2,4,6-trinitrotoluene (TNT) and 2,4-dinitrotoluene (DNT).
Monitoring cyclodextrin-polyviologen pseudopolyrotaxanes with the Bradford assay.
Belitsky, Jason M; Nelson, Alshakim; Stoddart, J Fraser
2006-01-21
Self-assembled multivalent pseudopolyrotaxanes, composed of lactoside-bearing cyclodextrin (CD) rings threaded on linear polyviologen polymers, have been introduced recently as flexible and dynamic neoglycoconjugates. In the course of this research, it was found that polyviologens are responsive to the Bradford assay, which is traditionally highly selective for proteins. The response of the pseudopolyrotaxanes to the Bradford assay was dependant on, and thus indicative of, the degree of threading of the CD rings onto the polyelectrolyte. The assay was then used to report on the threading and dethreading of native and lactoside-bearing alpha-CD rings onto and off of polyviologen chains, a phenomenon which demonstrates the utility of biochemical assays to address problems unique to supramolecular chemistry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shin, Yongsoon; Wang, Chong M.; Engelhard, Mark H.
2009-07-01
A simple, direct synthesis of a mesoporous carbon containing pyridine rings is described. This synthesis utilizes the SiCl4 induced cyclotrimerization of 2,6-diacetylpyridine to make a dendritic polymer, built of alternating benzene and pyridine rings. The cyclotrimerization allows for a high degree of crosslinking to take place at low temperatures stabilizing the mesostructure and allowing the carbonization to be carried out at only 600°C, the lowest temperature reported to date for an N-doped mesoporous carbon. The functional mesoporous carbon so formed was found to have a surface area of 1275 m2/g, 35Å pores, and contain 6.8% N.
Megasupramolecules for safer, cleaner fuel by end association of long telechelic polymers
NASA Astrophysics Data System (ADS)
Wei, Ming-Hsin; Li, Boyu; David, R. L. Ameri; Jones, Simon C.; Sarohia, Virendra; Schmitigal, Joel A.; Kornfield, Julia A.
2015-10-01
We used statistical mechanics to design polymers that defy conventional wisdom by self-assembling into “megasupramolecules” (≥5000 kg/mol) at low concentration (≤0.3 weight percent). Theoretical treatment of the distribution of individual subunits—end-functional polymers—among cyclic and linear supramolecules (ring-chain equilibrium) predicts that megasupramolecules can form at low total polymer concentration if, and only if, the backbones are long (>400 kg/mol) and end-association strength is optimal. Viscometry and scattering measurements of long telechelic polymers having polycyclooctadiene backbones and acid or amine end groups verify the formation of megasupramolecules. They control misting and reduce drag in the same manner as ultralong covalent polymers. With individual building blocks short enough to avoid hydrodynamic chain scission (weight-average molecular weights of 400 to 1000 kg/mol) and reversible linkages that protect covalent bonds, these megasupramolecules overcome the obstacles of shear degradation and engine incompatibility.
Semipermeable polymers and method for producing same
Buschmann, Wayne E [Boulder, CO
2012-04-03
A polyamide membrane comprising reaction product of an anhydrous solution comprising an anhydrous solvent, at least one polyfunctional secondary amine and a pre-polymer deposition catalyst; and an anhydrous, organic solvent solution comprising a polyfunctional aromatic amine-reactive reactant comprising one ring. A composite semipermeable membrane comprising the polyamide membrane on a porous support. A method of making a composite semipermeable membrane by coating a porous support with an anhydrous solution comprising an anhydrous solvent, a polyfunctional secondary amine and a pre-polymer deposition catalyst, to form an activated pre-polymer layer on the porous support and contacting the activated pre-polymer layer with an anhydrous, organic solvent solution comprising a polyfunctional amine-reactive reactant to interfacially condense the amine-reactive reactant with the polyfunctional secondary amine, thereby forming a cross-linked, interfacial polyamide layer on the porous support. A method of impregnating a composite semipermeable membrane with nanoparticles selected from heavy metals and/or oxides of heavy metals.
Cui, Yanyan; Liang, Xinmiao; Chai, Jingchao; Cui, Zili; Wang, Qinglei; He, Weisheng; Liu, Xiaochen; Liu, Zhihong; Cui, Guanglei; Feng, Jiwen
2017-11-01
It is urgent to seek high performance solid polymer electrolytes (SPEs) via a facile chemistry and simple process. The lithium salts are composed of complex anions that are stabilized by a Lewis acid agent. This Lewis acid can initiate the ring opening polymerization. Herein, a self-catalyzed strategy toward facile synthesis of crosslinked poly(ethylene glycol) diglycidyl ether-based solid polymer electrolyte (C-PEGDE) is presented. It is manifested that the poly(ethylene glycol) diglycidyl ether-based solid polymer electrolyte possesses a superior electrochemical stability window up to 4.5 V versus Li/Li + and considerable ionic conductivity of 8.9 × 10 -5 S cm -1 at ambient temperature. Moreover, the LiFePO 4 /C-PEGDE/Li batteries deliver stable charge/discharge profiles and considerable rate capability. It is demonstrated that this self-catalyzed strategy can be a very effective approach for high performance solid polymer electrolytes.
Lienkamp, Karen; Madkour, Ahmad E.; Musante, Ashlan; Nelson, Christopher F.; Nüsslein, Klaus
2014-01-01
Synthetic Mimics of Antimicrobial Peptides (SMAMPs) imitate natural host-defense peptides, a vital component of the body’s immune system. This work presents a molecular construction kit that allows the easy and versatile synthesis of a broad variety of facially amphiphilic oxanorbornene-derived monomers. Their ring-opening metathesis polymerization (ROMP) and deprotection provide several series of SMAMPs. Using amphiphilicity, monomer feed ratio, and molecular weight as parameters, polymers with 533 times higher selectivitiy (selecitviy = hemolytic concentration/minimum inhibitory concentration) for bacteria over mammalian cells were discovered. Some of these polymers were 50 times more selective for Gram-positive over Gram-negative bacteria while other polymers surprisingly showed the opposite preference. This kind of “double selectivity” (bacteria over mammalian and one bacterial type over another) is unprecedented in other polymer systems and is attributed to the monomer’s facial amphiphilicity. PMID:18593128
Four-step reaction for polytriazine elastomers
NASA Technical Reports Server (NTRS)
Rosser, R. W.; Korus, R. A.
1980-01-01
Four step imidoylamidine reaction sequence is used to make crosslinked polyperfluoralkyltriazines with superior elastomeric properties, greater molecular weight, and crosslinking control. Polymers can find useful application in fuel tank sealants, o-ring, wire enamels, pneumatic ducts, and many other applications.
Munirathinam, Rajesh; Ricciardi, Roberto; Egberink, Richard J M; Huskens, Jurriaan; Holtkamp, Michael; Wormeester, Herbert; Karst, Uwe; Verboom, Willem
2013-01-01
Polystyrene sulfonate polymer brushes, grown on the interior of the microchannels in a microreactor, have been used for the anchoring of gallium as a Lewis acid catalyst. Initially, gallium-containing polymer brushes were grown on a flat silicon oxide surface and were characterized by FTIR, ellipsometry, and X-ray photoelectron spectroscopy (XPS). XPS revealed the presence of one gallium per 2-3 styrene sulfonate groups of the polymer brushes. The catalytic activity of the Lewis acid-functionalized brushes in a microreactor was demonstrated for the dehydration of oximes, using cinnamaldehyde oxime as a model substrate, and for the formation of oxazoles by ring closure of ortho-hydroxy oximes. The catalytic activity of the microreactor could be maintained by periodic reactivation by treatment with GaCl3.
Polyphosphazenes - New polymers with inorganic backbone atoms
NASA Technical Reports Server (NTRS)
Allcock, H. R.
1976-01-01
Unique and useful properties of the class of nonhydrocarbon, nonhalocarbon, nonsilicone polymers known as polyphosphazenes are discussed at length. These polymers, with molecular weights to 4 million (degree of polymerization 15,000), can be fabricated as tubes, fibers, woven fabrics, flexible films, or plates, and many variants are stable to attack by water, bases, aqueous acids, jet fuels, oils, hydraulic fluids, gasoline, or other hydrocarbons. Rubbery polymers with these properties can be fashioned into flexible hose, fuel hose, gaskets, or O-rings. Since they do not provoke clotting reactions in blood, and reveal no carcinogenic effects to date, they are considered for internal prosthetic applications (replacement bone, temporary skin, heart valves), as biodegradable suturing material, as carriers for slow release of drugs, and as carriers for chemotherapeutic agents against cancers.
Peng, Tao; Su, Jing; Cheng, Si-Xue; Zhuo, Ren-Xi
2006-01-01
A biodegradable amphiphilic graft polymer was successfully synthesized by grafting hydrophobic poly(1,3-trimethylene carbonate) (PTMC) sequences onto a hydrophilic poly-alpha,beta-(N-(2-hydroxyethyl)-L-aspartamide) (PHEA) backbone. The graft polymer, PHEA-g-PTMC, was synthesized by ring-opening polymerization initiated by the macroinitiator PHEA bearing hydroxyl groups without adding any catalyst. The graft polymer was characterized by Fourier transform infrared spectroscopy, 1H-nuclear magnetic resonance spectroscopy, combined size-exclusion chromatography and multiangle laser light scattering analysis. Two drugs with distinct water solubility, prednisone acetate and tegafur, were encapsulated in the PHEA-g-PTMC nanoparticles. The in vitro release of two drugs from PHEA-g-PTMC nanoparticle drug-delivery systems was investigated.
Isomer effects on polyimide properties
NASA Technical Reports Server (NTRS)
Stump, B. L.
1975-01-01
Polyimide polymers which are thermally stable and processable are developed. The addition of alkyl substituents to an aromatic ring in the polymer backbone is examined along with polyimide precursor amines containing functional groups that allow for post-cure crosslinking. The synthesis of key monomers is reported, including 2,4,6-tris (m-aminobenzyl) 1,3,5-trimethyl benzene and 2,4,6-tris (p-aminobenzyl) 1,3,5-trimethyl benzene. The preparation of a key monomer, 2,5,3-triamino benzophenone, is reported.
Surface Enhanced Raman Scattering Monitoring of Chain Alignment in Freely Suspended Nanomembranes
NASA Astrophysics Data System (ADS)
Jiang, Chaoyang; Lio, Wilber Y.; Tsukruk, Vladimir V.
2005-09-01
The molecular chain reorganization in freely standing membranes with encapsulated gold nanoparticles was studied with surface enhanced Raman scattering (SERS) in the course of their elastic deformations. The efficient SERS was enabled by optimizing the design of gold nanoparticle forming chainlike aggregates, thus creating an exceptional ability to conduct in situ monitoring. Small deformations resulted in the radial orientation of side phenyl rings of polymer backbones while larger deflections led to the polymer chains bridging adjacent nanoparticles within one-dimensional aggregates.
Integrated circuits based on conjugated polymer monolayer
Li, Mengmeng; Mangalore, Deepthi Kamath; Zhao, Jingbo; ...
2018-01-31
It is still a great challenge to fabricate conjugated polymer monolayer field-effect transistors (PoM-FETs) due to intricate crystallization and film formation of conjugated polymers. Here we demonstrate PoM-FETs based on a single monolayer of a conjugated polymer. The resulting PoM-FETs are highly reproducible and exhibit charge carrier mobilities reaching 3 cm 2 V -1 s -1. The high performance is attributed to the strong interactions of the polymer chains present already in solution leading to pronounced edge-on packing and well-defined microstructure in the monolayer. The high reproducibility enables the integration of discrete unipolar PoM-FETs into inverters and ring oscillators. Realmore » logic functionality has been demonstrated by constructing a 15-bit code generator in which hundreds of self-assembled PoM-FETs are addressed simultaneously. Lastly, our results provide the state-of-the-art example of integrated circuits based on a conjugated polymer monolayer, opening prospective pathways for bottom-up organic electronics.« less
Self-Assembly of Telechelic Tyrosine End-Capped PEO Star Polymers in Aqueous Solution.
Edwards-Gayle, Charlotte J C; Greco, Francesca; Hamley, Ian W; Rambo, Robert P; Reza, Mehedi; Ruokolainen, Janne; Skoulas, Dimitrios; Iatrou, Hermis
2018-01-08
We investigate the self-assembly of two telechelic star polymer-peptide conjugates based on poly(ethylene oxide) (PEO) four-arm star polymers capped with oligotyrosine. The conjugates were prepared via N-carboxy anhydride-mediated ring-opening polymerization from PEO star polymer macroinitiators. Self-assembly occurs above a critical aggregation concentration determined via fluorescence probe assays. Peptide conformation was examined using circular dichroism spectroscopy. The structure of self-assembled aggregates was probed using small-angle X-ray scattering and cryogenic transmission electron microscopy. In contrast to previous studies on linear telechelic PEO-oligotyrosine conjugates that show self-assembly into β-sheet fibrils, the star architecture suppresses fibril formation and micelles are generally observed instead, a small population of fibrils only being observed upon pH adjustment. Hydrogelation is also suppressed by the polymer star architecture. These peptide-functionalized star polymer solutions are cytocompatible at sufficiently low concentration. These systems present tyrosine at high density and may be useful in the development of future enzyme or pH-responsive biomaterials.
Integrated circuits based on conjugated polymer monolayer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Mengmeng; Mangalore, Deepthi Kamath; Zhao, Jingbo
It is still a great challenge to fabricate conjugated polymer monolayer field-effect transistors (PoM-FETs) due to intricate crystallization and film formation of conjugated polymers. Here we demonstrate PoM-FETs based on a single monolayer of a conjugated polymer. The resulting PoM-FETs are highly reproducible and exhibit charge carrier mobilities reaching 3 cm 2 V -1 s -1. The high performance is attributed to the strong interactions of the polymer chains present already in solution leading to pronounced edge-on packing and well-defined microstructure in the monolayer. The high reproducibility enables the integration of discrete unipolar PoM-FETs into inverters and ring oscillators. Realmore » logic functionality has been demonstrated by constructing a 15-bit code generator in which hundreds of self-assembled PoM-FETs are addressed simultaneously. Lastly, our results provide the state-of-the-art example of integrated circuits based on a conjugated polymer monolayer, opening prospective pathways for bottom-up organic electronics.« less
Bhatnagar, Divya; Dube, Koustubh; Damodaran, Vinod B; Subramanian, Ganesan; Aston, Kenneth; Halperin, Frederick; Mao, Meiyu; Pricer, Kurt; Murthy, N Sanjeeva; Kohn, Joachim
2016-10-01
The effects of ethylene oxide (EO), vaporized hydrogen peroxide (VHP), gamma (γ) radiation, and electron-beam (E-beam) on the physiochemical and morphological properties of medical device polymers are investigated. Polymers with ether, carbonate, carboxylic acid, amide and ester functionalities are selected from a family of poly(ethylene glycol) (PEG) containing tyrosine-derived polycarbonates (TyrPCs) to include slow, medium, fast, and ultrafast degrading polymers. Poly(lactic acid) (PLA) is used for comparison. Molecular weight ( M w ) of all tested polymers decreases upon gamma and E-beam, and this effect becomes more pronounced at higher PEG content. Gamma sterilization increases the glass transition temperature of polymers with high PEG content. EO esterifies the carboxylic acid groups in desaminotyrosol-tyrosine (DT) and causes significant degradation. VHP causes hydroxylation of the phenyl ring, and hydrolytic degradation. This study signifies the importance of the chemical composition when selecting a sterilization method, and provides suggested conditions for each of the sterilization methods.
Integrated circuits based on conjugated polymer monolayer.
Li, Mengmeng; Mangalore, Deepthi Kamath; Zhao, Jingbo; Carpenter, Joshua H; Yan, Hongping; Ade, Harald; Yan, He; Müllen, Klaus; Blom, Paul W M; Pisula, Wojciech; de Leeuw, Dago M; Asadi, Kamal
2018-01-31
It is still a great challenge to fabricate conjugated polymer monolayer field-effect transistors (PoM-FETs) due to intricate crystallization and film formation of conjugated polymers. Here we demonstrate PoM-FETs based on a single monolayer of a conjugated polymer. The resulting PoM-FETs are highly reproducible and exhibit charge carrier mobilities reaching 3 cm 2 V -1 s -1 . The high performance is attributed to the strong interactions of the polymer chains present already in solution leading to pronounced edge-on packing and well-defined microstructure in the monolayer. The high reproducibility enables the integration of discrete unipolar PoM-FETs into inverters and ring oscillators. Real logic functionality has been demonstrated by constructing a 15-bit code generator in which hundreds of self-assembled PoM-FETs are addressed simultaneously. Our results provide the state-of-the-art example of integrated circuits based on a conjugated polymer monolayer, opening prospective pathways for bottom-up organic electronics.
Measurement at low strain rates of the elastic properties of dental polymeric materials.
Chabrier, F; Lloyd, C H; Scrimgeour, S N
1999-01-01
To evaluate a simple static test (i.e. a slow strain rate test) designed to measure Young's modulus and the bulk modulus of polymeric materials (The NOL Test). Though it is a 'mature' test as yet it has never been applied to dental materials. A small cylindrical specimen is contained in a close-fitting steel constraining ring and compressive force applied to the ends by steel pistons. The initial (unconstrained) deformation is controlled by Young's modulus. Lateral spreading leads to constraint from the ring and subsequent deformation is controlled by the bulk modulus. A range of dental materials and reference polymers were selected and both moduli measured. From these data Poisson's ratios were calculated. The test proved be a simple reliable method for obtaining values for these properties. For composite the value of Young's modulus was lower, bulk modulus relatively similar and Poisson's ratio higher than that obtained from high strain rate techniques (as expected for a strain rate sensitive material). This test does fulfil a requirement for a simple test to define fully the elastic properties of dental polymeric materials. Measurements are made at the strain rates used in conventional static tests and values reflect this test condition. The higher values obtained for Poisson's ratio at this slow strain rate has implications for FEA, in that analysis is concerned with static or slow rate loading situations.
Park, Hyeon; Kang, Eun-Hye; Müller, Laura; Choi, Tae-Lim
2016-02-24
Tandem ring-opening/ring-closing metathesis (RO/RCM) results in extremely fast living polymerization; however, according to previous reports, only monomers containing certain combinations of cycloalkenes, terminal alkynes, and nitrogen linkers successfully underwent tandem polymerization. After examining the polymerization pathways, we proposed that the relatively slow intramolecular cyclization might lead to competing side reactions such as intermolecular cross metathesis reactions to form inactive propagating species. Thus, we developed two strategies to enhance tandem polymerization efficiency. First, we modified monomer structures to accelerate tandem RO/RCM cyclization by enhancing the Thorpe-Ingold effect. This strategy increased the polymerization rate and suppressed the chain transfer reaction to achieve controlled polymerization, even for challenging syntheses of dendronized polymers. Alternatively, reducing the reaction concentration facilitated tandem polymerization, suggesting that the slow tandem RO/RCM cyclization step was the main reason for the previous failure. To broaden the monomer scope, we used monomers containing internal alkynes and observed that two different polymer units with different ring sizes were produced as a result of nonselective α-addition and β-addition on the internal alkynes. Thorough experiments with various monomers with internal alkynes suggested that steric and electronic effects of the alkyne substituents influenced alkyne addition selectivity and the polymerization reactivity. Further polymerization kinetics studies revealed that the rate-determining step of monomers containing certain internal alkynes was the six-membered cyclization step via β-addition, whereas that for other monomers was the conventional intermolecular propagation step, as observed in other chain-growth polymerizations. This conclusion agrees well with all those polymerization results and thus validates our strategies.
Mechanism of the dielectric enhancement in polymer-alumina nano-particle composites
NASA Astrophysics Data System (ADS)
Jacob, Rebecca; Jacob, Anne Pavitra; Mainwaring, David E.
2009-09-01
Polymer-alumina nano-composites with enhanced dielectric properties as a possibility to enable the miniaturization of devices have been reported. The enhancement of dielectric properties was found to be unique to the polymer. In the present work, the mechanism of the dielectric enhancement is established by performing ab initio molecular orbital calculations in order to study the molecular interactions in the interfacial region between the alumina-nano-particle surface and the polymer medium. The calculations predict the existence of strong electrostatic attraction between the positive charge on the aluminium of the alumina clusters and the negative charge of the oxygens of the polymer at the polymer-nano-particle interface resulting in an increase in the dipole moment and the polarization of the system leading to enhanced dielectric properties. The oxygen thus plays a dual role by involving in covalent bonding with the polymer chain and electrostatic bonding interactions with the alumina nano-particles. The unique structure of the polymer provides the highly electronegative oxygens, as carbonyl groups or ether linkages in conjugation with aromatic rings in an extended polymer chain system, facilitating this type of bonding at the interface.
Qiao, Yuan; Yang, Chuan; Coady, Daniel J; Ong, Zhan Yuin; Hedrick, James L; Yang, Yi-Yan
2012-02-01
The development of biodegradable antimicrobial polymers adds to the toolbox of attractive antimicrobial agents against antibiotic-resistant microbes. To this end, the potential of polycarbonate polymers as such materials were explored. A series of random polycarbonate polymers consisting of monomers MTC-OEt and MTC-CH(2)CH(3)Cl were designed and synthesized using metal-free organocatalytic ring-opening polymerization. Random polycarbonate polymers self-assembled in solution but appeared highly dynamic; such behaviors are desirable as ready disassembly of polymers at the microbial membrane facilitates membrane disruption. Their activities against clinically relevant Gram-positive (Staphylococcus aureus) and Gram-negative bacteria (E.coli and Pseudomonas aeruginosa) revealed that the hydrophobic-hydrophilic composition balance in polymers are important to render antimicrobial potency. Scanning electron microscopy (SEM) studies indicated microbial cell surface damage after treatment with polymers, and confocal microscopy studies also showed entry of FITC-dextran dye in Escherichia coli as a result of membrane disruption. On the other hand, the polymers exhibited minimal toxicity against red blood cells in hemolysis tests. Therefore, these random polycarbonate polymers are promising antimicrobial agents against both Gram-positive and Gram-negative bacteria for various biomedical applications. Copyright © 2011 Elsevier Ltd. All rights reserved.
Hybrid organic-inorganic rotaxanes and molecular shuttles.
Lee, Chin-Fa; Leigh, David A; Pritchard, Robin G; Schultz, David; Teat, Simon J; Timco, Grigore A; Winpenny, Richard E P
2009-03-19
The tetravalency of carbon and its ability to form covalent bonds with itself and other elements enables large organic molecules with complex structures, functions and dynamics to be constructed. The varied electronic configurations and bonding patterns of inorganic elements, on the other hand, can impart diverse electronic, magnetic, catalytic and other useful properties to molecular-level structures. Some hybrid organic-inorganic materials that combine features of both chemistries have been developed, most notably metal-organic frameworks, dense and extended organic-inorganic frameworks and coordination polymers. Metal ions have also been incorporated into molecules that contain interlocked subunits, such as rotaxanes and catenanes, and structures in which many inorganic clusters encircle polymer chains have been described. Here we report the synthesis of a series of discrete rotaxane molecules in which inorganic and organic structural units are linked together mechanically at the molecular level. Structural units (dialkyammonium groups) in dumb-bell-shaped organic molecules template the assembly of essentially inorganic 'rings' about 'axles' to form rotaxanes consisting of various numbers of rings and axles. One of the rotaxanes behaves as a 'molecular shuttle': the ring moves between two binding sites on the axle in a large-amplitude motion typical of some synthetic molecular machine systems. The architecture of the rotaxanes ensures that the electronic, magnetic and paramagnetic characteristics of the inorganic rings-properties that could make them suitable as qubits for quantum computers-can influence, and potentially be influenced by, the organic portion of the molecule.
NASA Astrophysics Data System (ADS)
McLeod, David Charles
Macromolecules that contain electrophilic moieties, such as benzyl halides, activated esters, and epoxides, will readily undergo efficient nucleophilic substitution reactions with a wide variety of compounds under mild conditions, and are therefore ideally suited to act as "universal" precursors to functional materials. Epoxide-containing polymers derived from the radical polymerization of commercially-available glycidyl methacrylate are often employed in this role; however, methacrylic polymers suffer from certain limitations as a result of the incorporated ester groups, which are not stabile in the presence of strong nucleophiles, acids, bases, or esterase enzymes. Styrenic polymers that do not contain labile carbonyl moieties are usually the precursors of choice when high chemical stability is desired in the end product, but the production of functional materials from epoxide-containing styrenic polymers is relatively unexplored. In this dissertation, improved methods were developed for synthesizing 4-vinylphenyloxirane (4VPO) and 4-vinylphenyl glycidyl ether (4VPGE), two of the better-known epoxide-containing styrenic monomers, in high-yield and purity. Well-defined, epoxide-containing styrenic polymers with targeted molecular weights, narrow molecular weight distributions, and controlled architectures (specifically, linear and star-shaped homopolymers, as well as linear block copolymers with styrene) were produced from 4VPO and 4VPGE for the first time using reversible-deactivation radical polymerization techniques, such as low-catalyst-concentration atom transfer radical polymerization (LCC ATRP) and reversible addition-fragmentation chain-transfer (RAFT) polymerization. The robust nature and utility of poly4VPO and poly4VPGE were then demonstrated by the efficient, ring-opening modification of the pendant epoxide groups with a structurally- and functionally-diverse array of alcohols under acidic conditions at ambient temperature. The macromolecular compositions, architectures, and thermal stabilities of the resulting ?-hydroxy ether-functionalized homopolymers were evaluated using NMR and FTIR spectroscopy, size exclusion chromatography, and thermal gravimetric analysis. Aziridines and thiiranes (saturated, three-membered heterocycles containing either a single nitrogen or sulfur atom, respectively) are also susceptible to nucleophilic ring-opening reactions, and functional materials derived from aziridine- or thiirane-containing polymers could potentially have many interesting properties as a result of their high amine or thiol content, such as the ability to form pH- or redox-responsive structures. The synthesis of polymers containing aziridines that are activated towards nucleophilic ring-opening by C-aryl and/or N-sulfonyl substituents is unprecedented in the literature. Efficient methods for synthesizing styrenic monomers that contain these highly-reactive functionalities, namely 2-(4-vinylphenyl)aziridine (VPA) and its sulfonyl-activated derivative, N-mesyl-2-(4-vinylphenyl)aziridine (NMVPA), were developed utilizing 4VPO as a starting material. VPA was polymerized under LCC ATRP and RAFT conditions, but these methods were ineffective at producing well-defined polymers due to side reactions between the aziridine groups and the polymerization mediating compounds. Nitroxide-mediated radical polymerization (NMRP) produced well-defined polyVPA at low to moderate conversions of monomer, but cross-linking side reactions were evident at higher monomer conversions. Nearly all undesirable side reactions were prevented by attaching a mesyl group to the aziridine nitrogen atom, and well-defined polyNMVPA was realized under RAFT and NMRP conditions. Under ATRP conditions, reactions between the aziridine groups and catalyst still occurred, so the polymerization of NMVPA was not controlled using this technique. The synthesis of thiirane-containing styrenic polymers from either 2-(4-vinylphenyl)thiirane (VPT) or 2-((4-vinylphenoxy)methyl)thiirane (VPOMT), which were produced in a facile manner from 4VPO or 4VPGE, respectively, was attempted under conventional radical polymerization and RAFT polymerization conditions. Rapid desulfurization or ring-opening polymerization of VPT occurred when elevated temperatures or UV radiation was applied to reactions containing this monomer. The more-stable VPOMT monomer was successfully polymerized at elevated temperatures using thermally-labile azo-type initiators, and, under RAFT conditions, polymers of VPOMT increased in molecular weight as higher conversions of monomer were reached; however, the polymers produced under RAFT conditions were ill-defined and eventually underwent macrogelation, due to cross-linking side reactions of the thiirane moieties.
Arrays of ferromagnetic nanorings with variable thickness fabricated by capillary force lithography.
Lee, Su Yeon; Jeong, Jong-Ryul; Kim, Shin-Hyun; Kim, Sarah; Yang, Seung-Man
2009-11-03
A new promising strategy is reported for the fabrication of ferromagnetic nanoring arrays with novel geometrical features through the use of capillary force lithography and subsequent reactive ion etching. In particular, we fabricated two different types of elliptic rings with variable width and height: one with pinching zones near the major axes and the other with pinching zones near the minor axes. We used PDMS stamps with either elliptic hole or antihole arrays for creating these elliptic rings with variable thickness by virtue of the uneven capillary rise, which was induced by the distributed Laplace pressure around the walls of elliptic holes or antiholes with nonuniform local curvatures. We transferred the polymer ring patterns to array of elliptical NiFe rings by Ar ion milling and characterized magnetic properties in terms of nonuniform ring width using magnetic force microscopy measurements. Our results demonstrated that the magnetic domain wall can be positioned in a controlled manner by using these novel elliptical ferromagnetic rings with local pinching zones and that the proposed CFL method can be utilized as a simple and effective fabrication tool.
Grease-Resistant O Rings for Joints in Solid Rocket Motors
NASA Technical Reports Server (NTRS)
Harvey, Albert R.; Feldman, Harold
2003-01-01
There is a continuing effort to develop improved O rings for sealing joints in solid-fuel rocket motors. Following an approach based on the lessons learned in the explosion of the space shuttle Challenger, investigators have been seeking O-ring materials that exhibit adequate resilience for effective sealing over a broad temperature range: What are desired are O rings that expand far and fast enough to maintain seals, even when metal sealing surfaces at a joint move slightly away from each other shortly after ignition and the motor was exposed to cold weather before ignition. Other qualities desired of the improved O rings include adequate resistance to ablation by hot rocket gases and resistance to swelling when exposed to hydrocarbon-based greases used to protect some motor components against corrosion. Five rubber formulations two based on a fluorosilicone polymer and three based on copolymers of epichlorohydrin with ethylene oxide were tested as candidate O-ring materials. Of these, one of the epichlorohydrin/ethylene oxide formulations was found to offer the closest to the desired combination of properties and was selected for further evaluation.
Fused thiophene-based conjugated polymers and their use in optoelectronic devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Facchetti, Antonio; Marks, Tobin J.; Takai, Atsuro
The present teachings relate to polymeric compounds and their use as organic semiconductors in organic and hybrid optical, optoelectronic, and/or electronic devices such as photovoltaic cells, light emitting diodes, light emitting transistors, and field effect transistors. The disclosed compounds generally include as repeating units at least one annulated thienyl-vinylene-thienyl (TVT) unit and at least one other pi-conjugated unit. The annulated TVT unit can be represented by the formula: ##STR00001## where Cy.sup.1 and Cy.sup.2 can be a five- or six-membered carbocyclic ring. The annulated TVT unit can be optionally substituted at any available ring atom(s), and can be covalently linked tomore » the other pi-conjugated unit via either the thiophene rings or the carbocyclic rings Cy.sup.1 and Cy.sup.2. The other pi-conjugated unit can be a conjugated linear linker including one or more unsaturated bonds, or a conjugated cyclic linker including one or more carbocyclic and/or heterocyclic rings.« less
High-strain slide-ring shape-memory polycaprolactone-based polyurethane.
Wu, Ruiqing; Lai, Jingjuan; Pan, Yi; Zheng, Zhaohui; Ding, Xiaobin
2018-06-06
To enable shape-memory polymer networks to achieve recoverable high deformability with a simultaneous high shape-fixity ratio and shape-recovery ratio, novel semi-crystalline slide-ring shape-memory polycaprolactone-based polyurethane (SR-SMPCLU) with movable net-points constructed by a topologically interlocked slide-ring structure was designed and fabricated. The SR-SMPCLU not only exhibited good shape fixity, almost complete shape recovery, and a fast shape-recovery speed, it also showed an outstanding recoverable high-strain capacity with 95.83% Rr under a deformation strain of 1410% due to the pulley effect of the topological slide-ring structure. Furthermore, the SR-SMPCLU system maintained excellent shape-memory performance with increasing the training cycle numbers at 45% and even 280% deformation strain. The effects of the slide-ring cross-linker content, deformation strain, and successive shape-memory cycles on the shape-memory performance were investigated. A possible mechanism for the shape-memory effect of the SR-SMPCLU system is proposed.
Microwave-Assisted Syntheses in Recyclable Ionic Liquids: Photoresists Based on Renewable Resources
Petit, Charlotte; Luef, Klaus P; Edler, Matthias; Griesser, Thomas; Kremsner, Jennifer M; Stadler, Alexander; Grassl, Bruno; Reynaud, Stéphanie; Wiesbrock, Frank
2015-01-01
The copoly(2-oxazoline) pNonOx80-stat-pDc=Ox20 can be synthesized from the cationic ring-opening copolymerization of 2-nonyl-2-oxazoline NonOx and 2-dec-9′-enyl-2-oxazoline Dc=Ox in the ionic liquid n-hexyl methylimidazolium tetrafluoroborate under microwave irradiation in 250 g/batch quantities. The polymer precipitates upon cooling, enabling easy recovery of the polymer and the ionic liquid. Both monomers can be obtained from fatty acids from renewable resources. pNonOx80-stat-pDc=Ox20 can be used as polymer in a photoresist (resolution of 1 μm) based on UV-induced thiol–ene reactions. PMID:26354027
A low-cost photonic biosensor built on a polymer platform
NASA Astrophysics Data System (ADS)
Wang, Linghua; Kodeck, Valérie; Van Vlierberghe, Sandra; Ren, Jun; Teng, Jie; Han, Xiuyou; Jian, Xigao; Baets, Roel; Morthier, Geert; Zhao, Mingshan
2011-12-01
Planar integrated optical biosensors are becoming more and more important as they facilitate label-free and real time monitoring biosensing with high sensitivity. In this paper, the systematic research on one kind of optical biosensor, based on a resonant principle in a polymer ring resonator, will be presented. Reduced footprint and high sensitivity are advantages of this kind of biosensor. Rather than expensive CMOS fabrication, the device with high performance is fabricated through a simple UV based soft imprint technique utilizing self-developed low loss polymer material. The measurement results for the bulk sensing of a NaCl solution and the surface sensing of a minimal amount of avidin molecules in a buffered solution will be presented.
Block-copolymer-controlled growth of CaCO3 microrings.
Gao, Yun-Xiang; Yu, Shu-Hong; Cong, Huaiping; Jiang, Jun; Xu, An-Wu; Dong, W F; Cölfen, Helmut
2006-04-06
A novel way for directed solution growth of hollow superstructures of CaCO3 has been successfully developed on the basis of controlled self-assembly and polymer concentration gradients using a double-hydrophilic block copolymer with a hydrophobic modification as a directing agent. A formation mechanism of such rings is proposed on the basis of the formation of CaCO3 nanoparticles in unstructured block copolymer assemblies with subsequent aggregation of these primary nanoparticles. This leads to the formation of a polymer concentration gradient from the inside to the outside of the particle. As the polymer contains multiple chelating units, this leads to a selective dissolution of the center of the particle.
Combinatorial and high-throughput approaches in polymer science
NASA Astrophysics Data System (ADS)
Zhang, Huiqi; Hoogenboom, Richard; Meier, Michael A. R.; Schubert, Ulrich S.
2005-01-01
Combinatorial and high-throughput approaches have become topics of great interest in the last decade due to their potential ability to significantly increase research productivity. Recent years have witnessed a rapid extension of these approaches in many areas of the discovery of new materials including pharmaceuticals, inorganic materials, catalysts and polymers. This paper mainly highlights our progress in polymer research by using an automated parallel synthesizer, microwave synthesizer and ink-jet printer. The equipment and methodologies in our experiments, the high-throughput experimentation of different polymerizations (such as atom transfer radical polymerization, cationic ring-opening polymerization and emulsion polymerization) and the automated matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy (MALDI-TOF MS) sample preparation are described.
Hot piston ring/cylinder liner materials: Selection and evaluation
NASA Technical Reports Server (NTRS)
Sliney, Harold E.
1988-01-01
In current designs of the automotive (kinematic) Stirling engine, the piston rings are made of a reinforced polymer and are located below the pistons because they cannot withstand the high temperatures in the upper cylinder area. Theoretically, efficiency could be improved if hot piston rings were located near the top of the pistons. Described is a program to select piston ring and cylinder coating materials to test this theory. Candidate materials were screened, then subjected to a pin or disk friction and wear test machine. Tests were performed in hydrogen at specimen temperatures up to 760 C to simulate environmental conditions in the region of the hot piston ring reversal. Based on the results of these tests, a cobalt based alloy, Stellite 6B, was chosen for the piston rings and PS200, which consists of a metal-bonded chromium carbide matrix with dispersed solid lubricants, was chosen as the cylinder coating. Tests of a modified engine and a baseline engine showed that the hot ring reduced specific fuel consumption by up to 7 percent for some operating conditions and averaged about 3 percent for all conditions evaluated. Related applications of high-temperature coatings for shaft seals and as back-up lubricants are also described.
deRonde, Brittany M; Birke, Alexander; Tew, Gregory N
2015-02-09
Cell-penetrating peptides (CPPs) and their synthetic mimics (CPPMs) represent a class of molecules that facilitate the intracellular delivery of various cargo. Previous studies indicated that the presence of aromatic functionalities improved CPPM activity. Given that aromatic functionalities play prominent roles in membrane biology and participate in various π interactions, we explored whether these interactions could be optimized for improved CPPM activity. CPPMs were synthesized by ring-opening metathesis polymerization by using monomers that contained aromatic rings substituted with electron-donating and electron-withdrawing groups and covered an electrostatic potential range from -29.69 to +15.57 kcal mol(-1) . These groups altered the quadrupole moments of the aromatic systems and were used to test if such structural modifications changed CPPM activity. CPPMs were added to dye-loaded vesicles and the release of carboxyfluorescein was monitored as a function of polymer concentration. Changes in the effective polymer concentration to release 50% of the dye (effective concentration, EC50 ) were monitored. Results from this assay showed that the strength of the electron-donating and electron-withdrawing groups incorporated in the CPPMs did not alter polymer EC50 values or activity. This suggests that other design parameters may have a stronger impact on CPPM activity. In addition, these results indicate that a wide range of aromatic groups can be incorporated without negatively impacting polymer activity. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Ballone, P.; Jones, R. O.
2002-10-01
Ring-opening polymerization of cyclic polycarbonate oligomers, where monofunctional active sites act on difunctional monomers to produce an equilibrium distribution of rings and chains, leads to a "living polymer." Monte Carlo simulations [two-dimensional (2D) and three-dimensional (3D)] of the effects of single [J. Chem. Phys. 115, 3895 (2001)] and multiple active sites [J. Chem. Phys. 116, 7724 (2002)] are extended here to trifunctional active sites that lead to branching. Low concentrations of trifunctional particles c3 reduce the degree of polymerization significantly in 2D, and higher concentrations (up to 32%) lead to further large changes in the phase diagram. Gel formation is observed at high total density and sizable c3 as a continuous transition similar to percolation. Polymer and gel are much more stable in 3D than in 2D, and both the total density and the value of c3 required to produce high molecular weight aggregates are reduced significantly. The degree of polymerization in high-density 3D systems is increased by the addition of trifunctional monomers and reduced slightly at low densities and low c3. The presence of branching makes equilibrium states more sensitive (in 2D and 3D) to changes in temperature T. The stabilities of polymer and gel are enhanced by increasing T, and—for sufficiently high values of c3—there is a reversible polymer-gel transformation at a density-dependent floor temperature.
Rosenthal-Kim, Emily Q; Puskas, Judit E
2015-04-13
The mechanism of the new Radical Ring-opening Redox Polymerization (R3P) of 3,6-dioxa-1,8-octanedithiol (DODT) by triethylamine (TEA) and dilute H2O2 was investigated. Scouting studies showed that the formation of high molecular weight polymers required a 1:2 molar ratio of DODT to TEA and of DODT to H2O2. Further investigation into the chemical composition of the organic and aqueous phases by 1H-NMR spectroscopy and mass spectrometry demonstrated that DODT is ionized by two TEA molecules (one for each thiol group) and thus transferred into the aqueous phase. The organic phase was found to have cyclic disulfide dimers, trimers and tetramers. Dissolving DODT and TEA in water before the addition of H2O2 yielded a polymer with Mn = 55,000 g/mol, in comparison with Mn = 92,000 g/mol when aqueous H2O2 was added to a DODT/TEA mixture. After polymer removal, MALDI-ToF MS analysis of the residual reaction mixtures showed only cyclic oligomers remaining. Below the LCST for TEA in water, 18.7 °C, the system yielded a stable emulsion, and only cyclic oligomers were found. Below DODT/TEA and H2O2 1:2 molar ratio mostly linear oligomers were formed, with <20% cyclic oligomers. The findings support the proposed mechanism of R3P.
Inhomogeneity in the excited-state torsional disorder of a conjugated macrocycle.
Yang, Jaesung; Ham, Sujin; Kim, Tae-Woo; Park, Kyu Hyung; Nakao, Kazumi; Shimizu, Hideyuki; Iyoda, Masahiko; Kim, Dongho
2015-03-12
The photophysics of conjugated polymers has generally been explained based on the interactions between the component conjugated chromophores in a tangled chain. However, conjugated chromophores are entities with static and dynamic structural disorder, which directly affects the conjugated polymer photophysics. Here we demonstrate the impact of chain structure torsional disorder on the spectral characteristics for a macrocyclic oligothiophene 1, which is obscured in conventional linear conjugated chromophores by diverse structural disorders such as those in chromophore size and shape. We used simultaneous multiple fluorescence parameter measurement for a single molecule and quantum-mechanical calculations to show that within the fixed conjugation length across the entire ring an inhomogeneity from torsional disorder in the structure of 1 plays a crucial role in causing its energetic disorder, which affords the spectral broadening of ∼220 meV. The torsional disorder in 1 fluctuated on the time scale of hundreds of milliseconds, typically accompanied by spectral drifts on the order of ∼10 meV. The fluctuations could generate torsional defects and change the electronic structure of 1 associated with the ring symmetry. These findings disclose the fundamental nature of conjugated chromophore that is the most elementary spectroscopic unit in conjugated polymers and suggest the importance of engineering structural disorder to optimize polymer-based device photophysics. Additionally, we combined defocused wide-field fluorescence microscopy and linear dichroism obtained from the simultaneous measurements to show that 1 emits polarized light with a changing polarization direction based on the torsional disorder fluctuations.
Research Update: Programmable tandem repeat proteins inspired by squid ring teeth
NASA Astrophysics Data System (ADS)
Pena-Francesch, Abdon; Domeradzka, Natalia E.; Jung, Huihun; Barbu, Benjamin; Vural, Mert; Kikuchi, Yusuke; Allen, Benjamin D.; Demirel, Melik C.
2018-01-01
Cephalopods have evolved many interesting features that can serve as inspiration. Repetitive squid ring teeth (SRT) proteins from cephalopods exhibit properties such as strength, self-healing, and biocompatibility. These proteins have been engineered to design novel adhesives, self-healing textiles, and the assembly of 2d-layered materials. Compared to conventional polymers, repetitive proteins are easy to modify and can assemble in various morphologies and molecular architectures. This research update discusses the molecular biology and materials science of polypeptides inspired by SRT proteins, their properties, and perspectives for future applications.
Assembly of tissue engineered blood vessels with spatially-controlled heterogeneities.
Strobel, Hannah A; Hookway, Tracy; Piola, Marco; Fiore, Gianfranco Beniamino; Soncini, Monica; Alsberg, Eben; Rolle, Marsha
2018-05-04
Tissue-engineered human blood vessels may enable in vitro disease modeling and drug screening to accelerate advances in vascular medicine. Existing methods for tissue engineered blood vessel (TEBV) fabrication create homogenous tubes not conducive to modeling the focal pathologies characteristic of vascular disease. We developed a system for generating self-assembled human smooth muscle cell ring-units, which were fused together into TEBVs. The goal of this study was to assess the feasibility of modular assembly and fusion of ring building units to fabricate spatially-controlled, heterogeneous tissue tubes. We first aimed to enhance fusion and reduce total culture time, and determined that reducing ring pre-culture duration improved tube fusion. Next, we incorporated electrospun polymer ring units onto tube ends as reinforced extensions, which allowed us to cannulate tubes after only 7 days of fusion, and culture tubes with luminal flow in a custom bioreactor. To create focal heterogeneities, we incorporated gelatin microspheres into select ring units during self-assembly, and fused these rings between ring units without microspheres. Cells within rings maintained their spatial position within tissue tubes after fusion. This work describes a platform approach for creating modular TEBVs with spatially-defined structural heterogeneities, which may ultimately be applied to mimic focal diseases such as intimal hyperplasia or aneurysm.
Munirathinam, Rajesh; Ricciardi, Roberto; Egberink, Richard J M; Huskens, Jurriaan; Holtkamp, Michael; Wormeester, Herbert; Karst, Uwe
2013-01-01
Summary Polystyrene sulfonate polymer brushes, grown on the interior of the microchannels in a microreactor, have been used for the anchoring of gallium as a Lewis acid catalyst. Initially, gallium-containing polymer brushes were grown on a flat silicon oxide surface and were characterized by FTIR, ellipsometry, and X-ray photoelectron spectroscopy (XPS). XPS revealed the presence of one gallium per 2–3 styrene sulfonate groups of the polymer brushes. The catalytic activity of the Lewis acid-functionalized brushes in a microreactor was demonstrated for the dehydration of oximes, using cinnamaldehyde oxime as a model substrate, and for the formation of oxazoles by ring closure of ortho-hydroxy oximes. The catalytic activity of the microreactor could be maintained by periodic reactivation by treatment with GaCl3. PMID:24062830
Zhang, Guolin; Ma, Jianbiao; Li, Yanhong; Wang, Yinong
2003-01-01
Di-block co-polymers of poly(L-alanine) with poly(ethylene glycol) monomethyl ether (MPEG) were synthesized as amphiphilic biodegradable co-polymers. The ring-opening polymerization of N-carboxy-L-alanine anhydride (NCA) in dichloromethane was initiated by amino-terminated poly(ethylene glycol) monomethyl ether (MPEG-NH2, M(n) = 2000) to afford poly(L-alanine)-block-MPEG. The weight ratio of two blocks in the co-polymers could be altered by adjusting the feeding ratio of NCA to MPEG-NH2. Their chemical structures were characterized on the basis of infrared spectrometry and nuclear magnetic resonance. According to circular dichroism measurement, the poly(L-alanine) chain on the co-polymers in an aqueous medium had a alpha-helix conformation. Two melting points from MPEG block and poly(L-alanine), respectively, could be observed in differential scanning calorimetry curves of the co-polymers, suggesting that a micro-domain phase separation appeared in their bulky states. The co-polymers could take up some water and the capacity was dependent on the ratio of poly(L-alanine) block to MPEG. Such co-polymers might be useful in drug-delivery systems and other biomedical applications.
Design and Optimization of Composite Gyroscope Momentum Wheel Rings
NASA Technical Reports Server (NTRS)
Bednarcyk, Brett A.; Arnold, Steven M.
2007-01-01
Stress analysis and preliminary design/optimization procedures are presented for gyroscope momentum wheel rings composed of metallic, metal matrix composite, and polymer matrix composite materials. The design of these components involves simultaneously minimizing both true part volume and mass, while maximizing angular momentum. The stress analysis results are combined with an anisotropic failure criterion to formulate a new sizing procedure that provides considerable insight into the design of gyroscope momentum wheel ring components. Results compare the performance of two optimized metallic designs, an optimized SiC/Ti composite design, and an optimized graphite/epoxy composite design. The graphite/epoxy design appears to be far superior to the competitors considered unless a much greater premium is placed on volume efficiency compared to mass efficiency.
Progesterone bioavailability with a progesterone-releasing silicone vaginal ring in IVF candidates.
Dragonas, C; Maltaris, T; Binder, H; Kat, M; Mueller, A; Cupisti, S; Hoffmann, I; Beckmann, M W; Dittrich, Ralf
2007-06-27
A vaginal ring made of silicone polymers and barium sulfate, and containing 1 g of pure micronized progesterone, was developed for luteal supplementation in women undergoing cycles of in vitro fertilization (IVF). The ring, modeled on the Estring, was designed as a means of providing continuous intravaginal delivery of progesterone. Bioavailability of progesterone in the blood was demonstrated for 24 hours in IVF candidates who had an endogenous progesterone deficiency after treatment with gonadotropin-releasing hormone (GnRH) analogues. After the first 4 h of increasing release of progesterone from the ring (with mean serum levels of 1.39 +/- 0.8 ng/ml after 4 h), only a slight increase in serum progesterone levels (with a mean peak of 1.5 +/- 0.45 ng/ml after 24 h) was observed during the rest of the test period. Gonadotropin levels were not affected after insertion of the ring. The ring was well tolerated by the patients. The maximum serum progesterone level was lower in comparison with other forms of progesterone application, but it should be sufficiently high, due to the uterine first-pass effect. This study demonstrated that progesterone administration through a silicone ring for luteal support is feasible in IVF treatment. As the vaginal ring is very well tolerated by the patients, these findings may encourage the pharmaceutical industry to design an appropriate progesterone ring for luteal support.
Ruiz‐Dueñas, Francisco J.; Martínez, Ángel T.
2009-01-01
Summary Lignin is the second most abundant constituent of the cell wall of vascular plants, where it protects cellulose towards hydrolytic attack by saprophytic and pathogenic microbes. Its removal represents a key step for carbon recycling in land ecosystems, as well as a central issue for industrial utilization of plant biomass. The lignin polymer is highly recalcitrant towards chemical and biological degradation due to its molecular architecture, where different non‐phenolic phenylpropanoid units form a complex three‐dimensional network linked by a variety of ether and carbon–carbon bonds. Ligninolytic microbes have developed a unique strategy to handle lignin degradation based on unspecific one‐electron oxidation of the benzenic rings in the different lignin substructures by extracellular haemperoxidases acting synergistically with peroxide‐generating oxidases. These peroxidases posses two outstanding characteristics: (i) they have unusually high redox potential due to haem pocket architecture that enables oxidation of non‐phenolic aromatic rings, and (ii) they are able to generate a protein oxidizer by electron transfer to the haem cofactor forming a catalytic tryptophanyl‐free radical at the protein surface, where it can interact with the bulky lignin polymer. The structure–function information currently available is being used to build tailor‐made peroxidases and other oxidoreductases as industrial biocatalysts. PMID:21261911
Vatansever, Fatma; Hamblin, Michael R.
2016-01-01
Core–shell CdSe/ZnS quantum dots (QDs) are useful as tunable photostable fluorophores for multiple applications in industry, biology, and medicine. However, to achieve the optimum optical properties, the surface of the QDs must be passivated to remove charged sites that might bind extraneous substances and allow aggregation. Here we describe a method of growing an organic polymer corona onto the QD surface using the bottom-up approach of surface-initiated ring-opening metathesis polymerization (SI-ROMP) with Grubbs catalyst. CdSe/ZnS QDs were first coated with mercaptopropionic acid by displacing the original trioctylphosphine oxide layer, and then reacted with 7-octenyl dimethyl chlorosilane. The resulting octenyl double bonds allowed the attachment of ruthenium alkylidene groups as a catalyst. A subsequent metathesis reaction with strained bicyclic monomers (norbornene-dicarbonyl chloride (NDC), and a mixture of NDC and norbornenylethylisobutyl-polyhedral oligomeric silsesquioxane (norbornoPOSS)) allowed the construction of tethered organic homo-polymer or co-polymer layers onto the QD. Compounds were characterized by FT-IR, 1H-NMR, X-ray photoelectron spectroscopy, differential scanning calorimetry, and transmission electron microscopy. Atomic force microscopy showed that the coated QDs were separate and non-aggregated with a range of diameter of 48–53 nm. PMID:28360819
Communication: Origin of the contributions to DNA structure in phages
Myers, Christopher G.; Pettitt, B. Montgomery
2013-01-01
Cryo electron microscopy (cryo-EM) data of the interior of phages show ordering of the interior DNA that has been interpreted as a nearly perfectly ordered polymer. We show surface-induced correlations, excluded volume, and electrostatic forces are sufficient to predict most of the major features of the current structural data for DNA packaged within viral capsids without additional ordering due to elastic bending forces for the polymer. Current models assume highly-ordered, even spooled, hexagonally packed conformations based on interpretation of cryo-EM density maps. We show herein that the surface induced packing of short (6mer), unconnected DNA polymer segments is the only necessary ingredient in creating ringed densities consistent with experimental density maps. This implies the ensemble of possible conformations of polymeric DNA within the capsid that are consistent with cryo-EM data may be much larger than implied by traditional interpretations where such rings can only result from highly-ordered spool-like conformations. This opens the possibility of a more disordered, entropically-driven view of phage packaging thermodynamics. We also show the electrostatics of the DNA contributes a large portion of the internal hydrostatic and osmotic pressures of a phage virion, suggesting that nonlinear elastic anomalies might reduce the overall elastic bending enthalpy of more disordered conformations to have allowable free energies. PMID:23444988
Communication: Origin of the contributions to DNA structure in phages.
Myers, Christopher G; Pettitt, B Montgomery
2013-02-21
Cryo electron microscopy (cryo-EM) data of the interior of phages show ordering of the interior DNA that has been interpreted as a nearly perfectly ordered polymer. We show surface-induced correlations, excluded volume, and electrostatic forces are sufficient to predict most of the major features of the current structural data for DNA packaged within viral capsids without additional ordering due to elastic bending forces for the polymer. Current models assume highly-ordered, even spooled, hexagonally packed conformations based on interpretation of cryo-EM density maps. We show herein that the surface induced packing of short (6mer), unconnected DNA polymer segments is the only necessary ingredient in creating ringed densities consistent with experimental density maps. This implies the ensemble of possible conformations of polymeric DNA within the capsid that are consistent with cryo-EM data may be much larger than implied by traditional interpretations where such rings can only result from highly-ordered spool-like conformations. This opens the possibility of a more disordered, entropically-driven view of phage packaging thermodynamics. We also show the electrostatics of the DNA contributes a large portion of the internal hydrostatic and osmotic pressures of a phage virion, suggesting that nonlinear elastic anomalies might reduce the overall elastic bending enthalpy of more disordered conformations to have allowable free energies.
Gang Pu; Matthew R. Dubay; Jiguang Zhang; Steven J. Severtson; Carl J. Houtman
2012-01-01
n-Butyl acrylate and other acrylic monomers were copolymerized with an acrylated macromonomer to produce polymers for pressure-sensitive adhesive (PSA) applications. Macromonomers were generated through the ring-opening copolymerization of L-lactide and ε-caprolactone with 2-hydroxyethyl...
Universal properties of knotted polymer rings.
Baiesi, M; Orlandini, E
2012-09-01
By performing Monte Carlo sampling of N-steps self-avoiding polygons embedded on different Bravais lattices we explore the robustness of universality in the entropic, metric, and geometrical properties of knotted polymer rings. In particular, by simulating polygons with N up to 10(5) we furnish a sharp estimate of the asymptotic values of the knot probability ratios and show their independence on the lattice type. This universal feature was previously suggested, although with different estimates of the asymptotic values. In addition, we show that the scaling behavior of the mean-squared radius of gyration of polygons depends on their knot type only through its correction to scaling. Finally, as a measure of the geometrical self-entanglement of the self-avoiding polygons we consider the standard deviation of the writhe distribution and estimate its power-law behavior in the large N limit. The estimates of the power exponent do depend neither on the lattice nor on the knot type, strongly supporting an extension of the universality property to some features of the geometrical entanglement.
Rampino, Sergio; Suleimanov, Yury V
2016-12-22
Thermal rate coefficients for the astrochemical reaction C + CH + → C 2 + + H were computed in the temperature range 20-300 K by using novel rate theory based on ring polymer molecular dynamics (RPMD) on a recently published bond-order based potential energy surface and compared with previous Langevin capture model (LCM) and quasi-classical trajectory (QCT) calculations. Results show that there is a significant discrepancy between the RPMD rate coefficients and the previous theoretical results that can lead to overestimation of the rate coefficients for the title reaction by several orders of magnitude at very low temperatures. We argue that this can be attributed to a very challenging energy profile along the reaction coordinate for the title reaction, not taken into account in extenso by either the LCM or QCT approximation. In the absence of any rigorous quantum mechanical or experimental results, the computed RPMD rate coefficients represent state-of-the-art estimates to be included in astrochemical databases and kinetic networks.
Pérez de Tudela, Ricardo; Aoiz, F J; Suleimanov, Yury V; Manolopoulos, David E
2012-02-16
A fundamental issue in the field of reaction dynamics is the inclusion of the quantum mechanical (QM) effects such as zero point energy (ZPE) and tunneling in molecular dynamics simulations, and in particular in the calculation of chemical reaction rates. In this work we study the chemical reaction between a muonium atom and a hydrogen molecule. The recently developed ring polymer molecular dynamics (RPMD) technique is used, and the results are compared with those of other methods. For this reaction, the thermal rate coefficients calculated with RPMD are found to be in excellent agreement with the results of an accurate QM calculation. The very minor discrepancies are within the convergence error even at very low temperatures. This exceptionally good agreement can be attributed to the dominant role of ZPE in the reaction, which is accounted for extremely well by RPMD. Tunneling only plays a minor role in the reaction.
Adarsh, N. N.; Dastidar, Parthasarathi
2010-01-01
In the title coordination polymer, {[Zn(SO4)(C18H16N6O2)(H2O)3]·CH3OH·H2O}n, the Zn2+ ion adopts a slightly distorted cis-ZnN2O4 octahedral geometry arising from three coordinated water molecules, one sulfate ion and two bridging 3,3′-bis(3-pyridyl)-1,1′-(m-phenylene)diurea (bpmpbu) ligands. The dihedral angles between the central benzene ring and two terminal pyridine rings of the bpmbpu molecule are 10.58 (17) and 34.63 (16)°. In the crystal, the ligands bridge the ZnII ions, thus generating a one-dimensional zigzag coordination polymer propagating in [010]. The crystal structure features extensive N—H⋯O and O—H⋯O hydrogen-bonding interactions. PMID:21580512
Ohn, Nuri; Shin, Jihoon; Kim, Sung Sik; Kim, Jeung Gon
2017-09-22
Mechanochemical polymerization of lactide is carried out by using ball milling. Mechanical energy from collisions between the balls and the vessel efficiently promotes an organic-base-mediated metal- and solvent-free solid-state polymerization. Investigation of the parameters of the ball-milling synthesis revealed that the degree of lactide ring-opening polymerization could be modulated by the ball-milling time, vibration frequency, mass of the ball media, and liquid-assisted grinding. Liquid-assisted grinding was found to be an especially important factor for achieving a high degree of mechanochemical polymerization. Although polymer-chain scission from the strong collision energy prevented mechanical-force-driven high-molecular-weight polymer synthesis, the addition of only a small amount of liquid enabled sufficient energy dissipation and poly(lactic acid) was thereby obtained with a molecular weight of over 1×10 5 g mol -1 . © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
1992-04-08
polymethylsiloxanes, 6 -7 polyacrylates ,2,4,5 polymethacrylates, 1 ,3 and polychloroacrylates, 5 exhibit only nematic mesophases regardless of the...corresponding carboxyl chloride. Potassium bicyclo[2.2.1]hept-2-ene-5- carboxylate was prepared by titrating a methanolic solution of the carboxylic acid...Esterification of the Corresponding Benzyl Bromides. Monomers 1I-n were prepared in 47-88% yield using the following procedure. A mixture of potassium bicyclo
Fragmentation of structural energetic materials: implications for performance
NASA Astrophysics Data System (ADS)
Aydelotte, B.; Braithwaite, C. H.; Thadhani, N. N.
2014-05-01
Fragmentation results for structural energetic materials based on intermetallic forming mixtures are reviewed and the implications of the fragment populations are discussed. Cold sprayed Ni+Al and explosively compacted mixtures of Ni+Al+W and Ni+Al+W+Zr powders were fabricated into ring shaped samples and explosively fragmented. Ring velocity was monitored and fragments were soft captured in order to study the fragmentation process. It was determined that the fragments produced by these structural energetic materials are much smaller than those typically produced by ductile metals such as steel or aluminum. This has implications for combustion processes that may occur subsequent to the fragmentation process.
Statistical properties of multi-theta polymer chains
NASA Astrophysics Data System (ADS)
Uehara, Erica; Deguchi, Tetsuo
2018-04-01
We study statistical properties of polymer chains with complex structures whose chemical connectivities are expressed by graphs. The multi-theta curve of m subchains with two branch points connected by them is one of the simplest graphs among those graphs having closed paths, i.e. loops. We denoted it by θm , and for m = 2 it is given by a ring. We derive analytically the pair distribution function and the scattering function for the θm -shaped polymer chains consisting of m Gaussian random walks of n steps. Surprisingly, it is shown rigorously that the mean-square radius of gyration for the Gaussian θm -shaped polymer chain does not depend on the number m of subchains if each subchain has the same fixed number of steps. For m = 3 we show the Kratky plot for the theta-shaped polymer chain consisting of hard cylindrical segments by the Monte-Carlo method including reflection at trivalent vertices.
Water-soluble conductive polymers
Aldissi, Mahmoud
1989-01-01
Polymers which are soluble in water and are electrically conductive. The monomer repeat unit is a thiophene or pyrrole molecule having an alkyl group substituted for the hydrogen atom located in the beta position of the thiophene or pyrrole ring and having a surfactant molecule at the end of the alkyl chain. Polymers of this class having 8 or more carbon atoms in the alkyl chain exhibit liquid crystalline behavior, resulting in high electrical anisotropy. The monomer-to-monomer bonds are located between the carbon atoms which are adjacent to the sulfur or nitrogen atoms. The number of carbon atoms in the alkyl group may vary from 1 to 20 carbon atoms. The surfactant molecule consists of a sulfonate group, or a sulfate group, or a carboxylate group, and hydrogen or an alkali metal. Negative ions from a supporting electrolyte which may be used in the electrochemical synthesis of a polymer may be incorporated into the polymer during the synthesis and serve as a dopant to increase the conductivity.
Water-soluble conductive polymers
Aldissi, Mahmoud
1990-01-01
Polymers which are soluble in water and are electrically conductive. The monomer repeat unit is a thiophene or pyrrole molecule having an alkyl group substituted for the hydrogen atom located in the beta position of the thiophene or pyrrole ring and having a surfactant molecule at the end of the alkyl chain. Polymers of this class having 8 or more carbon atoms in the alkyl chain exhibit liquid crystalline behavior, resulting in high electrical anisotropy. The monomer-to-monomer bonds are located between the carbon atoms which are adjacent to the sulfur or nitrogen atoms. The number of carbon atoms in the alkyl group may vary from 1 to 20 carbon atoms. The surfactant molecule consists of a sulfonate group, or a sulfate group, or a carboxylate group, and hydrogen or an alkali metal. Negative ions from a supporting electrolyte which may be used in the electrochemical synthesis of a polymer may be incorporated into the polymer during the synthesis and serve as a dopant to increase the conductivity.
Water-soluble conductive polymers
Aldissi, M.
1988-02-12
Polymers which are soluble in water and are electrically conductive. The monomer repeat unit is a thiophene or pyrrole molecule having an alkyl group substituted for the hydrogen atom located in the beta position of the thiophene or pyrrole ring and having a surfactant molecule at the end of the alkyl chain. Polymers of this class having 8 or more carbon atoms in the alkyl chain exhibit liquid crystalline behavior, resulting in high electrical anisotropy. The monomer-to-monomer bonds are located between the carbon atoms which are adjacent to the sulfur or nitrogen atoms. The number of carbon atoms in the alkyl group may vary from 1 to 20 carbon atoms. The surfactant molecule consists of a sulfonate group, or a sulfate group, or a carboxylate group, and hydrogen or an alkali metal. Negative ions from a supporting electrolyte which may be used in the electrochemical synthesis of a polymer may be incorporated into the polymer during the synthesis and serve as a dopant to increase the conductivity.
Sandoz-Rosado, E; Beaudet, T D; Balu, R; Wetzel, E D
2016-06-07
As the simplest two-dimensional (2D) polymer, graphene has immensely high intrinsic strength and elastic stiffness but has limited toughness due to brittle fracture. We use atomistic simulations to explore a new class of graphene/polyethylene hybrid 2D polymer, "graphylene", that exhibits ductile fracture mechanisms and has a higher fracture toughness and flaw tolerance than graphene. A specific configuration of this 2D polymer hybrid, denoted "GrE-2" for the two-carbon-long ethylene chains connecting benzene rings in the inherent framework, is prioritized for study. MD simulations of crack propagation show that the energy release rate to propagate a crack in GrE-2 is twice that of graphene. We also demonstrate that GrE-2 exhibits delocalized failure and other energy-dissipating fracture mechanisms such as crack branching and bridging. These results demonstrate that 2D polymers can be uniquely tailored to achieve a balance of fracture toughness with mechanical stiffness and strength.
Megasupramolecules for safer, cleaner fuel by end association of long telechelic polymers.
Wei, Ming-Hsin; Li, Boyu; David, R L Ameri; Jones, Simon C; Sarohia, Virendra; Schmitigal, Joel A; Kornfield, Julia A
2015-10-02
We used statistical mechanics to design polymers that defy conventional wisdom by self-assembling into "megasupramolecules" (≥5000 kg/mol) at low concentration (≤0.3 weight percent). Theoretical treatment of the distribution of individual subunits—end-functional polymers—among cyclic and linear supramolecules (ring-chain equilibrium) predicts that megasupramolecules can form at low total polymer concentration if, and only if, the backbones are long (>400 kg/mol) and end-association strength is optimal. Viscometry and scattering measurements of long telechelic polymers having polycyclooctadiene backbones and acid or amine end groups verify the formation of megasupramolecules. They control misting and reduce drag in the same manner as ultralong covalent polymers. With individual building blocks short enough to avoid hydrodynamic chain scission (weight-average molecular weights of 400 to 1000 kg/mol) and reversible linkages that protect covalent bonds, these megasupramolecules overcome the obstacles of shear degradation and engine incompatibility. Copyright © 2015, American Association for the Advancement of Science.
Cui, Yanyan; Liang, Xinmiao; Chai, Jingchao; Cui, Zili; Wang, Qinglei; He, Weisheng; Liu, Xiaochen; Feng, Jiwen
2017-01-01
Abstract It is urgent to seek high performance solid polymer electrolytes (SPEs) via a facile chemistry and simple process. The lithium salts are composed of complex anions that are stabilized by a Lewis acid agent. This Lewis acid can initiate the ring opening polymerization. Herein, a self‐catalyzed strategy toward facile synthesis of crosslinked poly(ethylene glycol) diglycidyl ether‐based solid polymer electrolyte (C‐PEGDE) is presented. It is manifested that the poly(ethylene glycol) diglycidyl ether‐based solid polymer electrolyte possesses a superior electrochemical stability window up to 4.5 V versus Li/Li+ and considerable ionic conductivity of 8.9 × 10−5 S cm−1 at ambient temperature. Moreover, the LiFePO4/C‐PEGDE/Li batteries deliver stable charge/discharge profiles and considerable rate capability. It is demonstrated that this self‐catalyzed strategy can be a very effective approach for high performance solid polymer electrolytes. PMID:29201612
Zhang, Weidong; Li, Guoping; Xu, Letian; Zhuo, Yue; Wan, Wenming; Yan, Ni; He, Gang
2018-05-21
The introduction of main group elements into conjugated scaffolds is emerging as a key route to novel optoelectronic materials. Herein, an efficient and versatile way to synthesize polymerizable 9,10-azaboraphenanthrene ( BNP )-containing monomers by aromaticity-driven ring expansion reactions between highly antiaromatic borafluorene and azides is reported, and the corresponding conjugated small molecules and polymers are developed as well. The BNP -containing small molecules and conjugated polymers showed good air/moisture stability and notable fluorescence properties. Addition of fluoride ions to the BNP -based small molecules and polymers induced a rapid change in the emission color from blue to green/yellow, respectively, accompanied by strong intensity changes. The conjugated polymers showed better ratiometric sensing performance than small molecules due to the exciton migration along the conjugated chains. Further experiments showed that the sensing process is fully reversible. The films prepared by solution-deposition of BNP -based compounds in the presence of polycaprolactone also showed good ratiometric sensing for fluoride ions.
Spectral and time-resolved properties of photoinduced hydroxyquinolines doped thin polymer films
NASA Astrophysics Data System (ADS)
Mehata, Mohan Singh
2018-01-01
Quinoline and its derivatives have a wide range of biological and pharmacological activities. Quinoline ring is used to design functional materials (quinoline derivatives) for OLEDs and field-induce electrooptics. It possesses antibacterial, antifungal, antimalarial, cardiotonic, anthelmintic, anti-inflammatory, anticonvulsant and analgesic activity. Here, we have examined photoexcitation dynamics of 6-hydroxyquinoline (6-HQ) doped in polymer films of polymethyl methacrylate (PMMA), polyvinyl alcohol (PVA) and cellulose acetate (CA) at atmospheric conditions. The absorption maximum of 6-HQ in polymer films was observed at 333 ± 1 nm, whereas fluorescence (FL) maximum fell in the range of 365-371 nm. In PVA film, in addition to the typical FL, a band maximum at 432 nm appeared as a result of an excited-state intermolecular proton transfer (ESIPT) reaction facilitated in the hydrogen-bonded complex formed in the ground state between 6-HQ:PVA. The multi-exponential decay behavior of 6-HQ in all the three polymer films indicates a nanoscale heterogeneity of the polymer environments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tripuramallu, Bharat Kumar; Das, Samar K., E-mail: skdsc@uohyd.ernet.in
2013-01-15
Two new compounds [Co (2,2 Prime -bipy) (H{sub 2}dbp)]{sub n} (1) and [Ni (2,2 Prime -bipy){sub 2}(H{sub 2}dbp)(H{sub 2}O)]{center_dot}H{sub 2}O (2) based on the flexible ligand 4,4 Prime -dimethylenebiphenyldiphosphonic acid (H{sub 4}dbp) with 2,2 Prime -bipyridine as secondary ligand have been synthesized under hydrothermal conditions. Both the compounds are well characterized by routine elemental analysis, IR, electronic spectroscopies, thermogravimetric analysis and finally by single crystal X-ray diffraction analysis. Compound 1 is a 1D extended coordination polymer and 2 is a discrete molecular compound. A comparative study between the geometries of H{sub 4}dbp ligand (in compounds 1 and 2, present study)more » and p-xylylenediphosphonic acid (H{sub 4}pxp) ligand (in previously reported compounds [Cu(2,2 Prime -bipy)(H{sub 2}pxp)]{center_dot}nH{sub 2}O (1A) and Ni(2,2 Prime -bipy){sub 2}H{sub 4}pxp]{sub n}[H{sub 2}pxp]{sub n} (2A), see text) demonstrate the effect of the twisting in the benzene rings in changing higher dimensional H{sub x}pxp (x refers to number of protonated hydroxyl groups) compounds to lower dimensional H{sub x}dbp compounds. The eight membered Co-dimer rings formed in compound 1 represents the simple and isolated Co-dimer, exhibiting weak antiferromagnetic exchange between metal centers through OPO bridges. - Graphical abstract: Two new compounds based on the dimethylenebiphenyldiphosphonic acid have been synthesized. The effect of twisting of benzene rings in the biphenyl spacer containing multidentate ligands alters dimensionality of final compounds. Highlights: Black-Right-Pointing-Pointer Cobalt containing coordination polymer and a nickel discrete compound have been synthesized. Black-Right-Pointing-Pointer Flexible ligand 4,4'-dimethylenebiphenyldiphosphonic acid has been employed. Black-Right-Pointing-Pointer Co(II) and Ni(II) ions are square pyramidal and octahedral respectively. Black-Right-Pointing-Pointer The effect of the twisting in the benzene rings in the associated ligand has been demonstrated.« less
Algorta, Jaime; Diaz, Maria; de Benito, Raquel; Lefebvre, Marc; Sicard, Eric; Furtado, Milton; Regidor, Pedro Antonio; Ronchi, Celestino
2017-12-01
To show the clinical development of Ornibel ® (ExeltisHealthcare, Spain) a contraceptive vaginal ring manufactured with a new polymer composition and containing etonogestrel/ethinylestradiol, compared to Nuvaring ® (MSD, Spain). Randomised, single dose, 2-period, 2-sequence, 2-stage crossover, comparative bioavailability study conducted in 40 healthy female subjects. All subjects received both treatments for 28 days in each of two periods, separated by a 28 days washout. Ornibel ® contains etonogestrel/ethinylestradiol 11.00/3.47 mg and Nuvaring ® contains etonogestrel/ethinylestradiol 11.7/2.7 mg, both rings delivering 120/15 µg/day. For the calculation of pharmacokinetic parameters, 37 blood samples were collected up to 840 h after each ring insertion to quantify plasma concentrations of etonogestrel and ethinylestradiol using a validated MS/MS-HPLC. Safety was assessed by adverse events recording, clinical laboratory and vital signs and tolerability by vaginal examination. Acceptability was investigated by a 5-point scale questionnaire. Bioequivalence was demonstrated in the first stage as the 94.12% Confidence Intervals of the primary parameters laid within the 80-125% acceptance range for both etonogestrel (C max : 96.81-112.20%; AUC 0-504h : 98.71-108.61%; AUC 0-t : 100.14-109.10%) and ethinylestradiol. (C max : 105.91-120.62%; AUC 0-504h : 105.47-114.59%; AUC 0-t : 108.31-117.61%). During the first day of use a burst effect was observed with Nuvaring ® , with significantly higher level of ethinylestradiol (C max0-24h ratio: 78.34%, 94.12CI: 73.55-83.45%). Both products were well tolerated and accepted, without significant differences between them. Ornibel ® is bioequivalent to Nuvaring ® in terms of efficacy, safety, tolerability and acceptability. The new polymer composition provides Ornibel ® with more stability and gradual hormonal release during the first day of use, particularly for ethinylestradiol.
Production of polyol oils from soybean oil through bioprocess
USDA-ARS?s Scientific Manuscript database
Soy-polyol oils (oxygenated acylglycerols) are important starting materials for the manufacture of polymers such as polyurethane. Currently, they are produced by a two-step chemical process involving epoxidation and then the subsequent opening of the oxirane ring. The objective of this study is to d...
Jiang, Zhaoyan; Li, Huan; Wang, Zhen; Zhang, Jianqi; Zhang, Yajie; Lu, Kun; Wei, Zhixiang
2018-03-23
Three novel copolymers based on zigzag naphthodithiophene (zNDT) with different aromatic rings as π bridges and different core side substitutions are designed and synthesized (PzNDT-T-1,3-bis(4-(2-ethylhexyl)-thiophen-2-yl)-5,7-bis(2-ethylhexyl)benzo[1,2-c:4,5-c']-dithiophene-4,8-dione (BDD), PzNDT-TT-BDD, and PzNDTP-T-BDD, respectively). The 2D conjugation structure and molecular planarity of the polymers can be effectively altered through the modification of conjugated side chains and π-bridges. These alterations contribute to the variation in energy levels, light absorption capacity, and morphology compatibility of the polymers. When blended with the nonfullerene acceptor (2,2'-[(4,4,9,9-tetrahexyl-4,9-dihydro-sindaceno[1,2-b:5,6-b']dithiophene-2,7-diyl)bis[methylidyne(3-oxo-1H-indene-2,1(3H)-diylidene)
A facile route to ketene-functionalized polymers for general materials applications
NASA Astrophysics Data System (ADS)
Leibfarth, Frank A.; Kang, Minhyuk; Ham, Myungsoo; Kim, Joohee; Campos, Luis M.; Gupta, Nalini; Moon, Bongjin; Hawker, Craig J.
2010-03-01
Function matters in materials science, and methodologies that provide paths to multiple functionality in a single step are to be prized. Therefore, we introduce a robust and efficient strategy for exploiting the versatile reactivity of ketenes in polymer chemistry. New monomers for both radical and ring-opening metathesis polymerization have been developed, which take advantage of Meldrum's acid as both a synthetic building block and a thermolytic precursor to dialkyl ketenes. The ketene-functionalized polymers are directly detected by their characteristic infrared absorption and are found to be stable under ambient conditions. The inherent ability of ketenes to provide crosslinking via dimerization and to act as reactive chemical handles via addition, provides simple methodology for application in complex materials challenges. Such versatile characteristics are illustrated by covalently attaching and patterning a dye through microcontact printing. The strategy highlights the significant opportunities afforded by the traditionally neglected ketene functional group in polymer chemistry.
NASA Astrophysics Data System (ADS)
Boaretto, Nicola; Joost, Christine; Seyfried, Mona; Vezzù, Keti; Di Noto, Vito
2016-09-01
This report describes the synthesis and the properties of a series of polymer electrolytes, composed of a hybrid inorganic-organic matrix doped with LiTFSI. The matrix is based on ring-like oligo-siloxane clusters, bearing pendant, partially cross-linked, polyether chains. The dependency of the thermo-mechanic and of the transport properties on several structural parameters, such as polyether chains' length, cross-linkers' concentration, and salt concentration is studied. Altogether, the materials show good thermo-mechanical and electrochemical stabilities, with conductivities reaching, at best, 8·10-5 S cm-1 at 30 °C. In conclusion, the cell performances of one representative sample are shown. The scope of this report is to analyze the correlations between structure and properties in networked and hybrid polymer electrolytes. This could help the design of optimized polymer electrolytes for application in lithium metal batteries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Griniene, Raimonda; Tavgeniene, Daiva, E-mail: daiva.tavgen@gmail.com; Grigalevičius, Saulius
2016-05-18
Polymers containing pendent 3-(2-phenylvinyl)carbazole moieties have been synthesized by the multi-step synthetic route. The polymers represent materials of high thermal stability with initial thermal degradation temperatures exceeding 370 °C. The glass transition temperatures of the amorphous materials were in the rage of 56–65 °C. The electron photoemission spectra of thin layers of the polymers showed ionization potentials of about 5.6 eV. Hole-transporting properties of the polymeric materials were tested in the structures of organic light emitting diodes with Alq 3 as the green emitter. The device containing hole-transporting layers of poly{9-[6-(3-methyloxetan-3-ylmethoxy)hexyl]-3-(2-phenylvinyl)carbazole} exhibited the best overall performance with a maximum photometricmore » efficiency of about 4.0 cd/A and maximum brightness exceeding 6430 cd/m{sup 2}.« less
Design and preparation of plant oil-based polymers and their applications
NASA Astrophysics Data System (ADS)
Ahn, Byung-Jun Kollbe
Renewable materials are desirable for many applications due to the finite fossil resources and environmental issues. Plant oil is one of the most promising renewable feedstocks. Plant oils and functionalized oleo-chemicals including functionalized soybean oils have become attractive sustainable chemicals for industrial applications. Especially, epoxidized oleo-chemicals such as epoxidized soybean oil (ESO) are one of the most well-known readily available inexpensive functionalized plant oils. In this study, novel polymers and nanocomposites for sustainable materials applications were designed and prepared via ring-opening of epoxide in plant oils, and their chemical and physical properties were characterized. The novel transparent elastomers derived from functionalized plant oils have a great potential as flexible electronic and biological applications with their inherent low toxicity. Especially, their rheological properties showed a potential for pressure sensitive adhesives (PSAs). The dominant thermal stability and transparency were obtained via green processing: one pot, single step, fast reactions in moderate conditions, or solvent-free UV curing conditions. These oleo-based elastomers presented excellent end-use properties for PSAs application comparable to commercial PSA tapes. Based on the principal chemical studies, the roles of the each component have been identified: polymer derived from the ring-opening of epoxides as an elastomer, and dihydroxylated triglycerides as a tackifier. Their interaction was also elucidated with an element label analysis. The mechanical and rheological properties of the oleo-polymer as PSAs were able to be improved with a rosin ester tackifier. In addition, biogreases and bio-thermoplastics were developed via the environmentally benign process, which will contribute to further application on the production of new bio-based materials. Further, this study essays a novel acid functionalized iron/iron oxide nanoparticles catalyst with excellent product yields for epoxide ring opening of oleochemicals for a greener synthetic method of biopolyols, and excellent environmental benefits with life cycle assessment of syntheses. Those functionalized iron/iron oxide core shell nanoparticles catalysts has great potential for biomedical engineering process with the highest magnetization of Fe(0) core among all metals.
Ghobadi, Ahmadreza F; Letteri, Rachel; Parelkar, Sangram S; Zhao, Yue; Chan-Seng, Delphine; Emrick, Todd; Jayaraman, Arthi
2016-02-08
Polymer-based gene delivery vehicles benefit from the presence of hydrophilic groups that mitigate the inherent toxicity of polycations and that provide tunable polymer-DNA binding strength and stable complexes (polyplexes). However, hydrophilic groups screen charge, and as such can reduce cell uptake and transfection efficiency. We report the effect of embedding zwitterionic sulfobetaine (SB) groups in cationic comb polymers, using a combination of experiments and molecular simulations. Ring-opening metathesis polymerization (ROMP) produced comb polymers with tetralysine (K4) and SB pendent groups. Dynamic light scattering, zeta potential measurements, and fluorescence-based experiments, together with coarse-grained molecular dynamics simulations, described the effect of SB groups on the size, shape, surface charge, composition, and DNA binding strength of polyplexes formed using these comb polymers. Experiments and simulations showed that increasing SB composition in the comb polymers decreased polymer-DNA binding strength, while simulations indicated that the SB groups distributed throughout the polyplex. This allows polyplexes to maintain a positive surface charge and provide high levels of gene expression in live cells. Notably, comb polymers with nearly 50 mol % SB form polyplexes that exhibit positive surface charge similarly as polyplexes formed from purely cationic comb polymers, indicating the ability to introduce an appreciable amount of SB functionality without screening surface charge. This integrated simulation-experimental study demonstrates the effectiveness of incorporating zwitterions in polyplexes, while guiding the design of new and effective gene delivery vectors.
Poly[diaquatris(μ4-1,3-phenylenediacetato)dineodymium(III)
Gao, Zhu-Qing; Lv, Dong-Yu; Li, Hong-Ji; Gu, Jin-Zhong
2011-01-01
In the title coordination polymer, [Nd2(C10H8O4)3(H2O)2]n, each of the two NdIII ions is nine-coordinated by eight O atoms from six different 2,2′-(m-phenylene)diacetate (pda) bivalent anions and by one O atom from a water molecule, forming a distorted tricapped trigonal–prismatic coordination geometry. Eight NdIII ions and 12 pda ligands form a large [Nd8(pda)12] ring, and four NdIII ions and six pda ligands form a small [Nd4(pda)6] ring. These rings are further connected by the coordination interactions of pda ligands and NdIII, generating a three-dimensional supramolecular framework. PMID:21522305
de Oliveira, Fernanda Midori; Segatelli, Mariana Gava; Tarley, César Ricardo Teixeira
2016-02-01
In the present study a hybrid molecularly imprinted poly(methacrylic acid-trimethylolpropane trimethacrylate)-silica (MIP) was synthesized and modified with (3-glycidyloxypropyl)trimethoxysilane (GPTMS) with posterior opening of epoxy ring to provide hydrophilic properties of material in the extraction of folic acid from aqueous medium. The chemical and structural aggregates of hybrid material were characterized by means of Fourier Transform Infrared (FT-IR), Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), Thermogravimetric analysis (TGA) and textural data. Selectivity data of MIP were compared to non-imprinted polymer (NIP) through competitive sorption studies in the presence of caffeine, paracetamol or 4-aminobenzamide yielding relative selectivity coefficients (k′) higher than one unit, thus confirming the selective character of MIP even in the presence of structurally smaller compounds than the folic acid. The lower hydrophobic sorption by bovine serum albumin (BSA) in the MIP as compared to unmodified MIP proves the hydrophilicity of polymer surface by using GPTMS with opening ring. Under acid medium(pH 1.5) the sorption of folic acid onto MIP from batch experiments was higher than the one achieved for NIP. Equilibrium sorption of folic acid was reached at 120 min for MIP, NIP and MIP without GPTMS and kinetic sorption data were well described by pseudo-second-order, Elovich and intraparticle diffusion models. Thus, these results indicate the existence of different binding energy sites in the polymers and a complex mechanism consisting of both surface sorption and intraparticle transport of folic acid within the pores of polymers.
Effect of chain stiffness on the structure of single-chain polymer nanoparticles
NASA Astrophysics Data System (ADS)
Moreno, Angel J.; Bacova, Petra; Lo Verso, Federica; Arbe, Arantxa; Colmenero, Juan; Pomposo, José A.
2018-01-01
Polymeric single-chain nanoparticles (SCNPs) are soft nano-objects synthesized by purely intramolecular cross-linking of single polymer chains. By means of computer simulations, we investigate the conformational properties of SCNPs as a function of the bending stiffness of their linear polymer precursors. We investigate a broad range of characteristic ratios from the fully flexible case to those typical of bulky synthetic polymers. Increasing stiffness hinders bonding of groups separated by short contour distances and increases looping over longer distances, leading to more compact nanoparticles with a structure of highly interconnected loops. This feature is reflected in a crossover in the scaling behaviour of several structural observables. The scaling exponents change from those characteristic for Gaussian chains or rings in θ-solvents in the fully flexible limit, to values resembling fractal or ‘crumpled’ globular behaviour for very stiff SCNPs. We characterize domains in the SCNPs. These are weakly deformable regions that can be seen as disordered analogues of domains in disordered proteins. Increasing stiffness leads to bigger and less deformable domains. Surprisingly, the scaling behaviour of the domains is in all cases similar to that of Gaussian chains or rings, irrespective of the stiffness and degree of cross-linking. It is the spatial arrangement of the domains which determines the global structure of the SCNP (sparse Gaussian-like object or crumpled globule). Since intramolecular stiffness can be varied through the specific chemistry of the precursor or by introducing bulky side groups in its backbone, our results propose a new strategy to tune the global structure of SCNPs.
Polymersome nanoreactors for enzymatic ring-opening polymerization.
Nallani, Madhavan; de Hoog, Hans-Peter M; Cornelissen, Jeroen J L M; Palmans, Anja R A; van Hest, Jan C M; Nolte, Roeland J M
2007-12-01
Polystyrene-polyisocyanopeptide (PS-PIAT) polymersomes containing CALB in two different locations, one in the aqueous inner compartment and one in the bilayer, were investigated for enzymatic ring-opening polymerization of lactones in water. It is shown that the monomers 8-octanolactone and dodecalactone yield oligomers with this polymersome system. It is also observed that the polymerization activity is dependent on the position of the enzyme in the polymersome. SEM investigations show that the polymersome structures were destabilized during the polymerization. Further investigations show that the vesicular morphology of the polymersomes was destabilized only in the case of polymer product formation.
NASA Astrophysics Data System (ADS)
Liu, Shuqin; Chen, Darui; Zheng, Juan; Zeng, Lewei; Jiang, Jijun; Jiang, Ruifeng; Zhu, Fang; Shen, Yong; Wu, Dingcai; Ouyang, Gangfeng
2015-10-01
This study presents the preparation and characterization of a nanoscale Davankov-type hyper-crosslinked-polymer (HCP) as an adsorbent of benzene-ring-containing dyes and organic pollutants. HCP nanoparticles post-crosslinked from a poly(DVB-co-VBC) precursor were synthesized in this study, possessing ultrahigh surface area, hydrophobicity and stability. The as-synthesized Davankov-type HCP exhibited a rapid and selective adsorption ability towards the benzene-ring-containing dyes due to its highly conjugated structure. Besides, for the first time, the prepared HCP nanoparticles were adopted for the adsorption of nonpolar organic pollutants by means of solid-phase microextraction (SPME). Owing to its high hydrophobicity, diverse pore size distribution and highly conjugated structure, a 10 μm HCP coating exhibited excellent adsorption abilities towards benzene-ring-containing polycyclic aromatic hydrocarbons (PAHs) and benzene series compounds (benzene, toluene, ethylbenzene and o-xylene; abbreviated to BTEX) and to highly hydrophobic long-chain n-alkanes. Finally, the HCP-nanoparticles-coated SPME fiber was applied to the simultaneous analysis of five PAHs in environmental water samples and satisfactory recoveries were achieved. The findings could provide a new benchmark for the exploitation of superb HCPs as effective adsorbents for SPME or other adsorption applications.This study presents the preparation and characterization of a nanoscale Davankov-type hyper-crosslinked-polymer (HCP) as an adsorbent of benzene-ring-containing dyes and organic pollutants. HCP nanoparticles post-crosslinked from a poly(DVB-co-VBC) precursor were synthesized in this study, possessing ultrahigh surface area, hydrophobicity and stability. The as-synthesized Davankov-type HCP exhibited a rapid and selective adsorption ability towards the benzene-ring-containing dyes due to its highly conjugated structure. Besides, for the first time, the prepared HCP nanoparticles were adopted for the adsorption of nonpolar organic pollutants by means of solid-phase microextraction (SPME). Owing to its high hydrophobicity, diverse pore size distribution and highly conjugated structure, a 10 μm HCP coating exhibited excellent adsorption abilities towards benzene-ring-containing polycyclic aromatic hydrocarbons (PAHs) and benzene series compounds (benzene, toluene, ethylbenzene and o-xylene; abbreviated to BTEX) and to highly hydrophobic long-chain n-alkanes. Finally, the HCP-nanoparticles-coated SPME fiber was applied to the simultaneous analysis of five PAHs in environmental water samples and satisfactory recoveries were achieved. The findings could provide a new benchmark for the exploitation of superb HCPs as effective adsorbents for SPME or other adsorption applications. Electronic supplementary information (ESI) available: Fig. S1-S8, details of optimization of the SPME condition, Tables S1-S5. See DOI: 10.1039/c5nr04624f
Dai, Shiyao; Li, Zhi
2008-07-01
Enzymatic modification of a microbial polyester was achieved by the ring-opening polymerization of epsilon-caprolactone (CL) with low-molecular weight telechelic hydroxylated poly[( R)-3-hydroxybutyrate] (PHB-diol) as initiator and Novozym 435 (immobilized Candida antarctica Lipase B) as catalyst in anhydrous 1,4-dioxane or toluene. The ring-opening polymerization was investigated at different conditions with two different types of PHB-diols: PHB-diol(P), containing a primary OH and a secondary OH end groups, and PHB-diol(M), consisting of 91% PHB-diol(P) and 9% PHB-diol containing two secondary OH end groups. The reactions were followed by GPC analyses of the resulting polymers at different time points, and the optimal conditions were established to be 70 degrees C at a weight ratio of CL/enzyme/solvent of 8:1:24. The ring-opening polymerization of CL with PHB-diol(M) (Mn of 2380, NMR) at the molar ratio of 50:1 under the optimal conditions in 1,4-dioxane gave the corresponding poly[HB(56 wt %)-co-CL(44 wt %)] with Mn (NMR) of 3900 in 66% yield. Polymerization of CL and PHB-diol(P) ( Mn of 2010, NMR) at the same condition in toluene gave the corresponding poly[HB(28 wt %)-co-CL(72 wt %)] with Mn (NMR) of 7100 in 86% yield. Both polymers were characterized by (1)H and (13)C NMR and IR analyses as di-block copolyesters containing a PHB block with a secondary OH end group and a poly(epsilon-caprolactone) (PCL) block with a primary OH end group. NMR analyses and control experiments suggested no formation of random copolymers and no change of the PHB block during the reaction. The enzymatic ring-opening polymerization was selectively initiated by the primary OH group of PHB-diol, whereas the secondary OH group remained as an end group in the final polymers. The thermal properties of the di-block poly(HB-co-CL)s were analyzed by DSC, with excellent T g values for the elastomer domain: poly[HB(56 wt %)- co-CL(44 wt %)] with M n (NMR) of 3900 demonstrated a T g of -57 degrees C, Tm of 145, 123, and 53 degrees C; and poly[HB(28wt%)-co-CL(72wt%)] with Mn (NMR) of 7100 gave a Tg of -60 degrees C, Tm of 147 and 50 degrees C. Thus, the selective enzymatic ring-opening polymerization with PHB-diol as macro-initiator provides a new method for the preparation of PHB-based block copolymers as biomaterials with good thermoplastic properties and novel structures containing functional end groups.
Formation of furan fatty alkyl esters from their bis-epoxide fatty esters
USDA-ARS?s Scientific Manuscript database
Epoxidation of vegetable oils and consecutive epoxide ring-opening reaction is a widely investigated path for producing biobased lubricants and polymers. The reaction mechanism and products are considered well-studied and known. In the current study, the reactions of epoxidized alkyl soyate with fou...
Relating nanoindentation to macroindentation of wood
Robert J. Moon; Joseph E. Jakes; Jim F. Beecher; Charles R. Frihart; Donald S. Stone
2009-01-01
Wood has several levels of hierarchical structure, spanning from the configuration of growth-rings down to the configuration of the base polymers (cellulose, hemicellulose, and lignin). The bulk properties of wood result from the culmination of interactions over all length scales. Gaps presently exist in the fundamental knowledge relating the contribution of wood...
Polymerization of euphorbia oil in carbon dioxide media
USDA-ARS?s Scientific Manuscript database
Boron trifluoride diethyl etherate (BF3•OEt2), Lewis acid, catalyzed ring-opening polymerization of euphorbia oil (EO), a natural epoxy oil, was conducted in carbon dioxide. The resulting polymers (RPEO) were characterized by FTIR, 1H-NMR, 13C-NMR, solid state 13C-NMR spectroscopies, differential sc...
Atomistic simulations of bulk, surface and interfacial polymer properties
NASA Astrophysics Data System (ADS)
Natarajan, Upendra
In chapter I, quasi-static molecular mechanics based simulations are used to estimate the activation energy of phenoxy rings flips in the amorphous region of a semicrystalline polyimide. Intra and intermolecular contributions to the flip activation energy, the torsional cooperativity accompanying the flip, and the effect of the flip on the motion in the glassy bulk state, are looked at. Also, comparison of the weighted mean activation energy is made with experimental data from solid state NMR measurements; the simulated value being 17.5 kcal/mol., while the experimental value was observed to be 10.5 kcal/mol. Chapter II deals with construction of random copolymer thin films of styrene-butadiene (SB) and styrene-butadiene-acrylonitrile (SBA). The structure and properties of the free surfaces presented by these thin films are analysed by, the atom mass density profiles, backbone bond orientation function, and the spatial distribution of acrylonitrile groups and styrene rings. The surface energies of SB and SBA are calculated using an atomistic equation and are compared with experimental data in the literature. In chapter III, simulations of polymer-polymer interfaces between like and unlike polymers, specifically cis-polybutadiene (PBD) and atatic polypropylene (PP), are presented. The structure of an incompatible polymer-polymer interface, and the estimation of the thermodynamic work of adhesion and interfacial energy between different incompatible polymers, form the focus here. The work of adhesion is calculated using an atomistic equation and is further used in a macroscopic equation to estimate the interfacial energy. The interfacial energy is compared with typical values for other immiscible systems in the literature. The interfacial energy compared very well with interfacial energy values for a few other immiscible hydrocarbon pairs. In chapter IV, the study proceeds to look at the interactions between nonpolar and polar small molecules with SB and SBA thin film surfaces. Toluene, hexadecane and water molecules are separately simulated to interact with SB and SBA surfaces in vacuum. The energetics of interaction are calculated atomistically and used in the atomistic equation to calculate the interfacial energy or the interaction energy. Comparisons with experimental data are not made due to the small concentrations of the molecules on the polymer surface. However, fundamental understanding of the structure of the system and the breakup of the energetics are provided by such a study.
NASA Astrophysics Data System (ADS)
Baker, David M. H.; Head, James W.; Phillips, Roger J.; Neumann, Gregory A.; Bierson, Carver J.; Smith, David E.; Zuber, Maria T.
2017-08-01
High-resolution gravity data from the Gravity Recovery and Interior Laboratory (GRAIL) mission provide the opportunity to analyze the detailed gravity and crustal structure of impact features in the morphological transition from complex craters to peak-ring basins on the Moon. We calculate average radial profiles of free-air anomalies and Bouguer anomalies for peak-ring basins, protobasins, and the largest complex craters. Complex craters and protobasins have free-air anomalies that are positively correlated with surface topography, unlike the prominent lunar mascons (positive free-air anomalies in areas of low elevation) associated with large basins. The Bouguer gravity anomaly profiles of complex craters are highly irregular, with central positive anomalies that are generally absent or not clearly tied to interior morphology. In contrast, gravity profiles for peak-ring basins (∼200 km to 580 km) are much more regular and are highly correlated with surface morphology. A central positive Bouguer anomaly is confined within the peak ring and a negative Bouguer anomaly annulus extends from the edge of the positive anomaly outward to about the rim crest. A number of degraded basins lacking interior peak rings have diameters and gravity patterns similar to those of well-preserved peak-ring basins. If these structures represent degraded peak-ring basins, the number of peak-ring basins on the Moon would increase by more than a factor of two to 34. The gravity anomalies within basins are interpreted to be due to uplift of the mantle confined within the peak ring and an annulus of thickened crust between the peak ring and rim crest. We hypothesize that mantle uplift is influenced by interaction between the transient cavity and the mantle. Further, mascon formation is generally disconnected from the number of basin rings formed and occurs over a wide range of basin sizes. These observations have important implications for models of basin and mascon formation on the Moon and other planetary bodies.
2000-04-01
the five-ring system theory that dramatically improves the warfighters ability to systematically identify wartime targets. However, for all of its...acclaim, little has been written about Warden’s five-ring system theory . Even less has been written about the legal and moral implications of using Warden’s theory to identify wartime targets.
NASA Technical Reports Server (NTRS)
Shariff, Karim; Leonard, Anthony
1992-01-01
The vortex-ring problem in fluid mechanics is examined generally in terms of formation, the steady state, the duration of the rings, and vortex interactions. The formation is studied by examining the generation of laminar and turbulent vortex rings and their resulting structures with attention given to the three stages of laminar ring development. Inviscid dynamics is addressed to show how core dynamics affects overall ring motion, and laminar vortex structures are described in two dimensions. Viscous and inviscid structures are related in terms of 'leapfrogging', head-on collisions, and collisions with a no-slip wall. Linear instability theory is shown to successfully describe observational data, although late stages in the breakdown are not completely understood. This study of vortex rings has important implications for key aerodynamic issues including sound generation, transport and mixing, and vortex interactions.
NASA Astrophysics Data System (ADS)
Liyanage, Arawwawala Don Thilanga
After the discovery of doped polyacetylene, organic semiconductor materials are widely studied as high impending active components in consumer electronics. They have received substantial consideration due to their potential for structural tailoring, low cost, large area and mechanically flexible alternatives to common inorganic semiconductors. To acquire maximum use of these materials, it is essential to get a strong idea about their chemical and physical nature. Material chemist has an enormous role to play in this novel area, including development of efficient synthetic methodologies and control the molecular self-assembly and (opto)-electronic properties. The body of this thesis mainly focuses on the substituent effects: how different substituents affect the (opto)-electronic properties of the donor-acceptor (D-A) conjugated polymers. The main priority goes to understand, how different alkyl substituent effect to the polymer solubility, crystallinity, thermal properties (e.g.: glass transition temperature) and morphological order. Three classes of D-A systems were extensively studied in this work. The second chapter mainly focuses on the synthesis and structure-property study of fluorinated arene (TFB) base polymers. Here we used commercially available 1,4-dibromo-2,3,5,6-tetrafluorobenzene (TFB) as the acceptor material and prepare several polymers using 3,3'-dialkyl(3,3'-R2T2) or 3,3'-dialkoxy bithiophene (3,3'-RO2T2) units as electron donors. A detail study was done using 3,3'-bithiophene donor units incorporating branched alkoxy-functionalities by systematic variation of branching position and chain length. The study allowed disentangling the branching effects on (i) aggregation tendency, intermolecular arrangement, (iii) solid state optical energy gaps, and (iv) electronic properties in an overall consistent picture, which might guide future polymer synthesis towards optimized materials for opto-electronic applications. The third chapter mainly focused on the structure-property study of imide functionalized D-A polymers. Here we used thiophene-imide (TPD) as the acceptor moiety and prepare several D-A polymers by varying the donor units. When selecting the donor units, more priority goes to the fused ring systems. One main reason to use imide functionality is due to the, open position of the imide nitrogen, which provides an attaching position to alkyl substituent. Through this we can easily manipulate solubility and solid state packing arrangement. Also these imide acceptors have low-lying LUMOs due to their electron deficient nature and this will allow tuning the optical energy gap by careful choice of donor materials with different electron donating ability. The fourth chapter mainly contribute to the synthesis and structure property study of a completely novel electron acceptor moiety consist of a unsaturated pyrrolidinone unit known as Pechmann dye (PD) core. Pechmann dyes are closely related to the Indigo family. This can refer as 3-butenolide dimer connected via an alkene bridge, containing a benzene ring at the 5 and 5' positions of the lactone rings. We have prepared several D-A polymers using this PD system with benzodithiophene (BDT) as the donor unit. Different to common D-A polymers the HOMO and LUMO of the PD acceptor moiety are energetically located within the gap of the BDT, so that the electronic and optical properties (HOMO-LUMO transition) are dictated by the PD properties. The promising electronic properties, band gaps, high absorption coefficients and broad absorption suggest this new D-A polymers as an interesting donor material for organic solar cell (OSC) applications. KEY WORDS: Organic semiconductor materials, Self assembly, (opto)-electronic properties, Donor-Acceptor conjugated polymers, Fluorinated arene, 3,3'-bithiophene donors, Thiophene-imide (TPD), Pechmann dye, benzodithiophene, organic solar cell.
Microsecond kinetics in model single- and double-stranded amylose polymers.
Sattelle, Benedict M; Almond, Andrew
2014-05-07
Amylose, a component of starch with increasing biotechnological significance, is a linear glucose polysaccharide that self-organizes into single- and double-helical assemblies. Starch granule packing, gelation and inclusion-complex formation result from finely balanced macromolecular kinetics that have eluded precise experimental quantification. Here, graphics processing unit (GPU) accelerated multi-microsecond aqueous simulations are employed to explore conformational kinetics in model single- and double-stranded amylose. The all-atom dynamics concur with prior X-ray and NMR data while surprising and previously overlooked microsecond helix-coil, glycosidic linkage and pyranose ring exchange are hypothesized. In a dodecasaccharide, single-helical collapse was correlated with linkages and rings transitioning from their expected syn and (4)C1 chair conformers. The associated microsecond exchange rates were dependent on proximity to the termini and chain length (comparing hexa- and trisaccharides), while kinetic features of dodecasaccharide linkage and ring flexing are proposed to be a good model for polymers. Similar length double-helices were stable on microsecond timescales but the parallel configuration was sturdier than the antiparallel equivalent. In both, tertiary organization restricted local chain dynamics, implying that simulations of single amylose strands cannot be extrapolated to dimers. Unbiased multi-microsecond simulations of amylose are proposed as a valuable route to probing macromolecular kinetics in water, assessing the impact of chemical modifications on helical stability and accelerating the development of new biotechnologies.
Tang, Xiaoyan; Hong, Miao; Falivene, Laura; Caporaso, Lucia; Cavallo, Luigi; Chen, Eugene Y-X
2016-11-02
α-Methylene-γ-butyrolactone (MBL), a naturally occurring and biomass-sourced bifunctional monomer, contains both a highly reactive exocyclic C═C bond and a highly stable five-membered γ-butyrolactone ring. Thus, all previous work led to exclusive vinyl-addition polymerization (VAP) product P(MBL) VAP . Now, this work reverses this conventional chemoselectivity to enable the first ring-opening polymerization (ROP) of MBL, thereby producing exclusively unsaturated polyester P(MBL) ROP with M n up to 21.0 kg/mol. This elusive goal was achieved through uncovering the thermodynamic, catalytic, and processing conditions. A third reaction pathway has also been discovered, which is a crossover propagation between VAP and ROP processes, thus affording cross-linked polymer P(MBL) CLP . The formation of the three types of polymers, P(MBL) VAP , P(MBL) CLP , and P(MBL) ROP , can be readily controlled by adjusting the catalyst (La)/initiator (ROH) ratio, which is determined by the unique chemoselectivity of the La-X (X = OR, NR 2 , R) group. The resulting P(MBL) ROP is degradable and can be readily postfunctionalized into cross-linked or thiolated materials but, more remarkably, can also be fully recycled back to its monomer thermochemically. Computational studies provided the theoretical basis for, and a mechanistic understanding of, the three different polymerization processes and the origin of the chemoselectivity.
Asymmetric ring structure of Vps4 required for ESCRT-III disassembly
NASA Astrophysics Data System (ADS)
Caillat, Christophe; Macheboeuf, Pauline; Wu, Yuanfei; McCarthy, Andrew A.; Boeri-Erba, Elisabetta; Effantin, Gregory; Göttlinger, Heinrich G.; Weissenhorn, Winfried; Renesto, Patricia
2015-12-01
The vacuolar protein sorting 4 AAA-ATPase (Vps4) recycles endosomal sorting complexes required for transport (ESCRT-III) polymers from cellular membranes. Here we present a 3.6-Å X-ray structure of ring-shaped Vps4 from Metallosphera sedula (MsVps4), seen as an asymmetric pseudohexamer. Conserved key interface residues are shown to be important for MsVps4 assembly, ATPase activity in vitro, ESCRT-III disassembly in vitro and HIV-1 budding. ADP binding leads to conformational changes within the protomer, which might propagate within the ring structure. All ATP-binding sites are accessible and the pseudohexamer binds six ATP with micromolar affinity in vitro. In contrast, ADP occupies one high-affinity and five low-affinity binding sites in vitro, consistent with conformational asymmetry induced on ATP hydrolysis. The structure represents a snapshot of an assembled Vps4 conformation and provides insight into the molecular motions the ring structure undergoes in a concerted action to couple ATP hydrolysis to ESCRT-III substrate disassembly.
Tough, high performance, addition-type thermoplastic polymers
NASA Technical Reports Server (NTRS)
Pater, Ruth H. (Inventor)
1992-01-01
A tough, high performance polyimide is provided by reacting a triple bond conjugated with an aromatic ring in a bisethynyl compound with the active double bond in a compound containing a double bond activated toward the formation of a Diels-Adler type adduct, especially a bismaleimide, a biscitraconimide, or a benzoquinone, or mixtures thereof. Addition curing of this product produces a high linear polymeric structure and heat treating the highly linear polymeric structure produces a thermally stable aromatic addition-type thermoplastic polyimide, which finds utility in the preparation of molding compounds, adhesive compositions, and polymer matrix composites.
Second and third order nonlinear optical properties of conjugated molecules and polymers
NASA Technical Reports Server (NTRS)
Perry, Joseph W.; Stiegman, Albert E.; Marder, Seth R.; Coulter, Daniel R.; Beratan, David N.; Brinza, David E.
1988-01-01
Second- and third-order nonlinear optical properties of some newly synthesized organic molecules and polymers are reported. Powder second-harmonic-generation efficiencies of up to 200 times urea have been realized for asymmetric donor-acceptor acetylenes. Third harmonic generation chi(3)s have been determined for a series of small conjugated molecules in solution. THG chi(3)s have also been determined for a series of soluble conjugated copolymers prepared using ring-opening metathesis polymerization. The results are discussed in terms of relevant molecular and/or macroscopic structural features of these conjugated organic materials.
Longo, Julie M; Sanford, Maria J; Coates, Geoffrey W
2016-12-28
Polyesters synthesized through the alternating copolymerization of epoxides and cyclic anhydrides compose a growing class of polymers that exhibit an impressive array of chemical and physical properties. Because they are synthesized through the chain-growth polymerization of two variable monomers, their syntheses can be controlled by discrete metal complexes, and the resulting materials vary widely in their functionality and physical properties. This polymer-focused review gives a perspective on the current state of the field of epoxide/anhydride copolymerization mediated by discrete catalysts and the relationships between the structures and properties of these polyesters.
Emergent Vortex Patterns in Systems of Self-Propelled, Chiral Particles
NASA Astrophysics Data System (ADS)
Huber, Lorenz; Denk, Jonas; Reithmann, Emanuel; Frey, Erwin
Self-organization of FtsZ polymers is vital for Z-ring assembly during bacterial cell division, and has been studied using reconstituted in vitro model systems. Employing Brownian dynamics simulations and a Boltzmann approach, we model FtsZ polymers as active particles moving along chiral circular paths. With both theoretical approaches we find self-organization into vortex structures and characterize different states in parameter states. Our work demonstrates that these patterns are robust and are generic for active chiral matter. Moreover, we show that the dynamics at the onset of pattern formation is described by a generalized complex Ginzburg-Landau equation.
Microwave-assisted synthesis and micellization behavior of soy-based copoly(2-oxazoline)s.
Hoogenboom, Richard; Leenen, Mark A M; Huang, Haiying; Fustin, Charles-André; Gohy, Jean-François; Schubert, Ulrich S
2006-01-01
Polymers based on renewable resources are promising candidates for replacing common organic polymers, and thus, for reducing oil consumption. In this contribution we report the microwave-assisted synthesis of block and statistical copolymers from 2-ethyl-2-oxazoline and 2-"soy alkyl"-2-oxazoline via a cationic ring-opening polymerization mechanism. The synthesized copolymers were characterized by gel permeation chromatography and 1 H-NMR spectroscopy. The micellization of these amphiphilic copolymers was investigated by dynamic light scattering and atomic force microscopy to examine the effect of hydrophobic block length and monomer distribution on the resulting micellar characteristics.
Zhong, Hongliang; Li, Zhe; Deledalle, Florent; Fregoso, Elisa Collado; Shahid, Munazza; Fei, Zhuping; Nielsen, Christian B; Yaacobi-Gross, Nir; Rossbauer, Stephan; Anthopoulos, Thomas D; Durrant, James R; Heeney, Martin
2013-02-13
We report the synthesis of a novel ladder-type fused ring donor, dithienogermolodithiophene, in which two thieno[3,2-b]thiophene units are held coplanar by a bridging dialkyl germanium. Polymerization of this extended monomer with N-octylthienopyrrolodione by Stille polycondensation afforded a polymer, pDTTG-TPD, with an optical band gap of 1.75 eV combined with a high ionization potential. Bulk heterojunction solar cells based upon pDTTG-TPD:PC(71)BM blends afforded efficiencies up to 7.2% without the need for thermal annealing or processing additives.
Ruiz-Dueñas, Francisco J; Martínez, Angel T
2009-03-01
Lignin is the second most abundant constituent of the cell wall of vascular plants, where it protects cellulose towards hydrolytic attack by saprophytic and pathogenic microbes. Its removal represents a key step for carbon recycling in land ecosystems, as well as a central issue for industrial utilization of plant biomass. The lignin polymer is highly recalcitrant towards chemical and biological degradation due to its molecular architecture, where different non-phenolic phenylpropanoid units form a complex three-dimensional network linked by a variety of ether and carbon-carbon bonds. Ligninolytic microbes have developed a unique strategy to handle lignin degradation based on unspecific one-electron oxidation of the benzenic rings in the different lignin substructures by extracellular haemperoxidases acting synergistically with peroxide-generating oxidases. These peroxidases poses two outstanding characteristics: (i) they have unusually high redox potential due to haem pocket architecture that enables oxidation of non-phenolic aromatic rings, and (ii) they are able to generate a protein oxidizer by electron transfer to the haem cofactor forming a catalytic tryptophanyl-free radical at the protein surface, where it can interact with the bulky lignin polymer. The structure-function information currently available is being used to build tailor-made peroxidases and other oxidoreductases as industrial biocatalysts. © 2009 The Authors. Journal compilation © 2009 Society for Applied Microbiology and Blackwell Publishing Ltd.
NASA Astrophysics Data System (ADS)
Namnabat, Soha; Kim, Kyung-Jo; Jones, Adam M.; Himmelhuber, Roland; DeRose, Christopher T.; Pomerene, Andrew; Lentine, Tony L.; Norwood, Robert A.
2017-02-01
Electronic interconnects are reaching their limit in terms of speed, dimensions and permissible power consumption. This has been a major concern in data centers and large scale computing platforms, creating limits to their scalability especially with respect to power consumption. Silicon photonic-electronic integration is viewed as a viable alternative that enables reliability, high efficiency, low cost and small footprint. In particular, silicon with its high refractive index, has enabled the integration a many individual optical elements (ring resonators) in small areas. Though silicon has a high thermo-optic coefficient (1.8×10^-4/°C) compared to silica, small thermal fluctuations can affect the optical performance especially for WDM applications. Therefore, a passive athermal solution for silicon photonic devices is required in order to reduce thermal sensitivity and power consumption. We have achieved this goal by replacing the silica top cladding with negative thermo-optic coefficient (TOC) materials. While polymers and titanium dioxide(titania) have a negative TOC, polymers can't handle high temperature processing and titania needs very tight thickness control and expensive deposition under vacuum. In this work we propose to use a sol-gel inorganic-organic hybrid material that has the benefits of both worlds. We were able to find optimum curing conditions to athermalize ring resonators by studying various sol-gel curing times and curing temperatures. Our athermal rings operate in a wide temperature range from 5C - 100C with thermal shifts below 1pm/C and low loss. Furthermore, we demonstrate that our athermal approach does not deleteriously effect critical device parameters, such as insertion loss and resonator Q factors.
Ring-shaped stain patterns driven by solute reactive mesogens in liquid crystal solution
NASA Astrophysics Data System (ADS)
Cha, Tae Woon; Bulliard, Xavier; Choi, Sang Gun; Lee, Hyoung Sub; Kong, Hyang-Shik; Han, Sang Youn
2014-07-01
We report on the formation of ring-shaped stain patterns in a polymer-stabilized patterned vertical alignment mode liquid crystal display (LCD) during the cell filling process. Through the interpretation of the formation mechanism, an effective way to control its development is provided. Systematic trace of the reactive mesogens reveals that the formation of patterns is strongly related to the segregation of solute mesogens in the stain area. These undesirable patterns can be avoided or controlled by reducing the drop volume at each droplet using an inkjet printing technique, meaning that the printing technique could be a useful solution in display technology. For the formation of ring-shaped patterns, the dragging of reactive mesogens during the spreading of the liquid crystal solution plays a key role in the closed LCD cell.
Wang, Junpeng; Ong, Mitchell T.; Kouznetsova, Tatiana B.; ...
2015-08-31
The dynamics of reactions at or in the immediate vicinity of transition states are critical to reaction rates and product distributions, but direct experimental probes of those dynamics are rare. In this paper, s-trans, s-trans 1,3-diradicaloid transition states are trapped by tension along the backbone of purely cis-substituted gem-difluorocyclopropanated polybutadiene using the extensional forces generated by pulsed sonication of dilute polymer solutions. Once released, the branching ratio between symmetry-allowed disrotatory ring closing (of which the trapped diradicaloid structure is the transition state) and symmetry-forbidden conrotatory ring closing (whose transition state is nearby) can be inferred. Finally, net conrotatory ring closingmore » occurred in 5.0 ± 0.5% of the released transition states, in excellent agreement with ab initio molecular dynamics simulations.« less
Polymerization initated at sidewalls of carbon nanotubes
NASA Technical Reports Server (NTRS)
Tour, James M. (Inventor); Hudson, Jared L. (Inventor); Krishnamoorti, Ramanan (Inventor); Yurekli, Koray (Inventor); Mitchell, Cynthia A. (Inventor)
2011-01-01
The present invention is directed to aryl halide (such as aryl bromide) functionalized carbon nanotubes that can be utilized in anionic polymerization processes to form polymer-carbon nanotube materials with improved dispersion ability in polymer matrices. In this process the aryl halide is reacted with an alkyllithium species or is reacted with a metal to replace the aryl-bromine bond with an aryl-lithium or aryl-metal bond, respectively. It has further been discovered that other functionalized carbon nanotubes, after deprotonation with a deprotonation agent, can similarly be utilized in anionic polymerization processes to form polymer-carbon nanotube materials. Additionally or alternatively, a ring opening polymerization process can be performed. The resultant materials can be used by themselves due to their enhanced strength and reinforcement ability when compared to their unbound polymer analogs. Additionally, these materials can also be blended with pre-formed polymers to establish compatibility and enhanced dispersion of nanotubes in otherwise hard to disperse matrices resulting in significantly improved material properties. The resultant polymer-carbon nanotube materials can also be used in drug delivery processes due to their improved dispersion ability and biodegradability, and can also be used for scaffolding to promote cellular growth of tissue.
Jung, Yun-Chae; Park, Myung-Soo; Kim, Duck-Hyun; Ue, Makoto; Eftekhari, Ali; Kim, Dong-Won
2017-12-13
Amorphous poly(ethylene ether carbonate) (PEEC), which is a copolymer of ethylene oxide and ethylene carbonate, was synthesized by ring-opening polymerization of ethylene carbonate. This route overcame the common issue of low conductivity of poly(ethylene oxide)(PEO)-based solid polymer electrolytes at low temperatures, and thus the solid polymer electrolyte could be successfully employed at the room temperature. Introducing the ethylene carbonate units into PEEC improved the ionic conductivity, electrochemical stability and lithium transference number compared with PEO. A cross-linked solid polymer electrolyte was synthesized by photo cross-linking reaction using PEEC and tetraethyleneglycol diacrylate as a cross-linking agent, in the form of a flexible thin film. The solid-state Li/LiNi 0.6 Co 0.2 Mn 0.2 O 2 cell assembled with solid polymer electrolyte based on cross-linked PEEC delivered a high initial discharge capacity of 141.4 mAh g -1 and exhibited good capacity retention at room temperature. These results demonstrate the feasibility of using this solid polymer electrolyte in all-solid-state lithium batteries that can operate at ambient temperatures.
A Review on Grafting of Biofibers for Biocomposites
Wei, Liqing; McDonald, Armando G.
2016-01-01
A recent increase in the use of biofibers as low-cost and renewable reinforcement for the polymer biocomposites has been seen globally. Biofibers are classified into: lignocellulosic fibers (i.e., cellulose, wood and natural fibers), nanocellulose (i.e., cellulose nanocrystals and cellulose nanofibrils), and bacterial cellulose, while polymer matrix materials can be petroleum based or bio-based. Green biocomposites can be produced using both biobased fibers and polymers. Incompatibility between the hydrophilic biofibers and hydrophobic polymer matrix can cause performance failure of resulting biocomposites. Diverse efforts have focused on the modification of biofibers in order to improve the performances of biocomposites. “Grafting” copolymerization strategy can render the advantages of biofiber and impart polymer properties onto it and the performance of biocomposites can be tuned through changing grafting parameters. This review presents a short overview of various “grafting” methods which can be directly or potentially employed to enhance the interaction between biofibers and a polymer matrix for biocomposites. Major grafting techniques, including ring opening polymerization, grafting via coupling agent and free radical induced grafting, have been discussed. Improved properties such as mechanical, thermal, and water resistance have provided grafted biocomposites with new opportunities for applications in specific industries. PMID:28773429
USDA-ARS?s Scientific Manuscript database
Condensed tannins (CTs) consist of oligomers and polymers of flavan-3-ol subunits varying in hydroxylation patterns, cis- and trans-configuration of C-ring substituents, interflavan bond connections, mean degree of polymerization (mDP), and extent of esterification. Robust analytical methods to dete...
Phenolics and compartmentalization in the sapwood of broad-leaved trees
Kevin T. Smith
1997-01-01
Tree survival depends on the chemistry of phenolic compounds, a broad class of chemicals characterized by a hydroxylated benzene ring. In trees, phenolics occur frequently as polymers, acids, or glycosylated esters and perform diverse functions. For example, lignin, a phenylpropane heteropolymer, provides structural strength to wood. The induced production of phenols...
NASA Technical Reports Server (NTRS)
Hsu, L. C. (Inventor)
1979-01-01
Triazine compounds and cross-linked polymer compositions are made by heating aromatic nitriles to a temperature in the range of from about 100 C to about 700 C, and preferably in the range of from about 200 C to about 350 C, in the presence of a catalyst or mixture of catalysts selected from one or more of the following groups: (1) organic sulfonic and sulfinic acids, (2) organic phosphonic and phosphinic acids, and (3)metallic acetylacetonates, at a pressure in the range of from about atmospheric pressure to about 10,000 psi and preferably in the range of from about 200 psi to about 750 psi. Aromatic nitrile-modified (terminated and/or appended) imide, benzimidazole, imidazopyrrolone, quinoxaline, and other condensation type prepolymers or their precopolymers are made which are trimerized with or without a filler by the aforementioned catalytic trimerization process into triaryl-s-triazine ring containing or cross-linked polymeric or copolymeric products useful in applications requiring high thermal-oxidative stability and high performance structural properties at elevated temperatures.
NASA Astrophysics Data System (ADS)
Kreis, Karsten; Kremer, Kurt; Potestio, Raffaello; Tuckerman, Mark E.
2017-12-01
Path integral-based methodologies play a crucial role for the investigation of nuclear quantum effects by means of computer simulations. However, these techniques are significantly more demanding than corresponding classical simulations. To reduce this numerical effort, we recently proposed a method, based on a rigorous Hamiltonian formulation, which restricts the quantum modeling to a small but relevant spatial region within a larger reservoir where particles are treated classically. In this work, we extend this idea and show how it can be implemented along with state-of-the-art path integral simulation techniques, including path-integral molecular dynamics, which allows for the calculation of quantum statistical properties, and ring-polymer and centroid molecular dynamics, which allow the calculation of approximate quantum dynamical properties. To this end, we derive a new integration algorithm that also makes use of multiple time-stepping. The scheme is validated via adaptive classical-path-integral simulations of liquid water. Potential applications of the proposed multiresolution method are diverse and include efficient quantum simulations of interfaces as well as complex biomolecular systems such as membranes and proteins.
Suleimanov, Yury V; Aguado, Alfredo; Gómez-Carrasco, Susana; Roncero, Octavio
2018-05-03
Because of its fundamental importance in astrochemistry, the H 2 + H 3 + → H 3 + + H 2 reaction has been studied experimentally in a wide temperature range. Theoretical studies of the title reaction significantly lag primarily because of the challenges associated with the proper treatment of the zero-point energy (ZPE). As a result, all previous theoretical estimates for the ratio between a direct proton-hop and indirect exchange (via the H 5 + complex) channels deviate from the experiment, in particular, at lower temperatures where the quantum effects dominate. In this work, the ring polymer molecular dynamics (RPMD) method is applied to study this reaction, providing very good agreement with the experiment. RPMD is immune to the shortcomings associated with the ZPE leakage and is able to describe the transition from direct to indirect mechanisms below room temperature. We argue that RPMD represents a useful tool for further studies of numerous ZPE-sensitive chemical reactions that are of high interest in astrochemistry.
Bio-reducible polycations from ring-opening polymerization as potential gene delivery vehicles.
Yu, Qing-Ying; Liu, Yan-Hong; Huang, Zheng; Zhang, Ji; Luan, Chao-Ran; Zhang, Qin-Fang; Yu, Xiao-Qi
2016-07-06
Synthetic polycations show great potential for the construction of ideal non-viral gene delivery systems. Several cationic polymers were synthesized by the epoxide ring-opening polymerization between diepoxide and various polyamines. Disulfide bonds were introduced to afford the polymers bio-reducibility, while the oxygen-rich structure might enhance the serum tolerance and biocompatibility. The polycations have much lower molecular weights than PEI 25 kDa, but still could well bind and condense DNA into nano-sized particles. DNA could be released from the polyplexes by addition of reductive DTT. Compared to PEI, the polycations have less cytotoxicity possibly due to their lower molecular weights and oxygen-rich structure. More significantly, these materials exhibit excellent serum tolerance than PEI, and up to 6 times higher transfection efficiency than PEI could be obtained in the presence of serum. The transfection mediated by was seldom affected even at a high concentration of serum. Much lower protein adsorption of polycations than PEI was proved by bovine serum albumin adsorption experiments. Flow cytometry also demonstrates their good serum resistance ability.
Recent Approaches Toward Solid Phase Synthesis of β-Lactams
NASA Astrophysics Data System (ADS)
Mandal, Bablee; Ghosh, Pranab; Basu, Basudeb
Since the discovery of penicillin in 1929, β-lactam antibiotics have been recognized as potentially chemotherapeutic drugs of incomparable effectiveness, conjugating a broad spectrum of activity with very low toxicity. The primary motif azetidin-2-one ring (β-lactam) has been considered as specific pharmacophores and scaffolds. With the advent of combinatorial chemistry and automated parallel synthesis coupled with ample interests from the pharmaceutical industries, recent trends have been driven mostly by adopting solid phase techniques and polymer-supported synthesis of β-lactams. The present survey will present an overview of the developments on the polymer-supported and solid phase techniques for the preparation of β-lactam ring or β-lactam containing antibiotics published over the last decade. Both unsubstituted and substitutions with different functional groups at various positions of β-lactams have been synthesized using solid phase technology. However, Wang resin and application of Staudinger [2+2] cycloaddition reaction have remained hitherto the major choice. It may be expected that other solid phase approaches involving different resins would be developed in the coming years.
Hendriks, Ivo A.; Schimmel, Joost; Eifler, Karolin; Olsen, Jesper V.; Vertegaal, Alfred C. O.
2015-01-01
Ring finger protein 4 (RNF4) is a SUMO-targeted ubiquitin E3 ligase with a pivotal function in the DNA damage response (DDR). SUMO interaction motifs (SIMs) in the N-terminal part of RNF4 tightly bind to SUMO polymers, and RNF4 can ubiquitinate these polymers in vitro. Using a proteomic approach, we identified the deubiquitinating enzyme ubiquitin-specific protease 11 (USP11), a known DDR-component, as a functional interactor of RNF4. USP11 can deubiquitinate hybrid SUMO-ubiquitin chains to counteract RNF4. SUMO-enriched nuclear bodies are stabilized by USP11, which functions downstream of RNF4 as a counterbalancing factor. In response to DNA damage induced by methyl methanesulfonate, USP11 could counteract RNF4 to inhibit the dissolution of nuclear bodies. Thus, we provide novel insight into cross-talk between ubiquitin and SUMO and uncover USP11 and RNF4 as a balanced SUMO-targeted ubiquitin ligase/protease pair with a role in the DDR. PMID:25969536
Synthesis and properties of a novel bio-based polymer from modified soybean oil
NASA Astrophysics Data System (ADS)
Li, Y. T.; Yang, L. T.; Zhang, H.; Tang, Z. J.
2017-02-01
Maleated acrylated epoxidized soybean oil (MAESO) was prepared by acrylated epoxidized soybean oil (AESO) and maleic anhydride. AESO were obtained by the reaction of epoxidized soybean oil (ESO) with acrylic acid as the ring-opening reagent. The polymer was prepared by MAESO react with styrene. The structures of the products were studied by Fourier transformation infrared spectrometer (FT-IR), and were consistent with the theoretical structures. Swelling experiment indicated that the crosslinking degree increased with increasing epoxy value of ESO. Thermal properties was tested by thermo-gravimetric analysis (TG) and differential scanning calorimetry analysis (DSC), indicating that glass transition temperature (Tg) of the polymer increased with increasing epoxy value of ESO, and thermal stability of polymer have a good correlation with the crosslinking degree. Mechanical properties analysis presented that tensile strength and impact strength affected by epoxy value of ESO. With the increase of epoxy value, the tensile strength increase, while the impact strength decrease. The property of the polymer ranged from elastomer to plastic character depended on the functionality of the ESO.
NASA Astrophysics Data System (ADS)
Ali, Z.; Abbasi, R.; Khan, A. J.; Arshad, J.; Atif, M.; Ahmad, N.; Khalid, W.
2018-05-01
Cobalt zinc ferrite nanoparticles with stoichiometry Co0.5Zn0.5Fe2O4 (CZFN) were synthesized by sol-gel method with high colloidal stability having room temperature ferromagnetism. For biological applications, CZFN were transferred to aqueous phase by polymer coating with amphiphilic polymer, whereas fluorescent dye (ATTO-590) was used as model system for anti-cancer drug loaded polymer shell. The amount of functional molecule varied up to 25% of the anhydride rings, which provides greater affinity of drug loading in polymer shell. CZFN were characterized by x-ray diffraction, Fourier transformed infrared spectroscopy, UV–vis absorption spectroscopy, gel electrophoresis and vibrating sample magnetometer. The in vitro cytotoxicity of CZFN was examined against HepG2 which revealed that CZFN (IC50:3.01 nM) strongly inhabits growth of the cells. Further the particles did not induce any significant hemolysis. Stimulatingly, this seems to be a noteworthy improvement towards the ability of surface functionalized multifunctional CZFN as carriers for drugs for anti-cancer therapy and their use as nanomedicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ye, Xinyi; Kestell, John; Kisslinger, Kim
Infiltration synthesis, the atomic-layer-deposition-based organic–inorganic material hybridization technique that enables unique hybrid composites with improved material properties and inorganic nanostructures replicated from polymer templates, is shown to be driven by the binding reaction between reactive chemical groups of polymers and perfusing vapor-phase material precursors. Here in this paper, we discover that residual solvent molecules from polymer processing can react with infiltrating material precursors to enable the infiltration synthesis of metal oxides in a nonreactive polymer. The systematic study, which combines in situ quartz crystal microgravimetry, polarization-modulated infrared reflection–absorption spectroscopy, X-ray photoelectron spectroscopy, and transmission electron microscopy, shows that the ZnOmore » infiltration synthesis in nominally nonreactive SU-8 polymer is mediated by residual processing solvent cyclopentanone, a cyclic ketone whose Lewis-basic terminal carbonyl group can react with the infiltrating Lewis-acidic Zn precursor diethylzinc (DEZ). In addition, we find favorable roles of residual epoxy rings in the SU-8 film in further assisting the infiltration synthesis of ZnO. Lastly, the discovered rationale not only improves the understanding of infiltration synthesis mechanism, but also potentially expands its application to more diverse polymer systems for the generation of unique functional organic–inorganic hybrids and inorganic nanostructures.« less
Ye, Xinyi; Kestell, John; Kisslinger, Kim; ...
2017-05-04
Infiltration synthesis, the atomic-layer-deposition-based organic–inorganic material hybridization technique that enables unique hybrid composites with improved material properties and inorganic nanostructures replicated from polymer templates, is shown to be driven by the binding reaction between reactive chemical groups of polymers and perfusing vapor-phase material precursors. Here in this paper, we discover that residual solvent molecules from polymer processing can react with infiltrating material precursors to enable the infiltration synthesis of metal oxides in a nonreactive polymer. The systematic study, which combines in situ quartz crystal microgravimetry, polarization-modulated infrared reflection–absorption spectroscopy, X-ray photoelectron spectroscopy, and transmission electron microscopy, shows that the ZnOmore » infiltration synthesis in nominally nonreactive SU-8 polymer is mediated by residual processing solvent cyclopentanone, a cyclic ketone whose Lewis-basic terminal carbonyl group can react with the infiltrating Lewis-acidic Zn precursor diethylzinc (DEZ). In addition, we find favorable roles of residual epoxy rings in the SU-8 film in further assisting the infiltration synthesis of ZnO. Lastly, the discovered rationale not only improves the understanding of infiltration synthesis mechanism, but also potentially expands its application to more diverse polymer systems for the generation of unique functional organic–inorganic hybrids and inorganic nanostructures.« less
Li, Jihui; Li, Yongshen; Niu, Shuai; Li, Ning
2017-05-01
In this paper, phosphorus graphene oxide/poly (vinyl alcohol) polymer (PGO/PVA polymer) was synthesized by PGO and PVA via the esterification in the case of faint acidity and the ultrasound irradiation and characterized; moreover, phosphorus graphene oxide/poly (vinyl alcohol) film (PGO/PVA film) was prepared by PGO/PVA polymer and characterized; also, the surface resistivity of PGO/PVA film was investigated in the case of the different amount of PGO. Based on those, it had been found that PGO reacted with PVA to produce PGO/PVA polymer via the esterification under the ultrasonic-assisted condition, and PGO/PVA polymer was structured by 2D lattice of PGO and the chain of PVA connected in the form of six-member lactone ring and phosphonic ester, and PGO/PVA film was constituted by PGO/PVA polymer, and surface resistivity of 0.00, 0.75, 1.50, 2.25 and 3.00wt% of PGO/PVA film were 6.85×10 8 , 2.98×10 8 , 1.42×10 6 , 7.66×10 4 and 1.29×10 5 Ω/sq, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Lee, El-Hang; Lee, Hyun S.; Lee, S. G.; O, B. H.; Park, S. G.; Kim, K. H.
2007-05-01
We report on the design of micro-ring resonator optical sensors for integration on what we call optical printed circuit boards (O-PCBs). The objective is to realize application-specific O-PCBs, either on hard board or on flexible board, by integrating micro/nano-scale optical sensors for compact, light-weight, low-energy, high-speed, intelligent, and environmentally friendly processing of information. The O-PCBs consist of two-dimensional planar arrays of micro/nano-scale optical wires, circuits and devices that are interconnected and integrated to perform the functions of sensing and then storing, transporting, processing, switching, routing and distributing optical signals that have been collected by means of sensors. For fabrication, the polymer and organic optical wires and waveguides are first fabricated on a board and are used to interconnect and integrate sensors and other micro/ nano-scale photonic devices. Here, in our study, we focus on the sensors based on the micro-ring structures. We designed bio-sensors using silicon based micro-ring resonator. We investigate the characteristics such as sensitivity and selectivity (or quality factor) of micro-ring resonator for their use in bio-sensing application. We performed simulation studies on the quality factor of micro-ring resonators by varying the radius of the ring resonators and the separation between adjacent waveguides. We introduce the effective coupling coefficient as a realistic value to describe the strength of the coupling in micro-ring resonators.
NASA Astrophysics Data System (ADS)
Kress, A.; Head, J. W.
2009-03-01
Analysis of ring-mold crater populations on lineated valley fill, lobate debris aprons, and concentric crater fill on Mars and of ice-impact experiments suggest crater-count-derived ages may be erroneously old.
Fragmentation of Structural Energetic Materials: Implications for Performance
NASA Astrophysics Data System (ADS)
Aydelotte, Brady; Braithwaite, Christopher; Thadhani, Naresh
2013-06-01
Fragmentation results for structural energetic materials based on intermetallic forming mixtures are reviewed and the implications of the fragment populations are discussed. Cold Sprayed Ni+Al and explosively compacted mixtures of Ni+Al+W and Ni+Al+W+Zr powders were fabricated into ring shaped samples and subjected to fragmentation tests. Ring velocity was monitored and fragments were soft captured in order to study the fragmentation process. It was determined that the fragments produced by these structural energetic materials are much smaller than those typically produced by ductile metals such as steel or aluminum. This has implications for combustion processes that may occur subsequent to the fragmentation process. ONR/MURI grant No. N00014-07-1-0740 Dr. Cliff Bedford PM.
Charged dust in Saturn's magnetosphere
NASA Technical Reports Server (NTRS)
Mendis, D. A.; Hill, J. R.; Houpis, H. L. F.
1983-01-01
The overall distribution of fine dust in the Saturnian magnetosphere, its behavior, the cosmogony of the Saturnian ring system, and observations of the magnetosphere and ring system are synthesized and explained using gravito-electrodynamics. Among the phenomena discussed are the formation of waves in the F-ring, the cause of eccentricities of certain isolated ringlets, and the origin and morphology of the broad diffuse E-ring. Magnetogravitational resonance of charged dust with nearby satellites, gyro-orbital resonances, and magnetogravitational capture of exogenic dust by the magnetosphere are used to explain individual observations. The effect of a ring current associated with the charged dust is evaluated. Finally, the cosmogonic implications of the magnetogravitational theory are discussed.
Ultrasonic Assessment of Impact-Induced Damage and Microcracking in Polymer Matrix Composites
NASA Technical Reports Server (NTRS)
Liaw, Benjamin; Zeichner, Glenn; Liu, Yanxiong; Bowles, Kenneth J. (Technical Monitor)
2000-01-01
The main objective of this NASA FAR project is to conduct ultrasonic assessment of impact-induced damage and microcracking in polymer matrix composites at various temperatures. It is believed that the proposed study of impact damage assessment on polymer matrix composites will benefit several NASA's missions and current interests, such as ballistic impact testing of composite fan containment and high strain rate deformation modeling of polymer matrix composites. Currently, impact-induced delamination and fracture in 6061-T6 aluminum/cast acrylic sandwich plates adhered by epoxy were generated in an instrumented drop-weight impact machine. Although only a small dent was produced on the aluminum side when a hemispherical penetrator tup was dropped onto it from a couple of inches, a large ring of delamination at the interface was observed. The delamination damage was often accompanied by severe shattering in the acrylic substratum. Damage patterns in the acrylic layer include radial and ring cracks and, together with delamination at the interface, may cause peeling-off of acrylic material from the sandwich plate. Theory of stress-wave propagation can be used to explain these damage patterns. The impact tests were conducted at various temperatures. The results also show clearly that temperature effect is very important in impact damage. For pure cast acrylic nil-ductile transition (NDT) occurs between 185-195 F Excessive impact energy was dissipated into fracture energy when tested at temperature below this range or through plastic deformation when tested at temperature above the NDT temperature. Results from this study will be used as baseline data for studying fiber-metal laminates, such as GLARE and ARALL for advanced aeronautical and astronautical applications.
NASA Astrophysics Data System (ADS)
Ginzburg, Valeriy
Spontaneous symmetry breaking and formation of anisotropic structures from apparently isotropic building blocks is an exciting and not fully understood topic. I will discuss two examples of such self-assembly. The first example is related to the assembly of ``hairy'' nanoparticles in homopolymer matrices. The particles can assemble into long strings (they can also form other morphologies, as well) even though the shape of each particle and the distribution of ligands on the particle surface is spherically symmetric. Using the approach developed by Thompson, Ginzburg, Matsen, and Balazs, we show that presence of other particles can re-distribute the ligands and effectively ``polarize'' the particle-particle interaction, giving rise to the formation of 1d particle strings. In the second example, we consider aqueous solutions of methylcellulose (MC) polymers. It has been shown recently that at high temperature, the polymers form high-aspect ratio ``fibrils'' with diameter ~15 nm and length in the hundreds on nanometers. Using coarse-grained Molecular Dynamics (CG-MD), we propose that the ``fibrils'' are result of one-dimensional self-assembly of single molecule ``rings''. Each MC polymer chain is forced into a ring because of the balance between internal chain rigidity (favoring more expanded configuration) and unfavorable polymer-water interactions (favoring more collapsed conformation). We also develop a theory predicting rheology and phase behavior of aqueous MC, and validate it against experimental data. Both examples show that anisotropic self-assembly can show up in unexpected places, and various theoretical tools are needed to successfully model it. Funded by The Dow Chemical Company through Grant 223278AF. Collaborators: R. L. Sammler (Dow), W. Huang and R. Larson (U. of Michigan).
Evidence of the layer structure formation of chitosan microtubes by the Liesegang ring mechanism
NASA Astrophysics Data System (ADS)
Babicheva, T. S.; Gegel, N. O.; Shipovskaya, A. B.
2018-04-01
In the work, an experiment was performed to simulate the process of chitosan microtube formation through the interphase polysalt -> polybase chemical reaction, on the one hand, and the formation of spatially separated structures under the conditions of reactive diffusion of one of the components, on the other hand. The formation of alternating dark and light bands or concentric rings of the chitosan polybase as a result of the polymer-analogous transformation is visualized by optical microscopy. The results obtained confirm our assumption that the layered structure of our chitosan microtubes is formed according to the Liesegang reaction mechanism.
New ROMP Synthesis of Ferrocenyl Dendronized Polymers.
Liu, Xiong; Ling, Qiangjun; Zhao, Li; Qiu, Guirong; Wang, Yinghong; Song, Lianxiang; Zhang, Ying; Ruiz, Jaime; Astruc, Didier; Gu, Haibin
2017-10-01
First- and second-generation Percec-type dendronized ferrocenyl norbornene macromonomers containing, respectively, three and nine ferrocenyl termini are synthesized and polymerized by ring-opening metathesis polymerization using Grubbs' third-generation olefin metathesis catalyst with several monomer/catalyst feed ratios between 10 and 50. The rate of polymerization is highly dependent on the generation of the dendronized macromonomers, but all these ring-opening metathesis polymerization reactions are controlled, and near-quantitative monomer conversions are achieved. The numbers of ferrocenyl groups obtained are in agreement with the theoretical ones according to the cyclic voltammetry studies as determined using the Bard-Anson method. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Rapakousiou, Amalia; Deraedt, Christophe; Irigoyen, Joseba; Wang, Yanlan; Pinaud, Noël; Salmon, Lionel; Ruiz, Jaime; Moya, Sergio; Astruc, Didier
2015-03-02
The design of redox-robust polymers is called for in view of interactions with nanoparticles and surfaces toward applications in nanonetwork design, sensing, and catalysis. Redox-robust triazolylbiferrocenyl (trzBiFc) polymers have been synthesized with the organometallic group in the side chain by ring-opening metathesis polymerization using Grubbs-III catalyst or radical polymerization and with the organometallic group in the main chain by Cu(I) azide alkyne cycloaddition (CuAAC) catalyzed by [Cu(I)(hexabenzyltren)]Br. Oxidation of the trzBiFc polymers with ferricenium hexafluorophosphate yields the stable 35-electron class-II mixed-valent biferrocenium polymer. Oxidation of these polymers with Au(III) or Ag(I) gives nanosnake-shaped networks (observed by transmission electron microscopy and atomic force microscopy) of this mixed-valent Fe(II)Fe(III) polymer with encapsulated metal nanoparticles (NPs) when the organoiron group is located on the side chain. The factors that are suggested to be synergistically responsible for the NP stabilization and network formation are the polymer bulk, the trz coordination, the nearby cationic charge of trzBiFc, and the inter-BiFc distance. For instance, reduction of such an oxidized trzBiFc-AuNP polymer to the neutral trzBiFc-AuNP polymer with NaBH4 destroys the network, and the product flocculates. The polymers easily provide modified electrodes that sense, via the oxidized Fe(II)Fe(III) and Fe(III)Fe(III) polymer states, respectively, ATP(2-) via the outer ferrocenyl units of the polymer and Pd(II) via the inner Fc units; this recognition works well in dichloromethane, but also to a lesser extent in water with NaCl as the electrolyte.
Tsuboi, Yasuyuki; Shimizu, Ryosuke; Shoji, Tatsuya; Kitamura, Noboru
2009-09-09
We demonstrate that a photochromic reaction can be driven by irradiation from a weak, near-infrared continuous-wave (NIR-CW) laser light. A two-photon ring-opening photochromic reaction of a diarylethene (DE) derivative can be induced by irradiation with a NIR-CW laser light (lambda = 808 nm). An ultrathin polymer film doped with DE in its closed form was coated onto a gold-nanoparticle-integrated glass substrate. Upon irradiation of the sample with a CW laser at low fluence (0.1-4.0 W/cm(2)), we could clearly observe bleaching of the DE (ring-opening reaction). Following the IR irradiation, the bleached absorption could be reversibly recovered by applying UV irradiation (ring-closing reaction). We verified that the yield of the photochromic ring-opening reaction of the DE was proportional to the square of the irradiation fluence. The origin of this NIR-CW-induced two-photon photochromic reaction is an "enhancing effect" that acts on the electromagnetic field (localized surface plasmon) of the gold nanoparticles. The DE interacts with the surface plasmon and receives energy from two photons, which excites it to a state from which the ring-opening reaction can be initiated.
Bin Imran, Abu; Esaki, Kenta; Gotoh, Hiroaki; Seki, Takahiro; Ito, Kohzo; Sakai, Yasuhiro; Takeoka, Yukikazu
2014-10-08
Stimuli-sensitive hydrogels changing their volumes and shapes in response to various stimulations have potential applications in multiple fields. However, these hydrogels have not yet been commercialized due to some problems that need to be overcome. One of the most significant problems is that conventional stimuli-sensitive hydrogels are usually brittle. Here we prepare extremely stretchable thermosensitive hydrogels with good toughness by using polyrotaxane derivatives composed of α-cyclodextrin and polyethylene glycol as cross-linkers and introducing ionic groups into the polymer network. The ionic groups help the polyrotaxane cross-linkers to become well extended in the polymer network. The resulting hydrogels are surprisingly stretchable and tough because the cross-linked α-cyclodextrin molecules can move along the polyethylene glycol chains. In addition, the polyrotaxane cross-linkers can be used with a variety of vinyl monomers; the mechanical properties of the wide variety of polymer gels can be improved by using these cross-linkers.
Bin Imran, Abu; Esaki, Kenta; Gotoh, Hiroaki; Seki, Takahiro; Ito, Kohzo; Sakai, Yasuhiro; Takeoka, Yukikazu
2014-01-01
Stimuli-sensitive hydrogels changing their volumes and shapes in response to various stimulations have potential applications in multiple fields. However, these hydrogels have not yet been commercialized due to some problems that need to be overcome. One of the most significant problems is that conventional stimuli-sensitive hydrogels are usually brittle. Here we prepare extremely stretchable thermosensitive hydrogels with good toughness by using polyrotaxane derivatives composed of α-cyclodextrin and polyethylene glycol as cross-linkers and introducing ionic groups into the polymer network. The ionic groups help the polyrotaxane cross-linkers to become well extended in the polymer network. The resulting hydrogels are surprisingly stretchable and tough because the cross-linked α-cyclodextrin molecules can move along the polyethylene glycol chains. In addition, the polyrotaxane cross-linkers can be used with a variety of vinyl monomers; the mechanical properties of the wide variety of polymer gels can be improved by using these cross-linkers. PMID:25296246
Dynamics of polydots: Soft luminescent polymeric nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maskey, Sabina; Osti, Naresh C.; Grest, Gary S.
The conformation and dynamics of luminescent polymers collapsed into nanoparticles or polydots were studied using fully atomistic molecular dynamics (MD) simulations, providing a first insight into their internal dynamics. Controlling the conformation and dynamics of confined polymers is essential for realization of the full potential of polydots in nanomedicine and biotechnology. Specifically, the shape and internal dynamics of polydots that consist of highly rigid dialkyl p-phenylene ethynylene (PPE) are probed as a function of temperature. At room temperature, the polydots are spherical without any correlations between the aromatic rings on the PPE backbone. With increasing temperature, they expand and becomemore » slightly aspherical; however, the polymers remain confined. The coherent dynamic structure factor reveals that the internal motion of the polymer backbone is arrested, and the side chains dominate the internal dynamics of the polydots. Lastly, these new soft nanoparticles retain their overall shape and dynamics over an extended temperature range, and their conformation is tunable via their degree of expansion.« less
Dynamics of polydots: Soft luminescent polymeric nanoparticles
Maskey, Sabina; Osti, Naresh C.; Grest, Gary S.; ...
2016-03-04
The conformation and dynamics of luminescent polymers collapsed into nanoparticles or polydots were studied using fully atomistic molecular dynamics (MD) simulations, providing a first insight into their internal dynamics. Controlling the conformation and dynamics of confined polymers is essential for realization of the full potential of polydots in nanomedicine and biotechnology. Specifically, the shape and internal dynamics of polydots that consist of highly rigid dialkyl p-phenylene ethynylene (PPE) are probed as a function of temperature. At room temperature, the polydots are spherical without any correlations between the aromatic rings on the PPE backbone. With increasing temperature, they expand and becomemore » slightly aspherical; however, the polymers remain confined. The coherent dynamic structure factor reveals that the internal motion of the polymer backbone is arrested, and the side chains dominate the internal dynamics of the polydots. Lastly, these new soft nanoparticles retain their overall shape and dynamics over an extended temperature range, and their conformation is tunable via their degree of expansion.« less
Heo, Sukyoung; Hwang, Hee Sook; Jeong, Yohan; Na, Kun
2018-09-01
Sunscreen materials have been developed to protect skin from UV radiation. However, many organic sunscreen materials are small molecules and absorbed into human skin after topical application and lead to systemic side effects. To improve the adverse effects of conventional sunscreen materials, we designed a sunscreen agent using an organic sunscreen material and a polymer. Dioxybenzone, an organic sunscreen compound is selected and polymerized with natural polymer pullulan. Polymerization not only provides a long polymer backbone to dioxybenzone, but also keeps the distance between benzene rings of the dioxybenzone and prevents reduction of photoabsorption intensity. UV/vis spectrophotometry confirmed that dioxybenzone-pullulan polymer (DOB-PUL) and dioxybenzone (DOB) demonstrated similar UV absorption. To measure the accumulation of sunscreen materials on skin, Franz diffusion cell was used to confirm the accumulation of DOB and lack of penetration of DOB-PUL. Most importantly, DOB showed higher plasma concentration after multiple applications compared to that of DOB-PUL. Copyright © 2018 Elsevier Ltd. All rights reserved.
Plasma treatment of polymers for improved adhesion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelber, J.A.
1988-01-01
A variety of plasma treatments of polymer surfaces for improved adhesion are reviewed: noble and reactive gas treatment of fluoropolymers; noble and reactive treatment of polyolefins, and plasma-induced amination of polymer fibers. The plasma induced surface chemical and morphological changes are discussed, as are the mechanisms of adhesion to polymeric adhesives, particularly epoxy. Noble gas plasma etching of flouropolymers produces a partially defluorinated, textured surface. The mechanical interlocking of this textured surface is the primary cause of improved adhesion to epoxy. Reactive gas plasmas also induce defluorination, but oxygen containing gases cause continual ablation of the fluoropolymer surface. Noble andmore » reactive gas (exept for hydrogen) etching of polyolefins results in surface oxidation and improved adhesion via hydrogen bonding of these oxygen containing groups across the interface. The introduction of amine groups to a polymer surface by amonia or amine plasma treatment generally results in improved adhesion to epoxy. However, amine-epoxy ring interactions can be severely effected by steric factors due to chemical groups surrounding the amine. 41 refs.« less
Computer simulations of melts of randomly branching polymers
NASA Astrophysics Data System (ADS)
Rosa, Angelo; Everaers, Ralf
2016-10-01
Randomly branching polymers with annealed connectivity are model systems for ring polymers and chromosomes. In this context, the branched structure represents transient folding induced by topological constraints. Here we present computer simulations of melts of annealed randomly branching polymers of 3 ≤ N ≤ 1800 segments in d = 2 and d = 3 dimensions. In all cases, we perform a detailed analysis of the observed tree connectivities and spatial conformations. Our results are in excellent agreement with an asymptotic scaling of the average tree size of R ˜ N1/d, suggesting that the trees behave as compact, territorial fractals. The observed swelling relative to the size of ideal trees, R ˜ N1/4, demonstrates that excluded volume interactions are only partially screened in melts of annealed trees. Overall, our results are in good qualitative agreement with the predictions of Flory theory. In particular, we find that the trees swell by the combination of modified branching and path stretching. However, the former effect is subdominant and difficult to detect in d = 3 dimensions.
Liu, Yao; Sheri, Madhu; Cole, Marcus D; Emrick, Todd; Russell, Thomas P
2018-06-12
Polymer zwitterions were synthesized by nucleophilic ring-opening of 3,3'-(but-2-ene-1,4-diyl)bis(1,2-oxathiolane 2,2-dioxide) (a bis-sultone) with functional perylene diimide (PDI) or fullerene monomers. Integration of these polymers into solar cell devices as cathode interlayers boosted efficiencies of fullerene-based organic photovoltaics (OPVs) from 2.75% to 10.74%, and of non-fullerene-based OPVs from 4.25% to 10.10%, demonstrating the versatility of these interlayer materials in OPVs. The fullerene-containing polymer zwitterion (C60-PZ) showed a higher interfacial dipole (∆) value and electron mobility than its PDI counterpart (PDI-PZ), affording solar cells with high efficiency. The power of PDI-PZ and C60-PZ to improve electron injection and extraction processes when positioned between metal electrodes and organic semiconductors highlights their promise to overcome energy barriers at the hard-soft materials interface of organic electronics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Sharpton, Virgil L.; Burke, Kevin; Hall, Stuart A.; Lee, Scott; Marin, Luis E.; Suarez, Gerardo; Quezada-Muneton, Juan Manuel; Urrutia-Fucugauchi, Jaime
1993-01-01
The K-T-aged Chicxulub Impact Structure is buried beneath the Tertiary carbonate rocks of the Northern Yucatan Platform. Consequently its morphology and structure are poorly understood. Reprocessed Bouguer (onshore) and Free Air (offshore) gravity data over Northern Yucatan reveal that Chicxulub may be a 200-km-diameter multi-ring impact basin with at least three concentric basin rings. The positions of these rings follow the square root of 2 spacing rule derived empirically from analysis of multi-ring basins on other planets indicating that these rings probably correspond to now-buried topographic basin rings. A forward model of the gravity data along a radial transect from the southwest margin of the structure indicates that the Chicxulub gravity signature is compatible with this interpretation. We estimate the basin rim diameter to be 204 +/- 16 km and the central peak ring diameter (D) is 104 +/- 6 km.
Poly[n]catenanes: Synthesis of molecular interlocked chains
NASA Astrophysics Data System (ADS)
Wu, Qiong; Rauscher, Phillip M.; Lang, Xiaolong; Wojtecki, Rudy J.; de Pablo, Juan J.; Hore, Michael J. A.; Rowan, Stuart J.
2017-12-01
As the macromolecular version of mechanically interlocked molecules, mechanically interlocked polymers are promising candidates for the creation of sophisticated molecular machines and smart soft materials. Poly[n]catenanes, where the molecular chains consist solely of interlocked macrocycles, contain one of the highest concentrations of topological bonds. We report, herein, a synthetic approach toward this distinctive polymer architecture in high yield (~75%) via efficient ring closing of rationally designed metallosupramolecular polymers. Light-scattering, mass spectrometric, and nuclear magnetic resonance characterization of fractionated samples support assignment of the high-molar mass product (number-average molar mass ~21.4 kilograms per mole) to a mixture of linear poly[7-26]catenanes, branched poly[13-130]catenanes, and cyclic poly[4-7]catenanes. Increased hydrodynamic radius (in solution) and glass transition temperature (in bulk materials) were observed upon metallation with Zn2+.
NASA Astrophysics Data System (ADS)
Garzón, Andrés; Granadino-Roldán, José M.; García, Gregorio; Moral, Mónica; Fernández-Gómez, Manuel
2013-04-01
In the present study, a series of crystalline poly(arylene-ethynylene) copolymers containing phenylethynylene and 2,5-dialkoxy-phenylethynylene units together with 1,3,4-thiadiazole rings has been modeled by means of periodic calculations. Optimized three-dimensional polymeric structures show interchain distances that are consistent with the experimental values reported for a related polymer. It has also been observed that the presence of pendant alkoxy chains brings on both a further flattening and a separation of the coplanar chains. This fact is linked to a decrease of the interchain cofacial distance. The electron transport character of the polymer crystal structures was assessed through Marcus theory. Electronic coupling between neighboring polymer chains is most influenced by the presence of alkoxy chains giving rise to an expectable enhancement of the electron hopping mobility.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Qiong; Rauscher, Phillip M.; Lang, Xiaolong
As the macromolecular version of mechanically interlocked molecules, mechanically interlocked polymers are promising candidates for the creation of sophisticated molecular machines and smart soft materials. Poly[n]catenanes, where the molecular chains consist solely of interlocked macrocycles, contain one of the highest concentrations of topological bonds. We report, herein, a synthetic approach toward this distinctive polymer architecture in high yield (similar to 75%) via efficient ring closing of rationally designed metallosupramolecular polymers. Light-scattering, mass spectrometric, and nuclear magnetic resonance characterization of fractionated samples support assignment of the high-molar mass product (number-average molar mass similar to 21.4 kilograms per mole) to a mixturemore » of linear poly[7-26]catenanes, branched poly[13-130]catenanes, and cyclic poly[4-7]catenanes. Increased hydrodynamic radius (in solution) and glass transition temperature (in bulk materials) were observed upon metallation with Zn2+.« less
NASA Technical Reports Server (NTRS)
Baker, David M. H.; Head, James W.; Phillips, Roger J.; Neumann, Gregory A.; Bierson, Carver J.; Smith, David E.; Zuber, Maria T.
2017-01-01
High-resolution gravity data from the Gravity Recovery and Interior Laboratory (GRAIL) mission provide the opportunity to analyze the detailed gravity and crustal structure of impact features in the morphological transition from complex craters to peak-ring basins on the Moon. We calculate average radial profiles for free-air anomalies and Bouguer anomalies for peak-ring basins, proto-basins, and the largest complex craters. Complex craters and proto-basins have free-air anomalies that are positively correlated with surface topography, unlike the prominent lunar mascons (positive free-air anomalies in areas of low elevation) associated with large basins. The Bouguer gravity anomaly profiles of complex craters are highly irregular, with central positive anomalies that are generally absent or not clearly tied to interior morphology. In contrast, gravity profiles for peak-ring basins (approx. 200 km to 580 km) are much more regular and are highly correlated with surface morphology. A central positive Bouguer anomaly is confined within the peak ring and a negative Bouguer anomaly annulus extends from the edge of the positive anomaly outward to about the rim crest. A number of degraded basins lacking interior peak rings have diameters and gravity patterns similar to those of well-preserved peak-ring basins. If these structures represent degraded peak-ring basins, the number of peak-ring basins on the Moon would increase by more than a factor of two to 34. The gravity anomalies within basins are interpreted to be due to uplift of the mantle confined within the peak ring and an annulus of thickened crust between the peak ring and rim crest. We hypothesize that mantle uplift is influenced by interaction between the transient cavity and the mantle. Further, mascon formation is generally disconnected from the number of basin rings formed and occurs over a wide range of basin sizes. These observations have important implications for models of basin and mascon formation on the Moon and other planetary bodies.
Synthetic Mimic of Antimicrobial Peptide with Nonmembrane-Disrupting Antibacterial Properties
2008-01-01
Polyguanidinium oxanorbornene (PGON) was synthesized from norbornene monomers via ring-opening metathesis polymerization. This polymer was observed to be strongly antibacterial against Gram-negative and Gram-positive bacteria as well as nonhemolytic against human red blood cells. Time-kill studies indicated that this polymer is lethal and not just bacteriostatic. In sharp contrast to previously reported SMAMPs (synthetic mimics of antimicrobial peptides), PGON did not disrupt membranes in vesicle-dye leakage assays and microscopy experiments. The unique biological properties of PGON, in same ways similar to cell-penetrating peptides, strongly encourage the examination of other novel guanidino containing macromolecules as powerful and selective antimicrobial agents. PMID:18850741
Magnetic Property in Large Array Niobium Antidot Thin Films
NASA Astrophysics Data System (ADS)
Tinghui, Chen; Hsiang-Hsi, Kung; Wei-Li, Lee; Institute of Physics, Academia Sinica, Taipei, Taiwan Team
2014-03-01
In a superconducting ring, the total flux inside the ring is required to be an integer number of the flux quanta. Therefore, a supercurrent current can appear within the ring in order to satisfy this quantization rule, which gives rise to certain magnetic response. By using a special monolayer polymer/nanosphere hybrid we developed previously, we fabricated a series of superconducting niobium antidot thin films with different antidot diameters. The antidots form well-ordered triangular lattice with a lattice spacing about 200 nm and extend over an area larger than 1 cm2, which enables magnetic detections simply by a SQUID magnetometer. We observed magnetization oscillation with external magnetic field due to the supercurrent screening effect, where different features for large and small antidot thin films were found. Detailed size and temperature dependencies of the magnetization in niobium antidot nanostructures will be presented.
Sun, Yangyang; Cui, Yaqin; Xiong, Jiao; Dai, Zhongran; Tang, Ning; Wu, Jincai
2015-10-07
Two binuclear magnesium and zinc alkoxides supported by a bis-salalen type dinucleating heptadentate Schiff base ligand were synthesized and fully characterized. The two complexes are efficient initiators for the ring-opening polymerization (ROP) of L-lactide, affording polymers with narrow polydispersities and desirable molecular weights. Interestingly, the mechanisms for the ROP of lactide are different at different temperatures. At a high temperature of 130 °C, a coordination-insertion mechanism is reasonable for the bulk melt polymerization of lactide. At a low temperature, the alkoxide cannot initiate the ROP reaction; however, upon the addition of external benzyl alcohol into the system, the ROP of lactide can smoothly proceed via an "activated monomer" mechanism. In addition, these complexes display slight stereo-selectivity for the ring-opening polymerization of rac-lactide, affording partially isotactic polylactide in toluene with a Pm value of 0.59.
Chlorination of lignin by ubiquitous fungi has a likely role in global organochlorine production
Patricia Ortiz-Bermudez; Kolby C. Hirth; Ewald Srebotnik; Kenneth E. Hammel
2007-01-01
Soils and decayed plant litter contain significant quantities of chlorinated aromatic polymers that have a natural but largely unknown origin. We used cupric oxide ligninolysis coupled with gas chromatography/mass spectrometry to show that Curvularia inaequalis, a widely distributed litter ascomycete, chlorinated the aromatic rings of lignin in wood that it was...
Huang, Wenjun; Mandal, Taraknath; Larson, Ronald G
2017-03-06
We present coarse-grained (CG) force fields for hydroxypropyl-methylcellulose acetate succinate (HPMCAS) polymers and the drug molecule phenytoin using a bead/stiff spring model, with each bead representing a HPMCAS monomer or monomer side group (hydroxypropyl acetyl, acetyl, or succinyl) or a single phenytoin ring. We obtain the bonded and nonbonded interaction parameters in our CG model using the RDFs from atomistic simulations of short HPMCAS model oligomers (20-mer) and atomistic simulations of phenytoin molecules. The nonbonded interactions are modeled using a LJ 12-6 potential, with separate parameters for each monomer substitution type, which allows heterogeneous polymer chains to be modeled. The cross interaction terms between the polymer and phenytoin CG beads are obtained explicitly from atomistic level polymer-phenytoin simulations, rather than from mixing rules. We study the solvation behavior of 50-mer and 100-mer polymer chains and find chain-length-dependent aggregation. We also compare the phenytoin CG force field developed in this work with that in Mandal et al. (Soft Matter, 2016, 12, 8246-8255) and conclude both are suitable for studying the interaction between polymer and drug in solvated solid dispersion formulation, in the absence of drug crystallization. Finally, we present simulations of heterogeneous HPMCAS model polymer chains and phenytoin molecules. Polymer and drug form a complex in a short period of simulation time due to strong intermolecular interactions. Moreover, the protonated polymer chains are more effective than deprotonated ones in inhibiting the drug aggregation in the polymer-drug complex.
RING-type E3 ligases: Master manipulators of E2 ubiquitin-conjugating enzymes and ubiquitination
Metzger, Meredith B.; Pruneda, Jonathan N.; Klevit, Rachel E.; Weissman, Allan M.
2013-01-01
RING finger domain and RING finger-like ubiquitin ligases (E3s), such as U-box proteins, constitute the vast majority of known E3s. RING-type E3s function together with ubiquitin-conjugating enzymes (E2s) to mediate ubiquitination and are implicated in numerous cellular processes. In part because of their importance in human physiology and disease, these proteins and their cellular functions represent an intense area of study. Here we review recent advances in RING-type E3 recognition of substrates, their cellular regulation, and their varied architecture. Additionally, recent structural insights into RING-type E3 function, with a focus on important interactions with E2s and ubiquitin, are reviewed. This article is part of a Special Issue entitled: Ubiquitin-Proteasome System. PMID:23747565
A traveling wave ultrasonic motor with a metal/polymer-matrix material compound stator
NASA Astrophysics Data System (ADS)
Li, Jinbang; Liu, Shuo; Zhou, Ningning; Yu, Aibing; Cui, Yuguo; Chen, Pengfei
2018-01-01
This study proposes a traveling wave ultrasonic motor with a metal/polymer-matrix material compound stator. The stator is composed of a metal ring and polymer-matrix teeth. The resonance frequency of the stator with different structural dimensions was analyzed by the finite element method. From the results, the structure parameters of the metal ring were obtained. The effects of the density and elastic modulus of the tooth material on the resonance frequency were also investigated. A viscoelastic contact model was built to explore the contact state between the compound stator and rotor. Considering the density, elastic modulus and tribological properties, the tooth material was prepared by a molding process. The load-torque and efficiency-torque characteristics of the motor with different tooth thicknesses were measured under different preloads using a preload controlled ultrasonic motor test device. The maximum no-load speed of the motor was about 85 r min-1 with a tooth thickness of 3 mm and a preload of 100 N, the maximum stall torque of the motor was about 0.5 N · m with a tooth thickness of 4 mm and a preload of 125 N, and a maximum efficiency of about 5.5% occurred with a tooth thickness of 4 mm, a preload of 100 N and a torque of 0.3 N · m. The main merits of the proposed ultrasonic motor are low cost, light weight, high processing efficiency and long life.
Xie, Zhiwei; Kim, Jimin P; Cai, Qing; Zhang, Yi; Guo, Jinshan; Dhami, Ranjodh S; Li, Li; Kong, Bin; Su, Yixue; Schug, Kevin A; Yang, Jian
2017-03-01
Novel citric acid based photoluminescent dyes and biodegradable polymers are synthesized via a facile "one-pot" reaction. A comprehensive understanding of the fluorescence mechanisms of the resulting citric acid-based fluorophores is reported. Two distinct types of fluorophores are identified: a thiozolopyridine family with high quantum yield, long lifetime, and exceptional photostability, and a dioxopyridine family with relatively lower quantum yield, multiple lifetimes, and solvent-dependent band shifting behavior. Applications in molecular labeling and cell imaging were demonstrated. The above discoveries contribute to the field of fluorescence chemistry and have laid a solid foundation for further development of new fluorophores and materials that show promise in a diversity of fluorescence-based applications. Photoluminescent materials are pivotal for fluorescence based imaging, labeling and sensing applications. Understanding their fluorescence mechanism is challenging and imperative. We develop a new class of citric acid-derived fluorescent materials in forms of polymers and small molecular dyes by a one-step solvent free reaction. We discovered two different classes of citric acid-derived fluorophores. A two-ring thiozolopyridine structure demonstrates strong fluorescence and exceptional resistance to photo-bleaching. A one-ring dioxopyridine exhibits relative weak fluorescence but with intriguing excitation and solvent-dependent emission wavelength shifting. Our methodology of synthesizing citric acid-derived fluorophores and the understanding on their luminescence are instrumental to the design and production of a large number of new photoluminescent materials for biological and biomedical applications. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lun, Huijie; Yang, Jinghe; Jin, Linyu
2015-05-15
By hydrothermal method, two new coordination polymers [Co(ca)(phdat)]{sub n} (1), [Ni(ca)(phdat).0.125H{sub 2}O]{sub n} (2) (H{sub 2}ca=D-camphoric acid, phdat=2-phenyl-4,6-diamino-1,3,5-triazine) have been achieved and structurally characterized by IR, elemental analyses, X-ray single-crystal diffraction and TGA. The X-ray single-crystal diffraction reveals that compounds 1 and 2 are isostructural, both of which exhibit two-dimensional layered network built up from paddle-wheel Co{sub 2}(CO{sub 2}){sub 4}/Ni{sub 2}(CO{sub 2}){sub 4} SBUs by ca{sup 2−} ligand. In the existence of π…π stacking interactions between triazine rings and phenyl rings, the 3D networks are constructed with the hanging phdat filled between the neighboring layers. Furthermore, compounds 1–2 exhibit antiferromagneticmore » behavior and compound 2 displays a good activity for methanol oxidation. - Graphical abstract: Two new coordination compounds 1–2 have been synthesized and characterized by single-crystal X-ray diffractions, IR spectra, elemental analyses, thermogravimetric analyses, magnetic and electrochemical measurement. - Highlights: • This paper reports two new coordination polymers based on D-camphoric acid. • Both the compounds feather two-dimensional layered networks built up from paddle-wheel SBUs. • The magnetism and electrochemical property are investigated.« less
NASA Astrophysics Data System (ADS)
Zhang, Shiyi
The overall emphasis of this dissertation research included two kinds of asymmetrically-functionalized nanoparticles with anisotropic distributions of chemical functionalities, three degradable polymers synthesized by organocatalyzed ring-opening polymerizations, and two polyphosphoester-based nanoparticle systems for various biomedical applications. Inspired by the many hierarchical assembly processes that afford complex materials in Nature, the construction of asymmetrically-functionalized nanoparticles with efficient surface chemistries and the directional organization of those building blocks into complex structures have attracted much attention. The first method generated a Janus-faced polymer nanoparticle that presented two orthogonally click-reactive surface chemistries, thiol and azido. This robust method involved reactive functional group transfer by templating against gold nanoparticle substrates. The second method produced nanoparticles with sandwich-like distribution of crown ether functionalities through a stepwise self-assembly process that utilized crown ether-ammonium supramolecular interactions to mediate inter-particle association and the local intra-particle phase separation of unlike hydrophobic polymers. With the goal to improve the efficiency of the production of degradable polymers with tunable chemical and physical properties, a new type of reactive polyphosphoester was synthesized bearing alkynyl groups by an organocatalyzed ring-opening polymerization, the chemical availability of the alkyne groups was investigated by employing "click" type azide-alkyne Huisgen cycloaddition and thiol-yne radical-mediated reactions. Based on this alkyne-functionalized polyphosphoester polymer and its two available "click" type reactions, two degradable nanoparticle systems were developed. To develop the first system, the well defined poly(ethylene oxide)-block-polyphosphester diblock copolymer was transformed into a multifunctional Paclitaxel drug conjugate by densely attaching the polyphosphoester block with azide-functionalized Paclitaxel by azide-alkyne Huisgen cycloaddition. This Paclitaxel drug conjugate provides a powerful platform for combinational cancer therapy and bioimaging due to its ultra-high Paclitaxel loading (> 65 wt%), high water solubility (>6.2 mg/mL for PTX) and easy functionalization. Another polyphosphoester-based nanoparticle system has been developed by a programmable process for the rapid and facile preparation of a family of nanoparticles with different surface charges and functionalities. The non-ionic, anionic, cationic and zwitterionic nanoparticles with hydrodynamic diameters between 13 nm to 21 nm and great size uniformity could be rapidly prepared from small molecules in 6 h or 2 days. The anionic and zwitterionic nanoparticles were designed to load silver ions to treat pulmonary infections, while the cationic nanoparticles are being applied to regulate lung injuries by serving as a degradable iNOS inhibitor conjugates. In addition, a direct synthesis of acid-labile polyphosphoramidate by organobase-catalyzed ring-opening polymerization and an improved two-step preparation of polyphosphoester ionomer by acid-assisted cleavage of phosphoramidate bonds on polyphosphoramidate were developed. Polyphosphoramidate and polyphosphoester ionomers may be applied to many applications, due to their unique chemical and physical properties.
Yang, Cangjie; Liu, Hui; Zhang, Yingdan; Xu, Zhigang; Wang, Xiaochen; Cao, Bin; Wang, Mingfeng
2016-05-09
This article describes molecular design, synthesis and characterization of colloidal nanoparticles containing polycaprolactone-grafted conjugated polymers that exhibit strong far red/near-infrared (FR/NIR) fluorescence for bioimaging. Specifically, we synthesized two kinds of conjugated polymer bottle brushes (PFTB(out)-g-PCL and PFTB(in)-g-PCL) with different positions of the hexyl groups on the thiophene rings. A synthetic amphiphilic block copolymer PCL-b-POEGMA was employed as surfactants to encapsulate PFTB-g-PCL polymers into colloidal nanoparticles (denoted as "nanoREDs") in aqueous media. The chain length of the PCL side chains in PFTB-g-PCL played a critical role in determining the fluorescence properties in both bulk solid states and the colloidal nanoparticles. Compared to semiconducting polymer dots (Pdots) composed of PFTB(out) without grafted PCL, nanoRED(out) showed at least four times higher fluorescence quantum yield (∼20%) and a broader emission band centered at 635 nm. We further demonstrated the application of this new class of nanoREDs for effective labeling of L929 cells and HeLa cancer cells with good biocompatibility. This strategy of hydrophobic-sheath segregated macromolecular fluorophores is expected to be applicable to a broad range of conjugated polymers with tunable optical properties for applications such as bioimaging.
Synthesis and in vitro characterization of a novel S-protected thiolated alginate.
Hauptstein, Sabine; Dezorzi, Stefanie; Prüfert, Felix; Matuszczak, Barbara; Bernkop-Schnürch, Andreas
2015-06-25
The object of this study was to synthesize and characterize a novel S-protected thiolated polymer with a high degree of modification. In this regard, an alginate-cysteine and an alginate-cysteine-2-mercaptonicotinic acid conjugate were synthesized. To achieve a high coupling rate of the thiol group bearing ligand cysteine to the polymer, the carbohydrate was activated by an oxidative ring opening with sodium periodate followed by a reductive amination to bind the primary amino group of cysteine to resulting reactive aldehyde groups. The obtained thiolated polymer displayed 1561±130μmol thiol groups per gram polymer. About one third of these thiol groups were S-protected by the implementation of a thiol bearing aromatic protection group via disulfide bond formation. Test tablets of both modified polymers showed improved stability against oxidation in aqueous environment compared to the unmodified alginate and exhibit higher water-uptake capacity. Rheological investigations revealed an increased viscosity of the S-protected thiolated polymer whereat the thiolated non S-protected polymer showed gelling properties after the addition of hydrogen peroxide. The mucoadhesive properties could be improved significantly for both derivatives and no alteration in biocompatibility tested on Caco-2 cell monolayer employing an MTT assay could be detected after modification. According to these results, both new derivatives seem promising for various applications. Copyright © 2015 Elsevier Ltd. All rights reserved.
Lin, Qingyu; Wei, Zhimei; Guo, Hongli; Wang, Shuai; Guo, Guangmeng; Zhang, Zhi; Duan, Yixiang
2017-06-10
A highly concentrated, ring-shaped phase conversion (RSPC) method was developed for liquid sample analysis using the laser-induced breakdown spectroscopy (LIBS) technique. In this work, test samples were prepared by mixing the metal particles with polyvinyl alcohol (PVA) supporter in liquid phase. With heat, the PVA solution solidified inside a modified glass petri dish, forming a metal-enriched polymer ring film. Distinguished from other traditional liquid-to-solid conversing methods, the proposed new method takes advantage of enhanced homogeneity for the target elements inside the ring film. The modified glass petri dish was used to control the ring-shaped concentration. Due to the specially designed circular groove at the bottom of this dish, where the PVA solution and liquid sample mixture accumulated, the target elements were concentrated in this small ring, which is beneficial for enhancing and stabilizing the plasma signals compared to the direct liquid sample analysis using LIBS. The limits of detection for Ag, Cu, Cr, and Ba obtained with the RSPC-LIBS technology were 0.098 μg·mL -1 , 0.18 μg·mL -1 , 0.83 μg·mL -1 , and 0.046 μg·mL -1 , respectively, which provided greater improvement than the direct bulk liquid analysis using LIBS.
Peptide/protein-polymer conjugates: synthetic strategies and design concepts.
Gauthier, Marc A; Klok, Harm-Anton
2008-06-21
This feature article provides a compilation of tools available for preparing well-defined peptide/protein-polymer conjugates, which are defined as hybrid constructs combining (i) a defined number of peptide/protein segments with uniform chain lengths and defined monomer sequences (primary structure) with (ii) a defined number of synthetic polymer chains. The first section describes methods for post-translational, or direct, introduction of chemoselective handles onto natural or synthetic peptides/proteins. Addressed topics include the residue- and/or site-specific modification of peptides/proteins at Arg, Asp, Cys, Gln, Glu, Gly, His, Lys, Met, Phe, Ser, Thr, Trp, Tyr and Val residues and methods for producing peptides/proteins containing non-canonical amino acids by peptide synthesis and protein engineering. In the second section, methods for introducing chemoselective groups onto the side-chain or chain-end of synthetic polymers produced by radical, anionic, cationic, metathesis and ring-opening polymerization are described. The final section discusses convergent and divergent strategies for covalently assembling polymers and peptides/proteins. An overview of the use of chemoselective reactions such as Heck, Sonogashira and Suzuki coupling, Diels-Alder cycloaddition, Click chemistry, Staudinger ligation, Michael's addition, reductive alkylation and oxime/hydrazone chemistry for the convergent synthesis of peptide/protein-polymer conjugates is given. Divergent approaches for preparing peptide/protein-polymer conjugates which are discussed include peptide synthesis from synthetic polymer supports, polymerization from peptide/protein macroinitiators or chain transfer agents and the polymerization of peptide side-chain monomers.
Scott, Joshua I; Xue, Xiao; Wang, Ming; Kline, R Joseph; Hoffman, Benjamin C; Dougherty, Daniel; Zhou, Chuanzhen; Bazan, Guillermo; O'Connor, Brendan T
2016-06-08
Polymer semiconductors based on donor-acceptor monomers have recently resulted in significant gains in field effect mobility in organic thin film transistors (OTFTs). These polymers incorporate fused aromatic rings and have been designed to have stiff planar backbones, resulting in strong intermolecular interactions, which subsequently result in stiff and brittle films. The complex synthesis typically required for these materials may also result in increased production costs. Thus, the development of methods to improve mechanical plasticity while lowering material consumption during fabrication will significantly improve opportunities for adoption in flexible and stretchable electronics. To achieve these goals, we consider blending a brittle donor-acceptor polymer, poly[4-(4,4-dihexadecyl-4H-cyclopenta[1,2-b:5,4-b']dithiophen-2-yl)-alt-[1,2,5]thiadiazolo[3,4-c]pyridine] (PCDTPT), with ductile poly(3-hexylthiophene). We found that the ductility of the blend films is significantly improved compared to that of neat PCDTPT films, and when the blend film is employed in an OTFT, the performance is largely maintained. The ability to maintain charge transport character is due to vertical segregation within the blend, while the improved ductility is due to intermixing of the polymers throughout the film thickness. Importantly, the application of large strains to the ductile films is shown to orient both polymers, which further increases charge carrier mobility. These results highlight a processing approach to achieve high performance polymer OTFTs that are electrically and mechanically optimized.
NASA Astrophysics Data System (ADS)
Aldalur, Itziar; Zhang, Heng; Piszcz, Michał; Oteo, Uxue; Rodriguez-Martinez, Lide M.; Shanmukaraj, Devaraj; Rojo, Teofilo; Armand, Michel
2017-04-01
We report a simple synthesis route towards a new type of comb polymer material based on polyether amines oligomer side chains (i.e., Jeffamine® compounds) and a poly(ethylene-alt-maleic anhydride) backbone. Reaction proceeds by imide ring formation through the NH2 group allowing for attachment of side chains. By taking advantage of the high configurational freedoms and flexibility of propylene oxide/ethylene oxide units (PO/EO) in Jeffamine® compounds, novel polymer matrices were obtained with good elastomeric properties. Fully amorphous solid polymer electrolytes (SPEs) based on lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and Jeffamine®-based polymer matrices show low glass transition temperatures around -40 °C, high ionic conductivities and good electrochemical stabilities. The ionic conductivities of Jeffamine-based SPEs (5.3 × 10-4 S cm-1 at 70 °C and 4.5 × 10-5 S cm-1 at room temperature) are higher than those of the conventional SPEs comprising of LiTFSI and linear poly(ethylene oxide) (PEO), due to the amorphous nature and the high concentration of mobile end-groups of the Jeffamine-based polymer matrices rather than the semi-crystalline PEO The feasibility of Jeffamine-based compounds in lithium metal batteries is further demonstrated by the implementation of Jeffamine®-based polymer as a binder for cathode materials, and the stable cycling of Li|SPE|LiFePO4 and Li|SPE|S cells using Jeffamine-based SPEs.
NASA Astrophysics Data System (ADS)
Diot-Néant, Florian; Migeot, Loïs; Hollande, Louis; Reano, Felix A.; Domenek, Sandra; Allais, Florent
2017-12-01
Antioxidant norbornene-based monomers bearing biobased sterically hindered phenols (SHP) - NDF (norbornene dihydroferulate) and NDS (norbornene dihydrosinapate) - have been successfully prepared through biocatalysis from naturally occurring ferulic and sinapic acids, respectively, in presence of Candida antarctica Lipase B (Cal-B). The ring opening metathesis polymerization (ROMP) of these monomers was investigated according to ruthenium catalyst type (GI) vs. (HGII) and monomer to catalyst molar ratio ([M]/[C]). The co-polymerization of antioxidant functionalized monomer (NDF or NDS) and non-active norbornene (N) has also been performed in order to adjust the number of SHP groups present per weight unit and tune the antioxidant activity of the copolymers. The polydispersity of the resulting copolymers was readily improved by a simple acetone wash to provide antioxidant polymers with well-defined structures. After hydrogenation with p-toluenesulfonylhydrazine (p-TSH), the radical scavenging ability of the resulting saturated polymers was evaluated using α,α-diphenyl-β-picrylhydrazyl (DPPH) analysis. Results demonstrated that polymers bearing sinapic acid SHP exhibited higher antiradical activity than the polymer bearing ferulic acid SHP. In addition it was also shown that only a small SHP content was needed in the copolymers to exhibit a potent antioxidant activity.
Design of a new bottom antireflective coating composition for KrF resist
NASA Astrophysics Data System (ADS)
Mizutani, Kazuyoshi; Momota, Makoto; Aoai, Toshiaki; Yagihara, Morio
1999-06-01
A study for a new organic bottom antireflective coating (BARC) composition is described. A structural design of a light-absorbing dye was most important because dye structure not only plays a role in eliminating reflection from a substrate but also shows influence on dry etch rate of BARC material to a considerable extent. For example, an anthracene moiety with large absorption at 248 nm had undesirable dry etch resistance. 3-Hydroxy-2-naphthoic acid moiety was found to be one of suitable dyes for KrF BARC compositions, and the polymer bearing the dye showed enough absorbance and good erodability in dry etch. The BARC polymer was eroded as one and a half times faster than a novolak resin, and a little faster than an anthracene incorporated polymer. The result was discussed from the concepts of Ohnishi parameter and the ring parameter for dry etch durability of resist materials. BARC polymer should be thermoset by hard bake to eliminate intermixing with resist compositions. The BARC polymer bearing hydroxy group which is useful for a crosslinking reaction was thermoset in the presence of melamine-formaldehyde crosslinker and an acid catalyst after baking over 200 degrees C.
NASA Astrophysics Data System (ADS)
Griniene, R.; Liu, L.; Tavgeniene, D.; Sipaviciute, D.; Volyniuk, D.; Grazulevicius, J. V.; Xie, Z.; Zhang, B.; Leduskrasts, K.; Grigalevicius, S.
2016-01-01
Polyethers containing pendent 3-(2-phenylvinyl)carbazole moieties have been synthesized by the multi-step synthetic routes. Full characterization of their structures is presented. The polymers represent materials of high thermal stability with initial thermal degradation temperatures exceeding 370 °C. The glass transition temperatures of the amorphous materials were in the range of 56-658 °C. The electron photoemission spectra of thin layers of the polymers showed ionization potentials of about 5.6 eV. Hole-transporting properties of the polymeric materials were tested in the structures of organic light emitting diodes with Alq3 as the green emitter and electron transporting layer. The device containing hole-transporting layers of poly{9-[6-(3-methyloxetan-3-ylmethoxy)hexyl]-3-(2-phenylvinyl)carbazole} exhibited the best overall performance with a maximum photometric efficiency of about 4.0 cd/A and maximum brightness exceeding 6430 cd/m2.
Lv, Yongqin; Mei, Danping; Pan, Xinxin; Tan, Tianwei
2010-09-15
A novel beta-cyclodextrin (beta-CD) functionalized organic polymer monolith was prepared by covalently bonding ethylenediamine-beta-CD (EDA-beta-CD) to poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) (poly(GMA-co-EGDMA)) monolith via ring opening reaction of epoxy groups. SEM characterization was performed to confirm the homogeneity of the monolithic polymer. The resulting monolith was then characterized by DSC and XPS elemental analysis to study the thermal stability of the monolith, and to prove the successful immobilization of beta-CD on the polymer substrate. The beta-CD ligand density of 0.68 mmol g(-1) was obtained for the modified monolith, indicating the high reactivity and efficiency of the EDA-beta-CD modifier. The ethylenediamine-beta-CD functionalized monoliths were used for the chiral separation of ibuprofen racemic mixture and showed promising results. Copyright (c) 2010 Elsevier B.V. All rights reserved.
Starting buoyant plumes and vortex ring pinch-off
NASA Astrophysics Data System (ADS)
Pottebaum, Tait; Gharib, Mory
2003-11-01
The vortex ring formation process of a starting buoyant plume was studied experimentally. Buoyant plumes were produced using a heating element at the base of a water tank. The velocity and temperature fields in the flow were measured using digital particle image thermometry and velocimetry (DPITV), allowing the density and vorticity fields to be determined. The vortex ring initially grew, with additional circulation being supplied by the trailing plume. At later times, the vortex ring became disconnected from the trailing plume. This is analogous to the pinch-off of a vortex ring produced by a piston-cylinder apparatus reported by Gharib et al (1998 JFM 360: 121-140). The existence of a pinch-off process for starting buoyant plumes has many implications for environmental flows. Of particular interest is the effect of vortex ring pinch-off on the dispersal of particulates and contaminants in intermittent or sudden convection events.
Discovery of multi-ring basins - Gestalt perception in planetary science
NASA Technical Reports Server (NTRS)
Hartmann, W. K.
1981-01-01
Early selenographers resolved individual structural components of multi-ring basin systems but missed the underlying large-scale multi-ring basin patterns. The recognition of multi-ring basins as a general class of planetary features can be divided into five steps. Gilbert (1893) took a first step in recognizing radial 'sculpture' around the Imbrium basin system. Several writers through the 1940's rediscovered the radial sculpture and extended this concept by describing concentric rings around several circular maria. Some reminiscences are given about the fourth step - discovery of the Orientale basin and other basin systems by rectified lunar photography at the University of Arizona in 1961-62. Multi-ring basins remained a lunar phenomenon until the fifth step - discovery of similar systems of features on other planets, such as Mars (1972), Mercury (1974), and possibly Callisto and Ganymede (1979). This sequence is an example of gestalt recognition whose implications for scientific research are discussed.
Babasola, Iyabo Oladunni; Zhang, Wei; Amsden, Brian G
2013-11-01
In this study, the potential of low molecular weight, viscous liquid polymers based on 5-ethylene ketal ε-caprolactone for localized delivery of proteins via an osmotic pressure release mechanism was investigated. Furthermore, the osmotic release mechanism from viscous liquid polymers was elucidated. 5-Ethylene ketal ε-caprolactone was homopolymerized or copolymerized with D,L-lactide (DLLA) by ring-opening polymerization. Polymer hydrophobicity was adjusted by choice of initiator; hydrophobic polymers were prepared by initiating with octan-1-ol, while more hydrophilic polymers were prepared by initiating with 350 g/mol methoxy poly(ethylene glycol) (PEG). Particles consisting of bovine serum albumin (BSA) as a model protein drug were co-lyophilized with trehalose at 50:50 and 10:90 (w/w) ratios and were mixed into the polymers at 1% and/or 5% (w/w) particle loading. The release and mechanism of release of BSA from the polymers were assessed in vitro. BSA was released in a sustained manner, with a near zero-order release profile and with minimal burst effect for 5-80 days depending on the polymer's hydrophilicity; the release was faster from the PEG initiated polymers than from the octan-1-ol initiated polymers. Increasing the particle loading from 1% to 5% (w/w) resulted in a more noticeable burst effect, but did not significantly increase the mass fraction release rate. This release behavior was determined to proceed as follows. Release from the polymer was triggered by the water activity gradient between the surrounding aqueous medium and the saturated solution, which forms when water is absorbed from the surrounding medium to dissolve a given particle. The generated pressure initiates swelling around the particle/polymer interface and creates a superhydrated polymer region through which the solute is transported by convection, at a rate determined by the osmotic pressure generated. Copyright © 2013 Elsevier B.V. All rights reserved.
Method for making block siloxane copolymers
Butler, N.L.; Jessop, E.S.; Kolb, J.R.
1981-02-25
A method for synthesizing block polysiloxane copolymers is disclosed. Diorganoscyclosiloxanes and an end-blocking compound are interacted in the presence of a ring opening polymerization catalyst, producing a blocked prepolymer. The prepolymer is then interacted with a silanediol, resulting in condensation polymerization of the prepolymers. A second end-blocking compound is subsequently introduced to end-cap the polymers and copolymers formed from the condensation polymerization.
Method for making block siloxane copolymers
Butler, Nora; Jessop, Edward S.; Kolb, John R.
1982-01-01
A method for synthesizing block polysiloxane copolymers. Diorganoscyclosiloxanes and an end-blocking compound are interacted in the presence of a ring opening polymerization catalyst, producing a blocked prepolymer. The prepolymer is then interacted with a silanediol, resulting in condensation polymerization of the prepolymers. A second end-blocking compound is subsequently introduced to end-cap the polymers and copolymers formed from the condensation polymerization.
Magneto-Optic Devices Based on Organic Polymer Materials
2012-09-10
cobalt ferrite particles...to cobalt ferrite particles. The rings in the SAED pattern also indicate averaging of the... cobalt ferrite nanoparticles (A), a high resolution image of a single nanoparticle showing the
NASA Astrophysics Data System (ADS)
Pierre, Sadrach; Duke, Jessica R.; Hele, Timothy J. H.; Ananth, Nandini
2017-12-01
We investigate the mechanisms of condensed phase proton-coupled electron transfer (PCET) using Mapping-Variable Ring Polymer Molecular Dynamics (MV-RPMD), a recently developed method that employs an ensemble of classical trajectories to simulate nonadiabatic excited state dynamics. Here, we construct a series of system-bath model Hamiltonians for the PCET, where four localized electron-proton states are coupled to a thermal bath via a single solvent mode, and we employ MV-RPMD to simulate state population dynamics. Specifically, for each model, we identify the dominant PCET mechanism, and by comparing against rate theory calculations, we verify that our simulations correctly distinguish between concerted PCET, where the electron and proton transfer together, and sequential PCET, where either the electron or the proton transfers first. This work represents a first application of MV-RPMD to multi-level condensed phase systems; we introduce a modified MV-RPMD expression that is derived using a symmetric rather than asymmetric Trotter discretization scheme and an initialization protocol that uses a recently derived population estimator to constrain trajectories to a dividing surface. We also demonstrate that, as expected, the PCET mechanisms predicted by our simulations are robust to an arbitrary choice of the initial dividing surface.
The Evolution of Thin-Film Structure in pi-Conjugated System: Implications for Devices
2015-07-09
dependent, polymer self - assembly (Chem Matls, 2015). The results provide vital insights into factors leading to organized conjugated polymer nanostructures...34Liquid Crystalline Poly(3-hexylthiophene) Solutions Revisited: Role of Time- dependent Self - Assembly ", Chemistry of Materials (2015), 27(7), 2687-2694...period (if none, report none): For the first time, we demonstrated that π-conjugated polymers self - assemble and exhibit liquid crystal ordering
Classifying Saturn's F Ring Strands
NASA Astrophysics Data System (ADS)
Albers, Nicole; Sremcevic, M.; Esposito, L. W.; Colwell, J. E.
2009-09-01
The Cassini Ultraviolet Imaging Spectrograph (UVIS) High Speed Photometer (HSP) has recorded more than 113 stellar occultations by Saturn's F ring providing measurements with ring plane resolutions of a few dozen meters and better. Inner and outer F ring strands have been seen throughout the Cassini mission where they revealed themselves as non-continuous, azimuthally and temporally highly variable structures. In the light of a more accurate orbit description of the F ring core we find evidence for a ring that becomes dynamically more active as the system approaches anti-apse alignment with Prometheus. This is consistent with the observed increased strand activity. A recent strand that morphologically resembles the core is the strongest seen to date and points to the intricate relation between core and strands indicating the strands' violent creation. Using more than 150 identifications of various strands, we trace their kinematics and infer dynamical timescales and photometric properties. Implications for the dynamical evolution of the F ring will be discussed. This research was supported by the Cassini Project.
The binding of terbium ions to tubulin induces ring formation.
Monasterio, O; Acoria, M; Díaz, M A; Lagos, R
1993-02-01
The intrinsic fluorescence excitation and emission spectra of chicken brain tubulin showed the characteristic tryptophan fluorescence. The emission spectrum of Tb3+ in the presence of tubulin and GTP excited at 295 nm, showed four peaks, with the maxima at 490, 545, and 586 nm and a minor peak around 620 nm. Titration of tubulin with Tb3+ was followed by the increment in luminescence at 545 nm and showed a sigmoidal curve where the initial lag interval and the maximal luminescence intensity depended on tubulin concentration. The presence of Mg2+, Co2+, and Zn2+ diminished both the sigmoidicity of the curve and the maximal luminescence intensity. Titration of tubulin with Tb3+ also produced a sigmoidal increase in turbidity, which was shifted to the left with respect to the luminescence curve. The dependence of turbidity on the wavelength of the Tb(3+)-induced polymers revealed that the large structures formed were not microtubules. Electron microscopy of the aggregates induced by Tb3+ showed mainly a lattice of double rings with side-by-side contacts. These results indicate that Tb3+ induces principally double ring formation and that these rings (33 +/- 2 nm external diameter) aggregate in large-ordered arrays. The luminescence of Tb3+ seems to be induced mainly by the aggregation of rings.
Single chain technology: Toward the controlled synthesis of polymer nanostructures
NASA Astrophysics Data System (ADS)
Lyon, Christopher
A technique for fabricating advanced polymer nanostructures enjoying recent popularity is the collapse or folding of single polymer chains in highly dilute solution mediated by intramolecular cross-linking. We term the resultant structures single-chain nanoparticles (SCNP). This technique has proven particularly valuable in the synthesis of nanomaterials on the order of 5 -- 20 nm. Many different types of covalent and non-covalent chemistries have been used to this end. This dissertation investigates the use of so-called single-chain technology to synthesize nanoparticles using modular techniques that allow for easy incorporation of functionality or special structural or characteristic features. Specifically, the synthesis of linear polymers functionalized with pendant monomer units and the subsequent intramolecular polymerization of these monomer units is discussed. In chapter 2, the synthesis of SCNP using alternating radical polymerization is described. Polymers functionalized with pendant styrene and stilbene groups are synthesized via a modular post-polymerization Wittig reaction. These polymers were exposed to radical initiators in the presence (and absence) of maleic anhydride and other electron deficient monomers in order to form intramolecular cross-links. Chapter 3 discusses templated acyclic diene metathesis (ADMET) polymerization using single-chain technology, starting with the controlled ring-opening polymerization of a glycidyl ether functionalized with an ADMET monomer. This polymer was then exposed to Grubbs' catalyst to polymerize the ADMET monomer units. The ADMET polymer was hydrolytically cleaved from the template and separated. Upon characterization, it was found that the daughter ADMET polymer had a similar degree of polymerization, but did not retain the low dispersity of the template. Chapter 4 details the synthesis of aldehyde- and diol-functionalized polymers toward the synthesis of SCNP containing dynamic, acid-degradable acetal cross-links. SCNP fabrication with these materials is beyond the scope of this dissertation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Hao; Yang, Fan; Pan, Ding
Mechanical stimuli can modify the energy landscape of chemical reactions and enable reaction pathways, offering a synthetic strategy that complements conventional chemistry. These mechanochemical mechanisms have been studied extensively in one-dimensional polymers under tensile stress using ring-opening and reorganization, polymer unzipping and disulfide reduction as model reactions. In these systems, the pulling force stretches chemical bonds, initiating the reaction. Additionally, it has been shown that forces orthogonal to the chemical bonds can alter the rate of bond dissociation. Furthermore, these bond activation mechanisms have not been possible under isotropic, compressive stress (that is, hydrostatic pressure). Here we show that mechanochemistrymore » through isotropic compression is possible by molecularly engineering structures that can translate macroscopic isotropic stress into molecular-level anisotropic strain.« less
Low-cost synthesis and physical characterization of thieno[3,4-c]pyrrole-4,6-dione-based polymers.
Berrouard, Philippe; Dufresne, Stéphane; Pron, Agnieszka; Veilleux, Justine; Leclerc, Mario
2012-09-21
The improved synthesis of thieno[3,4-c]pyrrole-4,6-dione (TPD) monomers, including Gewald thiophene ring formation, a Sandmeyer-type reaction, and neat condensation with an amine, is presented. This protocol enables faster, cheaper, and more efficient preparation of TPD units in comparison to traditional methods. Furthermore, a series of TPD homo- and pseudohomopolymers bearing various alkyl chains was synthesized via a direct heteroarylation polymerization (DHAP) procedure. UV-visible absorption and powder X-ray diffraction measurements revealed the relationship between the ratio of branched to linear alkyl chains and the optoelectronic properties of the polymers as well as their packing in the solid state.
NASA Astrophysics Data System (ADS)
Umarji, Govind; Qureshi, Nilam; Gosavi, Suresh; Mulik, Uttam; Kulkarni, Atul; Kim, Taesung; Amalnerkar, Dinesh
2017-02-01
In conventional thick-film technology, there are often problems associated with poor edges, rough surfaces, and reproducibility due to process limitations, especially for high-frequency applications. These difficulties can be circumvented by using thin-film technology, but process cost and complexity remain major concerns. In this context, photopatternable thick-film technology can offer a viable alternative due to its Newtonian rheology, which can facilitate formation of the required sharp edges. We present herein a unique attempt to formulate a photopatternable silver paste with organic (photosensitive polymer) to inorganic (silver and glass) ratio of 30:70, developed in-house by us for fabrication of thick-film-based ring resonator and band-pass filter components. The ring resonator and band-pass component structures were realized by exposing screen-printed film to ultraviolet light at wavelength of 315 nm to 400 nm for 30 s to crosslink the photosensitive polymer. The pattern was subsequently developed using 1% sodium carbonate aqueous solution. For comparison, conventional silver and silver-palladium thick films were produced using in-house formulations. The surface topology and microstructural features were examined by stereomicroscopy and scanning electron microscopy. The smoothness and edge definition of the film were assessed by profilometry. The resistivity of the samples was observed and remained in the range from 3.4 μΩ cm to 3.6 μΩ cm. The electrical properties were compared by measuring the insertion loss characteristics. The results revealed that the ring resonator fabricated using the photopatternable silver paste exhibited better high-frequency properties compared with components based on conventional silver or silver-palladium paste, especially in terms of the resonant frequency of 10.1 GHz (versus 10 GHz designed) with bandwidth of 80 MHz. Additionally, the band-pass filter fabricated using the photopatternable silver paste displayed better center frequency ( f 0 = 10.588 GHz) and comparable ripple and attenuation bandwidth performance on par with Cu thin film.
Bioinspired adaptive gradient refractive index distribution lens
NASA Astrophysics Data System (ADS)
Yin, Kezhen; Lai, Chuan-Yar; Wang, Jia; Ji, Shanzuo; Aldridge, James; Feng, Jingxing; Olah, Andrew; Baer, Eric; Ponting, Michael
2018-02-01
Inspired by the soft, deformable human eye lens, a synthetic polymer gradient refractive index distribution (GRIN) lens with an adaptive geometry and focal power has been demonstrated via multilayer coextrusion and thermoforming of nanolayered elastomeric polymer films. A set of 30 polymer nanolayered films comprised of two thermoplastic polyurethanes having a refractive index difference of 0.05 were coextruded via forced-assembly technique. The set of 30 nanolayered polymer films exhibited transmission near 90% with each film varying in refractive index by 0.0017. An adaptive GRIN lens was fabricated from a laminated stack of the variable refractive index films with a 0.05 spherical GRIN. This lens was subsequently deformed by mechanical ring compression of the lens. Variation in the optical properties of the deformable GRIN lens was determined, including 20% variation in focal length and reduced spherical aberration. These properties were measured and compared to simulated results by placido-cone topography and ANSYS methods. The demonstration of a solid-state, dynamic focal length, GRIN lens with improved aberration correction was discussed relative to the potential future use in implantable devices.
Biodegradable nanostructures with selective lysis of microbial membranes
NASA Astrophysics Data System (ADS)
Nederberg, Fredrik; Zhang, Ying; Tan, Jeremy P. K.; Xu, Kaijin; Wang, Huaying; Yang, Chuan; Gao, Shujun; Guo, Xin Dong; Fukushima, Kazuki; Li, Lanjuan; Hedrick, James L.; Yang, Yi-Yan
2011-05-01
Macromolecular antimicrobial agents such as cationic polymers and peptides have recently been under an increased level of scrutiny because they can combat multi-drug-resistant microbes. Most of these polymers are non-biodegradable and are designed to mimic the facially amphiphilic structure of peptides so that they may form a secondary structure on interaction with negatively charged microbial membranes. The resulting secondary structure can insert into and disintegrate the cell membrane after recruiting additional polymer molecules. Here, we report the first biodegradable and in vivo applicable antimicrobial polymer nanoparticles synthesized by metal-free organocatalytic ring-opening polymerization of functional cyclic carbonate. We demonstrate that the nanoparticles disrupt microbial walls/membranes selectively and efficiently, thus inhibiting the growth of Gram-positive bacteria, methicillin-resistant Staphylococcus aureus (MRSA) and fungi, without inducing significant haemolysis over a wide range of concentrations. These biodegradable nanoparticles, which can be synthesized in large quantities and at low cost, are promising as antimicrobial drugs, and can be used to treat various infectious diseases such as MRSA-associated infections, which are often linked with high mortality.
USDA-ARS?s Scientific Manuscript database
The interactions of nanoparticles with polymer hosts have important implications for directing the macroscopic properties of composite fibers, yet little is known about such interactions with hierarchically ordered natural polymers due to the difficulty of achieving uniform dispersion of nanoparticl...
2016-01-01
A new way of developing novel synthesis strategies for the construction of monocyclic rings found in organic molecules is presented. The method is based on the visual application of integer partitioning to chemical structures. Two problems are addressed: (1) the determination of the total number of possible ways to construct a given ring by 2-, 3-, and 4-component couplings; and (2) the systematic enumeration of those possibilities. The results of the method are illustrated using cyclohexanone, pyrazole, and the Biginelli adduct as target ring systems with a view to discover new and greener strategies for their construction using multicomponent reactions. The application of the method is also extended to various heterocycles found in many natural products and pharmaceuticals. PMID:28144310
NASA Astrophysics Data System (ADS)
Zhou, Qunfei
First-principles calculations based on quantum mechanics have been proved to be powerful for accurately regenerating experimental results, uncovering underlying myths of experimental phenomena, and accelerating the design of innovative materials. This work has been motivated by the demand to design next-generation thermionic emitting cathodes and techniques to allow for synthesis of photo-responsive polymers on complex surfaces with controlled thickness and patterns. For Os-coated tungsten thermionic dispenser cathodes, we used first-principles methods to explore the bulk and surface properties of W-Os alloys in order to explain the previously observed experimental phenomena that thermionic emission varies significantly with W-Os alloy composition. Meanwhile, we have developed a new quantum mechanical approach to quantitatively predict the thermionic emission current density from materials perspective without any semi-empirical approximations or complicated analytical models, which leads to better understanding of thermionic emission mechanism. The methods from this work could be used to accelerate the design of next-generation thermionic cathodes. For photoresponsive materials, we designed a novel type of azobenzene-containing monomer for light-mediated ring-opening metathesis polymerization (ROMP) toward the fabrication of patterned, photo-responsive polymers by controlling ring strain energy (RSE) of the monomer that drives ROMP. This allows for unprecedented remote, noninvasive, instantaneous spatial and temporal control of photo-responsive polymer deposition on complex surfaces.This work on the above two different materials systems showed the power of quantum mechanical calculations on predicting, understanding and discovering the structures and properties of both known and unknown materials in a fast, efficient and reliable way.
Synthesis and characterisation of new types of side chain cholesteryl polymers.
Wang, Bin; Du, Haiyan; Zhang, Junhua
2011-01-01
A series of cholesterol derivatives have been synthesised via the alkylation reaction of the 3-hydroxyl group with the aliphatic bromide compounds with different chain lengths, namely 3β-alkyloxy-cholesterol. The double bond between the C5 and C6 positions in these cholesterol derivatives was oxidised into epoxy, followed by an epoxy-ring-opening reaction with the treatment with acrylic acid, resulting in a series of 3β-alkyloxy-5α-hydroxy-6β-acryloyloxycholesterol, C(n)OCh (n=1, 2, 4, 6, 8, 10, 12), The acrylate group is connected to the C6 position, which is confirmed by the single crystal structure analysis. The corresponding polymers, PC(n)OCh, were prepared via free radical polymerisation. The structure of monomers and the resulting polymers were characterised with nuclear magnetic resonance (NMR), Fourier transform infrared spectroscopy (FT-IR) and gel permeation chromatography (GPC). The thermal properties of PC(n)OCh were studied using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). To determine the secondary structure of polymers, circular dichroism (CD) spectra were performed. It was found that not all monomers produce high-molecular-weight polymers because of steric hindrance. However, all polymers have a helical structure, which can be enhanced by increasing the alkoxy chain length. In addition, increasing the alkoxy chain length decreases the glass transition temperature and increases the decomposition temperature of the polymers. Copyright © 2010 Elsevier Inc. All rights reserved.
ROMP-based thermosetting polymers from modified castor oil with various cross-linking agents
NASA Astrophysics Data System (ADS)
Ding, Rui
Polymers derived from bio-renewable resources are finding an increase in global demand. In addition, polymers with distinctive functionalities are required in certain advanced fields, such as aerospace and civil engineering. In an attempt to meet both these needs, the goal of this work aims to develop a range of bio-based thermosetting matrix polymers for potential applications in multifunctional composites. Ring-opening metathesis polymerization (ROMP), which recently has been explored as a powerful method in polymer chemistry, was employed as a unique pathway to polymerize agricultural oil-based reactants. Specifically, a novel norbornyl-functionalized castor oil alcohol (NCA) was investigated to polymerize different cross-linking agents using ROMP. The effects of incorporating dicyclopentadiene (DCPD) and a norbornene-based crosslinker (CL) were systematically evaluated with respect to curing behavior and thermal mechanical properties of the polymers. Isothermal differential scanning calorimetry (DSC) was used to investigate the conversion during cure. Dynamic DSC scans at multiple heating rates revealed conversion-dependent activation energy by Ozawa-Flynn-Wall analysis. The glass transition temperature, storage modulus, and loss modulus for NCA/DCPD and NCA/CL copolymers with different cross-linking agent loading were compared using dynamic mechanical analysis. Cross-link density was examined to explain the very different dynamic mechanical behavior. Mechanical stress-strain curves were developed through tensile test, and thermal stability of the cross-linked polymers was evaluated by thermogravimetric analysis to further investigate the structure-property relationships in these systems.
A study on the noise characteristics of polymer ball bearings under various lubrication conditions
NASA Astrophysics Data System (ADS)
Dinç, S. K.; Temiz, V.; Kamburoǧlu, E.
2013-12-01
Polymer bearings are generally praised by the manufacturers for running silently. However such statements never go beyond qualitative assumptions. Therefore, studying polymer ball bearing noise would have been meaningful solely on the perspective of silent running machinery. On the other hand, the service life of a polymer ball bearing is unpredictable and there's no preventive maintenance practice that provides data regarding the condition of a polymer ball bearing. In this study, we assume that an investigation of their noise characteristics could also reveal clues concerning their performances. The main objective of this study is to determine the noise characteristics of polymer ball bearings lubricated with different lubricant greases of varying viscosity grades through experimental means. Sound pressure level measurements of SKF brand polymer bearings with polypropylene rings, polypropylene cage and glass balls were made with a 1/2 inch microphone in 1/3-octave bands, at frequencies up to 12.5 kHz, under various radial loads and rotational speeds. The bearings were mounted on a shaft driven by an AC motor with stepless speed control, adjustable between 0 - 1400 rpm. The ball bearings were running inside an acoustic chamber designed for the insulation of environmental noise and the noise of the motor at target frequencies. The resulting sound pressure level spectra were evaluated and the effects of the lubrication conditions on the noise of the ball bearing and possible diagnostic insight that could be gained through studying bearing noise characteristics were discussed.
Synthesis of perfluoroalkylether triazine elastomers
NASA Technical Reports Server (NTRS)
Rosser, R. W.; Korus, R. A.
1980-01-01
A method of perfluoroalkylether triazine elastomer synthesis is described. To form an elastomer, the resultant polymer is heated in a closed oven at slightly reduced pressures for 1-day periods at 100, 130 and 150 C. A high-molecular-weight perfluoroalkylether triazine elastomer is produced that exhibits thermal and oxidative stability. This material is potentially useful in applications such as high-temperature seals, 'O' rings, and wire enamels.
Diagnosing, Measuring and Monitoring Microbiologically Influenced Corrosion (MIC)
2011-01-01
ESEM to study marine biofilms on stainless steel surfaces. They observed a gelatinous layer in which bacteria and microalgae were embedded...calculate corrosion rales, but rather changes due lo the presence of a biofilm . Angell el al. (1995) used a concentric ring 304 stainless steel electrode...Telegdi el al. (1998) used AFM to image biofilm formation , extracellular polymer production and subsequent corrosion. Many of the conclusions about
Solventless sol-gel chemistry through ring-opening polymerization of bridged disilaoxacyclopentanes
DOE Office of Scientific and Technical Information (OSTI.GOV)
RAHIMIAN,KAMYAR; LOY,DOUGLAS A.
2000-04-04
Disilaoxacyclopentanes have proven to be excellent precursors to sol-gel type materials. These materials have shown promise as precursors for encapsulation and microelectronics applications. The polymers are highly crosslinked and are structurally similar to traditional sol-gels, but unlike typical sol-gels they are prepared without the use of solvents and water, they have low VOC's and show little shrinkage during processing.
Network Polymers Formed Under Nonideal Conditions.
1986-12-01
the system or the limited ability of the statistical model to account for stochastic correlations. The viscosity of the reacting system was measured as...based on competing reactions (ring, chain) and employs equilibrium chain statistics . The work thus far has been limited to single cycle growth on an...polymerizations, because a large number of differential equations must be solved. The Makovian approach (sometimes referred to as the statistical or
Abedini, Asghar; Crabtree, Ellis; Bara, Jason E; Turner, C Heath
2017-10-24
Polyimides are at the forefront of advanced membrane materials for CO 2 capture and gas-purification processes. Recently, ionic polyimides (i-PIs) have been reported as a new class of condensation polymers that combine structural components of both ionic liquids (ILs) and polyimides through covalent linkages. In this study, we report CO 2 and CH 4 adsorption and structural analyses of an i-PI and an i-PI + IL composite containing [C 4 mim][Tf 2 N]. The combination of molecular dynamics (MD) and grand canonical Monte Carlo (GCMC) simulations is used to compute the gas solubility and the adsorption performance with respect to the density, fractional free volume (FFV), and surface area of the materials. Our results highlight the polymer relaxation process and its correlation to the gas solubility. In particular, the surface area can provide meaningful guidance with respect to the gas solubility, and it tends to be a more sensitive indicator of the adsorption behavior versus only considering the system density and FFV. For instance, as the polymer continues to relax, the density, FFV, and pore-size distribution remain constant while the surface area can continue to increase, enabling more adsorption. Structural analyses are also conducted to identify the nature of the gas adsorption once the ionic liquid is added to the polymer. The presence of the IL significantly displaces the CO 2 molecules from the ligand nitrogen sites in the neat i-PI to the imidazolium rings in the i-PI + IL composite. However, the CH 4 molecules move from the imidazolium ring sites in the neat i-PI to the ligand nitrogen atoms in the i-PI + IL composite. These molecular details can provide critical information for the experimental design of highly selective i-PI materials as well as provide additional guidance for the interpretation of the simulated adsorption systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berstis, Laura; Elder, Thomas; Crowley, Michael
The recently discovered lignin composed of caffeoyl alcohol monolignols or C-lignin is particularly intriguing given its homogeneous, linear polymeric structure and exclusive benzodioxane linkage between monomers. By virtue of this simplified chemistry, the potential emerges for improved valorization strategies with C-lignin relative to other natural heterogeneous lignins. To better understand caffeoyl alcohol polymers, we characterize the thermodynamics of the radical recombination dimerization reactions forming the benzodioxane linkage and the bond dissociation into radical monolignol products. These properties are also predicted for the cross-coupling of caffeoyl alcohol with the natural monolignols, coniferyl alcohol, sinapyl alcohol, and p-coumaryl alcohol, in anticipation of polymers potentially enabled by genetic modification. The average BDEs for the C-lignin benzodioxanemore » $$\\alpha$$- and β-bonds are 56.5 and 63.4 kcal/mol, respectively, with similar enthalpies for heterodimers. The BDE of the $$\\alpha$$-bond within the benzodioxane linkage is consistently greater than that of the β-bond in all dimers of each stereochemical arrangement, explained by the ability the $$\\alpha$$-carbon radical generated to delocalize onto the adjacent phenyl ring. Relative thermodynamics of the heterodimers demonstrates that the substituents on the phenyl ring directly neighboring the bond coupling the monolignols more strongly impact the dimer bond strengths and product stability, compared to the substituents present on the terminal phenyl ring. Enthalpy comparisons furthermore demonstrate that the erythro stereochemical configurations of the benzodioxane bond are slightly less thermodynamically stable than the threo configurations. The overall differences in strength of bonds and reaction enthalpies between stereoisomers are generally found to be insignificant, supporting that postcoupling rearomatization is under kinetic control. Projecting the lowest-energy stereoisomer internal coordinates to longer polymer C-lignin strands highlights how significantly the stereochemical outcomes in polymerization may impact the macromolecular structure and in turn material and chemical properties. Lastly, through these comparisons of geometry, bond strengths, and reaction enthalpies, we shed light on the distinctive properties of C-lignin's radical recombination and decomposition chemistry, and its potential as a natural lignin solution for biorefinery feedstocks and unique materials science applications.« less
Berstis, Laura; Elder, Thomas; Crowley, Michael; ...
2016-05-17
The recently discovered lignin composed of caffeoyl alcohol monolignols or C-lignin is particularly intriguing given its homogeneous, linear polymeric structure and exclusive benzodioxane linkage between monomers. By virtue of this simplified chemistry, the potential emerges for improved valorization strategies with C-lignin relative to other natural heterogeneous lignins. To better understand caffeoyl alcohol polymers, we characterize the thermodynamics of the radical recombination dimerization reactions forming the benzodioxane linkage and the bond dissociation into radical monolignol products. These properties are also predicted for the cross-coupling of caffeoyl alcohol with the natural monolignols, coniferyl alcohol, sinapyl alcohol, and p-coumaryl alcohol, in anticipation of polymers potentially enabled by genetic modification. The average BDEs for the C-lignin benzodioxanemore » $$\\alpha$$- and β-bonds are 56.5 and 63.4 kcal/mol, respectively, with similar enthalpies for heterodimers. The BDE of the $$\\alpha$$-bond within the benzodioxane linkage is consistently greater than that of the β-bond in all dimers of each stereochemical arrangement, explained by the ability the $$\\alpha$$-carbon radical generated to delocalize onto the adjacent phenyl ring. Relative thermodynamics of the heterodimers demonstrates that the substituents on the phenyl ring directly neighboring the bond coupling the monolignols more strongly impact the dimer bond strengths and product stability, compared to the substituents present on the terminal phenyl ring. Enthalpy comparisons furthermore demonstrate that the erythro stereochemical configurations of the benzodioxane bond are slightly less thermodynamically stable than the threo configurations. The overall differences in strength of bonds and reaction enthalpies between stereoisomers are generally found to be insignificant, supporting that postcoupling rearomatization is under kinetic control. Projecting the lowest-energy stereoisomer internal coordinates to longer polymer C-lignin strands highlights how significantly the stereochemical outcomes in polymerization may impact the macromolecular structure and in turn material and chemical properties. Lastly, through these comparisons of geometry, bond strengths, and reaction enthalpies, we shed light on the distinctive properties of C-lignin's radical recombination and decomposition chemistry, and its potential as a natural lignin solution for biorefinery feedstocks and unique materials science applications.« less
Topological Constraints in Directed Polymer Melts
NASA Astrophysics Data System (ADS)
Serna, Pablo; Bunin, Guy; Nahum, Adam
2015-11-01
Polymers in a melt may be subject to topological constraints, as in the example of unlinked polymer rings. How to do statistical mechanics in the presence of such constraints remains a fundamental open problem. We study the effect of topological constraints on a melt of directed polymers, using simulations of a simple quasi-2D model. We find that fixing the global topology of the melt to be trivial changes the polymer conformations drastically. Polymers of length L wander in the transverse direction only by a distance of order (ln L )ζ with ζ ≃1.5 . This is strongly suppressed in comparison with the Brownian L1 /2 scaling which holds in the absence of the topological constraint. It is also much smaller than the predictions of standard heuristic approaches—in particular the L1 /4 of a mean-field-like "array of obstacles" model—so our results present a sharp challenge to theory. Dynamics are also strongly affected by the constraints, and a tagged monomer in an infinite system performs logarithmically slow subdiffusion in the transverse direction. To cast light on the suppression of the strands' wandering, we analyze the topological complexity of subregions of the melt: the complexity is also logarithmically small, and is related to the wandering by a power law. We comment on insights the results give for 3D melts, directed and nondirected.
Topological Constraints in Directed Polymer Melts.
Serna, Pablo; Bunin, Guy; Nahum, Adam
2015-11-27
Polymers in a melt may be subject to topological constraints, as in the example of unlinked polymer rings. How to do statistical mechanics in the presence of such constraints remains a fundamental open problem. We study the effect of topological constraints on a melt of directed polymers, using simulations of a simple quasi-2D model. We find that fixing the global topology of the melt to be trivial changes the polymer conformations drastically. Polymers of length L wander in the transverse direction only by a distance of order (lnL)^{ζ} with ζ≃1.5. This is strongly suppressed in comparison with the Brownian L^{1/2} scaling which holds in the absence of the topological constraint. It is also much smaller than the predictions of standard heuristic approaches-in particular the L^{1/4} of a mean-field-like "array of obstacles" model-so our results present a sharp challenge to theory. Dynamics are also strongly affected by the constraints, and a tagged monomer in an infinite system performs logarithmically slow subdiffusion in the transverse direction. To cast light on the suppression of the strands' wandering, we analyze the topological complexity of subregions of the melt: the complexity is also logarithmically small, and is related to the wandering by a power law. We comment on insights the results give for 3D melts, directed and nondirected.
Something new in the field of PLA/GA bioresorbable polymers?
Vert, M; Schwach, G; Engel, R; Coudane, J
1998-04-30
Polymers issued from glycolic acid and lactic acids (PLAGA) are now used worldwide as bioresorbable devices in surgery and in pharmacology. Their abiotic hydrolytic degradation has been shown to depend on diffusion-reaction phenomena and to proceed homogeneously or heterogeneously, depending on many factors. Two initiators are presently used industrially to make PLAGA polymers by ring opening polymerisation of lactide and/or glycolide in the bulk, namely Sn octanoate and zinc metal. In this contribution, attention is paid to the differences generated by the use of these two initiator systems in the case of the polymerisation of DL-lactide. Various poly(DL-lactide)s were prepared and characterised by size-exclusion chromatography (SEC), differential scanning calorimetry (DSC) and nuclear magnetic resonance spectroscopy (NMR). These polymers were allowed to age in pH=7.4 isoosmolar phosphate buffer at 37 degrees C. Under these conditions, polymers prepared by the two initiator systems showed dramatic differences when the fates of parallel sided specimens of rather large dimensions were considered. These differences were related to the esterification of some of the OH chain ends by octanoic acid and to the presence of rather hydrophobic low molecular weight by-products which were insoluble in the solvent generally used to purify the crude PLAGA polymers. These new findings should be of great interest in the case of PLAGA based matrices aimed at drug delivery.
Printed polymer photonic devices for optical interconnect systems
NASA Astrophysics Data System (ADS)
Subbaraman, Harish; Pan, Zeyu; Zhang, Cheng; Li, Qiaochu; Guo, L. J.; Chen, Ray T.
2016-03-01
Polymer photonic device fabrication usually relies on the utilization of clean-room processes, including photolithography, e-beam lithography, reactive ion etching (RIE) and lift-off methods etc, which are expensive and are limited to areas as large as a wafer. Utilizing a novel and a scalable printing process involving ink-jet printing and imprinting, we have fabricated polymer based photonic interconnect components, such as electro-optic polymer based modulators and ring resonator switches, and thermo-optic polymer switch based delay networks and demonstrated their operation. Specifically, a modulator operating at 15MHz and a 2-bit delay network providing up to 35.4ps are presented. In this paper, we also discuss the manufacturing challenges that need to be overcome in order to make roll-to-roll manufacturing practically viable. We discuss a few manufacturing challenges, such as inspection and quality control, registration, and web control, that need to be overcome in order to realize true implementation of roll-to-roll manufacturing of flexible polymer photonic systems. We have overcome these challenges, and currently utilizing our inhouse developed hardware and software tools, <10μm alignment accuracy at a 5m/min is demonstrated. Such a scalable roll-to-roll manufacturing scheme will enable the development of unique optoelectronic devices which can be used in a myriad of different applications, including communication, sensing, medicine, security, imaging, energy, lighting etc.
The Wear Behavior of Textured Steel Sliding against Polymers
Wang, Meiling; Zhang, Changtao; Wang, Xiaolei
2017-01-01
Artificially fabricated surface textures can significantly improve the friction and wear resistance of a tribological contact. Recently, this surface texturing technique has been applied to polymer materials to improve their tribological performance. However, the wear behavior of textured tribo-pairs made of steel and polymer materials has been less thoroughly investigated and is not well understood; thus, it needs further research. The aim of this study is to investigate the wear properties of tribological contacts made of textured stainless steel against polymer surfaces. Three polymer materials were selected in this study, namely, ultrahigh molecular weight polyethylene (UHMWPE), polyoxymethylene (POM) and (polyetheretherketone) PEEK. Wear tests were operated through a ring-on-plane mode. The results revealed that the texture features and material properties affected the wear rates and friction coefficients of the textured tribo-pairs. In general, PEEK/textured steel achieved the lowest wear rate among the three types of tribo-pairs investigated. Energy dispersive x-ray spectroscopy (EDX) analysis revealed that the elements of C and O on the contacting counterfaces varied with texture features and indicated different wear behavior. Experimental and simulated results showed differences in the stress distribution around the dimple edge, which may influence wear performance. Wear debris with different surface morphologies were found for tribo-pairs with varying texture features. This study has increased the understanding of the wear behavior of tribo-pairs between textured stainless steel and polymer materials. PMID:28772688
Zhang, Shaofu; Luan, Weiling; Zhong, Qixin; Yin, Shaofeng; Yang, Fuqian
2016-10-12
The "ball-on-film" template is used to construct concentric rings on the surface of PMMA-QDs (polymethyl methacrylate - quantum dots) nanocomposite films via the evaporation of pure chloroform droplets, which are confined by a steel ball. The concentric rings consist of QDs, as revealed by the fluorescence images of the concentric rings. The photoluminescence intensity of the concentric rings increases with the increase of the distance to the ball center, suggesting that the amount of QDs accumulated around the contact line at individual stick state increases with the increase of the distance to the ball center. Both the wavelength and cross-sectional area (width) of the concentric rings increase approximately linearly with increasing distance to the ball center, independent of the ball size, the film thickness and the QDs concentration. For the PMMA-QDs nanocomposite films prepared from the same QDs concentration in chloroform, the thicker the PMMA-QDs nanocomposite film, the larger the wavelength for the same distance to the ball center. The effect of confinement of two steel balls on the surface patterns over the PMMA-QDs nanocomposite films is studied via a template of "two spheres on film". Symmetric surface patterns are formed. There exist two types of featureless zone between the two balls, depending on the distance between the two balls: one is the inner featureless zone and the other is the outer featureless zone. The size of both featureless zones increases with the increase of the ball distance.
Swelling of two-dimensional polymer rings by trapped particles.
Haleva, E; Diamant, H
2006-09-01
The mean area of a two-dimensional Gaussian ring of N monomers is known to diverge when the ring is subject to a critical pressure differential, p c ~ N -1. In a recent publication (Eur. Phys. J. E 19, 461 (2006)) we have shown that for an inextensible freely jointed ring this divergence turns into a second-order transition from a crumpled state, where the mean area scales as [A]~N-1, to a smooth state with [A]~N(2). In the current work we extend these two models to the case where the swelling of the ring is caused by trapped ideal-gas particles. The Gaussian model is solved exactly, and the freely jointed one is treated using a Flory argument, mean-field theory, and Monte Carlo simulations. For a fixed number Q of trapped particles the criticality disappears in both models through an unusual mechanism, arising from the absence of an area constraint. In the Gaussian case the ring swells to such a mean area, [A]~ NQ, that the pressure exerted by the particles is at p c for any Q. In the freely jointed model the mean area is such that the particle pressure is always higher than p c, and [A] consequently follows a single scaling law, [A]~N(2) f (Q/N), for any Q. By contrast, when the particles are in contact with a reservoir of fixed chemical potential, the criticality is retained. Thus, the two ensembles are manifestly inequivalent in these systems.
Crosslinking of SAVY-4000 O-rings as a Function of Aging Conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Buskirk, Caleb Griffith
SAVY-4000 containers were developed as a part of DOE M 441.1-1 to protect workers who handle stored nuclear material from exposure due to loss of containment.1 The SAVY-4000 is comprised of three parts: a lid, a container, and a cross-linked fluoropolymer O-ring. Degradation of the O-ring during use could limit the lifetime of the SAVY-4000. In order to quantify the chemical changes of the Oring over time, the molecular weight between crosslinks was determined as a function of aging conditions using a swelling technique. Because the O-ring is a cross-linked polymer, it will absorb solvent into its matrix without dissolving.more » The relative amount of solvent uptake can be related to the degree of crosslinking using an equation developed by Paul Flory and John Rehner Jr3. This method was used to analyze O-ring samples aged under thermal and ionizing-radiation conditions. It was found that at the harsher thermal gaining conditions in absence of ionizing-radiation the average molecular weight between crosslinks decreased, indicating a rise in crosslinks, which may be attributable to advanced aging with no ionizing radiation present. Inversely, in the presence of ionizing radiation it was found that material has a higher level of cross-linking with age. This information could be used to help predict the lifetime of the O-rings in SAVY-4000 containers under service conditions.« less
Wavelength selection by dielectric-loaded plasmonic components
NASA Astrophysics Data System (ADS)
Holmgaard, Tobias; Chen, Zhuo; Bozhevolnyi, Sergey I.; Markey, Laurent; Dereux, Alain; Krasavin, Alexey V.; Zayats, Anatoly V.
2009-02-01
Fabrication, characterization, and modeling of waveguide-ring resonators and in-line Bragg gratings for wavelength selection in the telecommunication range are reported utilizing dielectric-loaded surface plasmon-polariton waveguides. The devices were fabricated by depositing subwavelength-sized polymer ridges on a smooth gold film using industrially compatible large-scale UV photolithography. We demonstrate efficient and compact wavelength-selective filters, including waveguide-ring resonators with an insertion loss of ˜2 dB and a footprint of only 150 μm2 featuring narrow bandwidth (˜20 nm) and high contrast (˜13 dB) features in the transmission spectrum. The performance of the components is found in good agreement with the results obtained by full vectorial three-dimensional finite element simulations.
Orbital transfer rocket engine technology program: Soft wear ring seal technology
NASA Technical Reports Server (NTRS)
Lariviere, Brian W.
1992-01-01
Liquid oxygen (LOX) compatibility tests, including autogenous ignition, promoted ignition, LOX impact tests, and friction and wear tests on different PV products were conducted for several polymer materials as verification for the implementation of soft wear ring seals in advanced rocket engine turbopumps. Thermoplastics, polyimide based materials, and polyimide-imide base materials were compared for oxygen compatibility, specific wear coefficient, wear debris production, and heat dissipation mechanisms. A thermal model was generated that simulated the frictional heating input and calculated the surface temperature and temperature distribution within the seal. The predictions were compared against measured values. Heat loads in the model were varied to better match the test data and determine the difference between the measured and the calculated coefficients of friction.
John R. Donnelly; John B. Shane; Paul G. Schaberg
1990-01-01
Development of Pb pollution histories using tree ring analyses has been troubled by possible mobility of Pb within stem xylem. In a 2-yr study, we exposed red spruce (Picea rubens Sarg.) seedlings to Pb during one growing season, with Pb excluded in either the previous or following growing season. Lead levels within xylem rings and bark were...
Packiam, Mathanraj; Hsu, Yen-Pang; Tekkam, Srinivas; Hall, Edward; Rittichier, Jonathan T.; VanNieuwenhze, Michael; Brun, Yves V.; Maurelli, Anthony T.
2016-01-01
The peptidoglycan (PG) cell wall is a peptide cross-linked glycan polymer essential for bacterial division and maintenance of cell shape and hydrostatic pressure. Bacteria in the Chlamydiales were long thought to lack PG until recent advances in PG labeling technologies revealed the presence of this critical cell wall component in Chlamydia trachomatis. In this study, we utilize bio-orthogonal D-amino acid dipeptide probes combined with super-resolution microscopy to demonstrate that four pathogenic Chlamydiae species each possess a ≤ 140 nm wide PG ring limited to the division plane during the replicative phase of their developmental cycles. Assembly of this PG ring is rapid, processive, and linked to the bacterial actin-like protein, MreB. Both MreB polymerization and PG biosynthesis occur only in the intracellular form of pathogenic Chlamydia and are required for cell enlargement, division, and transition between the microbe’s developmental forms. Our kinetic, molecular, and biochemical analyses suggest that the development of this limited, transient, PG ring structure is the result of pathoadaptation by Chlamydia to an intracellular niche within its vertebrate host. PMID:27144308
Liechti, George; Kuru, Erkin; Packiam, Mathanraj; Hsu, Yen-Pang; Tekkam, Srinivas; Hall, Edward; Rittichier, Jonathan T; VanNieuwenhze, Michael; Brun, Yves V; Maurelli, Anthony T
2016-05-01
The peptidoglycan (PG) cell wall is a peptide cross-linked glycan polymer essential for bacterial division and maintenance of cell shape and hydrostatic pressure. Bacteria in the Chlamydiales were long thought to lack PG until recent advances in PG labeling technologies revealed the presence of this critical cell wall component in Chlamydia trachomatis. In this study, we utilize bio-orthogonal D-amino acid dipeptide probes combined with super-resolution microscopy to demonstrate that four pathogenic Chlamydiae species each possess a ≤ 140 nm wide PG ring limited to the division plane during the replicative phase of their developmental cycles. Assembly of this PG ring is rapid, processive, and linked to the bacterial actin-like protein, MreB. Both MreB polymerization and PG biosynthesis occur only in the intracellular form of pathogenic Chlamydia and are required for cell enlargement, division, and transition between the microbe's developmental forms. Our kinetic, molecular, and biochemical analyses suggest that the development of this limited, transient, PG ring structure is the result of pathoadaptation by Chlamydia to an intracellular niche within its vertebrate host.
Wu, Xialu; Ding, Nini; Zhang, Wenhua; Xue, Fei; Hor, T S Andy
2015-07-20
The use of simple self-assembly methods to direct or engineer porosity or channels of desirable functionality is a major challenge in the field of metal-organic frameworks. We herein report a series of frameworks by modifying square ring structure of [{Cu2(5-dmpy)2(L1)2(H2O)(MeOH)}2{ClO4}4]·4MeOH (1·4MeOH, 5-dmpy = 5,5'-dimethyl-2,2'-bipyridine, HL1 = 4-pyridinecarboxylic acid). Use of pyridyl carboxylates as directional spacers in bipyridyl chelated Cu(II) system led to the growth of square unit into other configurations, namely, square ring, square chain, and square tunnel. Another remarkable characteristic is that the novel use of two isomers of pyridinyl-acrylic acid directs selectively to two different extreme tubular forms-aligned stacking of discrete hexagonal rings and crack-free one-dimensional continuum polymers. This provides a unique example of two extreme forms of copper nanotubes from two isomeric spacers. All of the reactions are performed in a one-pot self-assembly process at room temperature, while the topological selectivity is exclusively determined by the skeletal characteristics of the spacers.
NASA Astrophysics Data System (ADS)
Joo, Hyun S.; Seo, Dong C.; Kim, Chang M.; Lim, Young T.; Cho, Seong D.; Lee, Jong B.; Song, Ji Y.; Kim, Kyoung M.; Park, Joo H.; Jung, Jae Chang; Shin, Ki S.; Bok, Cheol Kyu; Moon, Seung C.
2004-05-01
There are numerous methods being explored by lithographers to achieve the patterning of sub-90nm contact hole features. Regarding optical impact on contact imaging, various optical extension techniques such as assist features, focus drilling, phase shift masks, and off-axis illumination are being employed to improve the aerial image. One possible option for improving of the process window in contact hole patterning is resist reflow. We have already reported the resist using a ring opened polymer of maleic anhydride unit(ROMA) during the past two years in this conference. It has several good properties such as UV transmittance, PED stability, solubility and storage stability. The resist using ROMA polymer as a matrix resin showed a good lithographic performance at C/H pattern and one of the best characteristics in a ROMA polymer is the property of thermal shrinkage. It has a specific glass transition temperature(Tg) each polymers, so they made a applying of resist reflow technique to print sub-90nm C/H possible. Recently, we have researched about advanced ROMA polymer(ROMA II), which is composed of cycloolefine derivatives with existing ROMA type polymer(ROMA I), for dry etch resistance increasing, high resolution, and good thermal shrinkage property. In this paper, we will present the structure, thermal shrinkage properties, Tg control, material properties for ROMA II polymer and will show characteristics, the lithographic performance for iso and dense C/H applications of the resist using ROMA II polymer. In addition, we will discuss resist reflow data gained at C/H profile of sub-90nm sizes, which has good process window.
Effects of Grafting Density on Block Polymer Self-Assembly: From Linear to Bottlebrush.
Lin, Tzu-Pin; Chang, Alice B; Luo, Shao-Xiong; Chen, Hsiang-Yun; Lee, Byeongdu; Grubbs, Robert H
2017-11-28
Grafting density is an important structural parameter that exerts significant influences over the physical properties of architecturally complex polymers. In this report, the physical consequences of varying the grafting density (z) were studied in the context of block polymer self-assembly. Well-defined block polymers spanning the linear, comb, and bottlebrush regimes (0 ≤ z ≤ 1) were prepared via grafting-through ring-opening-metathesis polymerization. ω-Norbornenyl poly(d,l-lactide) and polystyrene macromonomers were copolymerized with discrete comonomers in different feed ratios, enabling precise control over both the grafting density and molecular weight. Small-angle X-ray scattering experiments demonstrate that these graft block polymers self-assemble into long-range-ordered lamellar structures. For 17 series of block polymers with variable z, the scaling of the lamellar period with the total backbone degree of polymerization (d* ∼ N bb α ) was studied. The scaling exponent α monotonically decreases with decreasing z and exhibits an apparent transition at z ≈ 0.2, suggesting significant changes in the chain conformations. Comparison of two block polymer systems, one that is strongly segregated for all z (System I) and one that experiences weak segregation at low z (System II), indicates that the observed trends are primarily caused by the polymer architectures, not segregation effects. A model is proposed in which the characteristic ratio (C ∞ ), a proxy for the backbone stiffness, scales with N bb as a function of the grafting density: C ∞ ∼ N bb f(z) . The scaling behavior disclosed herein provides valuable insights into conformational changes with grafting density, thus introducing opportunities for block polymer and material design.
Thermal Expansion and Diffusion Coefficients of Carbon Nanotube-Polymer Composites
NASA Technical Reports Server (NTRS)
Wei, Chengyu; Srivastava, Deepak; Cho, Kyeongjae; Biegel, Bryan (Technical Monitor)
2001-01-01
Classical molecular dynamics (MD) simulations employing Brenner potential for intra-nanotube interactions and van der Waals forces for polymer-nanotube interface have been used to investigate thermal expansion and diffusion characteristics of carbon nanotube-polyethylene composites. Addition of carbon nanotubes to polymer matrix is found to significantly increase the glass transition temperature Tg, and thermal expansion and diffusion coefficients in the composite above Tg. The increase has been attributed to the temperature dependent increase of the excluded volume for the polymer chains, and the findings could have implications in the composite processing, coating and painting applications.
Gibbs Ensemble Simulations of the Solvent Swelling of Polymer Films
NASA Astrophysics Data System (ADS)
Gartner, Thomas; Epps, Thomas, III; Jayaraman, Arthi
Solvent vapor annealing (SVA) is a useful technique to tune the morphology of block polymer, polymer blend, and polymer nanocomposite films. Despite SVA's utility, standardized SVA protocols have not been established, partly due to a lack of fundamental knowledge regarding the interplay between the polymer(s), solvent, substrate, and free-surface during solvent annealing and evaporation. An understanding of how to tune polymer film properties in a controllable manner through SVA processes is needed. Herein, the thermodynamic implications of the presence of solvent in the swollen polymer film is explored through two alternative Gibbs ensemble simulation methods that we have developed and extended: Gibbs ensemble molecular dynamics (GEMD) and hybrid Monte Carlo (MC)/molecular dynamics (MD). In this poster, we will describe these simulation methods and demonstrate their application to polystyrene films swollen by toluene and n-hexane. Polymer film swelling experiments, Gibbs ensemble molecular simulations, and polymer reference interaction site model (PRISM) theory are combined to calculate an effective Flory-Huggins χ (χeff) for polymer-solvent mixtures. The effects of solvent chemistry, solvent content, polymer molecular weight, and polymer architecture on χeff are examined, providing a platform to control and understand the thermodynamics of polymer film swelling.
Micrometeorite erosion of the man rings as a source of plasma in the inner Saturnian plasma torus
NASA Technical Reports Server (NTRS)
Pospieszalska, M. K.; Johnson, R. E.
1991-01-01
Micrometeorite bombardment is presently suggested to be a source of water molecules and molecular ions in the region between the outer edge of the main rings of Saturn and Encedalus, adding to those neutrals and plasma that are generated by the sputtering of icy satellites. In view of uncertainties concerning the magnitude and distribution of the ring source, an examination is conducted of limiting cases. The implications of such cases for the Cassini division are calculated, and a discussion of their possible relevance to the region's neutral and plasma cloud is presented.
Maize Tricin-Oligolignol Metabolites and Their Implications for Monocot Lignification.
Lan, Wu; Morreel, Kris; Lu, Fachuang; Rencoret, Jorge; Carlos Del Río, José; Voorend, Wannes; Vermerris, Wilfred; Boerjan, Wout; Ralph, John
2016-06-01
Lignin is an abundant aromatic plant cell wall polymer consisting of phenylpropanoid units in which the aromatic rings display various degrees of methoxylation. Tricin [5,7-dihydroxy-2-(4-hydroxy-3,5-dimethoxyphenyl)-4H-chromen-4-one], a flavone, was recently established as a true monomer in grass lignins. To elucidate the incorporation pathways of tricin into grass lignin, the metabolites of maize (Zea mays) were extracted from lignifying tissues and profiled using the recently developed 'candidate substrate product pair' algorithm applied to ultra-high-performance liquid chromatography and Fourier transform-ion cyclotron resonance-mass spectrometry. Twelve tricin-containing products (each with up to eight isomers), including those derived from the various monolignol acetate and p-coumarate conjugates, were observed and authenticated by comparisons with a set of synthetic tricin-oligolignol dimeric and trimeric compounds. The identification of such compounds helps establish that tricin is an important monomer in the lignification of monocots, acting as a nucleation site for starting lignin chains. The array of tricin-containing products provides further evidence for the combinatorial coupling model of general lignification and supports evolving paradigms for the unique nature of lignification in monocots. © 2016 American Society of Plant Biologists. All Rights Reserved.
Maize Tricin-Oligolignol Metabolites and Their Implications for Monocot Lignification1[OPEN
Lu, Fachuang
2016-01-01
Lignin is an abundant aromatic plant cell wall polymer consisting of phenylpropanoid units in which the aromatic rings display various degrees of methoxylation. Tricin [5,7-dihydroxy-2-(4-hydroxy-3,5-dimethoxyphenyl)-4H-chromen-4-one], a flavone, was recently established as a true monomer in grass lignins. To elucidate the incorporation pathways of tricin into grass lignin, the metabolites of maize (Zea mays) were extracted from lignifying tissues and profiled using the recently developed ‘candidate substrate product pair’ algorithm applied to ultra-high-performance liquid chromatography and Fourier transform-ion cyclotron resonance-mass spectrometry. Twelve tricin-containing products (each with up to eight isomers), including those derived from the various monolignol acetate and p-coumarate conjugates, were observed and authenticated by comparisons with a set of synthetic tricin-oligolignol dimeric and trimeric compounds. The identification of such compounds helps establish that tricin is an important monomer in the lignification of monocots, acting as a nucleation site for starting lignin chains. The array of tricin-containing products provides further evidence for the combinatorial coupling model of general lignification and supports evolving paradigms for the unique nature of lignification in monocots. PMID:27208246
Maize Tricin-Oligolignol Metabolites and their Implications for Monocot Lignification
Lan, Wu; Morreel, Kris; Lu, Fachuang; ...
2016-06-01
Lignin is an abundant aromatic plant cell wall polymer consisting of phenylpropanoid units in which the aromatic rings display various degrees of methoxylation. Tricin [5,7-dihydroxy-2-(4-hydroxy-3,5-dimethoxyphenyl)-4H-chromen-4-one], a flavone, was recently established as a true monomer in grass lignins. To elucidate the incorporation pathways of tricin into grass lignin, the metabolites of maize (Zea mays) were extracted from lignifying tissues and profiled using the recently developed ‘candidate substrate product pair’ algorithm applied to ultra-high-performance liquid chromatography and Fourier transform-ion cyclotron resonance-mass spectrometry. Twelve tricin-containing products (each with up to eight isomers), including those derived from the various monolignol acetate and p-coumarate conjugates,more » were observed and authenticated by comparisons with a set of synthetic tricin-oligolignol dimeric and trimeric compounds. The identification of such compounds helps establish that tricin is an important monomer in the lignification of monocots, acting as a nucleation site for starting lignin chains. The array of tricincontaining products provides further evidence for the combinatorial coupling model of general lignification and supports evolving paradigms for the unique nature of lignification in monocots.« less
The relevance and implications of signet-ring cell adenocarcinoma of the oesophagus.
Bleaney, Christopher William; Barrow, Mickhaiel; Hayes, Stephen; Ang, Yeng
2018-03-01
To review the current understanding of signet-ring type oesophageal adenocarcinoma including evidence for prognosis. We conducted a literature search of nine healthcare literature databases for articles detailing the biology and clinical outcomes of signet-ring cell adenocarcinoma of the oesophagus. The impact of signet-ring cell morphology was analysed and detailed in written text and tabular format. Current understanding of the biology of signet-ring cell adenocarcinoma of the oesophagus was summarised. Signet-ring cell carcinoma was represented in 7.61% of the 18 989 cases of oesophageal carcinoma reviewed in multiple studies. The presence of signet-ring cells conferred a worse prognosis and these tumours responded differently to conventional treatments as compared with typical adenocarcinoma. Little is known about the biological features of signet-ring cell adenocarcinoma of the oesophagus. Work in gastric lesions has identified potential targets for future treatments such as CDH1 and RHOA genes. Categorisation of signet-ring cell carcinomas by the proportion of signet-ring cells within tumours differs among clinicians despite WHO criteria for classification. The current UK guidelines for histopathological reporting of oesophageal tumours do not emphasise the importance of identifying signet-ring cells. The presence of signet-ring cells in oesophageal adenocarcinomas leads to poorer clinical outcomes. Current understanding of signet-ring cell biology in oesophageal cancer is limited. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
NASA Technical Reports Server (NTRS)
Spilkera, Linda J.; Pilorz, Stuart H.; Wallis, Brad D.; Pearl, John C.; Cuzzi, Jeffrey N.; Brooks, Shawn M.; Altobelli, Nicolas; Edgington, Scott G.; Showalter, Mark; Flasar, F. Michael;
2006-01-01
In late 2004 and 2005 the Cassini composite infrared spectrometer (CIRS) obtained spatially resolved thermal infrared radial scans of Saturn's main rings (A, B and C, and Cassini Division) that show ring temperatures decreasing with increasing solar phase angle, (alpha), on both the lit and unlit faces of the ring plane. These temperature differences suggest that Saturn's main rings include a population of ring particles that spin slowly, with a spin period greater than 3.6 h, given their low thermal inertia. The A ring shows the smallest temperature variation with (alpha), and this variation decreases with distance from the planet. This suggests an increasing number of smaller, and/or more rapidly rotating ring particles with more uniform temperatures, resulting perhaps from stirring by the density waves in the outer A ring and/or self-gravity wakes. The temperatures of the A and B rings are correlated with their optical depth, (tau), when viewed from the lit face, and anti-correlated when viewed from the unlit face. On the unlit face of the B ring, not only do the lowest temperatures correlate with the largest (tau), these temperatures are also the same at both low and high a, suggesting that little sunlight is penetrating these regions. The temperature differential from the lit to the unlit side of the rings is a strong, nearly linear, function of optical depth. This is consistent with the expectation that little sunlight penetrates to the dark side of the densest rings, but also suggests that little vertical mixing of ring particles is taking place in the A and B rings.
Evaluation of PEG and mPEG-co-(PGA-co-PDL) microparticles loaded with sodium diclofenac
Tawfeek, Hesham M.
2013-01-01
The aim of this study was to synthesize and evaluate novel biodegradable polyesters namely; poly(ethylene glycol)-Poly(glycerol adipate-co-ω-pentadecalactone), PEG-PGA-co-PDL-PEG, and poly(ethylene glycol methyl ether)-Poly(glycerol adipate-co-ω-pentadecalactone), PGA-co-PDL-PEGme as an alternative sustained release carrier for lung delivery compared with non-PEG containing polymer PGA-co-PDL. The co-polymers were synthesized through lipase catalysis ring opening polymerization reaction and characterized using GPC, FT-IR, 1H-NMR and surface contact angle. Furthermore, microparticles containing a model hydrophilic drug, sodium diclofenac, were prepared via spray drying from a modified single emulsion and characterized for their encapsulation efficiency, geometrical particle size, zeta potential, tapped density, primary aerodynamic diameter, amorphous nature, morphology, in vitro release and the aerosolization performance. Microparticles fabricated from mPEG-co-polymer can be targeted to the lung periphery with an optimum in vitro deposition. Furthermore, a significantly higher in vitro release (p > 0.05, ANOVA/Dunnett’s) was observed with the PEG and mPEG-co-polymers compared to PGA-co-PDL. In addition, these co-polymers have a good safety profile upon testing on human bronchial epithelial, 16HBE14o- cell lines. PMID:24227959
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Xuncheng; He, Bo; Anderson, Christopher L.
Quinoidal structures incorporating expanded para-quinodimethane (p-QM) units have garnered great interest as functional organic electronic, optical, and magnetic materials. The direct use of the compact p-QM unit as an electronic building block, however, has been inhibited by the high reactivity conveyed by its biradical character. Herein, we introduce a stable p-QM variant, namely p-azaquinodimethane (p-AQM), that incorporates nitrogen atoms in the central ring and alkoxy substituents on the periphery to increase the stability of the quinoidal structure. The succinct synthesis from readily available precursors leads to regio- and stereospecific p-AQMs that can be readily integrated into the backbone of conjugatedmore » polymers. The quinoidal character of the p-AQM unit endows the resulting polymers with narrow band gaps and high carrier transport mobilities. The study of a series of copolymers employing different numbers of thiophene units revealed an unconventional trend in band gaps, which is distinct from the widely adopted donor-acceptor approach to tuning the band gaps of conjugated polymers. Theoretical calculations have shed light on the nature of this trend, which may provide a unique class of conjugated polymers with promising optical and electronic properties.« less
Liu, Xuncheng; He, Bo; Anderson, Christopher L.; ...
2017-05-24
Quinoidal structures incorporating expanded para-quinodimethane (p-QM) units have garnered great interest as functional organic electronic, optical, and magnetic materials. The direct use of the compact p-QM unit as an electronic building block, however, has been inhibited by the high reactivity conveyed by its biradical character. Herein, we introduce a stable p-QM variant, namely p-azaquinodimethane (p-AQM), that incorporates nitrogen atoms in the central ring and alkoxy substituents on the periphery to increase the stability of the quinoidal structure. The succinct synthesis from readily available precursors leads to regio- and stereospecific p-AQMs that can be readily integrated into the backbone of conjugatedmore » polymers. The quinoidal character of the p-AQM unit endows the resulting polymers with narrow band gaps and high carrier transport mobilities. The study of a series of copolymers employing different numbers of thiophene units revealed an unconventional trend in band gaps, which is distinct from the widely adopted donor-acceptor approach to tuning the band gaps of conjugated polymers. Theoretical calculations have shed light on the nature of this trend, which may provide a unique class of conjugated polymers with promising optical and electronic properties.« less
The stability of the oscillation motion of charged grains in the Saturnian ring system
NASA Astrophysics Data System (ADS)
Xu, R.-L.; Houpis, L. F.
1985-02-01
A perturbation approach for the gravitoelectrodynamic forces encountered in the corotating plasma environment of Saturn is used to determine the stability of charged grains, given a random initial velocity. Attention is given to the implications of the Northrop and Hill (1982) and Mendis et al. (1982) results for the formation of the Saturnian ring system, and it is suggested that the marginal z stability radius at 1.5245 Saturn radii for Kepler-launched particles is due to an erosion process with ejecta of the order 0.05-0.5 microns, rather than that of the previously suggested plasma. The diffuseness of the Saturnian rings beyond the F ring is also explained in terms of instability, while a new critical radius for r instability is suggestd for the optical depth feature at 1.72 Saturn radii. The F ring is analyzed in detail.
Sterically controlled mechanochemistry under hydrostatic pressure
Yan, Hao; Yang, Fan; Pan, Ding; ...
2018-02-21
Mechanical stimuli can modify the energy landscape of chemical reactions and enable reaction pathways, offering a synthetic strategy that complements conventional chemistry. These mechanochemical mechanisms have been studied extensively in one-dimensional polymers under tensile stress using ring-opening and reorganization, polymer unzipping and disulfide reduction as model reactions. In these systems, the pulling force stretches chemical bonds, initiating the reaction. Additionally, it has been shown that forces orthogonal to the chemical bonds can alter the rate of bond dissociation. Furthermore, these bond activation mechanisms have not been possible under isotropic, compressive stress (that is, hydrostatic pressure). Here we show that mechanochemistrymore » through isotropic compression is possible by molecularly engineering structures that can translate macroscopic isotropic stress into molecular-level anisotropic strain.« less
Thermal breakage of a semiflexible polymer: breakage profile and rate
NASA Astrophysics Data System (ADS)
Lee, Chiu Fan
2015-07-01
Understanding fluctuation-induced breakages in polymers has important implications for basic and applied sciences. Here I present for the first time an analytical treatment of the thermal breakage problem of a semi-flexible polymer model that is asymptotically exact in the low temperature and high friction limits. Specifically, I provide analytical expressions for the breakage propensity and rate, and discuss the generalities of the results and their relevance to biopolymers. This work is fundamental to our understanding of the kinetics of living polymerisation.
Saddle-shaped mitral valve annuloplasty rings experience lower forces compared with flat rings.
Jensen, Morten O; Jensen, Henrik; Smerup, Morten; Levine, Robert A; Yoganathan, Ajit P; Nygaard, Hans; Hasenkam, J Michael; Nielsen, Sten L
2008-09-30
New insight into the 3D dynamic behavior of the mitral valve has prompted a reevaluation of annuloplasty ring designs. Force balance analysis indicates correlation between annulus forces and stresses in leaflets and chords. Improving this stress distribution can intuitively enhance the durability of mitral valve repair. We tested the hypothesis that saddle-shaped annuloplasty rings have superior uniform systolic force distribution compared with a nonuniform force distribution in flat annuloplasty rings. Sixteen 80-kg pigs had a flat (n=8) or saddle-shaped (n=8) mitral annuloplasty ring implanted. Mitral annulus 3D dynamic geometry was obtained with sonomicrometry before ring insertion. Strain gauges mounted on dedicated D-shaped rigid flat and saddle-shaped annuloplasty rings provided the intraoperative force distribution perpendicular to the annular plane. Average systolic annular height to commissural width ratio before ring implantation was 14.0%+/-1.6%. After flat and saddle shaped ring implantation, the annulus was fixed in the diastolic (9.0%+/-1.0%) and systolic (14.3%+/-1.3%) configuration, respectively (P<0.01). Force accumulation was seen from the anterior (0.72N+/-0.14N) and commissural annular segments (average 1.38N+/-0.27N) of the flat rings. In these segments, the difference between the 2 types of rings was statistically significant (P<0.05). The saddle-shaped annuloplasty rings did not experience forces statistically significantly larger than zero in any annular segments. Saddle-shaped annuloplasty rings provide superior uniform annular force distribution compared to flat rings and appear to represent a configuration that minimizes out-of-plane forces that could potentially be transmitted to leaflets and chords. This may have important implications for annuloplasty ring selections.
Fielding, Lee A; Hillier, Jon K; Burchell, Mark J; Armes, Steven P
2015-12-11
Over the last decade or so, a range of polypyrrole-based particles have been designed and evaluated for space science applications. This electrically conductive polymer enables such particles to efficiently acquire surface charge, which in turn allows their acceleration up to the hypervelocity regime (>1 km s(-1)) using a Van de Graaff accelerator. Either organic latex (e.g. polystyrene or poly(methyl methacrylate)) or various inorganic materials (such as silica, olivine or pyrrhotite) can be coated with polypyrrole; these core-shell particles are useful mimics for understanding the hypervelocity impact ionisation behaviour of micro-meteorites (a.k.a. cosmic dust). Impacts on metal targets at relatively low hypervelocities (<10 km s(-1)) generate ionic plasma composed mainly of molecular fragments, whereas higher hypervelocities (>10 km s(-1)) generate predominately atomic species, since many more chemical bonds are cleaved if the particles impinge with higher kinetic energy. Such fundamental studies are relevant to the calibration of the cosmic dust analyser (CDA) onboard the Cassini spacecraft, which was designed to determine the chemical composition of Saturn's dust rings. Inspired by volcanism observed for one of the Jupiter's moons (Io), polypyrrole-coated sulfur-rich latexes have also been designed to help space scientists understand ionisation spectra originating from sulfur-rich dust particles. Finally, relatively large (20 μm diameter) polypyrrole-coated polystyrene latexes have proven to be useful for understanding the extent of thermal ablation of organic projectiles when fired at ultralow density aerogel targets at up to 6.1 km s(-1) using a Light Gas Gun. In this case, the sacrificial polypyrrole overlayer simply provides a sensitive spectroscopic signature (rather than a conductive overlayer), and the scientific findings have important implications for the detection of organic dust grains during the Stardust space mission.
Molecular Recognition in Gels, Monolayers, and Solids
1991-12-01
monolayers (SAMs) of alkyl thiolates on gold to the study of protein adsorption on organic surfaces; and the use of networkc 20. ISTIBUION AVALABLITYOF...areas of molecular recognition: affinity polymers and molecular self-assembly. We illustrute these artas by examples drawn frozr affinity gel electro...polyacmy~amides be’.ring,,sialic acid groups; the application of self-a-eseinbled monolayers (SAMs) of alkyl thiolates on gold to the study of protein
Japan Report, Science and Technology
1986-07-02
prepared in liposomes of lecithin cholesterol and phosphatidic acid . In order to study whether or not liposome-coated kazusamycin has a cytocidal action...Kazusamycin is a substance in which an unsaturated fatty acid is bonded to an s-lactam ring. Although it does not act on ordinary gram-positive and...organic semiconductor at the heart of the battery is made of polyacene, a polymer with powerful heat and acid resistance and alterable electrical
Dynamic Response and Failure Mechanisms of Layered Ceramic-Elastomer-Polymer/Metal Composites
2010-08-20
characterization of each material constituent of interest, i.e., polyurea and DH-36 steel, over broad ranges of deformation rates, strains, and temperature of...metal-metal, metal- polyurea -metal and polyurea -ceramic composites. New steel plate designs with different thicknesses were employed to avoid tearing...of the sample at its supporting ring. New experiments support the hypothesis that the steel- polyurea sandwich samples show a noticeably better
Comparing contractile apparatus-driven cytokinesis mechanisms across kingdoms.
Balasubramanian, Mohan K; Srinivasan, Ramanujam; Huang, Yinyi; Ng, Kian-Hong
2012-11-01
Cytokinesis is the final stage of the cell cycle during which a cell physically divides into two daughters through the assembly of new membranes (and cell wall in some cases) between the forming daughters. New membrane assembly can either proceed centripetally behind a contractile apparatus, as in the case of prokaryotes, archaea, fungi, and animals or expand centrifugally, as in the case of higher plants. In this article, we compare the mechanisms of cytokinesis in diverse organisms dividing through the use of a contractile apparatus. While an actomyosin ring participates in cytokinesis in almost all centripetally dividing eukaryotes, the majority of bacteria and archaea (except Crenarchaea) divide using a ring composed of the tubulin-related protein FtsZ. Curiously, despite molecular conservation of the division machinery components, division site placement and its cell cycle regulation occur by a variety of unrelated mechanisms even among organisms from the same kingdom. While molecular motors and cytoskeletal polymer dynamics contribute to force generation during eukaryotic cytokinesis, cytoskeletal polymer dynamics alone appears to be sufficient for force generation during prokaryotic cytokinesis. Intriguingly, there are life forms on this planet that appear to lack molecules currently known to participate in cytokinesis and how these cells perform cytokinesis remains a mystery waiting to be unravelled. Copyright © 2012 Wiley Periodicals, Inc.
Wu, Ruizhi; Al-Azemi, Talal F; Bisht, Kirpal S
2008-10-01
Enantiomerically pure functional polycarbonate was synthesized from a novel seven-membered cyclic carbonate monomer derived from naturally occurring L-tartaric acid. The monomer was synthesized in three steps and screened for polymerization with four commercially available lipases from different sources at 80 degrees C, in bulk. The ring-opening polymerization (ROP) was affected by the source of the enzyme; the highest number-average molecular weight, M(n) = 15500 g/mol (PDI = 1.7; [alpha]D(20) = +77.8, T(m) = 58.8 degrees C) optically active polycarbonate was obtained with lipase Novozyme-435. The relationship between monomer conversion, reaction time, molecular weight, and molecular weight distribution were investigated for Novozyme-435 catalyzed ROP. Deprotection of the ketal groups was achieved with minimal polymer chain cleavage (M(n) = 10000 g/mol, PDI = 2.0) and resulted in optically pure polycarbonate ([alpha]D(20) = +56) bearing hydroxy functional groups. Deprotected poly(ITC) shows T(m) of 60.2 degrees C and DeltaH(f) = 69.56 J/g and similar to that of the poly(ITC), a glass transition temperature was not found. The availability of the pendant hydroxyl group is expected to enhance the biodegradability of the polymer and serves in a variety of potential biomedical applications such as polymeric drug delivery systems.
NASA Astrophysics Data System (ADS)
Habershon, Scott; Manolopoulos, David E.
2009-12-01
The approximate quantum mechanical ring polymer molecular dynamics (RPMD) and linearized semiclassical initial value representation (LSC-IVR) methods are compared and contrasted in a study of the dynamics of the flexible q-TIP4P/F water model at room temperature. For this water model, a RPMD simulation gives a diffusion coefficient that is only a few percent larger than the classical diffusion coefficient, whereas a LSC-IVR simulation gives a diffusion coefficient that is three times larger. We attribute this discrepancy to the unphysical leakage of initially quantized zero point energy (ZPE) from the intramolecular to the intermolecular modes of the liquid as the LSC-IVR simulation progresses. In spite of this problem, which is avoided by construction in RPMD, the LSC-IVR may still provide a useful approximation to certain short-time dynamical properties which are not so strongly affected by the ZPE leakage. We illustrate this with an application to the liquid water dipole absorption spectrum, for which the RPMD approximation breaks down at frequencies in the O-H stretching region owing to contamination from the internal modes of the ring polymer. The LSC-IVR does not suffer from this difficulty and it appears to provide quite a promising way to calculate condensed phase vibrational spectra.
Habershon, Scott; Manolopoulos, David E
2009-12-28
The approximate quantum mechanical ring polymer molecular dynamics (RPMD) and linearized semiclassical initial value representation (LSC-IVR) methods are compared and contrasted in a study of the dynamics of the flexible q-TIP4P/F water model at room temperature. For this water model, a RPMD simulation gives a diffusion coefficient that is only a few percent larger than the classical diffusion coefficient, whereas a LSC-IVR simulation gives a diffusion coefficient that is three times larger. We attribute this discrepancy to the unphysical leakage of initially quantized zero point energy (ZPE) from the intramolecular to the intermolecular modes of the liquid as the LSC-IVR simulation progresses. In spite of this problem, which is avoided by construction in RPMD, the LSC-IVR may still provide a useful approximation to certain short-time dynamical properties which are not so strongly affected by the ZPE leakage. We illustrate this with an application to the liquid water dipole absorption spectrum, for which the RPMD approximation breaks down at frequencies in the O-H stretching region owing to contamination from the internal modes of the ring polymer. The LSC-IVR does not suffer from this difficulty and it appears to provide quite a promising way to calculate condensed phase vibrational spectra.
NASA Astrophysics Data System (ADS)
Zhang, Meili; Ren, Yixia; Ma, Zhenzhen; Qiao, Lei
2017-06-01
Two coordination polymers, [Zn(pda)(bib)]n (1) and [Cd(pda)0.5(bib)Cl]n (2)]. (H2pda = 1,4-phenylenediacetic acid, bib = 1,2-bis(imidazol-1-ylmethyl)benzene), have been synthesized by using Zn(II)/Cd(II) salts with two flexible ligands pda and bib under hydrothermal conditions. Their structures have been characterized by elemental analysis, IR spectroscopy, single-crystal X-ray crystallography and powder X-ray diffraction (PXRD) analysis. Due to the coordination geometry around the metal ions and the diverse coordination modes of the flexible ligands, the obtained complex show diverse structures. In the structure of 1, a pair of bib ligands connect two Zn(II) atoms give rise a 22-membered ring, which is further extended by pda ligands in bidentate coordination mode leading a ring-containing 2D layer. In 2, bib ligands join [Cd2Cl2]2+ dimmers generate 1D polymeric ribbon, the pda ligands further extend such ribbon forming a 2D layer network containing rectangular windows, which discovers the effect of the central metal ions on the formation of metal-organic frameworks. In additional, luminescent properties of two complexes have also been studied, they could be potential fluorescence materials.
Monte Carlo modeling of atomic oxygen attack of polymers with protective coatings on LDEF
NASA Technical Reports Server (NTRS)
Banks, Bruce A.; Degroh, Kim K.; Sechkar, Edward A.
1992-01-01
Characterization of the behavior of atomic oxygen interaction with materials on the Long Duration Exposure Facility (LDEF) will assist in understanding the mechanisms involved, and will lead to improved reliability in predicting in-space durability of materials based on ground laboratory testing. A computational simulation of atomic oxygen interaction with protected polymers was developed using Monte Carlo techniques. Through the use of assumed mechanistic behavior of atomic oxygen and results of both ground laboratory and LDEF data, a predictive Monte Carlo model was developed which simulates the oxidation processes that occur on polymers with applied protective coatings that have defects. The use of high atomic oxygen fluence-directed ram LDEF results has enabled mechanistic implications to be made by adjusting Monte Carlo modeling assumptions to match observed results based on scanning electron microscopy. Modeling assumptions, implications, and predictions are presented, along with comparison of observed ground laboratory and LDEF results.
NASA Astrophysics Data System (ADS)
Scott, Austin Murphy
The purpose of this thesis is to design, build, test, and achieve pulsed operation of a ring-cavity erbium-doped fiber laser using carbon nanotubes as a saturable absorber. The erbium-doped fiber is characterized first, cross-sections are calculated, and the gain value is determined. Subsequently, the ring cavity is constructed and the laser is operated in the continuous wave regime. Much time is then spent trying to characterize and utilize the carbon nanotubes successfully. Many dispersions are made using multiple solvents and dispersing media, various images are taken with both scanning electron and Raman microscopy, and attempts at purification are made. Saturable absorbers are then created both by coating the end facet of a fiber with a dispersion containing carbon nanotubes and by inserting a fabricated poly-methyl-methacrylate (PMMA) and single-walled carbon nanotube (SWCNT) polymer composite film between two fiber end facets. Once inserted into the cavity, the saturable absorbers passively Q-switch the laser in three distinct cases. A fiber end facet coating of SWCNTs dispersed into isopropanol produced pulses with duration of 17.45 +/- 0.11 micros and 2.74 +/- 0.14 micros, with repetition rates of 25.36 +/- 0.53 kHz and 37.77 +/- 0.33 kHz, respectively. A second fiber end facet coating of SWCNTs dispersed into dimethylformamide (DMF) produced pulses with duration of 12.28 +/- 1.08 micros and 3.58 +/- 0.12 micros, with repetition rates of 25.13 +/- 0.63 kHz and 26.46 +/- 0.13 kHz, respectively. The PMMA plus SWCNT polymer composite film produced pulses of 0.716 +/- 0.007 micros duration and 142.8 +/- 1 kHz repetition rate.
Martin, Fred D.; Hatch, Melvin J.; Shepitka, Joel S.; Donaruma, Lorraine G.
1986-01-01
A monomer, polymers containing the monomer, and the use of the polymer in oilfield flooding is disclosed. The subject monomer is represented by the general formula: ##STR1## wherein: n is an integer from 0 to about 4; m is an integer from 0 to about 6; a is an integer equal to at least 1 except where m is equal to 0, a must equal 0 and where m is equal to 1, a must equal 0 or 1; p is an integer from 2 to about 10; b is an integer equal to at least 1 and is of sufficient magnitude that the ratio b/p is at least 0.2; and q is an integer from 0 to 2. The number of hydroxy groups in the monomer is believed to be critical, and therefore the sum of (a+b) divided by the sum (m+p) should be at least 0.2. The moieties linked to the acrylic nitrogen can be joined to provide a ringed structure.
Treatment of aqueous diethyl phthalate by adsorption using a functional polymer resin.
Xu, Zhengwen; Zhang, Weiming; Pan, Bingcai; Lv, Lu; Jiang, Zhengmao
2011-01-01
To study the adsorptive separation efficiency, adsorption and desorption performances of diethyl phthalate (DEP) were investigated with a functional polymer resin (NDA-702). A macroporous polymer resin (XAD-4) and a coal-based granular activated carbon (AC-750) were chosen for comparison. The kinetic adsorption data obeyed the pseudo-second-order rate model, and the adsorption processes were limited by both film and intraparticle diffusions. Adsorption equilibrium data were well fitted by the Freundlich equation, and the larger uptake and higher selection of NDA-702 than AC-750 and XAD-4 was probably due to the microporous structure, phenyl rings and polar groups on NDA-702. Thermodynamic adsorption studies indicated that the test adsorbents spontaneously adsorbed DEP, driven mainly by enthalpy change. Continuous fixed-bed runs demonstrated that there no significant loss of the resin's adsorption capacity and there was complete regeneration of NDA-702. The results suggest that NDA-702 has excellent potential as an adsorption material for water treatment.
Hu, Yongjing; Liu, Xiaofang; Jiang, Fengxing; Zhou, Weiqiang; Liu, Congcong; Duan, Xuemin; Xu, Jingkun
2017-10-05
Conductive thiophene-based polymers have garnered great attention for use in organic electron materials such as electrochromic and thermoelectric materials. However, they suffer from poor electron transport properties and long-term stability, leading to limited development eventually. Here, we proposed a strategy of functionalized thiophene-based polymers with oligo(ethylene glycol) or alkyl side chains and synthesized a series of poly(3,4-ethylenedioxy bithiophene)s (PEDTs) to tune their electrochromic and thermoelectric properties. An alkyl group bearing electronic ability at the thiophene ring effectively achieved a large increase in the electrical conductivity with nearly invariable Seebeck coefficient, resulting in an enhancement by 1 order of magnitude for the thermoelectric power factor. Moreover, the electrochromic properties of functionalized PEDTs gained an effective improvement in the optical contrast and coloration efficiency as well as stability with multicolor changes between neutral and oxidized states. The functionalized PEDTs can be proposed as an alternative strategy to tune the electrochromic and thermoelectric properties for organic polymer materials.
Controlling temperature dependence of silicon waveguide using slot structure.
Lee, Jong-Moo; Kim, Duk-Jun; Kim, Gwan-Ha; Kwon, O-Kyun; Kim, Kap-Joong; Kim, Gyungock
2008-02-04
We show that the temperature dependence of a silicon waveguide can be controlled well by using a slot waveguide structure filled with a polymer material. Without a slot, the amount of temperature-dependent wavelength shift for TE mode of a silicon waveguide ring resonator is very slightly reduced from 77 pm/ degrees C to 66 pm/ degrees C by using a polymer (WIR30-490) upper cladding instead of air upper cladding. With a slot filled with the same polymer, however, the reduction of the temperature dependence is improved by a pronounced amount and can be controlled down to -2 pm/ degrees C by adjusting several variables of the slot structure, such as the width of the slot between the pair of silicon wires, the width of the silicon wire pair, and the height of the silicon slab in our experiment. This measurement proves that a reduction in temperature dependence can be improved about 8 times more by using the slot structure.
Phenolic Polymer Solvation in Water and Ethylene Glycol, II: Ab Initio Computations.
Bauschlicher, Charles W; Bucholz, Eric W; Haskins, Justin B; Monk, Joshua D; Lawson, John W
2017-04-06
Ab initio techniques are used to study the interaction of ethylene glycol and water with a phenolic polymer. The water bonds more strongly with the phenolic OH than with the ring. The phenolic OH groups can form hydrogen bonds between themselves. For more than one water molecule, there is a competition between water-water and water-phenolic interactions. Ethylene glycol shows the same effects as those of water, but the potential energy surface is further complicated by CH 2 -phenolic interactions, different conformers of ethylene glycol, and two OH groups on each molecule. Thus, the ethylene glycol-phenolic potential is more complicated than the water-phenolic potential. The results of the ab initio calculations are compared to those obtained using a force field. These calibration studies show that the water system is easier to describe than the ethylene glycol system. The calibration studies confirm the reliability of force fields used in our companion molecular dynamics study of a phenolic polymer in water and ethylene solutions.
Main-chain metallopolymers at the static-dynamic boundary based on nickelocene
NASA Astrophysics Data System (ADS)
Musgrave, Rebecca A.; Russell, Andrew D.; Hayward, Dominic W.; Whittell, George R.; Lawrence, Paul G.; Gates, Paul J.; Green, Jennifer C.; Manners, Ian
2017-08-01
Interactions between metal ions and ligands in metal-containing polymers involve two bonding extremes: persistent covalent bonding, in which the polymers are essentially static in nature, or labile coordination bonding, which leads to dynamic supramolecular materials. Main-chain polymetallocenes based on ferrocene and cobaltocene fall into the former category because of the presence of strong metal-cyclopentadienyl bonds. Herein, we describe a main-chain polynickelocene—formed by ring-opening polymerization of a moderately strained [3]nickelocenophane monomer—that can be switched between static and dynamic states because of the relatively weak nickel-cyclopentadienyl ligand interactions. This is illustrated by the observation that, at a low concentration or at an elevated temperature in a coordinating or polar solvent, depolymerization of the polynickelocene occurs. A study of this dynamic polymer-monomer equilibrium by 1H NMR spectroscopy allowed the determination of the associated thermodynamic parameters. Microrheology data, however, indicated that under similar conditions the polynickelocene is considered to be static on the shorter rheological timescale.
A stable solution-processed polymer semiconductor with record high-mobility for printed transistors
Li, Jun; Zhao, Yan; Tan, Huei Shuan; Guo, Yunlong; Di, Chong-An; Yu, Gui; Liu, Yunqi; Lin, Ming; Lim, Suo Hon; Zhou, Yuhua; Su, Haibin; Ong, Beng S.
2012-01-01
Microelectronic circuits/arrays produced via high-speed printing instead of traditional photolithographic processes offer an appealing approach to creating the long-sought after, low-cost, large-area flexible electronics. Foremost among critical enablers to propel this paradigm shift in manufacturing is a stable, solution-processable, high-performance semiconductor for printing functionally capable thin-film transistors — fundamental building blocks of microelectronics. We report herein the processing and optimisation of solution-processable polymer semiconductors for thin-film transistors, demonstrating very high field-effect mobility, high on/off ratio, and excellent shelf-life and operating stabilities under ambient conditions. Exceptionally high-gain inverters and functional ring oscillator devices on flexible substrates have been demonstrated. This optimised polymer semiconductor represents a significant progress in semiconductor development, dispelling prevalent skepticism surrounding practical usability of organic semiconductors for high-performance microelectronic devices, opening up application opportunities hitherto functionally or economically inaccessible with silicon technologies, and providing an excellent structural framework for fundamental studies of charge transport in organic systems. PMID:23082244
Radhakrishnan, Aditya; Vitalis, Andreas; Mao, Albert H.; Steffen, Adam T.; Pappu, Rohit V.
2012-01-01
Poly-L-proline (PLP) polymers are useful mimics of biologically relevant proline-rich sequences. Biophysical and computational studies of PLP polymers in aqueous solutions are challenging because of the diversity of length scales and the slow time scales for conformational conversions. We describe an atomistic simulation approach that combines an improved ABSINTH implicit solvation model, with conformational sampling based on standard and novel Metropolis Monte Carlo moves. Refinements to forcefield parameters were guided by published experimental data for proline-rich systems. We assessed the validity of our simulation results through quantitative comparisons to experimental data that were not used in refining the forcefield parameters. Our analysis shows that PLP polymers form heterogeneous ensembles of conformations characterized by semi-rigid, rod-like segments interrupted by kinks, which result from a combination of internal cis peptide bonds, flexible backbone ψ-angles, and the coupling between ring puckering and backbone degrees of freedom. PMID:22329658
'Optimal' vortex rings and aquatic propulsion mechanisms.
Linden, P. F.; Turner, J. S.
2004-01-01
Fishes swim by flapping their tail and other fins. Other sea creatures, such as squid and salps, eject fluid intermittently as a jet. We discuss the fluid mechanics behind these propulsion mechanisms and show that these animals produce optimal vortex rings, which give the maximum thrust for a given energy input. We show that fishes optimize both their steady swimming efficiency and their ability to accelerate and turn by producing an individual optimal ring with each flap of the tail or fin. Salps produce vortex rings directly by ejecting a volume of fluid through a rear orifice, and these are also optimal. An important implication of this paper is that the repetition of vortex production is not necessary for an individual vortex to have the 'optimal' characteristics. PMID:15156924
Proton velocity ring-driven instabilities and their dependence on the ring speed: Linear theory
NASA Astrophysics Data System (ADS)
Min, Kyungguk; Liu, Kaijun; Gary, S. Peter
2017-08-01
Linear dispersion theory is used to study the Alfvén-cyclotron, mirror and ion Bernstein instabilities driven by a tenuous (1%) warm proton ring velocity distribution with a ring speed, vr, varying between 2vA and 10vA, where vA is the Alfvén speed. Relatively cool background protons and electrons are assumed. The modeled ring velocity distributions are unstable to both the Alfvén-cyclotron and ion Bernstein instabilities whose maximum growth rates are roughly a linear function of the ring speed. The mirror mode, which has real frequency ωr=0, becomes the fastest growing mode for sufficiently large vr/vA. The mirror and Bernstein instabilities have maximum growth at propagation oblique to the background magnetic field and become more field-aligned with an increasing ring speed. Considering its largest growth rate, the mirror mode, in addition to the Alfvén-cyclotron mode, can cause pitch angle diffusion of the ring protons when the ring speed becomes sufficiently large. Moreover, because the parallel phase speed, v∥ph, becomes sufficiently small relative to vr, the low-frequency Bernstein waves can also aid the pitch angle scattering of the ring protons for large vr. Potential implications of including these two instabilities at oblique propagation on heliospheric pickup ion dynamics are discussed.
Zhang, Yuexiu; Li, Lian-Feng; Munir, Muhammad; Qiu, Hua-Ji
2018-01-01
The RING-domain E3 ligases (RING E3s), a group of E3 ligases containing one or two RING finger domains, are involved in various cellular processes such as cell proliferation, immune regulation, apoptosis, among others. In the host, a substantial number of the RING E3s have been implicated to inhibit viral replication through regulating immune responses, including activation and inhibition of retinoic acid-inducible gene I-like receptors, toll-like receptors, and DNA receptor signaling pathways, modulation of cell-surface expression of major histocompatibility complex, and co-stimulatory molecules. During the course of evolution and adaptation, viruses encode RING E3s to antagonize host immune defense, such as the infected cell protein 0 of herpes simplex virus type 1, the non-structural protein 1 of rotavirus, and the K3 and K5 of Kaposi’s sarcoma-associated herpesvirus. In addition, recent studies suggest that viruses can hijack the host RING E3s to facilitate viral replication. Based on emerging and interesting discoveries, the RING E3s present novel links among the host and viruses. Herein, we focus on the latest research progresses in the RING E3s-mediated host–virus interactions and discuss the outlooks of the RING E3s for future research. PMID:29872431
NASA Astrophysics Data System (ADS)
Miao, Linling; Young, Charles D.; Sing, Charles E.
2017-07-01
Brownian Dynamics (BD) simulations are a standard tool for understanding the dynamics of polymers in and out of equilibrium. Quantitative comparison can be made to rheological measurements of dilute polymer solutions, as well as direct visual observations of fluorescently labeled DNA. The primary computational challenge with BD is the expensive calculation of hydrodynamic interactions (HI), which are necessary to capture physically realistic dynamics. The full HI calculation, performed via a Cholesky decomposition every time step, scales with the length of the polymer as O(N3). This limits the calculation to a few hundred simulated particles. A number of approximations in the literature can lower this scaling to O(N2 - N2.25), and explicit solvent methods scale as O(N); however both incur a significant constant per-time step computational cost. Despite this progress, there remains a need for new or alternative methods of calculating hydrodynamic interactions; large polymer chains or semidilute polymer solutions remain computationally expensive. In this paper, we introduce an alternative method for calculating approximate hydrodynamic interactions. Our method relies on an iterative scheme to establish self-consistency between a hydrodynamic matrix that is averaged over simulation and the hydrodynamic matrix used to run the simulation. Comparison to standard BD simulation and polymer theory results demonstrates that this method quantitatively captures both equilibrium and steady-state dynamics after only a few iterations. The use of an averaged hydrodynamic matrix allows the computationally expensive Brownian noise calculation to be performed infrequently, so that it is no longer the bottleneck of the simulation calculations. We also investigate limitations of this conformational averaging approach in ring polymers.
Bioinspired bioadhesive polymers: dopa-modified poly(acrylic acid) derivatives.
Laulicht, Bryan; Mancini, Alexis; Geman, Nathanael; Cho, Daniel; Estrellas, Kenneth; Furtado, Stacia; Hopson, Russell; Tripathi, Anubhav; Mathiowitz, Edith
2012-11-01
The one-step synthesis and characterization of novel bioinspired bioadhesive polymers that contain Dopa, implicated in the extremely adhesive byssal fibers of certain gastropods, is reported. The novel polymers consist of combinations of either of two polyanhydride backbones and one of three amino acids, phenylalanine, tyrosine, or Dopa, grafted as side chains. Dopa-grafted hydrophobic backbone polymers exhibit as much as 2.5 × the fracture strength and 2.8 × the tensile work of bioadhesion of a commercially available poly(acrylic acid) derivative as tested on live, excised, rat intestinal tissue. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mega-supramolecules for safer, cleaner fuel
NASA Astrophysics Data System (ADS)
Kornfield, Julie
Guided by the statistical mechanics of ring-chain equilibrium, we designed and synthesized polymers that self-assemble into ``mega-supramolecules'' (>=5,000 kg/mol) at low concentration (<=0.3%wt) in hydrocarbon liquids. Experimental results accord with model predictions that end-functional polymers, which distribute among cyclic and linear supramolecules, can form a significant population of mega-supramolecules at low total polymer concentration--if, and only if , the backbones are long (>400 kg/mol) and end-association strength is optimal (16-18kT). Hydrocarbon liquid fuels are the world's dominant power source (34% of global energy consumption). Transportation relies heavily on such liquids, presenting the risk of explosive post-impact fires. The collapse of the World Trade Center on September 11, 2001 inspired us to revisit polymers for mist control to mitigate post-impact fuel explosions. Rheological and both light and neutron scattering measurements of long end-functional polymers having polycyclooctadiene backbones and acid or amine end groups verify formation of mega-supramolecules. Post-impact flame propagations experiments show that mega-supramolecules control misting. Turbulent flow measurements show that mega-supramolecules reduce drag like ultra-long covalent polymers. With individual building blocks short enough to avoid hydrodynamic chain scission (400
Green polymer chemistry: The role of Candida antarctica lipase B in polymer functionalization
NASA Astrophysics Data System (ADS)
Castano Gil, Yenni Marcela
The synthesis of functional polymers with well-defined structure, end-group fidelity and physico-chemical properties useful for biomedical applications has proven challenging. Chemo-enzymatic methods are an alternative strategy to increase the diversity of functional groups in polymeric materials. Specifically, enzyme-catalyzed polymer functionalization carried out under solventless conditions is a great advancement in the design of green processes for biomedical applications, where the toxicity of solvents and catalyst residues need to be considered. Enzymes offer several distinct advantages, including high efficiency, catalyst recyclability, and mild reaction conditions. This reseach aimed to precisely functionalized polymers using two methods: enzyme-catalyzed functionalization via polymerization and chemo-enzymatic functionalization of pre-made polymers for drug delivery. In the first method, well-defined poly(caprolactone)s were generated using alkyne-based initiating systems catalyzed by CALB. Propargyl alcohol and 4-dibenzocyclooctynol (DIBO) were shown to efficiently initiate the ring opening polymerization of epsilon-caprolactone under metal free conditions and yielded polymers with Mn ~4 to 24 KDa and relatively narrow molecular mass distribution. In the second methodology, we present quantitative enzyme-catalyzed transesterification of vinyl esters and ethyl esters with poly(ethylene glycol)s (PEG)s that will serve as building blocks for dendrimer synthesis, followed by introducing a new process for the exclusive gamma-conjugation of folic acid. Specifically, fluorescein-acrylate was enzymatically conjugated with PEG. Additionally, halo-ester functionalized PEGs were successfully prepared by the transesterification of alkyl halo-esters with PEGs. 1H and 13C NMR spectroscopy, SEC and MALDI-ToF mass spectrometry confirmed the structure and purity of the products.
Degradation of polymer electrolyte membrane fuel cell by siloxane in biogas
NASA Astrophysics Data System (ADS)
Seo, Ji-Sung; Kim, Da-Yeong; Hwang, Sun-Mi; Seo, Min Ho; Seo, Dong-Jun; Yang, Seung Yong; Han, Chan Hui; Jung, Yong-Min; Guim, Hwanuk; Nahm, Kee Suk; Yoon, Young-Gi; Kim, Tae-Young
2016-06-01
We studied the degradation and durability of polymer electrolyte membrane fuel cell (PEMFC) at membrane-electrode-assembly (MEA) level by injection of octamethylcyclotetrasiloxane (D4) as a representative siloxane, which has been found in many industrial and personal products. Specifically, i) GC/MS analysis demonstrated that the ring-opening polymerization of D4 could result in the formation of various linear and cyclic siloxanes in both electrodes of MEA; ii) post-test analysis revealed that the transformed siloxanes were transported from the anode to the cathode via free-volumes in the polymer membrane; iii) RDE measurement and DFT calculation revealed that D4 was not directly responsible for the electrocatalytic activity of Pt; iv) electrochemical analysis demonstrated that the residual methyl groups of siloxane and various siloxanes did not hinder the proton transport in the polymer membrane; and v) siloxanes accumulated in the primary and secondary pores with the exception of an external surface of carbon, causing an increase in the oxygen reactant's resistance and resulting in a decrease of the cell performance. In addition, we confirmed that injection of D4 did not affect the carbon corrosion adversely because the siloxane had little influence on water sorption in the catalyst layer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhuwalka, Achala; Ewan, Monique D.; Elshobaki, Moneim
2015-08-22
In an effort to design efficient low-cost polymers for use in organic photovoltaic cells the easily prepared donor–acceptor–donor triad of a either cis-benzobisoxazole, trans-benzobisoxazole or trans-benzobisthiazole flanked by two thiophene rings was combined with the electron-rich 4,8-bis(5-(2-ethylhexyl)-thien-2-yl)-benzo[1,2-b:4,5-b']dithiophene. The electrochemical, optical, morphological, charge transport, and photovoltaic properties of the resulting terpolymers were investigated. Although the polymers differed in the arrangement and/or nature of the chalcogens, they all had similar highest occupied molecular orbital energy levels (-5.2 to -5.3 eV) and optical band gaps (2.1–2.2 eV). However, the lowest unoccupied molecular orbital energy levels ranged from -3.1 to -3.5 eV. When themore » polymers were used as electron donors in bulk heterojunction photovoltaic devices with PC71BM ([6,6]-phenyl C71-butyric acid methyl ester) as the acceptor, the trans-benzobisoxazole polymer had the best performance with a power conversion efficiency of 2.8%.« less
Transition-Metal-Free Synthesis of 1,3-Butadiene-Containing π-Conjugated Polymers.
Cai, Xuediao; Liu, Yating; Lu, Tian; Yang, Rui; Luo, Chuxin; Zhang, Qi; Chai, Yonghai
2016-12-01
This work describes the synthesis of π-conjugated polymers possessing arylene and 1,3-butadiene alternating units in the main chain by the reaction of α,β-unsaturated ester/nitrile containing γ-H with aromatic/heteroaromatic aldehyde compound. By using 4-(4-formylphenyl)-2-butylene acid ethyl ester as a model monomer, the different polymerization conditions, including catalyst, catalyst amount, and solvent, are optimized. The polymerization of 4-(4-formylphenyl)-2-butylene acid ethyl ester is carried out by refluxing in ethanol for 72 h with 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) as a catalyst to give a 1,3-butadiene-containing π-conjugated polymer, poly(phenylene-1,3-butadiene), in 84.3% yield with M¯n and M¯w/M¯n (PDI) estimated as 6172 and 1.65, respectively. Based on this new methodology, a series of π-conjugated polymers containing 1,3-butadiene units with different substituents are obtained in high yields. A possible mechanism is proposed for the polymerization through a six-membered ring transition state and then a 1,5-H shift intermediate. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Synthesis of hydrazone functionalized epoxy polymers for non-linear optical device applications
NASA Astrophysics Data System (ADS)
Singh, Rajendra K.
A series of twelve, thermally crosslinkable, epoxy polymers bearing covalently attached NLO-active hydrazone chromophores were synthesized. The primary focus was on the synthesis of two series of NLO-active hydroxy functionalized hydrazone chromophores. The first series, called the monohydroxy series (Hydrazones I--VI) comprised of six monohydroxy functionalized hydrazones and the second series consisted of six dihydroxy functionalized hydrazones (Hydrazones VII--XII). These hydrazone chromophores were then grafted, via the hydroxy functionality, on to a commercial epoxy polymer to obtain twelve NLO-active soluble prepolymers. The grafting reaction yields multiple secondary hydroxyl sites due to opening of the epoxide rings and these hydroxyl groups were used for further crosslinking by formulating the prepolymers with a blocked polyisocyanate commercial crosslinker. This formulation was spin coated on glass slides to form 2--2.5 m m thick uniform, defect free, transparent films. The films were corona poled, above their Tg, to align the chromophores in a noncentrosymmetric fashion and simultaneously complete the thermal cure that results in a highly crosslinked network. Finally the thermal characteristics of the second order nonlinearity of the twelve polymers are compared to illustrate the key structure-property relationships underlying the performance of the films.
NASA Astrophysics Data System (ADS)
He, Xin; Barthel, Anthony J.; Kim, Seong H.
2016-06-01
The mechanochemical reactions of adsorbed molecules at sliding interfaces were studied for α-pinene (C10H16), pinane (C10H18), and n-decane (C10H22) on a stainless steel substrate surface. During vapor phase lubrication, molecules adsorbed at the sliding interface could be activated by mechanical shear. Under the equilibrium adsorption condition of these molecules, the friction coefficient of sliding steel surfaces was about 0.2 and a polymeric film was tribochemically produced. The synthesis yield of α-pinene tribo-polymers was about twice as much as pinane tribo-polymers. In contrast to these strained bicyclic hydrocarbons, n-decane showed much weaker activity for tribo-polymerization at the same mechanical shear condition. These results suggested that the mechanical shear at tribological interfaces could induce the opening of the strained ring structure of α-pinene and pinane, which leads to polymerization of adsorbed molecules at the sliding track. On a stainless steel surface, such polymerization reactions of adsorbed molecules do not occur under typical surface reaction conditions. The mechanical properties and boundary lubrication efficiency of the produced tribo-polymer films are discussed.
Parkin, A Top Level Manager in the Cell’s Sanitation Department
Rankin, Carolyn A; Roy, Ambrish; Zhang, Yang; Richter, Mark
2011-01-01
Parkin belongs to a class of multiple RING domain proteins designated as RBR (RING, in between RING, RING) proteins. In this review we examine what is known regarding the structure/function relationship of the Parkin protein. Parkin contains three RING domains plus a ubiquitin-like domain and an in-between-RING (IBR) domain. RING domains are rich in cysteine amino acids that act as ligands to bind zinc ions. RING domains may interact with DNA or with other proteins and perform a wide range of functions. Some function as E3 ubiquitin ligases, participating in attachment of ubiquitin chains to signal proteasome degradation; however, ubiquitin may be attached for purposes other than proteasome degradation. It was determined that the C-terminal most RING, RING2, is essential for Parkin to function as an E3 ubiquitin ligase and a number of substrates have been identified. However, Parkin also participates in a number of other fiunctions, such as DNA repair, microtubule stabilization, and formation of aggresomes. Some functions, such as participation in a multi-protein complex implicated in NMDA activity at the post synaptic density, do not require ubiquitination of substrate molecules. Recent observations of RING proteins suggest their function may be regulated by zinc ion binding. We have modeled the three RING domains of Parkin and have identified a new set of RING2 ligands. This set allows for binding of two rather than just one zinc ion, opening the possibility that the number of zinc ions bound acts as a molecular switch to modulate Parkin function. PMID:21633666
Colloidal PbS nanocrystals integrated to Si-based photonics for applications at telecom wavelengths
NASA Astrophysics Data System (ADS)
Humer, M.; Guider, R.; Jantsch, W.; Fromherz, T.
2013-05-01
In the last decade, Si based photonics has made major advances in terms of design, fabrication, and device implementation. But due to Silicon's indirect bandgap, it still remains a challenge to create efficient Si-based light emitting devices. In order to overcome this problem, an approach is to develop hybrid systems integrating light-emitting materials into Si. A promising class of materials for this purpose is the class of semiconducting nanocrystal quantum dots (NCs) that are synthesized by colloidal chemistry. As their absorption and emission wavelength depends on the dot size, which can easily be controlled during synthesis, they are extremely attractive as building blocks for nanophotonic applications. For applications in telecom wavelength, Lead chalcogenide colloidal NCs are optimum materials due to their unique optical, electronic and nonlinear properties. In this work, we experimentally demonstrate the integration of PbS nanocrystals into Si-based photonic structures like slot waveguides and ring resonators as optically pumped emitters for room temperature applications. In order to create such hybrid structures, the NCs were dissolved into polymer resists and drop cast on top of the device. Upon optical pumping, intense photoluminescence emission from the resonating modes is recorded at the output of the waveguide with transmission quality factors up to 14000. The polymer host material was investigated with respect to its ability to stabilize the NC's photoluminescence emission against degradation under ambient conditions. The waveguide-ring coupling efficiency was also investigated as function of the NCs concentrations blended into the polymer matrix. The integration of colloidal quantum dots into Silicon photonic structures as demonstrated in this work is a very versatile technique and thus opens a large range of applications utilizing the linear and nonlinear optical properties of PbS NCs at telecom wavelengths.
The degree of π electron delocalization and the formation of 3D-extensible sandwich structures.
Wang, Xiang; Wang, Qiang; Yuan, Caixia; Zhao, Xue-Feng; Li, Jia-Jia; Li, Debao; Wu, Yan-Bo; Wang, Xiaotai
2016-04-28
DFT B3LYP/6-31G(d) calculations were performed to examine the feasibility of graphene-like C42H18 and starbenzene C6(BeH)6 (SBz) polymers as ligands of 3D-extensible sandwich compounds (3D-ESCs) with uninterrupted sandwich arrays. The results revealed that sandwich compounds with three or more C42H18 ligands were not feasible. The possible reason may be the localization of π electrons on certain C6 hexagons due to π-metal interactions, which makes the whole ligand lose its electronic structure basis (higher degree of π electron delocalization) to maintain the planar structure. For comparison, with the aid of benzene (Bz) molecules, the SBz polymers can be feasible ligands for designing 3D-ESCs because the C-Be interactions in individual SBz are largely ionic, which will deter the π electrons on one C6 ring from connecting to those on neighbouring C6 rings. This means that high degree of π electron delocalization is not necessary for maintaining the planarity of SBz polymers. Such a locally delocalized π electron structure is desirable for the ligands of 3D-ESCs. Remarkably, the formation of a sandwich compound with SBz is thermodynamically more favourable than that found for bis(Bz)chromium. The assembly of 3D-ESCs is largely exothermic, which will facilitate future experimental synthesis. The different variation trends on the HOMO-LUMO gaps in different directions (relative to the sandwich axes) suggest that they can be developed to form directional conductors or semiconductors, which may be useful in the production of electronic devices.
Synthetic strategy for preparing chiral double-semicrystalline polyether block copolymers
McGrath, Alaina J.; Shi, Weichao; Rodriguez, Christina G.; ...
2014-12-11
Here, we report an effective strategy for the synthesis of semi-crystalline block copolyethers with well-defined architecture and stereochemistry. As an exemplary system, triblock copolymers containing either atactic (racemic) or isotactic ( R or S) poly(propylene oxide) end blocks with a central poly(ethylene oxide) mid-block were prepared by anionic ring-opening procedures. Stereochemical control was achieved by an initial hydrolytic kinetic resolution of racemic terminal epoxides followed by anionic ring-opening polymerization of the enantiopure monomer feedstock. The resultant triblock copolymers were highly isotactic (meso triads [ mm]% ~ 90%) with optical microscopy, differential scanning calorimetry, wide angle x-ray scattering and small anglemore » x-ray scattering being used to probe the impact of the isotacticity on the resultant polymer and hydrogel properties.« less
Nonadiabatic Molecular Dynamics and Orthogonality Constrained Density Functional Theory
NASA Astrophysics Data System (ADS)
Shushkov, Philip Georgiev
The exact quantum dynamics of realistic, multidimensional systems remains a formidable computational challenge. In many chemical processes, however, quantum effects such as tunneling, zero-point energy quantization, and nonadiabatic transitions play an important role. Therefore, approximate approaches that improve on the classical mechanical framework are of special practical interest. We propose a novel ring polymer surface hopping method for the calculation of chemical rate constants. The method blends two approaches, namely ring polymer molecular dynamics that accounts for tunneling and zero-point energy quantization, and surface hopping that incorporates nonadiabatic transitions. We test the method against exact quantum mechanical calculations for a one-dimensional, two-state model system. The method reproduces quite accurately the tunneling contribution to the rate and the distribution of reactants between the electronic states for this model system. Semiclassical instanton theory, an approach related to ring polymer molecular dynamics, accounts for tunneling by the use of periodic classical trajectories on the inverted potential energy surface. We study a model of electron transfer in solution, a chemical process where nonadiabatic events are prominent. By representing the tunneling electron with a ring polymer, we derive Marcus theory of electron transfer from semiclassical instanton theory after a careful analysis of the tunneling mode. We demonstrate that semiclassical instanton theory can recover the limit of Fermi's Golden Rule rate in a low-temperature, deep-tunneling regime. Mixed quantum-classical dynamics treats a few important degrees of freedom quantum mechanically, while classical mechanics describes affordably the rest of the system. But the interface of quantum and classical description is a challenging theoretical problem, especially for low-energy chemical processes. We therefore focus on the semiclassical limit of the coupled nuclear-electronic dynamics. We show that the time-dependent Schrodinger equation for the electrons employed in the widely used fewest switches surface hopping method is applicable only in the limit of nearly identical classical trajectories on the different potential energy surfaces. We propose a short-time decoupling algorithm that restricts the use of the Schrodinger equation only to the interaction regions. We test the short-time approximation on three model systems against exact quantum-mechanical calculations. The approximation improves the performance of the surface hopping approach. Nonadiabatic molecular dynamics simulations require the efficient and accurate computation of ground and excited state potential energy surfaces. Unlike the ground state calculations where standard methods exist, the computation of excited state properties is a challenging task. We employ time-independent density functional theory, in which the excited state energy is represented as a functional of the total density. We suggest an adiabatic-like approximation that simplifies the excited state exchange-correlation functional. We also derive a set of minimal conditions to impose exactly the orthogonality of the excited state Kohn-Sham determinant to the ground state determinant. This leads to an efficient, variational algorithm for the self-consistent optimization of the excited state energy. Finally, we assess the quality of the excitation energies obtained by the new method on a set of 28 organic molecules. The new approach provides results of similar accuracy to time-dependent density functional theory.
Xu, Yuewen; Wang, Weiyu; Wang, Yangyang; ...
2015-11-25
Bottlebrush polymers are densely grafted polymers with long side-chains attached to a linear polymeric backbone. Their unusual structures endow them with a number of unique and potentially useful properties in solution, in thin films, and in bulk. Despite the many studies of bottlebrushes that have been reported, the structure–property relationships for this class of materials are still poorly understood. In this contribution, we report the synthesis and characterization of fluorinated bottlebrush polymers based on poly(2,2,2-trifluoroethyl methacrylate). The synthesis was achieved by atom transfer radical polymerization (ATRP) using an α-bromoisobutyryl bromide functionalized norbornene initiator, followed by ring-opening metathesis polymerization (ROMP) usingmore » a third generation Grubbs’ catalyst (G3). Rheological characterization revealed that the bottlebrush polymer backbones remained unentangled as indicated by the lack of a rubbery plateau in the modulus. By tuning the size of the backbone of the bottlebrush polymers, near-spherical and elongated particles representing single brush molecular morphologies were observed in a good solvent as evidenced by TEM imaging, suggesting a semi-flexible nature of their backbones in dilute solutions. Thin films of bottlebrush polymers exhibited noticeably higher static water contact angles as compared to that of the macromonomer reaching the hydrophobic regime, where little differences were observed between each bottlebrush polymer. Further investigation by AFM revealed that the surface of the macromonomer film was relatively smooth; in contrast, the surface of bottlebrush polymers displayed certain degrees of nano-scale roughness (R q = 0.8–2.4 nm). The enhanced hydrophobicity of these bottlebrushes likely results from the preferential enrichment of the fluorine containing end groups at the periphery of the molecules and the film surface due to the side chain crowding effect. Furthermore, our results provide key information towards the design of architecturally tailored fluorinated polymers with desirable properties.« less
Effects of Grafting Density on Block Polymer Self-Assembly: From Linear to Bottlebrush
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Tzu-Pin; Chang, Alice B.; Luo, Shao-Xiong
Grafting density is an important structural parameter that imparts significant influences over the physical properties of architecturally complex polymers. In this paper, the physical consequences of varying the grafting density (z) were studied in the context of block polymer self-assembly. Well-defined block polymers spanning the linear, comb, and bottlebrush regimes (0 ≤ z ≤ 1) were prepared via grafting-through ring-opening-metathesis polymerization (ROMP). ω-norbornenyl poly(D,L-lactide) (PLA) and polystyrene (PS) macromonomers were copolymerized with discrete co-monomers in different feed ratios, enabling precise control over the grafting density. Small-angle X-ray scattering (SAXS) experiments demonstrate that these graft block polymers can self-assemble into long-range-orderedmore » lamellar structures. For seventeen series of block polymers with variable z, the scaling of the lamellar period with the total backbone degree of polymerization (d* ~ N bb α) was studied. The scaling exponent α monotonically decreases with decreasing z and exhibits an apparent transition at z ≈ 0.2, suggesting significant changes in the chain conformations. Comparison of two block polymer systems, one that is strongly segregated for all z (System I) and one that experiences weak segregation at low z (System II), indicates that the observed trends are primarily caused by the polymer architectures, instead of segregation strengths. A model is pro-posed in which the characteristic ratio (C ∞), a proxy for the backbone stiffness, scales with N bb as a function of the grafting density: C ∞ ~ N bb f(z). To the best of our knowledge, this report represents the first study of scaling behavior for the self-assembly of block polymers with variable grafting density. Lastly, the relationships disclosed herein provide valuable insights into conformational changes with grafting density, thus introducing new opportunities for future block polymer design.« less
Effects of Grafting Density on Block Polymer Self-Assembly: From Linear to Bottlebrush
Lin, Tzu-Pin; Chang, Alice B.; Luo, Shao-Xiong; ...
2017-10-26
Grafting density is an important structural parameter that imparts significant influences over the physical properties of architecturally complex polymers. In this paper, the physical consequences of varying the grafting density (z) were studied in the context of block polymer self-assembly. Well-defined block polymers spanning the linear, comb, and bottlebrush regimes (0 ≤ z ≤ 1) were prepared via grafting-through ring-opening-metathesis polymerization (ROMP). ω-norbornenyl poly(D,L-lactide) (PLA) and polystyrene (PS) macromonomers were copolymerized with discrete co-monomers in different feed ratios, enabling precise control over the grafting density. Small-angle X-ray scattering (SAXS) experiments demonstrate that these graft block polymers can self-assemble into long-range-orderedmore » lamellar structures. For seventeen series of block polymers with variable z, the scaling of the lamellar period with the total backbone degree of polymerization (d* ~ N bb α) was studied. The scaling exponent α monotonically decreases with decreasing z and exhibits an apparent transition at z ≈ 0.2, suggesting significant changes in the chain conformations. Comparison of two block polymer systems, one that is strongly segregated for all z (System I) and one that experiences weak segregation at low z (System II), indicates that the observed trends are primarily caused by the polymer architectures, instead of segregation strengths. A model is pro-posed in which the characteristic ratio (C ∞), a proxy for the backbone stiffness, scales with N bb as a function of the grafting density: C ∞ ~ N bb f(z). To the best of our knowledge, this report represents the first study of scaling behavior for the self-assembly of block polymers with variable grafting density. Lastly, the relationships disclosed herein provide valuable insights into conformational changes with grafting density, thus introducing new opportunities for future block polymer design.« less
Biomimetic/Optical Sensors for Detecting Bacterial Species
NASA Technical Reports Server (NTRS)
Homer, Margie; Ksendzov, Alexander; Yen, Shiao-Pin; Ryan, Margaret; Lazazzera, Beth
2006-01-01
Biomimetic/optical sensors have been proposed as means of real-time detection of bacteria in liquid samples through real-time detection of compounds secreted by the bacteria. Bacterial species of interest would be identified through detection of signaling compounds unique to those species. The best-characterized examples of quorum-signaling compounds are acyl-homoserine lactones and peptides. Each compound, secreted by each bacterium of an affected species, serves as a signal to other bacteria of the same species to engage in a collective behavior when the population density of that species reaches a threshold level analogous to a quorum. A sensor according to the proposal would include a specially formulated biomimetic film, made of a molecularly imprinted polymer (MIP), that would respond optically to the signaling compound of interest. The MIP film would be integrated directly onto an opticalwaveguide- based ring resonator for optical readout. Optically, the sensor would resemble the one described in Chemical Sensors Based on Optical Ring Resonators (NPO-40601), NASA Tech Briefs, Vol. 29, No. 10 (October 2005), page 32. MIPs have been used before as molecular- recognition compounds, though not in the manner of the present proposal. Molecular imprinting is an approach to making molecularly selective cavities in a polymer matrix. These cavities function much as enzyme receptor sites: the chemical functionality and shape of a cavity in the polymer matrix cause the cavity to bind to specific molecules. An MIP matrix is made by polymerizing monomers in the presence of the compound of interest (template molecule). The polymer forms around the template. After the polymer solidifies, the template molecules are removed from the polymer matrix by decomplexing them from their binding sites and then dissolving them, leaving cavities that are matched to the template molecules in size, shape, and chemical functionality. The cavities thus become molecular-recognition sites that bind only to molecules matched to the sites; other molecules are excluded. In a sensor according to the proposal, the MIP would feature molecular recognition sites that would bind the specific signaling molecules selectively according to their size, shape, and chemical functionality (see figure). As the film took up the signaling molecules in the molecular recognition sites, the index of refraction and thickness of the film would change, causing a wavelength shift of the peak of the resonance spectrum. It has been estimated that by measuring this wavelength shift, it should be possible to detect as little as 10 picomoles of a peptide signaling compound.
The Self's Development and Ego Growth: Conceptual Analysis and Implications for Counselors.
ERIC Educational Resources Information Center
Hamachek, Don E.
1985-01-01
Self development is conceptualized as surrounded by a series of ego rings that spread out from its center. Erikson's first five psychosocial stages are used as the developmental framework within which self-concept, self-esteem, and ego boundaries are viewed as component parts of the self's growth. Counseling implications are used. (Author/BL)
Evolution of sequence-defined highly functionalized nucleic acid polymers
NASA Astrophysics Data System (ADS)
Chen, Zhen; Lichtor, Phillip A.; Berliner, Adrian P.; Chen, Jonathan C.; Liu, David R.
2018-03-01
The evolution of sequence-defined synthetic polymers made of building blocks beyond those compatible with polymerase enzymes or the ribosome has the potential to generate new classes of receptors, catalysts and materials. Here we describe a ligase-mediated DNA-templated polymerization and in vitro selection system to evolve highly functionalized nucleic acid polymers (HFNAPs) made from 32 building blocks that contain eight chemically diverse side chains on a DNA backbone. Through iterated cycles of polymer translation, selection and reverse translation, we discovered HFNAPs that bind proprotein convertase subtilisin/kexin type 9 (PCSK9) and interleukin-6, two protein targets implicated in human diseases. Mutation and reselection of an active PCSK9-binding polymer yielded evolved polymers with high affinity (KD = 3 nM). This evolved polymer potently inhibited the binding between PCSK9 and the low-density lipoprotein receptor. Structure-activity relationship studies revealed that specific side chains at defined positions in the polymers are required for binding to their respective targets. Our findings expand the chemical space of evolvable polymers to include densely functionalized nucleic acids with diverse, researcher-defined chemical repertoires.
Huang, Chi; Wang, Jie; Lv, Xiaobo; Liu, Liu; Liang, Ling; Hu, Wei; Luo, Changliang; Wang, Fubing; Yuan, Quan
2018-05-21
The "coffee ring effect" is a natural phenomenon where sessile drops leave ring-shaped structures on solid surfaces upon drying. It drives non-uniform deposition of suspended compounds on substrates, which adversely affects many processes, including surface-assisted biosensing and molecular self-assembly. In this study, we describe how the coffee ring effect can be eliminated by controlling the amphipathicity of the suspended compounds, for example DNA modified with hydrophobic dye. Specifically, nuclease digestion of the hydrophilic DNA end converts the dye-labeled molecule into an amphipathic molecule (one with comparably weighted hydrophobic and hydrophilic ends) and reverses the coffee ring effect and results in uniform disc-shaped feature deposition of the dye. The amphipathic product decreases the surface tension of the sessile drops and induces Marangoni flow, which drives the uniform distribution of the amphipathic dye-labeled product in the drops. As proof-of-concept, this strategy was used in a novel enzymatic amplification method for biosensing to eliminate the coffee ring effect on a nitrocellulose membrane and increase assay reliability and sensitivity. Importantly, the reported strategy for eliminating the coffee ring effect can be extended to other sessile drop systems for potentially improving assay reliability, and sensitivity.
Nuclear Drug Delivery for Breast Cancer Chemotherapy
2008-09-01
similar results were obtained. 10.;)UI:SJI:IJI Il:l1lVl;) Polymer -drug conjugate, nuclear drug delivery, drug resistance, breast cancer 10...conjugates (5 Months): a. Synthesize linear polyethyleneimine (pEl, Mn ~5-10kDa) by ring-opening polymerization . b. React the PEl with proper 5-membered...functionalized CR-PEI. Milestone 1: Obtaining the FA- or LHRH-functionalized TCRC with optimal charge-reversal kinetics. TASK 2. To in vitro and in vivo evaluate
Electron spin resonance of gamma-irradiated poly/ethylene 2,6-naphthalene dicarboxylate/.
NASA Technical Reports Server (NTRS)
Rogowski, R. S.; Pezdirtz, G. F.
1971-01-01
The two types of radicals trapped in gamma-irradiated PEN 2,6 are identified by ESR as - O - CH - CH2 - O - (radical I) and a radical located on the naphthalene ring (radical II). The concentrations of the radicals in the gross polyer are 10 to 20% of I and 80 to 90% of II. Similar trapped radicals are established in beta-irradiated PET, a structurally related polymer.
Coffee-ring effects in laser desorption/ionization mass spectrometry.
Hu, Jie-Bi; Chen, Yu-Chie; Urban, Pawel L
2013-03-05
This report focuses on the heterogeneous distribution of small molecules (e.g. metabolites) within dry deposits of suspensions and solutions of inorganic and organic compounds with implications for chemical analysis of small molecules by laser desorption/ionization (LDI) mass spectrometry (MS). Taking advantage of the imaging capabilities of a modern mass spectrometer, we have investigated the occurrence of "coffee rings" in matrix-assisted laser desorption/ionization (MALDI) and surface-assisted laser desorption/ionization (SALDI) sample spots. It is seen that the "coffee-ring effect" in MALDI/SALDI samples can be both beneficial and disadvantageous. For example, formation of the coffee rings gives rise to heterogeneous distribution of analytes and matrices, thus compromising analytical performance and reproducibility of the mass spectrometric analysis. On the other hand, the coffee-ring effect can also be advantageous because it enables partial separation of analytes from some of the interfering molecules present in the sample. We report a "hidden coffee-ring effect" where under certain conditions the sample/matrix deposit appears relatively homogeneous when inspected by optical microscopy. Even in such cases, hidden coffee rings can still be found by implementing the MALDI-MS imaging technique. We have also found that to some extent, the coffee-ring effect can be suppressed during SALDI sample preparation. Copyright © 2013 Elsevier B.V. All rights reserved.
Gas inflow patterns and nuclear rings in barred galaxies
NASA Astrophysics Data System (ADS)
Shen, Juntai; Li, Zhi
2017-06-01
Nuclear rings, dust lanes, and nuclear spirals are common structures in the inner region of barred galaxies, with their shapes and properties linked to the physical parameters of the galaxies. We use high-resolution hydrodynamical simulations to study gas inflow patterns in barred galaxies, with special attention on the nuclear rings. The location and thickness of nuclear ringsare tightly correlated with galactic properties, such as the bar pattern speed and bulge central density, within certain ranges. We identify the backbone of nuclear rings with a major orbital family of bars. The rings form exactly at the radius where the residual angular momentum of inflowing gas balances the centrifugal force. We propose a new simple method to predict the bar pattern speed for barred galaxies possessing a nuclear ring, without actually doing simulations. We apply this method to some real galaxies and find that our predicted bar pattern speed compare reasonably well with other estimates. Our study may have important implications for using nuclear ringsto measure the parameters of real barred galaxies with detailed gas kinematics. We have also extended current hydrodynamical simulations to model gas features in the Milky Way.
NASA Astrophysics Data System (ADS)
Sullivan, Patrick F.; Pattison, Robert R.; Brownlee, Annalis H.; Cahoon, Sean M. P.; Hollingsworth, Teresa N.
2016-11-01
Boreal forests are critical sinks in the global carbon cycle. However, recent studies have revealed increasing frequency and extent of wildfires, decreasing landscape greenness, increasing tree mortality and declining growth of black and white spruce in boreal North America. We measured ring widths from a large set of increment cores collected across a vast area of interior Alaska and examined implications of data processing decisions for apparent trends in black and white spruce growth. We found that choice of detrending method had important implications for apparent long-term growth trends and the strength of climate-growth correlations. Trends varied from strong increases in growth since the Industrial Revolution, when ring widths were detrended using single-curve regional curve standardization (RCS), to strong decreases in growth, when ring widths were normalized by fitting a horizontal line to each ring width series. All methods revealed a pronounced growth peak for black and white spruce centered near 1940. Most detrending methods showed a decline from the peak, leaving recent growth of both species near the long-term mean. Climate-growth analyses revealed negative correlations with growing season temperature and positive correlations with August precipitation for both species. Multiple-curve RCS detrending produced the strongest and/or greatest number of significant climate-growth correlations. Results provide important historical context for recent growth of black and white spruce. Growth of both species might decline with future warming, if not mitigated by increasing precipitation. However, widespread drought-induced mortality is probably not imminent, given that recent growth was near the long-term mean.
Three-dimensional organization of block copolymers on "DNA-minimal" scaffolds.
McLaughlin, Christopher K; Hamblin, Graham D; Hänni, Kevin D; Conway, Justin W; Nayak, Manoj K; Carneiro, Karina M M; Bazzi, Hassan S; Sleiman, Hanadi F
2012-03-07
Here, we introduce a 3D-DNA construction method that assembles a minimum number of DNA strands in quantitative yield, to give a scaffold with a large number of single-stranded arms. This DNA frame is used as a core structure to organize other functional materials in 3D as the shell. We use the ring-opening metathesis polymerization (ROMP) to generate block copolymers that are covalently attached to DNA strands. Site-specific hybridization of these DNA-polymer chains on the single-stranded arms of the 3D-DNA scaffold gives efficient access to DNA-block copolymer cages. These biohybrid cages possess polymer chains that are programmably positioned in three dimensions on a DNA core and display increased nuclease resistance as compared to unfunctionalized DNA cages. © 2012 American Chemical Society
Self-assembly of crystalline nanotubes from monodisperse amphiphilic diblock copolypeptoid tiles
Sun, Jing; Jiang, Xi; Lund, Reidar; ...
2016-03-28
The folding and assembly of sequence-defined polymers into precisely ordered nanostructures promises a class of well-defined biomimetic architectures with specific function. Amphiphilic diblock copolymers are known to self-assemble in water to form a variety of nanostructured morphologies including spheres, disks, cylinders, and vesicles. In all of these cases, the predominant driving force for assembly is the formation of a hydrophobic core that excludes water, whereas the hydrophilic blocks are solvated and extend into the aqueous phase. However, such polymer systems typically have broad molar mass distributions and lack the purity and sequence-defined structure often associated with biologically derived polymers. Here,more » we demonstrate that purified, monodisperse amphiphilic diblock copolypeptoids, with chemically distinct domains that are congruent in size and shape, can behave like molecular tile units that spontaneously assemble into hollow, crystalline nanotubes in water. The nanotubes consist of stacked, porous crystalline rings, and are held together primarily by side-chain van der Waals interactions. The peptoid nanotubes form without a central hydrophobic core, chirality, a hydrogen bond network, and electrostatic or π-π interactions. These results demonstrate the remarkable structure-directing influence of n-alkane and ethyleneoxy side chains in polymer self-assembly. More broadly, this work suggests that flexible, low-molecular-weight sequence-defined polymers can serve as molecular tile units that can assemble into precision supramolecular architectures.« less
Adsorbed Polymer Nanolayers on Solids: Mechanism, Structure and Applications
NASA Astrophysics Data System (ADS)
Sen, Mani Kuntal
In this thesis, by combining various advanced x-ray scattering, spectroscopic and other surface sensitive characterization techniques, I report the equilibrium polymer chain conformations, structures, dynamics and properties of polymeric materials at the solid-polymer melt interfaces. Following the introduction, in chapter 2, I highlight that the backbone chains (constituted of CH and CH2 groups) of the flattened polystyrene (PS) chains preferentially orient normal to the weakly interactive substrate surface via thermal annealing regardless of the initial chain conformations, while the orientation of the phenyl rings becomes randomized, thereby increasing the number of surface-segmental contacts (i.e., enthalpic gain) which is the driving force for the flattening process of the polymer chains even onto a weakly interactive solid. In chapter 3, I elucidate the flattened structures in block copolymer (BCP) thin films where both blocks lie flat on the substrate, forming a 2D randomly phase-separated structure irrespective of their microdomain structures and interfacial energetics. In chapter 4, I reveal the presence of an irreversibly adsorbed BCP layer which showed suppressed dynamics even at temperatures far above the individual glass transition temperatures of the blocks. Furthermore, this adsorbed BCP layer plays a crucial role in controlling the microdomain orientation in the entire film. In chapter 5, I report a radically new paradigm of designing a polymeric coating layer of a few nanometers thick ("polymer nanolayer") with anti-biofouling properties.
Self-assembly of crystalline nanotubes from monodisperse amphiphilic diblock copolypeptoid tiles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Jing; Jiang, Xi; Lund, Reidar
The folding and assembly of sequence-defined polymers into precisely ordered nanostructures promises a class of well-defined biomimetic architectures with specific function. Amphiphilic diblock copolymers are known to self-assemble in water to form a variety of nanostructured morphologies including spheres, disks, cylinders, and vesicles. In all of these cases, the predominant driving force for assembly is the formation of a hydrophobic core that excludes water, whereas the hydrophilic blocks are solvated and extend into the aqueous phase. However, such polymer systems typically have broad molar mass distributions and lack the purity and sequence-defined structure often associated with biologically derived polymers. Here,more » we demonstrate that purified, monodisperse amphiphilic diblock copolypeptoids, with chemically distinct domains that are congruent in size and shape, can behave like molecular tile units that spontaneously assemble into hollow, crystalline nanotubes in water. The nanotubes consist of stacked, porous crystalline rings, and are held together primarily by side-chain van der Waals interactions. The peptoid nanotubes form without a central hydrophobic core, chirality, a hydrogen bond network, and electrostatic or π-π interactions. These results demonstrate the remarkable structure-directing influence of n-alkane and ethyleneoxy side chains in polymer self-assembly. More broadly, this work suggests that flexible, low-molecular-weight sequence-defined polymers can serve as molecular tile units that can assemble into precision supramolecular architectures.« less
Higher-order chromatin structure: bridging physics and biology.
Fudenberg, Geoffrey; Mirny, Leonid A
2012-04-01
Advances in microscopy and genomic techniques have provided new insight into spatial chromatin organization inside of the nucleus. In particular, chromosome conformation capture data has highlighted the relevance of polymer physics for high-order chromatin organization. In this context, we review basic polymer states, discuss how an appropriate polymer model can be determined from experimental data, and examine the success and limitations of various polymer models of higher-order interphase chromatin organization. By taking into account topological constraints acting on the chromatin fiber, recently developed polymer models of interphase chromatin can reproduce the observed scaling of distances between genomic loci, chromosomal territories, and probabilities of contacts between loci measured by chromosome conformation capture methods. Polymer models provide a framework for the interpretation of experimental data as ensembles of conformations rather than collections of loops, and will be crucial for untangling functional implications of chromosomal organization. Copyright © 2012 Elsevier Ltd. All rights reserved.
Higher order chromatin structure: bridging physics and biology
Fudenberg, Geoffrey; Mirny, Leonid A.
2012-01-01
Recent advances in microscopy and genomic techniques have provided new insight into spatial chromatin organization inside of the nucleus. In particular, chromosome conformation capture data has highlighted the relevance of polymer physics for high-order chromatin organization. In this context, we review basic polymer states, discuss how an appropriate polymer model can be determined from experimental data, and examine the success and limitations of various polymer models of high-order interphase chromatin organization. By taking into account topological constraints acting on the chromatin fiber, recently-developed polymer models of interphase chromatin can reproduce the observed scaling of distances between genomic loci, chromosomal territories, and probabilities of contacts between loci measured by chromosome conformation capture methods. Polymer models provide a framework for the interpretation of experimental data as ensembles of conformations rather than collections of loops, and will be crucial for untangling functional implications of chromosomal organization. PMID:22360992
Limpoco, F Ted; Bailey, Ryan C
2011-09-28
We directly monitor in parallel and in real time the temporal profiles of polymer brushes simultaneously grown via multiple ATRP reaction conditions on a single substrate using arrays of silicon photonic microring resonators. In addition to probing relative polymerization rates, we show the ability to evaluate the dynamic properties of the in situ grown polymers. This presents a powerful new platform for studying modified interfaces that may allow for the combinatorial optimization of surface-initiated polymerization conditions.
Modeling and simulations of carbon nanotube (CNT) dispersion in water/surfactant/polymer systems
NASA Astrophysics Data System (ADS)
Uddin, Nasir Mohammad
An innovative multiscale (atomistic to mesoscale) model capable of predicting carbon nanotube (CNT) interactions and dispersion in water/surfactant/polymer systems was developed. The model was verified qualitatively with available experimental data in the literature. It can be used to computationally screen potential surfactants, solvents, polymers, and CNT with appropriate diameter and length to obtain improved CNT dispersion in aqueous medium. Thus the model would facilitate the reduction of time and cost required to produce CNT dispersed homogeneous solutions and CNT reinforced materials. CNT dispersion in any water/surfactant/polymer system depends on interactions between CNTs and surrounding molecules. Central to the study was the atomistic scale model which used the atomic structure of the surfactant, solvent, polymer, and CNT. The model was capable of predicting the CNT interactions in terms of potential of mean force (PMF) between CNTs under the influence of surrounding molecules in an aqueous solution. On the atomistic scale, molecular dynamics method was used to compute the PMF as a function of CNT separation and CNT alignment. An adaptive biasing force (ABF) method was used to speed up the calculations. Correlations were developed to determine the effective interactions between CNTs as a function of their any inter-atomic distance and orientation angle in water as well as in water/surfactant by fitting the calculated PMF data. On the mesoscale, the fitted PMF correlations were used as input in the Monte Carlo simulations to determine the degree of dispersion of CNTs in water and water/surfactant system. The distribution of CNT cluster size was determined for the CNTs dispersed in water with and without surfactant addition. The entropie and enthalpie contributions to the CNT interactions in water were determined to understand the dispersion mechanism of CNTs in water. The effects of CNT orientation, length, diameter, chirality and surfactant concentrations and structures on CNT interactions in water were investigated at room conditions. CNT interactions in polymer solution were also investigated with polyethylene oxide (PEO) polymer and water as a solvent. In all cases, the atomic arrangement of molecules was discussed in detailed. Simulations revealed that CNT orientation, length, diameter, and addition of surfactant and its structures can significantly affect CNT interactions (i.e., PMFs varied significantly) and in-turn the degree of CNT dispersion in aqueous solution. For all simulation cases, a uniform sampling was achieved by using the ABF method to calculate the governing PMF between CNTs indicating the effectiveness and convergence of the adaptive sampling scheme. The surfactant molecules were shown to adsorb at the CNT surface and contribute to weaker interactions between CNTs which resulted less CNT aggregate size at the mesoscale. Surfactant consisting with a benzene ring contributed much weaker interactions between CNTs as compared with that of without benzene ring. The increase in CNT length contributed the stronger CNT interactions where the increase in CNT diameter caused weaker CNT interactions in water. The interfacial characteristics between the CNT, surfactant and the polymer were also predicted and discussed. The model can be expanded for more solvents, surfactants, and polymers.
ERIC Educational Resources Information Center
Compton, Owen C.; Egan, Martin; Kanakaraj, Rupa; Higgins, Thomas B.; Nguyen, SonBinh T.
2012-01-01
Periodic conductivity trends are placed in the scope of lithium-ion batteries, where increases in the ionic radii of salt components affect the conductivity of a poly(ethyleneoxide)-based polymer electrolyte. Numerous electrolytes containing varying concentrations and types of metal salts are prepared and evaluated in either one or two laboratory…
Sharma, Jai; Tleugabulova, Dina; Czardybon, Wojciech; Brennan, John D
2006-04-26
Time-resolved fluorescence anisotropy (TRFA) is widely used to study dynamic motions of biomolecules in a variety of environments. However, depolarization due to rapid side chain motions often complicates the interpretation of anisotropy decay data and interferes with the accurate observation of segmental motions. Here, we demonstrate a new method for two-point ionic labeling of polymers and biomolecules that have appropriately spaced amino groups using the fluorescent probe 8-hydroxyl-1,3,6-trisulfonated pyrene (pyranine). TRFA analysis shows that such labeling provides a more rigid attachment of the fluorophore to the macromolecule than the covalent or single-point ionic labeling of amino groups, leading to time-resolved anisotropy decays that better reflect the backbone motion of the labeled polymer segment. Optimal coupling of pyranine to biomolecule dynamics is shown to be obtained for appropriately spaced Arg groups, and in such cases the ionic binding is stable up to 150 mM ionic strength. TRFA was used to monitor the behavior of pyranine-labeled poly(allylamine) (PAM) and poly-d-lysine (PL) in sodium silicate derived sol-gel materials and revealed significant restriction of backbone motion upon entrapment for both polymers, an observation that was not readily apparent in a previous study with entrapped fluorescein-labeled PAM and PL. The implications of these findings for fluorescence studies of polymer and biomolecule dynamics are discussed.
Preactivated thiolated glycogen as mucoadhesive polymer for drug delivery.
Perrone, Mara; Lopalco, Antonio; Lopedota, Angela; Cutrignelli, Annalisa; Laquintana, Valentino; Douglas, Justin; Franco, Massimo; Liberati, Elisa; Russo, Vincenzo; Tongiani, Serena; Denora, Nunzio; Bernkop-Schnürch, Andreas
2017-10-01
The purpose of this study was to synthesize and characterize a novel thiolated glycogen, so-named S-preactivated thiolated glycogen, as a mucosal drug delivery systems and the assessment of its mucoadhesive properties. In this regard, glycogen-cysteine and glycogen-cysteine-2-mercaptonicotinic acid conjugates were synthesized. Glycogen was activated by an oxidative ring opening with sodium periodate resulting in reactive aldehyde groups to which cysteine was bound via reductive amination. The obtained thiolated polymer displayed 2203.09±200μmol thiol groups per gram polymer. In a second step, the thiol moieties of thiolated glycogen were protected by disulfide bond formation with the thiolated aromatic residue 2-mercaptonicotinic acid (2MNA). In vitro screening of mucoadhesive properties was performed on porcine intestinal mucosa using different methods. In particular, in terms of rheology investigations of mucus/polymer mixtures, the S-preactivated thiolated glycogen showed a 4.7-fold increase in dynamic viscosity over a time period of 5h, in comparison to mucus/Simulated Intestinal Fluid control. The S-preactivated polymer remained attached on freshly excised porcine mucosa for 45h. Analogous results were obtained with tensile studies demonstrating a 2.7-fold increase in maximum detachment force and 3.1- fold increase in total work of adhesion for the S-preactivated polymer compared to unmodified glycogen. Moreover, water-uptake studies showed an over 4h continuing weight gain for the S-preactivated polymer, whereas disintegration took place for the unmodified polymer within the first hour. Furthermore, even in the highest tested concentration of 2mg/ml the new conjugates did not show any cytotoxicity on Caco-2 cell monolayer using an MTT assay. According to these results, S-preactivated glycogen represents a promising type of mucoadhesive polymers useful for the development of various mucosal drug delivery systems. Copyright © 2017 Elsevier B.V. All rights reserved.
Shenoi, Rajesh A; Narayanannair, Jayaprakash K; Hamilton, Jasmine L; Lai, Benjamin F L; Horte, Sonja; Kainthan, Rajesh K; Varghese, Jos P; Rajeev, Kallanthottathil G; Manoharan, Muthiah; Kizhakkedathu, Jayachandran N
2012-09-12
Multifunctional biocompatible and biodegradable nanomaterials incorporating specific degradable linkages that respond to various stimuli and with defined degradation profiles are critical to the advancement of targeted nanomedicine. Herein we report, for the first time, a new class of multifunctional dendritic polyether polyketals containing different ketal linkages in their backbone that exhibit unprecedented control over degradation in solution and within the cells. High-molecular-weight and highly compact poly(ketal hydroxyethers) (PKHEs) were synthesized from newly designed α-epoxy-ω-hydroxyl-functionalized AB(2)-type ketal monomers carrying structurally different ketal groups (both cyclic and acyclic) with good control over polymer properties by anionic ring-opening multibranching polymerization. Polymer functionalization with multiple azide and amine groups was achieved without degradation of the ketal group. The polymer degradation was controlled primarily by the differences in the structure and torsional strain of the substituted ketal groups in the main chain, while for polymers with linear (acyclic) ketal groups, the hydrophobicity of the polymer may play an additional role. This was supported by the log P values of the monomers and the hydrophobicity of the polymers determined by fluorescence spectroscopy using pyrene as the probe. A range of hydrolysis half-lives of the polymers at mild acidic pH values was achieved, from a few minutes to a few hundred days, directly correlating with the differences in ketal group structures. Confocal microscopy analyses demonstrated similar degradation profiles for PKHEs within live cells, as seen in solution and the delivery of fluorescent marker to the cytosol. The cell viability measured by MTS assay and blood compatibility determined by complement activation, platelet activation, and coagulation assays demonstrate that PKHEs and their degradation products are highly biocompatible. Taken together, these data demonstrate the utility this new class of biodegradable polymer as a highly promising candidate in the development of multifunctional nanomedicine.
Synthetic space with arbitrary dimensions in a few rings undergoing dynamic modulation
NASA Astrophysics Data System (ADS)
Yuan, Luqi; Xiao, Meng; Lin, Qian; Fan, Shanhui
2018-03-01
We show that a single ring resonator undergoing dynamic modulation can be used to create a synthetic space with an arbitrary dimension. In such a system, the phases of the modulation can be used to create a photonic gauge potential in high dimensions. As an illustration of the implication of this concept, we show that the Haldane model, which exhibits nontrivial topology in two dimensions, can be implemented in the synthetic space using three rings. Our results point to a route toward exploring higher-dimensional topological physics in low-dimensional physical structures. The dynamics of photons in such synthetic spaces also provides a mechanism to control the spectrum of light.
Dal Cason, T A
2001-06-15
Recently, tablets inscribed with the Mitsubishi 3-diamond logo, and sold as 3,4-methylenedioxymethamphetamine (MDMA), were found to contain p-methoxymethamphetamine (PMMA), a compound with MDMA-like effects. Shortly after this first submission, similarly inscribed tablets were encountered containing both PMMA and p-methoxyamphetamine (PMA). This second tablet composition has been implicated in several recent deaths in the US. Because two other positions are available for mono-methoxy substitution on the phenyl ring, it is essential that the correct identification be made for these compounds. Analytical data are supplied to enable differentiation of these ring isomers as well as the ketones that serve as their precursors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pople, John A
2001-03-22
The design, synthesis and solution properties of dendritic-linear hybrid macromolecules is described. The synthetic strategy employs living ring-opening polymerization in combination with selective and quantitative organic transformations for the preparation of new molecular architectures similar to classical star polymers and dendrimers. The polymers were constructed from high molecular weight poly(e-caprolactone) initiated from the surface hydroxyl groups of dendrimers derived from bis(hydroxymethyl) propionic acid (bis-MPA) in the presence of stannous 2-ethyl hexanoate (Sn(Oct)2). In this way, star and hyperstar poly(e-caprolactones) were elaborated depending on the generation of dendrimer employed. The ROP from these hydroxy groups was found to be a facilemore » process leading to controlled molecular weight, low dispersity products (Mw/Mn) < 1.15. In addition to the use of dendrimers as building blocks to star polymers, functional dendrons derived from bis-MPA were attached to chain ends of the star polymers, yielding structures that closely resemble that of the most advanced dendrimers. Measurements of the solution properties (hydrodynamic volume vs. molecular weight) on the dendritic-linear hybrids show a deviation from linearity, with a lower than expected hydrodynamic volume, analogous to the solution properties of dendrimers of high generation number. The onset of the deviation begins with the polymers initiated from the second generation dendrimer of bis-MPA and becomes more exaggerated with the higher generations. It was found that polymerization amplifies the nonlinear solution behavior of dendrimers. Small angle neutron scattering (SANS) measurements revealed that the radius of gyration scaled with arm functionality (f) as f 2/3, in accordance with the Daoud-Cotton model for many arm star polymer.« less
The Production of Solid Dosage Forms from Non-Degradable Polymers.
Major, Ian; Fuenmayor, Evert; McConville, Christopher
2016-01-01
Non-degradable polymers have an important function in medicine. Solid dosage forms for longer term implantation require to be constructed from materials that will not degrade or erode over time and also offer the utmost biocompatibility and biostability. This review details the three most important non-degradable polymers for the production of solid dosage forms - silicone elastomer, ethylene vinyl acetate and thermoplastic polyurethane. The hydrophobic, thermoset silicone elastomer is utilised in the production of a broad range of devices, from urinary catheter tubing for the prevention of biofilm to intravaginal rings used to prevent HIV transmission. Ethylene vinyl acetate, a hydrophobic thermoplastic, is the material of choice of two of the world's leading forms of contraception - Nuvaring® and Implanon®. Thermoplastic polyurethane has such a diverse range of building blocks that this one polymer can be hydrophilic or hydrophobic. Yet, in spite of this versatility, it is only now finding utility in commercialised drug delivery systems. Separately then one polymer has a unique ability that differentiates it from the others and can be applied in a specific drug delivery application; but collectively these polymers provide a rich palette of material and drug delivery options to empower formulation scientists in meeting even the most demanding of unmet clinical needs. Therefore, these polymers have had a long history in controlled release, from the very beginning even, and it is pertinent that this review examines briefly this history while also detailing the state-of-the-art academic studies and inventions exploiting these materials. The paper also outlines the different production methods required to manufacture these solid dosage forms as many of the processes are uncommon to the wider pharmaceutical industry.