Probing the X-Ray Binary Populations of the Ring Galaxy NGC 1291
NASA Technical Reports Server (NTRS)
Luo, B.; Fabbiano, G.; Fragos, T.; Kim, D. W.; Belczynski, K.; Brassington, N. J.; Pellegrini, S.; Tzanavaris, P.; Wang, J.; Zezas, A.
2012-01-01
We present Chandra studies of the X-ray binary (XRB) populations in the bulge and ring regions of the ring galaxy NGC 1291. We detect 169 X-ray point sources in the galaxy, 75 in the bulge and 71 in the ring, utilizing the four available Chandra observations totaling an effective exposure of 179 ks. We report photometric properties of these sources in a point-source catalog. There are approx. 40% of the bulge sources and approx. 25% of the ring sources showing > 3(sigma) long-term variability in their X-ray count rate. The X-ray colors suggest that a significant fraction of the bulge (approx. 75%) and ring (approx. 65%) sources are likely low-mass X-ray binaries (LMXBs). The spectra of the nuclear source indicate that it is a low-luminosity AGN with moderate obscuration; spectral variability is observed between individual observations. We construct 0.3-8.0 keV X-ray luminosity functions (XLFs) for the bulge and ring XRB populations, taking into account the detection incompleteness and background AGN contamination. We reach 90% completeness limits of approx.1.5 x 10(exp 37) and approx. 2.2 x 10(exp 37) erg/s for the bulge and ring populations, respectively. Both XLFs can be fit with a broken power-law model, and the shapes are consistent with those expected for populations dominated by LMXBs. We perform detailed population synthesis modeling of the XRB populations in NGC 1291 , which suggests that the observed combined XLF is dominated by aD old LMXB population. We compare the bulge and ring XRB populations, and argue that the ring XRBs are associated with a younger stellar population than the bulge sources, based on the relative over-density of X-ray sources in the ring, the generally harder X-ray color of the ring sources, the overabundance of luminous sources in the combined XLF, and the flatter shape of the ring XLF.
Picosecond, tunable, high-brightness hard x-ray inverse Compton source at Duke storage ring
NASA Astrophysics Data System (ADS)
Litvinenko, Vladimir N.; Wu, Ying; Burnham, Bentley; Barnett, Genevieve A.; Madey, John M. J.
1995-09-01
We suggest a state-of-the art x-ray source using a compact electron storage ring with modest energy (less than 1 GeV) and a high power mm-wave as an undulator. A source of this type has x-ray energies and brightness comparable with third generation synchrotron light sources while it can be very compact and fit in a small university or industrial laboratory or hospital. We propose to operate an isochronous mm-wave FEL and a hard x-ray inverse Compton source at the Duke storage ring to test this concept. Resonant FEL conditions for the mm- wave will be provided by the off-axis interaction with an electromagnetic wave. A special optical resonator with holes for the e-beam is proposed for pumping a hard x-ray inverse Compton source with very high brightness. Simulation results of mm-wave FEL operation of the Duke storage ring are discussed. Expected performance of mm-wave FEL and hard x-ray inverse Compton source are presented.
National Synchrotron Light Source annual report 1991
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hulbert, S.L.; Lazarz, N.M.
1992-04-01
This report discusses the following research conducted at NSLS: atomic and molecular science; energy dispersive diffraction; lithography, microscopy and tomography; nuclear physics; UV photoemission and surface science; x-ray absorption spectroscopy; x-ray scattering and crystallography; x-ray topography; workshop on surface structure; workshop on electronic and chemical phenomena at surfaces; workshop on imaging; UV FEL machine reviews; VUV machine operations; VUV beamline operations; VUV storage ring parameters; x-ray machine operations; x-ray beamline operations; x-ray storage ring parameters; superconducting x-ray lithography source; SXLS storage ring parameters; the accelerator test facility; proposed UV-FEL user facility at the NSLS; global orbit feedback systems; and NSLSmore » computer system.« less
National Synchrotron Light Source annual report 1991. Volume 1, October 1, 1990--September 30, 1991
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hulbert, S.L.; Lazarz, N.M.
1992-04-01
This report discusses the following research conducted at NSLS: atomic and molecular science; energy dispersive diffraction; lithography, microscopy and tomography; nuclear physics; UV photoemission and surface science; x-ray absorption spectroscopy; x-ray scattering and crystallography; x-ray topography; workshop on surface structure; workshop on electronic and chemical phenomena at surfaces; workshop on imaging; UV FEL machine reviews; VUV machine operations; VUV beamline operations; VUV storage ring parameters; x-ray machine operations; x-ray beamline operations; x-ray storage ring parameters; superconducting x-ray lithography source; SXLS storage ring parameters; the accelerator test facility; proposed UV-FEL user facility at the NSLS; global orbit feedback systems; and NSLSmore » computer system.« less
NASA Technical Reports Server (NTRS)
Zissa, D. E.; Korsch, D.
1986-01-01
A test method particularly suited for X-ray telescopes was evaluated experimentally. The method makes use of a focused ring formed by an annular aperture when using a point source at a finite distance. This would supplement measurements of the best focus image which is blurred when the test source is at a finite distance. The telescope used was the Technology Mirror Assembly of the Advanced X-ray Astrophysis Facility (AXAF) program. Observed ring image defects could be related to the azimuthal location of their sources in the telescope even though in this case the predicted sharp ring was obscured by scattering, finite source size, and residual figure errors.
Discovery of Oxygen Kalpha X-ray Emission from the Rings of Saturn
NASA Technical Reports Server (NTRS)
Bhardwaj, Anil; Elsner, Ronald F.; Waite, J. Hunter, Jr.; Gladstone, G Randall; Cravens, Thomas E.; Ford, Peter G.
2005-01-01
Using the Advanced CCD Imaging Spectrometer (ACIS), the Chandra X-ray Observatory (CXO) observed the Saturnian system for one rotation of the planet (approx.37 ks) on 20 January, 2004, and again on 26-27 January, 2004. In this letter we report the detection of X-ray emission from the rings of Saturn. The X-ray spectrum from the rings is dominated by emission in a narrow (approx.130 eV wide) energy band centered on the atomic oxygen Ka fluorescence line at 0.53 keV. The X-ray power emitted from the rings in the 0.49-0.62 keV band is about one-third of that emitted from Saturn disk in the photon energy range 0.24-2.0 keV. Our analysis also finds a clear detection of X-ray emission from the rings in the 0.49-0.62 keV band in an earlier (14-15 April, 2003) Chandra ACIS observation of Saturn. Fluorescent scattering of solar X-rays from oxygen atoms in the H20 icy ring material is the likely source mechanism for ring X-rays, consistent with the scenario of solar photo-production of a tenuous ring oxygen atmosphere and ionosphere recently discovered by Cassini.
X-ray shout echoing through space
NASA Astrophysics Data System (ADS)
2004-01-01
a flash of X-rays hi-res Size hi-res: 3991 Kb Credits: ESA, S. Vaughan (University of Leicester) EPIC camera shows the expanding rings caused by a flash of X-rays XMM-Newton's X-ray EPIC camera shows the expanding rings caused by a flash of X-rays scattered by dust in our Galaxy. The X-rays were produced by a powerful gamma-ray burst that took place on 3 December 2003. The slowly fading afterglow of the gamma-ray burst is at the centre of the expanding rings. Other, unrelated, X-ray sources can also be seen. The time since the gamma-ray explosion is shown in each panel in hours. At their largest size, the rings would appear in the sky about five times smaller than the full moon. a flash of X-rays hi-res Size hi-res: 2153 Kb Credits: ESA, S. Vaughan (University of Leicester) EPIC camera shows the expanding rings caused by a flash of X-rays (Please choose "hi-res" version for animation) XMM-Newton's X-ray EPIC camera shows the expanding rings caused by a flash of X-rays scattered by dust in our Galaxy. The X-rays were produced by a powerful gamma-ray burst that took place on 3 December 2003. The slowly fading afterglow of the gamma-ray burst is at the centre of the expanding rings. Other, unrelated, X-ray sources can also be seen. The time since the gamma-ray explosion is shown in each panel in seconds. At their largest size, the rings would appear in the sky about five times smaller than the full moon. This echo forms when the powerful radiation of a gamma-ray burst, coming from far away, crosses a slab of dust in our Galaxy and is scattered by it, like the beam of a lighthouse in clouds. Using the expanding rings to precisely pin-point the location of this dust, astronomers can identify places where new stars and planets are likely to form. On 3 December 2003 ESA's observatory, Integral, detected a burst of gamma rays, lasting about 30 seconds, from the direction of a distant galaxy. Within minutes of the detection, thanks to a sophisticated alert network, many observatories around the world were pointing their instruments at this mysterious source in the sky, named GRB 031203, in the attempt to decipher its nature. Also ESA's X-ray observatory, XMM-Newton, joined the hunt and observed the source in detail, using its on-board European Photon Imaging Camera (EPIC). The fading X-ray emission from GRB 031203 - called the `afterglow' - is clearly seen in XMM-Newton's images. But much more stunning are the two rings, centred on the afterglow, which appear to expand thousand times faster than the speed of light. Dr. Simon Vaughan, of the University of Leicester, United Kingdom, leads an international team of scientists studying GRB 031203. He explains that these rings are what astronomers call an `echo'. They form when the X-rays from the distant gamma-ray burst shine on a layer of dust in our own Galaxy. "The dust scatters some of the X-rays, causing XMM-Newton to observe these rings, much in the same way as fog scatters the light from a car's headlights," said Vaughan. Although the afterglow is the brightest feature seen in XMM-Newton's images, the expanding echo is much more spectacular. "It is like a shout in a cathedral," Vaughan said. "The shout of the gamma-ray burst is louder, but the Galactic reverberation, seen as the rings, is much more beautiful." The rings seem to expand because the X-rays scattered by dust farther from the direction of GRB 031203 take longer to reach us than those hitting the dust closer to the line of sight. However, nothing can move faster than light. "This is precisely what we expect because of the finite speed of light," said Vaughan. "The rate of expansion that we see is just a visual effect." He and his colleagues explain that we see two rings because there are two thin sheets of dust between the source of the gamma-ray burst and Earth, one closer to us creating the wider ring and one further away where the smaller ring is formed. Since they know precisely at what speed the X-ray light travels in space, the team in Leicester have determined accurately the distance to the dust sheets by measuring the size of the expanding rings. The nearest dust sheet is located 2900 light years away and is probably part of the Gum nebula, a bubble of hot gas resulting from many supernova explosions. The other dust layer is about 4500 light years away. Understanding how dust is distributed in our Galaxy is important because dust favours the collapse of cool gas clouds, which can then form stars and planets. Knowing where dust is located helps astronomers to determine where star and planet formation is likely to occur. Expanding X-ray dust scattering rings, such as those around GRB 031203, have never been seen before. Slower-moving rings, caused by a similar effect, have been seen in visible light around a very few exploding stars, mostly supernovae. The expanding rings also provide much needed information on the gamma-ray burst itself. Gamma-ray bursts are the most powerful explosive events in the Universe, but astronomers are still trying to understand the mystery that surrounds their origin. Some occur with the supernova explosion of a massive star when it has used up all of its fuel, although only stars which have lost their outer layers and which collapse to make a black hole seem able to make a gamma-ray burst. The delayed X-rays from the echo of GRB 031203 are very useful because they tell astronomers how bright the burst was in the X-ray spectrum when it went off on 3 December. The only direct data available from that moment are those obtained by ESA's Integral observatory in the gamma-ray range. "XMM-Newton's measurements are thus crucial to better understand the nature of the burst," said Dr. Fred Jansen, XMM-Newton's project scientist. "The more details we gather of the burst, the more we can learn on how black holes are made." Today, ESA's Integral and XMM-Newton observatories provide astronomers with their most powerful facilities for studying gamma-ray bursts. In 2004 a new gamma-ray satellite, called `Swift', will be launched as part of a collaboration between the USA, United Kingdom and Italy. Swift will add to the flotilla of satellites providing fast and accurate locations of gamma-ray bursts on the sky, which can then be followed with XMM-Newton. This will provide even more opportunities for new discoveries in this cutting-edge field. Notes to editors A scientific paper describing this discovery by Dr. Simon Vaughan and his collaborators has been accepted for publication in ``The Astrophysical Journal'' (see http://arxiv.org/abs/astro-ph/0312603). The other members in Vaughan's team are R. Willingale, P. O'Brien, J. Osborne, A. Levan, M. Watson and J. Tedds from the University of Leicester, United Kingdom; J. Reeves from NASA's Goddard Space Flight Center in Greenbelt, USA; D. Watson from the Neils Bohr Institute for Astronomy in Copenhagen, Denmark; M. Santos-Lleo, P. Rodriguez-Pascual and N. Schartel from ESA's XMM-Newton Science Operations Centre in Villafranca, Spain. Figure caption XMM-Newton's X-ray EPIC camera shows the expanding rings caused by a flash of X-rays scattered by dust in our Galaxy. The X-rays were produced by a powerful gamma-ray burst that took place on 3 December 2003. The slowly fading afterglow of the gamma-ray burst is at the centre of the expanding rings. Other, unrelated, X-ray sources can also be seen. The time since the gamma-ray explosion is shown in each panel in hours. At their largest size, the rings would appear in the sky about five times smaller than the full moon. Credit: ESA, S. Vaughan (University of Leicester) Video caption XMM-Newton's X-ray EPIC camera shows the expanding rings caused by a flash of X-rays scattered by dust in our Galaxy. The X-rays were produced by a powerful gamma-ray burst that took place on 3 December 2003. The slowly fading afterglow of the gamma-ray burst is at the centre of the expanding rings. Other, unrelated, X-ray sources can also be seen. The time since the gamma-ray explosion is shown in each panel in seconds. At their largest size, the rings would appear in the sky about five times smaller than the full moon. Credit: ESA, S. Vaughan (University of Leicester) More about XMM-Newton XMM-Newton can detect more X-ray sources than any previous satellite and is helping to solve many cosmic mysteries of the violent Universe, from black holes to the formation of galaxies. It was launched on 10 December 1999, using an Ariane-5 rocket from French Guiana. It is expected to return data for a decade. XMM-Newton's high-tech design uses over 170 wafer-thin cylindrical mirrors spread over three telescopes. Its orbit takes it almost a third of the way to the Moon, so that astronomers can enjoy long, uninterrupted views of celestial objects.
Compton backscattered collimated x-ray source
Ruth, R.D.; Huang, Z.
1998-10-20
A high-intensity, inexpensive and collimated x-ray source is disclosed for applications such as x-ray lithography is disclosed. An intense pulse from a high power laser, stored in a high-finesse resonator, repetitively collides nearly head-on with and Compton backscatters off a bunched electron beam, having relatively low energy and circulating in a compact storage ring. Both the laser and the electron beams are tightly focused and matched at the interaction region inside the optical resonator. The laser-electron interaction not only gives rise to x-rays at the desired wavelength, but also cools and stabilizes the electrons against intrabeam scattering and Coulomb repulsion with each other in the storage ring. This cooling provides a compact, intense bunch of electrons suitable for many applications. In particular, a sufficient amount of x-rays can be generated by this device to make it an excellent and flexible Compton backscattered x-ray (CBX) source for high throughput x-ray lithography and many other applications. 4 figs.
Compton backscattered collimated x-ray source
Ruth, Ronald D.; Huang, Zhirong
1998-01-01
A high-intensity, inexpensive and collimated x-ray source for applications such as x-ray lithography is disclosed. An intense pulse from a high power laser, stored in a high-finesse resonator, repetitively collides nearly head-on with and Compton backscatters off a bunched electron beam, having relatively low energy and circulating in a compact storage ring. Both the laser and the electron beams are tightly focused and matched at the interaction region inside the optical resonator. The laser-electron interaction not only gives rise to x-rays at the desired wavelength, but also cools and stabilizes the electrons against intrabeam scattering and Coulomb repulsion with each other in the storage ring. This cooling provides a compact, intense bunch of electrons suitable for many applications. In particular, a sufficient amount of x-rays can be generated by this device to make it an excellent and flexible Compton backscattered x-ray (CBX) source for high throughput x-ray lithography and many other applications.
Compton backscattered collmated X-ray source
Ruth, Ronald D.; Huang, Zhirong
2000-01-01
A high-intensity, inexpensive and collimated x-ray source for applications such as x-ray lithography is disclosed. An intense pulse from a high power laser, stored in a high-finesse resonator, repetitively collides nearly head-on with and Compton backscatters off a bunched electron beam, having relatively low energy and circulating in a compact storage ring. Both the laser and the electron beams are tightly focused and matched at the interaction region inside the optical resonator. The laser-electron interaction not only gives rise to x-rays at the desired wavelength, but also cools and stabilizes the electrons against intrabeam scattering and Coulomb repulsion with each other in the storage ring. This cooling provides a compact, intense bunch of electrons suitable for many applications. In particular, a sufficient amount of x-rays can be generated by this device to make it an excellent and flexible Compton backscattered x-ray (CBX) source for high throughput x-ray lithography and many other applications.
NASA Astrophysics Data System (ADS)
Beardmore, A. P.; Willingale, R.; Kuulkers, E.; Altamirano, D.; Motta, S. E.; Osborne, J. P.; Page, K. L.; Sivakoff, G. R.
2016-10-01
On 2015 June 15, the black hole X-ray binary V404 Cygni went into outburst, exhibiting extreme X-ray variability which culminated in a final flare on June 26. Over the following days, the Swift-X-ray Telescope detected a series of bright rings, comprising five main components that expanded and faded with time, caused by X-rays scattered from the otherwise unobservable dust layers in the interstellar medium in the direction of the source. Simple geometrical modelling of the rings' angular evolution reveals that they have a common temporal origin, coincident with the final, brightest flare seen by INTEGRAL's JEM X-1, which reached a 3-10 keV flux of ˜25 Crab. The high quality of the data allows the dust properties and density distribution along the line of sight to the source to be estimated. Using the Rayleigh-Gans approximation for the dust scattering cross-section and a power-law distribution of grain sizes a, ∝ a-q, the average dust emission is well modelled by q = 3.90^{+0.09}_{-0.08} and maximum grain size of a_+ = 0.147^{+0.024}_{-0.004} { μ m}, though significant variations in q are seen between the rings. The recovered dust density distribution shows five peaks associated with the dense sheets responsible for the rings at distances ranging from 1.19 to 2.13 kpc, with thicknesses of ˜40-80 pc and a maximum density occurring at the location of the nearest sheet. We find a dust column density of Ndust ≈ (2.0-2.5) × 1011 cm-2, consistent with the optical extinction to the source. Comparison of the inner rings' azimuthal X-ray evolution with archival Wide-field Infrared Survey Explorer mid-IR data suggests that the second most distant ring follows the general IR emission trend, which increases in brightness towards the Galactic north side of the source.
Vacuum system for room temperature X-ray lithography source (XLS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schuchman, J.C.
1988-09-30
A prototype room-temperature X-Ray Lithography Source (XLS)was proposed to be built at Brookhaven National Laboratory as part of a technology-transfer- to-American-industry program. The overall machine comprises a full energy linac, a 170 meter long transport line, and a 39 meter circumference storage ring. The scope of this paper will be limited to describing the storage ring vacuum system. (AIP)
Vacuum system for room temperature X-ray lithography source (XLS)
NASA Astrophysics Data System (ADS)
Schuchman, J. C.
1988-09-01
A prototype room-temperature X-Ray Lithography Source (XLS)was proposed to be built at Brookhaven National Laboratory as part of a technology-transfer- to-American-industry program. The overall machine comprises a full energy linac, a 170 meter long transport line, and a 39 meter circumference storage ring. The scope of this paper will be limited to describing the storage ring vacuum system. (AIP)
Compact Storage Ring for an X-Ray Source
NASA Astrophysics Data System (ADS)
Ovchinnikova, L.; Shvedunov, V.; Ivanov, K.
2017-12-01
We propose a new design of a compact storage ring for a source of X-ray radiation on the basis of reverse Thomson scattering of laser radiation by electrons with the energy of 35-50 MeV, which has small number of optical elements and a significant clear space for the placement of a beam injection-extraction system and a RF cavity. The original laser cavity layout has been considered. The ring dynamic aperture after correction of chromaticity and a second-order dispersion function is sufficient for the injection and stable circulation of an electron bunch in the ring.
Probing cluster potentials through gravitational lensing of background X-ray sources
NASA Technical Reports Server (NTRS)
Refregier, A.; Loeb, A.
1996-01-01
The gravitational lensing effect of a foreground galaxy cluster, on the number count statistics of background X-ray sources, was examined. The lensing produces a deficit in the number of resolved sources in a ring close to the critical radius of the cluster. The cluster lens can be used as a natural telescope to study the faint end of the (log N)-(log S) relation for the sources which account for the X-ray background.
Condenser optics, partial coherence, and imaging for soft-x-ray projection lithography.
Sommargren, G E; Seppala, L G
1993-12-01
A condenser system couples the radiation source to an imaging system, controlling the uniformity and partial coherence at the object, which ultimately affects the characteristics of the aerial image. A soft-x-ray projection lithography system based on a ring-field imaging system and a laser-produced plasma x-ray source places considerable constraints on the design of a condenser system. Two designs are proposed, critical illumination and Köhler illumination, each of which requires three mirrors and scanning for covering the entire ring field with the required uniformity and partial coherence. Images based on Hopkins' formulation of partially coherent imaging are simulated.
New insights into the X-ray properties of nearby barred spiral galaxy NGC 1672
NASA Astrophysics Data System (ADS)
Jenkins, L. P.; Brnadt, W. N.; Colbert, E. J. M.; Levan, A. J.; Roberts, T. P.; Ward, M. J.; Zezas, A.
2008-02-01
We present some preliminary results from new Chandra and XMM-Newton X-ray observations of the nearby barred spiral galaxy NGC1672. It shows dramatic nuclear and extra-nuclear star formation activity, including starburst regions located near each end of its strong bar, both of which host ultraluminous X-ray sources (ULXs). With the new high-spatial-resolution Chandra imaging, we show for the first time that NGC1672 possesses a faint ($L(X)~10^39 erg/s), hard central X-ray source surrounded by an X-ray bright circumnuclear starburst ring that dominates the X-ray emission in the region. The central source may represent low-level AGN activity, or alternatively the emission from X-ray binaries associated with star-formation in the nucleus.
NASA Astrophysics Data System (ADS)
Heinz, Sebastian
2017-09-01
When an X-ray transient exhibits a bright flare, scattering by interstellar dust clouds can give rise to a light echo in the form of concentric rings. To date, three such echoes have been detected, each leading to significant discoveries and press attention. We propose a Target-of-Opportunity campaign to observe future echoes with the aim to follow the temporal evolution of the echo in order to (a) map the 3D distribution interstellar dust along the line of sight to parsec accuracy, (b) constrain the composition and grain size distribution of ISM dust in each of the clouds towards the source, (c) measure the distance to the X-ray source, (d) constrain the velocity dispersion of molecular clouds and (e) search for evidence of streaming velocities by combing X-ray and CO data on the clouds.
de Jonge, Martin D.; Ryan, Christopher G.; Jacobsen, Chris J.
2014-01-01
X-ray nanoprobes require coherent illumination to achieve optic-limited resolution, and so will benefit directly from diffraction-limited storage rings. Here, the example of high-resolution X-ray fluorescence tomography is focused on as one of the most voracious demanders of coherent photons, since the detected signal is only a small fraction of the incident flux. Alternative schemes are considered for beam delivery, sample scanning and detectors. One must consider as well the steps before and after the X-ray experiment: sample preparation and examination conditions, and analysis complexity due to minimum dose requirements and self-absorption. By understanding the requirements and opportunities for nanoscale fluorescence tomography, one gains insight into the R&D challenges in optics and instrumentation needed to fully exploit the source advances that diffraction-limited storage rings offer. PMID:25177992
Investigating the Nuclear Activity of Barred Spiral Galaxies: The Case of NGC 1672
NASA Astrophysics Data System (ADS)
Jenkins, L. P.; Brandt, W. N.; Colbert, E. J. M.; Koribalski, B.; Kuntz, K. D.; Levan, A. J.; Ojha, R.; Roberts, T. P.; Ward, M. J.; Zezas, A.
2011-06-01
We have performed an X-ray study of the nearby barred spiral galaxy NGC 1672, primarily to ascertain the effect of the bar on its nuclear activity. We use both Chandra and XMM-Newton observations to investigate its X-ray properties, together with supporting high-resolution optical imaging data from the Hubble Space Telescope (HST), infrared imaging from the Spitzer Space Telescope, and Australia Telescope Compact Array ground-based radio data. We detect 28 X-ray sources within the D 25 area of the galaxy; many are spatially correlated with star formation in the bar and spiral arms, and two are identified as background galaxies in the HST images. Nine of the X-ray sources are ultraluminous X-ray sources, with the three brightest (LX > 5 × 1039 erg s-1) located at the ends of the bar. With the spatial resolution of Chandra, we are able to show for the first time that NGC 1672 possesses a hard (Γ ~ 1.5) nuclear X-ray source with a 2-10 keV luminosity of 4 × 1038 erg s-1. This is surrounded by an X-ray-bright circumnuclear star-forming ring, comprised of point sources and hot gas, which dominates the 2-10 keV emission in the central region of the galaxy. The spatially resolved multiwavelength photometry indicates that the nuclear source is a low-luminosity active galactic nucleus (LLAGN), but with star formation activity close to the central black hole. A high-resolution multiwavelength survey is required to fully assess the impact of both large-scale bars and smaller-scale phenomena such as nuclear bars, rings, and nuclear spirals on the fueling of LLAGN.
Investigating the Nuclear Activity of Barred Spiral Galaxies: The Case of NGC 1672
NASA Technical Reports Server (NTRS)
Jenkins, L. P.; Brandt, W. N.; Colbert, E. J.; Koribalski, B.; Kuntz, K. D.; Levan, A. J.; Ojha, R.; Roberts, T. P.; Ward, M. J.; Zezas, A.
2011-01-01
We have performed an X-ray study of the nearby barred spiral galaxy NGC 1672, primarily to ascertain the effect of the bar on its nuclear activity. We use both Chandra and XMM-Newton observations to investigate its X-ray properties, together with supporting high-resolution optical imaging data from the Hubble Space Telescope (HST) infrared imaging from the Spitzer Space Telescope, and Australia Telescope Compact Array ground-based radio data. We detect 28 X-ray sources within the D25 area of the galaxy; many are spatially correlated with star formation in the bar and spiral arms, and two are identified as background galaxies in the HST images. Nine of the X-ray sources are ultraluminous X-ray sources, with the three brightest (LX 5 * 10(exp 39) erg s(exp -1)) located at the ends of the bar. With the spatial resolution of Chandra, we are able to show for the first time that NGC 1672 possesses a hard (1.5) nuclear X-ray source with a 2-10 keV luminosity of 4 * 10(exp 38) erg s(exp -1). This is surrounded by an X-ray-bright circumnuclear star-forming ring, comprised of point sources and hot gas, which dominates the 2-10 keV emission in the central region of the galaxy. The spatially resolved multiwavelength photometry indicates that the nuclear source is a low-luminosity active galactic nucleus (LLAGN), but with star formation activity close to the central black hole. A high-resolution multiwavelength survey is required to fully assess the impact of both large-scale bars and smaller-scale phenomena such as nuclear bars, rings, and nuclear spirals on the fueling of LLAGN.
Hard X-Rays can BE Used to Visualize Cochlear Soft Tissue Displacements in a Closed Cochlea
NASA Astrophysics Data System (ADS)
Richter, C.-P.; Fishman, A.; Fan, L.; Shintani, S.; Rau, C.
2009-02-01
Experiments were made at the Advanced Photon Source (APS), Argonne National Laboratory. The APS is a synchrotron radiation source of the third generation, for which the particular characteristic is the highly coherent X-ray radiation. X-rays are generated with an undulator, inserted in a straight section of the storage ring. Images taken with hard X-rays at full field. A video flow algorithm by Lucas and Kanade was used to determine and quantify cochlear soft tissue displacements. The results show that displacements as low as 100 nm could be visualized.
Observation and theory of X-ray mirages
Magnitskiy, Sergey; Nagorskiy, Nikolay; Faenov, Anatoly; Pikuz, Tatiana; Tanaka, Mamoko; Ishino, Masahiko; Nishikino, Masaharu; Fukuda, Yuji; Kando, Masaki; Kawachi, Tetsuya; Kato, Yoshiaki
2013-01-01
The advent of X-ray lasers allowed the realization of compact coherent soft X-ray sources, thus opening the way to a wide range of applications. Here we report the observation of unexpected concentric rings in the far-field beam profile at the output of a two-stage plasma-based X-ray laser, which can be considered as the first manifestation of a mirage phenomenon in X-rays. We have developed a method of solving the Maxwell–Bloch equations for this problem, and find that the experimentally observed phenomenon is due to the emergence of X-ray mirages in the plasma amplifier, appearing as phase-matched coherent virtual point sources. The obtained results bring a new insight into the physical nature of amplification of X-ray radiation in laser-induced plasma amplifiers and open additional opportunities for X-ray plasma diagnostics and extreme ultraviolet lithography. PMID:23733009
Observation and theory of X-ray mirages.
Magnitskiy, Sergey; Nagorskiy, Nikolay; Faenov, Anatoly; Pikuz, Tatiana; Tanaka, Mamoko; Ishino, Masahiko; Nishikino, Masaharu; Fukuda, Yuji; Kando, Masaki; Kawachi, Tetsuya; Kato, Yoshiaki
2013-01-01
The advent of X-ray lasers allowed the realization of compact coherent soft X-ray sources, thus opening the way to a wide range of applications. Here we report the observation of unexpected concentric rings in the far-field beam profile at the output of a two-stage plasma-based X-ray laser, which can be considered as the first manifestation of a mirage phenomenon in X-rays. We have developed a method of solving the Maxwell-Bloch equations for this problem, and find that the experimentally observed phenomenon is due to the emergence of X-ray mirages in the plasma amplifier, appearing as phase-matched coherent virtual point sources. The obtained results bring a new insight into the physical nature of amplification of X-ray radiation in laser-induced plasma amplifiers and open additional opportunities for X-ray plasma diagnostics and extreme ultraviolet lithography.
BioCARS: a synchrotron resource for time-resolved X-ray science
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graber, T.; Anderson, S.; Brewer, H.
2011-08-16
BioCARS, a NIH-supported national user facility for macromolecular time-resolved X-ray crystallography at the Advanced Photon Source (APS), has recently completed commissioning of an upgraded undulator-based beamline optimized for single-shot laser-pump X-ray-probe measurements with time resolution as short as 100 ps. The source consists of two in-line undulators with periods of 23 and 27 mm that together provide high-flux pink-beam capability at 12 keV as well as first-harmonic coverage from 6.8 to 19 keV. A high-heat-load chopper reduces the average power load on downstream components, thereby preserving the surface figure of a Kirkpatrick-Baez mirror system capable of focusing the X-ray beammore » to a spot size of 90 {micro}m horizontal by 20 {micro}m vertical. A high-speed chopper isolates single X-ray pulses at 1 kHz in both hybrid and 24-bunch modes of the APS storage ring. In hybrid mode each isolated X-ray pulse delivers up to {approx}4 x 10{sup 10} photons to the sample, thereby achieving a time-averaged flux approaching that of fourth-generation X-FEL sources. A new high-power picosecond laser system delivers pulses tunable over the wavelength range 450-2000 nm. These pulses are synchronized to the storage-ring RF clock with long-term stability better than 10 ps RMS. Monochromatic experimental capability with Biosafety Level 3 certification has been retained.« less
Photon-in photon-out hard X-ray spectroscopy at the Linac Coherent Light Source
Alonso-Mori, Roberto; Sokaras, Dimosthenis; Zhu, Diling; ...
2015-04-15
X-ray free-electron lasers (FELs) have opened unprecedented possibilities to study the structure and dynamics of matter at an atomic level and ultra-fast timescale. Many of the techniques routinely used at storage ring facilities are being adapted for experiments conducted at FELs. In order to take full advantage of these new sources several challenges have to be overcome. They are related to the very different source characteristics and its resulting impact on sample delivery, X-ray optics, X-ray detection and data acquisition. Here it is described how photon-in photon-out hard X-ray spectroscopy techniques can be applied to study the electronic structure andmore » its dynamics of transition metal systems with ultra-bright and ultra-short FEL X-ray pulses. In particular, some of the experimental details that are different compared with synchrotron-based setups are discussed and illustrated by recent measurements performed at the Linac Coherent Light Source.« less
Frontiers of X-ray research at the Advanced Photon Source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dehmer, J.J.
1995-12-31
With providential timing, the Advanced Photon Source (APS) at Argonne National Laboratory has begun to produce x-rays during the centennial year of Wilhelm Rongtgen`s discovery of a {open_quotes}new kind of rays.{close_quotes} When complete, this third-generation, 7-GeV positron storage ring will produce nearly one hundred intense x-ray beams, with a major emphasis on the laser-like (highly collimated, locally coherent) beams from undulator sources. This talk will provide an overview of (1) the important properties of the synchrotron radiation to be produced by the APS, (2) the major classes of experimental approaches that use x-rays, and (3) some speculation on the impactsmore » of the APS on the materials, chemical, biological, and environmental sciences.« less
BioCARS: a synchrotron resource for time-resolved X-ray science
Graber, T.; Anderson, S.; Brewer, H.; Chen, Y.-S.; Cho, H. S.; Dashdorj, N.; Henning, R. W.; Kosheleva, I.; Macha, G.; Meron, M.; Pahl, R.; Ren, Z.; Ruan, S.; Schotte, F.; Šrajer, V.; Viccaro, P. J.; Westferro, F.; Anfinrud, P.; Moffat, K.
2011-01-01
BioCARS, a NIH-supported national user facility for macromolecular time-resolved X-ray crystallography at the Advanced Photon Source (APS), has recently completed commissioning of an upgraded undulator-based beamline optimized for single-shot laser-pump X-ray-probe measurements with time resolution as short as 100 ps. The source consists of two in-line undulators with periods of 23 and 27 mm that together provide high-flux pink-beam capability at 12 keV as well as first-harmonic coverage from 6.8 to 19 keV. A high-heat-load chopper reduces the average power load on downstream components, thereby preserving the surface figure of a Kirkpatrick–Baez mirror system capable of focusing the X-ray beam to a spot size of 90 µm horizontal by 20 µm vertical. A high-speed chopper isolates single X-ray pulses at 1 kHz in both hybrid and 24-bunch modes of the APS storage ring. In hybrid mode each isolated X-ray pulse delivers up to ∼4 × 1010 photons to the sample, thereby achieving a time-averaged flux approaching that of fourth-generation X-FEL sources. A new high-power picosecond laser system delivers pulses tunable over the wavelength range 450–2000 nm. These pulses are synchronized to the storage-ring RF clock with long-term stability better than 10 ps RMS. Monochromatic experimental capability with Biosafety Level 3 certification has been retained. PMID:21685684
Video-guided calibration of an augmented reality mobile C-arm.
Chen, Xin; Naik, Hemal; Wang, Lejing; Navab, Nassir; Fallavollita, Pascal
2014-11-01
The augmented reality (AR) fluoroscope augments an X-ray image by video and provides the surgeon with a real-time in situ overlay of the anatomy. The overlay alignment is crucial for diagnostic and intra-operative guidance, so precise calibration of the AR fluoroscope is required. The first and most complex step of the calibration procedure is the determination of the X-ray source position. Currently, this is achieved using a biplane phantom with movable metallic rings on its top layer and fixed X-ray opaque markers on its bottom layer. The metallic rings must be moved to positions where at least two pairs of rings and markers are isocentric in the X-ray image. The current "trial and error" calibration process currently requires acquisition of many X-ray images, a task that is both time consuming and radiation intensive. An improved process was developed and tested for C-arm calibration. Video guidance was used to drive the calibration procedure to minimize both X-ray exposure and the time involved. For this, a homography between X-ray and video images is estimated. This homography is valid for the plane at which the metallic rings are positioned and is employed to guide the calibration procedure. Eight users having varying calibration experience (i.e., 2 experts, 2 semi-experts, 4 novices) were asked to participate in the evaluation. The video-guided technique reduced the number of intra-operative X-ray calibration images by 89% and decreased the total time required by 59%. A video-based C-arm calibration method has been developed that improves the usability of the AR fluoroscope with a friendlier interface, reduced calibration time and clinically acceptable radiation doses.
Inverse compton light source: a compact design proposal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deitrick, Kirsten Elizabeth
In the last decade, there has been an increasing demand for a compact Inverse Compton Light Source (ICLS) which is capable of producing high-quality X-rays by colliding an electron beam and a high-quality laser. It is only in recent years when both SRF and laser technology have advanced enough that compact sources can approach the quality found at large installations such as the Advanced Photon Source at Argonne National Laboratory. Previously, X-ray sources were either high flux and brilliance at a large facility or many orders of magnitude lesser when produced by a bremsstrahlung source. A recent compact source wasmore » constructed by Lyncean Technologies using a storage ring to produce the electron beam used to scatter the incident laser beam. By instead using a linear accelerator system for the electron beam, a significant increase in X-ray beam quality is possible, though even subsequent designs also featuring a storage ring offer improvement. Preceding the linear accelerator with an SRF reentrant gun allows for an extremely small transverse emittance, increasing the brilliance of the resulting X-ray source. In order to achieve sufficiently small emittances, optimization was done regarding both the geometry of the gun and the initial electron bunch distribution produced off the cathode. Using double-spoke SRF cavities to comprise the linear accelerator allows for an electron beam of reasonable size to be focused at the interaction point, while preserving the low emittance that was generated by the gun. An aggressive final focusing section following the electron beam's exit from the accelerator produces the small spot size at the interaction point which results in an X-ray beam of high flux and brilliance. Taking all of these advancements together, a world class compact X-ray source has been designed. It is anticipated that this source would far outperform the conventional bremsstrahlung and many other compact ICLSs, while coming closer to performing at the levels found at large facilities than ever before. The design process, including the development between subsequent iterations, is presented here in detail, with the simulation results for this groundbreaking X-ray source.« less
NASA Technical Reports Server (NTRS)
2006-01-01
This false-color composite image shows the Cartwheel galaxy as seen by the Galaxy Evolution Explorer's far ultraviolet detector (blue); the Hubble Space Telescope's wide field and planetary camera 2 in B-band visible light (green); the Spitzer Space Telescope's infrared array camera at 8 microns (red); and the Chandra X-ray Observatory's advanced CCD imaging spectrometer-S array instrument (purple). Approximately 100 million years ago, a smaller galaxy plunged through the heart of Cartwheel galaxy, creating ripples of brief star formation. In this image, the first ripple appears as an ultraviolet-bright blue outer ring. The blue outer ring is so powerful in the Galaxy Evolution Explorer observations that it indicates the Cartwheel is one of the most powerful UV-emitting galaxies in the nearby universe. The blue color reveals to astronomers that associations of stars 5 to 20 times as massive as our sun are forming in this region. The clumps of pink along the outer blue ring are regions where both X-rays and ultraviolet radiation are superimposed in the image. These X-ray point sources are very likely collections of binary star systems containing a blackhole (called massive X-ray binary systems). The X-ray sources seem to cluster around optical/ultraviolet-bright supermassive star clusters. The yellow-orange inner ring and nucleus at the center of the galaxy result from the combination of visible and infrared light, which is stronger towards the center. This region of the galaxy represents the second ripple, or ring wave, created in the collision, but has much less star formation activity than the first (outer) ring wave. The wisps of red spread throughout the interior of the galaxy are organic molecules that have been illuminated by nearby low-level star formation. Meanwhile, the tints of green are less massive, older visible-light stars. Although astronomers have not identified exactly which galaxy collided with the Cartwheel, two of three candidate galaxies can be seen in this image to the bottom left of the ring, one as a neon blob and the other as a green spiral. Previously, scientists believed the ring marked the outermost edge of the galaxy, but the latest GALEX observations detect a faint disk, not visible in this image, that extends to twice the diameter of the ring.Kinoform optics applied to X-ray photon correlation spectroscopy.
Sandy, A R; Narayanan, S; Sprung, M; Su, J-D; Evans-Lutterodt, K; Isakovic, A F; Stein, A
2010-05-01
Moderate-demagnification higher-order silicon kinoform focusing lenses have been fabricated to facilitate small-angle X-ray photon correlation spectroscopy (XPCS) experiments. The geometric properties of such lenses, their focusing performance and their applicability for XPCS measurements are described. It is concluded that one-dimensional vertical X-ray focusing via silicon kinoform lenses significantly increases the usable coherent flux from third-generation storage-ring light sources for small-angle XPCS experiments.
X-ray grating interferometer for materials-science imaging at a low-coherent wiggler source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herzen, Julia; Physics Department and Institute for Medical Engineering, Technische Universitaet Muenchen, 85748 Garching; Donath, Tilman
2011-11-15
X-ray phase-contrast radiography and tomography enable to increase contrast for weakly absorbing materials. Recently, x-ray grating interferometers were developed that extend the possibility of phase-contrast imaging from highly brilliant radiation sources like third-generation synchrotron sources to non-coherent conventional x-ray tube sources. Here, we present the first installation of a three grating x-ray interferometer at a low-coherence wiggler source at the beamline W2 (HARWI II) operated by the Helmholtz-Zentrum Geesthacht at the second-generation synchrotron storage ring DORIS (DESY, Hamburg, Germany). Using this type of the wiggler insertion device with a millimeter-sized source allows monochromatic phase-contrast imaging of centimeter sized objects withmore » high photon flux. Thus, biological and materials-science imaging applications can highly profit from this imaging modality. The specially designed grating interferometer currently works in the photon energy range from 22 to 30 keV, and the range will be increased by using adapted x-ray optical gratings. Our results of an energy-dependent visibility measurement in comparison to corresponding simulations demonstrate the performance of the new setup.« less
Optimizing a synchrotron based x-ray lithography system for IC manufacturing
NASA Astrophysics Data System (ADS)
Kovacs, Stephen; Speiser, Kenneth; Thaw, Winston; Heese, Richard N.
1990-05-01
The electron storage ring is a realistic solution as a radiation source for production grade, industrial X-ray lithography system. Today several large scale plans are in motion to design and implement synchrotron storage rings of different types for this purpose in the USA and abroad. Most of the scientific and technological problems related to the physics, design and manufacturing engineering, and commissioning of these systems for microlithography have been resolved or are under extensive study. However, investigation on issues connected to application of Synchrotron Orbit Radiation (SOR ) in chip production environment has been somewhat neglected. In this paper we have filled this gap pointing out direct effects of some basic synchrotron design parameters and associated subsystems (injector, X-ray beam line) on the operation and cost of lithography in production. The following factors were considered: synchrotron configuration, injection energy, beam intensity variability, number of beam lines and wafer exposure concept. A cost model has been worked out and applied to three different X-ray Lithography Source (XLS) systems. The results of these applications are compared and conclusions drawn.
NASA Technical Reports Server (NTRS)
Savin, D. W.; Gwinner, G.; Schwalm, D.; Wolf, A.; Mueller, A.; Schippers, S.
2002-01-01
Low temperature dielectronic recombination (DR) is the dominant recombination mechanism for most ions in X-ray photoionized cosmic plasmas. Reliably modeling and interpreting spectra from these plasmas requires accurate low temperature DR rate Coefficients. Of particular importance are the DR rate coefficients for the iron L-shell ions (Fe XVII-Fe XXIV). These ions are predicted to play an important role in determining the thermal structure and line emission of X-ray photoionized plasmas, which form in the media surrounding accretion powered sources such as X-ray binaries (XRBs), active galactic nuclei (AGN), and cataclysmic variables (Savin et al., 2000). The need for reliable DR data of iron L-shell ions has become particularly urgent after the launches of Chandra and XMM-Newton. These satellites are now providing high-resolution X-ray spectra from a wide range of X-ray photoionized sources. Interpreting the spectra from these sources requires reliable DR rate coefficients. However, at the temperatures relevant, for X-ray photoionized plasmas, existing theoretical DR rate coefficients can differ from one another by factors of two to orders of magnitudes.
CARNAÚBA: The Coherent X-Ray Nanoprobe Beamline for the Brazilian Synchrotron SIRIUS/LNLS
NASA Astrophysics Data System (ADS)
Tolentino, Hélio C. N.; Soares, Márcio M.; Perez, Carlos A.; Vicentin, Flávio C.; Abdala, Dalton B.; Galante, Douglas; Teixeira, Verônica de C.; de Araújo, Douglas H. C.; Westfahl, Harry, Jr.
2017-06-01
The CARNAÚBA beamline is the tender-to-hard X-ray (2 - 15 keV) scanning nanoprobe planned for the 4th generation storage ring SIRIUS at the LNLS. CARNAÚBA uses an undulator source with vertical linear polarization in a low-beta straight section and grazing incidence-focusing mirrors to create a nanoprobe at 143 m from the source. The beamline optic is based on KB mirrors and provides high brilliance at an achromatic focal spot down to the diffraction limit diameter of ˜30 nm with a working distance of ˜6 cm. These characteristics are crucial for studying nanometric samples in experiments involving complex stages and environments. The CARNAÚBA beamline aims to perform raster scans using x-ray fluorescence, x-ray absorption spectroscopy, x-ray diffraction and coherent x-ray imaging techniques. Computed tomography will extend these methods to three dimensions.
Two-dimensional single crystal diamond refractive x-ray lens
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antipov, S., E-mail: s.antipov@euclidtechlabs.com; Baryshev, S. V.; Butler, J. E.
2016-07-27
The next generation light sources such as diffraction-limited storage rings and high repetition rate x-ray free-electron lasers will generate x-ray beams with significantly increased brilliance. These future machines will require X-ray optical components that are capable of handling higher instantaneous and average power densities while tailoring the properties of the x-ray beams for a variety of scientific experiments. Single crystal diamond is one of the best bulk materials for this application, because it is radiation hard, has a suitable uniform index of refraction and the best available thermal properties. In this paper we report on fabrication and experimental testing ofmore » a two-dimensional (2D) single crystal diamond compound refractive X-ray lenses (CRL). These lenses were manufactured using femto-second laser cutting and tested at the Advanced Photon Source of Argonne National Laboratory.« less
Chromaticity calculations and code comparisons for x-ray lithography source XLS and SXLS rings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parsa, Z.
1988-06-16
This note presents the chromaticity calculations and code comparison results for the (x-ray lithography source) XLS (Chasman Green, XUV Cosy lattice) and (2 magnet 4T) SXLS lattices, with the standard beam optic codes, including programs SYNCH88.5, MAD6, PATRICIA88.4, PATPET88.2, DIMAD, BETA, and MARYLIE. This analysis is a part of our ongoing accelerator physics code studies. 4 figs., 10 tabs.
Kumar, Narender; Rodrigues, G; Lakshmy, P S; Baskaran, R; Mathur, Y; Ahuja, R; Kanjilal, D
2014-02-01
A compact microwave ion source has been designed and developed for operation at a frequency of 2.45 GHz. The axial magnetic field is based on two permanent magnet rings, operating in the "off-resonance" mode and is tunable by moving the permanent magnets. In order to understand the electron energy distribution function, x-ray bremsstrahlung has been measured in the axial direction. Simulation studies on the x-ray bremsstrahlung have been carried out to compare with the experimental results. The effect of the axial magnetic field with respect to the microwave launching position and the position of the extraction electrode on the x-ray bremsstrahlung have been studied.
Development of a fluorescent x-ray source for medical imaging
NASA Astrophysics Data System (ADS)
Toyofuku, F.; Tokumori, K.; Nishimura, K.; Saito, T.; Takeda, T.; Itai, Y.; Hyodo, K.; Ando, M.; Endo, M.; Naito, H.; Uyama, C.
1995-02-01
A fluorescent x-ray source for medical imaging, such as K-edge subtraction angiography and monochromatic x-ray CT, has been developed. Using a 6.5 GeV accumulation ring in Tsukuba, fluorescent x rays, which range from about 30 to 70 keV are generated by irradiating several target materials. Measurements have been made of output intensities and energy spectra for different target angles and extraction angles. The intensities of fluorescent x rays at a 30 mA beam current are on the order of 1-3×106 photons/mm2/s at 30 cm from the local spot where the incident beam is collimated to 1 mm2. A phantom which contains three different contrast media (iodine, barium, gadolinium) was used for the K-edge energy subtraction, and element selective CT images were obtained.
Design Study of an MBA Lattice for the Advanced Photon Source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Decker, Glenn
2014-11-02
Recent interest in ultra-low-emittance designs for storage-ring-based synchrotron light sources has spurred a focused design effort on a multi-bend achromat (MBA) storage ring replacement for the Advanced Photon Source (APS). The APS is relatively large (1104 m circumference) and, as such, an upgrade to a fourth-generation storage ring holds the potential for a two to three order of magnitude enhancement of X-ray brightness due to the approximate inverse cubic scaling of emittance with the number of dipole bend magnets.
Review of third and next generation synchrotron light sources
NASA Astrophysics Data System (ADS)
Bilderback, Donald H.; Elleaume, Pascal; Weckert, Edgar
2005-05-01
Synchrotron radiation (SR) is having a very large impact on interdisciplinary science and has been tremendously successful with the arrival of third generation synchrotron x-ray sources. But the revolution in x-ray science is still gaining momentum. Even though new storage rings are currently under construction, even more advanced rings are under design (PETRA III and the ultra high energy x-ray source) and the uses of linacs (energy recovery linac, x-ray free electron laser) can take us further into the future, to provide the unique synchrotron light that is so highly prized for today's studies in science in such fields as materials science, physics, chemistry and biology, for example. All these machines are highly reliant upon the consequences of Einstein's special theory of relativity. The consequences of relativity account for the small opening angle of synchrotron radiation in the forward direction and the increasing mass an electron gains as it is accelerated to high energy. These are familiar results to every synchrotron scientist. In this paper we outline not only the origins of SR but discuss how Einstein's strong character and his intuition and excellence have not only marked the physics of the 20th century but provide the foundation for continuing accelerator developments into the 21st century.
Extremum seeking x-ray position feedback using power line harmonic leakage as the perturbation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zohar, S.; Kissick, D. J.; Venugopalan, N.
Small x-ray beam sizes necessary for probing nanoscale phenomena require exquisite stability to prevent data corruption by noise. One source of instability at synchrotron radiation x-ray beamlines is the slow detuning of x-ray optics to marginal alignment where the onset of clipping increases the beam's susceptibility to higher frequency position oscillations. In this article, we show that a 1 mu m amplitude horizontal x-ray beam oscillation driven by power line harmonic leakage into the electron storage ring can be used as perturbation for horizontal position extremum seeking feedback. Feedback performance is characterized by convergence to 1.5% away from maximum intensitymore » at optimal alignment.« less
Extremum seeking x-ray position feedback using power line harmonic leakage as the perturbation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zohar, S.; Kissick, D. J.; Venugopalan, N.
Small X-ray beam sizes necessary for probing nanoscale phenomena require exquisite stability to prevent data corruption by noise. One source of instability at synchrotron radiation X-ray beamlines is the slow detuning of X-ray optics to marginal alignment where the onset of clipping increases the beam’s susceptibility to higher frequency position oscillations. In this article, we show that a 1 µm amplitude horizontal X-ray beam oscillation driven by power line harmonic leakage into the electron storage ring can be used as perturbation for horizontal position extremum seeking feedback. Feedback performance is characterized by convergence to 1.5% away from maximum intensity atmore » optimal alignment.« less
Neutze, Richard
2014-07-17
X-ray free-electron lasers (XFELs) are revolutionary X-ray sources. Their time structure, providing X-ray pulses of a few tens of femtoseconds in duration; and their extreme peak brilliance, delivering approximately 10(12) X-ray photons per pulse and facilitating sub-micrometre focusing, distinguish XFEL sources from synchrotron radiation. In this opinion piece, I argue that these properties of XFEL radiation will facilitate new discoveries in life science. I reason that time-resolved serial femtosecond crystallography and time-resolved wide angle X-ray scattering are promising areas of scientific investigation that will be advanced by XFEL capabilities, allowing new scientific questions to be addressed that are not accessible using established methods at storage ring facilities. These questions include visualizing ultrafast protein structural dynamics on the femtosecond to picosecond time-scale, as well as time-resolved diffraction studies of non-cyclic reactions. I argue that these emerging opportunities will stimulate a renaissance of interest in time-resolved structural biochemistry.
Total x-ray power measurements in the Sandia LIGA program.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malinowski, Michael E.; Ting, Aili
2005-08-01
Total X-ray power measurements using aluminum block calorimetry and other techniques were made at LIGA X-ray scanner synchrotron beamlines located at both the Advanced Light Source (ALS) and the Advanced Photon Source (APS). This block calorimetry work was initially performed on the LIGA beamline 3.3.1 of the ALS to provide experimental checks of predictions of the LEX-D (LIGA Exposure- Development) code for LIGA X-ray exposures, version 7.56, the version of the code in use at the time calorimetry was done. These experiments showed that it was necessary to use bend magnet field strengths and electron storage ring energies different frommore » the default values originally in the code in order to obtain good agreement between experiment and theory. The results indicated that agreement between LEX-D predictions and experiment could be as good as 5% only if (1) more accurate values of the ring energies, (2) local values of the magnet field at the beamline source point, and (3) the NIST database for X-ray/materials interactions were used as code inputs. These local magnetic field value and accurate ring energies, together with NIST database, are now defaults in the newest release of LEX-D, version 7.61. Three dimensional simulations of the temperature distributions in the aluminum calorimeter block for a typical ALS power measurement were made with the ABAQUS code and found to be in good agreement with the experimental temperature data. As an application of the block calorimetry technique, the X-ray power exiting the mirror in place at a LIGA scanner located at the APS beamline 10 BM was measured with a calorimeter similar to the one used at the ALS. The overall results at the APS demonstrated the utility of calorimetry in helping to characterize the total X-ray power in LIGA beamlines. In addition to the block calorimetry work at the ALS and APS, a preliminary comparison of the use of heat flux sensors, photodiodes and modified beam calorimeters as total X-ray power monitors was made at the ALS, beamline 3.3.1. This work showed that a modification of a commercially available, heat flux sensor could result in a simple, direct reading beam power meter that could be a useful for monitoring total X-ray power in Sandia's LIGA exposure stations at the ALS, APS and Stanford Synchrotron Radiation Laboratory (SSRL).« less
X-Rays from Saturn and its Rings
NASA Technical Reports Server (NTRS)
Bhardwaj, Anil; Elsner, Ron F.; Waite, J. Hunter; Gladstone, G. Randall; Cravens, Tom E.; Ford, Peter G.
2005-01-01
In January 2004 Saturn was observed by Chandra ACIS-S in two exposures, 00:06 to 11:00 UT on 20 January and 14:32 UT on 26 January to 01:13 UT on 27 January. Each continuous observation lasted for about one full Saturn rotation. These observations detected an X-ray flare from the Saturn's disk and indicate that the entire Saturnian X-ray emission is highly variable -- a factor of $\\sim$4 variability in brightness in a week time. The Saturn X-ray flare has a time and magnitude matching feature with the solar X-ray flare, which suggests that the disk X-ray emission of Saturn is governed by processes happening on the Sun. These observations also unambiguously detected X-rays from Saturn's rings. The X-ray emissions from rings are present mainly in the 0.45-0.6 keV band centered on the atomic OK$\\alpha$ fluorescence line at 525 eV: indicating the production of X-rays due to oxygen atoms in the water icy rings. The characteristics of X-rays from Saturn's polar region appear to be statistically consistent with those from its disk X-rays, suggesting that X-ray emission from the polar cap region might be an extension of the Saturn disk X-ray emission.
ROSAT PSPC and HRI observations of the composite starburst/Seyfert 2 galaxy NGC 1672
NASA Technical Reports Server (NTRS)
Brandt, W. N.; Halpern, Jules P.; Iwasawa, K.
1995-01-01
The nearby barred spiral galaxy NGC 1672 has been observed with the Position Sensitive Proportional Counter (PSPC) and High Resolution Imager (HRI) instruments on board the ROSAT X-ray satellite. NGC 1672 is thought to have an obscured Seyfert nucleus, and it has strong starburst activity as well. Three bright X-ray sources with luminosities 1-2 x 10(exp 40) erg/s are clearly identified with NGC 1672. The strongest lies at the nucleus, and the other two lie at the ends of NGC 1672's prominent bar, locations that are also bright in H alpha and near-infrared images. The nuclear source is resolved by the HRI on about the scale of the recently identified nuclear ring, and one of the sources at the ends of the bar is also probably resolved. The X-ray spectrum of the nuclear source is quite soft, having a Raymond-Smith plasma temperature of approximately equals 0.7 keV and little evidence for intrinsic absorption. The ROSAT band X-ray flux of the nuclear source appears to be dominated not by X-ray binary emission but rather by diffuse gas emission. The absorption and emission properties of the sources, as well as their spatial extents, lead us to models of superbubbles driven by supernovae. However, the large density and emission measure of the nuclear X-ray source stretch the limits that can be comfortably accommodated by these models. We do not detect direct emission from the putative Seyfert nucleus, although an alternative model for the nuclear source is thermal emission from gas that is photoionized by a hidden Seyfert nucleus. The spectra of the other two X-ray sources are harder than that of the nuclear source, and have similar difficulties with regard to superbubble models.
Single-crystal diamond refractive lens for focusing X-rays in two dimensions.
Antipov, S; Baryshev, S V; Butler, J E; Antipova, O; Liu, Z; Stoupin, S
2016-01-01
The fabrication and performance evaluation of single-crystal diamond refractive X-ray lenses of which the surfaces are paraboloids of revolution for focusing X-rays in two dimensions simultaneously are reported. The lenses were manufactured using a femtosecond laser micromachining process and tested using X-ray synchrotron radiation. Such lenses were stacked together to form a standard compound refractive lens (CRL). Owing to the superior physical properties of the material, diamond CRLs could become indispensable wavefront-preserving primary focusing optics for X-ray free-electron lasers and the next-generation synchrotron storage rings. They can be used for highly efficient refocusing of the extremely bright X-ray sources for secondary optical schemes with limited aperture such as nanofocusing Fresnel zone plates and multilayer Laue lenses.
Single-crystal diamond refractive lens for focusing X-rays in two dimensions
Antipov, S.; Baryshev, S. V.; Butler, J. E.; Antipova, O.; Liu, Z.; Stoupin, S.
2016-01-01
The fabrication and performance evaluation of single-crystal diamond refractive X-ray lenses of which the surfaces are paraboloids of revolution for focusing X-rays in two dimensions simultaneously are reported. The lenses were manufactured using a femtosecond laser micromachining process and tested using X-ray synchrotron radiation. Such lenses were stacked together to form a standard compound refractive lens (CRL). Owing to the superior physical properties of the material, diamond CRLs could become indispensable wavefront-preserving primary focusing optics for X-ray free-electron lasers and the next-generation synchrotron storage rings. They can be used for highly efficient refocusing of the extremely bright X-ray sources for secondary optical schemes with limited aperture such as nanofocusing Fresnel zone plates and multilayer Laue lenses. PMID:26698059
Single-crystal diamond refractive lens for focusing X-rays in two dimensions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antipov, S.; Baryshev, Sergey; Butler, J. E.
2016-01-01
The fabrication and performance evaluation of single-crystal diamond refractive X-ray lenses of which the surfaces are paraboloids of revolution for focusing X-rays in two dimensions simultaneously are reported. The lenses were manufactured using a femtosecond laser micromachining process and tested using X-ray synchrotron radiation. Such lenses were stacked together to form a standard compound refractive lens (CRL). Owing to the superior physical properties of the material, diamond CRLs could become indispensable wavefront-preserving primary focusing optics for X-ray free-electron lasers and the next-generation synchrotron storage rings. They can be used for highly efficient refocusing of the extremely bright X-ray sources formore » secondary optical schemes with limited aperture such as nanofocusing Fresnel zone plates and multilayer Laue lenses.« less
Investigating The Nuclear Activity Of Barred Spirals: The case of NGC 1672
NASA Astrophysics Data System (ADS)
Jenkins, Leigh; Brandt, N.; Colbert, E.; Levan, A.; Roberts, T.; Ward, M.; Zezas, A.
2008-03-01
We present new results from Chandra and XMM-Newton X-ray observations of the nearby barred spiral galaxy NGC1672. It shows dramatic nuclear and extra-nuclear star formation activity, including starburst regions located either end of its prominent bar. Using new X-ray imaging and spectral information, together with supporting multiwavelength data, we show for the first time that NGC1672 possesses a faint, hard, central X-ray source surrounded by a circumnuclear starburst ring that dominates the X-ray emission in the region, presumably triggered and sustained by gas and dust driven inwards along the galactic bar. The faint central source may represent low-level AGN activity, or alternatively emission associated with star-formation in the nucleus. More generally, we present some preliminary results on a Chandra archival search for low-luminosity AGN activity in barred galaxies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-06-01
Proposed action is to construct at BNL a 5,600-ft[sup 2] support building, install and operate a prototypic 200 MeV accelerator and a prototypic 700 MeV storage ring within, and to construct and operate a 15 kV substation to power the building. The accelerator and storage ring would comprise the x-ray lithography source or XLS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-06-01
Proposed action is to construct at BNL a 5,600-ft{sup 2} support building, install and operate a prototypic 200 MeV accelerator and a prototypic 700 MeV storage ring within, and to construct and operate a 15 kV substation to power the building. The accelerator and storage ring would comprise the x-ray lithography source or XLS.
On the influence of monochromator thermal deformations on X-ray focusing
Antimonov, M. A.; Khounsary, A. M.; Sandy, A. R.; ...
2016-03-02
A cooled double crystal monochromator system is used on many high heat load X-ray synchrotron radiation beamlines in order to select, by diffraction, a narrow spectrum of the beam. Thermal deformation of the first crystal monochromator – and the potential loss of beam brightness – is often a concern. However, if downstream beam focusing is planned, the lensing effect of the monochromator must be considered even if thermal deformations are small. In this paper we report on recent experiments at an Advanced Photon Source (APS) beamline that focuses the X-ray beam using compound refractive lenses downstream of an X-ray monochromatormore » system. Increasing the X-ray beam power by increasing the storage ring current from 100 mA to 130 mA resulted in an effective doubling of the focal distance. We show quantitatively that this is due to a lensing effect of the distorted monochromator that results in the creation of a virtual source downstream of the actual source. Lastly, an analysis of the defocusing and options to mitigate this effect are explored.« less
NATIONAL SYNCHROTRON LIGHT SOURCE ACTIVITY REPORT 1998.
DOE Office of Scientific and Technical Information (OSTI.GOV)
ROTHMAN,E.
1999-05-01
In FY 1998, following the 50th Anniversary Year of Brookhaven National Laboratory, Brookhaven Science Associates became the new Managers of BNL. The new start is an appropriate time to take stock of past achievements and to renew or confirm future goals. During the 1998 NSLS Annual Users Meeting (described in Part 3 of this Activity Report), the DOE Laboratory Operations Board, Chaired by the Under Secretary for Energy, Ernest Moniz met at BNL. By chance all the NSLS Chairmen except Martin Blume (acting NSLS Chair 84-85) were present as recorded in the picture. Under their leadership the NSLS has improvedmore » dramatically: (1) The VUV Ring current has increased from 100 mA in October 1982 to nearly 1 A today. For the following few years 10 Ahrs of current were delivered most weeks - NSLS now exceeds that every day. (2) When the first experiments were performed on the X-ray ring during FY1985 the electron energy was 2 GeV and the current up to 100 mA - the X-Ray Ring now runs routinely at 2.5 GeV and at 2.8 GeV with up to 350 mA of current, with a very much longer beam half-life and improved reliability. (3) Starting in FY 1984 the proposal for the Phase II upgrade, mainly for a building extension and a suite of insertion devices and their associated beamlines, was pursued - the promises were delivered in full so that for some years now the NSLS has been running with two undulators in the VUV Ring and three wigglers and an undulator in the X-Ray Ring. In addition two novel insertion devices have been commissioned in the X13 straight. (4) At the start of FY 1998 the NSLS welcomed its 7000th user - attracted by the opportunity for pursuing research with high quality beams, guaranteed not to be interrupted by 'delivery failures', and welcomed by an efficient and caring user office and first class teams of PRT and NSLS staff. R & D have lead to the possibility of running the X-Ray Ring at the higher energy of 2.8 GeV. Figure 1 shows the first user beam, which was provided thereafter for half of the running time in FY 1998. In combination with the development of narrow gap undulators this mode opens the possibility of new undulators which could produce hard X-rays in the fundamental, perhaps up to 10 keV. On 27 September 1998, a low horizontal emittance lattice became operational at 2.584 GeV. This results in approximately a 50% decrease in the horizontal beam-size on dipole bending magnet beamlines, and somewhat less of a decrease on the insertion device lines. The beam lifetime is not degraded by the low emittance lattice. This represents an important achievement, enhancing for all users the x-ray ring brightness. The reduced horizontal emittance electron beam will produce brighter x-ray beams for all the beamlines, both bending magnets and insertion devices, adding to other recent increases in the X-Ray ring brightness. During FY 1999 users will gain experience of the new running mode and plans are in place to do the same at 2.8GeV during further studies sessions. Independent evidence of the reduced emittance is shown in Figure 2. This is a pinhole camera scan showing the X-ray beam profile, obtained on the diagnostic beamline X28. Finally, work has begun to update and refine the proposal of the Phase III upgrade endorsed by the Birgeneau panel and BESAC last year. With the whole NSLS facility in teenage years and with many demonstrated enhancements available, the time has come to herald in the next stage of life at the Light Source.« less
An X-ray look at the first head-trail nebula in an X-ray binary
NASA Astrophysics Data System (ADS)
Soleri, Paolo
2011-09-01
Head-tail trails are a common feature in active galactic nuclei and pulsar bow-shocks. Heinz et al. (2008) suggested that also X-ray binaries, being jet sources moving with high velocities in dense media, can leave trails of highly ionized plasma that should be detectable at radio frequencies. During bservations of faint-persistent X-ray binaries, we discovered an optical nebula around the X-ray binary SAX J1712.6-3739, consisting of a bow-shock ring-like nebula in front of the binary and two trails originating close to it. This is the first detection of such structure in a X-ray binary and it opens a new sub-field in the study of these objects. Observations with XMM-Newton and Chandra are now needed to investigate the properties of the surrounding nebula.
An X-ray look at the first head-trail nebula in an X-ray binary
NASA Astrophysics Data System (ADS)
Soleri, Paolo
2010-10-01
Head-tail trails are a common feature in active galactic nuclei and pulsar bow-shocks. Heinz et al. (2008) suggested that also X-ray binaries, being jet sources moving with high velocities in dense media, can leave trails of highly ionized plasma that should be detectable at radio frequencies. During observations of faint-persistent X-ray binaries, we discovered an optical nebula around the X-ray binary SAX J1712.6-3739, consisting of a bow-shock ring-like nebula ``in front'' of the binary and two trails originating close to it. This is the first detection of such structure in a X-ray binary and it opens a new sub-field in the study of these objects. Observations with XMM-Newton and Chandra are now needed to investigate the properties of the surrounding nebula.
AXAF VETA-I mirror ring focus measurements
NASA Technical Reports Server (NTRS)
Tananbaum, H. D.; Zhao, P.
1994-01-01
The AXAF VETA-I mirror ring focus measurements were made with an HRI (microchannel plate) X-ray detector. The ring focus is a sharply focused ring formed by X-rays before they reach the VEAT-I focal plane. It is caused by spherical aberrations due to the finite source distance and the despace in the VETA-I test. The ring focus test reveals some aspects fo the test system distortions and the mirror surface figure which are difficult or impossible to detect at the focal plane. The test results show periodic modulations of the ring radius and width which could be caused by gravity, thermal, and/or epoxy shrinkage distortions. The strongest component of the modulation had a 12-fold symmetry, because these distortions were exerted on the mirror through 12 flexures of the VETA-I mount. Ring focus models were developed to simulate the ring image. The models were compared with the data to understand the test system distortions and the mirror glass imperfection. Further studies will be done to complete this work. The ring focus measurement is a very powerful test. We expect that a similar test for the finally assembled mirror of AXAD-I will be highly valuable.
Template For Aiming An X-Ray Machine
NASA Technical Reports Server (NTRS)
Morphet, W. J.
1994-01-01
Relatively inexpensive template helps in aligning x-ray machine with phenolic ring to be inspected for flaws. Phenolic ring in original application part of rocket nozzle. Concept also applicable to x-ray inspection of other rings. Template contains alignment holes for adjusting orientation, plus target spot for adjusting lateral position, of laser spotting beam. (Laser spotting beam coincides with the x-ray beam, turned on later, after alignment completed.) Use of template decreases positioning time and error, providing consistent sensitivity for detection of flaws.
NASA Technical Reports Server (NTRS)
Flynn, G. J.; Sutton, S. R.
1989-01-01
Trace element analyses were performed on bulk cosmic dust particles by Proton Induced X Ray Emission (PIXE) and Synchrotron X Ray Fluorescence (SXRF). When present at or near chondritic abundances the trace elements K, Ti, Cr, Mn, Cu, Zn, Ga, Ge, Se, and Br are presently detectable by SXRF in particles of 20 micron diameter. Improvements to the SXRF analysis facility at the National Synchrotron Light Source presently underway should increase the range of detectable elements and permit the analysis of smaller samples. In addition the Advanced Photon Source will be commissioned at Argonne National Laboratory in 1995. This 7 to 8 GeV positron storage ring, specifically designed for high-energy undulator and wiggler insertion devices, will be an ideal source for an x ray microprobe with one micron spatial resolution and better than 100 ppb elemental sensitivity for most elements. Thus trace element analysis of individual micron-sized grains should be possible by the time of the comet nucleus sample return mission.
Coherent x-ray zoom condenser lens for diffractive and scanning microscopy.
Kimura, Takashi; Matsuyama, Satoshi; Yamauchi, Kazuto; Nishino, Yoshinori
2013-04-22
We propose a coherent x-ray zoom condenser lens composed of two-stage deformable Kirkpatrick-Baez mirrors. The lens delivers coherent x-rays with a controllable beam size, from one micrometer to a few tens of nanometers, at a fixed focal position. The lens is suitable for diffractive and scanning microscopy. We also propose non-scanning coherent diffraction microscopy for extended objects by using an apodized focused beam produced by the lens with a spatial filter. The proposed apodized-illumination method will be useful in highly efficient imaging with ultimate storage ring sources, and will also open the way to single-shot coherent diffraction microscopy of extended objects with x-ray free-electron lasers.
Short x-ray pulse generation using deflecting cavities at the Advanced Photon Source.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sajaev, V.; Borland, M.; Chae, Y.-C.
2007-11-11
Storage-ring-based third-generation light sources can provide intense radiation pulses with durations as short as 100 ps. However, there is growing interest within the synchrotron radiation user community in performing experiments with much shorter X-ray pulses. Zholents et al. [Nucl. Instr. and Meth. A 425 (1999) 385] recently proposed using RF orbit deflection to generate sub-ps X-ray pulses. In this scheme, two deflecting cavities are used to deliver a longitudinally dependent vertical kick to the beam. An optical slit can then be used to slice out a short part of the radiation pulse. Implementation of this scheme is planned for onemore » APS beamline in the near future. In this paper, we summarize our feasibility study of this method and the expected X-ray beam parameters. We find that a pulse length of less than two picoseconds can be achieved.« less
The Status of the Taiwan Photon Source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuo, C. C.; Wang, J. P.; Chen, J. R.
2010-06-23
NSRRC has been operating a 1.5 GeV synchrotron light source, the Taiwan Light Source (TLS), for over 15 years and has established a large user community. For the future development of synchrotron radiation research in Taiwan, a feasibility study report to construct a 3.0 GeV low-emittance storage ring, the Taiwan Photon Source (TPS), was issued in July 2005. The government approval of the TPS project was obtained in December 2007 and the machine will be built at current site of NSRRC. The project has progressed steadily since and reached several major milestones now: the architect firm has finished the sitemore » plan and civil design, the accelerator design has been fixed, and purchase of long-lead items begins its course. The TPS storage ring has a circumference of 518.4 meters with a concentric booster of 496.8 meters. The storage ring adopted a 24-cell double-bend structure with a 1.6 nm-rad natural emittance. There are six 12-m and eighteen 7-m ID straights. For user research, five new beamlines have been selected for the Phase I operations: the micro protein crystallography, the materials sub-micron diffraction, the inelastic soft x-ray scattering, the coherent x-ray scattering, and the nano probe beamlines. The civil construction is getting ready to start. The commissioning of the TPS storage ring is targeted for 2013.« less
Looking for Dust-Scattering Light Echoes
NASA Astrophysics Data System (ADS)
Mills, Brianna; Heinz, Sebastian; Corrales, Lia
2018-01-01
Galactic X-ray transient sources such as neutron stars or black holes sometimes undergo an outburst in X-rays. Ring structures have been observed around three such sources, produced by the X-ray photons being scattered by interstellar dust grains along our line of sight. These dust-scattering light echoes have proven to be a useful tool for measuring and constraining Galactic distances, mapping the dust structure of the Milky Way, and determining the dust composition in the clouds producing the echo. Detectable light echoes require a sufficient quantity of dust along our line of sight, as well as bright, short-lived Galactic X-ray flares. Using data from the Monitor of All-Sky X-ray Image (MAXI) on-board the International Space Station, we ran a peak finding algorithm in Python to look for characteristic flare events. Each flare was characterized by its fluence, the integrated flux of the flare over time. We measured the distribution of flare fluences to show how many observably bright flares were recorded by MAXI. This work provides a parent set for dust echo searches in archival X-ray data and will inform observing strategies with current and future X-ray missions such as Athena and Lynx.
Perspectives on micropole undulators in synchrotron radiation technology
NASA Astrophysics Data System (ADS)
Tatchyn, Roman; Csonka, Paul; Toor, Arthur
1989-07-01
Micropole undulators promise to advance synchrotron radiation (SR) technology in two distinct ways. The first is in the development of economical, low-energy storage rings, or linacs, as soft x-ray sources, and the second is in the opening up of gamma-ray spectral ranges on high-energy storage rings. In this paper the promise and current status of micropole undulator (MPU) technology are discussed, and a review of some practical obstacles to the implementation of MPU's on present-day storage rings is given. Some successful results of recent performance measurements of micropole undulators on the Lawrence Livermore National Laboratory linac are briefly summarized.
X-Ray Absorption Toward the Einstein Ring Source PKS 1830-211
NASA Technical Reports Server (NTRS)
Mathur, Smita; Nair, Sunita
1997-01-01
PKS 1830-211 is an unusually radio-loud gravitationally lensed quasar. In the radio spectrum, the system appears as two compact, dominant features surrounded by relatively extended radio emission that forms an Einstein ring. As the line of sight to it passes close to our Galactic center, PKS 1830-211 has not been detected in wave bands other than the radio and X-ray so far. Here we present X-ray data of PKS 1830-211 observed with ROSAT Position Sensitive Proportional Counter. The X-ray spectrum shows that absorption in excess of the Galactic contribution is highly likely, which at the redshift of the lensing galaxy (z(sub t)=0.886) corresponds to N(sub H)=3.5((sup 0.6)(sub -0.5))x10(exp 22) atoms sq cm. The effective optical extinction is large, A(sub V)(observed) is greater than or approximately 5.8. When corrected for this additional extinction, the two-point optical to X-ray slope alpha(sub ox) of PKS 1830-211 lies just within the observed range of quasars. It is argued here that both compact images must be covered by the X-ray absorber(s) that we infer to be the lensing galaxy (galaxies). The dust-to-gas ratio along the line of sight within the lensing galaxy is likely to be somewhat larger than for our Galaxy.
Physics issues in diffraction limited storage ring design
NASA Astrophysics Data System (ADS)
Fan, Wei; Bai, ZhengHe; Gao, WeiWei; Feng, GuangYao; Li, WeiMin; Wang, Lin; He, DuoHui
2012-05-01
Diffraction limited electron storage ring is considered a promising candidate for future light sources, whose main characteristics are higher brilliance, better transverse coherence and better stability. The challenge of diffraction limited storage ring design is how to achieve the ultra low beam emittance with acceptable nonlinear performance. Effective linear and nonlinear parameter optimization methods based on Artificial Intelligence were developed for the storage ring physical design. As an example of application, partial physical design of HALS (Hefei Advanced Light Source), which is a diffraction limited VUV and soft X-ray light source, was introduced. Severe emittance growth due to the Intra Beam Scattering effect, which is the main obstacle to achieve ultra low emittance, was estimated quantitatively and possible cures were discussed. It is inspiring that better performance of diffraction limited storage ring can be achieved in principle with careful parameter optimization.
HIGH-ENERGY X-RAY PINHOLE CAMERA FOR HIGH-RESOLUTION ELECTRON BEAM SIZE MEASUREMENTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, B.; Morgan, J.; Lee, S.H.
The Advanced Photon Source (APS) is developing a multi-bend achromat (MBA) lattice based storage ring as the next major upgrade, featuring a 20-fold reduction in emittance. Combining the reduction of beta functions, the electron beam sizes at bend magnet sources may be reduced to reach 5 – 10 µm for 10% vertical coupling. The x-ray pinhole camera currently used for beam size monitoring will not be adequate for the new task. By increasing the operating photon energy to 120 – 200 keV, the pinhole camera’s resolution is expected to reach below 4 µm. The peak height of the pinhole imagemore » will be used to monitor relative changes of the beam sizes and enable the feedback control of the emittance. We present the simulation and the design of a beam size monitor for the APS storage ring.« less
Challenges for Synchrotron X-Ray Optics
NASA Astrophysics Data System (ADS)
Freund, Andreas K.
2002-12-01
It is the task of x-ray optics to adapt the raw beam generated by modern sources such as synchrotron storage rings to a great variety of experimental requirements in terms of intensity, spot size, polarization and other parameters. The very high quality of synchrotron radiation (source size of a few microns and beam divergence of a few micro-radians) and the extreme x-ray flux (power of several hundred Watts in a few square mm) make this task quite difficult. In particular the heat load aspect is very important in the conditioning process of the brute x-ray power to make it suitable for being used on the experimental stations. Cryogenically cooled silicon crystals and water-cooled diamond crystals can presently fulfill this task, but limits will soon be reached and new schemes and materials must be envisioned. A major tendency of instrument improvement has always been to concentrate more photons into a smaller spot utilizing a whole variety of focusing devices such as Fresnel zone plates, refractive lenses and systems based on bent surfaces, for example, Kirkpatrick-Baez systems. Apart from the resistance of the sample, the ultimate limits are determined by the source size and strength on one side, by materials properties, cooling, mounting and bending schemes on the other side, and fundamentally by the diffraction process. There is also the important aspect of coherence that can be both a nuisance and a blessing for the experiments, in particular for imaging techniques. Its conservation puts additional constraints on the quality of the optical elements. The overview of the present challenges includes the properties of present and also mentions aspects of future x-ray sources such as the "ultimate" storage ring and free electron lasers. These challenges range from the thermal performances of monochromators to the surface quality of mirrors, from coherence preservation of modern multilayers to short pulse preservation by crystals, and from micro- and nano-focusing techniques to the accuracy and stability of mechanical supports.
The MAX IV storage ring project
Tavares, Pedro F.; Leemann, Simon C.; Sjöström, Magnus; Andersson, Åke
2014-01-01
The MAX IV facility, currently under construction in Lund, Sweden, features two electron storage rings operated at 3 GeV and 1.5 GeV and optimized for the hard X-ray and soft X-ray/VUV spectral ranges, respectively. A 3 GeV linear accelerator serves as a full-energy injector into both rings as well as a driver for a short-pulse facility, in which undulators produce X-ray pulses as short as 100 fs. The 3 GeV ring employs a multibend achromat (MBA) lattice to achieve, in a relatively short circumference of 528 m, a bare lattice emittance of 0.33 nm rad, which reduces to 0.2 nm rad as insertion devices are added. The engineering implementation of the MBA lattice raises several technological problems. The large number of strong magnets per achromat calls for a compact design featuring small-gap combined-function magnets grouped into cells and sharing a common iron yoke. The small apertures lead to a low-conductance vacuum chamber design that relies on the chamber itself as a distributed copper absorber for the heat deposited by synchrotron radiation, while non-evaporable getter (NEG) coating provides for reduced photodesorption yields and distributed pumping. Finally, a low main frequency (100 MHz) is chosen for the RF system yielding long bunches, which are further elongated by passively operated third-harmonic Landau cavities, thus alleviating collective effects, both coherent (e.g. resistive wall instabilities) and incoherent (intrabeam scattering). In this paper, we focus on the MAX IV 3 GeV ring and present the lattice design as well as the engineering solutions to the challenges inherent to such a design. As the first realisation of a light source based on the MBA concept, the MAX IV 3 GeV ring offers an opportunity for validation of concepts that are likely to be essential ingredients of future diffraction-limited light sources. PMID:25177978
Comparison of ring-focus image profile with predictions for the AXAF VETA-I test
NASA Technical Reports Server (NTRS)
Zissa, David E.
1993-01-01
The X-ray test of the largest pair of nearly cylindrical mirrors for the Advanced X-ray Astrophysics Facility (AXAF) was completed in October 1991 at Marshall Space Flight Center. The test assembly was named the Verification Engineering Test Article I (VETA-I). The ring-focus portion of the test measured the imaging quality of azimuthal sections of VETA-I. This gives information about the core of the on-orbit image. The finite source distance, VETA-I mirror spacing, and VETA-I structural deformation caused the core of the image to be spread over a diameter of nearly 4 arc seconds at the VETA-I overall focus. The results of a preliminary analysis of the ring-focus data and the implications for the on-orbit image of the telescope are discussed. An upper limit for the on-orbit encircled-energy fraction at 1 arc second diameter was determined to be 0.82 at 0.277 keV X-ray energy. This assumes that the bottoms of the mirrors in the VETA-I arrangement are representative of the mirror surfaces and that the on-orbit system would be aligned using a combination of preliminary measurements and predictions for the mirror surface shapes.
Future Synchrotron Light Sources Based on Ultimate Storage Rings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, Yunhai; /SLAC
2012-04-09
The main purpose of this talk is to describe how far one might push the state of the art in storage ring design. The talk will start with an overview of the latest developments and advances in the design of synchrotron light sources based on the concept of an 'ultimate' storage ring. The review will establish how bright a ring based light source might be, where the frontier of technological challenges are, and what the limits of accelerator physics are. Emphasis will be given to possible improvements in accelerator design and developments in technology toward the goal of achieving anmore » ultimate storage ring. An ultimate storage ring (USR), defined as an electron ring-based light source having an emittance in both transverse planes at the diffraction limit for the range of X-ray wavelengths of interest for a scientific community, would provide very high brightness photons having high transverse coherence that would extend the capabilities of X-ray imaging and probe techniques beyond today's performance. It would be a cost-effective, high-coherence 4th generation light source, competitive with one based on energy recovery linac (ERL) technology, serving a large number of users studying material, chemical, and biological sciences. Furthermore, because of the experience accumulated over many decades of ring operation, it would have the great advantage of stability and reliability. In this paper we consider the design of an USR having 10-pm-rad emittance. It is a tremendous challenge to design a storage ring having such an extremely low emittance, a factor of 100 smaller than those in existing light sources, especially such that it has adequate dynamic aperture and beam lifetime. In many ultra-low emittance designs, the injection acceptances are not large enough for accumulation of the electron beam, necessitating on-axis injection where stored electron bunches are completely replaced with newly injected ones. Recently, starting with the MAX-IV 7-bend achromatic cell, we have made significant progress with the design of PEP-X, a USR that would inhabit the decommissioned PEP-II tunnel at SLAC. The enlargement of the dynamic aperture is largely a result of the cancellations of the 4th-order resonances in the 3rd-order achromats and the effective use of lattice optimization programs. In this paper, we will show those cancellations of the 4th-order resonances using an analytical approach based on the exponential Lie operators and the Poisson brackets. Wherever possible, our analytical results will be compared with their numerical counterparts. Using the derived formulae, we will construct 4th-order geometric achromats and use them as modules for the lattice of the PEP-X USR, noting that only geometric terms are canceled to the 4th order.« less
Main functions, recent updates, and applications of Synchrotron Radiation Workshop code
NASA Astrophysics Data System (ADS)
Chubar, Oleg; Rakitin, Maksim; Chen-Wiegart, Yu-Chen Karen; Chu, Yong S.; Fluerasu, Andrei; Hidas, Dean; Wiegart, Lutz
2017-08-01
The paper presents an overview of the main functions and new application examples of the "Synchrotron Radiation Workshop" (SRW) code. SRW supports high-accuracy calculations of different types of synchrotron radiation, and simulations of propagation of fully-coherent radiation wavefronts, partially-coherent radiation from a finite-emittance electron beam of a storage ring source, and time-/frequency-dependent radiation pulses of a free-electron laser, through X-ray optical elements of a beamline. An extended library of physical-optics "propagators" for different types of reflective, refractive and diffractive X-ray optics with its typical imperfections, implemented in SRW, enable simulation of practically any X-ray beamline in a modern light source facility. The high accuracy of calculation methods used in SRW allows for multiple applications of this code, not only in the area of development of instruments and beamlines for new light source facilities, but also in areas such as electron beam diagnostics, commissioning and performance benchmarking of insertion devices and individual X-ray optical elements of beamlines. Applications of SRW in these areas, facilitating development and advanced commissioning of beamlines at the National Synchrotron Light Source II (NSLS-II), are described.
Sequential single shot X-ray photon correlation spectroscopy at the SACLA free electron laser
Lehmkühler, Felix; Kwaśniewski, Paweł; Roseker, Wojciech; ...
2015-11-27
In this study, hard X-ray free electron lasers allow for the first time to access dynamics of condensed matter samples ranging from femtoseconds to several hundred seconds. In particular, the exceptional large transverse coherence of the X-ray pulses and the high time-averaged flux promises to reach time and length scales that have not been accessible up to now with storage ring based sources. However, due to the fluctuations originating from the stochastic nature of the self-amplified spontaneous emission (SASE) process the application of well established techniques such as X-ray photon correlation spectroscopy (XPCS) is challenging. Here we demonstrate a single-shotmore » based sequential XPCS study on a colloidal suspension with a relaxation time comparable to the SACLA free-electron laser pulse repetition rate. High quality correlation functions could be extracted without any indications for sample damage. This opens the way for systematic sequential XPCS experiments at FEL sources.« less
Sequential single shot X-ray photon correlation spectroscopy at the SACLA free electron laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lehmkühler, Felix; Kwaśniewski, Paweł; Roseker, Wojciech
In this study, hard X-ray free electron lasers allow for the first time to access dynamics of condensed matter samples ranging from femtoseconds to several hundred seconds. In particular, the exceptional large transverse coherence of the X-ray pulses and the high time-averaged flux promises to reach time and length scales that have not been accessible up to now with storage ring based sources. However, due to the fluctuations originating from the stochastic nature of the self-amplified spontaneous emission (SASE) process the application of well established techniques such as X-ray photon correlation spectroscopy (XPCS) is challenging. Here we demonstrate a single-shotmore » based sequential XPCS study on a colloidal suspension with a relaxation time comparable to the SACLA free-electron laser pulse repetition rate. High quality correlation functions could be extracted without any indications for sample damage. This opens the way for systematic sequential XPCS experiments at FEL sources.« less
Small Angle X-Ray Scattering Detector
Hessler, Jan P.
2004-06-15
A detector for time-resolved small-angle x-ray scattering includes a nearly constant diameter, evacuated linear tube having an end plate detector with a first fluorescent screen and concentric rings of first fiber optic bundles for low angle scattering detection and an annular detector having a second fluorescent screen and second fiber optic bundles concentrically disposed about the tube for higher angle scattering detection. With the scattering source, i.e., the specimen under investigation, located outside of the evacuated tube on the tube's longitudinal axis, scattered x-rays are detected by the fiber optic bundles, to each of which is coupled a respective photodetector, to provide a measurement resolution, i.e., dq/q, where q is the momentum transferred from an incident x-ray to an x-ray scattering specimen, of 2% over two (2) orders of magnitude in reciprocal space, i.e., q.sub.max /q.sub.min.congruent.100.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doose, Charles; Jain, Animesh
The APS-U is planned to be a 4th generation hard X-ray light source utilizing a multi-bend achromat (MBA) magnet lattice. The MBA lattice will be installed in the existing APS storage ring enclosure. The stored electron beam will circulate clockwise when viewed from above. The X-ray beamlines will for the most part exit at the same source points as the present APS. This document defines the signs and conventions related to the APS-U MBA magnets. Included in this document are: the local magnet coordinate system, definitions of mechanical and magnetic centers, definitions of multipole field errors, magnetic roll angle, andmore » magnet polarities.« less
SLS-2 – the upgrade of the Swiss Light Source
Streun, Andreas; Garvey, Terence; Rivkin, Lenny; Schlott, Volker; Schmidt, Thomas; Willmott, Philip; Wrulich, Albin
2018-01-01
An upgrade of the Swiss Light Source (SLS) is planned for 2021–2024 and includes the exchange of the existing storage ring by a new one providing about 40–50 times lower emittance in user operation mode. This will extend the performance of SLS in particular in the fields of coherent imaging, full-field tomography, soft X-ray angle-resolved photoelectron spectroscopy and resonant inelastic X-ray scattering. A science case and a conceptual design for the machine have been established. As a summary of these reports, the novel lattice design, undulator developments and scientific highlights are presented. PMID:29714174
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kastner, J. H.; Montez, R. Jr.; Rapson, V.
2012-08-15
We present an overview of the initial results from the Chandra Planetary Nebula Survey (CHANPLANS), the first systematic (volume-limited) Chandra X-Ray Observatory survey of planetary nebulae (PNe) in the solar neighborhood. The first phase of CHANPLANS targeted 21 mostly high-excitation PNe within {approx}1.5 kpc of Earth, yielding four detections of diffuse X-ray emission and nine detections of X-ray-luminous point sources at the central stars (CSPNe) of these objects. Combining these results with those obtained from Chandra archival data for all (14) other PNe within {approx}1.5 kpc that have been observed to date, we find an overall X-ray detection rate ofmore » {approx}70% for the 35 sample objects. Roughly 50% of the PNe observed by Chandra harbor X-ray-luminous CSPNe, while soft, diffuse X-ray emission tracing shocks-in most cases, 'hot bubbles'-formed by energetic wind collisions is detected in {approx}30%; five objects display both diffuse and point-like emission components. The presence (or absence) of X-ray sources appears correlated with PN density structure, in that molecule-poor, elliptical nebulae are more likely to display X-ray emission (either point-like or diffuse) than molecule-rich, bipolar, or Ring-like nebulae. All but one of the point-like CSPNe X-ray sources display X-ray spectra that are harder than expected from hot ({approx}100 kK) central stars emitting as simple blackbodies; the lone apparent exception is the central star of the Dumbbell nebula, NGC 6853. These hard X-ray excesses may suggest a high frequency of binary companions to CSPNe. Other potential explanations include self-shocking winds or PN mass fallback. Most PNe detected as diffuse X-ray sources are elliptical nebulae that display a nested shell/halo structure and bright ansae; the diffuse X-ray emission regions are confined within inner, sharp-rimmed shells. All sample PNe that display diffuse X-ray emission have inner shell dynamical ages {approx}< 5 Multiplication-Sign 10{sup 3} yr, placing firm constraints on the timescale for strong shocks due to wind interactions in PNe. The high-energy emission arising in such wind shocks may contribute to the high excitation states of certain archetypical 'hot bubble' nebulae (e.g., NGC 2392, 3242, 6826, and 7009).« less
National Synchrotron Light Source II storage ring vacuum systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hseuh, Hsiao-Chaun, E-mail: hseuh@bnl.gov; Hetzel, Charles; Leng, Shuwei
2016-05-15
The National Synchrotron Light Source II, completed in 2014, is a 3-GeV synchrotron radiation (SR) facility at Brookhaven National Laboratory and has been in steady operation since. With a design electron current of 500 mA and subnanometer radians horizontal emittance, this 792-m circumference storage ring is providing the highest flux and brightness x-ray beam for SR users. The majority of the storage ring vacuum chambers are made of extruded aluminium. Chamber sections are interconnected using low-impedance radiofrequency shielded bellows. SR from the bending magnets is intercepted by water-cooled compact photon absorbers resided in the storage ring chambers. This paper presents themore » design of the storage ring vacuum system, the fabrication of vacuum chambers and other hardware, the installation, the commissioning, and the continuing beam conditioning of the vacuum systems.« less
An undulator based soft x-ray source for microscopy on the Duke electron storage ring
NASA Astrophysics Data System (ADS)
Johnson, Lewis Elgin
1998-09-01
This dissertation describes the design, development, and installation of an undulator-based soft x-ray source on the Duke Free Electron Laser laboratory electron storage ring. Insertion device and soft x-ray beamline physics and technology are all discussed in detail. The Duke/NIST undulator is a 3.64-m long hybrid design constructed by the Brobeck Division of Maxwell Laboratories. Originally built for an FEL project at the National Institute of Standards and Technology, the undulator was acquired by Duke in 1992 for use as a soft x-ray source for the FEL laboratory. Initial Hall probe measurements on the magnetic field distribution of the undulator revealed field errors of more than 0.80%. Initial phase errors for the device were more than 11 degrees. Through a series of in situ and off-line measurements and modifications we have re-tuned the magnet field structure of the device to produce strong spectral characteristics through the 5th harmonic. A low operating K has served to reduce the effects of magnetic field errors on the harmonic spectral content. Although rms field errors remained at 0.75%, we succeeded in reducing phase errors to less than 5 degrees. Using trajectory simulations from magnetic field data, we have computed the spectral output given the interaction of the Duke storage ring electron beam and the NIST undulator. Driven by a series of concerns and constraints over maximum utility, personnel safety and funding, we have also constructed a unique front end beamline for the undulator. The front end has been designed for maximum throughput of the 1st harmonic around 40A in its standard mode of operation. The front end has an alternative mode of operation which transmits the 3rd and 5th harmonics. This compact system also allows for the extraction of some of the bend magnet produced synchrotron and transition radiation from the storage ring. As with any well designed front end system, it also provides excellent protection to personnel and to the storage ring. A diagnostic beamline consisting of a transmission grating spectrometer and scanning wire beam profile monitor was constructed to measure the spatial and spectral characteristics of the undulator radiation. Test of the system with a circulating electron beam has confirmed the magnetic and focusing properties of the undulator, and verified that it can be used without perturbing the orbit of the beam.
Discovery of Spatial and Spectral Structure in the X-Ray Emission from the Crab Nebula
NASA Technical Reports Server (NTRS)
Weisskopf, Martin C.; Hester, J. Jeff; Tennant, Allyn F.; Elsner, Ronald F.; Schulz, Norbert S.; Marshall, Herman L.; Karovska, Margarita; Nichols, Joy S.; Swartz, Douglas A.; Kolodziejczak, Jeffery J.
2000-01-01
The Chandra X-Ray Observatory observed the Crab Nebula and pulsar during orbital calibration. Zeroth-order images with the High-Energy Transmission Grating (HETG) readout by the Advanced Charge Coupled Devices (CCD) Imaging Spectrometer spectroscopy array (ACIS-S) show a striking richness of X-ray structure at a resolution comparable to that of the best ground-based visible-light observations. The HETG-ACIS-S images reveal, for the first time, an X-ray inner ring within the X-ray torus, the suggestion of a hollow-tube structure for the torus, and X-ray knots along the inner ring and (perhaps) along the inward extension of the X-ray jet. Although complicated by instrumental effects and the brightness of the Crab Nebula, the spectrometric analysis shows systematic variations of the X-ray spectrum throughout the nebula.
Discovery of Spatial and Spectral Structure in the X-Ray Emission from the Crab Nebula.
Weisskopf; Hester; Tennant; Elsner; Schulz; Marshall; Karovska; Nichols; Swartz; Kolodziejczak; O'Dell
2000-06-20
The Chandra X-Ray Observatory observed the Crab Nebula and pulsar during orbital calibration. Zeroth-order images with the High-Energy Transmission Grating (HETG) readout by the Advanced CCD Imaging Spectrometer spectroscopy array (ACIS-S) show a striking richness of X-ray structure at a resolution comparable to that of the best ground-based visible-light observations. The HETG-ACIS-S images reveal, for the first time, an X-ray inner ring within the X-ray torus, the suggestion of a hollow-tube structure for the torus, and X-ray knots along the inner ring and (perhaps) along the inward extension of the X-ray jet. Although complicated by instrumental effects and the brightness of the Crab Nebula, the spectrometric analysis shows systematic variations of the X-ray spectrum throughout the nebula.
NSLS-II storage ring insertion device and front-end commissioning and operation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, G., E-mail: gwang@bnl.gov; Shaftan, T.; Amundsen, C.
The National Synchrotron Light Source II (NSLS-II) is a state of the art 3 GeV third generation light source at Brookhaven National Laboratory. During spring/ summer of 2014, the storage ring was commissioned up to 50 mA without insertion devices. In the fall of 2014, we began commissioning of the project beamlines, which included seven insertion devices on six ID ports. Beamlines IXS, HXN, CSX-1, CSX-2, CHX, SRX, and XPD-1 consist of elliptically polarized undulator (EPU), damping wigglers (DW) and in-vacuum undulators (IVU) covering from VUV to hard x-ray range. In this paper, experience with commissioning and operation is discussed.more » We focus on reaching storage ring performance with IDs, including injection, design emittance, compensation of orbit distortions caused by ID residual field, source point stability, beam alignment and tools for control, monitoring and protection of the ring chambers from ID radiation.« less
Robert R. Wilson Prize: The Quest for Bright, Coherent X-Rays: A Personal Story
NASA Astrophysics Data System (ADS)
Kim, Kwang Je
2014-03-01
Stories associated with the advances in x-ray source techniques during the last several decades will be told from a personal viewpoint. I will start from the ``third-generation'' x-ray sources based on storage-ring-based undulators and a struggle to find a proper way to quantify the radiation strength. I will then discuss how the initially incoherent undulator radiation evolves into an intense-quasi-coherent radiation via free-electron laser (FEL) interaction. This so-called self-amplified spontaneous emission (SASE) in the x-ray region could be realized with the advent of laser-induced electron guns and forms the basis of the linac-driven ``fourth generation'' x-ray facilities. An x-ray FEL oscillator (XFELO) will also be feasible if Bragg reflectors, such as diamond crystals, are used as cavity mirrors. An XFELO driven by a CW superconducting linac would be a ``real x-ray laser,'' producing a steady stream of fully coherent, spectrally pure x-ray pulses. An XFELO can be mode-locked, thus producing x-ray spectral comb, if the cavity length can be fixed to a fraction of the x-ray wavelength by referencing to a narrow nuclear resonance. A mode-locked XFELO will enable x-ray quantum optics experiments, such as matter-wave interferometry, for fundamental physics. Alongside these main themes, stories for novel and ``cute'' schemes, such as a crossed undulator for polarization switching and an emittance exchanger for swapping the transverse and longitudinal phase space, will also be presented. This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences under Contract No. DE-AC02-06CH11357.
MacDowell, Alastair A; Celestre, Rich S; Howells, Malcolm; McKinney, Wayne; Krupnick, James; Cambie, Daniella; Domning, Edward E; Duarte, Robert M; Kelez, Nicholas; Plate, David W; Cork, Carl W; Earnest, Thomas N; Dickert, Jeffery; Meigs, George; Ralston, Corie; Holton, James M; Alber, Tom; Berger, James M; Agard, David A; Padmore, Howard A
2004-11-01
At the Advanced Light Source, three protein crystallography beamlines have been built that use as a source one of the three 6 T single-pole superconducting bending magnets (superbends) that were recently installed in the ring. The use of such single-pole superconducting bend magnets enables the development of a hard X-ray program on a relatively low-energy 1.9 GeV ring without taking up insertion-device straight sections. The source is of relatively low power but, owing to the small electron beam emittance, it has high brightness. X-ray optics are required to preserve the brightness and to match the illumination requirements for protein crystallography. This was achieved by means of a collimating premirror bent to a plane parabola, a double-crystal monochromator followed by a toroidal mirror that focuses in the horizontal direction with a 2:1 demagnification. This optical arrangement partially balances aberrations from the collimating and toroidal mirrors such that a tight focused spot size is achieved. The optical properties of the beamline are an excellent match to those required by the small protein crystals that are typically measured. The design and performance of these new beamlines are described.
Hard X-ray Sources for the Mexican Synchrotron Project
NASA Astrophysics Data System (ADS)
Reyes-Herrera, Juan
2016-10-01
One of the principal tasks for the design of the Mexican synchrotron was to define the storage ring energy. The main criteria for choosing the energy come from studying the electromagnetic spectrum that can be obtained from the synchrotron, because the energy range of the spectrum that can be obtained will determine the applications available to the users of the future light source. Since there is a public demand of hard X-rays for the experiments in the synchrotron community users from Mexico, in this work we studied the emission spectra from some hard X-ray sources which could be the best options for the parameters of the present Mexican synchrotron design. The calculations of the flux and the brightness for one Bending Magnet and four Insertion Devices are presented; specifically, for a Superconducting Bending Magnet (SBM), a Superconducting Wiggler (SCW), an In Vacuum Short Period Undulator (IV-SPU), a Superconducting Undulator (SCU) and for a Cryogenic Permanent Magnet Undulator (CPMU). Two commonly available synchrotron radiation programs were used for the computation (XOP and SRW). From the results, it can be concluded that the particle beam energy from the current design is enough to have one or more sources of hard X-rays. Furthermore, a wide range of hard X-ray region can be covered by the analyzed sources, and the choice of each type should be based on the specific characteristics of the X-ray beam to perform the experiments at the involved beamline. This work was done within the project Fomix Conacyt-Morelos ”Plan Estrategico para la construccion y operación de un Sincrotron en Morelos” (224392).
National synchrotron light source. Activity report, October 1, 1995--September 30, 1996
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rothman, E.Z.; Hastings, J.B.
1997-05-01
The hard work done by the synchrotron radiation community, in collaboration with all those using large-scale central facilities during 1995, paid off in FY 1996 through the DOE`s Presidential Scientific Facilities Initiative. In comparison with the other DOE synchrotron radiation facilities, the National Synchrotron Light Source benefited least in operating budgets because it was unable to increase running time beyond 100%-nevertheless, the number of station hours was maintained. The major thrust at Brookhaven came from a 15% increase in budget which allowed the recruitment of seven staff in the beamlines support group and permitted a step increment in the fundingmore » of the extremely long list of upgrades; both to the sources and to the beamlines. During the December 1995 shutdown, the VUV Ring quadrant around U10-U12 was totally reconstructed. New front ends, enabling apertures up to 90 mrad on U10 and U12, were installed. During the year new PRTs were in formation for the infrared beamlines, encouraged by the investment the lab was able to commit from the initiative funds and by awards from the Scientific Facilities Initiative. A new PRT, specifically for small and wide angle x-ray scattering from polymers, will start work on X27C in FY 1997 and existing PRTs on X26C and X9B working on macromolecular crystallography will be joined by new members. Plans to replace aging radio frequency cavities by an improved design, originally a painfully slow six or eight year project, were brought forward so that the first pair of cavities (half of the project for the X-Ray Ring) will now be installed in FY 1997. Current upgrades to 350 mA initially and to 438 mA later in the X-Ray Ring were set aside due to lack of funds for the necessary thermally robust beryllium windows. The Scientific Facilities Initiative allowed purchase of all 34 windows in FY 1996 so that the power upgrade will be achieved in FY 1997.« less
Global Studies of Molecular Clouds in the Galaxy, the Magellanic Cloud and M31
NASA Technical Reports Server (NTRS)
Thaddeus, Patrick
1998-01-01
Over the past five years we have used our extensive CO surveys of the Galaxy and M31 in conjunction with spacecraft observations to address central problems in galactic structure and the astrophysics of molecular clouds. These problems included the nature of the molecular ring and its relation to the spiral arms and central bar, the cosmic ray distribution, the origin of the diffuse X-ray background, the distribution and properties of x-ray sources and supernova remnants, and the Galactic stellar mass distribution. For many of these problems, the nearby spiral M31 provided an important complementary perspective.
WavePropaGator: interactive framework for X-ray free-electron laser optics design and simulations.
Samoylova, Liubov; Buzmakov, Alexey; Chubar, Oleg; Sinn, Harald
2016-08-01
This article describes the WavePropaGator ( WPG ) package, a new interactive software framework for coherent and partially coherent X-ray wavefront propagation simulations. The package has been developed at European XFEL for users at the existing and emerging free-electron laser (FEL) facilities, as well as at the third-generation synchrotron sources and future diffraction-limited storage rings. The WPG addresses the needs of beamline scientists and user groups to facilitate the design, optimization and improvement of X-ray optics to meet their experimental requirements. The package uses the Synchrotron Radiation Workshop ( SRW ) C/C++ library and its Python binding for numerical wavefront propagation simulations. The framework runs reliably under Linux, Microsoft Windows 7 and Apple Mac OS X and is distributed under an open-source license. The available tools allow for varying source parameters and optics layouts and visualizing the results interactively. The wavefront history structure can be used for tracking changes in every particular wavefront during propagation. The batch propagation mode enables processing of multiple wavefronts in workflow mode. The paper presents a general description of the package and gives some recent application examples, including modeling of full X-ray FEL beamlines and start-to-end simulation of experiments.
National Synchrotron Light Source II storage ring vacuum systems
Hseuh, Hsiao-Chaun; Hetzel, Charles; Leng, Shuwei; ...
2016-04-05
The National Synchrotron Light Source II, completed in 2014, is a 3-GeV synchrotron radiation (SR) facility at Brookhaven National Laboratory and has been in steady operation since. With a design electron current of 500 mA and subnanometer radians horizontal emittance, this 792-m circumference storage ring is providing the highest flux and brightness x-ray beam for SR users. Also, the majority of the storage ring vacuum chambers are made of extruded aluminium. Chamber sections are interconnected using low-impedance radiofrequency shielded bellows. SR from the bending magnets is intercepted by water-cooled compact photon absorbers resided in the storage ring chambers. Finally, thismore » paper presents the design of the storage ring vacuum system, the fabrication of vacuum chambers and other hardware, the installation, the commissioning, and the continuing beam conditioning of the vacuum systems.« less
Single shot speckle and coherence analysis of the hard X-ray free electron laser LCLS
Lee, Sooheyong; Roseker, W.; Gutt, C.; ...
2013-10-08
The single shot based coherence properties of hard x-ray pulses from the Linac Coherent Light Source (LCLS) were measured by analyzing coherent diffraction patterns from nano-particles and gold nanopowder. The intensity histogram of the small angle x-ray scattering ring from nano-particles reveals the fully transversely coherent nature of the LCLS beam with a number of transverse modemore » $$\\langle$$M s$$\\rangle$$ = 1.1. On the other hand, the speckle contrasts measured at a large wavevector yields information about the longitudinal coherence of the LCLS radiation after a silicon (111) monochromator. The quantitative agreement between our data and the simulation confirms a mean coherence time of 2.2 fs and a x-ray pulse duration of 29 fs. Lastly the observed reduction of the speckle contrast generated by x-rays with pulse duration longer than 30 fs indicates ultrafast dynamics taking place at an atomic length scale prior to the permanent sample damage.« less
SIBYLS - a SAXS and Protein Crystallography Beamline at the ALS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trame, C.; MacDowell, A.A.; Celestre, R.S.
2004-05-12
The new Structurally Integrated BiologY for Life Sciences (SIBYLS) beamline at the Advanced Light Source will be dedicated to Macromolecular Crystallography (PX) and Small Angle X-ray Scattering (SAXS). SAXS will provide structural information of macromolecules in solutions and will complement high resolution PX studies on the same systems but in a crystalline state. The x-ray source is one of the 5 Tesla superbend dipoles recently installed at the ALS that allows for a hard x-ray program to be developed on the relatively low energy Advanced Light Source (ALS) ring (1.9 GeV). The beamline is equipped with fast interchangeable monochromator elements,more » consisting of either a pair of single Si(111) crystals for crystallography, or a pair of multilayers for the SAXS mode data collection (E/{delta}E{approx}1/110). Flux rates with Si(111) crystals for PX are measured as 2x1011 hv/sec through a 100{mu}m pinhole at 12.4KeV. For SAXS the flux is up to 3x1013photons/sec at 10KeV with all apertures open when using the multilayer monochromator elements. The performance characteristics of this unique beamline will be described.« less
The soft x-ray beamline at Frascati Labs
NASA Astrophysics Data System (ADS)
Cinque, Gianfelice; Burattini, Emilio; Grilli, Antonio; Dabagov, Sultan
2005-08-01
DAΦNE-Light is the Synchrotron Radiation laboratory at the Laboratori Nazionali di Frascati (LNF)1. Three beamlines were commissioned since spring 2003 to exploit parasitically the intense photon emission from DAΦNE, the 0.5 1 GeV storage ring routinely circulating over 1 A of electrons. The soft X-ray beamline utilizes a wiggler source and, by a double-crystal fixed-exit monochromator, it is operational in the distinguishing energy window 1.5 - 4 keV range to be extended from the "water window" toward 6 keV. At present, the research activity is focused on X-ray Absorption Spectroscopy (XAS): precisely, X-ray Absorption Near Edge Spectroscopy (XANES) on the inner electronic levels of light elements and transition metals from Al to Ge and both d- and f-shells of higher Z atoms. Preliminary tests of X-ray imaging have been performed in view of applying different focusing optics, namely policapillary systems in trasmission and/or bent mica diffractor in back-reflection, for X-ray microscopy and spectromicroscopy experiments. The use of polycapillary systems (lenses, halflenses, capillaries) for studying features of radiation transportation by such structures (X-ray channelling, focusing, bending, etc.) has been planned.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heese, R.; Kalsi, S.; Leung, E.
1991-01-01
Under DARPA sponsorship, a compact Superconducting X-ray Lithography Source (SXLS) is being designed and built by the Brookhaven National Laboratory (BNL) with industry participation from Grumman Corporation and General Dynamics. This source is optimized for lithography work for sub-micron high density computer chips, and is about the size of a billiard table (1.5 m {times} 4.0 m). The machine has a racetrack configuration with two 180{degree} bending magnets being designed and built by General Dynamics under a subcontract with Grumman Corporation. The machine will have 18 photon ports which would deliver light peaked at a wave length of 10 Angstroms.more » Grumman is commercializing the SXLS device and plans to book orders for delivery of industrialized SXLS (ISXLS) versions in 1995. This paper will describe the major features of this device. The commercial machine will be equipped with a fully automated user-friendly control systems, major features of which are already working on a compact warm dipole ring at BNL. This ring has normal dipole magnets with dimensions identical to the SXLS device, and has been successfully commissioned. 4 figs., 1 tab.« less
Britz, Alexander; Assefa, Tadesse A; Galler, Andreas; Gawelda, Wojciech; Diez, Michael; Zalden, Peter; Khakhulin, Dmitry; Fernandes, Bruno; Gessler, Patrick; Sotoudi Namin, Hamed; Beckmann, Andreas; Harder, Manuel; Yavaş, Hasan; Bressler, Christian
2016-11-01
The technical implementation of a multi-MHz data acquisition scheme for laser-X-ray pump-probe experiments with pulse limited temporal resolution (100 ps) is presented. Such techniques are very attractive to benefit from the high-repetition rates of X-ray pulses delivered from advanced synchrotron radiation sources. Exploiting a synchronized 3.9 MHz laser excitation source, experiments in 60-bunch mode (7.8 MHz) at beamline P01 of the PETRA III storage ring are performed. Hereby molecular systems in liquid solutions are excited by the pulsed laser source and the total X-ray fluorescence yield (TFY) from the sample is recorded using silicon avalanche photodiode detectors (APDs). The subsequent digitizer card samples the APD signal traces in 0.5 ns steps with 12-bit resolution. These traces are then processed to deliver an integrated value for each recorded single X-ray pulse intensity and sorted into bins according to whether the laser excited the sample or not. For each subgroup the recorded single-shot values are averaged over ∼10 7 pulses to deliver a mean TFY value with its standard error for each data point, e.g. at a given X-ray probe energy. The sensitivity reaches down to the shot-noise limit, and signal-to-noise ratios approaching 1000 are achievable in only a few seconds collection time per data point. The dynamic range covers 100 photons pulse -1 and is only technically limited by the utilized APD.
New beamline optics of the x-ray undulator BW1 at DORIS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hahn, U.; Frahm, R.; Guertler, P.
1996-12-31
The X-ray undulator BW1 at the storage ring DORIS is a high brightness source for the spectral range from 2 to 20 keV. The undulator beam is used by three experiments with different distances to the source. The new optical elements allow the adaptation of the focal lengths to the needs of the experimental set-ups. The optical concept consists of a premirror with different optical surfaces, a double crystal monochromator and a focusing second mirror. Sagittal focusing is achieved either by using the cylindrical part of the premirror or by a bend crystal for a monochromatic beam, meridional focusing ismore » done with a pneumatic driven mirror bender for the second mirror.« less
Identification of the central compact object in the young supernova remnant 1E 0102.2-7219
NASA Astrophysics Data System (ADS)
Vogt, Frédéric P. A.; Bartlett, Elizabeth S.; Seitenzahl, Ivo R.; Dopita, Michael A.; Ghavamian, Parviz; Ruiter, Ashley J.; Terry, Jason P.
2018-04-01
Oxygen-rich young supernova remnants1 are valuable objects for probing the outcome of nucleosynthetic processes in massive stars, as well as the physics of supernova explosions. Observed within a few thousand years after the supernova explosion2, these systems contain fast-moving oxygen-rich and hydrogen-poor filaments visible at optical wavelengths: fragments of the progenitor's interior expelled at a few thousand kilometres per second during the supernova explosion. Here we report the identification of the compact object in the supernova remnant 1E 0102.2-7219 in reprocessed Chandra X-ray Observatory data, enabled by the discovery of a ring-shaped structure visible primarily in optical recombination lines of Ne i and O i. The optical ring has a radius of (2.10 ± 0.35)″ ≡ (0.63 ± 0.11) pc, and is expanding at a velocity of 90 .5-30+40 km s-1. It surrounds an X-ray point source with an intrinsic X-ray luminosity Li (1.2-2.0 keV) = (1.4 ± 0.2) × 1033 erg s-1. The energy distribution of the source indicates that this object is an isolated neutron star: a central compact object akin to those present in the Cas A3-5 and Pup A6 supernova remnants, and the first of its kind to be identified outside of our Galaxy.
Identification of the central compact object in the young supernova remnant 1E 0102.2-7219
NASA Astrophysics Data System (ADS)
Vogt, Frédéric P. A.; Bartlett, Elizabeth S.; Seitenzahl, Ivo R.; Dopita, Michael A.; Ghavamian, Parviz; Ruiter, Ashley J.; Terry, Jason P.
2018-06-01
Oxygen-rich young supernova remnants1 are valuable objects for probing the outcome of nucleosynthetic processes in massive stars, as well as the physics of supernova explosions. Observed within a few thousand years after the supernova explosion2, these systems contain fast-moving oxygen-rich and hydrogen-poor filaments visible at optical wavelengths: fragments of the progenitor's interior expelled at a few thousand kilometres per second during the supernova explosion. Here we report the identification of the compact object in the supernova remnant 1E 0102.2-7219 in reprocessed Chandra X-ray Observatory data, enabled by the discovery of a ring-shaped structure visible primarily in optical recombination lines of Ne i and O i. The optical ring has a radius of (2.10 ± 0.35)″ ≡ (0.63 ± 0.11) pc, and is expanding at a velocity of 90 .5-30+40 km s-1. It surrounds an X-ray point source with an intrinsic X-ray luminosity Li (1.2-2.0 keV) = (1.4 ± 0.2) × 1033 erg s-1. The energy distribution of the source indicates that this object is an isolated neutron star: a central compact object akin to those present in the Cas A3-5 and Pup A6 supernova remnants, and the first of its kind to be identified outside of our Galaxy.
Extreme ultraviolet resonant inelastic X-ray scattering (RIXS) at a seeded free-electron laser
Dell’Angela, M.; Hieke, F.; Malvestuto, M.; ...
2016-12-12
In the past few years, we have been witnessing an increased interest for studying materials properties under non-equilibrium conditions. Several well established spectroscopies for experiments in the energy domain have been successfully adapted to the time domain with sub-picosecond time resolution. Here we show the realization of high resolution resonant inelastic X-ray scattering (RIXS) with a stable ultrashort X-ray source such as an externally seeded free electron laser (FEL). We have designed and constructed a RIXS experimental endstation that allowed us to successfully measure the d-d excitations in KCoF 3 single crystals at the cobalt M 2,3-edge at FERMI FELmore » (Elettra-Sincrotrone Trieste, Italy). The FEL-RIXS spectra show an excellent agreement with the ones obtained from the same samples at the MERIXS endstation of the MERLIN beamline at the Advanced Light Source storage ring (Berkeley, USA). We established experimental protocols for performing time resolved RIXS experiments at a FEL source to avoid X ray-induced sample damage, while retaining comparable acquisition time to the synchrotron based measurements. Finally, we measured and modelled the influence of the FEL mixed electromagnetic modes, also present in externally seeded FELs, and the beam transport with ~120 meV experimental resolution achieved in the presented RIXS setup.« less
Analysis of Methods to Excite Head-Tail Motion Within the Cornell Electron Storage Ring
NASA Astrophysics Data System (ADS)
Gendler, Naomi; Billing, Mike; Shanks, Jim
The main accelerator complex at Cornell consists of two rings around which electrons and positrons move: the synchrotron, where the particles are accelerated to 5 GeV, and the Storage Ring, where the particles circulate a ta Þxed energy, guided by quadrupole and dipole magnets, with a steady energy due to a sinusoidal voltage source. Keeping the beam stable in the Storage Ring is crucial for its lifetime. A long-lasting, invariable beam means more accurate experiments, as well as brighter, more focused X-rays for use in the Cornell High Energy Synchrotron Source (CHESS). The stability of the electron and positron beams in the Cornell Electron Storage Ring (CESR) is important for the development of accelerators and for usage of the beam in X-ray science and accelerator physics. Bunch oscillations tend to enlarge the beam's cross section, making it less stable. We believe that one such oscillation is ``head-tail motion,'' where the bunch rocks back and forth on a pivot located at the central particle. In this project, we write a simulation of the bunch that induces head-tail motion with a vertical driver. We also excite this motion physically in the storage ring, and observe a deÞnite head-tail signal. In the experiment, we saw a deÞnite persistence of the drive-damp signal within a small band around the head-tail frequency, indicating that the head-tail frequency is a natural vertical mode of the bunch that was being excited. The signal seen in the experiment matched the signal seen in the simulation to within an order of magnitude.
A compact high brightness laser synchrotron light source for medical applications
NASA Astrophysics Data System (ADS)
Nakajima, Kazuhisa
1999-07-01
The present high-brightness hard X-ray sources have been developed as third generation synchrotron light sources based on large high energy electron storage rings and magnetic undulators. Recently availability of compact terawatt lasers arouses a great interest in the use of lasers as undulators. The laser undulator concept makes it possible to construct an attractive compact synchrotron radiation source which has been proposed as a laser synchrotron light source. This paper proposes a compact laser synchrotron light source for mediacal applications, such as an intravenous coronary angiography and microbeam therapy.
Fundamental limits on beam stability at the Advanced Photon Source.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Decker, G. A.
1998-06-18
Orbit correction is now routinely performed at the few-micron level in the Advanced Photon Source (APS) storage ring. Three diagnostics are presently in use to measure and control both AC and DC orbit motions: broad-band turn-by-turn rf beam position monitors (BPMs), narrow-band switched heterodyne receivers, and photoemission-style x-ray beam position monitors. Each type of diagnostic has its own set of systematic error effects that place limits on the ultimate pointing stability of x-ray beams supplied to users at the APS. Limiting sources of beam motion at present are magnet power supply noise, girder vibration, and thermal timescale vacuum chamber andmore » girder motion. This paper will investigate the present limitations on orbit correction, and will delve into the upgrades necessary to achieve true sub-micron beam stability.« less
Energetic Ring Shows Way To Discovery Of Pulsar "Bulls-Eye"
NASA Astrophysics Data System (ADS)
2002-06-01
Astronomers from the University of Massachusetts and Columbia University have found the "bulls-eye" pulsar in a bright ring of high-energy particles in a distant supernova remnant. This discovery, made with NASA's Chandra X-ray Observatory and the Arecibo Radio Telescope, will help scientists better understand how neutron stars channel enormous amounts of energy into particles moving near the speed of light. Chandra's image of the supernova remnant SNR G54.1+0.3 reveals a bright, point-like central source, which is surrounded by a ring and two jet-like structures in an extended nebula of high-energy particles. The radio data show that this bright central source is a neutron star, or pulsar, that is rotating 7 times per second. "The features Chandra found appear to be due to the energetic flow of radiation and particles from a rapidly spinning neutron star formed during a supernova event," said Fangjun Lu of the University of Massachusetts at Amherst who led the X-ray research. Lu and colleagues informed Fernando Camilo of Columbia University in New York of this detection. Camilo and his collaborators then used the powerful Arecibo telescope to look for the tell-tale radio pulsations from a neutron star at the center of the ring. After a search in August 2001 was aborted by radio-frequency interference, they observed the source again in April 2002 and found a weak, pulsating radio source. Further observations indicate the pulsar (and hence the supernova remnant) has an age of approximately 3000 years. Analysis of 1997 ASCA satellite data confirmed that the source is pulsing in X-rays as well. "This discovery is an excellent example of how the superb resolution of Chandra and the improved capabilities of Arecibo worked together to quickly resolve an outstanding scientific question," said Camilo. "We look forward to continued substantial progress in understanding the properties of young neutron stars." Intense electric fields around the neutron star accelerate particles to form jets blasting away from the poles and a disk of matter and anti-matter flowing away from the equator at high speeds. As the equatorial flow rams into particles and magnetic fields in the nebula, a shock wave forms. The shock wave then boosts the particles to extremely high energies causing them to glow in X-rays and produce the bright ring. The particles continue to stream outward from the ring and the jets to supply the extended nebula, which spans approximately 6 light years. The features observed in SNR G54.1+0.3 are very similar to other "pulsar wind nebulas" found by Chandra in the Crab Nebula, the Vela supernova remnant, and B1509-58. By analyzing the similarities and differences between these objects, scientists hope to better understand the fascinating process of transforming the rotational energy of the neutron star into extremely high-energy particles with very little frictional heat loss. Chandra observed SNR G54.1+0.3 on June 6-7, 2001, using the Advanced CCD Imaging Spectrometer instrument. The radio data on the central pulsar, known as PSR J1930+1852, were gathered at Arecibo on April 29, 2002. The results from this work appear in two separate papers in the March 20 and July 20, 2002 issues of the Astrophysical Journal Letters. The Arecibo Observatory is part of the National Astronomy and Ionosphere Center (NAIC), operated by Cornell University under a cooperative agreement with the National Science Foundation (NSF). NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the Office of Space Science, Washington, DC. TRW, Inc., Redondo Beach, Calif., is the prime contractor for the spacecraft. The Smithsonian's Chandra X-ray Center controls science and flight operations from Cambridge, Mass.
Yu, David U. L.
1990-01-01
A compact high gradient accelerator driven by a relativistic klystron is utilized to inject high energy electrons into an X-ray synchrotron radiation ring. The high gradients provided by the relativistic klystron enables accelerator structure to be much shorter (typically 3 meters) than conventional injectors. This in turn enables manufacturers which utilize high energy, high intensity X-rays to produce various devices, such as computer chips, to do so on a cost effective basis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plogmaker, Stefan; Johansson, Erik M. J.; Rensmo, Haakan
A novel light chopper system for fast timing experiments in the vacuum-ultraviolet (VUV) and x-ray spectral region has been developed. It can be phase-locked and synchronized with a synchrotron radiation storage ring, accommodating repetition rates in the range of {approx}8 to {approx}120 kHz by choosing different sets of apertures and subharmonics of the ring frequency (MHz range). Also the opening time of the system can be varied from some nanoseconds to several microseconds to meet the needs of a broad range of applications. Adjusting these parameters, the device can be used either for the generation of single light pulses ormore » pulse packages from a microwave driven, continuous He gas discharge lamp or from storage rings which are otherwise often considered as quasi-continuous light sources. This chopper can be utilized for many different kinds of experiments enabling, for example, unambiguous time-of-flight (TOF) multi-electron coincidence studies of atoms and molecules excited by a single light pulse as well as time-resolved visible laser pump x-ray probe electron spectroscopy of condensed matter in the valence and core level region.« less
Near-edge X-ray absorption spectra for metallic Cu and Mn
NASA Astrophysics Data System (ADS)
Greaves, G. N.; Durham, P. J.; Diakun, G.; Quinn, P.
1981-11-01
The measurement of X-ray absorption fine structure of metals- both in the extended region (EXAFS) as well as in the near edge region (XANES)-has been widely discussed (see refs 1-6 for Cu and refs 7-9 for Mn). The recent availability of intense X-ray fluxes from storage rings has usually been exploited for EXAFS leaving the XANES often with poorer resolution than earlier work performed on conventional sources (for example, compare the near edge structure for copper in ref. 1 with refs 3 or 6). In addition, whilst the theory and analysis of EXAFS is relatively well-established2,10, a theory for the strong scattering regime near to the absorption edge has only recently been developed11. We report here the first high resolution XANES spectra for Cu and Mn which were performed at the SRS storage ring at Daresbury. Although both metals have close-packed structures consisting of atoms of similar size their local atomic structure is different in detail. Significant differences are found in their respective XANES reflecting the senstivity of this region of the X-ray absorption fine structure to the local atomic structure. Spectra for the two metals have been analysed using the new multiple scattering formalism. This is a real space calculation and unlike a conventional band structure approach it does not require structural periodicity but works from the local arrangement of atoms.
Jets, Rings, And Holes In Cassiopeia A: New Insights Into The Explosion
NASA Astrophysics Data System (ADS)
DeLaney, Tracey; Smith, J. D.; Rudnick, L.; Rho, J.; Reach, W.; Ennis, J.; Gomez, H.; Kozasa, T.
2007-05-01
The spectral mapping of Cassiopeia A with Spitzer has allowed us to use Doppler measurements to construct a 3-D model of the remnant structure. Combined with Doppler measurements from X-ray spectra and the locations of optical ejecta beyond the forward shock, we have gained new insights into the explosion that caused Cas A. The structure of Cas A can be characterized into "holes", "rings", and "jets". The holes refer to gaps between the front and back surfaces of the unshocked infrared ejecta that occur mostly in the plane of the sky. The shocked IR ejecta and the Si-rich X-ray ejecta form ring-like structures that line the holes in the unshocked ejecta. The well-known northeast and southwest jets extend through two of the holes in the unshocked ejecta. The Fe-rich X-ray ejecta has a different distribution from the other ejecta in that it is oriented approximately 90 degrees from the jet axis. The Fe-rich X-ray ejecta can be described as forming two jets that also extend through holes in the unshocked ejecta. The outer optical ejecta beyond the forward shock appears mostly in the plane of the sky and is certainly associated with the holes in the unshocked ejecta. Taken together, these clues indicate a series of blow-outs or jets in the plane of the sky where the highest velocity ejecta are found. The distribution of the Fe-rich ejecta provides a tidy explanation for the offset of the point source from the expansion center of the remnant and challenges the idea of overturning in the ejecta layers. We would like to thank J. Lazendic and D. Dewey for their HETG Doppler data and M. Stage and G. Allen for their ACIS Ms Doppler data.
NASA Astrophysics Data System (ADS)
Akin, M. C.; Maddox, B.; Teruya, A.; Asimow, P. D.
2015-12-01
The Earth's mantle is composed primarily of ferromagnesian silicates, of which Forsterite (Fo) is the magnesium-rich end member of the dominant upper mantle phase, olivine. Fo is thought to undergo a chemical decomposition associated with a structural phase transition when dynamically loaded to 40-71 GPa, but previous inferences about such decomposition have been based only on pressure-density data with no direct phase identification. To obtain direct data on the phase evolution of shocked Fo, synthetic single crystal samples of Mg2SiO4 Fo were loaded to pressures of 52 GPa using a two stage light gas gun. X-ray diffraction (XRD) patterns were collected on the static and the loaded samples in situ using a single pulse Mo Kα anode to provide a 17 keV X-ray source. X-ray polycapillary optics were used to couple the source to the sample. Clear Laue spots were observed in the static images, while the dynamic images show the appearance of new spots at early times and powder-like rings at late times. The angles of the dynamically driven spots and rings overlap with each other and indicate the change in phase of forsterite under pressure through a process that begins with the formation of single crystals and ends with polycrystalline material. Efforts are underway to identify the high-pressure phases from among the library of dense magnesium silicates, and further experiments covering a larger pressure range will be completed shortly. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
SIBYLS - A SAXS and protein crystallography beamline at the ALS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trame, Christine; MacDowell, Alastair A.; Celestre, Richard S.
2003-08-22
The new Structurally Integrated BiologY for Life Sciences (SIBYLS) beamline at the Advanced Light Source will be dedicated to Macromolecular Crystallography (PX) and Small Angle X-ray Scattering (SAXS). SAXS will provide structural information of macromolecules in solutions and will complement high resolution PX studies on the same systems but in a crystalline state. The x-ray source is one of the 5 Tesla superbend dipoles recently installed at the ALS that allows for a hard x-ray program to be developed on the relatively low energy Advanced Light Source (ALS) ring (1.9 GeV). The beamline is equipped with fast interchangeable monochromator elements,more » consisting of either a pair of single Si(111) crystals for crystallography, or a pair of multilayers for the SAXS mode data collection (E/{Delta}E {approx} 1/110). Flux rates with Si(111) crystals for PX are measured as 2 x 10{sup 11} hv/sec/400 mA through a 100 {micro}m pinhole at 12.4 KeV. For SAXS the flux is up to 3 x 10{sup 13} photons/sec at 10 KeV with all apertures open when using the multilayer monochromator elements. The performance characteristics of this unique beamline will be described.« less
One-shot spectrometer for several elements using an integrated conical crystal analyzer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morishita, Kohei; Nakajima, Kazuo; Hayashi, Kouichi
Time-resolved x-ray spectrometry using an ultrastrong x-ray source such as an x-ray free electron laser is one of the new trends in the field of x-ray physics. To achieve such time-resolved measurement, the development of an one-shot spectrometer with a wide wavelength range, high efficiency, and good energy resolution is an essential prerequisite. Here we developed an integrated conical Ge crystal analyzer consisting of several conical rings, which were connected using spline surfaces to form a single body using our previously developed hot deformation technique, which can form a Si or Ge wafer into an arbitrary and accurate shape. Wemore » simultaneously focused several characteristic lines from an alloy sample onto different positions on a small x-ray charge-coupled device with very high image brightness (gain relative to planar analyzer: 100) and a good spatial resolution of 9-13 eV. The small radius of curvature of the crystal (28-50 mm) enabled us to realize a very short sample-detector distance of 214.4 mm. The present result shows the possibility of realizing a new focusing x-ray crystal spectrograph that can control the focal position as desired.« less
CheMin Instrument Performance and Calibration on Mars
NASA Technical Reports Server (NTRS)
Vaniman, D. T.; Blake, D. F.; Morookian, J. M.; Yen, A. S.; Ming, D. W.; Morris, R. V.; Achilles, C. N.; Bish, D. L.; Chipera, S. J.; Morrison, S. M.;
2013-01-01
The CheMin (Chemistry and Mineralogy) instrument on the Mars Science Laboratory rover Curiosity uses a CCD detector and a Co-anode X-ray tube source to acquire both mineralogy (from the pattern of Co diffraction) and chemical information (from energies of fluoresced X-rays). A key component of the CheMin instrument is the ability to move grains within sample cells during analysis, providing multiple, random grain orientations that disperse diffracted X-ray photons along Debye rings rather than producing discrete Laue spots. This movement is accomplished by piezoelectric vibration of the sample cells. A cryocooler is used to maintain the CCD at a temperature at about -50 C in order to obtain energy resolution better than 250 eV, allowing discrimination of diffracted Co K X-rays from Fe K and other fluorescent X-rays. A detailed description of CheMin is provided in [1]. The CheMin flight model (FM) is mounted within the body of Curiosity and has been operating on Mars since August 6, 2012. An essentially identical sister instrument, the CheMin demonstration model (DM), is operated in a Mars environment chamber at JPL.
NASA Astrophysics Data System (ADS)
Wiegart, L.; Rakitin, M.; Fluerasu, A.; Chubar, O.
2017-08-01
We present the application of fully- and partially-coherent synchrotron radiation wavefront propagation simulation functions, implemented in the "Synchrotron Radiation Workshop" computer code, to create a `virtual beamline' mimicking the Coherent Hard X-ray scattering beamline at NSLS-II. The beamline simulation includes all optical beamline components, such as the insertion device, mirror with metrology data, slits, double crystal monochromator and refractive focusing elements (compound refractive lenses and kinoform lenses). A feature of this beamline is the exploitation of X-ray beam coherence, boosted by the low-emittance NSLS-II storage-ring, for techniques such as X-ray Photon Correlation Spectroscopy or Coherent Diffraction Imaging. The key performance parameters are the degree of Xray beam coherence and photon flux, and the trade-off between them needs to guide the beamline settings for specific experimental requirements. Simulations of key performance parameters are compared to measurements obtained during beamline commissioning, and include the spectral flux of the undulator source, the degree of transverse coherence as well as focal spot sizes.
Development of a High Dynamic Range Pixel Array Detector for Synchrotrons and XFELs
NASA Astrophysics Data System (ADS)
Weiss, Joel Todd
Advances in synchrotron radiation light source technology have opened new lines of inquiry in material science, biology, and everything in between. However, x-ray detector capabilities must advance in concert with light source technology to fully realize experimental possibilities. X-ray free electron lasers (XFELs) place particularly large demands on the capabilities of detectors, and developments towards diffraction-limited storage ring sources also necessitate detectors capable of measuring very high flux [1-3]. The detector described herein builds on the Mixed Mode Pixel Array Detector (MM-PAD) framework, developed previously by our group to perform high dynamic range imaging, and the Adaptive Gain Integrating Pixel Detector (AGIPD) developed for the European XFEL by a collaboration between Deustsches Elektronen-Synchrotron (DESY), the Paul-Scherrer-Institute (PSI), the University of Hamburg, and the University of Bonn, led by Heinz Graafsma [4, 5]. The feasibility of combining adaptive gain with charge removal techniques to increase dynamic range in XFEL experiments is assessed by simulating XFEL scatter with a pulsed infrared laser. The strategy is incorporated into pixel prototypes which are evaluated with direct current injection to simulate very high incident x-ray flux. A fully functional 16x16 pixel hybrid integrating x-ray detector featuring several different pixel architectures based on the prototypes was developed. This dissertation describes its operation and characterization. To extend dynamic range, charge is removed from the integration node of the front-end amplifier without interrupting integration. The number of times this process occurs is recorded by a digital counter in the pixel. The parameter limiting full well is thereby shifted from the size of an integration capacitor to the depth of a digital counter. The result is similar to that achieved by counting pixel array detectors, but the integrators presented here are designed to tolerate a sustained flux >1011 x-rays/pixel/second. In addition, digitization of residual analog signals allows sensitivity for single x-rays or low flux signals. Pixel high flux linearity is evaluated by direct exposure to an unattenuated synchrotron source x-ray beam and flux measurements of more than 1010 9.52 keV x-rays/pixel/s are made. Detector sensitivity to small signals is evaluated and dominant sources of error are identified. These new pixels boast multiple orders of magnitude improvement in maximum sustained flux over the MM-PAD, which is capable of measuring a sustained flux in excess of 108 x-rays/pixel/second while maintaining sensitivity to smaller signals, down to single x-rays.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mills, Dennis; Padmore, Howard; Lessner, Eliane
Each new generation of synchrotron radiation sources has delivered an increase in average brightness 2 to 3 orders of magnitude over the previous generation. The next evolution toward diffraction-limited storage rings will deliver another 3 orders of magnitude increase. For ultrafast experiments, free electron lasers (FELs) deliver 10 orders of magnitude higher peak brightness than storage rings. Our ability to utilize these ultrabright sources, however, is limited by our ability to focus, monochromate, and manipulate these beams with X-ray optics. X-ray optics technology unfortunately lags behind source technology and limits our ability to maximally utilize even today’s X-ray sources. Withmore » ever more powerful X-ray sources on the horizon, a new generation of X-ray optics must be developed that will allow us to fully utilize these beams of unprecedented brightness. The increasing brightness of X-ray sources will enable a new generation of measurements that could have revolutionary impact across a broad area of science, if optical systems necessary for transporting and analyzing X-rays can be perfected. The high coherent flux will facilitate new science utilizing techniques in imaging, dynamics, and ultrahigh-resolution spectroscopy. For example, zone-plate-based hard X-ray microscopes are presently used to look deeply into materials, but today’s resolution and contrast are restricted by limitations of the current lithography used to manufacture nanodiffractive optics. The large penetration length, combined in principle with very high spatial resolution, is an ideal probe of hierarchically ordered mesoscale materials, if zone-plate focusing systems can be improved. Resonant inelastic X-ray scattering (RIXS) probes a wide range of excitations in materials, from charge-transfer processes to the very soft excitations that cause the collective phenomena in correlated electronic systems. However, although RIXS can probe high-energy excitations, the most exciting and potentially revolutionary science involves soft excitations such as magnons and phonons; in general, these are well below the resolution that can be probed by today’s optical systems. The study of these low-energy excitations will only move forward if advances are made in high-resolution gratings for the soft X-ray energy region, and higher-resolution crystal analyzers for the hard X-ray region. In almost all the forefront areas of X-ray science today, the main limitation is our ability to focus, monochromate, and manipulate X-rays at the level required for these advanced measurements. To address these issues, the U.S. Department of Energy (DOE) Office of Basic Energy Sciences (BES) sponsored a workshop, X-ray Optics for BES Light Source Facilities, which was held March 27–29, 2013, near Washington, D.C. The workshop addressed a wide range of technical and organizational issues. Eleven working groups were formed in advance of the meeting and sought over several months to define the most pressing problems and emerging opportunities and to propose the best routes forward for a focused R&D program to solve these problems. The workshop participants identified eight principal research directions (PRDs), as follows: Development of advanced grating lithography and manufacturing for high-energy resolution techniques such as soft X-ray inelastic scattering. Development of higher-precision mirrors for brightness preservation through the use of advanced metrology in manufacturing, improvements in manufacturing techniques, and in mechanical mounting and cooling. Development of higher-accuracy optical metrology that can be used in manufacturing, verification, and testing of optomechanical systems, as well as at wavelength metrology that can be used for quantification of individual optics and alignment and testing of beamlines. Development of an integrated optical modeling and design framework that is designed and maintained specifically for X-ray optics. Development of nanolithographic techniques for improved spatial resolution and efficiency of zone plates. Development of large, perfect single crystals of materials other than silicon for use as beam splitters, seeding monochromators, and high-resolution analyzers. Development of improved thin-film deposition methods for fabrication of multilayer Laue lenses and high-spectral-resolution multilayer gratings. Development of supports, actuator technologies, algorithms, and controls to provide fully integrated and robust adaptive X-ray optic systems. Development of fabrication processes for refractive lenses in materials other than silicon. The workshop participants also addressed two important nontechnical areas: our relationship with industry and organization of optics within the light source facilities. Optimization of activities within these two areas could have an important effect on the effectiveness and efficiency of our overall endeavor. These are crosscutting managerial issues that we identified as areas that needed further in-depth study, but they need to be coordinated above the individual facilities. Finally, an issue that cuts across many of the optics improvements listed above is routine access to beamlines that ideally are fully dedicated to optics research and/or development. The success of the BES X-ray user facilities in serving a rapidly increasing user community has led to a squeezing of beam time for vital instrumentation activities. Dedicated development beamlines could be shared with other R&D activities, such as detector programs and novel instrument development. In summary, to meet the challenges of providing the highest-quality X-ray beams for users and to fully utilize the high-brightness sources of today and those that are on the horizon, it will be critical to make strategic investments in X-ray optics R&D. This report can provide guidance and direction for effective use of investments in the field of X-ray optics and potential approaches to develop a better-coordinated program of X-ray optics development within the suite of BES synchrotron radiation facilities. Due to the importance and complexity of the field, the need for tight coordination between BES light source facilities and with industry, as well as the rapid evolution of light source capabilities, the workshop participants recommend holding similar workshops at least biannually.« less
Test method for telescopes using a point source at a finite distance
NASA Technical Reports Server (NTRS)
Griner, D. B.; Zissa, D. E.; Korsch, D.
1985-01-01
A test method for telescopes that makes use of a focused ring formed by an annular aperture when using a point source at a finite distance is evaluated theoretically and experimentally. The results show that the concept can be applied to near-normal, as well as grazing incidence. It is particularly suited for X-ray telescopes because of their intrinsically narrow annular apertures, and because of the largely reduced diffraction effects.
Beam dynamics and expected performance of Sweden's new storage-ring light source: MAX IV
NASA Astrophysics Data System (ADS)
Leemann, S. C.; Andersson, Å.; Eriksson, M.; Lindgren, L.-J.; Wallén, E.; Bengtsson, J.; Streun, A.
2009-12-01
MAX IV will be Sweden’s next-generation high-performance synchrotron radiation source. The project has recently been granted funding and construction is scheduled to begin in 2010. User operation for a broad and international user community should commence in 2015. The facility is comprised of two storage rings optimized for different wavelength ranges, a linac-based short-pulse facility and a free-electron laser for the production of coherent radiation. The main radiation source of MAX IV will be a 528 m ultralow emittance storage ring operated at 3 GeV for the generation of high-brightness hard x rays. This storage ring was designed to meet the requirements of state-of-the-art insertion devices which will be installed in nineteen 5 m long dispersion-free straight sections. The storage ring is based on a novel multibend achromat design delivering an unprecedented horizontal bare lattice emittance of 0.33 nm rad and a vertical emittance below the 8 pm rad diffraction limit for 1 Å radiation. In this paper we present the beam dynamics considerations behind this storage-ring design and detail its expected unique performance.
Commissioning and Early Operation Experience of the NSLS-II Storage Ring RF System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, F.; Rose, J.; Cupolo, J.
2015-05-03
The National Synchrotron Light Source II (NSLS-II) is a 3 GeV electron X-ray user facility commissioned in 2014. The storage ring RF system, essential for replenishing energy loss per turn of the electrons, consists of digital low level RF controllers, 310 kW CW klystron transmitters, CESR-B type superconducting cavities, as well as a supporting cryogenic system. Here we will report on RF commissioning and early operation experience of the system for beam current up to 200mA.
The Discovery of an Evolving Dust Scattered X-ray Halo Around GRB 031203
NASA Technical Reports Server (NTRS)
Vaughan, S.; Willingale, R.; OBrien, P. T.; Osborne, J. P.; Reeves, J. N.; Levan, A. J.; Watson, M. G.; Tedds, J. A.; Watson, D.; Santos-Lleo, M.
2003-01-01
We report the first detection of a time-dependent, dust-scattered X-ray halo around a gamma-ray burst. GRB3 031203 was observed by XMM-Newton starting six hours after the burst. The halo appeared as concentric ring-like structures centered on the GRB location. The radii of these structures increased with time as t(sup 1/2), consistent with small-angle X-ray scattering caused by a large column of dust along the line of sight to a cosmologically distant GRB. The rings are due to dust concentrated in two distinct slabs in the Galaxy located at distances of 880 and 1390 pc, consistent with known Galactic features. The halo brightness implies an initial soft X-ray pulse consistent with the observed GRB.
Recent Beam Measurements and New Instrumentation at the Advanced Light Source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sannibale, F.; Baptiste, K.; Barry, W.
2012-04-11
The Advanced Light Source (ALS) in Berkeley was the first of the soft x-ray third generation light source ever built, and since 1993 has been in continuous and successful operation serving a large community of users in the VUV and soft x-ray community. During these years the storage ring underwent through several important upgrades that allowed maintaining the performance of this veteran facility at the forefront. The ALS beam diagnostics and instrumentation have followed a similar path of innovation and upgrade and nowadays include most of the modem and last generation devices and technologies that are commercially available and usedmore » in the recently constructed third generation light sources. In this paper we will not focus on such already widely known systems, but we will concentrate our effort in the description of some measurements techniques, instrumentation and diagnostic systems specifically developed at the ALS and used during the last few years.« less
RECENT BEAM MEASUREMENTS AND NEW INSTRUMENTATION AT THE ADVANCED LIGHT SOURCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sannibale, Fernando; Baptiste, Kenneth; Barry, Walter
2008-05-05
The Advanced Light Source (ALS) in Berkeley was the first of the soft x-ray third generation light source ever built, and since 1993 has been in continuous and successful operation serving a large community of users in the VUV and soft x-ray community. During these years the storage ring underwent through several important upgrades that allowed maintaining the performance of this veteran facility at the forefront. The ALS beam diagnostics and instrumentation have followed a similar path of innovation and upgrade and nowadays include most of the modem and last generation devices and technologies that are commercially available and usedmore » in the recently constructed third generation light sources. In this paper we will not focus on such already widely known systems, but we will concentrate our effort in the description of some measurements techniques, instrumentation and diagnostic systems specifically developed at the ALS and used during the last few years.« less
I12: the Joint Engineering, Environment and Processing (JEEP) beamline at Diamond Light Source.
Drakopoulos, Michael; Connolley, Thomas; Reinhard, Christina; Atwood, Robert; Magdysyuk, Oxana; Vo, Nghia; Hart, Michael; Connor, Leigh; Humphreys, Bob; Howell, George; Davies, Steve; Hill, Tim; Wilkin, Guy; Pedersen, Ulrik; Foster, Andrew; De Maio, Nicoletta; Basham, Mark; Yuan, Fajin; Wanelik, Kaz
2015-05-01
I12 is the Joint Engineering, Environmental and Processing (JEEP) beamline, constructed during Phase II of the Diamond Light Source. I12 is located on a short (5 m) straight section of the Diamond storage ring and uses a 4.2 T superconducting wiggler to provide polychromatic and monochromatic X-rays in the energy range 50-150 keV. The beam energy enables good penetration through large or dense samples, combined with a large beam size (1 mrad horizontally × 0.3 mrad vertically). The beam characteristics permit the study of materials and processes inside environmental chambers without unacceptable attenuation of the beam and without the need to use sample sizes which are atypically small for the process under study. X-ray techniques available to users are radiography, tomography, energy-dispersive diffraction, monochromatic and white-beam two-dimensional diffraction/scattering and small-angle X-ray scattering. Since commencing operations in November 2009, I12 has established a broad user community in materials science and processing, chemical processing, biomedical engineering, civil engineering, environmental science, palaeontology and physics.
I12: the Joint Engineering, Environment and Processing (JEEP) beamline at Diamond Light Source
Drakopoulos, Michael; Connolley, Thomas; Reinhard, Christina; Atwood, Robert; Magdysyuk, Oxana; Vo, Nghia; Hart, Michael; Connor, Leigh; Humphreys, Bob; Howell, George; Davies, Steve; Hill, Tim; Wilkin, Guy; Pedersen, Ulrik; Foster, Andrew; De Maio, Nicoletta; Basham, Mark; Yuan, Fajin; Wanelik, Kaz
2015-01-01
I12 is the Joint Engineering, Environmental and Processing (JEEP) beamline, constructed during Phase II of the Diamond Light Source. I12 is located on a short (5 m) straight section of the Diamond storage ring and uses a 4.2 T superconducting wiggler to provide polychromatic and monochromatic X-rays in the energy range 50–150 keV. The beam energy enables good penetration through large or dense samples, combined with a large beam size (1 mrad horizontally × 0.3 mrad vertically). The beam characteristics permit the study of materials and processes inside environmental chambers without unacceptable attenuation of the beam and without the need to use sample sizes which are atypically small for the process under study. X-ray techniques available to users are radiography, tomography, energy-dispersive diffraction, monochromatic and white-beam two-dimensional diffraction/scattering and small-angle X-ray scattering. Since commencing operations in November 2009, I12 has established a broad user community in materials science and processing, chemical processing, biomedical engineering, civil engineering, environmental science, palaeontology and physics. PMID:25931103
First stars of the ρ Ophiuchi dark cloud. XMM-Newton view of ρ Oph and its neighbors
NASA Astrophysics Data System (ADS)
Pillitteri, I.; Wolk, S. J.; Chen, H. H.; Goodman, A.
2016-08-01
Star formation in molecular clouds can be triggered by the dynamical action of winds from massive stars. Furthermore, X-ray and UV fluxes from massive stars can influence the life time of surrounding circumstellar disks. We present the results of a 53 ks XMM-Newton observation centered on the ρ Ophiuchi A+B binary system. ρ Ophiuchi lies in the center of a ring of dust, likely formed by the action of its winds. This region is different from the dense core of the cloud (L1688 Core F) where star formation is at work. X-rays are detected from ρ Ophiuchi as well as a group of surrounding X-ray sources. We detected 89 X-ray sources, 47 of them have at least one counterpart in 2MASS+All-WISE catalogs. Based on IR and X-ray properties, we can distinguish between young stellar objects (YSOs) belonging to the cloud and background objects. Among the cloud members, we detect three debris-disk objects and 22 disk-less - Class III young stars.We show that these stars have ages in 5-10 Myr, and are significantly older than the YSOs in L1688. We speculate that they are the result of an early burst of star formation in the cloud. An X-ray energy of ≥5 × 1044 erg has been injected into the surrounding mediumover the past 5 Myr, we discuss the effects of such energy budget in relation to the cloud properties and dynamics.
Hard X-ray Wiggler Front End Filter Design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schulte-Schrepping, Horst; Hahn, Ulrich
2007-01-19
The front end filter design and implementation for the new HARWI-II hard X-ray wiggler at DORIS-III at HASYLAB/DESY is presented. The device emits a total power of 30 kW at 150mA storage ring current. The beam has a horizontal width of 3.8mrad and a central power density of 54 W/mm2 at 26m distance to the source. The filter section located in the ring tunnel has been introduced to tailor the thermal loads at the downstream optical components. The high power density and the high total power at the filter section are handled with a layered design. Glassy carbon filters convertmore » the absorbed power into thermal radiation to lower the heat load to an acceptable level for water cooled copper filters. The requirements in beam size and filtering are addressed by separating the filter functions in three units which are switched individually into the beam.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Göries, D., E-mail: dennis.goeries@desy.de; Roedig, P.; Stübe, N.
We report about the development and implementation of a new setup for time-resolved X-ray absorption fine structure spectroscopy at beamline P11 utilizing the outstanding source properties of the low-emittance PETRA III synchrotron storage ring in Hamburg. Using a high intensity micrometer-sized X-ray beam in combination with two positional feedback systems, measurements were performed on the transition metal complex fac-Tris[2-phenylpyridinato-C2,N]iridium(III) also referred to as fac-Ir(ppy){sub 3}. This compound is a representative of the phosphorescent iridium(III) complexes, which play an important role in organic light emitting diode (OLED) technology. The experiment could directly prove the anticipated photoinduced charge transfer reaction. Our resultsmore » further reveal that the temporal resolution of the experiment is limited by the PETRA III X-ray bunch length of ∼103 ps full width at half maximum (FWHM).« less
PHILOSOPHY FOR NSLS-II DESIGN WITH SUB-NANOMETER HORIZONTAL EMITTANCE.
DOE Office of Scientific and Technical Information (OSTI.GOV)
OZAKI,S.; BENGTSSON, J.; KRAMER, S.L.
2007-06-25
NSLS-II at Brookhaven National Laboratory is a new third-generation storage ring light source, whose construction is on the verge of being approved by DOE. When completed, NSLS-II with its ability to provide users with a wide range of spectrum, ranging from IR to ultra-high brightness hard x-ray beams will replace the existing two (20+ years old) NSLS light sources. While presenting an overview of the NSLS-II accelerator system, this paper focuses on the strategy and development of a novel <1 nm emittance light source.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Philipp, Hugh T., E-mail: htp2@cornell.edu; Tate, Mark W.; Purohit, Prafull
Modern storage rings are readily capable of providing intense x-ray pulses, tens of picoseconds in duration, millions of times per second. Exploiting the temporal structure of these x-ray sources opens avenues for studying rapid structural changes in materials. Many processes (e.g. crack propagation, deformation on impact, turbulence, etc.) differ in detail from one sample trial to the next and would benefit from the ability to record successive x-ray images with single x-ray sensitivity while framing at 5 to 10 MHz rates. To this end, we have pursued the development of fast x-ray imaging detectors capable of collecting bursts of imagesmore » that enable the isolation of single synchrotron bunches and/or bunch trains. The detector technology used is the hybrid pixel array detector (PAD) with a charge integrating front-end, and high-speed, in-pixel signal storage elements. A 384×256 pixel version, the Keck-PAD, with 150 µm × 150 µm pixels and 8 dedicated in-pixel storage elements is operational, has been tested at CHESS, and has collected data for compression wave studies. An updated version with 27 dedicated storage capacitors and identical pixel size has been fabricated.« less
History of Chandra X-Ray Observatory
1999-09-01
After barely 2 months in space, the Chandra X-Ray Observatory (CXO) took this sturning image of the Crab Nebula, the spectacular remains of a stellar explosion, revealing something never seen before, a brilliant ring around the nebula's heart. The image shows the central pulsar surrounded by tilted rings of high-energy particles that appear to have been flung outward over a distance of more than a light-year from the pulsar. Perpendicular to the rings, jet-like structures produced by high-energy particles blast away from the pulsar. Hubble Space Telescope images have shown moving knots and wisps around the neutron star, and previous x-ray images have shown the outer parts of the jet and hinted at the ring structure. With CXO's exceptional resolution, the jet can be traced all the way in to the neutron star, and the ring pattern clearly appears. The image was made with CXO's Advanced Charge-Coupled Device (CCD) Imaging Spectrometer (ACIS) and High Energy Transmission Grating. The Crab Nebula, easily the most intensively studied object beyond our solar system, has been observed using virtually every astronomical instrument that could see that part of the sky
X-Ray Emission for the Saturnian System
NASA Technical Reports Server (NTRS)
Bhardwaj, Anil; Elsner, Ron F.; Waite, J. Hunter; Gladstone, G. Randall; Branduardi-Raymont, Graziella; Cravens, Tom E.; Ford, Peter G.
2005-01-01
Early attempts to detect X-ray emission from Saturn with Einstein (in December 1979) and ROSAT (in April 1992) were negative and marginal, respectively. Saturnian X-rays were unambiguously detected by XMM-Newton in September 2002 and by the Chandra X-ray Observatory in April 2003. These earlier X-ray observations of Saturn revealed emissions only from its non-auroral disk. In January 2004, Saturn was observed by the Advanced CCD Imaging Spectrometer of the Chandra observatory in two exposures on 20 and 26-27 January; each continuous observation lasted for about one full Saturn rotation. These new observations detected an X-ray flare at Saturn, and show that the Saturnian X-ray emission is highly variable - a factor of 4 variability in brightness over one week. These observations also discovered X-rays from Saturn's rings. The X-ray spectrum of the rings is dominated by emission in the 0.49-0.63 keV band with peak flux near the atomic oxygen K(lpha) fluorescence line at 525 eV. In addition, there is a hint of auroral emission from Saturn's south pole. But unlike Jupiter, X-rays from Saturn's polar region have characteristics similar to those from its disk and that they vary in brightness inversely to the FUV aurora observed by the Hubble Space Telescope. These exciting results obtained from Chandra observations will be presented and discussed.
Optimizing Floating Guard Ring Designs for FASPAX N-in-P Silicon Sensors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shin, Kyung-Wook; Bradford, Robert; Lipton, Ronald
2016-10-06
FASPAX (Fermi-Argonne Semiconducting Pixel Array X-ray detector) is being developed as a fast integrating area detector with wide dynamic range for time resolved applications at the upgraded Advanced Photon Source (APS.) A burst mode detector with intendedmore » $$\\mbox{13 $$MHz$}$ image rate, FASPAX will also incorporate a novel integration circuit to achieve wide dynamic range, from single photon sensitivity to $$10^{\\text{5}}$$ x-rays/pixel/pulse. To achieve these ambitious goals, a novel silicon sensor design is required. This paper will detail early design of the FASPAX sensor. Results from TCAD optimization studies, and characterization of prototype sensors will be presented.« less
Superbend era begins swiftly at the ALS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robinson, Art; Tamura, Lori
2001-11-29
The successful installation and commissioning of high-field superconducting bend magnets (superbends) in three curved sectors of ALS storage ring was the first time the magnet lattice of an operating synchrotron light source has been retrofitted in this fundamental way. As a result, the ALS now offers an expanded spectral range well into the hard x-ray region without compromising either the number of undulators or their high brightness in the soft x-ray region for which the ALS design was originally optimized. In sum, when the superbend-enhanced ALS started up for user operations in October 2001, it marked the beginning of amore » new era in its history.« less
Optimization of Dynamic Aperture of PEP-X Baseline Design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Min-Huey; /SLAC; Cai, Yunhai
2010-08-23
SLAC is developing a long-range plan to transfer the evolving scientific programs at SSRL from the SPEAR3 light source to a much higher performing photon source. Storage ring design is one of the possibilities that would be housed in the 2.2-km PEP-II tunnel. The design goal of PEPX storage ring is to approach an optimal light source design with horizontal emittance less than 100 pm and vertical emittance of 8 pm to reach the diffraction limit of 1-{angstrom} x-ray. The low emittance design requires a lattice with strong focusing leading to high natural chromaticity and therefore to strong sextupoles. Themore » latter caused reduction of dynamic aperture. The dynamic aperture requirement for horizontal injection at injection point is about 10 mm. In order to achieve the desired dynamic aperture the transverse non-linearity of PEP-X is studied. The program LEGO is used to simulate the particle motion. The technique of frequency map is used to analyze the nonlinear behavior. The effect of the non-linearity is tried to minimize at the given constrains of limited space. The details and results of dynamic aperture optimization are discussed in this paper.« less
The Latest Status of NSLS-II Insertion Devices
NASA Astrophysics Data System (ADS)
Tanabe, Toshi; Kitegi, Charles; He, Ping; Musardo, Marco; Rank, Oleg Chubar James; Cappadoro, Peter; Fernandes, Huston; Harder, David; Corwin, Todd
2014-03-01
The National Synchrotron Light Source-II (NSLS-II) project is now in the final stage of construction. The Linac, the Booster synchrotron, and the Storage Ring magnets girder assemblies have been installed. The first damping wiggler has been delivered and its field characteristics are carefully measured. A Three Pole Wiggler (3PW) and Apple-II type elliptically polarizing undulators (EPUs) have been fabricated by the vendors. Two 3.0m long in-vacuum undulators (IVUs) and one 1.5m long IVU are almost complete and waiting for factory acceptance tests. One 3.0m long IVU for Inelastic X-ray Scattering beamline is in fabrication by a different vendor. Recently two 2.8m long IVUs for long straight sections (LSSs) have been added to the project for "future beamlines". In addition, two 1.5m long IVUs and one 2.8m long IVU for LSSs have been procured for Advanced Beamlines for Biological Investigations with X-rays (ABBIX) project funded by National Institure of Health (NIH). Further, two 3.5m long EPUs for LSSs are being designed for NSLS-II Experimental Tools (NEXT) -Major Item of Equipment (MIE) project. To succeed these conventional IVUs, PrFeB based cryo-permanent magnet undulator (CPMU) is considered as next generation device of hard X-ray sources. An In-Vacuum Magnetic Measurement System (IVMMS) for cold in-situ Hall probe mapping of CPMUs up to 1.5m in length has been developed. Summary of the current status of each project and future plans for the NSLS-II ring will be discussed.
Planetary and satellite x ray spectroscopy: A new window on solid-body composition by remote sensing
NASA Technical Reports Server (NTRS)
Chenette, D. L.; Wolcott, R. W.; Selesnick, R. S.
1993-01-01
The rings and most of the satellites of the outer planets orbit within the radiation belts of their parent bodies. This is an environment with intense fluxes of energetic electrons. As a result, these objects are strong emitters of X-rays. The characteristic X-ray lines from these bodies depend on atomic composition, but they are not sensitive to how the material is arranged in compounds or mixtures. X-ray fluorescence spectral analysis has demonstrated its unique value in the laboratory as a qualitative and quantitative analysis tool. This technique has yet to be fully exploited in a planetary instrument for remote sensing. The characteristic X-ray emissions provide atomic relative abundances. These results are complementary to the molecular composition information obtained from IR, visible, and UV emission spectra. The atomic relative abundances are crucial to understanding the formation and evolution of these bodies. They are also crucial to the proper interpretation of the molecular composition results from the other sensors. The intensities of the characteristic X-ray emissions are sufficiently strong to be measured with an instrument of modest size. Recent developments in X-ray detector technologies and electronic miniaturization have made possible space-flight X-ray imaging and nonimaging spectrometers of high sensitivity and excellent energy resolution that are rugged enough to survive long-duration space missions. Depending on the application, such instruments are capable of resolving elemental abundances of elements from carbon through iron. At the same time, by measuring the bremsstrahlung intensity and energy spectrum, the characteristics of the source electron flux can be determined. We will discuss these concepts, including estimated source strengths, and will describe a small instrument capable of providing this unique channel of information for future planetary missions. We propose to build this instrument using innovative electronics packaging methods to minimize size and weight.
Compact x-ray source and panel
Sampayon, Stephen E [Manteca, CA
2008-02-12
A compact, self-contained x-ray source, and a compact x-ray source panel having a plurality of such x-ray sources arranged in a preferably broad-area pixelized array. Each x-ray source includes an electron source for producing an electron beam, an x-ray conversion target, and a multilayer insulator separating the electron source and the x-ray conversion target from each other. The multi-layer insulator preferably has a cylindrical configuration with a plurality of alternating insulator and conductor layers surrounding an acceleration channel leading from the electron source to the x-ray conversion target. A power source is connected to each x-ray source of the array to produce an accelerating gradient between the electron source and x-ray conversion target in any one or more of the x-ray sources independent of other x-ray sources in the array, so as to accelerate an electron beam towards the x-ray conversion target. The multilayer insulator enables relatively short separation distances between the electron source and the x-ray conversion target so that a thin panel is possible for compactness. This is due to the ability of the plurality of alternating insulator and conductor layers of the multilayer insulators to resist surface flashover when sufficiently high acceleration energies necessary for x-ray generation are supplied by the power source to the x-ray sources.
Suzaku Observations of the Monogem Ring and the Origin of the Gemini Hα Ring
NASA Astrophysics Data System (ADS)
Knies, Jonathan R.; Sasaki, Manami; Plucinsky, Paul P.
2018-04-01
We present the analysis of Suzaku X-ray observations of the Galactic supernova remnant (SNR) 'Monogem Ring', a large structure observed in X-rays with an extent of ≈ 25°, located at an anti-centre position. One observation close to the shock also coincides with a large ring-like structure observed in Hα, which is called the 'Gemini Hα ring'. We investigate the origin of the ring-like structure and also possible interactions with the SNR. We show that the SNR is expanding in a region with a density gradient, which has an effect on the morphology of the SNR and the properties of the plasma. The X-ray spectra are fit well with a collisional ionisation equilibrium (CIE) model with a temperature of kT ≈ 0.3 keV. The spectra obtained at a position where the SNR coincides with the Gemini Hα ring are better described with non-equilibrium ionisation (NEI) with a temperature of kT ≈ 1.0 keV. Based on the spectral analysis results, we estimate an age of t ≈ 6.8 × 104 yr for a distance of ≈300 pc, using the Sedov-Taylor solution. We have identified several early-type stars in the Hipparcos catalogue at a distance of 200- 300pc, which have most likely formed the 'Gemini Hα ring' by their powerful stellar winds.
A full-field transmission x-ray microscope for time-resolved imaging of magnetic nanostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ewald, J.; Nisius, T.; Abbati, G.
Sub-nanosecond magnetization dynamics of small permalloy (Ni{sub 80}Fe{sub 20}) elements has been investigated with a new full-field transmission microscope at the soft X-ray beamline P04 of the high brilliance synchrotron radiation source PETRA III. The soft X-ray microscope generates a flat-top illumination field of 20 μm diameter using a grating condenser. A tilted nanostructured magnetic sample can be excited by a picosecond electric current pulse via a coplanar waveguide. The transmitted light of the sample plane is directly imaged by a micro zone plate with < 65 nm resolution onto a 2D gateable X-ray detector to select one particular bunch in themore » storage ring that probes the time evolution of the dynamic information successively via XMCD spectromicroscopy in a pump-probe scheme. In the experiments it was possible to generate a homogeneously magnetized state in patterned magnetic layers by a strong magnetic Oersted field pulse of 200 ps duration and directly observe the recovery to the initial flux-closure vortex patterns.« less
Schneider, Gerd; Guttmann, Peter; Rehbein, Stefan; Werner, Stephan; Follath, Rolf
2012-02-01
X-ray imaging offers a new 3-D view into cells. With its ability to penetrate whole hydrated cells it is ideally suited for pairing fluorescence light microscopy and nanoscale X-ray tomography. In this paper, we describe the X-ray optical set-up and the design of the cryo full-field transmission X-ray microscope (TXM) at the electron storage ring BESSY II. Compared to previous TXM set-ups with zone plate condenser monochromator, the new X-ray optical layout employs an undulator source, a spherical grating monochromator and an elliptically shaped glass capillary mirror as condenser. This set-up improves the spectral resolution by an order of magnitude. Furthermore, the partially coherent object illumination improves the contrast transfer of the microscope compared to incoherent conditions. With the new TXM, cells grown on flat support grids can be tilted perpendicular to the optical axis without any geometrical restrictions by the previously required pinhole for the zone plate monochromator close to the sample plane. We also developed an incorporated fluorescence light microscope which permits to record fluorescence, bright field and DIC images of cryogenic cells inside the TXM. For TXM tomography, imaging with multi-keV X-rays is a straightforward approach to increase the depth of focus. Under these conditions phase contrast imaging is necessary. For soft X-rays with shrinking depth of focus towards 10nm spatial resolution, thin optical sections through a thick specimen might be obtained by deconvolution X-ray microscopy. As alternative 3-D X-ray imaging techniques, the confocal cryo-STXM and the dual beam cryo-FIB/STXM with photoelectron detection are proposed. Copyright © 2012 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chubar O.; Berman, L; Chu, Y.S.
2012-04-04
Partially-coherent wavefront propagation calculations have proven to be feasible and very beneficial in the design of beamlines for 3rd and 4th generation Synchrotron Radiation (SR) sources. These types of calculations use the framework of classical electrodynamics for the description, on the same accuracy level, of the emission by relativistic electrons moving in magnetic fields of accelerators, and the propagation of the emitted radiation wavefronts through beamline optical elements. This enables accurate prediction of performance characteristics for beamlines exploiting high SR brightness and/or high spectral flux. Detailed analysis of radiation degree of coherence, offered by the partially-coherent wavefront propagation method, ismore » of paramount importance for modern storage-ring based SR sources, which, thanks to extremely small sub-nanometer-level electron beam emittances, produce substantial portions of coherent flux in X-ray spectral range. We describe the general approach to partially-coherent SR wavefront propagation simulations and present examples of such simulations performed using 'Synchrotron Radiation Workshop' (SRW) code for the parameters of hard X-ray undulator based beamlines at the National Synchrotron Light Source II (NSLS-II), Brookhaven National Laboratory. These examples illustrate general characteristics of partially-coherent undulator radiation beams in low-emittance SR sources, and demonstrate advantages of applying high-accuracy physical-optics simulations to the optimization and performance prediction of X-ray optical beamlines in these new sources.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blumberg, L.N.; Murphy, J.B.; Reusch, M.F.
1991-01-01
The orbit, tune, chromaticity and {beta} values for the Phase 1 XLS ring were computed by numerical integration of equations of motion using fields obtained from the coefficients of the 3-dimensional solution of Laplace's Equation evaluated by fits to magnetic measurements. The results are in good agreement with available data. The method has been extended to higher order fits of TOSCA generated fields in planes normal to the reference axis using the coil configuration proposed for the Superconducting X-Ray Lithography Source. Agreement with results from numerical integration through fields given directly by TOSCA is excellent. The formulation of the normalmore » multipole expansion presented by Brown and Servranckx has been extended to include skew multipole terms. The method appears appropriate for analysis of magnetic measurements of the SXLS. 8 refs. , 2 figs., 2 tabs.« less
Beam by design: Laser manipulation of electrons in modern accelerators
NASA Astrophysics Data System (ADS)
Hemsing, Erik; Stupakov, Gennady; Xiang, Dao; Zholents, Alexander
2014-07-01
Accelerator-based light sources such as storage rings and free-electron lasers use relativistic electron beams to produce intense radiation over a wide spectral range for fundamental research in physics, chemistry, materials science, biology, and medicine. More than a dozen such sources operate worldwide, and new sources are being built to deliver radiation that meets with the ever-increasing sophistication and depth of new research. Even so, conventional accelerator techniques often cannot keep pace with new demands and, thus, new approaches continue to emerge. In this article, a variety of recently developed and promising techniques that rely on lasers to manipulate and rearrange the electron distribution in order to tailor the properties of the radiation are reviewed. Basic theories of electron-laser interactions, techniques to create microstructures and nanostructures in electron beams, and techniques to produce radiation with customizable waveforms are reviewed. An overview of laser-based techniques for the generation of fully coherent x rays, mode-locked x-ray pulse trains, light with orbital angular momentum, and attosecond or even zeptosecond long coherent pulses in free-electron lasers is presented. Several methods to generate femtosecond pulses in storage rings are also discussed. Additionally, various schemes designed to enhance the performance of light sources through precision beam preparation including beam conditioning, laser heating, emittance exchange, and various laser-based diagnostics are described. Together these techniques represent a new emerging concept of "beam by design" in modern accelerators, which is the primary focus of this article.
Canestrari, Niccolo; Chubar, Oleg; Reininger, Ruben
2014-09-01
X-ray beamlines in modern synchrotron radiation sources make extensive use of grazing-incidence reflective optics, in particular Kirkpatrick-Baez elliptical mirror systems. These systems can focus the incoming X-rays down to nanometer-scale spot sizes while maintaining relatively large acceptance apertures and high flux in the focused radiation spots. In low-emittance storage rings and in free-electron lasers such systems are used with partially or even nearly fully coherent X-ray beams and often target diffraction-limited resolution. Therefore, their accurate simulation and modeling has to be performed within the framework of wave optics. Here the implementation and benchmarking of a wave-optics method for the simulation of grazing-incidence mirrors based on the local stationary-phase approximation or, in other words, the local propagation of the radiation electric field along geometrical rays, is described. The proposed method is CPU-efficient and fully compatible with the numerical methods of Fourier optics. It has been implemented in the Synchrotron Radiation Workshop (SRW) computer code and extensively tested against the geometrical ray-tracing code SHADOW. The test simulations have been performed for cases without and with diffraction at mirror apertures, including cases where the grazing-incidence mirrors can be hardly approximated by ideal lenses. Good agreement between the SRW and SHADOW simulation results is observed in the cases without diffraction. The differences between the simulation results obtained by the two codes in diffraction-dominated cases for illumination with fully or partially coherent radiation are analyzed and interpreted. The application of the new method for the simulation of wavefront propagation through a high-resolution X-ray microspectroscopy beamline at the National Synchrotron Light Source II (Brookhaven National Laboratory, USA) is demonstrated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ross, Steve; Haji-Sheikh, Michael; Huntington, Andrew
The Voxtel VX-798 is a prototype X-ray pixel array detector (PAD) featuring a silicon sensor photodiode array of 48 x 48 pixels, each 130 mu m x 130 mu m x 520 mu m thick, coupled to a CMOS readout application specific integrated circuit (ASIC). The first synchrotron X-ray characterization of this detector is presented, and its ability to selectively count individual X-rays within two independent arrival time windows, a programmable energy range, and localized to a single pixel is demonstrated. During our first trial run at Argonne National Laboratory's Advance Photon Source, the detector achieved a 60 ns gatingmore » time and 700 eV full width at half-maximum energy resolution in agreement with design parameters. Each pixel of the PAD holds two independent digital counters, and the discriminator for X-ray energy features both an upper and lower threshold to window the energy of interest discarding unwanted background. This smart-pixel technology allows energy and time resolution to be set and optimized in software. It is found that the detector linearity follows an isolated dead-time model, implying that megahertz count rates should be possible in each pixel. Measurement of the line and point spread functions showed negligible spatial blurring. When combined with the timing structure of the synchrotron storage ring, it is demonstrated that the area detector can perform both picosecond time-resolved X-ray diffraction and fluorescence spectroscopy measurements.« less
NASA Astrophysics Data System (ADS)
Kabak, Mehmet; Şenöz, Hülya; Elmali, Ayhan; Adar, Vildan; Svoboda, Ingrid; Dušek, Michal; Fejfarová, Karla
2010-12-01
The title compound, C29H23NO2, has been characterized by single-crystal X-ray diffraction at two different temperatures (303 K and 120 K) and wavelengths (Mo K α and Cu K α). The non-centrosymmetric hexagonal crystal structure contains four-membered planar β-lactam ring with an unusually long C-C bond. The β-lactam ring is almost planar.
Operating experience with existing light sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barton, M.Q.
It is instructive to consider what an explosive growth there has been in the development of light sources using synchrotron radiation. This is well illustrated by the list of facilities given in Table I. In many cases, synchrotron light facilities have been obtained by tacking on parasitic beam lines to rings that were built for high energy physics. Of the twenty-three facilities in this table, however, eleven were built explicitely for this synchrotron radiation. Another seven have by now been converted for use as dedicated facilities leaving only five that share time with high energy physics. These five parasitically operatedmore » facilities are still among our best sources of hard x-rays, however, and their importance to the fields of science where these x-rays are needed must be emphasized. While the number of facilities in this table is impressive, it is even more impressive to add up the total number of user beam lines. Most of these rings are absolutely surrounded by beam lines and finding real estate on the experimental floor of one of these facilities for adding a new experiment looks about as practical as adding a farm in the middle of Manhattan. Nonetheless, the managers of these rings seem to have an attitude of ''always room for one more'' and new experimental beam lines do appear. This situation is necessary because the demand for beam time has exploded at an even faster rate than the development of the facilities. The field is not only growing, it can be expected to continue to grow for some time. Some of the explicit plans for future development will be discussed in the companion paper by Lee Teng.« less
Chandra X-Ray Observatory Image of Crab Nebula
NASA Technical Reports Server (NTRS)
1999-01-01
After barely 2 months in space, the Chandra X-Ray Observatory (CXO) took this sturning image of the Crab Nebula, the spectacular remains of a stellar explosion, revealing something never seen before, a brilliant ring around the nebula's heart. The image shows the central pulsar surrounded by tilted rings of high-energy particles that appear to have been flung outward over a distance of more than a light-year from the pulsar. Perpendicular to the rings, jet-like structures produced by high-energy particles blast away from the pulsar. Hubble Space Telescope images have shown moving knots and wisps around the neutron star, and previous x-ray images have shown the outer parts of the jet and hinted at the ring structure. With CXO's exceptional resolution, the jet can be traced all the way in to the neutron star, and the ring pattern clearly appears. The image was made with CXO's Advanced Charge-Coupled Device (CCD) Imaging Spectrometer (ACIS) and High Energy Transmission Grating. The Crab Nebula, easily the most intensively studied object beyond our solar system, has been observed using virtually every astronomical instrument that could see that part of the sky
A field-to-desktop toolchain for X-ray CT densitometry enables tree ring analysis
De Mil, Tom; Vannoppen, Astrid; Beeckman, Hans; Van Acker, Joris; Van den Bulcke, Jan
2016-01-01
Background and Aims Disentangling tree growth requires more than ring width data only. Densitometry is considered a valuable proxy, yet laborious wood sample preparation and lack of dedicated software limit the widespread use of density profiling for tree ring analysis. An X-ray computed tomography-based toolchain of tree increment cores is presented, which results in profile data sets suitable for visual exploration as well as density-based pattern matching. Methods Two temperate (Quercus petraea, Fagus sylvatica) and one tropical species (Terminalia superba) were used for density profiling using an X-ray computed tomography facility with custom-made sample holders and dedicated processing software. Key Results Density-based pattern matching is developed and able to detect anomalies in ring series that can be corrected via interactive software. Conclusions A digital workflow allows generation of structure-corrected profiles of large sets of cores in a short time span that provide sufficient intra-annual density information for tree ring analysis. Furthermore, visual exploration of such data sets is of high value. The dated profiles can be used for high-resolution chronologies and also offer opportunities for fast screening of lesser studied tropical tree species. PMID:27107414
Matsushita, Tadashi; Arakawa, Etsuo; Voegeli, Wolfgang; Yano, Yohko F.
2013-01-01
An X-ray reflectometer has been developed, which can simultaneously measure the whole specular X-ray reflectivity curve with no need for rotation of the sample, detector or monochromator crystal during the measurement. A bent-twisted crystal polychromator is used to realise a convergent X-ray beam which has continuously varying energy E (wavelength λ) and glancing angle α to the sample surface as a function of horizontal direction. This convergent beam is reflected in the vertical direction by the sample placed horizontally at the focus and then diverges horizontally and vertically. The normalized intensity distribution of the reflected beam measured downstream of the specimen with a two-dimensional pixel array detector (PILATUS 100K) represents the reflectivity curve. Specular X-ray reflectivity curves were measured from a commercially available silicon (100) wafer, a thin gold film coated on a silicon single-crystal substrate and the surface of liquid ethylene glycol with data collection times of 0.01 to 1000 s using synchrotron radiation from a bending-magnet source of a 6.5 GeV electron storage ring. A typical value of the simultaneously covered range of the momentum transfer was 0.01–0.45 Å−1 for the silicon wafer sample. The potential of this reflectometer for time-resolved X-ray studies of irreversible structural changes is discussed. PMID:23254659
The new Athena alpha particle X-ray spectrometer for the Mars Exploration Rovers
NASA Astrophysics Data System (ADS)
Rieder, R.; Gellert, R.; Brückner, J.; Klingelhöfer, G.; Dreibus, G.; Yen, A.; Squyres, S. W.
2003-11-01
The new alpha particle X-ray spectrometer (APXS) is part of the Athena payload of the two Mars Exploration Rovers (MER). The APXS sensor head is attached to the turret of the instrument deployment device (IDD) of the rover. The APXS is a very light-weight instrument for determining the major and minor elemental composition of Martian soils, rocks, and other geological materials at the MER landing sites. The sensor head has simply to be docked by the IDD on the surface of the selected sample. X-ray radiation, excited by alpha particles and X rays of the radioactive sources, is recorded by a high-resolution X-ray detector. The X-ray spectra show elements starting from sodium up to yttrium, depending on their concentrations. The backscattered alpha spectra, measured by a ring of detectors, provide additional data on carbon and oxygen. By means of a proper calibration, the elemental concentrations are derived. Together with data from the two other Athena instruments mounted on the IDD, the samples under investigation can be fully characterized. Key APXS objectives are the determination of the chemistry of crustal rocks and soils and the examination of water-related deposits, sediments, or evaporates. Using the rock abrasion tool attached to the IDD, issues of weathering can be addressed by measuring natural and abraded surfaces of rocks.
X-Ray Diffraction on Mars: Scientific Discoveries Made by the CheMin Instrument
NASA Technical Reports Server (NTRS)
Rampe, E. B.; Blake, D. F.; Ming, D. W.; Bristow, T. F.
2017-01-01
The Mars Science Laboratory Curiosity landed in Gale crater in August 2012 with the goal to identify and characterize habitable environments on Mars. Curiosity has been studying a series of sedimentary rocks primarily deposited in fluviolacustrine environments approximately 3.5 Ga. Minerals in the rocks and soils on Mars can help place further constraints on these ancient aqueous environments, including pH, salinity, and relative duration of liquid water. The Chemistry and Mineralogy (CheMin) X-ray diffraction and X-ray fluorescence instrument on Curiosity uses a Co X-ray source and charge-coupled device detector in transmission geometry to collect 2D Debye-Scherrer ring patterns of the less than 150 micron size fraction of drilled rock powders or scooped sediments. With an angular range of approximately 2.52deg 20 and a 20 resolution of approximately 0.3deg, mineral abundances can be quantified with a detection limit of approximately 1-2 wt. %. CheMin has returned quantitative mineral abundances from 16 mudstone, sandstone, and aeolian sand samples so far. The mineralogy of these samples is incredibly diverse, suggesting a variety of depositional and diagenetic environments and different source regions for the sediments. Results from CheMin have been essential for reconstructing the geologic history of Gale crater and addressing the question of habitability on ancient Mars.
Coupling control and optimization at the Canadian Light Source
NASA Astrophysics Data System (ADS)
Wurtz, W. A.
2018-06-01
We present a detailed study using the skew quadrupoles in the Canadian Light Source storage ring lattice to control the parameters of a coupled lattice. We calculate the six-dimensional beam envelop matrix and use it to produce a variety of objective functions for optimization using the Multi-Objective Particle Swarm Optimization (MOPSO) algorithm. MOPSO produces a number of skew quadrupole configurations that we apply to the storage ring. We use the X-ray synchrotron radiation diagnostic beamline to image the beam and we make measurements of the vertical dispersion and beam lifetime. We observe satisfactory agreement between the measurements and simulations. These methods can be used to adjust phase space coupling in a rational way and have applications to fine-tuning the vertical emittance and Touschek lifetime and measuring the gas scattering lifetime.
Chubar, Oleg; Geloni, Gianluca; Kocharyan, Vitali; Madsen, Anders; Saldin, Evgeni; Serkez, Svitozar; Shvyd’ko, Yuri; Sutter, John
2016-01-01
Inelastic X-ray scattering (IXS) is an important tool for studies of equilibrium dynamics in condensed matter. A new spectrometer recently proposed for ultra-high-resolution IXS (UHRIX) has achieved 0.6 meV and 0.25 nm−1 spectral and momentum-transfer resolutions, respectively. However, further improvements down to 0.1 meV and 0.02 nm−1 are required to close the gap in energy–momentum space between high- and low-frequency probes. It is shown that this goal can be achieved by further optimizing the X-ray optics and by increasing the spectral flux of the incident X-ray pulses. UHRIX performs best at energies from 5 to 10 keV, where a combination of self-seeding and undulator tapering at the SASE-2 beamline of the European XFEL promises up to a 100-fold increase in average spectral flux compared with nominal SASE pulses at saturation, or three orders of magnitude more than what is possible with storage-ring-based radiation sources. Wave-optics calculations show that about 7 × 1012 photons s−1 in a 90 µeV bandwidth can be achieved on the sample. This will provide unique new possibilities for dynamics studies by IXS. PMID:26917127
Chubar, Oleg; Geloni, Gianluca; Kocharyan, Vitali; ...
2016-03-01
Inelastic X-ray scattering (IXS) is an important tool for studies of equilibrium dynamics in condensed matter. A new spectrometer recently proposed for ultra-high-resolution IXS (UHRIX) has achieved 0.6 meV and 0.25 nm ₋1spectral and momentum-transfer resolutions, respectively. However, further improvements down to 0.1 meV and 0.02 nm ₋1are required to close the gap in energy–momentum space between high- and low-frequency probes. It is shown that this goal can be achieved by further optimizing the X-ray optics and by increasing the spectral flux of the incident X-ray pulses. UHRIX performs best at energies from 5 to 10 keV, where a combinationmore » of self-seeding and undulator tapering at the SASE-2 beamline of the European XFEL promises up to a 100-fold increase in average spectral flux compared with nominal SASE pulses at saturation, or three orders of magnitude more than what is possible with storage-ring-based radiation sources. Wave-optics calculations show that about 7 × 10 12 photons s ₋1in a 90 µeV bandwidth can be achieved on the sample. Ultimately, this will provide unique new possibilities for dynamics studies by IXS.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsuchiya, Kimichika, E-mail: kimichika.tsuchiya@kek.jp; Adachi, Masahiro; Shioya, Tatsuro
At the 2.5-GeV Photon Factory (PF) storage ring, we recently constructed four new undulators known as U#02-2, U#13, SGU#15, and U#28 for BL02, BL13, BL15, and BL28, respectively. SGU#15 is an in-vacuum undulator with a period length of 17.6 mm. The other three undulators are elliptically polarizing undulators (EPUs) for the vacuum ultraviolet and soft X-ray (VUV-SX) light sources to obtain various polarization states. We constructed these new undulators by fiscal 2013 and step by step installed them in the PF ring. We describe the details of the construction of these new undulators in this report.
Probing buried layers by photoelectron spectromicroscopy with hard x-ray excitation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiemann, C.; Patt, M.; Cramm, S.
We report about a proof-of-principle experiment which explores the perspectives of performing hard x-ray photoemission spectromicroscopy with high lateral resolution. Our results obtained with an energy-filtered photoemission microscope at the PETRA III storage ring facility using hard x-ray excitation up to 6.5 keV photon energy demonstrate that it is possible to obtain selected-area x-ray photoemission spectra from regions less than 500 nm in diameter.
Crab Cavity and Cryomodule Prototype Development for the Advanced Photon Source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, H; Ciovati, G; Clemens, W A
2011-03-01
We review the single-cell, superconducting crab cavity designs for the short-pulse x-ray (SPX) project at the Advanced Photon Source (APS). The 'on-cell' waveguide scheme is expected to have a more margin for the impedance budget of the APS storage ring, as well as offering a more compact design compared with the original design consisting of a low order mode damping waveguide on the beam pipe. We will report recent fabrication progress, cavity test performance on original and alternate prototypes, and concept designs and analysis for various cryomodule components.
Recent progress in X-ray optics at the ESRF
NASA Astrophysics Data System (ADS)
Freund, A.
2003-03-01
It is the task of x-ray optics to adapt the raw beam generated by modern sources such as synchrotron storage rings to a great variety of experimental requirements in terms of intensity, spot size, polarization and other parameters. The very high quality of synchrotron radiation (source size of a few microns and beam divergence of a few micro-radians) and the extreme x-ray flux (power of several hundred Watts in a few square mm) make this task quite difficult. In particular the heat load aspect is very important in the conditioning process of the brute x-ray power. Cryogenically cooled silicon crystals and water-cooled diamond crystals can presently fulfil this task, but limits will soon be reached and new schemes and materials must be envisioned. A major tendency of instrument improvement has a ways been to concentrate more photons into a smaller spot utilizing a whole variety of focusing devices such as Fresnel zone plates, refractive lenses and Systems based on bent surfaces, for example Kirkpatrick-Baez Systems. Apart from the resistance of the sample, the ultimate limits are determined by the source size and strength on one side, by materials properties, cooling, mounting and bending schemes on the other side, and fundamentally by the diffraction process. There is also the important aspect of coherence that can be both a nuisance and a blessing for the experiments, in particular for imaging techniques. Its conservation puts additional constraints on the quality of the optical elements. A review of recent progress in this field is given.
Hard x-ray response of a CdZnTe ring-drift detector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Owens, A.; Hartog, R. den; Quarati, F.
We present the results of an experimental study of a special type of CdZnTe detector of hard x and {gamma} rays--A-drift detector. The device consists of a double ring electrode structure surrounding a central point anode with a guard plane surrounding the outer anode ring. The detector can be operated in two distinctively different modes of charge collection--pseudohemispherical and pseudodrift. We study the detector response profiles obtained by scanning the focused x-ray beam over the whole detector area, specifically the variations in count rate, peak position, and energy resolution for x rays from 10 to 100 keV. In addition, atmore » 662 keV the energy resolution was shown to be 4.8 keV, more than a factor of 2 better than for CdZnTe coplanar grid detectors. To interpret the experimental data, we derive an analytical expression for the spatial distribution of the electric field inside the detector and neglecting carrier diffusion, and identify carrier collection patterns for both modes of operation within the drift model approximation. We show that this model provides a good understanding of measured profiles.« less
Soft x-ray holography and microscopy of biological cells
NASA Astrophysics Data System (ADS)
Chen, Jianwen; Gao, Hongyi; Xie, Honglan; Li, Ruxin; Xu, Zhizhan
2003-10-01
Some experimental results on soft X-ray microscopy and holography imaging of biological specimens are presented in the paper. As we know, due to diffraction effects, there exists a resolution limit determined by wavelength λ and numerical aperture NA in conventional optical microscopy. In order to improve resolution, the num erical aperture should be made as large as possible and the wavelength as short as possible. Owing to the shorter wavelength, X-rays provide the potential of higher resolution in X-ray microscopy, holography image and allow for exam ination the interior structures of thicker specimens. In the experiments, we used synchrotron radiation source in Hefei as light source. Soft X-rays come from a bending magnet in 800 M eV electron storage ring with characteristic wavelength of 2.4 nm. The continuous X-ray spectrums are monochromatized by a zone-plate and a pinhole with 300 m diameter. The experimental set-up is typical contact microscopic system, its main advantage is simplicity and no special optical element is needed. The specimens used in the experiments of microscopic imaging are the colibacillus, the gingko vascular hundle and the fritillaries ovary karyon. The specimen for holographic imaging is the spider filam ents. The basic structures of plant cells such as the cell walls, the cytoplasm and the karyon especially the joint structures between the cells are observed clearly. An experimental study on a thick biological specimen that is a whole sporule w ith the thickness of about 30 μm is performed. In the holographic experiments, the experimental setup is typical Gabor in-line holography. The specimen is placed in line with X-ray source, which provides both the reference w aves and specimen illum ination. The specimen is some spider filament, which adhere to a Si3N4 film. The recording medium is PM M A, which is placed at recording distance of about 400 μm from the specimen. The hologram s were reconstructed by digital method with 300 nm resolutions. A novel method for recording in-line hologram is proposed which is called X-ray in-line holography with zone-plate magnification in this paper. The magnification factor of the micro zone plate imaging is about 103. The transverse resolution can be 48 nm in this method.
NASA Technical Reports Server (NTRS)
Hughes, J. P.; Long, K. S.; Novick, R.
1983-01-01
Fifteen strong X-ray sources were observed by the X-ray polarimeters on board the OSO-8 satellite from 1975 to 1978. The final results of this search for X-ray polarization in cosmic sources are presented in the form of upper limits for the ten sources which are discussed elsewhere. These limits in all cases are consistent with a thermal origin for the X-ray emission.
An improved ring removal procedure for in-line x-ray phase contrast tomography
NASA Astrophysics Data System (ADS)
Massimi, Lorenzo; Brun, Francesco; Fratini, Michela; Bukreeva, Inna; Cedola, Alessia
2018-02-01
The suppression of ring artifacts in x-ray computed tomography (CT) is a required step in practical applications; it can be addressed by introducing refined digital low pass filters within the reconstruction process. However, these filters may introduce additional ringing artifacts when simultaneously imaging pure phase objects and elements having a non-negligible absorption coefficient. Ringing originates at sharp interfaces, due to the truncation of spatial high frequencies, and severely affects qualitative and quantitative analysis of the reconstructed slices. In this work, we discuss the causes of ringing artifacts, and present a general compensation procedure to account for it. The proposed procedure has been tested with CT datasets of the mouse central nervous system acquired at different synchrotron radiation facilities. The results demonstrate that the proposed method compensates for ringing artifacts induced by low pass ring removal filters. The effectiveness of the ring suppression filters is not altered; the proposed method can thus be considered as a framework to improve the ring removal step, regardless of the specific filter adopted or the imaged sample.
An improved ring removal procedure for in-line x-ray phase contrast tomography.
Massimi, Lorenzo; Brun, Francesco; Fratini, Michela; Bukreeva, Inna; Cedola, Alessia
2018-02-12
The suppression of ring artifacts in x-ray computed tomography (CT) is a required step in practical applications; it can be addressed by introducing refined digital low pass filters within the reconstruction process. However, these filters may introduce additional ringing artifacts when simultaneously imaging pure phase objects and elements having a non-negligible absorption coefficient. Ringing originates at sharp interfaces, due to the truncation of spatial high frequencies, and severely affects qualitative and quantitative analysis of the reconstructed slices. In this work, we discuss the causes of ringing artifacts, and present a general compensation procedure to account for it. The proposed procedure has been tested with CT datasets of the mouse central nervous system acquired at different synchrotron radiation facilities. The results demonstrate that the proposed method compensates for ringing artifacts induced by low pass ring removal filters. The effectiveness of the ring suppression filters is not altered; the proposed method can thus be considered as a framework to improve the ring removal step, regardless of the specific filter adopted or the imaged sample.
A dark jet dominates the power output of the stellar black hole Cygnus X-1.
Gallo, Elena; Fender, Rob; Kaiser, Christian; Russell, David; Morganti, Raffaella; Oosterloo, Tom; Heinz, Sebastian
2005-08-11
Black holes undergoing accretion are thought to emit the bulk of their power in the X-ray band by releasing the gravitational potential energy of the infalling matter. At the same time, they are capable of producing highly collimated jets of energy and particles flowing out of the system with relativistic velocities. Here we show that the 10-solar-mass (10M(o)) black hole in the X-ray binary Cygnus X-1 (refs 3-5) is surrounded by a large-scale (approximately 5 pc in diameter) ring-like structure that appears to be inflated by the inner radio jet. We estimate that in order to sustain the observed emission of the ring, the jet of Cygnus X-1 has to carry a kinetic power that can be as high as the bolometric X-ray luminosity of the binary system. This result may imply that low-luminosity stellar-mass black holes as a whole dissipate the bulk of the liberated accretion power in the form of 'dark', radiatively inefficient relativistic outflows, rather than locally in the X-ray-emitting inflow.
Beamline P02.1 at PETRA III for high-resolution and high-energy powder diffraction
Dippel, Ann-Christin; Liermann, Hanns-Peter; Delitz, Jan Torben; Walter, Peter; Schulte-Schrepping, Horst; Seeck, Oliver H.; Franz, Hermann
2015-01-01
Powder X-ray diffraction techniques largely benefit from the superior beam quality provided by high-brilliance synchrotron light sources in terms of photon flux and angular resolution. The High Resolution Powder Diffraction Beamline P02.1 at the storage ring PETRA III (DESY, Hamburg, Germany) combines these strengths with the power of high-energy X-rays for materials research. The beamline is operated at a fixed photon energy of 60 keV (0.207 Å wavelength). A high-resolution monochromator generates the highly collimated X-ray beam of narrow energy bandwidth. Classic crystal structure determination in reciprocal space at standard and non-ambient conditions are an essential part of the scientific scope as well as total scattering analysis using the real space information of the pair distribution function. Both methods are complemented by in situ capabilities with time-resolution in the sub-second regime owing to the high beam intensity and the advanced detector technology for high-energy X-rays. P02.1’s efficiency in solving chemical and crystallographic problems is illustrated by presenting key experiments that were carried out within these fields during the early stage of beamline operation. PMID:25931084
Schmitt, Thorsten; de Groot, Frank M F; Rubensson, Jan Erik
2014-09-01
The spectroscopic technique of resonant inelastic X-ray scattering (RIXS) will particularly profit from immensely improved brilliance of diffraction-limited storage rings (DLSRs). In RIXS one measures the intensities of excitations as a function of energy and momentum transfer. DLSRs will allow for pushing the achievable energy resolution, signal intensity and the sampled spot size to new limits. With RIXS one nowadays probes a broad range of electronic systems reaching from simple molecules to complex materials displaying phenomena like peculiar magnetism, two-dimensional electron gases, superconductivity, photovoltaic energy conversion and heterogeneous catalysis. In this article the types of improved RIXS studies that will become possible with X-ray beams from DLSRs are envisioned.
A field-to-desktop toolchain for X-ray CT densitometry enables tree ring analysis.
De Mil, Tom; Vannoppen, Astrid; Beeckman, Hans; Van Acker, Joris; Van den Bulcke, Jan
2016-06-01
Disentangling tree growth requires more than ring width data only. Densitometry is considered a valuable proxy, yet laborious wood sample preparation and lack of dedicated software limit the widespread use of density profiling for tree ring analysis. An X-ray computed tomography-based toolchain of tree increment cores is presented, which results in profile data sets suitable for visual exploration as well as density-based pattern matching. Two temperate (Quercus petraea, Fagus sylvatica) and one tropical species (Terminalia superba) were used for density profiling using an X-ray computed tomography facility with custom-made sample holders and dedicated processing software. Density-based pattern matching is developed and able to detect anomalies in ring series that can be corrected via interactive software. A digital workflow allows generation of structure-corrected profiles of large sets of cores in a short time span that provide sufficient intra-annual density information for tree ring analysis. Furthermore, visual exploration of such data sets is of high value. The dated profiles can be used for high-resolution chronologies and also offer opportunities for fast screening of lesser studied tropical tree species. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
X-ray fluorescence beamline at the LNLS: Current instrumentation and future developments (abstract)
NASA Astrophysics Data System (ADS)
Pérez, C. A.; Bueno, M. I. S.; Neuenshwander, R. T.; Sánchez, H. J.; Tolentino, H.
2002-03-01
The x-ray fluorescence (XRF) beamline, constructed at the Brazilian National Synchrotron Radiation Laboratory (LNLS-http://www.lnls.br), has been operating for the external users since August of 1998 (C. A. Pérez et al., Proc. of the European Conference on Energy Dispersive X-Ray Spectrometry, Bologna, Italy, 1998, pp. 125-129). The synchrotron source for this beamline is the D09B (15°) dipole magnet of the LNLS storage ring. Two main experimental setups are mounted at the XRF beamline. One consists of a high vacuum chamber adapted to carry out experiments in grazing excitation conditions. This allows chemical trace and ultratrace element determination on several samples, mainly coming from environmental and biological sciences. Another setup consists of an experimental station, operated in air, in which x-ray fluorescence analysis with spatial resolution can be done. This station is equipped with a fine conical capillary, capable of achieving 20 μm spatial resolution, and with an optical microscope in order to select the region of interest on the sample surface. In this work, the main characteristic of the beamline, experimental stations as well as the description of some new experimental facilities will be given. Future development in the instrumentation focuses on an appropriate x-ray optic to be able to carry out chemical trace analysis of light elements using the total x-ray fluorescence technique. Also, chemical mapping below 10 μm spatial resolution, while keeping high flux of photon on the sample, will be achieved by using the Kirkpatrick-Baez x-ray microfocusing optic.
NASA Astrophysics Data System (ADS)
Donnadieu, P.; Dénoyer, F.
1996-11-01
A comparative X-ray and electron diffraction study has been performed on Al-Li-Cu icosahedral quasicrystal in order to investigate the diffuse scattering rings revealed by a previous work. Electron diffraction confirms the existence of rings but shows that the rings have a fine structure. The diffuse aspect on the X-ray diffraction patterns is then due to an averaging effect. Recent simulations based on the model of canonical cells related to the icosahedral packing give diffractions patterns in agreement with this fine structure effect. Nous comparons les diagrammes de diffraction des rayon-X et des électrons obtenus sur les mêmes échantillons du quasicristal icosaèdrique Al-Li-Cu. Notre but est d'étudier les anneaux de diffusion diffuse mis en évidence par un travail précédent. Les diagrammes de diffraction électronique confirment la présence des anneaux mais ils montrent aussi que ces anneaux possèdent une structure fine. L'aspect diffus des anneaux révélés par la diffraction des rayons X est dû à un effet de moyenne. Des simulations récentes basées sur la décomposition en cellules canoniques de l'empilement icosaédrique produisent des diagrammes de diffraction en accord avec ces effects de structure fine.
Three Bright X-ray Sources in NGC 1313
NASA Astrophysics Data System (ADS)
Colbert, E.; Petre, R.; Schlegel, E.
1992-12-01
Three bright X-ray sources were detected in a recent (April/May 1991) ROSAT PSPC observation of the nearby (D ~ 4.5 Mpc) face--on barred spiral galaxy NGC 1313. Two of the sources were at positions coincident with X-ray sources detected by Fabbiano & Trinchieri (ApJ 315, 1987) in a previous (Jan 1980) Einstein IPC observation. The position of the brightest Einstein source is near the center of NGC 1313, and the second Einstein source is ~ 7' south of the ``nuclear'' source, in the outskirts of the spiral arms. A third bright X-ray source was detected in the ROSAT observation ~ 7' southwest of the ``nuclear'' source. We present X-ray spectra and X-ray images for the three bright sources found in the ROSAT observation of NGC 1313, and compare with previous Einstein results. Spectral analysis of these sources require them to have very large soft X-ray luminosities ( ~ 10(40) erg s(-1) ) when compared with typical X-ray sources in our Galaxy. Feasible explanations for the X-ray emission are presented. The third X-ray source is positively identified with the recently discovered (Ryder et. al., ApJ 1992) peculiar type-II supernova 1978K.
An X-ray halo around Cassiopeia A
NASA Astrophysics Data System (ADS)
Stewart, G. C.; Fabian, A. C.; Seward, F. D.
The large-scale X-ray emission of Cas A is characterized, and mechanisms are proposed to explain it. The Einstein HRI image of Murray et al. (1979) is binned into 16-arcsec pixels, a point-spread function based on the 2.04-keV monochromatic Zr source is applied, and the data are modeled as a series of circularly symmetric rings of emission. A significant excess extending to a radius of 6 arcmin (roughly the size of the optical H II region) is found to have a total 0.5-3-keV luminosity of about 5 x 10 to the 34th erg/s, or about 2 percent of the total luminosity of Cas A, which is assumed to lie at a distance of 3 kpc. Thermal bremsstrahlung, synchrotron radiation, and dust scattering of the main-shell emission are examined and found to be plausible emission mechanisms; further observations are required to identify the one active in Cas A.
X-ray characterization of a multichannel smart-pixel array detector.
Ross, Steve; Haji-Sheikh, Michael; Huntington, Andrew; Kline, David; Lee, Adam; Li, Yuelin; Rhee, Jehyuk; Tarpley, Mary; Walko, Donald A; Westberg, Gregg; Williams, George; Zou, Haifeng; Landahl, Eric
2016-01-01
The Voxtel VX-798 is a prototype X-ray pixel array detector (PAD) featuring a silicon sensor photodiode array of 48 × 48 pixels, each 130 µm × 130 µm × 520 µm thick, coupled to a CMOS readout application specific integrated circuit (ASIC). The first synchrotron X-ray characterization of this detector is presented, and its ability to selectively count individual X-rays within two independent arrival time windows, a programmable energy range, and localized to a single pixel is demonstrated. During our first trial run at Argonne National Laboratory's Advance Photon Source, the detector achieved a 60 ns gating time and 700 eV full width at half-maximum energy resolution in agreement with design parameters. Each pixel of the PAD holds two independent digital counters, and the discriminator for X-ray energy features both an upper and lower threshold to window the energy of interest discarding unwanted background. This smart-pixel technology allows energy and time resolution to be set and optimized in software. It is found that the detector linearity follows an isolated dead-time model, implying that megahertz count rates should be possible in each pixel. Measurement of the line and point spread functions showed negligible spatial blurring. When combined with the timing structure of the synchrotron storage ring, it is demonstrated that the area detector can perform both picosecond time-resolved X-ray diffraction and fluorescence spectroscopy measurements.
Classification of X-ray sources in the direction of M31
NASA Astrophysics Data System (ADS)
Vasilopoulos, G.; Hatzidimitriou, D.; Pietsch, W.
2012-01-01
M31 is our nearest spiral galaxy, at a distance of 780 kpc. Identification of X-ray sources in nearby galaxies is important for interpreting the properties of more distant ones, mainly because we can classify nearby sources using both X-ray and optical data, while more distant ones via X-rays alone. The XMM-Newton Large Project for M31 has produced an abundant sample of about 1900 X-ray sources in the direction of M31. Most of them remain elusive, giving us little signs of their origin. Our goal is to classify these sources using criteria based on properties of already identified ones. In particular we construct candidate lists of high mass X-ray binaries, low mass X-ray binaries, X-ray binaries correlated with globular clusters and AGN based on their X-ray emission and the properties of their optical counterparts, if any. Our main methodology consists of identifying particular loci of X-ray sources on X-ray hardness ratio diagrams and the color magnitude diagrams of their optical counterparts. Finally, we examined the X-ray luminosity function of the X-ray binaries populations.
High speed imaging of dynamic processes with a switched source x-ray CT system
NASA Astrophysics Data System (ADS)
Thompson, William M.; Lionheart, William R. B.; Morton, Edward J.; Cunningham, Mike; Luggar, Russell D.
2015-05-01
Conventional x-ray computed tomography (CT) scanners are limited in their scanning speed by the mechanical constraints of their rotating gantries and as such do not provide the necessary temporal resolution for imaging of fast-moving dynamic processes, such as moving fluid flows. The Real Time Tomography (RTT) system is a family of fast cone beam CT scanners which instead use multiple fixed discrete sources and complete rings of detectors in an offset geometry. We demonstrate the potential of this system for use in the imaging of such high speed dynamic processes and give results using simulated and real experimental data. The unusual scanning geometry results in some challenges in image reconstruction, which are overcome using algebraic iterative reconstruction techniques and explicit regularisation. Through the use of a simple temporal regularisation term and by optimising the source firing pattern, we show that temporal resolution of the system may be increased at the expense of spatial resolution, which may be advantageous in some situations. Results are given showing temporal resolution of approximately 500 µs with simulated data and 3 ms with real experimental data.
Lan, Ti-Yen; Wierman, Jennifer L.; Tate, Mark W.; Philipp, Hugh T.; Elser, Veit
2017-01-01
Recently, there has been a growing interest in adapting serial microcrystallography (SMX) experiments to existing storage ring (SR) sources. For very small crystals, however, radiation damage occurs before sufficient numbers of photons are diffracted to determine the orientation of the crystal. The challenge is to merge data from a large number of such ‘sparse’ frames in order to measure the full reciprocal space intensity. To simulate sparse frames, a dataset was collected from a large lysozyme crystal illuminated by a dim X-ray source. The crystal was continuously rotated about two orthogonal axes to sample a subset of the rotation space. With the EMC algorithm [expand–maximize–compress; Loh & Elser (2009). Phys. Rev. E, 80, 026705], it is shown that the diffracted intensity of the crystal can still be reconstructed even without knowledge of the orientation of the crystal in any sparse frame. Moreover, parallel computation implementations were designed to considerably improve the time and memory scaling of the algorithm. The results show that EMC-based SMX experiments should be feasible at SR sources. PMID:28808431
Assembly of Ring-Shaped Phosphorus within Carbon Nanotube Nanoreactors.
Zhang, Jinying; Zhao, Dan; Xiao, Dingbin; Ma, Chuansheng; Du, Hongchu; Li, Xin; Zhang, Lihui; Huang, Jialiang; Huang, Hongyang; Jia, Chun-Lin; Tománek, David; Niu, Chunming
2017-02-06
A phosphorus allotrope that has not been observed so far, ring-shaped phosphorus consisting of alternate P 8 and P 2 structural units, has been assembled inside multi-walled carbon nanotube nanoreactors with inner diameters of 5-8 nm by a chemical vapor transport and reaction of red phosphorus at 500 °C. The ring-shaped nanostructures with surrounding graphene walls are stable under ambient conditions. The nanostructures were characterized by high-resolution transmission electron microscopy, scanning transmission electron microscopy, energy-dispersive X-ray spectroscopy, Raman scattering, attenuated total reflectance Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bains, Jasleen; Boulanger, Martin J., E-mail: mboulang@uvic.ca
2008-05-01
Preliminary X-ray diffraction studies of a novel ring-cleaving enzyme from B. xenovorans LB400 encoded by the benzoate-oxidation (box) pathway. The assimilation of aromatic compounds by microbial species requires specialized enzymes to cleave the thermodynamically stable ring. In the recently discovered benzoate-oxidation (box) pathway in Burkholderia xenovorans LB400, this is accomplished by a novel dihydrodiol lyase (BoxC{sub C}). Sequence analysis suggests that BoxC{sub C} is part of the crotonase superfamily but includes an additional uncharacterized region of approximately 115 residues that is predicted to mediate ring cleavage. Processing of X-ray diffraction data to 1.5 Å resolution revealed that BoxC{sub C} crystallizedmore » with two molecules in the asymmetric unit of the P2{sub 1}2{sub 1}2{sub 1} space group, with a solvent content of 47% and a Matthews coefficient of 2.32 Å{sup 3} Da{sup −1}. Selenomethionine BoxC{sub C} has been purified and crystals are currently being refined for anomalous dispersion studies.« less
Analyses of gold artifacts from Slovenia
NASA Astrophysics Data System (ADS)
Šmit, Ž.; Budnar, M.; Pelicon, P.; Zorko, B.; Knific, T.; Istenič, J.; Trampuž-Orel, N.; Demortier, G.
2000-03-01
The method of particle-induced X-ray emission (PIXE) was used for the study of two gold archaeological finds: a Norico-Pannonian brooch, presumably a votive item, and a pair of earrings and a ring from a Slavic female grave. The analysis was performed by an external proton millibeam and aimed to identify the manufacturing techniques. The brooch, including the spring, was made of a rather pure 98% gold. This may indicate that the brooch was produced for votive purposes, as a more flexible spring would suit an object to be worn. The Slavic ring was made of a different alloy than the earrings; moreover, its inhomogeneous alloy reveals the exploitation of local gold sources.
A Search for the X-ray Counterpart of the Unidentified Gamma-ray Source 3EG J2020+4017 (2CG078+2)
NASA Technical Reports Server (NTRS)
Weisskopf, Martin; Swartz, Douglas A.; Carraminana, Alberto; Carrasco, Luis; Kaplan, David L.; Becker, Werner; Elsner, Ronald F.; Kanbach, Gottfried; ODell, Stephen L.; Tennant, Allyn F.
2006-01-01
We report observations with the Chandra X-ray Observatory of a field in the gamma-Cygni supernova remnant (SNR78.2+2.1) centered on the cataloged location of the unidentified, bright gamma-ray source 3EG J2020+4017. In this search for an X-ray counterpart to the gamma-ray source, we detected 30 X-ray sources. Of these, we found 17 strong-candidate counterparts in optical (visible through near-infrared) cataloged and an additional 3 through our optical observations. Based upon colors and (for several objects) optical spectra, nearly all the optically identified objects appear to be reddened main-sequence stars: None of the X-ray sources with an optical counterpart is a plausible X-ray counterpart to 3EG J2020+4017-if that gamma-ray source is a spin-powered pulsar. Many of the 10 X-ray sources lacking optical counterparts are likely (extragalactic) active galactic nuclei, based upon the sky density of such sources. Although one of the 10 optically unidentified X-ray sources could be the gamma-ray source, there is no auxiliary evidence supporting such an identification
High-speed X-ray imaging pixel array detector for synchrotron bunch isolation
Philipp, Hugh T.; Tate, Mark W.; Purohit, Prafull; ...
2016-01-28
A wide-dynamic-range imaging X-ray detector designed for recording successive frames at rates up to 10 MHz is described. X-ray imaging with frame rates of up to 6.5 MHz have been experimentally verified. The pixel design allows for up to 8–12 frames to be stored internally at high speed before readout, which occurs at a 1 kHz frame rate. An additional mode of operation allows the integration capacitors to be re-addressed repeatedly before readout which can enhance the signal-to-noise ratio of cyclical processes. This detector, along with modern storage ring sources which provide short (10–100 ps) and intense X-ray pulses atmore » megahertz rates, opens new avenues for the study of rapid structural changes in materials. The detector consists of hybridized modules, each of which is comprised of a 500 µm-thick silicon X-ray sensor solder bump-bonded, pixel by pixel, to an application-specific integrated circuit. The format of each module is 128 × 128 pixels with a pixel pitch of 150 µm. In the prototype detector described here, the three-side buttable modules are tiled in a 3 × 2 array with a full format of 256 × 384 pixels. Lastly, we detail the characteristics, operation, testing and application of the detector.« less
High-speed X-ray imaging pixel array detector for synchrotron bunch isolation
Philipp, Hugh T.; Tate, Mark W.; Purohit, Prafull; Shanks, Katherine S.; Weiss, Joel T.; Gruner, Sol M.
2016-01-01
A wide-dynamic-range imaging X-ray detector designed for recording successive frames at rates up to 10 MHz is described. X-ray imaging with frame rates of up to 6.5 MHz have been experimentally verified. The pixel design allows for up to 8–12 frames to be stored internally at high speed before readout, which occurs at a 1 kHz frame rate. An additional mode of operation allows the integration capacitors to be re-addressed repeatedly before readout which can enhance the signal-to-noise ratio of cyclical processes. This detector, along with modern storage ring sources which provide short (10–100 ps) and intense X-ray pulses at megahertz rates, opens new avenues for the study of rapid structural changes in materials. The detector consists of hybridized modules, each of which is comprised of a 500 µm-thick silicon X-ray sensor solder bump-bonded, pixel by pixel, to an application-specific integrated circuit. The format of each module is 128 × 128 pixels with a pixel pitch of 150 µm. In the prototype detector described here, the three-side buttable modules are tiled in a 3 × 2 array with a full format of 256 × 384 pixels. The characteristics, operation, testing and application of the detector are detailed. PMID:26917125
High-speed X-ray imaging pixel array detector for synchrotron bunch isolation.
Philipp, Hugh T; Tate, Mark W; Purohit, Prafull; Shanks, Katherine S; Weiss, Joel T; Gruner, Sol M
2016-03-01
A wide-dynamic-range imaging X-ray detector designed for recording successive frames at rates up to 10 MHz is described. X-ray imaging with frame rates of up to 6.5 MHz have been experimentally verified. The pixel design allows for up to 8-12 frames to be stored internally at high speed before readout, which occurs at a 1 kHz frame rate. An additional mode of operation allows the integration capacitors to be re-addressed repeatedly before readout which can enhance the signal-to-noise ratio of cyclical processes. This detector, along with modern storage ring sources which provide short (10-100 ps) and intense X-ray pulses at megahertz rates, opens new avenues for the study of rapid structural changes in materials. The detector consists of hybridized modules, each of which is comprised of a 500 µm-thick silicon X-ray sensor solder bump-bonded, pixel by pixel, to an application-specific integrated circuit. The format of each module is 128 × 128 pixels with a pixel pitch of 150 µm. In the prototype detector described here, the three-side buttable modules are tiled in a 3 × 2 array with a full format of 256 × 384 pixels. The characteristics, operation, testing and application of the detector are detailed.
2012-10-01
matrix composite materials are employed in aerospace applications [1] and increasingly in other sectors such as sustainable energy (e.g. wind turbines ... ring . The difference in terms of source has important advantages for synchrotron radiation CT. One is represented by high spatial resolution...emery cloth between the specimen faces and the grip jaws (grit side toward specimen) was placed to avoid or reduce slip of the specimen in the grips
UNDERSTANDING X-RAY STARS:. The Discovery of Binary X-ray Sources
NASA Astrophysics Data System (ADS)
Schreier, E. J.; Tananbaum, H.
2000-09-01
The discovery of binary X-ray sources with UHURU introduced many new concepts to astronomy. It provided the canonical model which explained X-ray emission from a large class of galactic X-ray sources: it confirmed the existence of collapsed objects as the source of intense X-ray emission; showed that such collapsed objects existed in binary systems, with mass accretion as the energy source for the X-ray emission; and provided compelling evidence for the existence of black holes. This model also provided the basis for explaining the power source of AGNs and QSOs. The process of discovery and interpretation also established X-ray astronomy as an essential sub-discipline of astronomy, beginning its incorporation into the mainstream of astronomy.
21 CFR 872.1810 - Intraoral source x-ray system.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Intraoral source x-ray system. 872.1810 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.1810 Intraoral source x-ray system. (a) Identification. An intraoral source x-ray system is an electrically powered device that produces x-rays and is...
21 CFR 872.1810 - Intraoral source x-ray system.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Intraoral source x-ray system. 872.1810 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.1810 Intraoral source x-ray system. (a) Identification. An intraoral source x-ray system is an electrically powered device that produces x-rays and is...
21 CFR 872.1810 - Intraoral source x-ray system.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Intraoral source x-ray system. 872.1810 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.1810 Intraoral source x-ray system. (a) Identification. An intraoral source x-ray system is an electrically powered device that produces x-rays and is...
21 CFR 872.1810 - Intraoral source x-ray system.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Intraoral source x-ray system. 872.1810 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.1810 Intraoral source x-ray system. (a) Identification. An intraoral source x-ray system is an electrically powered device that produces x-rays and is...
AUSPEX: a graphical tool for X-ray diffraction data analysis.
Thorn, Andrea; Parkhurst, James; Emsley, Paul; Nicholls, Robert A; Vollmar, Melanie; Evans, Gwyndaf; Murshudov, Garib N
2017-09-01
In this paper, AUSPEX, a new software tool for experimental X-ray data analysis, is presented. Exploring the behaviour of diffraction intensities and the associated estimated uncertainties facilitates the discovery of underlying problems and can help users to improve their data acquisition and processing in order to obtain better structural models. The program enables users to inspect the distribution of observed intensities (or amplitudes) against resolution as well as the associated estimated uncertainties (sigmas). It is demonstrated how AUSPEX can be used to visually and automatically detect ice-ring artefacts in integrated X-ray diffraction data. Such artefacts can hamper structure determination, but may be difficult to identify from the raw diffraction images produced by modern pixel detectors. The analysis suggests that a significant portion of the data sets deposited in the PDB contain ice-ring artefacts. Furthermore, it is demonstrated how other problems in experimental X-ray data caused, for example, by scaling and data-conversion procedures can be detected by AUSPEX.
Schmitt, Thorsten; de Groot, Frank M. F.; Rubensson, Jan-Erik
2014-01-01
The spectroscopic technique of resonant inelastic X-ray scattering (RIXS) will particularly profit from immensely improved brilliance of diffraction-limited storage rings (DLSRs). In RIXS one measures the intensities of excitations as a function of energy and momentum transfer. DLSRs will allow for pushing the achievable energy resolution, signal intensity and the sampled spot size to new limits. With RIXS one nowadays probes a broad range of electronic systems reaching from simple molecules to complex materials displaying phenomena like peculiar magnetism, two-dimensional electron gases, superconductivity, photovoltaic energy conversion and heterogeneous catalysis. In this article the types of improved RIXS studies that will become possible with X-ray beams from DLSRs are envisioned. PMID:25177995
Correlation methods in optical metrology with state-of-the-art x-ray mirrors
NASA Astrophysics Data System (ADS)
Yashchuk, Valeriy V.; Centers, Gary; Gevorkyan, Gevork S.; Lacey, Ian; Smith, Brian V.
2018-01-01
The development of fully coherent free electron lasers and diffraction limited storage ring x-ray sources has brought to focus the need for higher performing x-ray optics with unprecedented tolerances for surface slope and height errors and roughness. For example, the proposed beamlines for the future upgraded Advance Light Source, ALS-U, require optical elements characterized by a residual slope error of <100 nrad (root-mean-square) and height error of <1-2 nm (peak-tovalley). These are for optics with a length of up to one meter. However, the current performance of x-ray optical fabrication and metrology generally falls short of these requirements. The major limitation comes from the lack of reliable and efficient surface metrology with required accuracy and with reasonably high measurement rate, suitable for integration into the modern deterministic surface figuring processes. The major problems of current surface metrology relate to the inherent instrumental temporal drifts, systematic errors, and/or an unacceptably high cost, as in the case of interferometry with computer-generated holograms as a reference. In this paper, we discuss the experimental methods and approaches based on correlation analysis to the acquisition and processing of metrology data developed at the ALS X-Ray Optical Laboratory (XROL). Using an example of surface topography measurements of a state-of-the-art x-ray mirror performed at the XROL, we demonstrate the efficiency of combining the developed experimental correlation methods to the advanced optimal scanning strategy (AOSS) technique. This allows a significant improvement in the accuracy and capacity of the measurements via suppression of the instrumental low frequency noise, temporal drift, and systematic error in a single measurement run. Practically speaking, implementation of the AOSS technique leads to an increase of the measurement accuracy, as well as the capacity of ex situ metrology by a factor of about four. The developed method is general and applicable to a broad spectrum of high accuracy measurements.
Discovery of Spatial and Spectral Structure in the X-Ray Emission from the Crab Nebula
NASA Technical Reports Server (NTRS)
Weisskopf, M.; Hester, J. J.; Tennant, A. F.; Elsner, R. F.; Schulz, N. S.; Marshall, H. L.; Karovska, M.; Nichols, J. S.; Swartz, D. A.; Kolodziejczak, J. J.
2000-01-01
The Chandra X-ray Observatory observed the Crab Nebula and Pulsar During orbital calibration. Zeroth-order images with the High-Energy Transmission Grating (HETG) read-out by the Advanced CCD Imaging Spectrometer spectroscopy array (ACIS-S) show a striking richness of X-ray structure, at a resolution comparable to that of the best ground-based visible-light observations. The HETG-ACIS-S images reveal, for the first time, an X-ray knots along the inner ring and (perhaps) along the inward extension of the X-ray jet. Although complicated by instrumental effects and the brightness of the Crab Nebula, the spectrometric analysis shows systematic variations of the X-ray spectrum throughout the Nebula.
Picosecond x-ray diagnostics for third and fourth generation synchrotron sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeCamp, Matthew
2016-03-30
In the DOE-EPSCoR State/National Laboratory partnership grant ``Picosecond x-ray diagnostics for third and fourth generation synchrotron sources'' Dr. DeCamp set forth a partnership between the University of Delaware and Argonne National Laboratory. This proposal aimed to design and implement a series of experiments utilizing, or improving upon, existing time-domain hard x-ray spectroscopies at a third generation synchrotron source. Specifically, the PI put forth three experimental projects to be explored in the grant cycle: 1) implementing a picosecond ``x-ray Bragg switch'' using a laser excited nano-structured metallic film, 2) designing a robust x-ray optical delay stage for x-ray pump-probe studies atmore » a hard x-ray synchrotron source, and 3) building/installing a laser based x-ray source at the Advanced Photon Source for two-color x-ray pump-probe studies.« less
21 CFR 872.1800 - Extraoral source x-ray system.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Extraoral source x-ray system. 872.1800 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.1800 Extraoral source x-ray system. (a) Identification. An extraoral source x-ray system is an AC-powered device that produces x-rays and is intended for...
21 CFR 872.1800 - Extraoral source x-ray system.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Extraoral source x-ray system. 872.1800 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.1800 Extraoral source x-ray system. (a) Identification. An extraoral source x-ray system is an AC-powered device that produces x-rays and is intended for...
21 CFR 872.1800 - Extraoral source x-ray system.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Extraoral source x-ray system. 872.1800 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.1800 Extraoral source x-ray system. (a) Identification. An extraoral source x-ray system is an AC-powered device that produces x-rays and is intended for...
Fourth Generation Light Sources
NASA Astrophysics Data System (ADS)
Winick, Herman
1997-05-01
Concepts and designs are now being developed at laboratories around the world for light sources with performance levels that exceed present sources, including the very powerful and successful third generation synchrotron radiation sources that have come on line in the past few years. Workshops (M. Cornacchia and H. Winick (eds), Workshop on Fourth Generation Light Sources, Feb. 24-27, 1992, SSRL Report 92/02) (J.-L. Laclare (ed), ICFA Workshop on Fourth Generation Light Sources, Jan. 22-25, 1996, ESRF Report) have been held to review directions for future sources. A main thrust is to increase the brightness and coherence of the radiation using storage rings with lower electron-beam emittance or free-electron lasers (FELs). In the infra-red part of the spectrum very high brightness and coherence is already provided by FEL user facilities driven by linacs and storage rings. It now appears possible to extend FEL operation to the VUV, soft X-ray and even hard X-ray spectral range, to wavelengths down to the angstrom range, using high energy linacs equipped with high-brightness rf photoinjectors and bunch-length compressors. R&D to develop such sources is in progress at BNL, DESY, KEK, SLAC and other laboratories. In the absence of mirrors to form optical cavities, short wavelengths are reached in FEL systems in which a high peak current, low-emittance electron beam becomes bunch-density modulated at the optical wavelength in a single pass through a long undulator by self-amplified spontaneous emission (SASE); i.e.; startup from noise. A proposal to use the last kilometer of the three kilometer SLAC linac (the first two kilometers will be used for injection to the PEP II B-Factory) to provide 15 GeV electron beams to reach 1.5 Angstroms by SASE in a 100 m long undulator is in preparation.
Low-Energy Microfocus X-Ray Source for Enhanced Testing Capability in the Stray Light Facility
NASA Technical Reports Server (NTRS)
Gaskin, Jessica; O'Dell, Stephen; Kolodziejczak, Jeff
2015-01-01
Research toward high-resolution, soft x-ray optics (mirrors and gratings) necessary for the next generation large x-ray observatories requires x-ray testing using a low-energy x-ray source with fine angular size (<1 arcsecond). To accommodate this somewhat demanding requirement, NASA Marshall Space Flight Center (MSFC) has procured a custom, windowless low-energy microfocus (approximately 0.1 mm spot) x-ray source from TruFocus Corporation that mates directly to the Stray Light Facility (SLF). MSFC X-ray Astronomy team members are internationally recognized for their expertise in the development, fabrication, and testing of grazing-incidence optics for x-ray telescopes. One of the key MSFC facilities for testing novel x-ray instrumentation is the SLF. This facility is an approximately 100-m-long beam line equipped with multiple x-ray sources and detectors. This new source adds to the already robust compliment of instrumentation, allowing MSFC to support additional internal and community x-ray testing needs.
Multiwavelength study of Chandra X-ray sources in the Antennae
NASA Astrophysics Data System (ADS)
Clark, D. M.; Eikenberry, S. S.; Brandl, B. R.; Wilson, J. C.; Carson, J. C.; Henderson, C. P.; Hayward, T. L.; Barry, D. J.; Ptak, A. F.; Colbert, E. J. M.
2011-01-01
We use Wide-field InfraRed Camera (WIRC) infrared (IR) images of the Antennae (NGC 4038/4039) together with the extensive catalogue of 120 X-ray point sources to search for counterpart candidates. Using our proven frame-tie technique, we find 38 X-ray sources with IR counterparts, almost doubling the number of IR counterparts to X-ray sources that we first identified. In our photometric analysis, we consider the 35 IR counterparts that are confirmed star clusters. We show that the clusters with X-ray sources tend to be brighter, Ks≈ 16 mag, with (J-Ks) = 1.1 mag. We then use archival Hubble Space Telescope (HST) images of the Antennae to search for optical counterparts to the X-ray point sources. We employ our previous IR-to-X-ray frame-tie as an intermediary to establish a precise optical-to-X-ray frame-tie with <0.6 arcsec rms positional uncertainty. Due to the high optical source density near the X-ray sources, we determine that we cannot reliably identify counterparts. Comparing the HST positions to the 35 identified IR star cluster counterparts, we find optical matches for 27 of these sources. Using Bruzual-Charlot spectral evolutionary models, we find that most clusters associated with an X-ray source are massive, and young, ˜ 106 yr.
X-ray imaging of spin currents and magnetisation dynamics at the nanoscale
NASA Astrophysics Data System (ADS)
Bonetti, Stefano
2017-04-01
Understanding how spins move in time and space is the aim of both fundamental and applied research in modern magnetism. Over the past three decades, research in this field has led to technological advances that have had a major impact on our society, while improving the understanding of the fundamentals of spin physics. However, important questions still remain unanswered, because it is experimentally challenging to directly observe spins and their motion with a combined high spatial and temporal resolution. In this article, we present an overview of the recent advances in x-ray microscopy that allow researchers to directly watch spins move in time and space at the microscopically relevant scales. We discuss scanning x-ray transmission microscopy (STXM) at resonant soft x-ray edges, which is available at most modern synchrotron light sources. This technique measures magnetic contrast through the x-ray magnetic circular dichroism (XMCD) effect at the resonant absorption edges, while focusing the x-ray radiation at the nanometre scale, and using the intrinsic pulsed structure of synchrotron-generated x-rays to create time-resolved images of magnetism at the nanoscale. In particular, we discuss how the presence of spin currents can be detected by imaging spin accumulation, and how the magnetisation dynamics in thin ferromagnetic films can be directly imaged. We discuss how a direct look at the phenomena allows for a deeper understanding of the the physics at play, that is not accessible to other, more indirect techniques. Finally, we present an overview of the exciting opportunities that lie ahead to further understand the fundamentals of novel spin physics, opportunities offered by the appearance of diffraction limited storage rings and free electron lasers.
X-ray imaging of spin currents and magnetisation dynamics at the nanoscale.
Bonetti, Stefano
2017-04-05
Understanding how spins move in time and space is the aim of both fundamental and applied research in modern magnetism. Over the past three decades, research in this field has led to technological advances that have had a major impact on our society, while improving the understanding of the fundamentals of spin physics. However, important questions still remain unanswered, because it is experimentally challenging to directly observe spins and their motion with a combined high spatial and temporal resolution. In this article, we present an overview of the recent advances in x-ray microscopy that allow researchers to directly watch spins move in time and space at the microscopically relevant scales. We discuss scanning x-ray transmission microscopy (STXM) at resonant soft x-ray edges, which is available at most modern synchrotron light sources. This technique measures magnetic contrast through the x-ray magnetic circular dichroism (XMCD) effect at the resonant absorption edges, while focusing the x-ray radiation at the nanometre scale, and using the intrinsic pulsed structure of synchrotron-generated x-rays to create time-resolved images of magnetism at the nanoscale. In particular, we discuss how the presence of spin currents can be detected by imaging spin accumulation, and how the magnetisation dynamics in thin ferromagnetic films can be directly imaged. We discuss how a direct look at the phenomena allows for a deeper understanding of the the physics at play, that is not accessible to other, more indirect techniques. Finally, we present an overview of the exciting opportunities that lie ahead to further understand the fundamentals of novel spin physics, opportunities offered by the appearance of diffraction limited storage rings and free electron lasers.
Optical design and simulation of a new coherence beamline at NSLS-II
NASA Astrophysics Data System (ADS)
Williams, Garth J.; Chubar, Oleg; Berman, Lonny; Chu, Yong S.; Robinson, Ian K.
2017-08-01
We will discuss the optical design for a proposed beamline at NSLS-II, a late-third generation storage ring source, designed to exploit the spatial coherence of the X-rays to extract high-resolution spatial information from ordered and disordered materials through Coherent Diffractive Imaging, executed in the Bragg- and forward-scattering geometries. This technique offers a powerful tool to image sub-10 nm spatial features and, within ordered materials, sub-Angstrom mapping of deformation fields. Driven by the opportunity to apply CDI to a wide range of samples, with sizes ranging from sub-micron to tens-of-microns, two optical designs have been proposed and simulated under a wide variety of optical configurations using the software package Synchrotron Radiation Workshop. The designs, their goals, and the results of the simulation, including NSLS-II ring and undulator source parameters, of the beamline performance as a function of its variable optical components is described.
Infrared studies of galactic center x-ray sources
NASA Astrophysics Data System (ADS)
DeWitt, Curtis
In this dissertation I use a variety of approaches to discover the nature of a subset of the nearly 10,000 X-ray point sources in the 2° x 0.8° region around the Galactic Center. I produced a JHK s source catalog of the 170 x170 region around Sgr A* an area containing 4339 of these X-ray sources, with the ISPI camera on the CTIO 4-m telescope. I cross-correlated the Chandra and ISPI catalogs to find potential near-infrared (NIR) counterparts to the X-ray sources. The extreme NIR source crowding in the field means that it is not possible to establish the authenticity of the matches with astrometry and photometry alone. I found 2137 IR/X-ray astrometrically matched sources; statistically I calculated that my catalog contains 289+/-13 true matches to soft X-ray sources and 154 +/- 39 matches to hard X-ray sources. However, the fraction of matches to hard sources that are spurious is 90%, compared to 40% for soft source matches, making the hard source NIR matches particularly challenging for spectroscopic follow-up. I statistically investigated the parameter space of matched sources and identified a set of 98 NIR matches to hard X-ray sources with reddenings consistent with the GC distance which have a 45% probability of being true counterparts. I created two additional photometric catalogs of the GC region to investigate the variability of X-ray counterparts over a time baseline of several years. I found 48 variable NIR sources matched to X-ray sources, with 2 spectroscopically confirmed to be true counterparts (1 in previous literature and one in this study). I took spectra of 46 of my best candidates for counterparts to X-ray sources toward the GC, and spectroscopically confirmed 4 sources as the authentic physical counterpart on the basis of emission lines in the H and K band spectra. These sources include a Be high mass X-ray binary located 16 pc in projection away from Sgr A*; a hard X-ray symbiotic binary located 22 pc in projection from Sgr A*; an O-type supergiant at an distance of 3.7 kpc; and an O star at the Galactic Center distance. I also identified 3 foreground X-ray source counterparts within a distance of 1 kpc which do not show obvious emission features in their spectra. However, on the basis of the low surface density of unreddened sources along the line-of-sight to the Galactic Center and our previous statistical analysis (DeWitt et al., 2010), these can be securely identified as the true counterparts to their coincident X-ray point sources. Lastly, I used the results of my matching simulations to infer the presence of 7+/-2 true counterparts within a set of late type giants that I observed without detectable emission features. I conclude from this work that the probable excess in red giant X-ray counterparts without emission lines needs to be confirmed both with larger samples of spectroscopically surveyed counterparts and more advanced statistical simulations of the match authenticity. Also, the nature of the compact object in two of my counterpart discoveries, the Be HMXB and the symbiotic binary, can be strongly constrained with X-ray spectral fitting. Lastly, I conclude that spectroscopic surveys for new X-ray source counterparts in the GC may be able to increase their efficiency by specifically targeting photometric variables and very close astrometric matches of IR/X-ray sources.
NASA Astrophysics Data System (ADS)
de Vives, Ana Elisa Sirito; Moreira, Silvana; Brienza, Sandra Maria Boscolo; Medeiros, Jean Gabriel Silva; Filho, Mário Tomazello; Zucchi, Orghêda Luíza Araújo Domingues; Filho, Virgílio Franco do Nascimento
2006-11-01
This paper aims to study the environmental pollution in the tree development, in order to evaluate its use as bioindicator in urban and country sides. The sample collection was carried out in Piracicaba city, São Paulo State, which presents high level of environmental contamination in water, soil and air, due to industrial activities, vehicles combustion, sugar-cane leaves burning in the harvesting, etc. The species Caesalpinia peltophoroides ("Sibipiruna") was selected because it is widely used in urban forestation. Synchrotron Radiation Total Reflection X-ray Fluorescence technique (SR-TXRF) was employed to identify and quantify the elements and metals of nutritional and toxicological importance in the wood samples. The analysis was performed in the Brazilian Synchrotron Light Source Laboratory, using a white beam for excitation and a Si(Li) detector for X-ray detection. In several samples, P, K, Ca, Ti, Fe, Sr, Ba and Pb were quantified. The K/Ca, K/P and Pb/Ca ratios were found to decrease towards the bark.
Gaines, D P; Spitzer, R C; Ceglio, N M; Krumrey, M; Ulm, G
1993-12-01
A molybdenum silicon multilayer is irradiated with 13.4-nm radiation to investigate changes in multilayer performance under simulated soft-x-ray projection lithography (SXPL) conditions. The wiggler-undulator at the Berlin electron storage ring BESSY is used as a quasi-monochromatic source of calculable spectral radiant intensity and is configured to simulate an incident SXPL x-ray spectrum. The test multilayer receives a radiant exposure of 240 J/mm(2) in an exposure lasting 8.9 h. The corresponding average incident power density is 7.5 mW/mm(2). The absorbed dose of 7.8 × 10(10) J/kg (7.8 × 10(12) rad) is equivalent to 1.2 times the dose that would be absorbed by a multilayer coating on the first imaging optic in a hypothetical SXPL system during 1 year of operation. Surface temperature increases do not exceed 2 °C during the exposure. Normal-incidence reflectance measurements at λ(0) = 13.4 nm performed before radiation exposure are in agreement with measurements performed after the exposure, indicating that no sign icant damage had occurred.
NASA Technical Reports Server (NTRS)
Ghosh, Kajal K.; Swartz, Douglas A.; Tennant, Allyn F.; Saripalli, Lakshmi; Gandhi, Poshak; Foellmi, Cedric; Gutierrez, Carlos M.; Lopez-Corredoira, Martin
2006-01-01
The X-ray source population in the field of the interacting pair of galaxies NGC 5774/5775 is reported. A total of 49 discrete sources are detected, including 12 ultraluminous X-ray source candidates with lum inosities above 10(exp 39)erg/s in the 0.5 - 8.0 keV X-ray band. Several of these latter are transient X-ray sources that fall below detect ion levels in one of two X-ray observations spaced 15 months apart. X-ray source positions are mapped onto optical and radio images to sear ch for potential counterparts. Eleven sources have optically-bright c ounterparts. Optical colors are used to differentiate these sources, which are mostly located outside the optical extent of the interacting galaxies, as potential globular clusters (3 sources) and quasars (5) . Follow-up optical spectroscopy confirms two of the latter are background quasars.
Commissioning of BL 7.2, the new diagnostic beam line at the ALS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sannibale, Fernando; Baum, Dennis; Biocca, Alan
2004-06-29
BL 7.2 is a new beamline at the Advanced Light Source (ALS) of the Lawrence Berkeley National Laboratory (LBNL) dedicated to electron beam diagnostics. The system, which is basically a hard x-ray pinhole camera, was installed in the storage ring in August 2003 and commissioning with the ALS electron beam followed immediately after. In this paper the commissioning results are presented together with the description of the relevant measurements performed for the beamline characterization.
Mapping High-Velocity H-alpha and Lyman-alpha Emission from Supernova 1987A
NASA Technical Reports Server (NTRS)
France, Kevin; McCray, Richard; Fransson, Claes; Larsson, Josefin; Frank, Kari A.; Burrows, David N.; Challis, Peter; Kirshner, Robert P.; Chevalier, Roger A.; Garnavich, Peter;
2015-01-01
We present new Hubble Space Telescope images of high-velocity H-alpha and Lyman-alpha emission in the outer debris of SN 1987A. The H-alpha images are dominated by emission from hydrogen atoms crossing the reverse shock. For the first time we observe emission from the reverse shock surface well above and below the equatorial ring, suggesting a bipolar or conical structure perpendicular to the ring plane. Using the H-alpha imaging, we measure the mass flux of hydrogen atoms crossing the reverse shock front, in the velocity intervals (-7,500 < V(sub obs) < -2,800 km/s) and (1,000 < V(sub obs) < 7,500 km/s), ?M(sub H) = 1.2 × 10(exp -3) M/ y. We also present the first Lyman-alpha imaging of the whole remnant and new Chandra X-ray observations. Comparing the spatial distribution of the Lyman-alpha and X-ray emission, we observe that the majority of the high-velocity Lyman-alpha emission originates interior to the equatorial ring. The observed Lyman-alpha/H-alpha photon ratio, R(L-alpha/H-alpha) approx. = 17, is significantly higher than the theoretically predicted ratio of approx. = 5 for neutral atoms crossing the reverse shock front. We attribute this excess to Lyman-alpha emission produced by X-ray heating of the outer debris. The spatial orientation of the Lyman-alpha and X-ray emission suggests that X-ray heating of the outer debris is the dominant Lyman-alpha production mechanism in SN 1987A at this phase in its evolution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Philipp, Hugh T.; Tate, Mark W.; Purohit, Prafull
A wide-dynamic-range imaging X-ray detector designed for recording successive frames at rates up to 10 MHz is described. X-ray imaging with frame rates of up to 6.5 MHz have been experimentally verified. The pixel design allows for up to 8–12 frames to be stored internally at high speed before readout, which occurs at a 1 kHz frame rate. An additional mode of operation allows the integration capacitors to be re-addressed repeatedly before readout which can enhance the signal-to-noise ratio of cyclical processes. This detector, along with modern storage ring sources which provide short (10–100 ps) and intense X-ray pulses atmore » megahertz rates, opens new avenues for the study of rapid structural changes in materials. The detector consists of hybridized modules, each of which is comprised of a 500 µm-thick silicon X-ray sensor solder bump-bonded, pixel by pixel, to an application-specific integrated circuit. The format of each module is 128 × 128 pixels with a pixel pitch of 150 µm. In the prototype detector described here, the three-side buttable modules are tiled in a 3 × 2 array with a full format of 256 × 384 pixels. Lastly, we detail the characteristics, operation, testing and application of the detector.« less
Soft x-ray contact imaging of biological specimens using a laser-produced plasma as an x-ray source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, P.C.
The use of a laser-produced plasma as an x-ray source provides significant advantages over other types of sources for x-ray microradiography of, particularly, living biological specimens. The pulsed nature of the x-rays enables imaging of the specimen in a living state, and the small source size minimizes penumbral blurring. This makes it possible to make an exposure close to the source, thereby increasing the x-ray intensity. In this article, we will demonstrate the applications of x-ray contact microradiography in structural and developmental botany such as the localization of silica deposition and the floral morphologenesis of maize.
Calibration of space instruments at the Metrology Light Source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klein, R., E-mail: roman.klein@ptb.de; Fliegauf, R.; Gottwald, A.
2016-07-27
PTB has more than 20 years of experience in the calibration of space-based instruments using synchrotron radiation to cover the UV, VUV and X-ray spectral range. New instrumentation at the electron storage ring Metrology Light Source (MLS) opens up extended calibration possibilities within this framework. In particular, the set-up of a large vacuum vessel that can accommodate entire space instruments opens up new prospects. Moreover, a new facility for the calibration of radiation transfer source standards with a considerably extended spectral range has been put into operation. Besides, characterization and calibration of single components like e.g. mirrors, filters, gratings, andmore » detectors is continued.« less
X-ray Point Source Populations in Spiral and Elliptical Galaxies
NASA Astrophysics Data System (ADS)
Colbert, E.; Heckman, T.; Weaver, K.; Ptak, A.; Strickland, D.
2001-12-01
In the years of the Einstein and ASCA satellites, it was known that the total hard X-ray luminosity from non-AGN galaxies was fairly well correlated with the total blue luminosity. However, the origin of this hard component was not well understood. Some possibilities that were considered included X-ray binaries, extended upscattered far-infrared light via the inverse-Compton process, extended hot 107 K gas (especially in ellipitical galaxies), or even an active nucleus. Now, for the first time, we know from Chandra images that a significant amount of the total hard X-ray emission comes from individual X-ray point sources. We present here spatial and spectral analyses of Chandra data for X-ray point sources in a sample of ~40 galaxies, including both spiral galaxies (starbursts and non-starbursts) and elliptical galaxies. We shall discuss the relationship between the X-ray point source population and the properties of the host galaxies. We show that the slopes of the point-source X-ray luminosity functions are different for different host galaxy types and discuss possible reasons why. We also present detailed X-ray spectral analyses of several of the most luminous X-ray point sources (i.e., IXOs, a.k.a. ULXs), and discuss various scenarios for the origin of the X-ray point sources.
Analysis of the Central X-ray Source in DG Tau
NASA Astrophysics Data System (ADS)
Schneider, P. Christian; Schmitt, Jürgen H. M. M.
As a stellar X-ray source DG Tau shows two rather unusual features: A resolved X-ray jet [2] and an X-ray spectrum best described by two thermal components with different absorbing column densities, a so called "two-absorber X-ray (TAX)" morphology [1, 2]. In an effort to understand the properties of the central X-ray source in DG Tau a detailed position analysis was carried out.
Infrared Counterparts to Chandra X-Ray Sources in the Antennae
NASA Astrophysics Data System (ADS)
Clark, D. M.; Eikenberry, S. S.; Brandl, B. R.; Wilson, J. C.; Carson, J. C.; Henderson, C. P.; Hayward, T. L.; Barry, D. J.; Ptak, A. F.; Colbert, E. J. M.
2007-03-01
We use deep J (1.25 μm) and Ks (2.15 μm) images of the Antennae (NGC 4038/4039) obtained with the Wide-field InfraRed Camera on the Palomar 200 inch (5 m) telescope, together with the Chandra X-ray source list of Zezas and coworkers to search for infrared counterparts to X-ray point sources. We establish an X-ray/IR astrometric frame tie with ~0.5" rms residuals over a ~4.3' field. We find 13 ``strong'' IR counterparts brighter than Ks=17.8 mag and <1.0" from X-ray sources, and an additional 6 ``possible'' IR counterparts between 1.0'' and 1.5'' from X-ray sources. Based on a detailed study of the surface density of IR sources near the X-ray sources, we expect only ~2 of the ``strong'' counterparts and ~3 of the ``possible'' counterparts to be chance superpositions of unrelated objects. Comparing both strong and possible IR counterparts to our photometric study of ~220 IR clusters in the Antennae, we find with a >99.9% confidence level that IR counterparts to X-ray sources are ΔMKs~1.2 mag more luminous than average non-X-ray clusters. We also note that the X-ray/IR matches are concentrated in the spiral arms and ``overlap'' regions of the Antennae. This implies that these X-ray sources lie in the most ``super'' of the Antennae's super star clusters, and thus trace the recent massive star formation history here. Based on the NH inferred from the X-ray sources without IR counterparts, we determine that the absence of most of the ``missing'' IR counterparts is not due to extinction, but that these sources are intrinsically less luminous in the IR, implying that they trace a different (possibly older) stellar population. We find no clear correlation between X-ray luminosity classes and IR properties of the sources, although small-number statistics hamper this analysis.
Simulation of emittance dilution in electron storage ring from Compton backscattering
NASA Astrophysics Data System (ADS)
Blumberg, L. N.; Blum, E.
A Monte-Carlo simulation of Compton backscattered kappa(sub L) = 3.2-micron photons from an IR-FEL on 75-MeV electrons in a storage ring yields an RMS electron energy spread of delta(sub E) = 11.9-keV for a sample of 10(exp 7) single scattering events. Electrons are sampled from a beam of natural energy spread sigma(sub E) = 5.6-keV and damped transverse angle spreads sigma(sub x)(prime) = .041-mrad and sigma(sub y)(prime) = .052-mrad (100%) coupling, scaled from the 200-MeV BNL XLS compact storage ring. The Compton-scattered x-rays are generated from an integral of the CM Klein-Nishina cross-section transformed to the lab. A tracking calculation has also been performed in 6-dimensional phase space. Initial electron coordinates are selected randomly from a Gaussian distribution of RMS spreads sigma(sub xo) = .102-mm, sigma(sub x(prime)o) = .041-mrad, sigma(sub yo) = .018-mm, sigma(sub y(prime)o) = .052-mrad, sigma(sub (phi)o) = 22-mrad and sigma(sub Eo) = 6-keV. A sample of 10000 electrons were each following for 40000 turns around the ring through an RF cavity of f(sub RF) = 211.54-MHz and peak voltage V(sub m)=300-keV. Preliminary results indicate that the resulting energy distribution is quite broad with an RMS width of delta(sub E) = 124-keV. The transverse widths are only slightly increased from their original values, i.e. delta(sub x) = .106-mm and delta(sub x)(prime) = .043 mrad. The scaled energy spread of delta(sub E) approximately = 360-keV for approximately 350,000 turns desired in a 10-msec x-ray angiography exposure is well within the RF bucket used here; even V(sub m) less than 50-kV is adequate. Further, the electron energy spread adds a negligible RMS x-ray energy spread of delta(sub Ex) = .32-keV. The electron energy damping time of tau(sub E) = 379-msec at 75-MeV in an XLS-type ring allows for damping this induced spread and top-off of the ring between heart cycles.
Emittance and lifetime measurement with damping wigglers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, G. M.; Shaftan, T., E-mail: shaftan@bnl.gov; Cheng, W. X.
National Synchrotron Light Source II (NSLS-II) is a new third-generation storage ring light source at Brookhaven National Laboratory. The storage ring design calls for small horizontal emittance (<1 nm-rad) and diffraction-limited vertical emittance at 12 keV (8 pm-rad). Achieving low value of the beam size will enable novel user experiments with nm-range spatial and meV-energy resolution. The high-brightness NSLS-II lattice has been realized by implementing 30-cell double bend achromatic cells producing the horizontal emittance of 2 nm rad and then halving it further by using several Damping Wigglers (DWs). This paper is focused on characterization of the DW effects inmore » the storage ring performance, namely, on reduction of the beam emittance, and corresponding changes in the energy spread and beam lifetime. The relevant beam parameters have been measured by the X-ray pinhole camera, beam position monitors, beam filling pattern monitor, and current transformers. In this paper, we compare the measured results of the beam performance with analytic estimates for the complement of the 3 DWs installed at the NSLS-II.« less
NASA Astrophysics Data System (ADS)
Evans, Ian; Primini, Francis A.; Glotfelty, Kenny J.; Anderson, Craig S.; Bonaventura, Nina R.; Chen, Judy C.; Davis, John E.; Doe, Stephen M.; Evans, Janet D.; Fabbiano, Giuseppina; Galle, Elizabeth C.; Gibbs, Danny G., II; Grier, John D.; Hain, Roger; Hall, Diane M.; Harbo, Peter N.; He, Xiang Qun (Helen); Houck, John C.; Karovska, Margarita; Kashyap, Vinay L.; Lauer, Jennifer; McCollough, Michael L.; McDowell, Jonathan C.; Miller, Joseph B.; Mitschang, Arik W.; Morgan, Douglas L.; Mossman, Amy E.; Nichols, Joy S.; Nowak, Michael A.; Plummer, David A.; Refsdal, Brian L.; Rots, Arnold H.; Siemiginowska, Aneta L.; Sundheim, Beth A.; Tibbetts, Michael S.; van Stone, David W.; Winkelman, Sherry L.; Zografou, Panagoula
2009-09-01
The first release of the Chandra Source Catalog (CSC) was published in 2009 March, and includes information about 94,676 X-ray sources detected in a subset of public ACIS imaging observations from roughly the first eight years of the Chandra mission. This release of the catalog includes point and compact sources with observed spatial extents <˜30''.The CSC is a general purpose virtual X-ray astrophysics facility that provides access to a carefully selected set of generally useful quantities for individual X-ray sources, and is designed to satisfy the needs of a broad-based group of scientists, including those who may be less familiar with astronomical data analysis in the X-ray regime.The catalog (1) provides access to the best estimates of the X-ray source properties for detected sources, with good scientific fidelity, and directly supports medium sophistication scientific analysis on using the individual source data; (2) facilitates analysis of a wide range of statistical properties for classes of X-ray sources; (3) provides efficient access to calibrated observational data and ancillary data products for individual X-ray sources, so that users can perform detailed further analysis using existing tools; and (4) includes real X-ray sources detected with flux significance greater than a predefined threshold, while maintaining the number of spurious sources at an acceptable level. For each detected X-ray source, the CSC provides commonly tabulated quantities, including source position, extent, multi-band fluxes, hardness ratios, and variability statistics, derived from the observations in which the source is detected. In addition to these traditional catalog elements, for each X-ray source the CSC includes an extensive set of file-based data products that can be manipulated interactively, including source images, event lists, light curves, and spectra from each observation in which a source is detected.
Contrast agent choice for intravenous coronary angiography
NASA Astrophysics Data System (ADS)
Zeman, H. D.; Siddons, D. P.
1990-05-01
The screening of the general population for coronary artery disease would be practical if a method existed for visualizing the extent of occlusion after an intravenous injection of contrast agent. Measurements performed with monochromatic synchrotron radiation X-rays and an iodine-containing contrast agent at the Stanford Synchrotron Radiation Laboratory have shown that such an intravenous angiography procedure would be possible with an adequately intense monochromatic X-ray source. Because of the size and cost of synchrotron radiation facilities it would be desirable to make the most efficient use of the intensity available, while reducing as much as possible the radiation dose experienced by the patient. By choosing contrast agents containing elements with a higher atomic number than iodine, it is possible to both improve the image quality and reduce the patient radiation dose, while using the same synchrotron radiation source. By using Si monochromator crystals with a small mosaic spread, it is possible to increase the X-ray flux available for imaging by over an order of magnitude, without any changes in the storage ring or wiggler magnet. The most critical imaging task for intravenous coronary angiography utilizing synchrotron radiation X-rays is visualizing a coronary artery through the left ventricle or aorta which also contain contrast agent. Calculations have been made of the signal to noise ratio expected for this imaging task for various contrast agents with atomic numbers between that of iodine and bismuth. The X-ray energy spectrum of the X-17 superconduction wiggler beam line at the National Synchrotron Light Source at Brookhaven National Laboratory has been used for these calculations. Both perfect Si crystals and Si crystals with a small mosaic spread are considered as monochromators. Contrast agents containing Gd or Yb seem to have about the optimal calculated signal to noise ratio. Gd-DTPA is already approved for use as a contrast agent for magnetic resonance imaging. Experiments have already been performed with Yb-DTPA in animals, and it appears to have a lower toxicity than that of Gd-DTPA. Reported animal experiments with Gd-DOTA contrast agent show no toxicity at all.
Use of electron cyclotron resonance x-ray source for nondestructive testing application
NASA Astrophysics Data System (ADS)
Baskaran, R.; Selvakumaran, T. S.
2006-03-01
Electron cyclotron resonance (ECR) technique is being used for generating x rays in the low-energy region (<150keV). Recently, the source is used for the calibration of thermoluminescent dosimetry (TLD) badges. In order to qualify the ECR x-ray source for imaging application, the source should give uniform flux over the area under study. Lead collimation arrangement is made to get uniform flux. The flux profile is measured using a teletector at different distance from the port and uniform field region of 10×10cm2 has been marked at 20cm from the x-ray exit port. A digital-to-analog converter (DAC) circuit pack is used for examining the source performance. The required dose for nondestructive testing examination has been estimated using a hospital x-ray machine and it is found to be 0.05mSv. Our source experimental parameters are tuned and the DAC circuit pack was exposed for nearly 7min to get the required dose value. The ECR x-ray source operating parameters are argon pressure: 10-5Torr, microwave power: 350W, and coil current: 0A. The effective energy of the x-ray spectrum is nearly 40keV. The x-ray images obtained from ECR x-ray source and hospital medical radiography machine are compared. It is found that the image obtained from ECR x-ray source is suitable for NDT application.
Polarimeter for Low Energy X-ray Astrophysical Sources (PLEXAS)
NASA Technical Reports Server (NTRS)
Murray, Stephen S.; Pierce, David L. (Technical Monitor)
2002-01-01
The Polarimeter for Low Energy X-ray Astrophysical Sources (PLEXAS) is an astrophysics mission concept for measuring the polarization of X-ray sources at low energies below the C-K band (less than 277 eV). PLEXAS uses the concept of variations in the reflectivity of a multilayered X-ray telescope as a function of the orientation of an X-rays polarization vector with respect to the reflecting surface of the optic. By selecting an appropriate multilayer, and rotating the X-ray telescope while pointing to a source, there will be a modulation in the source intensity, as measured at the focus of the telescope, which is proportional to the degree of polarization in the source.
Determination of the mass of globular cluster X-ray sources
NASA Technical Reports Server (NTRS)
Grindlay, J. E.; Hertz, P.; Steiner, J. E.; Murray, S. S.; Lightman, A. P.
1984-01-01
The precise positions of the luminous X-ray sources in eight globular clusters have been measured with the Einstein X-Ray Observatory. When combined with similarly precise measurements of the dynamical centers and core radii of the globular clusters, the distribution of the X-ray source mass is determined to be in the range 0.9-1.9 solar mass. The X-ray source positions and the detailed optical studies indicate that (1) the sources are probably all of similar mass, (2) the gravitational potentials in these high-central density clusters are relatively smooth and isothermal, and (3) the X-ray sources are compact binaries and are probably formed by tidal capture.
Recent developments in the MuCAT microtomography facility
NASA Astrophysics Data System (ADS)
Davis, Graham R.; Evershed, Anthony N. Z.; Mills, David
2012-10-01
The goal of the MuCAT scanner development at Queen Mary University of London is to provide highly accurate maps of a specimen's X-ray linear attenuation coefficient; speed of data acquisition and spatial resolution having a lower priority. The reason for this approach is that the primary application is to accurately map the mineral concentration in teeth. Synchrotron tomography would generally be considered more appropriate for such a task, but many of the dental applications involve repeated scans with long intervening periods (from hours to weeks) and the management of synchrotron facilities does not readily allow such research. Development work is concentrated in two areas: beam hardening correction algorithms and novel scanning methodology. Beam hardening correction is combined with calibration, such that the raw X-ray projection data is corrected for beam hardening prior to reconstruction. Recent developments include the design of a multi-element calibration carousel. This has nine calibration pieces, five aluminium, three titanium and one copper. Development of the modelling algorithm is also yielding improved accuracy. A time-delay integration CCD camera is used to avoid ring artefacts. The original prototype averaged out inhomogeneities in both the detector array and the X-ray field; later designs used only software correction for the latter. However, at lower X-ray energies, the effect of deposits on the X-ray window (for example) becomes more conspicuous and so a new scanning methodology has been designed whereby the specimen moves in an arc about the source and equiangular data is acquired, thus overcoming this problem.
NASA Technical Reports Server (NTRS)
Kaaret, P.; Piraino, S.; Halpern, Jules P.; Eracleous, M.; Oliversen, Ronald (Technical Monitor)
2001-01-01
We have discovered an X-ray source, SAX J0635+0533, with a hard spectrum within the error box of the GeV gamma-ray source in Monoceros, 2EG J0635+0521. The unabsorbed flux from the source is 1.2 x 10(exp -11) ergs /sq cm s in the 2-10 keV band. The X-ray spectrum is consistent with a simple power-law model with absorption. The photon index is 1.50 +/- 0.08, and we detect emission out to 40 keV. Optical observations identify a counterpart with a V magnitude of 12.8. The counterpart has broad emission lines and the colors of an early B-type star. If the identification of the X-ray/optical source with the gamma-ray source is correct, then the source would be a gamma-ray-emitting X-ray binary.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rolison, L; Samant, S; Baciak, J
Purpose: To develop a Monte Carlo N-Particle (MCNP) model for the validation of a prototype backscatter x-ray (BSX) imager, and optimization of BSX technology for medical applications, including selective object-plane imaging. Methods: BSX is an emerging technology that represents an alternative to conventional computed tomography (CT) and projective digital radiography (DR). It employs detectors located on the same side as the incident x-ray source, making use of backscatter and avoiding ring geometry to enclose the imaging object. Current BSX imagers suffer from low spatial resolution. A MCNP model was designed to replicate a BSX prototype used for flaw detection inmore » industrial materials. This prototype consisted of a 1.5mm diameter 60kVp pencil beam surrounded by a ring of four 5.0cm diameter NaI scintillation detectors. The imaging phantom consisted of a 2.9cm thick aluminum plate with five 0.6cm diameter holes drilled halfway. The experimental image was created using a raster scanning motion (in 1.5mm increments). Results: A qualitative comparison between the physical and simulated images showed very good agreement with 1.5mm spatial resolution in plane perpendicular to incident x-ray beam. The MCNP model developed the concept of radiography by selective plane detection (RSPD) for BSX, whereby specific object planes can be imaged by varying kVp. 10keV increments in mean x-ray energy yielded 4mm thick slice resolution in the phantom. Image resolution in the MCNP model can be further increased by increasing the number of detectors, and decreasing raster step size. Conclusion: MCNP modelling was used to validate a prototype BSX imager and introduce the RSPD concept, allowing for selective object-plane imaging. There was very good visual agreement between the experimental and MCNP imaging. Beyond optimizing system parameters for the existing prototype, new geometries can be investigated for volumetric image acquisition in medical applications. This material is based upon work supported under an Integrated University Program Graduate Fellowship sponsored by the Department of Energy Office of Nuclear Energy.« less
History of Chandra X-Ray Observatory
2002-07-31
This is a photo taken by NASA's Chandra X-ray Observatory that reveals the remains of an explosion in the form of two enormous arcs of multimillion-degree gas in the galaxy Centaurus A that appear to be part of a ring 25,000 light years in diameter. The size and location of the ring suggest that it could have been an explosion that occurred about 10 million years ago. A composite image made with radio (red and green), optical (yellow-orange), and X-ray data (blue) presents a sturning tableau of a turbulent galaxy. A broad band of dust and cold gas is bisected at an angle by opposing jets of high-energy particles blasting away from the supermassive black hole in the nucleus. Lying in a plane perpendicular to the jets are the two large arcs of x-ray emitting multi-million degree gas. This discovery can help astronomers better understand the cause and effect of violent outbursts from the vicinity of supermassive black holes of active galaxies. The Chandra program is managed by the Marshall Space Flight Center in Huntsville, Alabama.
Hart, Michael L.; Drakopoulos, Michael; Reinhard, Christina; Connolley, Thomas
2013-01-01
A complete calibration method to characterize a static planar two-dimensional detector for use in X-ray diffraction at an arbitrary wavelength is described. This method is based upon geometry describing the point of intersection between a cone’s axis and its elliptical conic section. This point of intersection is neither the ellipse centre nor one of the ellipse focal points, but some other point which lies in between. The presented solution is closed form, algebraic and non-iterative in its application, and gives values for the X-ray beam energy, the sample-to-detector distance, the location of the beam centre on the detector surface and the detector tilt relative to the incident beam. Previous techniques have tended to require prior knowledge of either the X-ray beam energy or the sample-to-detector distance, whilst other techniques have been iterative. The new calibration procedure is performed by collecting diffraction data, in the form of diffraction rings from a powder standard, at known displacements of the detector along the beam path. PMID:24068840
NASA Technical Reports Server (NTRS)
Schmidt, M.; Hasinger, G.; Gunn, J.; Schneider, D.; Burg, R.; Giacconi, R.; Lehmann, I.; MacKenty, J.; Truemper, J.; Zamorani, G.
1998-01-01
The ROSAT Deep Survey includes a complete sample of 50 X-ray sources with fluxes in the 0.5 - 2 keV band larger than 5.5 x 10(exp -15)erg/sq cm/s in the Lockman field (Hasinger et al., Paper 1). We have obtained deep broad-band CCD images of the field and spectra of many optical objects near the positions of the X-ray sources. We define systematically the process leading to the optical identifications of the X-ray sources. For this purpose, we introduce five identification (ID) classes that characterize the process in each case. Among the 50 X-ray sources, we identify 39 AGNs, 3 groups of galaxies, 1 galaxy and 3 galactic stars. Four X-ray sources remain unidentified so far; two of these objects may have an unusually large ratio of X-ray to optical flux.
Chandra Deep X-ray Observation of a Typical Galactic Plane Region and Near-Infrared Identification
NASA Technical Reports Server (NTRS)
Ebisawa, K.; Tsujimoto, M.; Paizis, A.; Hamaguichi, K.; Bamba, A.; Cutri, R.; Kaneda, H.; Maeda, Y.; Sato, G.; Senda, A.
2004-01-01
Using the Chandra Advanced CCD Imaging Spectrometer Imaging array (ACIS-I), we have carried out a deep hard X-ray observation of the Galactic plane region at (l,b) approx. (28.5 deg,0.0 deg), where no discrete X-ray source has been reported previously. We have detected 274 new point X-ray sources (4 sigma confidence) as well as strong Galactic diffuse emission within two partidly overlapping ACIS-I fields (approx. 250 sq arcmin in total). The point source sensitivity was approx. 3 x 10(exp -15)ergs/s/sq cm in the hard X-ray band (2-10 keV and approx. 2 x 10(exp -16) ergs/s/sq cm in the soft band (0.5-2 keV). Sum of all the detected point source fluxes account for only approx. 10 % of the total X-ray fluxes in the field of view. In order to explain the total X-ray fluxes by a superposition of fainter point sources, an extremely rapid increase of the source population is required below our sensitivity limit, which is hardly reconciled with any source distribution in the Galactic plane. Therefore, we conclude that X-ray emission from the Galactic plane has truly diffuse origin. Only 26 point sources were detected both in the soft and hard bands, indicating that there are two distinct classes of the X-ray sources distinguished by the spectral hardness ratio. Surface number density of the hard sources is only slightly higher than observed at the high Galactic latitude regions, strongly suggesting that majority of the hard X-ray sources are active galaxies seen through the Galactic plane. Following the Chandra observation, we have performed a near-infrared (NIR) survey with SOFI at ESO/NTT to identify these new X-ray sources. Since the Galactic plane is opaque in NIR, we did not see the background extragalactic sources in NIR. In fact, only 22 % of the hard sources had NIR counterparts which are most likely to be Galactic origin. Composite X-ray energy spectrum of those hard X-ray sources having NIR counterparts exhibits a narrow approx. 6.7 keV iron emission line, which is a signature of Galactic quiescent cataclysmic variables (CVs).
NASA Technical Reports Server (NTRS)
Croft, W. L.
1986-01-01
The objective of this investigation is to develop preliminary designs for modifications to the X-ray source of the MSFC X-Ray Calibration Facility. Recommendations are made regarding: (1) the production of an unpolarized X-ray beam, (2) modification of the source to provide characteristic X-rays with energies up to 40 keV, and (3) addition of the capability to calibrate instruments in the extreme ultraviolet wavelength region.
Do solar decimetric spikes originate in coronal X-ray sources?
NASA Astrophysics Data System (ADS)
Battaglia, M.; Benz, A. O.
2009-06-01
Context: In the standard solar flare scenario, a large number of particles are accelerated in the corona. Nonthermal electrons emit both X-rays and radio waves. Thus, correlated signatures of the acceleration process are predicted at both wavelengths, coinciding either close to the footpoints of a magnetic loop or near the coronal X-ray source. Aims: We attempt to study the spatial connection between coronal X-ray emission and decimetric radio spikes to determine the site and geometry of the acceleration process. Methods: The positions of radio-spike sources and coronal X-ray sources are determined and analyzed in a well-observed limb event. Radio spikes are identified in observations from the Phoenix-2 spectrometer. Data from the Nançay radioheliograph are used to determine the position of the radio spikes. RHESSI images in soft and hard X-ray wavelengths are used to determine the X-ray flare geometry. Those observations are complemented by images from GOES/SXI. Results: We find that the radio emission originates at altitudes much higher than the coronal X-ray source, having an offset from the coronal X-ray source amounting to 90´´ and to 113´´ and 131´´ from the two footpoints, averaged over time and frequency. Conclusions: Decimetric spikes do not originate from coronal X-ray flare sources contrary to previous expectations. However, the observations suggest a causal link between the coronal X-ray source, related to the major energy release site, and simultaneous activity in the higher corona.
Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy
Miaja-Avila, L.; O'Neil, G. C.; Uhlig, J.; ...
2015-03-02
We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 μm FWHM x-ray spot size, containing ~10 6 photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >10 7 laser pulses, wemore » also present data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments.« less
X-ray compass for determining device orientation
Da Silva, Luiz B.; Matthews, Dennis L.; Fitch, Joseph P.; Everett, Matthew J.; Colston, Billy W.; Stone, Gary F.
1999-01-01
An apparatus and method for determining the orientation of a device with respect to an x-ray source. In one embodiment, the present invention is coupled to a medical device in order to determine the rotational orientation of the medical device with respect to the x-ray source. In such an embodiment, the present invention is comprised of a scintillator portion which is adapted to emit photons upon the absorption of x-rays emitted from the x-ray source. An x-ray blocking portion is coupled to the scintillator portion. The x-ray blocking portion is disposed so as to vary the quantity of x-rays which penetrate the scintillator portion based upon the particular rotational orientation of the medical device with respect to the x-ray source. A photon transport mechanism is also coupled to the scintillator portion. The photon transport mechanism is adapted to pass the photons emitted from the scintillator portion to an electronics portion. By analyzing the quantity of the photons, the electronics portion determines the rotational orientation of the medical device with respect to the x-ray source.
X-ray compass for determining device orientation
Da Silva, L.B.; Matthews, D.L.; Fitch, J.P.; Everett, M.J.; Colston, B.W.; Stone, G.F.
1999-06-15
An apparatus and method for determining the orientation of a device with respect to an x-ray source are disclosed. In one embodiment, the present invention is coupled to a medical device in order to determine the rotational orientation of the medical device with respect to the x-ray source. In such an embodiment, the present invention is comprised of a scintillator portion which is adapted to emit photons upon the absorption of x-rays emitted from the x-ray source. An x-ray blocking portion is coupled to the scintillator portion. The x-ray blocking portion is disposed so as to vary the quantity of x-rays which penetrate the scintillator portion based upon the particular rotational orientation of the medical device with respect to the x-ray source. A photon transport mechanism is also coupled to the scintillator portion. The photon transport mechanism is adapted to pass the photons emitted from the scintillator portion to an electronics portion. By analyzing the quantity of the photons, the electronics portion determines the rotational orientation of the medical device with respect to the x-ray source. 25 figs.
Impact! Chandra Images a Young Supernova Blast Wave
NASA Astrophysics Data System (ADS)
2000-05-01
Two images made by NASA's Chandra X-ray Observatory, one in October 1999, the other in January 2000, show for the first time the full impact of the actual blast wave from Supernova 1987A (SN1987A). The observations are the first time that X-rays from a shock wave have been imaged at such an early stage of a supernova explosion. Recent observations of SN 1987A with the Hubble Space Telescope revealed gradually brightening hot spots from a ring of matter ejected by the star thousands of years before it exploded. Chandra's X-ray images show the cause for this brightening ring. A shock wave is smashing into portions of the ring at a speed of 10 million miles per hour (4,500 kilometers per second). The gas behind the shock wave has a temperature of about ten million degrees Celsius, and is visible only with an X-ray telescope. "With Hubble we heard the whistle from the oncoming train," said David Burrows of Pennsylvania State University, University Park, the leader of the team of scientists involved in analyzing the Chandra data on SN 1987A. "Now, with Chandra, we can see the train." The X-ray observations appear to confirm the general outlines of a model developed by team member Richard McCray of the University of Colorado, Boulder, and others, which holds that a shock wave has been moving out ahead of the debris expelled by the explosion. As this shock wave collides with material outside the ring, it heats it to millions of degrees. "We are witnessing the birth of a supernova remnant for the first time," McCray said. The Chandra images clearly show the previously unseen, shock-heated matter just inside the optical ring. Comparison with observations made with Chandra in October and January, and with Hubble in February 2000, show that the X-ray emission peaks close to the newly discovered optical hot spots, and indicate that the wave is beginning to hit the ring. In the next few years, the shock wave will light up still more material in the ring, and an inward moving, or reverse, shock wave will heat the material ejected in the explosion itself. "The supernova is digging up its own past," said McCray. The observations were made on October 6, 1999, using the Advanced CCD Imaging Spectrometer (ACIS) and the High Energy Transmission Grating, and again on January 17, 2000, using ACIS. Other members of the team were Eli Michael of the University of Colorado; Dr. Una Hwang, Dr. Steven Holt and Dr. Rob Petre of NASA's Goddard Space Flight Center in Greenbelt, MD; Professor Roger Chevalier of the University of Virginia, Charlottesville; and Professors Gordon Garmire and John Nousek of Pennsylvania State University. The results will be published in an upcoming issue of the Astrophysical Journal. The ACIS instrument was built for NASA by the Massachusetts Institute of Technology, Cambridge, and Pennsylvania State University. The High Energy Transmission Grating was built by the Massachusetts Institute of Technology. NASA's Marshall Space Flight Center in Huntsville, AL, manages the Chandra program. TRW, Inc., Redondo Beach, CA, is the prime contractor for the spacecraft. The Smithsonian's Chandra X-ray Center controls science and flight operations from Cambridge, MA. More About SN 1987A Images to illustrate this release and more information on Chandra's progress can be found on the Internet at: http://chandra.harvard.edu/photo/2000/sn1987a/index.html AND http://chandra.nasa.gov More About SN 1987A
NASA Technical Reports Server (NTRS)
Worrall, Diana M.
1994-01-01
This report summarizes the activities related to two ROSAT investigations: (1) x-ray properties of radio galaxies thought to contain BL Lac type nuclei; and (2) x-ray spectra of a complete sample of flat-spectrum radio sources. The following papers describing the research are provided as attachments: Multiple X-ray Emission Components in Low Power Radio Galaxies; New X-ray Results on Radio Galaxies; Analysis Techniques for a Multiwavelength Study of Radio Galaxies; Separation of X-ray Emission Components in Radio Galaxies; X-ray Emission in Powerful Radio Galaxies and Quasars; Extended and Compact X-ray Emission in Powerful Radio Galaxies; and X-ray Spectra of a Complete Sample of Extragalactic Core-dominated Radio Sources.
A New Hard X-ray Wiggler for DORIS III
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tischer, M.; Gumprecht, L.; Pflueger, J.
2007-01-19
A 4 m long hard X-ray wiggler has been built and installed in the DORIS III storage ring at DESY. The device replaces an old wiggler especially designed for angiography studies. Future use of this beamline at the HARWI straight section has been dedicated to hard X-ray scattering and diffraction experiments for material science and geological investigations. The required energy range is from 30 keV to about 200 keV with emphasis on the {approx}100 keV spectral range. The magnet configuration corresponds to a hybrid structure with additional side magnets to achieve a 2 T peak field for the specified periodmore » length of 110 mm. The wiggler position in the storage ring has been moved 8 m upstream into the next cell which allowed for reduction of the minimum magnetic wiggler gap to 14 mm.« less
Alsmadi, A M; Alatas, A; Zhao, J Y; Hu, M Y; Yan, L; Alp, E E
2014-05-01
Synchrotron radiation from third-generation high-brilliance storage rings is an ideal source for X-ray microbeams. The aim of this paper is to describe a microfocusing scheme that combines both a toroidal mirror and Kirkpatrick-Baez (KB) mirrors for upgrading the existing optical system for inelastic X-ray scattering experiments at sector 3 of the Advanced Photon Source. SHADOW ray-tracing simulations without considering slope errors of both the toroidal mirror and KB mirrors show that this combination can provide a beam size of 4.5 µm (H) × 0.6 µm (V) (FWHM) at the end of the existing D-station (66 m from the source) with use of full beam transmission of up to 59%, and a beam size of 3.7 µm (H) × 0.46 µm (V) (FWHM) at the front-end of the proposed E-station (68 m from the source) with a transmission of up to 52%. A beam size of about 5 µm (H) × 1 µm (V) can be obtained, which is close to the ideal case, by using high-quality mirrors (with slope errors of less than 0.5 µrad r.m.s.). Considering the slope errors of the existing toroidal and KB mirrors (5 and 2.9 µrad r.m.s., respectively), the beam size grows to about 13.5 µm (H) × 6.3 µm (V) at the end of the D-station and to 12.0 µm (H) × 6.0 µm (V) at the front-end of the proposed E-station. The simulations presented here are compared with the experimental measurements that are significantly larger than the theoretical values even when slope error is included in the simulations. This is because of the experimental set-up that could not yet be optimized.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kishimoto, S., E-mail: syunji.kishimoto@kek.jp; Haruki, R.; Mitsui, T.
We developed a silicon avalanche photodiode (Si-APD) linear-array detector to be used for time-resolved X-ray scattering experiments using synchrotron X-rays. The Si-APD linear array consists of 64 pixels (pixel size: 100 × 200 μm{sup 2}) with a pixel pitch of 150 μm and a depletion depth of 10 μm. The multichannel scaler counted X-ray pulses over continuous 2046 time bins for every 0.5 ns and recorded a time spectrum at each pixel with a time resolution of 0.5 ns (FWHM) for 8.0 keV X-rays. Using the detector system, we were able to observe X-ray peaks clearly separated with 2 nsmore » interval in the multibunch-mode operation of the Photon Factory ring. The small-angle X-ray scattering for polyvinylidene fluoride film was also observed with the detector.« less
Towards shot-noise limited diffraction experiments with table-top femtosecond hard x-ray sources.
Holtz, Marcel; Hauf, Christoph; Weisshaupt, Jannick; Salvador, Antonio-Andres Hernandez; Woerner, Michael; Elsaesser, Thomas
2017-09-01
Table-top laser-driven hard x-ray sources with kilohertz repetition rates are an attractive alternative to large-scale accelerator-based systems and have found widespread applications in x-ray studies of ultrafast structural dynamics. Hard x-ray pulses of 100 fs duration have been generated at the Cu K α wavelength with a photon flux of up to 10 9 photons per pulse into the full solid angle, perfectly synchronized to the sub-100-fs optical pulses from the driving laser system. Based on spontaneous x-ray emission, such sources display a particular noise behavior which impacts the sensitivity of x-ray diffraction experiments. We present a detailed analysis of the photon statistics and temporal fluctuations of the x-ray flux, together with experimental strategies to optimize the sensitivity of optical pump/x-ray probe experiments. We demonstrate measurements close to the shot-noise limit of the x-ray source.
Towards shot-noise limited diffraction experiments with table-top femtosecond hard x-ray sources
Holtz, Marcel; Hauf, Christoph; Weisshaupt, Jannick; Salvador, Antonio-Andres Hernandez; Woerner, Michael; Elsaesser, Thomas
2017-01-01
Table-top laser-driven hard x-ray sources with kilohertz repetition rates are an attractive alternative to large-scale accelerator-based systems and have found widespread applications in x-ray studies of ultrafast structural dynamics. Hard x-ray pulses of 100 fs duration have been generated at the Cu Kα wavelength with a photon flux of up to 109 photons per pulse into the full solid angle, perfectly synchronized to the sub-100-fs optical pulses from the driving laser system. Based on spontaneous x-ray emission, such sources display a particular noise behavior which impacts the sensitivity of x-ray diffraction experiments. We present a detailed analysis of the photon statistics and temporal fluctuations of the x-ray flux, together with experimental strategies to optimize the sensitivity of optical pump/x-ray probe experiments. We demonstrate measurements close to the shot-noise limit of the x-ray source. PMID:28795079
NuSTAR Hard X-Ray Survey of the Galactic Center Region. II. X-Ray Point Sources
NASA Technical Reports Server (NTRS)
Hong, Jaesub; Mori, Kaya; Hailey, Charles J.; Nynka, Melania; Zhang, Shou; Gotthelf, Eric; Fornasini, Francesca M.; Krivonos, Roman; Bauer, Franz; Perez, Kerstin;
2016-01-01
We present the first survey results of hard X-ray point sources in the Galactic Center (GC) region by NuSTAR. We have discovered 70 hard (3-79 keV) X-ray point sources in a 0.6 deg(sup 2) region around Sgr?A* with a total exposure of 1.7 Ms, and 7 sources in the Sgr B2 field with 300 ks. We identify clear Chandra counterparts for 58 NuSTAR sources and assign candidate counterparts for the remaining 19. The NuSTAR survey reaches X-ray luminosities of approx. 4× and approx. 8 ×10(exp 32) erg/s at the GC (8 kpc) in the 3-10 and 10-40 keV bands, respectively. The source list includes three persistent luminous X-ray binaries (XBs) and the likely run-away pulsar called the Cannonball. New source-detection significance maps reveal a cluster of hard (>10 keV) X-ray sources near the Sgr A diffuse complex with no clear soft X-ray counterparts. The severe extinction observed in the Chandra spectra indicates that all the NuSTAR sources are in the central bulge or are of extragalactic origin. Spectral analysis of relatively bright NuSTAR sources suggests that magnetic cataclysmic variables constitute a large fraction (>40%-60%). Both spectral analysis and logN-logS distributions of the NuSTAR sources indicate that the X-ray spectra of the NuSTAR sources should have kT > 20 keV on average for a single temperature thermal plasma model or an average photon index of Lambda = 1.5-2 for a power-law model. These findings suggest that the GC X-ray source population may contain a larger fraction of XBs with high plasma temperatures than the field population.
Sampayan, Stephen E.
2016-11-22
Apparatus, systems, and methods that provide an X-ray interrogation system having a plurality of stationary X-ray point sources arranged to substantially encircle an area or space to be interrogated. A plurality of stationary detectors are arranged to substantially encircle the area or space to be interrogated, A controller is adapted to control the stationary X-ray point sources to emit X-rays one at a time, and to control the stationary detectors to detect the X-rays emitted by the stationary X-ray point sources.
The X-ray microscopy beamline UE46-PGM2 at BESSY
NASA Astrophysics Data System (ADS)
Follath, R.; Schmidt, J. S.; Weigand, M.; Fauth, K.
2010-06-01
The Max Planck Institute for Metal Physics in Stuttgart and the Helmholtz Center Berlin operate a soft X-ray microscopy beamline at the storage ring BESSY II. A collimated PGM serves as monochromator for a scanning X-ray microscope and a full field X-ray microscope at the helical undulator UE46. The selection between both instruments is accomplished via two switchable focusing mirrors. The scanning microscope (SM) is based on the ALS STXM microscope and fabricated by the ACCEL company. The full field microscope (FFM) is currently in operation at the U41-SGM beamline and will be relocated to its final location this year.
Synchrotron Radiation from Outer Space and the Chandra X-Ray Observatory
NASA Technical Reports Server (NTRS)
Weisskopf, M. C.
2006-01-01
The universe provides numerous extremely interesting astrophysical sources of synchrotron X radiation. The Chandra X-ray Observatory and other X-ray missions provide powerful probes of these and other cosmic X-ray sources. Chandra is the X-ray component of NASA's Great Observatory Program which also includes the Hubble Space telescope, the Spitzer Infrared Telescope Facility, and the now defunct Compton Gamma-Ray Observatory. The Chandra X-Ray Observatory provides the best angular resolution (sub-arcsecond) of any previous, current, or planned (for the foreseeable near future) space-based X-ray instrumentation. We present here a brief overview of the technical capability of this X-Ray observatory and some of the remarkable discoveries involving cosmic synchrotron sources.
Chandra reveals a black hole X-ray binary within the ultraluminous supernova remnant MF 16
NASA Astrophysics Data System (ADS)
Roberts, T. P.; Colbert, E. J. M.
2003-06-01
We present evidence, based on Chandra ACIS-S observations of the nearby spiral galaxy NGC 6946, that the extraordinary X-ray luminosity of the MF 16 supernova remnant actually arises in a black hole X-ray binary. This conclusion is drawn from the point-like nature of the X-ray source, its X-ray spectrum closely resembling the spectrum of other ultraluminous X-ray sources thought to be black hole X-ray binary systems, and the detection of rapid hard X-ray variability from the source. We briefly discuss the nature of the hard X-ray variability, and the origin of the extreme radio and optical luminosity of MF 16 in light of this identification.
Femtosecond laser-electron x-ray source
Hartemann, Frederic V.; Baldis, Hector A.; Barty, Chris P.; Gibson, David J.; Rupp, Bernhard
2004-04-20
A femtosecond laser-electron X-ray source. A high-brightness relativistic electron injector produces an electron beam pulse train. A system accelerates the electron beam pulse train. The femtosecond laser-electron X-ray source includes a high intra-cavity power, mode-locked laser and an x-ray optics system.
NASA Technical Reports Server (NTRS)
Gubarev, Mikhail; Marshall, Joy K.; Ciszak, Ewa; Ponomarev, Igor
2000-01-01
We present here an optimized microfocus x-ray source and polycapillary optic system designed for diffraction of small protein crystals. The x-ray beam is formed by a 5.5mm focal length capillary collimator coupled with a 40 micron x-ray source operating at 46Watts. Measurements of the x-ray flux, the divergence and the spectral characteristics of the beam are presented, This optimized system provides a seven fold greater flux than our recently reported configuration [M. Gubarev, et al., J. of Applied Crystallography (2000) 33, in press]. We now make a comparison with a 5kWatts rotating anode generator (Rigaku) coupled with confocal multilayer focusing mirrors (Osmic, CMF12- 38Cu6). The microfocus x-ray source and polycapillary collimator system delivers 60% of the x-ray flux from the rotating anode system. Additional ways to improve our microfocus x-ray system, and thus increase the x-ray flux will be discussed.
Radio emission from an ultraluminous x-ray source.
Kaaret, Philip; Corbel, Stephane; Prestwich, Andrea H; Zezas, Andreas
2003-01-17
The physical nature of ultraluminous x-ray sources is uncertain. Stellar-mass black holes with beamed radiation and intermediate black holes with isotropic radiation are two plausible explanations. We discovered radio emission from an ultraluminous x-ray source in the dwarf irregular galaxy NGC 5408. The x-ray, radio, and optical fluxes as well as the x-ray spectral shape are consistent with beamed relativistic jet emission from an accreting stellar black hole. If confirmed, this would suggest that the ultraluminous x-ray sources may be stellar-mass rather than intermediate-mass black holes. However, interpretation of the source as a jet-producing intermediate-mass black hole cannot be ruled out at this time.
NASA Technical Reports Server (NTRS)
Rossj, B.
1981-01-01
The evolution of X-ray astronomy up to the launching of the Einstein observatory is presented. The evaluation proceeded through the following major steps: (1) discovery of an extrasolar X-ray source, Sco X-1, orders of magnitude stronger than astronomers believed might exist; (2) identification of a strong X-ray source with the Crab Nebula; (3) identification of Sco X-1 with a faint, peculiar optical object; (4) demonstration that X-ray stars are binary systems, each consisting of a collapsed object accreting matter from an ordinary star; (5) discovery of X-ray bursts; (6) discovery of exceedingly strong X-ray emission from active galaxies, quasars and clusters of galaxies; (7) demonstration that the principal X-ray source is a hot gas filling the space between galaxies.
Simultaneous CT and SPECT tomography using CZT detectors
Paulus, Michael J.; Sari-Sarraf, Hamed; Simpson, Michael L.; Britton, Jr., Charles L.
2002-01-01
A method for simultaneous transmission x-ray computed tomography (CT) and single photon emission tomography (SPECT) comprises the steps of: injecting a subject with a tracer compound tagged with a .gamma.-ray emitting nuclide; directing an x-ray source toward the subject; rotating the x-ray source around the subject; emitting x-rays during the rotating step; rotating a cadmium zinc telluride (CZT) two-sided detector on an opposite side of the subject from the source; simultaneously detecting the position and energy of each pulsed x-ray and each emitted .gamma.-ray captured by the CZT detector; recording data for each position and each energy of each the captured x-ray and .gamma.-ray; and, creating CT and SPECT images from the recorded data. The transmitted energy levels of the x-rays lower are biased lower than energy levels of the .gamma.-rays. The x-ray source is operated in a continuous mode. The method can be implemented at ambient temperatures.
On two new X-ray sources in the SMC and the high luminosities of the Magellanic X-ray sources
NASA Technical Reports Server (NTRS)
Clark, G.; Doxsey, R.; Li, F.; Jernigan, J. G.; Van Paradijs, J.
1978-01-01
The discovery of two new X-ray sources, SMC X-2 and SMC X-3, in the Small Magellanic Cloud is reported. They have hard spectra, and their luminosities in the energy range 2-11 keV are 1.0 and 0.7 by 10 to the 38th power erg/sq cm per sec, respectively. It is shown that the luminosity distribution of the known Magellanic X-ray sources, which are now nine in number, is shifted toward higher luminosities with respect to that of similar sources in the Galaxy, and that the cause of the shift is probably an underabundance of heavy elements in the material accreted by the X-ray sources.
A deeper look at the X-ray point source population of NGC 4472
NASA Astrophysics Data System (ADS)
Joseph, T. D.; Maccarone, T. J.; Kraft, R. P.; Sivakoff, G. R.
2017-10-01
In this paper we discuss the X-ray point source population of NGC 4472, an elliptical galaxy in the Virgo cluster. We used recent deep Chandra data combined with archival Chandra data to obtain a 380 ks exposure time. We find 238 X-ray point sources within 3.7 arcmin of the galaxy centre, with a completeness flux, FX, 0.5-2 keV = 6.3 × 10-16 erg s-1 cm-2. Most of these sources are expected to be low-mass X-ray binaries. We finding that, using data from a single galaxy which is both complete and has a large number of objects (˜100) below 1038 erg s-1, the X-ray luminosity function is well fitted with a single power-law model. By cross matching our X-ray data with both space based and ground based optical data for NGC 4472, we find that 80 of the 238 sources are in globular clusters. We compare the red and blue globular cluster subpopulations and find red clusters are nearly six times more likely to host an X-ray source than blue clusters. We show that there is evidence that these two subpopulations have significantly different X-ray luminosity distributions. Source catalogues for all X-ray point sources, as well as any corresponding optical data for globular cluster sources, are also presented here.
NASA Technical Reports Server (NTRS)
Gendreau, Keith (Inventor); Martins, Jose Vanderlei (Inventor); Arzoumanian, Zaven (Inventor)
2010-01-01
An X-ray diffraction and X-ray fluorescence instrument for analyzing samples having no sample preparation includes a X-ray source configured to output a collimated X-ray beam comprising a continuum spectrum of X-rays to a predetermined coordinate and a photon-counting X-ray imaging spectrometer disposed to receive X-rays output from an unprepared sample disposed at the predetermined coordinate upon exposure of the unprepared sample to the collimated X-ray beam. The X-ray source and the photon-counting X-ray imaging spectrometer are arranged in a reflection geometry relative to the predetermined coordinate.
360-degree video and X-ray modeling of the Galactic center's inner parsec
NASA Astrophysics Data System (ADS)
Russell, Christopher Michael Post; Wang, Daniel; Cuadra, Jorge
2017-08-01
360-degree videos, which render an image over all 4pi steradian, provide a unique and immersive way to visualize astrophysical simulations. Video sharing sites such as YouTube allow these videos to be shared with the masses; they can be viewed in their 360° nature on computer screens, with smartphones, or, best of all, in virtual-reality (VR) goggles. We present the first such 360° video of an astrophysical simulation: a hydrodynamics calculation of the Wolf-Rayet stars and their ejected winds in the inner parsec of the Galactic center. Viewed from the perspective of the super-massive black hole (SMBH), the most striking aspect of the video, which renders column density, is the inspiraling and stretching of clumps of WR-wind material as they makes their way towards the SMBH. We will brielfy describe how to make 360° videos and how to publish them online in their desired 360° format. Additionally we discuss computing the thermal X-ray emission from a suite of Galactic-center hydrodynamic simulations that have various SMBH feedback mechanisms, which are compared to Chandra X-ray Visionary Program observations of the region. Over a 2-5” ring centered on Sgr A*, the spectral shape is well matched, indicating that the WR winds are the dominant source of the thermal X-ray emission. Furthermore, the X-ray flux depends on the SMBH feedback due to the feedback's ability to clear out material from the central parsec. A moderate outburst is necessary to explain the current thermal X-ray flux, even though the outburst ended ˜100 yr ago.
Discovery and Characterization of Gravitationally Lensed X-ray Sources in the CLASH Sample
NASA Astrophysics Data System (ADS)
Pasha, Imad; Van Weeren, Reinout J.; Santos, Felipe A.
2017-01-01
We present the discovery of ~20 gravitationally lensed X-ray sources in the Cluster Lensing And Supernova survey with Hubble (CLASH) survey, a sample of massive clusters of galaxies between z ~ 0.2-0.9 observed with the Hubble Space Telescope (HST). By combining CLASH imaging with Chandra X-ray Observatory observations of the same clusters, we select those sources in the HST images which are gravitationally lensed X-ray sources behind the clusters. Of those discovered sources, we determine various properties including source redshifts and magnifications, as well as performing X-ray spectral fits to determine source fluxes and luminosities. Prior to this study, only four lensed X-ray sources behind clusters have been found, thus to the best of our knowledge, our program is the first to systematically categorize lensed X-ray sources behind galaxy clusters.This work was supported by the SAO REU program, which is funded in part by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant no. 1262851, and by the Smithsonian Institution.
APPARATUS FOR PRODUCING SHADOWGRAPHS
Wilson, R.R.
1959-08-11
An apparatus is presented for obtaining shadowgraphs or radiographs of an object exposed to x rays or the like. The device includes the combination of a cloud chamber having the interior illuminated and a portion thereof transparent to light rays and x'rays, a controlled source of x rays spaced therefrom, photographic recording disposed laterally of the linear path intermediate the source and the chamber portion in oblique angularity in aspect to the path. The object to be studied is disposed intermediate the x-ray source and chamber in the linear path to provide an x-ray transmission barrier therebetween. The shadowgraph is produced in the cloud chamber in response to initiation of the x- ray source and recorded photographically.
Observations of low-luminosity X-ray sources in Vela-Puppis
NASA Technical Reports Server (NTRS)
Pravdo, S. H.; Becker, R. H.; Boldt, E. A.; Holt, S. S.; Serlemitsos, P. J.; Swank, J. H.
1978-01-01
Results are presented for a study of the X-ray emission from a small portion of the galactic plane near galactic longitude 260 deg. This region contains at least six low-luminosity X-ray sources within about 10 deg of PSR 0833-45, which is near the center of the Gum nebula. The X-ray source 4U 0833-45, associated with the Vela pulsar, is observed at twice its 4U catalog intensity. The lack of X-ray pulsations at the pulsar period (greater than 99% nonpulsed), the nonthermal power-law spectrum, and models of the X-ray source distribution in this region suggest that a large fraction of the X-rays come from an extended source about 1 deg of arc in radius. The observation of a high-temperature (effective temperature at least 100 million K) spectrum in a field of view containing only Puppis A among known sources has led to the discovery of new OSO 8 source, OS 0752-39. Other spectra from this region are discussed.
Identification of Hard X-ray Sources in Galactic Globular Clusters: Simbol-X Simulations
NASA Astrophysics Data System (ADS)
Servillat, M.
2009-05-01
Globular clusters harbour an excess of X-ray sources compared to the number of X-ray sources in the Galactic plane. It has been proposed that many of these X-ray sources are cataclysmic variables that have an intermediate magnetic field, i.e. intermediate polars, which remains to be confirmed and understood. We present here several methods to identify intermediate polars in globular clusters from multiwavelength analysis. First, we report on XMM-Newton, Chandra and HST observations of the very dense Galactic globular cluster NGC 2808. By comparing UV and X-ray properties of the cataclysmic variable candidates, the fraction of intermediate polars in this cluster can be estimated. We also present the optical spectra of two cataclysmic variables in the globular cluster M 22. The HeII (4868 Å) emission line in these spectra could be related to the presence of a magnetic field in these objects. Simulations of Simbol-X observations indicate that the angular resolution is sufficient to study X-ray sources in the core of close, less dense globular clusters, such as M 22. The sensitivity of Simbol-X in an extended energy band up to 80 keV will allow us to discriminate between hard X-ray sources (such as magnetic cataclysmic variables) and soft X-ray sources (such as chromospherically active binaries).
Single-pulse x-ray diffraction using polycapillary optics for in situ dynamic diffraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maddox, B. R., E-mail: maddox3@llnl.gov; Akin, M. C., E-mail: akin1@llnl.gov; Teruya, A.
2016-08-15
Diagnostic use of single-pulse x-ray diffraction (XRD) at pulsed power facilities can be challenging due to factors such as the high flux and brightness requirements for diffraction and the geometric constraints of experimental platforms. By necessity, the x-ray source is usually positioned very close, within a few inches of the sample. On dynamic compression platforms, this puts the x-ray source in the debris field. We coupled x-ray polycapillary optics to a single-shot needle-and-washer x-ray diode source using a laser-based alignment scheme to obtain high-quality x-ray diffraction using a single 16 ns x-ray pulse with the source >1 m from themore » sample. The system was tested on a Mo sample in reflection geometry using 17 keV x-rays from a Mo anode. We also identified an anode conditioning effect that increased the x-ray intensity by 180%. Quantitative measurements of the x-ray focal spot produced by the polycapillary yielded a total x-ray flux on the sample of 3.3 ± 0.5 × 10{sup 7} molybdenum Kα photons.« less
Fabrication of compact electron gun for 6 MeV X-ray source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghodke, S.R.; Barnwal, Rajesh; Kumar, Mahendra, E-mail: ghodke_barc@yahoo.co.in
The 6 MeV X-Ray source for container cargo scanning application has been designed and developed by the Accelerator and Pulse Power Division, BARC, Mumbai. This compact linac has been designed as a mobile system, to be mounted on a moving container. In linac-based cargo-scanning system, to work electron gun on a movable container, it has to be robust. Electron gun is to work at 10{sup -7} mbar vacuum and 2000 degree Celsius temperature. An effort is made to engineer the gun assembly to make it more robust and aligned. The linac acts as the source of X-rays, which fall onmore » the cargo and are then detected by the detector system. Many components are indigenously developed like grid, insulating ring, Tungsten filament and filament guide, which are made from alumina ceramic and Tantalum which is to work at 1500 degree Celsius. Filament connector is made from Invar to reduce heat loss and to make rigid connection. It was CNC machined and wire cut by EDM. Invar and Copper electrode feed through is shrink fitted with the help of liquid Nitrogen. Shrink fit tolerances of 15 micrometer are achieved by jig boring machining processes. Tantalum cup for LaB6 cathode and heat shield are made from die and punch mechanism. For alignment of electron emitter with beam axis this Tantalum cup is a crucial component. Electron gun is assembled and aligned its components with the help of precision jigs. The whole assembly was Helium leak tested by MSLD up to 4 x 10{sup -10} mbar.l/s vacuum, no leak was found. This paper will describe the machining, Tantalum cup forming, ceramic components development, heat shields, ceramic feed through etc of electron gun. (author)« less
NASA Astrophysics Data System (ADS)
Evans, Ian N.; Primini, F. A.; Glotfelty, K. J.; Anderson, C. S.; Bonaventura, N. R.; Chen, J. C.; Davis, J. E.; Doe, S. M.; Evans, J. D.; Fabbiano, G.; Galle, E. C.; Gibbs, D. G., II; Grier, J. D.; Hain, R. M.; Hall, D. M.; Harbo, P. N.; He, X.; Houck, J. C.; Karovska, M.; Kashyap, V. L.; Lauer, J.; McCollough, M. L.; McDowell, J. C.; Miller, J. B.; Mitschang, A. W.; Morgan, D. L.; Mossman, A. E.; Nichols, J. S.; Nowak, M. A.; Plummer, D. A.; Refsdal, B. L.; Rots, A. H.; Siemiginowska, A.; Sundheim, B. A.; Tibbetts, M. S.; Van Stone, D. W.; Winkelman, S. L.; Zografou, P.
2010-03-01
The Chandra Source Catalog (CSC) is a general purpose virtual X-ray astrophysics facility that provides access to a carefully selected set of generally useful quantities for individual X-ray sources, and is designed to satisfy the needs of a broad-based group of scientists, including those who may be less familiar with astronomical data analysis in the X-ray regime. The first release of the CSC includes information about 94,676 distinct X-ray sources detected in a subset of public ACIS imaging observations from roughly the first eight years of the Chandra mission. This release of the catalog includes point and compact sources with observed spatial extents < 30". The catalog (1) provides access to estimates of the X-ray source properties for detected sources with good scientific fidelity; (2) facilitates analysis of a wide range of statistical properties for classes of X-ray sources; and (3) provides efficient access to calibrated observational data and ancillary data products for individual X-ray sources. The catalog includes real X-ray sources detected with flux estimates that are at least 3 times their estimated 1σ uncertainties in at least one energy band, while maintaining the number of spurious sources at a level of < 1 false source per field for a 100 ks observation. For each detected source, the CSC provides commonly tabulated quantities, including source position, extent, multi-band fluxes, hardness ratios, and variability statistics. In addition, for each X-ray source the CSC includes an extensive set of file-based data products that can be manipulated interactively, including source images, event lists, light curves, and spectra. Support for development of the CSC is provided by the National Aeronautics and Space Administration through the Chandra X-ray Center, which is operated by the Smithsonian Astrophysical Observatory for and on behalf of the National Aeronautics and Space Administration under contract NAS 8-03060.
Du, Yang; Huang, Jianheng; Lin, Danying; Niu, Hanben
2012-08-01
X-ray phase-contrast imaging based on grating interferometry is a technique with the potential to provide absorption, differential phase contrast, and dark-field signals simultaneously. The multi-line X-ray source used recently in grating interferometry has the advantage of high-energy X-rays for imaging of thick samples for most clinical and industrial investigations. However, it has a drawback of limited field of view (FOV), because of the axial extension of the X-ray emission area. In this paper, we analyze the effects of axial extension of the multi-line X-ray source on the FOV and its improvement in terms of Fresnel diffraction theory. Computer simulation results show that the FOV limitation can be overcome by use of an alternative X-ray tube with a specially designed multi-step anode. The FOV of this newly designed X-ray source can be approximately four times larger than that of the multi-line X-ray source in the same emission area. This might be beneficial for the applications of X-ray phase contrast imaging in materials science, biology, medicine, and industry.
X-ray bursters and the X-ray sources of the galactic bulge
NASA Technical Reports Server (NTRS)
Lewin, W. H. G.; Joss, P. C.
1980-01-01
Type 1 X-ray bursts, optical, infrared, and radio properties of the galactic bulge sources, are discussed. It was proven that these burst sources are neutron stars in low mass, close binary stellar systems. Several burst sources are found in globular clusters with high central densities. Optical type 1 X-ray bursts were observed from three sources. Type 2 X-ray bursts, observed from the Rapid Burster, are due to an accretion instability which converts gravitational potential energy into heat and radiation, which makes them of a fundamentally different nature from Type 1 bursts.
Radial Distribution of X-Ray Point Sources Near the Galactic Center
NASA Astrophysics Data System (ADS)
Hong, Jae Sub; van den Berg, Maureen; Grindlay, Jonathan E.; Laycock, Silas
2009-11-01
We present the log N-log S and spatial distributions of X-ray point sources in seven Galactic bulge (GB) fields within 4° from the Galactic center (GC). We compare the properties of 1159 X-ray point sources discovered in our deep (100 ks) Chandra observations of three low extinction Window fields near the GC with the X-ray sources in the other GB fields centered around Sgr B2, Sgr C, the Arches Cluster, and Sgr A* using Chandra archival data. To reduce the systematic errors induced by the uncertain X-ray spectra of the sources coupled with field-and-distance-dependent extinction, we classify the X-ray sources using quantile analysis and estimate their fluxes accordingly. The result indicates that the GB X-ray population is highly concentrated at the center, more heavily than the stellar distribution models. It extends out to more than 1fdg4 from the GC, and the projected density follows an empirical radial relation inversely proportional to the offset from the GC. We also compare the total X-ray and infrared surface brightness using the Chandra and Spitzer observations of the regions. The radial distribution of the total infrared surface brightness from the 3.6 band μm images appears to resemble the radial distribution of the X-ray point sources better than that predicted by the stellar distribution models. Assuming a simple power-law model for the X-ray spectra, the closer to the GC the intrinsically harder the X-ray spectra appear, but adding an iron emission line at 6.7 keV in the model allows the spectra of the GB X-ray sources to be largely consistent across the region. This implies that the majority of these GB X-ray sources can be of the same or similar type. Their X-ray luminosity and spectral properties support the idea that the most likely candidate is magnetic cataclysmic variables (CVs), primarily intermediate polars (IPs). Their observed number density is also consistent with the majority being IPs, provided the relative CV to star density in the GB is not smaller than the value in the local solar neighborhood.
NASA Technical Reports Server (NTRS)
Luna, G. J. M.; Sokoloski, J. L.; Mukai, K.; Nelson, T.
2014-01-01
Until recently, symbiotic binary systems in which a white dwarf accretes from a red giant were thought to be mainly a soft X-ray population. Here we describe the detection with the X-ray Telescope (XRT) on the Swift satellite of 9 white dwarf symbiotics that were not previously known to be X-ray sources and one that was previously detected as a supersoft X-ray source. The 9 new X-ray detections were the result of a survey of 41 symbiotic stars, and they increase the number of symbiotic stars known to be X-ray sources by approximately 30%. Swift/XRT detected all of the new X-ray sources at energies greater than 2 keV. Their X-ray spectra are consistent with thermal emission and fall naturally into three distinct groups. The first group contains those sources with a single, highly absorbed hard component, which we identify as probably coming from an accretion-disk boundary layer. The second group is composed of those sources with a single, soft X-ray spectral component, which likely arises in a region where low-velocity shocks produce X-ray emission, i.e. a colliding-wind region. The third group consists of those sources with both hard and soft X-ray spectral components. We also find that unlike in the optical, where rapid, stochastic brightness variations from the accretion disk typically are not seen, detectable UV flickering is a common property of symbiotic stars. Supporting our physical interpretation of the two X-ray spectral components, simultaneous Swift UV photometry shows that symbiotic stars with harder X-ray emission tend to have stronger UV flickering, which is usually associated with accretion through a disk. To place these new observations in the context of previous work on X-ray emission from symbiotic stars, we modified and extended the alpha/beta/gamma classification scheme for symbiotic-star X-ray spectra that was introduced by Muerset et al. based upon observations with the ROSAT satellite, to include a new sigma classification for sources with hard X-ray emission from the innermost accretion region. Since we have identified the elusive accretion component in the emission from a sample of symbiotic stars, our results have implications for the understanding of wind-fed mass transfer in wide binaries, and the accretion rate in one class of candidate progenitors of type Ia supernovae.
Resolving the X-ray emission from the Lyman-continuum emitting galaxy Tol 1247-232
NASA Astrophysics Data System (ADS)
Kaaret, P.; Brorby, M.; Casella, L.; Prestwich, A. H.
2017-11-01
Chandra observations of the nearby, Lyman-continuum (LyC) emitting galaxy Tol 1247-232 resolve the X-ray emission and show that it is dominated by a point-like source with a hard spectrum (Γ = 1.6 ± 0.5) and a high luminosity [(9 ± 2) × 1040 erg s- 1]. Comparison with an earlier XMM-Newton observation shows flux variation of a factor of 2. Hence, the X-ray emission likely arises from an accreting X-ray source: a low-luminosity active galactic nucleus or one or a few X-ray binaries. The Chandra X-ray source is similar to the point-like, hard spectrum (Γ = 1.2 ± 0.2), high-luminosity (1041 erg s- 1) source seen in Haro 11, which is the only other confirmed LyC-emitting galaxy that has been resolved in X-rays. We discuss the possibility that accreting X-ray sources contribute to LyC escape.
Environments of High Luminosity X-Ray Sources in the Antennae Galaxies
NASA Astrophysics Data System (ADS)
Clark, D. M.; Eikenberry, S. S.; Brandl, B. R.; Wilson, J. C.; Carson, J. C.; Henderson, C. P.; Hayward, T. P.; Barry, D. J.; Houck, J. R.; Ptak, A.; Colbert, E.
2003-12-01
We use deep J (1.25 μ m) and Ks (2.15 μ m) images of the Antennae (NGC 4038/9) obtained with the Wide-field InfraRed Camera on the Palomar 200-inch telescope, together with the Chandra X-ray source list of Zezas et al. (2001), to establish an X-ray/IR astrometric frame tie with ˜ 0.5 ″ RMS residuals over a ˜ 5 ‧ field. We find 13 ``strong" IR counterparts <1.0 ″ from X-ray sources, and an additional 6 ``possible" IR counterparts between 1.0 ″ and 1.5 ″ from X-ray sources. Based on detailed study of the surface density of IR sources near the X-ray sources, we expect only ˜ 2 of the ``strong" counterparts and ˜ 3 of the ``possible" counterparts to be chance superpositions of unrelated objects. Comparing the IR counterparts to our photometric study of ˜ 250 IR clusters in the Antennae, we find that IR counterparts to X-ray sources are Δ MK ˜ 1.2 mag more luminous than average non-X-ray clusters (>99.9% confidence), and that the X-ray/IR matches are concentrated in the spiral arms and ``bridge" regions of the Antennae. This implies that these X-ray sources lie in the most ``super" of the Antennae's Super Star Clusters, and thus trace the recent massive star formation history here. Based on the NH inferred from the X-ray sources without IR counterparts, we determine that the absence of most of the ``missing" IR counterparts is not due to extinction, but that these sources are intrinsically less luminous in the IR, implying that they trace a different (older?) stellar population. We find no clear correlation between X-ray luminosity classes and IR properties of the sources, though small number statistics hamper this analysis. Finally, we find a Ks = 16.2 mag counterpart to the Ultra-Luminous X-ray (ULX) source X-37 within <0.5 ″ , eliminating the need for the ``runaway binary" hypothesis proposed by previous authors for this object. We discuss some of the implications of this detection for models of ULX emission. This work is funded by an NSF CAREER grant.
Development of cable fed flash X-ray (FXR) system
NASA Astrophysics Data System (ADS)
Menon, Rakhee; Mitra, S.; Patel, A. S.; Kumar, R.; Singh, G.; Senthil, K.; Kumar, Ranjeet; Kolge, T. S.; Roy, Amitava; Acharya, S.; Biswas, D.; Sharma, Archana
2017-08-01
Flash X-ray sources driven by pulsed power find applications in industrial radiography, and a portable X-ray source is ideal where the radiography needs to be taken at the test site. A compact and portable flash X-ray (FXR) system based on a Marx generator has been developed with the high voltage fed to the FXR tube via a cable feed-through arrangement. Hard bremsstrahlung X-rays of few tens of nanosecond duration are generated by impinging intense electron beams on an anode target of high Z material. An industrial X-ray source is developed with source size as low as 1 mm. The system can be operated from 150 kV to 450 kV peak voltages and a dose of 10 mR has been measured at 1 m distance from the source window. The modeling of the FXR source has been carried out using particle-in-cell and Monte Carlo simulations for the electron beam dynamics and X-ray generation, respectively. The angular dose profile of X-ray has been measured and compared with the simulation.
Continuum and line spectra of degenerate dwarf X-ray sources
NASA Technical Reports Server (NTRS)
Lamb, D. Q.
1981-01-01
Recent observations of X-ray sources are summarized. Unresolved issues concerning these sources are discussed and an outline of the kinds of X-ray observations that would best advance the understanding of these sources is presented.
Long-term variability in bright hard X-ray sources: 5+ years of BATSE data
NASA Technical Reports Server (NTRS)
Robinson, C. R.; Harmon, B. A.; McCollough, M. L.; Paciesas, W. S.; Sahi, M.; Scott, D. M.; Wilson, C. A.; Zhang, S. N.; Deal, K. J.
1997-01-01
The operation of the Compton Gamma Ray Observatory (CGRO)/burst and transient source experiment (BATSE) continues to provide data for inclusion into a data base for the analysis of long term variability in bright, hard X-ray sources. The all-sky capability of BATSE provides up to 30 flux measurements/day for each source. The long baseline and the various rising and setting occultation flux measurements allow searches for periodic and quasi-periodic signals with periods of between several hours to hundreds of days to be conducted. The preliminary results from an analysis of the hard X-ray variability in 24 of the brightest BATSE sources are presented. Power density spectra are computed for each source and profiles are presented of the hard X-ray orbital modulations in some X-ray binaries, together with amplitude modulations and variations in outburst durations and intensities in recurrent X-ray transients.
Exploring the Hard and Soft X-ray Emission of Magnetic Cataclysmic Variables
NASA Astrophysics Data System (ADS)
de Martino, D.; Anzolin, G.; Bonnet-Bidaud, J.-M.; Falanga, M.; Matt, G.; Mouchet, M.; Mukai, K.; Masetti, N.
2009-05-01
A non-negligible fraction of galactic hard (>20 keV) X-ray sources were identified as CVs of the magnetic Intermediate Polar type in INTEGRAL, SWIFT and RXTE surveys, that suggests a still hidden but potentially important population of faint hard X-ray sources. Simbol-X has the unique potential to simultaneously characterize their variable and complex soft and hard X-ray emission thus allowing to understand their putative role in galactic populations of X-ray sources.
Intense X-ray machine for penetrating radiography
NASA Astrophysics Data System (ADS)
Lucht, Roy A.; Eckhouse, Shimon
Penetrating radiography has been used for many years in the nuclear weapons research programs. Infrequently penetrating radiography has been used in conventional weapons research programs. For example the Los Alamos PHERMEX machine was used to view uranium rods penetrating steel for the GAU-8 program, and the Ector machine was used to see low density regions in forming metal jets. The armor/anti-armor program at Los Alamos has created a need for an intense flash X-ray machine that can be dedicated to conventional weapons research. The Balanced Technology Initiative, through DARPA, has funded the design and construction of such a machine at Los Alamos. It will be an 8- to 10-MeV diode machine capable of delivering a dose of 500 R at 1 m with a spot size of less than 5 mm. The machine used an 87.5-stage low inductance Marx generator that charges up a 7.4-(Omega), 32-ns water line. The water line is discharged through a self-breakdown oil switch into a 12.4-(Omega) water line that rings up the voltage into the high impendance X-ray diode. A long (233-cm) vacuum drift tube is used to separate the large diameter oil-insulated diode region from the X-ray source area that may be exposed to high overpressures by the explosive experiments. The electron beam is selffocused at the target area using a low pressure background gas.
VUV-soft x-ray beamline for spectroscopy and calibration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bartlett, R.J.; Trela, W.J.; Southworth, S.H.
1986-01-01
We describe the design and performance of the Los Alamos VUV synchrotron radiation beamline, U3C, on the VUV ring of the National Synchrotron Light Source at Brookhaven National Laboratory. The beamline uses separate function optics to collect and focus the horizontally and vertically diverging beam. The monochromator is a grazing incidence Roland circle instrument of the extended grasshopper design (ERG). A post monochromator refocusing mirror is used to focus or collimate the diverging beam from the monochromator. The beamline control and diagnostics systems are also discussed.
A Possible X-Ray and Radio Counterpart of the High-Energy Gamma-Ray Source 3EG J2227+6122
NASA Technical Reports Server (NTRS)
Halpern, Jules P.; Gotthelf, E. V.; Helfand, D. J.; Leighly, K. M.; Oliversen, Ronald (Technical Monitor)
2001-01-01
The identity of the persistent EGRET sources in the Galactic plane is largely a mystery. For one of these, 3EG J2227+6122, our complete census of X-ray and radio sources in its error circle reveals a remarkable superposition of an incomplete radio shell with a flat radio spectrum, and a compact, power-law X-ray source with photon index Gamma = 1.5 and with no obvious optical counterpart. The radio shell is polarized at a level of approx. = 25%. The anomalous properties of the radio source prevent us from deriving a completely satisfactory theory as to its nature. Nevertheless, using data from ROSAT, ASCA, the VLA, and optical imaging and spectroscopy, we argue that the X-ray source may be a young pulsar with an associated wind-blown bubble or bow shock nebula, and an example of the class of radio-quiet pulsars which are hypothesized to comprise the majority of EGRET sources in the Galaxy. The distance to this source can be estimated from its X-ray absorption as 3 kpc. At this distance, the X-ray and gamma-ray luminosities would be approx. = 1.7 x 10(exp 33) and approx. = 3.7 x 10(exp 35) erg/s, respectively, which would require an energetic pulsar to power them. If, on the contrary, this X-ray source is not the counterpart of 3EG J2227+6122, then by process of elimination the X-ray luminosity of the latter must be less than 10(exp -4) of its gamma-ray luminosity, a condition not satisfied by any established class of gamma-ray source counterpart. This would require the existence of at least a quantitatively new type of EGRET source, as has been suggested in studies of other EGRET fields.
In-situ X-ray diffraction system using sources and detectors at fixed angular positions
Gibson, David M [Voorheesville, NY; Gibson, Walter M [Voorheesville, NY; Huang, Huapeng [Latham, NY
2007-06-26
An x-ray diffraction technique for measuring a known characteristic of a sample of a material in an in-situ state. The technique includes using an x-ray source for emitting substantially divergent x-ray radiation--with a collimating optic disposed with respect to the fixed source for producing a substantially parallel beam of x-ray radiation by receiving and redirecting the divergent paths of the divergent x-ray radiation. A first x-ray detector collects radiation diffracted from the sample; wherein the source and detector are fixed, during operation thereof, in position relative to each other and in at least one dimension relative to the sample according to a-priori knowledge about the known characteristic of the sample. A second x-ray detector may be fixed relative to the first x-ray detector according to the a-priori knowledge about the known characteristic of the sample, especially in a phase monitoring embodiment of the present invention.
Piestrup, Melvin A.; Boyers, David G.; Pincus, Cary
1991-01-01
A high-intensity, inexpensive X-ray source for X-ray lithography for the production of integrated circuits. Foil stacks are bombarded with a high-energy electron beam of 25 to 250 MeV to produce a flux of soft X-rays of 500 eV to 3 keV. Methods of increasing the total X-ray power and making the cross section of the X-ray beam uniform are described. Methods of obtaining the desired X-ray-beam field size, optimum frequency spectrum and elminating the neutron flux are all described. A method of obtaining a plurality of station operation is also described which makes the process more efficient and economical. The satisfying of these issues makes transition radiation an exellent moderate-priced X-ray source for lithography.
New developments in flash radiography
NASA Astrophysics Data System (ADS)
Mattsson, Arne
2007-01-01
The paper will review some of the latest developments in flash radiography. A series of multi anode tubes has been developed. These are tubes with several x-ray sources within the same vacuum enclosure. The x-ray sources are closely spaced, to come as close as possible to a single source. The x-ray sources are sequentially pulsed, at times that can be independently chosen. Tubes for voltages in the range 150 - 500 kV, with up to eight x-ray sources, will be described. Combining a multi anode tube with an intensified CCD camera, will make it possible to generate short "x-ray movies". A new flash x-ray control system has been developed. The system is operated from a PC or Laptop. All parameters of a multi channel flash x-ray system can be remotely set and monitored. The system will automatically store important operation parameters.
NASA Astrophysics Data System (ADS)
Eggl, E.; Schleede, S.; Bech, M.; Achterhold, K.; Grandl, S.; Sztrókay, A.; Hellerhoff, K.; Mayr, D.; Loewen, R.; Ruth, R. D.; Reiser, M. F.; Pfeiffer, F.
2016-12-01
While the performance of conventional x-ray tube sources often suffers from the broad polychromatic spectrum, synchrotrons that could provide highly brilliant x-rays are restricted to large research facilities and impose high investment and maintenance costs. Lately, a new type of compact synchrotron sources has been investigated. These compact light sources (CLS) based on inverse Compton scattering provide quasi-monochromatic hard x-rays. The flux and brilliance yielded by a CLS currently lie between x-ray tube sources and third-generation synchrotrons. The relatively large partially coherent x-ray beam is well suited for the investigation of preclinical applications of grating-based phase-contrast and dark-field imaging. Here we present the first grating-based multimodal tomosynthesis images of a human breast slice acquired at a CLS to investigate the possibilities of improved breast cancer diagnostics.
Product suitability of wood...determined by density gradients across growth rings
Robert M. Echols
1972-01-01
The suitability of wood for various uses can be determined by synthesizing single growth-ring density curves from accumulated means of wood density classes. Wood density gradients across growth rings were measured in large increment cores from 46-year-old ponderosa pines (Pinus ponderosa Laws.) by using X-rays. Of the 48 trees analyzed, 36 had been...
The BALDER Beamline at the MAX IV Laboratory
NASA Astrophysics Data System (ADS)
Klementiev, K.; Norén, K.; Carlson, S.; Sigfridsson Clauss, K. G. V.; Persson, I.
2016-05-01
X-ray absorption spectroscopy (XAS) includes well-established methods to study the local structure around the absorbing element - extended X-ray absorption fine structure (EXAFS), and the effective oxidation number or to quantitatively determine the speciation of an element in a complex matrix - X-ray absorption near-edge structure (XANES). The increased brilliance and intensities available at the new generation of synchrotron light sources makes it possible to study, in-situ and in-operando, much more dilute systems with relevance for natural systems, as well as the micro-scale variability and dynamics of chemical reactions on the millisecond time-scale. The design of the BALDER beamline at the MAX IV Laboratory 3 GeV ring has focused on a high flux of photons in a wide energy range, 2.4-40 keV, where the K-edge is covered for the elements S to La, and the L 3-edge for all elements heavier than Sb. The overall design of the beamline will allow large flexibility in energy range, beam size and data collection time. The other focus of the beamline design is the possibility to perform multi-technique analyses on samples. Development of sample environment requires focus on implementation of auxiliary methods in such a way that techniques like Fourier transform infrared (FTIR) spectroscopy, UV-Raman spectroscopy, X-ray diffraction and/or mass spectrometry can be performed simultaneously as the XAS study. It will be a flexible system where different instruments can be plugged in and out depending on the needs for the particular investigation. Many research areas will benefit from the properties of the wiggler based light source and the capabilities to perform in-situ and in-operando measurements, for example environmental and geochemical sciences, nuclear chemistry, catalysis, materials sciences, and cultural heritage.
Globular cluster x-ray sources
Pooley, David
2010-01-01
Globular clusters and x-ray astronomy have a long and fruitful history. Uhuru and OSO-7 revealed highly luminous (> 1036 ergs-1) x-ray sources in globular clusters, and Einstein and ROSAT revealed a larger population of low-luminosity (< 1033 ergs-1) x-ray sources. It was realized early on that the high-luminosity sources were low-mass x-ray binaries in outburst and that they were orders of magnitude more abundant per unit mass in globular clusters than in the rest of the galaxy. However, the low-luminosity sources proved difficult to classify. Many ideas were put forth—low-mass x-ray binaries in quiescence (qLMXBs), cataclysmic variables (CVs), active main-sequence binaries (ABs), and millisecond pulsars (MSPs)—but secure identifications were scarce. In ROSAT observations of 55 clusters, about 25 low-luminosity sources were found. Chandra has now observed over 80 Galactic globular clusters, and these observations have revealed over 1,500 x-ray sources. The superb angular resolution has allowed for many counterpart identifications, providing clues to the nature of this population. It is a heterogeneous mix of qLMXBs, CVs, ABs, and MSPs, and it has been shown that the qLMXBs and CVs are both, in part, overabundant like the luminous LMXBs. The number of x-ray sources in a cluster correlates very well with its encounter frequency. This points to dynamical formation scenarios for the x-ray sources and shows them to be excellent tracers of the complicated internal dynamics. The relation between the encounter frequency and the number of x-ray sources has been used to suggest that we have misunderstood the dynamical states of globular clusters. PMID:20404204
X-ray Binaries in the Central Region of M31
NASA Astrophysics Data System (ADS)
Trudolyubov, Sergey P.; Priedhorsky, W. C.; Cordova, F. A.
2006-09-01
We present the results of the systematic survey of X-ray sources in the central region of M31 using the data of XMM-Newton observations. The spectral properties and variability of 124 bright X-ray sources were studied in detail. We found that more than 80% of sources observed in two or more observations show significant variability on the time scales of days to years. At least 50% of the sources in our sample are spectrally variable. The fraction of variable sources in our survey is much higher than previously reported from Chandra survey of M31, and is remarkably close to the fraction of variable sources found in M31 globular cluster X-ray source population. We present spectral distribution of M31 X-ray sources, based on the spectral fitting with a power law model. The distribution of spectral photon index has two main peaks at 1.8 and 2.3, and shows clear evolution with source luminosity. Based on the similarity of the properties of M31 X-ray sources and their Galactic counterparts, we expect most of X-ray sources in our sample to be accreting binary systems with neutron star and black hole primaries. Combining the results of X-ray analysis (X-ray spectra, hardness-luminosity diagrams and variability) with available data at other wavelengths, we explore the possibility of distinguishing between bright neutron star and black hole binary systems, and identify 7% and 25% of sources in our sample as a probable black hole and neutron star candidates. Finally, we compare the M31 X-ray source population to the source populations of normal galaxies of different morphological type. Support for this work was provided through NASA Grant NAG5-12390. Part of this work was done during a summer workshop ``Revealing Black Holes'' at the Aspen Center for Physics, S. T. is grateful to the Center for their hospitality.
Transmission type flat-panel X-ray source using ZnO nanowire field emitters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Daokun; Song, Xiaomeng; Zhang, Zhipeng
2015-12-14
A transmission type flat-panel X-ray source in diode structure was fabricated. Large-scale patterned ZnO nanowires grown on a glass substrate by thermal oxidation were utilized as field emitters, and tungsten thin film coated on silica glass was used as the transmission anode. Uniform distribution of X-ray generation was achieved, which benefited from the uniform electron emission from ZnO nanowires. Self-ballasting effect induced by the intrinsic resistance of ZnO nanowire and decreasing of screening effect caused by patterned emitters account for the uniform emission. Characteristic X-ray peaks of W-L lines and bremsstrahlung X-rays have been observed under anode voltages at amore » range of 18–20 kV, the latter of which were the dominant X-ray signals. High-resolution X-ray images with spatial resolution less than 25 μm were obtained by the flat-panel X-ray source. The high resolution was attributed to the small divergence angle of the emitted X-rays from the transmission X-ray source.« less
NASA Astrophysics Data System (ADS)
Hornschemeier, A. E.; Heckman, T. M.; Ptak, A. F.; Tremonti, C. A.; Colbert, E. J. M.
2005-01-01
We have cross-correlated X-ray catalogs derived from archival Chandra X-Ray Observatory ACIS observations with a Sloan Digital Sky Survey Data Release 2 (DR2) galaxy catalog to form a sample of 42 serendipitously X-ray-detected galaxies over the redshift interval 0.03
An X-ray Observation of the L1251 Dark Cloud
NASA Technical Reports Server (NTRS)
Simon, Theodore
2006-01-01
An X-ray image of the L1251 dark cloud in Cepheus was obtained with the XMM-Newton telescope. More than three dozen sources were detected above a 3 delta limit in X-ray luminosity of L(sub X = 10(exp 29) ergs/s. Among the detections are eight optically visible T Tauri stars, which had been identified in earlier work from their emission at H(alpha). The two strongest X-ray sources have steady luminosities of L(sub X) approx. 10(exp 31) ergs/s and are at the saturation limit for X-ray activity in late-type stars, L(sub X)/L(sub bol) approx. 10(exp -3). X-ray emission was also observed from two CO emission cores in L1251, core C (L1251A) and core E (L1251B). Both regions contain high-velocity molecular gas, bright IRAS sources (Class I protostars), thermal radio sources, and Herbig-Haro (HH) jets. In L1251A strong X-ray emission was discovered in close proximity to the near-inbred and radio source IRSA/VLA 7 and to IRAS 22343+7501. IRSA/VLA 7 thus appears to be the most likely source of the molecular and HH outflows in L1251A. In L1251B X-ray emission was observed from a visible T Tauri star, KP2-44, which is thought to be the driving source for HH 189. Also reported is the tentative detection of X-ray emission from VLA 3, a thermal radio continuum source in L1251B that is closely associated with the extreme Class I protostar IRAS 22376+7455.
X-ray astronomy from Uhuru to HEAO-1
NASA Technical Reports Server (NTRS)
Clark, G. W.
1981-01-01
The nature of galactic and extragalactic X-ray sources is investigated using observations made with nine satellites and several rockets. The question of X-ray pulsars being neutron stars or white dwarfs is considered, as is the nature of Population II and low-luminosity X-ray stars, the diffuse X-ray emission from clusters of galaxies, the unidentified high-galactic-latitude (UHGL) sources, and the unresolved soft X-ray background. The types of sources examined include binary pulsars, Population II X-ray stars (both nonbursters and bursters) inside and outside globular clusters, coronal X-ray emitters, and active galactic nuclei. It is concluded that: (1) X-ray pulsars are strongly magnetized neutron stars formed in the evolution of massive close binaries; (2) all Population II X-ray stars are weakly magnetized or nonmagnetic neutron stars accreting from low-mass companions in close binary systems; (3) the diffuse emission from clusters is thermal bremsstrahlung of hot matter processed in stars and swept out by ram pressure exerted by the intergalactic gas; (4) most or all of the UHGL sources are active galactic nuclei; and (5) the soft X-ray background is emission from a hot component of the interstellar medium.
The Identification Of The X-Ray Counterpart To PSR J2021+4026
Weisskopf, Martin C.; Romani, Roger W.; Razzano, Massimiliano; ...
2011-11-23
We report the probable identification of the X-ray counterpart to the γ-ray pulsar PSR J2021+4026 using imaging with the Chandra X-ray Observatory ACIS and timing analysis with the Fermi satellite. Given the statistical and systematic errors, the positions determined by both satellites are coincident. The X-ray source position is R.A. 20h21m30s.733, Decl. +40°26'46.04" (J2000) with an estimated uncertainty of 1."3 combined statistical and systematic error. Moreover, both the X-ray to γ-ray and the X-ray to optical flux ratios are sensible assuming a neutron star origin for the X-ray flux. The X-ray source has no cataloged infrared-to-visible counterpart and, through newmore » observations, we set upper limits to its optical emission of i' > 23.0 mag and r' > 25.2 mag. The source exhibits an X-ray spectrum with most likely both a powerlaw and a thermal component. We also report on the X-ray and visible light properties of the 43 other sources detected in our Chandra observation.« less
Continuous motion scan ptychography: Characterization for increased speed in coherent x-ray imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, Junjing; Nashed, Youssef S. G.; Chen, Si
Ptychography is a coherent diffraction imaging (CDI) method for extended objects in which diffraction patterns are acquired sequentially from overlapping coherent illumination spots. The object’s complex transmission function can be reconstructed from those diffraction patterns at a spatial resolution limited only by the scattering strength of the object and the detector geometry. Most experiments to date have positioned the illumination spots on the sample using a move-settle-measure sequence in which the move and settle steps can take longer to complete than the measure step. We describe here the use of a continuous “fly-scan” mode for ptychographic data collection in whichmore » the sample is moved continuously, so that the experiment resembles one of integrating the diffraction patterns from multiple probe positions. This allows one to use multiple probe mode reconstruction methods to obtain an image of the object and also of the illumination function. We show in simulations, and in x-ray imaging experiments, some of the characteristics of fly-scan ptychography, including a factor of 25 reduction in the data acquisition time. This approach will become increasingly important as brighter x-ray sources are developed, such as diffraction limited storage rings.« less
X-Ray Spectrometer For ROSAT II (SPECTROSAT)
NASA Astrophysics Data System (ADS)
Predehl, Peter; Brauninger, Heinrich
1986-01-01
The objective transmission grating was one of the earliest inventions in the field of X-ray astronomy and has been incorporated into Skylab, HERO-P, and EXOTAT. In recent years there have been advances in grating technology and spectrometer design. A high precision mechanical ruling and replication process for manufacturing large self-supporting transmission gratings has been developed by an industrial manufacturer in cooperation with the Max-Planck-Institute (MPI). Theoretical analyses have determined the optimum configuration of the grating facets and the grating surface in order to correct third order aberations and obtain maximum resolving power. We have verified experimentally that the predicted efficiencies may be achieved. In addition, an experimental study of large grating assemblies for space telescopes was made in industry with scientific guidance by MPI. Main objectives of this study were the determination of mechanical loads during launch, as well as the design, construction and fabrication of a representative model of a ROSAT grating ring. Performancy studies including instrument pro-perties as well as the simulated radiation from hot plasmas have shown the ability of SPECTROSAT to perform high efficiency, high resolution line-spectroscopy on a wide variety of cosmic X-ray sources.
Continuous motion scan ptychography: Characterization for increased speed in coherent x-ray imaging
Deng, Junjing; Nashed, Youssef S. G.; Chen, Si; ...
2015-02-23
Ptychography is a coherent diffraction imaging (CDI) method for extended objects in which diffraction patterns are acquired sequentially from overlapping coherent illumination spots. The object’s complex transmission function can be reconstructed from those diffraction patterns at a spatial resolution limited only by the scattering strength of the object and the detector geometry. Most experiments to date have positioned the illumination spots on the sample using a move-settle-measure sequence in which the move and settle steps can take longer to complete than the measure step. We describe here the use of a continuous “fly-scan” mode for ptychographic data collection in whichmore » the sample is moved continuously, so that the experiment resembles one of integrating the diffraction patterns from multiple probe positions. This allows one to use multiple probe mode reconstruction methods to obtain an image of the object and also of the illumination function. We show in simulations, and in x-ray imaging experiments, some of the characteristics of fly-scan ptychography, including a factor of 25 reduction in the data acquisition time. This approach will become increasingly important as brighter x-ray sources are developed, such as diffraction limited storage rings.« less
Continuous motion scan ptychography: characterization for increased speed in coherent x-ray imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, Junjing; Nashed, Youssef S. G.; Chen, Si
2015-01-01
Ptychography is a coherent diffraction imaging (CDI) method for extended objects in which diffraction patterns are acquired sequentially from overlapping coherent illumination spots. The object's complex transmission function can be reconstructed from those diffraction patterns at a spatial resolution limited only by the scattering strength of the object and the detector geometry. Most experiments to date have positioned the illumination spots on the sample using a move-settle-measure sequence in which the move and settle steps can take longer to complete than the measure step. We describe here the use of a continuous "fly-scan" mode for ptychographic data collection in whichmore » the sample is moved continuously, so that the experiment resembles one of integrating the diffraction patterns from multiple probe positions. This allows one to use multiple probe mode reconstruction methods to obtain an image of the object and also of the illumination function. We show in simulations, and in x-ray imaging experiments, some of the characteristics of fly-scan ptychography, including a factor of 25 reduction in the data acquisition time. This approach will become increasingly important as brighter x-ray sources are developed, such as diffraction limited storage rings.« less
Continuous motion scan ptychography: characterization for increased speed in coherent x-ray imaging.
Deng, Junjing; Nashed, Youssef S G; Chen, Si; Phillips, Nicholas W; Peterka, Tom; Ross, Rob; Vogt, Stefan; Jacobsen, Chris; Vine, David J
2015-03-09
Ptychography is a coherent diffraction imaging (CDI) method for extended objects in which diffraction patterns are acquired sequentially from overlapping coherent illumination spots. The object's complex transmission function can be reconstructed from those diffraction patterns at a spatial resolution limited only by the scattering strength of the object and the detector geometry. Most experiments to date have positioned the illumination spots on the sample using a move-settle-measure sequence in which the move and settle steps can take longer to complete than the measure step. We describe here the use of a continuous "fly-scan" mode for ptychographic data collection in which the sample is moved continuously, so that the experiment resembles one of integrating the diffraction patterns from multiple probe positions. This allows one to use multiple probe mode reconstruction methods to obtain an image of the object and also of the illumination function. We show in simulations, and in x-ray imaging experiments, some of the characteristics of fly-scan ptychography, including a factor of 25 reduction in the data acquisition time. This approach will become increasingly important as brighter x-ray sources are developed, such as diffraction limited storage rings.
Simulation of emittance dilution in electron storage ring from Compton backscattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blumberg, L.N.; Blum, E.
1993-07-01
A Monte-Carlo simulation of Compton backscattered {kappa}{sub L}=3.2-{mu}m photons from an IR-FEL on 75-MeV electrons in a storage ring yields an RMS electron energy spread of {Delta}{sub E}=11.9-keV for a sample of 10{sup 7} single scattering events. Electrons are sampled from a beam of natural energy spread {sigma}{sub E} = 5.6-keV and damped transverse angle spreads {sigma}{sub x}{prime}, = .041-mrad and {sigma}{sub y}{prime} = .052-mrad (100%) coupling, scaled from the 200-MeV BNL XLS compact storage ring. The Compton-scattered X-Rays are generated from an integral of the CM Klein-Nishina cross-section transformed to the lab. A tracking calculation has also been performedmore » in 6-dimensional phase space. Initial electron coordinates are selected randomly from a Gaussian distribution of RMS spreads {sigma}{sub xo}=.102-mm, {sigma}{sub x{prime}o}=.041-mrad, {sigma}{sub yo}=.018-mm, {sigma}{sub y{prime}o}=.052-mrad, {sigma}{sub {phi}o}=22-mrad and {sigma}{sub Eo}=6-keV. A sample of 10000 electrons were each following for 40000 turns around the ring through an RF cavity of f{sub rf}=211.54-MHz and peak voltage V{sub m}=300-keV. Preliminary results indicate that the resulting energy distribution is quite broad with an RMS width of {Delta}{sub E} = 124-keV. The transverse widths are only slightly increased from their original values, i.e. {Delta}{sub x} = .106-mm and {Delta}{sub x}{prime}=.043 mrad. The scaled energy spread of {Delta}{sub E} {approximately} 360-keV for {approximately} 350,000 turns desired in a 10-msec X-Ray angiography exposure is well within the RF bucket used here; even V{sub m} < 50-kV is adequate. Further, the electron energy spread adds a negligible RMS X-Ray energy spread of {Delta}{sub Ex}=.32-keV. The electron energy damping time of {tau}{sub E}=379-msec at 75-MeV in an XLS-type ring allows for damping this induced spread and top-off of the ring between heart cycles.« less
Engine materials characterization and damage monitoring by using x ray technologies
NASA Technical Reports Server (NTRS)
Baaklini, George Y.
1993-01-01
X ray attenuation measurement systems that are capable of characterizing density variations in monolithic ceramics and damage due to processing and/or mechanical testing in ceramic and intermetallic matrix composites are developed and applied. Noninvasive monitoring of damage accumulation and failure sequences in ceramic matrix composites is used during room-temperature tensile testing. This work resulted in the development of a point-scan digital radiography system and an in situ x ray material testing system. The former is used to characterize silicon carbide and silicon nitride specimens, and the latter is used to image the failure behavior of silicon-carbide-fiber-reinforced, reaction-bonded silicon nitride matrix composites. State-of-the-art x ray computed tomography is investigated to determine its capabilities and limitations in characterizing density variations of subscale engine components (e.g., a silicon carbide rotor, a silicon nitride blade, and a silicon-carbide-fiber-reinforced beta titanium matrix rod, rotor, and ring). Microfocus radiography, conventional radiography, scanning acoustic microscopy, and metallography are used to substantiate the x ray computed tomography findings. Point-scan digital radiography is a viable technique for characterizing density variations in monolithic ceramic specimens. But it is very limited and time consuming in characterizing ceramic matrix composites. Precise x ray attenuation measurements, reflecting minute density variations, are achieved by photon counting and by using microcollimators at the source and the detector. X ray computed tomography is found to be a unique x ray attenuation measurement technique capable of providing cross-sectional spatial density information in monolithic ceramics and metal matrix composites. X ray computed tomography is proven to accelerate generic composite component development. Radiographic evaluation before, during, and after loading shows the effect of preexisting volume flaws on the fracture behavior of composites. Results from one-, three-, five-, and eight-ply ceramic composite specimens show that x ray film radiography can monitor damage accumulation during tensile loading. Matrix cracking, fiber-matrix debonding, fiber bridging, and fiber pullout are imaged throughout the tensile loading of the specimens. In situ film radiography is found to be a practical technique for estimating interfacial shear strength between the silicon carbide fibers and the reaction-bonded silicon nitride matrix. It is concluded that pretest, in situ, and post-test x ray imaging can provide greater understanding of ceramic matrix composite mechanical behavior.
NASA Astrophysics Data System (ADS)
Evans, Ian N.; Primini, Francis A.; Glotfelty, Kenny J.; Anderson, Craig S.; Bonaventura, Nina R.; Chen, Judy C.; Davis, John E.; Doe, Stephen M.; Evans, Janet D.; Fabbiano, Giuseppina; Galle, Elizabeth C.; Gibbs, Danny G., II; Grier, John D.; Hain, Roger M.; Hall, Diane M.; Harbo, Peter N.; He, Xiangqun Helen; Houck, John C.; Karovska, Margarita; Kashyap, Vinay L.; Lauer, Jennifer; McCollough, Michael L.; McDowell, Jonathan C.; Miller, Joseph B.; Mitschang, Arik W.; Morgan, Douglas L.; Mossman, Amy E.; Nichols, Joy S.; Nowak, Michael A.; Plummer, David A.; Refsdal, Brian L.; Rots, Arnold H.; Siemiginowska, Aneta; Sundheim, Beth A.; Tibbetts, Michael S.; Van Stone, David W.; Winkelman, Sherry L.; Zografou, Panagoula
2010-07-01
The Chandra Source Catalog (CSC) is a general purpose virtual X-ray astrophysics facility that provides access to a carefully selected set of generally useful quantities for individual X-ray sources, and is designed to satisfy the needs of a broad-based group of scientists, including those who may be less familiar with astronomical data analysis in the X-ray regime. The first release of the CSC includes information about 94,676 distinct X-ray sources detected in a subset of public Advanced CCD Imaging Spectrometer imaging observations from roughly the first eight years of the Chandra mission. This release of the catalog includes point and compact sources with observed spatial extents lsim30''. The catalog (1) provides access to the best estimates of the X-ray source properties for detected sources, with good scientific fidelity, and directly supports scientific analysis using the individual source data; (2) facilitates analysis of a wide range of statistical properties for classes of X-ray sources; and (3) provides efficient access to calibrated observational data and ancillary data products for individual X-ray sources, so that users can perform detailed further analysis using existing tools. The catalog includes real X-ray sources detected with flux estimates that are at least 3 times their estimated 1σ uncertainties in at least one energy band, while maintaining the number of spurious sources at a level of lsim1 false source per field for a 100 ks observation. For each detected source, the CSC provides commonly tabulated quantities, including source position, extent, multi-band fluxes, hardness ratios, and variability statistics, derived from the observations in which the source is detected. In addition to these traditional catalog elements, for each X-ray source the CSC includes an extensive set of file-based data products that can be manipulated interactively, including source images, event lists, light curves, and spectra from each observation in which a source is detected.
NASA Technical Reports Server (NTRS)
Elvis, Martin; Plummer, David; Schachter, Jonathan; Fabbiano, G.
1992-01-01
A catalog of 819 sources detected in the Einstein IPC Slew Survey of the X-ray sky is presented; 313 of the sources were not previously known as X-ray sources. Typical count rates are 0.1 IPC count/s, roughly equivalent to a flux of 3 x 10 exp -12 ergs/sq cm s. The sources have positional uncertainties of 1.2 arcmin (90 percent confidence) radius, based on a subset of 452 sources identified with previously known pointlike X-ray sources (i.e., extent less than 3 arcmin). Identifications based on a number of existing catalogs of X-ray and optical objects are proposed for 637 of the sources, 78 percent of the survey (within a 3-arcmin error radius) including 133 identifications of new X-ray sources. A public identification data base for the Slew Survey sources will be maintained at CfA, and contributions to this data base are invited.
X-ray lithography using holographic images
Howells, Malcolm R.; Jacobsen, Chris
1995-01-01
A non-contact X-ray projection lithography method for producing a desired X-ray image on a selected surface of an X-ray-sensitive material, such as photoresist material on a wafer, the desired X-ray image having image minimum linewidths as small as 0.063 .mu.m, or even smaller. A hologram and its position are determined that will produce the desired image on the selected surface when the hologram is irradiated with X-rays from a suitably monochromatic X-ray source of a selected wavelength .lambda.. On-axis X-ray transmission through, or off-axis X-ray reflection from, a hologram may be used here, with very different requirements for monochromaticity, flux and brightness of the X-ray source. For reasonable penetration of photoresist materials by X-rays produced by the X-ray source, the wavelength X, is preferably chosen to be no more than 13.5 nm in one embodiment and more preferably is chosen in the range 1-5 nm in the other embodiment. A lower limit on linewidth is set by the linewidth of available microstructure writing devices, such as an electron beam.
Catalytic action of β source on x-ray emission from plasma focus
NASA Astrophysics Data System (ADS)
Ahmad, S.; Sadiq, Mehboob; Hussain, S.; Shafiq, M.; Zakaullah, M.; Waheed, A.
2006-01-01
The influence of preionization around the insulator sleeve by a mesh-type β source (Ni6328) for the x-ray emission from a (2.3-3.9 kJ) plasma focus device is investigated. Quantrad Si p-i-n diodes along with suitable filters are employed as time-resolved x-ray detectors and a multipinhole camera with absorption filters is used for time-integrated analysis. X-ray emission in 4π geometry is measured as a function of argon and hydrogen gas filling pressures with and without β source at different charging voltages. It is found that the pressure range for the x-ray emission is broadened, x-ray emission is enhanced, and shot to shot reproducibility is improved with the β source. With argon, the CuKα emission is estimated to be 27.14 J with an efficiency of 0.7% for β source and 21.5 J with an efficiency of 0.55% without β source. The maximum x-ray yield in 4π geometry is found to be about 68.90 J with an efficiency of 1.8% for β source and 54.58 J with an efficiency of 1.4% without β source. With hydrogen, CuKα emission is 11.82 J with an efficiency of 0.32% for β source and 10.07 J with an efficiency of 0.27% without β source. The maximum x-ray yield in 4π geometry is found to be 30.20 J with an efficiency of 0.77% for β source and 25.58 J with an efficiency of 0.6% without β source. The x-ray emission with Pb insert at the anode tip without β source is also investigated and found to be reproducible and significantly high. The maximum x-ray yield is estimated to be 46.6 J in 4π geometry with an efficiency of 1.4% at 23 kV charging voltage. However, degradation of x-ray yield is observed when charging voltage exceeds 23 kV for Pb insert. From pinhole images it is observed that the x-ray emission due to the bombardment of electrons at the anode tip is dominant in both with and without β source.
Helios-2 Vela-Ariel-5 gamma-ray burst source position
NASA Technical Reports Server (NTRS)
Cline, T. L.; Trainor, J. H.; Desai, U. D.; Klebesadel, R. W.; Ricketts, M.; Heluken, H.
1979-01-01
The gamma-ray burst of 28 January 1976, one of 18 events thus far detected in interplanetary space with Helios-2, was also observed with the Vela-5A, -6A and the Ariel-5 satellites. A small source field is obtained from the intersection of the region derived from the observed time delays between Helios-2 and Vela-5A and -6A with the source region independently found with the Ariel-5 X-ray detector. This area contains neither any steady X-ray source as scanned by HEAO-A nor any previously catalogued X-ray, radio or infrared sources, X-ray transients, quasars, seyferts, globular clusters, flare stars, pulsars, white dwarfs or high energy gamma-ray sources. The region is however, within the source field of a gamma-ray transient observed in 1974, which exhibited nuclear gamma-ray line structure.
Study of X-ray transients with Scanning Sky Monitor (SSM) onboard AstroSat
NASA Astrophysics Data System (ADS)
Ramadevi, M. C.; Ravishankar, B. T.; Sarwade, Abhilash R.; Vaishali, S.; Iyer, Nirmal Kumar; Nandi, Anuj; Girish, V.; Agarwal, Vivek Kumar; Baby, Blessy Elizabeth; Hasan, Mohammed; Seetha, S.; Bhattacharya, Dipankar
2018-02-01
Scanning Sky Monitor (SSM) onboard AstroSat is an X-ray sky monitor in the energy range 2.5-10 keV. SSM scans the sky for X-ray transient sources in this energy range of interest. If an X-ray transient source is detected in outburst by SSM, the information will be provided to the astronomical community for follow-up observations to do a detailed study of the source in various other bands. SSM instrument, since its power-ON in orbit, has observed a number of X-ray sources. This paper discusses observations of few X-ray transients by SSM. The flux reported by SSM for few sources during its Performance Verification phase (PV phase) is studied and the results are discussed.
Pseudo-single-bunch mode for a 100 MHz storage ring serving soft X-ray timing experiments
NASA Astrophysics Data System (ADS)
Olsson, T.; Leemann, S. C.; Georgiev, G.; Paraskaki, G.
2018-06-01
At many storage rings for synchrotron light production there is demand for serving both high-flux and timing users simultaneously. Today this is most commonly achieved by operating inhomogeneous fill patterns, but this is not preferable for rings that employ passive harmonic cavities to damp instabilities and increase Touschek lifetime. For these rings, inhomogeneous fill patterns could severely reduce the effect of the harmonic cavities. It is therefore of interest to develop methods to serve high-flux and timing users simultaneously without requiring gaps in the fill pattern. One such method is pseudo-single-bunch (PSB), where one bunch in the bunch train is kicked onto another orbit by a fast stripline kicker. The light emitted from the kicked bunch can then be separated by an aperture in the beamline. Due to recent developments in fast kicker design, PSB operation in multibunch mode is within reach for rings that operate with a 100 MHz RF system, such as the MAX IV and Solaris storage rings. This paper describes machine requirements and resulting performance for such a mode at the MAX IV 1.5 GeV storage ring. A solution for serving all beamlines is discussed as well as the consequences of beamline design and operation in the soft X-ray energy range.
Kevin T. Smith; Jean Christophe Balouet; Walter C. Shortle; Michel Chalot; François Beaujard; Hakan Grudd; Don A. Vroblesky; Joel G. Burken
2014-01-01
Energy dispersive X-ray fluorescence (EDXRF) provides highly sensitive and precise spatial resolution of cation content in individual annual growth rings in trees. The sensitivity and precision have prompted successful applications to forensic dendrochemistry and the timing of environmental releases of contaminants. These applications have highlighted the need to...
The Discovery of a Second Luminous Low Mass X-Ray Binary System in the Globular Cluster M15
NASA Technical Reports Server (NTRS)
White, Nicholas E.; Angelini, Lorella
2001-01-01
Using the Chandra X-ray Observatory we have discovered a second bright X-ray source in the globular cluster M15 that is 2.7" to the west of AC211, the previously known low mass X-ray binary (LMXB) in this system. Prior to the 0.5" imaging capability of Chandra this second source could not have been resolved from AC211. The luminosity and spectrum of this new source, which we call M15-X2, are consistent with it also being a LMXB system. This is the first time that two LMXBs have been seen to be simultaneously active in a globular cluster. The new source, M15-X2, is coincident with a 18th U magnitude very blue star. The discovery of a second LMXB in M15 clears up a long standing puzzle where the X-ray and optical properties of AC211 appear consistent with the central source being hidden behind an accretion disk corona, and yet also showed a luminous X-ray burst suggesting the neutron star is directly visible. This discovery suggests instead that the X-ray burst did not come from AC211, but rather from the newly discovered X-ray source. We discuss the implications of this discovery for X-ray observations of globular clusters in nearby galaxies.
NASA Astrophysics Data System (ADS)
Scholz, Pascal A.; Andrianov, Victor; Echler, Artur; Egelhof, Peter; Kilbourne, Caroline; Kiselev, Oleg; Kraft-Bermuth, Saskia; McCammon, Dan
2017-10-01
X-ray spectroscopy on highly charged heavy ions provides a sensitive test of quantum electrodynamics in very strong Coulomb fields. One limitation of the current accuracy of such experiments is the energy resolution of available X-ray detectors for energies up to 100 keV. To improve this accuracy, a novel detector concept, namely the concept of microcalorimeters, is exploited for this kind of measurements. The microcalorimeters used in the present experiments consist of silicon thermometers, ensuring a high dynamic range, and of absorbers made of high-Z material to provide high X-ray absorption efficiency. Recently, besides an earlier used detector, a new compact detector design, housed in a new dry cryostat equipped with a pulse tube cooler, was applied at a test beamtime at the experimental storage ring (ESR) of the GSI facility in Darmstadt. A U89+ beam at 75 MeV/u and a 124Xe54+ beam at various beam energies, both interacting with an internal gas-jet target, were used in different cycles. This test was an important benchmark for designing a larger array with an improved lateral sensitivity and statistical accuracy.
High energy X-ray observations of COS-B gamma-ray sources from OSO-8
NASA Technical Reports Server (NTRS)
Dolan, J. F.; Crannell, C. J.; Dennis, B. R.; Frost, K. J.; Orwig, L. E.; Caraveo, P. A.
1985-01-01
During the three years between satellite launch in June 1975 and turn-off in October 1978, the high energy X-ray spectrometer on board OSO-8 observed nearly all of the COS-B gamma-ray source positions given in the 2CG catalog (Swanenburg et al., 1981). An X-ray source was detected at energies above 20 keV at the 6-sigma level of significance in the gamma-ray error box containing 2CG342 - 02 and at the 3-sigma level of significance in the error boxes containing 2CG065 + 00, 2CG195 + 04, and 2CG311 - 01. No definite association between the X-ray and gamma-ray sources can be made from these data alone. Upper limits are given for the 2CG sources from which no X-ray flux was detected above 20 keV.
Grubsky, Victor; Romanoov, Volodymyr; Shoemaker, Keith; Patton, Edward Matthew; Jannson, Tomasz
2016-02-02
A Compton tomography system comprises an x-ray source configured to produce a planar x-ray beam. The beam irradiates a slice of an object to be imaged, producing Compton-scattered x-rays. The Compton-scattered x-rays are imaged by an x-ray camera. Translation of the object with respect to the source and camera or vice versa allows three-dimensional object imaging.
Piestrup, M.A.; Boyers, D.G.; Pincus, C.
1991-12-31
A high-intensity, inexpensive X-ray source for X-ray lithography for the production of integrated circuits is disclosed. Foil stacks are bombarded with a high-energy electron beam of 25 to 250 MeV to produce a flux of soft X-rays of 500 eV to 3 keV. Methods of increasing the total X-ray power and making the cross section of the X-ray beam uniform are described. Methods of obtaining the desired X-ray-beam field size, optimum frequency spectrum and eliminating the neutron flux are all described. A method of obtaining a plurality of station operation is also described which makes the process more efficient and economical. The satisfying of these issues makes transition radiation an excellent moderate-priced X-ray source for lithography. 26 figures.
Trebes, James E.; Stone, Gary F.; Bell, Perry M.; Robinson, Ronald B.; Chornenky, Victor I.
2002-01-01
A miniature x-ray source capable of producing broad spectrum x-ray emission over a wide range of x-ray energies. The miniature x-ray source comprises a compact vacuum tube assembly containing a cathode, an anode, a high voltage feedthru for delivering high voltage to the anode, a getter for maintaining high vacuum, a connection for an initial vacuum pump down and crimp-off, and a high voltage connection for attaching a compact high voltage cable to the high voltage feedthru. At least a portion of the vacuum tube wall is highly x-ray transparent and made, for example, from boron nitride. The compact size and potential for remote operation allows the x-ray source, for example, to be placed adjacent to a material sample undergoing analysis or in proximity to the region to be treated for medical applications.
Exotic X-ray Sources from Intermediate Energy Electron Beams
NASA Astrophysics Data System (ADS)
Chouffani, K.; Wells, D.; Harmon, F.; Jones, J. L.; Lancaster, G.
2003-08-01
High intensity x-ray beams are used in a wide variety of applications in solid-state physics, medicine, biology and material sciences. Synchrotron radiation (SR) is currently the primary, high-quality x-ray source that satisfies both brilliance and tunability. The high cost, large size and low x-ray energies of SR facilities, however, are serious limitations. Alternatively, "novel" x-ray sources are now possible due to new small linear accelerator (LINAC) technology, such as improved beam emittance, low background, sub-Picosecond beam pulses, high beam stability and higher repetition rate. These sources all stem from processes that produce Radiation from relativistic Electron beams in (crystalline) Periodic Structures (REPS), or the periodic "structure" of laser light. REPS x-ray sources are serious candidates for bright, compact, portable, monochromatic, and tunable x-ray sources with varying degrees of polarization and coherence. Despite the discovery and early research into these sources over the past 25 years, these sources are still in their infancy. Experimental and theoretical research are still urgently needed to answer fundamental questions about the practical and ultimate limits of their brightness, mono-chromaticity etc. We present experimental results and theoretical comparisons for three exotic REPS sources. These are Laser-Compton Scattering (LCS), Channeling Radiation (CR) and Parametric X-Radiation (PXR).
VizieR Online Data Catalog: ChaMP X-ray point source catalog (Kim+, 2007)
NASA Astrophysics Data System (ADS)
Kim, M.; Kim, D.-W.; Wilkes, B. J.; Green, P. J.; Kim, E.; Anderson, C. S.; Barkhouse, W. A.; Evans, N. R.; Ivezic, Z.; Karovska, M.; Kashyap, V. L.; Lee, M. G.; Maksym, P.; Mossman, A. E.; Silverman, J. D.; Tananbaum, H. D.
2009-01-01
We present the Chandra Multiwavelength Project (ChaMP) X-ray point source catalog with ~6800 X-ray sources detected in 149 Chandra observations covering ~10deg2. The full ChaMP catalog sample is 7 times larger than the initial published ChaMP catalog. The exposure time of the fields in our sample ranges from 0.9 to 124ks, corresponding to a deepest X-ray flux limit of f0.5-8.0=9x10-16ergs/cm2/s. The ChaMP X-ray data have been uniformly reduced and analyzed with ChaMP-specific pipelines and then carefully validated by visual inspection. The ChaMP catalog includes X-ray photometric data in eight different energy bands as well as X-ray spectral hardness ratios and colors. To best utilize the ChaMP catalog, we also present the source reliability, detection probability, and positional uncertainty. (10 data files).
Behind the dust curtain: the spectacular case of GRB 160623A
NASA Astrophysics Data System (ADS)
Pintore, F.; Tiengo, A.; Mereghetti, S.; Vianello, G.; Salvaterra, R.; Esposito, P.; Costantini, E.; Giuliani, A.; Bosnjak, Z.
2017-12-01
We report on the X-ray dust-scattering features observed around the afterglow of the gamma-ray burst GRB 160623A. With an XMM-Newton observation carried out ∼2 d after the burst, we found evidence of at least six rings, with angular size expanding between ∼2 and 9 arcmin, as expected for X-ray scattering of the prompt gamma-ray burst (GRB) emission by dust clouds in our Galaxy. From the expansion rate of the rings, we measured the distances of the dust layers with extraordinary precision: 528.1 ± 1.2, 679.2 ± 1.9, 789.0 ± 2.8, 952 ± 5, 1539 ± 20 and 5079 ± 64 pc. A spectral analysis of the ring spectra, based on an appropriate dust-scattering model (BARE-GR-B) and the estimated burst fluence, allowed us to derive the column density of the individual dust layers, which are in the range 7 × 1020-1.5 × 1022 cm-2. The farthest dust layer (i.e. the one responsible for the smallest ring) is also the one with the lowest column density and it is possibly very extended, indicating a diffuse dust region. The properties derived for the six dust layers (distance, thickness and optical depth) are generally in good agreement with independent information on the reddening along this line of sight and on the distribution of molecular and atomic gas.
Observations of low luminosity X-ray sources in Vela-Puppis
NASA Technical Reports Server (NTRS)
Pravdo, S. H.; Becker, R. H.; Boldt, E. A.; Holt, S. S.; Erlemitsos, P. J.; Swank, J. H.
1978-01-01
Results of a study of the X-ray emission from a small portion of the galactic plane near galactic longitude 260 deg are presented. This region contains at least six low luminosity X-ray sources within approximately 10 deg. of PSRO833-45, which is near the center of the Gum Nebula. The X-ray source associated with the Vela pulsar, 4U0833-45, is observed at twice its 4U catalogue intensity. The lack of X-ray pulsations at the pulsar period, the non thermal power law spectrum, and models of the X-ray come from an extended source approximately 1 deg in radius. The observation of a high temperature spectrum in a field of view containing only Puppis A among known sources has led to the discovery of a new OSO-8 source, OSO752-39. Other spectra from this region are discussed.
Baker, Kevin Louis
2013-01-08
X-ray phase sensitive wave-front sensor techniques are detailed that are capable of measuring the entire two-dimensional x-ray electric field, both the amplitude and phase, with a single measurement. These Hartmann sensing and 2-D Shear interferometry wave-front sensors do not require a temporally coherent source and are therefore compatible with x-ray tubes and also with laser-produced or x-pinch x-ray sources.
ROSAT X-ray sources embedded in the rho Ophiuchi cloud core
NASA Astrophysics Data System (ADS)
Casanova, Sophie; Montmerle, Thierry; Feigelson, Eric D.; Andre, Philippe
1995-02-01
We present a deep ROSAT Position Sensitive Proportional Counter (PSPC) image of the central region of the rho Oph star-forming region. The selected area, about 35 x 35 arcmins in size, is rich with dense molecular cores and young stellar objects (YSOs). Fifty-five reliable X-ray sources are detected (and up to 50 more candidates may be present) above approximately 1 keV,, doubling the number of Einstein sources in this area. These sources are cross-identified with an updated list of 88 YSOs associated with the rho Oph cloud core. A third of the reliable X-ray sources do not have optical counterparts on photographic plates. Most can be cross-identified wth Class II and Class III infrared (IR) sources, which are embedded T Tauri stars, but three reliable X-ray sources and up to seven candidate sources are tentatively identified with Class I protostars. Eighteen reliable, and up to 20 candidate, X-ray sources are probably new cloud members. The overall detection rate of the bona fide cloud population is very high (73% for the Class II and Class III objects). The spatial distribution of the X-ray sources closely follows that of the moleclar gas. The visual extinctions Av estimated from near-IR data) of the ROSAT sources can be as high as 50 or more, confirming that most are embedded in the cloud core and are presumably very young. Using bolometric luminosities Lbol estimated from J-magnitudes a tight correlation between Lx and Lbol is found, similar to that seen for older T Tauri stars in the Cha I cloud: Lx approximately 10-4 Lbol. A general relation Lxproportional to LbolLj seems to apply to all T Tauri-like YSOs. The near equality of the extintion in the IR J band and in the keV X-ray rage implies that this relation is valid for the detected fluxes as well as for the dereddened fluxes. The X-ray luminosity function of the embedded sourced in rho Oph spans a range of Lx approximately 1028.5 to approximately equal to or greater than 1031.5 ergs/s and is statistically indistinguishable from that of X-ray-detected visile T Tauri stars. We estimate a total X-ray luminosity Lx, Oph approximately equal to or greater than 6 x 10 32 ergs/s from approximately equal to 200 X-ray sources in the cloud core, down to Lbol approximately 0.1 solar luminosity or Mstar approximately 0.3 solar mass. We discuss several consequences of in situ irradiation of molecular clouds by X-rays from embedded YSOs. These X-rays must partially ionize the inner regions of circumstellar disk coronae, possibly playing an important role in coupling magnetic ionize the fields and wind or bipolar outflows. Photon-stimulated deportion of large molecules by YSO X-rays may be partly responsible for the bright 12 micrometer halos seen in some molecular clouds.
Dean S. DeBell; Ryan Singleton; Barbara L. Gartner; David D. Marshall
2004-01-01
Breast-high stem sections were sampled from 56 western hemlock (Tsuga heterophylla (Raf.) Sarg.) trees growing in 15 plots representing a wide range of tree and site conditions in northwestern Oregon. Growth and wood density traits of individual rings were measured via X-ray densitometry, and relationships of ring density and its components to age...
An X-ray Investigation of the NGC 346 Field in the SMC (2): The Field Population
NASA Technical Reports Server (NTRS)
Naze, Y.; Hartwell, J. M.; Stevens, I. R.; Manfroid, J.; Marchenko, S.; Corcoran, M. F.; Moffat, A. F. J.; Skalkowski, G.
2003-01-01
We present results from a Chandra observation of the NGC 346 cluster, which is the ionizing source of N66, the most luminous HII region and the largest star formation region in the SMC. In the first part of this investigation, we have analysed the X-ray properties of the cluster itself and the remarkable star HD 5980. But the field contains additional objects of interest. In total, 79 X-ray point sources were detected in the Chandra observation: this is more than five times the number of sources detected by previous X-ray surveys. We investigate here their characteristics in detail. The sources possess rather high hardness ratios, and their cumulative luminosity function is steeper than that for the rest of the SMC at higher .luminosities. Their absorption columns suggest that most of the sources belong to NGC346. Using new UBV RI imaging with the ESO 2.2m telescope, we also discovered possible counterparts for 36 of these X-ray sources and estimated a B spectral type for a large number of these counterparts. This tends to suggest that most of the X-ray sources in the field are in fact X-ray binaries. Finally, some objects show X-ray and/or optical variability, with a need for further monitoring.
The second ROSAT All-Sky Survey source catalogue: the deepest X-ray All-Sky Survey before eROSITA
NASA Astrophysics Data System (ADS)
Boller, T.; Freyberg, M.; Truemper, J.
2014-07-01
We present the second ROSAT all-sky survey source catalogue (RASS2, (Boller, Freyberg, Truemper 2014, submitted)). The RASS2 is an extension of the ROSAT Bright Source Catalogue (BSC) and the ROSAT Faint Source Catalogue (FSC). The total number of sources in the second RASS catalogue is 124489. The extensions include (i) the supply of new user data products, i.e., X-ray images, X-ray spectra, and X-ray light curves, (ii) a visual screening of each individual detection, (iii) an improved detection algorithm compared to the SASS II processing. This results into an as most as reliable and as most as complete catalogue of point sources detected during the ROSAT Survey observations. We discuss for the first time the intra-day timing and spectral properties of the second RASS catalogue. We find new highly variable sources and we discuss their timing properties. Power law fits have been applied which allows to determine X-ray fluxes, X-ray absorbing columns, and X-ray photon indices. We give access to the second RASS catalogue and the associated data products via a web-interface to allow the community to perform further scientific exploration. The RASS2 catalogue provides the deepest X-ray All-Sky Survey before eROSITA data will become available.
Monomolecular Siloxane Film as a Model of Single Site Catalysts
Martynowycz, Michael W.; Hu, Bo; Kuzmenko, Ivan; ...
2016-09-06
Achieving structurally well-defined catalytic species requires a fundamental understanding of surface chemistry. Detailed structural characterization of the catalyst binding sites in situ, such as single site catalysts on silica supports, is technically challenging or even unattainable. Octadecyltrioxysilane (OTOS) monolayers formed from octadecyltrimethoxysilane (OTMS) at the air-liquid interface after hydrolysis and condensation at low pH were chosen as a model system of surface binding sites in silica-supported Zn 2+ catalysts. We characterize the system by grazing incidence X-ray diffraction, X-ray reflectivity (XR), and X-ray fluorescence spectroscopy (XFS). Previous X-ray and infrared surface studies of OTMS/OTOS films at the airliquid interface proposedmore » the formation of polymer OTOS structures. According to our analysis, polymer formation is inconsistent with the X-ray observations and structural properties of siloxanes; it is energetically unfavorable and thus highly unlikely. We suggest an alternative mechanism of hydrolysis/condensation in OTMS leading to the formation of structurally allowed cyclic trimers with the six-membered siloxane rings, which explain well both the X-ray and infrared results. XR and XFS consistently demonstrate that tetrahedral [Zn(NH 3) 4] 2+ ions bind to hydroxyl groups of the film at a stoichiometric ratio of OTOS:Zn ~ 2:1. The high binding affinity of zinc ions to OTOS trimers suggests that the six-membered siloxane rings are binding locations for single site Zn/SiO 2 catalysts. Finally, our results show that OTOS monolayers may serve as a platform for studying silica surface chemistry or hydroxyl-mediated reactions.« less
X-ray laser microscope apparatus
Suckewer, Szymon; DiCicco, Darrell S.; Hirschberg, Joseph G.; Meixler, Lewis D.; Sathre, Robert; Skinner, Charles H.
1990-01-01
A microscope consisting of an x-ray contact microscope and an optical microscope. The optical, phase contrast, microscope is used to align a target with respect to a source of soft x-rays. The source of soft x-rays preferably comprises an x-ray laser but could comprise a synchrotron or other pulse source of x-rays. Transparent resist material is used to support the target. The optical microscope is located on the opposite side of the transparent resist material from the target and is employed to align the target with respect to the anticipated soft x-ray laser beam. After alignment with the use of the optical microscope, the target is exposed to the soft x-ray laser beam. The x-ray sensitive transparent resist material whose chemical bonds are altered by the x-ray beam passing through the target mater GOVERNMENT LICENSE RIGHTS This invention was made with government support under Contract No. De-FG02-86ER13609 awarded by the Department of Energy. The Government has certain rights in this invention.
Abendroth, Jan; McCormick, Michael S.; Edwards, Thomas E.; Staker, Bart; Loewen, Roderick; Gifford, Martin; Rifkin, Jeff; Mayer, Chad; Guo, Wenjin; Zhang, Yang; Myler, Peter; Kelley, Angela; Analau, Erwin; Hewitt, Stephen Nakazawa; Napuli, Alberto J.; Kuhn, Peter; Ruth, Ronald D.; Stewart, Lance J.
2010-01-01
Structural genomics discovery projects require ready access to both X-ray and NMR instrumentation which support the collection of experimental data needed to solve large numbers of novel protein structures. The most productive X-ray crystal structure determination laboratories make extensive frequent use of tunable synchrotron X-ray light to solve novel structures by anomalous diffraction methods. This requires that frozen cryo-protected crystals be shipped to large government-run synchrotron facilities for data collection. In an effort to eliminate the need to ship crystals for data collection, we have developed the first laboratory-scale synchrotron light source capable of performing many of the state-of-the-art synchrotron applications in X-ray science. This Compact Light Source is a first-in-class device that uses inverse Compton scattering to generate X-rays of sufficient flux, tunable wavelength and beam size to allow high-resolution X-ray diffraction data collection from protein crystals. We report on benchmarking tests of X-ray diffraction data collection with hen egg white lysozyme, and the successful high-resolution X-ray structure determination of the Glycine cleavage system protein H from Mycobacterium tuberculosis using diffraction data collected with the Compact Light Source X-ray beam. PMID:20364333
The Chandra Deep Field-South Survey: 7 Ms Source Catalogs
NASA Technical Reports Server (NTRS)
Luo, B.; Brandt, W. N.; Xue, Y. Q.; Lehmer, B.; Alexander, D. M.; Bauer, F. E.; Vito, F.; Yang, G.; Basu-Zych, A. R.; Comastri, A.;
2016-01-01
We present X-ray source catalogs for the approx. 7 Ms exposure of the Chandra Deep Field-South (CDF-S), which covers a total area of 484.2 arcmin2. Utilizing WAVDETECT for initial source detection and ACIS Extract for photometric extraction and significance assessment, we create a main source catalog containing 1008 sources that are detected in up to three X-ray bands: 0.5-7.0 keV, 0.5-2.0 keV, and 2-7 keV. A supplementary source catalog is also provided, including 47 lower-significance sources that have bright (Ks < or = 23) near-infrared counterparts. We identify multiwavelength counterparts for 992 (98.4%) of the main-catalog sources, and we collect redshifts for 986 of these sources, including 653 spectroscopic redshifts and 333 photometric redshifts. Based on the X-ray and multiwavelength properties, we identify 711 active galactic nuclei (AGNs) from the main-catalog sources. Compared to the previous approx. 4 Ms CDF-S catalogs, 291 of the main-catalog sources are new detections. We have achieved unprecedented X-ray sensitivity with average flux limits over the central approx. 1 arcmin2 region of 1.9 x 10(exp -17), 6.4 x 10(exp -18), and 2.7 x 10(exp -17) erg/sq cm/s in the three X-ray bands, respectively. We provide cumulative number-count measurements observing, for the first time, that normal galaxies start to dominate the X-ray source population at the faintest 0.5-2.0 keV flux levels. The highest X-ray source density reaches approx. 50,500/sq deg, and 47% +/- 4 of these sources are AGNs (approx. 23,900/sq deg).
Tănase, Constantin I; Drăghici, Constantin; Căproiu, Miron Teodor; Shova, Sergiu; Mathe, Christophe; Cocu, Florea G; Enache, Cristian; Maganu, Maria
2014-01-01
An amine group was synthesized starting from an optically active bicyclo[2.2.1]heptane compound, which was then used to build the 5 atoms ring of a key 6-chloropurine intermediate. This was then reacted with ammonia and selected amines obtaining new adenine- and 6-substituted adenine conformationally constrained carbocyclic nucleoside analogues with a bicyclo[2.2.1]heptane skeleton in the sugar moiety. X-ray crystallography confirmed an exo-coupling of base to the ring and a L configuration of the nucleoside analogues. The compounds were tested for anticancer activity. Copyright © 2013 Elsevier Ltd. All rights reserved.
Intense X-ray and EUV light source
Coleman, Joshua; Ekdahl, Carl; Oertel, John
2017-06-20
An intense X-ray or EUV light source may be driven by the Smith-Purcell effect. The intense light source may utilize intense electron beams and Bragg crystals. This may allow the intense light source to range from the extreme UV range up to the hard X-ray range.
Chandra Observation of the X-ray Source Population of NGC 6946
NASA Technical Reports Server (NTRS)
Holt, S. S.; Schlegel, E. M.; Hwang, U.; Petre, R.
2003-01-01
We present the results of a study of discrete X-ray sources in NGC 6946 using a deep Chandra ACIS observation. Based on the slope of the log N-log S distribution and the general correlation of sources with the spiral arms, we infer that the overall discrete source sample in NGC 6946 is dominated by high mass X-ray binaries, in contrast to the source distributions in M31 and the Milky Way. This is consistent with the higher star formation rate in NGC 6946 than in those galaxies. We find that the strong X-ray sources in the region of the galactic center do not correlate in detail with images of the region in the near-IR, although one of them may be coincident with the galactic center. The non-central ultra-luminous X-ray source in NGC 6946, previously identified with a supernova remnant, has an X-ray spectrum and luminosity that is inconsistent with either a traditional pulsar wind nebula or a blast wave remnant.
NASA Astrophysics Data System (ADS)
Hang, Shuang; Liu, Yunpeng; Li, Huan; Tang, Xiaobin; Chen, Da
2018-04-01
X-ray communication (XCOM) is a new communication type and is expected to realize high-speed data transmission in some special communication scenarios, such as deep space communication and blackout communication. This study proposes a high-speed modulated X-ray source scheme based on the laser-to-X-ray conversion. The temporal characteristics of the essential components of the proposed laser-modulated pulsed X-ray source (LMPXS) were analyzed to evaluate its pulse emission performance. Results show that the LMPXS can provide a maximum modulation rate up to 100 Mbps which is expected to significantly improve the data rate of XCOM.
A Multi-Wavelength Study of the X-Ray Sources in the NGC 5018
NASA Technical Reports Server (NTRS)
Ghosh, Kajal K.; Swartz, Douglas A.; Tennant, Allyn F.; Wu, Kinwah; Saripalli, Lakshmi
2004-01-01
The E3 giant elliptical galaxy NGC-5018 was observed with the cxo X-ray Observatory's Advanced CCD Imaging Spectrometer for 30-h on 14 April 2001. Results of analysis of these X-ray data as well as of complementary optical, infrared, and radio data are reported. Seven X-ray point sources, including the nucleus, were detected. If they are intrinsic to NGC-5018, then all six non-nuclear sources have luminosities exceeding 10(exp 39)-ergl in the 0.5-8.0-keV energy band; placing them in the class of Ultra- luminous X-ray sources. Comparison of X-ray source positions to archival Hubble Space Telescope/Wide Field Planetary Camera 2 (hst/WFPC2) images reveal four of the six non-nuclear sources are spatially--coincident with bright, M$(sub V)LA -8.6 mag, objects. These four objects have optical magnitudes and (V-I) colors consistent with globular clusters in NGC-5018. However, one of these objects was observed to vary by siml mag in both V and I between observations taken 28 July 1997 and 04 Feb 1999 indicating this source is a background active galactic nucleus (AGN). The nature of the other three optically-bright objects cannot be determined from the available optical data but all have X-ray-to-optical flux ratios consistent with background AGNs. Strong, unpolarized, radio emission has been detected from another of the optically-bright counterparts. It displays an inverted radio spectrum and is the most absorbed of the seven sources in the X-ray band. It, too, is most readily explained as a background AGN, though alternative explanations cannot be ruled out. Extended X-ray emission is detected within a siml5 arcsec radius of the galaxy center at a luminosity of sim lO(exp 40)-ergl in the X-ray band. Its thermal X-ray spectrum (kT sim0.4-keV) and its spatial coincidence with strong H(alpha) emission are consistent with a hot gas origin. The nucleus itself is a weak X-ray source, LA-5 times 10(exp 39)-ergl, but displays a radio spectrum typical of AGN.
Chandra Detects Enigmatic Point X-ray Sources in the Cat's Eye and the Helix Nebulae
NASA Astrophysics Data System (ADS)
Guerrero, M. A.; Gruendl, R. A.; Chu, Y.-H.; Kaler, J. B.; Williams, R. M.
2000-12-01
Central stars of planetary nebulae (PNe) with Teff greater than 100,000 K are expected to emit soft X-rays that peak below 0.1 keV. Chandra ACIS-S observations of the Cat's Eye Nebula (NGC 6543) and the Helix Nebula (NGC 7293) have detected point X-ray sources at their central stars. The point X-ray source at the central star of the Cat's Eye is both unknown previously and unexpected because the stellar temperature is only ~50,000 K. In contrast, the point X-ray source at the central star of the Helix was previously detected by ROSAT and its soft X-ray emission is expected because the stellar temperature is ~100,000 K. However, the Helix X-ray source also shows a harder X-ray component peaking at 0.8 keV that is unexpected and for which Chandra has provided the first high-resolution spectrum for detailed analysis. The spectra of the point X-ray sources in the Cat's Eye and the Helix show line features indicating an origin of thermal plasma emission. The spectrum of the Helix source can be fit by Raymond & Smith's model of plasma emission at ~9*E6 K. The spectrum of the Cat's Eye source has too few counts for a spectral fit, but appears to be consistent with plasma emission at 2-3*E6 K. The X-ray luminosities of both sources are ~5*E29 erg s-1. The observed plasma temperatures are too high for accretion disks around white dwarfs, but they could be ascribed to coronal X-ray emission. While central stars of PNe are not known to have coronae, the observed spectra are consistent with quiescent X-ray emission from dM flare stars. On the other hand, neither the central star of the Helix or the Cat's Eye are known to have a binary companion. It is possible that the X-rays from the Cat's Eye's central star originate from shocks in the stellar wind, but the central star of the Helix does not have a measurable fast stellar wind. This work is supported by the CXC grant number GO0-1004X.
An X-ray investigation of the unusual supernova remnant CTB 80
NASA Technical Reports Server (NTRS)
Wang, Z. R.; Seward, F. D.
1984-01-01
The X-ray properties of SNR CTB 80 (G68.8 + 2.8) are discussed based on both low- and high-resolution images from the Einstein satellite. The X-ray maps show a point source coinciding with the region of maximum radio emission. Diffuse X-ray emission is evident mainly along the radio lobe extending about 8 arcmin east of the point source and aligned with the projected magnetic field lines. The observed X-ray luminosity is 3.2 x 10 to the 34th ergs/s with 1.0 x 10 to the 3th ergs/s from the point source (assuming a distance of 3 kpc). There is also faint, diffuse, X-ray emission south of the point source, where radio emission is absent. The unusual radio and X-ray morphologies are interpreted as a result of relativistic jets energized by the central object, and the possible association of CTB 80 with SN 1408 as recorded by Chinese observers is discussed.
Point Spread Function of ASTRO-H Soft X-Ray Telescope (SXT)
NASA Technical Reports Server (NTRS)
Hayashi, Takayuki; Sato, Toshiki; Kikuchi, Naomichi; Iizuka, Ryo; Maeda, Yoshitomo; Ishida, Manabu; Kurashima, Sho; Nakaniwa, Nozomi; Okajima, Takashi; Mori, Hideyuki;
2016-01-01
ASTRO-H (Hitomi) satellite equips two Soft X-ray Telescopes (SXTs), one of which (SXT-S) is coupled to Soft-X-ray Spectrometer (SXS) while the other (SXT-I) is coupled to Soft X-ray Imager (SXI). Although SXTs are lightweight of approximately 42 kgmodule1 and have large on-axis effective area (EA) of approximately 450 cm(exp 2) at 4.5 keV module(sub 1) by themselves, their angular resolutions are moderate approximately 1.2 arcmin in half power diameter. The amount of contamination into the SXS FOV (3.05 times 3.05 arcmin(exp 2) from nearby sources was measured in the ground-based calibration at the beamline in Institute of Space and Astronautical Science. The contamination at 4.5 keV were measured with sources distant from the SXS center by one width of the FOV in perpendicular and diagonal directions, that is, 3 and 4.5 arcmin-off, respectively. The average EA of the contamination in the four directions with the 3 and 4.5 arcmin-off were measured to be 2 and 0.6% of the on-axis EA of 412 cm (exp) for the SXS FOV, respectively. The contamination from a source distant by two FOV widths in a diagonal direction, that is, 8.6 arcmin-off was measured to be 0.1% of the on-axis at 4.5 keV. The contamination amounts were also measured at 1.5 keV and 8.0 keV which indicated that the ratio of the contamination EA to that of on-axis hardly depended on the source energy. The off-axis SXT-I images from 4.5 to 27 arcmin were acquired at intervals of -4.5 arcmin for the SXI FOV of 38 times 38 arcmin(exp 2). The image shrinked as the off-axis angle increased. Above 13.5 arcmin of off-angle, a stray appeared around the image center in the off-axis direction. As for the on-axis image, a ring-shaped stray appeared at the edge of SXI of approximately 18 arcmin distant from the image center.
"X-Ray Transients in Star-Forming Regions" and "Hard X-Ray Emission from X-Ray Bursters"
NASA Technical Reports Server (NTRS)
Halpern, Jules P.; Kaaret, Philip
1999-01-01
This grant funded work on the analysis of data obtained with the Burst and Transient Experiment (BATSE) on the Compton Gamma-Ray Observatory. The goal of the work was to search for hard x-ray transients in star forming regions using the all-sky hard x-ray monitoring capability of BATSE. Our initial work lead to the discovery of a hard x-ray transient, GRO J1849-03. Follow-up observations of this source made with the Wide Field Camera on BeppoSAX showed that the source should be identified with the previously known x-ray pulsar GS 1843-02 which itself is identified with the x-ray source X1845-024 originally discovered with the SAS-3 satellite. Our identification of the source and measurement of the outburst recurrence time, lead to the identification of the source as a Be/X-ray binary with a spin period of 94.8 s and an orbital period of 241 days. The funding was used primarily for partial salary and travel support for John Tomsick, then a graduate student at Columbia University. John Tomsick, now Dr. Tomsick, received his Ph.D. from Columbia University in July 1999, based partially on results obtained under this investigation. He is now a postdoctoral research scientist at the University of California, San Diego.
The cosmic X-ray background. [heao observations
NASA Technical Reports Server (NTRS)
Boldt, E. A.
1980-01-01
The cosmic X-ray experiment carried out with the A2 Instrument on HEAO-1 made systematics-free measurements of the extra-galactic X-ray sky and yielded the broadband spectral characteristics for two extreme aspects of this radiation. For the apparently isotropic radiation of cosmological origin that dominates the extragalactic X-ray flux ( 3 keV), the spectrum over the energy band of maximum intensity is remarkably well described by a thermal model with a temperature of a half-billion degrees. At the other extreme, broadband observations of individual extragalactic X-ray sources with HEAO-1 are restricted to objects within the present epoch. While the non-thermal hard spectral components associated with unevolved X-ray emitting active galaxies could account for most of the gamma-ray background, the contribution of such sources to the X-ray background must be relatively small. In contrast, the 'deep-space' sources detected in soft X-rays with the HEAO-2 telescope probably represent a major portion of the extragalactic soft X-ray ( 3 keV) background.
Advanced x-ray imaging spectrometer
NASA Technical Reports Server (NTRS)
Callas, John L. (Inventor); Soli, George A. (Inventor)
1998-01-01
An x-ray spectrometer that also provides images of an x-ray source. Coded aperture imaging techniques are used to provide high resolution images. Imaging position-sensitive x-ray sensors with good energy resolution are utilized to provide excellent spectroscopic performance. The system produces high resolution spectral images of the x-ray source which can be viewed in any one of a number of specific energy bands.
Next-generation materials for future synchrotron and free-electron laser sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Assoufid, Lahsen; Graafsma, Heinz
We show that the development of new materials and improvements of existing ones are at the root of the spectacular recent developments of new technologies for synchrotron storage rings and free-electron laser sources. This holds true for all relevant application areas, from electron guns to undulators, x-ray optics, and detectors. As demand grows for more powerful and efficient light sources, efficient optics, and high-speed detectors, an overview of ongoing materials research for these applications is timely. In this article, we focus on the most exciting and demanding areas of materials research and development for synchrotron radiation optics and detectors. Materialsmore » issues of components for synchrotron and free-electron laser accelerators are briefly discussed. Lastly, the articles in this issue expand on these topics.« less
Next-generation materials for future synchrotron and free-electron laser sources
Assoufid, Lahsen; Graafsma, Heinz
2017-06-09
We show that the development of new materials and improvements of existing ones are at the root of the spectacular recent developments of new technologies for synchrotron storage rings and free-electron laser sources. This holds true for all relevant application areas, from electron guns to undulators, x-ray optics, and detectors. As demand grows for more powerful and efficient light sources, efficient optics, and high-speed detectors, an overview of ongoing materials research for these applications is timely. In this article, we focus on the most exciting and demanding areas of materials research and development for synchrotron radiation optics and detectors. Materialsmore » issues of components for synchrotron and free-electron laser accelerators are briefly discussed. Lastly, the articles in this issue expand on these topics.« less
Compact X-ray sources: X-rays from self-reflection
NASA Astrophysics Data System (ADS)
Mangles, Stuart P. D.
2012-05-01
Laser-based particle acceleration offers a way to reduce the size of hard-X-ray sources. Scientists have now developed a simple scheme that produces a bright flash of hard X-rays by using a single laser pulse both to generate and to scatter an electron beam.
NASA Technical Reports Server (NTRS)
Holt, S. S.; Mushotzky, R. F.
1979-01-01
An overview of X-ray astronomical spectroscopy in general is presented and results obtained by HEAO 1 and 2 as well as earlier spacecraft are examined. Particular emphasis is given to the spectra of supernova remnants; galactic binary X-ray sources, cataclysmic variables, bulges, pulsars, and stars; the active nuclei of Seyfert 1 galaxy, BL Lac, and quasars; the diffuse X-ray background; and galactic clusters.
NASA Astrophysics Data System (ADS)
Kim, Hyung Taek; Nakajima, Kazuhisa; Hojbota, Calin; Jeon, Jong Ho; Rhee, Yong-Joo; Lee, Kyung Hwan; Lee, Seong Ku; Sung, Jae Hee; Lee, Hwang Woon; Pathak, Vishwa B.; Pae, Ki Hong; Sebban, Stéphane; Tissandier, Fabien; Gautier, Julien; Ta Phuoc, Kim; Malka, Victor; Nam, Chang Hee
2017-05-01
Short-pulse x-ray/gamma-ray sources have become indispensable light sources for investigating material science, bio technology, and photo-nuclear physics. In past decades, rapid advancement of high intensity laser technology led extensive progresses in the field of radiation sources based on laser-plasma interactions - x-ray lasers, betatron radiation and Compton gamma-rays. Ever since the installation of a 100-TW laser in 2006, we have pursued the development of ultrashort x-ray/gamma-ray radiations, such as x-ray lasers, relativistic high-order harmonics, betatron radiation and all-optical Compton gamma-rays. With the construction of two PW Ti:Sapphire laser beamlines having peak powers of 1.0 PW and 1.5 PW in 2010 and 2012, respectively [1], we have investigated the generation of multi-GeV electron beams [2] and MeV betatron radiations. We plan to carry out the Compton backscattering to generate MeV gamma-rays from the interaction of a GeV electron beam and a PW laser beam. Here, we present the recent progress in the development of ultrashort x-ray/gamma-ray radiation sources based on laser plasma interactions and the plan for developing Compton gamma-ray sources driven by the PW lasers. In addition, we will present the applications of laser-plasma x-ray lasers to x-ray holography and coherent diffraction imaging. [references] 1. J. H. Sung, S. K. Lee, T. J. Yu, T. M. Jeong, and J. Lee, Opt. Lett. 35, 3021 (2010). 2. H. T. Kim, K. H. Pae, H. J. Cha, I J. Kim, T. J. Yu, J. H. Sung, S. K. Lee, T. M. Jeong, J. Lee, Phys. Rev. Lett. 111, 165002 (2013).
A NAIVE BAYES SOURCE CLASSIFIER FOR X-RAY SOURCES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Broos, Patrick S.; Getman, Konstantin V.; Townsley, Leisa K.
2011-05-01
The Chandra Carina Complex Project (CCCP) provides a sensitive X-ray survey of a nearby starburst region over >1 deg{sup 2} in extent. Thousands of faint X-ray sources are found, many concentrated into rich young stellar clusters. However, significant contamination from unrelated Galactic and extragalactic sources is present in the X-ray catalog. We describe the use of a naive Bayes classifier to assign membership probabilities to individual sources, based on source location, X-ray properties, and visual/infrared properties. For the particular membership decision rule adopted, 75% of CCCP sources are classified as members, 11% are classified as contaminants, and 14% remain unclassified.more » The resulting sample of stars likely to be Carina members is used in several other studies, which appear in this special issue devoted to the CCCP.« less
X-rays from superbubbles in the Large Magellanic Cloud
NASA Technical Reports Server (NTRS)
Chu, You-Hua; Mac Low, Mordecai-Marc
1990-01-01
Diffuse X-ray emission not associated with known supernova remnants (SNRs) are found in seven Large Magellanic Cloud H II complexes encompassing 10 OB associations: N44, N51D, N57A, N70, N154, N157 (30 Dor), and N158. Their X-ray luminosities range from 7 x 10 to the 34th ergs/s in N57A to 7 x 10 to the 36th ergs/s in 30 Dor. All, except 30 Dor, have simple ring morphologies, indicating shell structures. Modeling these as superbubbles, it is found that the X-ray luminosities expected from their hot interiors fall an order of magnitude below the observed values. SNRs close to the center of a superbubble add very little emission, but it is calculated that off-center SNRs hitting the ionized shell could explain the observed emission.
Installation of a second superconducting wiggler at SAGA-LS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaneyasu, T., E-mail: kaneyasu@saga-ls.jp; Takabayashi, Y.; Iwasaki, Y.
The SAGA Light Source is a synchrotron radiation facility consisting of a 255 MeV injector linac and a 1.4 GeV storage ring with a circumference of 75.6 m. A superconducting wiggler (SCW) with a peak magnetic field of 4 T has been routinely operating for generating hard X-rays since its installation in 2010. In light of this success, it was decided to install a second SCW as a part of the beamline construction by Sumitomo Electric Industries. To achieve this, machine modifications including installation of a new magnet power supply, improvement of the magnet control system, and replacement of themore » vacuum chambers in the storage ring were carried out. Along with beamline construction, installation and commissioning of the second SCW are scheduled to take place in 2015.« less
Quantitative Measurements of X-ray Intensity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haugh, M. J., Schneider, M.
This chapter describes the characterization of several X-ray sources and their use in calibrating different types of X-ray cameras at National Security Technologies, LLC (NSTec). The cameras are employed in experimental plasma studies at Lawrence Livermore National Laboratory (LLNL), including the National Ignition Facility (NIF). The sources provide X-rays in the energy range from several hundred eV to 110 keV. The key to this effort is measuring the X-ray beam intensity accurately and traceable to international standards. This is accomplished using photodiodes of several types that are calibrated using radioactive sources and a synchrotron source using methods and materials thatmore » are traceable to the U.S. National Institute of Standards and Technology (NIST). The accreditation procedures are described. The chapter begins with an introduction to the fundamental concepts of X-ray physics. The types of X-ray sources that are used for device calibration are described. The next section describes the photodiode types that are used for measuring X-ray intensity: power measuring photodiodes, energy dispersive photodiodes, and cameras comprising photodiodes as pixel elements. Following their description, the methods used to calibrate the primary detectors, the power measuring photodiodes and the energy dispersive photodiodes, as well as the method used to get traceability to international standards are described. The X-ray source beams can then be measured using the primary detectors. The final section then describes the use of the calibrated X-ray beams to calibrate X-ray cameras. Many of the references are web sites that provide databases, explanations of the data and how it was generated, and data calculations for specific cases. Several general reference books related to the major topics are included. Papers expanding some subjects are cited.« less
The Origin of Soft X-rays in DQ Herculis
NASA Technical Reports Server (NTRS)
White, Nicholas E. (Technical Monitor); Mukai, K.; Still, M.; Ringwald, F. A.
2002-01-01
DQ Herculis (Nova Herculis 1934) is a deeply eclipsing cataclysmic variable containing a magnetic white dwarf primary. The accretion disk is thought to block our line of sight to the white dwarf at all orbital phases due to its extreme inclination angle. Nevertheless, soft X-rays were detected from DQ Her with ROSAT PSPC. To probe the origin of these soft X-rays, we have performed Chandra ACIS observations. We confirm that DQ Her is an X-ray source. The bulk of the X-rays are from a point-like source and exhibit a shallow partial eclipse. We interpret this as due to scattering of the unseen central X-ray source, probably in an accretion disk wind. At the same time, we detect weak extended X-ray features around DQ Her, which we interpret as an X-ray emitting knot in the nova shell.
DeBlase, Catherine R; Finke, Ryan T; Porras, Jonathan A; Tanski, Joseph M; Nadeau, Jocelyn M
2014-05-16
Synthesis and characterization of two diastereomeric C-shaped molecules containing cofacial thiophene-substituted quinoxaline rings are described. A previously known bis-α-diketone was condensed with an excess of 4-bromo-1,2-diaminobenzene in the presence of zinc acetate to give a mixture of two C-shaped diastereomers with cofacial bromine-substituted quinoxaline rings. After chromatographic separation, thiophene rings were installed by a microwave-assisted Suzuki coupling reaction, resulting in highly emissive diastereomeric compounds that were studied by UV-vis, fluorescence, and NMR spectroscopy, as well as X-ray crystallography. The unique symmetry of each diastereomer was confirmed by NMR spectroscopy. NMR data indicated that the syn isomer has restricted rotation about the bond connecting the thiophene and quinoxaline rings, which was also observed in the solid state. The spectroscopic properties of the C-shaped diastereomers were compared to a model compound containing only a single thiophene-substituted quinoxaline ring. Ground state intramolecular π-π interactions in solution were detected by NMR and UV-vis spectroscopy. Red-shifted emission bands, band broadening, and large Stokes shifts were observed, which collectively suggest excited state π-π interactions that produce excimer-like emissions, as well as a remarkable positive emission solvatochromism, indicating charge-transfer character in the excited state.
Chandra Detection of Intracluster X-Ray sources in Virgo
NASA Astrophysics Data System (ADS)
Hou, Meicun; Li, Zhiyuan; Peng, Eric W.; Liu, Chengze
2017-09-01
We present a survey of X-ray point sources in the nearest and dynamically young galaxy cluster, Virgo, using archival Chandra observations that sample the vicinity of 80 early-type member galaxies. The X-ray source populations at the outskirts of these galaxies are of particular interest. We detect a total of 1046 point sources (excluding galactic nuclei) out to a projected galactocentric radius of ˜40 kpc and down to a limiting 0.5-8 keV luminosity of ˜ 2× {10}38 {erg} {{{s}}}-1. Based on the cumulative spatial and flux distributions of these sources, we statistically identify ˜120 excess sources that are not associated with the main stellar content of the individual galaxies, nor with the cosmic X-ray background. This excess is significant at a 3.5σ level, when Poisson error and cosmic variance are taken into account. On the other hand, no significant excess sources are found at the outskirts of a control sample of field galaxies, suggesting that at least some fraction of the excess sources around the Virgo galaxies are truly intracluster X-ray sources. Assisted with ground-based and HST optical imaging of Virgo, we discuss the origins of these intracluster X-ray sources, in terms of supernova-kicked low-mass X-ray binaries (LMXBs), globular clusters, LMXBs associated with the diffuse intracluster light, stripped nucleated dwarf galaxies and free-floating massive black holes.
Comparative study of X-ray emission from plasma focus relative to different preionization schemes
NASA Astrophysics Data System (ADS)
Ahmad, S.; Qayyum, A.; Hassan, M.; Zakaullah, M.
2017-07-01
A 2.7-kJ Mather-type plasma focus has been investigated for X-ray emission with preionization produced by an α-source, a β-source, and a shunt resistor. Time-resolved and time integrated measurements are carried out using a PIN-diode-based X-ray spectrometer and pinhole camera. The β-source (28Ni63) assisted preionization enhances the X-ray emission up to 25%, while preionization induced by depleted uranium (92U238) increases both Cu-Kα and total X-ray yield of about 100%. The preionization caused by the optimum shunt resistor enhances the Cu-Kα and total X-ray yield of about 53%. It is found that preionization also broadens the working pressure range for the high X-ray yield and improves the shot-to-shot reproducibility of the system. Pinhole images reveal that the X-ray emission from the anode tip is dominant owing to impact of electron bombardment, while the X-ray emission from hot spots is also visible.
Projection x-ray topography system at 1-BM x-ray optics test beamline at the advanced photon source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoupin, Stanislav, E-mail: sstoupin@aps.anl.gov; Liu, Zunping; Trakhtenberg, Emil
2016-07-27
Projection X-ray topography of single crystals is a classic technique for the evaluation of intrinsic crystal quality of large crystals. In this technique a crystal sample and an area detector (e.g., X-ray film) collecting intensity of a chosen crystallographic reflection are translated simultaneously across an X-ray beam collimated in the diffraction scattering plane (e.g., [1, 2]). A bending magnet beamline of a third-generation synchrotron source delivering x-ray beam with a large horizontal divergence, and therefore, a large horizontal beam size at a crystal sample position offers an opportunity to obtain X-ray topographs of large crystalline samples (e.g., 6-inch wafers) inmore » just a few exposures. Here we report projection X-ray topography system implemented recently at 1-BM beamline of the Advanced Photon Source. A selected X-ray topograph of a 6-inch wafer of 4H-SiC illustrates capabilities and limitations of the technique.« less
NASA Technical Reports Server (NTRS)
Henry, J. Patrick; Briel, U. G.
1991-01-01
X-ray emission from cluster galaxies as well as from 'dark objects' (i.e. not visible on the Palomar Observatory Sky Survey (POSS)) seen in the x-ray observation of A2256 with the imaging proportional counter on board ROSAT (x-ray astronomy satellite), is reported. This observation revealed significantly more sources in the field around the extended cluster emission than one would expect by chance. In a preliminary investigation, 14 sources were discovered at the limiting flux for this exposure, whereas about 7 sources would have been expected by chance. At least two of those sources are coincident with cluster member galaxies, having x-ray luminosities of approximately 10(exp +42) erg/s in the ROSAT energy band from 0.1 to 2.4 keV, but at least four more are from 'dark' objects. The similarity of these objects to those in A1367 suggests the existence of a new class of x-ray sources in clusters.
The black hole candidate MAXI J1659-152 in and towards quiescence in X-ray and radio
NASA Astrophysics Data System (ADS)
Jonker, P. G.; Miller-Jones, J. C. A.; Homan, J.; Tomsick, J.; Fender, R. P.; Kaaret, P.; Markoff, S.; Gallo, E.
2012-07-01
In this paper we report on Expanded Very Large Array radio and Chandra and Swift X-ray observations of the outburst decay of the transient black hole candidate MAXI J1659-152 in 2011. We discuss the distance to the source taking the high inclination into account and conclude that the source distance is probably 6 ± 2 kpc. The lowest observed flux corresponds to a luminosity of ? erg s-1. This, together with the orbital period of 2.4 h reported in the literature, suggests that the quiescent X-ray luminosity is higher than predicted on the basis of the orbital period-quiescent X-ray luminosity relationship. It is more in line with that expected for a neutron star, although the outburst spectral and timing properties reported in the literature strongly suggest that MAXI J1659-152 harbours a black hole. This conclusion is subject to confirmation of the lowest observed flux as the quiescent flux. The relation between the accretion and ejection mechanisms can be studied using the observed correlation between the radio and X-ray luminosities as these evolve over an outburst. We determine the behaviour of MAXI J1659-152 in the radio-X-ray diagram at low X-ray luminosities using the observations reported in this paper and at high X-ray luminosities using values reported in the literature. At high X-ray luminosities, the source lies closer to the sources that follow a correlation index steeper than 0.6-0.7. However, when compared to other sources that follow a steeper correlation index, the X-ray luminosity in MAXI J1659-152 is also lower. The latter can potentially be explained by the high inclination of MAXI J1659-152 if the X-ray emission comes from close to the source and the radio emission is originating in a more extended region. However, it is probable that the source was not in the canonical low-hard state during these radio observations and this may affect the behaviour of the source as well. At intermediate X-ray luminosities, the source makes the transition from the radio underluminous sources in the direction of the relation traced by the 'standard' correlation similar to what has been reported for H 1743-322 in the literature. However, MAXI J1659-152 remains underluminous with respect to this 'standard' correlation.
Optics for coherent X-ray applications.
Yabashi, Makina; Tono, Kensuke; Mimura, Hidekazu; Matsuyama, Satoshi; Yamauchi, Kazuto; Tanaka, Takashi; Tanaka, Hitoshi; Tamasaku, Kenji; Ohashi, Haruhiko; Goto, Shunji; Ishikawa, Tetsuya
2014-09-01
Developments of X-ray optics for full utilization of diffraction-limited storage rings (DLSRs) are presented. The expected performance of DLSRs is introduced using the design parameters of SPring-8 II. To develop optical elements applicable to manipulation of coherent X-rays, advanced technologies on precise processing and metrology were invented. With propagation-based coherent X-rays at the 1 km beamline of SPring-8, a beryllium window fabricated with the physical-vapour-deposition method was found to have ideal speckle-free properties. The elastic emission machining method was utilized for developing reflective mirrors without distortion of the wavefronts. The method was further applied to production of diffraction-limited focusing mirrors generating the smallest spot size in the sub-10 nm regime. To enable production of ultra-intense nanobeams at DLSRs, a low-vibration cooling system for a high-heat-load monochromator and advanced diagnostic systems to characterize X-ray beam properties precisely were developed. Finally, new experimental schemes for combinative nano-analysis and spectroscopy realised with novel X-ray optics are discussed.
NASA Astrophysics Data System (ADS)
Alexander, J. P.; Chatterjee, A.; Conolly, C.; Edwards, E.; Ehrlichman, M. P.; Fontes, E.; Heltsley, B. K.; Hopkins, W.; Lyndaker, A.; Peterson, D. P.; Rider, N. T.; Rubin, D. L.; Savino, J.; Seeley, R.; Shanks, J.; Flanagan, J. W.
2014-06-01
We describe the construction and operation of an X-ray beam size monitor (xBSM), a device measuring e+ and e- beam sizes in the CESR-TA storage ring using synchrotron radiation. The device can measure vertical beam sizes of 10-100μm on a turn-by-turn, bunch-by-bunch basis at e± beam energies of ~2GeV. At such beam energies the xBSM images X-rays of ɛ≈1-10keV (λ≈0.1-1nm) that emerge from a hard-bend magnet through a single- or multiple-slit (coded aperture) optical element onto an array of 32 InGaAs photodiodes with 50μm pitch. Beamlines and detectors are entirely in-vacuum, enabling single-shot beam size measurement down to below 0.1 mA (2.5×109 particles) per bunch and inter-bunch spacing of as little as 4 ns. At Eb=2.1GeV, systematic precision of ~1μm is achieved for a beam size of ~12μm; this is expected to scale as ∝1/σb and ∝1/Eb. Achieving this precision requires comprehensive alignment and calibration of the detector, optical elements, and X-ray beam. Data from the xBSM have been used to extract characteristics of beam oscillations on long and short timescales, and to make detailed studies of low-emittance tuning, intra-beam scattering, electron cloud effects, and multi-bunch instabilities.
Bioenvironmental Engineer’s Guide to Ionizing Radiation
2005-10-01
mercury x-rays 186 (4 % ) - y Ra -226 radon x-rays Luminous Products, Neutron (tl/2: 1600 y) Alpha photons from daughters: Sources (w/ Be ) Rn-222, Po...Radioisotope Thermoelectric (t1,2: 88 y) Generators Pu-239 Alpha uranium x-rays Nuclear Weapons, Neutron (t1 /2: 2.4 x 104 y) Sources (w/ Be ...Calibration Am-241 .60 (36 %) - Static Eliminators, Chemical (h2: 432 y) Alpha n Agent Detectors, Neutron neptunium x-rays Sources (w/ Be ) 11 October 2005
X-Ray Measurements Of A Thermo Scientific P385 DD Neutron Generator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wharton, C. J.; Seabury, E. H.; Chichester, D. L.
2011-06-01
Idaho National Laboratory is experimenting with electrical neutron generators, as potential replacements for californium-252 radioisotopic neutron sources in its PINS prompt gamma-ray neutron activation analysis (PGNAA) system for the identification of military chemical warfare agents and explosives. In addition to neutron output, we have recently measured the x-ray output of the Thermo Scientific P385 deuterium-deuterium neutron generator. X rays are a normal byproduct from neutron generators, but depending on their intensity and energy, x rays can interfere with gamma rays from the object under test, increase gamma-spectrometer dead time, and reduce PGNAA system throughput. The P385 x-ray energy spectrum wasmore » measured with a high-purity germanium (HPGe) detector, and a broad peak is evident at about 70 keV. To identify the source of the x rays within the neutron generator assembly, it was scanned by collimated scintillation detectors along its long axis. At the strongest x-ray emission points, the generator also was rotated 60 deg. between measurements. The scans show the primary source of x-ray emission from the P385 neutron generator is an area 60 mm from the neutron production target, in the vicinity of the ion source. Rotation of the neutron generator did not significantly alter the x-ray count rate, and its x-ray emission appears to be axially symmetric. A thin lead shield, 3.2 mm (1/8 inch) thick, reduced the 70-keV generator x rays to negligible levels.« less
X-Ray Measurements Of A Thermo Scientific P385 DD Neutron Generator
NASA Astrophysics Data System (ADS)
Wharton, C. J.; Seabury, E. H.; Chichester, D. L.; Caffrey, A. J.; Simpson, J.; Lemchak, M.
2011-06-01
Idaho National Laboratory is experimenting with electrical neutron generators, as potential replacements for californium-252 radioisotopic neutron sources in its PINS prompt gamma-ray neutron activation analysis (PGNAA) system for the identification of military chemical warfare agents and explosives. In addition to neutron output, we have recently measured the x-ray output of the Thermo Scientific P385 deuterium-deuterium neutron generator. X rays are a normal byproduct from neutron generators, but depending on their intensity and energy, x rays can interfere with gamma rays from the object under test, increase gamma-spectrometer dead time, and reduce PGNAA system throughput. The P385 x-ray energy spectrum was measured with a high-purity germanium (HPGe) detector, and a broad peak is evident at about 70 keV. To identify the source of the x rays within the neutron generator assembly, it was scanned by collimated scintillation detectors along its long axis. At the strongest x-ray emission points, the generator also was rotated 60° between measurements. The scans show the primary source of x-ray emission from the P385 neutron generator is an area 60 mm from the neutron production target, in the vicinity of the ion source. Rotation of the neutron generator did not significantly alter the x-ray count rate, and its x-ray emission appears to be axially symmetric. A thin lead shield, 3.2 mm (1/8 inch) thick, reduced the 70-keV generator x rays to negligible levels.
Differences in responses to X-ray exposure between osteoclast and osteoblast cells
Zhang, Jian; Wang, Ziyang; Wu, Anqing; Nie, Jing; Pei, Hailong; Hu, Wentao; Wang, Bing; Shang, Peng; Li, Bingyan
2017-01-01
Abstract Radiation-induced bone loss is a potential health concern for cancer patients undergoing radiotherapy. Enhanced bone resorption by osteoclasts and decreased bone formation by osteoblasts were thought to be the main reasons. In this study, we showed that both pre-differentiating and differentiating osteoclasts were relatively sensitive to X-rays compared with osteoblasts. X-rays decreased cell viability to a greater degree in RAW264.7 cells and in differentiating cells than than in osteoblastic MC3T3-E1 cells. X-rays at up to 8 Gy had little effects on osteoblast mineralization. In contrast, X-rays at 1 Gy induced enhanced osteoclastogenesis by enhanced cell fusion, but had no effects on bone resorption. A higher dose of X-rays at 8 Gy, however, had an inhibitory effect on bone resorption. In addition, actin ring formation was disrupted by 8 Gy of X-rays and reorganized into clusters. An increased activity of Caspase 3 was found after X-ray exposure. Actin disorganization and increased apoptosis may be the potential effects of X-rays at high doses, by inhibiting osteoclast differentiation. Taken together, our data indicate high radiosensitivity of osteoclasts. X-ray irradiation at relatively low doses can activate osteoclastogenesis, but not osteogenic differentiation. The radiosensitive osteoclasts are the potentially responsive cells for X-ray-induced bone loss. PMID:28541506
Siewert, F.; Buchheim, J.; Zeschke, T.; Störmer, M.; Falkenberg, G.; Sankari, R.
2014-01-01
To fully exploit the ultimate source properties of the next-generation light sources, such as free-electron lasers (FELs) and diffraction-limited storage rings (DLSRs), the quality requirements for gratings and reflective synchrotron optics, especially mirrors, have significantly increased. These coherence-preserving optical components for high-brightness sources will feature nanoscopic shape accuracies over macroscopic length scales up to 1000 mm. To enable high efficiency in terms of photon flux, such optics will be coated with application-tailored single or multilayer coatings. Advanced thin-film fabrication of today enables the synthesis of layers on the sub-nanometre precision level over a deposition length of up to 1500 mm. Specifically dedicated metrology instrumentation of comparable accuracy has been developed to characterize such optical elements. Second-generation slope-measuring profilers like the nanometre optical component measuring machine (NOM) at the BESSY-II Optics laboratory allow the inspection of up to 1500 mm-long reflective optical components with an accuracy better than 50 nrad r.m.s. Besides measuring the shape on top of the coated mirror, it is of particular interest to characterize the internal material properties of the mirror coating, which is the domain of X-rays. Layer thickness, density and interface roughness of single and multilayer coatings are investigated by means of X-ray reflectometry. In this publication recent achievements in the field of slope measuring metrology are shown and the characterization of different types of mirror coating demonstrated. Furthermore, upcoming challenges to the inspection of ultra-precise optical components designed to be used in future FEL and DLSR beamlines are discussed. PMID:25177985
Technological Challenges to X-Ray FELs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nuhn, Heinz-Dieter
1999-09-16
There is strong interest in the development of x-ray free electron lasers (x-ray FELs). The interest is driven by the scientific opportunities provided by intense, coherent x-rays. An x-ray FEL has all the characteristics of a fourth-generation source: brightness several orders of magnitude greater than presently achieved in third-generation sources, full transverse coherence, and sub-picosecond long pulses. The SLAC and DESY laboratories have presented detailed design studies for X-Ray FEL user facilities around the 0.1 nm wavelength-regime (LCLS at SLAC, TESLA X-Ray FEL at DESY). Both laboratories are engaged in proof-of-principle experiments are longer wavelengths (TTF FEL Phase I atmore » 71 nm, VISA at 600-800 nm) with results expected in 1999. The technologies needed to achieve the proposed performances are those of bright electron sources, of acceleration systems capable of preserving the brightness of the source, and of undulators capable of meeting the magnetic and mechanical tolerances that are required for operation in the SASE mode. This paper discusses the technological challenges presented by the X-Ray FEL projects.« less
NASA Astrophysics Data System (ADS)
Luo, S. N.; Jensen, B. J.; Hooks, D. E.; Fezzaa, K.; Ramos, K. J.; Yeager, J. D.; Kwiatkowski, K.; Shimada, T.
2012-07-01
The highly transient nature of shock loading and pronounced microstructure effects on dynamic materials response call for in situ, temporally and spatially resolved, x-ray-based diagnostics. Third-generation synchrotron x-ray sources are advantageous for x-ray phase contrast imaging (PCI) and diffraction under dynamic loading, due to their high photon fluxes, high coherency, and high pulse repetition rates. The feasibility of bulk-scale gas gun shock experiments with dynamic x-ray PCI and diffraction measurements was investigated at the beamline 32ID-B of the Advanced Photon Source. The x-ray beam characteristics, experimental setup, x-ray diagnostics, and static and dynamic test results are described. We demonstrate ultrafast, multiframe, single-pulse PCI measurements with unprecedented temporal (<100 ps) and spatial (˜2 μm) resolutions for bulk-scale shock experiments, as well as single-pulse dynamic Laue diffraction. The results not only substantiate the potential of synchrotron-based experiments for addressing a variety of shock physics problems, but also allow us to identify the technical challenges related to image detection, x-ray source, and dynamic loading.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Courtois, C.; Compant La Fontaine, A.; Bazzoli, S.
2013-08-15
Results of an experiment to characterise a MeV Bremsstrahlung x-ray emission created by a short (<10 ps) pulse, high intensity (1.4 × 10{sup 19} W/cm{sup 2}) laser are presented. X-ray emission is characterized using several diagnostics; nuclear activation measurements, a calibrated hard x-ray spectrometer, and dosimeters. Results from the reconstructed x-ray energy spectra are consistent with numerical simulations using the PIC and Monte Carlo codes between 0.3 and 30 MeV. The intense Bremsstrahlung x-ray source is used to radiograph an image quality indicator (IQI) heavily filtered with thick tungsten absorbers. Observations suggest that internal features of the IQI can bemore » resolved up to an external areal density of 85 g/cm{sup 2}. The x-ray source size, inferred by the radiography of a thick resolution grid, is estimated to be approximately 400 μm (full width half maximum of the x-ray source Point Spread Function)« less
High power, high beam quality regenerative amplifier
Hackel, L.A.; Dane, C.B.
1993-08-24
A regenerative laser amplifier system generates high peak power and high energy per pulse output beams enabling generation of X-rays used in X-ray lithography for manufacturing integrated circuits. The laser amplifier includes a ring shaped optical path with a limited number of components including a polarizer, a passive 90 degree phase rotator, a plurality of mirrors, a relay telescope, and a gain medium, the components being placed close to the image plane of the relay telescope to reduce diffraction or phase perturbations in order to limit high peak intensity spiking. In the ring, the beam makes two passes through the gain medium for each transit of the optical path to increase the amplifier gain to loss ratio. A beam input into the ring makes two passes around the ring, is diverted into an SBS phase conjugator and proceeds out of the SBS phase conjugator back through the ring in an equal but opposite direction for two passes, further reducing phase perturbations. A master oscillator inputs the beam through an isolation cell (Faraday or Pockels) which transmits the beam into the ring without polarization rotation. The isolation cell rotates polarization only in beams proceeding out of the ring to direct the beams out of the amplifier. The diffraction limited quality of the input beam is preserved in the amplifier so that a high power output beam having nearly the same diffraction limited quality is produced.
High power, high beam quality regenerative amplifier
Hackel, Lloyd A.; Dane, Clifford B.
1993-01-01
A regenerative laser amplifier system generates high peak power and high energy per pulse output beams enabling generation of X-rays used in X-ray lithography for manufacturing integrated circuits. The laser amplifier includes a ring shaped optical path with a limited number of components including a polarizer, a passive 90 degree phase rotator, a plurality of mirrors, a relay telescope, and a gain medium, the components being placed close to the image plane of the relay telescope to reduce diffraction or phase perturbations in order to limit high peak intensity spiking. In the ring, the beam makes two passes through the gain medium for each transit of the optical path to increase the amplifier gain to loss ratio. A beam input into the ring makes two passes around the ring, is diverted into an SBS phase conjugator and proceeds out of the SBS phase conjugator back through the ring in an equal but opposite direction for two passes, further reducing phase perturbations. A master oscillator inputs the beam through an isolation cell (Faraday or Pockels) which transmits the beam into the ring without polarization rotation. The isolation cell rotates polarization only in beams proceeding out of the ring to direct the beams out of the amplifier. The diffraction limited quality of the input beam is preserved in the amplifier so that a high power output beam having nearly the same diffraction limited quality is produced.
Thermal Properties of A Solar Coronal Cavity Observed with the X-Ray Telescope on Hinode
NASA Technical Reports Server (NTRS)
Reeves, Katherine K.; Gibson, Sarah E.; Kucera, Theresa A.; Hudson, Hugh S.; Kano, Ryouhei
2011-01-01
Coronal cavities are voids in coronal emission often observed above high latitude filament channels. Sometimes, these cavities have areas of bright X-ray emission in their centers. In this study, we use data from the X-ray Telescope (XRT) on the Hinode satellite to examine the thermal emission properties of a cavity observed during July 2008 that contains bright X-ray emission in its center. Using ratios of XRT filters, we find evidence for elevated temperatures in the cavity center. The area of elevated temperature evolves from a ring-shaped structure at the beginning of the observation, to an elongated structure two days later, finally appearing as a compact round source four days after the initial observation. We use a morphological model to fit the cavity emission, and find that a uniform structure running through the cavity does not fit the observations well. Instead, the observations are reproduced by modeling several short cylindrical cavity "cores" with different parameters on different days. These changing core parameters may be due to some observed activity heating different parts of the cavity core at different times. We find that core temperatures of 1.75 MK, 1.7 MK and 2.0 MK (for July 19, July 21 and July 23, respectively) in the model lead to structures that are consistent with the data, and that line-of-sight effects serve to lower the effective temperature derived from the filter ratio.
The X-Ray Globular Cluster Population in NGC 1399
NASA Technical Reports Server (NTRS)
Angelini, Lorella; Loewenstein, Michael; Mushotzky, Richard F.; White, Nicholas E. (Technical Monitor)
2001-01-01
We report on X-ray sources detected in the Chandra images of the elliptical galaxy NGC 1399 and identified with globular clusters (GCs). The 8'x 8' Chandra image shows that a large fraction of the 2-10 keV X-ray emission is resolved into point sources, with a luminosity threshold of 5 x 10 (exp 37) ergs s-1. These sources are most likely Low Mass X-ray Binaries (LMXBs). More than 70% of the X-ray sources, in a region imaged by Hubble Space Telescope (HST), are located within GCs. Many of these sources have super-Eddington luminosity (for an accreting neutron star) and their average luminosity is higher than the remaining sources. This association suggests that, in giant elliptical galaxies, luminous X-ray binaries preferentially form in GCs. The spectral properties of the GC and non-GC sources are in most cases similar to those of LMXBs in our galaxy. Two of the brightest sources, one of which is in GC, have a much softer spectra as seen in the high state black hole. The "apparent" super-Eddington luminosity in many cases may be due to multiple LMXB systems within individual GC, but with some of the most extreme luminous systems containing massive black holes.
The surface of 1-euro coins studied by X-ray photoelectron spectroscopy
NASA Astrophysics Data System (ADS)
Gou, F.; Gleeson, M. A.; Villette, J.; Kleyn, S. E. F.; Kleyn, A. W.
2004-03-01
The two alloy surfaces (pill and ring) that are present on 1-euro coins have been studied by X-ray photoelectron spectroscopy (XPS). Comparison is made between coins from general circulation and coin surfaces that have been subjected to a variety of cleaning and oxidation treatments. The concentrations and possible oxidation states of the metals (nickel, copper and zinc) at the surface were derived from analysis of the 2p 3/2 core levels. The surface atomic ratios measured for the pill and the ring parts of the euro coins were compared to the official bulk ratios. This study shows a clear nickel enrichment of both pill and ring surfaces. Nickel at surface seems to be present mainly in hydroxide form although the chloride form cannot be excluded. A small concentration of zinc was present on the surface of the pill, even though it is not present in the bulk alloy. Evidence of both nickel and zinc surface enrichment is observed for the ring. No surface enrichment is observed for the atomically clean or oxidized alloy surfaces over a 60-h time scale.
Trebes, James E.; Bell, Perry M.; Robinson, Ronald B.
2000-01-01
A miniature x-ray source utilizing a hot filament cathode. The source has a millimeter scale size and is capable of producing broad spectrum x-ray emission over a wide range of x-ray energies. The miniature source consists of a compact vacuum tube assembly containing the hot filament cathode, an anode, a high voltage feedthru for delivering high voltage to the cathode, a getter for maintaining high vacuum, a connector for initial vacuum pump down and crimp-off, and a high voltage connection for attaching a compact high voltage cable to the high voltage feedthru. At least a portion of the vacuum tube wall is fabricated from highly x-ray transparent materials, such as sapphire, diamond, or boron nitride.
600 eV falcon-linac thomson x-ray source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crane, J K; LeSage, G P; Ditmire, T
2000-12-15
The advent of 3rd generation light sources such as the Advanced Light Source (ALS) at LBL, and the Advanced Photon Source at Argonne, have produced a revolution in x-ray probing of dense matter during the past decade. These machines use electron-synchrotrons in conjunction with undulator stages to produce 100 psec x-ray pulses with photon energies of several kiloelectronvolts (keV). The applications for x-ray probing of matter are numerous and diverse with experiments in medicine and biology, semiconductors and materials science, and plasma and solid state physics. In spite of the success of the 3rd generation light sources there is strongmore » motivation to push the capabilities of x-ray probing into new realms, requiring shorter pulses, higher brightness and harder x-rays. A 4th generation light source, the Linac Coherent Light Source (LCLS), is being considered at the Stanford Linear Accelerator [1]. The LCLS will produce multi-kilovolt x-rays of subpicosecond duration that are 10 orders of magnitude brighter than today's 3rd generation light sources.[1] Although the LCLS will provide unprecedented capability for performing time-resolved x-ray probing of ultrafast phenomena at solid densities, this machine will not be completed for many years. In the meantime there is a serious need for an ultrashort-pulse, high-brightness, hard x-ray source that is capable of probing deep into high-Z solid materials to measure dynamic effects that occur on picosecond time scales. Such an instrument would be ideal for probing the effects of shock propagation in solids using Bragg and Laue diffraction. These techniques can be used to look at phase transitions, melting and recrystallization, and the propagation of defects and dislocations well below the surface in solid materials. [2] These types of dynamic phenomena undermine the mechanical properties of metals and are of general interest in solid state physics, materials science, metallurgy, and have specific relevance to stockpile stewardship. Another x-ray diagnostic technique, extended x-ray absorption fine structure (EXAFS) spectroscopy, can be used to measure small-scale structural changes to understand the underlying atomic physics associated with the formation of defects. [2]« less
Medical X-ray sources now and for the future
NASA Astrophysics Data System (ADS)
Behling, Rolf
2017-11-01
This paper focuses on the use of X-rays in their largest field of application: medical diagnostic imaging and image-guided therapy. For this purpose, vacuum electronics in the form of X-ray tubes as the source of bremsstrahlung (braking radiation) have been the number one choice for X-ray production in the range of photon energies between about 16 keV for mammography and 150 keV for general radiography. Soft tissue on one end and bony structures on the other are sufficiently transparent and the contrast delivered by difference of absorption is sufficiently high for this spectral range. The dominance of X-ray tubes holds even more than 120 years after Conrad Roentgen's discovery of the bremsstrahlung mechanism. What are the specifics of current X-ray tubes and their medical diagnostic applications? How may the next available technology at or beyond the horizon look like? Can we hope for substantial game changers? Will flat panel sources, less expensive X-ray "LED's", compact X-ray Lasers, compact synchrotrons or equivalent X-ray sources appear in medical diagnostic imaging soon? After discussing the various modalities of imaging systems and their sources of radiation, this overview will briefly touch on the physics of bremsstrahlung generation, key characteristics of X-ray tubes, and material boundary conditions, which restrict performance. It will discuss the deficits of the bremsstrahlung technology and try to sketch future alternatives and their prospects of implementation in medical diagnostics.
NASA Astrophysics Data System (ADS)
Tatchyn, Roman; Csonka, Paul
1986-01-01
The availability of undulators with submillimeter periods will profoundly affect the future development of soft x-ray sources and their attendant instrumentation. Outputs comparable to those of present-day conventional undulators, obtainable with much lower energy storage rings, is only one promising aspect of such devices. This paper critically examines some of the future prospects of such devices and describes the design and practical construction of a 1" long prototype consisting of 35 periods. A proposed experiment to test this device on a linac is described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giacomini, Gabriele; Huber, Alan; Redus, Robert
We report that when an uncollimated radioactive X-ray source illuminates a silicon PIN sensor, some ionizing events are generated in the nonimplanted gap between the active area of the sensor and the guard rings (GRs). Carriers can be collected by floating electrodes, i.e., electron accumulation layers at the silicon/oxide interface, and floating GRs. The crosstalk signals generated by these events create spurious peaks, replicas of the main peaks at either lower amplitude or of opposite polarity. Lastly, we explain this phenomenon as crosstalk caused by charge collected on these floating electrodes, which can be analyzed by means of an extensionmore » of Ramo theorem.« less
THE IDENTIFICATION OF THE X-RAY COUNTERPART TO PSR J2021+4026
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weisskopf, Martin C.; Elsner, Ronald F.; O'Dell, Stephen L.
2011-12-10
We report the probable identification of the X-ray counterpart to the {gamma}-ray pulsar PSR J2021+4026 using imaging with the Chandra X-ray Observatory Advanced CCD Imaging Spectrometer and timing analysis with the Fermi satellite. Given the statistical and systematic errors, the positions determined by both satellites are coincident. The X-ray source position is R.A. 20{sup h}21{sup m}30.{sup s}733, decl. +40 Degree-Sign 26'46.''04 (J2000) with an estimated uncertainty of 1.''3 combined statistical and systematic error. Moreover, both the X-ray to {gamma}-ray and the X-ray to optical flux ratios are sensible assuming a neutron star origin for the X-ray flux. The X-ray sourcemore » has no cataloged infrared-to-visible counterpart and, through new observations, we set upper limits to its optical emission of i' > 23.0 mag and r' > 25.2 mag. The source exhibits an X-ray spectrum with most likely both a power law and a thermal component. We also report on the X-ray and visible light properties of the 43 other sources detected in our Chandra observation.« less
Soft X-ray production by photon scattering in pulsating binary neutron star sources
NASA Technical Reports Server (NTRS)
Bussard, R. W.; Meszaros, P.; Alexander, S.
1985-01-01
A new mechanism is proposed as a source of soft (less than 1 keV) radiation in binary pulsating X-ray sources, in the form of photon scattering which leaves the electron in an excited Landau level. In a plasma with parameters typical of such sources, the low-energy X-ray emissivity of this mechanism far exceeds that of bremsstrahlung. This copious source of soft photons is quite adequate to provide the seed photons needed to explain the power-law hard X-ray spectrum by inverse Comptonization on the hot electrons at the base of the accretion column.
An extended superhot solar flare X-ray source
NASA Technical Reports Server (NTRS)
Hudson, H. S.; Ohki, K. I.; Tsuneta, S.
1985-01-01
A superhot hard X-ray source in a solar flare occulted by the solar limb was identified. Its hard X-ray image was found to show great horizontal extent but little vertical extent. An H alpha brightening at the same limb position about an hour later suggests a multi-component loop prominence system, so that it appears that a superhot source can evolve in the same manner as a normal solar soft X-ray source. The assignment of plausiable values to physical parameters in the source suggests (from the simplest form of classical thermal-conduction theory) that either new physics will be required to suppress conduction, or else that gradual energy release well after the impulsive phase of the flare must occur. In this respect too, the superhot source appears to resemble ordinary soft X-ray sources, except of course that its temperature is higher.
NASA Technical Reports Server (NTRS)
Henry, J. P.; Briel, U. G.
1991-01-01
The X-ray observation of A2256 with the imaging proportional counter on board the X-ray observatory Rosat revealed significantly more sources in the field around the extended cluster emission than expected by chance. In a preliminary investigation, 14 sources were discovered at the limiting flux for this exposure whereas about 7 sources would have been expected by chance. At least two of those sources are coincident with cluster-member galaxies, having X-ray luminosities of approximately 10 to the 42nd erg/s in the Rosat energy band from 0.1 to 2.4 keV, but at least four more are from 'dark' objects. The similarity of these objects to those in A1367 suggests the existence of a new class of X-ray sources in clusters.
A Deep Chandra ACIS Survey of M83
NASA Astrophysics Data System (ADS)
Long, Knox S.; Kuntz, Kip D.; Blair, William P.; Godfrey, Leith; Plucinsky, Paul P.; Soria, Roberto; Stockdale, Christopher; Winkler, P. Frank
2014-06-01
We have obtained a series of deep X-ray images of the nearby galaxy M83 using Chandra, with a total exposure of 729 ks. Combining the new data with earlier archival observations totaling 61 ks, we find 378 point sources within the D25 contour of the galaxy. We find 80 more sources, mostly background active galactic nuclei (AGNs), outside of the D25 contour. Of the X-ray sources, 47 have been detected in a new radio survey of M83 obtained using the Australia Telescope Compact Array. Of the X-ray sources, at least 87 seem likely to be supernova remnants (SNRs), based on a combination of their properties in X-rays and at other wavelengths. We attempt to classify the point source population of M83 through a combination of spectral and temporal analysis. As part of this effort, we carry out an initial spectral analysis of the 29 brightest X-ray sources. The soft X-ray sources in the disk, many of which are SNRs, are associated with the spiral arms, while the harder X-ray sources, mostly X-ray binaries (XRBs), do not appear to be. After eliminating AGNs, foreground stars, and identified SNRs from the sample, we construct the cumulative luminosity function (CLF) of XRBs brighter than 8 × 1035 erg s-1. Despite M83's relatively high star formation rate, the CLF indicates that most of the XRBs in the disk are low mass XRBs. Based on observations made with NASA's Chandra X-Ray Observatory. NASA's Chandra Observatory is operated by Smithsonian Astrophysical Observatory under contract NAS83060 and the data were obtained through program GO1-12115.
Near-infrared counterparts to the Galactic Bulge Survey X-ray source population
NASA Astrophysics Data System (ADS)
Greiss, S.; Steeghs, D.; Jonker, P. G.; Torres, M. A. P.; Maccarone, T. J.; Hynes, R. I.; Britt, C. T.; Nelemans, G.; Gänsicke, B. T.
2014-03-01
We report on the near-infrared matches, drawn from three surveys, to the 1640 unique X-ray sources detected by Chandra in the Galactic Bulge Survey (GBS). This survey targets faint X-ray sources in the bulge, with a particular focus on accreting compact objects. We present all viable counterpart candidates and associate a false alarm probability (FAP) to each near-infrared match in order to identify the most likely counterparts. The FAP takes into account a statistical study involving a chance alignment test, as well as considering the positional accuracy of the individual X-ray sources. We find that although the star density in the bulge is very high, ˜90 per cent of our sources have an FAP <10 per cent, indicating that for most X-ray sources, viable near-infrared counterparts candidates can be identified. In addition to the FAP, we provide positional and photometric information for candidate counterparts to ˜95 per cent of the GBS X-ray sources. This information in combination with optical photometry, spectroscopy and variability constraints will be crucial to characterize and classify secure counterparts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shayduk, Roman; Vonk, Vedran; Strempfer, Jörg
We report on the quantitative determination of the transient surface temperature of Pt(110) upon nanosecond laser pulse heating. We find excellent agreement between heat transport theory and the experimentally determined transient surface temperature as obtained from time-resolved X-ray diffraction on timescales from hundred nanoseconds to milliseconds. Exact knowledge of the surface temperature's temporal evolution after laser excitation is crucial for future pump-probe experiments at synchrotron storage rings and X-ray free electron lasers.
Diamond-anvil high-pressure cell with improved X-ray collimation system
Schiferl, David; Olinger, Barton W.; Livingston, Robert W.
1986-01-01
An adjustable X-ray collimation system for a diamond-anvil high-pressure cell of the type including a cooperable piston and cylinder and a pair of opposing diamonds located between the head of the piston and the head of the cylinder. The X-ray collimation system includes a tubular insert which contains an X-ray collimator. The insert is engageable in the bore of the piston. The collimator is mounted within the insert by means of an elastomeric O-ring at the end closest the opposed diamonds, and by means of a set of adjustable set screws at the opposite end. By adjustment of the set screws the collimator can be pivoted about the O-ring and brought into alignment with the opposed diamonds and the sample contained therein. In the preferred embodiment there is further provided a set of plugs which are insertable in the bore of the collimator. The plugs have bores of different diameters. By successively inserting plugs of progressively smaller bore diameters and adjusting the alignment of the collimator with each plug, the collimator can be quickly brought into accurate alignment with the diamonds. The collimation system allows alignment of the collimator either before or after the cell has been loaded and pressurized.
NASA Astrophysics Data System (ADS)
Troja, E.; Bocchino, F.; Miceli, M.; Reale, F.
2008-07-01
Aims: We investigate the spatial distribution of the physical and chemical properties of the hot X-ray emitting plasma of the supernova remnant IC 443, to derive important constraints on its ionization stage, on the progenitor supernova explosion, on the age of the remnant, and its physical association with a close pulsar wind nebula. Methods: We present XMM-Newton images of IC 443, a median photon energy map, silicon and sulfur equivalent width maps, and a spatially resolved spectral analysis of a set of homogeneous regions. Results: The hard X-ray thermal emission (1.4-5.0 keV) of IC 443 displays a centrally-peaked morphology, its brightness peaks being associated with hot (kT > 1 keV) X-ray emitting plasma. A ring-shaped structure, characterized by high values of equivalent widths and median photon energy, encloses the PWN. Its hard X-ray emission is spectrally characterized by a collisional ionization equilibrium model, and strong emission lines of Mg, Si, and S, requiring oversolar metal abundances. Dynamically, the location of the ejecta ring suggests an SNR age of ~4000 yr. The presence of overionized plasma in the inner regions of IC 443, addressed in previous works, is much less evident in our observations.
Diamond-anvil high-pressure cell with improved x-ray collimation system
Schiferl, D.; Olinger, B.W.; Livingston, R.W.
1984-03-30
An adjustable x-ray collimation system for a diamond-anvil high-pressure cell of the type including a cooperable piston and cylinder and a pair of opposing diamonds located between the head of the piston and the head of the cylinder. The x-ray collimation system includes a tubular insert which contains an x-ray collimator. The insert is engageable in the bore of the piston. The collimator is mounted within the insert by means of an elastomeric o-ring at the end closest the opposed diamonds, and by means of a set of adjustable set screws at the opposite end. By adjustment of the set screws the collimator can be pivoted about the o-ring and brought into alignment with the opposed diamonds and the sample contained therein. In the preferred embodiment there is further provided a set of plugs which are insertable in the bore of the collimator. The plugs have bores of different diameters. By successively inserting plugs of progressively smaller bore diameters and adjusting the alignment of the collimator with each plug, the collimator can be quickly brought into accurate alignment with the diamonds. The collimation system allows alignment of the collimator either before or after the cell has been loaded and pressurized.
NASA Astrophysics Data System (ADS)
Flandes, Alberto; Spilker, Linda; Déau, Estelle
2016-10-01
Saturn's rings are a complex collection of icy particles with diameters from 1 m to few meters. Their natural window of study is the infrared because its temperatures are between 40K and 120K. The main driver of the temperature of these rings is the direct solar radiation as well as the solar radiation reflected off Saturn's atmosphere. The second most important energy source is the infrared radiation coming from Saturn itself. The study of the variations of temperatures of the rings, or, in general, their thermal behavior, may provide important information on their composition, their structure and their dynamics. Models that consider these and other energy sources are able to explain, to a first approximation, the observed temperature variations of the rings. The challenge for these models is to accurately describe the variation of illumination on the rings, i. e., how the illuminated and non-illuminated regions of the ring particles change at the different observation geometries. This shadowing mainly depends on the optical depth, as well as the general structure of the rings.In this work, We show a semi-analytical model that considers the main energy sources of the rings and their average properties (e.g., optical depth, particle size range and vertical distribution). In order to deal with the shadowing at specific geometries, the model uses the ray-tracing technique. The goal is to describe the ring temperatures observed by the Composite Infrared Spectrometer, CIRS, onboard the Cassini spacecraft, which is in orbit around Saturn since 2004. So far, the model is able to reproduce some of the general features of specific regions of the A, B and C rings.
Behind the dust curtain: the spectacular case of GRB 160623A
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pintore, F.; Tiengo, A.; Mereghetti, S.
Here, we report on the X-ray dust-scattering features observed around the afterglow of the gamma-ray burst GRB 160623A. With an XMM–Newton observation carried out ~2 d after the burst, we found evidence of at least six rings, with angular size expanding between ~2 and 9 arcmin, as expected for X-ray scattering of the prompt gamma-ray burst (GRB) emission by dust clouds in our Galaxy. From the expansion rate of the rings, we measured the distances of the dust layers with extraordinary precision: 528.1 ± 1.2, 679.2 ± 1.9, 789.0 ± 2.8, 952 ± 5, 1539 ± 20 and 5079 ±more » 64 pc. A spectral analysis of the ring spectra, based on an appropriate dust-scattering model (BARE-GR-B) and the estimated burst fluence, allowed us to derive the column density of the individual dust layers, which are in the range 7 × 10 20–1.5 × 10 22 cm –2. The farthest dust layer (i.e. the one responsible for the smallest ring) is also the one with the lowest column density and it is possibly very extended, indicating a diffuse dust region. The properties derived for the six dust layers (distance, thickness and optical depth) are generally in good agreement with independent information on the reddening along this line of sight and on the distribution of molecular and atomic gas.« less
Behind the dust curtain: the spectacular case of GRB 160623A
Pintore, F.; Tiengo, A.; Mereghetti, S.; ...
2017-08-14
Here, we report on the X-ray dust-scattering features observed around the afterglow of the gamma-ray burst GRB 160623A. With an XMM–Newton observation carried out ~2 d after the burst, we found evidence of at least six rings, with angular size expanding between ~2 and 9 arcmin, as expected for X-ray scattering of the prompt gamma-ray burst (GRB) emission by dust clouds in our Galaxy. From the expansion rate of the rings, we measured the distances of the dust layers with extraordinary precision: 528.1 ± 1.2, 679.2 ± 1.9, 789.0 ± 2.8, 952 ± 5, 1539 ± 20 and 5079 ±more » 64 pc. A spectral analysis of the ring spectra, based on an appropriate dust-scattering model (BARE-GR-B) and the estimated burst fluence, allowed us to derive the column density of the individual dust layers, which are in the range 7 × 10 20–1.5 × 10 22 cm –2. The farthest dust layer (i.e. the one responsible for the smallest ring) is also the one with the lowest column density and it is possibly very extended, indicating a diffuse dust region. The properties derived for the six dust layers (distance, thickness and optical depth) are generally in good agreement with independent information on the reddening along this line of sight and on the distribution of molecular and atomic gas.« less
Diffraction based method to reconstruct the spectrum of the Thomson scattering x-ray source
NASA Astrophysics Data System (ADS)
Chi, Zhijun; Yan, Lixin; Zhang, Zhen; Zhou, Zheng; Zheng, Lianmin; Wang, Dong; Tian, Qili; Wang, Wei; Nie, Zan; Zhang, Jie; Du, Yingchao; Hua, Jianfei; Shi, Jiaru; Pai, Chihao; Lu, Wei; Huang, Wenhui; Chen, Huaibi; Tang, Chuanxiang
2017-04-01
As Thomson scattering x-ray sources based on the collision of intense laser and relativistic electrons have drawn much attention in various scientific fields, there is an increasing demand for the effective methods to reconstruct the spectrum information of the ultra-short and high-intensity x-ray pulses. In this paper, a precise spectrum measurement method for the Thomson scattering x-ray sources was proposed with the diffraction of a Highly Oriented Pyrolytic Graphite (HOPG) crystal and was demonstrated at the Tsinghua Thomson scattering X-ray source. The x-ray pulse is diffracted by a 15 mm (L) ×15 mm (H)× 1 mm (D) HOPG crystal with 1° mosaic spread. By analyzing the diffraction pattern, both x-ray peak energies and energy spectral bandwidths at different polar angles can be reconstructed, which agree well with the theoretical value and simulation. The higher integral reflectivity of the HOPG crystal makes this method possible for single-shot measurement.
Diffraction based method to reconstruct the spectrum of the Thomson scattering x-ray source.
Chi, Zhijun; Yan, Lixin; Zhang, Zhen; Zhou, Zheng; Zheng, Lianmin; Wang, Dong; Tian, Qili; Wang, Wei; Nie, Zan; Zhang, Jie; Du, Yingchao; Hua, Jianfei; Shi, Jiaru; Pai, Chihao; Lu, Wei; Huang, Wenhui; Chen, Huaibi; Tang, Chuanxiang
2017-04-01
As Thomson scattering x-ray sources based on the collision of intense laser and relativistic electrons have drawn much attention in various scientific fields, there is an increasing demand for the effective methods to reconstruct the spectrum information of the ultra-short and high-intensity x-ray pulses. In this paper, a precise spectrum measurement method for the Thomson scattering x-ray sources was proposed with the diffraction of a Highly Oriented Pyrolytic Graphite (HOPG) crystal and was demonstrated at the Tsinghua Thomson scattering X-ray source. The x-ray pulse is diffracted by a 15 mm (L) ×15 mm (H)× 1 mm (D) HOPG crystal with 1° mosaic spread. By analyzing the diffraction pattern, both x-ray peak energies and energy spectral bandwidths at different polar angles can be reconstructed, which agree well with the theoretical value and simulation. The higher integral reflectivity of the HOPG crystal makes this method possible for single-shot measurement.
NASA Astrophysics Data System (ADS)
Townsley, Leisa K.; Broos, Patrick S.; Feigelson, Eric D.; Garmire, Gordon P.; Getman, Konstantin V.
2006-04-01
We have studied the X-ray point-source population of the 30 Doradus (30 Dor) star-forming complex in the Large Magellanic Cloud using high spatial resolution X-ray images and spatially resolved spectra obtained with the Advanced CCD Imaging Spectrometer (ACIS) on board the Chandra X-Ray Observatory. Here we describe the X-ray sources in a 17'×17' field centered on R136, the massive star cluster at the center of the main 30 Dor nebula. We detect 20 of the 32 Wolf-Rayet stars in the ACIS field. The cluster R136 is resolved at the subarcsecond level into almost 100 X-ray sources, including many typical O3-O5 stars, as well as a few bright X-ray sources previously reported. Over 2 orders of magnitude of scatter in LX is seen among R136 O stars, suggesting that X-ray emission in the most massive stars depends critically on the details of wind properties and the binarity of each system, rather than reflecting the widely reported characteristic value LX/Lbol~=10-7. Such a canonical ratio may exist for single massive stars in R136, but our data are too shallow to confirm this relationship. Through this and future X-ray studies of 30 Dor, the complete life cycle of a massive stellar cluster can be revealed.
Emission Mechanisms in X-Ray Faint Elliptical Galaxies
NASA Astrophysics Data System (ADS)
Brown, B. A.; Bregman, J. N.
1999-12-01
To understand the X-ray emission in normal elliptical galaxies, it is important to determine the relative contributions of hot interstellar gas and discrete sources to the observed emission. In X-ray luminous ellipticals, a hot gaseous component dominates the emission from X-ray binaries and other discrete sources. It is expected that, as one looks toward lower X-ray luminous galaxies, that the hot gas will contribute less to the overall X-ray emission and that discrete sources will supply most, if not all of, the observed X-ray emission. Here we examine ROSAT HRI and PSPC data for seventeen optically bright (BT < 11.15) elliptical galaxies with log(LX/L_B) < 29.7 ergs s-1/L⊙ . Radial surface brightness profiles are modeled with a modified King beta model and a de Vaucouleurs r1/4 law (similar to a beta = 0.5 beta model). For galaxy profiles where the two models are easily distinguishable, the models are combined, and fit to the data to determine or set upper limits to the discrete source contribution. The modeled data suggest that X-ray faint elliptical galaxies may still retain a sizable fraction of hot gas, but that emission from discrete sources are a significant component of the total observed X-ray emission. Support for this project has been provided by NASA and the National Academy of Sciences.
TRANSIENT X-RAY SOURCE POPULATION IN THE MAGELLANIC-TYPE GALAXY NGC 55
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jithesh, V.; Wang, Zhongxiang, E-mail: jithesh@shao.ac.cn
2016-04-10
We present the spectral and temporal properties of 15 candidate transient X-ray sources detected in archival XMM-Newton and Chandra observations of the nearby Magellanic-type, SB(s)m galaxy NGC 55. Based on an X-ray color classification scheme, the majority of the sources may be identified as X-ray binaries (XRBs), and six sources are soft, including a likely supernova remnant. We perform a detailed spectral and variability analysis of the data for two bright candidate XRBs. Both sources displayed strong short-term X-ray variability, and their X-ray spectra and hardness ratios are consistent with those of XRBs. These results, combined with their high X-raymore » luminosities (∼10{sup 38} erg s{sup −1}), strongly suggest that they are black hole (BH) binaries. Seven less luminous sources have spectral properties consistent with those of neutron star or BH XRBs in both normal and high-rate accretion modes, but one of them is the likely counterpart to a background galaxy (because of positional coincidence). From our spectral analysis, we find that the six soft sources are candidate super soft sources (SSSs) with dominant emission in the soft (0.3–2 keV) X-ray band. Archival Hubble Space Telescope optical images for seven sources are available, and the data suggest that most of them are likely to be high-mass XRBs. Our analysis has revealed the heterogeneous nature of the transient population in NGC 55 (six high-mass XRBs, one low-mass XRBs, six SSSs, one active galactic nucleus), helping establish the similarity of the X-ray properties of this galaxy to those of other Magellanic-type galaxies.« less
Miniaturized, High-Speed, Modulated X-Ray Source
NASA Technical Reports Server (NTRS)
Gendreau, Keith; Arzoumanian, Zaven; Kenyon, Steve; Spartana, Nick
2013-01-01
A low-cost, miniature x-ray source has been developed that can be modulated in intensity from completely off to full intensity on nanosecond timescales. This modulated x-ray source (MXS) has no filaments and is extremely rugged. The energy level of the MXS is adjustable from 0 to more than 100 keV. It can be used as the core of many new devices, providing the first practical, arbitrarily time-variable source of x-rays. The high-speed switching capability and miniature size make possible many new technologies including x-ray-based communication, compact time-resolved x-ray diffraction, novel x-ray fluorescence instruments, and low- and precise-dose medical x-rays. To make x-rays, the usual method is to accelerate electrons into a target material held at a high potential. When the electrons stop in the target, x-rays are produced with a spectrum that is a function of the target material and the energy to which the electrons are accelerated. Most commonly, the electrons come from a hot filament. In the MXS, the electrons start off as optically driven photoelectrons. The modulation of the x-rays is then tied to the modulation of the light that drives the photoelectron source. Much of the recent development has consisted of creating a photoelectrically-driven electron source that is robust, low in cost, and offers high intensity. For robustness, metal photocathodes were adopted, including aluminum and magnesium. Ultraviolet light from 255- to 350-nm LEDs (light emitting diodes) stimulated the photoemissions from these photocathodes with an efficiency that is maximized at the low-wavelength end (255 nm) to a value of roughly 10(exp -4). The MXS units now have much higher brightness, are much smaller, and are made using a number of commercially available components, making them extremely inexpensive. In the latest MXS design, UV efficiency is addressed by using a high-gain electron multiplier. The photocathode is vapor-deposited onto the input cone of a Burle Magnum(TradeMark) multiplier. This system yields an extremely robust photon-driven electron source that can tolerate long, weeks or more, exposure to air with negligible degradation. The package is also small. When combined with the electron target, necessary vacuum fittings, and supporting components (but not including LED electronics or high-voltage sources), the entire modulated x-ray source weighs as little as 158 grams.
Einstein X-ray observations of M101
NASA Technical Reports Server (NTRS)
Trinchieri, G.; Fabbiano, G.; Romaine, S.
1990-01-01
The Einstein X-ray observations of the face-on spiral galaxy M101 are presented. The global X-ray luminosity L(x) of M101 is about 1.2 x 10 to the 40th ergs/s for D = 7.2 Mpc, consistent with the expected X-ray luminosity of normal spiral galaxies of its optical magnitude. The X-ray emission is mostly due to very luminous individual sources, with L(x) greater than 10 to the 38th ergs/s each, most likely very massive accreting binary systems. The data suggest a deficiency of sources in the luminosity range of L(x) from about 10 to the 37th to about 10 to the 38th ergs/s, which would indicate that the luminosity distribution of the X-ray sources in M101 might be different from that of M31 or M33.
A Quick Look at Supernova 1987A
2017-02-24
On February 24, 1987, astronomers in the southern hemisphere saw a supernova in the Large Magellanic Cloud. This new object was dubbed “Supernova 1987A” and was the brightest stellar explosion seen in over four centuries. Chandra has observed Supernova 1987A many times and the X-ray data reveal important information about this object. X-rays from Chandra have shown the expanding blast wave from the original explosion slamming into a ring of material expelled by the star before it exploded. The latest Chandra data reveal the blast wave has moved beyond the ring into a region that astronomers do not know much about. These observations can help astronomers learn how supernovas impact their environments and affect future generations of stars and planets.
Monitoring X-Ray Emission from X-Ray Bursters
NASA Technical Reports Server (NTRS)
Halpern, Jules P.; Kaaret, Philip
1999-01-01
The scientific goal of this project was to monitor a selected sample of x-ray bursters using data from the All-Sky Monitor (ASM) on the Rossi X-Ray Timing Explorer together with data from the Burst and Transient Source Experiment (BATSE) on the Compton Gamma-Ray Observatory to study the long-term temporal evolution of these sources in the x-ray and hard x-ray bands. The project was closely related to "Long-Term Hard X-Ray Monitoring of X-Ray Bursters", NASA project NAG5-3891, and and "Hard x-ray emission of x-ray bursters", NASA project NAG5-4633, and shares publications in common with both of these. The project involved preparation of software for use in monitoring and then the actual monitoring itself. These efforts have lead to results directly from the ASM data and also from Target of Opportunity Observations (TOO) made with the Rossi X-Ray Timing Explorer based on detection of transient hard x-ray outbursts with the ASM and BATSE.
An x-ray diffraction study of some mesoionic 2,3-diphenyltetrazoles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luboradzki, R.; Kozminski, W.; Stefaniak, L.
1993-02-01
An X-my diffraction study is reported for four molecules of mesoionic 2,3-diphenyltetrazoles. The results confirm a dipolar [open quotes]mesoionic[close quotes] structure, aromatic character of the tetrazole ring and no conjugation between the phenyl and tetrazole rings. The geometry of the exocyclic group is discussed in detail. The molecular parameters of the compounds investigated are correlated with [sup 13]C and [sup 15]N nmr data. The results obtained are compared with similar structures which have already been studied.
Unusual Black Hole Binary LMC X-3: A Transient High-Mass X-Ray Binary That Is Almost Always On?
NASA Technical Reports Server (NTRS)
Torpin, Trevor J.; Boyd, Patricia T.; Smale, Alan P.; Valencic, Lynne A.
2017-01-01
We have analyzed a rich, multimission, multiwavelength data set from the black hole X-ray binary (BHXB) LMC X-3, covering a new anomalous low state (ALS), during which the source flux falls to an unprecedentedly low and barely detectable level, and a more normal low state. Simultaneous X-ray and UV/optical monitoring data from Swift are combined with pointed observations from the Rossi X-ray Timing Explorer (RXTE) and X-ray Multi- Mirror Mission (XMM-Newton) and light curves from the Monitor of All-Sky X-ray Image (MAXI) instrument to compare the source characteristics during the ALS with those seen during the normal low state. An XMM-Newton spectrum obtained during the ALS can be modeled using an absorbed power law with Gamma = 1.41‚+/- 0.65 and a luminosity of 7.97 x 10(exp 33) erg/s (0.6-5 keV). The Swift X-ray and UV light curves indicate an X-ray lag of approx. 8 days as LMC X-3 abruptly exits the ALS, suggesting that changes in the mass accretion rate from the donor drive the X-ray lag. The normal low state displays an asymmetric profile in which the exit occurs more quickly than the entry, with minimum X-ray flux a factor of approx. 4300 brighter than during the ALS. The UV brightness of LMC X-3 in the ALS is also fainter and less variable than during normal low states. The existence of repeated ALSs in LMC X-3, as well as a comparison with other BHXBs, implies that it is very close to the transient/persistent X-ray source dividing line. We conclude that LMC X-3 is a transient source that is almost always "on."
X-Pinch And Its Applications In X-ray Radiograph
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zou Xiaobing; Wang Xinxin; Liu Rui
2009-07-07
An X-pinch device and the related diagnostics of x-ray emission from X-pinch were briefly described. The time-resolved x-ray measurements with photoconducting diodes show that the x-ray pulse usually consists of two subnanosecond peaks with a time interval of about 0.5 ns. Being consistent with these two peaks of the x-ray pulse, two point x-ray sources of size ranging from 100 mum to 5 mum and depending on cut-off x-ray photon energy were usually observed on the pinhole pictures. The x-pinch was used as x-ray source for backlighting of the electrical explosion of single wire and the evolution of X-pinch, andmore » for phase-contrast imaging of soft biological objects such as a small shrimp and a mosquito.« less
High-resolution radio and X-ray observations of the supernova remnant W28
NASA Technical Reports Server (NTRS)
Andrews, M. D.; Basart, J. P.; Lamb, R. C.; Becker, R. H.
1983-01-01
The present study has the objective to report the first high resolution radio and X-ray observations of the central part of the galactic supernova remnant, W28, taking into account the possible association of the remnant with the unidentified gamma-ray source, 2CG 006-00. This gamma-ray source is approximately two-thirds as bright as the Crab pulsar above 100 MeV, and has a somewhat flatter spectrum. Both the radio and X-ray observations reveal previously unknown aspects of W28 which support the possibility of W28 being a gamma-ray source. The radio data show a flat-spectrum, nonthermal component reminiscent of the Crab Nebula and Vela, both of which are confirmed gamma-ray sources. The X-ray observations reveal a compact source within W28, again suggestive of both the Crab and Vela. If the similarities among W28, the Crab Nebula, and the Vela remnant are valid, the gamma-ray source 2CG 00-00 should be studied for periodicity, the conclusive signature of a compact source of emission.
A View through a Bamboo Screen: From Moire Patterns to Black Holes.
ERIC Educational Resources Information Center
Oda, Minoru
1992-01-01
Describes the genesis, the early experiments, and the limitations of X-ray astronomy. Discusses original methods for searching and locating the first interstellar X-ray source, modern attempts to identify a massive black hole as part of a binary system X-ray source, and the effort to generate X-ray images of solar flares. (JJK)
X-ray source development for EXAFS measurements on the National Ignition Facility.
Coppari, F; Thorn, D B; Kemp, G E; Craxton, R S; Garcia, E M; Ping, Y; Eggert, J H; Schneider, M B
2017-08-01
Extended X-ray absorption Fine Structure (EXAFS) measurements require a bright, spectrally smooth, and broad-band x-ray source. In a laser facility, such an x-ray source can be generated by a laser-driven capsule implosion. In order to optimize the x-ray emission, different capsule types and laser irradiations have been tested at the National Ignition Facility (NIF). A crystal spectrometer is used to disperse the x-rays and high efficiency image plate detectors are used to measure the absorption spectra in transmission geometry. EXAFS measurements at the K-edge of iron at ambient conditions have been obtained for the first time on the NIF laser, and the requirements for optimization have been established.
Multi-keV X-ray area source intensity at SGII laser facility
NASA Astrophysics Data System (ADS)
Wang, Rui-rong; An, Hong-hai; Xie, Zhi-yong; Wang, Wei
2018-05-01
Experiments for investigating the feasibility of multi-keV backlighters for several different metallic foil targets were performed at the Shenguang II (SGII) laser facility in China. Emission spectra in the energy range of 1.65-7.0 keV were measured with an elliptically bent crystal spectrometer, and the X-ray source size was measured with a pinhole camera. The X-ray intensity near 4.75 keV and the X-ray source size for titanium targets at different laser intensity irradiances were studied. By adjusting the total laser energy at a fixed focal spot size, laser intensity in the range of 1.5-5.0 × 1015 W/cm2, was achieved. The results show that the line emission intensity near 4.75 keV and the X-ray source size are dependent on the laser intensity and increase as the laser intensity increases. However, an observed "peak" in the X-ray intensity near 4.75 keV occurs at an irradiance of 4.0 × 1015 W/cm2. For the employed experimental conditions, it was confirmed that the laser intensity could play a significant role in the development of an efficient multi-keV X-ray source. The experimental results for titanium indicate that the production of a large (˜350 μm in diameter) intense backlighter source of multi-keV X-rays is feasible at the SGII facility.
NASA Astrophysics Data System (ADS)
Caudevilla, Oriol; Zhou, Wei; Stoupin, Stanislav; Verman, Boris; Brankov, J. G.
2016-09-01
Analyzer-based X-ray phase contrast imaging (ABI) belongs to a broader family of phase-contrast (PC) X-ray imaging modalities. Unlike the conventional X-ray radiography, which measures only X-ray absorption, in PC imaging one can also measures the X-rays deflection induced by the object refractive properties. It has been shown that refraction imaging provides better contrast when imaging the soft tissue, which is of great interest in medical imaging applications. In this paper, we introduce a simulation tool specifically designed to simulate the analyzer-based X-ray phase contrast imaging system with a conventional polychromatic X-ray source. By utilizing ray tracing and basic physical principles of diffraction theory our simulation tool can predicting the X-ray beam profile shape, the energy content, the total throughput (photon count) at the detector. In addition we can evaluate imaging system point-spread function for various system configurations.
Identification of the Hard X-Ray Source Dominating the E > 25 keV Emission of the Nearby Galaxy M31
NASA Technical Reports Server (NTRS)
Yukita, M.; Ptak, A.; Hornschemeier, A. E.; Wik, D.; Maccarone, T.J.; Pottschmidt, Katja; Zezas, A.; Antoniou, V.; Ballhausen, R.; Lehmer, B.D.;
2017-01-01
We report the identification of a bright hard X-ray source dominating the M31 bulge above 25 kiloelectronvolts from a simultaneous NuSTAR-Swift observation. We find that this source is the counterpart to Swift J0042.6+4112, which was previously detected in the Swift BAT All-Sky Hard X-Ray Survey. This Swift BAT source had been suggested to be the combined emission from a number of point sources; our new observations have identified a single X-ray source from 0.5 to 50 kiloelectronvolts as the counterpart for the first time. In the 0.5-10 kiloelectronvolt band, the source had been classified as an X-ray Binary candidate in various Chandra and XMM-Newton studies; however, since it was not clearly associated with Swift J0042.6+4112, the previous E is less than 10 kiloelectronvolts observations did not generate much attention. This source has a spectrum with a soft X-ray excess (kT approximately equal to 0.2 kiloelectronvolts) plus a hard spectrum with a power law of gamma approximately equal to 1 and a cutoff around 15-20 kiloelectronvolts, typical of the spectral characteristics of accreting pulsars. Unfortunately, any potential pulsation was undetected in the NuSTAR data, possibly due to insufficient photon statistics. The existing deep HST (Hubble Space Telescope) images exclude high-mass (greater than 3 times the radius of the moon) donors at the location of this source. The best interpretation for the nature of this source is an X-ray pulsar with an intermediate-mass (less than 3 times the radius of the moon M) companion or a symbiotic X-ray binary. We discuss other possibilities in more detail.
Identification of the Hard X-Ray Source Dominating the E > 25 keV Emission of the Nearby Galaxy M31
NASA Technical Reports Server (NTRS)
Yukita, M.; Ptak, A.; Hornschemeier, A. E.; Wik, D.; Maccarone, T. J.; Pottschmidt, K.; Zezas, A.; Antoniou, V.; Ballhausen, R.; Lehmer, B. D.;
2017-01-01
We report the identification of a bright hard X-ray source dominating the M31 bulge above 25 keV from a simultaneous NuSTAR-Swift observation. We find that this source is the counterpart to Swift J0042.6+4112, which was previously detected in the Swift BAT All-Sky Hard X-Ray Survey. This Swift BAT source had been suggested to be the combined emission from a number of point sources; our new observations have identified a single X-ray source from 0.5 to 50 keV as the counterpart for the first time. In the 0.5-10 keV band, the source had been classified as an X-ray Binary candidate in various Chandra and XMM-Newton studies; however, since it was not clearly associated with Swift J0042.6+4112, the previous E is less than 10keVobservations did not generate much attention. This source has a spectrum with a soft X-ray excess (kT approximately equal to 0.2 keV) plus a hard spectrum with a power law of gamma approximately equal to 1 and a cutoff around 15-20 keV, typical of the spectral characteristics of accreting pulsars. Unfortunately, any potential pulsation was undetected in the NuSTAR data, possibly due to insufficient photon statistics. The existing deep HST (Hubble Space Telescope) images exclude high-mass (greater than 3 times the radius of the moon) donors at the location of this source. The best interpretation for the nature of this source is an X-ray pulsar with an intermediate-mass (less than 3 times the radius of the moon M) companion or a symbiotic X-ray binary. We discuss other possibilities in more detail.
SN 1987 A: A Unique Laboratory for Shock Physics
NASA Technical Reports Server (NTRS)
Sonneborn, George
2012-01-01
Supernova 1987 A has given us an unprecedented view of the evolution of the explosion debris and its interaction with circumstellar matter. The outer supernova debris, now expanding with velocities approx.8000 km/s, encountered the relatively dense circumstellar ring formed by presupernova mass loss in the early 1990s. The shock interaction is manifested by UV-optical "hotspots", an expanding X-ray ring, an expanding ring of knotty non-thermal radio emission, and a ring of thermal IR emission from silicate dust Recent ultraviolet observations of the emissions from the reverse shock and the ring with the HST/COS reveal new details about the shock interaction. Lyman alpha emission from the reverse shock is much stronger than H alpha and they have different emission morphologies, pointing to different emission mechanisms. The reverse shock was detected for the first time in C IV 1550. The N V to C IV brightness ratio indicates the N/C abundance ratio in the expanding debris is about 100X solar, about 3X N/C in the inner ring.
Dynamic evolution of the source volumes of gradual and impulsive solar flare emissions
NASA Technical Reports Server (NTRS)
Bruner, M. E.; Crannell, C. J.; Goetz, F.; Magun, A.; Mckenzie, D. L.
1987-01-01
This study compares flare source volumes inferred from impulsive hard X-rays and microwaves with those derived from density sensitive soft X-ray line ratios in the O VII spectrum. The data for this study were obtained with the SMM Hard X-Ray Burst Spectrometer, Earth-based radio observatories, and the SOLEX-B spectrometer on the P78-1 satellite. Data were available for the flares of 1980 April 8, 1980 May 9, and 1981 February 26. The hard X-ray/microwave source volume is determined under the assumption that the same electron temperature or power law index characterizes both the source of hard X-rays and the source of microwaves. The O VII line ratios yield the density and volume of the 2 X 10 to the 6th K plasma. For all three flares, the O VII source volume is found to be smallest at the beginning of the flare, near the time when the impulsive hard X-ray/microwave volume reaches its first maximum. At this time, the O VII volume is three to four orders of magnitude smaller than that inferred from the hard X-ray/microwave analysis. Subsequently, the O VII source volume increases by one or two orders of magnitude then remains almost constant until the end of the flare when it apparently increases again.
High-resolution μCT of a mouse embryo using a compact laser-driven X-ray betatron source.
Cole, Jason M; Symes, Daniel R; Lopes, Nelson C; Wood, Jonathan C; Poder, Kristjan; Alatabi, Saleh; Botchway, Stanley W; Foster, Peta S; Gratton, Sarah; Johnson, Sara; Kamperidis, Christos; Kononenko, Olena; De Lazzari, Michael; Palmer, Charlotte A J; Rusby, Dean; Sanderson, Jeremy; Sandholzer, Michael; Sarri, Gianluca; Szoke-Kovacs, Zsombor; Teboul, Lydia; Thompson, James M; Warwick, Jonathan R; Westerberg, Henrik; Hill, Mark A; Norris, Dominic P; Mangles, Stuart P D; Najmudin, Zulfikar
2018-06-19
In the field of X-ray microcomputed tomography (μCT) there is a growing need to reduce acquisition times at high spatial resolution (approximate micrometers) to facilitate in vivo and high-throughput operations. The state of the art represented by synchrotron light sources is not practical for certain applications, and therefore the development of high-brightness laboratory-scale sources is crucial. We present here imaging of a fixed embryonic mouse sample using a compact laser-plasma-based X-ray light source and compare the results to images obtained using a commercial X-ray μCT scanner. The radiation is generated by the betatron motion of electrons inside a dilute and transient plasma, which circumvents the flux limitations imposed by the solid or liquid anodes used in conventional electron-impact X-ray tubes. This X-ray source is pulsed (duration <30 fs), bright (>10 10 photons per pulse), small (diameter <1 μm), and has a critical energy >15 keV. Stable X-ray performance enabled tomographic imaging of equivalent quality to that of the μCT scanner, an important confirmation of the suitability of the laser-driven source for applications. The X-ray flux achievable with this approach scales with the laser repetition rate without compromising the source size, which will allow the recording of high-resolution μCT scans in minutes. Copyright © 2018 the Author(s). Published by PNAS.
Low-mass X-ray binary MAXI J1421-613 observed by MAXI GSC and Swift XRT
NASA Astrophysics Data System (ADS)
Serino, Motoko; Shidatsu, Megumi; Ueda, Yoshihiro; Matsuoka, Masaru; Negoro, Hitoshi; Yamaoka, Kazutaka; Kennea, Jamie A.; Fukushima, Kosuke; Nagayama, Takahiro
2015-04-01
Monitor of All sky X-ray Image (MAXI) discovered a new outburst of an X-ray transient source named MAXI J1421-613. Because of the detection of three X-ray bursts from the source, it was identified as a neutron star low-mass X-ray binary. The results of data analyses of the MAXI GSC (Gas Slit Camera) and the Swift XRT (X-Ray Telescope) follow-up observations suggest that the spectral hardness remained unchanged during the first two weeks of the outburst. All the XRT spectra in the 0.5-10 keV band can be well explained by thermal Comptonization of multi-color disk blackbody emission. The photon index of the Comptonized component is ≈ 2, which is typical of low-mass X-ray binaries in the low/hard state. Since X-ray bursts have a maximum peak luminosity, it is possible to estimate the (maximum) distance from its observed peak flux. The peak flux of the second X-ray burst, which was observed by the GSC, is about 5 photons cm-2 s-1. By assuming a blackbody spectrum of 2.5 keV, the maximum distance to the source is estimated as 7 kpc. The position of this source is contained by the large error regions of two bright X-ray sources detected with Orbiting Solar Observatory-7 (OSO-7) in the 1970s. Besides this, no past activities at the XRT position are reported in the literature. If MAXI J1421-613 is the same source as (one of) these, the outburst observed with MAXI may have occurred after a quiescence of 30-40 years.
Modulated method for efficient, narrow-bandwidth, laser Compton X-ray and gamma-ray sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barty, Christopher P. J.
A method of x-ray and gamma-ray generation via laser Compton scattering uses the interaction of a specially-formatted, highly modulated, long duration, laser pulse with a high-frequency train of high-brightness electron bunches to both create narrow bandwidth x-ray and gamma-ray sources and significantly increase the laser to Compton photon conversion efficiency.
Method for efficient, narrow-bandwidth, laser compton x-ray and gamma-ray sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barty, Christopher P. J.
A method of x-ray and gamma-ray generation via laser Compton scattering uses the interaction of a specially-formatted, highly modulated, long duration, laser pulse with a high-frequency train of high-brightness electron bunches to both create narrow bandwidth x-ray and gamma-ray sources and significantly increase the laser to Compton photon conversion efficiency.
IDENTIFICATION OF A POPULATION OF X-RAY-EMITTING MASSIVE STARS IN THE GALACTIC PLANE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Gemma E.; Gaensler, B. M.; Kaplan, David L.
2011-02-01
We present X-ray, infrared, optical, and radio observations of four previously unidentified Galactic plane X-ray sources: AX J163252-4746, AX J184738-0156, AX J144701-5919, and AX J144547-5931. Detection of each source with the Chandra X-ray Observatory has provided sub-arcsecond localizations, which we use to identify bright infrared counterparts to all four objects. Infrared and optical spectroscopy of these counterparts demonstrate that all four X-ray sources are extremely massive stars, with spectral classifications: Ofpe/WN9 (AX J163252-4746), WN7 (AX J184738-0156 = WR121a), WN7-8h (AX J144701-5919), and OIf{sup +} (AX J144547-5931). AX J163252-4746 and AX J184738-0156 are both luminous, hard, X-ray emitters with strong Femore » XXV emission lines in their X-ray spectra at {approx}6.7 keV. The multi-wavelength properties of AX J163252-4746 and AX J184738-0156 are not consistent with isolated massive stars or accretion onto a compact companion; we conclude that their X-ray emission is most likely generated in a colliding-wind binary (CWB) system. For both AX J144701-5919 and AX J144547-5931, the X-ray emission is an order of magnitude less luminous and with a softer spectrum. These properties are consistent with a CWB interpretation for these two sources also, but other mechanisms for the generation of X-rays cannot be excluded. There are many other as yet unidentified X-ray sources in the Galactic plane, with X-ray properties similar to those seen for AX J163252-4746, AX J184738-0156, AX J144701-5919, and AX J144547-5931. This may indicate a substantial population of X-ray-emitting massive stars and CWBs in the Milky Way.« less
Hard X-ray imaging from Explorer
NASA Technical Reports Server (NTRS)
Grindlay, J. E.; Murray, S. S.
1981-01-01
Coded aperture X-ray detectors were applied to obtain large increases in sensitivity as well as angular resolution. A hard X-ray coded aperture detector concept is described which enables very high sensitivity studies persistent hard X-ray sources and gamma ray bursts. Coded aperture imaging is employed so that approx. 2 min source locations can be derived within a 3 deg field of view. Gamma bursts were located initially to within approx. 2 deg and X-ray/hard X-ray spectra and timing, as well as precise locations, derived for possible burst afterglow emission. It is suggested that hard X-ray imaging should be conducted from an Explorer mission where long exposure times are possible.
Unusual Black Hole Binary LMC X-3: A Transient High-mass X-Ray Binary That Is Almost Always On?
NASA Astrophysics Data System (ADS)
Torpin, Trevor J.; Boyd, Patricia T.; Smale, Alan P.; Valencic, Lynne A.
2017-11-01
We have analyzed a rich, multimission, multiwavelength data set from the black hole X-ray binary (BHXB) LMC X-3, covering a new anomalous low state (ALS), during which the source flux falls to an unprecedentedly low and barely detectable level, and a more normal low state. Simultaneous X-ray and UV/optical monitoring data from Swift are combined with pointed observations from the Rossi X-ray Timing Explorer (RXTE) and X-ray Multi-Mirror Mission (XMM-Newton) and light curves from the Monitor of All-Sky X-ray Image (MAXI) instrument to compare the source characteristics during the ALS with those seen during the normal low state. An XMM-Newton spectrum obtained during the ALS can be modeled using an absorbed power law with {{Γ }}=1.41+/- 0.65 and a luminosity of 7.97× {10}33 erg s-1 (0.6-5 keV). The Swift X-ray and UV light curves indicate an X-ray lag of ˜8 days as LMC X-3 abruptly exits the ALS, suggesting that changes in the mass accretion rate from the donor drive the X-ray lag. The normal low state displays an asymmetric profile in which the exit occurs more quickly than the entry, with minimum X-ray flux a factor of ˜4300 brighter than during the ALS. The UV brightness of LMC X-3 in the ALS is also fainter and less variable than during normal low states. The existence of repeated ALSs in LMC X-3, as well as a comparison with other BHXBs, implies that it is very close to the transient/persistent X-ray source dividing line. We conclude that LMC X-3 is a transient source that is almost always “on.”
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kandlakunta, P; Pham, R; Zhang, T
Purpose: To develop and characterize a high brightness multiple-pixel thermionic emission x-ray (MPTEX) source. Methods: Multiple-pixel x-ray sources allow for designs of novel x-ray imaging techniques, such as fixed gantry CT, digital tomosynthesis, tetrahedron beam computed tomography, etc. We are developing a high-brightness multiple-pixel thermionic emission x-ray (MPTEX) source based on oxide coated cathodes. Oxide cathode is chosen as the electron source due to its high emission current density and low operating temperature. A MPTEX prototype has been developed which may contain up to 41 micro-rectangular oxide cathodes in 4 mm pixel spacing. Electronics hardware was developed for source controlmore » and switching. The cathode emission current was evaluated and x-ray measurements were performed to estimate the focal spot size. Results: The oxide cathodes were able to produce ∼110 mA cathode current in pulse mode which corresponds to an emission current density of 0.55 A/cm{sup 2}. The maximum kVp of the MPTEX prototype currently is limited to 100 kV due to the rating of high voltage feedthrough. Preliminary x-ray measurements estimated the focal spot size as 1.5 × 1.3 mm{sup 2}. Conclusion: A MPTEX source was developed with thermionic oxide coated cathodes and preliminary source characterization was successfully performed. The MPTEX source is able to produce an array of high brightness x-ray beams with a fast switching speed.« less
NASA Astrophysics Data System (ADS)
Ham, Kathryn; Vohra, Yogesh; Kono, Yoshio; Wereszczak, Andrew; Patel, Parimal
Multi-angle energy-dispersive x-ray diffraction studies and white-beam x-ray radiography were conducted with a cylindrically shaped (1 mm diameter and 0.7 mm high) high-boron content borosilicate glass sample (17.6% B2O3) to a pressure of 13.7 GPa using a Paris-Edinburgh (PE) press at Beamline 16-BM-B, HPCAT of the Advanced Photon Source. The measured structure factor S(q) to large q = 19 Å-1, is used to determine information about the internuclear bond distances between various species of atoms within the glass sample. Sample pressure was determined with gold as a pressure standard. The sample height as measured by radiography showed an overall uniaxial compression of 22.5 % at 13.7 GPa with 10.6% permanent compaction after decompression to ambient conditions. The reduced pair distribution function G(r) was extracted and Si-O, O-O, and Si-Si bond distances were measured as a function of pressure. Raman spectroscopy of pressure recovered sample as compared to starting material showed blue-shift and changes in intensity and widths of Raman bands associated with silicate and B3O6 boroxol rings. US Army Research Office under Grant No. W911NF-15-1-0614.
Absolute Calibration of the AXAF Telescope Effective Area
NASA Technical Reports Server (NTRS)
Kellogg, E.; Cohen, L.; Edgar, R.; Evans, I.; Freeman, M.; Gaetz, T.; Jerius, D.; McDermott, W. C.; McKinnon, P.; Murray, S.;
1997-01-01
The prelaunch calibration of AXAF encompasses many aspects of the telescope. In principle, all that is needed is the complete point response function. This is, however, a function of energy, off-axis angle of the source, and operating mode of the facility. No single measurement would yield the entire result. Also, any calibration made prior to launch will be affected by changes in conditions after launch, such as the change from one g to zero g. The reflectivity of the mirror and perhaps even the detectors can change as well, for example by addition or removal of small amounts of material deposited on their surfaces. In this paper, we give a broad view of the issues in performing such a calibration, and discuss how they are being addressed in prelaunch preparation of AXAF. As our title indicates, we concentrate here on the total throughput of the observatory. This can be thought of as the integral of the point response function, i.e. the encircled energy, out ot the largest practical solid angle for an observation. Since there is no standard x-ray source in the sky whose flux is known to the -1% accuracy we are trying to achieve, we must do this calibration on the ground. we also must provide a means for monitoring any possible changes in this calibration from pre-launch until on-orbit operation can transfer the calibration to a celestial x-ray source whose emission is stable. In this paper, we analyze the elements of the absolute throughput calibration, which we call Effective Area. We review the requirements for calibrations of components or subsystems of the AXAF facility, including mirror, detectors, and gratings. We show how it is necessary to calibrate this ground-based detection system at standard man-made x-ray sources, such as electron storage rings. We present the status of all these calibrations, with indications of the measurements remaining to be done, even though the measurements on the AXAF flight optics and detectors will have been completed by the time this paper is presented. We evaluate progress toward the goal of making 1% measurements of the absolute x-ray flux from astrophysical sources, so that comparisons can be made with their emission at other wavelengths, in support of observations such as the Sunyaev-Zeldovitch effect, which can give absolute distance measurements independent of the traditional distance measuring techniques in astronomy.
X-ray emission from the Pleiades cluster
NASA Technical Reports Server (NTRS)
Agrawal, P. C.; Singh, K. P.; Riegler, G. R.
1983-01-01
The detection and identification of H0344+24, a new X-ray source located in the Pleiades cluster, is reported, based on observations made with HEAO A-2 low-energy detector 1 in the 0.15-3.0-keV energy band in August, 1977. The 90-percent-confidence error box for the new source is centered at 03 h 44.1 min right ascension (1950), near the center star of the 500-star Pleiades cluster, 25-eta-Tau. Since no likely galactic or extragalactic source of X-rays was found in a catalog search of the error-box region, identification of the source with the Pleiades cluster is considered secure. X-ray luminosity of the source is calculated to be about 10 to the 32nd ergs/sec, based on a distance of 125 pc. The X-ray characteristics of the Pleiades stars are discussed, and it is concluded that H0344+24 can best be explained as the integrated X-ray emission of all the B and F stars in the cluster.
Low Energy X-Ray and Electron Physics and Technology for High-Temperature Plasma Diagnostics
1987-10-01
This program in low-energy x-ray physics and technology has expanded into a major program with the principal objective of supporting research and application programs at the new large x-ray source facilities, particularly the high temperature plasma and synchrotron radiation sources. This program addresses the development of absolute x-ray diagnostics for the fusion energy and x-ray laser research and development. The new laboratory includes five specially designed
NASA Astrophysics Data System (ADS)
Caliri, C.; Romano, F. P.; Mascali, D.; Gammino, S.; Musumarra, A.; Castro, G.; Celona, L.; Neri, L.; Altana, C.
2013-10-01
Electron Cyclotron Resonance Ion Sources (ECRIS) are based on ECR heated plasmas emitting high fluxes of X-rays. Here we illustrate a pilot study of the X-ray emission from a compact plasma-trap in which an off-resonance microwave-plasma interaction has been attempted, highlighting a possible Bernstein-Waves based heating mechanism. EBWs-heating is obtained via the inner plasma EM-to-ES wave conversion and enables to reach densities much larger than the cut-off ones. At LNS-INFN, an innovative diagnostic technique based on the design of a Pinhole Camera (PHC) coupled to a CCD device for X-ray Imaging of the plasma (XRI) has been developed, in order to integrate X-ray traditional diagnostics (XRS). The complementary use of electrostatic probes measurements and X-ray diagnostics enabled us to gain knowledge about the high energy electrons density and temperature and about the spatial structure of the source. The combination of the experimental data with appropriate modeling of the plasma-source allowed to estimate the X-ray emission intensity in different energy domains (ranging from EUV up to Hard X-rays). The use of ECRIS as X-ray source for multidisciplinary applications, is now a concrete perspective due to the intense fluxes produced by the new plasma heating mechanism.
Discovery of low-redshift X-ray selected quasars - New clues to the QSO phenomenon
NASA Technical Reports Server (NTRS)
Grindlay, J. E.; Forman, W. R.; Steiner, J. E.; Canizares, C. R.; Mcclintock, J. E.
1980-01-01
The identification of six X-ray sources discovered by the Einstein Observatory with X-ray quasars is reported, and the properties of these X-ray selected quasars are discussed. The four high-latitude fields of 1 sq deg each in which the Einstein imaging proportional counter detected serendipitous X-ray sources at intermediate exposures of 10,000 sec were observed by 4-m and 1.5-m telescopes, and optical sources with uv excesses and emission line spectra typical of many low-redshift quasars and Seyfert 1 galaxies were found within the 1-arcsec error boxes of the X-ray sources. All six quasars identified were found to be radio quiet, with low redshift and relatively faint optical magnitudes, and to be similar in space density, colors and magnitude versus redshift relation to an optically selected sample at the same mean magnitude. X-ray luminosity was found to be well correlated with both continuum and broad-line emission luminosities for the known radio-quiet quasars and Seyfert 1 galaxies, and it was observed that the five objects with the lowest redshifts have very similar X-ray/optical luminosity ratios despite tenfold variations in X-ray luminosity. It is concluded that photoionization by a continuum extending to X-ray energies is the dominant excitation mechanism in radio-quiet quasars.
X-ray Measurements of a Thermo Scientific P385 DD Neutron Generator
DOE Office of Scientific and Technical Information (OSTI.GOV)
E.H. Seabury; D.L. Chichester; A.J. Caffrey
2001-08-01
Idaho National Laboratory is experimenting with electrical neutron generators, as potential replacements for californium-252 radioisotopic neutron sources in its PINS prompt gamma-ray neutron activation analysis (PGNAA) system for the identification of military chemical warfare agents and explosives. In addition to neutron output, we have recently measured the x-ray output of the Thermo Scientific P385 deuterium-deuterium neutron generator. X-rays are a normal byproduct from a neutron generator and depending on their intensity and energy they can interfere with gamma rays from the object under test, increase gamma-spectrometer dead time, and reduce PGNAA system throughput. The P385 x-ray energy spectrum was measuredmore » with a high-purity germanium (HPGe) detector, and a broad peak is evident at about 70 keV. To identify the source of the x-rays within the neutron generator assembly, it was scanned by collimated scintillation detectors along its long axis. At the strongest x-ray emission points, the generator also was rotated 60° between measurements. The scans show the primary source of x-ray emission from the P385 neutron generator is an area 60 mm from the neutron production target, in the vicinity of the ion source. Rotation of the neutron generator did not significantly alter the x-ray count rate, and the x-ray emission appears to be axially symmetric within the neutron generator.« less
On The Nature of the Ultraluminous X-Ray Transient in Cen A (NGC 5128)
NASA Technical Reports Server (NTRS)
Ghosh, Kajal K.; Finger, Mark H.; Swartz, Douglas A.; Tennant, Allyn F.; Wu, Kinwah
2005-01-01
We combine 20 ROSAT, Chandra, and XMM-Newton observations of the Cen A galaxy to obtain the X-ray light curve of 1RXH J132519.8-430312 (=CXOU J132519.9-430317) spanning 1990 to 2003. The source reached a peak 0.1-2.4 keV flux F(sub X) > 10(exp -12) ergs/sq cm/s during a 10 day span in 1995 July. The inferred peak isotropic luminosity of the source therefore exceeded 3 x 10(exp 39) ergs/s, which places the source in the class of ultra-luminous X-ray sources. Coherent pulsations at 13.264 Hz are detected at the 3 sigma level during a second bright episode (F(sub x) > 3 x 10(exp -13) ergs/sq cm/s) in 1999 December. The source is detected and varies significantly within three additional observations but is below the detection threshold in 7 observations. The X-ray spectrum in 1999 December is best described as a cut-off power law or a disk-blackbody (multi-colored disk). We also detect an optical source, m(sub F555W) approx. 24.1 mag, within the Chandra error circle of 1RXH J132519.8-430312 in Hubble images taken 195 days before the nearest X-ray observation. The optical brightness of this source is consistent with a late O or early B star at the distance of Cen A. The X-ray and optical behavior of 1RXH J132519.8-430312 is therefore similar to the transient Be/X-ray pulsar A 0538-66.
A Search for Hyperluminous X-Ray Sources in the XMM-Newton Source Catalog
NASA Astrophysics Data System (ADS)
Zolotukhin, I.; Webb, N. A.; Godet, O.; Bachetti, M.; Barret, D.
2016-02-01
We present a new method to identify luminous off-nuclear X-ray sources in the outskirts of galaxies from large public redshift surveys, distinguishing them from foreground and background interlopers. Using the 3XMM-DR5 catalog of X-ray sources and the SDSS DR12 spectroscopic sample of galaxies, with the help of this off-nuclear cross-matching technique, we selected 98 sources with inferred X-ray luminosities in the range 1041 < LX < 1044 erg s-1, compatible with hyperluminous X-ray objects (HLX). To validate the method, we verify that it allowed us to recover known HLX candidates such as ESO 243-49 HLX-1 and M82 X-1. From a statistical study, we conservatively estimate that up to 71 ± 11 of these sources may be foreground- or background sources, statistically leaving at least 16 that are likely to be HLXs, thus providing support for the existence of the HLX population. We identify two good HLX candidates and using other publicly available data sets, in particular the VLA FIRST in radio, UKIRT Infrared Deep Sky Survey in the near-infrared, GALEX in the ultraviolet and Canada-France-Hawaii Telescope Megacam archive in the optical, we present evidence that these objects are unlikely to be foreground or background X-ray objects of conventional types, e.g., active galactic nuclei, BL Lac objects, Galactic X-ray binaries, or nearby stars. However, additional dedicated X-ray and optical observations are needed to confirm their association with the assumed host galaxies and thus secure their HLX classification.
The Massive Star-Forming Regions Omnibus X-Ray Catalog
NASA Astrophysics Data System (ADS)
Townsley, Leisa K.; Broos, Patrick S.; Garmire, Gordon P.; Bouwman, Jeroen; Povich, Matthew S.; Feigelson, Eric D.; Getman, Konstantin V.; Kuhn, Michael A.
2014-07-01
We present the Massive Star-forming Regions (MSFRs) Omnibus X-ray Catalog (MOXC), a compendium of X-ray point sources from Chandra/ACIS observations of a selection of MSFRs across the Galaxy, plus 30 Doradus in the Large Magellanic Cloud. MOXC consists of 20,623 X-ray point sources from 12 MSFRs with distances ranging from 1.7 kpc to 50 kpc. Additionally, we show the morphology of the unresolved X-ray emission that remains after the cataloged X-ray point sources are excised from the ACIS data, in the context of Spitzer and WISE observations that trace the bubbles, ionization fronts, and photon-dominated regions that characterize MSFRs. In previous work, we have found that this unresolved X-ray emission is dominated by hot plasma from massive star wind shocks. This diffuse X-ray emission is found in every MOXC MSFR, clearly demonstrating that massive star feedback (and the several-million-degree plasmas that it generates) is an integral component of MSFR physics.
Fast transient X-rays and gamma ray bursts - Are they stellar flares?
NASA Astrophysics Data System (ADS)
Rao, A. R.; Vahia, M. N.
Short period transient X-ray emissions (FTX) have been observed from several sources in the sky and the largest single group of objects identified with such sources are active stars: flare stars, and RS CVn binaries. The study of the number, source and flux distribution of the fast transient X-ray sources shows that all the FTX emission can be treated as flares in the interbinary regions of active stars. It is suggested that the FTX emission is a common feature of the gamma ray bursts (GRBs). The evidence for the similarity between the hard X-ray flares and GRBs is discussed, and the possibility that the gamma ray bursts are the impulsive precursors of FTX originating from active stars with large scale magnetic activity is examined.
Coded-aperture imaging of the Galactic center region at gamma-ray energies
NASA Technical Reports Server (NTRS)
Cook, Walter R.; Grunsfeld, John M.; Heindl, William A.; Palmer, David M.; Prince, Thomas A.
1991-01-01
The first coded-aperture images of the Galactic center region at energies above 30 keV have revealed two strong gamma-ray sources. One source has been identified with the X-ray source IE 1740.7 - 2942, located 0.8 deg away from the nucleus. If this source is at the distance of the Galactic center, it is one of the most luminous objects in the galaxy at energies from 35 to 200 keV. The second source is consistent in location with the X-ray source GX 354 + 0 (MXB 1728-34). In addition, gamma-ray flux from the location of GX 1 + 4 was marginally detected at a level consistent with other post-1980 measurements. No significant hard X-ray or gamma-ray flux was detected from the direction of the Galactic nucleus or from the direction of the recently discovered gamma-ray source GRS 1758-258.
Luminescence properties after X-ray irradiation for dosimetry
NASA Astrophysics Data System (ADS)
Hong, Duk-Geun; Kim, Myung-Jin
2016-05-01
To investigate the luminescence characteristics after exposure to X-ray radiation, we developed an independent, small X-ray irradiation system comprising a Varian VF-50J mini X-ray generator, a Pb collimator, a delay shutter, and an Al absorber. With this system, the apparent dose rate increased linearly to 0.8 Gy/s against the emission current for a 50 kV anode potential when the shutter was delayed for an initial 4 s and the Al absorber was 300 µm thick. In addition, an approximately 20 mm diameter sample area was irradiated homogeneously with X rays. Based on three-dimensional (3D) thermoluminescence (TL) spectra, the small X-ray irradiator was considered comparable to the conventional 90Sr/90Y beta source even though the TL intensity from beta irradiation was higher than that from X-ray irradiation. The single aliquot regenerative (SAR) growth curve for the small X-ray irradiator was identical to that for the beta source. Therefore, we concluded that the characteristics of the small X-ray irradiator and the conventional 90Sr/90Y beta source were similar and that X ray irradiation had the potential for being suitable for use in luminescence dosimetry.
First refraction contrast imaging via Laser-Compton Scattering X-ray at KEK
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakaue, Kazuyuki; Aoki, Tatsuro; Washio, Masakazu
2012-07-31
Laser-Compton Scattering (LCS) is one of the most feasible techniques for high quality, high brightness, and compact X-ray source. High energy electron beam produced by accelerators scatters off the laser photon at a small spot. As a laser target, we have been developing a pulsedlaser storage cavity for increasing an X-ray flux. The X-ray flux was still inadequate that was 2.1 Multiplication-Sign 10{sup 5}/sec, however, we performed first refraction contrast imaging in order to evaluate the quality of LCS X-ray. Edge enhanced contrast imaging was achieved by changing the distance from sample to detector. The edge enhancement indicates that themore » LCS X-ray has small source size, i.e. high brightness. We believe that the result has demonstrated good feasibility of linac-based high brightness X-ray sources via laser-electron Compton scatterings.« less
Generation of first hard X-ray pulse at Tsinghua Thomson Scattering X-ray Source.
Du, Yingchao; Yan, Lixin; Hua, Jianfei; Du, Qiang; Zhang, Zhen; Li, Renkai; Qian, Houjun; Huang, Wenhui; Chen, Huaibi; Tang, Chuanxiang
2013-05-01
Tsinghua Thomson Scattering X-ray Source (TTX) is the first-of-its-kind dedicated hard X-ray source in China based on the Thomson scattering between a terawatt ultrashort laser and relativistic electron beams. In this paper, we report the experimental generation and characterization of the first hard X-ray pulses (51.7 keV) via head-on collision of an 800 nm laser and 46.7 MeV electron beams. The measured yield is 1.0 × 10(6) per pulse with an electron bunch charge of 200 pC and laser pulse energy of 300 mJ. The angular intensity distribution and energy spectra of the X-ray pulse are measured with an electron-multiplying charge-coupled device using a CsI scintillator and silicon attenuators. These measurements agree well with theoretical and simulation predictions. An imaging test using the X-ray pulse at the TTX is also presented.
Quasiperiodic oscillations in bright galactic-bulge X-ray sources
NASA Technical Reports Server (NTRS)
Lamb, F. K.; Shibazaki, N.; Alpar, M. A.; Shaham, J.
1985-01-01
Quasiperiodic oscillations with frequencies in the range 5-50 Hz have recently been discovered in X-rays from two bright galactic-bulge sources and Sco X-1. These sources are weakly magnetic neutron stars accreting from disks which the plasma is clumped. The interaction of the magnetosphere with clumps in the inner disk causes oscillations in the X-ray flux with many of the properties observed.
Falcone, Roger [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS); Univ. of California, Berkeley, CA (United States). Dept. of Physics
2018-05-04
Summer Lecture Series 2008: Molecular movies of chemical reactions and material phase transformations need a strobe of x-rays, the penetrating light that reveals how atoms and molecules assemble in chemical and biological systems and complex materials. Roger Falcone, Director of the Advanced Light Source,will discuss a new generation of x ray sources that will enable a new science of atomic dynamics on ultrafast timescales.
Facilities and Techniques for X-Ray Diagnostic Calibration in the 100-eV to 100-keV Energy Range
NASA Astrophysics Data System (ADS)
Gaines, J. L.; Wittmayer, F. J.
1986-08-01
The Lawrence Livermore National Laboratory (LLNL) has been a pioneer in the field of x-ray diagnostic calibration for more than 20 years. We have built steady state x-ray sources capable of supplying fluorescent lines of high spectral purity in the 100-eV to 100-keV energy range, and these sources have been used in the calibration of x-ray detectors, mirrors, crystals, filters, and film. This paper discusses our calibration philosophy and techniques, and describes some of our x-ray sources. Examples of actual calibration data are presented as well.
NASA Astrophysics Data System (ADS)
Kirillov, V. A.; Kuchuro, J. I.
2014-09-01
We have used EPR dosimetry on tooth enamel to show that the combined effect of x-rays with effective energy 34 keV and gamma radiation with average energy 1250 keV leads to a significant increase in the reconstructed absorbed dose compared with the applied dose from a gamma source or from an x-ray source or from both sources of electromagnetic radiation. In simulation experiments, we develop an approach to estimating the contribution of diagnostic x-rays to the exposure dose formed in the tooth enamel by the combined effect of x-rays and gamma radiation.
X-RAY SOURCES IN THE DWARF SPHEROIDAL GALAXY DRACO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sonbas, E.; Rangelov, B.; Kargaltsev, O.
2016-04-10
We present the spectral analysis of an 87 ks XMM-Newton observation of Draco, a nearby dwarf spheroidal galaxy. Of the approximately 35 robust X-ray source detections, we focus our attention on the brightest of these sources, for which we report X-ray and multiwavelength parameters. While most of the sources exhibit properties consistent with active galactic nuclei, few of them possess the characteristics of low-mass X-ray binaries (LMXBs) and cataclysmic variable (CVs). Our analysis places constraints on the population of X-ray sources with L{sub X} > 3 × 10{sup 33} erg s{sup −1} in Draco, suggesting that there are no actively accreting black hole andmore » neutron star binaries. However, we find four sources that could be quiescent state LMXBs/CVs associated with Draco. We also place constraints on the central black hole luminosity and on a dark matter decay signal around 3.5 keV.« less
Intensity-Modulated Advanced X-ray Source (IMAXS) for Homeland Security Applications
NASA Astrophysics Data System (ADS)
Langeveld, Willem G. J.; Johnson, William A.; Owen, Roger D.; Schonberg, Russell G.
2009-03-01
X-ray cargo inspection systems for the detection and verification of threats and contraband require high x-ray energy and high x-ray intensity to penetrate dense cargo. On the other hand, low intensity is desirable to minimize the radiation footprint. A collaboration between HESCO/PTSE Inc., Schonberg Research Corporation and Rapiscan Laboratories, Inc. has been formed in order to design and build an Intensity-Modulated Advanced X-ray Source (IMAXS). Such a source would allow cargo inspection systems to achieve up to two inches greater imaging penetration capability, while retaining the same average radiation footprint as present fixed-intensity sources. Alternatively, the same penetration capability can be obtained as with conventional sources with a reduction of the average radiation footprint by about a factor of three. The key idea is to change the intensity of the source for each x-ray pulse based on the signal strengths in the inspection system detector array during the previous pulse. In this paper we describe methods to accomplish pulse-to-pulse intensity modulation in both S-band (2998 MHz) and X-band (9303 MHz) linac sources, with diode or triode (gridded) electron guns. The feasibility of these methods has been demonstrated. Additionally, we describe a study of a shielding design that would allow a 6 MV X-band source to be used in mobile applications.
Laser-driven powerful kHz hard x-ray source
NASA Astrophysics Data System (ADS)
Li, Minghua; Huang, Kai; Chen, Liming; Yan, Wenchao; Tao, Mengze; Zhao, Jiarui; Ma, Yong; Li, Yifei; Zhang, Jie
2017-08-01
A powerful hard x-ray source based on laser plasma interaction is developed. By introducing the kHz, 800 nm pulses onto a rotating molybdenum (Mo) disk target, intense Mo Kα x-rays are emitted with suppressed bremsstrahlung background. Results obtained with different laser intensities suggest that the dominant absorption mechanism responsible for the high conversion efficiency is vacuum heating (VH). The high degree of spatial coherence is verified. With the high average flux and a source size comparable to the laser focus spot, absorption contrast imaging and phase contrast imaging are carried out to test the imaging capability of the source. Not only useful for imaging application, this compact x-ray source is also holding great potential for ultrafast x-ray diffraction (XRD) due to the intrinsic merits such as femtosecond pulse duration and natural synchronization with the driving laser pulses.
X-ray stars observed in LAMOST spectral survey
NASA Astrophysics Data System (ADS)
Lu, Hong-peng; Zhang, Li-yun; Han, Xianming L.; Shi, Jianrong
2018-05-01
X-ray stars have been studied since the beginning of X-ray astronomy. Investigating and studying the chromospheric activity from X-ray stellar optical spectra is highly significant in providing insights into stellar magnetic activity. The big data of LAMOST survey provides an opportunity for researching stellar optical spectroscopic properties of X-ray stars. We inferred the physical properties of X-ray stellar sources from the analysis of LAMOST spectra. First, we cross-matched the X-ray stellar catalogue (12254 X-ray stars) from ARXA with LAMOST data release 3 (DR3), and obtained 984 good spectra from 713 X-ray sources. We then visually inspected and assigned spectral type to each spectrum and calculated the equivalent width (EW) of Hα line using the Hammer spectral typing facility. Based on the EW of Hα line, we found 203 spectra of 145 X-ray sources with Hα emission above the continuum. For these spectra we also measured the EWs of Hβ, Hγ, Hδ and Ca ii IRT lines of these spectra. After removing novae, planetary nebulae and OB-type stars, we found there are 127 X-ray late-type stars with Hα line emission. By using our spectra and results from the literature, we found 53 X-ray stars showing Hα variability; these objects are Classical T Tauri stars (CTTs), cataclysmic variables (CVs) or chromospheric activity stars. We also found 18 X-ray stars showing obvious emissions in the Ca ii IRT lines. Of the 18 X-ray stars, 16 are CTTs and 2 are CVs. Finally, we discussed the relationships between the EW of Hα line and X-ray flux.
Shielding calculations for the National Synchrotron Light Source-II experimental beamlines
NASA Astrophysics Data System (ADS)
Job, Panakkal K.; Casey, William R.
2013-01-01
Brookhaven National Laboratory is in the process of building a new Electron storage ring for scientific research using synchrotron radiation. This facility, called the "National Synchrotron Light Source II" (NSLS-II), will provide x-ray radiation of ultra-high brightness and exceptional spatial and energy resolution. It will also provide advanced insertion devices, optics, detectors, and robotics, designed to maximize the scientific output of the facility. The project scope includes the design of an electron storage ring and the experimental beamlines, which stores a maximum of 500 mA electron beam current at an energy of 3.0 GeV. When fully built there will be at least 58 beamlines using synchrotron radiation for experimental programs. It is planned to operate the facility primarily in a top-off mode, thereby maintaining the maximum variation in the synchrotron radiation flux to <1%. Because of the very demanding requirements for synchrotron radiation brilliance for the experiments, each of the 58 beamlines will be unique in terms of the source properties and experimental configuration. This makes the shielding configuration of each of the beamlines unique. The shielding calculation methodology and the results for five representative beamlines of NSLS-II, have been presented in this paper.
NASA Astrophysics Data System (ADS)
Petr, Rodney; Bykanov, Alexander; Freshman, Jay; Reilly, Dennis; Mangano, Joseph; Roche, Maureen; Dickenson, Jason; Burte, Mitchell; Heaton, John
2004-08-01
A high average power dense plasma focus (DPF), x-ray point source has been used to produce ˜70 nm line features in AlGaAs-based monolithic millimeter-wave integrated circuits (MMICs). The DPF source has produced up to 12 J per pulse of x-ray energy into 4π steradians at ˜1 keV effective wavelength in ˜2 Torr neon at pulse repetition rates up to 60 Hz, with an effective x-ray yield efficiency of ˜0.8%. Plasma temperature and electron concentration are estimated from the x-ray spectrum to be ˜170 eV and ˜5.1019 cm-3, respectively. The x-ray point source utilizes solid-state pulse power technology to extend the operating lifetime of electrodes and insulators in the DPF discharge. By eliminating current reversals in the DPF head, an anode electrode has demonstrated a lifetime of more than 5 million shots. The x-ray point source has also been operated continuously for 8 h run times at 27 Hz average pulse recurrent frequency. Measurements of shock waves produced by the plasma discharge indicate that overpressure pulses must be attenuated before a collimator can be integrated with the DPF point source.
X-ray Studies of Unidentified Galactic TeV Gamma-ray Sources
NASA Astrophysics Data System (ADS)
Pühlhofer, Gerd
2009-05-01
Many of the recently discovered Galactic TeV sources remain unidentified to date. A large fraction of the sources is possibly associated with relic pulsar wind nebula (PWN) systems. One key question here is the maximum energy (beyond TeV) attained in the compact PWNe. Hard X-ray emission can trace those particles, but current non-focussing X-ray instruments above 10 keV have difficulties to deconvolve the hard pulsar spectrum from its surrounding nebula. Some of the new TeV sources are also expected to originate from middle-aged and possibly even from old supernova remnants (SNR). But no compelling case for such an identification has been found yet. In established young TeV-emitting SNRs, X-ray imaging above 10 keV could help to disentangle the leptonic from the hadronic emission component in the TeV shells, if secondary electrons produced in hadronic collisions can be effectively detected. As SNRs get older, the high energy electron component is expected to fade away. This may allow to verify the picture through X-ray spectral evolution of the source population. Starting from the lessons we have learned so far from X-ray follow-up observations of unidentified TeV sources, prospects for Simbol-X to resolve open questions in this field will be discussed.
The Discovery of a Second Luminous Low Mass X-ray Binary in the Globular Cluster M15
NASA Technical Reports Server (NTRS)
White, Nicholas E.; Angelini, Lorella
2001-01-01
We report an observation by the Chandra X-ray Observatory of 4U2127+119, the X-ray source identified with the globular cluster M15. The Chandra observation reveals that 4U2127+119 is in fact two bright sources, separated by 2.7". One source is associated with AC21 1, the previously identified optical counterpart to 4U2127+119, a low mass X-ray binary (LMXB). The second source, M15-X2, is coincident with a 19th U magnitude blue star that is 3.3" from the cluster core. The Chandra count rate of M15-X2 is 2.5 times higher than that of AC211. Prior to the 0.5" imaging capability of Chandra the presence of two so closely separated bright sources would not have been resolved, The optical counterpart, X-ray luminosity and spectrum of M15-X2 are consistent with it also being an LMXB system. This is the first time that two LMXBS have been seen to be simultaneously active in a globular cluster. The discovery of a second active LMXB in M15 solves a long standing puzzle where the properties of AC211 appear consistent with it being dominated by an extended accretion disk corona, and yet 4U2127+119 also shows luminous X-ray bursts requiring that the neutron star be directly visible. The resolution of 4U2127+119 into two sources suggests that the X-ray bursts did not come from AC211, but rather from M15X2. We discuss the implications of this discovery for understanding the origin and evolution of LMXBs in GCs as well as X-ray observations of globular clusters in nearby galaxies.
The Discovery of a Second Luminous Low-Mass X-Ray Binary in the Globular Cluster M15
NASA Technical Reports Server (NTRS)
White, Nicholas E.; Angelini, Lorella
2001-01-01
We report an observation by the Chandra X-Ray Observatory of 4U 2127+119, the X-ray source identified with the globular cluster M15. The Chandra observation reveals that 4U 2127+119 is in fact two bright sources, separated by 2.7 arcsec. One source is associated with AC 211, the previously identified optical counterpart to 4U 2127+119, a low-mass X-ray binary (LMXB). The second source, M15 X-2, is coincident with a 19th U magnitude blue star that is 3.3 arcsec from the cluster core. The Chandra count rate of M15 X-2 is 2.5 times higher than that of AC 211. Prior to the 0.5 arcsec imaging capability of Chandra, the presence of two so closely separated bright sources would not have been resolved. The optical counterpart, X-ray luminosity, and spectrum of M15 X-2 are consistent with it also being an LMXB system. This is the first time that two LMXBs have been seen to be simultaneously active in a globular cluster. The discovery of a second active LMXB in M15 solves a long-standing puzzle where the properties of AC 211 appear consistent with it being dominated by an extended accretion disk corona, and yet 4U 2127+119 also shows luminous X-ray bursts requiring that the neutron star be directly visible. The resolution of 4U 2127+119 into two sources suggests that the X-ray bursts did not come from AC 211 but rather from M15 X-2. We discuss the implications of this discovery for understanding the origin and evolution of LMXBs in globular clusters as well as X-ray observations of globular clusters in nearby galaxies.
Barati, B.; Zabihzadeh, M.; Tahmasebi Birgani, M.J.; Chegini, N.; Fatahiasl, J.; Mirr, I.
2018-01-01
Objective: The use of miniature X-ray source in electronic brachytherapy is on the rise so there is an urgent need to acquire more knowledge on X-ray spectrum production and distribution by a dose. The aim of this research was to investigate the influence of target thickness and geometry at the source of miniature X-ray tube on tube output. Method: Five sources were simulated based on problems each with a specific geometric structure and conditions using MCNPX code. Tallies proportional to the output were used to calculate the results for the influence of source geometry on output. Results: The results of this work include the size of the optimal thickness of 5 miniature sources, energy spectrum of the sources per 50 kev and also the axial and transverse dose of simulated sources were calculated based on these thicknesses. The miniature source geometric was affected on the output x-ray tube. Conclusion: The result of this study demonstrates that hemispherical-conical, hemispherical and truncated-conical miniature sources were determined as the most suitable tools. PMID:29732338
The Chandra Deep Field-North Survey and the cosmic X-ray background.
Brandt, W Nielsen; Alexander, David M; Bauer, Franz E; Hornschemeier, Ann E
2002-09-15
Chandra has performed a 1.4 Ms survey centred on the Hubble Deep Field-North (HDF-N), probing the X-ray Universe 55-550 times deeper than was possible with pre-Chandra missions. We describe the detected point and extended X-ray sources and discuss their overall multi-wavelength (optical, infrared, submillimetre and radio) properties. Special attention is paid to the HDF-N X-ray sources, luminous infrared starburst galaxies, optically faint X-ray sources and high-to-extreme redshift active galactic nuclei. We also describe how stacking analyses have been used to probe the average X-ray-emission properties of normal and starburst galaxies at cosmologically interesting distances. Finally, we discuss plans to extend the survey and argue that a 5-10 Ms Chandra survey would lay key groundwork for future missions such as XEUS and Generation-X.
Simulation of a compact analyzer-based imaging system with a regular x-ray source
NASA Astrophysics Data System (ADS)
Caudevilla, Oriol; Zhou, Wei; Stoupin, Stanislav; Verman, Boris; Brankov, J. G.
2017-03-01
Analyzer-based Imaging (ABI) belongs to a broader family of phase-contrast (PC) X-ray techniques. PC measures X-ray deflection phenomena when interacting with a sample, which is known to provide higher contrast images of soft tissue than other X-ray methods. This is of high interest in the medical field, in particular for mammogram applications. This paper presents a simulation tool for table-top ABI systems using a conventional polychromatic X-ray source.
The faint X-ray sources in and out of omega Centauri: X-ray observations and optical identifications
NASA Technical Reports Server (NTRS)
Cool, Adrienne M.; Grindlay, Jonathan E.; Bailyn, Charles D.; Callanan, Paul J.; Hertz, Paul
1995-01-01
We present the results of an observation of the globular cluster omega Cen (NGC 5139) with the Einstein high-resolution imager (HRI). Of the five low-luminosity X-ray sources toward omega Cen which were first identified with the Einstein imaging proportional counter (IPC) (Hertz and Grindlay 1983a, b), two are detected in the Einstein HRI observation: IPC sources A and D. These detections provide source positions accurate to 3 sec-4 sec; the positions are confirmed in a ROSAT HRI observation reported here. Using CCD photometry and spectroscopy, we have identified both sources as foreground dwarf M stars with emission lines (dMe). The chance projection of two Mde stars within approximately 13 min of the center of omega Cen is not extraordinary, given the space density of these stellar coronal X-ray sources. We discuss the possible nature of the three as yet unidentified IPC sources toward omega Cen, and consider the constraints that the Einstein observations place on the total population of X-ray sources in this cluster. The integrated luminosity from faint X-ray sources in omega Cen appears to be low relative to both the old open cluster M67 and the post-core-collapse globular, NGC 6397.
Astronomical Honeymoon Continues as X-Ray Observatory Marks First Anniversary
NASA Astrophysics Data System (ADS)
2000-08-01
NASA's Chandra X-ray Observatory celebrates its initial year in orbit with an impressive list of firsts. Through Chandra's unique X-ray vision, scientists have seen for the first time the full impact of a blast wave from an exploding star, a flare from a brown dwarf, and a small galaxy being cannibalized by a larger one. Chandra is the third in NASA's family of great observatories, complementing the Hubble Space Telescope and the Compton Gamma Ray Observatory. "Our goal is to identify never-before-seen phenomena, whether they're new or millions of years old. All this leads to a better understanding of our universe, " said Martin Weisskopf, chief project scientist for the Chandra program at NASA's Marshall Space Flight Center, Huntsville, AL. "Indeed, Chandra has changed the way we look at the universe." Chandra was launched in July 1999. After only two months in space, the observatory revealed a brilliant ring around the heart of the Crab Pulsar in the Crab Nebula the remains of a stellar explosion providing clues about how the nebula is energized by a pulsing neutron, or collapsed, star. Chandra also detected a faint X-ray source in the Milky Way galaxy, which may be the long-sought X-ray emission from the known massive black hole at the galaxy's center. A black hole is a region of space with so much concentrated mass there is no way for a nearby object, even light, to escape its gravitational pull. The observatory captured as well an image that revealed gas funneling into a massive black hole in the heart of a galaxy, two million light years from our own Milky Way, is much cooler than expected. "Chandra is teaching us to expect the unexpected about all sorts of objects ranging from comets in our solar system and relatively nearby brown dwarfs to distant black holes billions of light years away," said Harvey Tananbaum, director of the Chandra X-ray Center in Cambridge, MA. Perhaps one of Chandra's greatest contributions to X-ray astronomy is the resolution of the X-ray background, a glow throughout the universe whose source or sources are unknown. Astronomers are now pinpointing the various sources of the X-ray glow because Chandra has resolution eight times better than that of previous X-ray telescopes, and is able to detect sources more than 20 times fainter. "The Chandra team had to develop technologies and processes never tried before," said Tony Lavoie, Chandra program manager at Marshall. "One example is that we built and validated a measurement system to make sure the huge cylindrical mirrors of the telescope were ground correctly and polished to the right shape." The polishing effort resulted in an ultra-smooth surface for all eight of Chandra's mirrors. If the state of Colorado were as smooth as the surface of Chandra's mirrors, Pike's Peak would be less than an inch tall. "Chandra has experienced a great first year of discovery and we look forward to many more tantalizing science results as the mission continues," said Alan Bunner, program director, Structure and Evolution of the universe, NASA Headquarters, Washington, DC. Marshall manages the Chandra program for the Office of Space Science, NASA Headquarters. TRW Space and Electronics Group, Redondo Beach, CA, is the prime contractor. Using glass purchased from Schott Glaswerke, Mainz, Germany, the telescope's mirrors were built by Raytheon Optical Systems Inc., Danbury, CT, coated by Optical Coating Laboratory, Inc., Santa Rosa, CA, and assembled and inserted into the telescope portion of Chandra by Eastman Kodak Co., Rochester, NY. The scientific instruments were supplied by collaborations led by Pennsylvania State University, University Park; Smithsonian Astrophysical Observatory, Cambridge, MA; Massachusetts Institute of Technology, Cambridge; and the Space Research Organization Netherlands, Utrecht. The Smithsonian's Chandra X-ray Center controls science and operations from Cambridge, working with astronomers around the globe to record the activities of the universe. To follow Chandra's progress, visit the Chandra site at: http://chandra.harvard.edu AND http://chandra.nasa.gov
The XMM-Newton serendipitous survey. VII. The third XMM-Newton serendipitous source catalogue
NASA Astrophysics Data System (ADS)
Rosen, S. R.; Webb, N. A.; Watson, M. G.; Ballet, J.; Barret, D.; Braito, V.; Carrera, F. J.; Ceballos, M. T.; Coriat, M.; Della Ceca, R.; Denkinson, G.; Esquej, P.; Farrell, S. A.; Freyberg, M.; Grisé, F.; Guillout, P.; Heil, L.; Koliopanos, F.; Law-Green, D.; Lamer, G.; Lin, D.; Martino, R.; Michel, L.; Motch, C.; Nebot Gomez-Moran, A.; Page, C. G.; Page, K.; Page, M.; Pakull, M. W.; Pye, J.; Read, A.; Rodriguez, P.; Sakano, M.; Saxton, R.; Schwope, A.; Scott, A. E.; Sturm, R.; Traulsen, I.; Yershov, V.; Zolotukhin, I.
2016-05-01
Context. Thanks to the large collecting area (3 ×~1500 cm2 at 1.5 keV) and wide field of view (30' across in full field mode) of the X-ray cameras on board the European Space Agency X-ray observatory XMM-Newton, each individual pointing can result in the detection of up to several hundred X-ray sources, most of which are newly discovered objects. Since XMM-Newton has now been in orbit for more than 15 yr, hundreds of thousands of sources have been detected. Aims: Recently, many improvements in the XMM-Newton data reduction algorithms have been made. These include enhanced source characterisation and reduced spurious source detections, refined astrometric precision of sources, greater net sensitivity for source detection, and the extraction of spectra and time series for fainter sources, both with better signal-to-noise. Thanks to these enhancements, the quality of the catalogue products has been much improved over earlier catalogues. Furthermore, almost 50% more observations are in the public domain compared to 2XMMi-DR3, allowing the XMM-Newton Survey Science Centre to produce a much larger and better quality X-ray source catalogue. Methods: The XMM-Newton Survey Science Centre has developed a pipeline to reduce the XMM-Newton data automatically. Using the latest version of this pipeline, along with better calibration, a new version of the catalogue has been produced, using XMM-Newton X-ray observations made public on or before 2013 December 31. Manual screening of all of the X-ray detections ensures the highest data quality. This catalogue is known as 3XMM. Results: In the latest release of the 3XMM catalogue, 3XMM-DR5, there are 565 962 X-ray detections comprising 396 910 unique X-ray sources. Spectra and lightcurves are provided for the 133 000 brightest sources. For all detections, the positions on the sky, a measure of the quality of the detection, and an evaluation of the X-ray variability is provided, along with the fluxes and count rates in 7 X-ray energy bands, the total 0.2-12 keV band counts, and four hardness ratios. With the aim of identifying the detections, a cross correlation with 228 catalogues of sources detected in all wavebands is also provided for each X-ray detection. Conclusions: 3XMM-DR5 is the largest X-ray source catalogue ever produced. Thanks to the large array of data products associated with each detection and each source, it is an excellent resource for finding new and extreme objects. Based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA.The catalogue is available at http://cdsarc.u-strasbg.fr/viz-bin/VizieR?-meta.foot&-source=IX/46
X-ray source development for EXAFS measurements on the National Ignition Facility
Coppari, F.; Thorn, D. B.; Kemp, G. E.; ...
2017-08-28
We present that extended X-ray absorption Fine Structure (EXAFS) measurements require a bright, spectrally smooth, and broad-band x-ray source. In a laser facility, such an x-ray source can be generated by a laser-driven capsule implosion. In order to optimize the x-ray emission, different capsule types and laser irradiations have been tested at the National Ignition Facility (NIF). A crystal spectrometer is used to disperse the x-rays and high efficiency image plate detectors are used to measure the absorption spectra in transmission geometry. Finally, EXAFS measurements at the K-edge of iron at ambient conditions have been obtained for the first timemore » on the NIF laser, and the requirements for optimization have been established.« less
Ault, Stanley K.
1993-01-01
A gauge for detecting the impulse generated in sample materials by X-rays or other impulse producing mechanisms utilizes a pair of flat annular springs to support a plunger relative to a housing which may itself be supported by a pair of flat annular springs in a second housing. The plunger has a mounting plate mounted on one end and at the other, a position or velocity transducer is mounted. The annular springs consist of an outer ring and an inner ring with at least three arcuate members connecting the outer ring with the inner ring.
Ault, S.K.
1993-12-21
A gauge for detecting the impulse generated in sample materials by X-rays or other impulse producing mechanisms utilizes a pair of flat annular springs to support a plunger relative to a housing which may itself be supported by a pair of flat annular springs in a second housing. The plunger has a mounting plate mounted on one end and at the other, a position or velocity transducer is mounted. The annular springs consist of an outer ring and an inner ring with at least three arcuate members connecting the outer ring with the inner ring. 4 figures.
Optical and X-ray studies of Compact X-ray Binaries in NGC 5904
NASA Astrophysics Data System (ADS)
Bhalotia, Vanshree; Beck-Winchatz, Bernhard
2018-06-01
Due to their high stellar densities, globular cluster systems trigger various dynamical interactions, such as the formation of compact X-ray binaries. Stellar collisional frequencies have been correlated to the number of X-ray sources detected in various clusters and we hope to measure this correlation for NGC 5904. Optical fluxes of sources from archival HST images of NGC 5904 have been measured using a DOLPHOT PSF photometry in the UV, optical and near-infrared. We developed a data analysis pipeline to process the fluxes of tens of thousands of objects using awk, python and DOLPHOT. We plot color magnitude diagrams in different photometric bands in order to identify outliers that could be X-ray binaries, since they do not evolve the same way as singular stars. Aligning previously measured astrometric data for X-ray sources in NGC 5904 from Chandra with archival astrometric data from HST will filter out the outlier objects that are not X-ray producing, and provide a sample of compact binary systems that are responsible for X-ray emission in NGC 5904. Furthermore, previously measured X-ray fluxes of NGC 5904 from Chandra have also been used to measure the X-ray to optical flux ratio and identify the types of compact X-ray binaries responsible for the X-ray emissions in NGC 5904. We gratefully acknowledge the support from the Illinois Space Grant Consortium.
Burning plasmas with ultrashort soft-x-ray flashing
NASA Astrophysics Data System (ADS)
Hu, S. X.; Goncharov, V. N.; Skupsky, S.
2012-07-01
Fast ignition with narrow-band coherent x-ray pulses has been revisited for cryogenic deuterium-tritium (DT) plasma conditions achieved on the OMEGA Laser System. In contrast to using hard-x-rays (hv = 3-6 keV) proposed in the original x-ray fast-ignition proposal, we find that soft-x-ray sources with hv ≈ 500 eV photons can be suitable for igniting the dense DT-plasmas achieved on OMEGA. Two-dimensional radiation-hydrodynamics simulations have identified the break-even conditions for realizing such a "hybrid" ignition scheme (direct-drive compression with soft-x-ray heating) with 50-μm-offset targets: ˜10 ps soft-x-ray pulse (hv ≈ 500 eV) with a total energy of 500-1000 J to be focused into a 10 μm spot-size. A variety of x-ray pulse parameters have also been investigated for optimization. It is noted that an order of magnitude increase in neutron yield has been predicted even with x-ray energy as low as ˜50 J. Scaling this idea to a 1 MJ large-scale target, a gain above ˜30 can be reached with the same soft-x-ray pulse at 1.65 kJ energy. Even though such energetic x-ray sources do not currently exist, we hope that the proposed ignition scheme may stimulate efforts on generating powerful soft-x-ray sources in the near future.
EUTERPE, a small electron storage ring for XRF
NASA Astrophysics Data System (ADS)
Botman, J. I. M.; Mutsaers, P. H. A.; Hagedoorn, H. L.; De Voigt, M. J. A.
1990-04-01
A small-sized electron storage ring is under construction at the Eindhoven University of Technology which will cover the energy range of 15 to 400 MeV. At top energy the characteristic wavelength of the synchrotron radiation spectrum is 8.3 nm for the regular dipole magnets and 1.2 nm corresponding to 1.06 keV for a 10 T wiggler magnet. This will provide useful radiation for X-ray fluorescence (XRF) up to 3.2 keV. Alternatively, photon conversion with a high power CO 2 laser beam of 0.124 eV photons will generate X-rays for XRF with energies ranging from 0.5 to 300 keV, depending on the operating energy of the storage ring. This facility will provide an important extension to the activities of the Eindhoven group on PIXE, RBS and microbeam analysis. A short description of the macnine will be given together with applications and specific examples of the XRF method.
X-Ray Spectrometry of Galactic Sources Seen from the Southern Hemisphere.
investigation on glactic X-rays was centered in one experiment carried out in Argentina in November 26, 1969. A balloon-borne equipment was launched in order to detect the X rays from the Centaurus XR-4 source. (Author)
NASA Astrophysics Data System (ADS)
Lacey, Ian; Adam, Jérôme; Centers, Gary P.; Gevorkyan, Gevork S.; Nikitin, Sergey M.; Smith, Brian V.; Yashchuk, Valeriy V.
2017-09-01
The research and development work on the Advanced Light Source (ALS) upgrade to a diffraction limited storage ring light source, ALS-U, has brought to focus the need for near-perfect x-ray optics, capable of delivering light to experiments without significant degradation of brightness and coherence. The desired surface quality is characterized with residual (after subtraction of an ideal shape) surface slope and height errors of <50-100 nrad (rms) and <1-2 nm (rms), respectively. The ex-situ metrology that supports the optimal usage of the optics at the beamlines has to offer even higher measurement accuracy. At the ALS X-Ray Optics Laboratory, we are developing a new surface slope profiler, the Optical Surface Measuring System (OSMS), capable of two-dimensional (2D) surface-slope metrology at an absolute accuracy below the above optical specification. In this article we provide the results of comprehensive characterization of the key elements of the OSMS, a NOM-like high-precision granite gantry system with air-bearing translation and a custom-made precision air-bearing stage for tilting and flipping the surface under test. We show that the high performance of the gantry system allows implementing an original scanning mode for 2D mapping. We demonstrate the efficiency of the developed 2D mapping via comparison with 1D slope measurements performed with the same hyperbolic test mirror using the ALS developmental long trace profiler. The details of the OSMS design and the developed measuring techniques are also provided.
Scatter correction for x-ray conebeam CT using one-dimensional primary modulation
NASA Astrophysics Data System (ADS)
Zhu, Lei; Gao, Hewei; Bennett, N. Robert; Xing, Lei; Fahrig, Rebecca
2009-02-01
Recently, we developed an efficient scatter correction method for x-ray imaging using primary modulation. A two-dimensional (2D) primary modulator with spatially variant attenuating materials is inserted between the x-ray source and the object to separate primary and scatter signals in the Fourier domain. Due to the high modulation frequency in both directions, the 2D primary modulator has a strong scatter correction capability for objects with arbitrary geometries. However, signal processing on the modulated projection data requires knowledge of the modulator position and attenuation. In practical systems, mainly due to system gantry vibration, beam hardening effects and the ramp-filtering in the reconstruction, the insertion of the 2D primary modulator results in artifacts such as rings in the CT images, if no post-processing is applied. In this work, we eliminate the source of artifacts in the primary modulation method by using a one-dimensional (1D) modulator. The modulator is aligned parallel to the ramp-filtering direction to avoid error magnification, while sufficient primary modulation is still achieved for scatter correction on a quasicylindrical object, such as a human body. The scatter correction algorithm is also greatly simplified for the convenience and stability in practical implementations. The method is evaluated on a clinical CBCT system using the Catphan© 600 phantom. The result shows effective scatter suppression without introducing additional artifacts. In the selected regions of interest, the reconstruction error is reduced from 187.2HU to 10.0HU if the proposed method is used.
NASA Technical Reports Server (NTRS)
Arnaud, Keith A. (Editor); Smith, Randall K.; Siemiginowska, Aneta
2011-01-01
X-ray astronomy was born in the aftermath of World War II as military rockets were repurposed to lift radiation detectors above the atmosphere for a few minutes at a time. These early flights detected and studied X-ray emission from the Solar corona. The first sources beyond the Solar System were detected during a rocket flight in 1962 by a team headed by Riccardo Giaccom at American Science and Engineering, a company founded by physicists from MIT. The rocket used Geiger counters with a system designed to reduce non-X-ray backgrounds and collimators limiting the region of sky seen by the counters. As the rocket spun, the field of view (FOV) happened to pass over what was later found to be the brightest non-Solar X-ray source; later designated See X-1. It also detected a uniform background glow which could not be resolved into individual sources. A follow-up campaign using X-ray detectors with better spatial resolution and optical telescopes identified See X-1 as an interacting binary with a compact (neutron star) primary. This success led to further suborbital rocket flights by a number of groups. More X-ray binaries were discovered, as well as X-ray emission from supernova remnants, the radio galaxies M87 and Cygnus-A, and the Coma cluster. Detectors were improved and Geiger counters were replaced by proportional counters, which provided information about energy spectra of the sources. A constant challenge was determining precise positions of sources as only collimators were available.
Observations of the Crab Nebula with the Chandra X-Ray Observatory
NASA Technical Reports Server (NTRS)
Weisskopf, Martin C.
2012-01-01
The Crab Nebula and its pulsar has been the subject of a number of detailed observations with the Chandra X-ray Observatory. The superb angular resolution of Chandra s high-resolution telescope has made possible numerous remarkable results. Here we describe a number of specific studies of the Crab that I and my colleagues have undertaken. We discuss the geometry of the system, which indicates that the "inner X-ray ring", typically identified with the termination shock of the pulsar s particle wind, is most likely not in the equatorial plane of the pulsar. Other topics are the northern wisps and their evolution with time; the characterization of features in the jet to the southeast; pulse-phase spectroscopy and possible correlations with the features at other wavelengths, particularly the optical polarization; and a search for correlations of the X-ray flux with the recently-discovered gamma -ray flares.
A Long Decay of X-Ray Flux and Spectral Evolution in the Supersoft Active Galactic Nucleus GSN 069
NASA Astrophysics Data System (ADS)
Shu, X. W.; Wang, S. S.; Dou, L. M.; Jiang, N.; Wang, J. X.; Wang, T. G.
2018-04-01
GSN 069 is an optically identified very low-mass active galactic nuclei (AGN) that shows supersoft X-ray emission. The source is known to exhibit a huge X-ray outburst, with flux increased by more than a factor of ∼240 compared to the quiescence state. We report its long-term evolution in the X-ray flux and spectral variations over a timescale of ∼decade, using both new and archival X-ray observations from the XMM-Newton and Swift. The new Swift observations detected the source in its lowest level of X-ray activity since the outburst, a factor of ∼4 lower in the 0.2–2 keV flux than that obtained with the XMM-Newton observations nearly eight years ago. Combining with the historical X-ray measurements, we find that the X-ray flux is decreasing slowly. There seemed to be spectral softening associated with the drop of X-ray flux. In addition, we find evidence for the presence of a weak, variable, hard X-ray component, in addition to the dominant thermal blackbody emission reported before. The long decay of X-ray flux and spectral evolution, as well as the supersoft X-ray spectra, suggest that the source could be a tidal disruption event (TDE), though a highly variable AGN cannot be fully ruled out. Further continued X-ray monitoring would be required to test the TDE interpretation, by better determining the flux evolution in the decay phase.
Ahmad, Moiz; Bazalova, Magdalena; Xiang, Liangzhong
2014-01-01
The purpose of this study was to increase the sensitivity of XFCT imaging by optimizing the data acquisition geometry for reduced scatter X-rays. The placement of detectors and detector energy window were chosen to minimize scatter X-rays. We performed both theoretical calculations and Monte Carlo simulations of this optimized detector configuration on a mouse-sized phantom containing various gold concentrations. The sensitivity limits were determined for three different X-ray spectra: a monoenergetic source, a Gaussian source, and a conventional X-ray tube source. Scatter X-rays were minimized using a backscatter detector orientation (scatter direction > 110° to the primary X-ray beam). The optimized configuration simultaneously reduced the number of detectors and improved the image signal-to-noise ratio. The sensitivity of the optimized configuration was 10 µg/mL (10 pM) at 2 mGy dose with the mono-energetic source, which is an order of magnitude improvement over the unoptimized configuration (102 pM without the optimization). Similar improvements were seen with the Gaussian spectrum source and conventional X-ray tube source. The optimization improvements were predicted in the theoretical model and also demonstrated in simulations. The sensitivity of XFCT imaging can be enhanced by an order of magnitude with the data acquisition optimization, greatly enhancing the potential of this modality for future use in clinical molecular imaging. PMID:24770916
Ahmad, Moiz; Bazalova, Magdalena; Xiang, Liangzhong; Xing, Lei
2014-05-01
The purpose of this study was to increase the sensitivity of XFCT imaging by optimizing the data acquisition geometry for reduced scatter X-rays. The placement of detectors and detector energy window were chosen to minimize scatter X-rays. We performed both theoretical calculations and Monte Carlo simulations of this optimized detector configuration on a mouse-sized phantom containing various gold concentrations. The sensitivity limits were determined for three different X-ray spectra: a monoenergetic source, a Gaussian source, and a conventional X-ray tube source. Scatter X-rays were minimized using a backscatter detector orientation (scatter direction > 110(°) to the primary X-ray beam). The optimized configuration simultaneously reduced the number of detectors and improved the image signal-to-noise ratio. The sensitivity of the optimized configuration was 10 μg/mL (10 pM) at 2 mGy dose with the mono-energetic source, which is an order of magnitude improvement over the unoptimized configuration (102 pM without the optimization). Similar improvements were seen with the Gaussian spectrum source and conventional X-ray tube source. The optimization improvements were predicted in the theoretical model and also demonstrated in simulations. The sensitivity of XFCT imaging can be enhanced by an order of magnitude with the data acquisition optimization, greatly enhancing the potential of this modality for future use in clinical molecular imaging.
Kinnel, R. B.; Dieter, R. K.; Meinwald, J.; Van Engen, D.; Clardy, J.; Eisner, T.; Stallard, M. O.; Fenical, W.
1979-01-01
Two straight-chain C15 fish antifeedants have been isolated from the sea hare Aplysia brasiliana. Chemical, spectral, and x-ray diffraction studies led to the characterization of these medium-ring ethers as brasilenyne (2) and cis-dihydrorhodophytin (3). The oxonin ring system of 2 is novel in nature. Biosynthetic considerations permit the postulation that a third compound, a noncrystalline congener of these compounds, is cis-isodihydrohodophytin (4). PMID:16592687
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, S.-W., E-mail: sunsw0819@163.com; Zhang, X., E-mail: zhangx@hit.edu.cn; Wang, G.-F.
A series of 2-arylidenebenzocycloalkanones containing heterocyclic rings 1–8 were prepared and characterized by IR, {sup 1}H NMR and elemental analyses. X-ray diffraction study of 6 reveals that the cyclohexyl ring of the 3,4-dihydronaphthalen-1(2H)-one adopts a chair conformation with a maximum deviation of 0.547(3) Å and makes dihedral angles of 52.24(17)° and 11.23(16)°, respectively, with the benzene plane and the mean plane of the benzimidazole ring.
Perspectives of the lobster-eye telescope: The promising types of cosmic X-ray sources
NASA Astrophysics Data System (ADS)
Šimon, V.
2017-07-01
We show the astrophysical aspects of observing the X-ray sky with the planned lobster-eye telescope. This instrument is important because it is able to provide wide-field X-ray imaging. For the testing observations, we propose to include also X-ray binaries in which matter transfers onto the compact object (mostly the neutron star). We show the typical features of the long-term X-ray activity of such objects. Observing in the soft X-ray band is the most promising because their X-ray intensity is the highest in this band. Since these X-ray sources tend to concentrate toward the center of our Galaxy, several of them can be present in the field of view of the tested instrument.
Development of a stationary chest tomosynthesis system using carbon nanotube x-ray source array
NASA Astrophysics Data System (ADS)
Shan, Jing
X-ray imaging system has shown its usefulness for providing quick and easy access of imaging in both clinic settings and emergency situations. It greatly improves the workflow in hospitals. However, the conventional radiography systems, lacks 3D information in the images. The tissue overlapping issue in the 2D projection image result in low sensitivity and specificity. Both computed tomography and digital tomosynthesis, the two conventional 3D imaging modalities, requires a complex gantry to mechanically translate the x-ray source to various positions. Over the past decade, our research group has developed a carbon nanotube (CNT) based x-ray source technology. The CNT x-ray sources allows compacting multiple x-ray sources into a single x-ray tube. Each individual x-ray source in the source array can be electronically switched. This technology allows development of stationary tomographic imaging modalities without any complex mechanical gantries. The goal of this work is to develop a stationary digital chest tomosynthesis (s-DCT) system, and implement it for a clinical trial. The feasibility of s-DCT was investigated. It is found that the CNT source array can provide sufficient x-ray output for chest imaging. Phantom images have shown comparable image qualities as conventional DCT. The s-DBT system was then used to study the effects of source array configurations and tomosynthesis image quality, and the feasibility of a physiological gated s-DCT. Using physical measures for spatial resolution, the 2D source configuration was shown to have improved depth resolution and comparable in-plane resolution. The prospective gated tomosynthesis images have shown substantially reduction of image blur associated with lung motions. The system was also used to investigate the feasibility of using s-DCT as a diagnosis and monitoring tools for cystic fibrosis patients. A new scatter reduction methods for s-DCT was also studied. Finally, a s-DCT system was constructed by retrofitting the source array to a Carestream digital radiography system. The system passed the electrical and radiation safety tests, and was installed in Marsico Hall. The patient trial started in March of 2015, and the first patient was successfully imaged.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kayser, Y., E-mail: yves.kayser@psi.ch; Paul Scherrer Institut, 5232 Villigen-PSI; Błachucki, W.
2014-04-15
The high-resolution von Hamos bent crystal spectrometer of the University of Fribourg was upgraded with a focused X-ray beam source with the aim of performing micro-sized X-ray fluorescence (XRF) measurements in the laboratory. The focused X-ray beam source integrates a collimating optics mounted on a low-power micro-spot X-ray tube and a focusing polycapillary half-lens placed in front of the sample. The performances of the setup were probed in terms of spatial and energy resolution. In particular, the fluorescence intensity and energy resolution of the von Hamos spectrometer equipped with the novel micro-focused X-ray source and a standard high-power water-cooled X-raymore » tube were compared. The XRF analysis capability of the new setup was assessed by measuring the dopant distribution within the core of Er-doped SiO{sub 2} optical fibers.« less
Experimental and theoretical studies of 3-benzyloxy-2-nitropyridine
NASA Astrophysics Data System (ADS)
Sun, Wenting; Cui, Yu; Liu, Huimin; Zhao, Haitao; Zhang, Wenqin
2012-10-01
The structure of 3-benzyloxy-2-nitropyridine has been investigated both experimentally and theoretically. The X-ray crystallography results show that the nitro group is tilted out of the pyridine ring plane by 66.4(4)°, which is mainly attributed to the electron-electron repulsions of the lone pairs in O atom of the 3-benzyloxy moiety with O atom in nitro group. An interesting centrosymmetric π-stacking molecular pair has been found in the crystalline state, which results in the approximate coplanarity of the pyridine ring with the benzene ring. The calculated results show that the dihedral angle between the nitro group and pyridine ring from the X3LYP method is much closer to the experimental data than that from the M06-2X one. The existing two conformational isomers of 3-benzyloxy-2-nitropyridine with equal energy explain well the disorder of the nitro group at room temperature. In addition, the vibrational frequencies are also calculated by the X3LYP and M06-2X methods and compared with the experimental results. The prediction from the X3LYP method coincides with the locations of the experimental frequencies well.
Chandra Observations of the X-Ray Environs of SN 1998BW / GRB 980425
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kouveliotou , C.
2004-07-14
We report X-ray studies of the environs of SN 1998bw and GRB 980425 using the Chandra X-Ray Observatory 1281 days after the GRB. Eight X-ray point sources were localized, three and .ve each in the original error boxes--S1 and S2--assigned for variable X-ray counterparts to the GRB by BeppoSAX. The sum of the discrete X-ray sources plus continuous emission in S2 observed by CXO on day 1281 is within a factor of 1.5 of the maximum and the upper limits seen by BeppoSAX. We conclude that S2 is the sum of several variable sources that have not disappeared, and thereforemore » is not associated with the GRB. Within S1, clear evidence is seen for a decline of approximately a factor of 12 between day 200 and day 1281. One of the sources in S1, S1a, is coincident with the well-determined radio location of SN 1998bw, and is certainly the remnant of that explosion. The nature of the other sources is also discussed. Combining our observation of the supernova with others of the GRB afterglow, a smooth X-ray light curve, spanning {approx} 1300 days, is obtained by assuming the burst and supernova were coincident at 35.6 Mpc. When this X-ray light curve is compared with those of the X-ray ''afterglows'' of ordinary GRBs, X-ray Flashes, and ordinary supernovae, evidence emerges for at least two classes of lightcurves, perhaps bounding a continuum. By three to ten years, all these phenomena seem to converge on a common X-ray luminosity, possibly indicative of the supernova underlying them all. This convergence strengthens the conclusion that SN 1998bw and GRB 980425 took place in the same object. One possible explanation for the two classes is a (nearly) standard GRB observed at different angles, in which case X-ray afterglows with intermediate luminosities should eventually be discovered. Finally, we comment on the contribution of GRBs to the ULX source population.« less
TH-F-209-01: Pitfalls: Reliability and Performance of Diagnostic X-Ray Sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Behling, R.
Purpose: Performance and reliability of medical X-ray tubes for imaging are crucial from an ethical, clinical and economic perspective. This lecture will deliver insight into the aspects to consider during the decision making process to invest in X-ray imaging equipment. Outdated metric still hampers realistic product comparison. It is time to change this and to comply with latest standards, which consider current technology. Failure modes and ways to avoid down-time of the equipment shall be discussed. In view of the increasing number of interventional procedures and the hazards associated with ionizing radiation, toxic contrast agents, and the combination thereof, themore » aspect of system reliability is of paramount importance. Methods: A comprehensive picture of trends for different modalities (CT, angiography, general radiology) has been drawn and led to the development of novel X-ray tube technology. Results: Recent X-ray tubes feature enhanced reliability and unprecedented performance. Relevant metrics for product comparison still have to be implemented in practice. Conclusion: The speed of scientific and industrial development of new diagnostic and therapeutic X-ray sources remains tremendous. Still, users suffer from gaps between desire and reality in day-to-day diagnostic routine. X-ray sources are still limiting cutting-edge medical procedures. Side-effects of wear and tear, limitations of the clinical work flow, costs, the characteristics of the X-ray spectrum and others topics need to be further addressed. New applications and modalities, like detection-based color-resolved X-ray and phase-contrast / dark-field imaging will impact the course of new developments of X-ray sources. Learning Objectives: Understand the basic requirements on medical diagnostic X-ray sources per modality Learn to select the optimal equipment employing state-of-the-art metric Know causes of failures, depending on the way X-ray sources are operated Understand methods to remediate critical situations Understand the meaning of different warranty models I am employee of Royal Philips; R. Behling, No external funding. I am employee of Royal Philips.« less
TH-F-209-00: Pitfalls: Reliability and Performance of Diagnostic X-Ray Sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
Purpose: Performance and reliability of medical X-ray tubes for imaging are crucial from an ethical, clinical and economic perspective. This lecture will deliver insight into the aspects to consider during the decision making process to invest in X-ray imaging equipment. Outdated metric still hampers realistic product comparison. It is time to change this and to comply with latest standards, which consider current technology. Failure modes and ways to avoid down-time of the equipment shall be discussed. In view of the increasing number of interventional procedures and the hazards associated with ionizing radiation, toxic contrast agents, and the combination thereof, themore » aspect of system reliability is of paramount importance. Methods: A comprehensive picture of trends for different modalities (CT, angiography, general radiology) has been drawn and led to the development of novel X-ray tube technology. Results: Recent X-ray tubes feature enhanced reliability and unprecedented performance. Relevant metrics for product comparison still have to be implemented in practice. Conclusion: The speed of scientific and industrial development of new diagnostic and therapeutic X-ray sources remains tremendous. Still, users suffer from gaps between desire and reality in day-to-day diagnostic routine. X-ray sources are still limiting cutting-edge medical procedures. Side-effects of wear and tear, limitations of the clinical work flow, costs, the characteristics of the X-ray spectrum and others topics need to be further addressed. New applications and modalities, like detection-based color-resolved X-ray and phase-contrast / dark-field imaging will impact the course of new developments of X-ray sources. Learning Objectives: Understand the basic requirements on medical diagnostic X-ray sources per modality Learn to select the optimal equipment employing state-of-the-art metric Know causes of failures, depending on the way X-ray sources are operated Understand methods to remediate critical situations Understand the meaning of different warranty models I am employee of Royal Philips; R. Behling, No external funding. I am employee of Royal Philips.« less
Galactic Starburst NGC 3603 from X-Rays to Radio
NASA Technical Reports Server (NTRS)
Moffat, A. F. J.; Corcoran, M. F.; Stevens, I. R.; Skalkowski, G.; Marchenko, S. V.; Muecke, A.; Ptak, A.; Koribalski, B. S.; Brenneman, L.; Mushotzky, R.;
2002-01-01
NGC 3603 is the most massive and luminous visible starburst region in the Galaxy. We present the first Chandra/ACIS-I X-ray image and spectra of this dense, exotic object, accompanied by deep cm-wavelength ATCA radio image at similar or less than 1 inch spatial resolution, and HST/ground-based optical data. At the S/N greater than 3 level, Chandra detects several hundred X-ray point sources (compared to the 3 distinct sources seen by ROSAT). At least 40 of these sources are definitely associated with optically identified cluster O and WR type members, but most are not. A diffuse X-ray component is also seen out to approximately 2 feet (4 pc) form the center, probably arising mainly from the large number of merging/colliding hot stellar winds and/or numerous faint cluster sources. The point-source X-ray fluxes generally increase with increasing bolometric brightnesses of the member O/WR stars, but with very large scatter. Some exceptionally bright stellar X-ray sources may be colliding wind binaries. The radio image shows (1) two resolved sources, one definitely non-thermal, in the cluster core near where the X-ray/optically brightest stars with the strongest stellar winds are located, (2) emission from all three known proplyd-like objects (with thermal and non-thermal components, and (3) many thermal sources in the peripheral regions of triggered star-formation. Overall, NGC 3603 appears to be a somewhat younger and hotter, scaled-down version of typical starbursts found in other galaxies.
Testing a double AGN hypothesis for Mrk 273
NASA Astrophysics Data System (ADS)
Iwasawa, K.; U, V.; Mazzarella, J. M.; Medling, A. M.; Sanders, D. B.; Evans, A. S.
2018-04-01
The ultra-luminous infrared galaxy (ULIRG) Mrk 273 contains two infrared nuclei, N and SW, separated by 1 arcsecond. A Chandra observation has identified the SW nucleus as an absorbed X-ray source with NH 4 × 1023 cm-2 but also hinted at the possible presence of a Compton-thick AGN in the N nucleus, where a black hole of 109 M⊙ is inferred from the ionized gas kinematics. The intrinsic X-ray spectral slope recently measured by NuSTAR is unusually hard (Γ 1.3) for a Seyfert nucleus, for which we seek an alternative explanation. We hypothesize a strongly absorbed X-ray source in N, of which X-ray emission rises steeply above 10 keV, in addition to the known X-ray source in SW, and test it against the NuSTAR data, assuming the standard spectral slope (Γ = 1.9). This double X-ray source model gives a good explanation of the hard continuum spectrum, deep Fe K absorption edge, and strong Fe K line observed in this ULIRG, without invoking the unusual spectral slope required for a single source interpretation. The putative X-ray source in N is found to be absorbed by NH = 1.4+0.7-0.4 × 1024 cm-2. The estimated 2-10 keV luminosity of the N source is 1.3 × 1043 erg s-1, about a factor of 2 larger than that of SW during the NuSTAR observation. Uncorrelated variability above and below 10 keV between the Suzaku and NuSTAR observations appears to support the double source interpretation. Variability in spectral hardness and Fe K line flux between the previous X-ray observations is also consistent with this picture.
A Compact Soft X-Ray Microscope using an Electrode-less Z-Pinch Source.
Horne, S F; Silterra, J; Holber, W
2009-01-01
Soft X-rays (< 1Kev) are of medical interest both for imaging and microdosimetry applications. X-ray sources at this low energy present a technological challenge. Synchrotrons, while very powerful and flexible, are enormously expensive national research facilities. Conventional X-ray sources based on electron bombardment can be compact and inexpensive, but low x-ray production efficiencies at low electron energies restrict this approach to very low power applications. Laser-based sources tend to be expensive and unreliable. Energetiq Technology, Inc. (Woburn, MA, USA) markets a 92 eV, 10W(2pi sr) electrode-less Z-pinch source developed for advanced semiconductor lithography. A modified version of this commercial product has produced 400 mW at 430 eV (2pi sr), appropriate for water window soft X-ray microscopy. The US NIH has funded Energetiq to design and construct a demonstration microscope using this source, coupled to a condenser optic, as the illumination system. The design of the condenser optic matches the unique characteristics of the source to the illumination requirements of the microscope, which is otherwise a conventional design. A separate program is underway to develop a microbeam system, in conjunction with the RARAF facility at Columbia University, NY, USA. The objective is to develop a focused, sub-micron beam capable of delivering > 1 Gy/second to the nucleus of a living cell. While most facilities of this type are coupled to a large and expensive particle accelerator, the Z-pinch X-ray source enables a compact, stand-alone design suitable to a small laboratory. The major technical issues in this system involve development of suitable focusing X-ray optics. Current status of these programs will be reported.
A Compact Soft X-Ray Microscope using an Electrode-less Z-Pinch Source
Silterra, J; Holber, W
2009-01-01
Soft X-rays (< 1Kev) are of medical interest both for imaging and microdosimetry applications. X-ray sources at this low energy present a technological challenge. Synchrotrons, while very powerful and flexible, are enormously expensive national research facilities. Conventional X-ray sources based on electron bombardment can be compact and inexpensive, but low x-ray production efficiencies at low electron energies restrict this approach to very low power applications. Laser-based sources tend to be expensive and unreliable. Energetiq Technology, Inc. (Woburn, MA, USA) markets a 92 eV, 10W(2pi sr) electrode-less Z-pinch source developed for advanced semiconductor lithography. A modified version of this commercial product has produced 400 mW at 430 eV (2pi sr), appropriate for water window soft X-ray microscopy. The US NIH has funded Energetiq to design and construct a demonstration microscope using this source, coupled to a condenser optic, as the illumination system. The design of the condenser optic matches the unique characteristics of the source to the illumination requirements of the microscope, which is otherwise a conventional design. A separate program is underway to develop a microbeam system, in conjunction with the RARAF facility at Columbia University, NY, USA. The objective is to develop a focused, sub-micron beam capable of delivering > 1 Gy/second to the nucleus of a living cell. While most facilities of this type are coupled to a large and expensive particle accelerator, the Z-pinch X-ray source enables a compact, stand-alone design suitable to a small laboratory. The major technical issues in this system involve development of suitable focusing X-ray optics. Current status of these programs will be reported. PMID:20198115
The Integration Process of Very Thin Mirror Shells with a Particular Regard to Simbol-X
NASA Astrophysics Data System (ADS)
Basso, S.; Pareschi, G.; Tagliaferri, G.; Mazzoleni, F.; Valtolina, R.; Citterio, O.; Conconi, P.
2009-05-01
The optics of Simbol-X are very thin compared to previous X-ray missions (like XMM). Therefore their shells floppy and are unable to maintain the correct shape. To avoid the deformations of their very thin X-ray optics during the integration process we adopt two stiffening rings with a good roundness. In this article the procedure used for the first three prototypes of the Simbol-X optics is presented with a description of the problems involved and with an analysis of the degradation of the performances during the integration. This analysis has been performed with the UV vertical bench measurements at INAF-OAB.
Generation of complete source samples from the Slew Survey
NASA Technical Reports Server (NTRS)
Schachter, Jonathan
1992-01-01
The Einstein Slew Survey consists of 819 bright X-ray sources, of which 636 (or 78 percent) are identified with counterparts in standard catalogs. We argue for the importance of bright X-ray surveys, and compare the slew results to the ROSAT all-sky survey. Also, we discuss statistical techniques for minimizing confusion in arcminute error circles in digitized data. We describe the 238 Slew Survey AGN, clusters, and BL Lac objects identified to date and their implications for logN-logS and source evolution studies. Also given is a catalog of 1075 sources detected in the Einstein Imaging Proportional Counter (IPC) Slew Survey of the X-ray sky. Five hundred fifty-four of these sources were not previously known as X-ray sources.
Overview of nanoscale NEXAFS performed with soft X-ray microscopes.
Guttmann, Peter; Bittencourt, Carla
2015-01-01
Today, in material science nanoscale structures are becoming more and more important. Not only for the further miniaturization of semiconductor devices like carbon nanotube based transistors, but also for newly developed efficient energy storage devices, gas sensors or catalytic systems nanoscale and functionalized materials have to be analysed. Therefore, analytical tools like near-edge X-ray absorption fine structure (NEXAFS) spectroscopy has to be applied on single nanostructures. Scanning transmission X-ray microscopes (STXM) as well as full-field transmission X-ray microscopes (TXM) allow the required spatial resolution to study individual nanostructures. In the soft X-ray energy range only STXM was used so far for NEXAFS studies. Due to its unique setup, the TXM operated by the Helmholtz-Zentrum Berlin (HZB) at the electron storage ring BESSY II is the first one in the soft X-ray range which can be used for NEXAFS spectroscopy studies which will be shown in this review. Here we will give an overview of the different microscopes used for NEXAFS studies and describe their advantages and disadvantages for different samples.
So You Think the Crab is Described by a Power-Law Spectrum
NASA Technical Reports Server (NTRS)
Weisskopf, Martin C.
2008-01-01
X-ray observations of the Crab Nebula and its pulsar have played a prominent role in the history of X-ray astronomy. Discoveries range from the detection of the X-ray Nebula and pulsar and the measurement of the Nebula-averaged X-ray polarization, to the observation of complex X-ray morphology, including jets emanating from the pulsar and the ring defining the shocked pulsar wind. The synchrotron origin of much of the radiation has been deduced by detailed studies across the electromagnetic spectrum, yet has fooled many X-ray astronomers into believing that the integrated spectrum from this system ought to be a power law. In many cases, this assumption has led observers to adjust the experiment response function(s) to guarantee such a result. We shall discuss why one should not observe a power-law spectrum, and present simulations using the latest available response matrices showing what should have been observed for a number of representative cases including the ROSAT IPC, XMM-Newton, and RXTE. We then discuss the implications, if any, for current calibrations.
Optics for coherent X-ray applications
Yabashi, Makina; Tono, Kensuke; Mimura, Hidekazu; Matsuyama, Satoshi; Yamauchi, Kazuto; Tanaka, Takashi; Tanaka, Hitoshi; Tamasaku, Kenji; Ohashi, Haruhiko; Goto, Shunji; Ishikawa, Tetsuya
2014-01-01
Developments of X-ray optics for full utilization of diffraction-limited storage rings (DLSRs) are presented. The expected performance of DLSRs is introduced using the design parameters of SPring-8 II. To develop optical elements applicable to manipulation of coherent X-rays, advanced technologies on precise processing and metrology were invented. With propagation-based coherent X-rays at the 1 km beamline of SPring-8, a beryllium window fabricated with the physical-vapour-deposition method was found to have ideal speckle-free properties. The elastic emission machining method was utilized for developing reflective mirrors without distortion of the wavefronts. The method was further applied to production of diffraction-limited focusing mirrors generating the smallest spot size in the sub-10 nm regime. To enable production of ultra-intense nanobeams at DLSRs, a low-vibration cooling system for a high-heat-load monochromator and advanced diagnostic systems to characterize X-ray beam properties precisely were developed. Finally, new experimental schemes for combinative nano-analysis and spectroscopy realised with novel X-ray optics are discussed. PMID:25177986
Karydas, Andreas Germanos; Czyzycki, Mateusz; Leani, Juan José; Migliori, Alessandro; Osan, Janos; Bogovac, Mladen; Wrobel, Pawel; Vakula, Nikita; Padilla-Alvarez, Roman; Menk, Ralf Hendrik; Gol, Maryam Ghahremani; Antonelli, Matias; Tiwari, Manoj K; Caliri, Claudia; Vogel-Mikuš, Katarina; Darby, Iain; Kaiser, Ralf Bernd
2018-01-01
The International Atomic Energy Agency (IAEA) jointly with the Elettra Sincrotrone Trieste (EST) operates a multipurpose X-ray spectrometry endstation at the X-ray Fluorescence beamline (10.1L). The facility has been available to external users since the beginning of 2015 through the peer-review process of EST. Using this collaboration framework, the IAEA supports and promotes synchrotron-radiation-based research and training activities for various research groups from the IAEA Member States, especially those who have limited previous experience and resources to access a synchrotron radiation facility. This paper aims to provide a broad overview about various analytical capabilities, intrinsic features and performance figures of the IAEA X-ray spectrometry endstation through the measured results. The IAEA-EST endstation works with monochromatic X-rays in the energy range 3.7-14 keV for the Elettra storage ring operating at 2.0 or 2.4 GeV electron energy. It offers a combination of different advanced analytical probes, e.g. X-ray reflectivity, X-ray absorption fine-structure measurements, grazing-incidence X-ray fluorescence measurements, using different excitation and detection geometries, and thereby supports a comprehensive characterization for different kinds of nanostructured and bulk materials.
X-Ray Properties of the Youngest Radio Sources and Their Environments
NASA Astrophysics Data System (ADS)
Siemiginowska, Aneta; Sobolewska, Małgosia; Migliori, Giulia; Guainazzi, Matteo; Hardcastle, Martin; Ostorero, Luisa; Stawarz, Łukasz
2016-05-01
We present the first results from our X-ray study of young radio sources classified as compact symmetric objects (CSOs). Using the Chandra X-ray Observatory we observed six CSOs for the first time in X-rays, and re-observed four CSOs already observed with XMM-Newton or BeppoSAX. We also included six other CSOs with archival data to built a pilot study of a sample of the 16 CSO sources observed in X-rays to date. All the sources are nearby, z\\lt 1, and the age of their radio structures (\\lt 3000 yr) has been derived from the expansion velocity of their hot spots. Our results show the heterogeneous nature of the CSOs’ X-ray emission, indicating a complex environment associated with young radio sources. The sample covers a range in X-ray luminosity, {L}2{--10{keV}}˜ {10}41-1045 erg s-1, and intrinsic absorbing column density of {N}{{H}}≃ {10}21-1022 cm-2. In particular, we detected extended X-ray emission in 1718-649 a hard photon index of {{Γ }}≃ 1 in 2021+614 and 1511+0518 consistent with either a Compton-thick absorber or non-thermal emission from compact radio lobes, and in 0710+439 an ionized iron emission line at {E}{rest}=(6.62+/- 0.04) keV and EW ˜ 0.15-1.4 keV, and a decrease by an order of magnitude in the 2-10 keV flux since the 2008 XMM-Newton observation in 1607+26. We conclude that our pilot study of CSOs provides a variety of exceptional diagnostics and highlights the importance of deep X-ray observations of large samples of young sources. This is necessary in order to constrain theoretical models for the earliest stage of radio source evolution and to study the interactions of young radio sources with the interstellar environment of their host galaxies.
Resolved atomic lines reveal outflows in two ultraluminous X-ray sources.
Pinto, Ciro; Middleton, Matthew J; Fabian, Andrew C
2016-05-05
Ultraluminous X-ray sources are extragalactic, off-nucleus, point sources in galaxies, and have X-ray luminosities in excess of 3 × 10(39) ergs per second. They are thought to be powered by accretion onto a compact object. Possible explanations include accretion onto neutron stars with strong magnetic fields, onto stellar-mass black holes (of up to 20 solar masses) at or in excess of the classical Eddington limit, or onto intermediate-mass black holes (10(3)-10(5) solar masses). The lack of sufficient energy resolution in previous analyses has prevented an unambiguous identification of any emission or absorption lines in the X-ray band, thereby precluding a detailed analysis of the accretion flow. Here we report the presence of X-ray emission lines arising from highly ionized iron, oxygen and neon with a cumulative significance in excess of five standard deviations, together with blueshifted (about 0.2 times light velocity) absorption lines of similar significance, in the high-resolution X-ray spectra of the ultraluminous X-ray sources NGC 1313 X-1 and NGC 5408 X-1. The blueshifted absorption lines must occur in a fast-outflowing gas, whereas the emission lines originate in slow-moving gas around the source. We conclude that the compact object in each source is surrounded by powerful winds with an outflow velocity of about 0.2 times that of light, as predicted by models of accreting supermassive black holes and hyper-accreting stellar-mass black holes.
Time Projection Chamber Polarimeters for X-ray Astrophysics
NASA Astrophysics Data System (ADS)
Hill, Joanne; Black, Kevin; Jahoda, Keith
2015-04-01
Time Projection Chamber (TPC) based X-ray polarimeters achieve the sensitivity required for practical and scientifically significant astronomical observations, both galactic and extragalactic, with a combination of high analyzing power and good quantum efficiency. TPC polarimeters at the focus of an X-ray telescope have low background and large collecting areas providing the ability to measure the polarization properties of faint persistent sources. TPCs based on drifting negative ions rather than electrons permit large detector collecting areas with minimal readout electronics enabling wide field of view polarimeters for observing unpredictable, bright transient sources such as gamma-ray bursts. We described here the design and expected performance of two different TPC polarimeters proposed for small explorer missions: The PRAXyS (Polarimetry of Relativistic X-ray Sources) X-ray Polarimeter Instrument, optimized for observations of faint persistent sources and the POET (Polarimetry of Energetic Transients) Low Energy Polarimeter, designed to detect and measure bright transients. also NASA/GSFC.
Efficient graphite ring heater suitable for diamond-anvil cells to 1300 K
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du Zhixue; Amulele, George; Lee, Kanani K. M.
In order to generate homogeneous high temperatures at high pressures, a ring-shaped graphite heater has been developed to resistively heat diamond-anvil cell (DAC) samples up to 1300 K. By putting the heater in direct contact with the diamond anvils, this graphite heater design features the following advantages: (1) efficient heating: sample can be heated to 1300 K while the DAC body temperature remains less than 800 K, eliminating the requirement of a special alloy for the DAC; (2) compact design: the sample can be analyzed with in situ measurements, e.g., x-ray, optical, and electrical probes are possible. In particular, themore » side access of the heater allows for radial x-ray diffraction (XRD) measurements in addition to traditional axial XRD.« less
Smith, Kevin T.; Balouet, Jean Christophe; Shortle, Walter C.; Chalot, Michel; Beaujard, François; Grudd, Håkan; Vroblesky, Don A.; Burkem, Joel G.
2014-01-01
Energy dispersive X-ray fluorescence (EDXRF) provides highly sensitive and precise spatial resolution of cation content in individual annual growth rings in trees. The sensitivity and precision have prompted successful applications to forensic dendrochemistry and the timing of environmental releases of contaminants. These applications have highlighted the need to distinguish dendrochemical effects of internal processes from environmental contamination. Calcium, potassium, and zinc are three marker cations that illustrate the influence of these processes. We found changes in cation chemistry in tree rings potentially due to biomineralization, development of cracks or checks, heartwood/sapwood differentiation, intra-annual processes, and compartmentalization of infection. Distinguishing internal from external processes that affect dendrochemistry will enhance the value of EDXRF for both physiological and forensic investigations.
NASA Astrophysics Data System (ADS)
Udhaya Kumar, C.; Sethukumar, A.; Agilandeshwari, R.; Arul Prakasam, B.; Vidhyasagar, T.; Sillanpää, Mika
2014-02-01
An efficient and multifunctional three component synthetic protocol was developed to synthesize ethyl 6-amino-4-aryl-5-cyano-2-propyl-4H-pyran-3-carboxylates from ethyl 3-oxohexanoate, malononitrile and corresponding aldehydes (1a-11a) using K2CO3 as a catalyst under water solvent in good yields. The derived compounds have been analyzed by IR and NMR (1D and 2D) spectra. Single crystal X-ray structural analysis of 2a, evidences the flattened-boat conformation of pyran ring and the phenyl group is nearly perpendicular to the pyran ring.
Synthetic strategy for preparing chiral double-semicrystalline polyether block copolymers
McGrath, Alaina J.; Shi, Weichao; Rodriguez, Christina G.; ...
2014-12-11
Here, we report an effective strategy for the synthesis of semi-crystalline block copolyethers with well-defined architecture and stereochemistry. As an exemplary system, triblock copolymers containing either atactic (racemic) or isotactic ( R or S) poly(propylene oxide) end blocks with a central poly(ethylene oxide) mid-block were prepared by anionic ring-opening procedures. Stereochemical control was achieved by an initial hydrolytic kinetic resolution of racemic terminal epoxides followed by anionic ring-opening polymerization of the enantiopure monomer feedstock. The resultant triblock copolymers were highly isotactic (meso triads [ mm]% ~ 90%) with optical microscopy, differential scanning calorimetry, wide angle x-ray scattering and small anglemore » x-ray scattering being used to probe the impact of the isotacticity on the resultant polymer and hydrogel properties.« less
Beyond crystallography: Diffractive imaging using coherent x-ray light sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miao, J.; Ishikawa, T.; Robinson, I. K.
X-ray crystallography has been central to the development of many fields of science over the past century. It has now matured to a point that as long as good-quality crystals are available, their atomic structure can be routinely determined in three dimensions. However, many samples in physics, chemistry, materials science, nanoscience, geology, and biology are noncrystalline, and thus their three-dimensional structures are not accessible by traditional x-ray crystallography. Overcoming this hurdle has required the development of new coherent imaging methods to harness new coherent x-ray light sources. Here we review the revolutionary advances that are transforming x-ray sources and imagingmore » in the 21st century.« less
Coherent X-ray imaging across length scales
NASA Astrophysics Data System (ADS)
Munro, P. R. T.
2017-04-01
Contemporary X-ray imaging techniques span a uniquely wide range of spatial resolutions, covering five orders of magnitude. The evolution of X-ray sources, from the earliest laboratory sources through to highly brilliant and coherent free-electron lasers, has been key to the development of these imaging techniques. This review surveys the predominant coherent X-ray imaging techniques with fields of view ranging from that of entire biological organs, down to that of biomolecules. We introduce the fundamental principles necessary to understand the image formation for each technique as well as briefly reviewing coherent X-ray source development. We present example images acquired using a selection of techniques, by leaders in the field.
Parker, S.
1995-10-24
A filmless X-ray imaging system includes at least one X-ray source, upper and lower collimators, and a solid-state detector array, and can provide three-dimensional imaging capability. The X-ray source plane is distance z{sub 1} above upper collimator plane, distance z{sub 2} above the lower collimator plane, and distance z{sub 3} above the plane of the detector array. The object to be X-rayed is located between the upper and lower collimator planes. The upper and lower collimators and the detector array are moved horizontally with scanning velocities v{sub 1}, v{sub 2}, v{sub 3} proportional to z{sub 1}, z{sub 2} and z{sub 3}, respectively. The pattern and size of openings in the collimators, and between detector positions is proportional such that similar triangles are always defined relative to the location of the X-ray source. X-rays that pass through openings in the upper collimator will always pass through corresponding and similar openings in the lower collimator, and thence to a corresponding detector in the underlying detector array. Substantially 100% of the X-rays irradiating the object (and neither absorbed nor scattered) pass through the lower collimator openings and are detected, which promotes enhanced sensitivity. A computer system coordinates repositioning of the collimators and detector array, and X-ray source locations. The computer system can store detector array output, and can associate a known X-ray source location with detector array output data, to provide three-dimensional imaging. Detector output may be viewed instantly, stored digitally, and/or transmitted electronically for image viewing at a remote site. 5 figs.
Parker, Sherwood
1995-01-01
A filmless X-ray imaging system includes at least one X-ray source, upper and lower collimators, and a solid-state detector array, and can provide three-dimensional imaging capability. The X-ray source plane is distance z.sub.1 above upper collimator plane, distance z.sub.2 above the lower collimator plane, and distance z.sub.3 above the plane of the detector array. The object to be X-rayed is located between the upper and lower collimator planes. The upper and lower collimators and the detector array are moved horizontally with scanning velocities v.sub.1, v.sub.2, v.sub.3 proportional to z.sub.1, z.sub.2 and z.sub.3, respectively. The pattern and size of openings in the collimators, and between detector positions is proportional such that similar triangles are always defined relative to the location of the X-ray source. X-rays that pass through openings in the upper collimator will always pass through corresponding and similar openings in the lower collimator, and thence to a corresponding detector in the underlying detector array. Substantially 100% of the X-rays irradiating the object (and neither absorbed nor scattered) pass through the lower collimator openings and are detected, which promotes enhanced sensitivity. A computer system coordinates repositioning of the collimators and detector array, and X-ray source locations. The computer system can store detector array output, and can associate a known X-ray source location with detector array output data, to provide three-dimensional imaging. Detector output may be viewed instantly, stored digitally, and/or transmitted electronically for image viewing at a remote site.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laycock, Silas; Cappallo, Rigel; Williams, Benjamin F.
We have monitored the Cassiopeia dwarf galaxy (IC 10) in a series of 10 Chandra ACIS-S observations to capture its variable and transient X-ray source population, which is expected to be dominated by High Mass X-ray Binaries (HMXBs). We present a sample of 21 X-ray sources that are variable between observations at the 3 σ level, from a catalog of 110 unique point sources. We find four transients (flux variability ratio greater than 10) and a further eight objects with ratios >5. The observations span the years 2003–2010 and reach a limiting luminosity of >10{sup 35} erg s{sup −1}, providingmore » sensitivity to X-ray binaries in IC 10 as well as flare stars in the foreground Milky Way. The nature of the variable sources is investigated from light curves, X-ray spectra, energy quantiles, and optical counterparts. The purpose of this study is to discover the composition of the X-ray binary population in a young starburst environment. IC 10 provides a sharp contrast in stellar population age (<10 My) when compared to the Magellanic Clouds (40–200 My) where most of the known HMXBs reside. We find 10 strong HMXB candidates, 2 probable background Active Galactic Nuclei, 4 foreground flare-stars or active binaries, and 5 not yet classifiable sources. Complete classification of the sample requires optical spectroscopy for radial velocity analysis and deeper X-ray observations to obtain higher S/N spectra and search for pulsations. A catalog and supporting data set are provided.« less
Searching for X-ray emission from AGB stars
NASA Astrophysics Data System (ADS)
Ramstedt, S.; Montez, R.; Kastner, J.; Vlemmings, W. H. T.
2012-07-01
Context. Magnetic fields have been measured around asymptotic giant branch (AGB) stars of all chemical types using maser polarization observations. If present, a large-scale magnetic field would lead to X-ray emission, which should be observable using current X-ray observatories. Aims: The aim is to search the archival data for AGB stars that are intrinsic X-ray emitters. Methods: We have searched the ROSAT, CXO, and XMM-Newton archives for serendipitous X-ray observations of a sample of ~500 AGB stars. We specifically searched for the AGB stars detected with GALEX. The data is calibrated, analyzed and the X-ray luminosities and temperatures are estimated as functions of the circumstellar absorption. Results: We identify 13 AGB stars as having either serendipitous or targeted observations in the X-ray data archives, however for a majority of the sources the detailed analysis show that the detections are questionable. Two new sources are detected by ROSAT: T Dra and R UMa. The spectral analysis suggests that the emission associated with these sources could be due to coronal activity or interaction across a binary system. Conclusions: Further observations of the detected sources are necessary to clearly determine the origin of the X-ray emission. Moreover, additional objects should be subject to targeted X-ray observations in order to achieve better constraints for the magnetic fields around AGB stars. Appendices are available in electronic form at http://www.aanda.org
Chandra/ACIS Observations of Rosette: Diffuse X-rays Discovered in a Galactic H II Region
NASA Astrophysics Data System (ADS)
Townsley, L. K.; Feigelson, E. D.; Broos, P. S.; Chu, Y.-H.; Montmerle, T.
2001-12-01
We present the first high-spatial-resolution X-ray images of the Rosette Nebula and Rosette Molecular Cloud (RMC), obtained in a series of 4 20-ksec snapshots with the Advanced CCD Imaging Spectrometer aboard the Chandra X-ray Observatory in January 2001. These images form a striking 1-degree X-ray panorama of a rich high-mass star formation region. The OB association is resolved at the arcsecond level into >300 sources. The other 3 pointings step across the RMC, with >100 X-ray sources in each. Soft diffuse emission is seen at the center of the H II region and is resolved from the point source population. This extended emission is most likely from the fast O-star winds, which thermalize and shock the surrounding media. Support for this effort was provided by the Chandra X-ray Observatory GO2 grant G01-2008X.
X-ray Weak Broad-line Qquasars: Absorption or Intrinsic X-ray Weakness
NASA Technical Reports Server (NTRS)
Mushotzky, Richard (Technical Monitor); Risaliti, Guida
2005-01-01
XMM observations of X-ray weak quasars have been performed during 2003 and 2004. The data for all the observations have become available in 2004 (there has been a delay of several months on the initial schedule, due to high background flares which contaminated the observations: as a consequence, most of them had to be rescheduled). We have reduced and analyzed all the data, and obtained interesting scientific results. Out of the eight sources, 4 are confirmed to be extremely X-ray weak, in agreement with the results of previous Chandra observations. 3 sources are confined to be highly variable both in flux (by factor 20-50) and in spectral properties (dramatic changes in spectral index). For both these groups of objects we are completing a publication: 1) For the X-ray weak sources, a paper is submitted with a complete analysis of the X-ray spectra both from Chandra and XMM-Newton, and a comparison with optical and near-IR photometry obtained from all-sky surveys. Possible models for the unusual spectral energy distribution of these sources are also presented. 2) For the variable sources, a paper is being finalized where the X-ray spectra obtained with XMM-Newton are compared with previous X-ray observations and with observations at other wavelengths. It is shown that these sources are high luminosity and extreme cases of the highly variable class of narrow-line Seyfert Is. In order to further understand the nature of these X-ray weak quasars, we submitted proposals for spectroscopy at optical and infrared telescopes. We obtained time at the TNG 4 meter telescope for near-IR observations and at the Hobby-Eberly Telescope for optical high-resolution spectroscopy. These observations have been performed in early 2004. They will complement the XMM data and will lead to understanding of whether the X-ray weakness of these sources is an intrinsic property or is due to absorption by circum-nuclear material. The infrared spectra of the variable sources have been already analyzed and are discussed in the paper by Memola et al. which will be soon submitted.
The Nature of Accreting Black Holes in Nearby Galaxy Nuclei
NASA Astrophysics Data System (ADS)
Colbert, E. J. M.; Mushotzky, R. F.
1999-04-01
We have found compact X-ray sources in the center of 21 (54%) of 39 nearby face-on spiral and elliptical galaxies with available ROSAT HRI data. ROSAT X-ray luminosities (0.2 - 2.4 keV) of these compact X-ray sources are ~ 10(37) -10(40) erg s(-1) (with a mean of 3 x 10(39) erg s(-1) ). The mean displacement between the location of the compact X-ray source and the optical photometric center of the galaxy is ~ 390 pc. The fact that compact nuclear sources were found in nearly all (five of six) galaxies with previous evidence for a black hole or an AGN indicates that at least some of the X-ray sources are accreting supermassive black holes. ASCA spectra of six of the 21 galaxies show the presence of a hard component with relatively steep (Gamma ~ 2.5) spectral slope. A multicolor disk blackbody model fits the data from the spiral galaxies well, suggesting that the X-ray object in these galaxies may be similar to a Black Hole Candidate in its soft (high) state. ASCA data from the elliptical galaxies indicate that hot (kT ~ 0.7 keV) gas dominates the emission. The fact that (for both spiral and elliptical galaxies) the spectral slope is steeper than in normal type 1 AGNs and that relatively low absorbing columns (N_H ~ 10(21) cm(-2) ) were found to the power-law component indicates that these objects are somehow geometrically and/or physically different from AGNs in normal active galaxies. The X-ray sources in the spiral and elliptical galaxies may be black hole X-ray binaries, low-luminosity AGNs, or possibly young X-ray luminous supernovae. Assuming the sources in the spiral galaxies are accreting black holes in their soft state, we estimate black hole masses ~ 10(2) -10(4) M_sun.
The Nature of Accreting Black Holes in Nearby Galaxy Nuclei
NASA Astrophysics Data System (ADS)
Colbert, E. J. M.; Mushotzky, R. F.
1999-05-01
We have found compact X-ray sources in the center of 21 (54%) of 39 nearby face-on spiral and elliptical galaxies with available ROSAT HRI data. ROSAT X-ray luminosities (0.2 - 2.4 keV) of these compact X-ray sources are ~ 10(37) -10(40) erg s(-1) (with a mean of 3 x 10(39) erg s(-1) ). The mean displacement between the location of the compact X-ray source and the optical photometric center of the galaxy is ~ 390 pc. The fact that compact nuclear sources were found in nearly all (five of six) galaxies with previous evidence for a black hole or an AGN indicates that at least some of the X-ray sources are accreting supermassive black holes. ASCA spectra of six of the 21 galaxies show the presence of a hard component with relatively steep (Gamma ~ 2.5) spectral slope. A multicolor disk blackbody model fits the data from the spiral galaxies well, suggesting that the X-ray object in these galaxies may be similar to a Black Hole Candidate in its soft (high) state. ASCA data from the elliptical galaxies indicate that hot (kT ~ 0.7 keV) gas dominates the emission. The fact that (for both spiral and elliptical galaxies) the spectral slope is steeper than in normal type 1 AGNs and that relatively low absorbing columns (N_H ~ 10(21) cm(-2) ) were found to the power-law component indicates that these objects are somehow geometrically and/or physically different from AGNs in normal active galaxies. The X-ray sources in the spiral and elliptical galaxies may be black hole X-ray binaries, low-luminosity AGNs, or possibly young X-ray luminous supernovae. Assuming the sources in the spiral galaxies are accreting black holes in their soft state, we estimate black hole masses ~ 10(2) -10(4) M_sun.
An Ultradeep Chandra Catalog of X-Ray Point Sources in the Galactic Center Star Cluster
NASA Astrophysics Data System (ADS)
Zhu, Zhenlin; Li, Zhiyuan; Morris, Mark R.
2018-04-01
We present an updated catalog of X-ray point sources in the inner 500″ (∼20 pc) of the Galactic center (GC), where the nuclear star cluster (NSC) stands, based on a total of ∼4.5 Ms of Chandra observations taken from 1999 September to 2013 April. This ultradeep data set offers unprecedented sensitivity for detecting X-ray sources in the GC, down to an intrinsic 2–10 keV luminosity of 1.0 × 1031 erg s‑1. A total of 3619 sources are detected in the 2–8 keV band, among which ∼3500 are probable GC sources and ∼1300 are new identifications. The GC sources collectively account for ∼20% of the total 2–8 keV flux from the inner 250″ region where detection sensitivity is the greatest. Taking advantage of this unprecedented sample of faint X-ray sources that primarily traces the old stellar populations in the NSC, we revisit global source properties, including long-term variability, cumulative spectra, luminosity function, and spatial distribution. Based on the equivalent width and relative strength of the iron lines, we suggest that in addition to the arguably predominant population of magnetic cataclysmic variables (CVs), nonmagnetic CVs contribute substantially to the detected sources, especially in the lower-luminosity group. On the other hand, the X-ray sources have a radial distribution closely following the stellar mass distribution in the NSC, but much flatter than that of the known X-ray transients, which are presumably low-mass X-ray binaries (LMXBs) caught in outburst. This, together with the very modest long-term variability of the detected sources, strongly suggests that quiescent LMXBs are a minor (less than a few percent) population.
Transforming Our Understanding of the X-ray Universe: The Imaging X-ray Polarimeter Explorer (IXPE)
NASA Technical Reports Server (NTRS)
Weisskopf, Martin C.; Bellazzini, Ronaldo; Costa, Enrico; Matt, Giorgio; Marshall, Herman; ODell, Stephen L.; Pavlov, George; Ramsey, Brian; Romani, Roger
2014-01-01
Accurate X-ray polarimetry can provide unique information on high-energy-astrophysical processes and sources. As there have been no meaningful X-ray polarization measurements of cosmic sources since our pioneering work in the 1970's, the time is ripe to explore this new parameter space in X-ray astronomy. To accomplish this requires a well-calibrated and well understood system that-particularly for an Explorer mission-has technical, cost, and schedule credibility. The system that we shall present satisfies these conditions, being based upon completely calibrated imaging- and polarization-sensitive detectors and proven X-ray-telescope technology.
VizieR Online Data Catalog: Intermediate-luminosity X-ray objects catalog (Colbert+, 2002)
NASA Astrophysics Data System (ADS)
Colbert, E. J. M.; Ptak, A. F.
2002-11-01
ROSAT, and now Chandra, X-ray images allow studies of extranuclear X-ray point sources in galaxies other than our own. X-ray observations of normal galaxies with ROSAT and Chandra have revealed that off-nuclear, compact, intermediate-luminosity (LX[2-10keV]>=1039erg/s) X-ray objects (IXOs, a.k.a. ULXs [ultraluminous X-ray sources]) are quite common. Here we present a catalog and finding charts for 87 IXOs in 54 galaxies, derived from all of the ROSAT HRI imaging data for galaxies with cz<=5000km/s from the Third Reference Catalog of Bright Galaxies. (2 data files).
RS Ophiuchi in Quiescence: Why Is It X-ray Faint?
NASA Technical Reports Server (NTRS)
Mukai, Koji
2007-01-01
The short interval between successive outbursts of RS Oph strongly suggests that it has a high mass white dwarf accreting at a high rate. This, in turn, suggests the possibility of prominent X-ray emission from RS Oph in quiescence. However, archival quiescent X-ray observations of RS Oph show it to be a modest soft X-ray source but not a strong 2-10 keV X-ray source. In this aspect, RS Oph differs markedly from T CrB. We speculate on the possible mechanisms that could significantly suppress the 2-10 keV X-ray emission in RS Oph.
Exploratory X-ray Monitoring of z>4 Radio-Quiet Quasars
NASA Astrophysics Data System (ADS)
Shemmer, Ohad
2017-09-01
We propose to extend our exploratory X-ray monitoring project of some of the most distant radio-quiet quasars by obtaining one snapshot observation per Cycle for each of four sources at z>4. Combining these observations with six available X-ray epochs per source will provide basic temporal information over rest-frame timescales of 3-5 yr. We are supporting this project with Swift monitoring of luminous radio-quiet quasars at z=1.3-2.7 to break the L-z degeneracy and test evolutionary scenarios of the central engine in active galactic nuclei. Our ultimate goal is to provide a basic assessment of the X-ray variability properties of luminous quasars at the highest accessible redshifts that will serve as the benchmark for X-ray variability studies of such sources with future X-ray missions.